Negotiation Facility Specification

Version 1.0
March 2002




Copyright 2001, Object Management Group
Copyright 1998, 1999 by OSM SARL

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF

TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.70%6MG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web pagettp://www.omg.orgunder Documents & Specifications, Report a Bug/Issue.



Contents

Preface . ... e \Y;
1. Collaboration Criteria. . .. ............ .. 1-1
1.1 Introduction .. ... ... ... 1-1
1.2 Collaborative ProcessModels ..................... 1-2
1.2.1 Bilateral Negotiation. . .................. 1-2
1.2.2 Multilateral Agreement. . ................ 1-6
1.2.3 Promissory Contract Fulfillment. . ......... 1-12
1.3 DPML Schema Specification . . .................... 1-17
1.4 Elementto IDL Type Mapping. .. .................. 1-29
15 Related DPML Documents. .. ..................... 1-30
2. Collaboration Framework .......................... 2-1
2.1  Introduction . ......... ... 2-1
2.2  Processor and Related Interfaces . .. ................ 2-4
2.21 ProCeSSOI .. ..ttt 2-4
2.2.2 Master, Slave, and the Control Link . ....... 2-7
2.2.3 StateDescriptor. ............. ... ... ... 2-8
2.2.4 ProcessorModel and Related Constraint
Declarations .. .......... .. ... .. ....... 2-10
2.2.5 Coordination Link Family. .. ............. 2-13
2.3 Encounter. . ......... . .. .. 2-15
2.3.1 Encounter and EncounterCriteria . .. ....... 2-16
2.4  \oteProcessor and VoteModel . .................... 2-17
2.4.1 Supporting Structures. . . ................ 2-18
2.4.2 VNoteProcessor.......... ... . ... .. ... ... 2-19

March 2002 Negotiation Facility Specification, v1.0 i



Contents

243 VoteModel ....... ... ... 2-20
2.5 EngagementProcessor and EngagementModel. ......... 2-22
2.5.1 EngagementProcessor.................... 2-22
2.5.2 EngagementModel ............... ... .... 2-23
2.6  CollaborationProcessor, CollaborationModel, and
Supporting TYPES . .. oot 2-24
2.6.1 CollaborationProcessor. . ................. 2-25
2.6.2 Supporting Structures. . . ....... ... ... 2-28
2.6.3 CollaborationModel ..................... 2-30
2.6.4 StateDeclaration........................ 2-31
2.6.5 Trigger and supporting valuetypes . ......... 2-32
26.6 ACtiON........ ... 2-35
2.6.7 Transition and Related Control Structures . ... 2-36
2.6.8 Compound Action Semantics . . ............ 2-39
26.9 Directive........ ... .. ... .. 2-41
27  UMLOVEIVIEW . .\ttt et e 2-44
2.7.1 Processor and Related Valuetypes .......... 2-44
27.2 ENcounter.......... ... ... 2-45
273 Voting......... ... . 2-45
274 Engagement ............ .. ... ... 2-45
2.7.5 Collaboration and CollaborationModel. . . . ... 2-46
2.7.6 Valuetypes Supporting CollaborationModel. .. 2-46
2.8  CollaborationFramework Complete IDL . ............. 2-47
3. Community Framework . .. ....... ... ... ... .. ... .... 3-1
3.1 OVEIVIEW . .ttt 3-2
3.2 Model, Simulator, and Supporting Valuetypes.......... 3-3
321 Model...... ... .. . 3-3
3.22 Simulator ........... ... . . 3-4
3.23 Control . ... .. 3-4
3.3  Membership, MembershipPolicy, and Member Link . . . .. 3-5
3.31 Membership .......... ... ... ... ..., 3-6
3.3.2 MembershipModel . ..................... 3-14
3.3.3 MembershipPolicy . ..................... 3-14
3.3.4 Member and Recognizes Link ............. 3-15
3.4 Roles and Role Related Policy . . . ................... 3-16
341 Role ... 3-16
342 RolePolicy ........... . . 3-18
3.5 Community, Agency, LegalEntity, and
Related Valuetypes . . ........ ... . . . i 3-19
March 2002

ii Negotiation Facility Specification, v1.0



Contents

351 Community............c i 3-19
3.5.2 Agency and LegalEntity . . ................ 3-20
3.6  General Utility Interfaces. . . ........... ... ........ 3-21
3.6.1 GenericResource. . ........... ... .. ..... 3-21
3.6.2 Criteria........ ... .. 3-22
3.6.3 ResourceFactory........................ 3-22
3.6.4 Problem ...... ... ... .. ... . 3-23
3.7 UMLOVerVIEW . ... .o 3-25
3.8  CommunityFramework Complete IDL. . .............. 3-25
Appendix A - Changes to the Task and Session
Specification (formal/00-05-03) . ......... A-1
Appendix B - Complete OMGIDL . .................. B-1

March 2002 Negotiation Facility Specification, v1.0 iii



Contents

Negotiation Facility Specification, v1.0

March 2002



Preface

About the Object Management Group

March 2002

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

Negotiation Facility Specification, v1.0 Y



OMG Documents

The OMG documentation is organized as follows:

OMG Modeling

® Unified Modeling Language (UML) Specificatiordefines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems.

®* Meta-Object Facility (MOF) Specificatiordefines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and
their corresponding models.

* OMG XML Metadata Interchange (XMI) Specificatiorsupports the interchange of
any kind of metadata that can be expressed using the MOF specification, including
both model and metamodel information.

Object Management Architecture Guide

This document defines the OMG'’s technical objectives and terminology and describes
the conceptual models upon which OMG standards are based. It defines the umbrella
architecture for the OMG standards. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and
Specification

Contains the architecture and specifications for the Object Request Broker.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA
objects. The IDL definition is the contract between the implementor of an object and
the client. IDL is a strongly typed declarative language that is programming language-
independent. Language mappings enable objects to be implemented and sent requests
in the developer's programming language of choice in a style that is natural to that
language. The OMG has an expanding set of language mappings, including Ada, C,
C++, COBOL, IDL to Java, Java to IDL, Lisp, and Smalltalk.

CORBAservices

Object Services are general purpose services that are either fundamental for developing
useful CORBA-based applications composed of distributed objects, or that provide a
universal-application domain-independent basis for application interoperability.

Vi Negotiation Facility Specification, v1.0 March 2002



March 2002

These services are the basic building blocks for distributed object applications.
Compliant objects can be combined in many different ways and put to many different
uses in applications. They can be used to construct higher level facilities and object
frameworks that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
specifications such aSollection Concurrency Event Externalization Naming
Licensing Life Cycle Notification, Persistent Obje¢tProperty Query Relationship
Security Time Trader, and Transaction

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable
to most domains. Adopted OMG Common Facilities are collectively called
CORBAfacilities and include specifications suchlaternationalization and Timeand
Mobile Agent Facility

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include
Domain Interfaces for application domains such as Finance, Healthcare,
Manufacturing, Telecoms, E-Commerce, and Transportation.

Currently, specifications are available in the following domains:

® CORBA Busines€Comprised of specifications that relate to the OMG-compliant
interfaces for business systems.

® CORBA FinanceTargets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

® CORBA HealthcareComprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

® CORBA ManufacturingContains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

® CORBA Telecomomprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

® CORBA TransportationComprised of specifications that relate to the OMG-
compliant interfaces for transportation systems.

Negotiation Facility: OMG Documents vii



Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail irDihject Management
Architecture Guide

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Summary of Key Features

viii

The CORBA Electronic Commerce Domain architecture is comprised of specifications
that relate to the OMG-compliant interfaces for distributed electronic commerce
systems. Currently, there are four frameworks established as a result of the Negotiation
Facility RFP2. These include the Session Framework, Community Framework,
Collaboration Framework, and DomFramework.

The Framework Specification presented in Chapters 3 and 4 are targeting potential
developers of this facility. Information is presented in the form of a breakdown of
modules, interfaces, and types. For each interface, details of attributes, operations,
events and additional semantics are provided. The documentation assumes that readers
are familiar with the object model defined under the Task/Session specification
(formal/00-05-03), and have familiarity with the notion of structured events as defined
by CosNotification.

1. Negotiation and Contract Criteria - The specification of three collaboration criteria
instances covering:

« bilateral negotiation
e multilateral negotiation
e promissory commitment

2. The Collaboration Framework chapter contains the definition of Collaboration, a
process through which different models of collaboration rules can be managed. The
CollaborationFramework is defined extensively on interfaces from
CommunityFramework .

Negotiation Facility Specification, v1.0 March 2002



3. Community Framework under contains extensions to the Task and Session support
communities of collaborating users. It defines the abstract Membership interface and
concrete types - Community, Agency.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.
Helvetica - Exceptions

Terms that appear iitalics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

The following companies have submitted to or have supported submissions
contributing to this specification:

« Fraunhofer Institut Materialfluss und Logistik

« Imperial College of Science Technology and Medicine
* In-Line Software

« OSM SARL

 Sprint - Technology Planning and Integration

« Xerox Corporation

March 2002 Negotiation Facility: Typographical Conventions ¢



Negotiation Facility Specification, v1.0 March 2002



1.1 Introduction

March 2002

Collaboration Criteria 1

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 1-1

“Collaborative Process Models” 1-2
“DPML Schema Specification” 1-17
“Element to IDL Type Mapping” 1-29
“Related DPML Documents” 1-30

This chapter describes three collaboration models dealing with bilateral negotiation,
multilateral negotiation, and promissory commitment. Each model is presented with a
general description of the model purpose and characteristics, followed by the
specification of the structure and valuesGifteria instances used to represent the
model.

Criteria descriptions are defined through construction of instances based on valuetypes
defined in theCollaborationFrameworkand CommunityFrameworkhapters of this
document. Composition of valuetypes is described using the Digital Product Modeling
Language (DPML) XML schema. DPML is a non-normative supplement to this
specification that allows a more complete representation of Criteria instances than is
possible under IDL. The DPML 2.0 DTD and mapping to CommunityFramework and
CollaborationFramework valuetypes is presented in Section 1.3, “DPML Schema
Specification,” on page 1-17.

Negotiation Facility Specification, v1.0 1-1



1-2

Table 1-1 Criteria Descriptions

Model label

Model Description

bilateral

A model of collaboration in which two parties can interact through offers,
requests, suggestions, and proposals leading to an agreed or non-agreed
conclusion.

multilateral

A model of collaboration in which an initiating party can establish a motion, a
reciprocating party can second the motion, supporting actions enable motion
amendment (through amendment motions), leading to a vote on the motion and
possible establishment of an agreed result.

promissory

A model of collaboration in which an initiating party can establish a promise
towards another party, where the reciprocating party can call the promise
thereby establishing an obligation on the promising party, leading to the
launching of a fulfillment process (defined under a separate processor madel).

1.2 Collaborative Process Models

1.2.1 Bilateral Negotiation

This section describes a model of collaboration in which two parties can interact through
offers, requests, suggestions, and proposals leading to an agreed or non-agreed
conclusion. The model expressed here in DPML defines the structure and values of a
CollaborationModel contained within &rocessorCriteria that may be executed

under aCollaborationProcessor . The mappings between DPML elements and criteria
valuetype are presented in Section 1.3, “DPML Schema Specification,” on page 1-17.
Definition of the control valuetypes and the supporting interfaces are presented in
Chapter 2 CollaborationFrameworkand Chapter 3 CommunityFramework

Negotiation Facility Specification, v1.0 March 2002



@)

O i-offer O
i-request I-propose
- ~
) " N
requested offered
_________ . agree class: SUCCESS
T ofter ) ‘ code: 1
P active ! proposed
[ )
propose reject class: FAILURE
code: 0
request .
suggest A timeout class: FAILURE
code: -1
— —
negotiable N o
\ /
Figure 1-1 Schematic Representation
1.2.1.1 DPML Specification
<DPML>

March 2002

<collaboration label="bilateral" note="Bilateral negotiable agreement process model.">

This model defines a bilateral process through which two parties may attempt to establish
an agreement through a pattern of interaction similar to the classic notions of peer-to-
peer negotiation. The process enables the establishment of a negotiation subject, an
initial offered, proposed, or requested state, and transitions supporting the escalation of
the level of mutual agreement between parties qualified by the implicit PARTICIPANT
roles of INITIATOR and RESPONDENT. The model demonstrates the application of
input and output declarations, a simple state hierarchy, initializations, transitional actions,
terminations, and usage directives.

<input tag="subject" required="TRUE"
type="IDL:omg.org/Session/AbstractResource:2.0" />

The establishment of the subject of a negotiation is controlled by the addition of an input
usage constraint on theollaborationModel (refer to “InputDescriptor” on page 1-18
and 1-29). This input descriptor declares a requirement for the association of a tagged
usage link named “subject” when initializing the hosting process. Initialization of the
process is achieved by invokirapply _arguments on the hosting
CollaborationProcessor . The client passing a string identifying an initialization
argument (one of the values dhit.offer ,” “init.propose ,” or “init.request ") and an

Negotiation Facility: Collaborative Process Models 1-3



1-4

ApplyArgument value containing the name of the input usage constraint (in this case
“subject”) together with an instance ébstractResource that will constitute the
initial subject of the collaboration.

<state label="negotiable" >

The negotiable state is a parent state to the two stgiegposed andrequested .
Transitions declared on theegotiable state enable the explicit rejection ofabject
by a user through theeject termination. A second characteristic of thegotiable
state is the association oftianeout transition that will close the negotiation after a
predetermined period of inactivity.

<trigger label="reject" >
<launch mode="PARTICIPANT" />
<termination class="FAILURE" code="0" />
</trigger>

The reject trigger declares the possibility to any PARTICIPANT to terminate the
collaboration under &AILURE status. Areject transition may be invoked against any
open (proposed , requested , or offered ) state.

<trigger label="timeout" >

<clock timeout="3600000" />

<termination class="FAILURE" code="-1" />
</trigger>

Thetimeout trigger declares a default termination condition, armed when the
negotiation state becomes active. The value represents the period between arming and
firing by a CollaborationProcessor implementation. DPML represents time periods

in micro-seconds.

<state label="requested" >

<trigger label="init.request" >
<launch mode="INITIATOR" />
<initialization/>

</trigger>

Therequested state exposes transitions that allow a respondent to transition to the
offered or proposed states using theffer or propose transitions, or to continue in
therequested state through application of theuggest transition.

<trigger label="suggest" >
<launch mode="RESPONDENT"/>
<local reset="TRUE">
<input tag="subject" required="TRUE" implied="FALSE”
type="IDL:omg.org/Session/AbstractResource:2.0" />
</local>
</trigger>

Negotiation Facility Specification, v1.0 March 2002



1

March 2002

Thesuggest transition is a local transition witreset semantics enabled. Semantically

it is equivalent to theequest transition except that it is initiated under thegquested

state. Suggest is used as an exploratory mechanism through which two members can
continue to invoke suggestions towards each other relative to the subject, until such time
that at least one party is ready to migrate to a higher level of commitment as expressed
under theproposed or offered states.

<trigger label="offer" >
<launch mode="RESPONDENT"/>
<transition target="offered">
<input tag="subject"
required="TRUE" implied="FALSE”
type="IDL:omg.org/Session/AbstractResource:2.0" />
</transition>
</trigger>

An offer is a transition from theequested state to theoffered state. Invokingoffer
is on one hand an expression of agreement by the offering party, but on the other hand,
restricts the potential for further negotiation (as compared to propose).

<trigger label="propose" >
<launch mode="RESPONDENT"/>
<transition target="proposed">
<input tag="subject"
required="TRUE" implied="FALSE"
type="IDL:omg.org/Session/AbstractResource:2.0" />
</transition>
</trigger>

</state>

Propose is a transition from theequested to proposed states that introduces the
commitment by the proposing party in that the subject of the proposal may be agreed to
by the correspondent. This is distinct to the requested state where, in comparison, no
agreement is implied.

<state label="offered" >

<trigger label="init.offer" >
<launch mode="INITIATOR" />
<initialization/>

</trigger>

Theoffered state enables a respondentagree or reject an agreement to the subject
of the collaboration. Invokinggree leads to the firing of a successful terminal transition
expressing agreement by both parties togtibject of the Collaboration .

<trigger label="agree" >
<launch mode="RESPONDENT" />
<move source="subject" target="result" switch="TRUE"/>
<termination class="SUCCESS" code="1">

Negotiation Facility: Collaborative Process Models 1-5



<output tag="result"
type="IDL:omg.org/Session/AbstractResource:2.0" />
</termination>
</trigger>

Theagree Trigger is available to a respondent under dffered andproposed states.
Agree signifies the agreement by the respondent toffer or proposal raised by the
issuing user. Thagree transition establishes a collaboration process undemaeed
termination, expressing the agreement by both parties teuhject of a collaboration.
Agree contains an output descriptor declaringrimult tag, established under the move
directive.

<state label="proposed" >

<trigger label="init.propose" >
<launch mode="INITIATOR" />
<initialization/>

</trigger>

The proposed state extends the semantics of tiffeered state by introducing the
possibility of change to the subject of the collaboration. Through application of the
request transition, a respondent may change the subject of the collaboration to a new
value and establish the active stater@guested .

<trigger label="request" >
<launch mode="RESPONDENT"/>
<transition target="requested">
<input tag="subject"
required="TRUE" implied="FALSE”
type="IDL:omg.org/Session/AbstractResource:2.0" />
</transition>
</trigger>

Request is a simple transition that can be applied undergrmposed state.

Request enables a respondent to change the subject of a negotiation and the context
from theproposed to requested state. Arequest transition does not signify the
commitment of the requesting party, however, it opens the possibility for the counterpart
to respond wittpropose or offer against thesubject under therequested state.

</state>
</state>
</state>
</collaboration>
</DPML>

1.2.2 Multilateral Agreement

A Multilateral agreement model describes a collaboration criteria in which an initiating
party can establish a motion, a reciprocating party can second that motion, and
supporting actions that enable motion amendment (through amendment motions), leading

Negotiation Facility Specification, v1.0 March 2002



1

to a vote on the motion and possible establishment of an agreed result. This model
demonstrates the application of compound transitions dealing with voting and motion
amendment. In the case of motion amendment, the compound transition is an example of
a model recursion (multilateral declares amend which is a compound transition that
references multilateral as the controlling model).

: active I@
(
___/(__)
~
motioned
amend
) r—ﬁ
pending seconded
second escalate
)
motion % opposed
A
O retraction ﬁh’
oppose
ithd I
lass: FAILURE withdraw cal called .
e code: -1 ‘ V EI(?;;fUCCESS
% J A vote
|_‘ class: FAILURE
A timeout code: 0
‘ class: FAILURE
code: -2
Figure 1-2 Schematic Representation
1.2.2.1 DPML Specification
<DPML>
<collaboration label="multilateral"
note="Multilateral agreement through motion, amendment and voting">
A motion -based negotiation is a collaborative process model dealing with interactions
between a group of two or more participants. It provides a framework within which a
user can initiate anotion with an arbitrarysubject under which agreement can be
established through a consensus process.
<input tag="subject"
required="TRUE" implied="FALSE”
type="IDL:omg.org/Session/AbstractResource:2.0" />
The subject input declaration requires that Tlask associated to the hosting processor
must be explicitly associated with a named usage tag (prior to processor start or during
initalization). This resource represents the motion being raised.
March 2002 Negotiation Facility: Collaborative Process Models 1-7



1-8

<state label="motioned" >

The motioned state is the parent of two principal stgpesding andseconded that
through interaction between participants may lead to any of the terminal transitions of
agree, reject, or withdraw . Initialization of a multilateramotion is established
through amotion trigger, establishing the invoking user as the INITIATOR. Under the
pending state two actions are possible:

® Thewithdraw transition may be launched either directly by the initiator, or though
atimeout referral that will raise the withdraw termination.

or

* A RECIPROCATING user (any user other than the user raising the motion) may
second the motion leading to a transition to the seconded state.

Once apending motion isseconded , any user may invoke theamend or call

triggers. Amend is executed as a full motion process whereas the call transition changes
the active state to called. Under the called state the process may be opposed resulting in
the potential withdrawal of the call or call escalation. Esealate trigger forces a 2/3
majority vote-to-vote, the successful outcome of which is mapped to a compound
transition involving a formal vote. The failure of the vote-to-vote is mapped to a
transition back to the seconded state. Vot trigger fires a voting compound transition

that contains &rocessorCriteria containing avoteModel instance as the sub-

processor definition. The sub-processor, an instandtefProcessor exposes aote
operation under which participants may register YES, NO, and ABSTAIN. The success
or failure of a vote processor is mapped toagree andreject termination that signal

the success or failure of the multilateral process.

<state label="pending" >

The pending state signifies the agreement by one party to a motion, expressed as the
subject of Collaboration and the expression of the interest of that party in the
reaching of agreement to the associated subject. The issuing usevithdsaw a

motion at any time prior t@econd transition. Atimeout terminal transition will fire
after a predetermined interval if a motion is not secondedeéond transition

establishes the motion as a valid motion to Membership .

<trigger label="motion" >
<launch mode="INITIATOR" />
<initialization/>

</trigger>

Initialization usingmotion establishes the collaboration with thending state and all
parents as thactive-state path. A motion is raised with the express interest of gaining
the agreement (or rejection) of the membership to the subject of the motion. For a
motion to be successful, the motion must be seconded and voted upon prior to the
timeout of the withdraw action. At any time before a motion vote is initiated the
principal raising the motion may actively withdraw the motion. A potential risk of raising

a motion is that the subject of the motion, if seconded, may be amended at the discretion
of the group.

Negotiation Facility Specification, v1.0 March 2002



<trigger label="second" >
<launch mode="RESPONDENT" />
<transition target="seconded" />
</trigger>

Thesecond transition is a simple transition that may be invoked kespondent in
support of gpending motion. The second transition will result in the establishment of
theseconded state and alparent states as the active-state path. Once a motion is
seconded it may no longer be withdrawn and may be subject to amendment by the
members of the collaboration.

<trigger label="withdraw" >
<launch mode="INITIATOR" />
<termination class="FAILURE" code="0" />
</trigger>

The initiator of a motion may withdraw the motion at any time prior to the occurrence of
a second action.

<trigger label="timeout" >

<clock timeout="120000" />

<termination class="FAILURE" code="-1" />
</trigger>

A timeout trigger will force termination of the process in the absence of a second to the
motion.

</state>

<state label="seconded">

Theseconded state establishes the process in a mode that disables the potential for
motion withdrawn and raises the possibility for amendment of the motion or potential
calling of a vote on the motion.

<trigger label="amend" >
<launch mode="PARTICIPANT"/>
<move source="subject" target="subject.pending" />
<external label="amending"
public="-OSM//XML Model::MULTILATERAL//EN"
system="http://home.osm.net/dpml/multilateral.xml">
</external>

Theamend Trigger contains a compound transition defined by a subsidiary

collaboration process using tiheotion model; that is, this model. To circumvent

recursion restrictions within XML, the external element is used to indirectly reference the
multilateral agreement model. Using thpply_arguments operation on
CollaborationProcessor , the client passes in an identifier referencing Thigger

label (amend) together with akpplyArgument value containing the “subject” usage

label and an object representing the amendment. An amendment is executed as a sub-
process under which the amended subject is raised as a new motion, subject to a second,
and subsequent vote by the membership.

March 2002 Negotiation Facility: Collaborative Process Models 1-9



1-10

<on class="SUCCESS">
<remove source="subject.pending"/>
<move source="result"
target="subject" switch="TRUE"/>
<local reset="TRUE"/>
</on>

On conclusion of the amendment process, a successfult of the underlying process
will cause the completion of the transition by changing dle&ve-state to seconded
and the assertion of the sub-process result as the seconded subject.

<on class="FAILURE">
<remove source="subject" />
<move source="subject.pending" target="subject"/>
<local reset="TRUE"/>

</on>

In the case of failure of the sub-process, the subject of the amendment sub-process is
removed and the original subject is reinstated using the remove and move usage
directives.

</trigger>

<trigger label="call" >
<launch mode="PARTICIPANT" />
<transition target="called" />
</trigger>

Thecall trigger may be invoked by any participant. It moves the process to a state that
prevents further amendment.

</state>

<state label="called" >

Thecalled state contains a vote clock, armed when the called state becomes active. The
automatic launching of a vote can be disabled through the oppose trigger, forcing the
Collaboration into an opposed state. If no participant opposes the call, a vote process
will be automatically established.

<trigger label="vote" >
<clock timeout="120000"/>
<vote label="voting"
policy="AFFERMATIVE" numerator="1" denominator="2">
<input tag="subject" required="TRUE" implied="TRUE"
type="IDL:omg.org/Session/AbstractResource:2.0" />
</vote>

Thevote trigger is guarded by a timeout condition. It is armed when the containing state
enters the active state path. The model declaf®eessorCriteria value containing a
vote model (refer VoteModel) and an input pre-condition that implicitly associates the
current subject as the subject of the voting process.

Negotiation Facility Specification, v1.0 March 2002



<on class="SUCCESS">
<move source="subject" target="result" switch="TRUE" />
<termination class="SUCCESS" code="1">
<output tag="result"
type="IDL:omg.org/Session/AbstractResource:2.0" />
</termination>
</on>

Post-conditions of the vote are expressed under the “on” statements (representing Map
instances). OBUCCESS the subject usage link of the collaboration’s task is moved to
“result.” The switch attribute signifies that ti@ollaboration implementation will

switch the link containing the subject from consumed (input) to produced (output) as a
post-condition to termination execution prior to process completion.

<on class="FAILURE">
<termination class="FAILURE" code="0" />
</on>

On FAILURE of the vote, the process is terminated with its own failure status.
</trigger>

<trigger label="oppose" >
<launch mode="RESPONDENT" />
<transition target="opposed" />
</trigger>

The oppose Trigger enables declaration of opposition to the calling of a vote by
transition to theopposed State .

</state>

<state label="opposed" >

Theopposed state supports automatic retraction of a call under a timeout condition.
Any member of the collaboration can intercept automatic timeout by invoking the
escalatelrigger , forcing a vote-to-vote.

<trigger label="retraction" >
<clock timeout="120000" />
<transition target="seconded" />
</trigger>

Theretraction trigger is armed when the opposed state enters the active state path. It
declares a simple transition to the seconded state. Automatic retraction may be
intercepted by thescalate trigger.

<trigger label="escalate" >
<launch mode="RESPONDENT" />

The escalate trigger forces suspension of a retraction countdown by launchirajea
to-vote sub-processor.

March 2002 Negotiation Facility: Collaborative Process Models 1-11



1-12

<vote label="vote-to-vote"
policy="AFFERMATIVE"
numerator="2"
denominator="3"/>

The vote-to-vote is a compound transition containing policy that defines vote rules to
be applied, in this case an affirmative 2/3 majority is required for the vote processor to
conclude with a successful result.

