
CORBA Electronic Commerce Domain
Specifications

Version 1.0, Month Year

Copyright 1999, Fraunhofer Institut Materialfluss und Logistik
Copyright 1999, Imperial College of Science Technology and Medicine
Copyright 1999, In-Line Software
Copyright 1999, OSM SARL
Copyright 1999, Sprint - Technology Planning and Integration
Copyright 1999, Xerox Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner. RESTRICTED RIGHTS LEGEND. Use, dupli-
cation, or disclosure by government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical
Data and Computer Software Clause at DFARS 252.227.7013 OMGÆ and Object Management are registered trademarks
of the Object Management Group, Inc. Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAser-
vices, and COSS are trademarks of the Object Management Group, Inc. X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm.

Contents

1-1
1-1
-2
-3

1-3

1-4
1-5
-5
-5
-5

1-5

2-1
2-1
2-1
-3

2-5
2-5
-8

-10
11

-11
11
-14
-15
-15

-15
15
-16
-17

-18
18
19
-20
-21
23

-1
3-1
-3
1. Overview .
1.1 About the Object Management Group

1.1.1 What is CORBA? . 1
1.1.2 What is CORBA E-Commerce? 1

1.2 Associated Documents .

1.3 Summary of Key Features .
1.3.1 Session Framework. .
1.3.2 Community Framework 1
1.3.3 Collaboration Framework 1
1.3.4 DOM Framework . 1

1.4 Acknowledgments .

2. Session Framework .
2.1 Overview .

2.1.1 Types Derived from the Task/Session Interfaces
2.1.2 Linkage Types . 2

2.2 ActiveResource and Associative Interfaces
2.2.1 ActiveResource. .
2.2.2 Linkage . 2
2.2.3 Delegation . 2
2.2.4 Composition . 2-

2.3 ActiveTask and Associative Interfaces 2
2.3.1 ActiveTask . 2-
2.3.2 Usage . 2
2.3.3 Data . 2
2.3.4 Process . 2

2.4 Workspace, Desktop, and Containment Associations. 2
2.4.1 ActiveWorkspace . 2-
2.4.2 Desktop . 2
2.4.3 Containment . 2

2.5 ActiveUser and Supporting Interfaces 2
2.5.1 ActiveUser . 2-
2.5.2 LegalEntity . 2-
2.5.3 Jurisdiction . 2
2.5.4 AbstractTemplate . 2
2.5.5 SessionFramework IDL 2-

3. Community Framework . 3
3.1 Overview .

3.1.1 Object Model . 3
E-Commerce month year i

Contents

3-3

-3
3-5
3-6
14

-16
16
17
-18
8

1

4-1

4-3
4-3
4-6
-6

4-8
-8
15
-18
-21
-21
22

4-24
24
-24
-26
-26

-27
27
-28
28
29

-30
30
4

-40
3

3.2 Interfaces. .
3.2.1 Membership, Associative, and

Qualifying Interfaces . 3
3.2.2 Member .
3.2.3 Membership .
3.2.4 MembershipKind . 3-

3.3 Community and Derived Interfaces 3
3.3.1 Overview . 3-
3.3.2 Community. 3-
3.3.3 Agency . 3
3.3.4 CommunityFramework IDL 3-1

4. Collaboration Framework . 4-

4.1 Overview .

4.2 Encounter and Associated Interfaces
4.2.1 Encounter .
4.2.2 Encounter Template .
4.2.3 Implication . 4

4.3 Collaboration Interfaces .
4.3.1 Collaboration . 4
4.3.2 CollaborationTemplate 4-
4.3.3 Trigger . 4
4.3.4 Command . 4
4.3.5 Transition . 4
4.3.6 CompoundTransition . 4-

4.4 Engagement and Associated Interfaces
4.4.1 Object Model . 4-
4.4.2 EngagementTemplate . 4
4.4.3 Engagement . 4
4.4.4 EngagementManifest . 4

4.5 Voting and Associated Interfaces . 4
4.5.1 Object Model . 4-
4.5.2 VoteTemplate . 4
4.5.3 Voting . 4-
4.5.4 VoteManifest . 4-

4.6 Negotiation and Promissory Models 4
4.6.1 Bilateral Negotiation . 4-
4.6.2 Multilateral Negotiation 4-3
4.6.3 Promissory Encounter 4
4.6.4 CollaborationFramework IDL 4-4
ii E-Commerce month year

Contents

-1
5-1

5-1
5-3
-4
7

-1

1

5. DOM Framework . 5
5.1 Overview .

5.2 DomFramework Wrapper Interfaces
5.2.1 Extensions .
5.2.2 DomFramework IDL . 5
5.2.3 DOM Level 1 IDL (errata version) 5-

Appendix A - Glossary . A

Appendix B - Object Model . B-
E-Commerce month year iii

Contents
iv E-Commerce month year

Overview 1
rted
 and
nted

ide a
,
ous
p a

ed.
Contents

This chapter contains the following topics.

1.1 About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas

Topic Page

“About the Object Management Group” 1-1

“Associated Documents” 1-3

“Summary of Key Features” 1-4

“Acknowledgments” 1-5
CORBA E-Commerce Month Year 1-1

1

ted,
ey

ces

m
ject

OP
bility

),
1.1.1 What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them.

1.1.1.1 CORBA History

CORBA 1.0 was introduced in 1991 by Object Management Group (OMG) and
defined the Interface Definition Language (IDL) and the Application Programming
Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). Included a single language
mapping for the C language.

CORBA 1.1 (February 1992) was the first widely published version of the CORBA
specification. It closed many ambiguities in the original specification; added interfa
for the Basic Object Adapter and memory management; clarified the Interface
Repository, and clarified ambiguities in the object model.

CORBA 1.2 (December 1993) closed several ambiguities, especially in memory
management and object reference comparison.

CORBA 2.0 (August 1996) defined true interoperability by specifying how ORBs fro
different vendors can interoperate. First major overhaul kept the extant CORBA ob
model, and added several major features:

• dynamic skeleton interface (mirror of dynamic invocation)

• initial reference resolver for client portability

• extensions to the Interface Repository

• "out of the box" interoperability architecture (GIOP, IIOP, DCE CIOP)

• support for layered security and transaction services

• datatype extensions for COBOL, scientific processing, wide characters

• interworking with OLE2/COM

Included in this release were the Interoperability Protocol specification, interface
repository improvements, initialization, and two IDL language mappings (C++ and
Smalltalk).

CORBA 2.1 (August 1997) added additional security features (secure IIOP and II
over SSL), added two language mappings (COBOL and Ada), included interopera
revisions and IDL type extensions.

CORBA 2.2 (February 1998) included the Server Portability enhancements (POA
DCOM Interworking, and the IDL/JAVA language mapping specification.
1-2 CORBA E-Commerce Month Year

1

ach
BA
te to

 the

ards
o

CORBA 2.3 (June 1999) includes the following new and revised specifications:

• COM/CORBA Part A and B

• ORB Portability IDL/Java

• ORB Interoperability

• Objects by value

• C++ Language Mapping

• IDL to Java Language Mapping

• Java to IDL Language Mapping

CORBA 3.0p (Commercial Release due end of 1999) represents an important
specification that adds several major features that are grouped according to
Components, Quality of Service, and Java and Internet Integration.

1.1.2 What is CORBA E-Commerce?

There are several specifications that apply to special area markets or domains. E
specialty area represents the needs of an important computing market. The COR
Electronic Commerce Domain architecture is comprised of specifications that rela
the OMG-compliant interfaces for distributed electronic commerce systems.

In addition to CORBA E-Commerce, other domains include:

CORBA Business

CORBA Finance

CORBA Lifesciences

CORBA Med

CORBA Manufacturing

CORBA Telecoms

CORBA Transportation

As specifications become adopted and approved by OMG, they will be included in
CORBA domain documentation set.

1.2 Associated Documents

The CORBA documentation set includes the following books:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It defines the umbrella architecture for the OMG standards. It als
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.
CORBA E-Commerce Associated Documents Month Year 1-3

1

ed

d,
dards
 (The

mat.
ons,

ions

iation

tes,
sumes

by
• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for OMG’s Object Services.

• CORBAfacilities: Common Facilities Architecture and Specification describes an
architecture for Common Facilities. Additionally, it includes specifications bas
on this architecture that have been adopted and published by the OMG.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:

OMG Headquarters

492 Old Connecticut Path

Framingham, MA 01701
USA

Tel: +1-508-820 4300
Fax: +1-508-820 4303

pubs@omg.org

http://www.omg.org

1.3 Summary of Key Features

The CORBA Electronic Commerce Domain architecture is comprised of specificat
that relate to the OMG-compliant interfaces for distributed electronic commerce
systems. Currently, there are four frameworks established as a result of the Negot
Facility RFP2. These include the Session Framework, Community Framework,
Collaboration Framework, and DomFramework.

The Framework Specification presented under chapters 2 through 5 are targeting
potential developers of this facility. Information is presented in the form of a
breakdown of modules, interfaces, and types. For each interface, details of attribu
operations, events and additional semantics are provided. The documentation as
that readers are familiar with the object model defined under the Task/Session
specification, and have familiarity with the notion of structured events as defined
CosNotification .
1-4 CORBA E-Commerce Month Year

1

.

it
ccess
1.3.1 Session Framework

This chapter covers a set of base interfaces supporting ActiveUser , ActiveTask ,
ActiveWorkspace , and ActiveResources . This module brings together two
recently adopted OMG specifications, namely Task/Session and CosNotification .
Task/Session specification establishes a framework for people, places and things
The CosNotification services are used to extend these definitions with an event
model suitable for the electronic commerce domain. Interfaces defined under the
SessionFramework provide the computational platform for the Community and
Collaboration frameworks.

1.3.2 Community Framework

This chapter contains extensions to the SessionFramework to support communities
of collaborating users and defines the types Membership , Community , Agency , and
Member .

1.3.3 Collaboration Framework

This chapter contains the definition of Collaboration , a process through which
different models of collaboration rules can be managed. The
CollaborationFramework module is defined extensively on interfaces from the
SessionFramework and CommunityFramework .

The specification of three collaborative models cover the following areas:

• bilateral negotiation

• multilateral negotiation

• promissory commitment

1.3.4 DOM Framework

This chapter defines a variant of the W3C DOM interfaces that address specific
anomalies of the original specification. In particular, the interfaces provide explic
support for OMG language mappings and extensions enabling node identity and a
constraint declarations.

1.4 Acknowledgments

The following companies have submitted to or have supported submissions
contributing to the CORBA E-Commerce specifications:

• Fraunhofer Institut Materialfluss und Logistik

• Imperial College of Science Technology and Medicine

• In-Line Software

• OSM SARL
CORBA E-Commerce Acknowledgments Month Year 1-5

1

• Sprint - Technology Planning and Integration

• Xerox Corporation
1-6 CORBA E-Commerce Month Year

Session Framework 2
ion
Contents

This chapter contains the following topics.

2.1 Overview

This module defines a set of base interfaces that extend the Task/Session framework.
Interfaces defined here incorporate an event model based on CosNotification , and the
addition of operations that extend framework interoperability through the explicit
declaration of associations.

2.1.1 Types Derived from the Task/Session Interfaces

SessionFramework provides a set of interfaces that directly extend the Task/Sess
interfaces to include the formal specification of the structured event produced.

Topic Page

“Overview” 2-1

“ActiveResource and Associative Interfaces” 2-5

“ActiveTask and Associative Interfaces” 2-11

“Workspace, Desktop, and Containment Associations” 2-15

“ActiveUser and Supporting Interfaces” 2-18
Session Framework month year 2-1

2

e

2.1.1.1 Object Model

Table 2-1 Task/Session Derivatives - Interface Summary

Interface Description

ActiveResource ActiveResource is a specialization of
Session::AbstractResource that includes inheritance from the
CosNotifyComm StructuredPushSupplier and
StructuredPushConsumer interfaces. This extension introduces
the ability of an AbstractResource to expose structured events it
is capable of producing and to subscribe to events on a selectiv
basis. Other extensions include operations associated with the
binding and release of Linkage association.

ActiveTask ActiveTask extends Session::Task through the addition of
ActiveResource and serves as a base type for Encounter .

ActiveWorkspace ActiveWorkspace extends Session::Workspace through
ActiveResource and provides a base type for Community .

Desktop SessionFramework::Desktop extends Session::Desktop and
ActiveWorkspace defining an event enhanced equivalent of the
Task/Session Desktop .

ActiveUser ActiveUser extends Session::User through the addition of the
CosLifeCycle::FactoryFinder interface and LegalEntity . As a
LegalEntity , an ActiveUser exposes public credentials that may
be used under contractual engagement processes.
2-2 Session Framework month year

2

Figure 2-1 Base Task/Session Derivative Interfaces

2.1.2 Linkage Types

A Linkage is a specialization of Session::BaseBusinessObject used to describe a
generalized relationship between a source and a target resource. Linkages are used
to represent the declaration of concrete relationship types including Usage ,
Containment , Composition , Delegation , Implication , and Jurisdiction .

ActiveResource

bind()
release()
set_producer()
get_producer()
change_producer()
release_producer()

Session::
AbstractResource

AbstractTemplate ActiveUser

Session::
User

CosLifeCycle::
FactoryFinder

ActiveWorkspace

ActiveTask

task_mode : enum

Session::
Task

Desktop

Session::
Desktop

LegalEntity

credentials : Abstr.

Session::
Workspace

CosNotifyComm::
StructuredPushSupplier

CosNotifyComm::
StructuredPushConsumer

Session::
BaseBusinessObject

Linkage

source : ActiveResource
target : ActiveResource

factory_key : Key
factory_criteria : Criteria
Session Overview month year 2-3

2

 base

ge

et
2.1.2.1 Object Model

Figure 2–2 Linkage and Derived Types

Table 2-2 Linkage Type Summary

Type Source Target Description

Linkage ActiveResource ActiveResource Abstract base interface that exposes a source and
target of the association.

Delegation [self reference] ActiveResource A role based association that requires a concrete
type that inherits from the target type, and delegates
target operation to the target instance.

Containment ActiveWorkspace ActiveResource An association equivalent to the Task/Session
Containment interface that associates a containing
workspace with the contained resource.

Usage ActiveTask ActiveResource An association equivalent to the Task/Session Usa
interface that associates a using task with the used
resource.

Composition Composite ActiveResource An association that signifies the composition of a
target resource within a source composite resource.

Implication AbstractTemplate AbstractTemplate A base type for the Success and Failure Implication
linkage that associates a source template with a targ
template.

Jurisdiction ActiveResource ActiveResource An association that describes the authority of an
ActiveResource over another.

 Usage

Session::
BaseBusinessObject

DataProcess

 Linkage

source : ActiveResource
target : ActiveResource

 Composition Containment

*

1

*

1

source

target

SessionFramework::
ActiveResource

Implication

FailureSuccess

 Delegation

CommunityFramework::
Member

Jurisdiction
2-4 Session Framework month year

2

re
2.2 ActiveResource and Associative Interfaces

2.2.1 ActiveResource

ActiveResource extends the Task/Session specification of AbstractResource
through the addition of inheritance from the CosNotifyComm module
StructuredPushSupplier and StructuredPushConsumer interfaces. Additional
operations are included to supporting Linkage association and producer relationship
management. As a structured event supplier, the type exposes lifecycle and featu
change events.

2.2.1.1 Object Model

Figure 2–3 ActiveResource Object Model

Table 2-3 Utility Interface Summary Table

Interface Description

AbstractTemplate AbstractTemplate is an ActiveResource template that exposes a
factory_key and criteria . AbstractTemplate is the base type for a
set of EncounterTemplate types defined under the
CollaborationFramework .

LegalEntity A type exposing a set of AbstractTemplate instances that defines a
key and criteria for access to public credentials. A LegalEntity may
be associated to an arbitrary number of ActiveResource instances
through a Jurisdiction linkage.

ActiveResource

bind()
release()
set_producer()
get_producer()
change_producer()
release_producer()

Session::
AbstractResource

CosNotifyComm::
StructuredPushSupplier

CosNotifyComm::
StructuredPushConsumer
Session ActiveResource and Associative Interfaces month year 2-5

2

t
cer

quest
e,

2.2.1.2 IDL Specification

interface ActiveResource :
Session::AbstractResource,
CosNotifyComm::StructuredPushSupplier,
CosNotifyComm::StructuredPushConsumer

{
exception ResourceUnavailable{ };
exception ProducerConflict{ };
void bind(

in Linkage link
) raises (

ResourceUnavailable
);
void release(

in Linkage link
);
ActiveTask get_producer();
void set_producer(

in ActiveTask task
) raises (

ProducerConflict
);
void release_producer();
void change_producer(

in SessionFramework::ActiveTask old_task,
in SessionFramework::ActiveTask new_task

) raises (
ProducerConflict

);
};

2.2.1.3 Linkage Dependencies

ActiveResource extends AbstractResource through the addition of operations tha
support the binding and release of Linkage associations and declaration of produ
relationships. Exposure of the bind and release operations ensures that an
ActiveResource can maintain referential integrity with respect to the
ActiveResource (see Section 2.2.2, “Linkage,” on page 2-8).

The bind and release operations provide mechanisms through which a binding re
can be made to an ActiveResource concerning concrete linkage types such as Usag
Containment, or Composition dependency. Both operations take a Linkage as an
argument.

void bind(
in Linkage link

) raises (
ResourceUnavailable

);
2-6 Session Framework month year

2

. All

 part

.

void release(
in Linkage link

);

2.2.1.4 Produces Relationship

The following IDL provides the interfaces necessary to set, get, and release the
reference to the ActiveTask producing this resource. The operation set_producer
associates an ActiveTask as the task that is producing the ActiveResource . The
operation change_producer may be used by a mediating client such as
CoordinationFramework::Encounter to manage production relationships. The
release_producer enables a task to declare retraction of a producer relationship.

void set_producer(
in ActiveTask task

) raises (
ProducerConflict

);

void release_producer();

void change_producer(
in SessionFramework::ActiveTask old_task,
in SessionFramework::ActiveTask new_task

) raises (
ProducerConflict

);

2.2.1.5 Structured Events

Under the CosNotification specification all events are associated with a unique
domain name space. This specification establishes the domain namespace
"org.omg.session" for structured events associated with ActiveResource and its sub-
types.

The CosNotification service defines a StructuredEvent that provides a framework
for the naming of an event and the association of specific properties to that event
events specified within this facility conform to the StructuredEvent interface. This
specification requires specific event types to provide the following properties as a
of the filterable_data of the structured event header.

Table 2-4 ActiveResource Filterable Data Properties

Name Type Description

timestamp TimeBase::UtcT Date and time of to which the event is issued

source ActiveResource Active resource raising the event.
Session ActiveResource and Associative Interfaces month year 2-7

2

e x

 is

he
2.2.2 Linkage

Linkage is a specialization of Session::BaseBusinessObject that constitutes an
abstract type, which defines a dependency relationship by a source ActiveResource
towards a dependent target ActiveResource . Linkage is the super-type of Usage,
Containment, Delegation, Implication, Jurisdiction, and Composition. Instances of
Linkage are supplied as arguments to the bind and release operations on
ActiveResource .

Table 2-5 ActiveResource Structured Event Table

Event Description

update Notification of the change of a value of an attribute from value x to value y, wher
represents the old value and y represents the new value.

Supplementary Properties:

feature string Attribute name
old any Old value
new any New value

move Notification of the transfer of an active resource (move) under which the identity
changed. The source of the event supplies the old instance identity.

Supplementary Properties:

new ActiveResource Reference containing the new object identity.

remove Notification of the removal of an ActiveResource

linkage Notification of the addition or removal of an associated ActiveResource (where
association is through a linkage such as Containment, Composition, Usage,
Jurisdiction or Delegation).

Supplementary Properties:

addition boolean True indicates that the Linkage is being added.
 False indicates the removal of the Linkage.

broadcast Arbitrary event issued by a client for distribution to all resources associated to t
ActiveResource. This event is semantically equivalent to the Task/Session
resource_event operation.

Supplementary Properties:

eventdata any Value to be passed under the event (reference is
the Task/Session specification).
2-8 Session Framework month year

2

2.2.2.1 Object Model

Figure 2–4 Linkage Object Model

2.2.2.2 IDL Specification

interface Linkage :
Session::BaseBusinessObject
{
readonly attribute any source;
readonly attribute any target;

};

Table 2-6 Linkage Attribute Table

Name Type Properties Purpose

source ActiveResource read-only Reference to the ActiveResource that is requesting or
has established a dependency on the target .

target ActiveResource read-only Reference to the ActiveResource that is the target of a
bind operation by source, or maintains a dependency to
source .

 Usage

Session::
BaseBusinessObject

DataProcess

 Linkage

source : ActiveResource
target : ActiveResource

 Composition Containment

*

1

*

1

source

target

SessionFramework::
ActiveResource

Implication

FailureSuccess

 Delegation

CommunityFramework::
Member

Jurisdiction
Session ActiveResource and Associative Interfaces month year 2-9

2

 be
2.2.3 Delegation

Delegation is an abstract specialization of Linkage that provides support for the
declaration of role based extensions to an ActiveResource . A concrete type derived
from Delegation inherits from the type to which it is associated as target and
delegates operations to that target .

2.2.3.1 Object model

Figure 2–5 Delegation Object Model.

2.2.3.2 IDL Specification

interface Delegation :
Linkage

{
};

Table 2-7 Delegation Attribute Table

Name Type Properties Purpose

source Delegation read-only A reference to itself.
This may be overridden in a derived type.

target ActiveResource. read-only The resource to which delegation operations will
invoked. A concrete implementation will inherit
from the type referenced by target and delegates
operations to the instance referenced by target .

