Date: July 2012

UML Profile for NIEM (NIEM-UML)

FTF—-Betal

OMG Document Number: dtc/2012-07-09
Machine Consumable Files:

Normative:
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-UML-Profile.xmi

http://www.omg.org/spec/NIEM

UML/20120501/XmlPrimitiveTypes.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEMglobals.gvto

http://www.omg.org/spec/NIEM

UML/20120501/NIEMmpdatrtifact2model.gvto

http://www.omg.org/spec/NIEM

UML/20120501/NIEMmpdmodel2artifact.gvto

http://www.omg.org/spec/NIEM

UML/20120501/NIEMpim2psm.qvto

http://www.omg.org/spec/NIEM

UML/20120501/NIEMplatformBinding.qvto

http://www.omg.org/spec/NIEM

UML/20120501/NIEMpsm2xsd.gvto

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-

ansi_d20.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-apco.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-atf.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-cbrncl.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-census.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-dea.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-dod ics-

pub2.0-misc.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-edxl.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-edxl-cap.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-edx|-de.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-edxl-

have.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-fbi.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-fips 5-2.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-fips 6-4.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-fips 10-

4.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-

geospatial.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-have-

codes.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-hazmat.xmi

http://www.omg.org/spec/NIEM_UML/20120501/NIEM-UML-Profile.xmi
http://www.omg.org/spec/NIEM_UML/20120501/XmlPrimitiveTypes.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEMglobals.qvto
http://www.omg.org/spec/NIEM_UML/20120501/NIEMmpdartifact2model.qvto
http://www.omg.org/spec/NIEM_UML/20120501/NIEMmpdmodel2artifact.qvto
http://www.omg.org/spec/NIEM_UML/20120501/NIEMpim2psm.qvto
http://www.omg.org/spec/NIEM_UML/20120501/NIEMplatformBinding.qvto
http://www.omg.org/spec/NIEM_UML/20120501/NIEMpsm2xsd.qvto
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-ansi_d20.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-ansi_d20.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-apco.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-atf.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-cbrncl.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-census.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-dea.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-dod_ics-pub2.0-misc.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-dod_ics-pub2.0-misc.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-edxl.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-edxl-cap.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-edxl-de.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-edxl-have.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-edxl-have.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-fbi.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-fips_5-2.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-fips_6-4.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-fips_10-4.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-fips_10-4.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-geospatial.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-geospatial.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-have-codes.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-have-codes.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference-common-hazmat.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-icism.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-iso_639-

3.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-

iso_3166.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-

iso_4217.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-itis.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-lasd.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-

mmucc_2.Xxmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-

mn_offense.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-nga.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-nlets.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-

nonauthoritative-code.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-post-

canada.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-sar.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-twpdes.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-ucr.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-

unece_rec20-misc.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-

usps_states.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-common-ut_offender-

tracking-misc.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-core.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-domains-

emergencyManagement.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-domains-

familyServices.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-domains-

intrastructureProtection.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-domains-

intelligence.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-domains-jxdm.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-domains-maritime.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-domains-

screening.xmi
http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-external-cap.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-external-de.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-external-have.xmi

http://www.omg.org/spec/NIEM

UML/20120501/NIEM-Reference/NIEM-Reference-external-ogc.xmi

Non-normative:
http://www.omg.org/spec/NIEM

UML/20120501/Nonnormative/Example-PetAdoption.mdzip

http://www.omg.org/spec/NIEM

UML/20120501/Nonnormative/Examples-Clause7.mdzip

http://www.omg.org/spec/NIEM

UML/20120501/Nonnormative/mpd.catalog.emof

http://www.omg.org/spec/NIEM

UML/20120501/Nonnormative/NIEM-UML-Profile.mdzip

http://www.omg.org/spec/NIEM

UML/20120501/Nonnormative/XSD.emof

http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-icism.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-iso_639-3.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-iso_639-3.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-iso_3166.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-iso_3166.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-iso_4217.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-iso_4217.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-itis.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-lasd.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-mmucc_2.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-mmucc_2.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-mn_offense.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-mn_offense.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-nga.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-nlets.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-nonauthoritative-code.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-nonauthoritative-code.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-post-canada.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-post-canada.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-sar.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-twpdes.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference-common-ucr.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-unece_rec20-misc.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-unece_rec20-misc.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-usps_states.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-usps_states.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-ut_offender-tracking-misc.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-common-ut_offender-tracking-misc.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-core.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-emergencyManagement.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-emergencyManagement.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-familyServices.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-familyServices.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-intrastructureProtection.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-intrastructureProtection.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-intelligence.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-intelligence.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-jxdm.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-maritime.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-screening.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-domains-screening.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-external-cap.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-external-de.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-external-have.xmi
http://www.omg.org/spec/NIEM_UML/20120501/NIEM-Reference/NIEM-Reference-external-ogc.xmi
http://www.omg.org/spec/NIEM_UML/20120501/Example-PetAdoption.mdzip
http://www.omg.org/spec/NIEM_UML/20120501/Nonnormative/Examples-Clause7.mdzip
http://www.omg.org/spec/NIEM_UML/20120501/Nonnormative/mpd.catalog.emof
http://www.omg.org/spec/NIEM_UML/20120501/Nonnormative/NIEM-UML-Profile.mdzip
http://www.omg.org/spec/NIEM_UML/20120501/Nonnormative/XSD.emof

This OMG document replaces the submission document (gov/2012-06-02, Alpha). It is an OMG Adopted Beta
Specification and is currently in the finalization phase. Comments on the content of this document are welcome, and
should be directed to issues@omg.org by September 3, 2012.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on November 12, 2012. If you are
reading this after that date, please download the available specification from the OMG Specifications Catalog.

mailto:issues@omg.org
http://www.omg.org/issues/

Copyright © 2012 Data Access Technologies (Model Driven Solutions)
Copyright © 2012 Georgia Tech Research Institute (GTRI)

Copyright © 2012 Microsoft

Copyright © 2012 Object Management Group (OMG)

Copyright © 2012 Visumpoint

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING

LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227- 7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 140 Kendrick Street,
Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, [IOP™ | IMMT™ MOFT™, OMG Interface Definition

Language (IDL) ™, and OMG Systems Modeling Language (OMG SysML) ™ are trademarks of the Object
Management Group. All other products or company names mentioned are used for identification purposes only, and
may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials. Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance points as
stated in the specification. Software developed only partially matching the applicable compliance points may claim
only that the software was based on this specification, but may not claim compliance or conformance with this
specification. In the event that testing suites are implemented or approved by Object Management Group, Inc.,
software developed using this specification may claim compliance or conformance with the specification only if the
software satisfactorily completes the testing suites.

Table of Contents

0
1

PIETACE ..ot R ettt 1
RS {oTo] o1 T T TSP TP PR PR PPTP 3
1.1 NIEM-UML BACKGIOUNTc.eiuiitiiitiitiiitcsteeeiest etttk b ettt bbbttt nb e 3
1.2 Intended USErs OF NIEM-UMLooiiiiiiiiiiieie ettt sttt ettt st st be b s e nee b seeneas 3
1.3 NIEM-UML PIOTIHES ...ttt b et bbb 3
1.4 NIEM-UML TransfOrMatiONScoeiiieieiieieieie ettt sttt st e st et sbesbesseeseeseeneeneeseeneas 4
1.5 NIEM-UML LIDFAIIES ... viittiteitieieit ettt ettt s b et sbe bt e s e ene e st e s e besbesbesbeeseeseeneebeseeneas 5
100 g1 o] g0 F=T o Lol TP T ST T 6
2.1 CONTOIMANCE POINESciiiteiciiire ettt et R et R et r et r et r e nr e 6
2.2 NIEM Platform Independent MOdel (PIM)coui oottt 6
2.3 NIEM Platform Specific MOAel (PSIM).......ooiiiie sttt te e e 6
2.4 NIEM Model Package Description (MPD) MOGEL.........c.ccoveiieiiiicc e 7
2.5 NIEM PIM to NIEM PSIM TraNSTOIMooiiiiiiiieiireree ettt 7
2.6 NIEM PSM to NIEM-Conforming XML Schema Transform ..o 7
2.7 NIEM MPD Model to NIEM MPD Artifact Transform........cccooviieiiiieieceseeeeee e 7
2.8 NIEM MPD Artifact to NIEM MPD Model Transform........ccccooiviieiiiine i 7
PN B o o] B O] 01 0T 40T T ol SRS 7
NOFMALIVE RETEIEICES. ...ttt ettt e et st e st e s beebe e st e st e s eesaesbesbeabeareeneeneeneenteneeas 9
Terms aNd DEFINITIONScc.viieiie ettt ettt e st e s beebe e e e e e tesbesbesbeebeereeneeeeneeneas 10
A1 DEIINITIONScvi ettt r et R et R et R et Rt bRttt 10
ol (0]0)Y/ 101 PSP ROTRPRN 14
RS 2] 0o OSSPSR 15
AdItional INFOFMEATIONoviiiiie ettt r et r e nr e re e 16
6.1 ACKNOWIEAGEMENLS ...ttt e st e st e e ste e teeat e e st e eseestaebeesteeseesnaesseesaeenaeenreenes 16
6.2 PrOOT OF CONCEPLccvieeiiitiieei bbbt b bbbt b bbbt b et b et 16
6.3 NIEM-UML Introduction and CONCEPLScvvuiriiieiiiieieiisieniecste ettt 16
B.3.1 BACKGIOUNG ...ttt et b et b e bbb bbbt st b e bt btk bbb bbb nre e 16
6.3.2 NIEM-UML GOGISoiuiiiiiitiicieite ettt b et b bbb bbbt nne e 17
6.3.3 Understanding NIEM-UML and Model Driven Architecture (MDA)cccccoviiiiininneneieseneesenieeas 17
NIEM-UML MOAEHNG GUIAEoouiitiiiiiitirieiite ettt sttt bbbt b e bbb e abesnenea 20
T 1 OVEIVIBW ..otttk et bR bR R bR R bRt b Rt n ettt r e n e 20
0 O A oo [0 To{ Ao o OSSR URRT 20
7.1.2 Platform Independent PEISPECLIVEoiiiiiiiieieie sttt bbb nbe e 21
7.1.3 Platform SPeCIfiC PEIrSPECIIVE.o it bbb e e 25
7.1.4 Model Packaging PersSPECIIVE.cuiui ittt bbb bbb eesae b e 29
7.2 IMOGEING NAIMESPACESeveteieitietieiesie ettt ettt st s b et eb e beeae e s e e sb e besbeeb e s b e ebe e st e e e besbeebesbeebeaseeneaneesaebas 30
T.2.1 NAIMESPACES ...t vttt ettt sttt sb bbb et e e bt R bt b e b e R e s e et Rt bt e b e bt et e e e st bt bbbt ne e n e ne e 30
T.2.2 NTEIM NGITIES. ...ttt eie st stee st te et e et e ste e te e tees e aseesseesreeseeeeeeneeameeas e e aseenteenteenteenseanaesreenreeneeenseanes 32
7.3 MOCEIING COMPIEX TYPES .. eireitiitirietirieiet sttt ettt b et b ettt b ettt st be bt be st 34
7.3 1 COMPIEX TYPES .ottt ettt sttt sttt b et b bt e st e bt s e e stk e s b e st ekt s b e s e eb e sb e s e ebe s b e st ebesbe s e ebenbereebeneeneas 34
7.3.2 ODJECE TYPES .ttt b et b et b bbbt bbbt b s e e bt ek e st e b e ekt sb e s e ekt st e st ebenbe s e ebenre e ebe b e 36
S T T 2o (=T Y LSRR ORI 39
T.3.4 ASSOCIALION TYPES .ottt sttt ettt bbb bbbt bt e Rt et e eb e b e eb e eb e e bt e R b e s e e eb e besbeebeebeeneeseene b e 42
S R T Y (=1 o L= R Y/ 0L SO TTUURURUSURURT 46
7.3.6 AUQGMENTALION TYPES ..uteeiitiiteitieteeiete et testeste e e e beseesbesbe bt ebeese e besbesbesbeebeeseemeeseesbesbesbeebeabeaneeseenne b ee 48

O A o - Yo T Y oL STV UR AR 52
7.4 MOCEING SIMPIE TYPES ..ottt ettt bttt b bbbt b e eb e e s e e e et sbeeb e s be et e areeneabeseeeas 54
0 STy o F= N Y S 54
T4.2 PrIMITIVE TYPES tvieieiieiestisie st ste s et e e s e st e st et e e e s e e te s teeseese e st e e e st e besbe et e eseene e s e e e e besteabenneeneeseeeeeenes 56

NIEM-UML Beta 1 i

T T O To [T I o= SR 59
TAA UNIONS oottt E e R R R e R R R R R R R R R R Rt r Rt 62
TLA5 LSS ottt R R R R Rt R e n et 64
7.5 MOGEIING PrOPEITIES .. .cveitieeiiete ettt bbb bbb bbbt bbbt bbbt b e b 66
75,1 PIOPEITIES .. ettt ettt b et bt h bt h bbbt e R e b e b e h bt h e R E bRt b e bbb e bt nr e 66
7.5.2 Property Holders and Property RETEIENCESciieiiiriiieieieie et 70
7.5.3 SUDSHITULION GFOUPDScvitiiiitiieeieetese ettt sttt sttt sttt b e bt bt et b bt b e sb e bt nb e eb e s b et ebenb e s e ebenre e ebenreneas 74
T.5.4 CROICE GIOUDScvereetiiteeeteete ettt ettt eb e bbb bbb b e s e eb e e e e s e bt nb e s e eb e e b e s e ebenb e e eb e s b et ebenb e s e et e nb e e ebenre e 77
7.6 PaCKAGING IMOUEISeiiiieieeit bbb b bbbt b et bbbt nbe e 78
7.6.1 Reference and SUDSEt MOUELScooviriirieiii e 78
7.6.2 Model PAackage DESCIIPLIONScviieieiieiieie st eeet et st e st e e e st be st e e ra e e e et e besbesreareeneeseenrenre e 81

8 NIEM-UML Profile REFEFENCEc.oiiveiiieciseese s 85
8.1 OVEIVIBW ...ttt ettt R R R R R R R R R Rt 85
8.2 NIEM COMMON PrOfIlE ... 85
B.2.1 OVEIVIBW ..ottt r e r e s Rt e R0 h Rt e e bt e Rt e R e Rt e Rt R e Rt R e n e r e n e renn e 85
8.2.2 <StEreotyPe™ AUAPIEITYPE ..ottt sttt sttt b et b e bbbt ebesb e et s b e e et sb st ebenr e e abenrenea 86
8.2.3 <Stereotype> APPIICALION.oii et re e 86
8.2.4 <Stereotype> ASSOCIALIONTYPE ...ouiiveiiririeiite ettt sttt ettt et sb bbbt sb et eb e b e ebesbe e 87
8.2.5 <Stereotype> AugmentationAPPIICALION ..o 88
8.2.6 <Stereotype> AUGMENTATIONTYPEoiviiiiireetieeeie ettt see sttt re e eeseesbesbesteereeneeseessenreees 88
ST B (- (101 01 >l O 1o [- SRS 89
8.2.8 <Stereotype> DOCUMENTALIONcciuiiiie e ieeste ettt e e ste e s e s e st e te e teeteesaesraesreesneesreereenes 90
eI TS [=T0] 1Y/ o1 I) SRR 90
8.2.10 <Stereotype> MetadataAPPIICALION..........coiieiier e 91
8.2.11 <Stereotype> MetadataTYPE ...cccviiveeie ettt te e e st et et e e te e be e e e s raesreesreesreenreenes 91
8.2.12 <SHEreOtYPE> NIEM T Y PR oottt bbbt e et e e srb e e s rbeesnbeesrbeesnsee e 91
8.2.13 <StEreOtyPe> NAMESPACEecueeieeurirrertesresie ettt et ettt bbbt e st b s b b e e b e et e e e n bbbt e st e e nenne s 93
8.2.14 <SHErEOtYPE> OB JECITYPE. ... i ittt b e bbbttt et b e bbb e st nre s 93
8.2.15 <Stereotype> PropertyHOIUEIcooiiiiiire bbb 93
8.2.16 <SHErEOTYPE> RETEIENCES . cviiviiiitiiicieete ettt ettt st et e st e e e te s b e e ebesbe e ebesre e eteseerens 94
8.2.17 <StEreotype> RESIIICIIONeiviiiiiiicicti ettt sttt e e be st e e be st e e etesaereas 95
ST R IS T =T0] 3 o< U 1o o] SR 95
8.2.19 <Stereotype> UNIONOToo ittt ettt re e anes 96
8.2.20 <Stereotype> ValUERESIIICLIONcccvi ittt sre e saeereenes 96
8.3 NIEM PIM PIOFIE ..ottt 98
B.3.1 OVEIVIBW ..ottt bt b e b et R e Rt e e bRt e h et R Rt R e n et Rt n e r e r e renr e 98
8.3.2 <SHEIEOLYPES AUGIMENTS ...utiiiiiieiiie ittt eiee st ettt e st e st e st e e b e sa b e e s st e e sabe e s s beesabe e s s beesnbeessbeesnbeesnbeennbee e 99
8.3.3 <Enumeration> DefaultPUrPOSECOME..........eiuiriiiiiie ettt 99
8.3.4 <Stereotype> INfOrmationMOUEcoiiiiiiiieee et re e 99
8.3.5 <Stereotype> REfEreNCENGME.cc.ciii ittt re st sresnaere e e e naeneenres 100
8.3.6 <Stereotype> ROIEOT........ccci e sttt nren 100
8.3.7 <Stereotype> ROIEPIAYEUBYcccciiiiiiiiieeieiesie ettt e e sre st sreenaeneeneeneeneenes 100
8.4 NIEM PSM PrOTIlB....ce ittt sttt te e e ne e e e e e beseesbesreeneeneeeeeenrens 101
I A O oV 1= OO RUSUR ORI 101
8.4.2 <Stereotype> SEOUENCEIDo ittt bbb 101
8.4.3 <Stereotype> XSDANYPIOPEITYccei ittt ettt bbbttt b e et b e bt e b e e be e b sneeneesaeas 102
8.4.4 <Stereotype> XSDDECIAIAIIONcc.oiiii it e bbb e eas 102
8.4.5 <Enumeration> XSDProcesSCONENTSCOUEccueuiruiriirieiiieiieieiie sttt 102
8.4.6 <StEre0tYPE™> XSDPIOPEITYeiiieitieiteett ettt ettt b e bttt b e ae e bt e sb e e b e e beebeesaesreeseeas 103
8.4.7 <Enumeration> XSDPropertyKindCoOdEc.couevereieriie et 104
8.4.8 <Stereotype> XSDRepresentationRESIHCIIONc.ccviiiiiie e 104
8.4.9 <Stereotype> XSDSIMPIECONTENT.......ciiviiieieeieriere et e et resreere e e eeesrenees 104
8.4.10 <Enumeration> XSDWNhiteSPaCeCOUEccveeeieieieriise ettt re e nes 105
8.5 Model Package DeSCription Profile.........ccciiiiiiieieiicie ettt nae e nne s 105
B.5.1 OVEIVIBW ..ottt Rt R R R Rt Rt 105

NIEM-UML Beta 1 ii

8.5.2 <Stereotype> ModelPackageDeSCrIPtiONc.civivieiiieiiie ettt st nes 106

8.5.3 <Enumeration> ModelPackageDescriptionClassCOdE.........c.civeierieiirerie e 110

8.5.4 <Stereotype> ModelPackageDesCriptionFilecccooviiie i 111

8.5.5 <Stereotype> ModelPackageDesCriptioNFIlESELccccoviiieiiireiie e 120

8.5.6 <Stereotype> ModelPackageDescriptionRelationshipccccovieriiiiiniiiiencee e 121

8.5.7 <ENUMEration> NAUFECOAE.cviiiieiieitiie ettt sttt sttt bbb ebeer e et e e seennas 121

B.5.8 KCIASS™ PO CTYPE ... cttteiettite ettt ettt sttt b bbbtk b bbbt bbbt bbbt b bt bbbt bt e bt bbbt b e bt b 123

8.5.9 <ENUMEration> PUIPOSECOUR.ueviiiitiieiiite ettt b ettt b ettt bbb et eb e 123
8.5.10 <Enumeration> RelationShiPCOUEccoiiiiiiieie e 124

9 NIEM-UML Transformation REFEIrENCEcooiiiieieiiee ettt 126
TR 101 oo [0 o] OSSOSO 126
9.1.1 NIEM ProviSioniNg CONIEXL.......cviiieiieieitiieseeieesi e sesteste e ee e aesreste e snaeseesseaestestessesseesessseseeseesses 126

9.1.2 Transformation NOTATIONcoiiiiiiie ettt b e b bbb neenas 128

LSS T o - (o 8 = 71T [o OSSR 130

9.2 NIEM PIM 10 NIEM PSIM ..ottt ettt sttt ettt 131
9.3 NIEM PSM to NIEM-Conforming XML SCREMAc.ccoriiiiiiiiiiiieieesee s 140
9.4 NIEM MPD Model to NIEM MPD AMTACcc.oiiiiiiiiicce ettt 154
9.5 NIEM MPD Artifact to NIEM MPD MOGELcoveiiiiiiiicecce ettt 155
Annex A NIEM-UML PIM Example (iNfOrmatiVe)...........ccoiriiiiiiiiiiieiese s 170
Annex B Structured English Mapping Specifications (NOrmative)cccocovviviiiniiienese e 189
Annex C Machine Readable Artifacts (NOFMALIVE)..........ccooiiiiiiiiiii s 240

NIEM-UML Beta 1 iii

O Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies and academia. OMG member companies write,
adopt, and maintain its specifications following a mature, open process. OMG's specifications implement the Model
Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that
covers multiple operating systems, programming languages, middleware and networking infrastructures, and
software development environments. OMG's specifications include: UML® (Unified Modeling Language™);
CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and
industry-specific standards for dozens of vertical markets. More information on the OMG is available at
http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from this URL: http://www.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications

e CORBA/IIOP

o Data Distribution Services

e Specialized CORBA IDL/Language Mapping Specifications
Modeling and Metadata Specifications

e UML, MOF, CWM, XMI

e UML Profile Specifications

Platform Independent Model (PIM) - Platform Specific Model (PSM) - Interface Specifications
o CORBAServices

e CORBAFacilities

e OMG Domain Specifications

e CORBA Embedded Intelligence Specifications

e CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at: OMG Headquarters 140 Kendrick Street Building A, Suite 300 Needham, MA 02494 USA Tel: +1-
781-444-0404 Fax: +1-781-444-0320 Email: pubs@omg.org Certain OMG specifications are also available as ISO
standards. Please consult http://www.iso.org

NIEM-UML Beta 1

http://www.omg.org/
http://www.omg.org/spec

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/ report_issue.htm.

NIEM-UML Beta 1

1 Scope
1.1 NIEM-UML Background

Grown out of a grassroots initiative, the National Information Exchange Model (NIEM) was born as a best practice
developed by a handful of state and local practitioners and defined in NIEM’s predecessor, the Global Justice XML
Data Model (GJXDM). Today, NIEM is a national program that empowers organizations to create and maintain
meaningful data connections across their stove-piped IT systems, as well as their stakeholder base. NIEM provides
data components and processes needed to create exchange specifications which support mission data sharing and
exchange requirements. By providing a common vocabulary and mature framework to facilitate information
exchange, NIEM enables communities to “speak the same language” as they share, exchange, accept, and translate
information efficiently.

NIEM is currently defined in terms of the eXtensible Markup Language (XML), XML Schema (XSD) and the
normative NIEM platform specifications which include the NIEM Naming and Design Rules (NDR) Version 1.3
and the NIEM Model Package Description (MPD) Specification Version 1.0. These platform specifications are
utilized without change in NIEM-UML and the NIEM-UML specification assists UML modelers in producing
NIEM model packages conforming to these standards. More information on NIEM is available at
https://www.niem.gov/.

The use of UML to represent NIEM is part of the NIEM Program Management Office’s (PMO) strategy in support
of the NIEM community and intended to broaden NIEM adoption and in aligning to industry standards. NIEM-UML
embraces the Model Driven Architecture (MDA) ® standards of the Object Management Group (OMG) ® to
facilitate the separation of concerns between business needs and technology implementations. More information on
OMG is available at http://www.omg.org/mda/.

1.2 Intended Users of NIEM-UML

One of the key goals for NIEM-UML is to allow modelers and developers to apply NIEM-UML with minimal effort
in order to create new models or change existing models and ultimately to produce NIEM MPD artifacts. When
modeling information exchanges, there are two distinct sets of requirements that lead to two approaches to
modeling. The first set of requirements represents the business requirements of an organization. This set is relatively
constant and consistent over time and entails modeling the capabilities the organization has, the processes the
organization employs and the information the organization leverages. The second set is related to the technical
implementation of an organization’s capabilities, processes and information and varies as platforms and
technologies change. These approaches are defined by MDA as the Platform Independent Model (PIM) and the
Platform Specific Model (PSM) approaches, respectively. The “platform” for NIEM is considered to be XML
Schema structured according to the NIEM naming and design rules (NDR) for XML Schema.

The two distinct sets of requirements lead to two different approaches to modeling. The PIM is mainly a business
modeling approach while the PSM is mainly a technical modeling approach. In practice, it is important to be able to
model an information exchange leveraging both the business and the technical modeling approaches. Furthermore it
is critical to have an active communication and effective collaboration between business and technical modelers to
assure that the model represents the business requirements correctly and implements them effectively within the
means of the current platform and technology. The structure of the NIEM-UML Profile is designed to meet the
requirements of the two modeling communities described above and to allow for communication and collaboration
between them. NIEM-UML also contains transforms that allow a PIM to automatically produce a PSM (using
standard Model Driven Architecture (MDA) tooling) while allowing the modeler to augment the PIM with PSM
considerations as required.

1.3 NIEM-UML Profiles

Key components of NIEM-UML are the profiles used by modelers. The NIEM-UML Profile consists of four sub-
profiles, as shown in Figure 1-1. Each sub-profile is a subset of UML 2.4 constructs that are extended by UML
stereotypes. The subset identifies those NIEM v2.1 concepts for which an analogous representation exists in UML.

NIEM-UML Beta 1 3

https://www.niem.gov/
http://www.omg.org/mda/

Use of this subset ensures that a model produced by one user will be interpreted as expected by another user. The
UML extensions define the NIEM concepts without an analogous representation in UML. All NIEM-UML models
use the standard XMI exchange format specified for UML 2.4 and may exchange NIEM models between
conforming UML tools.

N[UML Profile For NIEM

Entry Point for NIEM Business Modelers

NIEM PIM Profile

Enfry Point for NIEM Schema Modelers

[

NIEM

Common
Profile

NIEM PSM Profile

Adding features
sadfjoasa)s Buippy

NIEM MPD Profile

:

Isomorp apping

MPD XSD Artifacts

Figure 1-1 Components of the NIEM-UML Specification
These sub-profiles have distinct purposes and relationships;

e The NIEM Platform Independent Model (PIM) Profile provides stereotypes that enable NIEM business
modelers to model an information exchange in a technology agnostic way and create a NIEM PIM.

e The NIEM Platform Specific Model (PSM) Profile provides stereotypes that enable NIEM technical modelers —
or, more precisely, NIEM schema modelers — to model the technical aspect of an information exchange
represented in a NIEM PSM.

e The NIEM Common Profile, leveraged by both the PIM and PSM profiles, which contains the core stereotypes
used to represent NIEM structures in UML.

e The Model Package Description (MPD) Profile provides stereotypes for modeling NIEM MPDs, which are the
final artifacts representing a NIEM information exchange, based on either a PIM or PSM model.

