CORBA Electronic Commerce Domain
Specifications

Version 1.0, Month Year

Copyright 1999, Fraunhofer Institut Materialfluss und Logistik
Copyright 1999, Imperial College of Science Technology and Medicine
Copyright 1999, In-Line Software

Copyright 1999, OSM SARL

Copyright 1999, Sprint - Technology Planning and Integration
Copyright 1999, Xerox Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-

AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF

TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner. RESTRICTED RIGHTS LEGEND. Use, dupli-
cation, or disclosure by government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Right imITechnic
Data and Computer Software Clause at DFARS 252.227.7013 OMG/ and Object Management are registered trademarks
of the Object Management Group, Inc. Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAser-
vices, and COSS are trademarks of the Object Management Group, Inc. X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers

to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm

Contents

L OVeIVIEW . . 1-1
1.1 About the Object ManagementGroup 1-1
1.1.1 WhatisCORBA? 1-2
1.1.2 Whatis CORBA E-Commerce? 1-3
1.2 Associated Documents. 1-3
1.3 SummaryofKeyFeatures 1-4
1.3.1 Session Framework. 1-5
1.3.2 Community Framework 1-5
1.3.3 Collaboration Framework. 1-5
1.3.4 DOMFramework 1-5
1.4 Acknowledgments 1-5
2. Session Framework. 2-1
21 OVEeIVIBW . . o 2-1
2.1.1 Types Derived from the Task/Session Interfaces 2-1
2.1.2 Linkage Types 2-3
2.2 ActiveResource and Associative Interfaces 2-5
2.2.1 ActiveResource., 2-5
222 Linkage e 2-8
2.2.3 Delegation 2-10
224 COomposition. 2-11
2.3 ActiveTask and Associative Interfaces. 2-11
2.3.1 ActiveTask i 2-11
232 Usage 2-14
233 Datac 2-15
2.34 PrOCESSt e 2-15
2.4 Workspace, Desktop, and Containment Associations. 2-15
2.4.1 ActiveWorkspace 2-15
242 Desktop 2-16
243 Containment.............. 2-17
2.5 ActiveUser and Supporting Interfaces 2-18
251 ActiveUser 2-18
252 LegalEntity.......... 2-19
253 Jurisdiction. 2-20
2.5.4 AbstractTemplate 2-21
2.5.5 SessionFramework IDL 2-23
3. Community Framework 3-1
3.1 OVeIVIBW . .o 3-1
3.1.1 ObjectModel 3-3

E-Commerce month year i

Contents

3.2 Interfaces. 3-3
3.2.1 Membership, Associative, and
Qualifying Interfaces 3-3
3.22 Member 3-5
3.23 Membership............ 3-6
3.24 MembershipKind 3-14
3.3 Community and Derived Interfaces 3-16
331 OVerVIeW 3-16
3.32 Community. 3-17
333 AQENCY 3-18
3.3.4 CommunityFramework IDL 3-18
4. Collaboration Framework 4-1
4.1 OVEIVIEW . ot 4-1
4.2 Encounter and Associated Interfaces 4-3
421 Encounter............ 4-3
4.2.2 EncounterTemplate 4-6
423 Implication.............. 4-6
4.3 Collaboration Interfaces. 4-8
4.3.1 Collaboration 4-8
4.3.2 CollaborationTemplate 4-15
4.3.3 Trigger 4-18
434 Command.................ccuiiiiiiin.. 4-21
435 Transition........... i .. 4-21
4.3.6 CompoundTransition 4-22
4.4 Engagement and Associated Interfaces 4-24
4.4.1 ObjectModel 4-24
4.4.2 EngagementTemplate.................... 4-24
443 Engagement 4-26
4.4.4 EngagementManifest 4-26
4.5 \oting and Associated Interfaces 4-27
451 ObjectModel 4-27
452 \VoteTemplate 4-28
453 MOtING. ... 4-28
454 \VoteManifest, 4-29
4.6 Negotiation and Promissory Models 4-30
4.6.1 Bilateral Negotiation 4-30
4.6.2 Multilateral Negotiation 4-34
4.6.3 Promissory Encounter 4-40
4.6.4 CollaborationFramework IDL 4-43

E-Commerce

month year

Contents

5. DOM Framework 5-1
5.1 OVEeIVIEW . .. 5-1
5.2 DomFramework Wrapper Interfaces 5-1
5,21 EXtensions, 5-3

5.2.2 DomFramework IDL 5-4

5.2.3 DOM Level 1 IDL (errata version).......... 5-7

Appendix A-Glossary i A-1

Appendix B - ObjectModel B-1

E-Commerce month year iii

Contents

E-Commerce

month year

Overview 1

Contents

This chapter contains the following topics.

Topic Page
“About the Object Management Group” 1-1
“Associated Documents” 1-3
“Summary of Key Features” 1-4
“Acknowledgments” 1-5

1.1 Aboutthe Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

CORBA E-Commerce Month Year 1-1

1.1.1 What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them.

1.1.1.1 CORBA History

CORBA 1.0 was introduced in 1991 by Object Management Group (OMG) and
defined the Interface Definition Language (IDL) and the Application Programming
Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). Included a single language
mapping for the C language.

CORBA 1.1 (February 1992) was the first widely published version of the CORBA
specification. It closed many ambiguities in the original specification; added interfaces
for the Basic Object Adapter and memory management; clarified the Interface
Repository, and clarified ambiguities in the object model.

CORBA 1.2 (December 1993) closed several ambiguities, especially in memory
management and object reference comparison.

CORBA 2.0 (August 1996) defined true interoperability by specifying how ORBs from
different vendors can interoperate. First major overhaul kept the extant CORBA object
model, and added several major features:

¢ dynamic skeleton interface (mirror of dynamic invocation)

* jnitial reference resolver for client portability

® extensions to the Interface Repository

* "out of the box" interoperability architecture (GIOP, IIOP, DCE CIOP)

* support for layered security and transaction services

* datatype extensions for COBOL, scientific processing, wide characters

¢ interworking with OLE2/COM

Included in this release were the Interoperability Protocol specification, interface
repository improvements, initialization, and two IDL language mappings (C++ and
Smalltalk).

CORBA 2.1 (August 1997) added additional security features (secure IIOP and IIOP
over SSL), added two language mappings (COBOL and Ada), included interoperability
revisions and IDL type extensions.

CORBA 2.2 (February 1998) included the Server Portability enhancements (POA),
DCOM Interworking, and the IDL/JAVA language mapping specification.

CORBA E-Commerce Month Year

1

CORBA 2.3 (June 1999) includes the following new and revised specifications:
® COM/CORBA Part A and B

* ORB Portability IDL/Java

* ORB Interoperability

® Objects by value

¢ C++ Language Mapping

* |IDL to Java Language Mapping

® Java to IDL Language Mapping

CORBA 3.0p (Commercial Release due end of 1999) represents an important
specification that adds several major features that are grouped according to
Components, Quality of Service, and Java and Internet Integration.

1.1.2 What is CORBA E-Commerce?

There are several specifications that apply to special area markets or domains. Each
specialty area represents the needs of an important computing market. The CORBA

Electronic Commerce Domain architecture is comprised of specifications that relate to
the OMG-compliant interfaces for distributed electronic commerce systems.

In addition to CORBA E-Commerce, other domains include:
CORBA Business

CORBA Finance

CORBA Lifesciences

CORBA Med

CORBA Manufacturing

CORBA Telecoms

CORBA Transportation

As specifications become adopted and approved by OMG, they will be included in the
CORBA domain documentation set.

1.2 Associated Documents

The CORBA documentation set includes the following books:

* Object Management Architecture Guidefines the OMG'’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It defines the umbrella architecture for the OMG standards. It also
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

CORBA E-Commerce Associated Documents Month Year 1-3

 CORBA: Common Object Request Broker Architecture and Specificatigains
the architecture and specifications for the Object Request Broker.

» CORBAservices: Common Object Services Specificatatains specifications
for OMG’s Object Services.

« CORBAfacilities: Common Facilitie&rchitecture and Specificatiotiescribes an
architecture for Common Facilities. Additionally, it includes specifications based
on this architecture that have been adopted and published by the OMG.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standard:
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail i®bject Management
Architecture Guidg

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701
USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303
pubs@omg.org
http://www.omg.org

1.3 Summary of Key Features

The CORBA Electronic Commerce Domain architecture is comprised of specifications
that relate to the OMG-compliant interfaces for distributed electronic commerce
systems. Currently, there are four frameworks established as a result of the Negotiation
Facility RFP2. These include the Session Framework, Community Framework,
Collaboration Framework, and DomFramework.

The Framework Specification presented under chapters 2 through 5 are targeting
potential developers of this facility. Information is presented in the form of a
breakdown of modules, interfaces, and types. For each interface, details of attributes,
operations, events and additional semantics are provided. The documentation assume:
that readers are familiar with the object model defined undeftable/'Session

specification, and have familiarity with the notion of structured events as defined by
CosNotification .

CORBA E-Commerce Month Year

1.3.1 Session Framework

This chapter covers a set of base interfaces suppdktitigeUser , ActiveTask ,
ActiveWorkspace , andActiveResources . This module brings together two
recently adopted OMG specifications, nam@&hgk/Session andCosNoaotification .
Task/Session specification establishes a framework for people, places and things.
The CosNotification services are used to extend these definitions with an event
model suitable for the electronic commerce domain. Interfaces defined under the
SessionFramework provide the computational platform for the Community and
Collaboration frameworks.

1.3.2 Community Framework

This chapter contains extensions to 8essionFramework to support communities
of collaborating users and defines the typksnbership , Community , Agency, and
Member.

1.3.3 Collaboration Framework

This chapter contains the definition @bllaboration , a process through which
different models of collaboration rules can be managed. The
CollaborationFramework module is defined extensively on interfaces from the
SessionFramework and CommunityFramework

The specification of three collaborative models cover the following areas:
® bilateral negotiation
®* multilateral negotiation

® promissory commitment

1.3.4 DOM Framework

This chapter defines a variant of ttW8C DOM interfaces that address specific
anomalies of the original specification. In particular, the interfaces provide explicit
support for OMG language mappings and extensions enabling node identity and access
constraint declarations.

1.4 Acknowledgments

The following companies have submitted to or have supported submissions
contributing to the CORBA E-Commerce specifications:

® Fraunhofer Institut Materialfluss und Logistik

® Imperial College of Science Technology and Medicine
® In-Line Software

®* OSM SARL

CORBA E-Commerce Acknowledgments Month Year 1-5

1-6

® Sprint - Technology Planning and Integration

® Xerox Corporation

CORBA E-Commerce Month Year

Session Framework 2

Contents

This chapter contains the following topics.

Topic Page
“Overview” 2-1
“ActiveResource and Associative Interfaces” 2-5
“ActiveTask and Associative Interfaces” 2-11
“Workspace, Desktop, and Containment Associations” 2-15
“ActiveUser and Supporting Interfaces” 2-18

2.1 Overview

This module defines a set of base interfaces that exterishéSession framework.
Interfaces defined here incorporate an event model bas€dsivotification , and the
addition of operations that extend framework interoperability through the explicit
declaration of associations.

2.1.1 Types Derived from the Task/Session Interfaces

SessionFramework provides a set of interfaces that directly extend the Task/Session
interfaces to include the formal specification of the structured event produced.

Session Framework month year 2-1

2.1.1.1 Object Model

Table 2-1 Task/Session Derivatives - Interface Summary
Interface Description

ActiveResource ActiveResource is a specialization of
Session::AbstractResource that includes inheritance from the
CosNotifyComm StructuredPushSupplier and
StructuredPushConsumer interfaces. This extension introduces

the ability of anAbstractResource to expose structured events it

is capable of producing and to subscribe to events on a selegtive
basis. Other extensions include operations associated with the
binding and release dfinkage association.

ActiveTask ActiveTask extendsSession::Task through the addition of
ActiveResource and serves as a base type Eoicounter .

ActiveWorkspace ActiveWorkspace extendsSession::Workspace through
ActiveResource and provides a base type fGommunity .

Desktop SessionFramework::Desktop extendsSession::Desktop and
ActiveWorkspace defining an event enhanced equivalent of the
Task/Sessioesktop .

ActiveUser ActiveUser extendsSession::User through the addition of the

CoslLifeCycle::FactoryFinder interface and.egalEntity . As a
LegalEntity , anActiveUser exposes public credentials that may
be used under contractual engagement processes.

Session Framework month year

Session::
BaseBusinessObjeft
[I]
Linkage Session:: CosNotifyComm:: CosNotifyComm:: LegalEntity
AbstractResourdq StructuredPushSupp|i{StructuredPushConsyrper
source : ActiveResopifce credentials : Abgtr.
target : ActiveResouffe] {

[S R

ActiveResource

bind()

release()

set_producer()

Session:: get_producer()
Task change_producer()

release_producer()

[I 1 % Z%
ZE ActiveTask AbstractTemplate Session:: ActiveUser

Workspace

CoslLifeCycle; Session::
FactoryFinde User

task_mode : endr| factory_key : Key
factory_criteria : Critpria;

%F Session::
ActiveWorkspace] Desktop

Desktop J

Figure 2-1 Base Task/Session Derivative Interfaces

2.1.2 Linkage Types

A Linkage is a specialization &ession::BaseBusinessObject used to describe a
generalized relationship betweers@urce and atarget resource. Linkages are used
to represent the declaration of concrete relationship types inclutiiage
Containment , Composition , Delegation , Implication , and Jurisdiction

Session Overview month year 2-3

2-4

2.1.2.1 Object Model
Session::
BaseBusinessObject
1 target - Linkage
SessionFramework:: 1 source : ActiveResource
ActiveResource source j target : ActiveResource
I I | |]
Delegation Containment Usage Composition Implication Jurisdiction
CommunityFramework:: Process Data Success Failure
Member
Figure 2-2 Linkage and Derived Types
Table 2-2 Linkage Type Summary

Type Source Target Description

Linkage ActiveResource ActiveResource Abstract base interface that expsseca and
target of the association.

Delegation [self reference] ActiveResource A role based association that requires a concrete base
type that inherits from the target type, and delegates
target operation to the target instance.

Containment | ActiveWorkspace| ActiveResource An association equivalent to the Task/Session
Containment interface that associates a containing
workspace with the contained resource.

Usage ActiveTask ActiveResource An association equivalent to the Task/Session Usage
interface that associates a using task with the used
resource.

Composition | Composite ActiveResource An association that signifies the composition of a
target resource within a source composite resourge.

Implication | AbstractTemplate | AbstractTemplate A base type foBtimess andFailure Implication
linkage that associates a source template with a target
template.

Jurisdiction | ActiveResource ActiveResource An association that describes the authority of an
ActiveResource over another.

Session Framework

month year

Table 2-3 Utility Interface Summary Table
Interface Description

AbstractTemplate AbstractTemplate is anActiveResource template that exposes a
factory_key andcriteria . AbstractTemplate is the base type for a
set ofEncounterTemplate types defined under the
CollaborationFramework

LegalEntity A type exposing a set SbstractTemplate instances that defines a
key andcriteria for access to public credentials.L&galEntity may
be associated to an arbitrary numbeAaofiveResource instances
through aJurisdiction linkage.

2.2 ActiveResource and Associative Interfaces

2.2.1 ActiveResource

ActiveResource extends th&ask/Session specification ofAbstractResource

through the addition of inheritance from t8esNotifyComm module
StructuredPushSupplier and StructuredPushConsumer interfaces. Additional
operations are includetd supporting.inkage association angroducer relationship
management. As a structured event supplier, the type exposes lifecycle and feature
change events.

2.2.1.1 Object Model

Session:: CosNotifyComm:: CosNotifyComm::
AbstractResource StructuredPushSupplier StructuredPushConsumer

I SR

ActiveResource

bind()

release()
set_producer()
get_producer()
change_producer()
release_producer()

Figure 2-3 ActiveResource Object Model

Session ActiveResource and Associative Interfaces month year 2-5

2-6

2.2.1.2 |IDL Specification

interface ActiveResource :

Session::AbstractResource,

CosNotifyComm::StructuredPushSupplier,
CosNotifyComm::StructuredPushConsumer

exception ResourceUnavailable{ };

exception ProducerConflict{ };
void bind(
in Linkage link
) raises (
ResourceUnavailable
);
void release(
in Linkage link
);
ActiveTask get_producer();
void set_producer(
in ActiveTask task
) raises (
ProducerConflict
);
void release_producer();
void change_producer(

in SessionFramework::ActiveTask old_task,
in SessionFramework::ActiveTask new_task

) raises (
ProducerConflict

):

2.2.1.3 Linkage Dependencies

ActiveResource extendsAbstractResource through the addition of operations that
support the binding and release of Linkage associations and declaration of producer
relationships. Exposure of the bind and release operations ensures that an
ActiveResource can maintain referential integrity with respect to the
ActiveResource (see Section 2.2.2, “Linkage,” on page 2-8).

The bind and release operations provide mechanisms through which a binding request
can be made to aictiveResource concerning concrete linkage types such as Usage,
Containment, or Composition dependency. Both operations take a Linkage as an

argument.

Session Framework

void bind(
in Linkage link

) raises (
ResourceUnavailable

);

month year

void release(

);

in Linkage link

2.2.1.4 Produces Relationship

The following IDL provides the interfaces necessary to set, get, and release the
reference to théctiveTask producing this resource. The operatemt_producer
associates aActiveTask as the task that is producing tAetiveResource . The

operationchange_producer
CoordinationFramework::Encounter
release_producer

void set_producer(

in ActiveTask task

) raises (

);

ProducerConflict

void release_producer();

void change_producer(
in SessionFramework::ActiveTask old_task,
in SessionFramework::ActiveTask new_task
) raises (

);

ProducerConflict

2.2.1.5 Structured Events

may be used by a mediating client such as

to manage production relationships. The

enables a task to declare retraction of a producer relationship.

Under theCosNotification specification all events are associated with a unique
domain name space. This specification establishes the domain namespace
"org.omg.session" for structured events associated AdtiveResource and its sub-

types.

The CosNotification service defines &tructuredEvent that provides a framework

for the naming of an event and the association of specific properties to that event. All
events specified within this facility conform to tBéructuredEvent interface. This
specification requires specific event types to provide the following properties as a part
of thefilterable_data of the structured event header.

Table 2-4 ActiveResource Filterable Data Properties

Name Type Description
timestamp TimeBase::UtcT Date and time of to which the event is issyed.
source ActiveResource Active resource raising the event.

Session ActiveResource and Associative Interfaces month year 2-7

2-8

Table 2-5 ActiveResource Structured Event Table

Event Description
update Notification of the change of a value of an attribute from value x to value y, where x
represents the old value and y represents the new value.
Supplementary Properties
feature string Attribute name
old any Old value
new any New value
move Notification of the transfer of an active resource (move) under which the identity is
changed. The source of the event supplies the old instance identity.
Supplementary Properties
new ActiveResource Reference containing the new object identity
remove Notification of the removal of an ActiveResource
linkage Notification of the addition or removal of an associated ActiveResource (wherge
association is through a linkage such as Containment, Composition, Usage,
Jurisdiction or Delegation).
Supplementary Properties
addition boolean True indicates that the Linkage is being added.
False indicates the removal of the Linkage.
broadcast Arbitrary event issued by a client for distribution to all resources associated to the
ActiveResource. This event is semantically equivalent to the Task/Session
resource_event operation.
Supplementary Properties
eventdata any Value to be passed under the event (reference is
the Task/Session specification).
2.2.2 Linkage

Linkage is a specialization &ession::BaseBusinessObject that constitutes an
abstract type, which defines a dependency relationship by a séeticeResource
towards a dependent targittiveResource . Linkage is the super-type of Usage,

Containment, Delegation, Implication, Jurisdiction, and Composition. Instances of

Linkage are supplied as arguments to the bind and release operations on
ActiveResource .

Session Framework month year

2.2.2.1 Object Model

target

Session::
BaseBusinessObject

7

1]

SessionFramework::
ActiveResource

1

source

Linkage

source : ActiveResource
target : ActiveResource

4

*

Delegation Containment Usage Composition Implication Jurisdiction
CommunityFramework:: Process Data Success Failure

Member

Figure 2—-4 Linkage Object Model

2.2.2.2 IDL Specification

interface Linkage :

Session::BaseBusinessObject

readonly attribute any source;
readonly attribute any target;

Table 2-6 Linkage Attribute Table

Name Type Properties| Purpose
source ActiveResource| read-only| Reference toAbtiveResource that is requesting or
has established a dependency onténget .
target ActiveResource| read-only| Reference toAhveResource that is the target of g
bind operation by source, or maintains a dependency
source .
Session ActiveResource and Associative Interfaces month year 2-9

—

(o]

2-10

2.2.3 Delegation

Delegation is an abstract specialization lohkage that provides support for the
declaration of role based extensions toAamtiveResource . A concrete type derived
from Delegation inherits from the type to which it is associatedaaget and
delegates operations to thatget .

2.2.3.1 Object model

will be

SessionFramework::
Linkage
SessionFramework:: | 1 target * SessionFramework:: 1
ActiveResource Delegation
source
1
Figure 2-5 Delegation Object Model.
2.2.3.2 IDL Specification
interface Delegation :
Linkage
{
h
Table 2-7 Delegation Attribute Table
Name Type Properties| Purpose
source Delegation read-only | A reference to itself.
This may be overridden in a derived type.
target ActiveResource. read-only The resource to which delegation operations
invoked. A concrete implementation will inherit
from the type referenced higirget and delegates
operations to the instance referenceddget .
Session Framework month year

2.2.4 Composition

The Task/Session specification defingsage andContainment as mechanisms
through which typed relationships among tasks, resources, and workspaces can be
expressed.