SessionFramework::
ActiveResource

1

1

1 *

source

target SessionFramework::
 Delegation

SessionFramework::
Linkage
2-10 Session Framework month year

2

be

2.2.4 Composition

The Task/Session specification defines Usage and Containment as mechanisms
through which typed relationships among tasks, resources, and workspaces can
expressed.

SessionFramework extends this notion through the addition of the Composition
relationship type that supports ordered association of composite and composed
ActiveResource instances. A composite ActiveResource is the source of the
Composition linkage. The composed ActiveResource is the target .

2.2.4.1 Object Model

Figure 2–6 Composite Object Model

2.2.4.2 IDL Specification

interface Composition :
Linkage
{

};

2.3 ActiveTask and Associative Interfaces

2.3.1 ActiveTask

ActiveTask extends the Task/Session specification of Task through the addition of
ActiveResource and the introduction of task_mode attribute enabling the exposure
of interactive versus batch oriented tasks.

C o m p o s it io n
S e s s io n F ra m e w o rk ::

A c tiv e R e s o u rc e *1

*

1
s o u rc e

ta rg e t

S e s s io n F ra m e w o rk : :
L in k a g e
Session ActiveTask and Associative Interfaces month year 2-11

2

2.3.1.1 Object Model

Figure 2–7 ActiveTask Object Model.

2.3.1.2 IDL Specification

interface ActiveTask :
Session::Task,
ActiveResource
{
enum TaskMode{

 BATCH,
 INTERACTIVE

};
readonly attribute TaskMode task_mode;

};

Table 2-8 Active Task Attribute Table

Name Type Properties Purpose

task_mode TaskMode read-only Indication of the BATCH or INTERACTIVE mode of
execution.

Ac tiveTas k

tas k_m od e : T askM od e

Ses s ion F ram ew ork ::
Ac tiveRe sou rce

Ses s ion ::
Task
2-12 Session Framework month year

2

ces

en

h

n

k.
2.3.1.3 Resource Usage

Instances of ActiveTask are associated to resources they consume through instan
of Usage . To ensure referential integrity between the task and the resource it
consumes, an implementation of ActiveTask may request permission to bind to an
ActiveResource using the bind operation, and at a subsequent point, invoke the
release operation on the target resource.

The Process and Data usage sub-types differentiate the usage relationship betwe
an ActiveTask and a used resource. The Process relationship signifies the usage of
an ActiveResource as the controlling process or editor whereas Data signifies a non-
process resource.

2.3.1.4 Batch and Interactive Modes

The enumeration TaskMode enables a task to be qualified as an interactive or batc
oriented task.

enum TaskMode{
BATCH, INTERACTIVE

};
attribute TaskMode task_mode;

Table 2-9 ActiveTask Structured Event Table

Event Description

process_state Notification of the change of state of an ActiveTask.

Supplementary properties:

value task_state An enumeration as defined by the Task/Sessio
specification.

ownership Notification of the change of ownership of an ActiveTask.

Supplementary properties:

owner ActiveUser ActiveUser assigned as owner of the ActiveTas
Session ActiveTask and Associative Interfaces month year 2-13

2

2.3.2 Usage

Usage associates an ActiveTask as source and an ActiveResource as target .
Cardinality of the Usage relationship is many to many.

2.3.2.1 Object Model

Figure 2–8 .Usage Object Model

2.3.2.2 IDL Specification

interface Usage :
Linkage
{

};

Table 2-10TaskMode Enumeration Table

Value Description

BATCH Indicates that this task is associated to process or editor that will execute and
terminate independently of user interaction.

INTERACTIVE Indicates that this task will invoke an editor that will be manipulated by a user
through an interactive interface.

.

Usage
SessionFramework::

ActiveResource *1

*

1

source

target

SessionFramework::
Linkage

Process

Data

SessionFramework::
ActiveTask
2-14 Session Framework month year

2

f
2.3.3 Data

Data usage differentiates usage as a target information ActiveResource by a
source ActiveTask as opposed to Process usage. Cardinality of Data is many to
many.

2.3.3.1 IDL Specification

interface Data :
Usage
{

};

2.3.4 Process

Process allows the qualification of usage of a target ActiveResource as a process by
a source ActiveTask . A source ActiveTask may have between 0 and 1 instance o
ActiveResource as a process target . An ActiveResource may be bound as the
target under a Process linkage by many ActiveTask instances.

2.3.4.1 IDL Specification

Interface Process :
Usage
{

};

2.4 Workspace, Desktop, and Containment Associations

2.4.1 ActiveWorkspace

ActiveWorkspace extends Session::Workspace through the addition of
ActiveResource .
Session Workspace, Desktop, and Containment Associations month year 2-15

2

pect
2.4.1.1 Object Model

Figure 2–9 ActiveWorkspace Object Model

2.4.1.2 IDL Specification

interface ActiveWorkspace :

Session::Workspace,
ActiveResource

{
};

2.4.1.3 Containment of Resources

ActiveResource containment associations are exposed to the contained resource
under the bind and release operations as instances of Containment .

2.4.2 Desktop

Desktop is a specialization of Session::Desktop and ActiveWorkspace .
Inclusion of the desktop interface under this module ensures consistency with res
to event related behavior.

ActiveW orkspace

SessionFram ew ork::
ActiveR esource

Session ::
W orkspace
2-16 Session Framework month year

2

2.4.2.1 Object Model

Figure 2–10 Desktop Object Model

2.4.2.2 IDL Specification

interface Desktop :
Session::Desktop,
ActiveWorkspace

{
};

2.4.3 Containment

Containment associates an ActiveWorkspace as source and an ActiveResource
as target . Cardinality of the Containment relationship is many to many.

SessionFramework::
ActiveWorkspace

Session::
Desktop

Desktop
Session Workspace, Desktop, and Containment Associations month year 2-17

2

isms

2.4.3.1 Object Model

Figure 2–11 Containment Object Model

2.4.3.2 IDL Specification

interface Containment :
Linkage
{
};

2.5 ActiveUser and Supporting Interfaces

2.5.1 ActiveUser

An ActiveUser is an extension of Session::User , ActiveResource , LegalEntity
interface, and CosLifeCycle::FactoryFinder . ActiveResource introduces the
consistent behavior concerning events consumption and production, and mechan
supporting the binding and releasing of linkage associations. LegalEntity enables an
ActiveUser to be associated [Reviewer: changed association to associated - please
verify] with a Jurisdiction relationship relative to ActiveResource and exposes
public credentials. As a FactorFinder , an ActiveUser may be used as the there
argument to a CosLifeCycle move or copy operation.

.

Containment
SessionFramework::

ActiveResource *1

*

1

source

target

SessionFramework::
ActiveWorkspace

SessionFramework::
Linkafe
2-18 Session Framework month year

2

rning

th
2.5.1.1 Object Model

Figure 2–12 Containment Object Model

2.5.1.2 IDL Specification

interface ActiveUser :
Session::User,
LegalEntity,
ActiveResource,
CosLifeCycle::FactoryFinder
{

};

2.5.2 LegalEntity

LegalEntity exposes a sequence of AbstractTemplate instances that may be used by
a client to construct a create operation against a GenericFactory . The structure of
credentials and the value of factory key are undefined. Recommendations conce
criteria and factory keys will be provided under subsequent revisions of this
specification following the resolution of technology adoption processes dealing wi
Security interoperability and Public Key Infrastructure services.

Table 2-11ActiveUser Structure Event Table

Connected Optional notification of the success or failure of a task.

Supplementary Properties:

value boolean True indicates that the user is connected, false
indicates that the user is disconnected.

ActiveUser

SessionFramework::
ActiveResource

Session::
User

CosLifeCycle::
FactoryFinder

SessionFramework::
LegalEntity
Session ActiveUser and Supporting Interfaces month year 2-19

2

o
alify

e
2.5.2.1 Object Model

Figure 2–13 LegalEntity Object Model

2.5.2.2 IDL Specification

interface LegalEntity :
Session::BaseBusinessObject
{
readonly attribute AbstractTemplateSequence credentials;

};

2.5.3 Jurisdiction

Jurisdiction is a specialization of Linkage . Jurisdiction relationships may be used t
express hierarchies of authority that client applications may navigate in order to qu
the context of collaboration with respect to the level and scope of authority of
respective participants. A Jurisdiction linkage associates a source LegalEntity with
a target ActiveResource and implies authority of the LegalEntity over the target
resource.

Table 2-12 LegalEntity Attribute Table

Name Type Properties Purpose

credentials AbstractTemplateSequence read-only Used by a client to construct a creat
operation against a GenericFactory .

AbstractTemplate
LegalEntity

credentials : AbstractTemplateSequence

Session::
BaseBusinessObject

*

2-20 Session Framework month year

2

2.5.3.1 Object Model

Figure 2–14 Jurisdiction Object Model

2.5.3.2 IDL Specification

typedef string Kind;

interface Jurisdiction :
SessionFramework::Linkage
{
readonly attribute SessionFramework::Kind kind;

};

2.5.4 AbstractTemplate

AbstractTemplate is a type that exposes a factory_key and factory_criteria used
by clients under operations dealing with CosLifeCycle factory services.
AbstractTemplate is a base type for the CollaborationFramework interface
EncounterTemplate and the CommunityFramework interface
MembershipKind .

Table 2-13 Jurisdiction Attribute Table

Name Type Properties Purpose

kind Kind read-only Application specific string that qualifies the kind
of jurisdiction that the relationship infers.

SessionFramework::
ActiveResource

1

*

1 *

source

target

SessionFramework::
LegalEntity

SessionFramework::
 Jurisd ict ion

kind : Kind

SessionFramework::
L inkage
Session ActiveUser and Supporting Interfaces month year 2-21

2

r
2.5.4.1 Object Model

Figure 2–15 AbstractTemplate Object Model

2.5.4.2 IDL Specification

interface AbstractTemplate :
ActiveResource

{
readonly attribute CosLifeCycle::Key factory_key;
readonly attribute CosLifeCycle::Criteria factory_criteria;

};

Table 2-14 AbstractTemplate Attribute Table

Name Type Properties Purpose

factory_key CosLifeCycle::Key read-only Argument to CosLifeCycle factory finde
that identifies the type of factory to find.

factory_criteria CosLifeCycle::Criteria read-only Argument to a CosLifeCycle generic
factory.

AbstractTemplate

factory_key : Key
factory_criteria : Criteria

SessionFramework::
ActiveResource

CollaborationFramework::
CollaborationTemplate

CollaborationFramework::
VoteTemplate

CollaborationFramework::
EngagementTemplate

CollaborationFramework::
EncounterTemplate

CommunityFramework::
MembershipKind
2-22 Session Framework month year

2

2.5.5 SessionFramework IDL

// file SessionFramework.idl

#ifndef _SESSION_FRAMEWORK_IDL_
#define _SESSION_FRAMEWORK_IDL_
#pragma prefix "omg.org"

#include <Session.idl>
#include <CosNotifyComm.idl>
#include <CosPropertyService.idl>
#include <TimeBase.idl>

module SessionFramework{

// forward declarations

interface ActiveResource;
interface ActiveTask;
interface ActiveWorkspace;
interface Desktop;
interface LegalEntity;
interface ActiveUser;

interface Linkage;
interface Usage;
interface Containment;
interface Delegation;
interface Jurisdiction;
interface Composition;

interface AbstractTemplate;

// typedefs

typedef string Kind;
typedef sequence <ActiveResource> ActiveResourceSequence;
typedef sequence <AbstractTemplate> AbstractTemplateSequence;
typedef sequence <ActiveUser> ActiveUserSequence;
typedef sequence <ActiveTask> ActiveTaskSequence;
typedef sequence <ActiveWorkspace> ActiveWorkspaceSequence;

// iterators

interface ActiveResourceIterator : CosCollection::Iterator{};
interface AbstractTemplateIterator: CosCollection::Iterator{};
interface ActiveUserIterator : CosCollection::Iterator{};
interface ActiveTaskIterator : CosCollection::Iterator{};
interface ActiveWorkspaceIterator : CosCollection::Iterator{};
Session ActiveUser and Supporting Interfaces month year 2-23

2

// base types

interface ActiveResource :
Session::AbstractResource,
CosNotifyComm::StructuredPushSupplier,
CosNotifyComm::StructuredPushConsumer {

exception ResourceUnavailable{ };
exception ProducerConflict{ };

void bind(
in Linkage link

) raises (
ResourceUnavailable

);
void release(

in Linkage link
);

// setting, getting and releasing a producer

ActiveTask get_producer();
void set_producer(

 in ActiveTask task
) raises (

ProducerConflict
);
void release_producer();
void change_producer(

in SessionFramework::ActiveTask old_task,
in SessionFramework::ActiveTask new_task

) raises (
ProducerConflict

);
};

interface ActiveTask :
Session::Task,
ActiveResource
{
enum TaskMode{

BATCH,
INTERACTIVE

};
readonly attribute TaskMode task_mode;

};

interface ActiveWorkspace :
Session::Workspace,
ActiveResource {

};
2-24 Session Framework month year

2

interface Desktop :
Session::Desktop,
ActiveResource {

};

// ActiveUser

interface LegalEntity :
Session::BaseBusinessObject {
readonly attribute AbstractTemplateSequence credentials;

};

interface ActiveUser :
Session::User,
LegalEntity,
ActiveResource,
CosLifeCycle::FactoryFinder
{

};

// Extensions

interface Linkage :
Session::BaseBusinessObject {
readonly attribute any source;
readonly attribute any target;

interface Delegation :
Linkage {

};

interface Usage : Linkage{ };
interface Data : Usage{ };
interface Process : Usage{ };
interface Containment : Linkage{ };
interface Composition : Linkage{ };

interface Jurisdiction :
SessionFramework::Linkage {
readonly attribute SessionFramework::Kind kind;

};

// templates

interface AbstractTemplate :
ActiveResource {
readonly attribute CosLifeCycle::Key factory_key;
readonly attribute CosLifeCycle::Criteria factory_criteria;

};
Session ActiveUser and Supporting Interfaces month year 2-25

2

}; // end SessionFramework Module

#endif // _SESSION_FRAMEWORK_IDL_
2-26 Session Framework month year

Community Framework 3

of
Contents

This chapter contains the following topics.

3.1 Overview

Interfaces defined under the Community module fall into two categories:

1. Interfaces supporting membership management.

2. Interfaces defining Community, the derived interface Agency.

Topic Page

“Overview” 3-1

“Interfaces” 3-3

“Community and Derived Interfaces” 3-16

Table 3-1 CommunityFramework Interface Summary Table

Interface Description

Membership A specialization of ActiveResource that enables association of instances of
the type Member in accordance with rules exposed under a
MembershipKind . A Membership exposes interfaces through which
Member instances may be added, removed, and listed relative to the kind
participation exposed by a MembershipKind hierarchy.
Community Framework month year 3-1

3

ted

hy.

ated

s a

of
MembershipKind Definition of constraints for a given MembershipKind . Constraints include
the maximum number of members that may be associated under the kind,
quorum value indicating the number of members that kind must be associa
and connected before the Member is considered valid, privacy policy
declarations, and policies concerning the semantics of membership hierarc

Member A role of ActiveUser , defined as a specialization of Linkage that associates
a target ActiveUser with a Membership . As a Membership may be a
hierarchy of Membership instances, an instance of Member may be associ
as a member at many levels within the hierarchy.

Community A specialization of ActiveWorkspace , Membership , and FactoryFinder .
As an ActiveWorkspace , a Community is a place containing
ActiveResources . As a Membership , a Community exposes policy
concerning membership and the association of Member kind hierarchies. A
FactoryFinder , Community represents a possible target under a copy or
move operation.

Agency A specialization of Community and LegalEntity that introduces the notion
of legal community such as a company that maintains jurisdiction of a set
resources. Agency, through LegalEntity and Jurisdiction , enables the
qualification of the authority of a Member within a negotiation or other
collaborative encounter.

Table 3-1 CommunityFramework Interface Summary Table
3-2 Community Framework month year

3

3.1.1 Object Model

Figure 3-1 CommunityFramework Object Model

3.2 Interfaces

3.2.1 Membership, Associative, and Qualifying Interfaces

Membership is a base type to Community and Encounter . A Community
constitutes a set of artifacts shared by the community members. An Encounter is a
collaborative process involving a set of members. A Member is a role of a user
associated to an instance of Membership . A Membership is the run-time

factory_key : Key
factory_criteria : Criteria

SessionFramework::
AbstractTemplate

SessionFramework::
ActiveUser

SessionFramework::
Delegation

target

CommunityFramework::
Member

label : string
membership : Membership

*

get_kinds()

1

membership

SessionFramework::
ActiveResource

SessionFramework::
ActiveWorkspace

SessionFramework::
LegalEntity

CosLifeCycle::
FactoryFinder

CommunityFramework::
Membership

add_member()
boolean is_member()
get_members()
remove_member()
add_membership()
get_memberships()
remove_membership()

model : MembershipKind
recruitment_status : enum
quorum_status : enum
count : long
active_count : long

kind : string
quorum : long
ceiling : long
privacy : enum
node_type: enum
exclusive : boolean

model CommunityFramework::
MembershipKind

1*

CommunityFramework::
Community

CommunityFramework::
Agency
Community Framework Interfaces month year 3-3

3

ss

instantiation of a MembershipKind hierarchy that defines the kind of memberships
that may be attributed to Members within the Membership . As such, the role of a
user is a function of the Membership to which a Member is associated.

Instances of both MembershipKind and Membership are associated to subsidiary
instances through composition relationships. Composition relationships between
MembershipKind define the hierarchy of roles supported by a single Membership
instance. Composition relationships between Membership instances define proce
centric hierarchies, such as a parent and subsidiary negotiation.

3.2.1.1 Object Mode

Figure 3-2 Member, Membership and MembershipKind Object Model

3.2.1.2 Example

The following (non-UML) illustration depicts an example of a Membership , its
purpose in associating the set of Member instances Michael, Carol, Alice, and Bob,
and the structure of membership kinds (MembershipKind instances) that each user is
associated with under the Membership . In this example, Michael, Carol, and Alice
are associated with the membership kinds consumer and by virtue of being a

factory_key : Key
factory_criteria : Criteria

SessionFramework::
AbstractTemplate

SessionFramework::
ActiveUser

SessionFramework::
Delegation

target

CommunityFramework::
Member

label : string
membership : Membership

*

get_kinds()

1

membership

SessionFramework::
ActiveResource

CommunityFramework::
Membership

add_member()
boolean is_member()
get_members()
remove_member()
add_membership()
get_memberships()
remove_membership()

model : MembershipKind
recruitment_status : enum
quorum_status : enum
count : long
active_count : long

kind : string
quorum : long
ceiling : long
privacy : enum
node_type: enum
exclusive : boolean

model CommunityFramework::
MembershipKind

1*
3-4 Community Framework month year

3

bers
consumer are also associated to the role of participant . Alice is both consumer
and customer . As a customer she is also a signatory . Bob participates to the
Membership as provider , signatory , and participant .

Figure 3-3 Schematic Example of a Membership

The Member type manages the state and association of a Membership and mediates
between a set of Member instances and a stateless MembershipKind hierarchy.
Member instances are associated to a MembershipKind through operations exposed
on the Membership interface.

3.2.2 Member

A Member represents the participation of an ActiveUser to an instance of
Membership . The association to ActiveUser is achieved through a reference to the
ActiveUser under the target attribute inherited from the Delegation interface. The
attribute label may be used as a preferred name of the user relative to other mem
of the Membership . The operation list_kinds returns the set of MembershipKind
instances to which the Member is associated within the scope of the Membership .

MemberMemberMemberMemberMemberMember MemberMember

KindKind KindKind

KindKindKindKind

KindKind

participantparticipant

customercustomer

BobBobMichaelMichael CarolCarol AliceAlice

signatorysignatory

providerprovider

consumerconsumer

MembershipKind
Hierarchy

Member instances bound to a Membership
Community Framework Interfaces month year 3-5

3

rying

of
3.2.2.1 IDL Specification

interface Member :
SessionFramework::Delegation,
SessionFramework::ActiveUser
{
attribute string label;
readonly attribute CommunityFramework::Membership membership;
void get_kinds(

out MembershipKindSequence kind_list,
out MembershipKindIterator kind_iterator

) raises (
PrivacyConflict

);
};

3.2.2.2 Listing Kind Attributed to a Member

The get_kinds operation enables clients to invoke requests against a Member to
retrieve reference to the MembershipKind instances that defines the kind of
memberships that the user is associated with within the scope of the Membership .

void get_kinds(
out MembershipKindSequence kind_list,
out MembershipKindIterator kind_iterator

) raises (
PrivacyConflict

);

3.2.3 Membership

A Membership is an interface that corresponds to the run-time creation of an
association between zero to many Member instances and a root MembershipKind ,
and between 0 and many subsidiary Membership instances. The Membership type
exposes operations enabling the addition, listing, and removing of members, que
individual Member participation, and features exposing the state of the Membership .