As indicated in Figure 1-1, this structure for the NIEM-UML profile provides direct “entry points” for both NIEM
modelers who are primarily business oriented and NIEM modelers who are primarily technically oriented. However,
it also defines a clear relationship between these levels, allowing modelers to also move flexibly between them using
a common set of profile concepts.

1.4 NIEM-UML Transformations

NIEM-UML also contains transformations from NIEM-UML business models (NIEM PIMs) to NIEM-UML
technical models (NIEM PSMs) and from NIEM-UML technical models to NIEM-compliant XML schemas and
MPDs. Further, stereotypes from the NIEM PSM profile can be used to enable provisioning of the NIEM PIM as a
set of NIEM MPD artifacts. Stereotypes from the NIEM PIM Profile can be added to a NIEM PSM as features to
enable transforming a NIEM PSM to a NIEM PIM.

NIEM-UML Beta 1 4

To enable reuse of existing NIEM artifacts transformations are also provided to “reverse engineer” existing MPD
artifacts to NIEM-UML.

1.5 NIEM-UML Libraries

A central tenet of NIEM is reuse. NIEM-UML facilitates reuse by providing the NIEM reference namespaces as
NIEM-UML models. The reference namespaces represent the reusable information sharing vocabularies defined as
part of the NIEM process. These vocabularies are reused in all NIEM models.

NOTE. The NIEM-UML Reference Vocabulary Library is currently provided consistent with the NIEM v2.1
release and for the domains contained under that release. The current version of this model library is the normative
representation for the NIEM v2.1 reference vocabulary and should be used by NIEM-UML models based on that
release. However, the NIEM PMO may provide updated models for future releases of NIEM. Since the definition of
conforming NIEM models given in Clause 2 does not depend on the use of a specific version of the Reference
Vocabulary Library, the use of future versions as released by the NIEM PMO does not affect the definition of
conformance under this specification.

NIEM-UML Beta 1 5

2 Conformance

2.1 Conformance Points

This specification defines the following conformance points (also referred to as conformance targets):
o NIEM Platform Independent Model (PIM)

o NIEM Platform Specific Model (PSM)

e NIEM Model Package Description (MPD) Model

e NIEM PIM to NIEM PSM transform

e NIEM PSM to NIEM-conforming XML schema transform

e NIEM MPD model to NIEM MPD artifact transform

e NIEM MPD artifact to NIEM MPD model transform

2.2 NIEM Platform Independent Model (PIM)

Subclause 8.2 of this specification defines the NIEM PIM Profile. A NIEM PIM consists of a set of UML Packages
to which this NIEM PIM Profile has been applied such that all the following hold:

e Each member of the set of UML Packages and each model element contained by those packages satisfies the
constraints specified by the NIEM PIM Profile.

e Each member of the set of UML Packages and each model element contained by those packages to which a
stereotype from the NIEM PIM has been applied satisfies the constraints specified by that stereotype.

NOTE. The NIEM PIM Profile imports the NIEM Common Profile, so the latter is also necessary in order to meet
this conformance point.

2.3 NIEM Platform Specific Model (PSM)

Subclause 8.3 of this specification defines the NIEM PSM Profile. A NIEM PSM consists of a set of UML Packages
to which this NIEM PSM Profile has been applied such that the following hold:

e The NIEM PIM Profile has neither been applied to any member of the set of UML Packages nor to any model
element contained by those packages;

e The profile application is “strict” as defined in UML 2.4 Superstructure, Subclauses 18.3.7 and 18.3.8: each
member of the set of UML Packages and each model element contained by those packages belongs to the UML
subset specified by the NIEM PSM Profile;

e Each member of the set of UML Packages and each model element contained by those packages satisfies the
constraints specified by the NIEM PSM profile; and

e Each member of the set of UML Packages and each model element contained by those packages to which a
stereotype from the NIEM PSM has been applied satisfies the constraints specified by that stereotype.

A NIEM PSM conforms to this specification only if a NIEM-conformant XML schema set may be successfully
generated from it according to the rules of Subclause 9.3 of this specification and as further discussed in Subclause
2.6 below.

NOTE. The NIEM PSM Profile imports the NIEM Common Profile, so the latter is also necessary in order to meet
this conformance point.

NIEM-UML Beta 1 6

2.4 NIEM Model Package Description (MPD) Model

Subclause 8.4 of this specification defines the Model Package Description Profile. A NIEM MPD model consists of
a set of UML Packages to which this Model Package Description Profile has been applied and which import UML
Packages to which the NIEM PIM Profile and/or the NIEM PSM Profile has been applied, such that the following
hold:

e The imported UML Packages with the NIEM PIM Profile applied is a conforming NIEM PIM as defined in
Subclause 2.2.

e The imported UML Packages with only the NIEM PSM Profile applied is a conforming NIEM PSM as defined
in Subclause 2.3.

e Each member of the set of UML Packages with the Model Package Description Profile applied and each model
element contained by those packages satisfies the constraints specified by the Model Package Description
Profile.

e Each member of the set of UML Packages with the Model Package Description Profile applied and each model
element contained by those packages to which a stereotype from the Model Package Description Profile has
been applied satisfies the constraints specified by that stereotype.

2.5 NIEM PIM to NIEM PSM Transform

Subclause 9.2 of this specification describes the NIEM PIM to NIEM PSM transformation rules. A NIEM PIM to
NIEM PSM transform consists of a NIEM PIM and a NIEM PSM such that the NIEM PIM to NIEM PSM
transformation rules, when applied to the NIEM PIM, produce the NIEM PSM.

2.6 NIEM PSM to NIEM-Conforming XML Schema Transform

Subclause 9.3 of this specification describes the NIEM PSM to NIEM-conforming XML schema generation rules. A
NIEM PSM to NIEM-conforming XML Schema transform consists of a NIEM PSM and a NIEM-conforming XML
schema set (per [NIEM-NDRY]) such that the NIEM PSM to NIEM-conforming XML schema generation rules, when
applied to the NIEM PSM, produce an XML schema set that is validation-equivalent to the given schema set. A
schema set A is validation-equivalent to a schema set B if and only if, for all XML instances I, | is valid against
schema set A if and only if | is valid against B.

2.7 NIEM MPD Model to NIEM MPD Artifact Transform

Subclause 9.4 of this specification describes the NIEM MPD model to NIEM MPD artifact generation rules. A
NIEM MPD model to NIEM MPD artifact transform consists of a NIEM MPD model and a NIEM MPD (as
specified in [NIEM-MPD]) such that the NIEM MPD model to NIEM MPD artifact generation rules, when applied
to the NIEM MPD maodel, produce the NIEM MPD, where conformance of any generated NIEM-conforming XML
schema included in the MPD is as defined in Subclause 2.6.

2.8 NIEM MPD Artifact to NIEM MPD Model Transform

Subclause 9.5 of this specification describes the NIEM MPD artifact to NIEM MPD model reverse engineering
rules. A NIEM MPD to NIEM MPD artifact model transform consists of a NIEM MPD (as specified in [NIEM-
MPD]) and a NIEM MPD model such that the NIEM MPD to NIEM MPD artifact model reverse engineering rules,
when applied to the NIEM MPD, produce the NIEM MPD model.

2.9 Tool Conformance

This specification defines tool conformance in terms of conformance points. A tool developer may assert that a
given tool supports one or more of the conformance points defined in this specification as follows:

e The tool produces a NIEM PIM as described in Subclause 2.3.

NIEM-UML Beta 1 7

e The tool produces a NIEM PSM as described in Subclause 2.4.

e The tool consumes a NIEM PIM and produces a NIEM PSM, such that it performs a NIEM PIM to NIEM PSM
transform as described in Subclause 2.5.

e The tool consumes a NIEM PSM and produces a NIEM-conforming XML schema, such that it performs a
NIEM PSM to NIEM-conforming XML schema transform as described in Subclause 2.6.

NOTE. The NIEM PSM to NIEM-conforming XML schema generation rules as described in Subclause 9.3
may be formalized using QVT [QVT] (see also Annex C.1). The definition of this QVT as normative does not
imply that implementations must execute QVT to conform to this specification. Implementations may use any
means to transform a NIEM PSM to a NIEM-conforming XML schema set. Any such transform is considered
conformant to this specification if it meets the requirements of this subclause.

e The tool consumes a NIEM MPD model and produces a NIEM MPD, such that it performs a NIEM MPD
model to NIEM MPD transform as described in Subclause 2.7.

e The tool consumes a NIEM MPD and produces a NIEM MPD model, such that it performs a NIEM MPD to
NIEM MPD model transform as described in Subclause 2.8.

At some time in the future tools may be developed that can verify these assertions with some degree of confidence.

NIEM-UML Beta 1 8

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do

not apply.

[MOF]

[NIEM]

[NIEM-Conformance]

[NIEM-MPD]

[NIEM-NDR]

[OCL]

[QVT]

[RFC2119]

[UML]

[XMI]

[XMLNamespaces]

[XMLSchemaDatatypes]

[XMLSchemaStructures]

NIEM-UML Beta 1

OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1,
formal/2011-08-07 (http://www.omg.org/spec/MOF/2.4.1/PDF/)

NIEM Reference Namespaces, Version 2.1

(http://release.niem.gov/niem/2.1/)

NIEM Conformance, Version 1.0
(http://reference.niem.gov/niem/specification/conformance/1.0/conformance-

1.0.pdf)
NIEM Model Package Description Specification, Version 1.0

(http://reference.niem.gov/niem/specification/model-package-
description/1.0/model-package-description-1.0.pdf)

NIEM Naming and Design Rules (NDR), Version 1.3
(http://reference.niem.gov/niem/specification/naming-and-design-
rules/1.3/niem-ndr-1.3.pdf)

NIEM Type Augmentation Supplement to NDR 1.3, Version 1.0
(http://reference.niem.gov/niem/specification/naming-and-design-
rules/1.3/type-augmentation/niem-type-augmentation.pdf)

OMG Object Constraint Language (OCL), Version 2.3.1, formal/2012-01-01
(http://www.omg.org/spec/OCL/2.3.1/PDF)

Meta Object Facility (MOF) Query/View/Transformation Specification,
Version 1.1, formal/2011-01-01 (http://www.omg.org/spec/QVT/1.1/PDF)

Key words for use in RFCs to Indicate Requirement Levels, IETF RFC 2119,
March 1997 (http://www.ietf.org/rfc/rfc2119.txt)

OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1, formal/2011-08-06
(http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF)

OMG MOF 2 XMI Mapping Specification, Version 2.4.1. formal/2011-08-09
(http://www.omg.org/spec/XMI/2.4.1/PDF)

Namespaces in XML, World Wide Web Consortium 16 August 2006
(http://www.w3.0rg/TR/2006/REC-xml-names-20060816)

Namespaces in XML Errata, 6 December 2002
(http://www.w3.org/XML/xml-names-19990114-errata)

XML Schema Part 2: Datatypes Second Edition, W3C Recommendation
(http://www.w3.0rg/TR/xmlschema-2/)

XML Schema Part 1: Structures Second Edition, W3C Recommendation
(http://www.w3.org/TR/xmlschema-1/)

http://www.omg.org/spec/MOF/2.4.1/PDF/
http://release.niem.gov/niem/2.1/
http://reference.niem.gov/niem/specification/conformance/1.0/conformance-1.0.pdf
http://reference.niem.gov/niem/specification/conformance/1.0/conformance-1.0.pdf
http://reference.niem.gov/niem/specification/model-package-description/1.0/model-package-description-1.0.pdf
http://reference.niem.gov/niem/specification/model-package-description/1.0/model-package-description-1.0.pdf
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/niem-ndr-1.3.pdf
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/niem-ndr-1.3.pdf
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/type-augmentation/niem-type-augmentation.pdf
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/type-augmentation/niem-type-augmentation.pdf
http://www.omg.org/spec/OCL/2.3.1/PDF
http://www.omg.org/spec/QVT/1.1/PDF
http://www.ietf.org/rfc/rfc2119.txt
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/XMI/2.4.1/PDF
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.w3.org/XML/xml-names-19990114-errata
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-1/

4 Terms and Definitions

4.1 Definitions

Artifact (NIEM)

An electronic file or a labeled set of logically cohesive electronic files. For example, an IEPD is usually composed
of many artifacts (XML schemas, XML files, documentation files, etc.)

Association (NIEM)

Establishes a relationship between objects, along with the properties of that relationship; provides a structure that
does not establish existence of an object but instead specifies relationships between objects. A NIEM association
may relate multiple objects.

Augmentation (NIEM)

A container element that bears additional properties that may be added to an object type to supplement the properties
of the original object definition. Augmenting a type does not change the semantics of that type. A NIEM
augmentation can only be applied to the types specified in its definition. Augmentations may be used in combination
as needed to supplement an object.

Catalog (NIEM)

An artifact for an IEPD that identifies and classifies all artifacts that comprise the IEPD, and that also contains
metadata associated with the IEPD. A catalog is an XML instance defined by the XML catalog schema specified in
the NIEM Model Package Description (MPD) Specification.

Change Log (NIEM)
A formal or informal artifact that records the changes applied since the last release of the product the change log is
associated with.

Core Update (NIEM)

Used to add new schemas, new data components, new code values, etc. to NIEM Core; in some cases a core update
can make minor modifications to existing core data components; however it is never used to replace a NIEM core
version.

NIEM Conformance (also NIEM-conforming)

Adherence to the NIEM Naming and Design Rules (NDR), Model Package Description Specification (MPD), and
the more general NIEM Conformance Specification when developing a NIEM release, domain update, core update,
IEPD (for an information exchange), or an EIEM (composed of BIECs) and their associated artifacts.
Constraint Schema (NIEM)

An IEPD schema with the purpose of restricting or constraining content that appears in instances of the subject
schema. A constraint schema is not NIEM-conforming. Use of constraint schemas in IEPDs are a technique for
enforcing additional constraints on schemas that cannot otherwise be enforced through the NIEM reference schemas.
Data Component (NIEM)

A W3C XML Schema definition for an XML type, element, attribute, or any other NIEM-conforming XML Schema
construct. Sometimes also referred to as “metadata component.”

NIEM-UML Beta 1 10

Domain Update (NIEM)

One or more XML schemas that are a replacement for or that supplement a given version of a published NIEM
domain release or another domain update.

Exchange Schema (NIEM)

An IEPD schema with the purpose of defining the content model of the information exchange. An exchange schema
works in conjunction with the subset, extension, and constraint schemas to form a complete package that represents
the exchange. The exchange schema is essentially the root schema within the set of schemas that defines an
exchange.

Extension Schema (NIEM)
An IEPD schema that extends existing NIEM data components (i.e., types and elements), or that defines new NIEM-
conforming data components to be used in an information exchange.

NIEM Information Exchange Model (IEM)

One or more NIEM-conforming XML schemas that together specify the structure, semantics, and relationships of
XML objects that are consistent representations of information. The five IEM classes in NIEM are: (1) release, (2)
core update, (3) domain update, (4) Information Exchange Package Documentation (IEPD), and (5) Enterprise
Information Exchange Model (EIEM).

NIEM Information Exchange Package (IEP)

An XML instance of an IEPD that is or will be the specific information exchanged between a sender and a receiver
on-the-wire. In general, an IEPD contains schema and documentation artifacts. As part of its documentation, an
IEPD is required to contain at least one sample IEP for each document (root) element defined within its exchange
schema(s).

NIEM Information Exchange Package Documentation (IEPD)

The aggregation of XML schemas and associated documentation artifacts that completely specify and describe an
information exchange. Documentation must include a catalog, change log, master document, and sample IEPs for
each document element, and may optionally include other artifacts that may be useful to implementing the IEPD
(e.g., business rules, business requirements, etc.).

Master Document (NIEM)

An artifact required in an IEPD that is the primary text-based documentation for the IEPD. The Master Document
generally establishes baseline information about the IEPD and references any other optional and supplementary
documentation. Similar to a “readme” file.

Metadata

Describes data about data, that is, information that is not descriptive of objects and their relationships, but is
descriptive of the data itself.

Model

A formal specification of the function, structure and/or behavior of an application or system.

Model Driven Architecture (MDA)

An approach to system specification that separates the specification of functionality from the specification of the
implementation of that functionality on a specific technology platform.

NIEM-UML Beta 1 11

NIEM Model Package Description (MPD)

An organized set of files that contains one and only one of the five classes of NIEM IEM, as well as supporting
documentation and other artifacts. An MPD is self-documenting and provides sufficient normative and non-
normative information to allow technical personnel to understand how to use and implement the IEM it contains. An
MPD is packaged as a compressed archive.

NIEM Core

The NIEM namespace (or corresponding XML schema) that contains all data components determined to have
relevance to and semantic agreement by most or all participating domains. Notionally, NIEM Core contains all
reusable data components that are not domain-specific and are governed by the NIEM Business Architecture
Committee (NBAC).

NIEM Domain

A line-of-business, community-of-interest, or other similar grouping that is assigned a NIEM namespace, has
responsibility to act as an authoritative source and steward of domain-specific data components, and can propose
promotions of data components to the NIEM Core namespace.

NIEM-conformant Schema

An XML Schema document conforms to the NIEM Naming and Designh Rules (NDR). These generally include
reference schemas, subset schemas, extension schemas, and exchange schemas.

Normative

Provisions that one must conform to in order to claim compliance with the standard. (as opposed to non-normative
or informative which is explanatory material that is included in order to assist in understanding the standard and
does not contain any provisions that must be conformed to in order to claim compliance).

Normative Reference

References or specifications that contain provisions that one must conform to in order to claim compliance with the
standard that contains said normative reference.

Object Constraint Language (OCL)

An adopted OMG standard and formal language used to describe expressions on MOF models. These expressions
typically specify invariant conditions that must hold for the system being modeled or queries over objects described
in a model. Note that when the OCL expressions are evaluated, they do not have side effects; i.e., their evaluation
cannot alter the state of the corresponding executing system. For the purpose of this specification, references to OCL
should be considered references to the Object Constraint Language Specification, cited in Normative References,
above.

Platform Independent Model (PIM)

A model of a subsystem at a logical level that contains no information specific to the platform or the technology that
is used to realize it.

Platform Specific Model (PSM)

A model of a subsystem that includes information about the specific technology that is used in the realization of it
on a specific platform, and hence possibly contains elements that are specific to the platform.

NIEM-UML Beta 1 12

Query/View/Transformation (QVT)

A standard for writing transformation specifications between MOF based metamodels; a QVT engine is able to
execute transformations and create or update a target model from a source model.

Reference Schema (NIEM)
An XML Schema document that meets all of the following criteria:

o Itis explicitly designated as a reference schema. This may be declared by an IEPD catalog or by a tool-specific
mechanism outside the schema.

e It provides the broadest, most fundamental definitions of components in its namespace.
e |t provides the authoritative definition of business semantics for components in its namespace.

e Itisintended to serve as the basis for components in IEPD schemas, including subset schemas, constraint
schemas, extension schemas, and exchange schemas.

o It satisfies all rules specified in the Naming and Design Rules for reference schemas.

e Ingeneral, NIEM releases are composed of NIEM reference schemas.

Release (NIEM)

A set of schemas published by the NIEM Program Management Office (PMO) and assigned a unique version
number; a release is of high quality and has been vetted by NIEM governance bodies; includes micro, minor or
major releases.

W3C Resource Description Framework (RDF)

A language for representing information about resources in the World Wide Web. It is particularly intended for
representing metadata about Web resources, such as the title, author, and modification date of a Web page, copyright
and licensing information about a Web document, or the availability schedule for some shared resource. By
generalizing the concept of a “Web resource”, RDF can also be used to represent information about things that can
be identified on the Web, even when they cannot be directly retrieved on the Web. RDF is intended for situations in
which this information needs to be processed by applications, rather than being only displayed to people. RDF
provides a common framework for expressing this information so it can be exchanged between applications without
loss of meaning.

Root Element (NIEM)

A globally defined element in a NIEM IEPD exchange schema. A root element can always be used as the top-level
XML document element within an XML instance defined by the IEPD.

Schema Subset (NIEM)

A set of subset schemas derived from a NIEM reference schema set, usually a NIEM release. Any XML instance
that validates with a correct schema subset will also validate with the complete reference schema set from which the
schema subset was derived (See also “subset schema.”).

Subset Schema (NIEM)

A schema that constitutes a part (i.e., subset) of a NIEM reference schema; a schema whose data components are
taken entirely from a NIEM reference schema while excluding those components that are unnecessary for a given
exchange. Subset schemas are generally used in an IEPD as related set, i.e., from the same reference schema set
such as a NIEM release (See also “schema subset.”).

NIEM-UML Beta 1 13

Unified Profile for DoDAF and MODAF (UPDM)

A profile that defines a standard set of elements, relationships that exist between them, and a number of views and
viewpoints which are used to support the development of an Enterprise Architecture primarily for the military
community of interest.

XML Metadata Interchange (XMI)

XMl is a widely used interchange format for sharing objects using XML. Sharing objects in XML is a
comprehensive solution that build on sharing data with XML. XMl is applicable to a wide variety of objects:
analysis (UML), software (Java, C++), components (EJB, IDL, CORBA Component Model), and databases (CWM).
For the purpose of this specification, references to XMl should be considered references to the XML Metadata
Interchange (XMI) 2.0 Specification, cited in Normative References, above.

XML Schema Document (XSD)

A document written in the W3C XML Schema language, typically containing the “xsd:” or “xs:” XML namespace
prefix and stored with the “.xsd” filename extension. Like all XML schema languages, XSD can be used to express
a set of rules to which an XML document must conform in order to be considered 'valid' according to that schema.

Sometimes also referred to as XML Schema Definition.

eXtended Markup Language (XML)

Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML (ISO 8879).
Originally designed to meet the challenges of large-scale electronic publishing, XML is also playing an increasingly
important role in the exchange of a wide variety of data on the Web and elsewhere.

4.2 Acronyms

BIEC Business Information Exchange Component
DoD Department of Defense

EIEM Enterprise Information Exchange Model

IC Intelligence Community

IEPD Information Exchange Package Documentation
MDA Model Driven Architecture

MPD Model Package Description

NDR Naming and Design Rules

NIEM National Information Exchange Model

OCL Object Constraint Language

PIM Platform Independent Model

PM-ISE Program Manager for the Information Sharing Environment
PSM Platform Specific Model

QVT Query/View/Transformation

UML Unified Modeling Language

UPDM Unified Profile for DODAF/MODAF

XMl XML Metadata Interchange

XML eXtensible Markup Language

XSD XML Schema Definition

NIEM-UML Beta 1 14

5 Symbols

There are no symbols defined in this specification.

NIEM-UML Beta 1

15

6 Additional Information

6.1 Acknowledgements

The following entities have played a significant role in driving the development of this specification:
e Submitters:
o Microsoft
o Model Driven Solutions
o Visumpoint, LLC
e Government Stakeholders:
o NIEM Program Management Office (PMO), and the NIEM Technical Architecture Committee (NTAC)
o Office of the Program Manager for Information Sharing Environment (PM-ISE) www.ise.gov
o Office of the Secretary of Defense
e Contributors:
o Adaptive
o Escape Velocity
o Everware-CBDI
o Georgia Tech Research Institute (GTRI)
o SEARCH
o TethersEnd Consulting

6.2 Proof of Concept

Proofs of Concept have been completed during the development of the PIM and the PSM profiles such that NIEM -
UML models can be used to forward engineer validated MPDs and existing IEPDs have been able to be reverse
engineered into NIEM-UML.

6.3 NIEM-UML Introduction and Concepts

6.3.1 Background

The U.S. Department of Justice (DOJ) and the U.S. Department of Homeland Security (DHS) initiated the National
Information Exchange Model (NIEM) in 2005. Its early design was based on its predecessor, the Global Justice
XML Data Model (GIXDM). Both programs recognized immediately that widespread adoption and use would
require common vocabularies for information sharing and supporting software tools. Responding to a variety of
urgent user needs, GJIXDM software tools were developed by DOJ. As user needs evolved, these tools were adapted
and expanded for NIEM. Since these beginnings substantial controlled NIEM vocabularies have been developed
within the NIEM process, these vocabularies are the basis for multiple information sharing solutions.

Relatively rapid adoption of NIEM in the Justice, Public Safety and other communities made it clear that
governance and tool support would need to increase to keep pace. To leverage limited NIEM resources for more
rapid expansion of software support, the NIEM Program Management Office (PMO) established an approach
(outlined in the NIEM High Level Tool Architecture) that supports tool interoperability through standard open
interfaces and well-defined import/export artifacts. This removes the need for an all-in-one tool, and allows both
existing and new tools to support the functions of NIEM development processes. Existing tools can easily adapt to
the interfaces and artifacts to provide support for the functions they do best. Standard imports, exports, and

NIEM-UML Beta 1 16

http://www.ise.gov/

interfaces at key points in NIEM processes also facilitate tool interoperability. New tools can be built to directly
support one or more functions, as well as interoperate with other tools. By publishing open interface specifications,
the NIEM Program economically facilitates adaptation and interoperability of existing tools and encourages
development of new NIEM-aware tools.

6.3.2 NIEM-UML Goals

Consistent with the NIEM High Level Tool Architecture, this NIEM-UML is a specification (under the OMG)
designed to enable general use of UML and MDA tools to support the development and use of NIEM information
exchanges and models. The primary intention of this specification is to enable existing UML tools to build standard
UML representations of NIEM information exchanges and models, and to generate associated NIEM-conforming
XML schemas and other artifacts. The following key considerations have been implemented in the specification:

e Standards Based. Enable leverage standards and standards based tools

o Simplicity. Reduce complexity and lower the barrier for entry for NIEM business and technical modelers
e Reuse. Facilitate reuse of NIEM models and as a result schemas

e Agility. Enable the NIEM profile to be used with other standards, technologies and layers, if required

o Audience. Allow audiences with different levels of knowledge of the NIEM technical concepts to create and use
NIEM specifications

e Interoperability. Ensure that a UML representation of a NIEM model produced by one developer can be
interpreted as expected by another.

o Completeness. Ensure that a developer can produce a UML representation of any NIEM concept, including
semantics, XML Schema structure, and metadata.

¢ Practicality. With minimal effort, an architect or developer can employ the profile in current UML development
tools to develop a NIEM model.

6.3.3 Understanding NIEM-UML and Model Driven Architecture (MDA)

6.3.3.1 The NIEM Platform

Inherent in the idea of a platform independent model (PIM) is that there is some kind of “platform”. What
constitutes the platform may, to some degree, depend on the context and purpose of a model and the platform. In the
case of NIEM-UML the platform is considered to be the artifacts that make up a NIEM model package, such as an
Information Exchange Package (IEP). A primary element of a NIEM package is a XML schema defined in
accordance with the NIEM NDR. Other aspects of the platform include the “Master Document” and other artifacts
that make up a NIEM model package. This provides a degree of separation of the technical aspects of the IEP (i.e.
XML schemas) from the business aspect. While XML Schema is less platform-specific than, say, a Java class, it is a
specific way to render information and therefore a platform. Other platforms of interest at this time include the
Resource Description Language (RDF) and JavaScript Object Notation, JSON.