SessionFramework extends this notion through the addition of @@mposition
relationship type that supports ordered association of composite and composed
ActiveResource instances. A compositéctiveResource is thesource of the
Composition linkage. The composefictiveResource is thetarget.

2.2.4.1 Object Model

SessionFramework::
Linkage
SessionFramework:: 1 N ..
ActiveResource Composition

target

*
1
source

Figure 2-6 Composite Object Model

2.2.4.2 IDL Specification

interface Composition :
Linkage
{

h

2.3 ActiveTask and Associative Interfaces

2.3.1 ActiveTask

ActiveTask extends the Task/Session specificatiomask through the addition of
ActiveResource and the introduction dhsk_mode attribute enabling the exposure
of interactive versus batch oriented tasks.

Session ActiveTask and Associative Interfaces month year 2-11

2-12

2.3.1.1 Object Model

Session::
Task

SessionFramework::
ActiveResource

&

JA)

ActiveTask

task_mode : TaskMode

Figure 2-7 ActiveTask Object Model.

2.3.1.2 IDL Specification

interface ActiveTask :
Session::Task,
ActiveResource

{

enum TaskMode{
BATCH,
INTERACTIVE

k

readonly attribute TaskMode task_mode;

Table 2-8 Active Task Attribute Table

Name

Type

Properties

Purpose

task_mode

TaskMode

read-only

Indication of B&TCH or INTERACTIVE mode of
execution.

Session Framework

month year

Table 2-9

ActiveTask Structured Event Table

Event

Description

process_state

Notification of the change of state of an ActiveTask.

Supplementary properties

value task state An enumeration as defined by the Task/Sesgsion

specification.

ownership

Notification of the change of ownership of an ActiveTask.

Supplementary properties

owner ActiveUser ActiveUser assigned as owner of the ActiveTask.

2.3.1.3 Resource Usage

Instances ofActiveTask are associated to resources they consume through instances

of Usage. To ensure referential integrity between the task and the resource it
consumes, an implementation AftiveTask may request permission to bind to an
ActiveResource using thebind operation, and at a subsequent point, invoke the
release operation on the target resource.

The Process andData usage sub-types differentiate the usage relationship between

anActiveTask and a used resource. TReocess relationship signifies the usage of
anActiveResource as the controlling process or editor wherBasa signifies a non-
process resource.

2.3.1.4 Batch and Interactive Modes

The enumeratioifaskMode enables a task to be qualified as an interactive or batch

oriented task.

enum TaskMode{

k

BATCH, INTERACTIVE

attribute TaskMode task_mode;

Session

ActiveTask and Associative Interfaces month year 2-13

Table 2-10TaskMode Enumeration Table
Value Description

BATCH Indicates that this task is associated to process or editor that will execute and

terminate independently of user interaction.
INTERACTIVE |Indicates that this task will invoke an editor that will be manipulated by a user

through an interactive interface.

2.3.2 Usage

Usage associates aActiveTask assource and anActiveResource astarget.
Cardinality of the Usage relationship is many to many.

2.3.2.1 Object Model

SessionFramework::
Linkage
Q Process
SessionFramework::
ActiveResource L . Usage <I_
target
N Data

7

SessionFramework::
ActiveTask source

1

Figure 2-8 .Usage Object Model

2.3.2.2 |IDL Specification

interface Usage :
Linkage
{

h

2-14 Session Framework month year

2.3.3 Data

Data usage differentiates usage darget informationActiveResource by a
source ActiveTask as opposed to Process usage. Cardinalipaih is many to

many.

2.3.3.1 IDL Specification

interface Data :
Usage

{

2.3.4 Process

Process allows the qualification of usage tdrget ActiveResource as a process by
asource ActiveTask . A source ActiveTask may have between 0 and 1 instance of
ActiveResource as a procestarget. An ActiveResource may be bound as the
target under aProcess linkage by manyActiveTask instances.

2.3.4.1 IDL Specification
Interface Process :

Usage

{

2.4 Workspace, Desktop, and Containment Associations

2.4.1 ActiveWorkspace

ActiveWorkspace extendsSession::Workspace through the addition of
ActiveResource .

Session Workspace, Desktop, and Containment Associations month year 2-15

2.4.1.1 Object Model

Session:: SessionFramework::
Workspace ActiveResource

A

ActiveWorkspace

Figure 2-9 ActiveWorkspace Object Model

2.4.1.2 IDL Specification

interface ActiveWorkspace :

Session::Workspace,
ActiveResource

2.4.1.3 Containment of Resources

ActiveResource containment associations are exposed to the contained resource
under thebind andrelease operations as instances ©@bntainment .

2.4.2 Desktop

Desktop is a specialization ofession::Desktop andActiveWorkspace .
Inclusion of the desktop interface under this module ensures consistency with respect
to event related behavior.

2-16 Session Framework month year

2.4.2.1 Object Model

Session:: SessionFramework::
Desktop ActiveWorkspace
Desktop

Figure 2—10 Desktop Object Model

2.4.2.2 |IDL Specification

interface Desktop :
Session::Desktop,
ActiveWorkspace

2.4.3 Containment

Containment associates aActiveWorkspace assource and anActiveResource
astarget . Cardinality of theContainment relationship is many to many.

Session Workspace, Desktop, and Containment Associations month year 2-17

2431

2.4.3.2

Object Model

SessionFramework::
Linkafe
SessionFramework:: 1 . i
ActiveResource Containment
target

7 *

1

SessionFramework::
ActiveWorkspace source

Figure 2—11 Containment Object Model

IDL Specification

interface Containment :
Linkage

{

b

2.5 ActiveUser and Supporting Interfaces

2.5.1 ActiveUser

2-18

An ActiveUser is an extension dbession::User , ActiveResource , LegalEntity
interface, andCosLifeCycle::FactoryFinder . ActiveResource introduces the
consistent behavior concerning events consumption and production, and mechanisms
supporting the binding and releasing of linkage associatibegalEntity enables an
ActiveUser to be associatefiReviewer: changed association to associated - please
verify] with aJurisdiction relationship relative té\ctiveResource and exposes

public credentials. As RactorFinder , anActiveUser may be used as thbere

argument to &£osLifeCycle move or copy operation.

Session Framework month year

2.5.1.1 Object Model

SessionFramework:: CosLifeCycle:: Session:: SessionFramework::
LegalEntity FactoryFinder User ActiveResource
I
ActiveUser

Figure 2—-12 Containment Object Model

2.5.1.2 IDL Specification

interface ActiveUser :
Session::User,
LegalEntity,
ActiveResource,
CosLifeCycle::FactoryFinder

{

Table 2-11ActiveUser Structure Event Table

Connected

Optional notification of the success or failure of a task.

Supplementary Properties

value boolean True indicates that the user is connected, false
indicates that the user is disconnected.

2.5.2 LegalEntity

LegalEntity exposes a sequenceAdfstractTemplate instances that may be used by

a client to construct a create operation agairGeaericFactory . The structure of
credentials and the value of factory key are undefined. Recommendations concerning
criteria and factory keys will be provided under subsequent revisions of this
specification following the resolution of technology adoption processes dealing with
Security interoperability and Public Key Infrastructure services.

Session ActiveUser and Supporting Interfaces month year 2-19

2.5.2.1 Object Model

Session::
BaseBusinessObject

LegalEntity

. AbstractTemplate

credentials : AbstractTemplateSequence

Figure 2—13 LegalEntity Object Model

2.5.2.2 IDL Specification

interface LegalEntity :
Session::BaseBusinessObject

readonly attribute AbstractTemplateSequence credentials;

Table 2-12 LegalEntity Attribute Table

Name Type Properties Purpose
credentials | AbstractTemplateSequence read-only Used by a client to construct a create
operation against &enericFactory .

2.5.3 Jurisdiction

Jurisdiction is a specialization dfinkage . Jurisdiction relationships may be used to
express hierarchies of authority that client applications may navigate in order to qualify
the context of collaboration with respect to the level and scope of authority of
respective participants. 2urisdiction linkage associates a soutcegalEntity with

a targetActiveResource and implies authority of theegalEntity over thetarget
resource.

2-20 Session Framework month year

2.5.3.1 Object Model

SessionFramework::
Linkage

7

SessionFramework:: 1 target * SessionFramework::
ActiveResource Jurisdiction

kind : Kind

*

. 1 source
SessionFramework::

LegalEntity

Figure 2—14 Jurisdiction Object Model

2.5.3.2 IDL Specification

typedef string Kind;

interface Jurisdiction :
SessionFramework::Linkage

readonly attribute SessionFramework::Kind kind;

Table 2-13 Jurisdiction Attribute Table

Name Type Properties Purpose
kind Kind read-only Application specific string that qualifies the kind
of jurisdiction that the relationship infers.

2.5.4 AbstractTemplate

AbstractTemplate is a type that exposesfactory key andfactory criteria used
by clients under operations dealing witlisLifeCycle factory services.
AbstractTemplate is a base type for th@ollaborationFramework interface
EncounterTemplate and theCommunityFramework interface
MembershipKind .

Session ActiveUser and Supporting Interfaces month year 2-21

2.5.4.1 Object Model

SessionFramework::
ActiveResource

7

AbstractTemplate

factory_criteria

factory_key : Key

: Criteria

&

CollaborationFramework::
EncounterTemplate

7

CommunityFramework::
MembershipKind

CollaborationFramework:: CollaborationFramework::
CollaborationTemplate VoteTemplate

CollaborationFramework::
EngagementTemplate

Figure 2—15 AbstractTemplate Object Model

2.5.4.2 IDL Specification

interface AbstractTemplate :
ActiveResource

{

readonly attribute CosLifeCycle::Key factory key;
readonly attribute CosLifeCycle::Criteria factory_criteria;

Table 2-14 AbstractTemplate Attribute Table

der

Name Type Properties Purpose

factory_key CosLifeCycle::Key read-only Argument to CosLifeCycle factory fin
that identifies the type of factory to find.

factory criteria | CosLifeCycle::Criterig read-only Argument to a CosLifeCycle generic
factory.

2-22 Session Framework

month year

2.5.5 SessionFramework IDL

/I file SessionFramework.idl

#ifndef _SESSION_FRAMEWORK_IDL
#define _SESSION_FRAMEWORK_IDL_
#pragma prefix "omg.org"

#include <Session.idl>

#include <CosNotifyComm.idl>
#include <CosPropertyService.idl>
#include <TimeBase.idl>

module SessionFramework{
/I forward declarations

interface ActiveResource;
interface ActiveTask;
interface ActiveWorkspace;
interface Desktop;
interface LegalEntity;
interface ActiveUser;

interface Linkage;
interface Usage;
interface Containment;
interface Delegation;
interface Jurisdiction;
interface Composition;

interface AbstractTemplate;
I typedefs

typedef string Kind;
typedef sequence <ActiveResource> ActiveResourceSequence;

typedef sequence <AbstractTemplate> AbstractTemplateSequence;

typedef sequence <ActiveUser> ActiveUserSequence;
typedef sequence <ActiveTask> ActiveTaskSequence;

typedef sequence <ActiveWorkspace> ActiveWorkspaceSequence;

/I iterators

interface ActiveResourcelterator : CosCollection::lterator{};
interface AbstractTemplatelterator: CosCollection::lterator{};
interface ActiveUserlterator : CosCollection::lterator{};
interface ActiveTasklterator : CosCollection::Iterator{};
interface ActiveWorkspacelterator : CosCollection::lterator{};

Session ActiveUser and Supporting Interfaces month year

I/l base types

interface ActiveResource :
Session::AbstractResource,
CosNotifyComm::StructuredPushSupplier,
CosNotifyComm::StructuredPushConsumer {

exception ResourceUnavailable{ };
exception ProducerConflict{ };

void bind(
in Linkage link
) raises (
ResourceUnavailable
)i
void release(
in Linkage link

)i
/I setting, getting and releasing a producer

ActiveTask get_producer();
void set_producer(
in ActiveTask task
) raises (
ProducerConflict
)i
void release_producer();
void change_producer(
in SessionFramework::ActiveTask old_task,
in SessionFramework::ActiveTask new_task
) raises (
ProducerConflict
)i
h

interface ActiveTask :

Session::Task,

ActiveResource

{

enum TaskMode{
BATCH,
INTERACTIVE

8

readonly attribute TaskMode task_mode;
h
interface ActiveWorkspace :

Session::Workspace,
ActiveResource {

2-24 Session Framework month year

interface Desktop :
Session::Desktop,
ActiveResource {

k
/I ActiveUser

interface LegalEntity :
Session::BaseBusinessObiject {
readonly attribute AbstractTemplateSequence credentials;

k

interface ActiveUser :
Session::User,
LegalEntity,
ActiveResource,
CosLifeCycle::FactoryFinder
{

k

/l Extensions

interface Linkage :
Session::BaseBusinessObject {
readonly attribute any source;
readonly attribute any target;

interface Delegation :
Linkage {
I3

interface Usage : Linkage{ };
interface Data : Usage{ };

interface Process : Usage{ };
interface Containment : Linkage{ };
interface Composition : Linkage{ };

interface Jurisdiction :
SessionFramework::Linkage {
readonly attribute SessionFramework::Kind kind;

h

/I templates

interface AbstractTemplate :
ActiveResource {

readonly attribute CosLifeCycle::Key factory_key;
readonly attribute CosLifeCycle::Criteria factory_criteria;

Session ActiveUser and Supporting Interfaces month year 2-25

}, I end SessionFramework Module

#endif // _SESSION_FRAMEWORK_IDL_

2-26 Session Framework month year

Community Framework

Contents

This chapter contains the following topics.

Topic Page
“Overview” 3-1
“Interfaces” 3-3
“Community and Derived Interfaces” 3-16

3.1 Overview

Interfaces defined under the Community module fall into two categories:

1. Interfaces supporting membership management.

2. Interfaces defining Community, the derived interface Agency.

Table 3-1 CommunityFramework Interface Summary Table

Interface Description

Membership A specialization dfctiveResource that enables association of instances of
the typeMember in accordance with rules exposed under a
MembershipKind . A Membership exposes interfaces through which

Member instances may be added, removed, and listed relative to the Kkir
participation exposed by lembershipKind hierarchy.

nd of

Community Framework month year

3-1

3-2

Table 3-1 CommunityFramework Interface Summary Table

MembershipKind

Definition of constraints for a givifembershipKind . Constraints include
the maximum number of members that may be associated under the ki

d;

quorum value indicating the number of members that kind must be associated

and connected before the Member is considered valid, privacy policy

declarations, and policies concerning the semantics of membership hierarchy.

Member

A role ofActiveUser , defined as a specialization loihkage that associates

a targetActiveUser with aMembership . As a Membership may be a

hierarchy of Membership instances, an instance of Member may be associated

as a member at many levels within the hierarchy.

Community

A specialization ofctiveWorkspace , Membership , andFactoryFinder .
As anActiveWorkspace , a Community is a place containing
ActiveResources . As aMembership , aCommunity exposes policy
concerning membership and the association of Member kind hierarchies
FactoryFinder , Community represents a possible target undeopy or
move operation.

Agency

A specialization o€ommunity andLegalEntity that introduces the notion

As a

of legal community such as a company that maintains jurisdiction of a set of

resources. Agency, throudlegalEntity andJurisdiction , enables the
qualification of the authority of Member within a negotiation or other
collaborative encounter.

Community Framework month year

3.1.1 Object Model

SessionFramework::
ActiveResource

I

[]
target
9 SessionFramework:: SessionFramework:: SessionFramework::
ActiveUser Delegation AbstractTemplate
factory_key : Key
Z% factory_criteria : Criteria
CommunityFramework:: membership CommunityFramework:: model CommunityFramework::
Member Membership MembershipKind
1 1
label : string model : MembershipKind kind : string
membership : Membership recruitment_status : enum quorum : long
quorum_status : enum ceiling : long
get_kinds() count : long privacy : enum
— active_count : long node_type: enum
exclusive : boolean
add_member()
boolean is_member()
get_members()
- - remove_member()
CosLifeCycle:: SessionFramework:: add_membership()
FactoryFinder ActiveWorkspace get__memberships()
remove_membership()
|
Community Framework:: SessionFramework::
Community LegalEntity
|
Community Framework::
Agency

Figure 3-1 CommunityFramework Object Model

3.2 Interfaces

3.2.1 Membership, Associative, and Qualifying Interfaces

Membership is a base type tGommunity andEncounter . A Community
constitutes a set of artifacts shared by the community memberSnéaunter is a
collaborative process involving a set of membersdémber is a role of a user
associated to an instanceMémbership . A Membership is the run-time

Community Framework Interfaces month year 3-3

3.2.1.1

instantiation of aMembershipKind hierarchy that defines the kind of memberships
that may be attributed telembers within the Membership . As such, the role of a
user is a function of th®lembership to which aMember is associated.

Instances of botMembershipKind andMembership are associated to subsidiary
instances through composition relationshi@@mposition relationships between
MembershipKind define the hierarchy of roles supported by a sidgenbership
instance. Composition relationships between Membership instances define process
centric hierarchies, such as a parent and subsidiary negotiation.

Object Mode

SessionFramework::
ActiveResource

A

[|
target
g_‘> SessionFramework:: SessionFramework:: SessionFramework::
ActiveUser Delegation AbstractTemplate
factory_key : Key
Z} factory_criteria : Criteria
Community Framework:: membership CommunityFramework:: model CommunityFramework::
Member Membership MembershipKind
* 1 * 1
label : string model : MembershipKind kind : string
membership : Membership recruitment_status : enum quorum : long
quorum_status : enum ceiling : long
get_kinds() count : long privacy : enum
— active_count : long node_type: enum
add_member() exclusive : boolean
boolean is_member()
get_members()
remove_member()
add_membership()
get_memberships()
remove_membership()
Figure 3-2 Member, Membership and MembershipKind Object Model
3.2.1.2 Example

The following (non-UML) illustration depicts an example oMambership , its
purpose in associating the setMémber instances Michael, Carol, Alice, and Bob,
and the structure of membership kintiembershipKind instances) that each user is
associated with under tidembership . In this example, Michael, Carol, and Alice
are associated with the membership kindasumer and by virtue of being a

Community Framework month year

consumer are also associated to the rolepafticipant . Alice is bothconsumer
andcustomer . As acustomer she is also aignatory . Bob participates to the
Membership agrovider , signatory , andparticipant .

participant

MembershipKind
Hierarchy

consumer sighatory

Member | Member Member Member

Michael

Member instances bound to a Membership

Figure 3-3 Schematic Example of a Membership

The Member type manages the state and associationMémbership and mediates
between a set dflember instances and a statelédembershipKind hierarchy.
Member instances are associated tMembershipKind through operations exposed
on theMembership interface.

3.2.2 Member

A Member represents the participation of AntiveUser to an instance of

Membership . The association téctiveUser is achieved through a reference to the
ActiveUser under thetarget attribute inherited from thBelegation interface. The
attributelabel may be used as a preferred nhame of the user relative to other members
of the Membership . The operatiotist_kinds returns the set dflembershipKind
instances to which thlember is associated within the scope of Membership .

Community Framework Interfaces month year 3-5

3-6

3.2.2.1 IDL Specification

interface Member :
SessionFramework::Delegation,
SessionFramework::ActiveUser
{
attribute string label;
readonly attribute CommunityFramework::Membership membership;
void get_kinds(
out MembershipKindSequence kind_list,
out MembershipKindlterator kind_iterator
) raises (
PrivacyConflict
);
h

Table 3-2 Member Attribute Table

Name Type Properties | Purpose

label long The name by which a Member is known to the
Community.

membership Membership read-only The root Membership to which this instance of
Member is associated.

3.2.2.2 Listing Kind Attributed to a Member

The get_kinds operation enables clients to invoke requests agaii&mber to
retrieve reference to thdembershipKind instances that defines the kind of
memberships that the user is associated with within the scope Wfethbership .

void get_kinds(
out MembershipKindSequence kind_list,
out MembershipKindlterator kind_iterator
) raises (
PrivacyConflict

);

3.2.3 Membership

A Membership is an interface that corresponds to the run-time creation of an
association between zero to mavigmber instances and a roMembershipKind ,
and between 0 and many subsidisfgmbership instances. Th&lembership type
exposes operations enabling the addition, listing, and removing of members, querying
individual Member patrticipation, and features exposing the state oMambership .

Community Framework month year

3.2.3.1 IDL Specification

interface Membership :

{

SessionFramework::ActiveResource

readonly attribute MembershipKind model,
enum RecruitmentStatus{
OPEN_MEMBERSHIP,
SUSPENDED_MEMBERSHIP,
CLOSED_MEMBERSHIP
h
readonly attribute RecruitmentStatus recruitment_status;
exception RecruitmentConflict{
RecruitmentStatus reason;
h
enum QuorumsStatus {
QUORUM_REACHED,
QUORUM_PENDING,
QUORUM_UNREACHABLE
h
readonly attribute QuorumStatus quorum_status;
readonly attribute long count;
readonly attribute long active_count;
exception AttemptedCeilingViolation{ };
exception AttemptedExclusivityViolation{ };
exception VirtualKind{ };
exception UnknownKind{ };
exception MembershipRejected{
Membership source;
string reason;
h
Member add_member(
in SessionFramework::ActiveUser user,
in CommunityFramework::MembershipKind kind
) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
MembershipRejected,
UnknownKind,
VirtualKind
)i
boolean is_member(
in CommunityFramework::Member member,
in CommunityFramework::MembershipKind kind
) raises (
PrivacyConflict
)i
void get_members(
in MembershipKind kind,

Community Framework Interfaces month year 3-7

out MemberSequence member_list,
out Memberlterator member _iterator
) raises (
PrivacyConflict
)i
void remove_member(
in CommunityFramework::Member member
);
void add_membership(
in CommunityFramework::Membership membership
)i
void get_memberships(
out MembershipSequence membership_list,
out Membershiplterator membership_iterator
) raises (
PrivacyConflict
)i
void remove_membership(
in CommunityFramework::Membership membership

);

Table 3-3 Membership Attribute Table

Name Type Properties Purpose

model MembershipKind read-only Template that defines constraints
associated to and enforced by an
instance oMembership .

recruitment_statug RecruitmentStatus read-only Refer to Section 3.2.3.5,
“Recruitment Status,” on
page 3-10.

guorum_status QuorumStatus read-only Refer to Section 3.2.3.6, “Quprum
Status,” on page 3-11.

count long read-only The number bfember instances
associated with th&embership .

active_count long read-only The numberMémbers
associated to thelembership and
connected.