<on class="SUCCESS">
<referral action="voting" />
</on>

On success of theote-to-vote sub-processor, a referral action launches a normal vote
process, which will establish a finalization of the processor in a successful or failed state.

<on class="FAILURE">
<transition target="seconded" />
</on>

On failure of thevote-to-vote a simple transition to the seconded state is fired, enabling
a resumption of subject amendment.

</trigger>
</state>
</state>
</collaboration>
</DPML>

1.2.3 Promissory Contract Fulfillment

The promissory contractual fulfilment model demonstrates the use of named roles as
preconditions to trigger invocation. The model also includes reuse of the bilateral
negotiation model as the means by which a commercial contract fulfillment process may
be disputed and the means through which obligations of the contracting parties may be
waived.

Negotiation Facility Specification, v1.0 March 2002



4 N\ |'— _______ \I
promised | active !
e )
— wawve N >@) coss: SUCCESS
right - code: 0
_ A expire S@ coss FALURE
O promise - code: -1

call

dispute 9. class: SUCCESS
code: 1
—
q 3 9. class: FAILURE
obligation code: -2

[}
- \ | active
pending !

fulfill

/]( >‘ class: SUCCESS

code: 1

A timeout

overdue j

Figure 1-3 Schematic Representation

1.2.3.1 DPML Specification

<DPML>
<collaboration label="promissory" note="Promissory contract process model.">

<role label="party" abstract="TRUE">
<role.policy ceiling="1" quorum="1" assessment="STRICT"
policy="CONNECTED" />
<role label="supplier" abstract="FALSE"/>
<role label="consumer" abstract="FALSE"/>
</role>

The promissory contract fulfillment model contains a number of triggers that restrict the
use of implicit role declarations such as INITIATOR and RESPONDENT. In this model
the role guarding the call and fulfillment triggers are qualified by an explicit role
declaration. One abstract role named “party” is defined as a container of two concrete
roles named “supplier” and “consumer.” Both supplier and consumer role policies are
implied by the policy definition of the containing party role. In this example both are
declared with a quorum and ceiling of one. This means that the maximum number of
members associated with this role is one and the minimum number is one. The policy

March 2002 Negotiation Facility: Collaborative Process Models 1-13



1-14

description also states that both users must be connected (referfaskand Session
specification, User, Connected State section) and that quorum assessment shall be strictly
applied.

<input tag="contract"
required="TRUE"
type="IDL:omg.org/Session/AbstractResource:2.0" />

The promissory contract model is defined with a requiteshsumption association
between the coordinating Task and the processor with a tag corresponding to “contract.”
This declaration establishes the requirements on a supplier to ensure that a tagged
consumes link with the value “contract” is available prior to or during initialization of the
hosting processor.

<state label="promised">

The promissory model defines a bilateral collaborative interaction. An initiator
invoking apromise trigger establishes @ollaboration under theright state. Once
initialized as aright , a respondent may call the promise by invokingadl transition.
This corresponds tomspondent requesting fulfillment of the promise. An initiator of
the promise (now in the role of respondent) fulfills a promise by applyindgutid
transition, itself a compound transition defined byilateral negotiation. Success of the
negotiation leads to thiulfilled state whereas failure leads to tlegected state.

<trigger label="waive" >

Thewaive trigger may be invoked by either consumer or provider. It is a compound
transition referencing a bilateral or multilateral negotiation that if successful results in a
transition to the terminalvaived state. A failure of the negotiation will result in the
continuation of the process under the active state established prior to the initiation of the
waive transition.

<launch mode="PARTICIPANT" />
<external label="waiving"
public="-OSM//XML Model::BILATERAL//EN"
system="http://home.osm.net/dpml/bilateral.xml">
</external>

An implementation ofCollaboration establishes a new sub-process using the declared
criteria — in this case the DPML supplies criteria references a bilateral negotiation
process using an externd&xternalCriteria ) declaration.

<on class="SUCCESS">
<termination class="SUCCESS" code="0" />
</on>

A successful result of a negotiation by the participants is mapped to a successful
termination of the promissory contract.

Negotiation Facility Specification, v1.0 March 2002



<on class="FAILURE">
<local reset="FALSE"/>
</on>

A failure result of a negotiation by the to participants in the attempt to waive the promise
is mapped to a local transition to the last active state established prior to the initiation of
the waive action.

</trigger>

<trigger label="dispute" >
<launch mode="PARTICIPANT" />
<copy source="contract" target="subject " />
<external label="disputing"
public="-OSM//XML Model::BILATERAL//EN"
system="bilateral.xml|">
</external>

A dispute between a supplier and consumer can be established through applying the
dispute trigger. A dispute may be initiated by either consumer or supplier. Prior to the
initiation of the dispute sub-process, the contract association representing the promise is
copied to a new link with the tag “subject,” required as an input to a bilateral negotiation
process. In this example a bilateral negotiation is defined as the dispute resolution
mechanism.

<on class="SUCCESS">
<move source="result" target="contract” switch="TRUE"/>
<local reset="TRUE"/>

</on>

At successful conclusion of a dispute the “subject.pending” link is removed and the
result of the negotiation process is established as the active subject. Process execution is
returned to the last active state.

<on class="FAILURE">
<termination class="FAILURE" code="-2" />
</on>

On failure of the dispute the process is terminated with a failed result.
</trigger>

A promise made by a provider towards a consumer under which the provider commits to
the willingness to fulfill the promise at the request of the consumer.

<state label="right">
<trigger label="promise" >
<launch role="supplier" />

<initialization/>
</trigger>

March 2002 Negotiation Facility: Collaborative Process Models 1-15



Initialization is achieved using theromise Trigger leading raised by supplier
facilitating the establishment of the promise offered under the subject of the process as a
callable right of theconsumer .

<trigger label="expire" >

<clock timeout="12000000" />

<termination class="FAILURE" code="-1" />
</trigger>

Theexpire trigger exposes a timeout value that will trigger the expiry of the consumer’s
right to invoke arequest for fulfillment against a provider.

<trigger label="call" >
<launch role="consumer" />
<transition target="pending" />
</trigger>

Thecall trigger contains a transition to the pending state that is available to the
consumer. Invoking theall transition establishes the promise agemding obligation
against the promise supplier.

</state>

<state label="obligation">

Theobligation state establishes a collaborative context under which a promise
constitutes an obligation of the provider to fulfill.

<state label="pending">

The pending state is a state under which a provider is obligefutll on a promise
through invocation of the fulfill transition.

<trigger label="fulfill" >
<launch role="supplier" />

<external label="fulfillment"
public="-OSM//XML Model::BILATERAL//EN"
system="http://home.osm.net/dpml/bilateral.xml">
</external>

Fulfill is available to a provider under the obligatipending state. Afulfill transition

is defined as a compound transition that uses a bilateral negotiation criteria. A subsidiary
Collaboration is instantiated that, on resolution, defines the success or failure condition
used to determine the conclusion of the fulfillment action.

<on class="SUCCESS">
<move source="result" target="deliverable" />
<termination class="SUCCESS" code="1">
<output tag="deliverable"
type="IDL:omg.org/Session/AbstractResource:2.0" />

1-16 Negotiation Facility Specification, v1.0 March 2002



</termination>
</on>

On successful completion of the fulfillment sub-process, the result of the fulfillment is
established under a link tagged as the fulfillment “deliverable.” The implementation fires
a success termination of the process, indicating satisfactory fulfillment of the promissory
contract process.

<on class="FAILURE">
<local reset="TRUE"/>
</on>

On failure of the fulfillment sub-process a local transition is enabled following which the
supplier is able to re-attempt fulfillment or potentially enter into a dispute resolution
process or request a waive of the promise.

</trigger>

<trigger label="timeout" >
<clock timeout="240000000" />
<transition target="overdue" />
</trigger>

Timeout is a clock controlled simple transition that changes an exigilvigation
pending to obligating pending andoverdue .

<state label="overdue"/>

Theoverdue state is a sub-state of pending which is established by an implementation
of Collaboration when a pending obligation timeout transition expires.

</state>
</state>
</state>
</collaboration>
</DPML>

1.3 DPML Schema Specification

March 2002

Digital Product Modeling Language (DPML) DTD specification 2.0.
Copyright OSM, 1999-2000
http://www.osm.net

This DTD defines the structural semantics of the data types used in the construction of
digital products supporting distributed collaborative business process descriptions. This
schema is a non-normative supplement supporting declaration of criteria composition
related to this specification’s Collaboration and Community Frameworks. Descriptions
of attributes and elements contained within this section are provided as a convenience.
The formal specification of objects models and associated semantics are defined under

Negotiation Facility: DPML Schema Specification 1-17



1-18

the specification of valuetypes and interfaces within Chapter 2-
“CollaborationFrameworkand Chapter 3- CommunityFramewotkbased on the
mapping of element to types contained at the end of this section.

Criteria

The criteriaENTITY is defined as the set of concrete criteria types that can be contained
as the root element within a DPML document. The DPML rBbEMENT declaration
defines the set of elements types that can be declared as a root element. The elements

* generic GenericCriteria ),

e community CommunityCriteria ),
« agency AgencyCriteria ),

« encounter EncounterCriteria ),
 external ExternalCriteria ), and

» processorRrocessorCriteria )

all map directly to criteria valuetypes. In the case of vote, engage, and collaboration the
elements map to an instancefrfocessorCriteria where the contained model is an
instance oMoteModel , EngagementModel , andCollaborationModel respectively.

<IENTITY % criteria "
(generic|community|agency|encounter|processor|external|vote|engagement|collaboration)">
<I[ELEMENT DPML (%criteria;)>

Control

The controlENTITY is a declaration that defines an identifying name and description
attribute. These attribute declarations correspond to the state fields of the base type
Control from the CommunityFramework

IDL:omg.org/CommunityFramework::Control:2.0.

<IENTITY % label "label ID #IMPLIED">
<IENTITY % note "note CDATA #IMPLIED">
<IENTITY % control "%label; %note;">

Input and Output

The input and output elements define consumption and production statements that can be
associated to process centric criteria. Both input and output are derived from the abstract
UsageDescriptor exposed by &rocessorModel usage state field. The value

contained by the type field shall be consistent with the XMI Production Rules,
specifically, types shall be declared in accordance with their IDL interface repository
identifier.

For example, &enericResource would be identified by the string
IDL:omg.org/CommunityFramework:GenericResource:2.0

Negotiation Facility Specification, v1.0 March 2002



1

March 2002

The value of the tag field corresponds to the tag attributed to a usage link (refer to
Production and Consumptian the Task and Session SpecificafiorThe implied

attribute states that a usage link of the tag is required as distinct from optional. The
implied attribute, if true, states that if the tagged link already exists on the controlling
Task, that link is implied; whereas, a false value states that the link must be explicitly set
(possibly resulting in the replacement of an existing link with the same tag value).

IDL:omg.org/CommunityFramework::InputDescriptor:2.0.
IDL:omg.org/CommunityFramework::OutputDescriptor:2.0.

<IENTITY % tag "tag CDATA #REQUIRED">
<IENTITY % required "required (TRUE|FALSE) 'TRUE™>
<IENTITY % implied "implied (TRUE|FALSE) 'TRUE">
<IENTITY % type "type CDATA #REQUIRED">

<IELEMENT input EMPTY >
<IATTLIST input

%tag; %required; %implied; %type;
>

<IELEMENT output EMPTY >
<IATTLIST output

%tag; %type;
>

remove, copy, move and create

The copy, move, create, and remove directives are instructions that can be declared
within the scope of a referral, a trigger, or an on post-condition statement. These
directives declare actions to be taken by an implementation of

CollaborationProcessor that effect tagged usage relationships on the coordinating
Task or Encounter . Usage directives enable the declaration of operators that result in
the manipulation of usage associations such as renaming or duplication of an association,
inversion of an association from consumption to production, or retraction of an
association.

IDL:omg.org/CollaborationFramework::Remove:2.0 // remove
IDL:omg.org/CollaborationFramework::Duplicate:2.0 // copy
IDL:omg.org/CollaborationFramework::Move:2.0 // move
IDL:omg.org/CollaborationFramework::Constructor:2.0 // create

<IENTITY % source "source CDATA #REQUIRED">

<IENTITY % target "target CDATA #REQUIRED">

<IENTITY % switch "switch (TRUE|FALSE) 'FALSE™>
<IENTITY % directive.attributes "%source; %target; %switch;">

<IELEMENT copy EMPTY>

<IATTLIST copy
%(directive.attributes;

>

Negotiation Facility: DPML Schema Specification 1-19



1-20

<I[ELEMENT move EMPTY>

<IATTLIST move
%directive.attributes;

>

<IELEMENT create (target,%criteria;) >
<IATTLIST create

Y%target;
>

<IELEMENT remove EMPTY >
<IATTLIST remove
%source;
>
<IENTITY % directive.content "((create|copy|move|remove)*)" >

initialization

An initialization ELEMENT is a type of transitional action. It qualifies the containing
state as a candidate for establishment of the active-state when starting a processor. A
processor may be initialized through the apply operation on the ab&iodleboration
interface, or implicitly through starting @ollaborationProcessor

IDL:omg.org/CollaborationFramework::Initialization:2.0

<!IELEMENT initialization (input*) >
<IATTLIST transition

%control;
>

transition

A transitionELEMENT declares a target state facilitating modification of a
CollaborationProcessor active state path. Modification of the active state path
establishes a new collaborative context, enabling a new set of triggers, guard conditions,
and timeouts based on declared clocks. A transition element may also contain any
number of input statements enabling declaration of required or optional arguments to be
supplied under th€ollaboration apply_arguments  operation.

IDL:omg.org/CollaborationFramework::SimpleTransition:2.0
<IELEMENT transition (input*) >
<IATTLIST transition

%control;
target IDREF #IMPLIED

Negotiation Facility Specification, v1.0 March 2002



March 2002

local

The localELEMENT defines a transition to the current active-state and exposes a clock
timeout reset policy. If the reset policy is true, all timeout conditions established under
the active state path shall be re-initialized. A local transition element may also contain
any number of input statements enabling declaration of required or optional arguments to
be supplied under th€ollaboration apply _arguments  operation.

IDL:omg.org/CollaborationFramework::LocalTransition:2.0

<IELEMENT local (input*) >
<IATTLIST local

%control;

reset (TRUE|FALSE) "FALSE"

termination

A termination declares a processors termination within completion statusEENMETY
completion declares a completion class and code. It is used within a termination element
to declare a SUCCESS or FAILURE result status and implementation specific result
code. The termination element can contain any number of output declarations.

IDL:omg.org/CollaborationFramework::Completion:2.0
IDL:omg.org/CollaborationFramework:: TerminalTransition:2.0

<IENTITY % class "class (SUCCESS|FAILURE) 'SUCCESS™>
<IENTITY % code "code CDATA #IMPLIED">
<IENTITY % completion "%class; %code;">
<!IELEMENT termination (output*) >
<IATTLIST termination
%control;
%completion;

generic

The generiELEMENT is used to define the valuety@enericCriteria , used as an
argument to &ResourceFactory to construct resources containing arbitrary content
contained within &ORBA any . Instances ofsenericResource provide a
convenience container for arbitrary resource association (such as the subject of a
negotiation or XML document defining contractual terms).

IDL:omg.org/CommunityFramework::GenericCriteria:2.0
<IELEMENT generic (nvp*) >
<IATTLIST generic

%control;
>

Negotiation Facility: DPML Schema Specification 1-21



1-22

community

The communityELEMENT describes an instance @ommunityCriteria .
CommunityCriteria may be used as an argument tR@sourceFactory to construct
a new instance ac€ommunity . Community is a type ofWorkspace (refer to theTask
and Sessiospecification) that supports the abstrit#mbership interface.

IDL:omg.org/CommunityFramework::CommunityCriteria:2.0

<IELEMENT community (membership, (nvp*)) >
<IATTLIST community

%control;
>

agency

The agencfELEMENT represents thAgencyCriteria valuetype that may be passed as

an argument to &esourceFactory resulting in creation of a new Agency instance.
Agency is a type ofCommunity with inheritance fromLegalEntity . Agency

represents a community against which supplementary implementation specific policy can
be associated (such as an applicable legal domain).

IDL:omg.org/CommunityFramework::AgencyCriteria:2.0

<IELEMENT agency (membership, (nvp*)) >
<IATTLIST agency

%control;
>

encounter

The encounteELEMENT defines arEncounterCriteria against which new instances
of Encounter can be created usingResourceFactory . Encounter is a type of

Task that serves as a controllerfrocessor instances.Encounter , as a

Membership , may be associated to many users. Through inheritance of Task exactly
one User is associated as the owner oEacounter .

IDL:omg.org/CollaborationFramework::EncounterCriteria:2.0

<IELEMENT encounter (membership, nvp*) >
<IATTLIST encounter

%control;
>

external

External describes th&xternalCriteria valuetype. ExternalCriteria contains a

public and system identifier of a remote resource. The public and system identifiers
contained within an external declaration are factory dependent. For example, a factory
implementation with knowledge of DPML can use external criteria as a means through

Negotiation Facility Specification, v1.0 March 2002



1

March 2002

which criteria can be inferred. Other examples of external criteria application include
embedding of interoperable naming URLs. An external element may include any number
of input and output statements.

IDL:omg.org/CommunityFramework::ExternalCriteria:2.0

<IELEMENT external ((input|output)*,nvp*)>
<IATTLIST external

%control;

public CDATA #IMPLIED

system CDATA #REQUIRED

processor

The processor element contains input and output declarations and a named value pair
sequence defining factory criteria. Input and output declarations define the resources that
a processor implementation requires as input, and the resources that will be produced by
the processor. Supplementary processor criteria is contained undemptiigamed value

pair) sequence. An implementation is responsible for mappimypfvalues to a named

value pair sequence as defined by @esLifeCycle Criteria type specification.

IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0

<IELEMENT processor ( (inputjoutput)*, nvp*)>
<IATTLIST processor

%control;
>

vote

The vote element defind&rocessorCriteria containing aVoteModel (referred to as
vote criteria). Vote criteria, when passed t&®RasourceFactory , results in the
establishment of a new instance\afteProcessor . Using aVoteProcessor , members

of a coordinating=ncounter can register votes in support of, in opposition to, or abstain
relative to a subjechMoteProcessor raises a result status indicating the successful or
failure status of a voting process.

IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0
IDL:omg.org/CollaborationFramework::VoteModel:2.0 // model

<IENTITY % numerator "numerator CDATA #REQUIRED" >
<IENTITY % denominator "denominator CDATA #REQUIRED" >
<IENTITY % quorum "%numerator; %denominator;" >
<IELEMENT vote ((input|output)*, nvp*)>
<IATTLIST vote

%control;

%quorum;

Negotiation Facility: DPML Schema Specification 1-23



1-24

policy (AFFERMATIVE|NON_ABSTAINING) "AFFERMATIVE"
single (TRUE|FALSE) "TRUE"
lifetime CDATA #IMPLIED

engagement

Engagement definesRrocessorCriteria that contains aftngagementModel .

When passed as an argument tBesourceFactory , such a criteria will result in the
creation of a new instance &ngagementProcessor . EngagementProcessor

declares policy enabling the attribution of proofs and evidence in the establishment of
binding agreements.

IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0

<IELEMENT engagement ((input|output)*)>
<IATTLIST engagement

%control;

policy CDATA #IMPLIED

collaboration

The collaboration element definBsocessorCriteria criteria containing a
CollaborationModel (referred to as Collaboration Criteria). Collaboration criteria,
when passed as an argument tResourceFactory results in the creation of a new
instance ofCollaborationProcessor . CollaborationProcessor is a type of
Processor that contains &ollaborationModel as the definition of the rules of
engagement between a set of members associated under a conaltiognter .

IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0
IDL:omg.org/CollaborationFramework::CollaborationModel:2.0 // model

<!IELEMENT collaboration ((input|output)*, role?, state, nvp*) >
<IATTLIST collaboration

%control;
>

launch

The launch element defined.aunch valuetype, itself a type dbuard that is contained
by aTrigger . Guards establish preconditions to the activation of actions contained
within triggers. In the case dfaunch , the preconditions concern the implicit role of a
user and optionally explicit association of a user under a particular role. Implicit
preconditions declare three enumeration values:

® INITIATOR, the principal that invoked that last collaborative action, or in the case
of no prior action, a member of the controllipcounter ;

® RESPONDENT, any principal other than the initiator; and
®* PARTICIPANT, any principal associated to the controlliBgcounter .

Negotiation Facility Specification, v1.0 March 2002



These implicit roles are dynamically maintained by an implementation of
CollaborationProcessor . Implicit roles can be further qualified by declaration of a
role name that a principal must be associated to under the coordifatoaunter

(such as “customer,” “supplier,” etc.).

IDL:omg.org/CollaborationFramework::Launch:2.0
IDL:omg.org/CollaborationFramework::TriggerMode:2.0

<IENTITY % mode "mode (INITIATOR|RESPONDENT|PARTICIPANT) 'PARTICIPANT">
<IELEMENT launch EMPTY >
<IATTLIST launch
%mode;
role IDREF #IMPLIED

clock

A clock defines &lock valuetype.Clock contains a timeout declaration. When the
containing state enters the Active-state path the clock countdown is enabled. Clock
resetting is possible through invocation of a local transitiiock disabling is possible

by changing the active state path such that the containing state is no longer active. On
timeout of a clock, an implementation GhollaborationProcessor is responsible for
invoking the action contained by tAgigger containing the clock declaration. A typical
application of the clock operator is to automatically trip a state transition after a
predetermined period of in-activity.

IDL:omg.org/CollaborationFramework::Clock:2.0

<I[ELEMENT clock EMPTY >
<IATTLIST clock

timeout CDATA #IMPLIED
>

referral

A referral references the ID of an action to apply. An implementation of
Collaboration is responsible for management of the branching of the collaboration
state to the identified action and in the case of an action defined as a compound
transition, to execute on statements arising from sub-process conclusion.

IDL:omg.org/CollaborationFramework::Referral:2.0
<IELEMENT referral %directive.content; >
<IATTLIST referral

action IDREF #REQUIRED
>

March 2002 Negotiation Facility: DPML Schema Specification 1-25



1-26

compound

A compound transition is not directly represented in the DPML scheme as an element.
Instead, it is represented in terms of BNTITY content rule associating a processor
criteria (or element expandable to a processor criteria) and result mapping. While
simplifying DPML structure, the flattening of criteria and action results in the
requirement for a compound action label to be equivalent to the model contained by a
compound action.

IDL:omg.org/CollaborationFramework::CompoundTransition:2.0

<IENTITY % compound "((external|process|collaboration|vote|engagement), (on+))">

trigger

A trigger contains a guard, directive operators, an action, and a priority attribute.
Triggers are referenced by their label under @Bellaboration interface apply

operation. An implementation @ollaboration takes trigger labels as execution
instructions that enable clients to manipulate collaborative context. An implementation
of apply is responsible for assessing guard preconditions, following which apply requests
and associated usage directives are queued relatiixgger priorities. On execution

and implementation is responsible for executing usage directives before executing the
action contained within the trigger.

IDL:omg.org/CollaborationFramework::Guard:2.0
IDL:omg.org/CollaborationFramework:: Trigger:2.0

<IENTITY % guard "(launch*, clock*)">

<IENTITY % priority "priority CDATA #IMPLIED">

<IENTITY % transitional "(initialization|transition|local|termination)">
<IENTITY % action "(%transitional;|referral|%compound;)">

<IELEMENT trigger (%guard;,%directive.content;,%action;)>
<IATTLIST trigger

%control;

%priority;

on

A compound transition content declaration associates processor criteria that may be
executed as a sub-process with a set of on statements. Each on statement declares an
action to apply given a particular result of the process executed as a result of criteria
expansion. On statements are defined by class and result code. An implementation of
collaboration is responsible for matching sub-process result class and sub-codes and
subsequent firing of the declared action.

IDL:omg.org/CollaborationFramework::Map:2.0

<IELEMENT on (%directive.content;,%action;) >
<IATTLIST on

Negotiation Facility Specification, v1.0 March 2002



March 2002

%class;
%code;
>
State

A “state” is an element containing a set of sub-states and associated triggers. State
elements are the basic building blocks for collaborative context. Each state element can
contain sub-states and each state element can contain any number of Trigger
declarations. ACollaboration implementation maintains the notion of active-state
following initialization of the collaboration and tracks active-state relative to the last
transition that has been invoked. The active state path is the set of states between the
active state and the root-state of fBellaborationModel . All triggers declared within

the active-state path are considered candidates relative to the apply operation. By
modifying the active state (and by consequence the active-state path) the collaborative
content and available trigger options available to the associated membership are modified
relative to the constraints and directives declared under exposed triggers.

IDL:omg.org/CollaborationFramework::State:2.0

<IELEMENT state ((trigger|state)*)>
<IATTLIST state

%control;
>

membership

Membership is a model of the policy and roles that establishes the notion of a group of
users sharing the same set of rules. This element is used within the structural definition
of criteria such as community, agency, and encounter.

IDL:omg.org/CommunityFramework::MembershipModel:2.0

<IELEMENT membership (membership.policy?, role) >

membership.policy

The membership.policy ELEMENT declares privacy and exclusivity constraints on
the membership. Thmembership.policy element is contained within the
membership element. MembershipPolicy declares an exclusivity attribute that if
true, ensures that all members of a membership are uniquely represented in terms of
identifiable principals; that is, no principal may be represented more than once. The
privacy attribute qualifies the level of information that may be disclosed about the
business roles attributed to a given member via operation dffgrabership abstract
interface.

IDL:omg.org/CommunityFramework::MembershipPolicy:2.0
<IELEMENT membership.policy EMPTY>

<IATTLIST membership.policy
privacy (PUBLIC|RESTRICTED|PRIVATE) "PUBLIC"

Negotiation Facility: DPML Schema Specification 1-27



1-28

exclusivity (TRUE|FALSE) "TRUE"

role

Role is a specification of the state of a business role that may be abstract or concrete
depending on the value of the abstract attribute. A role element exposes a quorum and
ceiling through the containemle.policy element. Business roles such as “supplier” or
“customer” can be packaged under higher-level roles such as “signatory.” Association of
the status of “signatory” to both supplier and customer can be achieved by locating
supplier and customer as sub-roles of a parent role named “signatory.” Roles can then be
used as conditional guards concerning access to triggers within the body of collaboration
models.

IDL:omg.org/CommunityFramework::Role:2.0

<!IELEMENT role (role.policy?,role*) >
<IATTLIST role
%control;

abstract (TRUE|FALSE) "FALSE"

role.policy

Role policy is an element that defies the state &adePolicy valuetype RolePolicy

is used as a container of the policy attributed to a specific name business role that
includes ceiling and quorum values, policy concerning quorum assessment, and policy
concerning the connection status of a user relative to quorum calculations.

