
NegotiationFacilitySpecification

Version1.0
March2002

Copyright 2001, Object Management Group
Copyright 1998, 1999 by OSM SARL

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

PATENT
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE
The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web pagehttp://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
v

1

1-1

1-2
-2
-6
2

-17

29

-30

1

2-1

2-4
2-4
-7

2-8

10
3

-15
16

-17
-18
-19
Preface .

1. Collaboration Criteria. 1-

1.1 Introduction .

1.2 Collaborative Process Models .
1.2.1 Bilateral Negotiation. 1
1.2.2 Multilateral Agreement. 1
1.2.3 Promissory Contract Fulfillment. 1-1

1.3 DPML Schema Specification . 1

1.4 Element to IDL Type Mapping. 1-

1.5 Related DPML Documents. 1

2. Collaboration Framework . 2-

2.1 Introduction .

2.2 Processor and Related Interfaces
2.2.1 Processor .
2.2.2 Master, Slave, and the Control Link 2
2.2.3 StateDescriptor .
2.2.4 ProcessorModel and Related Constraint

Declarations . 2-
2.2.5 Coordination Link Family. 2-1

2.3 Encounter . 2
2.3.1 Encounter and EncounterCriteria 2-

2.4 VoteProcessor and VoteModel . 2
2.4.1 Supporting Structures 2
2.4.2 VoteProcessor . 2
March 2002 Negotiation Facility Specification, v1.0 i

Contents

20

2-22
-22

-23

-24
-25
-28
30
-31
-32
35
36
39
41

44
-44
-45
45
-45
6
6

47

-1

3-2

3-3
-3
-4
-4

-5
-6

14
14
15

-16
-16
18

-19
2.4.3 VoteModel . 2-

2.5 EngagementProcessor and EngagementModel
2.5.1 EngagementProcessor. 2
2.5.2 EngagementModel . 2

2.6 CollaborationProcessor, CollaborationModel, and
 Supporting Types . 2

2.6.1 CollaborationProcessor. 2
2.6.2 Supporting Structures . 2
2.6.3 CollaborationModel . 2-
2.6.4 StateDeclaration . 2
2.6.5 Trigger and supporting valuetypes 2
2.6.6 Action . 2-
2.6.7 Transition and Related Control Structures 2-
2.6.8 Compound Action Semantics 2-
2.6.9 Directive . 2-

2.7 UML Overview . 2-
2.7.1 Processor and Related Valuetypes 2
2.7.2 Encounter . 2
2.7.3 Voting . 2-
2.7.4 Engagement . 2
2.7.5 Collaboration and CollaborationModel. 2-4
2.7.6 Valuetypes Supporting CollaborationModel . . . 2-4

2.8 CollaborationFramework Complete IDL 2-

3. Community Framework . 3

3.1 Overview .

3.2 Model, Simulator, and Supporting Valuetypes
3.2.1 Model . 3
3.2.2 Simulator . 3
3.2.3 Control . 3

3.3 Membership, MembershipPolicy, and Member Link 3
3.3.1 Membership . 3
3.3.2 MembershipModel . 3-
3.3.3 MembershipPolicy . 3-
3.3.4 Member and Recognizes Link 3-

3.4 Roles and Role Related Policy . 3
3.4.1 Role . 3
3.4.2 RolePolicy . 3-

3.5 Community, Agency, LegalEntity, and
 Related Valuetypes . 3
ii Negotiation Facility Specification, v1.0 March 2002

Contents

19
20

-21
-21
22
-22
-23

25

25

1

3.5.1 Community . 3-
3.5.2 Agency and LegalEntity 3-

3.6 General Utility Interfaces . 3
3.6.1 GenericResource. 3
3.6.2 Criteria . 3-
3.6.3 ResourceFactory . 3
3.6.4 Problem . 3

3.7 UML Overview . 3-

3.8 CommunityFramework Complete IDL. 3-

 Appendix A - Changes to the Task and Session
 Specification (formal/00-05-03) A-

Appendix B - Complete OMG IDL B-1
March 2002 Negotiation Facility Specification, v1.0 iii

Contents
iv Negotiation Facility Specification, v1.0 March 2002

Preface
rted
and
nted

de a
,
ous
p a

d.

ted,
y
ject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 600 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provi
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
March 2002 Negotiation Facility Specification, v1.0 v

d

nd

ing

ibes
rella
and
ed.

nd
ge-
uests
t
C,

oping
a

OMG Documents

The OMG documentation is organized as follows:

OMG Modeling

• Unified Modeling Language (UML) Specificationdefines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distribute
object systems.

• Meta-Object Facility (MOF) Specificationdefines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels a
their corresponding models.

• OMG XML Metadata Interchange (XMI) Specificationsupports the interchange of
any kind of metadata that can be expressed using the MOF specification, includ
both model and metamodel information.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and descr
the conceptual models upon which OMG standards are based. It defines the umb
architecture for the OMG standards. It also provides information about the policies
procedures of OMG, such as how standards are proposed, evaluated, and accept

CORBA: Common Object Request Broker Architecture and
Specification

Contains the architecture and specifications for the Object Request Broker.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA
objects. The IDL definition is the contract between the implementor of an object a
the client. IDL is a strongly typed declarative language that is programming langua
independent. Language mappings enable objects to be implemented and sent req
in the developer’s programming language of choice in a style that is natural to tha
language. The OMG has an expanding set of language mappings, including Ada,
C++, COBOL, IDL to Java, Java to IDL, Lisp, and Smalltalk.

CORBAservices

Object Services are general purpose services that are either fundamental for devel
useful CORBA-based applications composed of distributed objects, or that provide
universal-application domain-independent basis for application interoperability.
vi Negotiation Facility Specification, v1.0 March 2002

ent
ct

ble

t
ect

d

so

ces
These services are the basic building blocks for distributed object applications.
Compliant objects can be combined in many different ways and put to many differ
uses in applications. They can be used to construct higher level facilities and obje
frameworks that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
specifications such asCollection, Concurrency, Event, Externalization, Naming,
Licensing, Life Cycle, Notification, Persistent Object, Property, Query, Relationship,
Security, Time, Trader, andTransaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applica
to most domains. Adopted OMG Common Facilities are collectively called
CORBAfacilities and include specifications such asInternationalization and Time, and
Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Objec
Frameworks are complete higher level components that provide functionality of dir
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include
Domain Interfaces for application domains such as Finance, Healthcare,
Manufacturing, Telecoms, E-Commerce, and Transportation.

Currently, specifications are available in the following domains:

• CORBA Business: Comprised of specifications that relate to the OMG-compliant
interfaces for business systems.

• CORBA Finance: Targets a vitally important vertical market: financial services an
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
forth.

• CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfa
between related services and functions.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

• CORBA Transportation: Comprised of specifications that relate to the OMG-
compliant interfaces for transportation systems.
March 2002 Negotiation Facility: OMG Documents vii

d,
dards
(The

at.
ns,

ns

ation

l

,
aders

ed

ria

The
Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF form
To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Summary of Key Features

The CORBA Electronic Commerce Domain architecture is comprised of specificatio
that relate to the OMG-compliant interfaces for distributed electronic commerce
systems. Currently, there are four frameworks established as a result of the Negoti
Facility RFP2. These include the Session Framework, Community Framework,
Collaboration Framework, and DomFramework.

The Framework Specification presented in Chapters 3 and 4 are targeting potentia
developers of this facility. Information is presented in the form of a breakdown of
modules, interfaces, and types. For each interface, details of attributes, operations
events and additional semantics are provided. The documentation assumes that re
are familiar with the object model defined under the Task/Session specification
(formal/00-05-03), and have familiarity with the notion of structured events as defin
by CosNotification.

1. Negotiation and Contract Criteria - The specification of three collaboration crite
instances covering:

• bilateral negotiation

• multilateral negotiation

• promissory commitment

2. The Collaboration Framework chapter contains the definition of Collaboration, a
process through which different models of collaboration rules can be managed.
CollaborationFramework is defined extensively on interfaces from
CommunityFramework .
viii Negotiation Facility Specification, v1.0 March 2002

port
and

g
es or
3. Community Framework under contains extensions to the Task and Session sup
communities of collaborating users. It defines the abstract Membership interface
concrete types - Community, Agency.

Typographical Conventions

The type styles shown below are used in this document to distinguish programmin
statements from ordinary English. However, these conventions are not used in tabl
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear initalics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

The following companies have submitted to or have supported submissions
contributing to this specification:

• Fraunhofer Institut Materialfluss und Logistik

• Imperial College of Science Technology and Medicine

• In-Line Software

• OSM SARL

• Sprint - Technology Planning and Integration

• Xerox Corporation
March 2002 Negotiation Facility: Typographical Conventions ix

x Negotiation Facility Specification, v1.0 March 2002

CollaborationCriteria 1
a

pes

g

s

Contents

This chapter contains the following sections.

1.1 Introduction

This chapter describes three collaboration models dealing with bilateral negotiation,
multilateral negotiation, and promissory commitment. Each model is presented with
general description of the model purpose and characteristics, followed by the
specification of the structure and values ofCriteria instances used to represent the
model.

Criteria descriptions are defined through construction of instances based on valuety
defined in theCollaborationFrameworkandCommunityFrameworkchapters of this
document. Composition of valuetypes is described using the Digital Product Modelin
Language (DPML) XML schema. DPML is a non-normative supplement to this
specification that allows a more complete representation of Criteria instances than i
possible under IDL. The DPML 2.0 DTD and mapping to CommunityFramework and
CollaborationFramework valuetypes is presented in Section 1.3, “DPML Schema
Specification,” on page 1-17.

Section Title Page

“Introduction” 1-1

“Collaborative Process Models” 1-2

“DPML Schema Specification” 1-17

“Element to IDL Type Mapping” 1-29

“Related DPML Documents” 1-30
March 2002 Negotiation Facility Specification, v1.0 1-1

1

ugh

f a

ia
7.

a
n
nd

l).
1.2 Collaborative Process Models

1.2.1 Bilateral Negotiation

This section describes a model of collaboration in which two parties can interact thro
offers, requests, suggestions, and proposals leading to an agreed or non-agreed
conclusion. The model expressed here in DPML defines the structure and values o
CollaborationModel contained within aProcessorCriteria that may be executed
under aCollaborationProcessor . The mappings between DPML elements and criter
valuetype are presented in Section 1.3, “DPML Schema Specification,” on page 1-1
Definition of the control valuetypes and the supporting interfaces are presented in
Chapter 2 “CollaborationFramework” and Chapter 3 “CommunityFramework.”

Table 1-1 Criteria Descriptions

Model label Model Description

bilateral A model of collaboration in which two parties can interact through offers,
requests, suggestions, and proposals leading to an agreed or non-agreed
conclusion.

multilateral A model of collaboration in which an initiating party can establish a motion,
reciprocating party can second the motion, supporting actions enable motio
amendment (through amendment motions), leading to a vote on the motion a
possible establishment of an agreed result.

promissory A model of collaboration in which an initiating party can establish a promise
towards another party, where the reciprocating party can call the promise,
thereby establishing an obligation on the promising party, leading to the
launching of a fulfillment process (defined under a separate processor mode
1-2 Negotiation Facility Specification, v1.0 March 2002

1

blish
o-
n
n of
T

ons,

put

ed
Figure 1-1 Schematic Representation

1.2.1.1 DPML Specification

<DPML>

<collaboration label="bilateral" note="Bilateral negotiable agreement process model.">

This model defines a bilateral process through which two parties may attempt to esta
an agreement through a pattern of interaction similar to the classic notions of peer-t
peer negotiation. The process enables the establishment of a negotiation subject, a
initial offered, proposed, or requested state, and transitions supporting the escalatio
the level of mutual agreement between parties qualified by the implicit PARTICIPAN
roles of INITIATOR and RESPONDENT. The model demonstrates the application of
input and output declarations, a simple state hierarchy, initializations, transitional acti
terminations, and usage directives.

<input tag="subject" required="TRUE"
type="IDL:omg.org/Session/AbstractResource:2.0" />

The establishment of the subject of a negotiation is controlled by the addition of an in
usage constraint on theCollaborationModel (refer to “InputDescriptor” on page 1-18
and 1-29). This input descriptor declares a requirement for the association of a tagg
usage link named “subject” when initializing the hosting process. Initialization of the
process is achieved by invokingapply_arguments on the hosting
CollaborationProcessor . The client passing a string identifying an initialization
argument (one of the values of “init.offer ,” “ init.propose ,” or “ init.request ”) and an

negotiable

i-offer

offered

i-request

requested

offer

propose

suggest

i-propose

agree class: SUCCESS
code: 1

reject class: FAILURE
code: 0

A timeout class: FAILURE
code: -1

request

proposedactive
March 2002 Negotiation Facility: Collaborative Process Models 1-3

1

se

and
ApplyArgument value containing the name of the input usage constraint (in this ca
“subject”) together with an instance ofAbstractResource that will constitute the
initial subject of the collaboration.

<state label="negotiable" >

Thenegotiable state is a parent state to the two statesproposed andrequested .
Transitions declared on thenegotiable state enable the explicit rejection of asubject
by a user through thereject termination. A second characteristic of thenegotiable
state is the association of atimeout transition that will close the negotiation after a
predetermined period of inactivity.

<trigger label="reject" >
<launch mode="PARTICIPANT" />
<termination class="FAILURE" code="0" />

</trigger>

The reject trigger declares the possibility to any PARTICIPANT to terminate the
collaboration under aFAILURE status. Areject transition may be invoked against any
open (proposed , requested , or offered) state.

<trigger label="timeout" >
<clock timeout="3600000" />
<termination class="FAILURE" code="-1" />

</trigger>

The timeout trigger declares a default termination condition, armed when the
negotiation state becomes active. The value represents the period between arming
firing by aCollaborationProcessor implementation. DPML represents time periods
in micro-seconds.

<state label="requested" >

<trigger label="init.request" >
<launch mode="INITIATOR" />
<initialization/>

</trigger>

The requested state exposes transitions that allow a respondent to transition to the
offered or proposed states using theoffer or propose transitions, or to continue in
the requested state through application of thesuggest transition.

<trigger label="suggest" >
<launch mode="RESPONDENT"/>
<local reset="TRUE">

<input tag="subject" required="TRUE" implied=”FALSE”
 type="IDL:omg.org/Session/AbstractResource:2.0" />

</local>
</trigger>
1-4 Negotiation Facility Specification, v1.0 March 2002

1

an
time
sed

and,

d to
no

n

Thesuggest transition is a local transition withreset semantics enabled. Semantically
it is equivalent to therequest transition except that it is initiated under therequested
state. Suggest is used as an exploratory mechanism through which two members c
continue to invoke suggestions towards each other relative to the subject, until such
that at least one party is ready to migrate to a higher level of commitment as expres
under theproposed or offered states.

<trigger label="offer" >
<launch mode="RESPONDENT"/>
<transition target="offered">

<input tag="subject"
 required="TRUE" implied=”FALSE”
 type="IDL:omg.org/Session/AbstractResource:2.0" />

</transition>
</trigger>

An offer is a transition from therequested state to theoffered state. Invokingoffer
is on one hand an expression of agreement by the offering party, but on the other h
restricts the potential for further negotiation (as compared to propose).

<trigger label="propose" >
<launch mode="RESPONDENT"/>
<transition target="proposed">

<input tag="subject"
required="TRUE" implied=”FALSE”
type="IDL:omg.org/Session/AbstractResource:2.0" />

</transition>
</trigger>

</state>

Propose is a transition from therequested to proposed states that introduces the
commitment by the proposing party in that the subject of the proposal may be agree
by the correspondent. This is distinct to the requested state where, in comparison,
agreement is implied.

<state label="offered" >

<trigger label="init.offer" >
<launch mode="INITIATOR" />
<initialization/>

</trigger>

Theoffered state enables a respondent toagree or reject an agreement to the subject
of the collaboration. Invokingagree leads to the firing of a successful terminal transitio
expressing agreement by both parties to thesubject of theCollaboration .

<trigger label="agree" >
<launch mode="RESPONDENT" />
<move source="subject" target="result" switch="TRUE"/>
<termination class="SUCCESS" code="1">
March 2002 Negotiation Facility: Collaborative Process Models 1-5

1

ew

xt

part

g

ding
<output tag="result"
type="IDL:omg.org/Session/AbstractResource:2.0" />

</termination>
</trigger>

Theagree Trigger is available to a respondent under theoffered andproposed states.
Agree signifies the agreement by the respondent to anoffer or proposal raised by the
issuing user. Theagree transition establishes a collaboration process under anagreed
termination, expressing the agreement by both parties to thesubject of a collaboration.
Agree contains an output descriptor declaring theresult tag, established under the move
directive.

<state label="proposed" >

<trigger label="init.propose" >
<launch mode="INITIATOR" />
<initialization/>

</trigger>

Theproposed state extends the semantics of theoffered state by introducing the
possibility of change to the subject of the collaboration. Through application of the
request transition, a respondent may change the subject of the collaboration to a n
value and establish the active state asrequested .

<trigger label="request" >
<launch mode="RESPONDENT"/>
<transition target="requested">

 <input tag="subject"
 required="TRUE" implied=”FALSE”
 type="IDL:omg.org/Session/AbstractResource:2.0" />

</transition>
</trigger>

Request is a simple transition that can be applied under theproposed state.
Request enables a respondent to change the subject of a negotiation and the conte
from theproposed to requested state. Arequest transition does not signify the
commitment of the requesting party, however, it opens the possibility for the counter
to respond withpropose or offer against thesubject under therequested state.

</state>
</state>

</state>
</collaboration>
</DPML>

1.2.2 Multilateral Agreement

A Multilateral agreement model describes a collaboration criteria in which an initiatin
party can establish a motion, a reciprocating party can second that motion, and
supporting actions that enable motion amendment (through amendment motions), lea
1-6 Negotiation Facility Specification, v1.0 March 2002

1

n
le of

ns
a

r
ring
to a vote on the motion and possible establishment of an agreed result. This model
demonstrates the application of compound transitions dealing with voting and motio
amendment. In the case of motion amendment, the compound transition is an examp
a model recursion (multilateral declares amend which is a compound transition that
references multilateral as the controlling model).

Figure 1-2 Schematic Representation

1.2.2.1 DPML Specification

<DPML>
<collaboration label="multilateral"

note="Multilateral agreement through motion, amendment and voting">

A motion -based negotiation is a collaborative process model dealing with interactio
between a group of two or more participants. It provides a framework within which
user can initiate amotion with an arbitrarysubject under which agreement can be
established through a consensus process.

<input tag="subject"
required="TRUE" implied=”FALSE”
type="IDL:omg.org/Session/AbstractResource:2.0" />

The subject input declaration requires that theTask associated to the hosting processo
must be explicitly associated with a named usage tag (prior to processor start or du
initalization). This resource represents the motion being raised.

motioned

seconded

opposed
motion

class: FAILURE
code: -1

second

amend

withdraw

A timeout

class: SUCCESS
code: 1

class: FAILURE
code: 0

A vote

call

oppose

A
retraction

escalate

class: FAILURE
code: -2

pending

called

active
March 2002 Negotiation Facility: Collaborative Process Models 1-7

1

of

h

y

nges
ing in

ss

he

g

g
etion
<state label="motioned" >

The motioned state is the parent of two principal states,pending andseconded that
through interaction between participants may lead to any of the terminal transitions
agree , reject , or withdraw . Initialization of a multilateralmotion is established
through amotion trigger, establishing the invoking user as the INITIATOR. Under the
pending state two actions are possible:

• Thewithdraw transition may be launched either directly by the initiator, or thoug
a timeout referral that will raise the withdraw termination.

or

• A RECIPROCATING user (any user other than the user raising the motion) ma
second the motion leading to a transition to the seconded state.

Once apending motion isseconded , any user may invoke theamend or call
triggers. Amend is executed as a full motion process whereas the call transition cha
the active state to called. Under the called state the process may be opposed result
the potential withdrawal of the call or call escalation. Theescalate trigger forces a 2/3
majority vote-to-vote, the successful outcome of which is mapped to a compound
transition involving a formal vote. The failure of the vote-to-vote is mapped to a
transition back to the seconded state. Thevote trigger fires a voting compound transition
that contains aProcessorCriteria containing aVoteModel instance as the sub-
processor definition. The sub-processor, an instance ofVoteProcessor exposes avote
operation under which participants may register YES, NO, and ABSTAIN. The succe
or failure of a vote processor is mapped to anagree andreject termination that signal
the success or failure of the multilateral process.

<state label="pending" >

Thepending state signifies the agreement by one party to a motion, expressed as t
subject of Collaboration and the expression of the interest of that party in the
reaching of agreement to the associated subject. The issuing user maywithdraw a
motion at any time prior tosecond transition. Atimeout terminal transition will fire
after a predetermined interval if a motion is not seconded. Asecond transition
establishes the motion as a valid motion to theMembership .

<trigger label="motion" >
<launch mode="INITIATOR" />
<initialization/>

</trigger>

Initialization usingmotion establishes the collaboration with thepending state and all
parents as theactive-state path. A motion is raised with the express interest of gainin
the agreement (or rejection) of the membership to the subject of the motion. For a
motion to be successful, the motion must be seconded and voted upon prior to the
timeout of the withdraw action. At any time before a motion vote is initiated the
principal raising the motion may actively withdraw the motion. A potential risk of raisin
a motion is that the subject of the motion, if seconded, may be amended at the discr
of the group.
1-8 Negotiation Facility Specification, v1.0 March 2002

1

f

of

the

r
l

the

ub-
cond,
<trigger label="second" >
<launch mode="RESPONDENT" />
<transition target="seconded" />

</trigger>

Thesecond transition is a simple transition that may be invoked by arespondent in
support of apending motion. The second transition will result in the establishment o
theseconded state and allparent states as the active-state path. Once a motion is
seconded it may no longer be withdrawn and may be subject to amendment by the
members of the collaboration.

<trigger label="withdraw" >
<launch mode="INITIATOR" />
<termination class="FAILURE" code="0" />

</trigger>

The initiator of a motion may withdraw the motion at any time prior to the occurrence
a second action.

<trigger label="timeout" >
<clock timeout="120000" />
<termination class="FAILURE" code="-1" />

</trigger>

A timeout trigger will force termination of the process in the absence of a second to
motion.

</state>

<state label="seconded">

Theseconded state establishes the process in a mode that disables the potential fo
motion withdrawn and raises the possibility for amendment of the motion or potentia
calling of a vote on the motion.

<trigger label="amend" >
<launch mode="PARTICIPANT"/>
<move source="subject" target="subject.pending" />
<external label="amending"

public="-OSM//XML Model::MULTILATERAL//EN"
system="http://home.osm.net/dpml/multilateral.xml">

</external>

Theamend Trigger contains a compound transition defined by a subsidiary
collaboration process using themotion model; that is, this model. To circumvent
recursion restrictions within XML, the external element is used to indirectly reference
multilateral agreement model. Using theapply_arguments operation on
CollaborationProcessor , the client passes in an identifier referencing theTrigger
label (amend) together with anApplyArgument value containing the “subject” usage
label and an object representing the amendment. An amendment is executed as a s
process under which the amended subject is raised as a new motion, subject to a se
and subsequent vote by the membership.
March 2002 Negotiation Facility: Collaborative Process Models 1-9

1

is

that

The
e
ess

ate

e

<on class="SUCCESS">
<remove source="subject.pending"/>
<move source="result"

target="subject" switch="TRUE"/>
<local reset="TRUE"/>

</on>

On conclusion of the amendment process, a successfulresult of the underlying process
will cause the completion of the transition by changing theactive-state to seconded
and the assertion of the sub-process result as the seconded subject.

<on class="FAILURE">
<remove source="subject" />
<move source="subject.pending" target="subject"/>
<local reset="TRUE"/>

</on>

In the case of failure of the sub-process, the subject of the amendment sub-process
removed and the original subject is reinstated using the remove and move usage
directives.

</trigger>

<trigger label="call" >
<launch mode="PARTICIPANT" />
<transition target="called" />

</trigger>

Thecall trigger may be invoked by any participant. It moves the process to a state
prevents further amendment.

</state>

<state label="called" >

Thecalled state contains a vote clock, armed when the called state becomes active.
automatic launching of a vote can be disabled through the oppose trigger, forcing th
Collaboration into an opposed state. If no participant opposes the call, a vote proc
will be automatically established.

<trigger label="vote" >
<clock timeout="120000"/>
<vote label="voting"

policy="AFFERMATIVE" numerator="1" denominator="2">
<input tag="subject" required="TRUE" implied=”TRUE”
type="IDL:omg.org/Session/AbstractResource:2.0" />

</vote>

Thevote trigger is guarded by a timeout condition. It is armed when the containing st
enters the active state path. The model declares aProcessorCriteria value containing a
vote model (refer VoteModel) and an input pre-condition that implicitly associates th
current subject as the subject of the voting process.
1-10 Negotiation Facility Specification, v1.0 March 2002

1

ap
to

a

.

. It
<on class="SUCCESS">
<move source="subject" target="result" switch="TRUE" />
<termination class="SUCCESS" code="1">

<output tag="result"
type="IDL:omg.org/Session/AbstractResource:2.0" />

</termination>
</on>

Post-conditions of the vote are expressed under the “on” statements (representing M
instances). OnSUCCESS the subject usage link of the collaboration’s task is moved
“result.” The switch attribute signifies that theCollaboration implementation will
switch the link containing the subject from consumed (input) to produced (output) as
post-condition to termination execution prior to process completion.

<on class="FAILURE">
<termination class="FAILURE" code="0" />

</on>

On FAILURE of the vote, the process is terminated with its own failure status.

</trigger>

<trigger label="oppose" >
<launch mode="RESPONDENT" />
<transition target="opposed" />

</trigger>

Theoppose Trigger enables declaration of opposition to the calling of a vote by
transition to theopposed State .

</state>

<state label="opposed" >

Theopposed state supports automatic retraction of a call under a timeout condition
Any member of the collaboration can intercept automatic timeout by invoking the
escalateTrigger , forcing a vote-to-vote.

<trigger label="retraction" >
<clock timeout="120000" />
<transition target="seconded" />

</trigger>

The retraction trigger is armed when the opposed state enters the active state path
declares a simple transition to the seconded state. Automatic retraction may be
intercepted by theescalate trigger.

<trigger label="escalate" >
<launch mode="RESPONDENT" />

Theescalate trigger forces suspension of a retraction countdown by launching avote-
to-vote sub-processor.
March 2002 Negotiation Facility: Collaborative Process Models 1-11

1

o
to

te
tate.

ng

s

may
be
<vote label="vote-to-vote"
policy="AFFERMATIVE"
numerator="2"
denominator="3"/>

Thevote-to-vote is a compound transition containing policy that defines vote rules t
be applied, in this case an affirmative 2/3 majority is required for the vote processor
conclude with a successful result.

<on class="SUCCESS">
<referral action="voting" />

</on>

On success of thevote-to-vote sub-processor, a referral action launches a normal vo
process, which will establish a finalization of the processor in a successful or failed s

<on class="FAILURE">
<transition target="seconded" />

</on>

On failure of thevote-to-vote a simple transition to the seconded state is fired, enabli
a resumption of subject amendment.