3.2.3.2 Membership Semantics

Association of aMember to aMembershipKind grants that user a role within the
membership qualified by thdembershipKind kind and template parameters. Where

a MembershipKind is subsidiary to anothélembershipKind , the Member

associated to the subsidiary is implicitly considered to inherit the membership kind of
the parenMembershipKind (refer to earlier example).

Community Framework month year

MembershipKind exposes the enumeratihRTUAL_NODE and

PHYSICAL_NODE under the attributaode_kind . Virtual nodes provide a useful
mechanism for aggregating membership kinds but does not directly support the
association oMembers . Instead, subsidiary associations infer association to a virtual
MembershipKind .

Where aPHYSICAL_KIND MembershipKind is a parent to another
PHYSICAL_KIND, the removal of Member association from the parent implies
removal of the member from all subsidiary kinds.

3.2.3.3 Member Addition

Instances oMember may be added to lembership using theadd_member
operation. Theadd_member operation takes afctiveUser as argument identifying
the user to be bound to tiembership , and a reference toMembershipKind
under thekind argument. Where a user is already a memberMémbership , and
theadd_user operation is invoked in order to supplement khembershipKind
associations, thadd_user operation will return the samdember instance.

Member add_member(
in SessionFramework::ActiveUser user,
in CommunityFramework::MembershipKind kind
) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
MembershipRejected,
UnknownKind,
VirtualKind

);

An attempt to add a member when the value of ceiling (exposed under the
MembershipKind) is greater than or equal to count will result in an
AttemptedCeilingViolation . An attempt to add a Member, representing an
ActiveUser that is already represented withirM@mbership under an existing
Member instance, while embershipKind value ofexclusive is true will result in
the raising of amAttemptedExclusivityViolation exception. An attempt to add a
Member whilerecruitment_status is CLOSED_MEMBERSHIP will cause the
RectrutmentConflict exception to be raised. An attempt to reference a
MembershipKind under thekind argument that unknown with the scope of the
Membership modelMembershipKind will cause the raising of thenknownKind
exception. An attempt to add a useMMembershipKind exposing the
VIRTUAL_NODE as the value ofiode_descriptor will cause the raising of the
VirtualKind exception.

exception RecruitmentConflict{
RecruitmentStatus reason;

h

exception AttemptedCeilingViolation{ };

exception AttemptedExclusivityViolation{ };

Community Framework Interfaces month year 3-9

exception VirtualKind{ };

exception UnknownKind{ };

exception MembershipRejected{
Membership source;
string reason;

3.2.3.4 Member Removal

Membership removal is invoked using tt@move_member operation. An
implementation oMembershi pDomain is required to notify the removal of a
Member from a domain through themoval notification operation on the instance
of Member being removed.

void remove_member(
in CommunityFramework::Member member

);

On addition or removal of a Member from the domain, an implementation of
Membershi p is required to increment or decrement respectively the value of the
count andactive_count attributes and signal a change notification event. Changes
to the connected status ofeember are also reflected in thactive_count attribute.
Theactive_count corresponds to the number of Member instances that are connected
(refer Session::User, connect_state).

readonly attribute long count;
readonly attribute long active_count;

3.2.3.5 Recruitment Status

The status of Membership instance is exposed through tteeruitment_status
andquorum_status attribute values. Theecruitment_status attribute exposes a

value of OPEN_MEMBERSHIP, SUSPENDED_ MEMBERSHIP, and
CLOSED_MEMBERSHIP that control the behavior of treeld_member and
remove_member operations. Under a closed membership, addition or removal of
members is disabled. Under a suspended membership, the addition and removal
operations may be invoked; however, an implementation may delay the registration of
the Member up to the point that th®lembership is re-opened.

enum RecruitmentStatus{
OPEN_MEMBERSHIP,
SUSPENDED_MEMBERSHIP,
CLOSED_MEMBERSHIP

h

readonly attribute RecruitmentStatus recruitment_status;

3-10 Community Framework month year

Table 3-4 RecruitmentStatus Enumeration Table

Value Description
OPEN_MEMBERSHIP Invocation of thedd_member andremove_member operations is
enabled.

SUSPENDED_MEMBERSHIP Invocation of tlaeld_member andremove_member operations ig
enabled; however, an instanceMémbership may not consider th
Member association as valid (as exposed byithenember and
get_members operations).

CLOSED_MEMBERSHIP Invocation of thedd_member andremove_member operations is
disabled.

11°)

3.2.3.6 Quorum Status

Membership quorum level (exposed under thkembershipKind) defines the

number ofMember instances that are required for tlembership to be considered
valid. For example, a bilateral negotiation requires a quorum of 2. Prior to reaching
quorum (count is less thamuorum) the value ofjuorum_status is
QUORUM_PENDING. On reachingiuorum , thequorum_status is
QUORUM_REACHED. If the value ofceiling is less thamuorum ,
QUORUM_UNREACHABLE will be exposed. Botlquorum andceiling are

features exposed by tiMdembershipKind referenced by thenodel attribute.

enum QuorumsStatus {
QUORUM_REACHED,
QUORUM_PENDING,
QUORUM_UNREACHABLE

b

readonly attribute QuorumStatus quorum_status;

Table 3-5 QuarumsStatus Enumeration Table
Value Description

QUORUM_REACHED The number dflember instances associated with
MembershipKind is equal to or exceeds tivembershipKind
quorum level required.

QUORUM_PENDING The number dflember instances associated with
MembershipKind is less than thilembershipKind quorum
level required.

QUORUM_UNREACHABLE | TheMembershipKind quorum level required is greater than the
ceiling and as suchiuorum of theMembership cannot be
achieved.

Community Framework Interfaces month year 3-11

3-12

3.2.3.7 Membership Disclosure Operations

The Membership type provides a number of operations enabling navigation of the
Membership structure and access Member kind associations. This_member
operation enables a client to query if an instanc®ledber is recognized by the
Membership as associated to a particular kind within the scope of applicable privacy
restrictions.

boolean is_member(

in CommunityFramework::Member member,

in CommunityFramework::MembershipKind kind
) raises (

PrivacyConflict

);

The get_members operation returns all members oMembership holding the
MembershipKind passed in under tHend argument within the restrictions of the
applicable privacy policy.

void get_members(
in MembershipKind kind,
out MemberSequence member _list,
out Memberlterator member _iterator
) raises (
PrivacyConflict

);

3.2.3.8 Structural Operations

The add_membership operation enables a client application to introduce a

subsidiary membership to an existing membership. This operation is useful when
defining subsidiary collaborative processes that may have different membership criteria
to the parent. An implementation Membership is responsible for the establishment

of composition relationships between the containing and contaiethbership
instances. Theemove_membership operation enables the retraction of a

Membership association with a parent Membership.

void add_membership(
in CommunityFramework::Membership membership

);

void remove_membership(
in CommunityFramework::Membership membership

);

The get_memberships operation enables a client to access references to the set of
subsidiaryMembership instances associated with a givdiembership .

void get_memberships(
out MembershipSequence membership_list,

Community Framework month year

out Membershiplterator membership_iterator
) raises (
PrivacyConflict

);

3.2.3.9 Membership Composition

The following (hon-UML) schematic shows an example of subsidiary membership
composition. A subsidiarilembership of the typeEncounter (see Section 4.2.1,
“Encounter,” on page 4-3) establishes a reference to the signdtmpershipKind

as the defining model, thereby restricting the scope ofviambership .

While mechanisms supporting the management of composition and associations
between thévlembership andMember instance are implementation independent, an
implementation oMembership or a derived type may optimize the management of
Membership operations through selective delegation. For example, the subsidiary
Encounter shown in this example could deleg&emember operations for the
MembershipKind “signatories” to the paremlembership . Memberships and

derived types could be presented as work breakdown structures, flows, or sequences of
interdependent messages.

Community Framework Interfaces month year 3-13

Kind

MembershipKind
Hierarchy

participant

Kind

consumer signatory

customer provider

Membership

Participants

| Engagement |
Member Member
Michael Carol Alice Bob

Figure 3-4 Example of a composite membership instance modifying membership criteria

3.2.4 MembershipKind

A MembershipKind defines the quorum, ceiling, privacy, exclusivity, permission, and
association constraints associated with an instandéeaibership .

The quorum level attribute indicates the required numbeMgimber instances that
must be added for the membership to be considered valiccelligg attribute defines
the maximum number dflember instances that may be added, above wiMember
addition is disabled (a value of 0 indicates no limit). €kelusive attribute, when
true indicates that nblember instances may reference the saketiveUser identity
as anotheMember instance.

3-14 Community Framework month year

3

The privacy value qualifies the extent of information disclosure enabling limitations
onMember association disclosure as opposed to structural informadlembership
composition). Theermission andassociation constraints define rules concerning
the association of parent and subsidiary Membership instances.

An implementation oMembership is responsible for the enforcement of the
constraints defined within thieembershipKind .

3.2.4.1 IDL Specification
interface MembershipKind :
SessionFramework::AbstractTemplate
readonly attribute SessionFramework::Kind kind;
readonly attribute long quorum;
readonly attribute long ceiling;
readonly attribute PrivacyPolicyValue privacy;
readonly attribute boolean exclusivity;
enum NodeDescriptor{
VIRTUAL_NODE,
PHYSICAL_NODE
h
readonly attribute NodeDescriptor node_type;
readonly attribute boolean exclusive;
h
Table 3-6 MembershipKind Attribute Table
Name Type Properties | Purpose
kind Kind read-only String describing the Membership body.
qguorum long read-only An integer that defines the minimum number|of
Member instances that must be associated to the
Membership before the Membership is considered
as a valid body.
ceiling long read-only An integer expressing the maximum number pf
Member instances that may be associated with a
Membership.
privacy PrivacyPolicyValue | read-only Refer to Table 3-7 on page 3-16.
exclusive boolean read-only The exclusive attribute, when true indicates that no
Member instances may reference the same
ActiveUser identity as another Member instange.
node_type NodeDescriptor read-only Refer to Table 3-8 on page 3-16.

Community Framework Interfaces month year 3-15

Table 3-7 PrivacyPolicyValue Enumeration Table

Value Description

PUBLIC_DISCLOSURE Operations may return structural and membership kind associations to
non-members.
RESTRICTED_DISCLOSURE Operations may return structural and membership kind associations to
members that share a common ritembershipKind .

PRIVATE_DISCLOSURE Disclosure dflembershipKind structure anddember associations
is restricted to the members of theembershipKind (a.k.a. private
party).

Table 3-8 NodeDescriptor Enumeration TAble
Value Description

VIRTUAL_NODE Association by aMembership instance oMembers with anode_type
exposingVIRTUAL_NODE is restricted to the aggregation of tilember
associations to subsidyembershipKind stances. Invocation of
add_member underMembership may raise th&/irtualKind exception
or return a Membership to a subsidiary kind.

PHYSICAL_NODE AMembership may invokeadd_member with the kind argument
referring to aMembershipKind exposing this value.

3.3 Community and Derived Interfaces

3.3.1 Overview

The two interface€ommunity andAgency define a framework for the management
of higher level business-to-business negotiation and collaborative encounters in which
the notion of organizational context and authority are intrinsic characteristics.

® Community extendsActiveWorkspace with the notion ofMembership and the
notion of a place in the context GobsLifeCycle “here” and “there.”

®* An Agency extends the notion dommunity through the introduction of
LegalEntity and thereby authority throughurisdiction .

3-16 Community Framework month year

3.3.1.1 Object Model

SessionFramework:: 1 target . SessionFramework::
ActiveResource Jurisdiction
4 *
CommunityFramework:: CoslLifeCycle:: SessionFramework::
Membership FactoryFinder ActiveWorkspace

S N

Community SessionFramework:: %
LegalEntity

1 31

Agency

Figure 3-5 Community, Agency, and Jurisdiction Object Model

3.3.2 Community

A Community extends the notion of workspace through the introduction of
CoslLifeCycle::FactoryFinder andMembership . As aFactoryFinder , a

Community enables client applications controlled access to resources that may be
required during the course of a collaborative encounter (relative to a collaborative
context) and the ability to publish resources int@oanmunity (where aCommunity
constitutes théhere argument td_ifeCycleObject copy or move operation). As a
Membership , aCommunity is associated to constraints concerning quorum, ceiling,
privacy, and associative constraints.

3.3.2.1 IDL Specification

interface Community :
SessionFramework::ActiveWorkspace,
CosLifeCycle::FactoryFinder,
Membership

Community Framework ~ Community and Derived Interfaces month year 3-17

3.3.3 Agency

Agency is a specialization o€ommunity andLegalEntity that introduces the
notion of organized community such as a company. BAsgalEntity , anAgency

may be associated undedarisdiction relationship over a set of resources. Client
applications may navigate tlarisdiction relationship in order to qualify the context
of collaboration and authority of respective participants.

3.3.3.1 Object Model

CommunityFramework:: SessionFramework::
Community LegalEntity
I
CommunityFramework::
Agency

Figure 3-6 Agency Object Model.

3.3.3.2 IDL Specification

interface Agency :
Community,
SessionFramework::LegalEntity

3.3.4 CommunityFramework IDL
/I File: CommunityFramework.idl
#ifndef COMMUNITY_FRAMEWORK_IDL_
#define _COMMUNITY_FRAMEWORK_IDL_
#pragma prefix "omg.org"
#include <SessionFramework.idl>

module CommunityFramework{

/I forward declarations

3-18 Community Framework month year

interface MembershipKind;
interface Membership;
interface Member;

interface Community;
interface Agency;

/I typedefs

typedef sequence <Member> MemberSequence;
typedef sequence <Membership> MembershipSequence;
typedef sequence <MembershipKind> MembershipKindSequence;

/I iterators

interface Memberlterator : CosCollection;:lterator{};
interface Membershiplterator : CosCollection::lterator{};
interface MembershipKindlterator : CosCollection::lterator{};

/I Membership

enum PrivacyPolicyValue {
PUBLIC_DISCLOSURE,
RESTRICTED_DISCLOSURE,
PRIVATE_DISCLOSURE

k

exception PrivacyConflict{
PrivacyPolicyValue reason;

k

interface MembershipKind :
SessionFramework::AbstractTemplate
{
readonly attribute SessionFramework::Kind kind;
readonly attribute long quorum;
readonly attribute long ceiling;
readonly attribute PrivacyPolicyValue privacy;
readonly attribute boolean exclusivity;
enum NodeDescriptor{
VIRTUAL_NODE,
PHYSICAL_NODE
I3
readonly attribute NodeDescriptor node_type;
readonly attribute boolean exclusive;

k

interface Membership :
SessionFramework::ActiveResource {

Community Framework ~ Community and Derived Interfaces month year 3-19

readonly attribute MembershipKind model,
enum RecruitmentStatus{
OPEN_MEMBERSHIP,
SUSPENDED_MEMBERSHIP,
CLOSED_MEMBERSHIP
h
readonly attribute RecruitmentStatus recruitment_status;
exception RecruitmentConflict{
RecruitmentStatus reason;
h
enum QuorumsStatus {
QUORUM_REACHED,
QUORUM_PENDING,
QUORUM_UNREACHABLE
h
readonly attribute QuorumStatus quorum_status;
readonly attribute long count;
readonly attribute long active_count;
exception AttemptedCeilingViolation{ };
exception AttemptedExclusivityViolation{ };
exception VirtualKind{ };
exception UnknownKind{ };
exception MembershipRejected{
Membership source;
string reason;
h
Member add_member(
in SessionFramework::ActiveUser user,
in CommunityFramework::MembershipKind kind
) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
MembershipRejected,
UnknownKind,
VirtualKind
)i
boolean is_member(
in CommunityFramework::Member member,
in CommunityFramework::MembershipKind kind
) raises (
PrivacyConflict
);
void get_members(
in MembershipKind kind,
out MemberSequence member_list,
out Memberlterator member_iterator
) raises (
PrivacyConflict
)i

void remove_member(

3-20 Community Framework month year

);
k

in CommunityFramework::Member member
);
void add_membership(
in CommunityFramework::Membership membership
);
void get_memberships(
out MembershipSequence membership_list,
out Membershiplterator membership_iterator
) raises (
PrivacyConflict
);
void remove_membership(
in CommunityFramework::Membership membership

interface Member :

SessionFramework::Delegation,

SessionFramework::ActiveUser

{

attribute string label;

readonly attribute CommunityFramework::Membership
membership;

void get_kinds(

out MembershipKindSequence kind_list,
out MembershipKindlterator kind_iterator

) raises (

);
k

PrivacyConflict

interface Community :

k

SessionFramework::ActiveWorkspace,
CosLifeCycle::FactoryFinder,
Membership {

interface Agency :

k

Community,
SessionFramework::LegalEntity {

}; 1/ end CommunityFramework Module

#endif // _COMMUNITY_FRAMEWORK_IDL_

Community Framework ~ Community and Derived Interfaces month year 3-21

3-22 Community Framework month year

4.1 Overview

Collaboration Framework 4

Contents

This chapter contains the following topics.

Topic Page
“Overview” 4-1
“Encounter and Associated Interfaces” 4-3
“Collaboration Interfaces” 4-8
“Negotiation and Promissory Models” 4-30

The CollaborationFramework module is composed of three distinct groups of
interfaces:

1. Base interfaces defining &ncounter process and an associated
EncounterTemplate .

2. Interfaces supportinGollaboration , Engagement , andVotin g encounters.

* Collaboration : anEncounter that enables execution of negotiation and
promissory models such as those defined under the Session Framework section of
this specification.

« \Voting : anEncounter used to aggregate votes in the determination of a success
or fail condition.

* Engagement : anEncounter used to establish a contractual agreement across a
set of participant Members.

3. Interfaces managed by tlmllaborationTemplate type.

Collaboration Framework month year 4-1

The CollaborationFramework builds above interfaces defined under the
CommunityFramework andSessionFramework .

Table 4-1 Base Interfaces of the CollaberationFramework Module

Interface Description

Encounter A specialization dfctiveTask andMembership that has an association to
an EncounterTemplate that defines the encounter constraints, and an
associatedgubject .

EncounterTemplate A specialization AbstractTemplate that references a
MembershipKind applicable to afencounter of the type described by
EncounterTemplate .

Table 4-2 Interfaces Derived from Encounter and EncounterTemplate

Interface Description

Collaboration A type oEncounter bound to &ollaborationTemplate that mediates
access to aubject . Collaboration exposes the state of a collaborative
process and brings together the operations that may be applied by
collaborating users relative to a procéssiplate . An apply operation
enables the invocation of simple and compound transitions that under the
mediated control of the Collaboration enable parties to reach terminal
success or failure states. Thactive-state of Collaboration is a
reference to a sequenceS$tate instances held within the associated
template . Users are associated t&allaboration through aMember role.
\oting A type ofEncounter launched by a compound transition supporting vote-
based determination of primary or alternate state seledfa@img is an
interface that provides mechanisms through which users in a collaborative
process can registdES, NO, or ABSTAIN votes.VoteTemplate exposes
policies concerning quorum and structured numerator/denominator pair that
defines the required ceiling for calculation of a successful vote.

Engagement A type ofEncounter defined by an associat&hgagementTemplate that
enables the association of proof of engagement to an agreement. Features associ
ated toEngagementTemplate define the security criteria to be applied during
the engagement proce&ngagementManifest is a type supporting the regis-
tration of proof as defined by tliengagementTemplate .

Table 4-3 CollaborationTemplate Dependent Interfaces

Interface Description

State A type that exposedadbel , characteristics that qualify the statargernal ,
terminalsuccess , or terminalfailure exposes a set slub-states and
parent state.

4-2 Collaboration Framework month year

Table 4-3 CollaborationTemplate Dependent Interfaces

Trigger

A type that exposeskayword , accesses, and timeout constraints. Triggers

are used as a super-type for demmand andTransition types.
Operational qualifiers include a usag®de and references to a
MembershipKind that is authorized to invokeTigger . Usagemode
enables the declaration of constraints over activation relative to the
collaborative context.

Command

A specialization dfigger that enables the declaration of an event that
be invoked unde€ollaboration .

may

Transition

A Transition extend&igger to include a source and destination state.

transition may only be invoked when thetive-state of collaboration is the

source state in thelransition declaration. Following a successful
activation of a transition, the destination state and all parents of the
destination state are considered active by the contrdimiboration .

A

CompoundTransition

A specialization ®fansition that introduces an alternative destination
State andtemplate describing the criteria fdEncounter creation.

CompoundTransition provides a powerful mechanism to express recutsive

collaborative encounters such as amendments under multilateral nego

fiation.