IDL:omg.org/CommunityFramework::RolePolicy:2.0

<!IELEMENT role.policy EMPTY >
<IATTLIST role.policy
ceiling CDATA #IMPLIED
quorum CDATA #IMPLIED
assessment (STRICT|LAZY) "LAZY"
policy (SIMPLE|CONNECTED) "SIMPLE"

nvp

Named value pairs are used as descriptive arguments to generic resource criteria. A
sequence of nvp elements can be mappedQosLifeCycle::Criteria type as exposed
by theCriteria type.

IDL:omg.org/CosLifeCycle::NameValuePair:1.0

While interpretation ofivp values is implementation dependent, the following rules
shall apply to values expressing IDL types:

Negotiation Facility Specification, v1.0 March 2002



1

1.

Basic IDL types are represented by a string containing the name of the type. The
type is derived from the CORBA TypeCoder€Kind by deleting the leading

“tk_". This rule follows the convention used in section 5.3.10.2 (CorbaTypeName)
of the XMI 1.0 specification (formal/00-06-01).

Example: the string representation of the typeg is “long;” that of unsigned
long long is “ulonglong.”

Sequences of basic IDL types are represented by a string containing the type-
specifier in IDL syntax without any spaces. That is, a sequeneeXofs is coded as
“sequence<XXX>" where XXX is the name of the string found using rule 1.

Example: A sequence dbngs is represented by "“sequence<long>.”
For other data types, the repository ID is used.

Example: theCollaborationProcessor is represented by
“IDL:omg.org/CollaborationFramework/CollaborationProcessor:2.0

<IELEMENT nvp (ANY) >
<IATTLIST nvp

>

name CDATA #REQUIRED

1.4 Elementto IDL Type Mapping

Element

IDL Type

input

IDL:omg.org/CommunityFramework::InputDescriptor:2.0

output

IDL:omg.org/CommunityFramework::OutputDescriptor:2.0

copy

IDL:omg.org/CollaborationFramework::Duplicate:2.0

move

IDL:omg.org/CollaborationFramework::Move:2.0

create

IDL:omg.org/CollaborationFramework::Constructor:2.0

remove

IDL:omg.org/CollaborationFramework::Remove:2.0

initialization

IDL:omg.org/CollaborationFramework::Initialization:2.0

transition

IDL:omg.org/CollaborationFramework::SimpleTransition:2.0

local

IDL:omg.org/CollaborationFramework::LocalTransition:2.0

termination

IDL:omg.org/CollaborationFramework::TerminalTransition:2.0

generic

IDL:omg.org/CommunityFramework::GenericCriteria:2.0

community

IDL:omg.org/CommunityFramework::CommunityCriteria:2.0

agency

IDL:omg.org/CommunityFramework::AgencyCriteria:2.0

encounter

IDL:omg.org/CollaborationFramework::EncounterCriteria:2.0

external

IDL:omg.org/CommunityFramework::ExternalCriteria:2.0

processor

IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0
IDL:omg.org/CollaborationFramework::ProcessorModel:2.0

March 2002

Negotiation Facility: Elementto IDL Type Mapping 1-29



vote IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0
IDL:omg.org/CollaborationFramework::VoteModel:2.0
engagement IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0

IDL:omg.org/CollaborationFramework:

:EngagementModel:2.0

collaboration

IDL:omg.org/CollaborationFramework:
IDL:omg.org/CollaborationFramework:

:ProcessorCriteria:2.0
:CollaborationModel:2.0

launch IDL:omg.org/CollaborationFramework::Launch:2.0

clock IDL:omg.org/CollaborationFramework::Clock:2.0

referral IDL:omg.org/CollaborationFramework::Referral:2.0
compound IDL:omg.org/CollaborationFramework::Compound:2.0
trigger IDL:omg.org/CollaborationFramework::Trigger:2.0

on IDL:omg.org/CollaborationFramework::Map:2.0

state IDL:omg.org/CollaborationFramework::State:2.0
membership IDL:omg.org/CommunityFramework::MembershipModel:2.0

membership.policy

IDL:omg.org/CommunityFramework::MembershipPolicy:2.0

role IDL:omg.org/CommunityFramework::Role:2.0
role.policy IDL:omg.org/CommunityFramework::RolePolicy:2.0.
nvp IDL:omg.org/CosLifeCycle::NameValuePair:1.0

1.5 Related DPML Documents

Additional information concerning DPML development and additional DPML
documents are maintained under the following URL:

1-30

http://homeosm.net/dpml

The latest version of DPML can be located under the following URL:

http://homeosm.net/dpml/dpml.dtd

Negotiation Facility Specification, v1.0

March 2002




2.1 Introduction

March 2002

Collaboration Framework

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 2-1
“Processor and Related Interfaces” 2-4
“Encounter” 2-15
“VoteProcessor and VoteModel” 2-17
“EngagementProcessor and EngagementModel” 2-22
“CollaborationProcessor, CollaborationModel, and 2-24
Supporting Types”

“UML Overview” 2-44
“CollaborationFramework Complete IDL”" 2-48

The CollaborationFramework defines a sharablgask namedEncounter ,

formalizes the definition of #rocessor , and introduces three types Bfocessor s

dealing with the application level requirements covering contractual engagement, voting,
and collaboration against which business processes supporting contract negotiation,

fulfilment, and settlement can be defined, simulated, and executed.

Principal interfaces defined under this specification include:

®* EngagementProcessor , a processor supporting the registratioreefdence and

generation ofProof by a membership.

Negotiation Facility Specification, v1.0




2-2

® \/oteProcessor , a processor supporting the registration of votes by a membership.

® CollaborationProcessor , a processor supporting collaborative interaction
between members of @ncounter .

These interfaces build upon the specifications established under the
CommunityFramework , in particular the notion oMembership is reused as the
basis for the definition of a shared Task associated to a confrmressor . The

CollaborationFramework

the CommunityFramework specifications as the mechanisms for separation of
configuration and execution policy from the IDL computational interface.

Table 2-1 Core Interfaces - Summary Table

continues the Model/Simulator pattern established under

Interface Description

Processor Processor is a base type for interfaces dealing with contractual
engagement voting and collaboration. Processor is associated to a Task
and can expose a sub-processor hierarchy.

ProcessorModel A valuetype derived supporting the abstract Model interface use

describe preconditions to Processor execution.

d to

UsageDescriptor

An abstract valuetype inherited by valuetypes contained by a
ProcessorModel that declares a usage (input, output) constraint.

InputDescriptor

Declaration of an input resource (consumed) that a processor requires

on its associated task.

OutputDescriptor

Declaration of an output (produced) resource that a processor
generates on its associated task.

ProcessorCriteria

A type of Criteria used by a ResourceFactory to construct a new

Processor instance based on the contained ProcessorModel.

Encounter An Encounter is a type of Task that incorporates the abstract
Membership interface.
EncounterModel A valuetype extending the abstract CommunityFramework

MembershipModel that contains the policy and role model of a
membership.

EncounterCriteria

A type of Criteria used by a ResourceFactory to construct a new|
Encounter instance.

Table 2-2 Application Interfaces - Summary Table

Interface Description

Engagement Abstract definition of engagement.

EngagementProcessor A type of Processor supporting the association of Proof and Evidence
by a set of collaborating users based on the abstract Engagement
interface.

EngagementModel A valuetype containing implementation dependent policy of an

Engagement processor.

Negotiation Facility Specification, v1.0

March 2002



March 2002

Table 2-2 Application Interfaces - Summary Table

bers

\ote Abstract interface defining vote registration and vote aggregation
operations.

VoteProcessor A type of processor supporting the registration of votes by mem
of an associated Encounter based on the Vote abstract interface.

VoteModel A valuetype containing the ceiling, count, and multiple registratio

policy applicable to a VoteProcessor.

Collaboration

An abstract interface defining operations through which a client gan

interact with a collaborative state model.

CollaborationProcessor

A type of Processor supporting collaborative interaction relative

CollaborationModel rule base using the abstract Collaboration
interface.

to a

CollaborationModel

A valuetype defining state, sub-states, transitions, compound ac
and role related policies.

ions,

Table 2-3 CollaborationModel Related Valuetypes - Summary Table

sub-

o

Interface Description

State A valuetype defining a state hierarchy against which Triggers and
States can be associated.

Trigger A container of an invocation guard, preconditions, and an action.

Action Base valuetype for Transition, CompoundTransition, and Referral.

Transition A type of action that is a base type to all actions related to modification
of a collaborative state context. A transition may declare changes
rules concerning inputs of a processor.

Transitional Abstract valuetype contained by a Transition. This is the base type to
Initialization, SimpleTransition, LocalTransition, and
TerminalTransition.

Initialization A transitional valuetype used to declare a candidate initial state.

SimpleTransition

A type of Transitional supporting the modification of the active stat
a collaboration.

e of

LocalTransition

A type of Transitional supporting loop-back transition functionality,

TerminalTransition

A type of Transitional that defines a processor result value.

CompoundTransition

A type of Action that declares a transition that is executed as a sub-

process associated with an independent processor model. A comp
transition may have multiple possible result states.

ound

Referral A type of Action used to redirect a result to a locally defined action.
Map A valuetype contained by a CompoundTransition. Used to associate
compound transition sub-process results to explicit actions.
Negotiation Facility: Introduction 2-3



2-4

2.2 Processor and Related Interfaces

The Task and Sessiapecification (formal/00-05-03) defines the notion of a processor as

the source of execution relative to a Task. TalaborationFramework establishes
a formal definition ofProcessor as abstract base type for interfaces dealing with
collaboration, engagement, and voting.

® Section 2.2.1, “Processor,” on page 2-5 presents the definition d?ribeessor

interface that serves as a base typ€utlaborationProcessor

and EngagementProcessor .

, VoteProcessor ,

® Section 2.2.2, “Master, Slave, and the Control Link,” on page 2-7 defines the
Master andSlave abstract interfaces and their relationship to @antrol link
through which one processor can be associated as a sub-processor to another.

® Section 2.2.3, “StateDescriptor,” on page 2-9 pres&téseDescriptor , a
valuetype exposed by an instanceRybcessor that contains information about a
processor execution state including declaration of problems arising during
configuration and execution.

® Section 2.2.4, “ProcessorModel and Related Constraint Declarations,” on page 2-10
details theProcessorModel valuetype used to declare configuration preconditions

and theProcessorCriteria valuetype used by ResourceFactory in the creation
of new processor instances.

® Section 2.2.5, “Coordination Link Family,” on page 2-13 defines a set of abstract
and concrete link types used to describe the coordination relationship between a

Task and a Processor.

CommunityFramework::
Model

CommunityFramework::
Simulator

CollaborationFramework ::
Master

|' * controlled by CollaborationFramework ::

Slave

controls *

Session::
AbstractResource

I

I

]

% |

CollaborationFramework::
ProcessorModel

CollaborationFramework::
Processor

1 coordinates
* observes

coordinated by 1

CollaborationFramework::
StateDescriptor

state : StateDescriptor

coordinator( )

verify()
start( )

‘ suspend()
stop()

Figure 2-1 Processor Object Model

Negotiation Facility Specification, v1.0

Session::
Task

March 2002



2.2.1 Processor

A processor is responsible for applying input arguments (associated consumed and
produced resource selection) declared by a coordindtsy in the execution of a
service. Operations exposed Byocessor are largely defined by the implied semantics
documented under thEask and Sessiaspecification (formal/00-05-03). A processor is
responsible for notification of state change towards its assoclatgd and handling
start, suspend, and stop requests in accordance with the Task Session state model.
Processor inherits fromAbstractResource (consistent with th&ask and Session
specification of a processor).

As aSimulator , a Processor exposes a valuetype that supports khadel interface.
A Processor specialization is required to return an instancéafcessorModel
under themodel operation from the inherited abstra&gimulator interface. Through
inheritance of botlSlave andMaster abstract interfaces, Brocessor can expose
subsidiary and parent processors associated thr@egindination links to a single
managingTask. As such, arask can be viewed as the coordinator of the processor
hierarchy.

2.2.1.1 IDL Specification

interface Processor :
Session::AbstractResource,
CommunityFramework::Simulator,
Master, Slave

{

readonly attribute StateDescriptor state;

Session::Task coordinator(
) raises (
Session::ResourceUnavailable

);
CommunityFramework::Problems verify( );

void start (

) raises (
Session::CannotStart,
Session::AlreadyRunning

);

void suspend (

) raises (
Session::CannotSuspend,
Session::CurrentlySuspended

);

void stop (
) raises (

March 2002 Negotiation Facility: Processor and Related Interfaces 2-5



Session::CannotStop,
Session::NotRunning

);
h

Table 2-4 Processor Attribute Table

Name Type Properties Purpose
state StateDescriptor readonly Declaration of the state of a Processor — see
Section 2.2.3, “StateDescriptor,” on page 2-9.
Table 2-5 Processor Operation Table

Name Returns Description

coordinator Task The coordinator operation returns the Task acting as coordinator of
the processor. If no task is associated to the processor, the operation
raises theResourceUnavailable exception.

verify Problems Operations returns a sequence of Problem instances concerning
configuration of a processor relative to the constraints defined under
the associated ProcessorModel.

start void Moves a processor into the running state. Semantically equivalent to
the Task start operation (refer to thask and Sessigspecification).
If the start operation raises tl@&annotStart exception, a client can
access supplementary information under the StateDescriptor instance
returned from the processor state attribute.

suspend void Moves a processor into a suspended state. Semantically equivalent to
the Task suspend operation (refer to feesk and Session
specification).

stop void Stops a processor. Semantically equivalent to the Task stop operation
(refer to theTask and Sessiospecification).

Table 2-6 Processor Structured Event Table
Event Description
state Notification of the change of state of a Processor.

Supplementary properties:

value StateDescriptor Description of the current state and any

associated problems.

2-6

Negotiation Facility Specification, v1.0 March 2002



2.2.1.2 Processor creation and Task association

The following sequence concernifgocessor instantiation is strongly influenced by
the Task and Session Specificatiand factory operation pattern defined under the
CommunityFramework module.

1. Client creates a new concrete instancéuafcessor by passing &riteria
valuetype as an argument tdR&esourceFactory create operation.

2. Client creates a newask, passing the created processor as an argument to the
create_task operation on User (refer to thEask and Sessiospecification, User
and Task).

» Task implementation binds to processor usingaordinates link referencing
itself under theresource state field.

» Processor establishes internal reference to coordinafiagk using the supplied
link by creating and maintaining @oordinatedBy link that references the
coordinatingTask.

3. Task establishes initial state frofrocessor using thestate attribute.

4. Client is responsible for ensuring that any usage preconditions to processor
execution are resolved using tkierify operation.

5. Client invokes thestart operation on Task that in turn invoksgart on the
controlled processor.

2.2.1.3 Verification of processor configuration

The Processor verify operation returns a sequenceRybblem instances related to
configuration of a processor relative to the constraints defined under the associated
ProcessorModel . This operation is provided so that a client can validate proper and
complete configuration of a processor prior to execution. For example, a
ProcessorModel may declare input and output resource associations that must be
established by a controlling task before invocation ofstet operation. Theverify
operation enables verification offrocessor configuration and readiness to start.

Problems verify( );

2.2.2 Master, Slave, and the Control Link

The abstract interfacddaster andSlave are used in conjunction with an abstract
valuetype nameilanagement that defines the base type for the concrete links

Controls andControlledBy . Controls is a link held by an implementation dMaster

that references zero to majave instancesControlledBy is a link held by aSlave
implementation that references zero to dnaster instances. The relationship from

master to slave is one of strong aggregation — removal dffthgter implies removal of

all Slaves. Using the control relationship, it is possible foPeaocessor to expose a
sub-process hierarchy that can be navigated by a client. Matiter andSlave define
convenience operations concerning access to the respective sub-processors and parent
processor.Master interface defines thelaves operation that returns an iterator and a

March 2002 Negotiation Facility: Processor and Related Interfaces 2-7



2221

sequence oSlave sub-processors. The maximum length of 8laves sequence is
controlled by the input argumentax_number . The Slave interface defines the
readonly attributenaster that returns a reference to the controlliMgster. In the event
of a top-level processor, the master attribute will return a null object reference.

IDL Specification

abstract interface Master {
Slavelterator slaves (

);
3

in long max_number,
out Slaves slaves

abstract interface Slave {
readonly attribute CollaborationFramework::Master master;

3

abstract valuetype Management : Session::Link{ };

valuetype Controls : Management {
public Slave resource;

3

valuetype ControlledBy : Management {
public Master resource;

3

Table 2-7 Controls Link State Table

Name Type Properties Purpose

resource Slave public A reference to an AbstractResource implementing the
Slave interface. An implementation of Master may hold
0..* Controls link instances, representing the strong
aggregation relationship from a Master to subsidiary
Slaves.

Table 2-8 ControlledBy Link State Table
Name Type Properties Purpose
resource Master public A reference to an AbstractResource implementing the

Master interface. An implementation of Master may hald
0..1 ControlledBy link instances representing the parent
processor.

2-8

Negotiation Facility Specification, v1.0 March 2002



2.2.3 StateDescriptor

Processor state is accessible through thtate attribute. Thestate attribute returns an
instance ofStateDescriptor , a valuetype containing an enumeration value of the
process state equivalent to the state model defined und@agtheand Session
specification. StateDescriptor also contains a state field nampoebblems that
exposes any standing problems concerning processor configuration or execution.

Completion is a valuetype contained withiitateDescriptor . When a processor
completes (signalled by the establishment of the closed processor state), the completion
field contains @&ompletion instance that qualifies the closed state as either a logical
business level success or failure. For example, a processor supporting vote aggregation
can declare a distinction between a successful and unsuccessful result towards a client.
In this example, failure could arise as a result of an insufficient number of affirmative
votes, or through failure of the group to establish quorum. In both cases, the failure is a
business level failure and should not be confused with technical or transaction failure. An
implementation dependent identifier may be attributed @oepletion instance to

further classify a success or fail result. Prior to a processor reaching a closed state the
completion field shall return a null value.

CollaborationFramework:: * problems CollaborationFramework:: 1 state ‘ | CollaborationFramework::
Problem | StateDescriptor Processor

" state: ProcessState

completion : Completion

CollaborationFramework::
Completion

problems: Problems

0..1 completion

identifier: ResultiD
code : ResultClass

2231

Figure 2-2 StateDescriptor Object Model

IDL Specification

valuetype ResultID unsigned long ;
valuetype ResultClass boolean;

valuetype Completion

public ResultClass result;
public ResultID code;

2
valuetype ProcessorState Session::task_state;

valuetype StateDescriptor

{

Negotiation Facility: Processor and Related Interfaces 2-9



public ProcessorState state;
public CollaborationFramework::Completion completion;
public CommunityFramework::Problems problems;

h

Table 2-9 StateDescriptor State Table
Name Type Properties Purpose

state ProcessorState public An enumeration of process state values open,
not_running, notstarted, running, suspended,
terminated, completed, and closed (refer to the
Task and Sessiospecification, Task state
description).

problems Problems public A sequence of Problem instances (of possiply
zero length) attributable to the current execution
state of the processor.

completion Completion public Declaration of a success or fail completion
condition together with a numeric application
defined result identifier.

Table 2-10Completion State Table

Name Type Properties Purpose

code ResultID public An implementation specific identifier of a completipn
state.

result ResultClass public A boolean value indicating a business level notign of
success or failure of the process.

2.2.4 ProcessorModel and Related Constraint Declarations

The ProcessorModel valuetype defines a set of usage (input and output) towards its
controlling Task. These declarations are expressed as a sdsafieDescriptor

instances (equivalent to the declaration of argument parameters). Collectively, the set of
UsageDescriptor instances declare the naming convention to be applied to tagged
Usage links held by the co-ordinatinglask. Usage declarations are defined through

the valuetypesnputDescriptor andOutputDescriptor . Both valuetypes contain the
declaration of aag name (corresponding to the usage tag string) atypa field

containing alypeCode value. TheOutputDescriptor contains an additional

required field that if true, states that the link must exist or be supplied. If false, the
input declaration can be considered as an optional argument.

2-10 Negotiation Facility Specification, v1.0 March 2002



CommunityFramework:: CommunityFramework::
Control Model
4 ZF supports
1 model

CollaborationFramework:: (from Simulator) ‘l CollaborationFramework::
ProcessorModel Processor

Col/aborationFrar_nework:: usage: UsageDescriptors
UsageDescriptor

A

CollaborationFramework:: CollaborationFramework::
InputDescriptor OutputDescriptor
tag: string tag: string

required: boolean
type: TypeCode

type: TypeCode

2241

Figure 2-3 Processor Model and Usage Descriptor

Using the control structures it is possible for a processor model to define constraints such
as “the processor must be associated to a controllagi with a resource of typ&ser
associated as a consumed resource declared under the tag “customer” before this
processor can be started. Such a requirement can be expressed by the creation of an
InputDescriptor exposing the following:

® The text string “customer” under thag field.

® The boolean value true under thequired field (indicating that aJsage link
tagged as subject must be associated to the contrdltisg before attempting to
start a processor).

® A UsageSource instance under theource field that declarers a type
precondition on thé&Jsage link’s resource field — in this example, the value would
be theSession::User type code.

Collectively, these constraints represent the processor signature and facilitate plug-and-
play interoperability between process descriptions defined in and executing under
different technical and administrative domains.

A new instance oProcessor may be created by passing an instance of
ProcessorCriteria to a resource factory (refer to
CommunityFramework::ResourceFactory create operation).

IDL Specification

valuetype TypeCode CORBA::TypeCode;

Negotiation Facility: Processor and Related Interfaces 2-11



2-12

abstract valuetype UsageDescriptor { };

valuetype InputDescriptor :
UsageDescriptor

{

public string tag;

public boolean required;
public boolean implied;
public TypeCode type;

h

valuetype OutputDescriptor :
UsageDescriptor

{

public string tag;
public TypeCode type;

h

valuetype ProcessorModel :
CommunityFramework::Control
supports CommunityFramework::Model

{

public UsageDescriptors usage;

h

valuetype ProcessorCriteria :
CommunityFramework::Criteria

{

public ProcessorModel model,

h

Table 2-11ProcessorModel State Table

Name Type Properties Purpose
usage UsageDescriptors  public A sequence of valuetypes derived from
UsageDescriptor, each defining usage links
conditions relative to the associated Task.
Table 2-12InputDescriptor State Table
Name Type Properties Purpose
tag string public The name to be set as the tag value of Usage link that
can be established on the controlling Task.
required boolean public If true, the usage association must exist under the
coordinating Task before attempting to start the
processor. Default value is true.

Negotiation Facility Specification, v1.0 March 2002



March 2002

Table 2-12InputDescriptor State Table

implied

boolean

public

A qualifier used under a CollaborationModel. If true
the usage association may be implicitly inferred by 3
existing link with the same tag name, if false, the lin
must be explicitly passed as an ApplyArgument (refé
Collaboration apply operation) establishing or replaci

an existing tag link of the same name. Default value|i

true.

type

TypeCode

public

Declaration of the type of resource to be bound ung
Consumes usage association on the controlling Tas

ler a
K.

Table 2-13OutputDescriptor State Table

Name

Type

Properties

Purpose

tag

string

public

OutputDescriptor declares an association that will be

established by a Processor on normal completion. T
tag value declares the value of the usage tag value t
will be created.

type

TypeCode

public

Declaration of the type of resource that will be crea
by the processor on the controlling Task.

Table 2-14ProcessorCriteria State Table

hat

ted

Name

Type

Properties

Purpose

model

ProcessorModel

public

Declaration of processor consumption and
production usage constraints. An implementation

type of Model contained within a ProcessorCriteri
to determine the type of Process to create. For

of CollaborationModel will return a type of
CollaborationProcessor.

ResourceFactory is responsible for assessing the

example, a ProcessorCriteria containing an instance

2.2.5 Coordination Link Family

The Execution link defined under thdask and Sessicspecification declares an
abstract association between/AlpstractResource , acting as a processor, andask.
The abstracExecution relationship is used as the base for definition of an abstract

Coordination
namedMonitors , Coordinates , andCoordinatedBy .

Negotiation Facility: Processor and Related Interfaces

relationship. Coordination serves as the base for the concrete links

2-13



2-14

Session::
Execution

fp

CollaborationFramework ::
Coordination

A

CollaborationFramework ::
Task

CollaborationFramework :: resource 1
Monitors O

T

resource : Processor

0

CollaborationFramework ::
Coordinates

CollaborationFramework ::
Processor

Figure 2-4 The Abstract Coordination and Concrete Monitors and Coordinates Link

CollaborationFramework ::
Processor

Figure 2-5

CollaborationFramework ::
Coordination

A

| ‘ 1 CollaborationFramework ::
CoordinatedBy

resource : Task

Inverse CoordinatedBy Link

2.2.5.1 IDL Specification

resource 1 Session ::
O Task

abstract valuetype Coordination : Session::Execution{ };

valuetype Monitors : Coordination {
public Processor resource;

h

valuetype Coordinates : Monitors {};

valuetype CoordinatedBy : Coordination {

public Session::Task resource;

h

Negotiation Facility Specification, v1.0

March 2002



Table 2-15Coordination Link Family Cardinality Table

Type holding | Link type Type referenced | Description

the link by Link

Task Monitors Processor An instance of Task monitors 0..*
Processors.

Task Coordinates Processor Coordinates is a type of Monitor. An
instance of Task coordinates 0..1 Processpr
instance.

Processor CoordinatedBy  Task A Processor is coordinated by 0..1 Task
instances.

Table 2-16Monitors State Table

Name Type Properties Purpose
resource Processor|  public A reference to a Processor that the Task holding this link
monitors.

Table 2-17CoordinatedBy State Table
Name Type Properties Purpose

resource Task public A reference to a Task that is coordinating the processor that
is holding this link instance. The Task is maintaining either
a Monitors or Coordinates link towards the Processor
holding this link.

2.3 Encounter

The Task and Sessimpecification defines dask as a type corresponding to a view of a
processor. The specification offask is focused extensively towards a single user. The
CollaborationFramework extends this notion through the introduction ofask type
calledEncounter that is owned and managed by a singleer but associated by
reference to othedsers thoughMember links (refer to theCommunityFramework
chapter).

March 2002 Negotiation Facility: Encounter 2-15



2-16

CommunityFramework::

- - )
recognises Session:: owns * Session::

Session::
AbstractResource

A

1 coordinated by CollaborationFramework::

Membership

1

* member of

User Task

1 owned by

. Processor
coordinates 1

1 model

CollaborationFramework::
MembershipModel

(from Simulator) d CollaborationFramework::

Encounter

Figure 2-6 Encounter Object Model

In effect anEncounter can be considered asTask managed by its owner where the
state of theTask is available to a closed community of members. This model enables the
association of multiple users within a collaborative execution context defined by an
associated processor. Ancounter is defined as both @ask (refer to theTask and
Sessiorspecification) andMembership (refer to theCommunityFrameworkhapter).