</trigger>
</state>

</state>
</collaboration>
</DPML>

1.2.3 Promissory Contract Fulfillment

The promissory contractual fulfillment model demonstrates the use of named roles a
preconditions to trigger invocation. The model also includes reuse of the bilateral
negotiation model as the means by which a commercial contract fulfillment process
be disputed and the means through which obligations of the contracting parties may
waived.
1-12 Negotiation Facility Specification, v1.0 March 2002

1

the
el

te
e

f
icy
Figure 1-3 Schematic Representation

1.2.3.1 DPML Specification

<DPML>
<collaboration label="promissory" note="Promissory contract process model.">

<role label="party" abstract="TRUE">
<role.policy ceiling="1" quorum="1" assessment="STRICT"

policy="CONNECTED" />
<role label="supplier" abstract="FALSE"/>
<role label="consumer" abstract="FALSE"/>

</role>

The promissory contract fulfillment model contains a number of triggers that restrict
use of implicit role declarations such as INITIATOR and RESPONDENT. In this mod
the role guarding the call and fulfillment triggers are qualified by an explicit role
declaration. One abstract role named “party” is defined as a container of two concre
roles named “supplier” and “consumer.” Both supplier and consumer role policies ar
implied by the policy definition of the containing party role. In this example both are
declared with a quorum and ceiling of one. This means that the maximum number o
members associated with this role is one and the minimum number is one. The pol

promised

obligation

pending

promise

overdue

active

active

class: FAILURE
code: -2

class: SUCCESS
code: 1

class: SUCCESS
code: 0

class: FAILURE
code: -1

class: SUCCESS
code: 1

A expire

waive

dispute

fulfill

A timeout

call

right
March 2002 Negotiation Facility: Collaborative Process Models 1-13

1

trictly

act.”

e

n a

f the

ed
description also states that both users must be connected (refer to theTask and Session
specification, User, Connected State section) and that quorum assessment shall be s
applied.

<input tag="contract"
required="TRUE"
type="IDL:omg.org/Session/AbstractResource:2.0" />

The promissory contract model is defined with a requiredConsumption association
between the coordinating Task and the processor with a tag corresponding to “contr
This declaration establishes the requirements on a supplier to ensure that a tagged
consumes link with the value “contract” is available prior to or during initialization of th
hosting processor.

<state label="promised">

Thepromissory model defines a bilateral collaborative interaction. An initiator
invoking apromise trigger establishes aCollaboration under theright state. Once
initialized as aright , a respondent may call the promise by invoking acall transition.
This corresponds to arespondent requesting fulfillment of the promise. An initiator of
the promise (now in the role of respondent) fulfills a promise by applying thefulfill
transition, itself a compound transition defined by abilateral negotiation. Success of the
negotiation leads to thefulfilled state whereas failure leads to therejected state.

<trigger label="waive" >

Thewaive trigger may be invoked by either consumer or provider. It is a compound
transition referencing a bilateral or multilateral negotiation that if successful results i
transition to the terminalwaived state. A failure of the negotiation will result in the
continuation of the process under the active state established prior to the initiation o
waive transition.

<launch mode="PARTICIPANT" />
<external label="waiving"

public="-OSM//XML Model::BILATERAL//EN"
system="http://home.osm.net/dpml/bilateral.xml">

</external>

An implementation ofCollaboration establishes a new sub-process using the declar
criteria – in this case the DPML supplies criteria references a bilateral negotiation
process using an external (ExternalCriteria) declaration.

<on class="SUCCESS">
<termination class="SUCCESS" code="0" />

</on>

A successful result of a negotiation by the participants is mapped to a successful
termination of the promissory contract.
1-14 Negotiation Facility Specification, v1.0 March 2002

1

ise
n of

he
e
ise is
ion

tion is

ts to
<on class="FAILURE">
<local reset="FALSE"/>

 </on>

A failure result of a negotiation by the to participants in the attempt to waive the prom
is mapped to a local transition to the last active state established prior to the initiatio
the waive action.

</trigger>

<trigger label="dispute" >
<launch mode="PARTICIPANT" />
<copy source="contract" target="subject " />
<external label="disputing"

public="-OSM//XML Model::BILATERAL//EN"
system="bilateral.xml">

</external>

A dispute between a supplier and consumer can be established through applying t
dispute trigger. A dispute may be initiated by either consumer or supplier. Prior to th
initiation of the dispute sub-process, the contract association representing the prom
copied to a new link with the tag “subject,” required as an input to a bilateral negotiat
process. In this example a bilateral negotiation is defined as the dispute resolution
mechanism.

<on class="SUCCESS">
<move source="result" target="contract" switch="TRUE"/>
<local reset="TRUE"/>

</on>

At successful conclusion of a dispute the “subject.pending” link is removed and the
result of the negotiation process is established as the active subject. Process execu
returned to the last active state.

<on class="FAILURE">
<termination class="FAILURE" code="-2" />

 </on>

On failure of the dispute the process is terminated with a failed result.

</trigger>

A promise made by a provider towards a consumer under which the provider commi
the willingness to fulfill the promise at the request of the consumer.

<state label="right">

<trigger label="promise" >
<launch role="supplier" />
<initialization/>

</trigger>
March 2002 Negotiation Facility: Collaborative Process Models 1-15

1

as a

r’s

iary
tion
Initialization is achieved using thepromise Trigger leading raised by asupplier
facilitating the establishment of the promise offered under the subject of the process
callable right of theconsumer .

<trigger label="expire" >
<clock timeout="12000000" />
<termination class="FAILURE" code="-1" />

</trigger>

Theexpire trigger exposes a timeout value that will trigger the expiry of the consume
right to invoke arequest for fulfillment against a provider.

<trigger label="call" >
<launch role="consumer" />
<transition target="pending" />

</trigger>

Thecall trigger contains a transition to the pending state that is available to the
consumer. Invoking thecall transition establishes the promise as apending obligation
against the promise supplier.

 </state>

 <state label="obligation">

Theobligation state establishes a collaborative context under which a promise
constitutes an obligation of the provider to fulfill.

<state label="pending">

Thepending state is a state under which a provider is obliged tofulfill on a promise
through invocation of the fulfill transition.

 <trigger label="fulfill" >
<launch role="supplier" />

<external label="fulfillment"
public="-OSM//XML Model::BILATERAL//EN"
system="http://home.osm.net/dpml/bilateral.xml">

</external>

Fulfill is available to a provider under the obligationpending state. Afulfill transition
is defined as a compound transition that uses a bilateral negotiation criteria. A subsid
Collaboration is instantiated that, on resolution, defines the success or failure condi
used to determine the conclusion of the fulfillment action.

<on class="SUCCESS">
<move source="result" target="deliverable" />
<termination class="SUCCESS" code="1">

<output tag="deliverable"
type="IDL:omg.org/Session/AbstractResource:2.0" />
1-16 Negotiation Facility Specification, v1.0 March 2002

1

s
res
ory

he

tion

of
his
n
ns
ce.
der
</termination>
</on>

On successful completion of the fulfillment sub-process, the result of the fulfillment i
established under a link tagged as the fulfillment “deliverable.” The implementation fi
a success termination of the process, indicating satisfactory fulfillment of the promiss
contract process.

<on class="FAILURE">
<local reset="TRUE"/>

</on>

On failure of the fulfillment sub-process a local transition is enabled following which t
supplier is able to re-attempt fulfillment or potentially enter into a dispute resolution
process or request a waive of the promise.

</trigger>

<trigger label="timeout" >
<clock timeout="240000000" />
<transition target="overdue" />

</trigger>

Timeout is a clock controlled simple transition that changes an existingobligation
pending to obligating pending andoverdue .

<state label="overdue"/>

Theoverdue state is a sub-state of pending which is established by an implementa
of Collaboration when a pending obligation timeout transition expires.

</state>
</state>

</state>
</collaboration>
</DPML>

1.3 DPML Schema Specification

Digital Product Modeling Language (DPML) DTD specification 2.0.
Copyright OSM, 1999-2000
http://www.osm.net

This DTD defines the structural semantics of the data types used in the construction
digital products supporting distributed collaborative business process descriptions. T
schema is a non-normative supplement supporting declaration of criteria compositio
related to this specification’s Collaboration and Community Frameworks. Descriptio
of attributes and elements contained within this section are provided as a convenien
The formal specification of objects models and associated semantics are defined un
March 2002 Negotiation Facility: DPML Schema Specification 1-17

1

ned

ents

the

an be
tract
the specification of valuetypes and interfaces within Chapter 2-
“CollaborationFramework” and Chapter 3- “CommunityFramework” based on the
mapping of element to types contained at the end of this section.

Criteria

The criteriaENTITY is defined as the set of concrete criteria types that can be contai
as the root element within a DPML document. The DPML rootELEMENT declaration
defines the set of elements types that can be declared as a root element. The elem

• generic (GenericCriteria),

• community (CommunityCriteria),

• agency (AgencyCriteria),

• encounter (EncounterCriteria),

• external (ExternalCriteria), and

• processor (ProcessorCriteria)

all map directly to criteria valuetypes. In the case of vote, engage, and collaboration
elements map to an instance ofProcessorCriteria where the contained model is an
instance ofVoteModel , EngagementModel , andCollaborationModel respectively.

<!ENTITY % criteria "
(generic|community|agency|encounter|processor|external|vote|engagement|collaboration)">

<!ELEMENT DPML (%criteria;)>

Control

The controlENTITY is a declaration that defines an identifying name and description
attribute. These attribute declarations correspond to the state fields of the base type
Control from theCommunityFramework .

IDL:omg.org/CommunityFramework::Control:2.0.

<!ENTITY % label "label ID #IMPLIED">
<!ENTITY % note "note CDATA #IMPLIED">
<!ENTITY % control "%label; %note;">

Input and Output

The input and output elements define consumption and production statements that c
associated to process centric criteria. Both input and output are derived from the abs
UsageDescriptor exposed by aProcessorModel usage state field. The value
contained by the type field shall be consistent with the XMI Production Rules,
specifically, types shall be declared in accordance with their IDL interface repository
identifier.

For example, aGenericResource would be identified by the string
IDL:omg.org/CommunityFramework:GenericResource:2.0 .
1-18 Negotiation Facility Specification, v1.0 March 2002

1

set

in
ation,
The value of the tag field corresponds to the tag attributed to a usage link (refer to
Production and Consumptionin theTask and Session Specification). The implied
attribute states that a usage link of the tag is required as distinct from optional. The
implied attribute, if true, states that if the tagged link already exists on the controlling
Task , that link is implied; whereas, a false value states that the link must be explicitly
(possibly resulting in the replacement of an existing link with the same tag value).

IDL:omg.org/CommunityFramework::InputDescriptor:2.0.
IDL:omg.org/CommunityFramework::OutputDescriptor:2.0.

<!ENTITY % tag "tag CDATA #REQUIRED">
<!ENTITY % required "required (TRUE|FALSE) 'TRUE'">
<!ENTITY % implied "implied (TRUE|FALSE) 'TRUE'">
<!ENTITY % type "type CDATA #REQUIRED">

<!ELEMENT input EMPTY >
<!ATTLIST input

%tag; %required; %implied; %type;
>

<!ELEMENT output EMPTY >
<!ATTLIST output

%tag; %type;
>

remove, copy, move and create

The copy, move, create, and remove directives are instructions that can be declared
within the scope of a referral, a trigger, or an on post-condition statement. These
directives declare actions to be taken by an implementation of
CollaborationProcessor that effect tagged usage relationships on the coordinating
Task or Encounter . Usage directives enable the declaration of operators that result
the manipulation of usage associations such as renaming or duplication of an associ
inversion of an association from consumption to production, or retraction of an
association.

IDL:omg.org/CollaborationFramework::Remove:2.0 // remove
IDL:omg.org/CollaborationFramework::Duplicate:2.0 // copy
IDL:omg.org/CollaborationFramework::Move:2.0 // move
IDL:omg.org/CollaborationFramework::Constructor:2.0 // create

<!ENTITY % source "source CDATA #REQUIRED">
<!ENTITY % target "target CDATA #REQUIRED">
<!ENTITY % switch "switch (TRUE|FALSE) 'FALSE'">
<!ENTITY % directive.attributes "%source; %target; %switch;">

<!ELEMENT copy EMPTY>
<!ATTLIST copy

%directive.attributes;
>

March 2002 Negotiation Facility: DPML Schema Specification 1-19

1

. A

ions,

o be
<!ELEMENT move EMPTY>
<!ATTLIST move

%directive.attributes;
>

<!ELEMENT create (target,%criteria;) >
<!ATTLIST create

%target;
>

<!ELEMENT remove EMPTY >
<!ATTLIST remove

%source;
>
<!ENTITY % directive.content "((create|copy|move|remove)*)" >

initialization

An initialization ELEMENT is a type of transitional action. It qualifies the containing
state as a candidate for establishment of the active-state when starting a processor
processor may be initialized through the apply operation on the abstractCollaboration
interface, or implicitly through starting aCollaborationProcessor .

IDL:omg.org/CollaborationFramework::Initialization:2.0

<!ELEMENT initialization (input*) >
<!ATTLIST transition

%control;
>

transition

A transitionELEMENT declares a target state facilitating modification of a
CollaborationProcessor active state path. Modification of the active state path
establishes a new collaborative context, enabling a new set of triggers, guard condit
and timeouts based on declared clocks. A transition element may also contain any
number of input statements enabling declaration of required or optional arguments t
supplied under theCollaboration apply_arguments operation.

IDL:omg.org/CollaborationFramework::SimpleTransition:2.0

<!ELEMENT transition (input*) >
<!ATTLIST transition

%control;
target IDREF #IMPLIED

>

1-20 Negotiation Facility Specification, v1.0 March 2002

1

ock
er
in
ts to

ent
t

local

The localELEMENT defines a transition to the current active-state and exposes a cl
timeout reset policy. If the reset policy is true, all timeout conditions established und
the active state path shall be re-initialized. A local transition element may also conta
any number of input statements enabling declaration of required or optional argumen
be supplied under theCollaboration apply_arguments operation.

IDL:omg.org/CollaborationFramework::LocalTransition:2.0

<!ELEMENT local (input*) >
<!ATTLIST local

%control;
reset (TRUE|FALSE) "FALSE"

>

termination

A termination declares a processors termination within completion status. TheENTITY
completion declares a completion class and code. It is used within a termination elem
to declare a SUCCESS or FAILURE result status and implementation specific resul
code. The termination element can contain any number of output declarations.

IDL:omg.org/CollaborationFramework::Completion:2.0
IDL:omg.org/CollaborationFramework::TerminalTransition:2.0

<!ENTITY % class "class (SUCCESS|FAILURE) 'SUCCESS'">
<!ENTITY % code "code CDATA #IMPLIED">
<!ENTITY % completion "%class; %code;">
<!ELEMENT termination (output*) >
<!ATTLIST termination

%control;
%completion;

>

generic

The genericELEMENT is used to define the valuetypeGenericCriteria , used as an
argument to aResourceFactory to construct resources containing arbitrary content
contained within aCORBA any . Instances ofGenericResource provide a
convenience container for arbitrary resource association (such as the subject of a
negotiation or XML document defining contractual terms).

IDL:omg.org/CommunityFramework::GenericCriteria:2.0

<!ELEMENT generic (nvp*) >
<!ATTLIST generic

%control;
>

March 2002 Negotiation Facility: DPML Schema Specification 1-21

1

s

can

ly

ry
gh
community

The communityELEMENT describes an instance ofCommunityCriteria .
CommunityCriteria may be used as an argument to aResourceFactory to construct
a new instance ofCommunity . Community is a type ofWorkspace (refer to theTask
and Sessionspecification) that supports the abstractMembership interface.

IDL:omg.org/CommunityFramework::CommunityCriteria:2.0

<!ELEMENT community (membership, (nvp*)) >
<!ATTLIST community

%control;
>

agency

The agencyELEMENT represents theAgencyCriteria valuetype that may be passed a
an argument to aResourceFactory resulting in creation of a new Agency instance.
Agency is a type ofCommunity with inheritance fromLegalEntity . Agency
represents a community against which supplementary implementation specific policy
be associated (such as an applicable legal domain).

IDL:omg.org/CommunityFramework::AgencyCriteria:2.0

<!ELEMENT agency (membership, (nvp*)) >
<!ATTLIST agency

%control;
>

encounter

The encounterELEMENT defines anEncounterCriteria against which new instances
of Encounter can be created using aResourceFactory . Encounter is a type of
Task that serves as a controller ofProcessor instances.Encounter , as a
Membership , may be associated to many users. Through inheritance of Task exact
one User is associated as the owner of anEncounter .

IDL:omg.org/CollaborationFramework::EncounterCriteria:2.0

<!ELEMENT encounter (membership, nvp*) >
<!ATTLIST encounter

%control;
>

external

External describes theExternalCriteria valuetype. ExternalCriteria contains a
public and system identifier of a remote resource. The public and system identifiers
contained within an external declaration are factory dependent. For example, a facto
implementation with knowledge of DPML can use external criteria as a means throu
1-22 Negotiation Facility Specification, v1.0 March 2002

1

ber

air
s that
d by

in
r

which criteria can be inferred. Other examples of external criteria application include
embedding of interoperable naming URLs. An external element may include any num
of input and output statements.

IDL:omg.org/CommunityFramework::ExternalCriteria:2.0

<!ELEMENT external ((input|output)*,nvp*)>
<!ATTLIST external

%control;
public CDATA #IMPLIED
system CDATA #REQUIRED

>

processor

The processor element contains input and output declarations and a named value p
sequence defining factory criteria. Input and output declarations define the resource
a processor implementation requires as input, and the resources that will be produce
the processor. Supplementary processor criteria is contained under thenvp (named value
pair) sequence. An implementation is responsible for mapping ofnvp values to a named
value pair sequence as defined by theCosLifeCycle Criteria type specification.

IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0

<!ELEMENT processor ((input|output)*, nvp*)>
<!ATTLIST processor

%control;
>

vote

The vote element definesProcessorCriteria containing aVoteModel (referred to as
vote criteria). Vote criteria, when passed to aResourceFactory , results in the
establishment of a new instance ofVoteProcessor . Using aVoteProcessor , members
of a coordinatingEncounter can register votes in support of, in opposition to, or absta
relative to a subject.VoteProcessor raises a result status indicating the successful o
failure status of a voting process.

IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0
IDL:omg.org/CollaborationFramework::VoteModel:2.0 // model

<!ENTITY % numerator "numerator CDATA #REQUIRED" >
<!ENTITY % denominator "denominator CDATA #REQUIRED" >
<!ENTITY % quorum "%numerator; %denominator;" >
<!ELEMENT vote ((input|output)*, nvp*)>
<!ATTLIST vote

%control;
%quorum;
March 2002 Negotiation Facility: DPML Schema Specification 1-23

1

of

e

policy (AFFERMATIVE|NON_ABSTAINING) "AFFERMATIVE"
single (TRUE|FALSE) "TRUE"
lifetime CDATA #IMPLIED

>

engagement

Engagement defines aProcessorCriteria that contains anEngagementModel .
When passed as an argument to aResourceFactory , such a criteria will result in the
creation of a new instance ofEngagementProcessor . EngagementProcessor
declares policy enabling the attribution of proofs and evidence in the establishment
binding agreements.

IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0

<!ELEMENT engagement ((input|output)*)>
<!ATTLIST engagement

%control;
policy CDATA #IMPLIED

>

collaboration

The collaboration element definesProcessorCriteria criteria containing a
CollaborationModel (referred to as Collaboration Criteria). Collaboration criteria,
when passed as an argument to aResourceFactory results in the creation of a new
instance ofCollaborationProcessor . CollaborationProcessor is a type of
Processor that contains aCollaborationModel as the definition of the rules of
engagement between a set of members associated under a controllingEncounter .

IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0
IDL:omg.org/CollaborationFramework::CollaborationModel:2.0 // model

<!ELEMENT collaboration ((input|output)*, role?, state, nvp*) >
<!ATTLIST collaboration

%control;
>

launch

The launch element defines aLaunch valuetype, itself a type ofGuard that is contained
by aTrigger . Guards establish preconditions to the activation of actions contained
within triggers. In the case ofLaunch , the preconditions concern the implicit role of a
user and optionally explicit association of a user under a particular role. Implicit
preconditions declare three enumeration values:

• INITIATOR, the principal that invoked that last collaborative action, or in the cas
of no prior action, a member of the controllingEncounter ;

• RESPONDENT, any principal other than the initiator; and

• PARTICIPANT, any principal associated to the controllingEncounter .
1-24 Negotiation Facility Specification, v1.0 March 2002

1

On
These implicit roles are dynamically maintained by an implementation of
CollaborationProcessor . Implicit roles can be further qualified by declaration of a
role name that a principal must be associated to under the coordinatingEncounter
(such as “customer,” “supplier,” etc.).

IDL:omg.org/CollaborationFramework::Launch:2.0
IDL:omg.org/CollaborationFramework::TriggerMode:2.0

<!ENTITY % mode "mode (INITIATOR|RESPONDENT|PARTICIPANT) 'PARTICIPANT'">
<!ELEMENT launch EMPTY >
<!ATTLIST launch

%mode;
role IDREF #IMPLIED

>

clock

A clock defines aClock valuetype.Clock contains a timeout declaration. When the
containing state enters the Active-state path the clock countdown is enabled. Clock
resetting is possible through invocation of a local transition.Clock disabling is possible
by changing the active state path such that the containing state is no longer active.
timeout of a clock, an implementation ofCollaborationProcessor is responsible for
invoking the action contained by theTrigger containing the clock declaration. A typical
application of the clock operator is to automatically trip a state transition after a
predetermined period of in-activity.

IDL:omg.org/CollaborationFramework::Clock:2.0

<!ELEMENT clock EMPTY >
<!ATTLIST clock

timeout CDATA #IMPLIED
>

referral

A referral references the ID of an action to apply. An implementation of
Collaboration is responsible for management of the branching of the collaboration
state to the identified action and in the case of an action defined as a compound
transition, to execute on statements arising from sub-process conclusion.

IDL:omg.org/CollaborationFramework::Referral:2.0

<!ELEMENT referral %directive.content; >
<!ATTLIST referral

action IDREF #REQUIRED
>

March 2002 Negotiation Facility: DPML Schema Specification 1-25

1

nt.

a

ion
ests

he

s an
a

of
d

compound

A compound transition is not directly represented in the DPML scheme as an eleme
Instead, it is represented in terms of anENTITY content rule associating a processor
criteria (or element expandable to a processor criteria) and result mapping. While
simplifying DPML structure, the flattening of criteria and action results in the
requirement for a compound action label to be equivalent to the model contained by
compound action.

IDL:omg.org/CollaborationFramework::CompoundTransition:2.0

<!ENTITY % compound "((external|process|collaboration|vote|engagement), (on+))">

trigger

A trigger contains a guard, directive operators, an action, and a priority attribute.
Triggers are referenced by their label under theCollaboration interface apply
operation. An implementation ofCollaboration takes trigger labels as execution
instructions that enable clients to manipulate collaborative context. An implementat
of apply is responsible for assessing guard preconditions, following which apply requ
and associated usage directives are queued relative toTrigger priorities. On execution
and implementation is responsible for executing usage directives before executing t
action contained within the trigger.

IDL:omg.org/CollaborationFramework::Guard:2.0
IDL:omg.org/CollaborationFramework::Trigger:2.0

<!ENTITY % guard "(launch*, clock*)">
<!ENTITY % priority "priority CDATA #IMPLIED">
<!ENTITY % transitional "(initialization|transition|local|termination)">
<!ENTITY % action "(%transitional;|referral|%compound;)">

<!ELEMENT trigger (%guard;,%directive.content;,%action;)>
<!ATTLIST trigger

%control;
%priority;

>

on

A compound transition content declaration associates processor criteria that may be
executed as a sub-process with a set of on statements. Each on statement declare
action to apply given a particular result of the process executed as a result of criteri
expansion. On statements are defined by class and result code. An implementation
collaboration is responsible for matching sub-process result class and sub-codes an
subsequent firing of the declared action.

IDL:omg.org/CollaborationFramework::Map:2.0

<!ELEMENT on (%directive.content;,%action;) >
<!ATTLIST on
1-26 Negotiation Facility Specification, v1.0 March 2002

1

t can

the

tive
dified

of
ition

of
%class;
%code;

>

state

A “state” is an element containing a set of sub-states and associated triggers. State
elements are the basic building blocks for collaborative context. Each state elemen
contain sub-states and each state element can contain any number of Trigger
declarations. ACollaboration implementation maintains the notion of active-state
following initialization of the collaboration and tracks active-state relative to the last
transition that has been invoked. The active state path is the set of states between
active state and the root-state of theCollaborationModel . All triggers declared within
the active-state path are considered candidates relative to the apply operation. By
modifying the active state (and by consequence the active-state path) the collabora
content and available trigger options available to the associated membership are mo
relative to the constraints and directives declared under exposed triggers.

IDL:omg.org/CollaborationFramework::State:2.0

<!ELEMENT state ((trigger|state)*)>
<!ATTLIST state

%control;
>

membership

Membership is a model of the policy and roles that establishes the notion of a group
users sharing the same set of rules. This element is used within the structural defin
of criteria such as community, agency, and encounter.

IDL:omg.org/CommunityFramework::MembershipModel:2.0

<!ELEMENT membership (membership.policy?, role) >

membership.policy

Themembership.policy ELEMENT declares privacy and exclusivity constraints on
the membership. Themembership.policy element is contained within the
membership element. MembershipPolicy declares an exclusivity attribute that if
true, ensures that all members of a membership are uniquely represented in terms
identifiable principals; that is, no principal may be represented more than once. The
privacy attribute qualifies the level of information that may be disclosed about the
business roles attributed to a given member via operation of theMembership abstract
interface.

IDL:omg.org/CommunityFramework::MembershipPolicy:2.0

<!ELEMENT membership.policy EMPTY>
<!ATTLIST membership.policy

privacy (PUBLIC|RESTRICTED|PRIVATE) "PUBLIC"
March 2002 Negotiation Facility: DPML Schema Specification 1-27

1

te
and
r
n of

n be
tion

licy

A

exclusivity (TRUE|FALSE) "TRUE"
>

role

Role is a specification of the state of a business role that may be abstract or concre
depending on the value of the abstract attribute. A role element exposes a quorum
ceiling through the containedrole.policy element. Business roles such as “supplier” o
“customer” can be packaged under higher-level roles such as “signatory.” Associatio
the status of “signatory” to both supplier and customer can be achieved by locating
supplier and customer as sub-roles of a parent role named “signatory.” Roles can the
used as conditional guards concerning access to triggers within the body of collabora
models.

IDL:omg.org/CommunityFramework::Role:2.0

<!ELEMENT role (role.policy?,role*) >
<!ATTLIST role

%control;

abstract (TRUE|FALSE) "FALSE"
>

role.policy

Role policy is an element that defies the state of aRolePolicy valuetype. RolePolicy
is used as a container of the policy attributed to a specific name business role that
includes ceiling and quorum values, policy concerning quorum assessment, and po
concerning the connection status of a user relative to quorum calculations.