Table 3-2 Member Attribute Table

Name Type Properties Purpose

label long The name by which a Member is known to the
Community.

membership Membership read-only The root Membership to which this instance
Member is associated.
3-6 Community Framework month year

3

3.2.3.1 IDL Specification

interface Membership :
SessionFramework::ActiveResource

{
readonly attribute MembershipKind model;
enum RecruitmentStatus{

OPEN_MEMBERSHIP,
SUSPENDED_MEMBERSHIP,
CLOSED_MEMBERSHIP

};
readonly attribute RecruitmentStatus recruitment_status;
exception RecruitmentConflict{

RecruitmentStatus reason;
};
enum QuorumStatus {

QUORUM_REACHED,
QUORUM_PENDING,
QUORUM_UNREACHABLE

};
readonly attribute QuorumStatus quorum_status;
readonly attribute long count;
readonly attribute long active_count;
exception AttemptedCeilingViolation{ };
exception AttemptedExclusivityViolation{ };
exception VirtualKind{ };
exception UnknownKind{ };
exception MembershipRejected{

Membership source;
string reason;

};
Member add_member(

in SessionFramework::ActiveUser user,
in CommunityFramework::MembershipKind kind

) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
MembershipRejected,
UnknownKind,
VirtualKind

);
boolean is_member(

in CommunityFramework::Member member,
in CommunityFramework::MembershipKind kind

) raises (
PrivacyConflict

);
void get_members(

in MembershipKind kind,
Community Framework Interfaces month year 3-7

3

e

d of

m
out MemberSequence member_list,
out MemberIterator member_iterator

) raises (
PrivacyConflict

);
void remove_member(

in CommunityFramework::Member member
);
void add_membership(

in CommunityFramework::Membership membership
);
void get_memberships(

out MembershipSequence membership_list,
out MembershipIterator membership_iterator

) raises (
PrivacyConflict

);
void remove_membership(

in CommunityFramework::Membership membership
);

};

3.2.3.2 Membership Semantics

Association of a Member to a MembershipKind grants that user a role within the
membership qualified by the MembershipKind kind and template parameters. Wher
a MembershipKind is subsidiary to another MembershipKind , the Member
associated to the subsidiary is implicitly considered to inherit the membership kin
the parent MembershipKind (refer to earlier example).

Table 3-3 Membership Attribute Table

Name Type Properties Purpose

model MembershipKind read-only Template that defines constraints
associated to and enforced by an
instance of Membership .

recruitment_status RecruitmentStatus read-only Refer to Section 3.2.3.5,
“Recruitment Status,” on
page 3-10.

quorum_status QuorumStatus read-only Refer to Section 3.2.3.6, “Quoru
Status,” on page 3-11.

count long read-only The number of Member instances
associated with the Membership .

active_count long read-only The number of Members
associated to the Membership and
connected.
3-8 Community Framework month year

3

ual
MembershipKind exposes the enumeration VIRTUAL_NODE and
PHYSICAL_NODE under the attribute node_kind . Virtual nodes provide a useful
mechanism for aggregating membership kinds but does not directly support the
association of Members . Instead, subsidiary associations infer association to a virt
MembershipKind .

Where a PHYSICAL_KIND MembershipKind is a parent to another
PHYSICAL_KIND , the removal of a Member association from the parent implies
removal of the member from all subsidiary kinds.

3.2.3.3 Member Addition

Instances of Member may be added to a Membership using the add_member
operation. The add_member operation takes an ActiveUser as argument identifying
the user to be bound to the Membership , and a reference to a MembershipKind
under the kind argument. Where a user is already a member of a Membership , and
the add_user operation is invoked in order to supplement the MembershipKind
associations, the add_user operation will return the same Member instance.

Member add_member(
 in SessionFramework::ActiveUser user,
 in CommunityFramework::MembershipKind kind

) raises (
 AttemptedCeilingViolation,

AttemptedExclusivityViolation,
RecruitmentConflict,
MembershipRejected,
UnknownKind,
VirtualKind

);

An attempt to add a member when the value of ceiling (exposed under the
MembershipKind) is greater than or equal to count will result in an
AttemptedCeilingViolation . An attempt to add a Member, representing an
ActiveUser that is already represented within a Membership under an existing
Member instance, while a MembershipKind value of exclusive is true will result in
the raising of an AttemptedExclusivityViolation exception. An attempt to add a
Member while recruitment_status is CLOSED_MEMBERSHIP will cause the
RectrutmentConflict exception to be raised. An attempt to reference a
MembershipKind under the kind argument that unknown with the scope of the
Membership model MembershipKind will cause the raising of the UnknownKind
exception. An attempt to add a user to MembershipKind exposing the
VIRTUAL_NODE as the value of node_descriptor will cause the raising of the
VirtualKind exception.

exception RecruitmentConflict{
RecruitmentStatus reason;

};
exception AttemptedCeilingViolation{ };
exception AttemptedExclusivityViolation{ };
Community Framework Interfaces month year 3-9

3

es

cted

f
l
n of
exception VirtualKind{ };
exception UnknownKind{ };
exception MembershipRejected{

Membership source;
string reason;

};

3.2.3.4 Member Removal

Membership removal is invoked using the remove_member operation. An
implementation of Membershi pDomain is required to notify the removal of a
Member from a domain through the removal_notification operation on the instance
of Member being removed.

void remove_member(
in CommunityFramework::Member member

);

On addition or removal of a Member from the domain, an implementation of
Membershi p is required to increment or decrement respectively the value of the
count and active_count attributes and signal a change notification event. Chang
to the connected status of a Member are also reflected in the active_count attribute.
The active_count corresponds to the number of Member instances that are conne
(refer Session::User, connect_state).

readonly attribute long count;
readonly attribute long active_count;

3.2.3.5 Recruitment Status

The status of a Membership instance is exposed through the recruitment_status
and quorum_status attribute values. The recruitment_status attribute exposes a
value of OPEN_MEMBERSHIP, SUSPENDED_MEMBERSHIP, and
CLOSED_MEMBERSHIP that control the behavior of the add_member and
remove_member operations. Under a closed membership, addition or removal o
members is disabled. Under a suspended membership, the addition and remova
operations may be invoked; however, an implementation may delay the registratio
the Member up to the point that the Membership is re-opened.

enum RecruitmentStatus{
OPEN_MEMBERSHIP,
SUSPENDED_MEMBERSHIP,
CLOSED_MEMBERSHIP

};

readonly attribute RecruitmentStatus recruitment_status;
3-10 Community Framework month year

3

ing
3.2.3.6 Quorum Status

Membership quorum level (exposed under the MembershipKind) defines the
number of Member instances that are required for the Membership to be considered
valid. For example, a bilateral negotiation requires a quorum of 2. Prior to reach
quorum (count is less than quorum) the value of quorum_status is
QUORUM_PENDING. On reaching quorum , the quorum_status is
QUORUM_REACHED. If the value of ceiling is less than quorum ,
QUORUM_UNREACHABLE will be exposed. Both quorum and ceiling are
features exposed by the MembershipKind referenced by the model attribute.

enum QuorumStatus {
QUORUM_REACHED,
QUORUM_PENDING,
QUORUM_UNREACHABLE

};

readonly attribute QuorumStatus quorum_status;

Table 3-4 RecruitmentStatus Enumeration Table

Value Description

OPEN_MEMBERSHIP Invocation of the add_member and remove_member operations is
enabled.

SUSPENDED_MEMBERSHIP Invocation of the add_member and remove_member operations is
enabled; however, an instance of Membership may not consider the
Member association as valid (as exposed by the is_member and
get_members operations).

CLOSED_MEMBERSHIP Invocation of the add_member and remove_member operations is
disabled.

Table 3-5 QuarumStatus Enumeration Table

Value Description

QUORUM_REACHED The number of Member instances associated with
MembershipKind is equal to or exceeds the MembershipKind
quorum level required.

QUORUM_PENDING The number of Member instances associated with
MembershipKind is less than the MembershipKind quorum
level required.

QUORUM_UNREACHABLE The MembershipKind quorum level required is greater than the
ceiling and as such quorum of the Membership cannot be
achieved.
Community Framework Interfaces month year 3-11

3

acy

iteria
t

 of
3.2.3.7 Membership Disclosure Operations

The Membership type provides a number of operations enabling navigation of the
Membership structure and access to Member kind associations. The is_member
operation enables a client to query if an instance of Member is recognized by the
Membership as associated to a particular kind within the scope of applicable priv
restrictions.

boolean is_member(
in CommunityFramework::Member member,
in CommunityFramework::MembershipKind kind

) raises (
PrivacyConflict

);

The get_members operation returns all members of a Membership holding the
MembershipKind passed in under the kind argument within the restrictions of the
applicable privacy policy.

void get_members(
in MembershipKind kind,
out MemberSequence member_list,
out MemberIterator member_iterator

) raises (
PrivacyConflict

);

3.2.3.8 Structural Operations

The add_membership operation enables a client application to introduce a
subsidiary membership to an existing membership. This operation is useful when
defining subsidiary collaborative processes that may have different membership cr
to the parent. An implementation of Membership is responsible for the establishmen
of composition relationships between the containing and contained Membership
instances. The remove_membership operation enables the retraction of a
Membership association with a parent Membership.

void add_membership(
in CommunityFramework::Membership membership

);

void remove_membership(
in CommunityFramework::Membership membership

);

The get_memberships operation enables a client to access references to the set
subsidiary Membership instances associated with a given Membership .

void get_memberships(
out MembershipSequence membership_list,
3-12 Community Framework month year

3

n
f

ry

ces of
out MembershipIterator membership_iterator
) raises (

PrivacyConflict
);

3.2.3.9 Membership Composition

The following (non-UML) schematic shows an example of subsidiary membership
composition. A subsidiary Membership of the type Encounter (see Section 4.2.1,
“Encounter,” on page 4-3) establishes a reference to the signatory MembershipKind
as the defining model, thereby restricting the scope of the Membership .

While mechanisms supporting the management of composition and associations
between the Membership and Member instance are implementation independent, a
implementation of Membership or a derived type may optimize the management o
Membership operations through selective delegation. For example, the subsidia
Encounter shown in this example could delegate is_member operations for the
MembershipKind “signatories” to the parent Membership . Memberships and
derived types could be presented as work breakdown structures, flows, or sequen
interdependent messages.
Community Framework Interfaces month year 3-13

3

d
Figure 3-4 Example of a composite membership instance modifying membership criteria

3.2.4 MembershipKind

A MembershipKind defines the quorum, ceiling, privacy, exclusivity, permission, an
association constraints associated with an instance of Membership .

The quorum level attribute indicates the required number of Member instances that
must be added for the membership to be considered valid. The ceiling attribute defines
the maximum number of Member instances that may be added, above which Member
addition is disabled (a value of 0 indicates no limit). The exclusive attribute, when
true indicates that no Member instances may reference the same ActiveUser identity
as another Member instance.

M e m b e rsh ipM e m b e rsh ip

Pa rtic ip a n tsPa rtic ip a n ts

KindKind

p a rtic ip a n tp a rtic ip a n t
M e m b e rsh ip K in d

H ie ra rc h y

Enc ounterEnc ounter

En g a g e m e n tEn g a g e m e n t

KindKind

KindKindKindKind

c usto m e rc usto m e r

sig n a to rysig n a to ry

p ro v id e rp ro v id e r

M e m b e rM e m b e r M e m b e rM e m b e r

Bo bBo bA lic eA lic e

KindKind

c o n sum e rc o n sum e r

M e m b e rM e m b e rM e m b e rM e m b e r

M ic h a e lM ic h a e l C a ro lC a ro l
3-14 Community Framework month year

3

s

 no
The privacy value qualifies the extent of information disclosure enabling limitation
on Member association disclosure as opposed to structural information (Membership
composition). The permission and association constraints define rules concerning
the association of parent and subsidiary Membership instances.

An implementation of Membership is responsible for the enforcement of the
constraints defined within the MembershipKind .

3.2.4.1 IDL Specification

interface MembershipKind :
SessionFramework::AbstractTemplate
{
readonly attribute SessionFramework::Kind kind;
readonly attribute long quorum;
readonly attribute long ceiling;
readonly attribute PrivacyPolicyValue privacy;
readonly attribute boolean exclusivity;
enum NodeDescriptor{

VIRTUAL_NODE,
PHYSICAL_NODE

};
readonly attribute NodeDescriptor node_type;
readonly attribute boolean exclusive;

};

Table 3-6 MembershipKind Attribute Table

Name Type Properties Purpose

kind Kind read-only String describing the Membership body.

quorum long read-only An integer that defines the minimum number of
Member instances that must be associated to the
Membership before the Membership is considered
as a valid body.

ceiling long read-only An integer expressing the maximum number of
Member instances that may be associated with a
Membership.

privacy PrivacyPolicyValue read-only Refer to Table 3-7 on page 3-16.

exclusive boolean read-only The exclusive attribute, when true indicates that
Member instances may reference the same
ActiveUser identity as another Member instance.

node_type NodeDescriptor read-only Refer to Table 3-8 on page 3-16.
Community Framework Interfaces month year 3-15

3

t
hich

s to

s to
3.3 Community and Derived Interfaces

3.3.1 Overview

The two interfaces Community and Agency define a framework for the managemen
of higher level business-to-business negotiation and collaborative encounters in w
the notion of organizational context and authority are intrinsic characteristics.

• Community extends ActiveWorkspace with the notion of Membership and the
notion of a place in the context of CosLifeCycle “here” and “there.”

• An Agency extends the notion of Community through the introduction of
LegalEntity and thereby authority through Jurisdiction .

Table 3-7 PrivacyPolicyValue Enumeration Table

Value Description

PUBLIC_DISCLOSURE Operations may return structural and membership kind association
non-members.

RESTRICTED_DISCLOSURE Operations may return structural and membership kind association
members that share a common root MembershipKind .

PRIVATE_DISCLOSURE Disclosure of MembershipKind structure and Member associations
is restricted to the members of the MembershipKind (a.k.a. private
party).

Table 3-8 NodeDescriptor Enumeration TAble

Value Description

VIRTUAL_NODE Association by a Membership instance of Members with a node_type
exposing VIRTUAL_NODE is restricted to the aggregation of the Member
associations to subsidy MembershipKind stances. Invocation of
add_member under Membership may raise the VirtualKind exception
or return a Membership to a subsidiary kind.

PHYSICAL_NODE A Membership may invoke add_member with the kind argument
referring to a MembershipKind exposing this value.
3-16 Community Framework month year

3

e

g,
3.3.1.1 Object Model

Figure 3-5 Community, Agency, and Jurisdiction Object Model

3.3.2 Community

A Community extends the notion of workspace through the introduction of
CosLifeCycle::FactoryFinder and Membership . As a FactoryFinder , a
Community enables client applications controlled access to resources that may b
required during the course of a collaborative encounter (relative to a collaborative
context) and the ability to publish resources into a Community (where a Community
constitutes the there argument to LifeCycleObject copy or move operation). As a
Membership , a Community is associated to constraints concerning quorum, ceilin
privacy, and associative constraints.

3.3.2.1 IDL Specification

interface Community :
SessionFramework::ActiveWorkspace,
CosLifeCycle::FactoryFinder,
Membership

{
};

Community
1

*

1 *

source

target SessionFramework::
Jurisdiction

SessionFramework::
ActiveResource

SessionFramework::
ActiveWorkspace

CosLifeCycle::
FactoryFinder

CommunityFramework::
Membership

SessionFramework::
LegalEntity

Agency
Community Framework Community and Derived Interfaces month year 3-17

3

3.3.3 Agency

Agency is a specialization of Community and LegalEntity that introduces the
notion of organized community such as a company. As a LegalEntity , an Agency
may be associated under a Jurisdiction relationship over a set of resources. Client
applications may navigate the Jurisdiction relationship in order to qualify the context
of collaboration and authority of respective participants.

3.3.3.1 Object Model

Figure 3-6 Agency Object Model.

3.3.3.2 IDL Specification

interface Agency :
Community,
SessionFramework::LegalEntity

{
};

3.3.4 CommunityFramework IDL

// File: CommunityFramework.idl

#ifndef _COMMUNITY_FRAMEWORK_IDL_
#define _COMMUNITY_FRAMEWORK_IDL_
#pragma prefix "omg.org"

#include <SessionFramework.idl>

module CommunityFramework{

// forward declarations

SessionFramework::
LegalEntity

CommunityFramework::
Community

CommunityFramework::
Agency
3-18 Community Framework month year

3

interface MembershipKind;
interface Membership;
interface Member;

interface Community;
interface Agency;

// typedefs

typedef sequence <Member> MemberSequence;
typedef sequence <Membership> MembershipSequence;
typedef sequence <MembershipKind> MembershipKindSequence;

// iterators

interface MemberIterator : CosCollection::Iterator{};
interface MembershipIterator : CosCollection::Iterator{};
interface MembershipKindIterator : CosCollection::Iterator{};

// Membership

enum PrivacyPolicyValue {
PUBLIC_DISCLOSURE,
RESTRICTED_DISCLOSURE,
PRIVATE_DISCLOSURE

};

exception PrivacyConflict{
PrivacyPolicyValue reason;

};

interface MembershipKind :
SessionFramework::AbstractTemplate
{
readonly attribute SessionFramework::Kind kind;
readonly attribute long quorum;
readonly attribute long ceiling;
readonly attribute PrivacyPolicyValue privacy;
readonly attribute boolean exclusivity;
enum NodeDescriptor{

VIRTUAL_NODE,
PHYSICAL_NODE

};
readonly attribute NodeDescriptor node_type;
readonly attribute boolean exclusive;

};

interface Membership :
SessionFramework::ActiveResource {
Community Framework Community and Derived Interfaces month year 3-19

3

readonly attribute MembershipKind model;
enum RecruitmentStatus{

OPEN_MEMBERSHIP,
SUSPENDED_MEMBERSHIP,
CLOSED_MEMBERSHIP

};
readonly attribute RecruitmentStatus recruitment_status;
exception RecruitmentConflict{

RecruitmentStatus reason;
};
enum QuorumStatus {

QUORUM_REACHED,
QUORUM_PENDING,
QUORUM_UNREACHABLE

};
readonly attribute QuorumStatus quorum_status;
readonly attribute long count;
readonly attribute long active_count;
exception AttemptedCeilingViolation{ };
exception AttemptedExclusivityViolation{ };
exception VirtualKind{ };
exception UnknownKind{ };
exception MembershipRejected{

Membership source;
string reason;

};
Member add_member(

in SessionFramework::ActiveUser user,
in CommunityFramework::MembershipKind kind

) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
MembershipRejected,
UnknownKind,
VirtualKind

);
boolean is_member(

in CommunityFramework::Member member,
in CommunityFramework::MembershipKind kind

) raises (
PrivacyConflict

);
void get_members(

in MembershipKind kind,
out MemberSequence member_list,
out MemberIterator member_iterator

) raises (
PrivacyConflict

);
void remove_member(
3-20 Community Framework month year

3

in CommunityFramework::Member member
);
void add_membership(

in CommunityFramework::Membership membership
);
void get_memberships(

out MembershipSequence membership_list,
out MembershipIterator membership_iterator

) raises (
PrivacyConflict

);
void remove_membership(

in CommunityFramework::Membership membership
);

};

interface Member :
SessionFramework::Delegation,
SessionFramework::ActiveUser
{
attribute string label;
readonly attribute CommunityFramework::Membership

membership;
void get_kinds(

out MembershipKindSequence kind_list,
out MembershipKindIterator kind_iterator

) raises (
PrivacyConflict

);
};

interface Community :
SessionFramework::ActiveWorkspace,
CosLifeCycle::FactoryFinder,
Membership {

};

interface Agency :
Community,
SessionFramework::LegalEntity {

};

}; // end CommunityFramework Module

#endif // _COMMUNITY_FRAMEWORK_IDL_
Community Framework Community and Derived Interfaces month year 3-21

3

3-22 Community Framework month year

Collaboration Framework 4
ion of

ess

s a
Contents

This chapter contains the following topics.

4.1 Overview

The CollaborationFramework module is composed of three distinct groups of
interfaces:

1. Base interfaces defining an Encounter process and an associated
EncounterTemplate .

2. Interfaces supporting Collaboration , Engagement , and Votin g encounters.

• Collaboration : an Encounter that enables execution of negotiation and
promissory models such as those defined under the Session Framework sect
this specification.

• Voting : an Encounter used to aggregate votes in the determination of a succ
or fail condition.

• Engagement : an Encounter used to establish a contractual agreement acros
set of participant Members.

3. Interfaces managed by the CollaborationTemplate type.

Topic Page

“Overview” 4-1

“Encounter and Associated Interfaces” 4-3

“Collaboration Interfaces” 4-8

“Negotiation and Promissory Models” 4-30
Collaboration Framework month year 4-1

4

e

at

ssoci-

The CollaborationFramework builds above interfaces defined under the
CommunityFramework and SessionFramework .

Table 4-1 Base Interfaces of the CollaberationFramework Module

Interface Description

Encounter A specialization of ActiveTask and Membership that has an association to
an EncounterTemplate that defines the encounter constraints, and an
associated subject .

EncounterTemplate A specialization of AbstractTemplate that references a
MembershipKind applicable to an Encounter of the type described by
EncounterTemplate .

Table 4-2 Interfaces Derived from Encounter and EncounterTemplate

Interface Description

Collaboration A type of Encounter bound to a CollaborationTemplate that mediates
access to a subject . Collaboration exposes the state of a collaborative
process and brings together the operations that may be applied by
collaborating users relative to a process template . An apply operation
enables the invocation of simple and compound transitions that under the
mediated control of the Collaboration enable parties to reach terminal
success or failure states. The active-state of Collaboration is a
reference to a sequence of State instances held within the associated
template . Users are associated to a Collaboration through a Member role.

Voting A type of Encounter launched by a compound transition supporting vote-
based determination of primary or alternate state selection. Voting is an
interface that provides mechanisms through which users in a collaborativ
process can register YES, NO, or ABSTAIN votes. VoteTemplate exposes
policies concerning quorum and structured numerator/denominator pair th
defines the required ceiling for calculation of a successful vote.

Engagement A type of Encounter defined by an associated EngagementTemplate that
enables the association of proof of engagement to an agreement. Features a
ated to EngagementTemplate define the security criteria to be applied during

the engagement process. EngagementManifest is a type supporting the regis-

tration of proof as defined by the EngagementTemplate .