As aTask it supports full lifecycle semantics, can be referenced as a resource within a
workspace or community, and exposes a relationship to an assigned processor. As a
Membership , the Encounter aggregates a set of members, representing a set of
collaboratingUsers . Encounter , through inheritance ddimulator , is required to

return a valuetype supporting the abstrsitidel interface. In the case d&ncounter ,

the valuetype returned must be an instanc&embershipModel (a valuetype

supporting the abstradfodel interface). Implementations &frocessor associated to
anEncounter can interrogate akncounter to establish the roles attributed to
members of thé&Encounter . This information can be used by processor
implementations to enforce preconditions on role related actions.

2.3.1 Encounter and EncounterCriteria

Negotiation Facility Specification, v1.0

An Encounter is a type ofTask that incorporates the abstrddembership interface.

As aMembership anEncounter is associated to possibly mahjsers through

Member links. As aTask anEncounter is associated to exactly one owner, possibly
multiple consumed and produced resources, and a single processor. As such,
Encounter can be considered as a shared view of a collaborative process context under
the coordination of a singlgser. New instances dEncounter may be created using a
ResourceFactory by passing an instance &hcounterCriteria as the criteria

argument.

March 2002



2.3.1.1 IDL Specification

interface Encounter :
Session::Task,
CommunityFramework::Membership
{

h

valuetype EncounterCriteria :
CommunityFramework::Criteria

{

public CommunityFramework::MembershipModel model;

3

Table 2-18EncounterCriteria State Table

Name

Type Properties Purpose

model

MembershipMode| public Declaration of the membership model instance to
be associated to the created Encounter.

2.4 VoteProcessor and VoteModel

March 2002

VoteProcessor is aProcessor extended to include the abstradgite interface. The

Vote interface declares an attribuwgeount through which the last vote count can be
accessed, and a singlete operation supporting the registration of a vote by a client.

Vote registration is achieved though supply of one of the enumerated value YES, NO, or
ABSTAIN as defined byoteDescriptor . Thevote operation returns an

implementation defineBroof to the client. Thescount attribute returns &oteCount
instance that holds a summation of yes, no, and abstain votes registered at the time of the
invocation.

Negotiation Facility: VoteProcessor and VoteModel 2-17



CollaborationFramework:: 1 model CollaborationFramework:: CollaborationFramework::
ProcessorModel /N\ ’ Processor Vote

vcount : VoteCount

:

]

]

[}

i A vote()
: :
[}

]

]

[}

[}

[}

]

CollaborationFramework:: 1 model CollaborationFramework::
VoteModel . VoteProcessor

ceiling : struct

policy : enum

single: boolean

Figure 2-7 VoteProcessor and VoteModel

2.4.1 Supporting Structures

Four supporting structures are used in the definition of a voting prodésgeCount is
a valuetype containing the summation of yes, no, and abstain votes under a voting
process at a particular time/oteDescriptor is an enumeration of vote value, YES,
NO, and ABSTAIN. VoteStatement , a valuetype containing ¥oteDescriptor , is
passed as an input argument t¥ateProcessor ’'s vote operation. The/ote operation
returns avoteReceipt to a client following invocation of th@ote operation.
VoteReceipt contains a copy of the supplied vote together with a timestamp value
corresponding to the date and time of the operation invocation.

2.4.1.1 IDL Specification

valuetype VoteCount {
public Session::Timestamp timestamp;
public long yes;
public long no;
public long abstain;

%

enum VoteDescriptor{
NO,
YES,
ABSTAIN

%

abstract valuetype Proof {};
abstract valuetype Evidence {};

valuetype VoteStatement :

2-18 Negotiation Facility Specification, v1.0 March 2002



Evidence

{
3

public VoteDescriptor vote;

valuetype VoteReceipt :
Proof

{

public Session::Timestamp timestamp;
public VoteStatement statement;

3

Table 2-19VoteCount State Table
Name Type Properties Purpose

timestamp Session::Timestamp public Timestamp of the last vote
registration.

yes long public The summation of YES votes
registered under a process.

no long public The summation of NO votes
registered under a process.

abstain long public The summation of ABSTAIN votes
registered under a process.

Table 2-20VoteStatement State Table

Name Type Properties Purpose
vote VoteDescriptor | public One of the enumerated values YES, NO or
ABSTAIN.

Table 2-21VoteReceipt State Table
Name Type Properties Purpose

timestamp Session::Timestamp public Date and time of registration of the
\oteStatement by a VoteProcessor.

statement VoteStatement public Copy of the VoteStatement instance passed
into the vote operation.

2.4.2 VoteProcessor

A VoteProcessor is a type ofProcessor supporting operations defined under the
abstractVote interface. Vote exposes an attribute namedount that returns a
VoteCount instance. Thé&/oteCount instance must be updated following each valid
vote invocation. Theote operation supports registration olateStatement and

March 2002 Negotiation Facility: VoteProcessor and VoteModel 2-19



2421

returns avoteReceipt to a client. New instances &foteProcessor may be created
using aProcessorCriteria passed as an argument t&kasourceFactory where the
containedProcessorCriteria  model is an instance dfoteModel .

IDL Specification

abstract interface Vote

readonly attribute VoteCount vcount;

VoteReceipt vote(
in VoteDescriptor value

);
3

interface VoteProcessor:

Vote,

Processor

{
3

Table 2-22Vote Attribute Table

Name Type Properties Purpose
vcount VoteCount readonly Summation of yes, no and abstain votes registered
the processor.
Table 2-23VoteProcessor Structured Event Table
Event Description
vote Notification of modification of the vcount attribute value.
Supplementary properties:
value ‘ VoteCount Summation of yes, no, and abstain vote.
2.4.3 VoteModel
The VoteModel valuetype contains the policy to be applied bya@eProcessor .
VoteModel is accessed throug¥oteProcessor under themodel operation on the
inheritedSimulator interface. VoteModel contains three fields described in the
following table that define the rules applicable to the vote process execution.
2.4.3.1 DL Specification
valuetype Duration {
public TimeBase::TimeT value;
2-20 Negotiation Facility Specification, v1.0 March 2002

with



3

struct VoteCeiling{
short numerator;
short denominator;

3

enum VotePolicy{
AFFIRMATIVE_MAJORITY,
NON_ABSTAINING_MAJORITY

3

valuetype VoteModel :
ProcessorModel
{
public VoteCeiling ceiling;
public VotePolicy policy;
public boolean single;
public Duration lifetime;

Table 2-24\otePolicy Enumeration Table

Element

Description

AFFIRMATIVE_MAJORITY

Indicating that the number of yes votes must be equal to or

greater than (MoteCeiling * number of votes registered).

NON_ABSTAINING_MAJORITY

Indicating that the number of yes votes must be equal or gre
than (VoteCeiling * (number of votes registered less the tota
number of abstaining votes)).

Table 2-25VoteModel State Table

Name

Type

Properties

Purpose

ceiling

VoteCeiling

public

The ceiling exposes a fractional value indicating the
proportion of YES votes required to conclude a vote

process successfully. Values of ceiling such as or

ater
A

are expressed by the VoteCeiling structure in the form

of a numerator and denominator value.

policy

VotePolicy

public

Policy to apply to vote counting — refer to Table 2-p4.

single

boolean

public

If true, a vote may not be recast; that is, one vote g
If false, a client may recast a vote.

March 2002

Negotiation Facility: VoteProcessor and VoteModel

2-21



Table 2-25VoteModel State Table

lifetime Duration public The maximum lifetime of the vote process
commencing on transition of the process to a running
state. A zero, negative or null value is equivalent to ho
constraint on process lifetime.

unilateral boolean public If true, the process of voting shall be considered as

binding on all members. If false, then the result of the
vote process is considered as binding on members that
have voted.

2.5 EngagementProcessor and EngagementModel

EngagementProcessor is a type ofProcessor that defines aengage operation.
The Engage operation, defined under the inherited absteamgage interface, is used
to facilitate the establishment &froof of agreement between a set of collaborating
clients. EngagementProcessor contains arEngagementModel , exposed through
the inherited model operation from the abstrsicidel interface.EngagementModel
contains a rooRole used to qualify the number of engagements required for an
engagement process to be considered as binding.

CollaborationFramework:: 1 model
ProcessorModel 7‘ .

CollaborationFramework::
Engagement

CollaborationFramework::
Processor

A engage()

CollaborationFramework::

EngagementModel

‘ 1 model ‘

policy : any

CollaborationFramework::

EngagementProcessor

Figure 2-8 EngagementProcessor and EngagementModel

2.5.1 EngagementProcessor

2-22

An EngagementProcessor

may be created usingRrocessorCriteria passed as an argument to a

supports the registration &vidence by a client and
return of Proof of the act of engagemenProof andEvidence are abstract valuetypes
that may be specialized to support implementation specific engagement models.
Engagement policy, also implementation specific is exposed as an instance of
EngagementModel by the inherited model operation from the abstisictdel

interface undeEngagementProcessor . New instances oEngagementProcessor

ResourceFactory , where the contained model is an instancé&nfjagementModel .

Negotiation Facility Specification, v1.0

March 2002



2511

IDL Specification

abstract interface Engagement
{
Proof engage(
in CollaborationFramework::Evidence evidence
) raises (
EngagementProblem

);
3
interface EngagementProcessor :
Engagement,
Processor
{
3

Table 2-26 EngagementProcessor Structured Event Table

Event Description

vote Notification of modification of the vcount attribute value.

Supplementary properties:

value VoteCount Summation of yes, no and abstain vote,

Table 2-27Exceptions Related to the Engage Operation

Exception

Reason

EngagementProblem Raised following an attempt to invoke engage before the processor |s

D

running, or as a result of passing an invalid Evidence valuetype (wher
validity is implementation defied).

2.5.2 EngagementModel

2521

EngagementModel extendsProcessorModel through the addition of three values, a
Role used to qualify the engagement context, a declaration of the maximum lifetime of
anEngagement process, and a value indicating if the engagement has a unilateral
implication on the members of an associakattounter .

IDL Specification

valuetype Duration {
public TimeBase::TimeT value;

h

valuetype EngagementModel :
ProcessorModel

March 2002 Negotiation Facility: EngagementProcessor and EngagementModel 2-23



{

public CommunityFramework::Role role;
public Duration lifetime;
public boolean unilateral;

Table 2-28EngagementModel State Table

Name

Type Properties Purpose

role

Role public The value of quorum under this Role indicates the

number of engagements required following which
engagement is considered as binding.

unilateral

boolean public If true, the process of engagement shall be considered as
binding on all members. If false, then the act of
engagement is considered as binding on members that
have actively engaged. Members that have not invoked
the engage operation shall not be considered as bound to
the engagement.

lifetime

Duration public The maximum lifetime of the process commencing on

transition of the process to a running state. A zero,
negative or null value is equivalent to no constraint on
process lifetime.

2.6 CollaborationProcessor, CollaborationModel, and Supporting Types

CollaborationProcessor is a type ofProcessor that contains a model supporting

the declaration of states and state transitions. This state model defines a set of rules
concerning the way in which a membership can interact towards achievement of a joint
conclusion. Examples of collaboration models defined within this specification include
bilateral negotiation, multilateral voting, and promissory engagement. The specification
approach of separation of structural IDL from a semantic model ensures that the
framework can be applied to a range of collaborative processes through the creation of
collaboration models that reflect the business rules within different enterprises and across
different vertical domains.

We commence with the definition of@ollaborationProcessor under Section 2.6.1,
“CollaborationProcessor,” on page 2-25, followed by specification of a number of
supporting structures under Section 2.6.2, “Supporting Structures,” on page 2-28.
Section 2.6.3, “CollaborationModel,” on page 2-30 defi@e#laborationModel under

which the notions of an initialization and state are introduced, together with a description
of the relationship to business roles. Section 2.6.4, “State Declaration,” on page 2-31
through Section 2.6.7, “Transition and Related Control Structures,” on page 2-36 present
the CollaborationModel control structures supporting state declaration under

Section 2.6.4, “State Declaration,” on page 2-31, and the semantics of an abstract trigger,
an initialization, and the relationship between a Trigger and an action under

Section 2.6.5, “Trigger and supporting valuetypes,” on page 2-32. Section 2.6.6,
“Action,” on page 2-35 details a set of supported action declarations, including simple

2-24 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002



2

transitions, recursive or local transitions and commands. Section 2.6.7, “Transition and
Related Control Structures,” on page 2-36 details the valuetypes used in the definition of
a compound transition, a structure that can be used to cause the establishment of a sub-
processor and declare the implication of that sub-processor towards the active processor.

The specifications under Section 2.6, “CollaborationProcessor, CollaborationModel, and
Supporting Types,” on page 2-24 establish the framework for the definition of a broad
range of collaboration models. Chapter 1 of this document details three instances of
collaboration criteria (drocessorCriteria containing aCollaborationModel )

covering formal negotiation, bilateral interaction leading to a unilateral agreement
between a group, and contractual fulfillment.

2.6.1 CollaborationProcessor

CollaborationProcessor is type of Processor that contains an instance of
CollaborationModel (exposed under the model operation on the inhe/@iaulator
interface). Operations defined under the inherited abs@altaboration interface

provide the ability for a client to modify the state of the processor relative to constraints
established under the associated model. In the ca€eltdborationProcessor |, the

model defines a nested state hierarchy, and associated transitions. A client can establish
an initial collaborative state though invocation of tugply operation on the

Collaboration interface, passing the identifier of a preferred initialization, following

which members of an associated membership can invokeghply and

apply_arguments operations to achieve modification of the collaborative context
through state-transitions. Following initialization, the collaboration is established in a
running state exposed under t@ellaboration active_state attribute. The

active_state attribute is the identifier of a deepest state i@a@laborationModel

state hierarchy referenced by a proceeding initialization or transition. Establishing an
active state has an important implication on the membership associated to the
collaboration. Every state from the deepest state referenced lactive_state

attribute, up through all containing states, until the highest root-state are considered as
active. Once a state is classified as active, Bnyger instances (transition holders)
associated with that state are considered as candidates for subsequent reference under th
apply operation.

Triggers contain actions such as transitions and are also associated to business roles that
act as guards to the triggdtiggers can be declared as timeout (automatically

activated) or launch trigger (explicit activation). Timeout based triggers are activated as a
result of modification of the active state path and declared as active under the
CollaborationProcessor timeout_list  attribute.

New instances of &ollaborationProcessor may be created by passing a
ProcessorCriteria instance to &esourceFactory create operation, where the
model contained by thBrocessorCriteria is an instancéollaborationModel

March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-25



CollaborationFramework:: | 1 model CollaborationFramework:: CollaborationFramework::
ProcessorModel . Processor Collaboration
active_state : Label
A timeout_list TimeoutSequence
apply()

apply_arguments( )

7

CollaborationFramework:: CollaborationFramework::
CollaborationModel CollaborationProcessor

Figure 2-9 Collaboration and CollaborationProcessor

2.6.1.1 IDL Specification

abstract interface Collaboration

{

readonly attribute Label active_state;
readonly attribute TimeoutSequence timeout_list;

void apply(
in Label identifier

) raises (
InvalidTrigger,
ApplyFailure

);

void apply_arguments(
in Label identifier,
in ApplyArguments args

) raises (
InvalidTrigger,
ApplyFailure

);

k

interface CollaborationProcessor :
Collaboration,
Processor

2-26 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types

March 2002



March 2002

Table 2-29Collaboration Attribute Table

Name Type Properties Purpose
active_state | Label readonly Identifier of the state resulting from an
initialization or subsequent transition. All states
between the active state and the root top level
state constitute the active state path.
timeout_list | TimeoutSequence readonly A sequence of Timeout valuetypes
corresponding to current activated timeout
conditions in place.
Table 2-30Collaboration Operation Table
Name Returns Description
apply void Used by a client to modify the state of a collaborative process by
passing in a reference to a Trigger in the active state path.
Typically used to invoke a transition resulting in the modification
of the collaboration context.

apply_arguments| void Equivalent to apply except that the operation takes a series pf

arguments corresponding to change request to be applied to the
usage relationships associated to the Encounter coordinating the
Collaboration.

Table 2-31Exceptions Related to the Operations Named apply and apply_arguments

Exception Reason

InvalidTrigger Raised following an attempt to invoke apply against a Collaboration with arn
Label that does not correspond to an identified Trigger within the
CollaborationModel associated to the Collaboration instance.

ApplyFailure Raised if a client attempts to invoke apply against the collaboration processor in
contravention with the implied or explicit rules exposed by the
CollaborationProcess state and associated CollaborationModel.

Table 2-32CollaborationProcessor Structured Event Table
Event Description
active Notification of modification of the active_state attribute value.

Supplementary properties:

Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-27



Table 2-32CollaborationProcessor Structured Event Table
value Label Identifier of the state referenced as a target py
an initialization or last transition established
under the apply operation.

timeout TimeoutSequence Timeout sequence established as a result pf a
change in active state.

2.6.2 Supporting Structures

2.6.2.1 Structures Supporting Apply

The CollaborationProcessor interface defines two operations, nanmaggply and
apply_arguments . Both operations concern the modification of the state of a
collaboration processor in accordance with the rules and constraints defined in the
associatecollaborationModel instance. Thepply_arguments operation takes a
sequence oApplyArgument valuetypes as operation arguments. This sequence of
ApplyArgument instances declares to the processor a set of changes to be applied to
the input and output relationships of the attacketounter . For example, a
collaboration processor supporting amendment of a standing motion needs to receive the
declaration of the amended motion. This is equivalent to modification of/tage

links associated with a controllinBask (Encounter ) while a processor is running.
ApplyArgument is a valuetype that contains the declaration tfsage link tag name

and a value containing a reference toAdrstractResource to be associated to the
Encounter coordinating theCollaboration under a new or existing usage link with the
same tag name.

2.6.2.2 Structures supporting timeout declarations

A second supporting structure exposed b@dalaborationProcessor is a
TimeoutSequence . A CollaborationModel associated to a
CollaborationProcessor  defines a hierarchy of states. Within this hierarchy there
may be any number of actions that are configured to execute after a certain delay (refer
Clock). The set of active timeout conditions is exposed through the
CollaborationProcessor timeout_list  attribute. A timeout condition is defined
through the valuetyp&imeout . Timeout contains an identifier of a Trigger within the
CollaborationModel associated to the processor, together witfirmestamp value
indicating the date and time under which the timeout will occur (causing an
implementation to automatically invoke tlietion contained by th&@rigger referenced
by theTimeout label).

2.6.2.3 IDL Specification

valuetype ApplyArgument
{

public CollaborationFramework::Label label;
public Session::AbstractResource value;

h

2-28 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002



valuetype ApplyArguments sequence <ApplyArgument>;

valuetype Timeout

public Label identifier;
public Session::Timestamp timestamp;

3

valuetype TimeoutSequence sequence <Timeout>;

Table 2-33Timeout State Table

Name

Type Properties

Purpose

identifier

Label

public

Identifier of a Trigger within the
CollaborationModel contained by the

CollaborationProcessor that will be fired at the date

and time indicated by the timestamp value.

timestamp

Timestamp

public

The date and time that a timeout will be trigger
Timeout conditions may be modified by
modification of an active state of a collaboration
processor (refer active_state).

Table 2-34ApplyArgument State Table

Name

Type

Properties

Purpose

tag

Label

public

An ApplyArgument is a valuetype that can be
passed into an apply operation. The tag value
must be equal to a tag value declared under the
processors input usage list (declaration of
InputDescriptor values exposed by
ProcessorModel usage field). Following
assessment of any preconditions associated wit]
referenced Trigger, an implementation of apply
will create or replace an existing consumption lin
resource value on the associated Task with the
value field of the ApplyArgument valuetype.

ha

=~

value

AbstractResource public

The AbstractResource to associate under a t
consumption link with the Task associated as

agged

coordinator to the Collaboration.

March 2002

Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types

2-29



2-30

2.6.3 CollaborationModel

CollaborationModel is the valuetype that defines the bulk of the semantics behind an
instance ofCollaborationProcessor . CollaborationModel extends

ProcessorModel through addition of a role hierarchy ai&date hierarchy. The entire
collaboration model is structurally centered on a state hierarchy, the root of which is
defined by theState instance exposed under thtate field. The root-state and sub-
states contain the declaration of available triggers (transitions holders) that can be
referenced by clients througipply operations on th€ollaboration interface. The

state field named role containsRole valuetype that represents the root of a role
hierarchy that can be referenced iygger instances (contained t8tate instances) as
preconditions to activation. For example, a transition (exposéldigger ) may

reference a role as a guard, which in turn introduces a constraint on the invoking client to
be associated with thEncounter membership under an equivalent role.

As a valuetype, &ollaborationModel can be passed between different domains and
treated as a self-contained structure that can be readily reused by trading partners. The
structural information contained in the inheritBdocessorModel defines the logical

wiring of a processor towards its coordinating task, while the extensions introduced
underCollaborationModel define the semantics of collaborative interaction.

CollaborationFramework::
ProcessorModel

CommunityFramework::
Role

role 1 4

CollaborationFramework:: ‘ I CollaborationFramework::
CollaborationModel CollaborationProcessor

1 model
role: Role (from Simulator)

CommunityFramework::
State

state 1 state: State

Figure 2-10 CollaborationModel Object Model

2.6.3.1 IDL Specification

valuetype CollaborationModel :
ProcessorModel
{
public CommunityFramework::Role role;
public CollaborationFramework::State state;

3

Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002



Table 2-35CollaborationModel State Table

Name Type Properties Purpose

role Role public A Role valuetype (refer CommunityFramework) that
defines a hierarchy of business roles that may be
referenced by other control structures within a
CollaborationModel (refer Trigger) for the purpose of
establishing membership and quorum preconditions
towards an invoking client. This value may be null if all
Trigger guard value are also null.

state State public A non-null value defining the root state of the
collaboration model. A State is itself a container of
other states within which Triggers are contained.
Triggers act as constraint guards relative to the Actigns
they contain.

2.6.4 State Declaration

March 2002

The primary valuetype used in the construction @dalaborationModel is the State
valuetype. AState is a container of sub-states amdgger valuetypes. An instance of
State has an identifier label (from the inherit€bntrol valuetype), that may be
exposed by &ollaborationProcessor under theactive_state attribute. AState is
activated as a result of a transition action applied througlagipdy operation or through
implicit initialization using thestart operation (from the abstraBrocessor interface
inherited byCollaboration ).

The Collaboration declares amctive_state attribute and a corresponding structured
event namedctive . The value of the event and attribute is an identifier of the state
referenced in the last valid action (such as an initialization or simple transition). Once an
active state has been established, the state containing an active state is considered as
active, and as such, its parent, until the root-state is reached. This set of states is referred
to as the active state path of th®llaboration processor. For every state in the active
state path, all directly containélitiggers are considered as candidates with respect to
theapply andapply_arguments operations orCollaborationProcessor . That is

to say that a client may invoke afyigger exposed by a state in the active state path,
providing that preconditions t@rigger activation are satisfied.

Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-31



CommunityFramework::
Control

B

CollaborationFramework:: trigger * | CollaborationFramework::
State Trigger

triggers : Triggers
states : States

* states

Figure 2-11 State Object Model

2.6.4.1 IDL Specification

valuetype State :
CommunityFramework::Control

{

public CollaborationFramework::Triggers triggers;
public CollaborationFramework::States states;

Table 2-36State Valuetype State Table

Name Type Properties Purpose

triggers Triggers public A sequence of Trigger instances that each define
constraint conditions relative to a contained Action.

states States public A sequence of sub-states forming a state hierarchy.

2.6.5 Trigger and supporting valuetypes

A Trigger is a valuetype contained byState that is used to define an activation
constraint (referred to asguard ), declarations of implementation actions to fire before
action execution (referred to aérectives ), theaction that a collaboration
implementation applies to the collaborative state, and an aptiority . Trigger labels

are candidate arguments to t@ellaboration apply operation when th&tate

containing theTrigger is within the active state path. The value of guard is a valuetype
that qualifies the functional role of the trigger. Two type<afard are defined. A

Clock , representing a timeout condition that is automatically armed by a
Collaboration implementation whenever the containing trigger is a candidate (within
the active state path). A second type of Guard issanch that contains anode
constraint (one of INITIATOR, RESPONDENT, or PARTICIPANT) and a reference to a
role that qualifies accessibility of th&rigger relative to Members of an associated
Encounter . A Trigger containing aClock is managed by &ollaboration

2-32 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002



2

implementation. ATrigger containing aLaunch may be explicitly referenced by a
client through the apply operations on t@ellaboration interface providing the client
meets any mode and role constraints associated witfirthger .

CommunityFramework::
Control

CollaborationFramework:: trigger * | CollaborationFramework:: 1 action CollaborationFramework::
State Trigger Action

| K 1 CommunityFramework::
1 policy : Guard Guard
daemons : Daemons

action : Action

priority : long 4&

CommunityFramework:: CollaborationFramework:: CollaborationFramework::
daemons * Daemon Launch Clock
role : Role timeout : Duration
mode : TriggerMode

Figure 2-12 AbstractTrigger, Trigger, and Initialization

2.6.5.1 IDL Specification

valuetype Trigger :
CommunityFramework::Control
{
public long priority;
public CollaborationFramework::Guard guard; // constraint
public CollaborationFramework::Directives directives; // preconditions
public CollaborationFramework::Action action;

3
abstract valuetype Guard {};

valuetype Clock :
Guard

{

public Duration timeout;

h

valuetype Launch :
Guard

{
public TriggerMode mode;

public CommunityFramework::Role role;

h

March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-33



enum TriggerMode{
INITIATOR,
RESPONDENT,
PARTICIPANT

Table 2-37Trigger State Table
Name Type Properties Purpose

action Action public An Action valuetype that describes the action to take
following client invocation of the apply operation.
Argument to apply reference the label that

corresponds to the Trigger label state filed inherited
from Control.

guard Guard public An instance of Clock or Launch that defines the
Trigger activation policy.

Table 2-38Clock State Table
Name Type Properties Purpose

timeout Duration public Declaration of the delay between establishment of
the containing trigger as a candidate (the moment
the Trigger’s containing state enters the active state
path) and the automatic invocation of the action
contained by the containing Trigger by a
Collaboration implementation.

Table 2-39Launch State Table
Name Type Properties Purpose

mode TriggerMode | public A value corresponding to one of INITIATOR,
RESPONDENT or PARTICIPANT.

2-34 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002



March 2002

Table 2-39Launch State Table

priority

long public An implementation of apply is responsible for
queuing apply requests relative to trigger priority
and invocation order. Higher priority triggers will
be fired ahead of lower priority triggers irrespectiv
of apply invocation order. An implementation is
responsible for retractions of apply requests
following the disassociation of a containing state
from the active state path.