IDL:omg.org/CommunityFramework::RolePolicy:2.0

<!ELEMENT role.policy EMPTY >
<!ATTLIST role.policy

ceiling CDATA #IMPLIED
quorum CDATA #IMPLIED
assessment (STRICT|LAZY) "LAZY"
policy (SIMPLE|CONNECTED) "SIMPLE"

>

nvp

Named value pairs are used as descriptive arguments to generic resource criteria.
sequence of nvp elements can be mapped to aCosLifeCycle::Criteria type as exposed
by theCriteria type.

IDL:omg.org/CosLifeCycle::NameValuePair:1.0

While interpretation ofnvp values is implementation dependent, the following rules
shall apply to values expressing IDL types:
1-28 Negotiation Facility Specification, v1.0 March 2002

1

he

e)
1. Basic IDL types are represented by a string containing the name of the type. T
type is derived from the CORBA TypeCode’sTCKind by deleting the leading
“tk_”. This rule follows the convention used in section 5.3.10.2 (CorbaTypeNam
of the XMI 1.0 specification (formal/00-06-01).

Example: the string representation of the typelong is “long;” that of unsigned
long long is “ulonglong.”

2. Sequences of basic IDL types are represented by a string containing the type-
specifier in IDL syntax without any spaces. That is, a sequence ofXXXs is coded as
“sequence<XXX>” where XXX is the name of the string found using rule 1.

Example: A sequence oflongs is represented by "“sequence<long>.”

3. For other data types, the repository ID is used.

Example: theCollaborationProcessor is represented by
“ IDL:omg.org/CollaborationFramework/CollaborationProcessor:2.0 .”

<!ELEMENT nvp (ANY) >
<!ATTLIST nvp

name CDATA #REQUIRED
>

1.4 Element to IDL Type Mapping

Element IDL Type

input IDL:omg.org/CommunityFramework::InputDescriptor:2.0

output IDL:omg.org/CommunityFramework::OutputDescriptor:2.0

copy IDL:omg.org/CollaborationFramework::Duplicate:2.0

move IDL:omg.org/CollaborationFramework::Move:2.0

create IDL:omg.org/CollaborationFramework::Constructor:2.0

remove IDL:omg.org/CollaborationFramework::Remove:2.0

initialization IDL:omg.org/CollaborationFramework::Initialization:2.0

transition IDL:omg.org/CollaborationFramework::SimpleTransition:2.0

local IDL:omg.org/CollaborationFramework::LocalTransition:2.0

termination IDL:omg.org/CollaborationFramework::TerminalTransition:2.0

generic IDL:omg.org/CommunityFramework::GenericCriteria:2.0

community IDL:omg.org/CommunityFramework::CommunityCriteria:2.0

agency IDL:omg.org/CommunityFramework::AgencyCriteria:2.0

encounter IDL:omg.org/CollaborationFramework::EncounterCriteria:2.0

external IDL:omg.org/CommunityFramework::ExternalCriteria:2.0

processor IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0
IDL:omg.org/CollaborationFramework::ProcessorModel:2.0
March 2002 Negotiation Facility: Element to IDL Type Mapping 1-29

1

1.5 Related DPML Documents

Additional information concerning DPML development and additional DPML
documents are maintained under the following URL:

http://home.osm.net/dpml

The latest version of DPML can be located under the following URL:

http://home.osm.net/dpml/dpml.dtd

vote IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0
IDL:omg.org/CollaborationFramework::VoteModel:2.0

engagement IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0
IDL:omg.org/CollaborationFramework::EngagementModel:2.0

collaboration IDL:omg.org/CollaborationFramework::ProcessorCriteria:2.0
IDL:omg.org/CollaborationFramework::CollaborationModel:2.0

launch IDL:omg.org/CollaborationFramework::Launch:2.0

clock IDL:omg.org/CollaborationFramework::Clock:2.0

referral IDL:omg.org/CollaborationFramework::Referral:2.0

compound IDL:omg.org/CollaborationFramework::Compound:2.0

trigger IDL:omg.org/CollaborationFramework::Trigger:2.0

on IDL:omg.org/CollaborationFramework::Map:2.0

state IDL:omg.org/CollaborationFramework::State:2.0

membership IDL:omg.org/CommunityFramework::MembershipModel:2.0

membership.policy IDL:omg.org/CommunityFramework::MembershipPolicy:2.0

role IDL:omg.org/CommunityFramework::Role:2.0

role.policy IDL:omg.org/CommunityFramework::RolePolicy:2.0.

nvp IDL:omg.org/CosLifeCycle::NameValuePair:1.0
1-30 Negotiation Facility Specification, v1.0 March 2002

CollaborationFramework 2
ting,
,

Contents

This chapter contains the following sections.

2.1 Introduction

TheCollaborationFramework defines a sharableTask namedEncounter ,
formalizes the definition of aProcessor , and introduces three types ofProcessor s
dealing with the application level requirements covering contractual engagement, vo
and collaboration against which business processes supporting contract negotiation
fulfillment, and settlement can be defined, simulated, and executed.

Principal interfaces defined under this specification include:

• EngagementProcessor , a processor supporting the registration ofEvidence and
generation ofProof by a membership.

Section Title Page

“Introduction” 2-1

“Processor and Related Interfaces” 2-4

“Encounter” 2-15

“VoteProcessor and VoteModel” 2-17

“EngagementProcessor and EngagementModel” 2-22

“CollaborationProcessor, CollaborationModel, and
Supporting Types”

2-24

“UML Overview” 2-44

“CollaborationFramework Complete IDL” 2-48
March 2002 Negotiation Facility Specification, v1.0 2-1

2

hip.

sk

o

res

nce
• VoteProcessor , a processor supporting the registration of votes by a members

• CollaborationProcessor , a processor supporting collaborative interaction
between members of anEncounter .

These interfaces build upon the specifications established under the
CommunityFramework , in particular the notion ofMembership is reused as the
basis for the definition of a shared Task associated to a commonProcessor . The
CollaborationFramework continues the Model/Simulator pattern established under
theCommunityFramework specifications as the mechanisms for separation of
configuration and execution policy from the IDL computational interface.

Table 2-1 Core Interfaces - Summary Table

Interface Description

Processor Processor is a base type for interfaces dealing with contractual
engagement voting and collaboration. Processor is associated to a Ta
and can expose a sub-processor hierarchy.

ProcessorModel A valuetype derived supporting the abstract Model interface used t
describe preconditions to Processor execution.

UsageDescriptor An abstract valuetype inherited by valuetypes contained by a
ProcessorModel that declares a usage (input, output) constraint.

InputDescriptor Declaration of an input resource (consumed) that a processor requi
on its associated task.

OutputDescriptor Declaration of an output (produced) resource that a processor
generates on its associated task.

ProcessorCriteria A type of Criteria used by a ResourceFactory to construct a new
Processor instance based on the contained ProcessorModel.

Encounter An Encounter is a type of Task that incorporates the abstract
Membership interface.

EncounterModel A valuetype extending the abstract CommunityFramework
MembershipModel that contains the policy and role model of a
membership.

EncounterCriteria A type of Criteria used by a ResourceFactory to construct a new
Encounter instance.

Table 2-2 Application Interfaces - Summary Table

Interface Description

Engagement Abstract definition of engagement.

EngagementProcessor A type of Processor supporting the association of Proof and Evide
by a set of collaborating users based on the abstract Engagement
interface.

EngagementModel A valuetype containing implementation dependent policy of an
Engagement processor.
2-2 Negotiation Facility Specification, v1.0 March 2002

2

rs

a

s,

b-

n

to

f

-
nd
Vote Abstract interface defining vote registration and vote aggregation
operations.

VoteProcessor A type of processor supporting the registration of votes by membe
of an associated Encounter based on the Vote abstract interface.

VoteModel A valuetype containing the ceiling, count, and multiple registration
policy applicable to a VoteProcessor.

Collaboration An abstract interface defining operations through which a client can
interact with a collaborative state model.

CollaborationProcessor A type of Processor supporting collaborative interaction relative to
CollaborationModel rule base using the abstract Collaboration
interface.

CollaborationModel A valuetype defining state, sub-states, transitions, compound action
and role related policies.

Table 2-3 CollaborationModel Related Valuetypes - Summary Table

Interface Description

State A valuetype defining a state hierarchy against which Triggers and su
States can be associated.

Trigger A container of an invocation guard, preconditions, and an action.

Action Base valuetype for Transition, CompoundTransition, and Referral.

Transition A type of action that is a base type to all actions related to modificatio
of a collaborative state context. A transition may declare changes to
rules concerning inputs of a processor.

Transitional Abstract valuetype contained by a Transition. This is the base type
Initialization, SimpleTransition, LocalTransition, and
TerminalTransition.

Initialization A transitional valuetype used to declare a candidate initial state.

SimpleTransition A type of Transitional supporting the modification of the active state o
a collaboration.

LocalTransition A type of Transitional supporting loop-back transition functionality.

TerminalTransition A type of Transitional that defines a processor result value.

CompoundTransition A type of Action that declares a transition that is executed as a sub
process associated with an independent processor model. A compou
transition may have multiple possible result states.

Referral A type of Action used to redirect a result to a locally defined action.

Map A valuetype contained by a CompoundTransition. Used to associate
compound transition sub-process results to explicit actions.

Table 2-2 Application Interfaces - Summary Table
March 2002 Negotiation Facility: Introduction 2-3

2

as

.

2-10
s

t
a

2.2 Processor and Related Interfaces

TheTask and Sessionspecification (formal/00-05-03) defines the notion of a processor
the source of execution relative to a Task. TheCollaborationFramework establishes
a formal definition ofProcessor as abstract base type for interfaces dealing with
collaboration, engagement, and voting.

• Section 2.2.1, “Processor,” on page 2-5 presents the definition of theProcessor
interface that serves as a base type toCollaborationProcessor , VoteProcessor ,
andEngagementProcessor .

• Section 2.2.2, “Master, Slave, and the Control Link,” on page 2-7 defines the
Master andSlave abstract interfaces and their relationship to theControl link
through which one processor can be associated as a sub-processor to another

• Section 2.2.3, “StateDescriptor,” on page 2-9 presentsStateDescriptor , a
valuetype exposed by an instance ofProcessor that contains information about a
processor execution state including declaration of problems arising during
configuration and execution.

• Section 2.2.4, “ProcessorModel and Related Constraint Declarations,” on page
details theProcessorModel valuetype used to declare configuration precondition
and theProcessorCriteria valuetype used by aResourceFactory in the creation
of new processor instances.

• Section 2.2.5, “Coordination Link Family,” on page 2-13 defines a set of abstrac
and concrete link types used to describe the coordination relationship between
Task and a Processor.

Figure 2-1 Processor Object Model

Session::
Task

CommunityFramework::
Simulator

CommunityFramework::
Model

CollaborationFramework::
Processor

coordinator()
verify()
start()
suspend()
stop()

state :StateDescriptor

Session::
AbstractResource

CollaborationFramework::
ProcessorModel

CollaborationFramework::
StateDescriptor

CollaborationFramework ::
Master

CollaborationFramework ::
Slave

controls *

* controlled by

coordinated by 1
1 coordinates
* observes
2-4 Negotiation Facility Specification, v1.0 March 2002

2

.

2.2.1 Processor

A processor is responsible for applying input arguments (associated consumed and
produced resource selection) declared by a coordinatingTask in the execution of a
service. Operations exposed byProcessor are largely defined by the implied semantics
documented under theTask and Sessionspecification (formal/00-05-03). A processor is
responsible for notification of state change towards its associatedTask and handling
start, suspend, and stop requests in accordance with the Task Session state model
Processor inherits fromAbstractResource (consistent with theTask and Session
specification of a processor).

As aSimulator , a Processor exposes a valuetype that supports theModel interface.
A Processor specialization is required to return an instance ofProcessorModel
under themodel operation from the inherited abstractSimulator interface. Through
inheritance of bothSlave andMaster abstract interfaces, aProcessor can expose
subsidiary and parent processors associated throughCoordination links to a single
managingTask . As such, aTask can be viewed as the coordinator of the processor
hierarchy.

2.2.1.1 IDL Specification

interface Processor :
Session::AbstractResource,
CommunityFramework::Simulator,
Master, Slave
{

readonly attribute StateDescriptor state;

Session::Task coordinator(
) raises (

Session::ResourceUnavailable
);

CommunityFramework::Problems verify();

void start (
) raises (

Session::CannotStart,
Session::AlreadyRunning

);

void suspend (
) raises (

Session::CannotSuspend,
Session::CurrentlySuspended

);

void stop (
) raises (
March 2002 Negotiation Facility: Processor and Related Interfaces 2-5

2

of
on

r

to

ce

t to

ion
Session::CannotStop,
Session::NotRunning

);
};

Table 2-4 Processor Attribute Table

Name Type Properties Purpose

state StateDescriptor readonly Declaration of the state of a Processor – see
Section 2.2.3, “StateDescriptor,” on page 2-9.

Table 2-5 Processor Operation Table

Name Returns Description

coordinator Task The coordinator operation returns the Task acting as coordinator
the processor. If no task is associated to the processor, the operati
raises theResourceUnavailable exception.

verify Problems Operations returns a sequence of Problem instances concerning
configuration of a processor relative to the constraints defined unde
the associated ProcessorModel.

start void Moves a processor into the running state. Semantically equivalent
the Task start operation (refer to theTask and Sessionspecification).
If the start operation raises theCannotStart exception, a client can
access supplementary information under the StateDescriptor instan
returned from the processor state attribute.

suspend void Moves a processor into a suspended state. Semantically equivalen
the Task suspend operation (refer to theTask and Session
specification).

stop void Stops a processor. Semantically equivalent to the Task stop operat
(refer to theTask and Sessionspecification).

Table 2-6 Processor Structured Event Table

Event Description

state Notification of the change of state of a Processor.

Supplementary properties:

value StateDescriptor Description of the current state and any
associated problems.
2-6 Negotiation Facility Specification, v1.0 March 2002

2

d

rent
2.2.1.2 Processor creation and Task association

The following sequence concerningProcessor instantiation is strongly influenced by
theTask and Session Specificationand factory operation pattern defined under the
CommunityFramework module.

1. Client creates a new concrete instance ofProcessor by passing aCriteria
valuetype as an argument to aResourceFactory create operation.

2. Client creates a newTask , passing the created processor as an argument to the
create_task operation on User (refer to theTask and Sessionspecification, User
and Task).

• Task implementation binds to processor using aCoordinates link referencing
itself under theresource state field.

• Processor establishes internal reference to coordinatingTask using the supplied
link by creating and maintaining aCoordinatedBy link that references the
coordinatingTask .

3. Task establishes initial state fromProcessor using thestate attribute.

4. Client is responsible for ensuring that any usage preconditions to processor
execution are resolved using theverify operation.

5. Client invokes thestart operation on Task that in turn invokesstart on the
controlled processor.

2.2.1.3 Verification of processor configuration

TheProcessor verify operation returns a sequence ofProblem instances related to
configuration of a processor relative to the constraints defined under the associated
ProcessorModel . This operation is provided so that a client can validate proper an
complete configuration of a processor prior to execution. For example, a
ProcessorModel may declare input and output resource associations that must be
established by a controlling task before invocation of thestart operation. Theverify
operation enables verification of aProcessor configuration and readiness to start.

Problems verify();

2.2.2 Master, Slave, and the Control Link

The abstract interfacesMaster andSlave are used in conjunction with an abstract
valuetype namedManagement that defines the base type for the concrete links
Controls andControlledBy . Controls is a link held by an implementation ofMaster
that references zero to manySlave instances.ControlledBy is a link held by aSlave
implementation that references zero to oneMaster instances. The relationship from
master to slave is one of strong aggregation – removal of theMaster implies removal of
all Slaves . Using the control relationship, it is possible for aProcessor to expose a
sub-process hierarchy that can be navigated by a client. BothMaster andSlave define
convenience operations concerning access to the respective sub-processors and pa
processor.Master interface defines theslaves operation that returns an iterator and a
March 2002 Negotiation Facility: Processor and Related Interfaces 2-7

2

sequence ofSlave sub-processors. The maximum length of theSlaves sequence is
controlled by the input argumentmax_number . TheSlave interface defines the
readonly attributemaster that returns a reference to the controllingMaster . In the event
of a top-level processor, the master attribute will return a null object reference.

2.2.2.1 IDL Specification

abstract interface Master {
SlaveIterator slaves (

in long max_number,
out Slaves slaves

);
};

abstract interface Slave {
readonly attribute CollaborationFramework::Master master;

};

abstract valuetype Management : Session::Link{ };

valuetype Controls : Management {
public Slave resource;

};

valuetype ControlledBy : Management {
public Master resource;

};

Table 2-7 Controls Link State Table

Name Type Properties Purpose

resource Slave public A reference to an AbstractResource implementing the
Slave interface. An implementation of Master may hold
0..* Controls link instances, representing the strong
aggregation relationship from a Master to subsidiary
Slaves.

Table 2-8 ControlledBy Link State Table

Name Type Properties Purpose

resource Master public A reference to an AbstractResource implementing the
Master interface. An implementation of Master may hold
0..1 ControlledBy link instances representing the parent
processor.
2-8 Negotiation Facility Specification, v1.0 March 2002

2

etion
l
ation
lient.

is a
. An

the
2.2.3 StateDescriptor

Processor state is accessible through thestate attribute. Thestate attribute returns an
instance ofStateDescriptor , a valuetype containing an enumeration value of the
process state equivalent to the state model defined under theTask and Session
specification.StateDescriptor also contains a state field namedproblems that
exposes any standing problems concerning processor configuration or execution.

Completion is a valuetype contained withinStateDescriptor . When a processor
completes (signalled by the establishment of the closed processor state), the compl
field contains aCompletion instance that qualifies the closed state as either a logica
business level success or failure. For example, a processor supporting vote aggreg
can declare a distinction between a successful and unsuccessful result towards a c
In this example, failure could arise as a result of an insufficient number of affirmative
votes, or through failure of the group to establish quorum. In both cases, the failure
business level failure and should not be confused with technical or transaction failure
implementation dependent identifier may be attributed to aCompletion instance to
further classify a success or fail result. Prior to a processor reaching a closed state
completion field shall return a null value.

Figure 2-2 StateDescriptor Object Model

2.2.3.1 IDL Specification

valuetype ResultID unsigned long ;
valuetype ResultClass boolean;

valuetype Completion
{
public ResultClass result;
public ResultID code;

};

valuetype ProcessorState Session::task_state;

valuetype StateDescriptor
{

CollaborationFramework::
Processor

CollaborationFramework::
Problem

state: ProcessState
completion : Completion
problems: Problems

CollaborationFramework::
StateDescriptor

identifier: ResultID
code : ResultClass

CollaborationFramework::
Completion

* problems 1 state

0..1 completion
March 2002 Negotiation Facility: Processor and Related Interfaces 2-9

2

s

et of

,

of
public ProcessorState state;
public CollaborationFramework::Completion completion;
public CommunityFramework::Problems problems;

};

2.2.4 ProcessorModel and Related Constraint Declarations

TheProcessorModel valuetype defines a set of usage (input and output) towards it
controllingTask . These declarations are expressed as a set ofUsageDescriptor
instances (equivalent to the declaration of argument parameters). Collectively, the s
UsageDescriptor instances declare the naming convention to be applied to tagged
Usage links held by the co-ordinatingTask . Usage declarations are defined through
the valuetypesInputDescriptor andOutputDescriptor . Both valuetypes contain the
declaration of atag name (corresponding to the usage tag string) and atype field
containing aTypeCode value. TheOutputDescriptor contains an additional
required field that if true, states that the link must exist or be supplied. If false, the
input declaration can be considered as an optional argument.

Table 2-9 StateDescriptor State Table

Name Type Properties Purpose

state ProcessorState public An enumeration of process state values open
not_running, notstarted, running, suspended,
terminated, completed, and closed (refer to the
Task and Sessionspecification, Task state
description).

problems Problems public A sequence of Problem instances (of possibly
zero length) attributable to the current execution
state of the processor.

completion Completion public Declaration of a success or fail completion
condition together with a numeric application
defined result identifier.

Table 2-10Completion State Table

Name Type Properties Purpose

code ResultID public An implementation specific identifier of a completion
state.

result ResultClass public A boolean value indicating a business level notion
success or failure of the process.
2-10 Negotiation Facility Specification, v1.0 March 2002

2

such

an

nd-
Figure 2-3 Processor Model and Usage Descriptor

Using the control structures it is possible for a processor model to define constraints
as “the processor must be associated to a controllingTask with a resource of typeUser
associated as a consumed resource declared under the tag “customer” before this
processor can be started. Such a requirement can be expressed by the creation of
InputDescriptor exposing the following:

• The text string “customer” under thetag field.

• The boolean value true under therequired field (indicating that aUsage link
tagged as subject must be associated to the controllingTask before attempting to
start a processor).

• A UsageSource instance under thesource field that declarers a type
precondition on theUsage link’s resource field – in this example, the value would
be theSession::User type code.

Collectively, these constraints represent the processor signature and facilitate plug-a
play interoperability between process descriptions defined in and executing under
different technical and administrative domains.

A new instance ofProcessor may be created by passing an instance of
ProcessorCriteria to a resource factory (refer to
CommunityFramework::ResourceFactory create operation).

2.2.4.1 IDL Specification

valuetype TypeCode CORBA::TypeCode;

CommunityFramework::
Model

CollaborationFramework::
Processor

usage: UsageDescriptors

CollaborationFramework::
ProcessorModel

1 model
(from Simulator)

CommunityFramework::
Control

supports

CollaborationFramework::
UsageDescriptor

tag: string
required: boolean
type: TypeCode

CollaborationFramework::
InputDescriptor

tag: string
type: TypeCode

CollaborationFramework::
OutputDescriptor
March 2002 Negotiation Facility: Processor and Related Interfaces 2-11

2

t

abstract valuetype UsageDescriptor { };

valuetype InputDescriptor :
UsageDescriptor
{
public string tag;
public boolean required;
public boolean implied;
public TypeCode type;

};

valuetype OutputDescriptor :
UsageDescriptor
{
public string tag;
public TypeCode type;

};

valuetype ProcessorModel :
CommunityFramework::Control
supports CommunityFramework::Model
{
public UsageDescriptors usage;

};

valuetype ProcessorCriteria :
CommunityFramework::Criteria
{
public ProcessorModel model;

};

Table 2-11ProcessorModel State Table

Name Type Properties Purpose

usage UsageDescriptors public A sequence of valuetypes derived from
UsageDescriptor, each defining usage links
conditions relative to the associated Task.

Table 2-12InputDescriptor State Table

Name Type Properties Purpose

tag string public The name to be set as the tag value of Usage link tha
can be established on the controlling Task.

required boolean public If true, the usage association must exist under the
coordinating Task before attempting to start the
processor. Default value is true.
2-12 Negotiation Facility Specification, v1.0 March 2002

2

a

t

2.2.5 Coordination Link Family

TheExecution link defined under theTask and Sessionspecification declares an
abstract association between anAbstractResource , acting as a processor, and aTask .
The abstractExecution relationship is used as the base for definition of an abstract
Coordination relationship. Coordination serves as the base for the concrete links
namedMonitors , Coordinates , andCoordinatedBy .

implied boolean public A qualifier used under a CollaborationModel. If true,
the usage association may be implicitly inferred by an
existing link with the same tag name, if false, the link
must be explicitly passed as an ApplyArgument (refer
Collaboration apply operation) establishing or replacing
an existing tag link of the same name. Default value is
true.

type TypeCode public Declaration of the type of resource to be bound under
Consumes usage association on the controlling Task.

Table 2-13OutputDescriptor State Table

Name Type Properties Purpose

tag string public OutputDescriptor declares an association that will be
established by a Processor on normal completion. The
tag value declares the value of the usage tag value tha
will be created.

type TypeCode public Declaration of the type of resource that will be created
by the processor on the controlling Task.

Table 2-14ProcessorCriteria State Table

Name Type Properties Purpose

model ProcessorModel public Declaration of processor consumption and
production usage constraints. An implementation of
ResourceFactory is responsible for assessing the
type of Model contained within a ProcessorCriteria
to determine the type of Process to create. For
example, a ProcessorCriteria containing an instance
of CollaborationModel will return a type of
CollaborationProcessor.

Table 2-12InputDescriptor State Table
March 2002 Negotiation Facility: Processor and Related Interfaces 2-13

2

Figure 2-4 The Abstract Coordination and Concrete Monitors and Coordinates Link

Figure 2-5 Inverse CoordinatedBy Link

2.2.5.1 IDL Specification

abstract valuetype Coordination : Session::Execution{ };

valuetype Monitors : Coordination {
public Processor resource;

};

valuetype Coordinates : Monitors {};

valuetype CoordinatedBy : Coordination {
public Session::Task resource;

};

Session::
Execution

CollaborationFramework ::
Coordination

CollaborationFramework ::
Coordinates

CollaborationFramework ::
Monitors

resource : Processor

CollaborationFramework ::
Task

CollaborationFramework ::
Processor

resource 1*

1

CollaborationFramework ::
Coordination

CollaborationFramework ::
CoordinatedBy

resource : Task

CollaborationFramework ::
Processor

Session ::
Task

resource 11
2-14 Negotiation Facility Specification, v1.0 March 2002

2

e

ink

at
2.3 Encounter

TheTask and Sessionspecification defines aTask as a type corresponding to a view of a
processor. The specification of aTask is focused extensively towards a single user. Th
CollaborationFramework extends this notion through the introduction of aTask type
calledEncounter that is owned and managed by a singleUser but associated by
reference to otherUsers thoughMember links (refer to theCommunityFramework
chapter).

Table 2-15Coordination Link Family Cardinality Table

Type holding
the link

Link type Type referenced
by Link

Description

Task Monitors Processor An instance of Task monitors 0..*
Processors.

Task Coordinates Processor Coordinates is a type of Monitor. An
instance of Task coordinates 0..1 Processor
instance.

Processor CoordinatedBy Task A Processor is coordinated by 0..1 Task
instances.

Table 2-16Monitors State Table

Name Type Properties Purpose

resource Processor public A reference to a Processor that the Task holding this l
monitors.

Table 2-17CoordinatedBy State Table

Name Type Properties Purpose

resource Task public A reference to a Task that is coordinating the processor th
is holding this link instance. The Task is maintaining either
a Monitors or Coordinates link towards the Processor
holding this link.
March 2002 Negotiation Facility: Encounter 2-15

2

the

a
a

y

nder
Figure 2-6 Encounter Object Model

In effect anEncounter can be considered as aTask managed by its owner where the
state of theTask is available to a closed community of members. This model enables
association of multiple users within a collaborative execution context defined by an
associated processor. AnEncounter is defined as both aTask (refer to theTask and
Sessionspecification) andMembership (refer to theCommunityFrameworkchapter).
As aTask it supports full lifecycle semantics, can be referenced as a resource within
workspace or community, and exposes a relationship to an assigned processor. As
Membership , theEncounter aggregates a set of members, representing a set of
collaboratingUsers . Encounter , through inheritance ofSimulator , is required to
return a valuetype supporting the abstractModel interface. In the case ofEncounter ,
the valuetype returned must be an instance ofMembershipModel (a valuetype
supporting the abstractModel interface). Implementations ofProcessor associated to
anEncounter can interrogate anEncounter to establish the roles attributed to
members of theEncounter . This information can be used by processor
implementations to enforce preconditions on role related actions.