4.2 Encounter and Associated Interfaces

4.2.1 Encounter

An Encounter is an abstract type that exposes the run-time state of collaborative
process involving a collection of participating membé&nscounter is the super-type
of Collaboration , Voting , andEngagement . An Encounter is created by a generic
factory, using the features exposed by an assocktedunterTemplate as the
factorykey andcriteria . An EncounterTemplate defines the policy applicable to
the Encounter and may reference a requiednbershipKind . Encounter is
derived fromMembership and as such represents a collection of users, bound
together as members of tBmcounter .

Collaboration Encounter and Associated Interfaces month year 4-3

4.2.1.1 Object Model

subject 1| SessionFramework:
ActiveResource

[

SessionFramework::
AbstractTemplate

I

[
SessionFramework:: Community Framework:: | * 1 Community Framework ::
ActiveTask Membership model MembershipKind
0.1
membership_kind
CollaborationFramework * CollaborationFramework
Encounter EncounterTemplate
1| template : EncounterTemplate * 1 membership_kind : MembershipKind
subject : ActiveResource order : ImplicationOrdering
template
I] I]
CollaborationFramework CollaborationFramework CollaborationFramework CollaborationFramework
Collaboration Vating CollaborationTemplate VoteTemplate

CollaborationFramework
Engagement

CollaborationFramework
EngagementTemplate

Figure 4-1 Encounter and EncounterTemplate Object Model

4.2.1.2 IDL Specification

interface Encounter :
CommunityFramework::Membership,
SessionFramework::Active Task
{
readonly attribute EncounterTemplate template;
readonly attribute SessionFramework::ActiveResource subject;

4-4 Collaboration Framework month year

Table 4-4 Encounter Attribute Table

Name Type Properties | Purpose
subject ActiveResource read-only A reference toAativeResource that
constitutes theubject of theEncounter .
template EncounterTemplate read-only A reference t&raoounterTemplate that
exposes thenembership_kind to be used by
the Encounter .
Table 4-5 Encounter Structured Event Table
Event Description
Result Notification of success or failure of execution of an encounter.
Supplementary properties
value boolean True indicates that the task concluded with a successful
result. False indicates that the task failed. Determination
of success or failure is a function of a specialization of the
Encounter type.
4.2.1.3 Initialization

Thetemplate attribute exposed bigncounter refers to arencounterTemplate that
qualifies the kind oEncounter and applicable constraints. On instantiation of an
Encounter , an implementation is responsible for the association cEtiteunter to
a MembershipKind using the attributenodel inherited fromMembership . The
value attributed tenodel at runtime is the value ahembership_kind exposed by
the associate#ncounterTemplate .

4.2.1.4 Implication Semantics

An Encounter associated witlEncounterTemplate that exposes amplication
association is, on completion, following the raising of a success or fadlsué# event,
required to establish instances of Encounter as referenced by appr8pidagss or
[Reviewer, changed of to or, please verifyffailure implications Encounter success
will raise Success implications whereakncounter failure will raiseFailure
implications. Implications are executed as a set of sub-processes to the current
Encounter during which time the hostingncounter enters a suspended state.

Collaboration Encounter and Associated Interfaces month year 4-5

4.2.2 Encounter Template

An EncounterTemplate is an abstract type that exposesmbership_kind . This
is used by an instance Bhcounter during initialization to establish the
MembershipKind to be bound to thenodel attribute inherited frontMembership .

4.2.2.1 IDL Specification

interface EncounterTemplate :
SessionFramework::AbstractTemplate

readonly attribute CommunityFramework::MembershipKind
membership_kind;
enum ImplicationOrdering {
SEQUENTIAL,
PARALLEL
h

readonly attribute ImplicationOrdering order;

Table 4-6 EncounterTemplate Attribute Table
Name Type Properties | Purpose

membership_kind | MembershipKind read-only A reference MeamnbershipKind that
defines the value to be assigned to the
model attribute of arEncounter . Used to
qualify the membershigind required to
participate to arencounter .

order ImplicationOrdering read-only Refer to Table 4-7 on page 4-6.

Table 4-7 ImplicationOrdering Enumeration Table
Value Description

SEQUENTIAL An instance of Encounter is responsible for the creation and execution of
subsidiary Encounter instances in accordance with the Implication references
in sequential order.
PARALLEL An instance of Encounter is responsible for the creation and execution| of
subsidiary Encounter instances in accordance with the Implication refefences
in parallel .

4.2.3 Implication

An Implication is an abstract specialization lohkage (see Section 2.2.2,
“Linkage,” on page 2-8).Implication associates source instance of
EncounterTemplate with atarget instance oEncounterTemplate . Two concrete

4-6 Collaboration Framework month year

4.2.3.1

CollaborationFramework: : :1 target * | CollaborationFramework :: <

EncounterTemplate

i

types oflmplication includeSuccess andFailure that may be used by client

applications such asncounter to manage the instantiation of sub-process that

correspond to the consequences of a successful or unsuccessful process.

Object Model

SessionFramework::
Linkage

CollaborationFramework ::

Success

Implication

CollaborationFramework ::

Failure

source

4.2.3.2

Figure 4-2 Implication and the derived types Success and Failure

IDL Specification

interface Implication :
SessionFramework::Linkage
{

¥

interface Success :
Implication

{

3

interface Failure :

Implication{

I3

Collaboration Encounter and Associated Interfaces

month year

4

4-8

4.3 Collaboration Interfaces

4.3.1 Collaboration

Collaboration is a concrete specialization Bhcounter whose semantics are
defined by the typ€ollaborationTemplate . The model is expressed as a state-set
composed of sub-states, transitions, and interaction constraints.

The Collaboration type enables users to invoke transition operations that lead from
initial to terminal states. Customizable process models allow the introduction of
semantics dealing with collaborative processes typified by the bilateral negotiation,
multilateral negotiation, and promissory engagement models discussed under the
Session Framework section of this specification.

A client joins an instance dfollaboration by establishing &ember role and
associating the role tGollaboration using theadd member operating inherited
from Membership . Clients interact with the collaboration through the operations
apply andinvoke . Theapply operation tasks three argumeritansition , a
semantic qualifier, and a reference totask that may be bound gsoducer of the
subject of the collaboration, or alternatively, may invoke a replacement of the
subject of theCollaboration (depending on theemantic qualifier).

The task argument is used to establidfieanber as the active editor of theubject

of the collaboration. In the case of subject modification, the client task is associated as
producer by theCollaboration . The producer relation between client task and
subject is maintained until (a) the client relinquishespitoelucer , or (b) the

Collaboration retracts theproducer relationship from the client.

4.3.1.1 Object Model
Encounter * 1 | EncounterTemplate State
template
Collaboration CollaborationTemplate

active_state : StateSequence transitions : TransitionSequence
timeout_set : TimeoutSequence commands : CommandSequence
apply()
invoke()

Figure 4-3 Collaboration Object Model.

Collaboration Framework month year

4.3.1.2 IDL Specification

interface Collaboration :

Encounter
{
readonly attribute StateSequence active_state;
struct TimeoutSequence{
CollaborationFramework::Trigger trigger;
TimeBase::UtcT timestamp;
h
readonly attribute TimeoutSequence timeout_list;
exception InvalidTrigger{
CollaborationFramework:: Trigger trigger;
h
exception ApplyFailure{
CollaborationFramework:: Trigger trigger;
SessionFramework::ActiveTask task;
h
enum ApplySemantics{
REPLACEMENT,
MODIFICATION,
h
exception SemanticConflict{ };
void apply(
in CollaborationFramework::Transition transition,
in ApplySemantics semantic,
in SessionFramework::ActiveResource resource
) raises (
InvalidTrigger,
SemanticConflict,
ApplyFailure

void invoke(
in SessionFramework::Command command,
in SessionFramework::ActiveResource argument,
in string reason
) raises (
InvalidTrigger
)i

Collaboration Collaboration Interfaces month year 4-9

4-10

Table 4-8 Collaboration Attribute Table

Name

Type Properties | Purpose

active_state

StateSequence read-only An ordered sequence of instaStae ofThe
sequence order is from most general to most
specific. States exposed in the sequence are
derived fromapply operations invoked on
Collaboration associated to a
CollaborationTemplate

timeout_list

TimeoutSequence read-only |Triggers exposed by &ollaborationTemplate
may declare timeout behaviofriggers with
timeout behavior are considered active if their
source state is an active state. As several states
may be active at any time and for each active state,
there may exist several timeout transitions. The
timeout_list attribute exposes all active timeoyt
transition declarations. An implementation of
Collaboration is responsible for the applying
timeout transition and managing ttimeout_list .

Table 4-9 Collaboration Structured Event Table

Event

Description

Inform

Command event raised as a result of an invoke operation.

Supplementary properties

keyword keyword Keyword associated with the Command
object referenced by the invoke
operation.

4.3.1.3 Relationship to Collaboration Template

CollaborationTemplate is a process model that defines the semantic conditions of
Collaboration . A CollaborationTemplate is a specialization of State and
EncounterTemplate that exposes a set of transitions and command events that may
be applied/invoked by an instance@dllaboration . As aState, a

CollaborationTemplate exposes a sub-state hierarchy. Transitions exposed by
CollaborationTemplate are declarations of source and destination states and inherit
activation constraints from the super-tyfriggger . Trigger defines activation

constraints based on collaborative context and user's membership, and in the case of
Transition , the implications of the transition relative to thebject of collaboration.

Collaboration Framework month year

4.3.1.4 Subsidiary Collaboration Processes

CompoundTransition declarations referendencounterTemplate instances that
may be by theCollaboration to create subsidiar¥ncounter processes to an
instance ofCollaboration . An EncounterTemplate exposes references to a type
supporting the execution of the template. For exan(@pddiaborationTemplate is
executed byCollaboration , VoteTemplate is executed undévoting , and an
EngagmentTemplate is executed undegEngagement . These associations are
exposed by &actory key on AbstractTemplate .

Collaboration , Voting , andEngagement are examples of specializ&hcounter

types that under the management @alaboration resolve in success or failure
conditions that determine the behavior of compound transitions managed by the host
Collaboration .

4.3.1.5 Active State

The active-state ofollaboration is a function of thepply operations invoked

against &Collaboration within the scope of an associat€dllaborationTemplate

On invocation of thepply operation alransition is passed in as an argument. On
successful completion of the transition, the transitésget state and albarent states

of thetarget define the active state of ti@ollaboration . For example, if state C is
referenced as the target, and C references the parent state B and B references a parel
state A, the active state sequence will be the order sequence of states A, B, and C.

readonly attribute StateSequence active_state;

The active_state of Collaboration is used to determine activeigger instances.
Trigger instances are considered active whdnigger source state is itself active. An
implementation of Collaboration maintains thetive_state value.

4.3.1.6 Timeout behavior

Timeout behavior is defined by instancesTafger that has a non-null timeout value.
An implementation of Collaboration is required to maintain the value of the
timeout_list attribute such that it contains only active timeout triggers and the
associated timestamp. The value of timestamp corresponds to the time when the
associatedbtate became activelrigger andtimestamp pairs are captured under the
structureTimeoutStructure . A sequence of activeimeoutStructure values is
exposed by thémeout_list attribute. Changes to thieneout_list must be signalled
by anupdate event (see Section 2.2.1.5, “Structured Events,” on page 2-7).

struct TimeoutSequence{

CollaborationFramework:: Trigger trigger;
TimeBase::UtcT timestamp;

k

readonly attribute TimeoutSequence timeout_list;

Collaboration Collaboration Interfaces month year 4-11

4-12

Initialization of a Collaboration

Collaboration is considered as non-initialized if tlhetive_state returns an empty
sequence. Initialization is achieved by invoking #&pply and passing aransition
that exposes &RUE value under thénitialize attribute.

4.3.1.8 Applying State Transitions

Application of a state transition is the mechanism used to change the context of the
collaboration and potentially replace or modify gubject of Collaboration . For
example, &CollaborationTemplate exposing the sub-states SCHEDULE and
DELIVERED could associate the two states through a transition named “deliver.” The
transition “delivered” could be attributed with the following characteristics:

 access constraints based on membership kind

« constraints that impose restrictions based on collaborative context

« declaration of the usage of the resource argument by a Collaboration during a
transition

Collaborative context and membership kind constraints collectively guard a Trigger
invocation. Enforcement of these constraints is the responsibility of an implementation
of theapply operation. The behavior apply under a simple transition is determined

by theTransition referenced under theansition argument, and in the case of
PROCESS basedTransition , a qualifying semantic argument and task argument.

Two constraints exist within a Transition:

1. A collaborative context guard that restricts the invoking principal to the
INITIATOR, aRESPONDENT, or PARTICIPANT (wherePARTICIPANT is the
superset ofNITIATOR andRESPONDENT).

2. Once the collaborative context and any Membership restrictions are satisfied, an
apply implementation can evaluate the kind of transition being invoked.

Four kinds of transitional behavior are exposed byTHaasition instance under the
control attribute. These behaviors &talL, RESET, TRANSITIONAL, and

PROCESS transitions. AFAIL transition is a null transition and terminates without
change to the process.RESET transition is equivalent tBAIL ; however, the state
referenced by theource is re-entered and associated timeouts are reset.
TRANSITIONAL results in the establishment of a new active state sequence based on
the transitiontarget andparent states. In the case ofPROCESS transition, the
semantic andresource arguments are taken into consideration.

enum ApplySemantics{

REPLACEMENT,
MODIFICATION,
h
void apply(

in CollaborationFramework::Transition transition,
in ApplySemantics semantic,

Collaboration Framework month year

in SessionFramework::ActiveResource resource
) raises (

InvalidTrigger,

ActiveTaskTypeConflict,

ApplyFailure

Table 4-10ApplySemantics Enumeration Table

Value

Description

REPLACEMENT Theresource argument under thapply operation constitutes a

replacement of theubject of the Collaboration (conditional to
transition constraints).

MODIFICATION The resource argument under thapply operation constitutes a

ReactiveTask that is to be bound gwoducer of thesubject of the
Collaboration in order to invoke changes to thebject (conditional to
transition constraints).

If the semantic argument is the enumerated VRIEBPLACEMENT, then the

resource argument constitutes activeResource to be established as a new
subject value. If the semantic argumentNBDDIFICATION, then theresource
argument is amctiveTask that will be bound aproducer of thesubject of the
Collaboration . The subsidiary modification task will execute, complete, and return
the produces association to the host. The host will then complete the transition by
setting theactive_state value.

The sequence of rules processing concerning the management of apply in the context
of membership, collaborative context, transition controls that may be present at more
than one level (as is the case dPROCESS basedCompoundTransition) are

detailed under the following three rules.

RULE 1: Evaluate guard conditions
* verify the collaborativeontext rights

* verify membershigkind rights
RULE 2: Establish path

For a simpleTransition , thecontrol andtarget State are established from values
exposed by thé&ransition argument.

For aCompoundTransition
» Create theEncounter sub-process and bind the hesbject as sub-process
subject if needed.
 Select initialization.
 Invoke apply using selected initializingransition , and the semantic and
resource arguments from the hagply operation.

» Wait for Encounter sub-process completion and evaluate success aefailt
status.

Collaboration Collaboration Interfaces month year 4-13

4-14

4.3.1.9

» Select thecontrol value andarget state based oresult status.

RULE 3: Execute in accordance with the transition control criteria

® Under theFAIL criteria a transition is complete, no change to active state or subject
is effected.

® Under theRESET criteria the implementation is required to reset any active
TIMEOUT transitions. No change to active state or subject is effected. Transition is
complete.

® Under theTRANSITIONAL criteria an implementation sets the root active state to
thetarget state. No subject change is effected. Transition is complete.

¢ Under thePROCESS criteria the following conditions apply:
« If the transition is &ompoundTransition under either th&1ODIFICATION or

REPLACEMENTS semantic, then assign teabject of the subsidiary

Encounter to be thesubject of the hostEncounter .

« If the transition is a simpl&ransition , then

» UnderREPLACEMENT semantics, the resource argument is assigned as a new
host subject.

« UnderMODIFICATION semantics, the resource argument is a task that will be
associated as producer of the host subject, executes (causing changes to the ho
subject) and completes, following which the host will reassign the produces
relationship to itself.

Apply Exceptions

If, during the invocation of the apply operation where ghmantic argument is
PROCESS, and the type of object passed underrdsmurce argument is not an
ActiveTask or type derived fromi\ctiveTask , anActiveTaskTypeConflict exception
will be raised.

exception ActiveTaskTypeConflict{
ActiveResource resource;

|3

ThelnvalidTrigger exception may be raised if tiegger passed in under thiggger
argument is not in thactive_path of the Collaboration .

exception InvalidTrigger{
CollaborationFramework:: Trigger trigger;

|3

In the case of the failure of the execution of a task executing in the context of
MODIFICATION semantics, thépplyFailure exception may be raised.

exception ApplyFailure{
CollaborationFramework::Trigger trigger;
SessionFramework::ActiveTask task;

Collaboration Framework month year

4.3.1.10 Invoking Command Events

Command instances describe events that may be raised byntbke operation on
Collaboration . Access constraints enforced by an implementationwoke are
defined by the features exposed on the inheftagber interface (see Section 4.3.3,
“Trigger,” on page 4-18). The event raised by invokingaanmand object is exposed
as aninform event type wittkeyword , reason , andargument properties
corresponding to th€ommand keyword and invoke arguments.

void invoke(
in CosObjectldentity::Objectldentifier id,
in SessionFramework::ActiveResource argument,
in string reason
) raises (
InvalidTriggerldentity
)i

4.3.2 CollaborationTemplate

CollaborationTemplate is a specialization of §tate andEncounterTemplate

that exposes a set of transition declarations that may be applied to an instance of
Collaboration . As aState, aCollaborationTemplate exposes a sub-state hierarchy
that enables the activation of command events and transition. Transitions exposed by
CollaborationTemplate are declarations of source and destination states that may be
used as arguments under tbellaboration interfaceapply operation.

Both Command andTransitions references exposed IgollaborationTemplate

inherit activation constraints from the super-tyfpigger . Trigger defines activation
constraints based on collaborative context and user’s membership, and in the case of
Transition , the implications of the transition relative to thebject of collaboration.

Collaboration Collaboration Interfaces month year 4-15

4.3.2.1 Object Model

Trigger Session::
BaseBusinessObject

*

keyword : Keyword

source : State

mode : TransitionMode

templates : MembershipSeq. A
priority: long

lifetime : TimeBase::IntervalT

Zlé | sub-state *
Transition Command State

1 parent
target: State label : Keyword
constraint : enum terminal : TerminalDescriptor
initialize: boolean . target 1 parent : State
9 sub_states: StateSequence
-) I\
CompoundTransition

secondary_target: State .
secondary_constraint: enum secondary_target

template : EncounterTemplate
sealed : boolean

CollaborationFramework::
EncounterTemplate

T

CollaborationTemplate

template

triggers 1

transitions : TransitionSequence
commands : CommandSequence

Figure 4-4 State, CollaborationTemplate, Trigger, Command & Transition Interfaces

4.3.2.2 IDL Specification

interface CollaborationTemplate :
EncounterTemplate,
State
{
readonly attribute TransitionSequence transitions;
readonly attribute CommandSequence commands;

4-16 Collaboration Framework month year

Table 4-11CollaborationTemplate Attribute Table
Name Type Properties | Purpose

transitions | TransitionSequence read-only A sequence of Transition instances. Transijtion
instances exposed under this attribute together jwith
State models enable client application to constfuct
process descriptions.

commands | CommandSequence read-only A sequence of Command instances that are
managed by the Collaboration template.

4.3.2.3 State

A State is a type contained within @ollaborationTemplate . A State exposes a
uniqueKeyword within the scope of &ollaborationTemplate , maintains
references teub_states , and contains a reference to a pai®tatte. The attribute
terminal characterizes a state as a terminal, indicating the completion of a
Collaboration process in &UCCESS or FAILURE condition.

The primary function of &tate is to support the expression of a collaborative process
model. Theactive_state of aCollaboration is a sequence @tate instances that
include the most general parediate, through to the most specifiitate (see

Section 2.2, “ActiveResource and Associative Interfaces,” on page 2-5)paréet
andsub-state attributes of &tate allow client applications to navigateSdate
hierarchy.

4.3.2.4 IDL Specification

typedef string Keyword;

interface State :
Session::BaseBusinessObject
{

readonly attribute Keyword label;
enum TerminalDescriptor{
INTERNAL,
SUCCESS,
FAILURE
h
readonly attribute TerminalDescriptor terminal;
readonly attribute State parent;
readonly attribute StateSequence sub_states;

Collaboration Collaboration Interfaces month year 4-17

4-18

Table 4-12State Attribute Table

a failure.

Name Type Properties| Purpose

label Keyword read-only | A text string describing tBate (such as
offered, proposed, requested).

terminal TerminalDescriptor| read-only | An enumeration that qualifiesSkate as
terminal or non-terminal (see Table 4-13 on
page 4-18).

parent State read-only | A reference to Btate to which thisState is
subsidiary. Theparent State must expose a
reference to thiState in its sub_state attribute

sub_states StateSequence read-only A sequergtef instances that are subsidiary
to this State.

Table 4-13TerminalDescriptor Enumeration Table

Name Type

INTERNAL Establishes the state as a non-terminal state.

SUCCESS Establishes the state as a terminal state in which the process is clas

a success.
FAILURE Establishes the state as a terminal state in which the process is clasg

4.3.2.5 State Composition

sified as

ified as

States are composed by association of sub-states to a parent state. A parent state
exposes sub-states through sub_states attribute that returns a sequence of sub-
state references. Btate has exactly onparent State (possibly itself in the case of a
top level State). Sub-states enable navigation to their parent state throyginethte

attribute.

readonly attribute State parent;
readonly attribute StateSequence sub_states;

4.3.3 Trigger

A Trigger is a base type fatommand andTransition types. ATrigger may be
invoked under explicit activation by a user throughdpply orinvoke operation

under theCollaboration

interface, or by an implementation Gbllaboration

through association of lfetime value. Timeout based execution is enabled if the
lifetime attribute contains a non-null value.TAigger exposes &ource State .