9]

role

Role public If the role value is not null, a client invoking the
containing trigger must be associated to the
Encounter under a role with a label equal to the rg
identifier.

e

2.6.6 Action

The Action valuetype is a base type fdransition , CompoundAction , and

Referral . Examples of transitions include initialization, simple transition, local
transition, and terminal transitiofiransition can be considered as atomic in that there
is no subsequent redirection involved. In comparis@ompoundTransition and
Referral redirects execution towards another action.

CollaborationFramework:: |‘ 1 action CollaborationFramework:: 1 action
Trigger Action

CollaborationFramework:: CollaborationFramework:: CollaborationFramework:: <>_
Transition CompoundTransition Referral

2.

Figure 2-13 Action object model

6.6.1 IDL Specification

abstract valuetype Action

{
3

Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-35



2-36

2.6.7 Transition and Related Control Structures

Transition contains a state field namedage that contains &sageDescriptor
value. The value allows the definition of input and/or output statements (refer
UsageDescriptor ) during a collaborative process execution as a consequence of
changes in the collaborative state. A second state field naraesitional contains a
single valuetype derived from the abstrdcansitional valuetype.

Four types ofTransitional valuetypes are defined:
® |nitialization , declares a possible initial active-state target.
® SimpleTransition , declares a potential a state transition.

® |[ocalTransition , declares a potential transition from the current state to the
current state, during which side effects such as timeout resettingy sage
references may be modified.

®* TerminalTransition , signals termination of the running state of the processor and
declares a successful or failure result.

CollaborationFramework::
Action

CollaborationFramework:: | 1 transitional ‘l CollaborationFramework:: |‘ CollaborationFramework ::
Transitional Transition UsageDescriptor

usage *

usage : UsageDescriptor

4 transitional : Transitional

CollaborationFramework:: CollaborationFramework:: CollaborationFramework:: CollaborationFramework::
Initialization SimpleTransition LocalTransition TerminalTransition

target : State

reset : boolean

result : Completion

]

1

CommunityFramework ::
State

CommunityFramework ::
Completion

Figure 2-14 Transition and the Transitional family of valuetypes

2.6.7.1 IDL Specification

abstract valuetype Transitional { };

valuetype Transition :
Action

{

public CollaborationFramework:: Transitional transitional;

Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002



public UsageDescriptors usage;

3

valuetype Initialization :
Transitional
{

3

valuetype SimpleTransition :
Transitional
{

public State target;
2

valuetype LocalTransition :
Transitional

public boolean reset;

3

valuetype TerminalTransition :
Transitional

public Completion result;

3

Table 2-40Transition State Table

Dne

CollaborationProcessor (refer CollaborationProcessd
active_state attribute).

Name Type Properties Purpose

usage UsageDescriptors  public Contains a sequence of UsageDescript
instance (input and output declarations) th
define required or operational arguments t¢
the Collaboration apply operation when the
state containing the usage declaration is
active.

transitional | Transitional public Declaration of the transitional operator —
of Initialization, SimpleTransition,
LocalTransition or TerminalTransition.

Table 2-41SimpleTransition State Table
Name Type Properties Purpose
target State public The state to be established as the active state of the

=

March 2002

Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types

2-37



Table 2-42LocalTransition State Table

Name Type Properties Purpose
reset boolean public If true, any timeout conditions established through
Triggers containing Clocks are reset.
Table 2-43TerminalTransition State Table

Name Type Properties Purpose

result Completion public Declaration of processor termination — the hosting
processor will expose the Completion result
instance, indicating the success or failure of the
process (refer CollaborationProcessor state
attribute).

2.6.7.2 Initialization

Initialization is a type offransitional that declares the potential for establishment of the
active_state as theState instance containing @&rigger that contains arction that
contains annitialization . The containingstate corresponds to the initalization target.
The Trigger containing thdnitialization may declare a priority value. The value of
priority is considered in the event of implicit initialization arising from client invocation
of the Processor start operation. When invoking start, theitialization with the
highest priority and non-conflicting constraints set is inferred. Alternatively, a
CollaborationProcessor
Initialization s containingAction label under theapply operations.

SimpleTransition

SimpleTransition

may be explicitly initialized by referencing the

is Transitional that enables a state transition from the current

active state to &tate declared under by th8impleTransition target value. A
successful invocation adpply or apply_arguments on CollaborationProcessor
will result in the change of th€ollaborationProcessor active state to the state
referenced by théarget value.

LocalTransition

LocalTransition enables the possible modification of usage relationships (if the
containingTrigger enables this), and the possibility teset timeout constraints
associated with the containirigigger . LocalTransition can be considered as a
transition from the current active state to the same state, where side effects concerning
timeout and usage relationships can be declared.

2-38 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002



Terminal Transition

Starting aCollaborationProcessor is enabled through thgtart or initialize

operation. These actions cause the establishment of an initial active state and active-state
path. Actions such aSimpleTransition enable modification of the active-state-path
leading to the potential exposure offarminalTransition action. Once a
TerminalTransition action has been fired, the hosting processor enters a closed and
completed state (refer ProcessState)C@llaborationProcessor  implementation
signals this change though modification of #tate attribute on the inherited

Processor interface (and corresponding structured event). This attribute returns a
StateDescriptor which itself contains th€ompletion valuetype declared under the
CollaborationModel TerminalTransition  (indicatingSuccess or Failure of the
process).

2.6.8 Compound Action Semantics

Two valuetypes define indirect action semantics. The firstReferral , an action that
references anothection instance. The second @GompoundTransition that
introduces the notion of a transition where the target is defined by the result of the
execution of another processor. An implementatioiCoflaboration on triggering a
CompoundTransition , uses a factorgriteria instance defined under tlogiteria

field to establish a new sub-processor to the current processor. The result of the sub-
process execution is exposed by an instanc@ahpletion (refer Completion
valuetype). Completion contains a result identifier (réesultClass andResultiD ).

This identifier is used to establish thetion to apply based on a result to action

mapping .
action 1 CollaborationFramework:: 1 action
Action
CommunityFramework:: 1 ‘l CollaborationFramework:: CollaborationFramework:: O_
Criteria CompoundTransition Referral
o o ) K * CollaborationFramework ::
criteria : Criteria action : Action Directive
mapping : Mapping directives: Directives

CollaborationFramework::
Map
mapping *

class : ResultClass
code : ResultlD *

ode . uo - CollaborationFramework ::
_’ directives: Directives ’— Directive

action : Action

Figure 2-15 CompoundTransition, Referral and Map

March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-39



Examples of the application of@ompound transition are shown in Chapter 1
“Collaboration Criteria.” The fulfillment transition of the promissory contract model is an
example of &CompoundTransition that uses a bilateral negotiation sub-process
between customer and supplier. The result of the negotiation sub-process raises a result
state that is mapped by the fulfillment transition to one of two possible outcomes
(fulfillment success or failure due to non-fulfillment). A similar use of compound
transition is defined under the multilateral voting model in which an amendment is
defined as a compound transition applying the same process model as the initial motion.

2.6.8.1 IDL Specification
valuetype Referral :
Action
public CollaborationFramework::Action action; // reference
public CollaborationFramework::Directives directives;
¥
valuetype Map
public ResultClass class;
public ResultID code;
public CollaborationFramework::Directives directives;
public CollaborationFramework::Action action;
¥
valuetype Mapping sequence <Map> ;
valuetype CompoundTransition :
Action
{
public CommunityFramework::Criteria criteria;
public CollaborationFramework::Mapping mapping;
¥
Table 2-44Referral State Table
Name Type Properties Purpose
action Action public A reference to the action to invoke (refer
Action) where the action is an existing Action
instance within the containing model.
directives Directives public A sequence of Directive valuetypes that

declare modifications (rename, remove, copy
and move) to the associated Task usage
associations that will be invoked before the
action is handled by the Collaboration
implementation.

2-40 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002



Table 2-45Map State Table

Name Type Properties Purpose

class ResultClass public One of the enumerated values of SUCCHSS
or FAILURE

code ResultID public An optional Completion code that qualifieg a
success or failure class.

action Action public The action to invoke (refer Action).

directives Directives public A sequence of Directive valuetypes that

declare modifications (rename, remove, copy
and move) to the associated Task usage
associations that will be invoked before the
action is handled by the Collaboration
implementation.

Table 2-46 CompoundTransition State Table
Name Type Properties Purpose
criteria Criteria public An instance of Criteria that is to be used as
the criteria for sub-process establishment
under a ResourceFactory.

mapping Mapping public A sequence of Map instances defining the
actions to be applied in the event of an
identified result status. An implementation is
responsible for ensuring a complete mapping
of all possible sub-process result states to
actions within the parent processor prior to
initialization (refer verify operation on
Collaboration interface).

2.6.9 Directive

Directive is a utility valuetype contained birigger andReferral . It is used to express

an execution directive to an implementation@dllaboration concerning link

associations on the coordinatifigsk. For example, a compound transition can contain

a directive that declares that a link be modified before the transition is fired. Another

link directive could be contained inMap declaring that the result of the compound
transition sub-process must be assigned as an input to the current process. Four concrete
valuetypes support the abstr&itective interface -Duplicate , Move, Remove, and
Constructor .

March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-41



2-42

2.6.9.1

2.6.9.2

2.6.9.3

2.6.9.4

2.6.9.5

Duplicate

Instructs an implementation @ollaboration to create a new consumption link named
target based on the state ofsmurce link. If the value ofinvert is false, the type of

link created is the same as the source linkinlfert is true, then if the source link is a
Consumption link, the created link will be @roduction link and vice-versa. The
resource associated to the new target link shall be the same as the resource declared
under the source link.

Move

The Move directive is a directive to &ollaboration implementation to change a
sourceConsumption link name to the value of target. If the invert value of tleve
instance is true, the move directive implies replacement of the link with its inverse type;
that is, if the source link is a type @onsumption link, then replace the link with a

type of Production link. If the source link is a type oProduction link, then replace

the link with a type ofConsumption link.

Remove

The Remove directive directs &ollaboration implementation to remove a tagged
Usage link (with a tag value corresponding gource ) from the coordinatingrask .

Constructor

The Constructor directive directs &ollaboration implementation to create a new
resource based on the supplieiteria and associate the resource under a new named
Consumption link on the coordinatingiask using thetarget value as the links tag
value.

IDL Specification

abstract interface Directive {};
valuetype Directives sequence <Directive>;

valuetype Duplicate
supports Directive

public Label source;
public Label target;
public boolean invert;

h

valuetype Move
supports Directive
{
public Label source;
public Label target;

Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002



public boolean invert;

valuetype Remove
supports Directive

{

public Label source;

3

valuetype Constructor
supports Directive

{

public Label target;
public CommunityFramework::Criteria criteria;

Table 2-47Duplicate State Table

=
[}

)

S
ne

>

=8
o

~ O

Name Type Properties Purpose

source Label public The name (tag value) of an existing link h
by the coordinating Task.

target Label public The name (tag value) of a Usage Link to
created or replaced on the coordinating Tag

invert boolean public If true, an implementation of Collaboration
required to create a new Usage link using tk
inverse type; that is, if source is Consumptio
then target type is Production. If source is
Production, then target type is Consumption.
The new usage link is added to the
coordinating Task.

Table 2-48Move State Table

Name Type Properties Purpose

source Label public The name (tag value) of an existing link he
by the coordinating Task.

target Label public The name (tag value) of a Usage Link to b
created or replaced on the coordinating Tag

invert boolean public If true, an implementation of Collaboration

required to replace an existing Usage link
with the inverse; that is, Consumption is
replaced by Production, Production is
replaced by Consumption.

is

March 2002

Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types

2-43



Table 2-49Remove State Table
Name Type Properties Purpose

source Label public The name of a Usage Link to be removed
from the coordinating Task.

Table 2-50Constructor State Table
Name Type Properties Purpose

target Label public The name of a Usage Link to be created and added to
the coordinating Task (replacing any existing usage
link of the same name), using the supplied criteria.

criteria Criteria public An instance of Criteria describing the resource to he
created.

2.7 UML Overview

2.7.1 Processor and Related Valuetypes

CommunityF ik C i ;| L model Cl i Ct ionFramework :: | *controlled by CollaborationFramework : Session::

0 imula W ! AbstaciR
Control Model Simulator laster controls Slave bstractResource

CollaborationFramework: processed by processes” | gocgion:

Processor Task

CollaborationFramework:: | * usage || CollaborationFramework:: | 1 model state : StateDescriptor
UsageDescriptor ProcessorModel "

controller()

usage: UsageDescriptor CollaborationFramework:: | 0.1 || CollaborationFramework:: | 1 state verify()
ZF Completion StateDescriptor ‘I focus()

result:ResultClass state: ProcessState (enum)
‘ code: ResultiD problems: Problems
) i leti
CollaborationFramework:: CollaborationFramework: ¢ ompeton
InputDescriptor OutputDescriptor A

tag: string tag: string CommunityFramework ::
required: boolean type: TypeCode Problem .
implied: boolean problems
type: TypeCode

2-44 Negotiation Facility Specification, v1.0 March 2002



2.7.2 Encounter

CommunityFramework:: 1 model .l CommunityFramework:: recognises * Session:: owned by 1 Session:: processed by 1
MembershipModel Membership N User N Task
member of owns processes *
[
CollaborationFramework::
Encounter
2.7.3 \Voting
CollaborationFramework:: 1 model CollaborationFramework:: CollaborationFramework ::
ProcessorModel /N\ ‘ GenericProcessor Vote
1
]
1 veount : VoteCount
|
| A vote()
i [>
1
]
]
i
CollaborationFramework:: 1 model ! CollaborationFramework::
VoteModel ‘ VoteProcessor
ceiling :VoteCeiling
policy :VotePolicy
single: boolean
lifetime : Duration
CollaborationFramework:: 1 model .l CollaborationFramework:: CollaborationFramework::
ProcessorModel /\ GenericProcessor Engagement
I
i
i engage()
[}
| A
I
I
I
i
CollaborationFramework:: 1 model : .l CollaborationFramework::
EngagementModel EngagementProcessor
policy : any
Negotiation Facility: UML Overview 2-45



2.7.5 Collaboration and CollaborationModel

CollaborationFramework:: 1 model CollaborationFramework:: CollaborationFramework::
ProcessorModel A GenericProcessor Collaboration

active_state : Label
A timeout_list : TimeoutSequence

apply()
apply_arguments( )

§

CollaborationFramework:: | root 1
Role

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

i
CollaborationFramework:: 1 model : ‘l CollaborationFramework::
‘ CollaborationModel CollaborationProcessor
CommunityFramework:: 'l root: Role
State state: State

2-46 Negotiation Facility Specification, v1.0 March 2002



2.7.6 Valuetypes Supporting CollaborationModel

CommunityFramework::
Control

March 2002

B

criteria : Criteria

target : Label
invert : hoolean

CollaborationFramework: state 1 | CollaborationFramework:: trigger * | CollaborationFramework:: Laction | CollaborationFramework:: | 1action
CollaborationModel State Trigger Action
- quard 1 | CommunityFramework::
triggers : Triggers priority : long Guard
states : States quard : Guard
directives : Directives
action : Action
CommunityFramework::
Directive
directives * CollaborationFramework:: CollaborationFramework:: CollaborationFramework:: <>
Transition CompoundTransition Referral
role 1 | CommunityFramework :: | role 1 CollaborationFramework:: CollaborationFramework:: i * | CollaborationFramework:
Role e Clock transitional Transitional criteria : Criteria directives : Directives Directive
usage: UsageDescriptors mapping : Mapping action : Action
role : Role delay : Duration 1
mode : TriggerMode L I
CollaborationFramework CollaborationFramework:: CollaborationFramework
UsageDescriptor Map Action
usage * mapping*
CollaborationFramework:: class : ResultClass
Transitional . code : ResultiD
1transitional "
- . directives : Directives
CommunityFramework::
action : Action
Criteria
Lcriteria
CommunityFramework :: Larget | cotanoratonFramework: | | ColaoratonFrameworc: || ColaboraionFrameworc: | | colaboraionFramenor
State SimpleTransition Initialization LocalTransition TerminalTransition
target : State Il reset : boolean result : Completion " N
CommunityFramework::
L Directive
CommunityFramework ::
Completion
CollaborationFramework:: | | C: ramework:: | | C: ionFramework:: | | C ionFramework::
Constructor Move Duplicate Remove
CommunityFramework:: | 1 criteria
Criteria target : Label source : Label source : Label source : Label

target : Label

invert : boolean

Negotiation Facility: UML Overview

2-47



2.8 CollaborationFramework Complete IDL

#ifndef _COLLABORATION_IDL_
#define _COLLABORATION_IDL_
#include <CommunityFramework.idl>
#pragma prefix "omg.org"

module CollaborationFramework{
#pragma version CollaborationFramework 2.0
/I forward declarations

abstract valuetype Action;

abstract valuetype Transitional;
abstract valuetype Guard;

abstract valuetype Proof;

abstract valuetype Evidence;
abstract valuetype UsageDescriptor;

valuetype State;

valuetype Initialization;
valuetype Trigger;

valuetype Transition;

valuetype SimpleTransition;
valuetype LocalTransition;
valuetype TerminalTransition;
valuetype CompoundTransition;
valuetype Referral;

abstract interface Slave;
abstract interface Master;
abstract interface Collaboration;
abstract interface Engagement;
abstract interface Vote;

abstract interface Directive;

interface Encounter;

interface Processor;

interface VoteProcessor;
interface EngagementProcessor;
interface CollaborationProcessor;

I typedefs

valuetype States sequence <State> ;

valuetype Triggers sequence <Trigger> ;

valuetype Initializations sequence <Initialization> ;
valuetype UsageDescriptors sequence <UsageDescriptor> ;
valuetype Slaves sequence <Slave> ;

2-48 Negotiation Facility Specification, v1.0 March 2002



valuetype Directives sequence <Directive>;
valuetype Label CommunityFramework::Label;
valuetype ProcessorState Session::task_state;
valuetype ResultID unsigned long ;

valuetype TypeCode CORBA:: TypeCode;
valuetype ResultClass boolean;

/I structures

valuetype Duration {
public TimeBase::TimeT value;

3

struct VoteCeiling{
short numerator;
short denominator;

3

enum VotePolicy{
AFFERMATIVE_MAJORITY,
NON_ABSTAINING_MAJORITY

3

abstract valuetype Proof {};
abstract valuetype Evidence {};

enum VoteDescriptor{
NO,
YES,
ABSTAIN

3

valuetype VoteStatement :
Evidence

{

public VoteDescriptor vote;

3

valuetype VoteReceipt :
Proof
{
public Session::Timestamp timestamp;
public VoteStatement statement;

2

valuetype VoteCount :
Proof
{

public Session::Timestamp timestamp;
public long yes;
public long no;

March 2002 Negotiation Facility: CollaborationFramework Complete IDL 2-49



public long abstain;

h

valuetype Timeout{
public Label identifier;
public Session::Timestamp timestamp;

h
valuetype TimeoutSequence sequence <Timeout> ;

enum TriggerMode{
INITIATOR,
RESPONDENT,
PARTICIPANT

h
valuetype Completion

public ResultClass result;
public ResultID code;

h

valuetype StateDescriptor
{
public ProcessorState state;
public CollaborationFramework::Completion completion;
public CommunityFramework::Problems problems;

h
/I exceptions

exception InvalidTrigger{
CommunityFramework::Problem problem;
Label identifier;

h

exception ApplyFailure{
CommunityFramework::Problem problem;
Label identifier;

h

exception InitializationFailure{
CommunityFramework::Problem problem;
Label identifier;

h

exception EngagementProblem{
CollaborationFramework::Evidence evidence;
CommunityFramework::Problem problem;

h

2-50 Negotiation Facility Specification, v1.0 March 2002



interface Slavelterator : CosCollection :: Iterator { };
/I coordination link
abstract valuetype Coordination : Session::Execution{ };

valuetype Monitors : Coordination {
public Processor resource;

2
valuetype Coordinates : Monitors {};

valuetype CoordinatedBy : Coordination {
public Session::Task resource;

2
/I management link
abstract valuetype Management : Session::Link{ };

valuetype Controls : Management {
public Slave resource;

3

valuetype ControlledBy : Management {
public Master resource;

h
/**

Encounter
*/

interface Encounter :
Session::Task,
CommunityFramework::Membership

{
3

valuetype EncounterCriteria :
CommunityFramework::Criteria

{
public CommunityFramework::MembershipModel model;
2
/*
ProcessorModel
*/
abstract valuetype UsageDescriptor { };

valuetype InputDescriptor :

March 2002 Negotiation Facility: CollaborationFramework Complete IDL 2-51



UsageDescriptor

{

public string tag;

public boolean required;
public TypeCode type;

h

valuetype OutputDescriptor :
UsageDescriptor
{
public string tag;
public TypeCode type;
h

valuetype ProcessorModel :
CommunityFramework::Control
supports CommunityFramework::Model

{

public UsageDescriptors usage;

h
/**

Master, Slave and Processor.
*/

abstract interface Master {
Slavelterator slaves (
in long max_number,
out Slaves slaves
);
¥

abstract interface Slave {
readonly attribute CollaborationFramework::Master master;

h

abstract interface Processor :
Session::AbstractResource,
CommunityFramework::Simulator,
Master, Slave

{

readonly attribute StateDescriptor state;
Session::Task coordinator(

) raises (
Session::ResourceUnavailable

);

CommunityFramework::Problems verify( );

2-52 Negotiation Facility Specification, v1.0 March 2002



void start (

) raises (
Session::CannotStart,
Session::AlreadyRunning

);

void suspend (

) raises (
Session::CannotSuspend,
Session::CurrentlySuspended

);

void stop (

) raises (
Session::CannotStop,
Session::NotRunning

);

I3

valuetype ProcessorCriteria :
CommunityFramework::Criteria
{

public ProcessorModel model,

h
/**

Engagement
*

abstract interface Engagement
{
Proof engage(
in CollaborationFramework::Evidence evidence
) raises (
EngagementProblem

);

h

interface EngagementProcessor :
Engagement,
Processor
{

h

valuetype EngagementModel :
ProcessorModel
{

public CommunityFramework::Role role;
public Duration lifetime;
public boolean unilateral;

/**

March 2002 Negotiation Facility: CollaborationFramework Complete IDL 2-53



\ote.
*/

abstract interface Vote

{

readonly attribute VoteCount vcount;

VoteReceipt vote(
in VoteDescriptor value

);
¥
interface VoteProcessor :
Vote,
Processor
{
¥
valuetype VoteModel :
ProcessorModel
{
public VoteCeiling ceiling;
public VotePolicy policy;
public boolean single;
public Duration lifetime;
¥
/**

Collaboration
*/

/I directive
abstract interface Directive {};

valuetype Duplicate
supports Directive

public Label source;
public Label target;
public boolean invert;

h

valuetype Move
supports Directive
{
public Label source;
public Label target;
public boolean invert;

2-54 Negotiation Facility Specification, v1.0 March 2002



March 2002

valuetype Remove
supports Directive

{

public Label source;

3

valuetype Constructor
supports Directive

{
public Label target;
public CommunityFramework::Criteria criteria;

2
/I apply arguments
valuetype ApplyArgument

public CollaborationFramework::Label label;
public Session::AbstractResource value;

2
valuetype ApplyArguments sequence <ApplyArgument> ;
/I collaboration

abstract interface Collaboration

{

readonly attribute Label active_state;
readonly attribute TimeoutSequence timeout_list;

void apply(
in Label identifier
) raises (
InvalidTrigger,
ApplyFailure

);

void apply_arguments(
in Label identifier,
in ApplyArguments args

) raises (
InvalidTrigger,
ApplyFailure

);

k

interface CollaborationProcessor :
Collaboration,
Processor

{

Negotiation Facility: CollaborationFramework Complete IDL 2-55



h
/**

Collaboration controls
*/

valuetype State :
CommunityFramework::Control
{
public CollaborationFramework::Triggers triggers;
public CollaborationFramework::States states;

h
abstract valuetype Guard {};

valuetype Clock :
Guard
{

public Duration timeout;

h

valuetype Launch :
Guard
{
public TriggerMode mode;
public CommunityFramework::Role role;

h

valuetype Trigger :
CommunityFramework::Control
{
public long priority;
public CollaborationFramework::Guard guard;
public CollaborationFramework::Directives directives; // precondition
public CollaborationFramework::Action action;

h
abstract valuetype Action { };
abstract valuetype Transitional { };

valuetype Transition :
Action

public CollaborationFramework:: Transitional transitional;
public UsageDescriptors usage;

¥

valuetype Initialization :
Transitional
{

2-56 Negotiation Facility Specification, v1.0 March 2002



h

valuetype SimpleTransition :
Transitional
{

public State target;
2

valuetype LocalTransition :
Transitional

public boolean reset;

3

valuetype TerminalTransition :
Transitional

public Completion result;

3

valuetype Referral :
Action

public CollaborationFramework::Action action;
public CollaborationFramework::Directives directives;

2
valuetype Map

public ResultClass class;

public ResultID code;

public CollaborationFramework::Directives directives;
public CollaborationFramework::Action action;

2
valuetype Mapping sequence <Map> ;

valuetype CompoundTransition :
Action
{
public CommunityFramework::Criteria criteria;
public CollaborationFramework::Mapping mapping;

h

valuetype CollaborationModel :
ProcessorModel
{

public CommunityFramework::Role role;

March 2002 Negotiation Facility: CollaborationFramework Complete IDL 2-57



public CollaborationFramework::State state;
¥
h

#endif //_COLLABORATION_IDL_

2-58 Negotiation Facility Specification, v1.0 March 2002



Community Framework

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 3-2
“Model, Simulator, and Supporting Valuetypes” 3-3
“Membership, MembershipPolicy, and Member Link” 3-5
“Roles and Role Related Policy” 3-16
“Community, Agency, LegalEntity, and Related 3-19
Valuetypes”

“General Utility Interfaces” 3-21
“UML Overview” 3-25
“CommunityFramework Complete IDL” 3-25

March 2002 Negotiation Facility Specification, v1.0

3-1



3-2

3.1 Overview

The CommunityFramework defines a specialization of the Task and Session
Workspace calle€ommunity and a specialization dommunity calledAgency .
Community is defined as a specialization Wforkspace and an abstract interface
calledMembership . Agency is a specialization of €ommunity that introduces the
abstract interfacéegalEntity .

Table 3-1 Principle Interfaces - Summary Table

Interface Description

Community The Community type combines the definition of Workspace from the Task
and Session framework. Community is derived from the abstract interfaces
Membership and Simulator.

Agency Agency extends Community through the addition of the abstract interface
named LegalEntity.

GenericResource A type of AbstractResource used to wrap another object.

Table 3-2 Abstract Interfaces and Supporting Valuetypes - Summary Table

Interface Description

Simulator An abstract interface used to expose a valuetype supporting the Model
valuetype.

Model An abstract interface supported by valuetypes used for models that declares
execution policy.