2.3.1 Encounter and EncounterCriteria

An Encounter is a type ofTask that incorporates the abstractMembership interface.
As aMembership anEncounter is associated to possibly manyUsers through
Member links. As aTask anEncounter is associated to exactly one owner, possibl
multiple consumed and produced resources, and a single processor. As such,
Encounter can be considered as a shared view of a collaborative process context u
the coordination of a singleUser. New instances ofEncounter may be created using a
ResourceFactory by passing an instance ofEncounterCriteria as the criteria
argument.

Session::
Task

CollaborationFramework::
Processor

CollaborationFramework::
Encounter

CommunityFramework::
Membership

Session::
User

recognises * 1 coordinated by

coordinates 1* member of

 owns *

1 owned by

Session::
AbstractResource

CollaborationFramework::
MembershipModel

1 model
(from Simulator)
2-16 Negotiation Facility Specification, v1.0 March 2002

2

, or

of the

o

2.3.1.1 IDL Specification

interface Encounter :
Session::Task,
CommunityFramework::Membership
{

};

valuetype EncounterCriteria :
CommunityFramework::Criteria
{
public CommunityFramework::MembershipModel model;

};

2.4 VoteProcessor and VoteModel

VoteProcessor is aProcessor extended to include the abstractVote interface. The
Vote interface declares an attributevcount through which the last vote count can be
accessed, and a singlevote operation supporting the registration of a vote by a client.
Vote registration is achieved though supply of one of the enumerated value YES, NO
ABSTAIN as defined byVoteDescriptor . Thevote operation returns an
implementation definedProof to the client. Thevcount attribute returns aVoteCount
instance that holds a summation of yes, no, and abstain votes registered at the time
invocation.

Table 2-18EncounterCriteria State Table

Name Type Properties Purpose

model MembershipModel public Declaration of the membership model instance t
be associated to the created Encounter.
March 2002 Negotiation Facility: VoteProcessor and VoteModel 2-17

2

Figure 2-7 VoteProcessor and VoteModel

2.4.1 Supporting Structures

Four supporting structures are used in the definition of a voting process.VoteCount is
a valuetype containing the summation of yes, no, and abstain votes under a voting
process at a particular time.VoteDescriptor is an enumeration of vote value, YES,
NO, and ABSTAIN. VoteStatement , a valuetype containing aVoteDescriptor , is
passed as an input argument to aVoteProcessor ’s vote operation. Thevote operation
returns aVoteReceipt to a client following invocation of thevote operation.
VoteReceipt contains a copy of the supplied vote together with a timestamp value
corresponding to the date and time of the operation invocation.

2.4.1.1 IDL Specification

valuetype VoteCount {
public Session::Timestamp timestamp;
public long yes;
public long no;
public long abstain;

};

enum VoteDescriptor{
NO,
YES,
ABSTAIN

};

abstract valuetype Proof {};
abstract valuetype Evidence {};

valuetype VoteStatement :

CollaborationFramework::
Vote

vote()

vcount : VoteCount

CollaborationFramework::
VoteModel

ceiling : struct
policy : enum
single: boolean

CollaborationFramework::
VoteProcessor

CollaborationFramework::
ProcessorModel

1 model

CollaborationFramework::
Processor

1 model
2-18 Negotiation Facility Specification, v1.0 March 2002

2

ed
Evidence
{

public VoteDescriptor vote;
};

valuetype VoteReceipt :
Proof
{

public Session::Timestamp timestamp;
public VoteStatement statement;

};

2.4.2 VoteProcessor

A VoteProcessor is a type ofProcessor supporting operations defined under the
abstractVote interface. Vote exposes an attribute namedvcount that returns a
VoteCount instance. TheVoteCount instance must be updated following each valid
vote invocation. Thevote operation supports registration of aVoteStatement and

Table 2-19VoteCount State Table

Name Type Properties Purpose

timestamp Session::Timestamp public Timestamp of the last vote
registration.

yes long public The summation of YES votes
registered under a process.

no long public The summation of NO votes
registered under a process.

abstain long public The summation of ABSTAIN votes
registered under a process.

Table 2-20VoteStatement State Table

Name Type Properties Purpose

vote VoteDescriptor public One of the enumerated values YES, NO or
ABSTAIN.

Table 2-21VoteReceipt State Table

Name Type Properties Purpose

timestamp Session::Timestamp public Date and time of registration of the
VoteStatement by a VoteProcessor.

statement VoteStatement public Copy of the VoteStatement instance pass
into the vote operation.
March 2002 Negotiation Facility: VoteProcessor and VoteModel 2-19

2

ith
returns aVoteReceipt to a client. New instances ofVoteProcessor may be created
using aProcessorCriteria passed as an argument to aResourceFactory where the
containedProcessorCriteria model is an instance ofVoteModel .

2.4.2.1 IDL Specification

abstract interface Vote
{
readonly attribute VoteCount vcount;

VoteReceipt vote(
in VoteDescriptor value

);
};

interface VoteProcessor:
Vote,
Processor
{

};

2.4.3 VoteModel

TheVoteModel valuetype contains the policy to be applied by aVoteProcessor .
VoteModel is accessed throughVoteProcessor under themodel operation on the
inheritedSimulator interface. VoteModel contains three fields described in the
following table that define the rules applicable to the vote process execution.

2.4.3.1 IDL Specification

valuetype Duration {
public TimeBase::TimeT value;

Table 2-22Vote Attribute Table

Name Type Properties Purpose

vcount VoteCount readonly Summation of yes, no and abstain votes registered w
the processor.

Table 2-23VoteProcessor Structured Event Table

Event Description

vote Notification of modification of the vcount attribute value.

Supplementary properties:

value VoteCount Summation of yes, no, and abstain vote.
2-20 Negotiation Facility Specification, v1.0 March 2002

2

r

.

.

};

struct VoteCeiling{
short numerator;
short denominator;

};

enum VotePolicy{
AFFIRMATIVE_MAJORITY,
NON_ABSTAINING_MAJORITY

};

valuetype VoteModel :
ProcessorModel
{
public VoteCeiling ceiling;
public VotePolicy policy;
public boolean single;
public Duration lifetime;

};

Table 2-24VotePolicy Enumeration Table

Element Description

AFFIRMATIVE_MAJORITY Indicating that the number of yes votes must be equal to or
greater than (VoteCeiling * number of votes registered).

NON_ABSTAINING_MAJORITY Indicating that the number of yes votes must be equal or greate
than (VoteCeiling * (number of votes registered less the total
number of abstaining votes)).

Table 2-25VoteModel State Table

Name Type Properties Purpose

ceiling VoteCeiling public The ceiling exposes a fractional value indicating the
proportion of YES votes required to conclude a vote
process successfully. Values of ceiling such as or
are expressed by the VoteCeiling structure in the form
of a numerator and denominator value.

policy VotePolicy public Policy to apply to vote counting – refer to Table 2-24

single boolean public If true, a vote may not be recast; that is, one vote only
If false, a client may recast a vote.
March 2002 Negotiation Facility: VoteProcessor and VoteModel 2-21

2

t

2.5 EngagementProcessor and EngagementModel

EngagementProcessor is a type ofProcessor that defines anengage operation.
TheEngage operation, defined under the inherited abstractEngage interface, is used
to facilitate the establishment ofProof of agreement between a set of collaborating
clients. EngagementProcessor contains anEngagementModel , exposed through
the inherited model operation from the abstractModel interface.EngagementModel
contains a rootRole used to qualify the number of engagements required for an
engagement process to be considered as binding.

Figure 2-8 EngagementProcessor and EngagementModel

2.5.1 EngagementProcessor

An EngagementProcessor supports the registration ofEvidence by a client and
return ofProof of the act of engagement.Proof andEvidence are abstract valuetypes
that may be specialized to support implementation specific engagement models.
Engagement policy, also implementation specific is exposed as an instance of
EngagementModel by the inherited model operation from the abstractModel
interface underEngagementProcessor . New instances ofEngagementProcessor
may be created using aProcessorCriteria passed as an argument to a
ResourceFactory , where the contained model is an instance ofEngagementModel .

lifetime Duration public The maximum lifetime of the vote process
commencing on transition of the process to a running
state. A zero, negative or null value is equivalent to no
constraint on process lifetime.

unilateral boolean public If true, the process of voting shall be considered as
binding on all members. If false, then the result of the
vote process is considered as binding on members tha
have voted.

Table 2-25VoteModel State Table

CollaborationFramework::
EngagementProcessor

CollaborationFramework::
EngagementModel

policy : any

CollaborationFramework::
ProcessorModel

1 model

CollaborationFramework::
Processor

CollaborationFramework::
Engagement

engage()

1 model
2-22 Negotiation Facility Specification, v1.0 March 2002

2

of
2.5.1.1 IDL Specification

abstract interface Engagement
{
Proof engage(

in CollaborationFramework::Evidence evidence
) raises (

EngagementProblem
);

};

interface EngagementProcessor :
Engagement,
Processor
{

};

2.5.2 EngagementModel

EngagementModel extendsProcessorModel through the addition of three values, a
Role used to qualify the engagement context, a declaration of the maximum lifetime
anEngagement process, and a value indicating if the engagement has a unilateral
implication on the members of an associatedEncounter .

2.5.2.1 IDL Specification

valuetype Duration {
public TimeBase::TimeT value;

};

valuetype EngagementModel :
ProcessorModel

Table 2-26EngagementProcessor Structured Event Table

Event Description

vote Notification of modification of the vcount attribute value.

Supplementary properties:

value VoteCount Summation of yes, no and abstain vote,

Table 2-27Exceptions Related to the Engage Operation

Exception Reason

EngagementProblem Raised following an attempt to invoke engage before the processor is
running, or as a result of passing an invalid Evidence valuetype (where
validity is implementation defied).
March 2002 Negotiation Facility: EngagementProcessor and EngagementModel 2-23

2

s
oint
de
tion

of
ross

tion
1
sent

gger,

le

as

to
{
public CommunityFramework::Role role;
public Duration lifetime;
public boolean unilateral;

};

2.6 CollaborationProcessor, CollaborationModel, and Supporting Types

CollaborationProcessor is a type ofProcessor that contains a model supporting
the declaration of states and state transitions. This state model defines a set of rule
concerning the way in which a membership can interact towards achievement of a j
conclusion. Examples of collaboration models defined within this specification inclu
bilateral negotiation, multilateral voting, and promissory engagement. The specifica
approach of separation of structural IDL from a semantic model ensures that the
framework can be applied to a range of collaborative processes through the creation
collaboration models that reflect the business rules within different enterprises and ac
different vertical domains.

We commence with the definition of aCollaborationProcessor under Section 2.6.1,
“CollaborationProcessor,” on page 2-25, followed by specification of a number of
supporting structures under Section 2.6.2, “Supporting Structures,” on page 2-28.
Section 2.6.3, “CollaborationModel,” on page 2-30 definesCollaborationModel under
which the notions of an initialization and state are introduced, together with a descrip
of the relationship to business roles. Section 2.6.4, “State Declaration,” on page 2-3
through Section 2.6.7, “Transition and Related Control Structures,” on page 2-36 pre
theCollaborationModel control structures supporting state declaration under
Section 2.6.4, “State Declaration,” on page 2-31, and the semantics of an abstract tri
an initialization, and the relationship between a Trigger and an action under
Section 2.6.5, “Trigger and supporting valuetypes,” on page 2-32. Section 2.6.6,
“Action,” on page 2-35 details a set of supported action declarations, including simp

Table 2-28EngagementModel State Table

Name Type Properties Purpose

role Role public The value of quorum under this Role indicates the
number of engagements required following which
engagement is considered as binding.

unilateral boolean public If true, the process of engagement shall be considered
binding on all members. If false, then the act of
engagement is considered as binding on members that
have actively engaged. Members that have not invoked
the engage operation shall not be considered as bound
the engagement.

lifetime Duration public The maximum lifetime of the process commencing on
transition of the process to a running state. A zero,
negative or null value is equivalent to no constraint on
process lifetime.
2-24 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002

2

nd
n of
sub-
ssor.

and
d
f

nts

ablish

a

n

as

der the

s that

as a
transitions, recursive or local transitions and commands. Section 2.6.7, “Transition a
Related Control Structures,” on page 2-36 details the valuetypes used in the definitio
a compound transition, a structure that can be used to cause the establishment of a
processor and declare the implication of that sub-processor towards the active proce

The specifications under Section 2.6, “CollaborationProcessor, CollaborationModel,
Supporting Types,” on page 2-24 establish the framework for the definition of a broa
range of collaboration models. Chapter 1 of this document details three instances o
collaboration criteria (aProcessorCriteria containing aCollaborationModel)
covering formal negotiation, bilateral interaction leading to a unilateral agreement
between a group, and contractual fulfillment.

2.6.1 CollaborationProcessor

CollaborationProcessor is type ofProcessor that contains an instance of
CollaborationModel (exposed under the model operation on the inheritedSimulator
interface). Operations defined under the inherited abstractCollaboration interface
provide the ability for a client to modify the state of the processor relative to constrai
established under the associated model. In the case ofCollaborationProcessor , the
model defines a nested state hierarchy, and associated transitions. A client can est
an initial collaborative state though invocation of theapply operation on the
Collaboration interface, passing the identifier of a preferred initialization, following
which members of an associated membership can invoke theapply and
apply_arguments operations to achieve modification of the collaborative context
through state-transitions. Following initialization, the collaboration is established in
running state exposed under theCollaboration active_state attribute. The
active_state attribute is the identifier of a deepest state in aCollaborationModel
state hierarchy referenced by a proceeding initialization or transition. Establishing a
active state has an important implication on the membership associated to the
collaboration. Every state from the deepest state referenced by theactive_state
attribute, up through all containing states, until the highest root-state are considered
active. Once a state is classified as active, anyTrigger instances (transition holders)
associated with that state are considered as candidates for subsequent reference un
apply operation.

Triggers contain actions such as transitions and are also associated to business role
act as guards to the trigger.Triggers can be declared as timeout (automatically
activated) or launch trigger (explicit activation). Timeout based triggers are activated
result of modification of the active state path and declared as active under the
CollaborationProcessor timeout_list attribute.

New instances of aCollaborationProcessor may be created by passing a
ProcessorCriteria instance to aResourceFactory create operation, where the
model contained by theProcessorCriteria is an instanceCollaborationModel .
March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-25

2

Figure 2-9 Collaboration and CollaborationProcessor

2.6.1.1 IDL Specification

abstract interface Collaboration
{

readonly attribute Label active_state;
readonly attribute TimeoutSequence timeout_list;

void apply(
in Label identifier

) raises (
InvalidTrigger,
ApplyFailure

);

void apply_arguments(
in Label identifier,
in ApplyArguments args

) raises (
InvalidTrigger,
ApplyFailure

);
};

interface CollaborationProcessor :
Collaboration,
Processor
{

};

CollaborationFramework::
ProcessorModel

CollaborationFramework::
Processor

1 model

CollaborationFramework::
CollaborationProcessor

CollaborationFramework::
CollaborationModel

CollaborationFramework::
 Collaboration

apply()
apply_arguments()

active_state : Label
timeout_list :TimeoutSequence
2-26 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002

2

y

in
Table 2-29Collaboration Attribute Table

Name Type Properties Purpose

active_state Label readonly Identifier of the state resulting from an
initialization or subsequent transition. All states
between the active state and the root top level
state constitute the active state path.

timeout_list TimeoutSequence readonly A sequence of Timeout valuetypes
corresponding to current activated timeout
conditions in place.

Table 2-30Collaboration Operation Table

Name Returns Description

apply void Used by a client to modify the state of a collaborative process b
passing in a reference to a Trigger in the active state path.
Typically used to invoke a transition resulting in the modification
of the collaboration context.

apply_arguments void Equivalent to apply except that the operation takes a series of
arguments corresponding to change request to be applied to the
usage relationships associated to the Encounter coordinating the
Collaboration.

Table 2-31Exceptions Related to the Operations Named apply and apply_arguments

Exception Reason

InvalidTrigger Raised following an attempt to invoke apply against a Collaboration with an
Label that does not correspond to an identified Trigger within the
CollaborationModel associated to the Collaboration instance.

ApplyFailure Raised if a client attempts to invoke apply against the collaboration processor
contravention with the implied or explicit rules exposed by the
CollaborationProcess state and associated CollaborationModel.

Table 2-32CollaborationProcessor Structured Event Table

Event Description

active Notification of modification of the active_state attribute value.

Supplementary properties:
March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-27

2

to

e the

efer

a

2.6.2 Supporting Structures

2.6.2.1 Structures Supporting Apply

TheCollaborationProcessor interface defines two operations, namedapply and
apply_arguments . Both operations concern the modification of the state of a
collaboration processor in accordance with the rules and constraints defined in the
associatedCollaborationModel instance. Theapply_arguments operation takes a
sequence ofApplyArgument valuetypes as operation arguments. This sequence of
ApplyArgument instances declares to the processor a set of changes to be applied
the input and output relationships of the attachedEncounter . For example, a
collaboration processor supporting amendment of a standing motion needs to receiv
declaration of the amended motion. This is equivalent to modification of theUsage
links associated with a controllingTask (Encounter) while a processor is running.
ApplyArgument is a valuetype that contains the declaration of aUsage link tag name
and a value containing a reference to anAbstractResource to be associated to the
Encounter coordinating theCollaboration under a new or existing usage link with the
same tag name.

2.6.2.2 Structures supporting timeout declarations

A second supporting structure exposed by aCollaborationProcessor is a
TimeoutSequence . A CollaborationModel associated to a
CollaborationProcessor defines a hierarchy of states. Within this hierarchy there
may be any number of actions that are configured to execute after a certain delay (r
Clock). The set of active timeout conditions is exposed through the
CollaborationProcessor timeout_list attribute. A timeout condition is defined
through the valuetypeTimeout . Timeout contains an identifier of a Trigger within the
CollaborationModel associated to the processor, together with aTimestamp value
indicating the date and time under which the timeout will occur (causing an
implementation to automatically invoke theAction contained by theTrigger referenced
by theTimeout label).

2.6.2.3 IDL Specification

valuetype ApplyArgument
{
public CollaborationFramework::Label label;
public Session::AbstractResource value;

};

value Label Identifier of the state referenced as a target by
an initialization or last transition established
under the apply operation.

timeout TimeoutSequence Timeout sequence established as a result of
change in active state.

Table 2-32CollaborationProcessor Structured Event Table
2-28 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002

2

.

a

ged
valuetype ApplyArguments sequence <ApplyArgument>;

valuetype Timeout
{

public Label identifier;
public Session::Timestamp timestamp;

};

valuetype TimeoutSequence sequence <Timeout>;

Table 2-33Timeout State Table

Name Type Properties Purpose

identifier Label public Identifier of a Trigger within the
CollaborationModel contained by the
CollaborationProcessor that will be fired at the date
and time indicated by the timestamp value.

timestamp Timestamp public The date and time that a timeout will be triggered
Timeout conditions may be modified by
modification of an active state of a collaboration
processor (refer active_state).

Table 2-34ApplyArgument State Table

Name Type Properties Purpose

tag Label public An ApplyArgument is a valuetype that can be
passed into an apply operation. The tag value
must be equal to a tag value declared under the
processors input usage list (declaration of
InputDescriptor values exposed by
ProcessorModel usage field). Following
assessment of any preconditions associated with
referenced Trigger, an implementation of apply
will create or replace an existing consumption link
resource value on the associated Task with the
value field of the ApplyArgument valuetype.

value AbstractResource public The AbstractResource to associate under a tag
consumption link with the Task associated as
coordinator to the Collaboration.
March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-29

2

an

nt to

d
The
2.6.3 CollaborationModel

CollaborationModel is the valuetype that defines the bulk of the semantics behind
instance ofCollaborationProcessor . CollaborationModel extends
ProcessorModel through addition of a role hierarchy andState hierarchy. The entire
collaboration model is structurally centered on a state hierarchy, the root of which is
defined by theState instance exposed under thestate field. The root-state and sub-
states contain the declaration of available triggers (transitions holders) that can be
referenced by clients throughapply operations on theCollaboration interface. The
state field named role contains aRole valuetype that represents the root of a role
hierarchy that can be referenced byTrigger instances (contained byState instances) as
preconditions to activation. For example, a transition (exposed asTrigger) may
reference a role as a guard, which in turn introduces a constraint on the invoking clie
be associated with theEncounter membership under an equivalent role.

As a valuetype, aCollaborationModel can be passed between different domains an
treated as a self-contained structure that can be readily reused by trading partners.
structural information contained in the inheritedProcessorModel defines the logical
wiring of a processor towards its coordinating task, while the extensions introduced
underCollaborationModel define the semantics of collaborative interaction.

Figure 2-10 CollaborationModel Object Model

2.6.3.1 IDL Specification

valuetype CollaborationModel :
ProcessorModel
{
public CommunityFramework::Role role;
public CollaborationFramework::State state;

};

CollaborationFramework::
ProcessorModel

CommunityFramework::
State

1 model
(from Simulator)

CollaborationFramework::
CollaborationProcessor

CollaborationFramework::
CollaborationModel

role: Role
state: State

CommunityFramework::
Role

role 1

state 1
2-30 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002

2

an
as

ferred

,

2.6.4 State Declaration

The primary valuetype used in the construction of aCollaborationModel is theState
valuetype. AState is a container of sub-states andTrigger valuetypes. An instance of
State has an identifier label (from the inheritedControl valuetype), that may be
exposed by aCollaborationProcessor under theactive_state attribute. AState is
activated as a result of a transition action applied through theapply operation or through
implicit initialization using thestart operation (from the abstractProcessor interface
inherited byCollaboration).

TheCollaboration declares anactive_state attribute and a corresponding structured
event namedactive . The value of the event and attribute is an identifier of the state
referenced in the last valid action (such as an initialization or simple transition). Once
active state has been established, the state containing an active state is considered
active, and as such, its parent, until the root-state is reached. This set of states is re
to as the active state path of theCollaboration processor. For every state in the active
state path, all directly containedTriggers are considered as candidates with respect to
theapply andapply_arguments operations onCollaborationProcessor . That is
to say that a client may invoke anyTrigger exposed by a state in the active state path
providing that preconditions toTrigger activation are satisfied.

Table 2-35CollaborationModel State Table

Name Type Properties Purpose

role Role public A Role valuetype (refer CommunityFramework) that
defines a hierarchy of business roles that may be
referenced by other control structures within a
CollaborationModel (refer Trigger) for the purpose of
establishing membership and quorum preconditions
towards an invoking client. This value may be null if all
Trigger guard value are also null.

state State public A non-null value defining the root state of the
collaboration model. A State is itself a container of
other states within which Triggers are contained.
Triggers act as constraint guards relative to the Actions
they contain.
March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-31

2

e

e

n

a

Figure 2-11 State Object Model

2.6.4.1 IDL Specification

valuetype State :
CommunityFramework::Control
{
public CollaborationFramework::Triggers triggers;
public CollaborationFramework::States states;

};

2.6.5 Trigger and supporting valuetypes

A Trigger is a valuetype contained by aState that is used to define an activation
constraint (referred to as aguard), declarations of implementation actions to fire befor
action execution (referred to asdirectives), theaction that a collaboration
implementation applies to the collaborative state, and an actionpriority . Trigger labels
are candidate arguments to theCollaboration apply operation when theState
containing theTrigger is within the active state path. The value of guard is a valuetyp
that qualifies the functional role of the trigger. Two types ofGuard are defined. A
Clock , representing a timeout condition that is automatically armed by a
Collaboration implementation whenever the containing trigger is a candidate (withi
the active state path). A second type of Guard is aLaunch that contains amode
constraint (one of INITIATOR, RESPONDENT, or PARTICIPANT) and a reference to
role that qualifies accessibility of theTrigger relative to Members of an associated
Encounter . A Trigger containing aClock is managed by aCollaboration

Table 2-36State Valuetype State Table

Name Type Properties Purpose

triggers Triggers public A sequence of Trigger instances that each define
constraint conditions relative to a contained Action.

states States public A sequence of sub-states forming a state hierarchy.

CollaborationFramework::
State

triggers : Triggers
states : States

* states

CommunityFramework::
Control

trigger * CollaborationFramework::
Trigger
2-32 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002

2

implementation. ATrigger containing aLaunch may be explicitly referenced by a
client through the apply operations on theCollaboration interface providing the client
meets any mode and role constraints associated with theTrigger .

Figure 2-12 AbstractTrigger, Trigger, and Initialization

2.6.5.1 IDL Specification

valuetype Trigger :
CommunityFramework::Control
{
public long priority;
public CollaborationFramework::Guard guard; // constraint
public CollaborationFramework::Directives directives; // preconditions
public CollaborationFramework::Action action;

};

abstract valuetype Guard {};

valuetype Clock :
Guard
{
public Duration timeout;

};

valuetype Launch :
Guard
{
public TriggerMode mode;
public CommunityFramework::Role role;

};

CollaborationFramework::
State

CommunityFramework::
Control

trigger * CollaborationFramework::
Trigger

policy : Guard
daemons : Daemons
action : Action
priority : long

CollaborationFramework::
Action

1 action

CollaborationFramework::
Clock

timeout : Duration

CollaborationFramework::
Launch

role : Role
mode : TriggerMode

CommunityFramework::
Guard

1

CommunityFramework::
Daemon

daemons *
March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-33

2

f

enum TriggerMode{
INITIATOR,
RESPONDENT,
PARTICIPANT

};

Table 2-37Trigger State Table

Name Type Properties Purpose

action Action public An Action valuetype that describes the action to take
following client invocation of the apply operation.
Argument to apply reference the label that
corresponds to the Trigger label state filed inherited
from Control.

guard Guard public An instance of Clock or Launch that defines the
Trigger activation policy.

Table 2-38Clock State Table

Name Type Properties Purpose

timeout Duration public Declaration of the delay between establishment o
the containing trigger as a candidate (the moment
the Trigger’s containing state enters the active state
path) and the automatic invocation of the action
contained by the containing Trigger by a
Collaboration implementation.

Table 2-39Launch State Table

Name Type Properties Purpose

mode TriggerMode public A value corresponding to one of INITIATOR,
RESPONDENT or PARTICIPANT.
2-34 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002

2

e

2.6.6 Action

TheAction valuetype is a base type forTransition , CompoundAction , and
Referral . Examples of transitions include initialization, simple transition, local
transition, and terminal transition.Transition can be considered as atomic in that ther
is no subsequent redirection involved. In comparison,CompoundTransition and
Referral redirects execution towards another action.