The NIEM NDR [NIEM-NDR] and MPD Specification [NIEM-MPD] describe this XML Schema centric platform
as well as the principles and model behind it. The platform specifications are used by NIEM-UML without
alteration.

The NIEM-XML platform is expressed using W3C XML Schema (XSD) and XML technology. There are hundreds
of rules for how to use XSD. The NIEM NDR adds approximately 200 rules that define NIEM conformance by
generally constraining many XSD options. This enables greater interoperability and reuse while introducing an
acceptable NIEM learning curve. NIEM-UML significantly reduces the requirement to learn details of the NIEM
NDR by employing the NIEM-PIM and the NIEM-PSM with MDA. The NIEM-PIM is intended to abstract the
business rules and constructs of NIEM from the details of the technology platform.

NIEM-UML Beta 1 17

6.3.3.2 Intent of the PIM

While parts of the NIEM platform are specific to the technology and the way to use that technology, other parts of
NIEM are derived from the business requirements for an information exchange. The most striking example of this
are the controlled vocabularies represented in NIEM reference namespaces. These controlled vocabularies represent
the consensus of stakeholders, within specific communities of interest, on their information requirements and are
reused in information exchanges (for example, IEPDs). There are also rules and conventions for how elements are
named and how they are organized in a consistent structure. The NIEM-UML PIM, PSM, and mapping between
them represent and enforce NIEM rules and conventions.

The PIM profile enforces certain NIEM rules using the Object Constraint Language (OCL) and also extends UML
with “Stereotypes” and “Tagged Values” to represent NIEM specific concepts including but not limited to elements
of the NIEM vocabulary, the NIEM reference schema, and NIEM concepts and rules which underlie its structure and
maintain its consistency. While the PIM specializes NIEM, every effort has been made to make the representation of
NIEM in UML correspond to commonly accepted patterns of modeling in UML. Someone familiar with UML
should be able to start modeling quickly and in many cases, with minimal modification, may be able to reuse
existing models to derive NIEM PSM artifacts and ultimately NIEM artifacts.

A NIEM PIM conforms to the rules and structure of the PIM profile described in this document and, with NIEM-
UML conforming tooling and is able to produce a NIEM platform specification. Production of an IEPD from a PIM
model is accomplished by mapping the PIM model to an IEPD, via the NIEM-PSM, using MDA technologies.
Alternatively, an existing IEPD or domain update can be mapped to a PIM model via the reverse engineering
mappings.

As discussed in the NIEM platform clause above, an IEPD is specific to a particular requirement as well as to the
particular constrained structure of XML Schema described by the NDR and requirements outlined in the MPD
Specification. The PIM is intended to be closer to the level of abstraction that business stakeholders can deal with,
separating the concerns of the business information required from the specifics and complexities of the platform.

As part of the NIEM-UML specification the mapping from a PIM to the NIEM platform via the NIEM-PSM is
specified. The mapping specifications are implemented by tool builders and most users will never have to
understand them, but most users will be able to use them in the form of conforming tools. NIEM-UML conforming
tools can transform a PIM model to a NIEM platform IEPD by leveraging the PSM and in doing so make sure that
all of the business and technology rules are correctly applied because most of those artifacts are automatically
generated. A NIEM-UML modeler will not need to understand the platform specific rules, or even W3C XML
Schema, to build NIEM artifacts. Of course, developers will have to understand XML to use the NIEM platform.

NIEM-UML uses the NIEM-PIM and the NIEM-PSM to separate respective concerns based on the Model Driven
Architecture (MDA) standards of the Object Management Group (OMG).

6.3.3.3 Intent of the PSM

Another clause of this specification defines the NIEM PSM profile. A platform specific model defines a direct
representation of NIEM-XML, its structure and its technical rules when leveraging W3C XML Schema. The PSM is
intended to represent the technology specific requirements and structure of the NIEM platform.

This profile can be employed by users who have familiarity with NIEM and its representational concepts in XML
Schema. The PSM profile allows a user to design a UML model that is closely aligned with NIEM-conforming
XML schemas. It consists of a relatively small set of UML constructs and stereotypes that map to equivalent XML
schema constructs in NIEM. Conforming UML tools are able to import the UML representation (XMI) of the PSM
profile and subsequently provide support for creating NIEM-UML constructs and stereotypes, as well as for entering
the additional data required for NIEM conformance.

6.3.3.4 Implementing the NIEM PIM and the NIEM PSM

Figure 6-1 shows how the components of the NIEM-UML specification are used together in a conforming NIEM-
UML tool suite.

NIEM-UML Beta 1 18

/ NIEM-UMLPIM Models \

XML Primitive
Types

PIM Profile | Uses
(Shares Common Profile) [N

NIEM-UML
Profiles and Transforms

Model Package Uses

NIEM Domain l NIEM Core

Model Model

Extends &
References

PIM Model For One or More
Exchanges

Description Profile

[Model of a Specific MPD]

Conforms to

Transforms Between

PSM Profile
(Shares Common Profile)

Conforms to

Platform Specific Model of a
Specific MPD

Transforms Between

Existing NIEM NDR and MPD
Platform Specifications

Conforms to

A NIEM MPD

Figure 6-1 Components of the NIEM-UML specification

NIEM-UML
>._
Model Libraries

User’s UML

NIEM Models

Generated
—

Based on

NIEM-UML

_ 2

The component parts of the NIEM-UML specification are intended to be used together with tools to make it easy to
model NIEM in UML and produce valid NIEM platform specifications. The diagram above shows the relationships
between the elements of the NIEM-UML specification, a user’s model and the resulting MPD, e.g. an IEPD. It is
important to note that the MDA based structure and the separation of concerns between the PIM and PSM part of the
NIEM-UML specification allows for representation of NIEM under a different platform if required in the future or
to support integration of NIEM into legacy systems.

The intent of NIEM-UML (including the PIM and the PSM) is that tools can generate NIEM artifacts directly from
the model based on Model Driven Architecture (MDA) and transformations specified in this document. This
capability may or may not be achievable in a “generic” UML tool; supplemental tools or plug-ins may be required.

NIEM-UML Beta 1

19

7 NIEM-UML Modeling Guide

7.1 Overview

7.1.1 Introduction

Essential to NIEM-UML is respecting and supporting the distinct perspectives or “entry points” for using the NIEM-
UML profile:

e The platform independent perspective, optimized for a logical UML representation of NIEM using UML norms
and patterns.

e The platform specific perspective, optimized for a direct and isomorphic UML representation of NIEM as
defined in XML Schema.

e The model packaging perspective, optimized for representing the packaging of NIEM namespaces, modeled
from either the PIM or the PSM perspective, into NIEM MPDs.

Clause 2 specifies the kinds of conforming NIEM-UML models associated with each of the above three
perspectives: NIEM PIM, NIEM PSM and NIEM MPD models. The NIEM-UML profile is then structured into sub-
profiles used in creating each of these three kinds of models. Further, for simplicity and consistency, the NIEM PIM
and NIEM PSM profiles are based on a profile of common UML elements, constraints and stereotypes. This
provides a clear, precise and concise specification of each perspective while also clearly specifying overlapping
elements without redundancy.

Figure 7-1 shows the resulting structure of the NIEM-UML Profile in terms of the three perspectives.

PIM Applies PIM
Model Profile

N
References

Platform Independent Perspective

PIM

Conformance
Point

Imports

Model Packaging Perspective

MPD MPD Applies MPD Common
Conformance ' Model Profile Profile

Point

Imports

Platform Specific Perspective References

\ 4
PSM PSM Applies PSM
Conformance m Model Profile

Point

Figure 7-1 Structure of the NIEM-UML Profile

The remainder of this overview provides a summary description of each of the platform independent, platform
specific and model packaging perspectives. Subsequent subclauses in this clause then discuss how to model various
NIEM concepts across the three perspectives.

NIEM-UML Beta 1 20

7.1.2 Platform Independent Perspective

A NIEM Platform Independent Model (PIM) is represented using a simplified UML class model with extensions for
expressing NIEM semantics. The intent of the PIM is to capture a NIEM business vocabulary for use as a data
schema within an MPD. A NIEM PIM is used in combination with a NIEM MPD model to create a complete NIEM

specification.

The UML concepts shown in Table 7-1 have an interpretation in a NIEM-UML PIM and are supported by the
normative mapping from a NIEM-UML model to NIEM conformant artifacts via the mappings specified in Clause
9. While other UML model elements may be used in a PIM for purposes of documentation or supporting other
technologies, such model elements have no defined meaning with respect to NIEM and will not impact the mapping

to NIEM artifacts.

Table 7-1 Platform Independent Perspective Modeling

UML Element

Stereotype

NIEM Concept

Reference

Summar

Package «Namespace» 7.2.1 Namespaces A namespace package models a NIEM data
schema
Types
Class None 7.3.2 Object Types Obiject type is the default for UML classes.
«ObjectType» A NIEM object type represents data about

things with their own identity and lifespan
that have some existence. An object may or
may not represent a physical thing. It may
represent something conceptual.

See «RoleOf»
Property and
«RolePlayedBy»
Generalization

7.3.3 Role Types

NIEM differentiates between an object and a
role of the object. The term “role” is used here
to mean a function or part played by some
object. A class is interpreted as a role by
means of a «RoleOf» association end or
«RolePlayedBy» generalization.

«AssociationType»

7.3.4 Association
Types

A NIEM association is a specific relationship
between NIEM objects. Associations are used
when a simple NIEM property is insufficient
to model the relationship clearly and when
properties of the relationship exist that are not
attributable to the objects being related. Each
end of the NIEM association is represented by
a UML association end.

Note that a UML association class may also
be used (see below).

«MetadataType»

7.3.5 Metadata
Types

NIEM metadata is defined as “data about
data.” This may include information such as
the security of a piece of data or the source of
the data. A Metadata Type models metadata.

NIEM-UML Beta 1

21

UML Element

Stereotype

«AugmentationType»

See also «Augments»
Generalization

Table 7-1 Platform Independent Perspective Modeling Summary

NIEM Concept

Reference

7.3.6 Augmentation
Types

A NIEM augmentation type is a complex type
that provides a reusable block of data that
may be added to object types or association

types.

«AdapterType»

7.3.7 Adapter Types

An adapter type is a NIEM object type that
adapts external models for use within NIEM.
An adapter type creates a new class of object
that embodies a single concept composed of
external elements.

«Choice»

7.5.4 Choice Groups

A choice is a group of properties such that
when used as the type of a property exactly
one of them may have a value in any instance
of an enclosing type.

«PropertyHolder»

7.5.2 Property
Holders and
Property References

Property holders are used to define properties
that have no specific owner, or “top level”
properties. These properties are generally
referenced by other properties.

isAbstract

7.3.1 Complex
Types (abstract)

An abstract class may not have a direct
instance, non-abstract subclasses of an
abstract class may have instances.

Association Class

None

7.3.4 Association
Types

A NIEM association is a specific relationship
between NIEM objects. Associations are used
when a simple NIEM property is insufficient
to model the relationship clearly and when
properties of the relationship exist that are not
attributable to the objects being related. UML
association classes may be used to model
NIEM associations with some limitations.

Note that an «AssociationType» class may
also be used, see above.

DataType

Also applies to
PrimitiveType
and Enumeration
which are
DataTypes

«Union»

7.4.4 Unions

A union is a simple type whose values are the
union of the values of one or more other
simple types, which are the member types of
the union.

«List»

7.4.5 Lists

A list is a simple type having values each of
which consists of a finite-length (possibly
empty) sequence of atomic values. The values
in a list are drawn from some atomic simple
type (or from a union of atomic simple types),
which is the item type of the list.

NIEM-UML Beta 1

22

UML Element

Stereotype

«ValueRestriction»

Table 7-1 Platform Independent Perspective Modeling Summary

NIEM Concept

Reference

7.4.1 Simple Types

The «ValueRestriction» stereotype applies to
a UML data type that is a specialization of a
more general data type. It defines restrictions
on which values of the general data type are
allowed as values of the specialized data type.

PrimitiveType

None

7.4.2 Primitive
Types

A primitive type is a simple type defined in
terms of a predefined set of atomic values
such as strings and numbers.

Enumeration

None

7.4.3 Code Types

A UML enumeration represents a NIEM code
type, which is a simple type, restricted to a
specific set of values, each of which has a
known meaning beyond the text
representation. These values may be
meaningful text or may be a string of
alphanumeric identifiers that represent
abbreviations for literals. Each enumeration
literal is a code value.

Relations

Aggregation
(Property /
Association End)

None

7.5.1 Content and
reference properties

A UML aggregation kind of “shared” or
“composite” will result in content nested
within the enclosing content. UML
aggregation kind of “none” will result in a
reference.

Generalization

None

7.3.1 Complex

Types (type
extension)

Each NIEM type may extend at most one
other type due to XSD restrictions. Properties
of the superclass are inherited and the
subclass is substitutable for the superclass.

«Augments»

7.3.6 Augmentation
Types

Augments specifies what type an
augmentation augments. Multiple
augmentations may be inherited by a type or
used as the types of properties.

Note that a property with an
«AugmentationApplication» as its type may
also be used.

«RolePlayedBy»

7.3.3 Role Types

RolePlayedBy defines the subtype as a role of
the supertype. Such a role may have at most
one instance per base type.

Realization

«References»

7.5.2 Property
Holders and
Property References

A References realization reuses class and
property definitions from another class or
namespace and is the basis for reusing NIEM
reference namespaces.

NIEM-UML Beta 1

23

Table 7-1 Platform Independent Perspective Modeling Summary

UML Element

Usage
dependency

Stereotype

«Augmentation
Application»

NIEM Concept

Reference

7.3.6 Augmentation
Types

Augmentation application is a relation
between a property whose type is an
«AugmentationType» and a class. It restricts
the classes that may have the property.

Note that an «Augments» generalization may
also be used, see above.

«Metadata
Application»

7.3.5 Metadata
Types

Metadata application is a relation between a
«MetadataType» class and any other class. It
restricts the types that may have the metadata.

Properties

Property /
Association End

None

7.5.1 Properties

A property relates a NIEM object (the
subject) to another object or to a value (the
object). Property data describes an object as
having a characteristic with a specific value or
a particular relationship to another object.

«RoleOf»

7.3.3 Role Types

NIEM differentiates between an object and a
role of the object. The term “role” is used here
to mean a function or part played by some
object. Having a «RoleOf» property defines
the owning class as a role. The role may have
multiple occurrences for each base type.

Multiplicity
(Property)

None

7.5.1 Properties

UML Multiplicity constrains how many
values a NIEM property may have.

Subsets
(Property)

None

7.5.3 Substitution
Groups

Subset defines a property as being
substitutable for another property. This
expresses the NIEM substitution group
concept.

Derived Union
(Property)

None

7.5.3 Substitution
Groups

A derived union defines a property whose
values are entirely derived as the union of the
values of properties that subset it. This
expresses the NIEM concept of an abstract

property.

General

Name
(NamedElement)

None

7.2.2 NIEM Names

NIEM PIM names are largely unconstrained
as the mapping specifications will map the
UML names into NIEM conformant names in
the PSM and MPD artifacts. Naming
conventions such that reasonable NIEM
names are produced should still be practiced.

NIEM-UML Beta 1

24

Element

Stereotype

«ReferenceName»

Table 7-1 Platform Independent Perspective Modeling Summary
UML Element

NIEM Concept

Reference

7.2.2 NIEM Names

Reference name specifies the NIEM
conformant name for an element. This may be
required if the name produced by the PIM-
PSM mapping does not match a reference
namespace or is otherwise not as required.

Comment

None

«Documentation»

7.2.1 Namespaces

7.3.1 Complex
Types

7.4.1 Simple Types
7.5.1 Properties

If a UML modeling element owns only one
comment, it will be used by default as the
NIEM documentation for that element.
Otherwise the «Documentation» stereotype
must be applied to one owned comment.

Documentation text will be converted to being
NIEM compliant.

7.1.3 Platform Specific Perspective

A NIEM Platform Specific Model (PSM) is represented using a simplified UML class model with extensions for
expressing a NIEM XML Schema (XSD). The intent of a PSM is to capture a direct representation of a NIEM XML
schema in UML. A NIEM PSM is used in combination with a NIEM MPD model to create a complete NIEM

specification.

The UML concepts shown in Table 7-2 have an interpretation in a NIEM-UML PSM and are supported by the
normative mapping from a NIEM-UML model to NIEM conformant artifacts via the mappings specified in Clause
9. Other UML elements are not permitted in a NIEM PSM if the PSM profile is applied “strictly”.

Package

Table 7-2 Platform Specific Perspective Modeling Summary
UML Element

Stereotype

«Namespace»

NIEM Concept

Reference

7.2.1 Namespaces

A «Namespace» package models a NIEM data
schema

Types

Class

«ObjectType»

7.3.2 Object Types

A NIEM object type represents data about
things with their own identity and lifespan
that have some existence. An object may or
may not represent a physical thing. It may
represent something conceptual.

«ObjectType»

(Used as arole)

7.3.3 Role Types

NIEM differentiates between an object and a
role of the object. The term “role” is used here
to mean a function or part played by some
object. A class is interpreted as representing a
role type if it has one or more properties that
identify the base type(s) of the role. By the
NDR naming conventions, such properties
must have names beginning with “RoleOf”.

NIEM-UML Beta 1

25

UML Element

«AssociationType»

Table 7-2 Platform Specific Perspective Modeling Summary

Stereotype

NIEM Concept

Reference

7.3.4 Association
Types

A NIEM association is a specific relationship
between NIEM objects. Associations are used
when a simple NIEM property is insufficient
to model the relationship clearly and when
properties of the relationship exist that are not
attributable to the objects being related. Each
end of the NIEM association is represented by
a UML association end.

«MetadataType»

7.3.5 Metadata
Types

NIEM metadata is defined as “data about
data.” This may include information such as
the security of a piece of data or the source of
the data.

«AugmentationType»

7.3.6 Augmentation
Types

A NIEM augmentation type is a complex type
that provides a reusable block of data that
may be added to object types or association

types.

«AdapterType»

7.3.7 Adapter Types

An adapter type is a NIEM object type that
adapts external models for use within NIEM.
An adapter type creates a new class of object
that embodies a single concept composed of
external elements.

«Choice»

7.5.4 Choice Groups

A choice is a group of properties such that
when used as the type of a property exactly
one of them may have a value in any instance
of an enclosing type.

«PropertyHolder»

7.5.2 Property
Holders and
Property References

Property holders are used to define properties
that have no specific owner, or “top level”
properties. These properties are generally
referenced by other properties.

isAbstract 7.3.1 Complex An abstract class may not have a direct
Types (abstract) instance, non-abstract subclasses of an
abstract class may have instances.
DataType «Union» 7.4.4 Unions A union is a simple type whose values are the
Also aoplies to union of the values of one or more other
PrimitliovpeT o simple types, which are the member types of
ype the union.

and Enumeration
which are . . L . .
DataTypes «List» 7.4.5 Lists A list is a simple type having values each of

which consists of a finite-length (possibly
empty) sequence of atomic values. The values
in a list are drawn from some atomic simple
type (or from a union of atomic simple types),
which is the item type of the list.

NIEM-UML Beta 1

26

UML Element

Table 7-2 Platform Specific Perspective Modeling Summary

Stereotype

«ValueRestriction»

NIEM Concept

Reference

7.4.1 Simple Types

The «ValueRestriction» stereotype applies to
a UML data type that is a specialization of a
more general data type. It defines restrictions
on which values of the general data type are
allowed as values of the specialized data type.

Holders and
Property References

PrimitiveType None 7.4.2 Primitive A primitive type is a simple type defined in
Types terms of a predefined set of atomic values

such as strings or numbers.

Enumeration None 7.4.3 Code Types A code type is a simple type that represents a
list of values, each of which has a known
meaning beyond the text representation.
These values may be meaningful text or may
be a string of alphanumeric identifiers that
represent abbreviations for literals. Each
enumeration literal is a code value.

DataType «XSDRepresentation | XSD Restriction Restricts how data is formatted in XML

Restriction»

Relations

Aggregation None 7.5.1 Content and A UML aggregation kind of “shared” or

(Property) reference properties | “composite” will result in content nested
within the enclosing content. UML
aggregation kind of “none” will result in a
reference.

Generalization None 7.3.1 Complex Each NIEM type may extend at most one
Types (type other type due to XSD restrictions. Properties
extension) of the superclass are inherited and the

subclass is substitutable for the superclass.
«XSDRestriction» XSD Restriction Defines a type as restrictive the possible
values in another type

Realization «References» 7.5.2 Property A References realization reuses class and

property definitions from another class or
namespace.

NIEM-UML Beta 1

27

UML Element

Stereotype

«XSDSimple
Content»

Table 7-2 Platform Specific Perspective Modeling Summary

NIEM Concept

Reference

7.3.2 Object Types

The «XSDSimpleContent» stereotype
represents a relationship between two type
definitions: the first is a complex type
definition with simple content whose content
type is the second. This relationship is
implemented in XML Schema through base
attribute on the xsd:extension or
xsd:restriction element of the first type
definition, the actual value of which resolves
to the second type definition.

(Property)

Groups

Usage «Augmentation 7.3.6 Augmentation | Augmentation application is a relation

dependency Application» Types between a property and a class. It restricts the
classes that may have the property.

«Metadata 7.3.5 Metadata Augmentation application is a relation
Application» Types between a metadata type and any other type.

Its application restricts the types that may
have the metadata

Properties

Property «XSDProperty» 7.5.1 Properties A property relates a NIEM object (the
subject) to another object or to a value (the
object). Property data describes an object as
having a characteristic with a specific value or
a particular relationship to another object.

Property «XSDAnyProperty» 7.5.1 Properties An «XSDAnyProperty» property may have a
value of any type. It is implemented in XML
schema as an xsd:any.

Multiplicity None 7.5.1 Properties Multiplicity constrains how many values a

(Property) property or association end may have.

Subsets None 7.5.3 Substitution Subset defines a property as being

(Property) Groups substitutable for another property. This
expresses the NIEM substitution group
concept.

Derived Union None 7.5.3 Substitution Derived union defines a property whose

values are entirely derived as the union of the
values of properties that subset it. This
expresses the NIEM concept of an abstract

property.

NIEM-UML Beta 1

28

Table 7-2 Platform Specific Perspective Modeling Summary

UML Element Stereotype NIEM Concept
Reference
General
Name None 7.2.2 NIEM Names The names of UML elements in a PSM must

(NamedElement)

comply with the NDR rules for names within
a NIEM XML Schema.

Comment

«Documentation»

7.2.1 Namespaces

7.3.1 Complex
Types

7.4.1 Simple Types
7.5.1 Properties

Each UML model element in a PSM that
represents a NIEM component that is required
to have documentation must have one owned
comment that has the «<Documentation»
stereotype applied.

7.1.4 Model Packaging Perspective

A NIEM Model Package Description specifies the NIEM artifacts that are to be produced from a NIEM-UML model
and rendered into a NIEM MPD package. The ModelPackageDescription imports PIM and/or PSM namespaces and
produces an MPD based on the provided metadata contained within the stereotypes.

The UML concepts shown in Table 7-3 have an interpretation in a NIEM-UML MPD model and are supported by
the normative mapping from a NIEM-UML model to NIEM conformant artifacts via the mappings specified in

Clause 9.

UML Element

Component

Stereotype

«ModelPackage
Description»

Table 7-3 Model Packaging Perspective Modeling Summary

NIEM Concept

Reference

Model Package
Description

A Model Package Description (MPD)
describes a package of NIEM artifacts, these
include IEPDs and domain updates. There are
multiple kinds of MPDs as described in the
Model Package Description Specification
[NIEM-MPD].

Dependency

«ModelPackage

Model Package

A Model Package Description Relationship

Description Description defines the relationship between MPDs. This
Relationship» Relationship includes dependency and version information.
ElementImport «ModelPackage MPD Artifact Model Package Description File import
Description File» defines a modeled namespace or artifact that
is to be included in an MPD.
Package None None Packages may be used to organize MPD

models but have no interpretation for a NIEM
MPD.

NIEM-UML Beta 1

29

7.2 Modeling Namespaces

7.2.1 Namespaces

7.2.1.1 Background

A namespace provides a means to qualify the names of a group of NIEM components. Following the conventions of
[XMLNamespaces], a namespace is identified by a URI reference. All the names within a single NIEM namespace
are required to be distinct, though the same name may be used across different namespaces.

NOTE. The XML Schema specification defines separate symbol spaces for type, attribute and element names,
allowing components in different symbol spaces to have the same name, even within a single namespace. However,
the NIEM naming rules imply the use distinct names across all the symbol spaces of a namespace [NDR 9].

7.2.1.2 Representation

Common

A NIEM namespace is represented as a UML package with the stereotype «Namespace» applied, with the
namespace URI provided as the value of the targetNamespace attribute of the stereotype. Table 7-4 shows the kinds
NIEM components whose names are included in a NIEM namespace along with how these components are
represented as UML model elements within the «Namespace» package that represents the NIEM namespace.

Table 7-4 NIEM Components included in a NIEM Namespace

NIEM Component UML Representation
Complex Type Class (see Subclause 7.3)
Simple Type Data Type (see Subclause 7.4)
Property Declaration Property (see Subclause 7.1)

A «Namespace» package is used to group those model elements of the kinds shown in Table 7-4 that represent
NIEM components to be placed in a single NIEM namespace. A «Namespace» package may have subpackages, and
any relevant model element in any of those subpackages (or any further nested packages, to any level) is also
considered to represent a member of the NIEM namespace identified for the «<Namespace» package. However, a
«Namespace» package may not be contained, directly or indirectly, in any other «Namespace» package.

Sometimes, a NIEM-UML model will import non-NIEM models or otherwise include modeling for non-NIEM
content relevant to NIEM messages (see also Subclause 7.3.7 on Adapter Types). The «Namespace» stereotype may
also be applied to packages containing models of non-NIEM conformant content, in order to specify a
targetNamespace URI. However, in this case the isConformant attribute of the stereotype should be set to false.

PIM

In a PIM, the concept of a NIEM namespace is extended to encompass the representation of a platform-independent
information model. The PIM «InformationModel» stereotype is a specialization of the common «Namespace»
stereotype that also allows for the identification of a default purpose for the represented information model (such as
reference, subset, extension or exchange). If no other purpose is specified when an «InformationModel» package is
referenced in an MPD model, then the default purpose is used (see Subclause 7.6.2). This allows for the
identification of information models in a PIM that are, e.g., specifically intended to be subsets of references models,
extensions of such subsets, etc.

An «InformationModel» package provides the logical scoping for the NIEM naming of model elements representing
NIEM components (see Subclause 7.2.2). This includes UML properties representing NIEM properties, even though
a UML property is not a packageable element. The UML namespace for a property is the UML classifier that owns

NIEM-UML Beta 1 30

the property. However, in NIEM every property declaration is considered to be “top level”, and, so, the NIEM
property names are included in the NIEM namespace. (This is discussed further in Subclause 7.5.2.)

Every «InformationModel» package must be documented. If the package has only one owned comment, that is
considered to provide the required documentation. Otherwise, the package must have exactly one owned comment
with the stereotype «Documentation» applied that provides the required documentation.