Table 4-3 CollaborationTemplate Dependent Interfaces

Interface Description

State A type that exposes a label , characteristics that qualify the state as internal ,
terminal success , or terminal failure exposes a set of sub-states and
parent state.
4-2 Collaboration Framework month year

4

s

y

e
ion.
4.2 Encounter and Associated Interfaces

4.2.1 Encounter

An Encounter is an abstract type that exposes the run-time state of collaborative
process involving a collection of participating members. Encounter is the super-type
of Collaboration , Voting , and Engagement . An Encounter is created by a generic
factory, using the features exposed by an associated EncounterTemplate as the
factory key and criteria . An EncounterTemplate defines the policy applicable to
the Encounter and may reference a required MembershipKind . Encounter is
derived from Membership and as such represents a collection of users, bound
together as members of the Encounter .

Trigger A type that exposes a keyword , accesses, and timeout constraints. Trigger
are used as a super-type for the Command and Transition types.
Operational qualifiers include a usage mode and references to a
MembershipKind that is authorized to invoke a Trigger . Usage mode
enables the declaration of constraints over activation relative to the
collaborative context.

Command A specialization of Trigger that enables the declaration of an event that ma
be invoked under Collaboration .

Transition A Transition extends Trigger to include a source and destination state. A
transition may only be invoked when the active-state of collaboration is the
source state in the Transition declaration. Following a successful
activation of a transition, the destination state and all parents of the
destination state are considered active by the controlling Collaboration .

CompoundTransition A specialization of Transition that introduces an alternative destination
State and template describing the criteria for Encounter creation.
CompoundTransition provides a powerful mechanism to express recursiv
collaborative encounters such as amendments under multilateral negotiat

Table 4-3 CollaborationTemplate Dependent Interfaces
Collaboration Encounter and Associated Interfaces month year 4-3

4

4.2.1.1 Object Model

Figure 4-1 Encounter and EncounterTemplate Object Model

4.2.1.2 IDL Specification

interface Encounter :
CommunityFramework::Membership,
SessionFramework::ActiveTask
{
readonly attribute EncounterTemplate template;
readonly attribute SessionFramework::ActiveResource subject;

};

CollaborationFramework
Encounter

template : EncounterTemplate
subject : ActiveResource

CommunityFramework::
Membership

CollaborationFramework
Collaboration

CollaborationFramework
Engagement

CollaborationFramework
Voting

SessionFramework::
ActiveTask

CollaborationFramework
EncounterTemplate

membership_kind : MembershipKind
order : ImplicationOrdering

1*

SessionFramework::
ActiveResource

SessionFramework::
AbstractTemplate

CommunityFramework::
MembershipKind

1*

*

0..1

membership_kind

template

model

CollaborationFramework
CollaborationTemplate

CollaborationFramework
EngagementTemplate

CollaborationFramework
VoteTemplate

subject

1

1

4-4 Collaboration Framework month year

4

l
n
e

4.2.1.3 Initialization

The template attribute exposed by Encounter refers to an EncounterTemplate that
qualifies the kind of Encounter and applicable constraints. On instantiation of an
Encounter , an implementation is responsible for the association of the Encounter to
a MembershipKind using the attribute model inherited from Membership . The
value attributed to model at runtime is the value of membership_kind exposed by
the associated EncounterTemplate .

4.2.1.4 Implication Semantics

An Encounter associated with EncounterTemplate that exposes an Implication
association is, on completion, following the raising of a success or failure result event,
required to establish instances of Encounter as referenced by appropriate Success or
[Reviewer, changed of to or, please verify] Failure implications. Encounter success
will raise Success implications whereas Encounter failure will raise Failure
implications. Implications are executed as a set of sub-processes to the current
Encounter during which time the hosting Encounter enters a suspended state.

Table 4-4 Encounter Attribute Table

Name Type Properties Purpose

subject ActiveResource read-only A reference to an ActiveResource that
constitutes the subject of the Encounter .

template EncounterTemplate read-only A reference to an EncounterTemplate that
exposes the membership_kind to be used by
the Encounter .

Table 4-5 Encounter Structured Event Table

Event Description

Result Notification of success or failure of execution of an encounter.

Supplementary properties:

value boolean True indicates that the task concluded with a successfu
result. False indicates that the task failed. Determinatio
of success or failure is a function of a specialization of th
Encounter type.
Collaboration Encounter and Associated Interfaces month year 4-5

4

ces

ces
4.2.2 Encounter Template

An EncounterTemplate is an abstract type that exposes membership_kind . This
is used by an instance of Encounter during initialization to establish the
MembershipKind to be bound to the model attribute inherited from Membership .

4.2.2.1 IDL Specification

interface EncounterTemplate :
SessionFramework::AbstractTemplate
{
readonly attribute CommunityFramework::MembershipKind

membership_kind;
enum ImplicationOrdering {

SEQUENTIAL,
PARALLEL

};
readonly attribute ImplicationOrdering order;

};

4.2.3 Implication

An Implication is an abstract specialization of Linkage (see Section 2.2.2,
“Linkage,” on page 2-8). Implication associates a source instance of
EncounterTemplate with a target instance of EncounterTemplate . Two concrete

Table 4-6 EncounterTemplate Attribute Table

Name Type Properties Purpose

membership_kind MembershipKind read-only A reference to a MembershipKind that
defines the value to be assigned to the
model attribute of an Encounter . Used to
qualify the membership kind required to
participate to an Encounter .

order ImplicationOrdering read-only Refer to Table 4-7 on page 4-6.

Table 4-7 ImplicationOrdering Enumeration Table

Value Description

SEQUENTIAL An instance of Encounter is responsible for the creation and execution of
subsidiary Encounter instances in accordance with the Implication referen
in sequential order.

PARALLEL An instance of Encounter is responsible for the creation and execution of
subsidiary Encounter instances in accordance with the Implication referen
in parallel .
4-6 Collaboration Framework month year

4

types of Implication include Success and Failure that may be used by client
applications such as Encounter to manage the instantiation of sub-process that
correspond to the consequences of a successful or unsuccessful process.

4.2.3.1 Object Model

Figure 4-2 Implication and the derived types Success and Failure

4.2.3.2 IDL Specification

interface Implication :
SessionFramework::Linkage
{
};

interface Success :
Implication

{
};

interface Failure :
Implication{
};

1

1
*

source

targetCollaborationFramework::
EncounterTemplate

CollaborationFramework ::
Implication

SessionFramework::
Linkage

*

CollaborationFramework ::
Success

CollaborationFramework ::
Failure
Collaboration Encounter and Associated Interfaces month year 4-7

4

t

m

,

ed as
4.3 Collaboration Interfaces

4.3.1 Collaboration

Collaboration is a concrete specialization of Encounter whose semantics are
defined by the type CollaborationTemplate . The model is expressed as a state-se
composed of sub-states, transitions, and interaction constraints.

The Collaboration type enables users to invoke transition operations that lead fro
initial to terminal states. Customizable process models allow the introduction of
semantics dealing with collaborative processes typified by the bilateral negotiation
multilateral negotiation, and promissory engagement models discussed under the
Session Framework section of this specification.

A client joins an instance of Collaboration by establishing a Member role and
associating the role to Collaboration using the add_member operating inherited
from Membership . Clients interact with the collaboration through the operations
apply and invoke . The apply operation tasks three arguments: transition , a
semantic qualifier, and a reference to a task that may be bound as producer of the
subject of the collaboration, or alternatively, may invoke a replacement of the
subject of the Collaboration (depending on the semantic qualifier).

The task argument is used to establish a Member as the active editor of the subject
of the collaboration. In the case of subject modification, the client task is associat
producer by the Collaboration . The producer relation between client task and
subject is maintained until (a) the client relinquishes the producer , or (b) the
Collaboration retracts the producer relationship from the client.

4.3.1.1 Object Model

Figure 4-3 Collaboration Object Model.

template

EncounterTemplateEncounter 1*

Collaboration

apply()
invoke()

active_state : StateSequence
timeout_set : TimeoutSequence

CollaborationTemplate

State

transitions : TransitionSequence
commands : CommandSequence
4-8 Collaboration Framework month year

4

4.3.1.2 IDL Specification

interface Collaboration :
Encounter
{
readonly attribute StateSequence active_state;
struct TimeoutSequence{

CollaborationFramework::Trigger trigger;
TimeBase::UtcT timestamp;

};
readonly attribute TimeoutSequence timeout_list;
exception InvalidTrigger{

CollaborationFramework::Trigger trigger;
};
exception ApplyFailure{

CollaborationFramework::Trigger trigger;
SessionFramework::ActiveTask task;

};
enum ApplySemantics{

REPLACEMENT,
MODIFICATION,

};
exception SemanticConflict{ };
void apply(

in CollaborationFramework::Transition transition,
in ApplySemantics semantic,
in SessionFramework::ActiveResource resource

) raises (
InvalidTrigger,
SemanticConflict,
ApplyFailure

);
void invoke(

in SessionFramework::Command command,
in SessionFramework::ActiveResource argument,
in string reason

) raises (
InvalidTrigger

);
};
Collaboration Collaboration Interfaces month year 4-9

4

of

ay

erit

e of

e,
4.3.1.3 Relationship to Collaboration Template

CollaborationTemplate is a process model that defines the semantic conditions
Collaboration . A CollaborationTemplate is a specialization of a State and
EncounterTemplate that exposes a set of transitions and command events that m
be applied/invoked by an instance of Collaboration . As a State , a
CollaborationTemplate exposes a sub-state hierarchy. Transitions exposed by
CollaborationTemplate are declarations of source and destination states and inh
activation constraints from the super-type Trigger . Trigger defines activation
constraints based on collaborative context and user’s membership, and in the cas
Transition , the implications of the transition relative to the subject of collaboration.

Table 4-8 Collaboration Attribute Table

Name Type Properties Purpose

active_state StateSequence read-only An ordered sequence of instances of State . The
sequence order is from most general to most
specific. States exposed in the sequence are
derived from apply operations invoked on
Collaboration associated to a
CollaborationTemplate .

timeout_list TimeoutSequence read-only Triggers exposed by a CollaborationTemplate
may declare timeout behavior. Triggers with
timeout behavior are considered active if their
source state is an active state. As several states
may be active at any time and for each active stat
there may exist several timeout transitions. The
timeout_list attribute exposes all active timeout
transition declarations. An implementation of
Collaboration is responsible for the applying
timeout transition and managing the timeout_list .

Table 4-9 Collaboration Structured Event Table

Event Description

Inform Command event raised as a result of an invoke operation.

Supplementary properties:

keyword keyword Keyword associated with the Command
object referenced by the invoke
operation.
4-10 Collaboration Framework month year

4

ost

 parent
 C.

4.3.1.4 Subsidiary Collaboration Processes

CompoundTransition declarations reference EncounterTemplate instances that
may be by the Collaboration to create subsidiary Encounter processes to an
instance of Collaboration . An EncounterTemplate exposes references to a type
supporting the execution of the template. For example, CollaborationTemplate is
executed by Collaboration , VoteTemplate is executed under Voting , and an
EngagmentTemplate is executed under Engagement . These associations are
exposed by a factory_key on AbstractTemplate .

Collaboration , Voting , and Engagement are examples of specialized Encounter
types that under the management of a Collaboration resolve in success or failure
conditions that determine the behavior of compound transitions managed by the h
Collaboration .

4.3.1.5 Active State

The active-state of Collaboration is a function of the apply operations invoked
against a Collaboration within the scope of an associated CollaborationTemplate .
On invocation of the apply operation a Transition is passed in as an argument. On
successful completion of the transition, the transition target state and all parent states
of the target define the active state of the Collaboration . For example, if state C is
referenced as the target, and C references the parent state B and B references a
state A, the active state sequence will be the order sequence of states A, B, and

readonly attribute StateSequence active_state;

The active_state of Collaboration is used to determine active Trigger instances.
Trigger instances are considered active when a Trigger source state is itself active. An
implementation of Collaboration maintains the active_state value.

4.3.1.6 Timeout behavior

Timeout behavior is defined by instances of Trigger that has a non-null timeout value.
An implementation of Collaboration is required to maintain the value of the
timeout_list attribute such that it contains only active timeout triggers and the
associated timestamp. The value of timestamp corresponds to the time when the
associated State became active. Trigger and timestamp pairs are captured under the
structure TimeoutStructure . A sequence of active TimeoutStructure values is
exposed by the timeout_list attribute. Changes to the timeout_list must be signalled
by an update event (see Section 2.2.1.5, “Structured Events,” on page 2-7).

struct TimeoutSequence{
CollaborationFramework::Trigger trigger;
TimeBase::UtcT timestamp;

};

readonly attribute TimeoutSequence timeout_list;
Collaboration Collaboration Interfaces month year 4-11

4

he

The

 a

r
tion

an

d on
4.3.1.7 Initialization of a Collaboration

Collaboration is considered as non-initialized if the active_state returns an empty
sequence. Initialization is achieved by invoking the apply and passing a Transition
that exposes a TRUE value under the initialize attribute.

4.3.1.8 Applying State Transitions

Application of a state transition is the mechanism used to change the context of t
collaboration and potentially replace or modify the subject of Collaboration . For
example, a CollaborationTemplate exposing the sub-states SCHEDULE and
DELIVERED could associate the two states through a transition named “deliver.”
transition “delivered” could be attributed with the following characteristics:

• access constraints based on membership kind

• constraints that impose restrictions based on collaborative context

• declaration of the usage of the resource argument by a Collaboration during
transition

Collaborative context and membership kind constraints collectively guard a Trigge
invocation. Enforcement of these constraints is the responsibility of an implementa
of the apply operation. The behavior of apply under a simple transition is determined
by the Transition referenced under the transition argument, and in the case of
PROCESS based Transition , a qualifying semantic argument and task argument.

Two constraints exist within a Transition:

1. A collaborative context guard that restricts the invoking principal to the
INITIATOR, a RESPONDENT, or PARTICIPANT (where PARTICIPANT is the
superset of INITIATOR and RESPONDENT).

2. Once the collaborative context and any Membership restrictions are satisfied,
apply implementation can evaluate the kind of transition being invoked.

Four kinds of transitional behavior are exposed by the Transition instance under the
control attribute. These behaviors are FAIL , RESET, TRANSITIONAL , and
PROCESS transitions. A FAIL transition is a null transition and terminates without
change to the process. A RESET transition is equivalent to FAIL ; however, the state
referenced by the source is re-entered and associated timeouts are reset.
TRANSITIONAL results in the establishment of a new active state sequence base
the transition target and parent states. In the case of a PROCESS transition, the
semantic and resource arguments are taken into consideration.

enum ApplySemantics{
REPLACEMENT,
MODIFICATION,

};

void apply(
in CollaborationFramework::Transition transition,
in ApplySemantics semantic,
4-12 Collaboration Framework month year

4

n
by

ntext
ore
in SessionFramework::ActiveResource resource
) raises (

InvalidTrigger,
ActiveTaskTypeConflict,
ApplyFailure

);

If the semantic argument is the enumerated value REPLACEMENT, then the
resource argument constitutes an ActiveResource to be established as a new
subject value. If the semantic argument is MODIFICATION, then the resource
argument is an ActiveTask that will be bound as producer of the subject of the
Collaboration . The subsidiary modification task will execute, complete, and retur
the produces association to the host. The host will then complete the transition
setting the active_state value.

The sequence of rules processing concerning the management of apply in the co
of membership, collaborative context, transition controls that may be present at m
than one level (as is the case of a PROCESS based CompoundTransition) are
detailed under the following three rules.

RULE 1: Evaluate guard conditions

• verify the collaborative context rights

• verify membership kind rights

RULE 2: Establish path

For a simple Transition , the control and target State are established from values
exposed by the transition argument.

For a CompoundTransition :

• Create the Encounter sub-process and bind the host subject as sub-process
subject if needed.

• Select initialization.

• Invoke apply using selected initializing transition , and the semantic and
resource arguments from the host apply operation.

• Wait for Encounter sub-process completion and evaluate success or fail result
status.

Table 4-10ApplySemantics Enumeration Table

Value Description

REPLACEMENT The resource argument under the apply operation constitutes a
replacement of the subject of the Collaboration (conditional to
transition constraints).

MODIFICATION The resource argument under the apply operation constitutes a
ReactiveTask that is to be bound as producer of the subject of the
Collaboration in order to invoke changes to the subject (conditional to
transition constraints).
Collaboration Collaboration Interfaces month year 4-13

4

ject

n is

to

 new

be
he host
• Select the control value and target state based on result status.

RULE 3: Execute in accordance with the transition control criteria

• Under the FAIL criteria a transition is complete, no change to active state or sub
is effected.

• Under the RESET criteria the implementation is required to reset any active
TIMEOUT transitions. No change to active state or subject is effected. Transitio
complete.

• Under the TRANSITIONAL criteria an implementation sets the root active state
the target state. No subject change is effected. Transition is complete.

• Under the PROCESS criteria the following conditions apply:

• If the transition is a CompoundTransition under either the MODIFICATION or
REPLACEMENTS semantic, then assign the subject of the subsidiary
Encounter to be the subject of the host Encounter .

• If the transition is a simple Transition , then

• Under REPLACEMENT semantics, the resource argument is assigned as a
host subject.

• Under MODIFICATION semantics, the resource argument is a task that will
associated as producer of the host subject, executes (causing changes to t
subject) and completes, following which the host will reassign the produces
relationship to itself.

4.3.1.9 Apply Exceptions

If, during the invocation of the apply operation where the semantic argument is
PROCESS, and the type of object passed under the resource argument is not an
ActiveTask or type derived from ActiveTask , an ActiveTaskTypeConflict exception
will be raised.

exception ActiveTaskTypeConflict{
ActiveResource resource;

};

The InvalidTrigger exception may be raised if the Trigger passed in under the trigger
argument is not in the active_path of the Collaboration .

exception InvalidTrigger{
CollaborationFramework::Trigger trigger;

};

In the case of the failure of the execution of a task executing in the context of
MODIFICATION semantics, the ApplyFailure exception may be raised.

exception ApplyFailure{
CollaborationFramework::Trigger trigger;
SessionFramework::ActiveTask task;

};
4-14 Collaboration Framework month year

4

f
y
d by
y be

e of
4.3.1.10 Invoking Command Events

Command instances describe events that may be raised by the invoke operation on
Collaboration . Access constraints enforced by an implementation of invoke are
defined by the features exposed on the inherited Trigger interface (see Section 4.3.3,
“Trigger,” on page 4-18). The event raised by invoking a Command object is exposed
as an inform event type with keyword , reason , and argument properties
corresponding to the Command keyword and invoke arguments.

void invoke(
in CosObjectIdentity::ObjectIdentifier id,
in SessionFramework::ActiveResource argument,
in string reason

) raises (
InvalidTriggerIdentity

);

4.3.2 CollaborationTemplate

CollaborationTemplate is a specialization of a State and EncounterTemplate
that exposes a set of transition declarations that may be applied to an instance o
Collaboration . As a State , a CollaborationTemplate exposes a sub-state hierarch
that enables the activation of command events and transition. Transitions expose
CollaborationTemplate are declarations of source and destination states that ma
used as arguments under the Collaboration interface apply operation.

Both Command and Transitions references exposed by CollaborationTemplate
inherit activation constraints from the super-type Trigger . Trigger defines activation
constraints based on collaborative context and user’s membership, and in the cas
Transition , the implications of the transition relative to the subject of collaboration.
Collaboration Collaboration Interfaces month year 4-15

4

4.3.2.1 Object Model

Figure 4-4 State, CollaborationTemplate, Trigger, Command & Transition Interfaces

4.3.2.2 IDL Specification

interface CollaborationTemplate :
EncounterTemplate,
State
{
readonly attribute TransitionSequence transitions;
readonly attribute CommandSequence commands;

};

CollaborationTemplate

transitions : TransitionSequence
commands : CommandSequence

State

label : Keyword
terminal : TerminalDescriptor
parent : State
sub_states: StateSequence

Session::
BaseBusinessObject

Transition

target: State
constraint : enum
initialize: boolean

Trigger

keyword : Keyword
source : State
mode : TransitionMode
templates : MembershipSeq.
priority: long
lifetime : TimeBase::IntervalT

Command

 sub-state

1 parent

*

1target

triggers

 *

CollaborationFramework::
EncounterTemplate

CompoundTransition

secondary_target: State
secondary_constraint : enum
template : EncounterTemplate
sealed : boolean

secondary_target

template

*

1

*

* 1

1

4-16 Collaboration Framework month year

4

ss

n
th
t
4.3.2.3 State

A State is a type contained within a CollaborationTemplate . A State exposes a
unique Keyword within the scope of a CollaborationTemplate , maintains
references to sub_states , and contains a reference to a parent State . The attribute
terminal characterizes a state as a terminal, indicating the completion of a
Collaboration process in a SUCCESS or FAILURE condition.

The primary function of a State is to support the expression of a collaborative proce
model. The active_state of a Collaboration is a sequence of State instances that
include the most general parent State , through to the most specific State (see
Section 2.2, “ActiveResource and Associative Interfaces,” on page 2-5). The parent
and sub-state attributes of a State allow client applications to navigate a State
hierarchy.

4.3.2.4 IDL Specification

typedef string Keyword;

interface State :
Session::BaseBusinessObject

{
readonly attribute Keyword label;
enum TerminalDescriptor{

INTERNAL,
SUCCESS,
FAILURE

};
readonly attribute TerminalDescriptor terminal;
readonly attribute State parent;
readonly attribute StateSequence sub_states;

};

Table 4-11CollaborationTemplate Attribute Table

Name Type Properties Purpose

transitions TransitionSequence read-only A sequence of Transition instances. Transitio
instances exposed under this attribute together wi
State models enable client application to construc
process descriptions.

commands CommandSequence read-only A sequence of Command instances that are
managed by the Collaboration template.
Collaboration Collaboration Interfaces month year 4-17

4

te

ed as

d as
4.3.2.5 State Composition

States are composed by association of sub-states to a parent state. A parent sta
exposes sub-states through the sub_states attribute that returns a sequence of sub-
state references. A State has exactly one parent State (possibly itself in the case of a
top level State). Sub-states enable navigation to their parent state through the parent
attribute.

readonly attribute State parent;
readonly attribute StateSequence sub_states;

4.3.3 Trigger

A Trigger is a base type for Command and Transition types. A Trigger may be
invoked under explicit activation by a user through the apply or invoke operation
under the Collaboration interface, or by an implementation of Collaboration
through association of a lifetime value. Timeout based execution is enabled if the
lifetime attribute contains a non-null value. A Trigger exposes a source State .
When the source State is referenced in the active_state chain of a collaboration,
the Trigger is considered active.