When thesource State is referenced in thactive_state chain of a collaboration,
the Trigger is considered active.

Collaboration Framework

month year

4.3.3.1 IDL Specification

interface Trigger :
Session::BaseBusinessObject{
readonly attribute CollaborationFramework::Keyword keyword,;
enum TriggerMode{
INITIATOR,
RESPONDENT,
PARTICIPANT, TIMEOUT
h
readonly attribute State source;
readonly attribute TriggerMode mode;
readonly attribute CommunityFramework::MembershipKind
constraint;
readonly attribute long priority;
readonly attribute TimeBase::IntervalT lifetime;

Table 4-14Trigger Attribute Table

Name Type Properties | Purpose
keyword Keyword read-only A string used to label the transition.
source State read-only Ti&tate that must be exposed under a

Collaboration active_state for the

Trigger to be considered usable by a
Collaboration . Thesource constitutes the
State to which theTrigger is assigned.

mode TriggerMode read-only Refer to Table 4-15 on page 4-20.

constraint | MembershipKind read-only Defines the required membekatup that
a user must hold in order to invoke a
Trigger .

priority long read-only A value indicating thariority of a

Trigger . The default value of 0 indicates
normal priority. Higher values indicate
increasing priority.

lifetime TimeBase::IntervalT read-only See Section 4.3.3.4, “Trigger Lifetime and
Activation Semantics,” on page 4-20.

4.3.3.2 Collaborative Context and Execution Modes

A mode attribute qualifies the contextual role of a participant authorized to invoke a
transition. The mode signifies eithBIMEOUT, or the collaborative context
enumeration valuelNITIATOR, RESPONDENT, and PARTICIPANT. A TIMEOUT
transition is a declaration of a state transition that is invoked by the implementation. Of

Collaboration Collaboration Interfaces month year 4-19

4-20

the collaborative context modd®ITIATOR limits access to the user that established
the currently active statRESPONDENT refers to any participant other than the
initiator. PARTICIPANT refers to eithetNITIATOR or RESPONDENT.

enum TriggerMode{
INITIATOR,
RESPONDENT,
PARTICIPANT,
TIMEOUT

I3

readonly attribute TriggerMode mode;

Table 4-15TriggerMode Enumeration Table

Value Description
INITIATOR INITIATOR mode restricts the activator of a transition to the same pringipal
identity that invoked the last transition.
RESPONDENT RESPONDENT is anyMember within a Membership other than the
principal as defined biNITIATOR.
PARTICIPANT An INITIATOR or RESPONDENT.
TIMEOUT Invocation of theTrigger is controlled by the implementation in accordance
with thelifetime exposed by th&rigger .
4.3.3.3 Access control based on Membership
Access to drigger exposing the modeRARTICIPANT, INITIATOR, or
RESPONDENT may be qualified further by the addition embership references
under theconstraint attribute. An invoking user must beMember of the
membershigkind referenced by the constraint.
readonly attribute CommunityFramework::MembershipKind constraint;
4.3.3.4 Trigger Lifetime and Activation Semantics

A Trigger exposing a non-null lifetime value will be invoked automatically by an
implementation of Collaboration on expiry. Timeout of a trigger is determined by the
time of the last reactivation of the source state plus the time period identified under the
lifetime attribute. An implementation of Collaboration exposes timeout triggers and
deadlines under thémeout_list attribute.

readonly attribute TimeBase::IntervalT lifetime;

Collaboration Framework month year

4.3.4 Command

A Command type is a specialization dfigger that enables the declaration of an
event that may be invoked undeCallaboration using theinvoke operation.

4.3.4.1 IDL Specification

interface Command :
CollaborationFramework::Trigger

{

h

4.3.5 Transition

A Transition is a type ofTrigger that exposes trget State and constraints
concerning the effect of a transition relative teudject of Collaboration .

Transitions that reference a source state that is active (see Section 4.3.1.5, “Active
State,” on page 4-11) are themselves considered active in that they may be invoked
subject to the access constraints imposed by the features inheritedirigger . A
Transition is applied to &ollaboration through theapply operation. Specification

of the relationship betweddontrolDescriptor constraint and the subject of
Collaboration is detailed under Section 4.3.1, “Collaboration,” on page 4-8.

4.3.5.1 IDL Specification

interface Transition :

Trigger

{

enum ControlDescriptor{
PROCESS,
TRANSITIONAL,
RESET,
FAIL

h

readonly attribute State target;

readonly attribute ControlDescriptor control;

readonly attribute boolean initialize;

Table 4-16Transition Attribute Table

Name Type Properties | Purpose
target State read-only Thétate which will be made the root active state on
successful completion of a transition.

Collaboration Collaboration Interfaces month year 4-21

4-22

Table 4-16Transition Attribute Table

control

ControlDescriptgr read-only |ControlDescripter exposing one of the enumerated
valuesPROCESS, TRANSITIONAL, or FAIL used by
the apply operation on Collaboration (see

Section 4.3.5.2, “Subject Modification Constraints,” on
page 4-22).

initialize

boolean read-only A value of true indicates that the transition may be
invoked as an initialization, bypassing any source State
constraint.

4.3.5.2 Subject Modification Constraints

A Transition exposes the enumerated value$BOCESS, TRANSITIONAL, and

FAIL. These values are used by an implementation cdppé/ operation to determine
behavior concerning the launching of sub-process and the potential commit or rollback
of changes on completion of a transition (see Section 4.3.1, “Collaboration,” on

page 4-8).

enum ControlDescriptor{
PROCESS,
TRANSITIONAL,
RESET,
FAIL

Table 4-17ControlDescriptor Enumeration Table

Name Purpose

PROCESS State transitioning and subject change by a task is authorized.

TRANSITIONAL Subject change is not authorized. Target state transitioning is authorized.

RESET Neither target state nor subject changes are authorized but the currgnt state
is re-entered and as such, active timeout constraints are reinitialized

FAIL Neither target state nor subject change are authorized. No timeout change
occurs.

4.3.6 CompoundTransition

CompoundTransition is a specialization ofransition that introduces a
secondary destinatiorState, andControlDescriptor constraint, and a reference to
an EncounterTemplate and default initializatiorTransition .

During the invocation of the apply operation un@ailaboration an implementation
is responsible to instantiating a process described undéertipate declaration. A
transition of this type will launch aBncounter or series oEncounter instances as

Collaboration Framework month year

4

sub-processes to the acti@ellaboration . Determination of the selection of the
primary destination oalternate destination is a function of thesult status event

raised by the transitioningncounter .

CompoundTransition provides a powerful mechanism to express recursive
collaborative processes such as amendments under multilateral negotiation.

4.3.6.1 IDL Specification
interface CompoundTransition :
Transition
{
readonly attribute State secondary_target;
readonly attribute ControlDescriptor secondary_control;
readonly attribute EncounterTemplate template;
readonly attribute Transition initialization;
readonly attribute boolean sealed;
h
Table 4-18CompoundTransition Attribute Table
Name Type Properties | Purpose
secondary_target | State read-only Declaration 8fade that constitutes the|
alternativeState destination to the principal
destination inherited froriransition .
secondary_control ControlDescriptor| read-only Control descriptor that qualifies subject
modification rights under the secondary
destination.
initialization Transition read-only The default initialization transition to be
invoked from the possible initialization
transitions exposed by the
EncounterTemplate referenced by the
template attribute.
sealed boolean read-only Controls the exposure of a template under
the template attribute. Sealed transitions
will return a null to a client on an attempt|to
navigate to the associated template.
template EncounterTemplate read-only A Template defining a process to be
executed and concluded undeswecess
or failed state. An instance of template is
not exposed if the value skaled is true.

Collaboration Collaboration Interfaces month year

4-23

4

4.4 Engagement and Associated Interfaces

EngagementTemplate , Engagement , andEngagementManifest are a set of
interfaces used to establish, execute, and persistently register the result of a contractua
engagementEngagementTemplate exposes a factory key used by a client to

establish arEngagement process and associates an instance of

EngagementManifest as the resource produced by fregagement process.

4.4.1 Object Model

ActiveResource

)

I
AbstractTemplate
Encounter * 1 EncounterTemplate
template
Engagement EngagementTemplate
activation_policy : ActivationPolicy
engage() engagement_policy : PropertySetDef

EngagementManifest

produces

1 manifest : PropertySetDef

Figure 4-5 Engagement Object Model

4.4.2 EngagementTemplate

EngagementTemplate defines the criteria under which Engagement is executed
through the exposure of attivation_policy andengagement_policy .
EngagementTemplate is associated to a@Bngagement process through théata

usage association.

4-24 Collaboration Framework month year

4.4.2.1 IDL Specification

interface EngagementTemplate :
EncounterTemplate

{

enum ActivationPolicy{
DISCRETIONARY,
IMPLICIT

I3

readonly attribute ActivationPolicy activation_policy;
readonly attribute CosPropertyService::PropertySetDef
engagement_policy;

Table 4-19 EngagementTemplate Attribute Table

Name Type Properties | Purpose

activation_policy ActivationPolicy read-only AActivationPolicy is one of the
enumerated valua3ISCRETIONARY or
IMPLICIT (see Table 4-21 on page 4-26

A=
~

engagement_policy| PropertySetDef read-only A property set used to disclose the non-
repudiation policy applicable to the
engagement process. Property names|and
values are undefined and subject to
resolution by negotiation between parties.

Table 4-20Engagement Template Attribute Table

Name Type Properties | Purpose

activation_policy ActivationPolicy read-only AActivationPolicy is one of the
enumerated valua3ISCRETIONARY or
IMPLICIT (see Table 4-21 on page 4-26).

engagement_policy| PropertySetDef read-only A property set used to disclose the non-
repudiation policy applicable to the
engagement process. Property names|and
values are undefined and subject to
resolution by negotiation between parties.

Collaboration Engagement and Associated Interfaces month year 4-25

4-26

Table 4-21ActivationPolicy Enumeration Table

Value

Description

DISCRETIONARY | Engagement is considered complete at the discretion of the implementation.

Examples of discretionary engagement include open contracts under which
participants may choose to engage. Typically, a discretionary engagement will be
defined as a timeout transition such that the set of engaged parties at the point of
timeout constitute the contracting parties.

IMPLICIT

Implicit engagement is defined as an engagement process that requires the |explicit
engagement of all participants associated to the Membership that the
Collaboration represents.

4.4.3 Engagement

4.4.3.1

Engagement is a specialization dEncounter that associates an
EngagementTemplate (as qualifying criteria for the engagement process) with a
producedEngagementManifest . Engagement exposes the operati@mngage that
takesevidence as input and providgwoof of engagement as an output argument. An
implementation oEngagement registers the set of engagement proofs under an
EngagementManifest . Theproof andevidence arguments to engage are defined
by theengagement_policy exposed byEngagementTemplate .

IDL Specification

interface Engagement :;
Encounter
{
void engage(
in any evidence,
out any proof

);

4.4.4 EngagementManifest

An EngagementManifest is a specialization oActiveResource andDescriptive

that provides a persistent store for the registration of proofs to engagement by an
Engagement process under thgroperty _set exposed by the inherited Descriptive
interface. The semantics of proof registration and format are defined by an instance of

EngagementTemplate .

4.4.4.1 IDL Specification

interface EngagementManifest :
SessionFramework::ActiveResource

Collaboration Framework month year

{

readonly attribute CosPropertyService::PropertySetDef manifest;

Table 4-22EngagementManifest Attribute Table

Name

Type

Properties| Purpose

manifest

PropertySetDe

f read-only| A property set used to separate evidence that may
in an engagement process as defined by the active
engagement policy. Usage is policy dependent.

4.5 Voting and Associated Interfaces

\oting is a specialization dEncounter that associategoteTemplate (as qualifying

criteria for theVoting process) with a producédteManifest . Voting exposes the
vote operation that takes one of the enumerated vék®, NO, or ABSTAIN as an
input argument. An implementation Wbting is responsible for the updating of the
voting status under theoteManifest .

4.5.1 Object Model

Encounter *

ActiveResource

A

AbstractTemplate

f

1 EncounterTemplate

7

Voting

vote()

template

¢

VotingTemplate

vceiling : VoteCeiling

produces VoteManifest

vcount : CountStruct

Figure 4-6 Voting Object Model

Collaboration

Voting and Associated Interfaces month year 4-27

be usec

4.5.2 VoteTemplate

4.5.2.1 IDL Specification

interface VoteTemplate :
Encounter

{

struct VoteCeiling{
short numerator;
short denominator;

k

readonly attribute VoteCeiling vceiling;

Table 4-23VoteTemplate Attribute Table
Name Type Properties| Purpose

vceiling VoteCeiling | read-only | The ceiling exposes a fractional value indicating the
proportion of YES votes required to conclude a vote

process successfully. Values of ceiling such as %2 or 3. are
expressed by the VoteCeiling structure in the form of a
numerator and denominator value.

Table 4-24VoteCeiling Struct Table

Element Type Description

numerator short Value describing the numerator of a fraction that in combination with
the denominator defines the fractional value attributed VoteCeiling|.

denominator | short Value describing the denominator of a fraction that in combination with
the numerator defines the fractional value attributed VoteCeiling.

4.5.3 \Voting

Voting is a specialization dEncounter supporting vote-based determination of
encounter success or failulMoting is an interface that provides mechanisms through
which users can regist®ES, NO, or ABSTAIN votes in accordance with the process
policy exposed bywoteTemplate . VoteTemplate exposes a structured
numerator/denominator pair that defines the required ceiling for calculation of a
successful vote. An implementation \dting is required to raise @esult event on
completion, indicating the successful or unsuccessful conclusion of the engagement
process.

4-28 Collaboration Framework month year

4.5.3.1 IDL Specification

interface Voting:

Encounter

{

enum VoteDescriptor{
YES,
NO,
ABSTAIN

h

void vote(
in VoteDescriptor value

);

Table 4-25VoteDescriptor Enumeration Table

Element |Description

YES Value signifying an affirmative position under a vote operation.
NO Value signifying an opposing position under a vote operation.
ABSTAIN |Value signifying neither an affirmative nor negative position under a vote operation.

4.5.3.2 Registering a Vote

\otes are registered againsteting process using theote operation. The input
argument to theote operation is one of the enumerated valM&S, NO, or

ABSTAIN. A user may invoke a vote more than one time, the last vote registered is
recorded as the standing vote for tember.

4.5.4 \JoteManifest

A VoteManifest is a container for the persistent registration of voting results.

The attribute count oxoteManifest provides an aggregation of votes registered under
an active voting process. As votes are registered the values attribiet:Gount

are updated. A¥oteManifest is itself anActiveResource , changes to the value of
count are raised aspdate events.

4.5.4.1 IDL Specification

interface VoteManifest :
SessionFramework::ActiveResource {
struct CountStruct{
long yes;
long no;
long abstain;

k

Collaboration Voting and Associated Interfaces month year 4-29

readonly attribute CountStruct vcount;

J3

Table 4-26Voting Attribute Table
Name Type Properties | Purpose

vcount CountStruct read-only |VoteCount is a structure containing the number of
YES, NO andABSTAIN votes registered under the
voting process.

Table 4-27VoteCount Struct Table

Element | Type |Description

yes long | Number of yes votes registered under the voting process.
no long | Number of no votes registered under the voting process.
abstain long | Number of abstain votes registered under the voting process.

4.6 Negotiation and Promissory Models
4.6.1 Bilateral Negotiation

4.6.1.1 Overview

A bilateral negotiation is a collaborative process model dealing with interactions
between two participants. It provides a framework within which a user can initiate a
process under which agreement to sbject of Collaboration can be established
though interaction with another user. The model exposes three negotiable states,
requested , proposed , andoffered , that, through collaborative interaction may lead
to any of the terminal states afireed, rejected , ortimeout.

4-30 Collaboration Framework month year

O OO0

request offer propose
s ~
q N ([R
—
suggest offer é agree
requested offered agreed
propose [
2 proposed reject
rejected
request
A timeout
open y timeout
closed
negotiable g J

G J

Figure 4-7 Bilateral State Transition Model

The different open sub-states of a bilateral negotiation model provide varying degrees
of co-operation, commitment, and agreement. A degree of commitment is encountered
under theoffered state by the fact that an offer can be agreed toprégosed is a
stub-state obffered , it may also be agreed to; howevprpposed extends the

semantic model obffered by enabling the continuation of subject modification

through therequest transition.

Table 4-28Bilateral Negotiation State Variance Table

suggested requested proposed offered agreed rejected
Expression of willingness to continue negotiatidon N v
Represents commitment by the principal v v
Represents a bilateral commitment v
Terminal state v Vv

4.6.1.2 Initialization

Thebilateral negotiation may be initialized under one of the three stateposed ,
requested , oroffered . An offer signifies a state in which the subject of
collaboration may be agreed to but not be changed, wheprap@sed state enables
the introduction of counter requests. Boffer andpropose imply a potential
agreement by the offering party whereas rdguested state implies no commitment
by the invoking party.

Collaboration Negotiation and Promissory Models month year 4-31

4.6.1.3 Transitions

Request

Request is a transition that can be applied underghmposed state. Request

enables a respondent to change the subject of a negotiation and the context from the
proposed torequested state. Arequest transition does not signify the

commitment of the requesting party; however, it opens the possibility for the
counterpart to respond wittropose or offer against the subject under the

requested state.

Table 4-29Request Transition Parameter Table

keyword |mode source destination priority | constraint
request RESPONDENT proposed requested 0 PROCESS
Suggest

Suggest is semantically equivalent to tlequest transition except that it is initiated
under therequested state. Suggest is used as an exploratory mechanism through
which two clients can continue to invoke suggestions towards each other relative to the
subject, until such time that at least one party is ready to migrate to a higher level of
commitment as expressed under pneposed or offered states.

Table 4-30Suggest Transition Parameter Table

keyword |mode source destination priority | constraint
suggest RESPONDENT requested requested 0 PROCESS
Propose

Propose is a transition from theequested to proposed states that introduces the
commitment by the proposing party in that the subject of the proposal may be agreed
to by the correspondent. This is distinct to thguested state where, in comparison,

no agreement is implied.

Table 4-31Proprose Transition Parameter Table

keyword |mode source destination priority | constraint
propose | RESPONDENT requested proposed 0 PROCESS
4-32 Collaboration Framework month year

Offer

An offer is a transition from theequested state to theffered state. Invokingffer
is on one hand an expression of agreement by the offering party, but on the other hand,
restricts the potential for further negotiation (as compared to propose).

Table 4-320ffer Transition Parameter Table

keyword |mode source destination priority | constraint
offer RESPONDENT requested | offered 0 PROCESS
Agree

The agree transition is available to a respondent underdffered andproposed
states. Agree signifies the agreement by the respondent toffer or proposal

raised by the issuing user. Thgree transition establishes a collaboration under an
agreed state, expressing the agreement by both parties to the subject of a
collaboration.

Table 4-33Agree Transition Parameter Table

keyword |mode source destination priority | constraint
agree RESPONDENT offered agreed 0 PROCESS
Reject

A reject transition may be invoked against appen state proposed , requested ,
or offered). Reject invokes a failure termination of a negotiation through
transitioning to theejected state.

Table 4-34Reject Transition Parameter Table

keyword |mode source destination priority | constraint
reject RESPONDENT open rejected 0 PROCESS
Timeout

A timeout transition is associated to tbpen state and as such is active during any
of theproposed , requested , or offered states. The timeout signifies the amount of
time following the last transition which, when elapsed, will cause the execution of the
transition. The result of thmeout transition is automatic transition tioneout and
subsequent raising of the failure status of the host process.

Table 4-35Timeout Transition Parameter Table

keyword |mode source destination priority| constraint

timeout | TIMEOUT open timeout 100 TRANSITIONAL

Collaboration Negotiation and Promissory Models month year 4-33

4.6.1.4 States

The semantics of the bilateral negotiation states are summarized in the following
tables.:

Table 4-36Bilateral Negotiation State Semantics

State terminal Description

open INTERNAL | Theopen state is a parent state to the three negotiable sifitzed ,
proposed , andrequested . The three negotiable states are sub-states of
the open state, as such transitions defined under the open state are
available at any time between initialization and termination. Transitions
declared on the open state enable the explicit rejectiorsubjact by a
user through theeject transition. A second characteristic of hygen
state is the association otiemeout transition that will close the
negotiation after a predetermined period of transition inactivity.
offered INTERNAL | Theoffered state enables a respondenatpee or reject an agreement t
the subject of the collaboration. Invokiagree leads to the establishment
of the terminal state expressing agreement by both parties salijeet of
the Collaboration .

proposed | INTERNAL | Theroposed state extends the semantics of tifilered state by
introducing the possibility of change to the subject of the collaboratig
Through application of theequest transition, a respondent may chang
the subject of the collaboration to a new value and establish the active
asrequested .
requested| INTERNAL | The requested state exposes transitions that allow a respondent to transition
to theoffered or proposed states using theffer or propose transitions,
or to continue in theequested state through application of tlseiggest
transition.

agreed SUCCESS Thegreed state is a terminal success state that signifies the agreement of
both parties to theubject of theCollaboration .
rejected FAILURE Theeject state is a terminal fail state that signifies the non-agreement to
the subject of theCollaboration and the termination of the process.
timeout FAILURE Thetimeout state is a terminal fail state that signifies the closure of the
process without achievement of agreement tosthgject of the
Collaboration .