PSM

A «Namespace» package represents an XML schema. The target namespace for the schema is supplied as the value
of the targetNamespace attribute of the stereotype. The elements in the package (or any subpackage, to any level of
nesting) representing NIEM components (as indicated in Table 7-4) are implemented as components of the XML
schema represented by package. If the isConformant attribute is true, then the represented XML schema shall be
NIEM-conformant.

A «Namespace» package in a PSM must have an owned comment with the stereotype «Documentation» applied, the
body of which provides the definition documentation for the represented XML schema.

7.2.1.3 Mapping Summary

PIM to PSM Mapping

e A package in a PIM shall map to a package in the PSM, with corresponding owned members mapped from the
PIM. If the PIM package has the «Namespace» stereotype applied, then the PSM package also has the
«Namespace» stereotype applied, with the same values for stereotype attributes. If the PIM Package has the
«InformationModel» stereotype applied, then the PSM package has the «Namespace» stereotype applied, with
the same values for the common stereotype attributes (see Subclause 7.6.2.3 on the handling of the
«InformationModel» defaultPurpose attribute for MPD modeling).

e If a «Namespace» or «InformationModel» package in a PIM has exactly one owned comment, then the
corresponding PSM package shall have an owned comment with the «Documentation» stereotype applied and
the same body as the PIM package’s comment. Otherwise, the PSM package shall have an owned comment
with the «Documentation» stereotype applied and the same body as the «Documentation» comment owned by
the PIM package. The comment body is adjusted to conform to NIEM conventions.

PSM to XML Schema Mapping

e A package in a PSM with the stereotype «Namespace» applied shall map to an XSD schema with «Namespace»
stereotype attributes mapped as given in Table 7-5 and elements in the package mapped per Table 7-4.

Table 7-5 Mapping of a «Namespace» package to an xsd:schema

Stereotype Attributes Schema Property
Namespace::targetNamespace xsd:schema/@targetNamespace
Namespace::version xsd:schema/@version
Namespace::isConformant xsd:schema/xsd:annotation/xsd:appinfo/i:ConformantIndicator

e The «Documentation» comment owned by a «Namespace» package in the PSM shall map to the documentation
for the XML schema mapped from the package, with the body of the comment providing the
xsd:schema/xsd:annotation/xsd:documentation for the schema definition.

NIEM-UML Beta 1 31

7.2.1.4 Example

PIM and PSM Representation

Figure 7-2 shows an example of a NIEM namespace represented as a package. The package contains a class that
represents a NIEM object type (see Subclause 7.3.2). The properties of this class represent both the declaration of
NIEM properties and the use of those properties in the context of the object type represented by the class (see
Subclause 7.5.2). Therefore, the names of the object type and all the properties are members of the identified NIEM
namespace.

zMamespaces
chrn
{isConformant,
targethlamespace = "httpdiniem.goviniemfdomainsichrn/2.1",
version="1"}

Figure 7-2 Representation of a NIEM-conforming XML schema as a UML package

XML Schema Representation
The package shown in Figure 7-2 represents the following XML schema (with the type definitions elided):

<xsd:schema
targetNamespace="http://niem.gov/niem/domains/cbrn/2.1"
version="1">
<xsd:annotation>
<xsd:documentation>
Chemical, Biological, Radiological, and Nuclear Domain
</xsd:documentation>
<xsd:appinfo>
<i:ConformantIndicator>true</i:ConformantIndicator>
</xsd:appinfo>

</xsd:annotation>

</xsd:schema>

7.2.2 NIEM Names

7.2.2.1 Background

The NIEM NDR includes extensive rules on the naming of NIEM components. A NIEM name is a name of a NIEM
component that follows the naming rules given in [NDR 9]. A NIEM name has the form of a sequence of required
object class, property and representation terms, with optional qualifiers for these terms.

7.2.2.2 Representation

Common

The uniqueness rules for NIEM component names in a NIEM namespace are based on the use of proper NIEM
names, regardless of what names are used for the corresponding model elements in a PIM. Therefore, every model
element in a NIEM-UML model that represents a NIEM component as listed in Table 7-4 is considered to have a
corresponding NIEM name.

NIEM-UML Beta 1 32

PIM

The names of the UML model elements representing NIEM components in a PIM are not required to comply with
the NDR naming rules. In particular, the names of UML elements do not need to include the representation-term
suffix, which may be entirely determined by the kind of the element.

NOTE. Part of the rationale for including a representation term in all NIEM names is: “It helps prevent name
conflicts and confusion. For example, elements [properties] and types may not be given the same name.” [NDR
9.11] However, UML naming rules allow model elements of different kinds (e.g., classes and data types) to have the
same name within a single UML namespace, and properties are scoped in classifier namespaces rather than package
namespaces. Therefore, UML models generally do not use a convention of having a representation term suffix on
model element names.

Nevertheless, every model element in a PIM that represents a NIEM component has a NIEM name. The NIEM
name for a PIM element may be specified explicitly by applying the «ReferenceName» stereotype to the element
and setting the NIEMName attribute. If the PIM element does not have the «ReferenceName» stereotype applied,
and its UML name conforms to the NDR naming rules, then this is also the NIEM name for the element. Otherwise,
the NIEM name for the element is constructed from the UML name (generally by appending a representation term
suffix) as specified in the default PSM mapping rules in subsequent subclauses covering each kind of item.

NOTE. The rules for constructing NIEM names are intended to produce names that are syntactically valid according
to the rules for required name prefixes and/or suffixes. It is still the responsibility of the modeler to provide UML
names for model elements representing NIEM components that have semantically appropriate object-class, property
and qualifier terms (per [NDR 9.8., 9.9, 9.10]), so that the constructed NIEM names are fully conformant.

The name of PSM element mapped from a PIM element shall be the NIEM name of the PIM element. (Note that this
name rule does not apply if the PIM element represents a member of a non-NIEM namespace — that is, if the
element is contained in a «<Namespace» package with isConformant = false.)

PSM

The names of UML model elements representing NIEM components in a PSM are required to comply with the NDR
naming rules. Therefore, the NIEM name of such a model element in a PSM is the same as its UML name.

7.2.2.3 Mapping Summary

PIM to PSM Mapping

e Ifaclass, data type or property in a PIM is contained (directly or indirectly) within a «Namespace» package
with isConformant=true, then it shall map to a corresponding class, data type or property in the PSM whose
name is the NIEM name of the PIM element. Otherwise it shall map to a corresponding PSM element with the
same name as the PIM element.

e IfanelementinaPIM has the «ReferenceName» stereotype applied, then its NIEM name shall be the value of
the NIEMName attribute of the stereotype.

7.2.2.4 Example

Figure 7-3 shows a class representing a NIEM object type (see Subclause 7.3.2) with the name PersonClass, which
does not conform to the NIEM naming rules for object types. The class has the «ReferenceName» stereotype
applied, giving it a NIEM name of “PersonType”, which is conformant.

NIEM-UML Beta 1 33

«ObjectTypes
« ReferenceMamen

PersonClass
{MIEMMame = "ParsonTypa"}
PersonBirthDate : date [1]

PersoniMame : PersonMame [1]
PersonsSh Identification : [dentification [1]

Figure 7-3 Specification of a NIEM name using the «ReferenceName» stereotype
7.3 Modeling Complex Types
7.3.1 Complex Types

7.3.1.1 Background

A complex type represents any structured data used for information exchange [NIEM-NDR 7.4.1]. A NIEM type
shall be one of the following kinds of types:

e An object type

e Avoletype

e Anassociation type

o A metadata type

e Anaugmentation type

e An adapter type
7.3.1.2 Representation

Common

A complex type is represented as a UML class. The different kinds of complex type are distinguished using the
stereotypes summarized in Table 7-6, which are all specializations of the abstract «<KNIEMType» stereotype.
Subsequent subclauses provide the details on how to model each kind of complex type.

NIEM-UML Beta 1

34

Table 7-6 Complex Type Representation

Complex Type Representation

Object Type Apply «ObjectType» to the class. (In a PIM this is the default, so the stereotype
is not required.) See Subclause 7.3.2.

Role Type Identify one or more properties as role-of properties. (In a PIM, this may be
done by applying «RoleOf» to a property or by using a «RolePlayedBy»
generalization.) See Subclause 7.3.3.

Association Type Apply «AssociationType» to the class. (In a PIM, alternatively use an
association class.) See Subclause 7.3.4.

Metadata Type Apply «MetadataType» to the class. See Subclause 7.3.5.

Augmentation Type Apply «AugmentationType» to the class. (In a PIM, alternatively use an
«Augments» generalization.) See Subclause 7.3.6.

Adapter Type Apply «AdapterType» to the class. See Subclause 7.3.7.

In general, a <NIEMType» class may be the generalization for other kKNIEMType» classes of the same type. A
general class may optionally be modeled as abstract, meaning that there are no direct instances of that class itself,
only of (non-abstract) subclasses of the class.

A «NIEMType» class may also be the client of a realization stereotyped as «Restriction», whose supplier is another
«NIEMType» class of the same type, the base type for the restricted type. In this case, the client class may list a
subset of the attributes of the supplier class. Any attributes not so listed must have a multiplicity lower bound of 0 in
the supplier class. Instances of a restricted type are considered to be substitutable for instances of the base type, but
any attributes not explicitly listed in the restricted type are mandated to be empty in any instance of that type.

(Note that an «AdapterType» class may not participate in generalizations or «Restriction» realizations — see
Subclause 7.3.7.)

PIM

There are a number of default notations and additional representations allowed in a PIM that are not allowed in a
PSM. These are indicated in Table 7-6 and discussed further in subsequent subclauses.

Every «<NIEMType» class must be documented. If the class has only one owned comment, that is considered to
provide the required documentation. Otherwise, the class must have exactly one owned comment with the stereotype
«Documentation» applied that provides the required documentation.

In a PIM, additional notations using generalization are allowed in the modeling of role and augmentation types (see
Subclauses 7.3.3 and 7.3.6). However, a «<NIEMType» class may be the special class in at most one generalization
that is not marked as a «RolePlayedBy» stereotype or the generalization of an augmentation type, and it may not
have such a generalization if it is the client of a «Restriction» realization.

PSM

A «NIEMType» class in a PSM represents a NIEM type that is implemented as a complex type definition. The UML
properties of the class represent the NIEM properties (XSD attributes and elements) of the complex type.

A «NIEMType» class in a PSM must have an owned comment with the «Documentation» stereotype applied, the
body of which becomes the content of the documentation element in the complex type definition.

The class may be the special class in at most one generalization, the general class of which must also represent a
NIEM type. The complex type represented by the general class is then the base type for the complex type

NIEM-UML Beta 1 35

represented by the special class, and the complex type represented by the special class is an extension of the base
type. A class marked as abstract represents an abstract complex type.

The class may be the client of at most one «Restriction» realization, and it may not be both the client of a
«Restriction» realization and the special class in a generalization. The complex type represented by the supplier
class is then the base type for the complex type represented by the client class, and the complex type represented by
the client class is a restriction of the base type.

7.3.1.3 Mapping Summary

PIM to PSM Mapping

e AclassinaPIM shall map to a corresponding class in the PSM, with corresponding properties mapped from the
properties of the PIM class.

o If the class is the special classifier in a generalization, then the corresponding class in the PSM shall be the
special classifier in a generalization to the class mapped from the general class in the PIM.

e Ifthe class is the client of a realization with the «Restriction» stereotype applied, then the corresponding class
in the PSM shall be the client of a «Restriction» realization whose supplier is the class mapped from the
supplier class in the PIM.

o Ifa«NIEMType» class in a PIM has exactly one owned comment, then the corresponding PSM class shall have
an owned comment with the «Documentation» stereotype applied and the same body as the PIM class
comment. Otherwise, the PSM class shall have an owned comment with the «Documentation» stereotype
applied and the same body as the «Documentation» comment owned by the PIM class. The comment body is
adjusted to conform to NIEM conventions.

PSM to XML Schema Mapping

e Aclass inaPSM with a «<NIEMType» stereotype (i.e., one of the stereotypes listed in Table 7-4) applied shall
map to a corresponding complex type definition with the xsd: complexType/@name given by .the class name.

o If the class is the specific classifier in a generalization, then the corresponding complex type definition shall be
an extension, with the base type definition being the type definition mapped from the general class.

e If the class is the client of a realization with the «Restriction» stereotype applied, then the corresponding
complex type definition shall be a restriction, with the base type definition being the type definition mapped
from the supplier class

o If the class is not the specific classifier in a generalization or the client of a «Restriction» realization, then the
base type definition for the complex type definition shall be s : ComplexObjectType and the complex type
shall be an extension.

e The «Documentation» comment owned by a «<NIEMType» class in the PSM shall map to the documentation for
the XML complex type definition mapped from the class, with the body of the comment providing the
xsd:complexType/xsd:annotation/xsd:documentation for the complex type definition.

7.3.2 Object Types

7.3.2.1 Background

An object type is a type definition, an instance of which asserts the existence of an object. An object type represents
some kind of object: a thing with its own lifespan that has some existence. The object may or may not be a physical
object. It may be a conceptual object. [NIEM-NDR 7.4.1]

NIEM-UML Beta 1 36

7.3.2.2 Representation

Common

A NIEM object type is represented as a UML class with the stereotype «ObjectType» applied. The properties of an
«ObjectType» class model the structured data represented by the object Type.

NOTE. In NIEM, the term object is used only to refer to an instance of an object type, whereas in UML an object
may be the instance of any class. In order to avoid confusion due to this difference in terminology, the qualified
terms NIEM object and UML object will be used in this document.

PIM

In a PIM, a class representing an object type is not required to be stereotyped. A class with no stereotype is
considered by default to be an object type.

The properties of a class may be represented either as attributes of the class or opposite ends of associations in
which the class participates. The modeling of properties is discussed further in Subclause 7.1.

PSM

An «ObjectType» class represents a NIEM object type that is implemented in XML Schema as a complex type
definition. Normally, the complex type definition for an object type will have complex content. The owned attributes
of the «ObjectType» class represent the property references (attribute uses and element particles) within the complex
content.

However, a PSM may also explicitly model the case of an object type with simple content. If the «ObjectType» class
is the client of an «XSDSimpleContent» realization, then it represents an object type that is implemented as a
complex type definition with simple content. The simple content is given by the simple type represented by the
supplier of the «XSDSimpleContent» realization, which must be a UML data type (see Subclause 7.4 on modeling
simple types).

7.3.2.3 Mapping Summary

PIM to PSM Mapping

e AclassinaPIM with no stereotype applied that is not the special class in a «<Augments» generalization (see
Subclause 7.3.6) shall map to a class in the PSM with the «ObjectType» stereotype applied.

e IfaclassinaPIM representing an object type does not have the «ReferenceName» stereotype applied, then its
NIEM name is determined as follows:

o If the PIM class name ends in “Type”, then the NIEM name shall be the same as the UML name.

o Otherwise, the NIEM name be the PIM class name with “Type” appended.

PSM to XML Schema Mapping

e Ifaclass in a PSM with the «ObjectType» stereotype applied is the client of a «xXSDSimpleContent»
realization, then the complex type definition mapped from the class shall have simple content with the simple
type mapped from the supplier of the realization as its base.

e IfaclassinaPSM with the «ObjectType» stereotype applied is not the client of a «XSDSimpleContent»
realization, then the complex type definition mapped from the class shall have complex content and:

o The properties of the class shall map to corresponding property references (XSD attribute uses and element
particles) in the complex content of the complex type definition mapped from the class.

o Ifthe class is not the specific classifier in a generalization, then the complex type definition mapped from
the class shall be an extension with the base type being s : ComplexObjectType.

NIEM-UML Beta 1 37

7.3.2.4 Examples

PIM Representation

Figure 7-4 shows an example of a Person object type represented as a class in a PIM. The identification of the class

as representing an object type is implicit, since it has no stereotype.

Person

PersonBirthDate : date [1]
PersonMName : PersonMName [1]
Person3SN Identification : |dentification [1]

Figure 7-4 Representation of a NIEM object type as a UML class in a PIM

PSM Representation

Figure 7-5 shows the same object type represented as a class in a PSM. The class is structurally identical to the
representation in the PIM, but the stereotype «ObjectType» is explicit in the PSM and the class is named
PersonType, conforming to the NIEM NDR naming rules for object types [NIEM-NDR 9.12.1]. Note also the
attached «Documentation» comment.

« Documentation:
_ |Atype for a
. human being.
«ObjectTypes
PersonType

s XS0 Property »PersonBirthDate : date [1}{kind = element)
X 30Property »PersonMame | PersonMName [1){kind = element)
u XS0 Property »PersonS3SN Identification : |dentification [1}{kind = element)

Figure 7-5 Representation of a NIEM object type as a UML class in a PSM

XML Schema Representation

The complex type definition corresponding to the PSM PersonType class is then (with the property declarations
elided):
<xsd:complexType name="PersonType">
<xsd:annotation>
<xsd:documentation>A type for a human being.</xsd:documentation>
<xsd:appinfo>
<i:Base 1i:name="ComplexObjectType"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>

<xsd:extension base="s:ComplexObjectType">
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

NIEM-UML Beta 1

38

7.3.3 Role Types

7.3.3.1 Background

Arole is a function or part played by some NIEM object. A role type is a type that represents a particular function,
purpose, usage, or role of a NIEM object. [NIEM-NDR 7.4.2]

7.3.3.2 Representation

Common

The simplest way to represent a role is simply to use a property, which models a function played by a NIEM object
in some context, where the name of the property is the role name. In particular, a simple role such as this would
most often be represented in UML as an association end. No stereotype is required. (See also Subclause 7.1 on the
modeling of properties.)

However, in many cases there is a need to represent characteristics and additional information associated with a role.
In this case, a role type provides a location for this additional information. A role type is modeled as an object type
(see Subclause 7.3.2) with a role-of property. The type of this role-of property is the base type of the role type, and
instances of the base type are said to play the role defined by the role type.

PIM

Ina PIM, a role type may be defined either by explicitly modeling a role-of property or by modeling the role type
with a generalization to the base type. If an explicit role-of property is modeled, then it is identified by applying the
«RoleOf» stereotype to the UML property representing it. If a generalization is used, then this is identified by
applying the «RolePlayedBy» stereotype to it.

An explicit «<RoleOf» property of a role type may be the opposite end of an association between the role type and its
base type (note that it is the association end that is stereotyped, not the association). If the «RoleOf» property is an
association end, then the multiplicity of the near end of the association may be used to distinguish between two
semantics interpretations of the concept of a “role”:

1. The role is repeated for each relationship that expresses the role. In this case the near end multiplicity shall be
0..*. This is also the only interpretation possible with the role-of property is not modeled as an association end.

For example, consider a Victim role type with a Person base type. In this interpretation, there would one victim
object each time a person was a victim. This means that there could be many victim objects for each person and
one victim object each time the person was a victim.

2. The role occurs at most once for each base object. In this case the near end multiplicity shall be 0..1.

In this interpretation of the Victim example, each person may play the victim role at most once — there may only
be zero or one victim object for each person object. Each such victim object would need to capture information
on all the crimes of which the person has been a victim. This interpretation corresponds more closely to a
“victim data base”, with at most one entry for each person.

Modeling a role type as a specialization of the base type is an alternative representation for the second interpretation
above. In this case the role type is not modeled with an explicit role-of property, but the generalization to the base
type is instead stereotyped «RolePlayedBy». Semantically, this model represents the ability to dynamically classify
instances of the base type as also being classified as being instances of the role type (UML semantics allow a UML
object to have multiple types that may change over time). Since an instance of the base type can only be classified as
an instance of the role type or not (corresponding to playing the role or not), the use of a «RolePlayedBy»
generalization always corresponds to the second semantic interpretation of “role” above. (Note also that the
specialization of a class by a role type is orthogonal to any other specializations of the base type. A base type may
play multiple roles and may also be separately specialized.)

NIEM-UML Beta 1 39

PSM

In a PSM, a role-of property is identified by having a naming beginning with “RoleOf”. Such a property must have
aggregation=none. A role type is otherwise implemented exactly as for any other object type. (Note that this means
the interpretation, above, can’t be explicitly represented in a PSM.)

7.3.3.3 Mapping Summary

PIM Representation Mapping

e An «ObjectType» class with a generalization that is stereotyped «RolePlayedBy» shall be considered equivalent
to an otherwise identical class with the generalization replaced by a unidirectional association to the general
(base) class such that:

o The opposite (navigable) association end has the same name as the base class, multiplicity 1..1 and the
stereotype «RoleOf» applied. If the «RolePlayedBy» generalization had the «ReferenceName» stereotype
applied, then this end also has the «ReferenceName» stereotype applied, with the same value for the
NIEMName attribute.

o The near association end has multiplicity 0..1.

PIM to PSM Mapping

e The NIEM name of a property in a PIM with the «RoleOf» stereotype applied but not the «ReferenceName»
stereotype is determined as follows:

o If the PIM property name beings with “RoleOf”, then the PIM property name shall be the NIEM name.
o Otherwise, the NIEM name shall be the PIM property name prefixed by “RoleOf”.

7.3.3.4 Examples

PIM Representation

Figure 7-6 shows the definition of the two role types Subject and Victim for the base type Person. This structure
allows for a person to be a subject and/or a victim at the same time and for those conditions to change over time.
The same person can be a subject or a victim multiple times (corresponding to the first semantic interpretation of
“role”). Note that this model also allows different people to be the same victim.

Subject Victim

Subjectirmedindicator | boolean [1]
Subjectldentification : |dentification [1]

0.* 0.*

wRoleOfs « RoleCfs
PersonFeference |0..°

—

FersonFeference

Person

PersenBirthDate : date [1]
PersonName : PersonMame [1]
Person33N ldentification : Identification [1]

Figure 7-6 Representation of role types using role-of properties in a PIM

NIEM-UML Beta 1 40

Figure 7-7 shows the «RolePlayedBy» representation of an FBI Agent as a role of a person which cooresponds to

the second interpretation of a role. The same person could play this role as well as others at the same time but is only

an FBI Agent once, at any one time.

Person

PersonBirthDate : date [1]
PersonMame : PersonName [1]
PersonSSN Identification ;. Identific ation [1]

s RolePlayedBy »

FElAgent
BadgeMumber : |dentification [1]

Figure 7-7 Representation of a role type using a generalization in a PIM

PSM Representation

Figure 7-8 shows the FBI Agent role type shown in Figure 7-7 as represented in the PSM. Note the required naming

of the role-of properties.

«ObjectTypes
FElAgentType

¢ XS0OProperty »BadgeMNumber : Identification [1}{kind = element}
4 X 20Property »RoleCfPersonReference | PersonType [1}{kind = element}

wObjectTypes
PersonType
¢ XS0OProperty » PersonBirthDate : date [1}{kind = element)
4 X 20Property »PersonMame : PersonMame [1}{kind = element}
¢ X50Property »PersonSSN Identification : [dentification [1}{kind = element}

Figure 7-8 Representation of a role type in a PSM

XML Schema Representation
The SubjectType and VictimType role types shown in Figure 7-6 are represented in XML Schema as follows:

<xsd:complexType name="subjectType">
<xsd:annotation>
<xsd:appinfo>
<i:Base 1i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>

</xsd:appinfo>

<xsd:documentation>A data type for a person who is involved or suspected of being

involved in an incident or criminal activity.</xsd:documentation>
</xsd:annotation>

<xsd:complexContent>

NIEM-UML Beta 1

41

<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" ref="nc:RoleOfPersonReference"/>
<xsd:element maxOccurs="1" minOccurs="1" ref="j:SubjectArmedIndicator"/>
<xsd:element maxOccurs="1" minOccurs="1" ref="j:SubjectIdentification"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="VictimType">
<xsd:annotation>
<xsd:appinfo>
<i:Base 1i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>
</xsd:appinfo>

<xsd:documentation>A data type for a person who suffers injury, loss, or death as
a result of an incident.</xsd:documentation>

</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0"
ref="nc:RoleOfPersonReference" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

7.3.4 Association Types

7.3.4.1 Background

A NIEM association is a specific relationship between NIEM objects. Associations are used when a simple NIEM
property is insufficient to model the relationship clearly and when properties of the relationship exist that are not
attributable to the objects being related. A NIEM association type is a type that establishes a relationship between
objects, along with the properties of that relationship. An association type provides a structure that does not establish
existence of an object but instead specifies relationships between objects. [NIEM-NDR 7.4.3]

7.3.4.2 Representation

Common

A NIEM association is represented as a UML class with the «AssociationType» stereotype applied. The participants
in an association are represented as properties of the «AssociationType» class. All the properties of an association
type representing associated entities must be reference properties, which are represented by UML properties with
aggregation=none (see also Subclause 7.5.1 on Properties).

NOTE. In NIEM, an association type is essentially also an object type. Therefore, an instance of an association type
is a NIEM object.

NIEM-UML Beta 1 42

PIM

Alternatively, a NIEM association may be represented as a UML association class, which is a model element that is
both an association and a class in UML. The participants in the NIEM association are modeled as the ends of the
association class. The association class may be used as the type of other properties.

An instance of a UML association class always has exactly one object participating in each end of the association.
Thus, an association class models a NIEM association type whose properties all have multiplicity 1..1. A NIEM
association type whose associated objects have multiplicities other than 1..1 cannot be modeled as a UML
association class.

The ends of a UML association class have multiplicity. However, this multiplicity constrains the instantiation of the
association class, not the number of objects that participate in each instance. For example, if an
IncidentVictimAssociation is represented as an association class with multiplicity 0..* on both of its Incident and
Victim association ends, then this means that there may be multiple instances of IncidentVictimAssociation with the
same Incident but different Victims, and there may also be multiple instances with the same Victim but different
Incidents. However, each individual instance of IncidentVictimAssociation is still between exactly one Incident and
one Victim.

NOTE. A NIEM association type is always represented as a class in NIEM-UML, as either a regular class
stereotyped as «AssociationType» or as an association class. It is never represented as a plain UML association.
Instead, a UML association may be used to model a NIEM property (see Subclause 7.5.1).

PSM

An «AssociationType» class represents a NIEM association type that is implemented in XML Schema as a complex
type definition with complex content. The owned attributes of the «AssociationType» class represent the element
references within the complex content or properties of the association type.

7.3.4.3 Mapping Summary

PIM Representation Mapping

e An association type represented as an association class shall be considered equivalent to a class with the
«AssociationType» stereotype applied and a unidirectional UML association corresponding to each end of the
association class, such that:

o The multiplicity of the opposite (navigable) end of the association is 1..1 and its name is the same as the
name of the end of the association class.

o The multiplicity of the near end of the association is the same as the multiplicity of the association class.

PIM to PSM Mapping

e AclassinaPIM with the «AssociationType» stereotype applied shall map to a corresponding class in the PSM
with the «AssociationType» stereotype applied.

e IfaclassinaPIM has the «AssociationType» stereotype applied but not the «ReferenceName» stereotype, then
its NIEM name is determined as follows:

o If the PIM class name ends in “AssociationType”, then the NIEM name shall be the same as the PIM class
name.

o Ifthe PIM class name ends in “Association”, then the NIEM name shall be the PIM class name with
“Type” appended.

o Otherwise, the NIEM name shall be the PIM class name with “AssociationType” appended.