Figure 2-13 Action object model

2.6.6.1 IDL Specification

abstract valuetype Action
{

};

priority long public An implementation of apply is responsible for
queuing apply requests relative to trigger priority
and invocation order. Higher priority triggers will
be fired ahead of lower priority triggers irrespective
of apply invocation order. An implementation is
responsible for retractions of apply requests
following the disassociation of a containing state
from the active state path.

role Role public If the role value is not null, a client invoking the
containing trigger must be associated to the
Encounter under a role with a label equal to the role
identifier.

Table 2-39Launch State Table

CollaborationFramework::
Trigger

CollaborationFramework::
Action

CollaborationFramework::
CompoundTransition

CollaborationFramework::
Referral

1 action

CollaborationFramework::
Transition

1 action
March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-35

2

nd
2.6.7 Transition and Related Control Structures

Transition contains a state field namedusage that contains aUsageDescriptor
value. The value allows the definition of input and/or output statements (refer
UsageDescriptor) during a collaborative process execution as a consequence of
changes in the collaborative state. A second state field namedtransitional contains a
single valuetype derived from the abstractTransitional valuetype.

Four types ofTransitional valuetypes are defined:

• Initialization , declares a possible initial active-state target.

• SimpleTransition , declares a potential a state transition.

• LocalTransition , declares a potential transition from the current state to the
current state, during which side effects such as timeout resetting andUsage
references may be modified.

• TerminalTransition , signals termination of the running state of the processor a
declares a successful or failure result.

Figure 2-14 Transition and the Transitional family of valuetypes

2.6.7.1 IDL Specification

abstract valuetype Transitional { };

valuetype Transition :
Action
{
public CollaborationFramework::Transitional transitional;

CollaborationFramework::
LocalTransition

reset : boolean

CollaborationFramework::
SimpleTransition

target : State

CollaborationFramework::
Transition

usage : UsageDescriptor
transitional : Transitional

CollaborationFramework::
TerminalTransition

result : Completion

CommunityFramework::
Completion

CollaborationFramework::
Transitional

1 transitional

CollaborationFramework::
Action

CollaborationFramework::
Initialization

CommunityFramework::
State

11

CollaborationFramework ::
UsageDescriptorusage *
2-36 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002

2

public UsageDescriptors usage;
};

valuetype Initialization :
Transitional
{

};

valuetype SimpleTransition :
Transitional
{
public State target;

};

valuetype LocalTransition :
Transitional
{
public boolean reset;

};

valuetype TerminalTransition :
Transitional
{
public Completion result;

};

Table 2-40Transition State Table

Name Type Properties Purpose

usage UsageDescriptors public Contains a sequence of UsageDescriptor
instance (input and output declarations) that
define required or operational arguments to
the Collaboration apply operation when the
state containing the usage declaration is
active.

transitional Transitional public Declaration of the transitional operator – one
of Initialization, SimpleTransition,
LocalTransition or TerminalTransition.

Table 2-41SimpleTransition State Table

Name Type Properties Purpose

target State public The state to be established as the active state of the
CollaborationProcessor (refer CollaborationProcessor
active_state attribute).
March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-37

2

e

n

ing
2.6.7.2 Initialization

Initialization is a type ofTransitional that declares the potential for establishment of th
active_state as theState instance containing aTrigger that contains anAction that
contains anInitialization . The containingState corresponds to the initalization target.
TheTrigger containing theInitialization may declare a priority value. The value of
priority is considered in the event of implicit initialization arising from client invocatio
of theProcessor start operation. When invoking start, theInitialization with the
highest priority and non-conflicting constraints set is inferred. Alternatively, a
CollaborationProcessor may be explicitly initialized by referencing the
Initialization ’s containingAction label under theapply operations.

SimpleTransition

SimpleTransition is Transitional that enables a state transition from the current
active state to aState declared under by theSimpleTransition target value. A
successful invocation ofapply or apply_arguments on CollaborationProcessor
will result in the change of theCollaborationProcessor active state to the state
referenced by thetarget value.

LocalTransition

LocalTransition enables the possible modification of usage relationships (if the
containingTrigger enables this), and the possibility toreset timeout constraints
associated with the containingTrigger . LocalTransition can be considered as a
transition from the current active state to the same state, where side effects concern
timeout and usage relationships can be declared.

Table 2-42LocalTransition State Table

Name Type Properties Purpose

reset boolean public If true, any timeout conditions established through
Triggers containing Clocks are reset.

Table 2-43TerminalTransition State Table

Name Type Properties Purpose

result Completion public Declaration of processor termination – the hosting
processor will expose the Completion result
instance, indicating the success or failure of the
process (refer CollaborationProcessor state
attribute).
2-38 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002

2

-state

d

b-
Terminal Transition

Starting aCollaborationProcessor is enabled through thestart or initialize
operation. These actions cause the establishment of an initial active state and active
path. Actions such asSimpleTransition enable modification of the active-state-path
leading to the potential exposure of aTerminalTransition action. Once a
TerminalTransition action has been fired, the hosting processor enters a closed an
completed state (refer ProcessState). ACollaborationProcessor implementation
signals this change though modification of thestate attribute on the inherited
Processor interface (and corresponding structured event). This attribute returns a
StateDescriptor which itself contains theCompletion valuetype declared under the
CollaborationModel TerminalTransition (indicatingSuccess or Failure of the
process).

2.6.8 Compound Action Semantics

Two valuetypes define indirect action semantics. The first is aReferral , an action that
references anotherAction instance. The second isCompoundTransition that
introduces the notion of a transition where the target is defined by the result of the
execution of another processor. An implementation ofCollaboration on triggering a
CompoundTransition , uses a factoryCriteria instance defined under thecriteria
field to establish a new sub-processor to the current processor. The result of the su
process execution is exposed by an instance ofCompletion (refer Completion
valuetype). Completion contains a result identifier (referResultClass andResultID).
This identifier is used to establish theAction to apply based on a result to action
mapping .

Figure 2-15 CompoundTransition, Referral and Map

CollaborationFramework::
Action

CollaborationFramework::
CompoundTransition

criteria : Criteria
mapping : Mapping

maps

CollaborationFramework::
Map

class : ResultClass
code : ResultID
directives: Directives
action : Action

mapping *

CollaborationFramework::
Referral

action : Action
directives: Directives

CommunityFramework::
Criteria

1 action

CollaborationFramework ::
Directive

 *

 1

CollaborationFramework ::
Directive

 *

action 1
March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-39

2

n

esult

tion.
Examples of the application of aCompound transition are shown in Chapter 1
“Collaboration Criteria.” The fulfillment transition of the promissory contract model is a
example of aCompoundTransition that uses a bilateral negotiation sub-process
between customer and supplier. The result of the negotiation sub-process raises a r
state that is mapped by the fulfillment transition to one of two possible outcomes
(fulfillment success or failure due to non-fulfillment). A similar use of compound
transition is defined under the multilateral voting model in which an amendment is
defined as a compound transition applying the same process model as the initial mo

2.6.8.1 IDL Specification

valuetype Referral :
Action
{
public CollaborationFramework::Action action; // reference
public CollaborationFramework::Directives directives;

};

valuetype Map
{
public ResultClass class;
public ResultID code;
public CollaborationFramework::Directives directives;
public CollaborationFramework::Action action;

};

valuetype Mapping sequence <Map> ;

valuetype CompoundTransition :
Action
{
public CommunityFramework::Criteria criteria;
public CollaborationFramework::Mapping mapping;

};

Table 2-44Referral State Table

Name Type Properties Purpose

action Action public A reference to the action to invoke (refer
Action) where the action is an existing Action
instance within the containing model.

directives Directives public A sequence of Directive valuetypes that
declare modifications (rename, remove, copy
and move) to the associated Task usage
associations that will be invoked before the
action is handled by the Collaboration
implementation.
2-40 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002

2

n
r

ncrete
2.6.9 Directive

Directive is a utility valuetype contained byTrigger andReferral . It is used to express
an execution directive to an implementation ofCollaboration concerning link
associations on the coordinatingTask . For example, a compound transition can contai
a directive that declares that a link be modified before the transition is fired. Anothe
link directive could be contained in aMap declaring that the result of the compound
transition sub-process must be assigned as an input to the current process. Four co
valuetypes support the abstractDirective interface -Duplicate , Move , Remove , and
Constructor .

Table 2-45Map State Table

Name Type Properties Purpose

class ResultClass public One of the enumerated values of SUCCESS
or FAILURE

code ResultID public An optional Completion code that qualifies a
success or failure class.

action Action public The action to invoke (refer Action).

directives Directives public A sequence of Directive valuetypes that
declare modifications (rename, remove, copy
and move) to the associated Task usage
associations that will be invoked before the
action is handled by the Collaboration
implementation.

Table 2-46CompoundTransition State Table

Name Type Properties Purpose

criteria Criteria public An instance of Criteria that is to be used as
the criteria for sub-process establishment
under a ResourceFactory.

mapping Mapping public A sequence of Map instances defining the
actions to be applied in the event of an
identified result status. An implementation is
responsible for ensuring a complete mapping
of all possible sub-process result states to
actions within the parent processor prior to
initialization (refer verify operation on
Collaboration interface).
March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-41

2

ed

pe;

d

2.6.9.1 Duplicate

Instructs an implementation ofCollaboration to create a new consumption link named
target based on the state of asource link. If the value ofinvert is false, the type of
link created is the same as the source link. Ifinvert is true, then if the source link is a
Consumption link, the created link will be aProduction link and vice-versa. The
resource associated to the new target link shall be the same as the resource declar
under the source link.

2.6.9.2 Move

TheMove directive is a directive to aCollaboration implementation to change a
sourceConsumption link name to the value of target. If the invert value of theMove
instance is true, the move directive implies replacement of the link with its inverse ty
that is, if the source link is a type ofConsumption link, then replace the link with a
type ofProduction link. If the source link is a type ofProduction link, then replace
the link with a type ofConsumption link.

2.6.9.3 Remove

TheRemove directive directs aCollaboration implementation to remove a tagged
Usage link (with a tag value corresponding tosource) from the coordinatingTask .

2.6.9.4 Constructor

TheConstructor directive directs aCollaboration implementation to create a new
resource based on the suppliedcriteria and associate the resource under a new name
Consumption link on the coordinatingTask using thetarget value as the links tag
value.

2.6.9.5 IDL Specification

abstract interface Directive {};
valuetype Directives sequence <Directive>;

valuetype Duplicate
supports Directive
{
public Label source;
public Label target;
public boolean invert;

};

valuetype Move
supports Directive
{
public Label source;
public Label target;
2-42 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types March 2002

2

public boolean invert;
};

 valuetype Remove
supports Directive
{
public Label source;

};

valuetype Constructor
supports Directive
{
public Label target;
public CommunityFramework::Criteria criteria;

};

Table 2-47Duplicate State Table

Name Type Properties Purpose

source Label public The name (tag value) of an existing link held
by the coordinating Task.

target Label public The name (tag value) of a Usage Link to be
created or replaced on the coordinating Task.

invert boolean public If true, an implementation of Collaboration is
required to create a new Usage link using the
inverse type; that is, if source is Consumption,
then target type is Production. If source is
Production, then target type is Consumption.
The new usage link is added to the
coordinating Task.

Table 2-48Move State Table

Name Type Properties Purpose

source Label public The name (tag value) of an existing link held
by the coordinating Task.

target Label public The name (tag value) of a Usage Link to be
created or replaced on the coordinating Task.

invert boolean public If true, an implementation of Collaboration is
required to replace an existing Usage link
with the inverse; that is, Consumption is
replaced by Production, Production is
replaced by Consumption.
March 2002 Negotiation Facility: CollaborationProcessor, CollaborationModel, and Supporting Types 2-43

2

o

2.7 UML Overview

2.7.1 Processor and Related Valuetypes

Table 2-49Remove State Table

Name Type Properties Purpose

source Label public The name of a Usage Link to be removed
from the coordinating Task.

Table 2-50Constructor State Table

Name Type Properties Purpose

target Label public The name of a Usage Link to be created and added t
the coordinating Task (replacing any existing usage
link of the same name), using the supplied criteria.

criteria Criteria public An instance of Criteria describing the resource to be
created.

processed by 1 Session::
Task

processes *

CommunityFramework::
Simulator

1 modelCommunityFramework::
Model

CollaborationFramework::
Processor

controller()
verify()
focus()

state :StateDescriptor

Session::
AbstractResource

usage:UsageDescriptor

CollaborationFramework::
ProcessorModel

1 modelCollaborationFramework::
UsageDescriptor

* usage

CommunityFramework::
Control

state: ProcessState (enum)
problems: Problems
completion:Completion

CollaborationFramework::
StateDescriptor

result:ResultClass
code: ResultID

CollaborationFramework::
Completion

0..1 1 state

CollaborationFramework ::
Master

CollaborationFramework ::
Slave

controls *

* controlled by

CommunityFramework ::
 Problem

problems *

tag: string
required: boolean
implied: boolean
type: TypeCode

CollaborationFramework::
InputDescriptor

tag: string
type: TypeCode

CollaborationFramework::
OutputDescriptor
2-44 Negotiation Facility Specification, v1.0 March 2002

2

2.7.2 Encounter

2.7.3 Voting

2.7.4 Engagement

Session::
Task

CollaborationFramework::
Encounter

CommunityFramework::
Membership

Session::
User

recognises * processed by 1

processes *member of * owns *

owned by 1CommunityFramework::
MembershipModel

1 model

CollaborationFramework ::
Vote

vote()

vcount : VoteCount

CollaborationFramework::
VoteModel

ceiling :VoteCeiling
policy :VotePolicy
single: boolean
lifetime : Duration

CollaborationFramework::
VoteProcessor

CollaborationFramework::
ProcessorModel

1 model

CollaborationFramework::
GenericProcessor

1 model

CollaborationFramework::
EngagementProcessor

CollaborationFramework::
EngagementModel

policy : any

CollaborationFramework::
ProcessorModel

1 model

CollaborationFramework::
GenericProcessor

CollaborationFramework::
Engagement

engage()

1 model
March 2002 Negotiation Facility: UML Overview 2-45

2

2.7.5 Collaboration and CollaborationModel

CollaborationFramework::
ProcessorModel

CommunityFramework::
State

1 model

CollaborationFramework::
GenericProcessor

CollaborationFramework::
 Collaboration

1 model

CollaborationFramework::
CollaborationProcessor

apply()
apply_arguments()

active_state : Label
timeout_list : TimeoutSequence

CollaborationFramework::
CollaborationModel

root: Role
state: State

CollaborationFramework::
Role

root 1
2-46 Negotiation Facility Specification, v1.0 March 2002

2

2.7.6 Valuetypes Supporting CollaborationModel

CollaborationFramework::
State

triggers : Triggers
states : States

* states

CommunityFramework::
Control

trigger * CollaborationFramework::
Trigger

priority : long
guard : Guard
directives : Directives
action : Action

CollaborationFramework::
Action

CollaborationFramework::
LocalTransition

reset : boolean

CollaborationFramework::
SimpleTransition

target : State

CollaborationFramework::
CompoundTransition

criteria : Criteria
mapping : Mapping

mapping *

CollaborationFramework::
Map

class : ResultClass
code : ResultID
directives : Directives
action : Action

1 action

CollaborationFramework::
Transition

transitional :Transitional
usage: UsageDescriptors

1 target

CollaborationFramework::
CollaborationModel

CommunityFramework::
Criteria

CommunityFramework ::
Role

role 1 role 1

CollaborationFramework::
TerminalTransition

result : Completion

1 action

CommunityFramework ::
Completion

CollaborationFramework::
Clock

delay : Duration

CollaborationFramework::
Launch

role : Role
mode : TriggerMode

CommunityFramework::
Guard

CollaborationFramework::
Transitional

1 transitional

CommunityFramework ::
State

CollaborationFramework::
Initialization

CommunityFramework::
Directive

directives *

guard 1

state 1

CollaborationFramework ::
UsageDescriptorusage *

CommunityFramework::
Directive

CollaborationFramework::
Remove

source : Label

CollaborationFramework::
Constructor

target : Label
criteria : Criteria

1 criteria

1 criteria

CollaborationFramework::
Move

source : Label
target : Label
invert : boolean

CollaborationFramework::
Duplicate

source : Label
target : Label
invert : boolean

CollaborationFramework::
 Referral

directives : Directives
action : Action

CollaborationFramework :
Action

CollaborationFramework:
Directive

*

1

*

CommunityFramework::
Criteria
March 2002 Negotiation Facility: UML Overview 2-47

2

2.8 CollaborationFramework Complete IDL

#ifndef _COLLABORATION_IDL_
#define _COLLABORATION_IDL_
#include <CommunityFramework.idl>
#pragma prefix "omg.org"

module CollaborationFramework{

#pragma version CollaborationFramework 2.0

// forward declarations

abstract valuetype Action;
abstract valuetype Transitional;
abstract valuetype Guard;
abstract valuetype Proof;
abstract valuetype Evidence;
abstract valuetype UsageDescriptor;

valuetype State;
valuetype Initialization;
valuetype Trigger;
valuetype Transition;
valuetype SimpleTransition;
valuetype LocalTransition;
valuetype TerminalTransition;
valuetype CompoundTransition;
valuetype Referral;

abstract interface Slave;
abstract interface Master;
abstract interface Collaboration;
abstract interface Engagement;
abstract interface Vote;
abstract interface Directive;

interface Encounter;
interface Processor;
interface VoteProcessor;
interface EngagementProcessor;
interface CollaborationProcessor;

// typedefs

valuetype States sequence <State> ;
valuetype Triggers sequence <Trigger> ;
valuetype Initializations sequence <Initialization> ;
valuetype UsageDescriptors sequence <UsageDescriptor> ;
valuetype Slaves sequence <Slave> ;
2-48 Negotiation Facility Specification, v1.0 March 2002

2

valuetype Directives sequence <Directive>;
valuetype Label CommunityFramework::Label;
valuetype ProcessorState Session::task_state;
valuetype ResultID unsigned long ;
valuetype TypeCode CORBA::TypeCode;
valuetype ResultClass boolean;

// structures

valuetype Duration {
public TimeBase::TimeT value;

};

struct VoteCeiling{
short numerator;
short denominator;

};

enum VotePolicy{
AFFERMATIVE_MAJORITY,
NON_ABSTAINING_MAJORITY

};

abstract valuetype Proof {};
abstract valuetype Evidence {};

enum VoteDescriptor{
NO,
YES,
ABSTAIN

};

valuetype VoteStatement :
Evidence
{
public VoteDescriptor vote;

};

valuetype VoteReceipt :
Proof
{
public Session::Timestamp timestamp;
public VoteStatement statement;

};

valuetype VoteCount :
Proof
{
public Session::Timestamp timestamp;
public long yes;
public long no;
March 2002 Negotiation Facility: CollaborationFramework Complete IDL 2-49

2

public long abstain;
};

valuetype Timeout{
public Label identifier;
public Session::Timestamp timestamp;

};

valuetype TimeoutSequence sequence <Timeout> ;

enum TriggerMode{
INITIATOR,
RESPONDENT,
PARTICIPANT

};

valuetype Completion
{
public ResultClass result;
public ResultID code;

};

valuetype StateDescriptor
{
public ProcessorState state;
public CollaborationFramework::Completion completion;
public CommunityFramework::Problems problems;

};

// exceptions

exception InvalidTrigger{
CommunityFramework::Problem problem;
Label identifier;

};

exception ApplyFailure{
CommunityFramework::Problem problem;
Label identifier;

};

exception InitializationFailure{
CommunityFramework::Problem problem;
Label identifier;

};

exception EngagementProblem{
CollaborationFramework::Evidence evidence;
CommunityFramework::Problem problem;

};
2-50 Negotiation Facility Specification, v1.0 March 2002

2

interface SlaveIterator : CosCollection :: Iterator { };

// coordination link

abstract valuetype Coordination : Session::Execution{ };

valuetype Monitors : Coordination {
public Processor resource;

};

valuetype Coordinates : Monitors {};

valuetype CoordinatedBy : Coordination {
public Session::Task resource;

};

// management link

abstract valuetype Management : Session::Link{ };

valuetype Controls : Management {
public Slave resource;

};

valuetype ControlledBy : Management {
public Master resource;

};

/**
Encounter
*/

interface Encounter :
Session::Task,
CommunityFramework::Membership
{

};

valuetype EncounterCriteria :
CommunityFramework::Criteria
{
public CommunityFramework::MembershipModel model;

};

/*
ProcessorModel
*/

abstract valuetype UsageDescriptor { };

valuetype InputDescriptor :
March 2002 Negotiation Facility: CollaborationFramework Complete IDL 2-51

2

UsageDescriptor
{
public string tag;
public boolean required;
public TypeCode type;

};

valuetype OutputDescriptor :
UsageDescriptor
{
public string tag;
public TypeCode type;

};

valuetype ProcessorModel :
CommunityFramework::Control
supports CommunityFramework::Model
{
public UsageDescriptors usage;

};

/**
Master, Slave and Processor.
*/

abstract interface Master {
SlaveIterator slaves (

in long max_number,
out Slaves slaves

);
};

abstract interface Slave {
readonly attribute CollaborationFramework::Master master;

};

abstract interface Processor :
Session::AbstractResource,
CommunityFramework::Simulator,
Master, Slave
{

readonly attribute StateDescriptor state;

Session::Task coordinator(
) raises (

Session::ResourceUnavailable
);

CommunityFramework::Problems verify();
2-52 Negotiation Facility Specification, v1.0 March 2002

2

void start (
) raises (

Session::CannotStart,
Session::AlreadyRunning

);
void suspend (
) raises (

Session::CannotSuspend,
Session::CurrentlySuspended

);
void stop (
) raises (

Session::CannotStop,
Session::NotRunning

);
};

valuetype ProcessorCriteria :
CommunityFramework::Criteria
{
public ProcessorModel model;

};

/**
Engagement
*/

abstract interface Engagement
{
Proof engage(

in CollaborationFramework::Evidence evidence
) raises (

EngagementProblem
);

};

interface EngagementProcessor :
Engagement,
Processor
{

};

valuetype EngagementModel :
ProcessorModel
{
public CommunityFramework::Role role;
public Duration lifetime;
public boolean unilateral;

};

/**
March 2002 Negotiation Facility: CollaborationFramework Complete IDL 2-53

2

Vote.
*/

abstract interface Vote
{
readonly attribute VoteCount vcount;

VoteReceipt vote(
in VoteDescriptor value

);
};

interface VoteProcessor :
Vote,
Processor
{

};

valuetype VoteModel :
ProcessorModel
{
public VoteCeiling ceiling;
public VotePolicy policy;
public boolean single;
public Duration lifetime;

};

/**
Collaboration
*/

// directive

abstract interface Directive {};

valuetype Duplicate
supports Directive
{
public Label source;
public Label target;
public boolean invert;

};

valuetype Move
supports Directive
{
public Label source;
public Label target;
public boolean invert;

};
2-54 Negotiation Facility Specification, v1.0 March 2002

2

valuetype Remove
supports Directive
{
public Label source;

};

valuetype Constructor
supports Directive
{
public Label target;
public CommunityFramework::Criteria criteria;

};

// apply arguments

valuetype ApplyArgument
{
public CollaborationFramework::Label label;
public Session::AbstractResource value;

};

valuetype ApplyArguments sequence <ApplyArgument> ;

// collaboration

abstract interface Collaboration
{

readonly attribute Label active_state;
readonly attribute TimeoutSequence timeout_list;

void apply(
in Label identifier

) raises (
InvalidTrigger,
ApplyFailure

);

void apply_arguments(
in Label identifier,
in ApplyArguments args

) raises (
InvalidTrigger,
ApplyFailure

);
};

interface CollaborationProcessor :
Collaboration,
Processor
{

March 2002 Negotiation Facility: CollaborationFramework Complete IDL 2-55

2

};

/**
Collaboration controls
*/

valuetype State :
CommunityFramework::Control
{
public CollaborationFramework::Triggers triggers;
public CollaborationFramework::States states;

};

abstract valuetype Guard {};

valuetype Clock :
Guard
{
public Duration timeout;

};

valuetype Launch :
Guard
{
public TriggerMode mode;
public CommunityFramework::Role role;

};

valuetype Trigger :
CommunityFramework::Control
{
public long priority;
public CollaborationFramework::Guard guard;
public CollaborationFramework::Directives directives; // precondition
public CollaborationFramework::Action action;

};

abstract valuetype Action { };

abstract valuetype Transitional { };

valuetype Transition :
Action
{
public CollaborationFramework::Transitional transitional;
public UsageDescriptors usage;

};

valuetype Initialization :
Transitional
{

2-56 Negotiation Facility Specification, v1.0 March 2002

2

};

valuetype SimpleTransition :
Transitional
{
public State target;

};

valuetype LocalTransition :
Transitional
{
public boolean reset;

};

valuetype TerminalTransition :
Transitional
{
public Completion result;

};

valuetype Referral :
Action
{
public CollaborationFramework::Action action;
public CollaborationFramework::Directives directives;

};

valuetype Map
{
public ResultClass class;
public ResultID code;
public CollaborationFramework::Directives directives;
public CollaborationFramework::Action action;

};

valuetype Mapping sequence <Map> ;

valuetype CompoundTransition :
Action
{
public CommunityFramework::Criteria criteria;
public CollaborationFramework::Mapping mapping;

};

valuetype CollaborationModel :
ProcessorModel
{
public CommunityFramework::Role role;
March 2002 Negotiation Facility: CollaborationFramework Complete IDL 2-57

2

public CollaborationFramework::State state;
};

};

#endif // _COLLABORATION_IDL_
2-58 Negotiation Facility Specification, v1.0 March 2002

CommunityFramework 3
Contents

This chapter contains the following sections.

Section Title Page

“Overview” 3-2

“Model, Simulator, and Supporting Valuetypes” 3-3

“Membership, MembershipPolicy, and Member Link” 3-5

“Roles and Role Related Policy” 3-16

“Community, Agency, LegalEntity, and Related
Valuetypes”

3-19

“General Utility Interfaces” 3-21

“UML Overview” 3-25

“CommunityFramework Complete IDL” 3-25
March 2002 Negotiation Facility Specification, v1.0 3-1

3

s

es

s

t

ed

and
3.1 Overview

TheCommunityFramework defines a specialization of the Task and Session
Workspace calledCommunity and a specialization ofCommunity calledAgency .
Community is defined as a specialization ofWorkspace and an abstract interface
calledMembership . Agency is a specialization of aCommunity that introduces the
abstract interfaceLegalEntity .

Table 3-1 Principle Interfaces - Summary Table

Interface Description

Community The Community type combines the definition of Workspace from the Task
and Session framework. Community is derived from the abstract interface
Membership and Simulator.

Agency Agency extends Community through the addition of the abstract interface
named LegalEntity.

GenericResource A type of AbstractResource used to wrap another object.

Table 3-2 Abstract Interfaces and Supporting Valuetypes - Summary Table

Interface Description

Simulator An abstract interface used to expose a valuetype supporting the Model
valuetype.