O

1% D .3

state

4.6.2 Multilateral Negotiation

4.6.2.1 Overview

A multilateral encounter is a collaborative process model dealing with interactions
between a group of two or more participants. It provides a framework within which a
user can initiate an action under which agreement tsubgct of Collaboration

can be established through a consensus process.

4-34 Collaboration Framework month year

r " r
motioned closed

amend

pending

motion

count :]
agreed

rejected

call

A timeout

withdrawn

withdraw

multilateral encounter
\

Figure 4-8 Multilateral State Transition Model

The model exposes three principal stafending , seconded , andvoting that

through interaction between the participants may lead to any of the terminal states of
agreed, rejected , or withdrawn . Initialization of amultilateral encounter is
established through the initializing transition namection . Under thepending

state three possible actions are possible:

1. The user raising the motion mawthdraw the motion,
2. areciprocating user magcond the motion, or
3. the motion may fail through tameout due to the lack of a second.

Both timeout andwithdraw transitions lead to the failed statéthdrawn . Once a
pending motion isseconded by a reciprocating user (any user other than the user
raising the motion) theote timeout countdown is activated. Any user may invoke the
amend or call transition prior to thevote transition. Bothamend andcall

transitions are executed as a sub-process definedryftigateral motion (as such,
both are subject to the agreement of the participants in order to succeed).

Once thevoting state is established through a timeout ofwbi transition, or a
successfukall transition, acount transition is immediately activated. Thkeunt
transition is a specializelincounter namedVoting that exposes @ote operation

under which participants may registES, NO, andABSTAIN votes. The success or
failure of the count transition signals the success or failure of the multilateral motion
process by completing the transition to eitherdageeed or rejected terminal states.

Collaboration Negotiation and Promissory Models month year 4-35

Table 4-37Multilateral Negotiation State Variance Table

pending | seconded voting | agreed| rejected

4-36

Represents commitment by the principal v v v v
Endorsement of a commitment by a second participant v v v
Represents a unilateral commitment v
Terminal state v v
4.6.2.2 Transitions
Motion

Initialization usingmotion establishes th€ollaboration with thepending state and

all parent states as tlaetive-state path. A motion is raised with the express interest

of gaining the agreement of the membership to the subject of the motion. For a motion
to be successful, the motion must be seconded and voted upon. At any time before a
motion vote is initiated the principal raising the motion may withdraw it. A potential
risk of raising a motion is that the subject of the motion, if seconded, may be amended
at the discretion of the group.

Table 4-38Motion Parameter Table

keyword mode source destination priority | constraint
motion INITIATOR pending 0 TRANSITIONAL
Second

Thesecond transition is a simple transition that may be invoked bysaondent in
support of gpending motion. The second transition will result in the establishment of
theseconded state and alparent states as the active-state path.

Table 4-39Second Parameter Table

keyword mode source destination priority | constraint
second RESPONDENT pending seconded 0 TRANSITIONAL
Amendment

Theamend transition is a compound transition defined by a subsidiary collaboration
process using theultilateral motion state model. During the invocation of the

apply operation, the client passes in amend adrtnsition argument value, and a
reference to a task that will change the curserject . On conclusion of the
amendment process, a successfgllt will cause the completion of the transition by
changing theactive-state to seconded and committing the transaction. In the case
of failure, no state change will occur and a rollback of changes teuthject will be
invoked.

Collaboration Framework month year

The expiry of theseconded state is re-initialized under each re-entry to the
seconded state. As such, any amendment (successful or otherwise) will invoke the
resetting of the vote transition deadline.

Table 4-40Amend Parameter Table

Feature Value constraint
keyword amend

mode PARTICIPANT

template Collaboration, using multilateral motion

priority 0

source seconded

target seconded PROCESS
secondary FAIL

Call

Calling the question is a compound transition that if successful results in a transition to
thevoting state TRANSITIONAL semantics).

The call transition is a compound transition defined by a subsidiary collaboration
process using thmultilateral encounter state model. During the invocation of the
apply operation, the client passes in a reference taalietransition (task arguments
are ignored). On conclusion of tleall process (signaled byrasult event of the
Collaboration sub-process), a successful result will cause the completion of the
transition through a change in the active state of the p&afgboration to voting .
An unsuccessful result will not invoke a transition.

Table 4-41Call Parameter Table

Feature |Value constraint
keyword call

mode RESPONDENT

template Collaboration, using multilateral motion

priority 10

source seconded

target voting TRANSITIONAL
secondary FAIL

\Vote

The vote transition is AIMEOUT transition associated to tlseconded state. On
expiry thevote transition is applied bZollaboration . Thevote transition
establishes theoting state.

Table 4-42\Vote Parameter Table

keyword mode source destination priority | constraint
vote TIMEOUT seconded voting 100 TRANSITIONAL
Collaboration Negotiation and Promissory Models month year 4-37

4-38

Count

On activation of the voting statecaunt transition is initiated under a zero lifetime
timeout (i.e., immediately on state activation). Any participant may attempt to force a
vote by calling the question using thall transition.

Thecount transition is a compound transition definedMfing . On initialization the
\Voting process is established as a sub-process of the &allaboration .

Following creation of a vote aggregation sub-process, participants associated with the
Collaboration may invokeYES, NO, or ABSTAIN votes using thgote operation on

the Voting interface. On conclusion of the voting process as a result of a timeout of
the process or registration of votes by all participants, a vote count is conducted and
established under the count attribute ofadeManifest . A successful conclusion of

the vote process will result in a transition to #yeeed state TRANSITIONAL

semantics) whereas failure will result in transition to ijected state

(TRANSITIONAL semantics).

Table 4-43Count Transition Table

Feature Value constraint
keyword count
mode TIMEOUT

template \oting
priority 100

source seconded

target agreed TRANSITIONAL
secondary | rejected TRANSITIONAL
Timeout

Thetimeout transition triggers an automatic transition from geading to
withdrawn state after a set period of inactivity as disclosed by the stadel
associated to th€ollaboration process.

Table 4-44Timeout Parameter Table

keyword |mode source destination priority| constraint
TIMEOUT pending withdrawn 100 TRANSITIONAL
Withdraw

Thewithdraw transition may be invoked by the principal establishing a motion at any
time prior to the motion beingeconded or the occurrence of timeout . A

withdraw transition establishes tivdthdrawn state as active, resulting in the failure
of the collaboration.

Table 4-45Withdraw Parameter Table

keyword |mode source destination priority | constraint

withdraw

INITIATOR

pending

withdrawn

0

TRANSITIONAL

Collaboration Framework

month year

4.6.2.3 States

Table 4-46Multilateral Negotiation State Semantics

State

terminal

Description

multilateral

INTERNAL

The top-level state containing the motioned and closed states.

motioned

INTERNAL

Contextual state containing the pending, seconded, and voting states.

pending

INTERNAL

Thepending state signifies the agreement by one party to a motion,
expressed as the subject@dllaboration and the expression of the

interest of that party in the reaching of agreement to the said subject.

issuing user may withdraw a motion at any time pricgegicond transition
or timeout . A motion fails if thetimeout passes prior to the occurrence
asecond transition. Asecond transition establishes the motion as a v
motion to theMembership .

seconded

INTERNAL

Under thgeconded state the subject of a motion may be amended
though the invocation of themend transition. Anamend transition
causes the creation of a subsidi@ugllaboration to the current
Collaboration . Success of the subsidiary process is required before
principalCollaboration subject is updated. gall transition takes priority
over any queued amendment transitions and if successful, forces a v
the current motion. Aall transition is executed as a subsidiary
Collaboration using amultilateral motion process.

voting

INTERNAL

An immediatetimeout of thevoting state is triggered under the count
transition. This transition creates a subsidi@ancounter using the
Voting process. The boolean result of the voting process will be sign
under aresult event that invokes completion of the transition to either
agreed orrejected state.

withdrawn

FAILURE

A state resulting from theithdraw of a motion prior to the occurrence
asecond transition or g&imeout . Thewithdrawn state signifies a failur
of the multilateral encounter.

agreed

SUCCESS

Aagreed terminal state indicating the successful resolution of the v
process by the registration of a sufficient numbeyesf votes to equal o
exceed the voteceiling .

rejected

FAILURE

Arejected terminal state indicating a failure of the voting process.

Collaboration

Negotiation and Promissory Models month year

The

of

alid

the

ote on

aled
the

11

ting

4-39

4.6.3 Promissory Encounter

4.6.3.1 Overview

The promissory encounter model defines a collaborative interaction sequence
between a consumer and a providercohsumer is aMember associated to a
Membership of the kind “consumer.” Aprovider is aMember associated to the
Membership of the kind “provider.” Aprovider can invoke a promise transition to
initialize aCollaboration under theright state. Once initialized asraht , a
consumer may call the promise by invokingeguest transition. This corresponds to
aconsumer request for fulfillment of the promise by tipeovider . A provider

fulfills a promise by applying thiuilfill transition, itself a compound transition defined
by abilateral or multilateral negotiation. Success of the negotiation leads to the
fulfilled state whereas failure leads to tegected state.

0]

promise
4 N
promised
. A i
right expire expired
4 N
obligation
request

— .
pending fufil fulfilled

O commit waive

overdue ‘ r rejected

[]

A timeout waived

Figure 4-9 Promissory State Transition Model

4.6.3.2 Initialization

Initialization is achieved using th@omise or commit transition. When initialized
underpromise , the Collaboration is established asght of the consumer. When
initialized under commit, the promise is established peraling obligation of the
provider.

4-40 Collaboration Framework month year

Table 4-47Promissory Initialization Table

keyword |mode kind target
promise PARTICIPANT| provider right
commit PARTICIPANT | provider pending

4.6.3.3 Transitions

Request

Request is a transition available to a consumer underridjiet state. Invoking the
request transition establishes the promise gseading obligation against the
supplier.

Table 4-48Request Transition Parameter Table

keyword mode kind priority source |destination |constraint

request PARTICIPANT consumer O right obligation TRANSITIONAL

Fulfill

Fulfill is available to a provider under the obligatpending state. Afulfill transition

is defined as a compound transition that referenceithteral or multilateral

negotiation template. A subsidiaGollaboration is instantiated that, on resolution,
defines the success or failure condition used to determine a transition to the terminal
fulfilled or rejected state.

Table 4-49Fulfill Transition Parameter Table

Feature Value constraint
keyword fulfill
mode PARTICIPANT

role name | provider
template bilateral or multilateral negotiation

priority 0

source pending

target fulfilled PROCESS
secondary | rejected TRANSITIONAL
Waive

Waive may be invoked by either consumer or provider. It is a compound transition
referencing a bilateral or multilateral negotiation that if successful results in a
transition to the terminakaived state. A failure of the negotiation will result in the
continuation of the process under the state prior to the initiation afdhe

transition.

Collaboration Negotiation and Promissory Models month year 4-41

Table 4-50Waive Transition Parameter Table

Feature |Value constraint
keyword waive

mode PARTICIPANT

role name

template bilateral or multilateral negotiation

priority 0

source promised

target waived TRANSITIONAL
secondary FAIL

Expire

Expire exposes a timeout value that will trigger the expiry of the consumer’s right to
invoke arequest for fulfillment against a provider.

Table 4-51Expire Transition Parameter Table

Timeout changes an existingpligation pending
overdue . From a computation point of view amerdue obligation is no different to

apending obligation.
Table 4-52Timeout Transition Parameter Table

to obligating pending and

keyword |mode kind priority source |destination |constraint
expire TIMEOUT 100 right expired TRANSITIONAL
Timeout

keyword

mode

kind

priority

source

destination

constraint

timeout

TIMEOUT

100

pending

overdue

TRANSITIONA

4.6.3.4 States

Table 4-53Promissory State Table

lest

State terminal Description
promised INTERNAL | The top level state exposing a promissory encounter model.
right INTERNAL |A promise, made by a provider, towards a consumer under which the
provider commits to the willingness to fulfill the promise at the reqt
of the consumer.
4-42 Collaboration Framework month year

Table 4-53Promissory State Table

obligation

INTERNAL

A promise that has been requested by a consumer, or initialized through

a commit, under which the promise constitutes an obligation of the
provider to fulfill. Obligation is a contextual state that qualifies the
operation states of pending, fulfilled, and rejected.

pending

INTERNAL

A state under which a provider is obliged to fulfill a promise through

invocation of the fulfil transition.

overdue

INTERNAL

A sub-state of pending which is established by an implementation
Collaboration when a pending obligation timeout transition expires.

of

waived

SUCCESS

A sub-state of obligation, reached through mutual agreement of t
parties, under which the obligations and rights of both parties are
forgone.

he

fulfilled

SUCCESS

A success terminal state, expressing the satisfactory fulfillment of
promise by a provider towards a consumer.

a

rejected

FAILURE

A failure terminal state, expressing the failure of the parties to agree to

the fulfillment of a promise.

4.6.4 CollaborationFramework IDL

/I File: CollaborationFramework.idl

#ifndef _COLLABORATION_FRAMEWORK_IDL_
#define _COLLABORATION_FRAMEWORK__IDL_
#pragma prefix "omg.org"

#include <CommunityFramework.idl>

module CollaborationFramework{

/I forward declarations
interface State;
interface Trigger;
interface Command,;
interface Transition;
interface CompoundTransition;

interface Encounter;
interface EncounterTemplate;
interface Implication;

interface Collaboration;
interface CollaborationTemplate;

interface Engagement;
interface EngagementTemplate;
interface EngagementManifest;

interface Voting;

Collaboration Negotiation and Promissory Models month year 4-43

interface VoteTemplate;
interface VoteManifest;

/I type definitions
typedef string Keyword;

typedef sequence <State> StateSequence;

typedef sequence <Transition> TransitionSequence;
typedef sequence <Collaboration> CollaborationSequence;
typedef sequence <Command> CommandSequence;

/I encounter and template interfaces

interface EncounterTemplate :
SessionFramework::AbstractTemplate
{
readonly attribute CommunityFramework::MembershipKind
membership_kind;
enum ImplicationOrdering {SEQUENTIAL,
PARALLEL
h
readonly attribute ImplicationOrdering order;

k

interface Implication : SessionFramework::Linkage{ };
interface Success : Implication{ };
interface Failure : Implication{ };

interface Encounter :
CommunityFramework::Membership,
SessionFramework::ActiveTask

readonly attribute EncounterTemplate template;
readonly attribute SessionFramework::ActiveResource subject;

k
/I interfaces

interface State :
Session::BaseBusinessObject{
readonly attribute Keyword label;
enum TerminalDescriptor{
INTERNAL,
SUCCESS,
FAILURE
h
readonly attribute TerminalDescriptor terminal;
readonly attribute State parent;
readonly attribute StateSequence sub_states;

4-44 Collaboration Framework month year

interface Trigger :
Session::BaseBusinessObject{
readonly attribute CollaborationFramework::Keyword keyword;
enum TriggerMode{
INITIATOR,
RESPONDENT,
PARTICIPANT,
TIMEOUT

readonly attribute State source;

readonly attribute TriggerMode mode;

readonly attribute CommunityFramework::MembershipKind
constraint;

readonly attribute long priority;

readonly attribute TimeBase::IntervalT lifetime;

k

interface Command :
CollaborationFramework:: Trigger{

k
interface Transition :
Trigger
{
enum ControlDescriptor{
PROCESS,
TRANSITIONAL,
RESET,
FAIL
k

readonly attribute State target;
readonly attribute ControlDescriptor control;
readonly attribute boolean initialize;

h

interface CompoundTransition :
Transition
{

readonly attribute State secondary_target;

readonly attribute ControlDescriptor secondary_control;
readonly attribute EncounterTemplate template;
readonly attribute Transition initialization;

readonly attribute boolean sealed;

h
/I Collaboration and template
interface CollaborationTemplate :

EncounterTemplate,
State

Collaboration Negotiation and Promissory Models month year 4-45

4-46

k

{

readonly attribute TransitionSequence transitions;
readonly attribute CommandSequence commands;

interface Collaboration :

Encounter

{

readonly attribute StateSequence active_state;

struct TimeoutSequence{
CollaborationFramework:: Trigger trigger;
TimeBase::UtcT timestamp;

h

readonly attribute TimeoutSequence timeout_list;

exception InvalidTrigger{
CollaborationFramework:: Trigger trigger;

h

exception ApplyFailure{
CollaborationFramework:: Trigger trigger;
SessionFramework::ActiveTask task;

h

enum ApplySemantics{
REPLACEMENT,
MODIFICATION

h

exception ActiveTaskTypeConflict{
SessionFramework::ActiveResource resource;
h
void apply(
in CollaborationFramework:: Transition transition,
in ApplySemantics semantic,
in SessionFramework::ActiveResource resource
) raises (
InvalidTrigger,
ActiveTaskTypeConflict,
ApplyFailure

void invoke(
in CollaborationFramework::Command command,
in SessionFramework::ActiveResource argument,
in string reason

) raises (
InvalidTrigger

)i

/l Engagement Template, Process and Manifest

interface EngagementTemplate :

EncounterTemplate

Collaboration Framework month year

enum ActivationPolicy{
DISCRETIONARY,
IMPLICIT
h
readonly attribute ActivationPolicy activation_policy;
readonly attribute CosPropertyService::PropertySetDef
engagement_policy;

k

interface Engagement ;
Encounter {
void engage(
in any evidence,
out any proof
);
h

interface EngagementManifest ;
SessionFramework::ActiveResource
{
readonly attribute CosPropertyService::PropertySetDef manifest;

3
/I Vote Template, Process and Manifest

interface VoteTemplate :
EncounterTemplate
{
struct VoteCeiling{
short numerator;
short denominator;
h
readonly attribute VoteCeiling vceiling;

k

interface Voting:

Encounter

{

enum VoteDescriptor{
YES,
NO,
ABSTAIN

I3

void vote(

in VoteDescriptor value

);

h

interface VoteManifest :
SessionFramework::ActiveResource

{

Collaboration Negotiation and Promissory Models month year 4-47

struct CountStruct{
long yes;
long no;
long abstain;
¥
readonly attribute CountStruct vcount;

h
}; I end CollaborationFramework Module

#endif // _COLLABORATION_FRAMEWORK_IDL_

4-48 Collaboration Framework month year

DOM Framework 5

Contents

This chapter contains the following topics.

Topic Page
“Overview” 5-1
“DomFramework Wrapper Interfaces” 5-1

5.1 Overview

It is a high priority to be able to apply the processes of negotiation and other forms of
collaboration to subject resources exposing the W3C DOM level 1 interfaces. There are
two problems that have to be dealt with in achieving this:

1. DOM Specification issues:
« lllegal IDL declarations concerning exceptions raised by attributes
* Non-support for OMG Language Mappings
» Implied locality restrictions

2. Framework to DOM Issues:
« Definition of interfaces enabling the representation of a DOM as a type of
ActiveResource.

5.2 DomFramework Wrapper Interfaces

Resolution of the DOM Specification issues identified above has been achieved
through a set of wrapper interfaces defined under the marhrgramework .

The wrapper interfaces introduce the following additional features:

Negotiation Facility month year 5-1

5-2

1. DocFramework::Node
» Addition of CosObjectldentity::IdentifiableObject

« Addition of a mode attribute containing
CosPropertyService::PropertyModeType access constrain declaration

« The addition of thegyet_nodeValue operation and exception

2. DocFramework::CharacterData
» Addition of aset_data andget_data operations with exceptions

3. DocFramework::Processinglnstruction
» Addition of aset_data operation with exception

4. Wrapping of all interfaces to inherit froBomFramework::Node or its derived
interface and their counterpart in the W3C DOM module

Specification of the DOM interfaces are detailed under the W3C DOM Level 1
Recommendation. Relevant W3C DOM documentation is available under the
following URLSs.

« W3C DOM Level 1 Recommendation
http://www.w3.0rg/TR/REC-DOM-Level-1/

« DOM IDL
http://www.w3.0rg/DOM/updates/REC-DOM-Level-1-19981001-errata.ldmi
directly under the archivettp://www.w3.org/DOM/updates/REC-DOM-Level-1-
java-binding-19990107.zip

Semantics of the access constraints introduced und@&dimé-ramework::Node
interface are detailed under the OME&sPropertyService specification.

Negotiation Facility month year

CharacterData Hement DocumentType Notation Entity Processinginstructiony | Document DocumentFragment

Comment Text

EntityReference SessionFramework

ActiveResource

b

CDATASection

DocumentResource

Figure 5-1 DOM wrapper interfaces defined under the DomFramework module

5.2.1 Extensions

5.2.1.1

DocumentResource has been defined to support the mapping of a
DomFramework::Document as anAbstractResource .

DocumentResource

DocumentResource is derived fromDomFramework::Document and

ActiveResource . As anActiveResource , the interface inherits life-cycle

operations, which are undefined in the W3C DOM Level 1 recommendation. A
Document interface represents an entire HTML or XML document. Conceptually, it is
the root of the document tree, and provides the primary access to the document's data

Since elements, text nodes, comments and processing instructions cannot exist outside
the context of a Document, the Document interface also contains the factory methods
needed to create these objects. Noele objects created have awnerDocument

attribute, which associates tbmcumentResource within whose context they were
created.