NIEM-UML Beta 1 43

PSM to XML Schema Mapping

e AclassinaPSM with the «AssociationType» stereotype applied shall map to a complex type definition
mapped with complex content and:

o The properties of the class shall map to corresponding element references in the complex content of the
complex type definition mapped from the class.

o Ifthe class is not the specific classifier in a generalization, then the complex type definition mapped from
the class shall be an extension with the base type being s : ComplexObjectType.

7.3.4.4 Example

PIM Representation

Figure 7-9 represents a NIEM association between incidents and victims. Each association is a relationship between
exactly one incident and one victim. Since the properties of the IncidentVictimAssociation association type are
modeled as UML associations, multiplicities may be shown on the near ends of the associations. This explicitly
models that a victim can be a victim in any number of incidents and an incident may have any number of victims.
(More restricted multiplicities may also be used, modeling additional constraints in the PIM, even though these
cannot be carried forward to the PSM — see Subclause 7.5.1.)

Incident

IncidentLocation : Location [1]

—_

IncidentReference

0.:

aAssociationTypes
IncidentVietimAssociation

ﬂ__.

VictimReference |1
Vietim

Figure 7-9 Representation of a NIEM association type as a UML class

Figure 7-10 represents the same NIEM association between incidents and victims using a UML association class.
(This representation also shows that the suffix “Reference” on the names of reference properties is optional in a
NIEM PIM — see Subclause 7.5.1.) The multiplicities of the association ends that a victim can be a victim in any
number of incidents and an incident may have any number of victims.

NIEM-UML Beta 1 44

Incident

IncidentLocation : Location [1]

IncidentReference |0..*

IncidentWVictimAssociation

VictimReference |0..*
Victim

Figure 7-10 Representation of a NIEM association type as a UML association class

PSM Representation

Figure 7-11 shows the PSM representation of the IncidentVictim association type.

whssociationTypes
IncidentVictimAssociationType

s XS0 Property » IncidentReference : IncidentType [1}{kind = element}
s XS0 Property »VictimReference : VictimType [1Hkind = e }

Figure 7-11 Representation of a NIEM association type in a NIEM PSM

XML Schema Representation
The IncidentVictim association type is represented in XML Schema as follows:

<xsd:complexType name="IncidentVictimAssociationType">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="AssociationType"
i:namespace="http://niem.gov/niem/niem-core/2.0"/>
</xsd:appinfo>

<xsd:documentation>A relationship A data type for a relationship between an
incident and a person who is a victim as a result of the incident.</xsd:documentation>

</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="nc:AssociationType">

<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" ref="nc:IncidentReference"/>

<xsd:element maxOccurs="1" minOccurs="1" ref="j:VictimReference"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

NIEM-UML Beta 1 45

<xsd:element name="VictimReference" nillable="false" type="s:ReferenceType">
<xsd:annotation>
<xsd:appinfo>
<i:ReferenceTarget i:name="VictimType"
i:namespace="http://niem.gov/niem/domains/jxdm/4.1"/>
</xsd:appinfo>

<xsd:documentation>A Details about a person, organization, or other entity who
suffers injury, loss, or death as a result of an incident.</xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:element name="IncidentReference" nillable="false" type="s:ReferenceType">
<xsd:annotation>
<xsd:appinfo>
<i:ReferenceTarget i:name="IncidentType"
i:namespace="http://niem.gov/niem/niem-core/2.0"/>
</xsd:appinfo>
<xsd:documentation>An occurrence or an event that may require a
response.</xsd:documentation>
</xsd:annotation>
</xsd:element>

7.3.5 Metadata Types

7.3.5.1 Background

Within NIEM, metadata is defined as “data about data.” This may include information such as the security of a
piece of data or the source of the data. These pieces of metadata may be composed into a metadata type. The types
of data to which metadata may be applied may be constrained. A metadata type describes data about data, that is,
information that is not descriptive of objects and their relationships, but is descriptive of the data itself. It is useful to
provide a general mechanism for data about data. This provides required flexibility to precisely represent
information. [NIEM-NDR 7.4.4]

7.3.5.2 Representation

Common

A metadata type is represented as a UML class with the «MetadataType» stereotype applied. A «MetadataType»
class may be the client of a usage dependency stereotyped as «MetadataApplication» whose supplier is another
class. This models the restriction of the application of the metadata to NIEM objects represented as instances of the
supplier class. A «MetadataType» class with no «MetadataApplication» dependency represents metadata that may
be applied to any NIEM object.

PIM

As for the representation of an object type in a PIM (see Subclause 7.3.2.2), the properties of a «MetadataType»
class may be represented either as attributes of the class or opposite ends of associations in which the class
participates. The modeling of properties is discussed further in Subclause 7.1.

NIEM-UML Beta 1 46

PSM

A «MetadataType» class represents a NIEM metadata type implemented in XML schema as a complex type
definition with complex content. If the «MetadataType» class is the client of a «MetadataApplication» usage
dependency, this is implemented in XML Schema as application information.

7.3.5.3 Mapping Summary

PIM to PSM Mapping

e AclassinaPIM with the «MetadataType» stereotype applied shall map to a corresponding class in the PSM
with the «MetadataType» stereotype applied.

e IfaclassinaPIM has the «MetadataType» stereotype applied but not the «ReferenceName» stereotype, then its
NIEM name is determined as follows:

o Ifthe PIM class name ends in “MetadataType”, then the NIEM name shall be the same as the PIM class
name.

o Ifthe PIM class name ends in “Metadata”, then the NIEM name shall be the PIM class name with “Type”
appended.

o Otherwise, the NIEM name shall be the PIM class name with “MetadataType” appended.

e A usage dependency in a PIM with the «MetadataApplication» stereotype applied shall map to a corresponding
usage dependency in the PSM with the «MetadataApplication» stereotype applied, with corresponding client
and supplier classes mapped from the PIM.

PSM to XML Schema Mapping

o Aclassina PSM with the «MetadataType» stereotype applied shall map to a complex type definition mapped
with complex content and:

o The properties of the class shall map to corresponding property references (XSD attribute uses and element
particles) in the complex content of the complex type definition mapped from the class.

o If the class is not the specific classifier in a generalization, then the complex type definition mapped from
the class shall be an extension with the base type being s:MetadataType.

o Ifa«MetadataType» class in a PSM is the client of a «MetadataApplication» usage dependency, then the
complex type mapped from the supplier of the dependency shall be referenced in the
xsd:complexType/xsd:annotation/ xsd:appInfo/i:AppliesTo element for the complex type
definition mapped from the «MetadataType» class.

7.3.5.4 Examples

PIM Representation

Figure 7-12 shows a class that represents a metadata type. Since the class has no «MetadataApplication»
dependency, the metadata modeled by the class can be applied to any NIEM object. The only difference in the PSM
would be the stereotypes on property.

whssociationTypes
IncidentVictimAssociationType
« XSOProperty » IncidentReferenca | IncidentType [1){kind I
w XSDProperty »VictimReferance : VictimType [1]}{kind ment

Figure 7-12 Representation of a metadata type as a UML class in a PIM

NIEM-UML Beta 1 47

Figure 7-13 shows a «MetadataType» class with a «MetadataApplication» dependency. In this case the metadata
modeled by the class only applies to NIEM objects that are instances of the type identified by the dependency.

«0bjectTyper | yMetadataspplications «MetadataType»
MeasureType = — — — — — — ~|MeasureMetadataType

Figure 7-13 Representation of a metadata application constraint as a UML dependency in a PSM or PIM

XML Schema Representation

The MeasureMetadataType modeled in Figure 7-13 is represented in XML Schema as follows:

<xsd:complexType name="MeasureMetadataType">
<xsd:annotation>
<xsd:documentation>
A data type for metadata about a measurement.
</xsd:documentation>
<xsd:appinfo>
<i:Base i:namespace="http://niem.gov/niem/structures/2.0"
i:name="MetadataType"/>
<i:AppliesTo 1i:name="MeasureType"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="s:MetadataType">

<xsd:sequence>

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

7.3.6 Augmentation Types

7.3.6.1 Background

An augmentation type is a complex type that provides a reusable block of data that may be added to object types or
association types. [NIEM-NDR 7.4.5]

7.3.6.2 Representation

Common
An augmentation type is represented as a UML class with the «AugmentationType» stereotype applied.

A UML property with an «AugmentationType» class as its type models an augmentation by the data represented by
the augmentation type. Such an augmentation may be the client of one or more usage dependencies stereotyped as
«AugmentationApplication» whose supplier is an «ObjectType» or «AssociationType» class, known as an
applicable type. This restricts the NIEM objects that may include the augmentation property to instances of the
applicable type. Properties without an «AugmentationApplication» dependency represent augmentations that may be
applied to any NIEM object.

NIEM-UML Beta 1 48

NOTE. If an augmentation property with an «AugmentationApplication» dependency is included directly in an
«ObjectType» or «AssociationType» class, then the augmented class must be a direct or indirect subclass of the
supplier of the dependency. This is not the case if the augmentation property is in a «PropertyHolder» class,
however (see Subclause 7.5.2). In this case, any class with a property defined by reference to the augmentation
property declaration has a similar subclass restriction.

PIM

An augmentation type is represented as a UML class with the «AugmentationType» stereotype applied or as UML
class owning a generalization marked with the «Augments» stereotype applied.

NOTE. As for the representation of an object type in a PIM (see Subclause 7.3.2.2), the properties of an
«AugmentationType» class may be represented either as attributes of the class or opposite ends of associations in
which the class participates. The modeling of properties is discussed further in Subclause 7.1.

In a PIM, augmentation may also be modeled using a generalization, with the Augmentation class (optionally
stereotyped as «AugmentationType») as the general class and the augmented class as the special class. UML allows
a class to have multiple generalizations. In NIEM-UML, a class must have at most one generalization (excluding
«RolePlayedBy» generalizations) that is not to an «AugmentationType» class; otherwise all generalizations must be
to «AugmentationType» classes. The specialized class is considered to be augmented by data corresponding to the
inherited properties from each of the «AugmentationType» classes.

An augmentation application restriction may also be alternatively represented in a PIM using a generalization with
the «Augments» stereotype applied, where the «AugmentationType» class is the special class and the applicable
type is represented by the general class. An «AugmentationType» class shall have at most one «Augments»
generalization. Typing a property by a class with an «Augments» generalization is equivalent to modeling an
«AugmentationApplication» Usage to the class representing the relevant applicable type.

PSM

An «AugmentationType» class represents a NIEM augmentation type that is implemented in XML Schema as a
complex type definition with complex content.

NOTE. XML Schema does not allow a type to extend more than one other type, so an approach to augmentation
equivalent to using multiple generalizations in UML is not possible. This is why the representation of augmentation
using generalization is not allowed in a NIEM-PSM and why multiple generalization other than as an alternative
notation for augmentation (and roles) is not allowed in a NIEM-PIM.

7.3.6.3 Mapping Summary

PIM Representation Mapping

e A class with one or more generalizations to classes stereotyped «AugmentationType» shall be considered
equivalent to an otherwise identical class with each generalization replaced by a property such that:

o The name of the property is the same as the name of the «AugmentationType» class.
o The type of the property is the «AugmentationType» class.
o The multiplicity of the property is 1..1.

o Ifthe generalization had the «ReferenceName» stereotype applied, then the property has the
«ReferenceName» stereotype applied, with the same value for the NIEMName attribute.

e AclassinaPIM with an «Augments» generalization to a class representing an applicable type shall be
considered equivalent to an otherwise identical class without the generalization but with the stereotype
«AugmentationType» applied, such that any property with the class as its type (including properties defined
implicitly per the alternative representation equivalence above) has an «AugmentationApplication» usage to the
applicable type.

NIEM-UML Beta 1 49

PIM to PSM Mapping

A class in a PIM with the stereotype «AugmentationType» applied shall map to a corresponding class in the
PSM with the stereotype «AugmentationType» applied.

If a class in a PIM has the «AugmentationType» stereotype applied but not the «ReferenceName» stereotype,
then its NIEM name is determined as follows:

o Ifthe PIM class name ends in “AugmentationType”, then the NIEM name shall be the same as the PIM
class name.

o Ifthe PIM class name ends in “Augmentation”, then the NIEM name shall be the PIM class name with
“Type” appended.

o Otherwise, the NIEM name shall be the PIM class name with “AugmentationType” appended.

A usage dependency in a PIM with the stereotype «AugmentationApplication» applied shall map to a
corresponding usage dependency in the PSM with the stereotype «AugmenrationApplication» applied, with
corresponding client and supplier elements mapped from the PIM.

PSM to XML Schema Mapping

A class in a PSM with the «AugmentationType» stereotype applied shall map to a complex type definition
mapped with complex content and:

o The properties of the class shall map to corresponding property references (XSD attribute uses and element
particles) in the complex content of the complex type definition mapped from the class.

o If the class is not the specific classifier in a generalization, then the complex type definition mapped from
the class shall be an extension with the base type being s : AugmentationType.

If a property in a PSM is the client of a «/AugmentationApplication» usage dependency, then the complex type
mapped from the supplier of the dependency shall be referenced in the xsd:element/xsd:annotation/
xsd:appInfo/i:AppliesTo element for the element declaration mapped from the «MetadataType» class (see
Subclause 7.3.5.2).

7.3.6.4 Examples

PIM Representation

Figure 7-14 shows an augmentation type represented as a UML class with the «<AugmentationType» stereotype.

sAaugmentationTypes
TelephoneNumberAugmentation

TelephoneCategoryDescriptionText | Text [0..7]

Figure 7-14 Representation of an augmentation type as a UML class in a PIM

Figure 7-15 shows the definition of an augmentation property using the «AugmentationType» class shown in Figure
7-14. It also models that this augmentation is restricted to apply only to instances of the TelephoneNumber class by
using an «AugmentationApplication» dependency (Note that PSM property stereotypes are not shown).

NIEM-UML Beta 1 50

« Property Holder»
TelephoneNumberAugmentationProperyHolder
TelephoneNumberAugmentation : TelephoneMNumberAugmentation [1]
[

sAugmentaticnapplicaticn:
|

ol
TelephoneNumber

TelephoneMumberRepresentation [0.."]{ unicn}

Figure 7-15 Representation of an augmentation property in a PIM or PSM

Figure 7-16 shows an alternative representation of augmentation by the class shown in Figure 7-14 using
generalization. It also models the general restriction of application of the augmentation type to instances of the
Telephone class by using an «Augments» generalization.

TelephoneNumber
TelephonelumberRepresentation [0..*]{unicn)

whugments s

sAaugmentationTypes
TelephoneNumberAugmentation

TelephoneCategoryDescriptionText | Text [0..7]

Figure 7-16 Representation of augmentation using generalization in a PIM

XML Schema Representation

The definition of the TelephoneNumberAugmentation type shown in Figure 7-15 is represented in XML schema as
follows:
<xsd:complexType name="TelephoneNumberAugmentationType">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="AugmentationType"
i:namespace="http://niem.gov/niem/structures/2.0"/>
</xsd:appinfo>
<xsd:documentation>Supplements telephone numbers</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="s:AugmentationType">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0"
ref="tns:TelephoneCategoryDescriptionText"/>

</xsd:sequence>

NIEM-UML Beta 1 51

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>
Its use, with an application restriction, is represented as follows:

<xsd:element name="TelephoneNumberAugmentation" nillable="false"
substitutionGroup="s:Augmentation" type="tns:TelephoneNumberAugmentationType">
<xsd:annotation>
<xsd:appinfo>
<i:AppliesTo i:name="TelephoneNumberType"
i:namespace="http://niem.gov/niem/niem-core/2.0"/>
</xsd:appinfo>
<xsd:documentation>A</xsd:documentation>
</xsd:annotation>

</xsd:element>

7.3.7 Adapter Types

7.3.7.1 Background

An adapter type is a NIEM object type that adapts external models for use within NIEM. An adapter type creates a
new class of object that embodies a single concept composed of external elements. [NIEM-NDR 7.7]

7.3.7.2 Representation

Common

A NIEM model may reference other external models that are not defined using NIEM-UML. However, reference to
external model elements is restricted to adapter types within NIEM. An adapter type is represented as a UML class
with the «AdapterType» stereotype applied. All properties of such a class shall be defined only in terms of external
model elements. The class shall not be a generalization of any other class. Within a PIM, an «AdapterType» class
may be used in the same way as any other class representing a NIEM complex type.

Unlike any other NIEM type, an «AdapterType» class may have properties with a type that is defined outside of a
«Namespace» package marked with isConformant=true and may have properties which have «Reference»
realizations to elements defined outside of a «Namespace» package marked as isConformant=true.

PIM

As for the representation of an object type in a PIM (see Subclause 7.3.2.2), the properties of an «AdapterType»
class may be represented either as attributes of the class or opposite ends of associations in which the class
participates. The modeling of properties is discussed further in Subclause 7.1.

PSM

An «AdapterType» class represents a NIEM adapter type that is implemented in XML Schema as a complex type
definition with complex content. References to external model elements in the definition of the properties of an
«AdapterType» class are implemented as references to external schema components from the content of the complex
type definition represented by the class.

NOTE. In order for the PSM to be properly mapped to an XML schema, any external model referenced by an
adapter type in the PIM must have a corresponding XML schema representation.

NIEM-UML Beta 1 52

7.3.7.3 Mapping Summary

PIM to PSM Mapping

e Aclassina PIM with the «AdapterType» stereotype applied shall map to a corresponding class in the PSM
with the «AdapterType» stereotype applied.

e IfaclassinaPIM has the «AdapterType» stereotype applied but not the «ReferenceName» stereotype, then its
NIEM name is determined as follows:

o If the PIM class name ends in “AdapterType”, then the NIEM name shall be the same as the PIM class
name.

o Ifthe PIM class name ends in “Adapter”, then the NIEM name shall be the PIM class name with “Type”
appended.

o Otherwise, the NIEM name shall be the PIM class name with “AdapterType” appended.

PSM to XML Schema Mapping

e Aclassin a PSM with the «AdapterType» stereotype applied shall be mapped the same way as for an
«ObjectType» class (see Subclause 7.3.2.3), except that the complex type definition mapped from the class has
a xsd:complexType/xsd:annotation/xsd:appInfo/i:ExternalAdapterTypeIndicator element
with value true.

7.3.7.4 Example

PSM Representation
Figure 7-17 shows the PSM representation of the AlertAdapterType class.

| .

sNamespaces
cap
{isConformant = false,
version = "1}

sAdapterTypes «PropertyHolder»
AlertAdapterType CapAlert

s«XS0Declarations
dlert : AtertType [0.°H— — — — — — —dralert: AlertType [0..°k

Figure 7-17 Representation of an adapter type as a UML class

XML Schema Representation
The AlertAdapterType modeled in Figure 7-17 is represented in XML schema as follows:

<xsd:complexType name="AlertAdapterType">
<xsd:annotation>
<xsd:documentation>
A data type for a simple but general format for exchanging
effective warning messages based on best practices identified
in academic research and real-world experience.

</xsd:documentation>

NIEM-UML Beta 1 53

<xsd:appinfo>
<i:Base i:namespace="http://niem.gov/niem/structures/2.0"
i:name="0Object"/>
<i:ExternalAdapterTypelIndicator>
true
</i:ExternalAdapterTypeIndicator>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element ref="cap:alert"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

7.4 Modeling Simple Types
7.4.1 Simple Types

7.4.1.1 Background

A simple type defines a set of values (its value space) and a set of literals used to denote those. (Adapted from the
definition of datatype in [XMLSchemaDatatypes 2.1].)

7.4.1.2 Representation

Common

A simple type is represented as a UML data type. There are two basic kinds of simple type, represented as primitive
types and code types (Enumerations). Simple types can also be combined in a limited fashion into two kinds of
structures: unions and lists. Table 7-7 summarizes the representation of the various kinds of simple types, as detailed
in subsequent subclauses.

Table 7-7 Simple Type Representation

Simple Type Representation
Primitive Type Primitive Type (See Subclause 7.4.2)
Code Type Enumeration (See Subclause 7.4.3)
Union Data type with «Union» stereotype (See Subclause 7.4.4)
List Data type with «List» stereotype (See Subclause 7.4.5)

A simple type may also be defined as having a value space that is a restriction of the value space of another simple
type. This is represented by a UML data type that is a client of a «Restriction» realization to another UML data type
representing the simple type being restricted. The restricted type may then have the «ValueRestriction» applied, the

NIEM-UML Beta 1 54

attributes of which may be used to specify various restriction facets (as described in Subclause 8.2.18). Note that not
all facets are applicable to all kinds of simple type.

PIM

Data types representing simple types are generally used in a PIM as the types of properties of classes representing
complex types.

In a PIM, rather than using a «Restriction» realization, a data type that has the «ValueRestriction» stereotype applied
may, equivalently, have a generalization relationship to the UML data type representing the simple type being
restricted. A data type in a PIM that is not stereotyped as a «ValueRestriction» may still be the special type in a
generalization. However, this is actually mapped to the PSM as a complex type. If the general type is a pre-defined
primitive type or a «ValueRestriction» data type, then this complex type has simple content (see Subclause 7.3.2.2),
otherwise it has complex content. Such a specialized data type may not be the general type for any
«ValueRestriction» data type.

Every data type must be documented. If the data type has only one owned comment, that is considered to provide
the required documentation. Otherwise, the data type must have exactly one owned comment with the stereotype
«Documentation» applied that provides the required documentation.

PSM

A data type in a PSM is implemented in XML Schema as a simple type definition. The variety of the simple type
definition may be atomic, union or list, depending on whether the data type represents a primitive type, code type,
union or list.

Generalization is not used with data types in a PSM.

A data type in a PSM that is the client of a «Restriction» realization may also have the
«XSDRepresentationRestriction» stereotype applied. This models the restriction on the representation of the literals
denoting values of the data type in an XML schema. Specifically, the whiteSpace attribute of
«XSDRepresentationRestriction» is implemented as the xsd:whiteSpace element in the simple type definition, with
possible values “collapse”, “preserve” and “replace”.

A data type in a PSM must have an owned comment with the «Documentation» stereotype applied, the body of
which becomes the content of the documentation element in the simple type definition.

7.4.1.3 Mapping Summary

PIM to PSM Mapping

e Adatatype in a PIM shall map to a corresponding data type in the PSM (except in the case of a primitive type
that is the special type in an generalization — see Subclause 7.4.2.3).

e Adatatype inaPIM that is the client of a «Restriction» realization shall map to a data type of the same kind in
the PSM, with a «Restriction» realization to the data type mapped from the supplier data type in the PIM.

e A specialized data type in a PIM with the «ValueRestriction» stereotype applied shall map to a data type of the
same kind in the PSM with the «ValueRestriction» stereotype applied, with the same values for the stereotype
attributes, and a «Restriction» realization to the type mapped from the general data type in the PIM.

e A specialized data type in a PIM without the «ValueRestriction» stereotype applied shall map to a class in the
PSM with the «ObjectType» stereotype applied.

o Ifthe general data type in the PIM is itself a specialization that is not a «ValueRestriction», then the
«ObjectType» class shall be the special type in a generalization whose general type is the data type mapped
from the general type in the PIM.

o Otherwise, the «ObjectType» class shall be the client of a realization stereotyped «XSDSimpleContent» for
which the supplier is the type mapped from the general data type in the PIM.

NIEM-UML Beta 1 55

e Ifadatatype inaPIM has exactly one owned comment, then the corresponding PSM data type shall have an
owned comment with the «Documentation» stereotype applied and the same body as the PIM data type
comment. Otherwise, the PSM data type shall have an owned comment with the «Documentation» stereotype
applied and the same body as the «Documentation» comment owned by the PIM data type. The comment body
is adjusted to conform to NIEM conventions.

PSM to XML Schema Mapping

e Adatatype in a PSM shall map to a corresponding simple type definition with the xsd:simpleType/@name
given by the data type name.

o Ifadatatype ina PSM is the client of a realization stereotyped as «Restriction», then it shall map to a simple
type definition that is a restriction whose base type is the supplier type of the realization. If the data type has the
«ValueRestriction» stereotype applied, then the attribute values of the stereotype shall map to corresponding
restriction facets.

o Ifadatatype in a PSM has the «XSDRepresentationRestriction» stereotype applied, then the simple type
definition mapped from the data type shall include a xsd:restriction/xsd:whiteSpace element with a value given
by the value of the whiteSpace attribute of the «xXSDRepresentationRestriction» stereotype.

e The «Documentation» comment owned by a data type in the PSM shall map to the documentation for the XML
simple type definition mapped from the class, with the body of the comment providing the
xsd:simpleType/xsd:annotation/xsd:documentation for the simple type definition.

7.4.2 Primitive Types

7.4.2.1 Background

A primitive type is a simple type defined in terms of a predefined set of atomic values. An atomic value is an
elementary value, not constructed from simpler values by any user-accessible means defined by this specification.
(Adapted from [XMLSchemaDatatypes].)

7.4.2.2 Representation

Common

The NIEM Primitive Type Library (see Annex C) defines a predefined set of UML primitive types to be used in
NIEM-UML models. To insure integrity and consistency of the type system used at the PIM level with the
generation of NIEM compliant schema, the primitive types in this library are based on XML schema primitive types
[XMLSchemaDatatypes].

A NIEM-UML model may also define new primitive types by specializing the predefined primitive types from the
Primitive Type Library (the NIEM Core model provides a set of such specialized primitive types ready-made — see
Annex C). All primitive types used in a NIEM-UML model shall be either a predefined primitive type from the
Primitive Type Library or a primitive type that is a direct or indirect specialization of a predefined primitive type.

PIM

A specialized UML primitive type in a PIM to which the «ValueRestriction» stereotype is applied defines a new
primitive type. However, a specialized UML primitive type without the stereotype application is actually mapped to
the PSM as a complex type (as specified for data types in general in Subclause 7.4.1.2).

PSM

A primitive type in a PSM (other than a predefined primitive type from the Primitive Type Library) must be the
client in a «Restriction» realization with another primitive type. It is implemented in XML schema as an atomic
simple type definition with a base type given by the type represented by its generalization. If the primitive type has
the «ValueRestriction« stereotype applied, the attributes of the stereotype are implemented as restriction facets.

NIEM-UML Beta 1 56

7.4.2.3 Mapping Summary

PIM to PSM Mapping

e Areference to a primitive type from the Primitive Type Library in a PIM shall map to a reference to the same
primitive type in the PSM.

e Ifaprimitive type in a PIM does not have the «ReferenceName» stereotype applied, then its NIEM name is
determined as follows:

o If the PIM primitive type name ends in “SimpleType”, then the NIEM name shall be the PIM primitive
type name.

o If the PIM primitive type name ends in “Simple”, then the NIEM name shall be the PIM primitive type
name with “Type” appended.

o Otherwise, the NIEM name shall be the PIM primitive type name with “SimpleType” appended.

PSM to XML Schema Mapping

e A primitive type in a PSM shall map to an atomic simple type definition with a base type given by the simple
type mapped from the supplier type of the «Restriction» realization in which the primitive type is the client

type.

7.4.2.4 Examples

PIM Representation

Figure 7-18 shows a Text primitive type defined as a specialization of the String primitive type from the Primitive
Type Library, which is then further specialized by the ProperNameText type.