Model An abstract interface supported by valuetypes used for models that declar
execution policy.

Control A valuetype with identity, a label and human readable description.

Role A valuetype derived from Control that defines a hierarchy of business role
and associated role policies.

RolePolicy A valuetype defining policy of a business role.

MembershipModel An extension of Control supporting the abstract Membership interface tha
exposes Membership policy and a role hierarchy.

MembershipPolicy A valuetype used to define the policy applicable to a Membership. Contain
by MembershipModel.

Membership Membership is an abstract interface that enables association, qualification
retraction of instances of the type User with a concrete type derived from
Membership (such as Community and Agency). Users are associated to a
Membership through a type of Link called Member.

Member A valuetype used to describe the association of a User to a Membership
(inverse of Recognizes).

Recognizes A valuetype used to describe the association of a Membership to a User
(inverse of Member)
3-2 Negotiation Facility Specification, v1.0 March 2002

3

ria

n

o

3.2 Model, Simulator, and Supporting Valuetypes

The interfaces defined under theCommunityFramework separate the notion of service
object managed by a particular domain, (typically reference objects derived from the
Task and Sessionspecification) from valuetype used to describe policy or state. An
abstract interface namedSimulator defines themodel attribute that returns a valuetype
supporting the abstractModel interface. From a computational point of view, a by-
reference object such asCommunity or Agency is a manager and container of a
related model valuetype.

3.2.1 Model

A Model is an abstract interface supported by valuetypes exposed by theSimulator
model attribute. An example of a valuetype that supportsModel is MembershipModel
(additional types supporting theModel abstract interface are defined under the
CollaborationFramework).

3.2.1.1 IDL Specification

abstract interface Model
{

};

Table 3-3 Factory Related Interfaces and Valuetypes - Summary Table

Interface Description

ResourceFactory An abstract interface defining factory operations based on supplied Crite
valuetypes.

Problem A valuetype used to describe issues relating or contributing to an exceptio
condition.

Criteria Abstract interface supported by ExternalCriteria, CommunityCriteria,
AgencyCriteria and GenericCriteria.

ExternalCriteria A criteria valuetype used as a container of an XML public and system
identifier of criteria related information resources.

CommunityCriteria A valuetype used as an argument to a resource factory. It contains a
MembershipModel that defines the business semantics of the community t
be created.

AgencyCriteria A valuetype used as an argument to a resource factory. It contains a
MembershipModel that defines the business semantics of the agency to be
created.

GenericCriteria A valuetype used as a criteria argument to a resource factory.
March 2002 Negotiation Facility: Model, Simulator, and Supporting Valuetypes 3-3

3

ient

the

x

3.2.2 Simulator

A Simulator is an abstract interface that defines a single attribute through which a cl
can access a relatedModel . A model valuetype defines constraints and operational
semantics. Implementations of concrete simulators (such asCommunity andAgency)
are responsible for ensuring that the appropriate type of model is returned through to
client. For example, aCommunity implementation of themodel operation will return
an instance ofMembershipModel .

Figure 3-1 Model and Simulator

3.2.2.1 IDL Specification

abstract interface Simulator
{
readonly attribute CommunityFramework::Model model;

};

3.2.3 Control

Control is an identifiable valuetype used in definition of valuetypes defining comple
models. Control contains a human readable label and descriptive note.Control is used
as a utility state container by several valuetypes defined within theCommunity and
Collaboration frameworks.

3.2.3.1 IDL Specification

valuetype Label CORBA::StringValue;
valuetype Note CORBA::StringValue;

Table 3-4 Simulator Attribute Table

Name Type Properties Purpose

model Model readonly Access to a valuetype supporting the abstract Model interface.

CommunityFramework::
Membership

CommunityFramework ::
Simulator

model

1 modelCommunityFramework ::
Model

CommunityFramework ::
MembershipModel

supports
extends
3-4 Negotiation Facility Specification, v1.0 March 2002

3

n

valuetype Control :
{
public CommunityFramework::Label label;
public CommunityFramework::Note note;

};

3.3 Membership, MembershipPolicy, and Member Link

The abstractMembership interface declares a set of operations supporting the
association ofUsers (referTask and Sessionspecification) under a single policy domain.
Operations provide support for the addition, modification and removal of aUser
association, access to the quorum status of a membership, and access to informatio
about the set of associatedUsers . Membership to User association is through a link
namedMember (derived from the Task and Session Link).

Figure 3-2 Membership Object Model

Table 3-5 Control State Table

Name Type Properties Purpose

label Label public Name of the control.

note Note public Descriptive text.

CommunityFramework::
Membership

CommunityFramework ::
Simulator

CommunityFramework ::
Model

CommunityFramework ::
MembershipModel

1 model

Session::
User

grants membership to *
(declared under Member link)

is a member of *
(declared under Member link)

CommunityFramework::
Community

CollaborationFramework::
Encounter

CommunityFramework::
Agency
March 2002 Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-5

3

n

n

3.3.1 Membership

Membership is an abstract interface inherited byCommunity that defines operations
supporting association and retraction of users underMember links, the qualification of
members in terms of business roles, and operations supporting access to informatio
about associatedUsers . A MembershipModel qualifies membership behavior. The
MembershipModel defines a hierarchy of business roles that qualify the associatio
between aUser and theMembership . In addition,MembershipModel declares
policy concerning privacy ofMember relationship information,User to role
association, and exclusivity of the membership.

Figure 3-3 Membership Abstract Interface Object Model

3.3.1.1 IDL Specification

abstract interface Membership :
Simulator
{

readonly attribute RecruitmentStatus recruitment_status;
readonly attribute MembershipCount membership_count;
readonly attribute boolean quorum_status;

RoleStatus get_quorum_status(

get_quorum_status()
join()
leave()
add_roles()
remove_roles()
is_member()
has_role()
get_member_roles()
list_members()
list_members_using()

recruitment_status
membership_count
quorum_status

CommunityFramework::
Membership

CommunityFramework ::
Simulator

1 modelCommunityFramework ::
MembershipModel

Session::
User

grants membership to *
(declared under Member link)

is a member of *
(declared under Member link)

CommunityFramework::
Community

CollaborationFramework::
Encounter
3-6 Negotiation Facility Specification, v1.0 March 2002

3

in Label identifier
);

Member join(
in Session::User user,
in Labels roles

) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
RoleAssociationConflict,
MembershipRejected,
UnknownRole

);

void leave(
in CommunityFramework::Member member

) raises (
RecruitmentConflict,
UnknownMember

);

void add_roles(
in CommunityFramework::Member member,
in Labels roles

) raises (
UnknownMember,
RoleAssociationConflict,
UnknownRole

);

void remove_roles(
in CommunityFramework::Member member,
in Labels roles

) raises (
UnknownRole,
UnknownMember,
CannotRemoveRole

);

boolean is_member(
in Session::User user

) raises (
PrivacyConflict

);

boolean has_role(
in Session::User user,
in Label role

) raises (
PrivacyConflict
March 2002 Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-7

3

);

Labels get_member_roles(
in Session::User user

) raises (
PrivacyConflict

);

Session::UserIterator list_members(
in long max_number,
out Session::Users list

) raises (
PrivacyConflict

);

Session::UserIterator list_members_using(
in Label role,
in long max_number,
out Session::Users list

) raises (
PrivacyConflict

);

};

exception PrivacyConflict
{
PrivacyPolicyValue reason;

};

exception AttemptedCeilingViolation{
Membership source;

};

exception AttemptedExclusivityViolation{
Membership source;

};

exception UnknownRole{
Membership source;

};

exception UnknownMember{
Membership source;
Member link;

};

exception UnknownIdentifier{
Membership source;
Label identifier;

};
3-8 Negotiation Facility Specification, v1.0 March 2002

3

exception MembershipRejected{
Membership source;
string reason;

};

exception RoleAssociationConflict{
Membership source;
string reason;
Label role;

};

exception CannotRemoveRole{
Membership source;
string reason;
Label role;

};

exception RecruitmentConflict{
Membership source;
RecruitmentStatus reason;

};

3.3.1.2 Operations supporting association and retraction of Users

The join operation allows a client to associate aUser reference with aMembership
under a set of declared business roles (refer MembershipPolicy). Thejoin operation
returns aMember instance to be maintained by theUser instance.

Member join(
in Session::User user,
in Lables roles

) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
RoleAssociationConflict,
MembershipRejected,
UnknownRole

);

The leave operation disassociates aMember from aMembership .

void leave(
in CommunityFramework::Member member

) raises (
RecruitmentConflict,
UnknownMember

);
March 2002 Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-9

3

hip

for

an

n

3.3.1.3 Operations supporting modification of business roles assigned to
Members

Theadd_roles operation enables the addition of business roles attributed to aMember .

void add_roles(
in CommunityFramework::Member member,
in Labels roles

) raises (
UnknownMember,
RoleAssociationConflict,
UnknownRole

);

The remove_roles operation enables the retraction of business roles attributed to a
Member .

void remove_roles(
in CommunityFramework::Member member,
in Labels roles

) raises (
UnknownRole,
UnknownMember,
CannotRemoveRole

);

Table 3-6 Exceptions Related to the Join and Leave Operations

Exception Reason

AttemptedCeilingViolation An attempt is made to add a member association to a Members
where the number of Members is equal to or greater than the
ceiling state field value exposed by the associated MemberPolicy
instance.

AttemptedExclusivityViolation If the associated MemberPolicy declares exclusive as true, then
any identifiable principal (CORBA Current Principal) there may
be only one Member association for that principal.

RecruitmentConflict May be raised at the discretion of an implementation when an
attempt is made to join or leave a Membership when the
recruitment status is CLOSED.

RoleAssociationConflict Raised when an attempt is made to associate a Member to an
abstract role.

MembershipRejected Implementation specific decision to disallow a join request.

UnknownRole Raised when an attempt is made to association a Member under
unknown role.

UnknownMember May be raised at the discretion of an implementation following a
attempt to disassociate a Member from a Membership.
3-10 Negotiation Facility Specification, v1.0 March 2002

3

,

n

pt
3.3.1.4 Attributes and Operations supporting access to recruitment and
quorum state

The following attribute returns the recruitment status of aMembership . The value
returned is one of the enumeration valuesOPEN_MEMBERSHIP or
CLOSED_MEMBERSHIP. Modification of the recruitment status of aMembership
is implementation specific. When aMembership is under a
CLOSED_MEMBERSHIP, an implementation may raise theRecruitmentConflict
exception.

enum RecruitmentStatus{
OPEN_MEMBERSHIP,
CLOSED_MEMBERSHIP

};

// from Membership

readonly attribute RecruitmentStatus recruitment_status;

The following attribute supports access to the number of associatedMember instances.
The valuetypeMembershipCount contains two values, the number ofMember
instances associated to theMembership (static field), and the number ofMember
instances referencing connectedUsers at the time of invocation (refer Task and Session
User, Connected State).

valuetype MembershipCount{
public long static;
public long active;

};

// from Membership

readonly attribute MembershipCount membership_count;

Table 3-7 Exceptions Related to the Role Association

Exception Reason

UnknownRole Raised following an attempt to associate or disassociate a Member whe
the supplied role identifier is unknown; that is, not defined within the
associated MembershipPolicy.

UnknownMember May be raised at the discretion of an implementation following an attem
to add or remove a role from/to a Member.

CannotRemoveRole Raised if a role removal would result in no role association towards the
Member.
March 2002 Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-11

3

of
ned

um
The following attribute returns true if all roles defined within the associated
MembershipPolicy have met quorum – that is to say that for each role, the number
member instances associated with that role, equal or exceed the quorum value defi
under theRolePolicy associated with the given role (refer RolePolicy).

// from Membership

readonly attribute boolean quorum_status;

Quorum status relating to individual roles is available through theget_quorum_status
operation. The identifier argument corresponds to identify of a role exposed within a
MembershipModel .

// from Membership

RoleStatus get_quorum_status(
in Label identifier

);

PossibleQuorumStatus values correspond toQUORUM_VALID , indicating that all
roles have reached quorum,QUORUM_PENDING, indicating that the role has not
reached quorum, and the special case ofQUORUM_UNREACHABLE , indicating that
the maximum number of members required for a particular role is less than the minim
required.

enum QuorumStatus {
QUORUM_VALID,
QUORUM_PENDING,
QUORUM_UNREACHABLE

};

valuetype RoleStatus
{
public Label identifier;
public MembershipCount count;
public QuorumStatus status;

};

3.3.1.5 Operations supporting access to information about members

The is_member operation returns true if the suppliedUser is a member of the
membership.

// from Membership

boolean is_member(
in Session::User user

) raises (
PrivacyConflict

);
3-12 Negotiation Facility Specification, v1.0 March 2002

3

Thehas_role operation returns true if the suppliedUser is associated to the
Membership under a role corresponding to the supplied identifier.

// from Membership

boolean has_role(
in Session::User user,
in Label role

) raises (
PrivacyConflict

);

Theget_member_roles operation returns the sequence of all role identifiers
associated with the supplied user.

// from Membership

Labels get_member_roles(
in Session::User user

) raises (
PrivacyConflict

);

The list_members operation returns an iterator of allUser instances associated with
theMembership . Themax_number argument constrains the maximum number of
User instances to include in the returned list sequence.

// from Membership

Session::UserIterator list_members(
in long max_number,
out Session::Users list

) raises (
PrivacyConflict

);

The list_members_using operation returns an iterator of allUser instances
associated with theMembership under a supplied role. Themax_number argument
constrains the maximum number ofMember instances to include in the returned list
sequence.

// from Membership

Session::UserIterator list_members_using (
in Label role,
in long max_number,
out Session::Users list

) raises (
PrivacyConflict

);
March 2002 Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-13

3

y

3.3.2 MembershipModel

MembershipModel is a valuetype that extends theModel valuetype through addition
of fields containing aMembershipPolicy and aRole representing the root business
role of a role hierarchy.

3.3.2.1 IDL Specification

valuetype MembershipModel :
Control

supports Model
{
public MembershipPolicy policy;
public CommunityFramework::Role role;

};

3.3.3 MembershipPolicy

TheMembershipPolicy valuetype is contained within theCommunityModel
valuetype (and other valuetypes defined under theCollaborationFramework).
MembershipPolicy defines privacy and exclusivity policy of the containing
Membership .

3.3.3.1 IDL Specification

enum PrivacyPolicyValue
{
PUBLIC_DISCLOSURE,
RESTRICTED_DISCLOSURE,
PRIVATE_DISCLOSURE

Table 3-8 Exceptions Related to Information About Members

Exception Reason

PrivacyConflict Raised in the case of a conflict between the invocation and the privacy polic
defined under the Membership’s MemberPolicy instance (refer
MembershipPolicy, Privacy Constraints).

Table 3-9 MembershipModel State Table

Name Type Properties Purpose

policy MembershipPolicy public Defines privacy and exclusivity policy of the
containing Membership.

role Role public The root Role instance establishing a
business role hierarchy.
3-14 Negotiation Facility Specification, v1.0 March 2002

3

s.
les
bers

to

to

to
};

valuetype MembershipPolicy
{
public PrivacyPolicyValue privacy;
public boolean exclusive;

};

3.3.3.2 Privacy Constraints

TheMembershipPolicy privacy attribute exposes an enumeration of privacy qualifier
Each qualifier defines a level of information access concerning members and the ro
they have. Privacy constraints refer to structural information (the association of mem
to a membership) and member role attribution.

3.3.4 Member and Recognizes Link

Member is a type ofPrivilege link (refer Task and Session) that defines relationship
between aMembership and aUser. Recognizes is the inverse association of
Member that associates aMembership with a User. A Member instance when held
by aMembership implementation references the participatingUser. The inverse
relationship, held by an implementation ofUser, contains a reference to the target
Membership .

Table 3-10Membership Policy State Table

Name Type Properties Purpose

privacy PrivacyPolicyValue public Qualification of the extent of information to
be made available to clients (refer Privacy
Constraints).

exclusive boolean public Restricts the number of Member instances
associated to a Membership to 1 for a given
principal identity (refer CORBA::Current).

Table 3-11PrivacyPolicyValue Enumeration Table

Value Description

PUBLIC_DISCLOSURE Operations may return structural and member role associations
non-members.

RESTRICTED_DISCLOSURE Operations may return structural and member role associations
members that share a common root Membership (where a root
membership is derived from navigation of collection relationships
to higher-level membership instances).

PRIVATE_DISCLOSURE Operations may return structural and member role associations
members of the same Membership.
March 2002 Negotiation Facility: Membership, MembershipPolicy, and Member Link 3-15

3

le

s

g
t

ing
3.3.4.1 IDL Specification

valuetype Member : Session::Privilege {
public Membership resource;

};

valuetype Recognizes : Session::Privilege {
public Session::User resource;
public Labels roles;

};

3.4 Roles and Role Related Policy

A business role hierarchy is defined with theRole valuetype. The hierarchy declares a
set role instances against which members can be implicitly or explicitly associated.

3.4.1 Role

Role is a valuetype that declares the notion of a “business role” of aUser. The state
fields label andnote inherited fromControl are used to associate a role name and ro
description. Role supplements this information with an additional three state fields,
policy , is_abstract , androles . The roles field contains a sequence of role instance
through which role hierarchies can be constructed. The policy field value isRolePolicy
valuetype that qualifies the quorum, ceiling, quorum assessment and quorum policy
applicable to the containing role. ARole can be declared as an abstract role by settin
the is_abstract state field value to true. Declaring the role as abstract disables direc
association of aUser to theRole under aMembership . Instead, members can
associate lower-level roles, thereby implicitly associating themselves with the contain
roles.

Table 3-12Member State Table

Name Type Properties Purpose

resource Membership public The reference to a Membership that the
User, holding this link is a member of.

Table 3-13Recognizes State Table

Name Type Properties Purpose

resource User public The reference to a User that is a recognized
member of the Membership holding this link.

roles Labels public A sequence of role identifies managed by the
Membership implementation that the
membership has granted to the Member.
3-16 Negotiation Facility Specification, v1.0 March 2002

3

and
er”

g

Examples of business role hierarchies include the logical association of “customer”
“supplier” as roles under a parent named “signatories.” In this example, both “custom
and “supplier” would be modeled asRole instances withis_abstract set to false, and
contained within a singleRole named “signatories.” By setting the “signatories” role
is_abstract value to true,Members cannot directly associate to this role. Instead,
Members associating to either “customer” or “supplier” are implicitly granted
“signatory” association.

An implementation is responsible for ensuring the consistency of quorum and ceilin
values across a role hierarchy.

Figure 3-4 Role and Role Policy Object Model

3.4.1.1 IDL Specification

valuetype Role :
Control

{
public RolePolicy policy;
public CommunityFramework::Roles roles;
public boolean is_abstract;

};

Table 3-14Role State Table

Name Type Properties Purpose

policy RolePolicy public Defines policy associated with an instance of
RoleContainer or RoleElement. If null, no direct
policy constraint is implied.

CommunityFramework ::
Control

policy: RolePolicy
is_abstract: boolean
roles : Roles

CommunityFramework::
Role

policy 0..1

quorum : long
ceiling : long
assessment: enum
policy: enum

CommunityFramework::
RolePolicy

roles *
March 2002 Negotiation Facility: Roles and Role Related Policy 3-17

3

ar

r of

f a
In

ng
a

ed
3.4.2 RolePolicy

RolePolicy is a valuetype that defines ceiling limits and quorum policy for a particul
role. The value of the quorum filed defines the minimum number ofMembers that must
be associated with the role that the policy is associated with before the role can be
considered to have reached quorum. The ceiling field defines the maximum numbe
Members that may be associated under the role. The policy field exposes a
RolePolicy value that details the mechanism to quorum calculations. In the case o
null value for policy or assessment, the value shall be inferred by the parent policy.
the case of no parent policy declaration, quorum policy shall beSIMPLE and assessment
policy shall beLAZY (representing the least restrictive case). The absence of a ceili
value shall indicate no limit on the number of associated members. The absence of
quorum value shall imply a quorum of 0.

3.4.2.1 IDL Specification

enum QuorumPolicy
{
SIMPLE, // default
CONNECTED

};

enum QuorumAssessmentPolicy
{
STRICT,
LAZY // default

};

valuetype RolePolicy
{
public long quorum;
public long ceiling;
public QuorumPolicy policy;
public QuorumAssessmentPolicy assessment;

roles Roles public A sequence of Role instances that are consider
as children relative to the containing role.
Association of a Member to a child role
implicitly associates the Member with all parent
roles.

is_abstract boolean public If true, Member instances may not be directly
associated with the role under a Membership.
Members may be associated implicitly through
association to a non-abstract sibling.

Table 3-14Role State Table
3-18 Negotiation Facility Specification, v1.0 March 2002

3

sm to
n

};

3.5 Community, Agency, LegalEntity, and Related Valuetypes

3.5.1 Community

A Community is a type combining a formal model of membership with the Task and
Session Workspace. As aWorkspace , a Community is a container of
AbstractResource instances. As aMembership , a Community exposes a
MembershipModel detailing the allowable business roles and group constraints
applicable to associatedUsers . A new instance ofCommunity may be created by
passing an instance ofCommunityCriteria to thecreate operation on
ResourceFactory .

3.5.1.1 IDL Specification

interface Community :
Session::Workspace,
Membership

Table 3-15RolePolicy State Table

Name Type Properties Purpose

quorum long public The minimum number of Members that must be
associated with the role before the role can be
considered to have achieved quorum.

ceiling long public The maximum number of Member instances that
may be associated to this role.

assessment QuorumAssessmentPolicy public An enumeration used to determine the mechani
be applied to quorum assessment. The enumeratio
describes STRICT and LAZY assessment policies.
Under STRICT assessment, the establishment of a
quorum is required before the membership is
considered valid. Under LAZY assessment, the
determination of quorum is based on the
accumulative count of members during the lifetime
of the membership. LAZY assessment introduces
the possibility for the execution of optimistic
processes that depend on valid quorums for
finalization and commitment of results.

policy QuorumPolicy public An emanation of SIMPLE or CONNECTED. When
the value is SIMPLE, quorum calculation is based
on number of Member instances. When the quorum
policy is CONNECTED, the quorum calculation is
based on the number of Member instances that
reference a User that is in a connected state.
March 2002 Negotiation Facility: Community, Agency, LegalEntity, and Related Valuetypes 3-19

3

m
ion
ew
{
};

valuetype CommunityCriteria :
Criteria
{
public MembershipModel model;

};

3.5.2 Agency and LegalEntity

Agency is a specialization ofCommunity andLegalEntity that introduces the notion
of organized community such as a company. As aLegalEntity , anAgency may be
associated to a number of users representing roles relative to a resource derived fro
LegalEntity . LegalEntity is an abstract interface that defines access to implementat
specific criteria such as security policy, public company information and so forth. A n
instance ofAgency may be created by passing an instance ofAgencyCriteria to the
create operation onResourceFactory .

Figure 3-5 LegalEntity Object Model

3.5.2.1 IDL Specification

abstract interface LegalEntity {
readonly attribute any about;

};

interface Agency : Community, LegalEntity { };

Table 3-16CommunityCriteria State Table

Name Type Properties Purpose

model MembershipModel public The model to associate to the Community on
creation.

CommunityFramework::
LegalEntity

about: any

CommunityFramework::
Agency

CommunityFramework::
Community
3-20 Negotiation Facility Specification, v1.0 March 2002

3

able
valuetype AgencyCriteria :
CommunityCriteria
{

};

3.6 General Utility Interfaces

3.6.1 GenericResource

GenericResource is a type ofAbstractResource that exposes operations through
which values (in the form of an any) can be attributed to the resource in an interoper
manner. Instances ofGenericResource are created through aResourceFactory
using an instance ofGenericCriteria as the criteria argument.

3.6.1.1 IDL Specification

exception LockedResource{
Generic source;

};

abstract interface Generic

{
readonly attribute any value;
attribute boolean locked;
attribute boolean template;
void set_value(

in any value
) raises (

LockedResource
);

};

interface GenericResource :
Session::AbstractResource,
Generic
{

};

valuetype GenericCriteria : Criteria { };

Table 3-17LegalEntity Attribute Table

Name Type Properties Purpose

about any readonly A value that may be used in an implementation
specific way to expose security and other credentials
towards clients.
March 2002 Negotiation Facility: General Utility Interfaces 3-21

3

e

n

d

3.6.2 Criteria

Concrete instances ofCriteria may be passed as arguments to theResourceFactory
create operation.Criteria is an abstract interface supported by valuetypes that defin
factory creation criteria for concrete resource types defined withinCommunity and
Collaboration frameworks. ACriteria specialization is defined for each concrete
resource type (refer ResourceFactory Required Criteria Support).ExternalCriteria is a
special case ofCriteria used to describe a reference to an external artifact (such as a
XML document) that can be resolved in an implementation specific manner.

3.6.2.1 IDL Specification

valuetype Arguments CosLifeCycle::Criteria;

valuetype Criteria:
Control
{

public Arguments values;
};

valuetype ExternalCriteria :
Criteria
{
public CORBA::StringValue common;
public CORBA::StringValue system;

};

3.6.3 ResourceFactory

ResourceFactory is a general utility exposable byFactoryFinder interfaces on
Session::Workspace andSession::User interfaces.ResourceFactory creates
new instances ofAbstractResource and derived types based on a supplied name an

Table 3-18Criteria State Table

Name Type Properties Purpose

values Arguments readonly Implementation specific criteria used as
supplementary information by a
ResourceFactory implementation.

Table 3-19ExternalCriteria State Table

Name Type Properties Purpose

common StringValue public XML public identifier.

system StringValue public XML system identifier.
3-22 Negotiation Facility Specification, v1.0 March 2002

3

e

tion

ed
Criteria . Thesupporting operation exposes a sequence of defaultCriteria instances
supported by the factory. TheCriteria types that a resource factory is required to expos
and support are detailed in the following table.

3.6.3.1 IDL Specification

exception ResourceFactoryProblem{
ResourceFactory source;
CommunityFramework::Problem problem;

};

abstract interface ResourceFactory
{

readonly attribute CriteriaSequence supporting;

Session::AbstractResource create(
in CORBA::StringValue name,
in CommunityFramework::Criteria criteria

) raises (
ResourceFactoryProblem

);
};

3.6.4 Problem

Problem is a utility valuetype that is exposed under theResourceFactoryProblem
exception within theCommunityFramework module, and is used to describe
configuration and runtime problems within theCollaborationFramework that are not
readily exposed as formal exceptions. Examples of the application ofProblem
instances include the description of the cause of a failure arising during a factory crea
operation. Other examples from theCollaborationFramework include description of
non-fulfillment of a constraints and documentation of non-critical problem encounter
during the execution of a collaborative process.

TheProblem valuetype contains a timestamp, a problem identifier, message and
description, and a possibly empty sequence of contributingProblem declarations.