Table 4-12State Attribute Table

Name Type Properties Purpose

label Keyword read-only A text string describing the State (such as
offered, proposed, requested).

terminal TerminalDescriptor read-only An enumeration that qualifies that State as
terminal or non-terminal (see Table 4-13 on
page 4-18).

parent State read-only A reference to the State to which this State is
subsidiary. The parent State must expose a
reference to this State in its sub_state attribute.

sub_states StateSequence read-only A sequence of State instances that are subsidiary
to this State .

Table 4-13TerminalDescriptor Enumeration Table

Name Type

INTERNAL Establishes the state as a non-terminal state.

SUCCESS Establishes the state as a terminal state in which the process is classifi
a success.

FAILURE Establishes the state as a terminal state in which the process is classifie
a failure.
4-18 Collaboration Framework month year

4

 a

. Of

4.3.3.1 IDL Specification

interface Trigger :
Session::BaseBusinessObject{
readonly attribute CollaborationFramework::Keyword keyword;
enum TriggerMode{

INITIATOR,
RESPONDENT,
PARTICIPANT, TIMEOUT

};
readonly attribute State source;
readonly attribute TriggerMode mode;
readonly attribute CommunityFramework::MembershipKind

constraint;
readonly attribute long priority;
readonly attribute TimeBase::IntervalT lifetime;

};

4.3.3.2 Collaborative Context and Execution Modes

A mode attribute qualifies the contextual role of a participant authorized to invoke
transition. The mode signifies either TIMEOUT, or the collaborative context
enumeration values INITIATOR, RESPONDENT, and PARTICIPANT. A TIMEOUT
transition is a declaration of a state transition that is invoked by the implementation

Table 4-14Trigger Attribute Table

Name Type Properties Purpose

keyword Keyword read-only A string used to label the transition.

source State read-only The State that must be exposed under a
Collaboration active_state for the
Trigger to be considered usable by a
Collaboration . The source constitutes the
State to which the Trigger is assigned.

mode TriggerMode read-only Refer to Table 4-15 on page 4-20.

constraint MembershipKind read-only Defines the required membership kind that
a user must hold in order to invoke a
Trigger .

priority long read-only A value indicating the priority of a
Trigger . The default value of 0 indicates
normal priority. Higher values indicate
increasing priority.

lifetime TimeBase::IntervalT read-only See Section 4.3.3.4, “Trigger Lifetime and
Activation Semantics,” on page 4-20.
Collaboration Collaboration Interfaces month year 4-19

4

d

he
r the
d

l

the collaborative context modes, INITIATOR limits access to the user that establishe
the currently active state. RESPONDENT refers to any participant other than the
initiator. PARTICIPANT refers to either INITIATOR or RESPONDENT.

enum TriggerMode{
INITIATOR,
RESPONDENT,
PARTICIPANT,
TIMEOUT

};

readonly attribute TriggerMode mode;

4.3.3.3 Access control based on Membership

Access to a Trigger exposing the modes PARTICIPANT, INITIATOR, or
RESPONDENT may be qualified further by the addition of Membership references
under the constraint attribute. An invoking user must be a Member of the
membership kind referenced by the constraint.

readonly attribute CommunityFramework::MembershipKind constraint;

4.3.3.4 Trigger Lifetime and Activation Semantics

A Trigger exposing a non-null lifetime value will be invoked automatically by an
implementation of Collaboration on expiry. Timeout of a trigger is determined by t
time of the last reactivation of the source state plus the time period identified unde
lifetime attribute. An implementation of Collaboration exposes timeout triggers an
deadlines under the timeout_list attribute.

readonly attribute TimeBase::IntervalT lifetime;

Table 4-15TriggerMode Enumeration Table

Value Description

INITIATOR INITIATOR mode restricts the activator of a transition to the same principa
identity that invoked the last transition.

RESPONDENT RESPONDENT is any Member within a Membership other than the
principal as defined by INITIATOR.

PARTICIPANT An INITIATOR or RESPONDENT.

TIMEOUT Invocation of the Trigger is controlled by the implementation in accordance
with the lifetime exposed by the Trigger .
4-20 Collaboration Framework month year

4

e
ed
4.3.4 Command

A Command type is a specialization of Trigger that enables the declaration of an
event that may be invoked under a Collaboration using the invoke operation.

4.3.4.1 IDL Specification

interface Command :
CollaborationFramework::Trigger

{
};

4.3.5 Transition

A Transition is a type of Trigger that exposes a target State and constraints
concerning the effect of a transition relative to a subject of Collaboration .
Transitions that reference a source state that is active (see Section 4.3.1.5, “Activ
State,” on page 4-11) are themselves considered active in that they may be invok
subject to the access constraints imposed by the features inherited from Trigger . A
Transition is applied to a Collaboration through the apply operation. Specification
of the relationship between ControlDescriptor constraint and the subject of
Collaboration is detailed under Section 4.3.1, “Collaboration,” on page 4-8.

4.3.5.1 IDL Specification

interface Transition :
Trigger
{
enum ControlDescriptor{

PROCESS,
TRANSITIONAL,
RESET,
FAIL

};
readonly attribute State target;
readonly attribute ControlDescriptor control;
readonly attribute boolean initialize;

};

Table 4-16Transition Attribute Table

Name Type Properties Purpose

target State read-only The State which will be made the root active state on
successful completion of a transition.
Collaboration Collaboration Interfaces month year 4-21

4

back

e

d.

state

ge
4.3.5.2 Subject Modification Constraints

A Transition exposes the enumerated values of PROCESS, TRANSITIONAL , and
FAIL . These values are used by an implementation of the apply operation to determine
behavior concerning the launching of sub-process and the potential commit or roll
of changes on completion of a transition (see Section 4.3.1, “Collaboration,” on
page 4-8).

enum ControlDescriptor{
PROCESS,
TRANSITIONAL,
RESET,
FAIL

};

4.3.6 CompoundTransition

CompoundTransition is a specialization of Transition that introduces a
secondary destination State, and ControlDescriptor constraint, and a reference to
an EncounterTemplate and default initialization Transition .

During the invocation of the apply operation under Collaboration an implementation
is responsible to instantiating a process described under the template declaration. A
transition of this type will launch an Encounter or series of Encounter instances as

control ControlDescriptor read-only ControlDescripter exposing one of the enumerated
values PROCESS, TRANSITIONAL , or FAIL used by
the apply operation on Collaboration (see
Section 4.3.5.2, “Subject Modification Constraints,” on
page 4-22).

initialize boolean read-only A value of true indicates that the transition may be
invoked as an initialization, bypassing any source Stat
constraint.

Table 4-17ControlDescriptor Enumeration Table

Name Purpose

PROCESS State transitioning and subject change by a task is authorized.

TRANSITIONAL Subject change is not authorized. Target state transitioning is authorize

RESET Neither target state nor subject changes are authorized but the current
is re-entered and as such, active timeout constraints are reinitialized.

FAIL Neither target state nor subject change are authorized. No timeout chan
occurs.

Table 4-16Transition Attribute Table
4-22 Collaboration Framework month year

4

er
sub-processes to the active Collaboration . Determination of the selection of the
primary destination or alternate destination is a function of the result status event
raised by the transitioning Encounter .

CompoundTransition provides a powerful mechanism to express recursive
collaborative processes such as amendments under multilateral negotiation.

4.3.6.1 IDL Specification

interface CompoundTransition :
Transition
{
readonly attribute State secondary_target;
readonly attribute ControlDescriptor secondary_control;
readonly attribute EncounterTemplate template;
readonly attribute Transition initialization;
readonly attribute boolean sealed;

};

Table 4-18CompoundTransition Attribute Table

Name Type Properties Purpose

secondary_target State read-only Declaration of a State that constitutes the
alternative State destination to the principal
destination inherited from Transition .

secondary_control ControlDescriptor read-only Control descriptor that qualifies subject
modification rights under the secondary
destination.

initialization Transition read-only The default initialization transition to be
invoked from the possible initialization
transitions exposed by the
EncounterTemplate referenced by the
template attribute.

sealed boolean read-only Controls the exposure of a template und
the template attribute. Sealed transitions
will return a null to a client on an attempt to
navigate to the associated template.

template EncounterTemplate read-only A Template defining a process to be
executed and concluded under a success
or failed state. An instance of template is
not exposed if the value of sealed is true.
Collaboration Collaboration Interfaces month year 4-23

4

actual
4.4 Engagement and Associated Interfaces

EngagementTemplate , Engagement , and EngagementManifest are a set of
interfaces used to establish, execute, and persistently register the result of a contr
engagement. EngagementTemplate exposes a factory key used by a client to
establish an Engagement process and associates an instance of
EngagementManifest as the resource produced by the Engagement process.

4.4.1 Object Model

Figure 4-5 Engagement Object Model

4.4.2 EngagementTemplate

EngagementTemplate defines the criteria under which an Engagement is executed
through the exposure of an activation_policy and engagement_policy .
EngagementTemplate is associated to an Engagement process through the data
usage association.

template
EncounterTemplateEncounter 1*

Engagement

engage()

EngagementTemplate

activation_policy : ActivationPolicy
engagement_policy : PropertySetDef

EngagementManifest

manifest : PropertySetDef

AbstractTemplate

ActiveResource

produces

1

4-24 Collaboration Framework month year

4

.

on-

d

.

on-

d

.

4.4.2.1 IDL Specification

interface EngagementTemplate :
EncounterTemplate
{
enum ActivationPolicy{

DISCRETIONARY,
IMPLICIT

};
readonly attribute ActivationPolicy activation_policy;
readonly attribute CosPropertyService::PropertySetDef

engagement_policy;
};

Table 4-19 EngagementTemplate Attribute Table

Name Type Properties Purpose

activation_policy ActivationPolicy read-only An ActivationPolicy is one of the
enumerated values DISCRETIONARY or
IMPLICIT (see Table 4-21 on page 4-26)

engagement_policy PropertySetDef read-only A property set used to disclose the n
repudiation policy applicable to the
engagement process. Property names an
values are undefined and subject to
resolution by negotiation between parties

Table 4-20Engagement Template Attribute Table

Name Type Properties Purpose

activation_policy ActivationPolicy read-only An ActivationPolicy is one of the
enumerated values DISCRETIONARY or
IMPLICIT (see Table 4-21 on page 4-26).

engagement_policy PropertySetDef read-only A property set used to disclose the n
repudiation policy applicable to the
engagement process. Property names an
values are undefined and subject to
resolution by negotiation between parties
Collaboration Engagement and Associated Interfaces month year 4-25

4

n

ce of

l be
nt of

plicit
4.4.3 Engagement

Engagement is a specialization of Encounter that associates an
EngagementTemplate (as qualifying criteria for the engagement process) with a
produced EngagementManifest . Engagement exposes the operation engage that
takes evidence as input and provides proof of engagement as an output argument. A
implementation of Engagement registers the set of engagement proofs under an
EngagementManifest . The proof and evidence arguments to engage are defined
by the engagement_policy exposed by EngagementTemplate .

4.4.3.1 IDL Specification

interface Engagement :
Encounter
{
void engage(

in any evidence,
out any proof

);
};

4.4.4 EngagementManifest

An EngagementManifest is a specialization of ActiveResource and Descriptive
that provides a persistent store for the registration of proofs to engagement by an
Engagement process under the property_set exposed by the inherited Descriptive
interface. The semantics of proof registration and format are defined by an instan
EngagementTemplate .

4.4.4.1 IDL Specification

interface EngagementManifest :
SessionFramework::ActiveResource

Table 4-21ActivationPolicy Enumeration Table

Value Description

DISCRETIONARY Engagement is considered complete at the discretion of the implementation.
Examples of discretionary engagement include open contracts under which
participants may choose to engage. Typically, a discretionary engagement wil
defined as a timeout transition such that the set of engaged parties at the poi
timeout constitute the contracting parties.

IMPLICIT Implicit engagement is defined as an engagement process that requires the ex
engagement of all participants associated to the Membership that the
Collaboration represents.
4-26 Collaboration Framework month year

4

 used
{
readonly attribute CosPropertyService::PropertySetDef manifest;

};

4.5 Voting and Associated Interfaces

Voting is a specialization of Encounter that associates VoteTemplate (as qualifying
criteria for the Voting process) with a produced VoteManifest . Voting exposes the
vote operation that takes one of the enumerated value YES, NO, or ABSTAIN as an
input argument. An implementation of Voting is responsible for the updating of the
voting status under the VoteManifest .

4.5.1 Object Model

Figure 4-6 Voting Object Model

Table 4-22EngagementManifest Attribute Table

Name Type Properties Purpose

manifest PropertySetDef read-only A property set used to separate evidence that may be
in an engagement process as defined by the active
engagement policy. Usage is policy dependent.

EncounterTemplateEncounter

template

1*

Voting

vote()

VotingTemplate

vceiling : VoteCeiling

VoteManifest

vcount : CountStruct

AbstractTemplate

ActiveResource

produces
Collaboration Voting and Associated Interfaces month year 4-27

4

h
s

ent

re

h

ith
4.5.2 VoteTemplate

4.5.2.1 IDL Specification

interface VoteTemplate :
Encounter
{
struct VoteCeiling{

short numerator;
short denominator;

};
readonly attribute VoteCeiling vceiling;

};

4.5.3 Voting

Voting is a specialization of Encounter supporting vote-based determination of
encounter success or failure. Voting is an interface that provides mechanisms throug
which users can register YES, NO, or ABSTAIN votes in accordance with the proces
policy exposed by VoteTemplate . VoteTemplate exposes a structured
numerator/denominator pair that defines the required ceiling for calculation of a
successful vote. An implementation of Voting is required to raise a result event on
completion, indicating the successful or unsuccessful conclusion of the engagem
process.

Table 4-23VoteTemplate Attribute Table

Name Type Properties Purpose

vceiling VoteCeiling read-only The ceiling exposes a fractional value indicating the
proportion of YES votes required to conclude a vote
process successfully. Values of ceiling such as ½ or ¾ a
expressed by the VoteCeiling structure in the form of a
numerator and denominator value.

Table 4-24VoteCeiling Struct Table

Element Type Description

numerator short Value describing the numerator of a fraction that in combination wit
the denominator defines the fractional value attributed VoteCeiling.

denominator short Value describing the denominator of a fraction that in combination w
the numerator defines the fractional value attributed VoteCeiling.
4-28 Collaboration Framework month year

4

 is

er
4.5.3.1 IDL Specification

interface Voting:
Encounter
{
enum VoteDescriptor{

YES,
NO,
ABSTAIN

};
void vote(

in VoteDescriptor value
);

};

4.5.3.2 Registering a Vote

Votes are registered against a Voting process using the vote operation. The input
argument to the vote operation is one of the enumerated values YES, NO, or
ABSTAIN . A user may invoke a vote more than one time, the last vote registered
recorded as the standing vote for that Member .

4.5.4 VoteManifest

A VoteManifest is a container for the persistent registration of voting results.

The attribute count on VoteManifest provides an aggregation of votes registered und
an active voting process. As votes are registered the values attributed to VoteCount
are updated. As VoteManifest is itself an ActiveResource , changes to the value of
count are raised as update events.

4.5.4.1 IDL Specification

interface VoteManifest :
SessionFramework::ActiveResource {
struct CountStruct{

long yes;
long no;
long abstain;

};

Table 4-25VoteDescriptor Enumeration Table

Element Description

YES Value signifying an affirmative position under a vote operation.

NO Value signifying an opposing position under a vote operation.

ABSTAIN Value signifying neither an affirmative nor negative position under a vote operation.
Collaboration Voting and Associated Interfaces month year 4-29

4

 a

,
d
readonly attribute CountStruct vcount;
};

4.6 Negotiation and Promissory Models

4.6.1 Bilateral Negotiation

4.6.1.1 Overview

A bilateral negotiation is a collaborative process model dealing with interactions
between two participants. It provides a framework within which a user can initiate
process under which agreement to the subject of Collaboration can be established
though interaction with another user. The model exposes three negotiable states
requested , proposed , and offered , that, through collaborative interaction may lea
to any of the terminal states of agreed , rejected , or timeout.

Table 4-26Voting Attribute Table

Name Type Properties Purpose

vcount CountStruct read-only VoteCount is a structure containing the number of
YES, NO and ABSTAIN votes registered under the
voting process.

Table 4-27VoteCount Struct Table

Element Type Description

yes long Number of yes votes registered under the voting process.

no long Number of no votes registered under the voting process.

abstain long Number of abstain votes registered under the voting process.
4-30 Collaboration Framework month year

4

rees
tered
Figure 4-7 Bilateral State Transition Model

The different open sub-states of a bilateral negotiation model provide varying deg
of co-operation, commitment, and agreement. A degree of commitment is encoun
under the offered state by the fact that an offer can be agreed to. As proposed is a
stub-state of offered , it may also be agreed to; however, proposed extends the
semantic model of offered by enabling the continuation of subject modification
through the request transition.

4.6.1.2 Initialization

The bilateral negotiation may be initialized under one of the three states proposed ,
requested , or offered . An offer signifies a state in which the subject of
collaboration may be agreed to but not be changed, whereas a proposed state enables
the introduction of counter requests. Both offer and propose imply a potential
agreement by the offering party whereas the requested state implies no commitment
by the invoking party.

Table 4-28Bilateral Negotiation State Variance Table

suggested requested proposed offered agreed rejected
Expression of willingness to continue negotiation√ √ √
Represents commitment by the principal √ √
Represents a bilateral commitment √
Terminal state √ √

closed

open

offeredrequested

proposed
propose

agreed

rejected

timeout

offer

request

agree

reject

timeout

request offer propose

suggest

negotiable

A

Collaboration Negotiation and Promissory Models month year 4-31

4

 the

o the
l of

reed

4.6.1.3 Transitions

Request

Request is a transition that can be applied under the proposed state. Request
enables a respondent to change the subject of a negotiation and the context from
proposed to requested state. A request transition does not signify the
commitment of the requesting party; however, it opens the possibility for the
counterpart to respond with propose or offer against the subject under the
requested state.

Suggest

Suggest is semantically equivalent to the request transition except that it is initiated
under the requested state. Suggest is used as an exploratory mechanism through
which two clients can continue to invoke suggestions towards each other relative t
subject, until such time that at least one party is ready to migrate to a higher leve
commitment as expressed under the proposed or offered states.

Propose

Propose is a transition from the requested to proposed states that introduces the
commitment by the proposing party in that the subject of the proposal may be ag
to by the correspondent. This is distinct to the requested state where, in comparison,
no agreement is implied.

Table 4-29Request Transition Parameter Table

keyword mode source destination priority constraint

request RESPONDENT proposed requested 0 PROCESS

Table 4-30Suggest Transition Parameter Table

keyword mode source destination priority constraint

suggest RESPONDENT requested requested 0 PROCESS

Table 4-31Proprose Transition Parameter Table

keyword mode source destination priority constraint

propose RESPONDENT requested proposed 0 PROCESS
4-32 Collaboration Framework month year

4

hand,

y
f

 the
Offer

An offer is a transition from the requested state to the offered state. Invoking offer
is on one hand an expression of agreement by the offering party, but on the other
restricts the potential for further negotiation (as compared to propose).

Agree

The agree transition is available to a respondent under the offered and proposed
states. Agree signifies the agreement by the respondent to an offer or proposal
raised by the issuing user. The agree transition establishes a collaboration under an
agreed state, expressing the agreement by both parties to the subject of a
collaboration.

Reject

A reject transition may be invoked against any open state (proposed , requested ,
or offered). Reject invokes a failure termination of a negotiation through
transitioning to the rejected state.

Timeout

A timeout transition is associated to the open state and as such is active during an
of the proposed , requested , or offered states. The timeout signifies the amount o
time following the last transition which, when elapsed, will cause the execution of
transition. The result of the timeout transition is automatic transition to timeout and
subsequent raising of the failure status of the host process.

Table 4-32Offer Transition Parameter Table

keyword mode source destination priority constraint

offer RESPONDENT requested offered 0 PROCESS

Table 4-33Agree Transition Parameter Table

keyword mode source destination priority constraint

agree RESPONDENT offered agreed 0 PROCESS

Table 4-34Reject Transition Parameter Table

keyword mode source destination priority constraint

reject RESPONDENT open rejected 0 PROCESS

Table 4-35Timeout Transition Parameter Table

keyword mode source destination priority constraint

timeout TIMEOUT open timeout 100 TRANSITIONAL
Collaboration Negotiation and Promissory Models month year 4-33

4

s
h a

f

tate

sition

t of

to

4.6.1.4 States

The semantics of the bilateral negotiation states are summarized in the following
tables.:

4.6.2 Multilateral Negotiation

4.6.2.1 Overview

A multilateral encounter is a collaborative process model dealing with interaction
between a group of two or more participants. It provides a framework within whic
user can initiate an action under which agreement to the subject of Collaboration
can be established through a consensus process.