& primitives
string
Pk

sV alueRaestrictions

Toext
Pk

& primitives
ProperNameText

Figure 7-18 Representation of primitive types in a PIM

The Text data type in Figure 7-18 is stereotyped as a «ValueRestriction», but it does not have any restriction facets
specified. Figure 7-19 shows an example of a primitive type defined as a «ValueRestriction» with restriction facets.

NIEM-UML Beta 1

57

wprimitives
decimal

«WalueRestrictions
LongitudeDegres

{maxExclusive = "180",
minInclusive = "-180"}

Figure 7-19 Representation of a primitive type with a value restriction in a PIM

PSM Representation

Figure 7-20 shows the PSM representation of the primitive types modeled in Figure 7-18. A primitive types in a
PSM must be stereotyped as a «ValueRestriction», so the ProperNameText type becomes an «ObjectType» class in
the PSM.

s primitives
string

f.'l'.'.

| Restrictions

sVWalueRestrictions
Text

| « XSDSimpleContents

1
«primitive:s
ProperMameText

Figure 7-20 Representation of primitive types in a PSM

Figure 7-21shows the PSM representation of the primitive type shown in Figure 7-19, which uses a «Restriction»
realization instead of a generalization.

s primitives
decimal

L'l‘.'.

| Restrictions

|
sValueRestrictions

LongitudeDegrese

{maxExclusive = "180°,
minInclusive = "-180"}

Figure 7-21 Representation of a primitive type with a value restriction in a PSM

NIEM-UML Beta 1 58

XML Schema Representation
The primitive types shown in Figure 7-20 are represented in XML schema as follows:

<xsd:simpleType name="TextSimpleType">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>
</xsd:appinfo>
<xsd:documentation>A data type for text</xsd:documentation>
</xsd:annotation>
<xsd:restriction base=" xsd:string"/>
</xsd:simpleType>
<xsd:complexType name="ProperNameTextSimpleType">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>
</xsd:appinfo>
<xsd:documentation>A data type for proper name text</xsd:documentation>
</xsd:annotation>
<xsd:simpleContent>
<xsd:extension base="tns:TextSimpleType">
<xsd:attributeGroup ref="s:SimpleObjectAttributeGroup"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

The primitive type shown in Figure 7-21 is represented in XML schema as:

<xsd:simpleType name="LongitudeDegreeSimpleType">
<xsd:annotation>
<xsd:appinfo>
<i:Base 1i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>
</xsd:appinfo>
<xsd:documentation>A data type for longitude degrees</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:decimal">
<xsd:minInclusive value="-180"/>
<xsd:maxExclusive value="180"/>
</xsd:restriction>
</xsd:simpleType>

7.4.3 Code Types

7.4.3.1 Background

A code type is a simple type that represents a list of values, each of which has a known meaning beyond the text
representation. These values may be meaningful text or may be a string of alphanumeric identifiers that represent
abbreviations for literals. [NIEM-NDR 9.12.3]

NIEM-UML Beta 1 59

7.4.3.2 Representation

Common
A code type is represented as a UML enumeration. Each code value is one enumeration literal of the enumeration.

The code values are considered to be a restriction of the value space of the base type of the enumeration. The base
type may be explicitly modeled as the supplier of a «Restriction» realization in which the numeration is the client.

PIM

An enumeration in a PIM need not be the client of a «Restriction» realization. By default, the base type of the
enumeration is taken to be the XSD token primitive type.

A specialized enumeration to which the «ValueRestriction» stereotype is applied also defines a new code type as a
restriction of the code type defined by the general enumeration. However, a specialized enumeration without the
stereotype application is actually mapped to the PSM as a complex type (as specified for data types in general in
Subclause 7.4.1.2).

PSM

The base type of an enumeration in a PSM is must be explicitly identified using a «Restriction» realization from the
enumeration to the base type. Such an enumeration represents a NIEM code type that is implemented in XML
schema as atomic simple type definition that is a restriction of the identified base type using multiple
xsd:enumeration facets.

7.4.3.3 Mapping Summary

PIM Representation Mapping

e Anenumeration in a PIM that is neither a specialization nor the client of a «Restriction» realization shall be
considered equivalent to an enumeration with a «Restriction» realization to the token primitive type from the
XML Primitive Type Library.

PIM to PSM Mapping

e Anenumeration in a PIM shall map to a corresponding enumeration in the PSM, with corresponding
enumeration literals.

e Ifan enumeration in a PIM does not have the «ReferenceName» stereotype applied, then its NIEM name is
determined as follows:

o If the PIM enumeration name ends in “CodeSimpleType” or “CodeType”, then the NIEM name shall be the
PIM enumeration name.

o If the PIM enumeration name ends in “CodeSimple”, then the NIEM name shall be the PIM enumeration
name with “Type” appended.

o If the PIM enumeration name ends in “Code”, then the NIEM name shall be the PIM enumeration name
with “SimpleType” appended.

o Otherwise, the NIEM name shall be the PIM enumeration name with “CodeSimpleType” appended.

PSM to XML Schema Mapping

e Anenumeration in a PSM shall map to an atomic simple type definition. The base type of the simple type
definition is the type mapped from the supplier data type of the «Restriction» realization in which the
enumeration is the client.

NIEM-UML Beta 1 60

e Each enumeration literal of the enumeration shall map to an enumeration facet of the simple type definition
mapped from the enumeration, whose value is given by the enumeration literal name.

7.4.3.4 Example

PIM Representation

Figure 7-22 shows the definition of the SupervisionLevelCode type as a UML enumeration.

senumeration:
SupervisionCodelLevel

FHIGH RISK
COMPACT OUT
FUGITIVE
2-MODERATE RISK
4-EXTREME RIZK

ISF 11

1-LOW RISK
RESIDVIN-5TATE CUSTD
ISF |

Figure 7-22 A code type represented as a UML enumeration in a PIM

PSM Representation

Figure 7-23 shows the PSM representation of the code type shown in Figure 7-22 , with an explicit «Restriction»
realization to the XSD token primitive type.

o primitives
token

?L

| «Restrictions

|
g enumerations

SupervisionLevelCodeSimpleType

FHIGH RISK
COMPACT OUT
FUGITIVE
2Z-MODERATE RISK
4-EXTREME RISK

ISP I

1-LOW RISK
RESIDVIN-3TATE CUSTD
ISP |

Figure 7-23 A code type represented as a restriction in a PSM

XML Schema Representation

The XML Schema representation for the code type shown in Figure 7-23 is:

<xsd:simpleType name="SupervisionLevelCodeSimpleType">

NIEM-UML Beta 1

<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>
</xsd:appinfo>
<xsd:documentation>A data type for supervision level codes</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="3-HIGH RISK"/>
<xsd:enumeration value="COMPACT OUT"/>
<xsd:enumeration value="FUGITIVE"/>
<xsd:enumeration value="2-MODERATE RISK"/>
<xsd:enumeration value="4-EXTREME RISK"/>
<xsd:enumeration value="ISP II"/>
<xsd:enumeration value="1-LOW RISK"/>
<xsd:enumeration value="RESID/IN-STATE CUSTD"/>
<xsd:enumeration value="ISP I"/>
</xsd:restriction>

</xsd:simpleType>

7.4.4 Unions

7.4.4.1 Background

A union is a simple type whose values are the union of the values of one or more other simple types, which are the
member types of the union. (Adapted from [XMLSchemaDatatypes].)

7.4.4.2 Representation

Common

A union is represented as a UML data type (that is neither a primitive type nor an enumeration) with the stereotype
«Union» applied. The member types of the union are represented as data types that are suppliers of UML usage
dependencies with the union data type as the supplier and the stereotype «UnionOf» applied. A «Union» datatype
shall not have any properties.

A «Unionx» data type may not be a specialization of another data type. However, a data type with the
«ValueRestriction» stereotype applied may be the specialization of a «Union» type.

PIM

There is no further representation for a PIM.

PSM

A «Unionx» data type is implemented as a union simple type definition. The member types of the union simple type
definition are the types represented by the UML data types that realize the «Unionx» data type.

7.4.4.3 Mapping Summary

PIM to PSM Mapping

e Adatatype in a PIM with the «Union» stereotype applied shall map to a corresponding data type in the PSM
with the «Union» stereotype applied.

NIEM-UML Beta 1 62

e A usage dependency with the «UnionOf» stereotype applied shall map to a corresponding dependency in the
PSM between corresponding data types mapped from the PIM.

o If adatatype in a PIM has the «Union» stereotype applied but not the «ReferenceName» stereotype, then its
NIEM name is determined as follows:

o If the PIM data type name ends in “SimpleType”, then the NIEM name shall be the PIM data type name.

o If the PIM data type name ends in “Simple”, then the NIEM name shall be the PIM data type name with
“Type” appended.

o Otherwise, the NIEM name shall be the PIM data type name with “SimpleType” appended.

PSM to XML Schema Mapping

e A datatype in a PSM with the «Union» stereotype applied shall map to a corresponding union simple type
definition.

e For each usage dependency with the «UnionOf» stereotype applied, the type represented by the supplier of the
dependency shall appear in the xsd:union/@xsd:memberTypes list for the simple type definition mapped
from the «Union» type that is the client of the dependency.

7.4.4.4 Example

PIM Representation

Figure 7-24 illustrates a FrictionRidgePositionCode union type from the NIEM biometrics domain. Note that the
code values associated with the code types PlantarPositionCodeSimpleType, FingerPositionCodeSimpleType,
PalmPositionCodeSimpleType, and UnknownPositionCodeSimpleType have been omitted.

«llnions wprimitives
FrictionRidgePositionCode string
-xL.Inieannj - / \ = qu«_;cL.Ini|1~nl'.Zi'f:-c- Restricti
B - | «Restrictions
. 7 &UnionOfs / ' 4UnionOfa ™ |
senumeration» / « primitives
PlantarPesitionCode ! i UnknownPositionCode
/ !
|l!:_ 'JII
senumeration: senumeration:
PalmPeositionCode FingerPositionCode

Figure 7-24 Representation of a union as a UML data type

PSM Representation

The PSM representation for the types shown in Figure 7-24 is the same as in the PIM except that the names of the
types are proper NIEM names ending in “CodeSimpleType”.

XML Schema Representation

The «Union» data type shown in Figure 7-24 is implemented in XML Schema as follows:

<xsd:simpleType name="FrictionRidgePositionCodeSimpleType">

<xsd:annotation>

NIEM-UML Beta 1 63

<xsd:documentation>
A data type for a friction ridge image position
</xsd:documentation>
<xsd:appinfo>
<i:Base i:namespace="http://niem.gov/niem/structures/2.0"
i:name="0Object"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:union memberTypes="biom:FingerPositionCodeSimpleType
biom:PalmPositionCodeSimpleType biom:PlantarPositionCodeSimpleType
biom:UnknownPositionCodeSimpleType"/>

</xsd:simpleType>

7.4.5 Lists

7.4.5.1 Background

A list is a simple type having values each of which consists of a finite-length (possibly empty) sequence of atomic
values. The values in a list are drawn from some atomic simple type (or from a union of atomic simple types), which
is the item type of the list. (Adapted from {XMLSchemaDatatypes].)

7.4.5.2 Representation

Common

A list is represented as a UML data type (that is neither a primitive type nor an enumeration) with the stereotype
«L.ist» applied. The data type must have a single property with the multiplicity 0..* and a type that represents the
item type of the list. The name of the property is arbitrary.

The item type of a list is required to be an atomic type, that is, a type whose values are atomic values. Any primitive
type or code list is an atomic type, as is any union of atomic types.

A «List» data type may not be a specialization of another data type. However, a data type with the
«ValueRestriction» stereotype applied may be the specialization of a «List» type.

PIM

There is no further representation for a PIM.

PSM

A «List» data type is implemented as a list simple type definition. The item type of the list simple type definition is
the type represented by the type of the single property of the «List» data type.

If the «List» data type is the special type in a generalization, then the type represented by the general type in that
generalization is the base type of the simple type definition for the «Union» data type. If the generalization is not
stereotyped, then simple type definition is an extension. If the generalization is stereotyped as a «ValueRestriction»,
then the simple type definition is a restriction and the attribute values of the «ValueRestriction» stereotype are
implemented as restriction facets.

NIEM-UML Beta 1 64

7.4.5.3 Mapping Summary

PIM to PSM Mapping

e Adatatype ina PIM with the «List» stereotype applied shall map to a corresponding data type in the PSM with
the «List» stereotype applied, with a corresponding property mapped from the single property of the data type in
the PIM.

e Ifadatatype in a PIM has the «List» stereotype applied but not the «ReferenceName» stereotype, then its
NIEM name is determined as follows:

o If the PIM data type name ends in “SimpleType”, then the NIEM name shall be the PIM data type name.

o If the PIM data type name ends in “Simple”, then the NIEM name shall be the PIM data type name with
“Type” appended.

o Otherwise, the NIEM name shall be the PIM data type name with “SimpleType” appended.

PSM to XML Schema Mapping

e A datatype in a PSM with the «List» stereotype applied shall map to a corresponding list simple type definition,
with an item type given by the simple type mapped from the type of the single required property of the «List»
data type.

7.4.5.4 Example

PIM Representation

Figure 7-25 shows the PIM representation of a simple type that is a list of Boolean values. Note that the required
property of the «List» data type is represented using an association (see also Section 7.5.1.2)

alListe members | yprimitives
BooleanList 0.* boolean

Figure 7-25 Representation of a list in a PIM

PSM Representation

Figure 7-26 shows the PSM representation of the «List» data type shown in Figure 7-25. Note that, in the PSM, the
required property of the «List» data type is represented as an attribute.

wlists .
BooleanListSimpleType T Ao
PaType - — — A data type for a white
members : beolean [0..7] space-delimitad list of boolean.

Figure 7-26 Representation of a list in a PSM

XML Schema Representation

The «List» data type shown in Figure 7-26 is implemented in XML Schema as follows:

<xsd:simpleType name="BooleanListSimpleType">
<xsd:annotation>
<xsd:documentation>

A data type for a white space-delimited list of boolean.

NIEM-UML Beta 1 65

</xsd:documentation>
<xsd:appinfo>
<i:Base i:namespace="http://niem.gov/niem/structures/2.0"
i:name="0Object"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:list itemType="xsd:boolean"/>

</xsd:simpleType>

7.5 Modeling Properties
7.5.1 Properties

7.5.1.1 Background

A property relates a NIEM object (the subject) to another object or to a value (the object). Property data describes an
object as having a characteristic with a specific value or a particular relationship to another object. [NIEM-NDR 3.2]

7.5.1.2 Representation

Common

A NIEM property is represented as a UML property. The owner of the UML property specifies the type of the
subject of the NIEM property, while the type of the UML property itself specifies the type of the object of the NIEM

property.

A UML property with aggregation=none represents a NIEM reference property while a UML property with
aggregation=shared or composite represents a NIEM content property. NIEM does not recognize any semantic
difference between reference and content properties [NDR 7.6.2] (though their XML Schema representation may
differ). A UML property with aggregation=composite, however, carries an additional semantic constraint that any
instance may be the value of at most one composite property at any point in time [UML 7.3.3].

PIM

A property may optionally be represented as the end of a UML association. An association end representing a NIEM
property is always navigable (since classifier-owned association ends are always navigable in UML). The subject
type of the NIEM property is represented by the classifier at the opposite end of the association. A UML association
used to represent a NIEM property (or two NIEM properties) may not be an association class.

NOTE. An ordinary UML association does not represent a NIEM association type. See Subclause 7.3.4 on the
representation of NIEM association types.

While a unidirectional association (i.e., one navigable at only one end) only defines a single NIEM property, UML
still provides the ability to model an arbitrary multiplicity on the non-navigable end of the association. This
represents an additional constraint on how many instances of the subject type may participate in the NIEM property.
This constraint can only be modeled in a NIEM PIM using the UML association notation for a NIEM property.

A bidirectional association (i.e., one navigable at both ends) represents two NIEM properties, corresponding to each
end, in which the object type of each property is the subject type of the other.

PSM

In a PSM, each UML property owned by a class must may have either the «XSDProperty» or the
«XSDAnyProperty» stereotype applied. A property with neither applied is treated as if «xXSDProperty» was applied
with default values for its attributes.

NIEM-UML Beta 1 66

An «XSDProperty» property represents a NIEM property, which is implemented in XML Schema as either an
attribute declaration and use or an element declaration and particle. If the «XSDProperty» attribute kind has the
value “attribute”, then the property is implemented as an XML Schema attribute. If the value of kind is “element”,
then the property is implemented as an XML Schema element.

If an «XSDProperty» property has kind=attribute, then its multiplicity must be 1..1, its aggregation must not be none
and its type must be a data type representing a simple type.

If an «XSDProperty» has kind=element, the multiplicity lower bound for the property gives the value of minoccurs
for the implemented element particle and the multiplicity upper bound for the property gives the value of
maxOccurs. The type of the property must not be empty unless the property is a derived union (a UML property
without a type that is a derived union represents an abstract property — see Subclause 7.5.3). The nillable attribute of
the «XSDProperty» stereotype may be used to indicate that the element particle is nillable.

The fixed attribute of the «XSDProperty» stereotype may be used to indicate that the attribute use or element
particle must have a certain fixed value.

There are significant differences between the UML representation and XML Schema implementation of a NIEM
property. Sections 6.1.6.2 and 6.1.6.3 of [NIEM-NDR], Rule 6-14 and Rule 6-15, require that an attribute or element
declaration be a top-level declaration; however, Section 7.3.44 of [UML] requires that a Property be the
ownedAttribute of a Classifier. Thus in the UML representation, only one Classifier may reference a Property, while
in the XML Schema implementation, more than one type definition may reference the same attribute or element
declaration.

To resolve this difference, more than one «XSDProperty» property with the same name contained (directly or
indirectly) within the same «Namespace» package (see Subclause 7.2.1) shall have the same attribute or element
declaration (and so must all have the same value for kind). All use of the attribute uses or element particles mapped
from such properties reference the same attribute or element declaration.

Alternatively, a property declaration may be explicitly modeled separately from property use using a
«PropertyHolder» class. This is discussed further in Subclause 7.5.2.

An «XSDAnyProperty» property represents the use of a property that may hold a value of any type, which is
implemented in XSD Schema as an xsd:any particle. Such a property may not have a type, but also must be a
derived union (a UML property without a type that is a derived union represents an abstract property — see
Subclause 7.5.3). The multiplicity lower and upper bounds of an «XSDAnyProperty» property give the minOccurs
and maxOccurs Vvalues, respectively, for the xsd:any particle. If provided, the processContents and valueNamespace
attributes of the «XXSDAnNyProperty» stereotype give the processContents and namespace values for the
xsd:any particle.

A «SequencelD» property is mapped to a NIEM structures:sequenceld attribute (see [NIEM-NDR 7.6.1]).
Such a property must have the name “sequenceld”, the type “integer” and a multiplicity of 1..1.

7.5.1.3 Mapping Summary

PIM Representation Mapping
e A property owned by an association shall be considered equivalent to a property owned by the associated class.

o A UML property that is an association end shall be considered to an otherwise identical UML property that is
not an association end.

PIM to PSM Mapping

e A property in a PIM shall map to a corresponding property in the PSM with the same multiplicity and
aggregation as the PIM property and with an owner and type (if any) that are the corresponding classifiers
mapped from the PIM.

NIEM-UML Beta 1 67

If a property in a PIM has a type, is owned by a class and is the client of a «References» realization or is marked
as a derived union, then the corresponding property in the PSM shall have the «XSDProperty» stereotype
applied.

If a property in a PIM has no type, is owned by a class, but is not marked as a derived union, then the
corresponding property in the PSM shall have the «XSDAnyProperty» stereotype applied.

If a property in a PIM owned by a class does not have the stereotype «ReferenceName» applied and is not the
client of a «References» realization, then its NIEM name is determined as follows:

o Ifthe PIM property has aggregation=none and the property name does not end in “Reference”, then the
NIEM name shall be the PIM property name with “Reference” appended.

o Otherwise, the NIEM name shall be the PIM property name.

PSM to XML Schema Mapping

A property in a PSM with the «XSDProperty» stereotype applied and kind=element, or with no stereotype
applied, shall map to XML schema as follows:

o Unlessitis the client of a «References» realization whose supplier is in a «<Namespace» package with a
different target namespace, it shall map to a corresponding element declaration with a name given by the
property name. All «XSDProperty» properties with the same name contained within the same
«Namespace» package shall map to a single such element declaration.

= | the property has aggregation = none and has a class as its type, then the element declaration shall be
for a reference to the complex type mapped from the type of the property. Otherwise, the element
declaration shall have the simple or complex type mapped from the type of the property.

o If the property is owned by a class that does not have the «PropertyHolder» stereotype applied, then it shall
also map to an element particle within the complex content of the complex type mapped from the owning
class, with an ref to the element declaration mapped per the above, nillable given by the value of the
nillable attribute of the «XSDProperty» stereotype and property multiplicity mapped t0 minOccurs and
maxOccurs. If a value is provided for the fixed attribute of the «XSDProperty» stereotype, then the
element particle contains a £ixed attribute with that value.

A property in a PSM with the «XSDProperty» stereotype applied and kind=attribute shall map to XML schema
as follows:

o Unless it is the client of a «References» realization whose supplier is in a «<Namespace» package with a
different target namespace, it shall map to a corresponding attribute declaration with the
xsd:attribute/@name given by .the property name and the xsd:attribute/@type given by the
corresponding simple type mapped from the property type. All «XSDProperty» properties with the same
name contained within the same «Namespace» package shall map to a single such attribute declaration.

o Ifitis owned by a class that does not have the «PropertyHolder» stereotype applied, then it shall also map
to an attribute use within the complex content of the complex type mapped from the owning class, with an
xsd:attribute/@ref to the attribute declaration mapped per the above. If a value is provided for the
fixed attribute of the «XSDProperty» stereotype, then the attribute use contains a £ixed attribute with that
value.

If an «XSDProperty» property has an owned comment with the stereotype «Documentation» applied, then the
body of this comment is used for the documentation annotation of the attribute or element declaration mapped
from the property.

A property in a PSM with the «XXSDAnyProperty» stereotype applied shall map to an xsd: any particle within
the complex content of the complex type mapped from the owning class of the property, with the property name
mapped to name, multiplicity mapped to minOccurs and maxOccurs, the processContent attribute of the
«XSDAnNyProperty» stereotype mapped to processContent and the valueNamespace attribute mapped to

namespace.

NIEM-UML Beta 1 68

e A property in a PSM with the «SequencelD» stereotype applied small map to an attribute use with an
xsd:attribute/@ref tothe NIEM structures:sequencelD attribute declaration.

7.5.1.4 Example

PIM Representation

Figure 7-27 shows a set of three NIEM properties represented as attributes of a Person class. The complex type
represented by this class is thus also modeled as being the subject of these properties.

Parson

PersonBirthDate . date [1]
PersonMame . Perscniame [1]
PersonSSNIdentification ;| |dentification [1]

Figure 7-27 Representation of NIEM properties as UML properties in a PIM

Figure 7-28 shows an example the alternative representation of a NIEM property as an association end.

Parson

PersonBirthDate : date [1]
PersonSSNhIdentification : |dentification [1]

PersonMame ParsonMame

1 PersonFullName . PerscnMameText [1]

Figure 7-28 Representation of a NIEM property as a UML association end

PSM Representation

Figure 7-29 shows the PSM representation of the class modeled in Figure 7-27, with the «XSDProperty» stereotype
applied to all properties.

«ObjectTypes
PersonTypa
s XS0OProperty s PersonBirthDate © date [1]){kind = elemen
uXS0Property »PersonName : PersonMName [1]{kind = e]
wXS0Property »PersonSSN ldentification : Identification [1}{kind = element)

Figure 7-29 Representation of NIEM properties as UML properties in a PSM

XML Schema Representation

The class shown in Figure 7-29 is represented in XML schema as follows:

<xsd:complexType name="PersonType">

<xsd:annotation>
<xsd:documentation>A data type for a human being.</xsd:documentation>
<xsd:appinfo>

<i:Base i:name="Object"
i:namespace="http://niem.gov/niem/structures/2.0"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexContent>

NIEM-UML Beta 1 69

<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" ref="nc:PersonBirthDate"/>
<xsd:element maxOccurs="1" minOccurs="1" ref="nc:PersonName"/>
<xsd:element maxOccurs="1" minOccurs="1"
ref="nc:PersonSSNIdentification"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element abstract="false" name="PersonName" nillable="false"
type="nc:PersonNameType">
<xsd:annotation>

<xsd:documentation>A combination of names and/or titles by which a person is
known.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element abstract="false" name="PersonBirthDate" nillable="false"
type="nc:DateType">
<xsd:annotation>
<xsd:documentation>A date a person was born.</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element abstract="false" name="PersonSSNIdentification" nillable="false"

type="nc:IdentificationType"/>
7.5.2 Property Holders and Property References

7.5.2.1 Background

A property declaration is the association of the name of a property with the type (object) of the property. A property
reference is the association of a property declaration with a particular type of subject for the property.

A UML property owned by a class representing a complex type specifies both the subject and object types for the
represented NIEM property. A NIEM property may also be declared independently of the definition of any complex
type. Such a global property declaration defines the object type of the property but does not restrict its use to a
specific type of subject.

7.5.2.2 Representation

Common

Since a UML property cannot be defined outside of a classifier, a global property declaration is still represented as a
UML property owned by a class, but that class has the «PropertyHolders» stereotype applied, indicating that its
purpose is simply to hold the representations of global property declarations.

The use of a property in the context of a complex type may also be defined by reference to a property declaration
outside of the definition of the complex type. Such a property reference is represented by a UML realization with the
stereotype «References» applied, between two UML properties owned by different classes. A specific property
declaration may be referenced at most once within the context of any one complex type.

NIEM-UML Beta 1 70

The client UML property of a «References» realization represents the use, in the context of the complex type
represented by the owning class of the property, of the NIEM property declared by the supplier UML property of the
realization. The client UML property of the realization must have the same type (or a subclass) as the supplier
property and a multiplicity that is consistent with the multiplicity of the supplier property. Multiple properties may
be defined by reference to the same property declaration.

A UML property owned by a class representing a complex type that is not the client of a «References» realization
actually represents both the declaration of a NIEM property and the use of that property in the context of the
complex type. Therefore, such a UML property may also be the supplier of «References» realizations, in which case
the reference is to the implicit property declaration represented by the UML property.

Since all property declarations in NIEM, whether represented explicitly or implicitly in UML, are considered to be
“top level”, the NIEM names of all UML properties representing such declarations within a single NIEM namespace
must have distinct NIEM names (see also Subclause 7.2.1). However, a UML property that is the client of a
«References» realization does not represent a property declaration and thus has the same NIEM name as the supplier
of the realization.

PIM

It is often the case that more than one property in a class representing a complex type will be defined by reference to
property declarations represented by UML properties with the same owner (for example, a «PropertyHolder» class
modeling a set of top-level declarations in a namespace). As a convenience notation for this case, a «References»
realization may be used between the two classes, rather than using multiple realizations between pairs of properties.
When one class has a «Reference» realization to another, any UML property in the client class with the same NIEM
name as a UML property in the supplier class is considered to be implicitly defined by reference to the property
declaration represented by the matching UML property.

Likewise, a «References» realization may be used between packages. This will result in all classes within those
packages having «References» realizations based on matching NIEM names (see Subclause 7.6.1).