Table 3-20ResourceFactory Required Criteria Support

Module Criteria type Created Resource Type

CommunityFramework CommunityCriteria Community

AgencyCriteria Agency

GenericCriteria GenericResource

CollaborationFramework ProcessorCriteria Processor

EngagementProcessor

VoteProcessor

CollaborationProcessor
March 2002 Negotiation Facility: General Utility Interfaces 3-23

3

Figure 3-6 Problem Valuetype Object Model

3.6.4.1 IDL Specification

valuetype Problem
{
public Session::Timestamp timestamp;
public Label identifier;
public CORBA::StringValue message;
public CORBA::StringValue description;
public Problems cause;

};

Table 3-21Problem State Table

Name Type Properties Purpose

timestamp Timestamp public Date and time that the problem
identification occurred.

identifier Label public Identifier of a labeled control.

message StringValue public Short human readable message
describing the problem.

description StringValue public Descriptive text detailing the
problem, suitable for presentation
under a human interface.

cause Problems public A sequence of Problem instances
representing the problem cause.

timestamp : Timestamp
identifier : OID
message : string
description : string
cause : Problems

CommunityFramework::
Problem

cause *
3-24 Negotiation Facility Specification, v1.0 March 2002

3

rce,
3.7 UML Overview

Figure 3-7 Principal Interfaces Only - does not include enumeration types, GenericResou
or ResourceFactory

3.8 CommunityFramework Complete IDL

#ifndef _COMMUNITY_IDL_
#define _COMMUNITY_IDL_
#include <Session.idl>
#pragma prefix "omg.org"

module CommunityFramework{

#pragma version CommunityFramework 2.0

// forward declarations

interface Agency;
interface Community;

abstract interface LegalEntity;
abstract interface Model;
abstract interface Simulator;

Session::
Workspace

CommunityFramework::
Membership

get_quorum_status()
join()
leave()
add_roles()
remove_roles()
is_member()
has_role()
get_member_roles()
list_members()
list_members_using()

recruitment_status
membership_count
quorum_status

CommunityFramework::
Community

CommunityFramework::
Agency

CommunityFramework ::
Simulator

model

privacy : enum
exclusive : boolean

CommunityFramework::
MembershipPolicy

1 role

1 model

policy : MembershipPolicy
role : Role

policy: RolePolicy
roles : Roles
is_abstract: boolean

CommunityFramework::
Role

policy 0..1

CommunityFramework ::
Model

CommunityFramework::
LegalEntity

about : any

quorum : long
ceiling : long
assessment: (enum)
policy:QuorumPolicy

CommunityFramework::
RolePolicy

roles *

1 policy

1 modelCommunityFramework ::
MembershipModel

CommunityFramework ::
Control

label : Label
note : Note

Session::
User

* member of

recognizes *

supports

CommunityFramework ::
CommunityCriteria

model :MembershipModel

CommunityFramework ::
AgencyCriteria

CommunityFramework ::
ExternalCriteria

common :StringValue
system: StringValue

CommunityFramework ::
GenericCriteria

CommunityFramework ::
 Criteria

values : Arguments

CommunityFramework ::
 Control

1 model
March 2002 Negotiation Facility: UML Overview 3-25

3

abstract interface Membership;
abstract interface Generic;
abstract interface ResourceFactory;

valuetype Criteria;
valuetype Control;
valuetype Role;
valuetype MembershipPolicy;
valuetype MembershipModel;
valuetype Problem;

// typedefs

valuetype Roles sequence <Role>;
valuetype Models sequence <Model>;
valuetype CriteriaSequence sequence <Criteria>;
valuetype Problems sequence <Problem>;
valuetype Note CORBA::StringValue;
valuetype Label CORBA::StringValue;
valuetype Labels sequence <Label>;

// links

valuetype Member : Session::Privilege {
public Membership resource;

};

valuetype Recognizes : Session::Privilege {
public Session::User resource;
public Labels roles;

};

// structures

enum QuorumAssessmentPolicy
{
STRICT,
LAZY // default

};

enum PrivacyPolicyValue
{
PUBLIC_DISCLOSURE,
RESTRICTED_DISCLOSURE,
PRIVATE_DISCLOSURE

};

enum RecruitmentStatus{
OPEN_MEMBERSHIP, // default
CLOSED_MEMBERSHIP

};
3-26 Negotiation Facility Specification, v1.0 March 2002

3

valuetype MembershipCount{
public long static;
public long active;

};

enum QuorumPolicy
{
SIMPLE, // default
CONNECTED

};

enum QuorumStatus {
QUORUM_VALID,
QUORUM_PENDING,
QUORUM_UNREACHABLE

};

valuetype RoleStatus
{
public Label identifier;
public MembershipCount count;
public QuorumStatus status;

};

valuetype Problem
{
public Session::Timestamp timestamp;
public Label identifier;
public CORBA::StringValue message;
public CORBA::StringValue description;
public Problems cause;

};

// exceptions

exception PrivacyConflict
{
PrivacyPolicyValue reason;

};

exception AttemptedCeilingViolation{
Membership source;

};

exception AttemptedExclusivityViolation{
Membership source;

};

exception UnknownRole{
Membership source;
March 2002 Negotiation Facility: CommunityFramework Complete IDL 3-27

3

};

exception UnknownMember{
Membership source;
Member link;

};

exception UnknownIdentifier{
Membership source;
Label identifier;

};

exception MembershipRejected{
Membership source;
string reason;

};

exception RoleAssociationConflict{
Membership source;
string reason;
Label role;

};

exception CannotRemoveRole{
Membership source;
string reason;
Label role;

};

exception RecruitmentConflict{
Membership source;
RecruitmentStatus reason;

};

exception LockedResource{
Generic source;

};

exception ResourceFactoryProblem{
ResourceFactory source;
CommunityFramework::Problem problem;

};

// interfaces

abstract interface Model
{

};

abstract interface Simulator
3-28 Negotiation Facility Specification, v1.0 March 2002

3

{
readonly attribute CommunityFramework::Model model;

};

valuetype MembershipPolicy
{
public PrivacyPolicyValue privacy;
public boolean exclusive;

};

valuetype RolePolicy
{
public long quorum;
public long ceiling;
public QuorumPolicy policy;
public QuorumAssessmentPolicy assessment;

};

valuetype Control
{
public CommunityFramework::Label label;
public CommunityFramework::Note note;

};

valuetype Role :
Control

{
public RolePolicy policy;
public CommunityFramework::Roles roles;
public boolean is_abstract;

};

abstract interface Membership :
Simulator
{

readonly attribute RecruitmentStatus recruitment_status;
readonly attribute MembershipCount membership_count;
readonly attribute boolean quorum_status;

RoleStatus get_quorum_status(
in Label identifier // role identifier

);

Member join(
in Session::User user,
in Labels roles

) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
March 2002 Negotiation Facility: CommunityFramework Complete IDL 3-29

3

RoleAssociationConflict,
MembershipRejected,
UnknownRole

);

void leave(
in CommunityFramework::Member member

) raises (
RecruitmentConflict,
UnknownMember

);

void add_roles(
in CommunityFramework::Member member,
in Labels roles

) raises (
UnknownMember,
RoleAssociationConflict,
UnknownRole

);

void remove_roles(
in CommunityFramework::Member member,
in Labels roles

) raises (
UnknownRole,
UnknownMember,
CannotRemoveRole

);

boolean is_member(
in Session::User user

) raises (
PrivacyConflict

);

boolean has_role(
in Session::User user,
in Label role

) raises (
PrivacyConflict

);

Labels get_member_roles(
in Session::User user

) raises (
PrivacyConflict

);

Session::UserIterator list_members(
in long max_number,
3-30 Negotiation Facility Specification, v1.0 March 2002

3

out Session::Users list
) raises (

PrivacyConflict
);

Session::UserIterator list_members_using(
in Label role,
in long max_number,
out Session::Users list

) raises (
PrivacyConflict

);

};

valuetype MembershipModel :
Control supports Model
{
public MembershipPolicy policy;
public CommunityFramework::Role role;

};

valuetype Criteria :
Control
{
public CosLifeCycle::Criteria values;

};

valuetype ExternalCriteria :
Criteria
{
public CORBA::StringValue common;
public CORBA::StringValue system;

};

interface Community :
Session::Workspace,
Membership
{

};

valuetype CommunityCriteria :
Criteria
{
public MembershipModel model;

};

abstract interface LegalEntity {
readonly attribute any about;

};
March 2002 Negotiation Facility: CommunityFramework Complete IDL 3-31

3

interface Agency : Community, LegalEntity { };

valuetype AgencyCriteria :
CommunityCriteria
{

};

abstract interface Generic {

readonly attribute any value;
attribute boolean locked;
attribute boolean template;

void set_value(
in any value

) raises (
LockedResource

);
};

interface GenericResource :
Session::AbstractResource,
Generic
{

};

valuetype GenericCriteria : Criteria { };

abstract interface ResourceFactory
{

readonly attribute CriteriaSequence supporting;

Session::AbstractResource create(
in CORBA::StringValue name,
in CommunityFramework::Criteria criteria

) raises (
ResourceFactoryProblem

);
};

};

#endif // _COMMUNITY_IDL_
3-32 Negotiation Facility Specification, v1.0 March 2002

Changes to theTaskandSession
Specification (formal/00-05-03) A
s

A.1 BaseBusinessObject

A.1.1 BaseBusinessObject Revision

TheTask and Session Specification’s(formal/00-05-03) definition of
BaseBusinessObject includes inheritance of theCosNotifyComm ,
StructuredPushConsumer , andStructuredPushSupplier interfaces. The
semantics ofStructuredPushSupplier implies association to a single
StructuredProxyPushConsumer , however, theBaseBusinessObject interface is
intended to support multiple concurrent consumers from potentially different busines
domains without mandating nor excluding the use ofNotification channels as an
implementation mechanism. To enable the documented behavior an explicit factory
operation is required through which aStructuredPushSupplier reference can be
exposed for a given consumer. This behavior is required to support association of
multiple consumers under theCommunity andCollaboration interfaces.

TheCommunityFramework requires that the definition ofBaseBusinessObject
under formal/00-05-03 be replaced with the following definition.

BaseBusinessObject

BaseBusinessObject is the abstract base class for all principal Task and Session
objects. It has identity, is transactional, has a lifecycle, and is a notification supplier.
March 2002 Negotiation Facility Specification, v1.0 A-1

A

ents

rt of
Figure A-1

IDL Specification

interface IdentifiableDomainConsumer :
Session::IdentifiableDomainObject,
CosNotifyComm::StructuredPushConsumer
{

};

valuetype Timestamp TimeBase::UtcT ;

interface BaseBusinessObject :
Session::IdentifiableDomainObject,
CosLifeCycle::LifeCycleObject
{
CosNotifyComm::StructuredPushSupplier add_consumer(

in IdentifiableDomainConsumer consumer
);
Timestamp creation();
Timestamp modification();
Timestamp access();

};

TheCosNotification service defines aStructuredEvent that provide a framework for
the naming of an event and the association of specific properties to that event. All ev
specified within this facility conform to theStructuredEvent interface. This
specification requires specific event types to provide the following properties as a pa

Session:
BaseBusinessObject

add_consumer()
get_timestamp()

CosLifeCycle::
LifeCycleObject

copy()
move()
remove()

Session::
IdentifiableDomainObject

same_domain()

domain : AuthorityId

CosObjectIdentity::
IdentifiableObject

constant_random_id()
is_identical()

Session::
IdentifiableDomainConsumer

same_domain()

domain : AuthorityId

CosNotifyComm::
StructuredPushConsumer

push_structured_event()
disconnect_structured_push_consumer()
A-2 Negotiation Facility Specification, v1.0 March 2002

A

sh

e
e

ge and
thefilterable_data of the structured event header. Under theCosNotification
specification all events are associated with a unique domain name space. This
specification establishes the domain namespace “org.omg.session ” for structured
events associated withAbstractResource and its sub-types.

Association of an Event Consumer

IdentifiableDomainConsumer defines aStructuredPushConsumer callback
object that can be passed to an implementation ofBaseBusinessObject under the
add_consumer operation. An implementation of this operation is required to establi
the association of the consumer with an instance ofStructuredPushSupplier before
returning the supplier to the invoking client.

Accessing Creation, Modification, and Last Event timestamps

The operations,creation , modification , andaccess return aTimestamp value.
Thecreation operation returns the date and time of the creation. Themodification
operation returns the last modification date and time (where modification refers to a
modification of the state of a concrete derived type). Theaccess operation returns the
date and time a derived type was accessed.

Link

The definition of aLink (an association declaration) under theTask and Session
Specification(formal/00-05-03) is in the form of a struct containing an object referenc
and relationship type identifier. These identifiers are declared as constants within th
Session module. Task and Session specification ofLink does not allow extension of
associations required by theCommunity andCollaboration Framework
specifications. Restoration of module independent extension ofLinks is possible if the
Link struct declaration is replaced with a valuetype definition.

TheCommunityFramework introduces the following changes to the definition of Link
under Chapter 2, Section 2.5 of formal/00-05-03.

A.1.2 Links

TheLink type is used within the Task and Session framework as an argument to
operations that establish relationship dependencies between resources such as usa
containment. TheLink type is used as an argument to thebind , replace andrelease
operations of anAbstractResource and as a type exposed under theexpand
operation.
March 2002 Negotiation Facility: BaseBusinessObject A-3

A

Figure A-2 Abstract Link Definitions (link families)

IDL Specification

abstract valuetype Link {
AbstractResource resource();

};

abstract interface Tagged {
CORBA::StringValue tag();

};

abstract valuetype Containment : Link{ };
abstract valuetype Privilege : Link{ };
abstract valuetype Access : Privilege { };
abstract valuetype Ownership : Privilege { };
abstract valuetype Usage : Link supports Tagged { };
abstract valuetype Consumption : Usage{ };
abstract valuetype Production : Usage{ };
abstract valuetype Execution : Link{ };

valuetype Consumes : Consumption {
public AbstractResource resource;
public CORBA::StringValue tag;

};
valuetype ConsumedBy : Consumption {

public Task task;
public CORBA::StringValue tag;

Session::
Link

AbstractResource resource()

Session::
 Containment

Session::
Usage

Session::
Privilege

Session::
Consumption

Session::
Production

Session::
Access

Session::
Execution

Session::
Ownership

Session::
Tagged

StringValue tag()
A-4 Negotiation Facility Specification, v1.0 March 2002

A

sents
};

valuetype Produces : Production {
public AbstractResource resource;
public CORBA::StringValue tag;

};
valuetype ProducedBy : Production {

public Task task;
public CORBA::StringValue tag;

};

valuetype Collects : Containment {
public AbstractResource resource;

};
valuetype CollectedBy : Containment {

public Workspace resource;
};

valuetype ComposedOf : Collects { };
valuetype IsPartOf : CollectedBy { };

valuetype Accesses : Access {
public Workspace resource;

};
valuetype AccessedBy : Access {

public User resource;
};

valuetype Administers : Accesses { };
valuetype AdministeredBy : AccessedBy { };

valuetype Owns : Ownership {
public Task resource;

};

valuetype OwnedBy : Ownership {
public User resource;

};

Link

Link represents an abstract association of one resource towards another.Link contains a
single operation namedresource that returns a reference to anAbstractResource .
Link serves as an abstract base to a series of other abstract relationship families –
Containment, Privilege, Usage, and Execution. Unless otherwise stated, a link repre
a weak aggregation relationship.

abstract valuetype Link {
AbstractResource resource();

};
March 2002 Negotiation Facility: BaseBusinessObject A-5

A

Containment

Containment is an abstractLink that represents the set of concreteLink definitions
dealing with aCollects of AbstractResource by aWorkspace , and the inverse
notion of anAbstractResource beingCollectedBy a Workspace . An instance of
Workspace maintains a set of nCollects link instances, each holding a reference to
exactly one collectedAbstractResource . For every instance ofCollects , there is an
oppositeCollectedBy Link instance maintained by anAbstractResource that
references the collectingWorkspace . A specialization of bothCollects and
CollectedBy is defined to represent aWorkspace containing anAbstractResource ,
where an implementation wishes to express strong aggregation from the containing
Workspace to the containedAbstractResource . This is defined under the
ComposedOf andIsPartOf links whereComposedOf is a type ofCollects and
IsPartOf is a type ofCollectedBy .

abstract valuetype Containment : Link{ };

valuetype Collects : Containment {
public AbstractResource resource;

};
valuetype CollectedBy : Containment {

public Workspace resource;
};

valuetype ComposedOf : Collects { };
valuetype IsPartOf : CollectedBy { };

Table A-1 Collects State Table

Name Type Properties Purpose

resource AbstractResource public A weak reference to a single
AbstractResource contained by a
Workspace managing this Link instance. In
the case of the derived ComposedOf link,
the relationship is one of strong
aggregation.

Table A-2 CollectedBy State Table

Name Type Properties Purpose

resource Workspace public A weak reference to a single Workspace
that contains the AbstractResource
managing by this link instance. In the case
of the derived CollectedBy link, the
Workspace is a Workspace that strongly
aggregates the AbstractResource that holds
the Link.
A-6 Negotiation Facility Specification, v1.0 March 2002

A

l

Privilege

Privilege is a type of abstract link, representing a family of abstract relationships
dealing withAccess andOwnership . Access is an abstractLink that serves as the
abstract base type forAccesses andAccessedBy . Accesses is aLink held by a
User that references aWorkspace – similar to a bookmark.AccessedBy is aLink
held by aWorkspace referencing aUser that has attached a bookmark to it. The
specialization ofAccesses andAccessedBy namedAdministers and
AdministeredBy provide a qualification of the access relationship whereby externa
clients can establish the identity of an administrating user identity.Ownership is an
abstract link used to reflect the bi-directional relationship between aUser and aTask .
EveryTask is owned by exactly one user, reflected under theOwnerBy link. A User
Owns between zero and manyTasks .

abstract valuetype Privilege : Link{ };
abstract valuetype Access : Privilege { };
abstract valuetype Ownership : Privilege { };

valuetype Accesses : Access {
public Workspace resource;

};
valuetype AccessedBy : Access {

public User resource;
};

valuetype Administers : Accesses { };
valuetype AdministeredBy : AccessedBy { };

valuetype Owns : Ownership {
public Task resource;

};

valuetype OwnedBy : Ownership {
public User resource;

};

Table A-3 Accesses State Table

Name Type Properties Purpose

resource Workspace public A weak reference to a single Workspace
held by a User, representing a bookmark of
a Workspace by a User. A specialization of
Access named Administers qualifies the
Workspace as a Workspace that the holding
user has administrative responsibility for.
March 2002 Negotiation Facility: BaseBusinessObject A-7

A

d to

and

e

e

Usage

Usage is an abstractLink that captures the notions of the bi-directional relationships
between aTask and theAbstractResource references that are associated through
consumption and production relationships.Usage is an abstract base type for
Consumption andProduction that extends the notion ofLink through the
introduction of the tag operation. Any concrete valuetype supporting usage is require
expose a state field namedtag . The tag value is equivalent to an argument name,
facilitating the establishment of naming conventions on the resources consumed by
produced by aTask . Consumption is the abstract base for theLink valuetypes
Consumes andConsumedBy . Production is the abstract base for theLink
valuetypesProduces andProducedBy . Consumes is aLink held by aTask that
references anAbstractResource it is consuming. The inverse of this association is th
Link ConsumedBy , held by the consumedAbstractResource , referencing theTask
that is consuming it.Produces is aLink held by aTask that references an
AbstractResource it is producing. The inverse of this association is the link
ProducedBy , held by the producedAbstractResource , referencing theTask that is
producing it.

abstract interface Tagged {
CORBA::StringValue tag();

Table A-4 AccessedBy State Table

Name Type Properties Purpose

resource User public A weak reference to a single User that is
maintaining a bookmark reference to the
Workspace holding this link, A
specialization of AccessedBy named
AdministeredBy qualifies the User as an
administrator of the Workspace.

Table A-5 Owns State Table

Name Type Properties Purpose

resource Task public A strong aggregation reference to a single
Task held by a User, representing a user’s
unit of Work.

Table A-6 OwnedBy State Table

Name Type Properties Purpose

resource User public A weak reference to a single User that is th
owner of the Task holding this link.
A-8 Negotiation Facility Specification, v1.0 March 2002

A

};

abstract valuetype Usage : Link supports Tagged { };
abstract valuetype Consumption : Usage{ };
abstract valuetype Production : Usage{ };

valuetype Consumes : Consumption {
public AbstractResource resource;
public CORBA::StringValue tag;

};
valuetype ConsumedBy : Consumption {

public Task task;
public CORBA::StringValue tag;

};

valuetype Produces : Production {
public AbstractResource resource;
public CORBA::StringValue tag;

};
valuetype ProducedBy : Production {

public Task task;
public CORBA::StringValue tag;

};

Table A-7 Consumes State Table

Name Type Properties Purpose

resource AbstractResource public A weak aggregation reference to a single
AbstractResource consumed by the Task
holding this link.

tag StringValue public An application specific name attributed to
the association.

Table A-8 ConsumedBy State Table

Name Type Properties Purpose

resource Task public A weak reference to a single Task that is
consuming the AbstractResource holding
this link.

tag StringValue public An application specific name attributed to
the association.
March 2002 Negotiation Facility: BaseBusinessObject A-9

A

of a

ion,

le
Execution

The abstract linkExecution is defined under theSession module. It represents the
abstract family of relationships between a processor andTask . The definition of
concrete associations between aTask and the processing source is implementation
dependent.

abstract valuetype Execution : Link{ };

General Comments

TheLink type is a generalized utility that enables anAbstractResource , User, Task ,
or Workspace to declare a dependency which is exposed directly under the expand
operation onAbstractResource , and indirectly through related list operations.

TheLink type is provided as a means through which the type and subject resource
dependency may be declared by the resource raising the dependency to the target.
Declaration of dependency between resources enables referential integrity between
resources irrespective of technology or administrative domain boundaries. Declarat
modification and retraction of dependencies are achieved through invocation of thebind ,
release andreplace operations onAbstractResource .

Table A-9 Produces State Table

Name Type Properties Purpose

resource AbstractResource public A weak aggregation reference to a sing
AbstractResource produced by the Task
holding this link.

tag StringValue public An application specific name attributed to
the association.

Table A-10ProducedBy State Table

Name Type Properties Purpose

resource Task public A weak reference to a single Task that is
producing the AbstractResource holding
this link.

tag StringValue public An application specific name attributed to
the association.
A-10 Negotiation Facility Specification, v1.0 March 2002

A

”

nship
A.2 AbstractResource

Modification of theAbstractResource interface is required by the Community
Framework in relation to the management of exposedLink instances. Section 2.2.6
AbstractResource of formal/00-05-03 – subsection “Get Resource Tree by Link Kind
shall be replaced with the following sections “Get Resource Tree by Link Kind” and
“Count Operation.”

A.2.1 Get Resource Tree by Link Kind

This operation asks anAbstractResource to return a set of resources linked to it by a
specific relationship. Objects returned are, or are created as,AbstractResource
instances. This operation may be used by desktop managers to present object relatio
graphs.

LinkIterator expand (
in CORBA::TypeCode type,
in long max_number,
out Links seq

);

Count Operation

This operation returns the number ofLinks held by anAbstractResource
corresponding to a givenTypeCode filter. Filter arguments are based on the same
filtering model as applied under theexpand operation.

short count(
in CORBA::TypeCode type

);

Table A-11Expand Argument List

Argument Description

type The CORBA::TypeCode referencing a type derived from Link,
passed under the type argument qualifies the link selection
constraint relative to its most derived type. Any link that is derived
from the type identified by thetype argument is a candidate to
include in the returned set of links.

max_number The maximum number of elements to be included in the seq of
exposed Link instances.

seq A sequence of Link instances.

iterator An iterator of Link instances.
March 2002 Negotiation Facility: AbstractResource A-11

A

ject
l
ve
L

s

osed

.

A.3 Session Module Revisions

There are several occurrences within theTask and Session Specification of
exception, enumeration and struct declarations that are defined with the scope of ob
interfaces. This approach complicates access to these type declarations by externa
modules. Resolution of the problem can be readily achieved by moving the respecti
declarations from interface to module level as recommended under the following ID
updates.

EDITORIAL CHANGE: Section 2.2.6 of formal/00-05-03 – move following exception
declarations within AbstractResource interface IDL to module level.

exception ResourceUnavailable{ };
exception ProcessorConflict{ };
exception SemanticConflict{ };

EDITORIAL CHANGE: Section 2.2.8 of formal/00-05-03 – move following declaration
within User interface IDL to module level.

enum connect_state {connected, disconnected};
exception AlreadyConnected {};
exception NotConnected {};

EDITORIAL CHANGE: Section 2.2.12 of formal/00-05-03 – move following
declarations within Task interface IDL to module level.

exception CannotStart {};
exception AlreadyRunning {};
exception CannotSuspend {};
exception CurrentlySuspended {};
exception CannotStop {};
exception NotRunning {};
enum task_state {

open, not_running, notstarted, running,
suspended, terminated, completed, closed };

The formal/00-05-03 Task and Session IDL does not contain a pragma version
declaration. In order to distinguish version modification based on the changes prop
here, a pragma version of 2.0 is recommended. In addition, the non-IDL statement
#pragma javaPackage "org.omg" shall be removed.