Table 4-36Bilateral Negotiation State Semantics

State terminal Description

open INTERNAL The open state is a parent state to the three negotiable states offered ,
proposed , and requested . The three negotiable states are sub-states o
the open state, as such transitions defined under the open state are
available at any time between initialization and termination. Transitions
declared on the open state enable the explicit rejection of a subject by a
user through the reject transition. A second characteristic of the open
state is the association of a timeout transition that will close the
negotiation after a predetermined period of transition inactivity.

offered INTERNAL The offered state enables a respondent to agree or reject an agreement to
the subject of the collaboration. Invoking agree leads to the establishment
of the terminal state expressing agreement by both parties to the subject of
the Collaboration .

proposed INTERNAL The proposed state extends the semantics of the offered state by
introducing the possibility of change to the subject of the collaboration.
Through application of the request transition, a respondent may change
the subject of the collaboration to a new value and establish the active s
as requested .

requested INTERNAL The requested state exposes transitions that allow a respondent to tran
to the offered or proposed states using the offer or propose transitions,
or to continue in the requested state through application of the suggest
transition.

agreed SUCCESS The agreed state is a terminal success state that signifies the agreemen
both parties to the subject of the Collaboration .

rejected FAILURE The reject state is a terminal fail state that signifies the non-agreement
the subject of the Collaboration and the termination of the process.

timeout FAILURE The timeout state is a terminal fail state that signifies the closure of the
process without achievement of agreement to the sub ject of the
Collaboration .
4-34 Collaboration Framework month year

4

s of

r
e

ion

Figure 4-8 Multilateral State Transition Model

The model exposes three principal states: pending , seconded , and voting that
through interaction between the participants may lead to any of the terminal state
agreed , rejected , or withdrawn . Initialization of a multilateral encounter is
established through the initializing transition named motion . Under the pending
state three possible actions are possible:

1. The user raising the motion may withdraw the motion,

2. a reciprocating user may second the motion, or

3. the motion may fail through a timeout due to the lack of a second.

Both timeout and withdraw transitions lead to the failed state withdrawn . Once a
pending motion is seconded by a reciprocating user (any user other than the use
raising the motion) the vote timeout countdown is activated. Any user may invoke th
amend or call transition prior to the vote transition. Both amend and call
transitions are executed as a sub-process defined by a multilateral motion (as such,
both are subject to the agreement of the participants in order to succeed).

Once the voting state is established through a timeout of the vote transition, or a
successful call transition, a count transition is immediately activated. The count
transition is a specialized Encounter named Voting that exposes a vote operation
under which participants may register YES, NO, and ABSTAIN votes. The success or
failure of the count transition signals the success or failure of the multilateral mot
process by completing the transition to either the agreed or rejected terminal states.

multilateral encounter

closedmotioned

secondedpending
agreed

rejected

second

amend

call

timeout

motion

withdrawn

withdraw

voting
count

vote

A

A

Collaboration Negotiation and Promissory Models month year 4-35

4

st
otion
re a

al
nded

of

on

4.6.2.2 Transitions

Motion

Initialization using motion establishes the Collaboration with the pending state and
all parent states as the active-state path. A motion is raised with the express intere
of gaining the agreement of the membership to the subject of the motion. For a m
to be successful, the motion must be seconded and voted upon. At any time befo
motion vote is initiated the principal raising the motion may withdraw it. A potenti
risk of raising a motion is that the subject of the motion, if seconded, may be ame
at the discretion of the group.

Second

The second transition is a simple transition that may be invoked by a respondent in
support of a pending motion. The second transition will result in the establishment
the seconded state and all parent states as the active-state path.

Amendment

The amend transition is a compound transition defined by a subsidiary collaborati
process using the multilateral motion state model. During the invocation of the
apply operation, the client passes in amend as the transition argument value, and a
reference to a task that will change the current subject . On conclusion of the
amendment process, a successful result will cause the completion of the transition by
changing the active-state to seconded and committing the transaction. In the case
of failure, no state change will occur and a rollback of changes to the subject will be
invoked.

Table 4-37Multilateral Negotiation State Variance Table

pending seconded voting agreed rejected
Represents commitment by the principal √ √ √ √
Endorsement of a commitment by a second participant √ √ √
Represents a unilateral commitment √
Terminal state √ √

Table 4-38Motion Parameter Table

keyword mode source destination priority constraint

motion INITIATOR pending 0 TRANSITIONAL

Table 4-39Second Parameter Table

keyword mode source destination priority constraint

second RESPONDENT pending seconded 0 TRANSITIONAL
4-36 Collaboration Framework month year

4

the

n to

The expiry of the seconded state is re-initialized under each re-entry to the
seconded state. As such, any amendment (successful or otherwise) will invoke
resetting of the vote transition deadline.

Call

Calling the question is a compound transition that if successful results in a transitio
the voting state (TRANSITIONAL semantics).

The call transition is a compound transition defined by a subsidiary collaboration
process using the multilateral encounter state model. During the invocation of the
apply operation, the client passes in a reference to the call transition (task arguments
are ignored). On conclusion of the call process (signaled by a result event of the
Collaboration sub-process), a successful result will cause the completion of the
transition through a change in the active state of the parent Collaboration to voting .
An unsuccessful result will not invoke a transition.

Vote

The vote transition is a TIMEOUT transition associated to the seconded state. On
expiry the vote transition is applied by Collaboration . The vote transition
establishes the voting state.

Table 4-40Amend Parameter Table

Feature Value constraint
keyword amend

mode PARTICIPANT

template Collaboration, using multilateral motion

priority 0

source seconded

target seconded PROCESS

secondary FAIL

Table 4-41Call Parameter Table

Feature Value constraint
keyword call

mode RESPONDENT

template Collaboration, using multilateral motion

priority 10

source seconded

target voting TRANSITIONAL

secondary FAIL

Table 4-42Vote Parameter Table

keyword mode source destination priority constraint

vote TIMEOUT seconded voting 100 TRANSITIONAL
Collaboration Negotiation and Promissory Models month year 4-37

4

e a

 the

t of
and

ny

Count

On activation of the voting state a count transition is initiated under a zero lifetime
timeout (i.e., immediately on state activation). Any participant may attempt to forc
vote by calling the question using the call transition.

The count transition is a compound transition defined by Voting . On initialization the
Voting process is established as a sub-process of the active Collaboration .

Following creation of a vote aggregation sub-process, participants associated with
Collaboration may invoke YES, NO, or ABSTAIN votes using the vote operation on
the Voting interface. On conclusion of the voting process as a result of a timeou
the process or registration of votes by all participants, a vote count is conducted
established under the count attribute of a VoteManifest . A successful conclusion of
the vote process will result in a transition to the agreed state (TRANSITIONAL
semantics) whereas failure will result in transition to the rejected state
(TRANSITIONAL semantics).

Timeout

The timeout transition triggers an automatic transition from the pending to
withdrawn state after a set period of inactivity as disclosed by the state model
associated to the Collaboration process.

Withdraw

The withdraw transition may be invoked by the principal establishing a motion at a
time prior to the motion being seconded or the occurrence of a timeout . A
withdraw transition establishes the withdrawn state as active, resulting in the failure
of the collaboration.

Table 4-43Count Transition Table

Feature Value constraint
keyword count

mode TIMEOUT

template Voting

priority 100

source seconded

target agreed TRANSITIONAL

secondary rejected TRANSITIONAL

Table 4-44Timeout Parameter Table

keyword mode source destination priority constraint

timeout TIMEOUT pending withdrawn 100 TRANSITIONAL

Table 4-45Withdraw Parameter Table

keyword mode source destination priority constraint

withdraw INITIATOR pending withdrawn 0 TRANSITIONAL
4-38 Collaboration Framework month year

4

he

 on

d
e

g
4.6.2.3 States
Table 4-46Multilateral Negotiation State Semantics

State terminal Description

multilateral INTERNAL The top-level state containing the motioned and closed states.

motioned INTERNAL Contextual state containing the pending, seconded, and voting states.

pending INTERNAL The pending state signifies the agreement by one party to a motion,
expressed as the subject of Collaboration and the expression of the
interest of that party in the reaching of agreement to the said subject. T
issuing user may withdraw a motion at any time prior to second transition
or timeout . A motion fails if the timeout passes prior to the occurrence of
a second transition. A second transition establishes the motion as a valid
motion to the Membership .

seconded INTERNAL Under the seconded state the subject of a motion may be amended
though the invocation of the amend transition. An amend transition
causes the creation of a subsidiary Collaboration to the current
Collaboration . Success of the subsidiary process is required before the
principal Collaboration subject is updated. A call transition takes priority
over any queued amendment transitions and if successful, forces a vote
the current motion. A call transition is executed as a subsidiary
Collaboration using a multilateral motion process.

voting INTERNAL An immediate timeout of the voting state is triggered under the count
transition. This transition creates a subsidiary Encounter using the
Voting process. The boolean result of the voting process will be signale
under a result event that invokes completion of the transition to either th
agreed or rejected state.

withdrawn FAILURE A state resulting from the withdraw of a motion prior to the occurrence of
a second transition or a timeout . The withdrawn state signifies a failure
of the multilateral encounter.

agreed SUCCESS An agreed terminal state indicating the successful resolution of the votin
process by the registration of a sufficient number of yes votes to equal or
exceed the vote vceiling .

rejected FAILURE A rejected terminal state indicating a failure of the voting process.
Collaboration Negotiation and Promissory Models month year 4-39

4

4.6.3 Promissory Encounter

4.6.3.1 Overview

The promissory encounter model defines a collaborative interaction sequence
between a consumer and a provider. A consumer is a Member associated to a
Membership of the kind “consumer.” A provider is a Member associated to the
Membership of the kind “provider.” A provider can invoke a promise transition to
initialize a Collaboration under the right state. Once initialized as a right , a
consumer may call the promise by invoking a request transition. This corresponds to
a consumer request for fulfillment of the promise by the provider . A provider
fulfills a promise by applying the fulfill transition, itself a compound transition defined
by a bilateral or multilateral negotiation. Success of the negotiation leads to the
fulfilled state whereas failure leads to the rejected state.

Figure 4-9 Promissory State Transition Model

4.6.3.2 Initialization

Initialization is achieved using the promise or commit transition. When initialized
under promise , the Collaboration is established as a right of the consumer. When
initialized under commit, the promise is established as a pending obligation of the
provider.

promised

right

obligation

pending fulfilled

req uest

fulfill

w aiv ed

waiv e

promise

comm it

rejected

expired
A expire

overdue

A timeout
4-40 Collaboration Framework month year

4

inal

4.6.3.3 Transitions

Request

Request is a transition available to a consumer under the right state. Invoking the
request transition establishes the promise as a pending obligation against the
supplier.

Fulfill

Fulfill is available to a provider under the obligation pending state. A fulfill transition
is defined as a compound transition that referenced a bilateral or multilateral
negotiation template. A subsidiary Collaboration is instantiated that, on resolution,
defines the success or failure condition used to determine a transition to the term
fulfilled or rejected state.

Waive

Waive may be invoked by either consumer or provider. It is a compound transition
referencing a bilateral or multilateral negotiation that if successful results in a
transition to the terminal waived state. A failure of the negotiation will result in the
continuation of the process under the state prior to the initiation of the waive
transition.

Table 4-47Promissory Initialization Table

keyword mode kind target

promise PARTICIPANT provider right

commit PARTICIPANT provider pending

Table 4-48Request Transition Parameter Table

keyword mode kind priority source destination constraint

request PARTICIPANT consumer 0 right obligation TRANSITIONAL

Table 4-49Fulfill Transition Parameter Table

Feature Value constraint
keyword fulfill

mode PARTICIPANT

role name provider

template bilateral or multilateral negotiation

priority 0

source pending

target fulfilled PROCESS

secondary rejected TRANSITIONAL
Collaboration Negotiation and Promissory Models month year 4-41

4

t to

Expire

Expire exposes a timeout value that will trigger the expiry of the consumer’s righ
invoke a request for fulfillment against a provider.

Timeout

Timeout changes an existing obligation pending to obligating pending and
overdue . From a computation point of view an overdue obligation is no different to
a pending obligation.

4.6.3.4 States

Table 4-50Waive Transition Parameter Table

Feature Value constraint
keyword waive

mode PARTICIPANT

role name

template bilateral or multilateral negotiation

priority 0

source promised

target waived TRANSITIONAL

secondary FAIL

Table 4-51Expire Transition Parameter Table

keyword mode kind priority source destination constraint

expire TIMEOUT 100 right expired TRANSITIONAL

Table 4-52Timeout Transition Parameter Table

keyword mode kind priority source destination constraint

timeout TIMEOUT 100 pending overdue TRANSITIONAL

Table 4-53Promissory State Table

State terminal Description

promised INTERNAL The top level state exposing a promissory encounter model.

right INTERNAL A promise, made by a provider, towards a consumer under which the
provider commits to the willingness to fulfill the promise at the request
of the consumer.
4-42 Collaboration Framework month year

4

gh

to
4.6.4 CollaborationFramework IDL

// File: CollaborationFramework.idl

#ifndef _COLLABORATION_FRAMEWORK_IDL_
#define _COLLABORATION_FRAMEWORK__IDL_
#pragma prefix "omg.org"

#include <CommunityFramework.idl>

module CollaborationFramework{

// forward declarations
interface State;
interface Trigger;
interface Command;
interface Transition;
interface CompoundTransition;

interface Encounter;
interface EncounterTemplate;
interface Implication;

interface Collaboration;
interface CollaborationTemplate;

interface Engagement;
interface EngagementTemplate;
interface EngagementManifest;

interface Voting;

obligation INTERNAL A promise that has been requested by a consumer, or initialized throu
a commit, under which the promise constitutes an obligation of the
provider to fulfill. Obligation is a contextual state that qualifies the
operation states of pending, fulfilled, and rejected.

pending INTERNAL A state under which a provider is obliged to fulfill a promise through
invocation of the fulfil transition.

overdue INTERNAL A sub-state of pending which is established by an implementation of
Collaboration when a pending obligation timeout transition expires.

waived SUCCESS A sub-state of obligation, reached through mutual agreement of the
parties, under which the obligations and rights of both parties are
forgone.

fulfilled SUCCESS A success terminal state, expressing the satisfactory fulfillment of a
promise by a provider towards a consumer.

rejected FAILURE A failure terminal state, expressing the failure of the parties to agree
the fulfillment of a promise.

Table 4-53Promissory State Table
Collaboration Negotiation and Promissory Models month year 4-43

4

interface VoteTemplate;
interface VoteManifest;

// type definitions

typedef string Keyword;

typedef sequence <State> StateSequence;
typedef sequence <Transition> TransitionSequence;
typedef sequence <Collaboration> CollaborationSequence;
typedef sequence <Command> CommandSequence;

// encounter and template interfaces

interface EncounterTemplate :
SessionFramework::AbstractTemplate
{
readonly attribute CommunityFramework::MembershipKind

membership_kind;
enum ImplicationOrdering {SEQUENTIAL,

PARALLEL
};
readonly attribute ImplicationOrdering order;

};

interface Implication : SessionFramework::Linkage{ };
interface Success : Implication{ };
interface Failure : Implication{ };

interface Encounter :
CommunityFramework::Membership,
SessionFramework::ActiveTask
{
readonly attribute EncounterTemplate template;
readonly attribute SessionFramework::ActiveResource subject;

};

// interfaces

interface State :
Session::BaseBusinessObject{
readonly attribute Keyword label;
enum TerminalDescriptor{

INTERNAL,
SUCCESS,
FAILURE

};
readonly attribute TerminalDescriptor terminal;
readonly attribute State parent;
readonly attribute StateSequence sub_states;

};
4-44 Collaboration Framework month year

4

interface Trigger :
Session::BaseBusinessObject{
readonly attribute CollaborationFramework::Keyword keyword;
enum TriggerMode{

INITIATOR,
RESPONDENT,
PARTICIPANT,
TIMEOUT

};
readonly attribute State source;
readonly attribute TriggerMode mode;
readonly attribute CommunityFramework::MembershipKind

constraint;
readonly attribute long priority;
readonly attribute TimeBase::IntervalT lifetime;

};

interface Command :
CollaborationFramework::Trigger{

};

interface Transition :
Trigger
{
enum ControlDescriptor{

PROCESS,
TRANSITIONAL,
RESET,
FAIL

};
readonly attribute State target;
readonly attribute ControlDescriptor control;
readonly attribute boolean initialize;

};

interface CompoundTransition :
Transition
{
readonly attribute State secondary_target;
readonly attribute ControlDescriptor secondary_control;
readonly attribute EncounterTemplate template;
readonly attribute Transition initialization;
readonly attribute boolean sealed;

};

// Collaboration and template

interface CollaborationTemplate :
EncounterTemplate,
State
Collaboration Negotiation and Promissory Models month year 4-45

4

{
readonly attribute TransitionSequence transitions;
readonly attribute CommandSequence commands;

};

interface Collaboration :
Encounter
{
readonly attribute StateSequence active_state;
struct TimeoutSequence{

CollaborationFramework::Trigger trigger;
TimeBase::UtcT timestamp;

};
readonly attribute TimeoutSequence timeout_list;
exception InvalidTrigger{

CollaborationFramework::Trigger trigger;
};
exception ApplyFailure{

CollaborationFramework::Trigger trigger;
SessionFramework::ActiveTask task;

};
enum ApplySemantics{

REPLACEMENT,
MODIFICATION

};
exception ActiveTaskTypeConflict{

SessionFramework::ActiveResource resource;
};
void apply(

in CollaborationFramework::Transition transition,
in ApplySemantics semantic,
in SessionFramework::ActiveResource resource

) raises (
InvalidTrigger,
ActiveTaskTypeConflict,
ApplyFailure

);
void invoke(

in CollaborationFramework::Command command,
in SessionFramework::ActiveResource argument,
in string reason

) raises (
InvalidTrigger

);
};

// Engagement Template, Process and Manifest

interface EngagementTemplate :
EncounterTemplate
{

4-46 Collaboration Framework month year

4

enum ActivationPolicy{
DISCRETIONARY,
IMPLICIT

};
readonly attribute ActivationPolicy activation_policy;
readonly attribute CosPropertyService::PropertySetDef

engagement_policy;
};

interface Engagement :
Encounter {
void engage(

in any evidence,
out any proof

);
};

interface EngagementManifest :
SessionFramework::ActiveResource
{
readonly attribute CosPropertyService::PropertySetDef manifest;

};

// Vote Template, Process and Manifest

interface VoteTemplate :
EncounterTemplate
{
struct VoteCeiling{

short numerator;
short denominator;

};
readonly attribute VoteCeiling vceiling;

};

interface Voting:
Encounter
{
enum VoteDescriptor{

YES,
NO,
ABSTAIN

};
void vote(

in VoteDescriptor value
);

};

interface VoteManifest :
SessionFramework::ActiveResource
{

Collaboration Negotiation and Promissory Models month year 4-47

4

struct CountStruct{
long yes;
long no;
long abstain;

};
readonly attribute CountStruct vcount;

};

}; // end CollaborationFramework Module

#endif // _COLLABORATION_FRAMEWORK_IDL_
4-48 Collaboration Framework month year

DOM Framework 5
s of
e are
Contents

This chapter contains the following topics.

5.1 Overview

It is a high priority to be able to apply the processes of negotiation and other form
collaboration to subject resources exposing the W3C DOM level 1 interfaces. Ther
two problems that have to be dealt with in achieving this:

1. DOM Specification issues:

• Illegal IDL declarations concerning exceptions raised by attributes

• Non-support for OMG Language Mappings

• Implied locality restrictions

2. Framework to DOM Issues:

• Definition of interfaces enabling the representation of a DOM as a type of
ActiveResource.

5.2 DomFramework Wrapper Interfaces

Resolution of the DOM Specification issues identified above has been achieved
through a set of wrapper interfaces defined under the module DomFramework .

The wrapper interfaces introduce the following additional features:

Topic Page

“Overview” 5-1

“DomFramework Wrapper Interfaces” 5-1
Negotiation Facility month year 5-1

5

1. DocFramework::Node

• Addition of CosObjectIdentity::IdentifiableObject

• Addition of a mode attribute containing
CosPropertyService::PropertyModeType access constrain declaration

• The addition of the get_nodeValue operation and exception

2. DocFramework::CharacterData
• Addition of a set_data and get_data operations with exceptions

3. DocFramework::ProcessingInstruction
• Addition of a set_data operation with exception

4. Wrapping of all interfaces to inherit from DomFramework::Node or its derived
interface and their counterpart in the W3C DOM module

Specification of the DOM interfaces are detailed under the W3C DOM Level 1
Recommendation. Relevant W3C DOM documentation is available under the
following URLs.

• W3C DOM Level 1 Recommendation
http://www.w3.org/TR/REC-DOM-Level-1/

• DOM IDL
http://www.w3.org/DOM/updates/REC-DOM-Level-1-19981001-errata.html or
directly under the archive http://www.w3.org/DOM/updates/REC-DOM-Level-1-
java-binding-19990107.zip.

Semantics of the access constraints introduced under the DomFramework::Node
interface are detailed under the OMG CosPropertyService specification.
5-2 Negotiation Facility month year

5

it is
 data.

utside
hods
Figure 5-1 DOM wrapper interfaces defined under the DomFramework module

5.2.1 Extensions

DocumentResource has been defined to support the mapping of a
DomFramework::Document as an AbstractResource .

5.2.1.1 DocumentResource

DocumentResource is derived from DomFramework::Document and
ActiveResource . As an ActiveResource , the interface inherits life-cycle
operations, which are undefined in the W3C DOM Level 1 recommendation. A
Document interface represents an entire HTML or XML document. Conceptually,
the root of the document tree, and provides the primary access to the document's

Since elements, text nodes, comments and processing instructions cannot exist o
the context of a Document, the Document interface also contains the factory met
needed to create these objects. The Node objects created have an ownerDocument
attribute, which associates the DocumentResource within whose context they were
created.