Negotiation =~ DomFramework Wrapper Interfaces month year 5-3

5-4

5.2.1.2 Object Model

Document

/\

SessionFramework
ActiveResource

A

DocumentResource

Figure 5-2 DocumentResource Object Model

5.2.1.3 IDL Specification

interface DocumentResource :
DomFramework::Document,
SessionFramework::ActiveResource{

I3

5.2.2 DomFramework IDL

/I File: DomFramework.idl

#ifndef DOM_FRAMEWORK _IDL _
#define _DOM_FRAMEWORK_IDL_
#include <dom.idI>

#include <SessionFramework.idl>
#pragma prefix "omg.org"

module DomFramework {
Il forward declarations for DOM wrappers

interface DocumentFragment;
interface Document;

interface Node;

interface CharacterData,
interface Attr;

interface Element;

interface Text;

Negotiation Facility month year

interface Comment;

interface CDATASection;
interface DocumentType;
interface Notation;

interface Entity;

interface EntityReference;
interface Processinglnstruction;

/I forward declarations for extensions
interface DocumentResource;
I typedefs

typedef dom::DOMImplementation DOMImplementation ;
typedef dom::NodeList NodeList;

typedef dom::NamedNodeMap NamedNodeMap;
typedef dom::DOMString DOMString;

/I dom interface wrappers

interface Node :

CosObjectldentity::lIdentifiable Object,

dom::Node

{

readonly attribute CosPropertyService::PropertyModeType

mode;

DOMString get_nodeValue(

) raises (
dom::DOMEXxception

);

void set_nodeValue() raises (
dom::DOMEXxception

);

interface CharacterData :

DomFramework::Node,

dom::CharacterData

{

DOMString get_data() raises (
dom::DOMEXxception

);

void set_data(
in DOMString data

) raises (
dom::DOMException

);

interface Attr :

Negotiation =~ DomFramework Wrapper Interfaces month year 5-5

DomFramework::Node,
dom::Attr {

I3

interface Element :
DomFramework::Node,
dom::Element {

h

interface Text :
DomFramework::CharacterData,
dom::Text {

I3

interface Comment :
DomFramework::CharacterData,
dom::Comment {

I3

interface CDATASection :
DomFramework::Text,
dom::CDATASection {

k

interface DocumentType :
DomFramework::Node,
dom::DocumentType{

k

interface Notation :
DomFramework::Node,
dom::Notation{

k

interface Entity :
DomFramework::Node,
dom::Entity{

h

interface EntityReference :
DomFramework::Node,
dom::EntityReference{

k

interface Processinglnstruction :
DomFramework::Node,
dom::Processinglnstruction

void set_data(

in DOMString data
) raises (

Negotiation Facility month year

dom::DOMEXxception
);
h

interface DocumentFragment :
DomFramework::Node,
dom::DocumentFragment{

k

interface Document :
DomFramework::Node,
dom::Document{

k
/I Session Framework interface extensions

interface DocumentResource :
DomFramework::Document,
SessionFramework::ActiveResource{

k
h

#endif // _DOM_FRAMEWORK_IDL_

5.2.3 DOM Level 1 IDL (errata version)

The following IDL is provided for reference purposes only.
[/l File: dom.idI

/*

* Copyright (c) 1998 World Wide Web Consortium, (Massachusetts Institute
* of Technology, Institut National de Recherche en Informatique et en

* Automatique, Keio University).

* All Rights Reserved. http://www.w3.org/Consortium/Legal/

*

#ifndef _DOM_IDL_

#define _DOM_IDL_

#pragma prefix "w3c.org"

module dom{

typedef sequence<unsigned short> DOMString;
interface NodeList;
interface NamedNodeMap;

interface Document;

exception DOMException {

Negotiation =~ DomFramework Wrapper Interfaces month year 5-7

5-8

unsigned short code;

I3

/I ExceptionCode

const unsigned short INDEX_SIZE_ERR = 1;

const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HHERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR =7;
const unsigned short NOT_FOUND_ERR = 8;

const unsigned short NOT_SUPPORTED_ERR =9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;

interface DOMImplementation {
boolean hasFeature(
in DOMString feature,
in DOMString version
)i
h
interface Node {
/ NodeType
const unsigned short ELEMENT_NODE = 1;
const unsigned short ATTRIBUTE_NODE = 2;
const unsigned short TEXT_NODE = 3;
const unsigned short CDATA_SECTION_NODE = 4;
const unsigned short ENTITY_REFERENCE_NODE = 5;
const unsigned short ENTITY_NODE = 6;
const unsigned short PROCESSING_INSTRUCTION_NODE =7,
const unsigned short COMMENT_NODE = 8;
const unsigned short DOCUMENT_NODE = 9;
const unsigned short DOCUMENT_TYPE_NODE = 10;
const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
const unsigned short NOTATION_NODE = 12;

readonly attribute DOMString nodeName;
attribute DOMString nodeValue;

Il raises(DOMEXxception) on setting

/I raises(DOMEXxception) on retrieval
readonly attribute unsigned short nodeType;
readonly attribute Node parentNode;
readonly attribute NodeList childNodes;
readonly attribute Node firstChild;
readonly attribute Node lastChild;
readonly attribute Node previousSibling;
readonly attribute Node nextSibling;
readonly attribute NamedNodeMap attributes;
readonly attribute Document ownerDocument;
Node insertBefore(

Negotiation Facility month year

in Node newChild,
in Node refChild

) raises (
DOMEXxception

);

Node replaceChild(
in Node newChild,
in Node oldChild

) raises (
DOMEXxception

);

Node removeChild(
in Node oldChild

) raises (
DOMEXxception

);

Node appendChild(
in Node newChild

) raises (
DOMEXxception

);

boolean hasChildNodes();

Node cloneNode(
in boolean deep

);

h

interface NodelList {
Node item(
in unsigned long index
);
readonly attribute unsigned long length;

k

interface NamedNodeMap {
Node getNamedItem(
in DOMString name
);
Node setNamedItem(
in Node arg
) raises (
DOMEXxception
);
Node removeNamedIitem(
in DOMString name
) raises (
DOMException
);
Node item(
in unsigned long index

);

Negotiation =~ DomFramework Wrapper Interfaces month year

5-9

readonly attribute unsigned long length;

J3

interface CharacterData : Node {
attribute DOMString data;
/I raises(DOMEXxception) on setting
/I raises(DOMException) on retrieval
readonly attribute unsigned long length;
DOMString substringData(
in unsigned long offset,
in unsigned long count
) raises (
DOMEXxception
)i
void appendData(
in DOMString arg
) raises (
DOMEXxception
)i
void insertData(
in unsigned long offset,
in DOMString arg
) raises (
DOMEXxception
)i
void deleteData(
in unsigned long offset,
in unsigned long count
) raises (
DOMEXxception
)i
void replaceData(
in unsigned long offset,
in unsigned long count,
in DOMString arg
) raises (
DOMEXxception
)i
h

interface Attr : Node {
readonly attribute DOMString name;
readonly attribute boolean specified;
attribute DOMString value;

k

interface Element : Node {
readonly attribute DOMString tagName;
DOMString getAttribute(in DOMString name);
void setAttribute(
in DOMString name,

5-10 Negotiation Facility month year

in DOMString value
) raises (
DOMEXxception
);
void removeAttribute(
in DOMString name
) raises (
DOMEXxception
);
Attr getAttributeNode(
in DOMString name
);
Attr setAttributeNode(
in Attr newAttr
) raises (
DOMEXxception
);
Attr removeAttributeNode(
in Attr oldAttr
) raises (
DOMEXxception
);
NodeList getElementsByTagName(
in DOMString name
);
void normalize();

|3

interface Text : CharacterData {
Text splitText(
in unsigned long offset
) raises (
DOMEXxception
);
%

interface Comment : CharacterData { };
interface CDATASection : Text { };

interface DocumentType : Node {
readonly attribute DOMString name;
readonly attribute NamedNodeMap entities;
readonly attribute NamedNodeMap notations;

3

interface Notation : Node {
readonly attribute DOMString publicld,;
readonly attribute DOMString systemid;

3

Negotiation =~ DomFramework Wrapper Interfaces month year 5-11

interface Entity : Node {
readonly attribute DOMString publicld;
readonly attribute DOMString systemid;
readonly attribute DOMString notationName;

I3

interface EntityReference : Node {

I3

interface Processinglnstruction : Node {
readonly attribute DOMString target;
attribute DOMString data;
/I raises(DOMEXxception) on setting

h
interface DocumentFragment : Node { };

interface Document : Node {
readonly attribute DocumentType doctype;
readonly attribute DOMImplementation implementation;
readonly attribute Element documentElement;
Element createElement(
in DOMString tagName
) raises (
DOMException
);
DocumentFragment createDocumentFragment();
Text createTextNode(
in DOMString data
);
Comment createComment(
in DOMString data
);
CDATASection createCDATASection(
in DOMString data
) raises (
DOMException
);
Processinglnstruction createProcessinglnstruction(
in DOMString target,
in DOMString data
) raises (
DOMException
);
Attr createAttribute(
in DOMString name
) raises (
DOMException
);
EntityReference createEntityReference(
in DOMString name

5-12 Negotiation Facility month year

k

) raises (
DOMEXxception

);

NodeList getElementsByTagName(
in DOMString tagname

);

#endif // _DOM_IDL_

Negotiation

DomFramework Wrapper Interfaces

month year

5-13

5-14 Negotiation Facility month year

Glossary A

A.1 Terms and Definitions

Term

Definition

AbstractTemplate

AbstractTemplate is an ActiveResource that exposes a factory|

and criteria. AbstractTemplate is the base type for a set of
EncounterTemplate and MembershipKind.

ActiveResource

ActiveResource is a specialization of Session::AbstractResou
that includes inheritance from the CosNotifyComm
StructuredPushSupplier and StructuredPushConsumer interfag

This extension introduces the ability of an abstract resource tp

key

ce

eS.

expose structured events it is capable of producing and to subscribe
to events on a selective basis. Other extensions include operations

associated with the binding and release of Linkage associatign.

ActiveTask

ActiveTask extends Session::Task through the addition of
ActiveResource and serves as a base type for Encounter.

ActiveUser

ActiveUser extends Session::User through the addition of the
CoslLifeCycle::FactoryFinder interface and LegalEntity. As a
LegalEntity, an ActiveUser exposes public credentials that ma
used under contractual engagement processes.

>

y be

ActiveWorkspace

ActiveWorkspace extends Session::Workspace through
ActiveResource and provides a base type for Community.

Agency

A specialization of Community and LegalEntity that introduces
notion of legal community such as a company that maintains
jurisdiction of a set of resources. Agency, through LegalEntity

the

and

Jurisdiction enables the qualification of the authority of a Member

within a negotiation or other collaborative encounter.

Glossary of Terms

month year A-1

A-2

Bilateral

A bilateral negotiation is a collaborative process model dealing

with interactions between two participants. It provides a

framework within which a user can initiate a process under which

agreement to the subject of Collaboration can be established t

hough

interaction with another user. The model exposes three negotiable

states (requested, proposed and offered) that through collabo
interaction may lead to any of the terminal states of agreed,
rejected, or timeout.

ative

Collaboration

A type of Encounter bound to a CollaborationTemplate that

mediates access to a subject. Collaboration exposes the state of a

collaborative process and brings together the operations that

may

be applied by collaborating users relative to a process template. An
apply operation enables the invocation of simple and compound

transitions that under the mediated control of the Collaboration

enable parties to reach terminal success or failure states. Users are

associated to a Collaboration though a Member role.

CollaborationTemplate

CollaborationTemplate is a specialization of a State and

EncounterTemplate that exposes a set of transition declarations that

may be applied to an instance of Collaboration. As a State, a

CollaborationTemplate exposes a sub-state hierarchy that engbles

the activation of command events and transition. Transitions
exposed by CollaborationTemplate are declarations of source
destination states that may be used as arguments under the
Collaboration interface apply operation.

and

Command

A specialization of Trigger that enables the declaration of an event

that may be invoked under Collaboration.

Community

A specialization of ActiveWorkspace, Membership, and

FactoryFinder. As an ActiveWorkspace, a Community is a plage

containing ActiveResources. As a Membership, a Community

exposes policy concerning membership and the association af

MembershipKind hierarchies. As a FactoryFinder, Community,
represents a possible target under a copy or move operation.

Composition

An association that signifies the composition of a target resource

within a source composite resource.

Compound Transition

A specialization of Transition that introduces an alternative

destination State and template describing the criteria for Encounter
creation. CompoundTransition provides a powerful mechanism to
express recursive collaborative encounters such as amendments

under multilateral negotiation.

Containment

An association equivalent to the Task/Session Containment

interface that associates a containing ActiveWorkspace with the

contained ActiveResource.

Delegation

A role based Linkage that requires a concrete base type that
inherits from the target type and delegates target operation to
target instance.

the

Glossary of Terms

month year

A

Desktop

SessionFramework::Desktop extends Session::Desktop and
ActiveWorkspace defining an event enhanced equivalent of th
Task/Session Desktop.

Document Object Model

This W3C DOM specification defines the Document Object Mg
Level 1, an interface that allows programs and scripts to
dynamically access and update content, structure and style of
documents.

DocumentResource

DocumentResource is derived from DomFramework::Document

and ActiveResource. As an ActiveResource, the interface inh

del

XML

erits

life-cycle operations, which are undefined in the W3C DOM Level

1 recommendation. A Document interface represents an entire

HTML or XML document. Conceptually, it is the root of the

document tree, and provides the primary access to the document's

data.

DOM

Document Object Model

Encounter

A specialization of ActiveTask and Membership that has an
association to an EncounterTemplate that defines the encount
constraints, and an associated subject.

EncounterTemplate

A specialization of AbstractTemplate that references a
MembershipKind applicable to an Encounter of the type descr
by EncounterTemplate.

Engagement

er

ibed

A type of Encounter defined by an associated EngagementTemplate

that enables the association of proof of engagement to an
agreement.

EngagementManifest

EngagementManifest is a type supporting the registration of p
as defined by the EngagementTemplate.

EngagementTemplate

Features associated to EngagementTemplate define the criteri
applied during the engagement process.

roof

a to be

rity

nes a
may
nces

=)

Implication A base type for the Success and Failure Implication linkage that
associates a source template with a target template.

Jurisdiction Jurisdiction is a specialization of the Linkage that infers autho
of a LegalEntity over a resource.

LegalEntity A type exposing a set of AbstractTemplate instances that defi
key and criteria for access to public credentials. A LegalEntity
be associated to an arbitrary number of ActiveResource insta
through a Jurisdiction linkage.

Linkage Abstract base interface that exposes a source and target of a
association.

Member A role of ActiveUser, defined as a specialization of Linkage th

associates a target ActiveUser with a Membership. As a
Membership may be a hierarchy of Membership instances, an

instance of Member may be associated as a member at many|levels
within the hierarchy.
Glossary of Terms month year A-3

Membership

A specialization of ActiveResource that enables association of
instances of the type Member in accordance with rules exposed|under
a MembershipKind. A Membership exposes interfaces through which
Member instances may be added, removed and listed relative to the
kind of participation exposed by a MembershipKind hierarchy

MembershipKind

Definition of constraints for a given MembershipKind. Constraints
include the maximum number of members that may be associated
under the kind, quorum value indicating the number of members that
kind that must be associated and connected before the Member is
considered valid, privacy policy declarations, and policies concefning
the semantics of membership hierarchy.

Multilateral

A multilateral encounter is a collaborative process model dealing with
interactions between a group of two or more participants. It provides
a framework within which a user can initiate an action under whjch
agreement to the subject of Collaboration can be established through
a Consensus process.

Model

A feature of Membership that references the root MembershipKind it
is associated with. More generally, model refers to a specialization of
AbstractTemplate that qualifies semantics and constraints of a process
such as Encounter.

Promissory

The promissory encounter model defines a collaborative interaction
sequence between a consumer and a provider. A consumer is @ Mem-
ber associated to a Membership of the kind “consumer.” A provider is

a Member associated to the Membership of the kind “provider.” |A
provider can invoke a promise transition to initialize a Collaboration
under the right state. Once initialized as a right, a consumer may call
the promise by invoking a request transition. This corresponds to a
consumer request for fulfillment of the promise by the provider. |A
provider fulfills a promise by applying the fulfill transition, itself g
compound transition defined by a bilateral or multilateral negotiation.
Success of the negotiation leads to the fulfilled state whereas failure
leads to the rejected state.

Promise

The top-level state within a Promissory Encounter. Refer to
promissory.

Role

Refer to Delegation.

State

A type that exposes a label, characteristics that qualify the statg as
internal, terminal success or terminal failure, exposes a set of sub-
states, and parent state.

Subject

A reference to an ActiveResource held by an Encounter type. An
Encounter mediates control over the access and modification of|a sub-

ject.

A-4 Glossary of Terms month year

A

Trigger

A type that exposes a keyword, accesses and timeout constraints.

Triggers are used as a super-type for the Command and Transi
types. Operational qualifiers include a usage mode and referenc

ion
estoa

MembershipKind that is authorized to invoke a Trigger. Usage mode

enables the declaration of constraints over activation relative to
collaborative context.

the

Transition

A Transition extends Trigger to include a destination state. A transi-

tion may only be invoked when the active_state of collaboration i
source state in the Transition declaration. Following a successf|
activation of a transition, the destination state and all parents of
destination state are considered active by the controlling Collab
tion.

s the
u
the
ora-

Usage

An association equivalent to the Task/Session Usage that assogiates a

using ActiveTask with the used ActiveResource.

Voting

A type of Encounter launched by a compound transition suppor
vote-based determination of primary or alternate state selection
ing is an interface that provides mechanisms through which use
collaborative process can register a YES, NO, or ABSTAIN vote

ing

\ot-
[Sina
S.

Vote

An operation available under the Voting type enabling the registr,
of YES, NO, and ABSTAIN votes.

ation

VoteTemplate

\VoteTemplate exposes policies concerning quorum and structur
numerator/denominator pair that defines the required ceiling for
culation of a successful vote.

ed
cal-

VoteManifest

A persistent store created by a Voting Encounter for the registrat
vote results.

on of

Glossary of Terms

month year A-5

Glossary of Terms

month year

B.1 Overview

Object Model B

An ActiveUser is associated to a collaboration process througlember role. A set

of Member instances are associated together unddembership . A specialization

of Membership , calledEncounter , extends this model to introduce an association to
a defining procestemplate andsubject . Collaboration , Voting , and

Engagement are examples of specialization Bificounter . A minimal client
application invokes operations againstallaboration instance by the passing
references to tasks or resources as arguments that define actions to be applied to the
subject of the Encounter . These actions are coordinated bgallaboration

instance in accordance with policies and constraints defined within the associated
template . Collaboration mediates multiple client requests by coordinating the
association of client tasks as producer ofghbject of the mediation. As a
specialization oEncounter , Collaboration has an explicit association to eawner,
exposes relationships to consunprdcess anddata resources, and the resources it
producesEncounter may expose an ordered hierarchy of sub-processes that
collectively describes the state of a collaborative encounter.

Object Model month year B-1

B-2

CollaborationFramework::
CollaborationTemplate

CollaborationFramework::
EncounterTemplate

1 template * [collaborationFramework::

CollaborationFramework:: CommunityFramework ::
Collaboration Agency

—

CommunityFramework ::

SessionFramework::
AbstractTemplate

Encounter Community

' - t %
[
bi CommunityFramework :: CommunityFramework ::
subject Member Membership
role of
* owner 1
V V V
SessionFramework:: SessionFramework::
ActiveTask ActiveUser
) |
T %7 V
= SessionFramework::
1 SessionFramework:: LegalEntity
ActiveResource

Figure B-1 Object Model Overview

The CommunityFramework introduces a set of interfaces supporting higher level
business-to-business encounters in which users interact in the context of communities
under which the role and jurisdiction of participants are exposed. Roles and the
membershigkind they represent enable the introduction of constraints into
collaboration models that allows the definition of more complex collaboration
processes.

During the course of a collaborative encounter, information requests may be directed to
clients concerning the disclosure of restricted information. In these cases the context of
a collaborative encounter is crucial to a client’s determination of the appropriate
disclosure policy to apply. Resolution of context is established through the semantics
of the collaboration template (how), subject (what), membership (who), community
(where), and collaboration process itself (state). Operations supporting domain and
context dependent disclosure of information are baseeaotoryFinder interfaces
exposed under thactiveUser andCommunity . This specification assumes the
semantics otreate under aGenericFactory that may return new or existing object
reference$Reviewer, added the word “that” please verify.]

B.1.1 Collaboration Model

Collaborative process models are defined under the@gflaborationTemplate . A
CollaborationTemplate is a specialization of &tate andEncounterTemplate . It
exposes a set of transitions that may be applied under an insta@o#atoration .
As aState, aCollaborationTemplate exposes a sub-state hierarchy and a set of

Object Model month year

B

command descriptors that enable the activation of command events. Initialization
transitions enable the configuration of the initial active state of collaboration.
Transitions exposed b@ollaborationTemplate are declarations of source and
destination states and activation constraifitansition inherits activation constraints
from the super-typ@rigger . Trigger defines activation constraints based on
collaborative context and user's membership, and in the cafmamdition , the
implications of the transition relative to tkabject of the collaboration.

B.1.2 Context and Role-based Control

An implementation ofCollaboration is responsible for the verification and
enforcement of rules concerning initialization, the applying of transitions, and the
invoking of command events. An implementation achieves this through features
exposed under @rigger interface that describe contextual and role-based constraints
that may impose limitations on the possible actions that can be applied by a client
relative to thesubject of the collaboration. These controls may be supplemented
through references toMembershipKind , an equivalent of a category of a role
relative to aMembership .

B.1.3 Applying Compound Transitions

The Collaboration type provides support for specialization of the transition interface
calledCompoundTransition . Compound transitions extend the simple transition
model by introducing an alternative destination (used as a reference to the failure
transition destination). A more interesting feature of the compound transition is the fact
that anEncounterTemplate is used to describe the execution semantics of the
transition. An implementation dollaboration uses the template to create an
instance ofEncounter , which itself may be another collaboration process. This
technique is used extensively in the definition of multilateral negotiation and
promissory collaboration models. More importantly, it provides an open mechanism
through which arbitrarily complex collaboration patterns can be constructed,
encapsulated within transition declaration, and reused within different business
processes.