EDITORIAL CHANGE: Replace section 2.5 of formal/00-05-02 with the following IDL

// Task and Session - Session.idl
#ifndef _SESSION_
#define _SESSION_

#include <CosLifeCycle.idl>
#include <CosObjectIdentity.idl>
#include <CosCollection.idl>
#include <NamingAuthority.idl>
#include <CosNotifyComm.idl>
A-12 Negotiation Facility Specification, v1.0 March 2002

A

#include <CosPropertyService.idl>
#include <TimeBase.idl>
#include <orb.idl>

#pragma prefix "omg.org"

module Session {

#pragma version Session 2.0

interface AbstractResource;
interface Task;
interface Workspace;
interface AbstractPerson;
interface User;
interface Message;
interface Desktop;

abstract valuetype Link;

// sequence definitions

typedef sequence<Session::AbstractResource>AbstractResources;
typedef sequence<Session::Task>Tasks;
typedef sequence<Session::Message>Messages;
typedef sequence<Session::User>Users;
typedef sequence<Session::Workspace>Workspaces;
typedef sequence<Session::Link>Links;

// iterator definitions

interface AbstractResourceIterator : CosCollection :: Iterator { };
interface TaskIterator : CosCollection :: Iterator { };
interface MessageIterator : CosCollection :: Iterator { };
interface WorkspaceIterator : CosCollection :: Iterator { };
interface UserIterator : CosCollection :: Iterator { };
interface LinkIterator : CosCollection :: Iterator { };

abstract interface Tagged {
CORBA::StringValue tag();

};

abstract valuetype Link {
AbstractResource resource();

};

abstract valuetype Containment : Link{ };
abstract valuetype Privilege : Link{ };
abstract valuetype Access : Privilege { };
abstract valuetype Ownership : Privilege { };
abstract valuetype Usage : Link supports Tagged { };
March 2002 Negotiation Facility: Session Module Revisions A-13

A

abstract valuetype Consumption : Usage{ };
abstract valuetype Production : Usage{ };
abstract valuetype Execution : Link{ };

// concrete links

valuetype Consumes : Consumption {
public AbstractResource resource;
public CORBA::StringValue tag;

};
valuetype ConsumedBy : Consumption {

public Task resource;
public CORBA::StringValue tag;

};

valuetype Produces : Production {
public AbstractResource resource;
public CORBA::StringValue tag;

};
valuetype ProducedBy : Production {

public Task resource;
public CORBA::StringValue tag;

};

valuetype Collects : Containment {
public AbstractResource resource;

};
valuetype CollectedBy : Containment {

public Workspace resource;
};

valuetype ComposedOf : Collects { };
valuetype IsPartOf : CollectedBy { };

valuetype Accesses : Access {
public Workspace resource;

};
valuetype AccessedBy : Access {

public User resource;
};

valuetype Administers : Accesses { };
valuetype AdministeredBy : AccessedBy { };

valuetype Owns : Ownership {
public Task resource;

};

valuetype OwnedBy : Ownership {
public User resource;

};
A-14 Negotiation Facility Specification, v1.0 March 2002

A

// interfaces

interface IdentifiableDomainObject :
CosObjectIdentity::IdentifiableObject
{
readonly attribute NamingAuthority::AuthorityId domain;
boolean same_domain(

in IdentifiableDomainObject other_object
);

};

interface IdentifiableDomainConsumer :
Session::IdentifiableDomainObject,
CosNotifyComm::StructuredPushConsumer
{

};

valuetype Timestamp TimeBase::UtcT ;

interface BaseBusinessObject :
IdentifiableDomainObject,
CosLifeCycle::LifeCycleObject
{
CosNotifyComm::StructuredPushSupplier add_consumer(

in IdentifiableDomainConsumer consumer
);
Timestamp creation();
Timestamp modification();
Timestamp access();

};

exception ResourceUnavailable{ };
exception ProcessorConflict{ };
exception SemanticConflict{ };

interface AbstractResource :
BaseBusinessObject {

attribute string name;
readonly attribute TypeCode resourceKind;

void bind(
in Link link

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);
March 2002 Negotiation Facility: Session Module Revisions A-15

A

void replace(
in Link old,
in Link new

) raises (
ResourceUnavailable,
ProcessorConflict,
SemanticConflict

);

void release(
in Link link

);

void list_contained (
in long max_number,
out Session::Workspaces workspaces,
out WorkspaceIterator wsit

);

void list_consumers (
in long max_number,
out Tasks tasks,
out TaskIterator taskit

);

Task get_producer();

short count(
in CORBA::TypeCode type

);

LinkIterator expand (
in CORBA::TypeCode type,
in long max_number,
out Links seq

);

};

interface AbstractPerson :
CosPropertyService::PropertySetDef
{

};

enum connect_state {
connected,
disconnected

};

exception AlreadyConnected {};
exception NotConnected {};
A-16 Negotiation Facility Specification, v1.0 March 2002

A

interface User :
AbstractResource,
AbstractPerson,
CosLifeCycle::FactoryFinder
{

readonly attribute connect_state connectstate;

void connect(
) raises (

AlreadyConnected
);

void disconnect(
) raises (

NotConnected
);

void enqueue_message (
in Message new_message

);

void dequeue_message (
in Message message

);

void list_messages(
in long max_number,
out Messages messages,
out MessageIterator messageit
);

Task create_task (
in string name,
in AbstractResource process,
in AbstractResource data

);

void list_tasks (
in long max_number,
out Tasks tasks,
out TaskIterator taskit

);

Desktop get_desktop ();

Workspace create_workspace (
in string name,
in Users accesslist

);
March 2002 Negotiation Facility: Session Module Revisions A-17

A

void list_workspaces (
in long max_number,
out Session::Workspaces workspaces,
out WorkspaceIterator wsit

);
};

interface Message : AbstractResource {
attribute any message_id;
attribute any message;

};

interface MessageFactory{
Message create(

in any message_id,
in any message

);
};

interface Workspace :
AbstractResource,
CosLifeCycle::FactoryFinder
{
void add_contains_resource(

in AbstractResource resource
);

void remove_contains_resource(
in AbstractResource resource

);

Workspace create_subworkspace (
in string name,
in Users accesslist

);

void list_resources_by_type(
in TypeCode resourcetype,
in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit

);
};

interface Desktop:Workspace {

void set_belongs_to(
in User user

);
A-18 Negotiation Facility Specification, v1.0 March 2002

A

User belongs_to();
};

exception CannotStart {};
exception AlreadyRunning {};
exception CannotSuspend {};
exception CurrentlySuspended {};
exception CannotStop {};
exception NotRunning {};

enum task_state {
 open, not_running, notstarted, running,
 suspended, terminated, completed, closed
};

interface Task :
AbstractResource
{

attribute string description;

task_state get_state();

User owned_by();
void set_owned_by (

in User new_task_owner
);

void add_consumed(
in AbstractResource resource,
in string tag

);
void remove_consumed(

in AbstractResource resource
);
void list_consumed (

in long max_number,
out AbstractResources resources,
out AbstractResourceIterator resourceit,
out LinkIterator linkit

);

void add_produced(
in AbstractResource resource,
in string tag

);
void remove_produced(

in AbstractResource resource
);
void list_produced (

in long max_number,
March 2002 Negotiation Facility: Session Module Revisions A-19

A

out AbstractResources resources,
out AbstractResourceIterator resourceit,
out LinkIterator linkit

);

void set_processor(
in Session::AbstractResource processor

) raises (
ProcessorConflict

);
AbstractResource get_processor();

void start (
) raises (

CannotStart,
AlreadyRunning

);
void suspend (
) raises (

CannotSuspend,
CurrentlySuspended

);
void stop (
) raises (

CannotStop,
NotRunning

);
};
};

#endif /* _SESSION_ */
A-20 Negotiation Facility Specification, v1.0 March 2002

CompleteOMGIDL B
B.1 CollaborationFramework Complete IDL

#ifndef _COLLABORATION_IDL_
#define _COLLABORATION_IDL_
#include <CommunityFramework.idl>
#pragma prefix "omg.org"

module CollaborationFramework{

#pragma version CollaborationFramework 2.0

// forward declarations

abstract valuetype Action;
abstract valuetype Transitional;
abstract valuetype Guard;
abstract valuetype Proof;
abstract valuetype Evidence;
abstract valuetype UsageDescriptor;

valuetype State;
valuetype Initialization;
valuetype Trigger;
valuetype Transition;
valuetype SimpleTransition;
valuetype LocalTransition;
valuetype TerminalTransition;
valuetype CompoundTransition;
valuetype Referral;

abstract interface Slave;
abstract interface Master;
March 2002 Negotiation Facility Specification, v1.0 B-1

B

abstract interface Collaboration;
abstract interface Engagement;
abstract interface Vote;
abstract interface Directive;

interface Encounter;
interface Processor;
interface VoteProcessor;
interface EngagementProcessor;
interface CollaborationProcessor;

// typedefs

valuetype States sequence <State> ;
valuetype Triggers sequence <Trigger> ;
valuetype Initializations sequence <Initialization> ;
valuetype UsageDescriptors sequence <UsageDescriptor> ;
valuetype Slaves sequence <Slave> ;
valuetype Directives sequence <Directive>;
valuetype Label CommunityFramework::Label;
valuetype ProcessorState Session::task_state;
valuetype ResultID unsigned long ;
valuetype TypeCode CORBA::TypeCode;
valuetype ResultClass boolean;

// structures

valuetype Duration {
public TimeBase::TimeT value;

};

struct VoteCeiling{
short numerator;
short denominator;

};

enum VotePolicy{
AFFERMATIVE_MAJORITY,
NON_ABSTAINING_MAJORITY

};

abstract valuetype Proof {};
abstract valuetype Evidence {};

enum VoteDescriptor{
NO,
YES,
ABSTAIN

};

valuetype VoteStatement :
B-2 Negotiation Facility Specification, v1.0 March 2002

B

Evidence
{
public VoteDescriptor vote;

};

valuetype VoteReceipt :
Proof
{
public Session::Timestamp timestamp;
public VoteStatement statement;

};

valuetype VoteCount :
Proof
{
public Session::Timestamp timestamp;
public long yes;
public long no;
public long abstain;

};

valuetype Timeout{
public Label identifier;
public Session::Timestamp timestamp;

};

valuetype TimeoutSequence sequence <Timeout> ;

enum TriggerMode{
INITIATOR,
RESPONDENT,
PARTICIPANT

};

valuetype Completion
{
public ResultClass result;
public ResultID code;

};

valuetype StateDescriptor
{
public ProcessorState state;
public CollaborationFramework::Completion completion;
public CommunityFramework::Problems problems;

};

// exceptions

exception InvalidTrigger{
CommunityFramework::Problem problem;
March 2002 Negotiation Facility Specification, v1.0 B-3

B

Label identifier;
};

exception ApplyFailure{
CommunityFramework::Problem problem;
Label identifier;

};

exception InitializationFailure{
CommunityFramework::Problem problem;
Label identifier;

};

exception EngagementProblem{
CollaborationFramework::Evidence evidence;
CommunityFramework::Problem problem;

};

interface SlaveIterator : CosCollection :: Iterator { };

// coordination link

abstract valuetype Coordination : Session::Execution{ };

valuetype Monitors : Coordination {
public Processor resource;

};

valuetype Coordinates : Monitors {};

valuetype CoordinatedBy : Coordination {
public Session::Task resource;

};

// management link

abstract valuetype Management : Session::Link{ };

valuetype Controls : Management {
public Slave resource;

};

valuetype ControlledBy : Management {
public Master resource;

};

/**
Encounter
*/

interface Encounter :
B-4 Negotiation Facility Specification, v1.0 March 2002

B

Session::Task,
CommunityFramework::Membership
{

};

valuetype EncounterCriteria :
CommunityFramework::Criteria
{
public CommunityFramework::MembershipModel model;

};

/*
ProcessorModel
*/

abstract valuetype UsageDescriptor { };

valuetype InputDescriptor :
UsageDescriptor
{
public string tag;
public boolean required;
public TypeCode type;

};

valuetype OutputDescriptor :
UsageDescriptor
{
public string tag;
public TypeCode type;

};

valuetype ProcessorModel :
CommunityFramework::Control
supports CommunityFramework::Model
{
public UsageDescriptors usage;

};

/**
Master, Slave and Processor.
*/

abstract interface Master {
SlaveIterator slaves (

in long max_number,
out Slaves slaves

);
};

abstract interface Slave {
March 2002 Negotiation Facility Specification, v1.0 B-5

B

readonly attribute CollaborationFramework::Master master;
};

abstract interface Processor :
Session::AbstractResource,
CommunityFramework::Simulator,
Master, Slave
{

readonly attribute StateDescriptor state;

Session::Task coordinator(
) raises (

Session::ResourceUnavailable
);

CommunityFramework::Problems verify();

void start (
) raises (

Session::CannotStart,
Session::AlreadyRunning

);
void suspend (
) raises (

Session::CannotSuspend,
Session::CurrentlySuspended

);
void stop (
) raises (

Session::CannotStop,
Session::NotRunning

);
};

valuetype ProcessorCriteria :
CommunityFramework::Criteria
{
public ProcessorModel model;

};

/**
Engagement
*/

abstract interface Engagement
{
Proof engage(

in CollaborationFramework::Evidence evidence
) raises (

EngagementProblem
B-6 Negotiation Facility Specification, v1.0 March 2002

B

);
};

interface EngagementProcessor :
Engagement,
Processor
{

};

valuetype EngagementModel :
ProcessorModel
{
public CommunityFramework::Role role;
public Duration lifetime;
public boolean unilateral;

};

/**
Vote.
*/

abstract interface Vote
{
readonly attribute VoteCount vcount;

VoteReceipt vote(
in VoteDescriptor value

);
};

interface VoteProcessor :
Vote,
Processor
{

};

valuetype VoteModel :
ProcessorModel
{
public VoteCeiling ceiling;
public VotePolicy policy;
public boolean single;
public Duration lifetime;

};

/**
Collaboration
*/

// directive
March 2002 Negotiation Facility Specification, v1.0 B-7

B

abstract interface Directive {};

valuetype Duplicate
supports Directive
{
public Label source;
public Label target;
public boolean invert;

};

valuetype Move
supports Directive
{
public Label source;
public Label target;
public boolean invert;

};

valuetype Remove
supports Directive
{
public Label source;

};

valuetype Constructor
supports Directive
{
public Label target;
public CommunityFramework::Criteria criteria;

};

// apply arguments

valuetype ApplyArgument
{
public CollaborationFramework::Label label;
public Session::AbstractResource value;

};

valuetype ApplyArguments sequence <ApplyArgument> ;

// collaboration

abstract interface Collaboration
{

readonly attribute Label active_state;
readonly attribute TimeoutSequence timeout_list;

void apply(
in Label identifier
B-8 Negotiation Facility Specification, v1.0 March 2002

B

) raises (
InvalidTrigger,
ApplyFailure

);

void apply_arguments(
in Label identifier,
in ApplyArguments args

) raises (
InvalidTrigger,
ApplyFailure

);
};

interface CollaborationProcessor :
Collaboration,
Processor
{

};

/**
Collaboration controls
*/

valuetype State :
CommunityFramework::Control
{
public CollaborationFramework::Triggers triggers;
public CollaborationFramework::States states;

};

abstract valuetype Guard {};

valuetype Clock :
Guard
{
public Duration timeout;

};

valuetype Launch :
Guard
{
public TriggerMode mode;
public CommunityFramework::Role role;

};

valuetype Trigger :
CommunityFramework::Control
{
public long priority;
public CollaborationFramework::Guard guard;
March 2002 Negotiation Facility Specification, v1.0 B-9

B

public CollaborationFramework::Directives directives; // precondition
public CollaborationFramework::Action action;

};

abstract valuetype Action { };

abstract valuetype Transitional { };

valuetype Transition :
Action
{
public CollaborationFramework::Transitional transitional;
public UsageDescriptors usage;

};

valuetype Initialization :
Transitional
{

};

valuetype SimpleTransition :
Transitional
{
public State target;

};

valuetype LocalTransition :
Transitional
{
public boolean reset;

};

valuetype TerminalTransition :
Transitional
{
public Completion result;

};

valuetype Referral :
Action
{
public CollaborationFramework::Action action;
public CollaborationFramework::Directives directives;

};

valuetype Map
{
public ResultClass class;
public ResultID code;
public CollaborationFramework::Directives directives;
public CollaborationFramework::Action action;
B-10 Negotiation Facility Specification, v1.0 March 2002

B

};

valuetype Mapping sequence <Map> ;

valuetype CompoundTransition :
Action
{
public CommunityFramework::Criteria criteria;
public CollaborationFramework::Mapping mapping;

};

valuetype CollaborationModel :
ProcessorModel
{
public CommunityFramework::Role role;
public CollaborationFramework::State state;

};
};

#endif // _COLLABORATION_IDL_

B.2 CommunityFramework Complete IDL

#ifndef _COMMUNITY_IDL_
#define _COMMUNITY_IDL_
#include <Session.idl>
#pragma prefix "omg.org"

module CommunityFramework{

#pragma version CommunityFramework 2.0

// forward declarations

interface Agency;
interface Community;

abstract interface LegalEntity;
abstract interface Model;
abstract interface Simulator;
abstract interface Membership;
abstract interface Generic;
abstract interface ResourceFactory;

valuetype Criteria;
valuetype Control;
valuetype Role;
valuetype MembershipPolicy;
valuetype MembershipModel;
valuetype Problem;
March 2002 Negotiation Facility Specification, v1.0 B-11

B

// typedefs

valuetype Roles sequence <Role>;
valuetype Models sequence <Model>;
valuetype CriteriaSequence sequence <Criteria>;
valuetype Problems sequence <Problem>;
valuetype Note CORBA::StringValue;
valuetype Label CORBA::StringValue;
valuetype Labels sequence <Label>;

// links

valuetype Member : Session::Privilege {
public Membership resource;

};

valuetype Recognizes : Session::Privilege {
public Session::User resource;
public Labels roles;

};

// structures

enum QuorumAssessmentPolicy
{
STRICT,
LAZY // default

};

enum PrivacyPolicyValue
{
PUBLIC_DISCLOSURE,
RESTRICTED_DISCLOSURE,
PRIVATE_DISCLOSURE

};

enum RecruitmentStatus{
OPEN_MEMBERSHIP, // default
CLOSED_MEMBERSHIP

};

valuetype MembershipCount{
public long static;
public long active;

};

enum QuorumPolicy
{
SIMPLE, // default
CONNECTED
B-12 Negotiation Facility Specification, v1.0 March 2002

B

};

enum QuorumStatus {
QUORUM_VALID,
QUORUM_PENDING,
QUORUM_UNREACHABLE

};

valuetype RoleStatus
{
public Label identifier;
public MembershipCount count;
public QuorumStatus status;

};

valuetype Problem
{
public Session::Timestamp timestamp;
public Label identifier;
public CORBA::StringValue message;
public CORBA::StringValue description;
public Problems cause;

};

// exceptions

exception PrivacyConflict
{
PrivacyPolicyValue reason;

};

exception AttemptedCeilingViolation{
Membership source;

};

exception AttemptedExclusivityViolation{
Membership source;

};

exception UnknownRole{
Membership source;

};

exception UnknownMember{
Membership source;
Member link;

};

exception UnknownIdentifier{
Membership source;
Label identifier;
March 2002 Negotiation Facility Specification, v1.0 B-13

B

};

exception MembershipRejected{
Membership source;
string reason;

};

exception RoleAssociationConflict{
Membership source;
string reason;
Label role;

};

exception CannotRemoveRole{
Membership source;
string reason;
Label role;

};

exception RecruitmentConflict{
Membership source;
RecruitmentStatus reason;

};

exception LockedResource{
Generic source;

};

exception ResourceFactoryProblem{
ResourceFactory source;
CommunityFramework::Problem problem;

};

// interfaces

abstract interface Model
{

};

abstract interface Simulator
{
readonly attribute CommunityFramework::Model model;

};

valuetype MembershipPolicy
{
public PrivacyPolicyValue privacy;
public boolean exclusive;

};
B-14 Negotiation Facility Specification, v1.0 March 2002

B

valuetype RolePolicy
{
public long quorum;
public long ceiling;
public QuorumPolicy policy;
public QuorumAssessmentPolicy assessment;

};

valuetype Control
{
public CommunityFramework::Label label;
public CommunityFramework::Note note;

};

valuetype Role :
Control

{
public RolePolicy policy;
public CommunityFramework::Roles roles;
public boolean is_abstract;

};

abstract interface Membership :
Simulator
{

readonly attribute RecruitmentStatus recruitment_status;
readonly attribute MembershipCount membership_count;
readonly attribute boolean quorum_status;

RoleStatus get_quorum_status(
in Label identifier // role identifier

);

Member join(
in Session::User user,
in Labels roles

) raises (
AttemptedCeilingViolation,
AttemptedExclusivityViolation,
RecruitmentConflict,
RoleAssociationConflict,
MembershipRejected,
UnknownRole

);

void leave(
in CommunityFramework::Member member

) raises (
RecruitmentConflict,
UnknownMember
March 2002 Negotiation Facility Specification, v1.0 B-15

B

);

void add_roles(
in CommunityFramework::Member member,
in Labels roles

) raises (
UnknownMember,
RoleAssociationConflict,
UnknownRole

);

void remove_roles(
in CommunityFramework::Member member,
in Labels roles

) raises (
UnknownRole,
UnknownMember,
CannotRemoveRole

);

boolean is_member(
in Session::User user

) raises (
PrivacyConflict

);

boolean has_role(
in Session::User user,
in Label role

) raises (
PrivacyConflict

);

Labels get_member_roles(
in Session::User user

) raises (
PrivacyConflict

);

Session::UserIterator list_members(
in long max_number,
out Session::Users list

) raises (
PrivacyConflict

);

Session::UserIterator list_members_using(
in Label role,
in long max_number,
out Session::Users list

) raises (
B-16 Negotiation Facility Specification, v1.0 March 2002

B

PrivacyConflict
);

};

valuetype MembershipModel :
Control supports Model
{
public MembershipPolicy policy;
public CommunityFramework::Role role;

};

valuetype Criteria :
Control
{
public CosLifeCycle::Criteria values;

};

valuetype ExternalCriteria :
Criteria
{
public CORBA::StringValue common;
public CORBA::StringValue system;

};

interface Community :
Session::Workspace,
Membership
{

};

valuetype CommunityCriteria :
Criteria
{
public MembershipModel model;

};

abstract interface LegalEntity {
readonly attribute any about;

};

interface Agency : Community, LegalEntity { };

valuetype AgencyCriteria :
CommunityCriteria
{

};

abstract interface Generic {

readonly attribute any value;
March 2002 Negotiation Facility Specification, v1.0 B-17

B

attribute boolean locked;
attribute boolean template;

void set_value(
in any value

) raises (
LockedResource

);
};

interface GenericResource :
Session::AbstractResource,
Generic
{

};

valuetype GenericCriteria : Criteria { };

abstract interface ResourceFactory
{

readonly attribute CriteriaSequence supporting;

Session::AbstractResource create(
in CORBA::StringValue name,
in CommunityFramework::Criteria criteria

) raises (
ResourceFactoryProblem

);
};

};

#endif // _COMMUNITY_IDL_
B-18 Negotiation Facility Specification, v1.0 March 2002

Index
A
Action 2-35
Agency 3-20
Apply 2-28

B
bilateral 1-2
Bilateral Negotiation 1-2

C
Collaboration and CollaborationModel 2-46
CollaborationModel 2-30
CollaborationProcessor 2-25
CollaborationProcessor, CollaborationModel, and Supporting

Types 2-24
Collaborative Process Models 1-2
Community 3-19
CommunityFramework 3-2
Compound Action Semantics 2-39
CompoundAction 2-35
Constructor 2-42
Control 3-4
Coordination Link Family 2-13
CORBA

contributors ix
documentation set vi

Criteria 3-22

D
Digital Product Modeling Language 1-1
Directive 2-41
DPML 1-1
DPML Schema Specification 1-17
DPML Specification 1-3, 1-7, 1-13
Duplicate 2-42

E
Element to IDL Type Mapping 1-29
Encounter 2-15, 2-45
Encounter and EncounterCriteria 2-16
Engagement 2-45
EngagementModel 2-23
EngagementProcessor 2-22
EngagementProcessor and EngagementModel 2-22
ExternalCriteria 3-22

G
GenericResource 3-21
get_member_roles operation 3-13

H
has_role operation 3-13

I
Initialization 2-36, 2-38
is_member operation 3-12

J
join operation 3-9

L
LegalEntity 3-20
list_members operation 3-13

list_members_using operation 3-13
LocalTransition 2-36, 2-38

M
Master, Slave, and the Control Link 2-7
Member 3-15
Membership 3-6
MembershipModel 3-14
MembershipPolicy 3-12, 3-14
Model 3-3
Move 2-42
multilateral 1-2
Multilateral agreement 1-6

O
Object Management Group v

address of viii

P
Privacy Constraints 3-15
Problem 3-23
Processor 2-4
Processor and Related Valuetypes 2-44
Processor creation and Task association 2-6
Processor Object Model 2-4
ProcessorModel and Related Constraint Declarations 2-10
promissory 1-2
Promissory Contract Fulfillment 1-12

Q
QuorumStatus 3-12

R
Recognizes 3-15
Referral 2-35
Related DPML Documents 1-30
Remove 2-42
remove_roles operation 3-10
ResourceFactory 3-22
Role 3-16
RolePolicy 3-12, 3-18

S
Security Service A-1
SimpleTransition 2-36, 2-38
Simulator 3-4
State Declaration 2-31
State Object Model 2-32
Structures Supporting Apply 2-28
Structures supporting timeout declarations 2-28
Supporting structures 2-18, 2-28

T
TerminalTransition 2-36, 2-39
Timeout declarations 2-28
Transition 2-35
Transition and Related Control Structures 2-36
Trigger and supporting valuetypes 2-32

U
UML Overview 2-44
March 2002 Negotation Facility, v1.0 Index-1

Index
V
Valuetypes Supporting CollaborationModel 2-46
Verification of processor configuration 2-7

VoteProcessor 2-19
VoteProcessor and VoteModel 2-17
Voting 2-45
Index-2 Negotation Facility, v1.0 October 2001

	Preface
	1. Collaboration Criteria
	1.1 Introduction
	1.2 Collaborative Process Models
	1.2.1 Bilateral Negotiation
	1.2.2 Multilateral Agreement
	1.2.3 Promissory Contract Fulfillment

	1.3 DPML Schema Specification
	1.4 Element to IDL Type Mapping
	1.5 Related DPML Documents

	2. Collaboration Framework
	2.1 Introduction
	2.2 Processor and Related Interfaces
	2.2.1 Processor
	2.2.2 Master, Slave, and the Control Link
	2.2.3 StateDescriptor
	2.2.4 ProcessorModel and Related Constraint Declarations
	2.2.5 Coordination Link Family

	2.3 Encounter
	2.3.1 Encounter and EncounterCriteria

	2.4 VoteProcessor and VoteModel
	2.4.1 Supporting Structures
	2.4.2 VoteProcessor
	2.4.3 VoteModel

	2.5 EngagementProcessor and EngagementModel
	2.5.1 EngagementProcessor
	2.5.2 EngagementModel

	2.6 CollaborationProcessor, CollaborationModel, and Supporting Types
	2.6.1 CollaborationProcessor
	2.6.2 Supporting Structures
	2.6.3 CollaborationModel
	2.6.4 State Declaration
	2.6.5 Trigger and supporting valuetypes
	2.6.6 Action
	2.6.7 Transition and Related Control Structures
	2.6.8 Compound Action Semantics
	2.6.9 Directive

	2.7 UML Overview
	2.7.1 Processor and Related Valuetypes
	2.7.2 Encounter
	2.7.3 Voting
	2.7.4 Engagement
	2.7.5 Collaboration and CollaborationModel
	2.7.6 Valuetypes Supporting CollaborationModel

	2.8 CollaborationFramework Complete IDL

	3. Community Framework
	3.1 Overview
	3.2 Model, Simulator, and Supporting Valuetypes
	3.2.1 Model
	3.2.2 Simulator
	3.2.3 Control

	3.3 Membership, MembershipPolicy, and Member Link
	3.3.1 Membership
	3.3.2 MembershipModel
	3.3.3 MembershipPolicy
	3.3.4 Member and Recognizes Link

	3.4 Roles and Role Related Policy
	3.4.1 Role
	3.4.2 RolePolicy

	3.5 Community, Agency, LegalEntity, and Related Valuetypes
	3.5.1 Community
	3.5.2 Agency and LegalEntity

	3.6 General Utility Interfaces
	3.6.1 GenericResource
	3.6.2 Criteria
	3.6.3 ResourceFactory
	3.6.4 Problem

	3.7 UML Overview
	3.8 CommunityFramework Complete IDL

	Appendix A - Changes to the Task and Session Specification (formal/00-05-03)
	Appendix B - Complete OMG IDL
	B.1 CollaborationFramework Complete IDL
	B.2 CommunityFramework Complete IDL

	Index