Control A valuetype with identity, a label and human readable description.

Role A valuetype derived from Control that defines a hierarchy of business roles
and associated role policies.

RolePolicy A valuetype defining policy of a business role.

MembershipModel

An extension of Control supporting the abstract Membership interface that
exposes Membership policy and a role hierarchy.

MembershipPolicy

A valuetype used to define the policy applicable to a Membership. Contained

by MembershipModel.

Membership

Membership is an abstract interface that enables association, qualification and

retraction of instances of the type User with a concrete type derived from
Membership (such as Community and Agency). Users are associated tola
Membership through a type of Link called Member.

Member

A valuetype used to describe the association of a User to a Membership
(inverse of Recognizes).

Recognizes

A valuetype used to describe the association of a Membership to a User
(inverse of Member)

Negotiation Facility Specification, v1.0 March 2002



Table 3-3 Factory Related Interfaces and Valuetypes - Summary Table

Interface Description

ResourceFactory An abstract interface defining factory operations based on supplied Cr
valuetypes.

Problem A valuetype used to describe issues relating or contributing to an excep
condition.

Criteria Abstract interface supported by ExternalCriteria, CommunityCriteria,

AgencyCriteria and GenericCriteria.

ExternalCriteria

A criteria valuetype used as a container of an XML public and system
identifier of criteria related information resources.

CommunityCriteria

A valuetype used as an argument to a resource factory. It contains a

teria

tion

MembershipModel that defines the business semantics of the community to

be created.

AgencyCriteria

A valuetype used as an argument to a resource factory. It contains a
MembershipModel that defines the business semantics of the agency to
created.

GenericCriteria

A valuetype used as a criteria argument to a resource factory.

3.2 Model, Simulator, and Supporting Valuetypes

be

The interfaces defined under ttemmunityFramework separate the notion of service
object managed by a particular domain, (typically reference objects derived from the
Task and Sessiospecification) from valuetype used to describe policy or state. An
abstract interface name&imulator defines themodel attribute that returns a valuetype
supporting the abstradfodel interface. From a computational point of view, a by-
reference object such & mmunity or Agency is a manager and container of a
related model valuetype.

3.2.1 Model

A Model is an abstract interface supported by valuetypes exposed (Sirtihdator
model attribute. An example of a valuetype that suppllidsiel is MembershipModel
(additional types supporting thdodel abstract interface are defined under the
CollaborationFramework ).

3.2.1.1 IDL Specification

abstract interface Model

{

h

March 2002 Negotiation Facility: Model, Simulator, and Supporting Valuetypes 3-3



3-4

3.2.2 Simulator

A Simulator is an abstract interface that defines a single attribute through which a client
can access a relatédodel. A model valuetype defines constraints and operational
semantics. Implementations of concrete simulators (su€oasmunity andAgency )

are responsible for ensuring that the appropriate type of model is returned through to the
client. For example, €ommunity implementation of thenodel operation will return

an instance oMembershipModel .

CommunityFramework :: 1 model CommunityFramework ::
Model ’ Simulator
model
supports

% extends

CommunityFramework :: CommunityFramework::
MembershipModel Membership

Figure 3-1 Model and Simulator

3.2.2.1 IDL Specification

abstract interface Simulator

{

readonly attribute CommunityFramework::Model model,

3

Table 3-4 Simulator Attribute Table

Name | Type Properties | Purpose
model | Model | readonly Access to a valuetype supporting the abstract Model interface.
3.2.3 Control

3.23.1

Control is an identifiable valuetype used in definition of valuetypes defining complex
models. Control contains a human readable label and descriptive @wmgatrol is used
as a utility state container by several valuetypes defined withitCdramunity and
Collaboration frameworks.

IDL Specification

valuetype Label CORBA::StringValue;
valuetype Note CORBA::StringValue;

Negotiation Facility Specification, v1.0 March 2002



valuetype Control :
{
public CommunityFramework::Label label,
public CommunityFramework::Note note;

3

Table 3-5 Control State Table

Name Type Properties Purpose
label Label public Name of the control.
note Note public Descriptive text.

3.3 Membership, MembershipPolicy, and Member Link

The abstracMembership interface declares a set of operations supporting the
association obisers (referTask and Sessiagpecification) under a single policy domain.
Operations provide support for the addition, modification and removal &fser
association, access to the quorum status of a membership, and access to information
about the set of associatetbers. Membership to User association is through a link
namedMember (derived from the Task and Session Link).

CommunityFramework :: 1 model ‘I CommunityFramework ::
Model Simulator

7

7

CommunityFramework :: CommunityFramework:: (declared under Member link)
MembershipModel Membership

grants membership to *

Session::

is a member of * User

(declared under Member link)

March 2002

CommunityFramework:: CollaborationFramework::
Community Encounter

1

CommunityFramework::
Agency

Figure 3-2 Membership Object Model

Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-5



3.3.1 Membership

Membership is an abstract interface inherited Bpmmunity that defines operations
supporting association and retraction of users uhMiember links, the qualification of
members in terms of business roles, and operations supporting access to information
about associatedsers. A MembershipModel qualifies membership behavior. The
MembershipModel defines a hierarchy of business roles that qualify the association
between &Jser and theMembership . In addition,MembershipModel declares

policy concerning privacy oiMember relationship informationUser to role

association, and exclusivity of the membership.

CommunityFramework ::
Simulator
4 grants membership to *
CommunityFramework :: | 1 model ‘l CommunityFramework:: (declared under Member link) Session::
MembershipModel Membership User

is a member of *
(declared under Member link)

recruitment_status
membership_count
quorum_status

get_quorum_status( )
join()

leave()

add_roles()
remove_roles( )
is_member( )
has_role()
get_member_roles( )
list_members( )
list_members_using()

CommunityFramework:: CollaborationFramework::
Community Encounter

Figure 3-3 Membership Abstract Interface Object Model

3.3.1.1 IDL Specification

abstract interface Membership :
Simulator

{

readonly attribute RecruitmentStatus recruitment_status;
readonly attribute MembershipCount membership_count;
readonly attribute boolean quorum_status;

RoleStatus get_quorum_status(

Negotiation Facility Specification, v1.0 March 2002



in Label identifier

);

Member join(
in Session::User user,
in Labels roles

) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
RoleAssociationConflict,
MembershipRejected,
UnknownRole

);

void leave(

in CommunityFramework::Member member
) raises (

RecruitmentConflict,

UnknownMember

);

void add_roles(
in CommunityFramework::Member member,
in Labels roles
) raises (
UnknownMember,
RoleAssociationConflict,
UnknownRole

);

void remove_roles(
in CommunityFramework::Member member,
in Labels roles
) raises (
UnknownRole,
UnknownMember,
CannotRemoveRole

);

boolean is_member(

in Session::User user
) raises (

PrivacyConflict

);

boolean has_role(
in Session::User user,
in Label role

) raises (
PrivacyConflict

Negotiation Facility: Membership, MembershipPolicy, and Member Link

3-7



3-8

);

Labels get_member_roles(
in Session::User user
) raises (
PrivacyConflict

);

Session::Userlterator list_members(
in long max_number,
out Session::Users list

) raises (
PrivacyConflict

);

Session::Userlterator list_members_using(
in Label role,
in long max_number,
out Session::Users list
) raises (
PrivacyConflict

);
h

exception PrivacyConflict

{

PrivacyPolicyValue reason;

h

exception AttemptedCeilingViolation{
Membership source;

h

exception AttemptedExclusivityViolation{
Membership source;

h

exception UnknownRole{
Membership source;

h

exception UnknownMember{
Membership source;
Member link;

h
exception Unknownldentifier{

Membership source;
Label identifier;

Negotiation Facility Specification, v1.0

March 2002



exception MembershipRejected{
Membership source;
string reason,;

3

exception RoleAssociationConflict{
Membership source;
string reason,;
Label role;

3

exception CannotRemoveRole{
Membership source;
string reason,;
Label role;

3

exception RecruitmentConflict{
Membership source;
RecruitmentStatus reason;

3

3.3.1.2 Operations supporting association and retraction of Users

Thejoin operation allows a client to associat&Jaer reference with aMembership
under a set of declared business roles (refer MembershipPolicy) joirh@peration
returns aMember instance to be maintained by thkser instance.

Member join(
in Session::User user,
in Lables roles

) raises (

AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
RoleAssociationConflict,
MembershipRejected,
UnknownRole

);

Theleave operation disassociatedMember from aMembership .

void leave(
in CommunityFramework::Member member
) raises (
RecruitmentConflict,
UnknownMember

March 2002 Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-9



Table 3-6 Exceptions Related to the Join and Leave Operations
Exception Reason

AttemptedCeilingViolation An attempt is made to add a member association to a Membership
where the number of Members is equal to or greater than the
ceiling state field value exposed by the associated MemberPolicy
instance.

AttemptedExclusivityViolation | If the associated MemberPolicy declares exclusive as true, then for
any identifiable principal (CORBA Current Principal) there may
be only one Member association for that principal.

RecruitmentConflict May be raised at the discretion of an implementation when an
attempt is made to join or leave a Membership when the
recruitment status is CLOSED.

RoleAssociationConflict Raised when an attempt is made to associate a Member to an
abstract role.

MembershipRejected Implementation specific decision to disallow a join request.

UnknownRole Raised when an attempt is made to association a Member under an
unknown role.

UnknownMember May be raised at the discretion of an implementation following an
attempt to disassociate a Member from a Membership.

3.3.1.3 Operations supporting modification of business roles assigned to
Members

Theadd_roles operation enables the addition of business roles attributedteraber.

void add_roles(
in CommunityFramework::Member member,
in Labels roles
) raises (
UnknownMember,
RoleAssociationConflict,
UnknownRole

);

Theremove_roles operation enables the retraction of business roles attributed to a
Member.

void remove_roles(
in CommunityFramework::Member member,
in Labels roles
) raises (
UnknownRole,
UnknownMember,
CannotRemoveRole

3-10 Negotiation Facility Specification, v1.0 March 2002



Table 3-7 Exceptions Related to the Role Association

Exception

Reason

UnknownRole

Raised following an attempt to associate or disassociate a Member when
the supplied role identifier is unknown; that is, not defined within the
associated MembershipPolicy.

UnknownMember May be raised at the discretion of an implementation following an attempt
to add or remove a role from/to a Member.

CannotRemoveRole Raised if a role removal would result in no role association towards the
Member.

3.3.14

Attributes and Operations supporting access to recruitment and
quorum state

The following attribute returns the recruitment status dflembership . The value
returned is one of the enumeration val@3SEN_ MEMBERSHIP or
CLOSED_MEMBERSHIP. Modification of the recruitment status of\dembership
is implementation specific. WhenMembership is under a
CLOSED_MEMBERSHIP, an implementation may raise tiecruitmentConflict
exception.

enum RecruitmentStatus{
OPEN_MEMBERSHIP,
CLOSED_MEMBERSHIP

¥
/I from Membership

readonly attribute RecruitmentStatus recruitment_status;

The following attribute supports access to the number of assodidgetber instances.
The valuetypeMembershipCount contains two values, the number ember
instances associated to thkeembership (static field), and the number dember
instances referencing connectdders at the time of invocation (refer Task and Session,
User, Connected State).

valuetype MembershipCount{

public long static;
public long active;

3
/I from Membership

readonly attribute MembershipCount membership_count;

March 2002 Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-11



The following attribute returns true if all roles defined within the associated
MembershipPolicy have met quorum — that is to say that for each role, the number of
member instances associated with that role, equal or exceed the quorum value defined
under theRolePolicy associated with the given role (refer RolePolicy).

/I from Membership

readonly attribute boolean quorum_status;

Quorum status relating to individual roles is available througlgtte quorum_status
operation. The identifier argument corresponds to identify of a role exposed within a
MembershipModel .

[/l from Membership

RoleStatus get_quorum_status(
in Label identifier

);

PossibleQuorumStatus values correspond tQUORUM_VALID, indicating that all

roles have reached quoruQUORUM_PENDING, indicating that the role has not
reached quorum, and the special cas@UORUM_UNREACHABLE , indicating that

the maximum number of members required for a particular role is less than the minimum
required.

enum QuorumsStatus {
QUORUM_VALID,
QUORUM_PENDING,
QUORUM_UNREACHABLE

3
valuetype RoleStatus

public Label identifier;
public MembershipCount count;
public QuorumsStatus status;

h

3.3.1.5 Operations supporting access to information about members

Theis_member operation returns true if the suppliétber is a member of the
membership.

/I from Membership

boolean is_member(

in Session::User user
) raises (

PrivacyConflict

);

Negotiation Facility Specification, v1.0 March 2002



March 2002

Thehas_role operation returns true if the suppliétser is associated to the
Membership under a role corresponding to the supplied identifier.

/I from Membership

boolean has_role(
in Session::User user,
in Label role

) raises (
PrivacyConflict

);

Theget_member_roles operation returns the sequence of all role identifiers
associated with the supplied user.

[/l from Membership

Labels get_member_roles(
in Session::User user
) raises (
PrivacyConflict

);

Thelist_members operation returns an iterator of allser instances associated with
the Membership . Themax_number argument constrains the maximum number of
User instances to include in the returned list sequence.

/I from Membership

Session::Userlterator list_members(
in long max_number,
out Session::Users list
) raises (
PrivacyConflict
);
Thelist_members_using operation returns an iterator of dllser instances
associated with thtlembership under a supplied role. Th®@ax_number argument
constrains the maximum number iember instances to include in the returned list
sequence.

/I from Membership

Session::Userlterator list_ members_using (
in Label role,
in long max_number,
out Session::Users list
) raises (
PrivacyConflict

);

Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-13



Table 3-8 Exceptions Related to Information About Members
Exception Reason

PrivacyConflict Raised in the case of a conflict between the invocation and the privacy policy
defined under the Membership’s MemberPolicy instance (refer
MembershipPolicy, Privacy Constraints).

3.3.2 MembershipModel

MembershipModel is a valuetype that extends thodel valuetype through addition
of fields containing aembershipPolicy and aRole representing the root business
role of a role hierarchy.

3.3.2.1 IDL Specification

valuetype MembershipModel :
Control
supports Model

{
public MembershipPolicy policy;

public CommunityFramework::Role role;

3

Table 3-9 MembershipModel State Table
Name Type Properties Purpose

policy MembershipPolicy public Defines privacy and exclusivity policy of the
containing Membership.

role Role public The root Role instance establishing a
business role hierarchy.

3.3.3 MembershipPolicy

The MembershipPolicy valuetype is contained within tHeommunityModel
valuetype (and other valuetypes defined underGbkaborationFramework ).
MembershipPolicy defines privacy and exclusivity policy of the containing
Membership .

3.3.3.1 IDL Specification

enum PrivacyPolicyValue
{
PUBLIC_DISCLOSURE,
RESTRICTED_DISCLOSURE,
PRIVATE_DISCLOSURE

3-14 Negotiation Facility Specification, v1.0 March 2002



3

valuetype MembershipPolicy
{

public PrivacyPolicyValue privacy;
public boolean exclusive;

3

Table 3-10Membership Policy State Table

Name

Type Properties Purpose

privacy

PrivacyPolicyValue | public Qualification of the extent of information to

be made available to clients (refer Privacy
Constraints).

exclusive

boolean public Restricts the number of Member instance

Uy

associated to a Membership to 1 for a given
principal identity (refer CORBA::Current).

3.3.3.2 Privacy Constraints

TheMembershipPolicy privacy attribute exposes an enumeration of privacy qualifiers.
Each qualifier defines a level of information access concerning members and the roles
they have. Privacy constraints refer to structural information (the association of members
to a membership) and member role attribution.

Table 3-11PrivacyPolicyValue Enumeration Table

Value

Description

PUBLIC_DISCLOSURE Operations may return structural and member role associations to

non-members.

RESTRICTED_DISCLOSURE| Operations may return structural and member role associatigns to

members that share a common root Membership (where a root
membership is derived from navigation of collection relationships
to higher-level membership instances).

PRIVATE_DISCLOSURE Operations may return structural and member role associations to

members of the same Membership.

3.3.4 Member and Recognizes Link

March 2002

Member is a type ofPrivilege link (refer Task and Session) that defines relationship
between aMlembership and aUser. Recognizes is the inverse association of
Member that associates ldlembership with aUser. A Member instance when held
by aMembership implementation references the participatldger. The inverse
relationship, held by an implementation d§er, contains a reference to the target
Membership .

Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-15



3.3.4.1 IDL Specification

valuetype Member : Session::Privilege {

public Membership resource;

3

valuetype Recognizes : Session::Privilege {

public Session::User resource;

public Labels roles;

3

Table 3-12Member State Table

Name Type Properties Purpose
resource Membership public The reference to a Membership that the
User, holding this link is a member of.
Table 3-13Recognizes State Table

Name Type Properties Purpose

resource User public The reference to a User that is a recognized
member of the Membership holding this link.

roles Labels public A sequence of role identifies managed by th
Membership implementation that the
membership has granted to the Member.

)

3.4 Roles and Role Related Policy

3-16

3.4.1 Role

A business role hierarchy is defined with tRele valuetype. The hierarchy declares a
set role instances against which members can be implicitly or explicitly associated.

Role is a valuetype that declares the notion of a “business role”@$er. The state
fieldslabel andnote inherited fromControl are used to associate a role name and role
description. Role supplements this information with an additional three state fields,
policy , is_abstract , androles. Theroles field contains a sequence of role instances
through which role hierarchies can be constructed. The policy field vaRelePolicy
valuetype that qualifies the quorum, ceiling, quorum assessment and quorum policy
applicable to the containing role. Role can be declared as an abstract role by setting
theis_abstract state field value to true. Declaring the role as abstract disables direct
association of &Jser to theRole under aMembership . Instead, members can
associate lower-level roles, thereby implicitly associating themselves with the containing

roles.

Negotiation Facility Specification, v1.0

March 2002



3

3.4.1.1 IDL Specification

Examples of business role hierarchies include the logical association of “customer” and
“supplier” as roles under a parent named “signatories.” In this example, both “customer”

and “supplier” would be modeled &ole instances withs_abstract set to false, and
contained within a singl®ole named “signatories.” By setting the “signatories” role
is_abstract value to trueMembers cannot directly associate to this role. Instead,
Members associating to either “customer” or “supplier” are implicitly granted

“signatory” association.

An implementation is responsible for ensuring the consistency of quorum and ceiling
values across a role hierarchy.

RolePolicy

CommunityFramework::

CommunityFramework ::
Control

7

quorum : long
ceiling : long
assessment: enum
policy: enum

policy 0..1

’ CommunityFramework::
Role

policy: RolePolicy
is_abstract: boolean
roles : Roles

roles *

Figure 3-4 Role and Role Policy Object Model

valuetype Role :
Control

{

public RolePolicy policy;
public CommunityFramework::Roles roles;
public boolean is_abstract;

h

Table 3-14Role State Table

Name

Type Properties

Purpose

policy

RolePolicy

public

Defines policy associated with an instance of
RoleContainer or RoleElement. If null, no direct
policy constraint is implied.

March 2002

Negotiation Facility: Roles and Role Related Policy 3-17



Table 3-14Role State Table
roles Roles public A sequence of Role instances that are considered
as children relative to the containing role.
Association of a Member to a child role
implicitly associates the Member with all parent
roles.

is_abstract| boolean public If true, Member instances may not be directly
associated with the role under a Membership.
Members may be associated implicitly through
association to a nhon-abstract sibling.

3.4.2 RolePolicy

RolePolicy is a valuetype that defines ceiling limits and quorum policy for a particular
role. The value of the quorum filed defines the minimum numbéderinbers that must

be associated with the role that the policy is associated with before the role can be
considered to have reached quorum. The ceiling field defines the maximum number of
Members that may be associated under the role. The policy field exposes a
RolePolicy value that details the mechanism to quorum calculations. In the case of a
null value for policy or assessment, the value shall be inferred by the parent policy. In
the case of no parent policy declaration, quorum policy shaBIMPLE and assessment
policy shall beLAZY (representing the least restrictive case). The absence of a ceiling
value shall indicate no limit on the number of associated members. The absence of a
guorum value shall imply a quorum of 0.

3.4.2.1 IDL Specification

enum QuorumPolicy
{
SIMPLE, // default
CONNECTED

h

enum QuorumAssessmentPolicy
{
STRICT,
LAZY /[ default

h

valuetype RolePolicy
{
public long quorum;
public long ceiling;
public QuorumPolicy policy;
public QuorumAssessmentPolicy assessment;

3-18 Negotiation Facility Specification, v1.0 March 2002



2
Table 3-15RolePolicy State Table
Name Type Properties Purpose
qguorum long public The minimum number of Members that must be
associated with the role before the role can be
considered to have achieved quorum.
ceiling long public The maximum number of Member instances that
may be associated to this role.
assessment QuorumAssessmentPolicy  public An enumeration used to determine the mechanism to

be applied to quorum assessment. The enumeration
describes STRICT and LAZY assessment policies.
Under STRICT assessment, the establishment of a
quorum is required before the membership is
considered valid. Under LAZY assessment, the
determination of quorum is based on the
accumulative count of members during the lifetim
of the membership. LAZY assessment introduces
the possibility for the execution of optimistic
processes that depend on valid quorums for
finalization and commitment of results.

D

policy QuorumPolicy public An emanation of SIMPLE or CONNECTED. When
the value is SIMPLE, quorum calculation is based
on number of Member instances. When the quorim
policy is CONNECTED, the quorum calculation is
based on the number of Member instances that
reference a User that is in a connected state.

3.5 Community, Agency, LegalEntity, and Related Valuetypes

3.5.1 Community

A Community is a type combining a formal model of membership with the Task and
Session Workspace. AsViorkspace , aCommunity is a container of
AbstractResource instances. As dMembership , aCommunity exposes a
MembershipModel detailing the allowable business roles and group constraints
applicable to associatddsers . A new instance oCommunity may be created by
passing an instance @ommunityCriteria to thecreate operation on
ResourceFactory .

3.5.1.1 IDL Specification

interface Community :
Session::Workspace,
Membership

March 2002 Negotiation Facility: Community, Agency, LegalEntity, and Related Valuetypes 3-19



{

¥

valuetype CommunityCriteria :
Criteria
{

public MembershipModel model,
h

Table 3-16 CommunityCriteria State Table

Name Type Properties | Purpose
model MembershipModel public The model to associate to the Community on
creation.

3.5.2 Agency and LegalEntity

Agency is a specialization oEommunity andLegalEntity that introduces the notion

of organized community such as a company. AssgalEntity , anAgency may be
associated to a number of users representing roles relative to a resource derived from
LegalEntity . LegalEntity is an abstract interface that defines access to implementation
specific criteria such as security policy, public company information and so forth. A new
instance ofAgency may be created by passing an instanc&géncyCriteria to the
create operation oResourceFactory .

CommunityFramework::
LegalEntity

CommunityFramework::
Community

V iy

CommunityFramework::
Agency

about: any

Figure 3-5 LegalEntity Object Model

3.5.2.1 IDL Specification

abstract interface LegalEntity {
readonly attribute any about;

3

interface Agency : Community, LegalEntity { };

3-20 Negotiation Facility Specification, v1.0 March 2002



valuetype AgencyCriteria :
CommunityCriteria

{
3

Table 3-17LegalEntity Attribute Table

Name Type Properties Purpose

about any readonly A value that may be used in an implementation
specific way to expose security and other credentia
towards clients.

S

3.6 General Utility Interfaces

3.6.1 GenericResource

3.6.1.1

GenericResource is a type ofAbstractResource

that exposes operations through

which values (in the form of an any) can be attributed to the resource in an interoperable

manner. Instances @enericResource are created through ResourceFactory
using an instance dbenericCriteria as the criteria argument.

IDL Specification

exception LockedResource{
Generic source;

3
abstract interface Generic

{

readonly attribute any value;
attribute boolean locked;
attribute boolean template;
void set_value(

in any value
) raises (

LockedResource
);

h

interface GenericResource :
Session::AbstractResource,
Generic

valuetype GenericCriteria : Criteria { };

March 2002 Negotiation Facility: General Utility Interfaces

3-21



3-22

3.6.2 Criteria

Concrete instances @riteria may be passed as arguments to ResourceFactory
create operationCriteria is an abstract interface supported by valuetypes that define
factory creation criteria for concrete resource types defined w@loimmunity and
Collaboration frameworks. ACriteria specialization is defined for each concrete
resource type (refer ResourceFactory Required Criteria SupggxternalCriteria is a
special case ofriteria used to describe a reference to an external artifact (such as an
XML document) that can be resolved in an implementation specific manner.

3.6.2.1 IDL Specification

valuetype Arguments CosLifeCycle::Criteria;

valuetype Criteria:
Control

{
3

public Arguments values;

valuetype ExternalCriteria :
Criteria

{
public CORBA::StringValue common,;

public CORBA::StringValue system;

Table 3-18Criteria State Table

Name Type Properties Purpose

values Arguments readonly Implementation specific criteria used as
supplementary information by a
ResourceFactory implementation.

Table 3-19ExternalCriteria State Table

Name Type Properties Purpose

common StringValue public XML public identifier.

system StringValue public XML system identifier.

3.6.3 ResourceFactory

ResourceFactory is a general utility exposable WyactoryFinder interfaces on
Session::Workspace andSession::User interfaces. ResourceFactory creates
new instances ofbstractResource and derived types based on a supplied name and

Negotiation Facility Specification, v1.0 March 2002



3

Criteria . Thesupporting operation exposes a sequence of def@uiteria instances
supported by the factory. Theriteria types that a resource factory is required to expose
and support are detailed in the following table.

Table 3-20ResourceFactory Required Criteria Support

Module Criteria type Created Resource Type
CommunityFramework CommunityCriteria Community
AgencyCriteria Agency
GenericCriteria GenericResource
CollaborationFramework ProcessorCriteria Processor
EngagementProcessor
VoteProcessor

CollaborationProcessor

3.6.3.1 IDL Specification

exception ResourceFactoryProblem{
ResourceFactory source;
CommunityFramework::Problem problem;

2
abstract interface ResourceFactory
{
readonly attribute CriteriaSequence supporting;
Session::AbstractResource create(
in CORBA::StringValue name,
in CommunityFramework::Criteria criteria
) raises (
ResourceFactoryProblem
);
2
3.6.4 Problem

March 2002

Problem is a utility valuetype that is exposed under fResourceFactoryProblem
exception within theCommunityFramework module, and is used to describe
configuration and runtime problems within t@®llaborationFramework that are not
readily exposed as formal exceptions. Examples of the applicati®nodfiem

instances include the description of the cause of a failure arising during a factory creation
operation. Other examples from tRmllaborationFramework include description of
non-fulfillment of a constraints and documentation of non-critical problem encountered
during the execution of a collaborative process.

The Problem valuetype contains a timestamp, a problem identifier, message and
description, and a possibly empty sequence of contribiRiredplem declarations.