Node

CharacterData

TextComment

CDATASection

Attr Element DocumentType Notation Entity

EntityReference

ProcessingInstruction DocumentFragmentDocument

SessionFramework
ActiveResource

DocumentResource
Negotiation DomFramework Wrapper Interfaces month year 5-3

5

5.2.1.2 Object Model

Figure 5-2 DocumentResource Object Model

5.2.1.3 IDL Specification

interface DocumentResource :
DomFramework::Document,
SessionFramework::ActiveResource{

};

5.2.2 DomFramework IDL

// File: DomFramework.idl

#ifndef _DOM_FRAMEWORK_IDL_
#define _DOM_FRAMEWORK_IDL_
#include <dom.idl>
#include <SessionFramework.idl>
#pragma prefix "omg.org"

module DomFramework {

// forward declarations for DOM wrappers

interface DocumentFragment;
interface Document;
interface Node;
interface CharacterData;
interface Attr;
interface Element;
interface Text;

Document

SessionF ram ework
ActiveR esource

D ocumentResource
5-4 Negotiation Facility month year

5

interface Comment;
interface CDATASection;
interface DocumentType;
interface Notation;
interface Entity;
interface EntityReference;
interface ProcessingInstruction;

// forward declarations for extensions

interface DocumentResource;

// typedefs

typedef dom::DOMImplementation DOMImplementation ;
typedef dom::NodeList NodeList;
typedef dom::NamedNodeMap NamedNodeMap;
typedef dom::DOMString DOMString;

// dom interface wrappers

interface Node :
CosObjectIdentity::IdentifiableObject,
dom::Node
{
readonly attribute CosPropertyService::PropertyModeType

mode;
DOMString get_nodeValue(
) raises (

dom::DOMException
);
void set_nodeValue() raises (

dom::DOMException
);

};

interface CharacterData :
DomFramework::Node,
dom::CharacterData
{
DOMString get_data() raises (

dom::DOMException
);
void set_data(

in DOMString data
) raises (

dom::DOMException
);

};

interface Attr :
Negotiation DomFramework Wrapper Interfaces month year 5-5

5

DomFramework::Node,
dom::Attr {

};

interface Element :
DomFramework::Node,
dom::Element {

};

interface Text :
DomFramework::CharacterData,
dom::Text {

};

interface Comment :
DomFramework::CharacterData,
dom::Comment {

};

interface CDATASection :
DomFramework::Text,
dom::CDATASection {

};

interface DocumentType :
DomFramework::Node,
dom::DocumentType{

};

interface Notation :
DomFramework::Node,
dom::Notation{

};

interface Entity :
DomFramework::Node,
dom::Entity{

};

interface EntityReference :
DomFramework::Node,
dom::EntityReference{

};

interface ProcessingInstruction :
DomFramework::Node,
dom::ProcessingInstruction
{
void set_data(

in DOMString data
) raises (
5-6 Negotiation Facility month year

5

dom::DOMException
);

};

interface DocumentFragment :
DomFramework::Node,
dom::DocumentFragment{

};

interface Document :
DomFramework::Node,
dom::Document{

};

// Session Framework interface extensions

interface DocumentResource :
DomFramework::Document,
SessionFramework::ActiveResource{

};
};

#endif // _DOM_FRAMEWORK_IDL_

5.2.3 DOM Level 1 IDL (errata version)

The following IDL is provided for reference purposes only.

// File: dom.idl

/*
 * Copyright (c) 1998 World Wide Web Consortium, (Massachusetts Institute
 * of Technology, Institut National de Recherche en Informatique et en
 * Automatique, Keio University).
 * All Rights Reserved. http://www.w3.org/Consortium/Legal/
 */

#ifndef _DOM_IDL_
#define _DOM_IDL_
#pragma prefix "w3c.org"

module dom{

typedef sequence<unsigned short> DOMString;

interface NodeList;
interface NamedNodeMap;
interface Document;

exception DOMException {
Negotiation DomFramework Wrapper Interfaces month year 5-7

5

 unsigned short code;
};

// ExceptionCode
const unsigned short INDEX_SIZE_ERR = 1;
const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HIERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
const unsigned short NOT_FOUND_ERR = 8;
const unsigned short NOT_SUPPORTED_ERR = 9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;

interface DOMImplementation {
boolean hasFeature(

in DOMString feature,
in DOMString version

);
};

interface Node {
// NodeType

const unsigned short ELEMENT_NODE = 1;
const unsigned short ATTRIBUTE_NODE = 2;
const unsigned short TEXT_NODE = 3;
const unsigned short CDATA_SECTION_NODE = 4;
const unsigned short ENTITY_REFERENCE_NODE = 5;
const unsigned short ENTITY_NODE = 6;
const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
const unsigned short COMMENT_NODE = 8;
const unsigned short DOCUMENT_NODE = 9;
const unsigned short DOCUMENT_TYPE_NODE = 10;
const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
const unsigned short NOTATION_NODE = 12;

readonly attribute DOMString nodeName;
attribute DOMString nodeValue;

// raises(DOMException) on setting
// raises(DOMException) on retrieval

readonly attribute unsigned short nodeType;
readonly attribute Node parentNode;
readonly attribute NodeList childNodes;
readonly attribute Node firstChild;
readonly attribute Node lastChild;
readonly attribute Node previousSibling;
readonly attribute Node nextSibling;
readonly attribute NamedNodeMap attributes;
readonly attribute Document ownerDocument;
Node insertBefore(
5-8 Negotiation Facility month year

5

in Node newChild,
in Node refChild

) raises (
DOMException

);
Node replaceChild(

in Node newChild,
in Node oldChild

) raises (
DOMException

);
Node removeChild(

in Node oldChild
) raises (

DOMException
);
Node appendChild(

in Node newChild
) raises (

DOMException
);
boolean hasChildNodes();
Node cloneNode(

in boolean deep
);

};

interface NodeList {
Node item(

in unsigned long index
);
readonly attribute unsigned long length;
};

interface NamedNodeMap {
Node getNamedItem(

in DOMString name
);

Node setNamedItem(
in Node arg

) raises (
DOMException

);
Node removeNamedItem(

in DOMString name
) raises (

DOMException
);
Node item(

in unsigned long index
);
Negotiation DomFramework Wrapper Interfaces month year 5-9

5

readonly attribute unsigned long length;
};

interface CharacterData : Node {
attribute DOMString data;

// raises(DOMException) on setting
// raises(DOMException) on retrieval

readonly attribute unsigned long length;
DOMString substringData(

in unsigned long offset,
in unsigned long count

) raises (
DOMException

);
void appendData(

in DOMString arg
) raises (

DOMException
);
void insertData(

in unsigned long offset,
in DOMString arg

) raises (
DOMException

);
void deleteData(

in unsigned long offset,
in unsigned long count

) raises (
DOMException

);
void replaceData(

in unsigned long offset,
in unsigned long count,
in DOMString arg

) raises (
DOMException

);
};

interface Attr : Node {
readonly attribute DOMString name;
readonly attribute boolean specified;
attribute DOMString value;

};

interface Element : Node {
readonly attribute DOMString tagName;
DOMString getAttribute(in DOMString name);
void setAttribute(

in DOMString name,
5-10 Negotiation Facility month year

5

in DOMString value
) raises (

DOMException
);
void removeAttribute(

in DOMString name
) raises (

DOMException
);
Attr getAttributeNode(

in DOMString name
);
Attr setAttributeNode(

in Attr newAttr
) raises (

DOMException
);
Attr removeAttributeNode(

in Attr oldAttr
) raises (

DOMException
);
NodeList getElementsByTagName(

in DOMString name
);
void normalize();

};

interface Text : CharacterData {
Text splitText(

in unsigned long offset
) raises (

DOMException
);

};

interface Comment : CharacterData { };

interface CDATASection : Text { };

interface DocumentType : Node {
readonly attribute DOMString name;
readonly attribute NamedNodeMap entities;
readonly attribute NamedNodeMap notations;

};

interface Notation : Node {
readonly attribute DOMString publicId;
readonly attribute DOMString systemId;

};
Negotiation DomFramework Wrapper Interfaces month year 5-11

5

interface Entity : Node {
readonly attribute DOMString publicId;
readonly attribute DOMString systemId;
readonly attribute DOMString notationName;

};

interface EntityReference : Node {
};

interface ProcessingInstruction : Node {
readonly attribute DOMString target;
attribute DOMString data;

// raises(DOMException) on setting
};

interface DocumentFragment : Node { };

interface Document : Node {
readonly attribute DocumentType doctype;
readonly attribute DOMImplementation implementation;
readonly attribute Element documentElement;
Element createElement(

in DOMString tagName
) raises (

DOMException
);
DocumentFragment createDocumentFragment();
Text createTextNode(

in DOMString data
);
Comment createComment(

in DOMString data
);
CDATASection createCDATASection(

in DOMString data
) raises (

DOMException
);
ProcessingInstruction createProcessingInstruction(

in DOMString target,
in DOMString data

) raises (
DOMException

);
Attr createAttribute(

in DOMString name
) raises (

DOMException
);

EntityReference createEntityReference(
in DOMString name
5-12 Negotiation Facility month year

5

) raises (
DOMException

);
NodeList getElementsByTagName(

in DOMString tagname
);

};
};

#endif // _DOM_IDL_
Negotiation DomFramework Wrapper Interfaces month year 5-13

5

5-14 Negotiation Facility month year

Glossary A
y

be
ns

A.1 Terms and Definitions

Term Definition

AbstractTemplate AbstractTemplate is an ActiveResource that exposes a factory_ke
and criteria. AbstractTemplate is the base type for a set of
EncounterTemplate and MembershipKind.

ActiveResource ActiveResource is a specialization of Session::AbstractResource
that includes inheritance from the CosNotifyComm
StructuredPushSupplier and StructuredPushConsumer interfaces.
This extension introduces the ability of an abstract resource to
expose structured events it is capable of producing and to subscri
to events on a selective basis. Other extensions include operatio
associated with the binding and release of Linkage association.

ActiveTask ActiveTask extends Session::Task through the addition of
ActiveResource and serves as a base type for Encounter.

ActiveUser ActiveUser extends Session::User through the addition of the
CosLifeCycle::FactoryFinder interface and LegalEntity. As a
LegalEntity, an ActiveUser exposes public credentials that may be
used under contractual engagement processes.

ActiveWorkspace ActiveWorkspace extends Session::Workspace through
ActiveResource and provides a base type for Community.

Agency A specialization of Community and LegalEntity that introduces the
notion of legal community such as a company that maintains
jurisdiction of a set of resources. Agency, through LegalEntity and
Jurisdiction enables the qualification of the authority of a Member
within a negotiation or other collaborative encounter.
Glossary of Terms month year A-1

A

gh
e
e

a
y
n

are

at

s

t

r

Bilateral A bilateral negotiation is a collaborative process model dealing
with interactions between two participants. It provides a
framework within which a user can initiate a process under which
agreement to the subject of Collaboration can be established thou
interaction with another user. The model exposes three negotiabl
states (requested, proposed and offered) that through collaborativ
interaction may lead to any of the terminal states of agreed,
rejected, or timeout.

Collaboration A type of Encounter bound to a CollaborationTemplate that
mediates access to a subject. Collaboration exposes the state of
collaborative process and brings together the operations that ma
be applied by collaborating users relative to a process template. A
apply operation enables the invocation of simple and compound
transitions that under the mediated control of the Collaboration
enable parties to reach terminal success or failure states. Users
associated to a Collaboration though a Member role.

CollaborationTemplate CollaborationTemplate is a specialization of a State and
EncounterTemplate that exposes a set of transition declarations th
may be applied to an instance of Collaboration. As a State, a
CollaborationTemplate exposes a sub-state hierarchy that enable
the activation of command events and transition. Transitions
exposed by CollaborationTemplate are declarations of source and
destination states that may be used as arguments under the
Collaboration interface apply operation.

Command A specialization of Trigger that enables the declaration of an even
that may be invoked under Collaboration.

Community A specialization of ActiveWorkspace, Membership, and
FactoryFinder. As an ActiveWorkspace, a Community is a place
containing ActiveResources. As a Membership, a Community
exposes policy concerning membership and the association of
MembershipKind hierarchies. As a FactoryFinder, Community
represents a possible target under a copy or move operation.

Composition An association that signifies the composition of a target resource
within a source composite resource.

Compound Transition A specialization of Transition that introduces an alternative
destination State and template describing the criteria for Encounte
creation. CompoundTransition provides a powerful mechanism to
express recursive collaborative encounters such as amendments
under multilateral negotiation.

Containment An association equivalent to the Task/Session Containment
interface that associates a containing ActiveWorkspace with the
contained ActiveResource.

Delegation A role based Linkage that requires a concrete base type that
inherits from the target type and delegates target operation to the
target instance.
A-2 Glossary of Terms month year

A

L

s

t's

te

f

 be

 a
y
s

els
Desktop SessionFramework::Desktop extends Session::Desktop and
ActiveWorkspace defining an event enhanced equivalent of the
Task/Session Desktop.

Document Object Model This W3C DOM specification defines the Document Object Model
Level 1, an interface that allows programs and scripts to
dynamically access and update content, structure and style of XM
documents.

DocumentResource DocumentResource is derived from DomFramework::Document
and ActiveResource. As an ActiveResource, the interface inherit
life-cycle operations, which are undefined in the W3C DOM Level
1 recommendation. A Document interface represents an entire
HTML or XML document. Conceptually, it is the root of the
document tree, and provides the primary access to the documen
data.

DOM Document Object Model

Encounter A specialization of ActiveTask and Membership that has an
association to an EncounterTemplate that defines the encounter
constraints, and an associated subject.

EncounterTemplate A specialization of AbstractTemplate that references a
MembershipKind applicable to an Encounter of the type described
by EncounterTemplate.

Engagement A type of Encounter defined by an associated EngagementTempla
that enables the association of proof of engagement to an
agreement.

EngagementManifest EngagementManifest is a type supporting the registration of proo
as defined by the EngagementTemplate.

EngagementTemplate Features associated to EngagementTemplate define the criteria to
applied during the engagement process.

Implication A base type for the Success and Failure Implication linkage that
associates a source template with a target template.

Jurisdiction Jurisdiction is a specialization of the Linkage that infers authority
of a LegalEntity over a resource.

LegalEntity A type exposing a set of AbstractTemplate instances that defines
key and criteria for access to public credentials. A LegalEntity ma
be associated to an arbitrary number of ActiveResource instance
through a Jurisdiction linkage.

Linkage Abstract base interface that exposes a source and target of an
association.

Member A role of ActiveUser, defined as a specialization of Linkage that
associates a target ActiveUser with a Membership. As a
Membership may be a hierarchy of Membership instances, an
instance of Member may be associated as a member at many lev
within the hierarchy.
Glossary of Terms month year A-3

A

er
h

t

g

h
s

h

it
of
ss

em-
s

all

b-
Membership A specialization of ActiveResource that enables association of
instances of the type Member in accordance with rules exposed und
a MembershipKind. A Membership exposes interfaces through whic
Member instances may be added, removed and listed relative to the
kind of participation exposed by a MembershipKind hierarchy

MembershipKind Definition of constraints for a given MembershipKind. Constraints
include the maximum number of members that may be associated
under the kind, quorum value indicating the number of members tha
kind that must be associated and connected before the Member is
considered valid, privacy policy declarations, and policies concernin
the semantics of membership hierarchy.

Multilateral A multilateral encounter is a collaborative process model dealing wit
interactions between a group of two or more participants. It provide
a framework within which a user can initiate an action under which
agreement to the subject of Collaboration can be established throug
a consensus process.

Model A feature of Membership that references the root MembershipKind
is associated with. More generally, model refers to a specialization
AbstractTemplate that qualifies semantics and constraints of a proce
such as Encounter.

Promissory The promissory encounter model defines a collaborative interaction
sequence between a consumer and a provider. A consumer is a M
ber associated to a Membership of the kind “consumer.” A provider i
a Member associated to the Membership of the kind “provider.” A
provider can invoke a promise transition to initialize a Collaboration
under the right state. Once initialized as a right, a consumer may c
the promise by invoking a request transition. This corresponds to a
consumer request for fulfillment of the promise by the provider. A
provider fulfills a promise by applying the fulfill transition, itself a
compound transition defined by a bilateral or multilateral negotiation.
Success of the negotiation leads to the fulfilled state whereas failure
leads to the rejected state.

Promise The top-level state within a Promissory Encounter. Refer to
promissory.

Role Refer to Delegation.

State A type that exposes a label, characteristics that qualify the state as
internal, terminal success or terminal failure, exposes a set of sub-
states, and parent state.

Subject A reference to an ActiveResource held by an Encounter type. An
Encounter mediates control over the access and modification of a su
ject.
A-4 Glossary of Terms month year

A

o a

-
e

s a

t-
 a

n

-

of
Trigger A type that exposes a keyword, accesses and timeout constraints.
Triggers are used as a super-type for the Command and Transition
types. Operational qualifiers include a usage mode and references t
MembershipKind that is authorized to invoke a Trigger. Usage mode
enables the declaration of constraints over activation relative to the
collaborative context.

Transition A Transition extends Trigger to include a destination state. A transi
tion may only be invoked when the active_state of collaboration is th
source state in the Transition declaration. Following a successful
activation of a transition, the destination state and all parents of the
destination state are considered active by the controlling Collabora-
tion.

Usage An association equivalent to the Task/Session Usage that associate
using ActiveTask with the used ActiveResource.

Voting A type of Encounter launched by a compound transition supporting
vote-based determination of primary or alternate state selection. Vo
ing is an interface that provides mechanisms through which users in
collaborative process can register a YES, NO, or ABSTAIN votes.

Vote An operation available under the Voting type enabling the registratio
of YES, NO, and ABSTAIN votes.

VoteTemplate VoteTemplate exposes policies concerning quorum and structured
numerator/denominator pair that defines the required ceiling for cal
culation of a successful vote.

VoteManifest A persistent store created by a Voting Encounter for the registration
vote results.
Glossary of Terms month year A-5

A

A-6 Glossary of Terms month year

Object Model B
to

o the

B.1 Overview

An ActiveUser is associated to a collaboration process through a Member role. A set
of Member instances are associated together under a Membership . A specialization
of Membership , called Encounter , extends this model to introduce an association
a defining process template and subject . Collaboration , Voting , and
Engagement are examples of specialization of Encounter . A minimal client
application invokes operations against a Collaboration instance by the passing
references to tasks or resources as arguments that define actions to be applied t
subject of the Encounter . These actions are coordinated by a Collaboration
instance in accordance with policies and constraints defined within the associated
template . Collaboration mediates multiple client requests by coordinating the
association of client tasks as producer of the subject of the mediation. As a
specialization of Encounter , Collaboration has an explicit association to an owner ,
exposes relationships to consumed process and data resources, and the resources it
produces. Encounter may expose an ordered hierarchy of sub-processes that
collectively describes the state of a collaborative encounter.
Object Model month year B-1

B

nities

ed to
ext of

tics
y
d

Figure B-1 Object Model Overview

The CommunityFramework introduces a set of interfaces supporting higher level
business-to-business encounters in which users interact in the context of commu
under which the role and jurisdiction of participants are exposed. Roles and the
membership kind they represent enable the introduction of constraints into
collaboration models that allows the definition of more complex collaboration
processes.

During the course of a collaborative encounter, information requests may be direct
clients concerning the disclosure of restricted information. In these cases the cont
a collaborative encounter is crucial to a client’s determination of the appropriate
disclosure policy to apply. Resolution of context is established through the seman
of the collaboration template (how), subject (what), membership (who), communit
(where), and collaboration process itself (state). Operations supporting domain an
context dependent disclosure of information are based on FactoryFinder interfaces
exposed under the ActiveUser and Community . This specification assumes the
semantics of create under a GenericFactory that may return new or existing object
references.[Reviewer, added the word “that” please verify.]

B.1.1 Collaboration Model

Collaborative process models are defined under the type CollaborationTemplate . A
CollaborationTemplate is a specialization of a State and EncounterTemplate . It
exposes a set of transitions that may be applied under an instance of Collaboration .
As a State , a CollaborationTemplate exposes a sub-state hierarchy and a set of

template1

1*

*

owner

SessionFramework::
AbstractTemplate

CollaborationFramework::
Encounter

CommunityFramework ::
Membership

1

role of

CollaborationFramework::
EncounterTemplate

SessionFramework::
ActiveUser

SessionFramework::
ActiveTask

SessionFramework::
ActiveResource

subject

1

CommunityFramework ::
Member

CommunityFramework ::
Community

CollaborationFramework::
Collaboration

CollaborationFramework::
CollaborationTemplate

CommunityFramework ::
Agency

SessionFramework::
LegalEntity

*

B-2 Object Model month year

B

nts
t

ce

 fact

m

n
command descriptors that enable the activation of command events. Initialization
transitions enable the configuration of the initial active state of collaboration.
Transitions exposed by CollaborationTemplate are declarations of source and
destination states and activation constraints. Transition inherits activation constraints
from the super-type Trigger . Trigger defines activation constraints based on
collaborative context and user’s membership, and in the case of Transition , the
implications of the transition relative to the subject of the collaboration.

B.1.2 Context and Role-based Control

An implementation of Collaboration is responsible for the verification and
enforcement of rules concerning initialization, the applying of transitions, and the
invoking of command events. An implementation achieves this through features
exposed under a Trigger interface that describe contextual and role-based constrai
that may impose limitations on the possible actions that can be applied by a clien
relative to the subject of the collaboration. These controls may be supplemented
through references to a MembershipKind , an equivalent of a category of a role
relative to a Membership .