PSM

A property declaration represented in a PSM may not have the «XSDAnyProperty» stereotype applied. It is
implemented as either an attribute or element declaration, depending on the value of the kind attribute of the
«XSDProperty» stereotype (or as an element, if no stereotype is applied). A property reference is implemented as an
attribute use or element particle referencing the corresponding declaration. If the UML property representing the
property declaration is contained in a different «Namespace» package than the UML property representing the
property reference, then the implementation of the property reference will refer to a declaration in a different
schema.

The «XSDDeclaration» stereotype is a specialization of «References» that may be used in a PSM to denote
explicitly that a realization so stereotyped identifies the property declaration referenced by a specific property use.
An «XSDProperty» realization must always be between one property and another property or between a property
and a «<Namespace» package. In the later case, the target namespace of the «Namespace» package is used as the
namespace for the property declaration, while the property name is taken from the UML property representing the
property use.

7.5.2.3 Mapping Summary

PIM Representation Mapping

o Arrealization between two packages in a PIM with the stereotype «References» applied shall be considered
equivalent to replacing the realization between the packages with multiple «References» realizations between
classes with those packages, such that:

o Ifaclass in the client package of the original realization has the same NIEM name as a class of the supplier
package, then there is a realization from the class in the client class to the class in the supplier package.

NIEM-UML Beta 1 71

A realization between two classes in a PIM with the stereotype «References» applied shall be considered
equivalent to replacing the realization between the classes with multiple «References» realizations between

properties of the classes, such that:

o

If a property in the client class of the original realization has the same NIEM name as a property of the
supplier class, then there is a realization from the property in the client class to the property in the supplier
class.

PIM to PSM Mapping

A class in a PIM with the «PropertyHolder» stereotype applied shall map to a corresponding class in the PSM

with «PropertyHolder» stereotype applied.

A realization between two properties in a PIM with the stereotype «References» applied shall map to a
corresponding realization in the PSM with the «References» stereotype applied, between corresponding

properties mapped from the PIM.

A property in a PIM that is the client of a «References» realization with another property as the supplier has the
same NIEM name as the supplier property.

PSM to XML Schema Mapping

A property in a PSM that is owned by a class with the «PropertyHolder» shall be mapped as an attribute or

element declaration, as described in Subclause 7.5.1.4. The «PropertyHolder» class will have no representation
in the XSD.

A property in a PSM that is the client of a «References» or «XSDDeclaration» realization whose supplier has a

different target namespace shall be mapped as an attribute use or element particle, as described in Subclause

7.5.1.4, but shall not be mapped as an attribute or element declaration. The attribute use or element particle shall

have its re £ attribute set to the attribute or element declaration mapped from the supplier of the realization.

7.5.2.4 Example

PIM Representation

Figure 7-30 shows two properties of the Payload class being defined by reference to properties of the same name
defined in NIEM Core. The OrganizationAssociation and OrganizationContactInformationAssociation property
declarations are modeled as properties of «PropertyHolder» classes, independently of their use in the definition of

Payload or any other complex type. (This representation may also be used in a PSM.)

| Referencess

#ObjectTypeas
Payload

Resource . Resource [0..%]

Contactinformation . Contactinformation [0..7]

Agency : Organization [0..%]

Organiz ationContactinformationAs sociation ;| OrganizationContactinformaticnAssociations
Organiz ationltemAs sociation | OrganizationltemAs sociation I

sReferencesy

«Property Holder:s
OrganizationPropertyHolder

Organiz ationContactinformationAs sociation ;| OrganizationContactinformaticndssociationd
FOrganizationltemissociation | OrganizationltemAssociation C

Figure 7-30 Representation of property references using «References» realizations

NIEM-UML Beta 1

72

Figure 7-31 shows an alternative representation of the model shown in Figure 7-30, using a single «Reference»
realization between the two classes. Since both of the properties OrganizationAssociation and
OrganizationContactinformationAssociation in the Payload match the names of properties of the referenced
«PropertyHolder» class, these are both considered to be defined by reference. However, the properties Resource,
ContactInformation and Agency are defined in the context of their use in the Payload class.

«ObjectTypes
Payload

Resource : Resource [0..%]

Contactinformation : Contactinformation [0..7]

Agency : Organization [0..7]

OrganizationContactinfermationAs s ociation : OrganizationContactinformationfssociation
Organizationltemissociation | Organzationltemassociation

|
sReferencesy

v

«PropertyHolder:s
OrganizationPropertyHolder

OrganizationContactinformationAssociation | OrganizaticnContactinformationfssociation
OrganizationltemAssociation | Organizaticnitemassociation

Figure 7-31 Alternative representation using «References» realizations between classes

XML Schema Representation
The property references modeled in Figure 7-30 are represented in XML Schema as follows:

<xsd:complexType name="PayloadType">
<xsd:annotation>
<xsd:appinfo>
<i:Base 1i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>
</xsd:appinfo>
<xsd:documentation>A data type for</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0"
ref="tns:Resource"/>
<xsd:element maxOccurs="unbounded" minOccurs="0"
ref="tns:ContactInformation"/>
<xsd:element maxOccurs="unbounded" minOccurs="0"
ref="tns:Agency"/>
<xsd:element maxOccurs="unbounded" minOccurs="0"
ref="nc:0rganizationContactInformationAssociation"/>
<xsd:element maxOccurs="unbounded" minOccurs="0"
ref="nc:0rganizationItemAssociation"/>

</xsd:sequence>

NIEM-UML Beta 1

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

7.5.3 Substitution Groups

7.5.3.1 Background

One property is potentially substitutable for another if either the first property has no type or the type of the second
property is a direct or indirect generalization of the type of the first property. The substitution group for a property
known as the head is the set of all properties that are substitutable for it within a certain context. (Adapted from
[XMLSchemaStructures 3.3.6.4].)

An abstract property is one that cannot be assigned a value itself but can only take values as determined by
properties in its substitution group. (Adapted from [XMLSchemaStructures 3.3.1].)

7.5.3.2 Representation

Common

Any UML property owned by a class may represent the head of a substitution group. The context of the substitution
group is the «Namespace» package (see Subclause 7.2.1) that directly or indirectly contains the owning class of the
head property. Members of the substation group are represented as UML “subset” properties of the head.

A UML property models a member of a substitution group if it is declared to have the head property as a subsetted
property. The well-formedness rules of UML require that a subsetting property be owned either in the same class or
a direct or indirect subclass of any subsetted property (see [UML 7.3.45]). However, a «PropertyHolder» class may
be used to define substitution group properties independently of any complex type definition (see Subclause 7.5.2).

An abstract property is represented by a UML property that is marked as a derived union. In this case, the collection
of values of the property in the context of its substitution group is derived as the strict union of the values of the
subsetting properties in that group (see [UML 7.3.45]). If a UML property with no type is used to represent a head
property, then it must be marked as a derived union.

PIM

There is no further representation for a PIM.

PSM

A UML property in a PSM that subsets another property must not have the stereotype «XSDProperty» applied with
kind=attribute or have the «xXSDAnyPropertyt» stereotype applied. It may not subset another an
«XSDAnNyProperty»..

A UML property in a PSM that is a derived union must have the «XSDProperty» applied with kind=element.
A UML Property that subsets another property will be a member of the substitution group for that property.

7.5.3.3 Mapping Summary

PIM to PSM Mapping

e Aproperty in a PIM that has subsetted properties shall map to a corresponding property in the PSM that subsets
the corresponding properties mapped from the subsetted properties in the PIM.

o Aproperty in a PIM that is a derived union shall map to a corresponding property in the PSM that is a derived
union.

NIEM-UML Beta 1 74

PSM to XML Schema Mapping

e Anproperty in a PSM that subsets another property maps to an element declaration with a substitutionGroup
reference to the element declaration mapped from the subsetted property.

e Anproperty in a PSM that is a derived union maps to an element declaration with an abstract value of true.
7.5.3.4 Examples

PIM Representation

Figure 7-32 shows an example of a substitution group defined in a «PropertyHolder» class as a set of properties that
subset the head property ContactMeans. Since ContactMeans is a derived union, it represents an abstract property.
The ContactMeans property of the Contactinformation «ObjectType» class is defined by reference to the head
property ContactMeans, meaning that any of the properties in the substitution group for ContactMeans is
substitutable for ContactMeans in ContactInformation.

#ObjectTypes #Property Holder»
Contactinformation sReferences s ContactMeansSubstitutionGroup
/ContactMeans [0..*}unicn) | /ContactMeans [0..*}{union)
ContactEntity : Entity [0..7] ContactTelephoneMumber : TelephoneMumber [0..*){subsets Contactideans)
ContactWebsiteUR| . anylURI [0..*}{subsets ContactMeans)
ContactEmallD : string [0..*}subsets ContactMeans)

Figure 7-32 Representation of a substitution group using UML subsetted properties in a PIM

Figure 7-33 shows how a substitution group defined in one NIEM namespace may be extended in another
namespace. The generalization between ExtendedContactMeansSubstituionGroup and
ContactMeansSubstitutionGroup is required in order to establish a subsetting context that allows ContactSkypelD to
subset the ContactMeans head property declared in ContactMeansSubstitution Group.

#PropertyHolders
ContactMeansSubstitutionGroup

/ContactMeans [0.."){unicn}

ContactTelephoneiMumber ; TelephoneMumber [0..*}{subsets ContactMeans)
ContactWebsiteLURI : anyURI [0..*}{subsets ContactMeans)

ContactEmaillD : string [0.."){subsets ContactMeans)

«PropertyHolder:
ContactMeansExtension

ContactSkypelD : string [0..*}{subsets ContactMeans)

Figure 7-33 Extending a substitution group in a PIM or PSM

XML Schema Representation

The substitution group modeled in Figure 7-32 is represented in XML schema as follows:

<xsd:element abstract="true" name="ContactMeans" nillable="false"/>

NIEM-UML Beta 1 75

<xsd:element name="ContactWebsiteURI" nillable="true"

substitutionGroup="nc:ContactMeans" type="niem-xsd:anyURI">
<xsd:annotation>

<xsd:appinfo>

<i:Base i:name="ContactMeans"
i:namespace="http://niem.gov/niem/niem-core/2.0"/>

</xsd:appinfo>

<xsd:documentation>A</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="ContactTelephoneNumber" nillable="true"
substitutionGroup="nc:ContactMeans" type="nc:TelephoneNumberType">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="ContactMeans"
i:namespace="http://niem.gov/niem/niem-core/2.0"/>
</xsd:appinfo>
<xsd:documentation>A</xsd:documentation>
</xsd:annotation>
</xsd:element>

<xsd:element name="ContactEmailID" nillable="true"
substitutionGroup="nc:ContactMeans" type="niem-xsd:string">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="ContactMeans"
i:namespace="http://niem.gov/niem/niem-core/2.0"/>
</xsd:appinfo>
<xsd:documentation>A</xsd:documentation>
</xsd:annotation>
</xsd:element>

<xsd:complexType name="ContactInformationType">
<xsd:annotation>

<xsd:appinfo>

<i:Base 1i:name="Object" i:namespace="http://niem.gov/niem/structures/2.

</xsd:appinfo>
<xsd:documentation>A data type for</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>

O"/>

<xsd:element maxOccurs="unbounded" minOccurs="0" ref="nc:ContactMeans"/>

<xsd:element maxOccurs="unbounded" minOccurs="0" ref="nc:ContactEntity"/>

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

NIEM-UML Beta 1

76

7.5.4 Choice Groups

7.5.4.1 Background

A choice group is a group of properties of a complex type such that exactly one of them may have a value in any
instance of the complex type. (Adapted from [XMLSchemaStructures 3.8.1].)

7.5.4.2 Representation

Common

A choice group is represented as a UML class with the stereotype «Choice» applied, whose owned properties are the
members of the group. A «Choice» class must have at least one property, and all the properties of the class must be
optional (i.e., have multiplicity lower bound 0). The inclusion of the choice group in a complex type is represented
by a normal UML property owned by the class representing the complex type and having the «Choice» class as its

type.
PIM

There is no further PIM representation.

PSM

A class in a PSM with the stereotype «Choice» applied is implemented in XML schema as an xsd: choice model
group in each complex type corresponding to a class with a property that uses the «Choice» class as its type. All the
properties of a «Choice» class must represent XSD elements.

7.5.4.3 Mapping Summary

PIM to PSM Mapping

e Aclass in the PIM with the stereotype «Choice» applied maps to a corresponding class in the PSM with the
stereotype «Choice» applied.

PSM to XML Schema Mapping

e Anproperty in a PSM with a «Choice» class as its type maps to an xsd:choice model group. The property
multiplicity gives the occurrence bounds for the group. The properties of the «Choice» class map as properties
(see Subclause 7.5.1) to members of the model group. (Note that the «Choice» class does not itself map to a
type in the XML schema.)

7.5.4.4 Example

PIM Representation

Figure 7-34 shows an example of a choice group in which only one of Date or DateTime may have a value. The
property DateChoice models the inclusion of the choice group in the complex type represented by the DateType.
Note that the names of the «Choice» class and the property that uses it are arbitrary. (The representation in a PSM is
similar.)

NIEM-UML Beta 1 77

«ObjectTypes «Choices

DateType DateRepresentationChoiceType
DateChoice : DateRepresentationChoiceType [1] Date : date [1]
DateAccurracyCode | DateAccuracy IndicatorCode [1] DateTime : dateTime [1]

MarginDuraticn : duration [1]

Figure 7-34 Representation of a choice group

XML Schema Representation

The choice group modeled in Figure 7-34 is represented in XML schema as follows:

<xsd:complexType name="DateType">
<xsd:annotation>
<xsd:documentation>A data type for a calendar date.</xsd:documentation>
<xsd:appinfo>
<i:Base i:namespace="http://niem.gov/niem/structures/2.0"
i:name="0Object"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:choice>
<xsd:element ref="nc:Date" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="nc:DateTime" minOccurs="0" maxOccurs="1"/>
</xsd:choice>
<xsd:element ref="nc:DateAccuracyCode" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="nc:MarginDuration" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

7.6 Packaging Models

7.6.1 Reference and Subset Models

7.6.1.1 Background

A central aspect of NIEM is the use of a reference model of business vocabularies as the basis for defining standard
information exchange messages, transactions, and documents on a large scale: across multiple communities of
interest and lines of business. This reference vocabulary includes both a common core and domain-specific updates.

A reference model is a model that provides:

e The broadest, most fundamental definitions of components in its namespace.

e The authoritative definition of business semantics for components in its namespace.
A subset model is a model with the same target namespace as a reference model that:

e Provides an alternate representation of components that are defined by a reference schema.

NIEM-UML Beta 1 78

e Does not alter the business semantics of components in its namespace from those defined in the reference
model.

(Adapted from [NDR 2.2, 2.3].)
7.6.1.2 Representation

Common

Currently, the reusable components of the NIEM reference vocabulary are rendered as XML schema. The NIEM
Reference Model Library (see Annex C) provides a NIEM-UML model of all these reference schema. Each NIEM
core and domain reference namespace is modeled as a package within the Reference Model Library.

Having the Reference Model Library available means that a NIEM PIM may reference properties declared in a
reference namespace (see Subclause 7.5.2), in order to subset the Reference Model for a specific purpose. Such a
subset model is required to have the same target namespace URI as some namespace in the Reference Model.
Further, the subset model may only declare types and properties that correspond to those already defined for that
namespace in the Reference Model, though, as the name indicates, it will only include a subset of what is in the
Reference Model. This means that a subset model is not allowed to introduce new content, nor is it allowed to
extend the data content defined by a component of the Reference Model.

PIM

A subset model may be represented as a «<Namespace» package with the appropriate reference namespace as its
target namespace. All NIEM types represented in a subset model must have the same NIEM name as some
corresponding type represented in the Reference Model and all NIEM properties in a subset model must be defined
by reference to property declarations represented in the Reference Model.

A subset model can be straightforwardly represented using the convenience notation defined in Subclause 7.5.2 to
model a «References» realization from each class in the subset model to the corresponding class with the same
NIEM name in the Reference Model. Since all the properties in a class in a subset model must have the same NIEM
names as corresponding properties in the reference class, having a class-level realization implies that all the
properties in the subset class are defined by reference.

As a further convenience, a «References» realization may be used between two «Namespace» packages. In this case,
any UML class in the client package with the same NIEM name as a UML class in the supplier package is
considered to have an implicit «References» realization to the matching class in the supplier package. In addition,
any use in the subset package of an element (e.g., classifier or property) from the reference package is considered to
instead refer to a similarly named element included in the subset package. In particular, the use of a property
declaration from the reference package as the supplier of a «References» realization from an element of the subset
package results in the reference actually being to a corresponding property declaration in the subset package.

Moreover, if the «InformationModel» stereotype is used (see Subclause 7.2.1), then subset and reference packages
can be explicitly identified as having those default purposes. If a subset «InformationModel» package has a
«References» realization to a reference «InformationModel» package, then the subset package must have the same
target namespace as the reference package.

PSM

In a PSM, a subset model is represented as a «Namespace» package with the same target namespace as a reference
schema. All classifiers and properties in the subset model must have the same names as corresponding elements in
the reference model. Note that «References» realizations to the reference model elements are not used for subset
modeling in a PSM — all relevant reference model elements are copied in the subset model.

NIEM-UML Beta 1 79

7.6.1.3 Mapping Summary

PIM Representation Mapping

e Arealization between two «Namespace» packages in a PIM with the stereotype «References» applied shall be
considered equivalent to replacing the realization between the packages with multiple «References» realizations
between classes contained (directly or indirectly) in the packages, such that:

o Ifaclass in the client package of the original realization has the same NIEM name as a class in the supplier
package, then there is a realization from the class in the client package to the class in the supplier package.

e The use of a classifier in «<Namespace» package in a PIM that is from another «Namespace» package with the
same target namespace as the first shall be considered to be equivalent to replacing the classifier from the
second package with a classifier from the first package with the same NIEM name. If no such classifier exists in
the first package, one is created.

o A «References» realization in a PIM between two properties in different «<Namespace» packages with the same
target namespace is considered equivalent to replacing the realization with one having the same client but a
supplier from the first package with the same NIEM name as the original supplier. If no such supplier exists in
the first package, one is created. If a class already exists with the same NIEM name as the owning class of the
original property, then the newly created property is added to that class. Otherwise, a new class is created with
the appropriate name to hold the property.

7.6.1.4 Example

Figure 7-35 shows an example of a small subset model with two classes with properties defined by reference to
classes in the Reference Model. Figure 7-36 shows an alternative representation of the same model using a
«References» realization between the two packages.

s« ObjectType:s #Property Holder:
nigm-core-subset:: niem-core-subset::
Contactinformation ContactMeansPropertyHolder
/ContactMeans [0..*}{unicn) IContactMeans [1]{unicn}
ContactEntity . Entity [0..%] ContactEmaillD : string [1] subsets ContactMeans)
ContactT elephoneiMumber : TelephoneMumber [1]{subse l,: .ontactMeans)
| ContactMailingfddress . Address [1){subsets Contacthear

s«Referencess
| | «Referencess
«ObjectTypes «PropertyHolders
NiBM=Core:: NigM=-COore:
Contactinformation ContactMeansPropertyHolder
/ContactMeans [0.."}{union} /ContactMeans [1}{unicn}
ContactEntity : Entity [0..%] ContactEmaillD : string [1}{subsets Contactheans}
ContactEntityDescriptionText | Text [0..7] ContactinstantMessenger : Instantflessenger [1]
ContextinformationDescriptionText : Text [0..7] ContactTelephoneMumber : TelephoneMumber [1]}{subsets (l““lI" ar
ContactResponder : Person [0..%] ContactPagerMNumber : TelephoneMumber [1]'_,“_hl; 2ans
ContactFaxNumber : TelephoneMumber [1}{subsets Con
ContactMobile TelephoneMumber : TelephoneMumber [1)subse l, ContactMeans}
ContactMailingAddress : Address [1]{subsets ContacthMear
ContactRadio : ContactRadio [1}{subsets C L*.:Lr-r’cm*-;j
ContactWebsitelR| : anyURI [1}{subsets Contactieans)

Figure 7-35 Representation of a subset model using «References» realizations

NIEM-UML Beta 1 80

«Namespace»
niem-core-subset
{isConformant,
targetNamespace = "hitp://niem.gov/niem/niem-core/2.0",
version = "1}
«ObjectType» «PropertyHolders
Contactinformation ContactMeansPropertyHolder
ContactMeans [0.."](unicn ContactMeans [1](u
ContactEntity : Entity [0.."] ContactEmaillD : stnng [1] s ContactMea
ContactTelephoneNumber : TelephoneNumber (11 bsets ContactM
ContactMailingAddress : Address [1]{s Contact

I «References»
«Namespace»
niem-core
{isConformant,
targetNamespace = "http://niem.gov/niem/niem-core/2.0",
version = "1}
«ObjectType» «PropertyHolders
Contactinformation ContactMeansPropertyHolder

ContactMeans [0.."}{union
ContactEntity : Entity [0..%]
ContactEntityDescriptionText : Text [0.."]

ContextinformationDescriptionText : Text [0..”

ContactResponder : Person [0.."]

ContactMeans [1](u

ContactEmaillD : stnnq [1] ts ContactMeans
ContactinstantMessenger : InstantMessenger [1]
ContactTelephoneNumber : TelepheneNumber [1] ubsets ContactM
ContactPagerNumber : TelephoneNumber [1}{subse t!
ContactFaxNumber : TelephoneNumber [1}{subsels
ContactMobile TelephoneNumber : TelephoneNumber [1]
ContactMailingAddress : Address [11 Contacti
ContactRadio : ContactRadio [1](s ts C
ContactWebsiteURI : anyURI [1] r ContactMeans)

Figure 7-36 Alternative Representation using «References» realizations between packages

7.6.2 Model Package Descriptions

7.6.2.1 Background

A Model Package Description (MPD) is a compressed archive of files that contains one and only one of the five
classes of NIEM IEM, as well as supporting documentation and other artifacts. An MPD is self-documenting and

provides sufficient normative and non-normative information to allow technical personnel to understand how to use
and/or implement the IEM it contains. [NIEM-MPD 1.1]

An Information Exchange Model (IEM) is one or more NIEM-conforming XML schemas that together specify the
structure, semantics, and relationships of XML objects. These objects are consistent XML representations of
information. Currently, five IEM classes exist in NIEM: (1) numbered release, (2) domain update, (3) core update,
(4) Information Exchange Package Documentation (IEPD), and (5) Enterprise Information Exchange Model
(EIEM).

NIEM-UML Beta 1 81

The primary type of MPD supported by this specification is the IEPD, which is an MPD that contains NIEM-
conforming schemas that define one or more recurring XML data exchanges.

7.6.2.2 Representation

Common

A MPD is represented as a UML component with the «ModelPackageDescription» stereotype applied. The attributes
of the stereotype can be used to set the various properties of the MPD.

Artifacts are modeled as being included in an MPD using a UML usage dependency stereotyped as
«ModelPackageDescriptionFile» from the «ModelPackageDescription» component to the artifact to be included.
The «ModelPackageDescriptionFile» stereotype includes natureCode and purposeCode attributes used to identify
the nature and purpose of the artifact being included [NIEM-MPD 4.2.4 and Appendix G]. In particular, the
inclusion of an XML schema in an MPD is represented by using the «<Namespace» package representing the schema
(see Subclause 7.2.1) as the included artifact.

An MPD may also group artifacts into file sets [NIEM-MPD 4.2.3]. Such a file set is represented in an MPD model
as a UML component with the «<ModelPackageDescriptionFileSet» stereotype applied. The
«ModelPackageDescriptionFileSet» stereotype includes attributes for identifying the nature and purpose of the file
set. A «ModelPackageDescriptionFileSet» component must be the supplier of exactly one usage dependency whose
client is the corresponding «ModelPackageDescription» component. Artifacts are modeled as being included in a
file set be using «ModelPackageDescriptionFile» usage dependencies from the «ModelPackageDescriptionFileSet»
component, in the same way as they are used to include artifacts directly in a «<ModelPackageDescription»
component. Note that one artifact may be included in multiple file sets.

Relationships between MPDs may be representing by using a dependency between the packages with the
«ModelPackageDescription» stereotype applied.

PIM

If a PIM «Namespace» package is included in an MPD model, then the NIEM schema included in the MPD is
considered to be the schema represented by the PSM representation of the «Namespace» package and its content, as
mapped from the PIM. If the package is an «InformationModel» package with a default purpose, then the usage
dependency between the «ModelPackageDescriptionFile» component and the package need not be stereotyped.
Instead, the nature of the artifact is implicitly assumed to be “XSD” and the purpose is given by the default purpose.
However, if the «InformationModel» package is to be used for a purpose other than the default purpose, then an
explicitly stereotyped «ModelPackageDescriptionFile» usage dependency may be used, and the purposeCode
specified for that dependency overrides the default purpose for the package.

If a PIM «InformationModel» package that is modeled as being included in an MPD has a usage dependency on
another «InformationModel» package, then that latter package is also considered to be included in the MPD, even if
there is no direct usage dependency between the component representing the MPD and that package. The value of
the default purpose of the «InformationModel» stereotype is used to determine the purpose for the inclusion of the
package in the MPD, as above.

Further, if the default purpose of the used package is subset and the using package uses any elements of the
reference model (e.g., classifiers used as types or properties used as the suppliers of «References» realizations), then
these uses are considered to instead be substituted with uses of elements from the subset package with the same
name. If such elements do not exist in the subset package, then they are considered to be implicitly created in the
subset package, in the same way as would result from reference element uses within the subset package itself (see
Subclause 7.6.1).

Note that this means that the schema content mapped from a subset package may be contextual, depending on how
the subset package is actually used within an MPD model. Essentially, such a subset model may be considered a
model of the intent to create a subset schema to support a certain schema set within an MPD, rather than a detailed
specification of exactly what that subset must be.

NIEM-UML Beta 1 82

PSM

A PSM «Namespace» package is always included in an MPD model using an explicit
«ModelPackageDescriptionFile» usage dependency, with the natureCode and purposeCode given.

7.6.2.3 Mapping Summary

PIM Representation Mapping

An unstereotyped usage dependency from a «ModelPackageDescription» or
«ModelPackageDescriptionFileSet» component to an «InformationModel» package shall be considered
equivalent to the usage dependency having the «<ModelPackageDescriptionFile» stereotype applied with a
natureCode of “XSD” and a purposeCode corresponding to the value of the defaultPurpose attribute of the
«InformationModel» stereotype.

If an «InformationModel» package included in an MPD has an unstereotyped usage dependency on another
«InformationModel» package in an MPD model, and the later package is not the client of a
«ModelPackageDescriptionFile» usage dependency, then this shall be considered equivalent to explicitly
modeling a «ModelPackageDescriptionFile» usage from the component representing the MPD to the second
«InformationModel» package, with the purpose being given by the value of the defaultPurpose attribute of the
«InformationModel» stereotype, as above. (Note that this rule may then need to be applied recursively to the
second package.)

If an «InformationModel» package has an MPD model has an unstereotyped usage dependency on an
«InformationModel» package with defaultPurpose=subset, then any uses of elements of the reference model
corresponding to the subset package shall be considered to instead be uses of corresponding elements from the
subset package with the same NIEM name. If a corresponding element does not exist in the subset package, one
is created in the same way as specified for the PIM Representation Mapping in Subclause 7.6.1.3.