Negotiation Facility: General Utility Interfaces 3-23



CommunityFramework::
Problem

timestamp : Timestamp
identifier : OID
message : string
description : string
cause : Problems

cause *

Figure 3-6 Problem Valuetype Object Model

3.6.4.1 IDL Specification

valuetype Problem

{

public Session::Timestamp timestamp;
public Label identifier;

public CORBA::StringValue message;

public CORBA::StringValue description;

public Problems cause;

Table 3-21Problem State Table

Name Type Properties Purpose

timestamp Timestamp public Date and time that the problem
identification occurred.

identifier Label public Identifier of a labeled control.

message StringValue public Short human readable message
describing the problem.

description StringValue public Descriptive text detailing the
problem, suitable for presentation
under a human interface.

cause Problems public A sequence of Problem instances
representing the problem cause.

3-24

Negotiation Facility Specification, v1.0

March 2002



3.7 UML Overview

assessment: (enum)
policy:QuorumPolicy

3.8 CommunityFramework Complete IDL

March 2002

roles : Roles
is_abstract: boolean
roles *

CommunityFramework ::

Control CommunityFramework::
MembershipPolicy
privacy : enum
exclusive : boolean
CommunityFramework ::
Criteria

values : Arguments

1

1 policy

Ci

Ci

GenericCriteria

ExternalCriteria

CommunityFramework ::
‘CommunityCriteria

common :StringValue
system: StringValue

model :MembershipModel

Figure 3-7

i

‘CommunityFramework :
AgencyCriteria

or ResourceFactory

#ifndef _COMMUNITY_IDL _
#define _COMMUNITY_IDL _
#include <Session.idl>

#pragma prefix "omg.org"

module CommunityFramework{

C @ i 1 model CommunityFramework ::
Control Model N Simulator
i
1
label : Label H model
note : Note |
i
supports i
% X i
I
i
i
|
C i policy 0.1 4| C i 1role o C i 1 model ! C [
RolePolicy A4 Role A4 MembershipModel Membership
1 model
quorum : long policy: RolePolicy policy : MembershipPolicy recruitment_status
ceiling : long role : Role membership_count

quorum_status

get_quorum_status( )
join()

leave( )

add_roles( )
remove_roles( )
is_member()
has_role()
get_member_roles( )
list_members( )
list_members_using( )

*member of

recognizes *

Session::
User

Session::
Workspace

Ce

CommunityFramework::

LegalEntity

about : any

T 7

CommunityFramework::
Agency

#pragma version CommunityFramework 2.0

/I forward declarations

interface Agency;
interface Community;

abstract interface LegalEntity;
abstract interface Model;
abstract interface Simulator;

Negotiation Facility: UML Overview

Principal Interfaces Only - does not include enumeration types, GenericResource,

3-25



3-26

abstract interface Membership;
abstract interface Generic;
abstract interface ResourceFactory;

valuetype Criteria;

valuetype Control,

valuetype Role;

valuetype MembershipPolicy;
valuetype MembershipModel;
valuetype Problem;

/I typedefs

valuetype Roles sequence <Role>;

valuetype Models sequence <Model>;

valuetype CriteriaSequence sequence <Criteria>;
valuetype Problems sequence <Problem>;
valuetype Note CORBA::StringValue;

valuetype Label CORBA::StringValue;

valuetype Labels sequence <Label>;

/I links

valuetype Member : Session::Privilege {
public Membership resource;

h

valuetype Recognizes : Session::Privilege {
public Session::User resource;
public Labels roles;

h
/I structures

enum QuorumAssessmentPolicy
{
STRICT,
LAZY /[ default

h

enum PrivacyPolicyValue
{
PUBLIC DISCLOSURE,
RESTRICTED_DISCLOSURE,
PRIVATE_DISCLOSURE

h

enum RecruitmentStatus{
OPEN_MEMBERSHIP, // default
CLOSED_MEMBERSHIP

h

Negotiation Facility Specification, v1.0

March 2002



valuetype MembershipCount{
public long static;
public long active;

h

enum QuorumPolicy
{
SIMPLE, // default
CONNECTED

3

enum QuorumsStatus {
QUORUM_VALID,
QUORUM_PENDING,
QUORUM_UNREACHABLE

I3
valuetype RoleStatus

public Label identifier;
public MembershipCount count;
public QuorumsStatus status;

3

valuetype Problem

{

public Session::Timestamp timestamp;
public Label identifier;

public CORBA::StringValue message;
public CORBA::StringValue description;
public Problems cause;

I3
/I exceptions

exception PrivacyConflict

{

PrivacyPolicyValue reason;

3

exception AttemptedCeilingViolation{
Membership source;

3

exception AttemptedExclusivityViolation{
Membership source;

3

exception UnknownRole{
Membership source;

March 2002 Negotiation Facility: CommunityFramework Complete IDL 3-27



3-28

h

exception UnknownMember{
Membership source;
Member link;

h

exception Unknownldentifier{
Membership source;
Label identifier;

h

exception MembershipRejected{
Membership source;
string reason,;

h

exception RoleAssociationConflict{
Membership source;
string reason,;
Label role;

h

exception CannotRemoveRole{
Membership source;
string reason,;
Label role;

h

exception RecruitmentConflict{
Membership source;
RecruitmentStatus reason;

h

exception LockedResource{
Generic source;

h

exception ResourceFactoryProblem{
ResourceFactory source;
CommunityFramework::Problem problem;

h
/I interfaces

abstract interface Model

{
h

abstract interface Simulator

Negotiation Facility Specification, v1.0

March 2002



{

readonly attribute CommunityFramework::Model model,

3

valuetype MembershipPolicy
{
public PrivacyPolicyValue privacy;
public boolean exclusive;

3

valuetype RolePolicy
{
public long quorum;
public long ceiling;
public QuorumPolicy policy;
public QuorumAssessmentPolicy assessment;

3

valuetype Control
{
public CommunityFramework::Label label;
public CommunityFramework::Note note;

3

valuetype Role :
Control
{
public RolePolicy policy;
public CommunityFramework::Roles roles;
public boolean is_abstract;

I3

abstract interface Membership :
Simulator
{

readonly attribute RecruitmentStatus recruitment_status;
readonly attribute MembershipCount membership_count;
readonly attribute boolean quorum_status;

RoleStatus get_quorum_status(
in Label identifier // role identifier

);

Member join(
in Session::User user,
in Labels roles

) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,

March 2002 Negotiation Facility: CommunityFramework Complete IDL 3-29



RoleAssociationConflict,
MembershipRejected,
UnknownRole

);

void leave(

in CommunityFramework::Member member
) raises (

RecruitmentConflict,

UnknownMember

);

void add_roles(
in CommunityFramework::Member member,
in Labels roles
) raises (
UnknownMember,
RoleAssociationConflict,
UnknownRole

);

void remove_roles(
in CommunityFramework::Member member,
in Labels roles
) raises (
UnknownRole,
UnknownMember,
CannotRemoveRole

);

boolean is_member(

in Session::User user
) raises (

PrivacyConflict

);

boolean has_role(
in Session::User user,
in Label role

) raises (
PrivacyConflict

);

Labels get_member_roles(
in Session::User user
) raises (
PrivacyConflict

);

Session::Userlterator list_members(
in long max_number,

3-30 Negotiation Facility Specification, v1.0 March 2002



out Session::Users list
) raises (
PrivacyConflict

);

Session::Userlterator list_members_using(
in Label role,
in long max_number,
out Session::Users list
) raises (
PrivacyConflict

);
3

valuetype MembershipModel :
Control supports Model
{
public MembershipPolicy policy;
public CommunityFramework::Role role;

2
valuetype Criteria :
Control
{
public CosLifeCycle::Criteria values;
2
valuetype ExternalCriteria :
Criteria
{

public CORBA.::StringValue common;
public CORBA::StringValue system;

3

interface Community :
Session::Workspace,
Membership

{
3

valuetype CommunityCriteria :
Criteria

{
public MembershipModel model;
I3

abstract interface LegalEntity {
readonly attribute any about;

3

March 2002 Negotiation Facility: CommunityFramework Complete IDL 3-31



interface Agency : Community, LegalEntity { };

valuetype AgencyCriteria :
CommunityCriteria
{

3

abstract interface Generic {

readonly attribute any value;
attribute boolean locked,;
attribute boolean template;

void set_value(
in any value
) raises (
LockedResource
);
¥

interface GenericResource :
Session::AbstractResource,
Generic

{
h

valuetype GenericCriteria : Criteria { };

abstract interface ResourceFactory

{

readonly attribute CriteriaSequence supporting;

Session::AbstractResource create(

in CORBA::StringValue name,

in CommunityFramework::Criteria criteria
) raises (

ResourceFactoryProblem

);

#endif //_COMMUNITY_IDL_

3-32 Negotiation Facility Specification, v1.0 March 2002



Changestothe Taskand Session
Specification (formal/00-05-03) A

A.1 BaseBusinessObject

A.1.1 BaseBusinessObject Revision

The Task and Session Specificatioffsrmal/00-05-03) definition of
BaseBusinessObject includes inheritance of th€osNotifyComm
StructuredPushConsumer , andStructuredPushSupplier interfaces. The
semantics oStructuredPushSupplier implies association to a single
StructuredProxyPushConsumer , however, thdBaseBusinessObject interface is
intended to support multiple concurrent consumers from potentially different business
domains without mandating nor excluding the usé\ofification channels as an
implementation mechanism. To enable the documented behavior an explicit factory
operation is required through whichSaructuredPushSupplier reference can be
exposed for a given consumer. This behavior is required to support association of
multiple consumers under tf@ommunity andCollaboration interfaces.

The CommunityFramework requires that the definition @aseBusinessObject
under formal/00-05-03 be replaced with the following definition.

BaseBusinessObject

BaseBusinessObject is the abstract base class for all principal Task and Session
objects. It has identity, is transactional, has a lifecycle, and is a notification supplier.

March 2002 Negotiation Facility Specification, v1.0 A-1



CosObjectldentity::
IdentifiableObject

constant_random_id()
is_identical()

7

R K CosLifeCycle::
CosNotifyComm:: Session:: LifeCycleObject
StructuredPushConsumer IdentifiableDomainObject
domain : Authorityld copy()
push_structured_event() move()
disconnect_structured_push_consumer() same_domain() remove()
] ]
Session:: Session:
IdentifiableDomainConsumer BaseBusinessObject

domain : Authorityld
add_consumer( )

same_domain() get_timestamp( )

Figure A-1

IDL Specification

interface IdentifiableDomainConsumer :
Session::ldentifiableDomainObiject,
CosNotifyComm::StructuredPushConsumer
{

¥

valuetype Timestamp TimeBase::UtcT ;

interface BaseBusinessObiject :
Session::ldentifiableDomainObiject,
CosLifeCycle::LifeCycleObject
{
CosNotifyComm::StructuredPushSupplier add_consumer(
in IdentifiableDomainConsumer consumer
);
Timestamp creation( );
Timestamp modification( );
Timestamp access();
¥
TheCosNotification service defines &tructuredEvent that provide a framework for
the naming of an event and the association of specific properties to that event. All events
specified within this facility conform to th8tructuredEvent interface. This
specification requires specific event types to provide the following properties as a part of

Negotiation Facility Specification, v1.0 March 2002



A

thefilterable_data of the structured event header. Under @&sNotification
specification all events are associated with a unigue domain name space. This
specification establishes the domain namespaogdmg.session " for structured
events associated withbstractResource and its sub-types.

Association of an Event Consumer

IdentifiableDomainConsumer  defines aStructuredPushConsumer  callback

object that can be passed to an implementatioBafeBusinessObject under the
add_consumer operation. An implementation of this operation is required to establish
the association of the consumer with an instanc8taficturedPushSupplier before
returning the supplier to the invoking client.

Accessing Creation, Modification, and Last Event timestamps

The operationscreation , modification , andaccess return aTimestamp value.

The creation operation returns the date and time of the creation. mbdification
operation returns the last modification date and time (where modification refers to a
modification of the state of a concrete derived type). &beess operation returns the
date and time a derived type was accessed.

Link

The definition of aLink (an association declaration) under fresk and Session
Specificationformal/00-05-03) is in the form of a struct containing an object reference
and relationship type identifier. These identifiers are declared as constants within the
Session module. Task and Session specificatiorLfk does not allow extension of
associations required by tl@mmunity andCollaboration Framework

specifications. Restoration of module independent extensitum&s$ is possible if the
Link struct declaration is replaced with a valuetype definition.

TheCommunityFramework introduces the following changes to the definition of Link
under Chapter 2, Section 2.5 of formal/00-05-03.

A.1.2 Links

TheLink type is used within the Task and Session framework as an argument to
operations that establish relationship dependencies between resources such as usage an
containment. Théink type is used as an argument to thied , replace andrelease
operations of a\bstractResource and as a type exposed under thepand

operation.

March 2002 Negotiation Facility: BaseBusinessObject A-3



A4

Session::
Link
Session::
Tagged
= AbstractResource resource( )
StringValue tag( )

AN

Session:: Session:: Session:: Session::

Usage Containment Privilege Execution
Session:: Session:: Session:: Session::
Consumption Production Access Ownership

Figure A-2 Abstract Link Definitions (link families)

IDL Specification

abstract valuetype Link {
AbstractResource resource( );

h

abstract interface Tagged {
CORBA::StringValue tag();

h

abstract valuetype Containment : Link{ };

abstract valuetype Privilege : Link{ };

abstract valuetype Access : Privilege { };

abstract valuetype Ownership : Privilege { };
abstract valuetype Usage : Link supports Tagged { };
abstract valuetype Consumption : Usage{ };
abstract valuetype Production : Usage{ };

abstract valuetype Execution : Link{ };

valuetype Consumes : Consumption {
public AbstractResource resource;
public CORBA::StringValue tag;

3

valuetype ConsumedBY : Consumption {
public Task task;
public CORBA::StringValue tag;

Negotiation Facility Specification, v1.0

March 2002



3

valuetype Produces : Production {
public AbstractResource resource;
public CORBA::StringValue tag;

h

valuetype ProducedByY : Production {
public Task task;
public CORBA::StringValue tag;

3

valuetype Collects : Containment {
public AbstractResource resource;

2

valuetype CollectedBy : Containment {
public Workspace resource;

3

valuetype ComposedOf : Collects { };
valuetype IsPartOf : CollectedBy { };

valuetype Accesses : Access {
public Workspace resource;

2

valuetype AccessedBYy : Access {
public User resource;

3

valuetype Administers : Accesses { };
valuetype AdministeredBy : AccessedBy {};

valuetype Owns : Ownership {
public Task resource;

3

valuetype OwnedBYy : Ownership {
public User resource;

3

Link

Link represents an abstract association of one resource towards ahotkerontains a

single operation namesource that returns a reference to é&bstractResource .

Link serves as an abstract base to a series of other abstract relationship families —
Containment, Privilege, Usage, and Execution. Unless otherwise stated, a link represents
a weak aggregation relationship.

abstract valuetype Link {

AbstractResource resource( );

h

March 2002 Negotiation Facility: BaseBusinessObject A-5



Containment

Containment is an abstrackink that represents the set of concretek definitions
dealing with aCollects of AbstractResource by aWorkspace , and the inverse
notion of anAbstractResource beingCollectedBy aWorkspace . An instance of
Workspace maintains a set of €ollects link instances, each holding a reference to
exactly one collectedbstractResource . For every instance dfollects , there is an
oppositeCollectedBy Link instance maintained by akbstractResource that
references the collecting/orkspace . A specialization of bottCollects and
CollectedBy is defined to represent&orkspace containing ambstractResource
where an implementation wishes to express strong aggregation from the containing
Workspace to the contained\bstractResource . This is defined under the
ComposedOf andlsPartOf links whereComposedOf is a type ofCollects and
IsPartOf is a type ofCollectedBy .

abstract valuetype Containment : Link{ };

valuetype Collects : Containment {
public AbstractResource resource;

¥

valuetype CollectedBy : Containment {
public Workspace resource;

b

valuetype ComposedOf : Collects { };
valuetype IsPartOf : CollectedBy { };

Table A-1 Collects State Table

Name Type Properties | Purpose

resource AbstractResourge  public A weak reference to a single
AbstractResource contained by a
Workspace managing this Link instance. In
the case of the derived ComposedOf link
the relationship is one of strong
aggregation.

Table A-2 CollectedBy State Table
Name Type Properties Purpose
resource Workspace public A weak reference to a single Workspace

that contains the AbstractResource
managing by this link instance. In the case
of the derived CollectedBy link, the

Workspace is a Workspace that strongly
aggregates the AbstractResource that ho|ds
the Link.

A-6

Negotiation Facility Specification, v1.0 March 2002



Privilege

Privilege is a type of abstract link, representing a family of abstract relationships
dealing withAccess andOwnership . Access is an abstractink that serves as the
abstract base type fdkccesses andAccessedBy . Accesses is aLink held by a
User that references ®Workspace - similar to a bookmark. AccessedBy is alLink
held by aWorkspace referencing aJser that has attached a bookmark to it. The
specialization ofAccesses andAccessedBy namedAdministers and
AdministeredBy provide a qualification of the access relationship whereby external
clients can establish the identity of an administrating user iden®nership is an
abstract link used to reflect the bi-directional relationship betwedrea and aTask.
Every Task is owned by exactly one user, reflected underGwenerBy link. A User
Owns between zero and mariyasks .

abstract valuetype Privilege : Link{};
abstract valuetype Access : Privilege { };
abstract valuetype Ownership : Privilege { };

valuetype Accesses : Access {
public Workspace resource;

2

valuetype AccessedBYy : Access {
public User resource;

3

valuetype Administers : Accesses { };
valuetype AdministeredBy : AccessedBy { };

valuetype Owns : Ownership {
public Task resource;

3

valuetype OwnedBYy : Ownership {
public User resource;

3

Table A-3 Accesses State Table

Name

Type Properties | Purpose

resource

Workspace public A weak reference to a single Workspage
held by a User, representing a bookmark pf
a Workspace by a User. A specialization of
Access named Administers qualifies the
Workspace as a Workspace that the holding
user has administrative responsibility for.

March 2002

Negotiation Facility: BaseBusinessObject A-7



A-8

Table A-4 AccessedBy State Table

Name Type Properties | Purpose
resource User public A weak reference to a single User that is
maintaining a bookmark reference to the
Workspace holding this link, A
specialization of AccessedBy named
AdministeredBy qualifies the User as an
administrator of the Workspace.
Table A-5 Owns State Table
Name Type Properties | Purpose
resource Task public A strong aggregation reference to a single
Task held by a User, representing a user’s
unit of Work.
Table A-6 OwnedBy State Table
Name Type Properties | Purpose
resource User public A weak reference to a single User that is|the
owner of the Task holding this link.

Usage

Usage is an abstrackink that captures the notions of the bi-directional relationships
between d@lask and theAbstractResource references that are associated through
consumption and production relationshigdsage is an abstract base type for
Consumption andProduction that extends the notion dfink through the

introduction of the tag operation. Any concrete valuetype supporting usage is required to
expose a state field naméay. The tag value is equivalent to an argument name,
facilitating the establishment of naming conventions on the resources consumed by and
produced by &ask. Consumption is the abstract base for thénk valuetypes

Consumes andConsumedBy . Production is the abstract base for thénk
valuetypesProduces andProducedBy . Consumes is aLink held by aTask that
references aAbstractResource it is consuming. The inverse of this association is the
Link ConsumedBYy , held by the consumedlbstractResource , referencing thdask

that is consuming itProduces is aLink held by aTask that references an
AbstractResource it is producing. The inverse of this association is the link
ProducedBYy , held by the producedbstractResource , referencing théask that is
producing it.

abstract interface Tagged {
CORBA::StringValue tag( );

Negotiation Facility Specification, v1.0 March 2002



2

abstract valuetype Usage : Link supports Tagged { };
abstract valuetype Consumption : Usage{ };
abstract valuetype Production : Usage{ };

valuetype Consumes : Consumption {

public AbstractResource resource;
public CORBA::StringValue tag;

3

valuetype ConsumedBYy : Consumption {

public Task task;

public CORBA::StringValue tag;

3

valuetype Produces : Production {
public AbstractResource resource;
public CORBA::StringValue tag;

3

valuetype ProducedByY : Production {

public Task task;

public CORBA::StringValue tag;

3

Table A-7 Consumes State Table

gle

Name Type Properties | Purpose

resource AbstractResourge  public A weak aggregation reference to a sin
AbstractResource consumed by the Task
holding this link.

tag StringValue public An application specific name attributed t
the association.

Table A-8 ConsumedBYy State Table

Name Type Properties | Purpose

resource Task public A weak reference to a single Task that i
consuming the AbstractResource holding
this link.

tag StringValue public An application specific name attributed t
the association.

D

March 2002

Negotiation Facility: BaseBusinessObject

A-9



Table A-9 Produces State Table

Name Type Properties Purpose

resource AbstractResourge public A weak aggregation reference to a single
AbstractResource produced by the Task
holding this link.

tag StringValue public An application specific name attributed to
the association.

Table A-10ProducedBy State Table

Name Type Properties Purpose

resource Task public A weak reference to a single Task that is
producing the AbstractResource holding
this link.

tag StringValue public An application specific name attributed|to
the association.

A-10

Execution

The abstract linkexecution is defined under th&ession module. It represents the
abstract family of relationships between a processorfask. The definition of
concrete associations betweeiask and the processing source is implementation
dependent.

abstract valuetype Execution : Link{ };

General Comments

ThelLink type is a generalized utility that enablesApstractResource , User, Task,
or Workspace to declare a dependency which is exposed directly under the expand
operation orAbstractResource , and indirectly through related list operations.

TheLink type is provided as a means through which the type and subject resource of a
dependency may be declared by the resource raising the dependency to the target.
Declaration of dependency between resources enables referential integrity between
resources irrespective of technology or administrative domain boundaries. Declaration,
modification and retraction of dependencies are achieved through invocationbofithe
release andreplace operations orAbstractResource .

Negotiation Facility Specification, v1.0 March 2002



A.2 AbstractResource

Modification of theAbstractResource interface is required by the Community
Framework in relation to the management of expadsie#t instances. Section 2.2.6
AbstractResource of formal/00-05-03 — subsection “Get Resource Tree by Link Kind”
shall be replaced with the following sections “Get Resource Tree by Link Kind” and
“Count Operation.”

A.2.1 Get Resource Tree by Link Kind

This operation asks af\bstractResource to return a set of resources linked to it by a
specific relationship. Objects returned are, or are createfitessractResource

instances. This operation may be used by desktop managers to present object relationship
graphs.

Linklterator expand (
in CORBA::TypeCode type,
in long max_number,
out Links seq

);

Table A-11Expand Argument List
Argument | Description

type The CORBA::TypeCode referencing a type derived from Link,
passed under the type argument qualifies the link selection
constraint relative to its most derived type. Any link that is derived
from the type identified by théype argument is a candidate to
include in the returned set of links.

max_number | The maximum number of elements to be included in the seq of
exposed Link instances.

seq A sequence of Link instances.

iterator An iterator of Link instances.

Count Operation

This operation returns the numberldhks held by anAbstractResource
corresponding to a givefiypeCode filter. Filter arguments are based on the same
filtering model as applied under txpand operation.

short count(

in CORBA:: TypeCode type
);

March 2002 Negotiation Facility: AbstractResource A-11



A

A.3 Session Module Revisions

A-12

There are several occurrences within fask and Session Specification — of

exception, enumeration and struct declarations that are defined with the scope of object
interfaces. This approach complicates access to these type declarations by external
modules. Resolution of the problem can be readily achieved by moving the respective
declarations from interface to module level as recommended under the following IDL
updates.

EDITORIAL CHANGE: Section 2.2.6 of formal/00-05-03 — move following exception
declarations within AbstractResource interface IDL to module level.

exception ResourceUnavailable{ };
exception ProcessorConflict{ };
exception SemanticConflict{ };

EDITORIAL CHANGE: Section 2.2.8 of formal/00-05-03 — move following declarations
within User interface IDL to module level.

enum connect_state {connected, disconnected};
exception AlreadyConnected {};
exception NotConnected {};

EDITORIAL CHANGE: Section 2.2.12 of formal/00-05-03 — move following
declarations within Task interface IDL to module level.

exception CannotStart {};

exception AlreadyRunning {};

exception CannotSuspend {};

exception CurrentlySuspended {};

exception CannotStop {};

exception NotRunning {};

enum task_state {
open, not_running, notstarted, running,
suspended, terminated, completed, closed };

The formal/00-05-03 Task and Session IDL does not contain a pragma version
declaration. In order to distinguish version modification based on the changes proposed
here, a pragma version of 2.0 is recommended. In addition, the non-IDL statement
#pragma javaPackage "org.omg"  shall be removed.

EDITORIAL CHANGE: Replace section 2.5 of formal/00-05-02 with the following IDL.