B.1.3 Applying Compound Transitions

The Collaboration type provides support for specialization of the transition interfa
called CompoundTransition . Compound transitions extend the simple transition
model by introducing an alternative destination (used as a reference to the failure
transition destination). A more interesting feature of the compound transition is the
that an EncounterTemplate is used to describe the execution semantics of the
transition. An implementation of Collaboration uses the template to create an
instance of Encounter , which itself may be another collaboration process. This
technique is used extensively in the definition of multilateral negotiation and
promissory collaboration models. More importantly, it provides an open mechanis
through which arbitrarily complex collaboration patterns can be constructed,
encapsulated within transition declaration, and reused within different business
processes.

B.1.4 Customization and Extension through Collaboration Models

Collaboration represents the computational view of a collaborative encounter. An
instance of collaboration has an association to, and is dependent on, a
CollaborationTemplate . A CollaborationTemplate is composed of a set of
customizable building blocks. The building blocks include State , Transition , and
CompoundTransition . Each building block can be parameterized by modifying
features of the respective types. Association of customized models to collaboratio
templates enables the creation of libraries of executable process models.
Object Model month year B-3

B

 this

ferred

rve as
nd

rough

n
ate
B.2 Usage Scenario

A simple retail model is used to describe the way in which the interfaces that form
specification are applied to the problem of

• evaluation of a collaborative process prior to participation,

• participation to process enabling negotiation resolution of agreement, and

• engagement in the implications of agreement or failure.

B.2.1 Simple Retail Model

The example retail business model is described through an instance of
CollaborationTemplate . The example collaboration template contains two states
“for-sale” and “sold” linked together by a single transition named “purchase.” The
model expresses as a very simple collaborative process involving an owner of
something for-sale, and a potential buyer. In this usage scenario these roles are re
to respectively as supplier and consumer.

Figure B-2 Example CollaborationTemplate

The scenario as presented above does not include negotiation; however, it does se
a basic business model example that we will evolve to include both negotiation a
implications of negotiated agreement later in this section.

Construction of the Retail Model

A collaborative model is constructed through the population of a collaboration
template with instance of states and transitions. The above model is expressed th
associating the label “example” to the instance of CollaborationTemplate and
populating the template with two sub-states with the labels “for-sale” and “sold.” A
instance of Transition is added to the template with a reference to the “for-sale” st
as source and the sold state as target of the transition. A second Transition is

example

soldfor-sale purchase

start
B-4 Object Model month year

B

nts

as
her

and

her a

d a

 join

,
tions

 An

required to describe the “start” initialization. An initialization transition for this
example is flagged as an initializing by the boolean attribute initialize , references the
“for-sale” state as the target , and exposes the label “start.”

To describe the allowable collaborative actions, we need to establish the constrai
concerning access to these transitions. The simplest approach is to assign the mode of
INITIATOR to the start transition and RESPONDENT to the purchase transition.
These constraints qualify the implicit collaborative roles of two participants – one
the initiator and another as a respondent (where respondent is any participant ot
then the initiator). A second constraint concerns the declaration of restrictions
concerning modification of a subject. In our example we will restrict both the start
purchase transitions to be TRANSITIONAL (indicating that subject modification is not
supported). To complete the state model we need to declare all final states as eit
SUCCESS or FAILURE using the terminal attribute on the State interface. In our
example the “sold” state signifies the successful conclusion of the process.

To restrict the model to two participants, a MembershipKind needs to be referenced
under the membership_kind attribute inherited from the super-type
EncounterTemplate . In this example, we need a membership kind that establishe
quorum of 2, and a ceilin g of 2 (corresponding to the initiator and respondent).
These values restrict the minimum and maximum number of participants that can
an instance of Collaboration that references this example model.

Operations enabling the construction and population of values under both
CollaborationTemplate and MembershipKind are implementation dependent (i.e.
no standard interfaces are defined under this specification – different implementa
are required to provide proprietary editors). Interfaces that are exposed include
operations needed to navigate a populated model.

Publishing a Collaborative Process

The act of collaboration is separate and distinct from the model of collaboration.
instance of Collaboration exposes the operations through which a user may join,
interact, and leave the process. Each instance of Collaboration references a
CollaborationTemplate and a MembershipKind . MembershipKind establishes
the rules under which users join and leave collaboration, and together with the
CollaborationTemplate sets the rules under which participants may interact.

Publishing our example CollaborationTemplate can be achieved through publishing
an instance of Collaboration . Collaboration is derived from Session::Task and as
such may be set in an open , not-running , not-started state and made accessible
though inclusion within a Workspace .

It is important to note that a supplier or consumer may create a Collaboration
instance. For example, a supplier could publish instances of CollaborationTemplate ,
enabling each new customer to invoke their own Collaboration process. In such a
case, a supplier would typically define role-based restrictions that guaranteed the
supplier a role in the Collaboration .
Object Model month year B-5

B

e

,

he

ative

 two
ld
s

r and

We
vokes
Navigating a Collaboration

Prior to joining an instance of Collaboration , a user having access to the
Collaboration can navigate exposed relationships. These relationships include th
subject , membership kind model , and the collaboration template . The subject
attribute references an ActiveResource that exposes the subject of the collaboration
possibly an XML based product description. The model attribute references a
MembershipKind that qualifies the behavior of the Collaboration in terms of
membership rules and role. In our example this is limited to the qualification of a
ceiling and quorum required before collaborative operations can be invoked. The
template attribute references the CollaborationTemplate we constructed earlier that
exposes the initialization transition, the two sub-states “for-sale” and “sold,” and t
“purchase” transition.

Joining a Collaboration

A Collaboration is a type of Membership and as such exposes the
recruitment_status attribute. The value of recruitment_status is one of the
enumerated values OPEN_MEMBERSHIP, CLOSED_MEMBERSHIP, or
SUSPENDED_MEMBERSHIP. By setting the recruitment status to
OPEN_MEMBERSHIP we are advertising the fact that membership to this
collaboration is invited. All participants to a Collaboration join by invoking the
add_member operation on the Collaboration instance (operation inherited from
Membership). The participant passes in two arguments, a reference to an
ActiveUser and a reference to a MembershipKind and gets back a reference to
Member (a role of ActiveUser).

An instance of Collaboration exposes its readiness for collaborative execution
through the attribute quorum_status . A quorum status of QUORUM_PENDING
indicates an insufficient number of participants whereas QUORUM_REACHED
indicates that the necessary number of participants have joined and that collabor
operations may be invoked. In our example the quorum and ceiling level are the
same, as such, on reaching quorum the recruitment_status will change from
OPEN_MEMBERSHIP to CLOSED_MEMBERSHIP.

Initializing the Collaboration

In our example process the initialization transition can be invoked by either of the
participants. In a real example it is more likely that the initialization transition wou
be associated to a particular Member role; however, the example model simply state
that whoever initializes the collaboration takes on the implicit role of INITIATOR. As
initiator, that participant may no longer invoke the purchase transition (because
purchase is restricted to the RESPONDENT). This restriction is maintained until a
respondent invokes a transition in which case the respondent becomes the initiato
the prior initiator becomes a respondent.

Under the example model there is only one initializing transition (labeled “start”).
assume that the service provider (the user wishing to sell the goods or service) in
the initialization. Invoking the initialization is achieved by invoking the apply
B-6 Object Model month year

B

ce

n

dent

s

s
s is
der

 the

l

or
operation on the Collaboration instance and passing in the “start” transition as the
transition argument. As our “start” transition is restricted to TRANSITIONAL
(exposed under the Transition interface control attribute) we cannot change or repla
the subject of the Collaboration .

If the transition control attribute was PROCESS instead of TRANSITIONAL , we
could have supplied the supplementary semantic argument of REPLACE or
MODIFY. In the case of a REPLACE , a third argument is required corresponding to a
ActiveResource with which to replace the current subject . Alternatively, a semantic
argument MODIFY together with ActiveTask would have declared the task to use to
modify the current subject. It is important to note that this specification is indepen
in respect to the subject of an Encounter . It is the responsibility of a client to discover
the subject type of an Encounter and to create an appropriate ActiveTask (bound
to an editor capable of modifying the subject type) through which subject
modification may be executed.

On invocation of the apply operation, the implementation of Collaboration executes
the verification of the principal as a register Member of the Collaboration, validate
that the applied transition constraints are not being violated, and depending on
parameters of the transition invokes the appropriate changes in the Collaboration
state. In our example, the “start” transition establishes the active_state of the
collaboration as the state sequence: example, for-sale (indicating that both the state
labeled “example” and the state labeled “for-sale” are active).

Post Initialization Actions

Based on the constraints established under the CollaborationTemplate , the supplier
is now the INITIATOR and our consumer is now RESPONDENT. Our example model
exposes a single transition that matches its source with an active state – the
“purchase” transition. The “purchase” transition is restricted to RESPONDENT,
which eliminates the possibility for the supplier to invoke the transition (because
supplier principal is considered the initiator by the implementation and therefore i
excluded from the set of possible respondents). At this point our example proces
starting to appear somewhat artificial; however, we will continue through the remain
of the process and address more realistic transition models at a later stage.

Our customer invokes the “purchase” transition by passing the transition in under
apply operation transition argument. The implementation, after verification of
compliance with implied collaborative role and transitional constraints, sets the active
state of the collaboration to example, sold.

Process Termination

On establishing sold as an active state, the implementation recognizes the termina
value of SUCCESS and raises a corresponding result event (the result event is
exposed under the super-type Encounter). Prior to completion of the process the
Collaboration evaluates any implication associations declared under the template .
Implications are associations that reference other EncounterTemplate (the super-
type of CollaborationTemplate) that have to be invoked relative to the successful
Object Model month year B-7

B

such

a
al
ed

ple

 we

 a
target
enting
unsuccessful result of the Collaboration . For example, an implication of purchasing
could be the instantiation of a payment collection process, or a product warranty
process (or both). In our example we have not assigned any implications and as
the Collaboration process enters the closed , completed task state. Note that task
state is the state of execution as described by the Task/Session specification. This is
orthogonal to the active state of Collaboration .

B.2.2 Introducing a Compound, Negotiable Transition

As indicated above, our example model is too restrictive to realistically represent
commercial retail process. A more realistic example would typically expose sever
alternative transitions. For example, a transition that enabled rejection of the offer
goods and services, and perhaps another transition that enabled modification of a
feature of the subject of the Collaboration such as quantity or delivery conditions.

To bring our example closer to a realistic model, we are going to replace the sim
“purchase” transition with a compound transition. A CompoundTransition is a
transition that is itself defined by an EncounterTemplate (the super-type of
CollaborationTemplate). In effect, the execution of a compound transition is
equivalent to the entry into another Encounter where the result of the subsidiary
encounter determines the result of the parent transition. The compound transition
are going to use is a bilateral negotiation, expressed under a CollaborationTemplate ,
which will enable the extension of our example to include a negotiable purchase
decision.

Purchase as a Bilateral Negotiation

The following illustration depicts the replacement of the “purchase” transition with
compound transition of the same name. Compound transitions have two possible
states, one representing the target-state to establish on success, the other repres
the target-state to establish on failure. Success or failure is determined by the result
status of the execution of the transition as a subsidiary Encounter (the super-type of
Collaboration).
B-8 Object Model month year

B

se”

ry
ess.
Figure B-3 Example CollaborationTemplate

Our example scenario remains unchanged until our consumer applies the “purcha
transition. As a CompoundTransition , “purchase” now exposes two additional
attributes of interest, 1) a reference to a CollaborationTemplate and 2) a reference to
an initializing transition within that template . In invocation of the apply operation,
the implementation of the Collaboration establishes a subsidiary Encounter (in this
example the Encounter is another Collaboration) with the same subject ,
associated to the CollaborationTemplate describing a bilateral (one-on-one)
negotiation and referencing the same membership model . The second feature of
interest is the initialization attribute exposed by the CompoundTransition . The
initialization attribute references the initialization transition to apply to the subsidia
Collaboration , resulting in the establishment of the bilateral negotiation sub-proc

Figure B-4 Bilateral State Transition Model

example

soldfor-sale purchase

start

closed

open

offeredrequested

proposed
propose

agreed

rejected

timeout

offer

request

agree

reject

timeout

request offer propose

suggest

negotiable

A

Object Model month year B-9

B

t

ces an

 an

ent

ns,

s,

he

t and
r a

s
ugh
n of
The above illustration depicts the state transition model of a bilateral negotiation,
which following invocation of the purchase transition, is established under requested,
offered, or proposed states. Assuming the purchase transition initialization argumen
referenced the requested transition, the active states of the sub-Collaboration would
be negotiable, open, and requested.

For a detailed description of the semantics of the following state transition model
please refer to the bilateral negotiation process model specification under the
SessionFramework section.

Under the requested state, the respondent may invoke any transition that referen
active state as its source . For example, suggest, offer, propose (from the requested
state), or reject (from the open state). If our respondent invoked offer, the available
transitions would be restricted to agree (from the offered state) or reject (from the open
state). If our respondent had chosen the propose transition, the transitions available to
the correspondent would also include the request transition (from the proposed state).

It is important to note that the bilateral negotiation state transition model is simply
example of a collaborative process model. This specification does not impose any
restriction on the process described within CollaborationTemplate beyond the
requirement that the semantics of the process are described using the State ,
Transition , and associated interfaces documented in the CommunityFramework
section of this specification.

Through the invocation of transitions in the context of the implied roles of respond
and initiator, our two participants can migrate from a non-agreed to agreed state.
During this process, dependent on the constraints imposed by respective transitio
subject modification may be possible (though the declaration of ActiveResource as
replacement subject or ActiveTask as subject modifier). On conclusion of the proces
through the establishment of a terminal SUCCESS or FAIL state, the Collaboration
process raises a result event and terminates. Control is returned to the parent
Collaboration . Based on the result status, the parent Collaboration determines the
appropriate target-state to establish as the active state . Assuming a successful
conclusion of the negotiation our active state would be set to “sold.” A failure of t
subsidiary negotiation would establish “for-sale” as the active state.

A detailed description of the semantics concerning the interaction between paren
subsidiary process and the relationship and impact of changes to a subject unde
subsidiary Collaboration are detailed under Section 4.3.1.8, “Applying State
Transitions,” on page 4-12.

B.2.3 Introducing Implications

The process of encapsulation of subsidiary processes within compound transition
enables the introduction of complex collaborative models. Another mechanism thro
which the semantics of collaboration is further enhanced is through the associatio
a collaboration as the Implication of the success or failure of a prior
Collaboration (or more correctly, the success or failure of a prior Encounter) . To
introduce an implication into our example, we need to add the declaration of an
implication to our example CollaborationTemplate instance. An Implication is a
B-10 Object Model month year

B

f the

e

sful
ich
he
he

ample

rence
type of Linkage . Instances of Linkage reference a source and a target object and
are used as arguments to the bind and release operations exposed by the
ActiveResource super-type. To associate a payment process as an implication o
success of a purchasing process, we construct an instance of Success (a
specialization of Implication) that references our example template as the source of
the linkage (success implication source) and the payment process template as th
target of the linkage. The object model allows for the association of many
implications relative to a given source. For example, the implications of a succes
purchasing process may also include the establishment of a delivery process, wh
itself may have a success implication of a maintenance contract. Association of t
source example template and a target payment process is achieved by invoking t
bind operation on the source and target .

B.2.4 Comparing the Example to the Promissory Encounter Model

The promissory encounter process model is simply an enhanced version of the ex
process model presented here (see Figure B-5).

Figure B-5 Promissory State Transition Model

Instead of “for-sale” and “sold” we have the states “promised, obligation, pending”
and “promised, obligation, fulfilled” and a compound transition “fulfill ” that links the
two states such that the achievement of fulfillment is expressed as a bilateral
negotiation between the promise holder and the promise provider. A second occur

promised

right

obligation

pending fulfilled

req uest

fulfill

w aiv ed

waiv e

promise

comm it

rejected

expired
A expire

overdue

A timeout
Object Model month year B-11

B

of a compound transition referencing the bilateral negotiation model is the waive
transition. A successful transition under waive results in the establishment of the
“promised, waived” state; whereas, failure of the waive transition results in the
continuation of the collaboration without a change in active state.

For additional information concerning the promissory encounter model, refer to
Section 2.2, “ActiveResource and Associative Interfaces,” on page 2-5.
B-12 Object Model month year

Index
A
AbstractTemplate 2-21
Access control based on Membership 4-20
Activation Semantics 4-20
Active State 4-11
ActiveResource 2-5
ActiveTask 2-11
ActiveUser 2-18
ActiveWorkspace 2-15
Agency 3-18
Agree 4-33
Amendment 4-36
Apply Exceptions 4-14
Applying State Transitions 4-12

B
Batch and Interactive Modes 2-13

C
Call 4-37
Collaboration 4-8
CollaborationFramework 4-1
CollaborationTemplate 4-10, 4-15
Collaborative Context 4-19
Command 4-21
Community 3-17
Community and Derived Interfaces 3-16
Composition 2-11
CompoundTransition 4-22
Containment 2-17
CORBA

documentation set 1-3
Count 4-38

D
Delegation 2-10
Desktop 2-16
DocumentResource 5-3
DOM Level 1 IDL 5-7
DomFramework Wrapper Interfaces 5-1

E
Encounter 4-3
EncounterTemplate 4-6
Engagement 4-24
EngagementManifest 4-26
EngagementTemplate 4-24
Execution Modes 4-19
Expire 4-42
Extensions 5-3

F
Fulfill 4-41

I
Implication 4-6
Implication Semantics 4-5
Initialization 4-5, 4-31, 4-40
Initialization of a Collaboration 4-12
Invoking Command Events 4-15

J
Jurisdiction 2-20

L
LegalEntity 2-19
Linkage 2-8
Linkage Dependencies 2-6
Linkage Types 2-3
Listing Kind Attributed to a Member 3-6

M
Member 3-5
Member Addition 3-9
Member Removal 3-10
Membership 3-6
Membership Composition 3-13
Membership Disclosure Operations 3-12
Membership Semantics 3-8
Membership, Associative and Qualifying Interfaces 3-3
MembershipKind 3-14
Motion 4-36
multilateral encounter 4-34

O
Object Management Group 1-1

address of 1-4
Offer 4-33

P
Process 2-15
Promissory Encounter 4-40
Propose 4-32

Q
Quorum Status 3-11

R
Recruitment Status 3-10
Registering a Vote 4-29
Reject 4-33
Request 4-32, 4-41
Resource Usage 2-13

S
Second 4-36
SessionFramework 2-1
State 4-17
State Composition 4-18
States 4-34
Structural Operations 3-12
Structured Events 2-7
Subject Modification Constraints 4-22
Subsidiary Collaboration Processes 4-11
Suggest 4-32

T
Task/Session interfaces 2-1
Timeout 4-33, 4-38, 4-42
Timeout behavior 4-11
Transition 4-21
Transitions 4-32, 4-36, 4-41
Trigger 4-18
E-Commerce month 1999 Index-1

Index
Trigger Lifetime 4-20

U
Usage 2-14

V
Vote 4-37
VoteManifest 4-29

VoteTemplate 4-28
Voting 4-27

W
Waive 4-41
Withdraw 4-38
Index-2 E-Commerce month 1999

	1. Overview
	1.1 About the Object Management Group
	1.1.1 What is CORBA?
	1.1.2 What is CORBA E-Commerce?

	1.2 Associated Documents
	1.3 Summary of Key Features
	1.3.1 Session Framework
	1.3.2 Community Framework
	1.3.3 Collaboration Framework
	1.3.4 DOM Framework

	1.4 Acknowledgments

	2. Session Framework
	2.1 Overview
	2.1.1 Types Derived from the Task/Session Interfaces
	2.1.2 Linkage Types

	2.2 ActiveResource and Associative Interfaces
	2.2.1 ActiveResource
	2.2.2 Linkage
	2.2.3 Delegation
	2.2.4 Composition

	2.3 ActiveTask and Associative Interfaces
	2.3.1 ActiveTask
	2.3.2 Usage
	2.3.3 Data
	2.3.4 Process

	2.4 Workspace, Desktop, and Containment Associations
	2.4.1 ActiveWorkspace
	2.4.2 Desktop
	2.4.3 Containment

	2.5 ActiveUser and Supporting Interfaces
	2.5.1 ActiveUser
	2.5.2 LegalEntity
	2.5.3 Jurisdiction
	2.5.4 AbstractTemplate
	2.5.5 SessionFramework IDL

	3. Community Framework
	3.1 Overview
	3.1.1 Object Model

	3.2 Interfaces
	3.2.1 Membership, Associative, and Qualifying Interfaces
	3.2.2 Member
	3.2.3 Membership
	3.2.4 MembershipKind

	3.3 Community and Derived Interfaces
	3.3.1 Overview
	3.3.2 Community
	3.3.3 Agency
	3.3.4 CommunityFramework IDL

	4. Collaboration Framework
	4.1 Overview
	4.2 Encounter and Associated Interfaces
	4.2.1 Encounter
	4.2.2 Encounter Template
	4.2.3 Implication

	4.3 Collaboration Interfaces
	4.3.1 Collaboration
	4.3.2 CollaborationTemplate
	4.3.3 Trigger
	4.3.4 Command
	4.3.5 Transition
	4.3.6 CompoundTransition

	4.4 Engagement and Associated Interfaces
	4.4.1 Object Model
	4.4.2 EngagementTemplate
	4.4.3 Engagement
	4.4.4 EngagementManifest

	4.5 Voting and Associated Interfaces
	4.5.1 Object Model
	4.5.2 VoteTemplate
	4.5.3 Voting
	4.5.4 VoteManifest

	4.6 Negotiation and Promissory Models
	4.6.1 Bilateral Negotiation
	4.6.2 Multilateral Negotiation
	4.6.3 Promissory Encounter
	4.6.4 CollaborationFramework IDL

	5. DOM Framework
	5.1 Overview
	5.2 DomFramework Wrapper Interfaces
	5.2.1 Extensions
	5.2.2 DomFramework IDL
	5.2.3 DOM Level 1 IDL (errata version)

	Glossary
	Object Model
	Index