B.1.4 Customization and Extension through Collaboration Models

Collaboration represents the computational view of a collaborative encounter. An
instance of collaboration has an association to, and is dependent on, a
CollaborationTemplate . A CollaborationTemplate is composed of a set of
customizable building blocks. The building blocks incl@&tate, Transition , and
CompoundTransition . Each building block can be parameterized by modifying
features of the respective types. Association of customized models to collaboration
templates enables the creation of libraries of executable process models.

Object Model month year B-3

B

B.2 Usage Scenario

B-4

A simple retail model is used to describe the way in which the interfaces that form this
specification are applied to the problem of

® evaluation of a collaborative process prior to participation,
® participation to process enabling negotiation resolution of agreement, and

® engagement in the implications of agreement or failure.

B.2.1 Simple Retail Model

The example retail business model is described through an instance of
CollaborationTemplate . The example collaboration template contains two states
“for-sale” and “sold” linked together by a single transition named “purchase.” The
model expresses as a very simple collaborative process involving an owner of
something for-sale, and a potential buyer. In this usage scenario these roles are referrec
to respectively as supplier and consumer.

@)

start

purchase

example
N

Figure B-2 Example CollaborationTemplate

The scenario as presented above does not include negotiation; however, it does serve a
a basic business model example that we will evolve to include both negotiation and
implications of negotiated agreement later in this section.

Construction of the Retail Model

A collaborative model is constructed through the population of a collaboration

template with instance of states and transitions. The above model is expressed through
associating théabel “example” to the instance @ollaborationTemplate and

populating the template with two sub-states with the labels “for-sale” and “sold.” An
instance ofTransition is added to the template with a reference to the “for-sale” state
assource and the sold state a@rget of the transition. A secontransition is

Object Model month year

B

required to describe the “start” initialization. An initialization transition for this
example is flagged as an initializing by the boolean attribmitialize , references the
“for-sale” state as thtarget, and exposes thabel “start.”

To describe the allowable collaborative actions, we need to establish the constraints
concerning access to these transitions. The simplest approach is to asgigadhef
INITIATOR to thestart transition andRESPONDENT to thepurchasetransition.

These constraints qualify the implicit collaborative roles of two participants — one as
the initiator and another as a respondent (where respondent is any participant other
then the initiator). A second constraint concerns the declaration of restrictions
concerning modification of a subject. In our example we will restrict both the start and
purchase transitions to BRANSITIONAL (indicating that subject modification is not
supported). To complete the state model we need to declare all final states as either a
SUCCESS or FAILURE using theterminal attribute on theState interface. In our
example the “sold” state signifies the successful conclusion of the process.

To restrict the model to two participantsii@mbershipKind needs to be referenced
under themembership_kind attribute inherited from the super-type
EncounterTemplate . In this example, we need a membership kind that established a
quorum of 2, and eaeilin g of 2 (corresponding to the initiator and respondent).
These values restrict the minimum and maximum number of participants that can join
an instance of Collaboration that references this example model.

Operations enabling the construction and population of values under both
CollaborationTemplate andMembershipKind are implementation dependent (i.e.,

no standard interfaces are defined under this specification — different implementations
are required to provide proprietary editors). Interfaces that are exposed include
operations needed to navigate a populated model.

Publishing a Collaborative Process

The act of collaboration is separate and distinct from the model of collaboration. An
instance ofCollaboration exposes the operations through which a user may join,
interact, and leave the process. Each instan@obiéboration references a
CollaborationTemplate and aMembershipKind . MembershipKind establishes

the rules under which users join and leave collaboration, and together with the
CollaborationTemplate sets the rules under which participants may interact.

Publishing our exampl€ollaborationTemplate can be achieved through publishing
an instance o€ollaboration . Collaboration is derived fromSession::Task and as
such may be set in apen, not-running , not-started state and made accessible
though inclusion within &Vorkspace .

It is important to note that a supplier or consumer may cre@wellaboration

instance. For example, a supplier could publish instanc€sltZborationTemplate
enabling each new customer to invoke their @allaboration process. In such a
case, a supplier would typically define role-based restrictions that guaranteed the
supplier a role in th€ollaboration .

Object Model month year B-5

B-6

Navigating a Collaboration

Prior to joining an instance @ollaboration , a user having access to the
Collaboration can navigate exposed relationships. These relationships include the
subject , membership kinanodel, and the collaboratiotemplate . The subject
attribute references akctiveResource that exposes the subject of the collaboration,
possibly an XML based product description. Thedel attribute references a
MembershipKind that qualifies the behavior of ti@ollaboration in terms of
membership rules and role. In our example this is limited to the qualification of a
ceiling andquorum required before collaborative operations can be invoked. The
template attribute references ti@ollaborationTemplate we constructed earlier that
exposes the initialization transition, the two sub-states “for-sale” and “sold,” and the
“purchase” transition.

Joining a Collaboration

A Collaboration is a type ofMembership and as such exposes the
recruitment_status attribute. The value afecruitment_status is one of the
enumerated valueBPEN_MEMBERSHIP, CLOSED_MEMBERSHIP, or
SUSPENDED_MEMBERSHIP. By setting the recruitment status to
OPEN_MEMBERSHIP we are advertising the fact that membership to this
collaboration is invited. All participants toGollaboration join by invoking the
add_member operation on th&€ollaboration instance (operation inherited from
Membership). The participant passes in two arguments, a reference to an
ActiveUser and a reference toMembershipKind and gets back a reference to
Member (a role ofActiveUser).

An instance ofCollaboration exposes its readiness for collaborative execution
through the attributgquorum_status . A quorum status cQUORUM_PENDING

indicates an insufficient number of participants whei@a@©RUM_REACHED

indicates that the necessary number of participants have joined and that collaborative
operations may be invoked. In our exampledberum andceiling level are the

same, as such, on reaching quorumrdeeuitment_status will change from
OPEN_MEMBERSHIP to CLOSED_MEMBERSHIP.

Initializing the Collaboration

In our example process the initialization transition can be invoked by either of the two
participants. In a real example it is more likely that the initialization transition would

be associated to a particuldlember role; however, the example model simply states
that whoever initializes the collaboration takes on the implicit rolGfIATOR. As

initiator, that participant may no longer invoke therchasetransition (because

purchaseis restricted to th®@ESPONDENT). This restriction is maintained until a
respondent invokes a transition in which case the respondent becomes the initiator and
the prior initiator becomes a respondent.

Under the example model there is only one initializing transition (labeled “start”). We
assume that the service provider (the user wishing to sell the goods or service) invokes
the initialization. Invoking the initialization is achieved by invoking &pply

Object Model month year

B

operation on the&ollaboration instance and passing in the “start” transition as the
transition argument. As our “start” transition is restrictedTRANSITIONAL

(exposed under thEansition interface control attribute) we cannot change or replace
the subject of the Collaboration .

If the transition control attribute waaROCESS instead ofTRANSITIONAL, we

could have supplied the supplementagynantic argument oREPLACE or

MODIFY. In the case of REPLACE, a third argument is required corresponding to an
ActiveResource with which to replace the currestibject . Alternatively, a semantic
argumentMODIFY together withActiveTask would have declared the task to use to
modify the current subject. It is important to note that this specification is independent
in respect to the subject of &mcounter . It is the responsibility of a client to discover
the subject type of anEncounter and to create an approprigketiveTask (bound

to an editor capable of modifying tisebject type) through whictsubject

modification may be executed.

On invocation of the apply operation, the implementatio@afaboration executes
the verification of the principal as a register Member of the Collaboration, validates
that the applied transition constraints are not being violated, and depending on
parameters of the transition invokes the appropriate changes Gotlaboration

state. In our example, the “start” transition establishesattiee state of the
collaboration as the state sequeneeample, for-sale (indicating that both the state
labeled “example” and the state labeled “for-sale” are active).

Post Initialization Actions

Based on the constraints established undeCtillmborationTemplate , the supplier

is now thelNITIATOR and our consumer is no0RESPONDENT. Our example model
exposes a single transition that matchesdtsrce with an active state — the

“purchase” transition. The “purchase” transition is restricteBRESPONDENT,

which eliminates the possibility for the supplier to invoke the transition (because
supplier principal is considered the initiator by the implementation and therefore is
excluded from the set of possible respondents). At this point our example process is
starting to appear somewhat artificial; however, we will continue through the remainder
of the process and address more realistic transition models at a later stage.

Our customer invokes the “purchase” transition by passing the transition in under the
apply operationtransition argument. The implementation, after verification of
compliance with implied collaborative role and transitional constraints, setstilie

state of the collaboration texample, sold

Process Termination

On establishingold as an active state, the implementation recognizes the terminal
value of SUCCESS and raises a correspondirgsult event (theresult event is
exposed under the super-tyBacounter). Prior to completion of the process the
Collaboration evaluates any implication associations declared undeethplate .
Implications are associations that reference oHrerounterTemplate (the super-

type ofCollaborationTemplate) that have to be invoked relative to the successful or

Object Model month year B-7

B-8

unsuccessful result of theollaboration . For example, an implication of purchasing
could be the instantiation of a payment collection process, or a product warranty
process (or both). In our example we have not assigned any implications and as such
the Collaboration process enters theosed , completed task state. Note that task
state is the state of execution as described byakk/Session specification. This is
orthogonal to thective state of Collaboration .

B.2.2 Introducing a Compound, Negotiable Transition

As indicated above, our example model is too restrictive to realistically represent a
commercial retail process. A more realistic example would typically expose several
alternative transitions. For example, a transition that enabled rejection of the offered
goods and services, and perhaps another transition that enabled modification of a
feature of the subject of th@ollaboration such as quantity or delivery conditions.

To bring our example closer to a realistic model, we are going to replace the simple
“purchase” transition with a compound transitionCAmpoundTransition is a

transition that is itself defined by &ncounterTemplate (the super-type of
CollaborationTemplate). In effect, the execution of a compound transition is
equivalent to the entry into anothEncounter where the result of the subsidiary
encounter determines the result of the parent transition. The compound transition we
are going to use is a bilateral negotiation, expressed ur@aiaborationTemplate ,

which will enable the extension of our example to include a negotiable purchase
decision.

Purchase as a Bilateral Negotiation

The following illustration depicts the replacement of the “purchase” transition with a
compound transition of the same name. Compound transitions have two possible target
states, one representing the target-state to establish on success, the other representin
the target-state to establish on failure. Success or failure is determinedrbguhe

status of the execution of the transition as a subsidiappunter (the super-type of
Collaboration).

Object Model month year

suggest

dart

forsale purchase

example

Figure B-3 Example CollaborationTemplate

Our example scenario remains unchanged until our consumer applies the “purchase”
transition. As a&CompoundTransition , “purchase” now exposes two additional
attributes of interest, 1) a reference tGallaborationTemplate and 2) a reference to

an initializing transition within thatemplate . In invocation of theapply operation,

the implementation of th€ollaboration establishes a subsidiaBncounter (in this
example theEncounter is anotherCollaboration) with the samesubject ,

associated to th€ollaborationTemplate describing a bilateral (one-on-one)
negotiation and referencing the same membenstuidel . The second feature of

interest is the initialization attribute exposed by @@nmpoundTransition . The
initialization attribute references the initialization transition to apply to the subsidiary
Collaboration , resulting in the establishment of the bilateral negotiation sub-process.

o

OO

G

request offer propose
4 N
ed | o W
offer agree
requested offered agreed
propose []
/L proposed reject .
rejected
request
A timeout
open timeout
-
closed
negotiable g J

Figure B-4 Bilateral State Transition Model

Object

Model

month year

B-9

B-10

The above illustration depicts the state transition model of a bilateral negotiation,
which following invocation of the purchase transition, is established urdeested
offered or proposedstates. Assuming the purchase transition initialization argument
referenced theequestedransition, the active states of the sbbHaboration would

be negotiable open andrequested

For a detailed description of the semantics of the following state transition model
please refer to the bilateral negotiation process model specification under the
SessionFrameworkection.

Under the requested state, the respondent may invoke any transition that references ar
active state as itsource . For examplesuggestoffer, propose(from therequested

state), oreject (from theopenstate). If our respondent invokedfer, the available
transitions would be restricted agree(from theofferedstate) oreject (from theopen

state). If our respondent had chosenpgleposetransition, the transitions available to

the correspondent would also include thquesttransition (from thegroposedstate).

It is important to note that the bilateral negotiation state transition model is simply an
example of a collaborative process model. This specification does not impose any
restriction on the process described witliollaborationTemplate beyond the
requirement that the semantics of the process are described usBigtthe

Transition , and associated interfaces documented irCtimunityFramework

section of this specification.

Through the invocation of transitions in the context of the implied roles of respondent
and initiator, our two participants can migrate from a non-agreed to agreed state.
During this process, dependent on the constraints imposed by respective transitions,
subject modification may be possible (though the declaratidkctifeResource as
replacement subject érctiveTask as subject modifier). On conclusion of the process,
through the establishment of a termiS&JCCESS or FAIL state, theCollaboration
process raises r@sult event and terminates. Control is returned to the parent
Collaboration . Based on theesult status, the parei@ollaboration determines the
appropriate target-state to establish asattteve state . Assuming a successful
conclusion of the negotiation our active state would be set to “sold.” A failure of the
subsidiary negotiation would establish “for-sale” as the active state.

A detailed description of the semantics concerning the interaction between parent and
subsidiary process and the relationship and impact of changes to a subject under a
subsidiaryCollaboration are detailed under Section 4.3.1.8, “Applying State
Transitions,” on page 4-12.

B.2.3 Introducing Implications

The process of encapsulation of subsidiary processes within compound transitions
enables the introduction of complex collaborative models. Another mechanism through
which the semantics of collaboration is further enhanced is through the association of
a collaboration as thenplication of thesuccess or failure of a prior

Collaboration (or more correctly, the success or failure of a pEpcounter) . To
introduce an implication into our example, we need to add the declaration of an
implication to our exampl€ollaborationTemplate instance. Anmplication is a

Object Model month year

B

type ofLinkage . Instances ofinkage reference @&ource and atarget object and

are used as arguments to tiied andrelease operations exposed by the
ActiveResource super-type. To associate a payment process as an implication of the
success of a purchasing process, we construct an instaSceagss (a

specialization ofmplication) that references our example template asthece of

the linkage (success implication source) and the payment process template as the
target of the linkage. The object model allows for the association of many
implications relative to a given source. For example, the implications of a successful
purchasing process may also include the establishment of a delivery process, which
itself may have a success implication of a maintenance contract. Association of the
source example template and a target payment process is achieved by invoking the
bind operation on theource andtarget.

B.2.4 Comparing the Example to the Promissory Encounter Model

The promissory encounter process model is simply an enhanced version of the example
process model presented here (see Figure B-5).

0]

promise
4 N
promised
. A i
right expire expired
4 N
obligation
request

— .
pending fufil fulfilled
waive

O commit

overdue ‘ r rejected

[]

A timeout waived

Figure B-5 Promissory State Transition Model

Instead of “for-sale” and “sold” we have the statpeotised, obligation, pending”

and ‘promised, obligation, fulfiledand a compound transitiorfuifill” that links the

two states such that the achievement of fulfillment is expressed as a bilateral
negotiation between the promise holder and the promise provider. A second occurrence

Object Model month year B-11

B-12

of a compound transition referencing the bilateral negotiation model igdive
transition. A successful transition undeaiveresults in the establishment of the
“promised, waivetstate; whereas, failure of theaivetransition results in the
continuation of the collaboration without a change in active state.

For additional information concerning the promissory encounter model, refer to
Section 2.2, “ActiveResource and Associative Interfaces,” on page 2-5.

Object Model month year

Index

A
AbstractTemplate 2-21

Access control based on Membership 4-20

Activation Semantics 4-20
Active State 4-11
ActiveResource 2-5
ActiveTask 2-11
ActiveUser 2-18
ActiveWorkspace 2-15
Agency 3-18

Agree 4-33

Amendment 4-36

Apply Exceptions 4-14
Applying State Transitions 4-12

B
Batch and Interactive Modes 2-13

C
Call 4-37
Collaboration 4-8
CollaborationFramework 4-1
CollaborationTemplate 4-10, 4-15
Collaborative Context 4-19
Command 4-21
Community 3-17
Community and Derived Interfaces 3-16
Composition 2-11
CompoundTransition 4-22
Containment 2-17
CORBA

documentation set 1-3
Count 4-38

D

Delegation 2-10

Desktop 2-16

DocumentResource 5-3

DOM Level 1 IDL 5-7

DomFramework Wrapper Interfaces 5-1

E

Encounter 4-3
EncounterTemplate 4-6
Engagement 4-24
EngagementManifest 4-26
EngagementTemplate 4-24
Execution Modes 4-19
Expire 4-42

Extensions 5-3

F
Fulfill 4-41

|

Implication 4-6

Implication Semantics 4-5
Initialization 4-5, 4-31, 4-40
Initialization of a Collaboration 4-12
Invoking Command Events 4-15

E-Commerce

J
Jurisdiction 2-20

L

LegalEntity 2-19

Linkage 2-8

Linkage Dependencies 2-6

Linkage Types 2-3

Listing Kind Attributed to a Member 3-6

M

Member 3-5

Member Addition 3-9

Member Removal 3-10

Membership 3-6

Membership Composition 3-13
Membership Disclosure Operations 3-12
Membership Semantics 3-8

Membership, Associative and Qualifying Interfaces 3-3

MembershipKind 3-14
Motion 4-36
multilateral encounter 4-34

(0]

Object Management Group 1-1
address of 1-4

Offer 4-33

P

Process 2-15

Promissory Encounter 4-40
Propose 4-32

Q
Quorum Status 3-11

R

Recruitment Status 3-10
Registering a Vote 4-29
Reject 4-33

Request 4-32, 4-41
Resource Usage 2-13

S

Second 4-36

SessionFramework 2-1

State 4-17

State Composition 4-18

States 4-34

Structural Operations 3-12
Structured Events 2-7

Subject Modification Constraints 4-22
Subsidiary Collaboration Processes 4-11
Suggest 4-32

T
Task/Session interfaces 2-1
Timeout 4-33, 4-38, 4-42
Timeout behavior 4-11
Transition 4-21

Transitions 4-32, 4-36, 4-41
Trigger 4-18

month 1999

Index-1

Index

Trigger Lifetime 4-20 VoteTemplate 4-28
Voting 4-27
u
Usage 2-14 W
Waive 4-41
\ Withdraw 4-38
Vote 4-37

VoteManifest 4-29

Index-2 E-Commerce month 1999

	1. Overview
	1.1 About the Object Management Group
	1.1.1 What is CORBA?
	1.1.2 What is CORBA E-Commerce?

	1.2 Associated Documents
	1.3 Summary of Key Features
	1.3.1 Session Framework
	1.3.2 Community Framework
	1.3.3 Collaboration Framework
	1.3.4 DOM Framework

	1.4 Acknowledgments

	2. Session Framework
	2.1 Overview
	2.1.1 Types Derived from the Task/Session Interfaces
	2.1.2 Linkage Types

	2.2 ActiveResource and Associative Interfaces
	2.2.1 ActiveResource
	2.2.2 Linkage
	2.2.3 Delegation
	2.2.4 Composition

	2.3 ActiveTask and Associative Interfaces
	2.3.1 ActiveTask
	2.3.2 Usage
	2.3.3 Data
	2.3.4 Process

	2.4 Workspace, Desktop, and Containment Associations
	2.4.1 ActiveWorkspace
	2.4.2 Desktop
	2.4.3 Containment

	2.5 ActiveUser and Supporting Interfaces
	2.5.1 ActiveUser
	2.5.2 LegalEntity
	2.5.3 Jurisdiction
	2.5.4 AbstractTemplate
	2.5.5 SessionFramework IDL

	3. Community Framework
	3.1 Overview
	3.1.1 Object Model

	3.2 Interfaces
	3.2.1 Membership, Associative, and Qualifying Interfaces
	3.2.2 Member
	3.2.3 Membership
	3.2.4 MembershipKind

	3.3 Community and Derived Interfaces
	3.3.1 Overview
	3.3.2 Community
	3.3.3 Agency
	3.3.4 CommunityFramework IDL

	4. Collaboration Framework
	4.1 Overview
	4.2 Encounter and Associated Interfaces
	4.2.1 Encounter
	4.2.2 Encounter Template
	4.2.3 Implication

	4.3 Collaboration Interfaces
	4.3.1 Collaboration
	4.3.2 CollaborationTemplate
	4.3.3 Trigger
	4.3.4 Command
	4.3.5 Transition
	4.3.6 CompoundTransition

	4.4 Engagement and Associated Interfaces
	4.4.1 Object Model
	4.4.2 EngagementTemplate
	4.4.3 Engagement
	4.4.4 EngagementManifest

	4.5 Voting and Associated Interfaces
	4.5.1 Object Model
	4.5.2 VoteTemplate
	4.5.3 Voting
	4.5.4 VoteManifest

	4.6 Negotiation and Promissory Models
	4.6.1 Bilateral Negotiation
	4.6.2 Multilateral Negotiation
	4.6.3 Promissory Encounter
	4.6.4 CollaborationFramework IDL

	5. DOM Framework
	5.1 Overview
	5.2 DomFramework Wrapper Interfaces
	5.2.1 Extensions
	5.2.2 DomFramework IDL
	5.2.3 DOM Level 1 IDL (errata version)

	Glossary
	Object Model
	Index