/I Task and Session - Session.idl
#ifndef _SESSION _
#define _SESSION _

#include <CosLifeCycle.idl>
#include <CosObjectldentity.idl>
#include <CosCollection.idl>
#include <NamingAuthority.idl>
#include <CosNotifyComm.idI>

Negotiation Facility Specification, v1.0 March 2002



March 2002

#include <CosPropertyService.idl>
#include <TimeBase.idl>
#include <orb.idI>

#pragma prefix "omg.org"
module Session {
#pragma version Session 2.0

interface AbstractResource;
interface Task;

interface Workspace;
interface AbstractPerson;
interface User;

interface Message;
interface Desktop;

abstract valuetype Link;
/I sequence definitions

typedef sequence<Session::AbstractResource>AbstractResources;
typedef sequence<Session::Task>Tasks;

typedef sequence<Session::Message>Messages;

typedef sequence<Session::User>Users;

typedef sequence<Session::Workspace>Workspaces;

typedef sequence<Session::Link>Links;

/I iterator definitions

interface AbstractResourcelterator : CosCollection :: Iterator { };
interface Tasklterator : CosCollection :: Iterator { };

interface Messagelterator : CosCollection :: Iterator { };
interface Workspacelterator : CosCollection :: Iterator { };
interface Userlterator : CosCollection :: Iterator { };

interface Linklterator : CosCollection :: Iterator { };

abstract interface Tagged {
CORBA::StringValue tag( );

3

abstract valuetype Link {
AbstractResource resource( );

3

abstract valuetype Containment : Link{ };

abstract valuetype Privilege : Link{};

abstract valuetype Access : Privilege { };

abstract valuetype Ownership : Privilege { };
abstract valuetype Usage : Link supports Tagged { };

Negotiation Facility: Session Module Revisions A-13



A-14

abstract valuetype Consumption : Usage{ };
abstract valuetype Production : Usage{ };
abstract valuetype Execution : Link{ };

/I concrete links

valuetype Consumes : Consumption {
public AbstractResource resource;
public CORBA::StringValue tag;

h

valuetype ConsumedBYy : Consumption {
public Task resource;
public CORBA::StringValue tag;

h

valuetype Produces : Production {
public AbstractResource resource;
public CORBA::StringValue tag;

h

valuetype ProducedByY : Production {
public Task resource;
public CORBA::StringValue tag;

h

valuetype Collects : Containment {
public AbstractResource resource;

h

valuetype CollectedBy : Containment {
public Workspace resource;

h

valuetype ComposedOf : Collects { };
valuetype IsPartOf : CollectedBy { };

valuetype Accesses : Access {
public Workspace resource;

h

valuetype AccessedBy : Access {
public User resource;

h

valuetype Administers : Accesses { };
valuetype AdministeredBy : AccessedBy { };

valuetype Owns : Ownership {
public Task resource;

h

valuetype OwnedBYy : Ownership {
public User resource;

h

Negotiation Facility Specification, v1.0

March 2002



/I interfaces

interface IdentifiableDomainObject :
CosObijectldentity::IdentifiableObject
{
readonly attribute NamingAuthority::Authorityld domain;
boolean same_domain(
in IdentifiableDomainObject other_object
);
2

interface IdentifiableDomainConsumer :
Session::ldentifiableDomainObiject,
CosNotifyComm::StructuredPushConsumer

{
3

valuetype Timestamp TimeBase::UtcT ;

interface BaseBusinessObiject :
IdentifiableDomainObject,
CoslLifeCycle::LifeCycleObject
{
CosNotifyComm::StructuredPushSupplier add_consumer(
in IdentifiableDomainConsumer consumer
);
Timestamp creation( );
Timestamp modification( );
Timestamp access();

3

exception ResourceUnavailable{ };
exception ProcessorConflict{ };
exception SemanticConflict{ };

interface AbstractResource :
BaseBusinessObiject {

attribute string name;
readonly attribute TypeCode resourceKind;

void bind(
in Link link

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

March 2002 Negotiation Facility: Session Module Revisions A-15



A-16

void replace(
in Link old,
in Link new

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);

void release(
in Link link
);

void list_contained (
in long max_number,

out Session::Workspaces workspaces,
out Workspacelterator wsit

);

void list_consumers (
in long max_number,
out Tasks tasks,
out Tasklterator taskit

);
Task get_producer();

short count(

in CORBA::TypeCode type

);

Linklterator expand (

in CORBA::TypeCode type,

in long max_number,
out Links seq

);
h

interface AbstractPerson :

CosPropertyService::PropertySetDef

{
h

enum connect_state {
connected,
disconnected

h

exception AlreadyConnected {};
exception NotConnected {};

Negotiation Facility Specification, v1.0

March 2002



interface User :
AbstractResource,
AbstractPerson,
CosLifeCycle::FactoryFinder

{

readonly attribute connect_state connectstate;

void connect(

) raises (
AlreadyConnected

);

void disconnect(
) raises (
NotConnected

);

void enqueue_message (
in Message new_message

);

void dequeue_message (
in Message message

);

void list_messages(
in long max_number,
out Messages messages,
out Messagelterator messageit

);

Task create_task (
in string name,
in AbstractResource process,
in AbstractResource data

);

void list_tasks (
in long max_number,
out Tasks tasks,
out Tasklterator taskit

);
Desktop get_desktop ();
Workspace create_workspace (

in string name,
in Users accesslist

March 2002 Negotiation Facility: Session Module Revisions A-17



void list_workspaces (
in long max_number,
out Session::Workspaces workspaces,
out Workspacelterator wsit
);
h

interface Message : AbstractResource {
attribute any message_id;
attribute any message;

h

interface MessageFactory{
Message create(
in any message_id,
in any message

);

¥

interface Workspace :
AbstractResource,
CoslLifeCycle::FactoryFinder
{

void add_contains_resource(
in AbstractResource resource

);

void remove_contains_resource(
in AbstractResource resource

);

Workspace create_subworkspace (
in string name,
in Users accesslist

);

void list_resources_by_type(
in TypeCode resourcetype,
in long max_number,
out AbstractResources resources,
out AbstractResourcelterator resourceit
);
3

interface Desktop:Workspace {

void set_belongs_to(
in User user

);

A-18 Negotiation Facility Specification, v1.0 March 2002



User belongs_to();

3

exception CannotStart {};
exception AlreadyRunning {};
exception CannotSuspend {};
exception CurrentlySuspended {};
exception CannotStop {};
exception NotRunning {};

enum task_state {
open, not_running, notstarted, running,
suspended, terminated, completed, closed

3

interface Task :
AbstractResource
{

attribute string description;
task_state get_state();

User owned_by();
void set_owned_by (
in User new_task_owner

);

void add_consumed(
in AbstractResource resource,
in string tag
);
void remove_consumed(
in AbstractResource resource
);
void list_consumed (
in long max_number,
out AbstractResources resources,
out AbstractResourcelterator resourceit,
out Linklterator linkit

);

void add_produced(
in AbstractResource resource,
in string tag
);
void remove_produced(
in AbstractResource resource
);
void list_produced (
in long max_number,

March 2002 Negotiation Facility: Session Module Revisions A-19



A-20

out AbstractResources resources,
out AbstractResourcelterator resourceit,
out Linklterator linkit

);

void set_processor(

in Session::AbstractResource processor
) raises (

ProcessorConflict
);

AbstractResource get_processor( );

void start (

) raises (
CannotStart,
AlreadyRunning

);

void suspend (

) raises (
CannotSuspend,
CurrentlySuspended

);

void stop (

) raises (
CannotStop,
NotRunning

);

#endif /* _SESSION_ */

Negotiation Facility Specification, v1.0

March 2002



Complete OMG IDL

B.1 CollaborationFramework Complete IDL

#ifndef COLLABORATION_IDL_
#define _COLLABORATION_IDL
#include <CommunityFramework.idl>
#pragma prefix "omg.org"

module CollaborationFramework{
#pragma version CollaborationFramework 2.0
/I forward declarations

abstract valuetype Action;

abstract valuetype Transitional;
abstract valuetype Guard;

abstract valuetype Proof;

abstract valuetype Evidence;
abstract valuetype UsageDescriptor;

valuetype State;

valuetype Initialization;
valuetype Trigger;

valuetype Transition;

valuetype SimpleTransition;
valuetype LocalTransition;
valuetype TerminalTransition;
valuetype CompoundTransition;
valuetype Referral;

abstract interface Slave;
abstract interface Master;

March 2002 Negotiation Facility Specification, v1.0



B-2

abstract interface Collaboration;
abstract interface Engagement;
abstract interface Vote;

abstract interface Directive;

interface Encounter;

interface Processor;

interface VoteProcessor;
interface EngagementProcessor;
interface CollaborationProcessor;

/I typedefs

valuetype States sequence <State> ;

valuetype Triggers sequence <Trigger> ;
valuetype Initializations sequence <Initialization> ;
valuetype UsageDescriptors sequence <UsageDescriptor> ;
valuetype Slaves sequence <Slave> ;

valuetype Directives sequence <Directive>;
valuetype Label CommunityFramework::Label;
valuetype ProcessorState Session::task_state;
valuetype ResultID unsigned long ;

valuetype TypeCode CORBA:: TypeCode;
valuetype ResultClass boolean;

/I structures

valuetype Duration {
public TimeBase::TimeT value;

h

struct VoteCeiling{
short numerator;
short denominator;

h

enum VotePolicy{
AFFERMATIVE_MAJORITY,
NON_ABSTAINING_MAJORITY

h

abstract valuetype Proof {};
abstract valuetype Evidence {};

enum VoteDescriptor{
NO,
YES,
ABSTAIN

h

valuetype VoteStatement :

Negotiation Facility Specification, v1.0

March 2002



March 2002

Evidence

{

public VoteDescriptor vote;

3

valuetype VoteReceipt :
Proof
{
public Session::Timestamp timestamp;
public VoteStatement statement;

2

valuetype VoteCount :
Proof
{

public Session::Timestamp timestamp;
public long yes;

public long no;

public long abstain;

3

valuetype Timeout{
public Label identifier;
public Session::Timestamp timestamp;

2
valuetype TimeoutSequence sequence <Timeout> ;

enum TriggerMode{
INITIATOR,
RESPONDENT,
PARTICIPANT

I3
valuetype Completion

public ResultClass result;
public ResultID code;

3

valuetype StateDescriptor

{

public ProcessorState state;
public CollaborationFramework::Completion completion;
public CommunityFramework::Problems problems;

I3
/I exceptions

exception InvalidTrigger{
CommunityFramework::Problem problem;

Negotiation Facility Specification, v1.0 B-3



B-4

Label identifier;

h

exception ApplyFailure{
CommunityFramework::Problem problem;
Label identifier;

h

exception InitializationFailure{
CommunityFramework::Problem problem;
Label identifier;

h

exception EngagementProblem{
CollaborationFramework::Evidence evidence;
CommunityFramework::Problem problem;

h

interface Slavelterator : CosCollection :: Iterator { };

/I coordination link

abstract valuetype Coordination : Session::Execution{ };

valuetype Monitors : Coordination {
public Processor resource;

h
valuetype Coordinates : Monitors {};

valuetype CoordinatedBy : Coordination {
public Session::Task resource;

h
/l management link
abstract valuetype Management : Session::Link{ };

valuetype Controls : Management {
public Slave resource;

h

valuetype ControlledBy : Management {
public Master resource;

h
/**

Encounter
*/

interface Encounter :

Negotiation Facility Specification, v1.0 March 2002



March 2002

Session::Task,
CommunityFramework::Membership
{

I3

valuetype EncounterCriteria :
CommunityFramework::Criteria

{

public CommunityFramework::MembershipModel model;

3

/*
ProcessorModel
*/

abstract valuetype UsageDescriptor { };

valuetype InputDescriptor :
UsageDescriptor
{
public string tag;
public boolean required;
public TypeCode type;

3

valuetype OutputDescriptor :
UsageDescriptor
{
public string tag;
public TypeCode type;
h

valuetype ProcessorModel :
CommunityFramework::Control
supports CommunityFramework::Model
{

public UsageDescriptors usage;

h
/**

Master, Slave and Processor.
*/

abstract interface Master {
Slavelterator slaves (
in long max_number,
out Slaves slaves
);
2

abstract interface Slave {

Negotiation Facility Specification, v1.0

B-5



readonly attribute CollaborationFramework::Master master;

h

abstract interface Processor :
Session::AbstractResource,
CommunityFramework::Simulator,
Master, Slave

{

readonly attribute StateDescriptor state;

Session::Task coordinator(
) raises (
Session::ResourceUnavailable

);
CommunityFramework::Problems verify( );

void start (

) raises (
Session::CannotStart,
Session::AlreadyRunning

);

void suspend (

) raises (
Session::CannotSuspend,
Session::CurrentlySuspended

);

void stop (

) raises (
Session::CannotStop,
Session::NotRunning

);

¥

valuetype ProcessorCriteria :
CommunityFramework::Criteria

{

public ProcessorModel model,

h
/**

Engagement
*/

abstract interface Engagement
{
Proof engage(
in CollaborationFramework::Evidence evidence
) raises (
EngagementProblem

Negotiation Facility Specification, v1.0 March 2002



);

h

interface EngagementProcessor :
Engagement,
Processor
{

h

valuetype EngagementModel :
ProcessorModel
{

public CommunityFramework::Role role;
public Duration lifetime;
public boolean unilateral;

h
/**

\ote.
*/

abstract interface Vote
readonly attribute VoteCount vcount;

VoteReceipt vote(
in VoteDescriptor value
);
2

interface VoteProcessor :
\ote,
Processor
{

h

valuetype VoteModel :
ProcessorModel

{

public VoteCeiling ceiling;
public VotePolicy policy;
public boolean single;
public Duration lifetime;

h
/**

Collaboration
*/

/I directive

March 2002 Negotiation Facility Specification, v1.0



abstract interface Directive {};

valuetype Duplicate
supports Directive

public Label source;
public Label target;
public boolean invert;

h

valuetype Move
supports Directive
{
public Label source;
public Label target;
public boolean invert;

h
valuetype Remove
supports Directive
{
public Label source;
h

valuetype Constructor
supports Directive

{
public Label target;

public CommunityFramework::Criteria criteria;

h
/I apply arguments
valuetype ApplyArgument

public CollaborationFramework::Label label;
public Session::AbstractResource value;

¥
valuetype ApplyArguments sequence <ApplyArgument> ;
/I collaboration

abstract interface Collaboration

{

readonly attribute Label active_state;
readonly attribute TimeoutSequence timeout_list;

void apply(
in Label identifier

B-8 Negotiation Facility Specification, v1.0 March 2002



March 2002

) raises (
InvalidTrigger,
ApplyFailure

);

void apply_arguments(
in Label identifier,
in ApplyArguments args

) raises (
InvalidTrigger,
ApplyFailure

);

k

interface CollaborationProcessor :
Collaboration,
Processor

{
3

/**

Collaboration controls
*/

valuetype State :
CommunityFramework::Control
{
public CollaborationFramework::Triggers triggers;
public CollaborationFramework::States states;

2
abstract valuetype Guard {};

valuetype Clock :
Guard
{

public Duration timeout;

3

valuetype Launch :
Guard
{
public TriggerMode mode;
public CommunityFramework::Role role;

3

valuetype Trigger :
CommunityFramework::Control

{
public long priority;
public CollaborationFramework::Guard guard;

Negotiation Facility Specification, v1.0 B-9



public CollaborationFramework::Directives directives; // precondition
public CollaborationFramework::Action action;

h
abstract valuetype Action { };
abstract valuetype Transitional { };

valuetype Transition :
Action

public CollaborationFramework:: Transitional transitional;
public UsageDescriptors usage;

¥

valuetype Initialization :
Transitional
{

¥

valuetype SimpleTransition :
Transitional
{

public State target;
h

valuetype LocalTransition :
Transitional

public boolean reset;

h

valuetype TerminalTransition :
Transitional

public Completion result;

h

valuetype Referral :
Action

public CollaborationFramework::Action action;
public CollaborationFramework::Directives directives;

h

valuetype Map
public ResultClass class;
public ResultID code;

public CollaborationFramework::Directives directives;
public CollaborationFramework::Action action;

B-10 Negotiation Facility Specification, v1.0 March 2002



2
valuetype Mapping sequence <Map> ;

valuetype CompoundTransition :
Action
{
public CommunityFramework::Criteria criteria;
public CollaborationFramework::Mapping mapping;

h

valuetype CollaborationModel :
ProcessorModel
{

public CommunityFramework::Role role;
public CollaborationFramework::State state;
h
2

#endif // _COLLABORATION_IDL_

B.2 CommunityFramework Complete IDL

March 2002

#ifndef _COMMUNITY_IDL_
#define _COMMUNITY_IDL_
#include <Session.idl>
#pragma prefix "omg.org"

module CommunityFramework{
#pragma version CommunityFramework 2.0
/ forward declarations

interface Agency;
interface Community;

abstract interface LegalEntity;
abstract interface Model;

abstract interface Simulator;
abstract interface Membership;
abstract interface Generic;

abstract interface ResourceFactory;

valuetype Criteria;

valuetype Control,

valuetype Role;

valuetype MembershipPolicy;
valuetype MembershipModel;
valuetype Problem;

Negotiation Facility Specification, v1.0 B-11



B-12

/I typedefs

valuetype Roles sequence <Role>;

valuetype Models sequence <Model>;

valuetype CriteriaSequence sequence <Criteria>;
valuetype Problems sequence <Problem>;
valuetype Note CORBA::StringValue;

valuetype Label CORBA::StringValue;

valuetype Labels sequence <Label>;

/I links

valuetype Member : Session::Privilege {
public Membership resource;

h

valuetype Recognizes : Session::Privilege {
public Session::User resource;
public Labels roles;

h
/I structures

enum QuorumAssessmentPolicy
{
STRICT,
LAZY /[ default

h

enum PrivacyPolicyValue
{
PUBLIC DISCLOSURE,
RESTRICTED_DISCLOSURE,
PRIVATE_DISCLOSURE

h

enum RecruitmentStatus{
OPEN_MEMBERSHIP, // default
CLOSED_MEMBERSHIP

h

valuetype MembershipCount{
public long static;
public long active;

¥

enum QuorumPolicy
{
SIMPLE, // default
CONNECTED

Negotiation Facility Specification, v1.0

March 2002



March 2002

3

enum QuorumsStatus {
QUORUM_VALID,
QUORUM_PENDING,
QUORUM_UNREACHABLE

3

valuetype RoleStatus
{
public Label identifier;
public MembershipCount count;
public QuorumsStatus status;

3

valuetype Problem
{
public Session::Timestamp timestamp;
public Label identifier;
public CORBA::StringValue message;
public CORBA::StringValue description;
public Problems cause;

2
/I exceptions

exception PrivacyConflict

{

PrivacyPolicyValue reason;

3

exception AttemptedCeilingViolation{
Membership source;

3

exception AttemptedExclusivityViolation{
Membership source;

3

exception UnknownRole{
Membership source;

3

exception UnknownMember{
Membership source;
Member link;

I3
exception Unknownldentifier{

Membership source;
Label identifier;

Negotiation Facility Specification, v1.0

B-13



h

exception MembershipRejected{
Membership source;
string reason,;

h

exception RoleAssociationConflict{
Membership source;
string reason,;
Label role;

h

exception CannotRemoveRole{
Membership source;
string reason,;
Label role;

h

exception RecruitmentConflict{
Membership source;
RecruitmentStatus reason;

h

exception LockedResource{
Generic source;

h

exception ResourceFactoryProblem{
ResourceFactory source;
CommunityFramework::Problem problem;

h

/I interfaces

abstract interface Model

{
h

abstract interface Simulator

{

readonly attribute CommunityFramework::Model model,

h

valuetype MembershipPolicy
{

public PrivacyPolicyValue privacy;
public boolean exclusive;

h

B-14 Negotiation Facility Specification, v1.0 March 2002



valuetype RolePolicy

public long quorum;

public long ceiling;

public QuorumPolicy policy;

public QuorumAssessmentPolicy assessment;

3

valuetype Control
{
public CommunityFramework::Label label;
public CommunityFramework::Note note;

3

valuetype Role :
Control

{

public RolePolicy policy;

public CommunityFramework::Roles roles;
public boolean is_abstract;

I3

abstract interface Membership :
Simulator
{

readonly attribute RecruitmentStatus recruitment_status;
readonly attribute MembershipCount membership_count;
readonly attribute boolean quorum_status;

RoleStatus get_quorum_status(
in Label identifier // role identifier

);

Member join(
in Session::User user,
in Labels roles

) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
RoleAssociationConflict,
MembershipRejected,
UnknownRole

);

void leave(

in CommunityFramework::Member member
) raises (

RecruitmentConflict,

UnknownMember

March 2002 Negotiation Facility Specification, v1.0 B-15



);

void add_roles(
in CommunityFramework::Member member,
in Labels roles
) raises (
UnknownMember,
RoleAssociationConflict,
UnknownRole

);

void remove_roles(
in CommunityFramework::Member member,
in Labels roles
) raises (
UnknownRole,
UnknownMember,
CannotRemoveRole

);

boolean is_member(

in Session::User user
) raises (

PrivacyConflict

);

boolean has_role(
in Session::User user,
in Label role

) raises (
PrivacyConflict

);

Labels get_member_roles(
in Session::User user
) raises (
PrivacyConflict

);

Session::Userlterator list_members(
in long max_number,
out Session::Users list

) raises (
PrivacyConflict

);

Session::Userlterator list_members_using(
in Label role,
in long max_number,
out Session::Users list

) raises (

B-16 Negotiation Facility Specification, v1.0 March 2002



March 2002

PrivacyConflict

);
3

valuetype MembershipModel :
Control supports Model

{
public MembershipPolicy policy;
public CommunityFramework::Role role;

2
valuetype Criteria :
Control
{
public CosLifeCycle::Criteria values;
2
valuetype ExternalCriteria :
Criteria
{

public CORBA::StringValue common;
public CORBA::StringValue system;

3

interface Community :
Session::Workspace,

Membership
{
2
valuetype CommunityCriteria :
Criteria
{

public MembershipModel model;
I3

abstract interface LegalEntity {
readonly attribute any about;

3

interface Agency : Community, LegalEntity { };

valuetype AgencyCriteria :
CommunityCriteria

{
3

abstract interface Generic {

readonly attribute any value;

Negotiation Facility Specification, v1.0

B-17



B-18

attribute boolean locked;
attribute boolean template;

void set_value(
in any value
) raises (
LockedResource
);
¥

interface GenericResource :
Session::AbstractResource,
Generic

{
h

valuetype GenericCriteria : Criteria { };

abstract interface ResourceFactory

{

readonly attribute CriteriaSequence supporting;

Session::AbstractResource create(

in CORBA::StringValue name,

in CommunityFramework::Criteria criteria
) raises (

ResourceFactoryProblem

);

#endif //_COMMUNITY_IDL_

Negotiation Facility Specification, v1.0

March 2002



Index

A list_members_using operation 3-13
Action 2-35 LocalTransition 2-36, 2-38
Agency 3-20
Apply 2-28 M
Master, Slave, and the Control Link 2-7
B Member 3-15
bilateral 1-2 Membership 3-6
Bilateral Negotiation 1-2 MembershipModel 3-14
MembershipPolicy 3-12, 3-14
C _ _ Model 3-3
Collaboration and CollaborationModel 2-46 Move 2-42

CollaborationModel 2-30
CollaborationProcessor 2-25
CollaborationProcessor, CollaborationModel, and Supporting

multilateral 1-2
Multilateral agreement 1-6

Types 2-24 f0)
Collaborative Process Models 1-2 Object Management Group v
Community 3-19 address of viii
CommunityFramework 3-2
Compound Action Semantics 2-39 P
CompoundAction 2-35 Privacy Constraints 3-15
Constructor 2-42 Problem 3-23
Control 3-4 Processor 2-4
Coordination Link Family 2-13 Processor and Related Valuetypes 2-44
CORBA Processor creation and Task association 2-6
contributors ix Processor Object Model 2-4
documentation set vi ProcessorModel and Related Constraint Declarations 2-10
Criteria 3-22 promissory 1-2
Promissory Contract Fulfillment 1-12
D
Digital Product Modeling Language 1-1 Q
Directive 2-41 QuorumStatus 3-12
DPML 1-1
DPML Schema Specification 1-17 R )
DPML Specification 1-3, 1-7, 1-13 Recognizes 3-15
Duplicate 2-42 Referral 2-35
Related DPML Documents 1-30
E Remove 2-42
Element to IDL Type Mapping 1-29 remove_roles operation 3-10
Encounter 2-15, 2-45 ResourceFactory 3-22
Encounter and EncounterCriteria 2-16 Role 3-16
Engagement 2-45 RolePolicy 3-12, 3-18
EngagementModel 2-23
EngagementProcessor 2-22 S . .
EngagementProcessor and EngagementModel 2-22 Security Service A-1
ExternalCriteria 3-22 SimpleTransition 2-36, 2-38
Simulator 3-4
G State Declaration 2-31
GenericResource 3-21 State Object Model 2-32
get_member_roles operation 3-13 Structures Supporting Apply 2-28
Structures supporting timeout declarations 2-28
H Supporting structures 2-18, 2-28
has_role operation 3-13
T
| TerminalTransition 2-36, 2-39
Initialization 2-36, 2-38 Timeout declarations 2-28
is_member operation 3-12 Transition 2-35
Transition and Related Control Structures 2-36
J . Trigger and supporting valuetypes 2-32
join operation 3-9
U
L UML Overview 2-44

LegalEntity 3-20
list_members operation 3-13

March 2002 Negotation Facility, v1.0 Index-1



Index

VoteProcessor 2-19
VoteProcessor and VoteModel 2-17

Voting 2-45

\%
Valuetypes Supporting CollaborationModel 2-46

Verification of processor configuration 2-7

October 2001

Index-2 Negotation Facility, v1.0



	Preface
	1.  Collaboration Criteria
	1.1 Introduction
	1.2 Collaborative Process Models
	1.2.1 Bilateral Negotiation
	1.2.2 Multilateral Agreement
	1.2.3 Promissory Contract Fulfillment

	1.3 DPML Schema Specification
	1.4 Element to IDL Type Mapping
	1.5 Related DPML Documents

	2.  Collaboration Framework
	2.1 Introduction
	2.2 Processor and Related Interfaces
	2.2.1 Processor
	2.2.2 Master, Slave, and the Control Link
	2.2.3 StateDescriptor
	2.2.4 ProcessorModel and Related Constraint Declarations
	2.2.5 Coordination Link Family

	2.3 Encounter
	2.3.1 Encounter and EncounterCriteria

	2.4 VoteProcessor and VoteModel
	2.4.1 Supporting Structures
	2.4.2 VoteProcessor
	2.4.3 VoteModel

	2.5 EngagementProcessor and EngagementModel
	2.5.1 EngagementProcessor
	2.5.2 EngagementModel

	2.6 CollaborationProcessor, CollaborationModel, and Supporting Types
	2.6.1 CollaborationProcessor
	2.6.2 Supporting Structures
	2.6.3 CollaborationModel
	2.6.4 State Declaration
	2.6.5 Trigger and supporting valuetypes
	2.6.6 Action
	2.6.7 Transition and Related Control Structures
	2.6.8 Compound Action Semantics
	2.6.9 Directive

	2.7 UML Overview
	2.7.1 Processor and Related Valuetypes
	2.7.2 Encounter
	2.7.3 Voting
	2.7.4 Engagement
	2.7.5 Collaboration and CollaborationModel
	2.7.6 Valuetypes Supporting CollaborationModel

	2.8 CollaborationFramework Complete IDL

	3.  Community Framework
	3.1 Overview
	3.2 Model, Simulator, and Supporting Valuetypes
	3.2.1 Model
	3.2.2 Simulator
	3.2.3 Control

	3.3 Membership, MembershipPolicy, and Member Link
	3.3.1 Membership
	3.3.2 MembershipModel
	3.3.3 MembershipPolicy
	3.3.4 Member and Recognizes Link

	3.4 Roles and Role Related Policy
	3.4.1 Role
	3.4.2 RolePolicy

	3.5 Community, Agency, LegalEntity, and Related Valuetypes
	3.5.1 Community
	3.5.2 Agency and LegalEntity

	3.6 General Utility Interfaces
	3.6.1 GenericResource
	3.6.2 Criteria
	3.6.3 ResourceFactory
	3.6.4 Problem

	3.7 UML Overview
	3.8 CommunityFramework Complete IDL

	Appendix A - Changes to the Task and Session Specification (formal/00-05-03)
	Appendix B - Complete OMG IDL
	B.1 CollaborationFramework Complete IDL
	B.2 CommunityFramework Complete IDL

	Index