MPD Model to MPD Artifact Mapping

A component in an MPD model with the stereotype «ModelPackageDescription» applied shall map to an MPD
file with the corresponding properties given by the values of the attributes of the «ModelPackageDescription»
stereotype.

A usage dependency in an MPD model with the stereotype «ModelPackageDescriptionFile» applied, from a
«ModelPackageDescription» component to a «Namespace» package, shall map to the inclusion of the XML
schema mapped from the «Namespace» package in the MPD represented by the «ModelDescriptionPackage»
component, with a File element determined by the values of the attributes of the
«ModelPackageDescriptionFile» stereotype. (If the «Namespace» package is from a PIM, it is first mapped to a
PSM representation before being mapped to an XML schema.)

A usage dependency in an MPD model from a «ModelPackageDescription» component to a
«ModelPackageDescriptionFileSet» component shall map to a FileSet element in the modeled MPD as
determined by the values of the attributes of the «ModelPackageDescriptionFile» stereotype. A usage
dependency with the stereotype «ModelPackageDescriptionFile» applied, from the
«ModelPackageDescriptionFileSet» component to a «<Namespace» package, shall map to the inclusion of the
XML schema mapped from the «Namespace» package as a file in the FileSet, with a corresponding File
element as determined by the values of the attributes of the «ModelPackageDescriptionFile» stereotype.

A dependency in an MPD model with the stereotype «ModelPackageDescriptionRelationship» applied, from
one «ModelPackageDescription» component to another, shall map to a relationship recorded in the MPD
mapped from the first component with a URI referencing the MPD mapped from the second component.

7.6.2.4 Example

Figure 7-37 is an example of the representation of two MPDS that share three files (namespaces) through
«ModelPackageDescriptionFile» usage dependencies.

NIEM-UML Beta 1 83

wModelPackagelescri
MPD1

iptions =

Figure 7-37 Representation of two NIEM MPDs with included namespaces (files)

«ModelPackageDescriptionFiles

L {purposeCaode = extension_schema)

«ModelPackageDescriptionFilex
{purposeCaode = extension_scheamal

«ModelPackageDescriptionFiles
{purposeCode = exchange_schema}

|

«ModelPackageDescriptions = |

MPD2

«MNamespaces
ns1

{isConformant, ~

version =17}

sModelPackageDescriptionFies |

|

sMNamespaces
ns2

{isConformant,
version = "17}

«ModelPackageDescriptionFilex
{purposeCode = exchange_schema}

L.

xMNamespaces
ns3

version = "17}

! =
{isConformant,

Please see Figure A-27 for an additional example.

NIEM-UML Beta 1

«ModelPackageDescriptionFiles
{purposeCode = extension_schema)

84

8 NIEM-UML Profile Reference

8.1 Overview

NIEM-UML leverages three profiles. The NIEM PIM Profile is used for NIEM PIMs. The NIEM PSM Profile is
used for NIEM PSMs and may also be used to mark up a NIEM PIM for direct provisioning of MPD artifacts. The
Model Package Description Profile is used for creating models of MPDs, which may be used in association with
either NIEM PIMs or NIEM PSMs.

As shown in Figure 8-1, the NIEM PIM Profile and the NIEM PSM Profile both import the NIEM Common Profile,
which contains the core stereotypes used to represent NIEM structures in UML. For convenience, an overall NIEM
UML Profile is also included, which imports the NIEM PIM, NIEM PSM and Model Package Description Profiles.
Applying the single NIEM UML Profile is therefore equivalent to individually applying all three of the imported
profiles.

|
eprofies
NIEM_Common_Profile
{uri=http:ffwww.omg. org/spec/NIEM-UML20120501/MIEM_Common_Profile}

-7 3

- ~
- S .
simports =~ ~ «@poﬂ»
-~ - st
- S
- -~
| - |
aprofiles aprofiles
NIEM_PIM_Profile NIEM_PSM_Profile
{uri=http: fwww.omg. org/spec/NIEM-UML20120501/MIEM_PIM_Profile} {uri=http:/iwww. omg. org/spec/NIEM-UML20120501/NIEM_PSM_Profile}
A Er 8
S -
-~ . N P -
= «llj]pm ® imports -
— -~ -
-~ -
| _
aprofies

NIEM_UML_Profile
{uri=http: /iwww. omg. org/s pec/NIEM-UML20120501}

T
|
I«import»
|

| v
aprofiles

Model_Package_Description_Profile
{uri=http: fwaw. omg. org/spec/NIEM-UML20120501/Model_Package_Description_Profile}

Figure 8-1 NIEM UML Profiles

8.2 NIEM Common Profile

8.2.1 Overview

The NIEM Common Profile comprises stereotypes that are used in both the NIEM PIM Profile and the NIEM PSM
Profile. In addition, the UML metamodel subset covered by the NIEM Common Profile also includes the
metaclasses PrimitiveType, Enumeration, EnumerationLiteral, Property and Generalization, even though they are
not specifically extended by any stereotypes in the profile.

NIEM-UML Beta 1 85

«Metaclass» «Metaclass s

Class DataType
/ \ / '\ S—
«stereotypes «sterectypes «stereotypes «stereotypes «stereotypes ValueRestriction
PropertyHolder MEMType Choice Union List fractionDigits : Integer [0..1]

i length : Integer [0..1]

max Exclusive : String [0..1]
maxInclusive : String [0..1]
maxLength : Integer [0..1]
minExclusive : String [0..1]

wsterectypes usterectypes usterectypes usterectypes usterectypes «Metaclass» minlnclusive : String [0..1]
AssociationType ObjectType AugmentationType MetadataType AdapterType Usage minLength : Integer [0..1]
pattern : String [0.."]
//"" totalDigits : Intager [0..1]
«Metaclass» aMetaclassy «Metaclasss # s:]erfeotyop:» v:ter?}ty ?e”
Package Comment Realization s Pl
usterectypes / \ |
MNamespace 1 typen 1 typen wstereotypes wsteraotypes wsteraotypes
targetNamespace : String [1] Decumentation References Restriction AugmentatienApplication MetadataApplication
isConformant : Boolean [1] = true
version : String [1]="1"
l «Metaclass» «Metaclass» «Metaclass» «Metaclass» «Metaclass» - = ﬁ?u%ﬂailn”:i;ss:;:ls
: PrimitiveType Enumeration EnumerationLiteral Property Generalization

Figure 8-2 NIEM Common Profile

8.2.2 <Stereotype> AdapterType
Generalization: NIEM_Common_Profile::NIEMType

Description

An AdapterType is a NIEMType Class that represents a NIEM adapter type. A NIEM adapter type is a NIEM object
type that adapts external components for use within NIEM. External components are not NIEM-conforming (e.g.,
data components from other standards, e.g. GML, ISO, etc.). An adapter type creates a new class of object that
embodies a single concept composed of external components. AdapterType is implemented in XML Schema as a
complex type definition with complex content. Section 3.4 of XML Schema Structures addresses complex type
definitions in XML Schema; Section 7.7 of NIEM NDR v1.3 addresses adapter types in NIEM-conformant XML
Schema.

8.2.3 <Stereotype> Application

Extends
e UML::Usage

Description

An Application stereotype is applied to a Usage dependency between a client Property or Class and a supplier Class.
It corresponds to the NIEM concept of "AppliesTo", which constrains the applicability of the client as being to the
NIEM type represented by the supplier class. The Application Stereotype is abstract, its two concrete stereotypes
being AugmentationApplication and MetadataApplication, representing the use of "AppliesTo" in the context of
augmentation and metadata, respectively.

NIEM-UML Beta 1 86

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

Constraints
e NDR [Rule 7-24]
[OCL2.0]

self.base_Usage.supplier->forAll(s|s.ocllsKindOf(Classifier))

and self.base_Usage.client ->forAll(client|
client.stereotypedBy('MetadataType") or (client.oclisKindOf(Property)
and client.oclAsType(Property).type.stereotypedBy('AugmentationType'))

)
e NDR [Rule 7-25]
[OCL2.0]

self.base_Usage.supplier ->forAll(supplier|
(supplier.oclisKindOf(Class) or supplier.ocllsKindOf(DataType)) and
supplier.getNearestPackage().stereotypedBy('Namespace'))

e NDR [Rule 7-26]
[English] This constraint, at the UML level, is identical to NDR [Rule 7-25].
e NDR [Rule 7-27]

[English] This constraint is decomposed into two specific cases. NDR [Rule 7-49] defines constraints related to
applying Augmentation and NDR [Rule 7-45] defines constraints related to applying Metadata.

e NDR [Rule 7-28]

[English] This constraint is resolved by the combination of other constraints and the PSM-XSD transformations.
e NDR [Rule 7-29]

[English] This constraint is resolved by other constraints in combination with the PSM - XSD transformations.
e NDR [Rule 7-46]

[English] Definitional constraint. Application of <<AppliesTo>> is optional.

8.2.4 <Stereotype> AssociationType
Generalization: NIEM_Common_Profile::NIEMType

Description

AssociationType is a NIEMType class that represents a NIEM association type. A NIEM association type
establishes a relationship between objects, along with the properties of that relationship. A NIEM association is an
instance of an association type. Associations are used when a simple NIEM property is insufficient to model the
relationship clearly and when properties of a UML Association or AssociationClass may not necessarily be
sufficient to reflect the variability of a NIEM association. Consequently, the AssociationType Stereotype is applied
to a UML Class. Since an AssociationClass is also a Class, the AssociationType Stereotype may be applied to a
UML AssociationClass where appropriate. Note that a UML AssociationClass specializing another
AssociationClass must have the same number of ends as the other AssociationClass and must have at least two
ends. This UML constraint prevents the usage of AssociationClass to model abstract NIEM association types that
are intended to be extended by subtypes with additional ends. A UML AssociationClass can specialize an abstract
UML Class. AssociationType is implemented in XML Schema as a complex type definition with complex content.
Section 3.4 of XML Schema Structures addresses complex type definitions in XML Schema; Section 7.4.3 of NIEM
NDR v1.3 addresses association types in NIEM-conformant XML Schema.

Constraints
e NDR [Rule 7-41]

NIEM-UML Beta 1 87

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

[OCL2.0]

(self.base_Class.generalization->size()<=1) and
self.base_Class.generalization.general->forAll(g|g.stereotypedBy('Association'))
and self.base_Class.getTargetDirectedRelationships()
->select(r|r.oclisKindOf(Generalization)).oclAsType(Generalization).specific
->forAll(s|s.stereotypedBy(‘Association'))

e NDR [Rule 7-42]
[OCL2.0]

self.base_Class.profiledBy('NIEM_PSM_Profile") implies
self.base_Class.ownedAttribute
->forAll(aJa.name.endsWith('Reference") implies
(a.aggregation=AggregationKind::none))

e NDR [Rule 9-27]
[OCL2.0]

self.base_Class.profiledBy('NIEM_PSM_Profile") implies
self.base_Class.name.match('.*AssociationType')) --For PIM Profile, the
naming constraint is enforced by PIM/PSM transformations.

8.2.5 <Stereotype> AugmentationApplication

Generalization: NIEM_Common_Profile::Application

Description

The AugmentationApplication stereotype is a specialization of Application that is always between a Property whose
type is an AugmentationType Class and a Class. It represents a constraint on a NEIM augmentation property that
limits the application of the property to specific types. When an augmentation property is the client of an
AugmentationApplication Usage, this serves to constrain the NIEM types to which the augmentation property may
apply. If the client augmentation Property is not in a PropertyHolder, then its Class must be a (direct or indirect)
subclass of the supplier Class of the AugmentationApplication. If the augmentation Property is in a PropertyHolder,
then any Property defined by reference to the augmentation Property must be for a Class that is a subclass of the
supplier Class. An AugmentationApplication Usage is implemented in a NIEM XML schema as an AppliesTo
element in the annotation element of the property declaration represented by the client of the Usage, referencing the
complex type represented by the supplier class of the Usage.

Constraints

e NDR [Rule 7-50]

[English] Implemented as part of PIM/PSM transformations. This constraint is definitional, the absence of an
<<AugmentationApplication>> on an augmentation element will result in applicability of the element to any
Object/Association at runtime.

8.2.6 <Stereotype> AugmentationType
Generalization: NIEM_Common_Profile::NIEMType

Description

AugmentationType is a NIEMType Class that represents a NIEM augmentation type. A NIEM augmentation type is
a complex type that provides a reusable block of data that may be added to object types or association types. An
augmentation of an object type is a block of additional data that is an instance of an augmentation type, added to an
object type to carry additional data beyond that of the original object definition. The applicability of an
augmentation may be restricted using an AugmentationApplication Dependency or an Augments Generalization. A

NIEM-UML Beta 1 88

Class that is the specific Classifier of an Augments Generalization shall be inferred to be an AugmentationType.
AugmentationType is implemented in XML Schema as a complex type definition with complex content. Section 3.4
of XML Schema Structures addresses complex type definitions in XML Schema; Section 7.4.5 of NIEM NDR v1.3
addresses augmentation types in NIEM-conformant XML Schema.

Constraints
e NDR [Rule 7-47]
[OCL2.0]

(self.base_Class.general()->size()<=1) and
self.base_Class.general()->forAll(g|g.stereotypedBy(‘AugmentationType"))
and self.base_Class.getTargetDirectedRelationships()
->forAll(r|r.oclisKindOf(Gneralization) implies
r.oclAsType(Generalization).specific.stereotypedBy(‘AugmentationType'))

o NDR [Rule 7-48]

[English] The constraint is enforced by the transformation from PSM to XSD Schema artifact. A property whose
type is an <<AugmentationType>> is an augmentation element. The property may directly or indirectly use the
UML subsettedProperty mechanism to identify a substitutionGroup, which will be transitively substitutable for the
element structures: Augmentation.

e NDR [Rule 9-28]
[OCL2.0]

self.base_Class.profiledBy('NIEM_PSM_Profile') implies
self.base_Class.name.match('.*AugmentationType")) --For PIM Profile, the
naming constraint is enforced by PIM/PSM transformations.

8.2.7 <Stereotype> Choice

Extends
e UML::Class

Description

A Choice Class groups a set of attributes whose values are mutually exclusive. That is, in any instance of a Choice
Class, at most one of its attributes may be non-empty. Choice represents the use of a choice model group in XML
Schema. Section 3.8 of XML Schema Structures addresses choice model groups in XML Schema. Sections 6.1.8.1
and 6.1.8.2 of NIEM NDR v1.3 address choice model groups in NIEM-conformant XML Schema.

Constraints
e No Generalizations or subtypes
[OCL2.0]

self.base_Class.generalization->isEmpty() and
self.base_Class.getTargetDirectedRelationships()->select(d|d.oclisKindOf(Generalization))->isEmpty()

o ownedAttributes have multiplicity 0..1.
[OCL2.0]

self.base_Class.ownedAttributes->forAll(al(a.lower=0) and
(a.upper=1))

NIEM-UML Beta 1 89

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

8.2.8 <Stereotype> Documentation

Extends
e UML::Comment

Description

A Documentation Comment is the data definition of the Element that owns it. For an Element owning only one
Comment, that Comment will be inferred to be a Documentation Comment. A Documentation Comment owned by
an Element representing a NIEM type or property is implemented as a documentation element of the annotation for
the corresponding type definition or property declaration.

Constraints
e Max One <<Documentation>> per Element

[OCL2.0]

self.base_Comment.annotatedElement->notEmpty() and
self.base_Comment.annotatedElement->forAll(e|e=self.base_Comment.owner)

and
(self.base_Comment.owner.ownedComment->select(c|c.stereotypedBy('Documentation’))->size()=1)

8.2.9 <Stereotype> List

Extends
e UML::DataType

Description

A List is a DataType whose values consist of a finite length (possibly empty) sequence of values of another
DataType, which is the item type of the List. A List DataType must have a single Property with multiplicity 0..*
whose type is the item type. The name of this element is not material. A List DataType is implemented in XML
schema as a list simple type definition. List represents a relationship between two simple type definitions: the first is
a list simple type definition whose item type definition is the second. This relationship is implemented in XML
Schema through the itemType attribute on the xsd:list element of the list simple type definition, the actual value of
which resolves to the second type definition. Section 3.14 of XML Schema Structures addresses list simple type
definitions in XML Schema; Section 7.3 of NIEM NDR v1.3 addresses list simple type definitions in NIEM-
conformant XML Schema.

Constraints
o single ownedAttribute with multiplicity 0..* typed <DataType>>
[OCL2.0]

(self.base_DataType.ownedAttribute->size()=1) and
self.base_DataType.ownedAttribute ->forAll(al(a.lower=0) and

(a.upper=-1))
e no generalizations
[OCL2.0]

self.base_DataType.generalization->isEmpty()

NIEM-UML Beta 1 90

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

8.2.10 <Stereotype> MetadataApplication

Generalization: NIEM_Common_Profile::Application

Description

The MetadataApplication stereotype is a specialization of Application that is always between a MetadataType Class
and another Class. It represents a constraint on a NIEM metadata type that limits the application of the NIEM
metadata type to specific types. If a MetadataType Class is the client of a MetadataApplication Usage, then any
Property with the MetadataType Class as its type must be for a Class that is a (direct or indirect) subclass of the
supplier Class of the MetadataApplication. A MetadataType Class may be the client of multiple
MetadataApplication Usages, in which case a Property for it may be in a Class that is a subclass of a supplier Class
of any of the MetadataApplications. If a MetadataType is not a client of any MetadataApplication, then it applies to
any type. A MetadataApplication Usage is implemented in XML schema as a NIEM AppliesTo element in the
annotation element of the complex type definition represented by the client of the Usage, referencing the complex
type represented by the supplier class of the Usage.

8.2.11 <Stereotype> MetadataType
Generalization: NIEM_Common_Profile::NIEMType

Description

A MetadataType is a NIEMType Class that represents a NIEM metadata type. A NIEM metadata type describes data
about data, that is, information that is not descriptive of objects and their relationships, but is descriptive of the data
itself. Metadata is specified as an instance of a metadata type and may include information such as the security of a
piece of data or the source of the data. The applicability of such metadata may be modeled using
MetadataApplication dependencies to one or more classes representing the applicable types. MetadataType is
implemented in XML Schema as a complex type definition with complex content. Section 3.4 of XML Schema
Structures addresses complex type definitions in XML Schema; Section 7.4.4 of NIEM NDR v1.3 addresses
metadata types in NIEM-conformant XML Schema.

Constraints

¢ NDR [Rule 7-43]

[English] Containing Elements appropriate for a specific class of data about data is a Non-computational
constraint.

e NDR [Rule 7-44]

[OCL2.0]
self.base_Class.general->select(g|g.stereotypedBy('MetadataType"))->isEmpty()
¢ NDR [Rule 9-29]

[OCL2.0]

self.base_Class.profiledBy('NIEM_PSM_Profile') implies
self.base_Class.name.match('.*MetadataType") --For PIM Profile, the
naming constraint is enforced by PIM/PSM transformations.

8.2.12 <Stereotype> NIEMType

Extends
e UML::Class

NIEM-UML Beta 1 91

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

Description

A NIEMType is a Class that represents one of the specific semantic kinds of NIEM complex types (i.e., types that
may have attributive structure). NIEMType is abstract. A NIEMType Class is implemented in XML Schema as a
complex type definition with complex content.

Constraints
¢ NDR [Rule 7-45]
[OCL2.0]

self.base_Class.ownedAttribute ->forAll(a]
a.type.stereotypedBy('MetadataType') implies a.type.clientDependency
->select(d|d.stereotypedBy('MetadataApplication')).target.oclAsType(Class)
->exists(appliedTo|self.base_Class.isConsistentWith(appliedTo)))

e NDR [Rule 7-49]
[OCL2.0]

self.base_Class.ownedAttribute ->forAll(a|

a.type.stereotypedBy(‘AugmentationType') implies a.clientDependency
->union(a.clientDependency->select(d|d.stereotypedBy('References")).target.clientDependency)
->select(d|d.stereotypedBy('AugmentationApplication')).target.oclAsType(Class)
->exists(appliedTo|self.base_Class.isConsistentWith(appliedTo)))

e NDR [Rule 9-32]
[OCL2.0]

self.base_Class.profiledBy('NIEM_PSM_Profile’) implies
self.base_Class.ownedAttribute
->forAll(ala.type.stereotypedBy('AssociationType') implies
a.name.match('.*Association.*)) --For PIM Profile, the naming
constraint is enforced by PIM/PSM transformations. --An association
element corresponds to a UML <Property> whose type is an
<<AssociationType>>.

e NDR [Rule 9-33]
[OCL2.0]

self.base_Class.profiledBy('NIEM_PSM_Profile') implies
self.base_Class.ownedAttribute
->forAll(aja.type.stereotypedBy('AugmentationType') implies
a.name.match('.*Augmentation.*)) --For PIM Profile, the naming
constraint is enforced by PIM/PSM transformations. --An augmentation
element corresponds to a UML <Property> whose type is an
<<AugmentationType>>.

e NDR [Rule 9-34]
[OCL2.0]

self.base_Class.profiledBy('NIEM_PSM_Profile") implies
self.base_Class.ownedAttribute
->forAll(aja.type.stereotypedBy('MetadataType') implies
a.name.match('.*Metadata.*")) --For PIM Profile, the naming constraint

is enforced by PIM/PSM transformations. --A metadata element corresponds
to a UML <Property> whose type is a

<<Metadata>>.

NIEM-UML Beta 1

92

8.2.13 <Stereotype> Namespace

Extends
e UML::Package

Description

A Namespace Package represents a NIEM namespace identified by a target namespace URI. All UML model
elements contained, directly or indirectly within the Package, that represents NIEM types and properties, are
considered to be in this target namespace. A Namespace Package is implemented in XML Schema as an XML
schema document.

Attributes

e isConformant :PrimitiveTypes::Boolean [1] {unique }

Indicates whether the namespace is NIEM-conformant. If the namespace is NIEM-conformant, it is implemented in
XML Schema as the content of the i:Conformantindicator application information on the xsd:schema document
element. Per Rule 7-1 of NIEM NDR v1.3, the content must be "true”. If the namespace is not NIEM-conformant, it
is implemented in XML Schema as the content of the i:Conformantindicator application information on the
xsd:import element. Per Rule 7-61 of NIEM NDR v1.3, the content must be "false".

o targetNamespace :PrimitiveTypes::String [1] {unique }

The target namespace URI for this NIEM namespace. It is implemented in XML Schema as the value of the
targetNamespace attribute on the xsd:schema document element. Per Rules 6-35 and 6-36 of NIEM NDR v1.3, the
value of the targetNamespace attribute must be present and must be an absolute URI.

e version :PrimitiveTypes::String [1] {unique }

The version of the NIEM namespace. It is implemented in XML Schema as the value of the version attribute on the
xsd:schema document element. Per Rules 6-37 and 6-38 of NIEM NDR V1.3, the value of the version attribute must
be present and must not be the empty string. Default is "1".

8.2.14 <Stereotype> ObjectType
Generalization: NIEM_Common_Profile::NIEMType

Description

ObjectType is a NIEMType Class that represents a NIEM object type. A NIEM object type represents some kind of
object: a thing with its own lifespan that has some existence. The object may or may not be a physical object. It may
be a conceptual object. ObjectType is implemented in XML Schema as a complex type definition. Section 3.4 of
XML Schema Structures addresses complex type definitions in XML Schema; Section 7.4.1 of NIEM NDR v1.3
addresses object types in NIEM-conformant XML Schema.

8.2.15 <Stereotype> PropertyHolder

Extends
e UML::Class

Description

PropertyHolder is a Class holding global Properties that are not the subject of any specific NIEM type. A Property
of a NIEM type may then be defined by reference to a Property of a PropertyHolder by using a References
realization with the Property in the PropertyHolder as the supplier. Note that the multiplicity of Properties in a
PropertyHolder is immaterial -- the multiplicities are established by Properties in the corresponding References

NIEM-UML Beta 1 93

http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

client. The target namespace of Properties in a PropertyHolder is the target namespace of the Namespace Package
that contains the PropertyHolder (which may be different than the target namespace of NIEM types that use the
Properties in the PropertyHolder). PropertyHolder does not represent any NIEM concept; it exists to permit the user
to define a NIEM property that is not the subject of any NIEM type. There are significant differences between the
UML representation and XML Schema implementation of a NIEM property. Sections 6.1.6.2 and 6.1.6.3 of NIEM
NDR v1.3, Rule 6-14 and Rule 6-15, require that an attribute or element declaration be a top-level declaration, but
NIEM NDR v1.3 does not require a corresponding attribute use or element particle; however, Section 7.3.44 of
[UML] requires that a Property be the ownedAttribute of a Classifier. Thus in the UML representation, the
declaration and use of a Property are not distinct, and the declaration of a Property requires its use. In the XML
Schema implementation, the declaration and use are distinct, and the declaration does not require a corresponding
use. To resolve this difference, any Property within a PropertyHolder shall represent an attribute or element
declaration without a corresponding attribute use or element particle. PropertyHolders may be used to hold the
properties of a substitution group. Where a PropertyHolder is used to define a substitution group an extension of that
substitution group shall be a subclass of the substitution group PropertyHolder.

8.2.16 <Stereotype> References

Extends
e UML::Realization

Description

The References Stereotype applies to a Realization between Properties, Classes or Packages. It allows for Properties
in one Class to be defined by reference to Properties in another class. A References Realization between two classes
is defined to be equivalent to having References Realizations between matching Properties of the Classes where
matching is determined by identical NIEM names. A References Realization between two packages is defined to be
equivalent to having References Realizations between matching Classes contained in the Packages where matching
is determined by having identical NIEM names. Matching is based on the NIEMName of the elements, either as
derived implicitly or as set explicitly using the ReferenceName stereotype. If a Property is the client of a References
Realization, then it represents a NIEM property defined by reference to the NIEM property declaration represented
by the supplier of the Realization. It is implemented in XSD schema as an attribute use or element particle that
references the attribute or element declaration that implements the supplier of the Realization. Note that the supplier
Property may be in a different Namespace than the client property, in which case the attribute or element declaration
represented by the supplier will be in a different target namespace than the use represented by the client.

Constraints
e MDR [Rule 3-02]
[OCL2.0]

(self.base_Realization.client->size()=1) and (
self.base_Realization.supplier->size()=1) and
self.base_Realization.client->forAll(client|client.oclisKindOf(Classifier))
and
self.base_Realization.supplier->forAll(supplier|supplier.oclisKindOf(Classifier)
and not(supplier.stereotypedBy('PropertyHolder")))) implies ((
self.base_Realization.client.oclAsType(Classifier).attribute
->forAll(clientAttribute|
self.base_Realization.supplier.oclAsType(Classifier).attribute
->forAll(supplierAttribute|
(clientAttribute.name=supplierAttribute.name) implies (
(clientAttribute.lower>=supplierAttribute.lower) and (
(supplierAttribute.upper=-1) or
(clientAttribute.upper<=supplierAttribute.upper)) and (
(clientAttribute.upper=-1) or
(clientAttribute.lower<=clientAttribute.upper)))))) and(
self.base_Realization.supplier.oclAsType(Classifier).attribute

NIEM-UML Beta 1 94

http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

->select(ala.lower>0) ->forAll(supplierAttribute|
self.base_Realization.client.oclAsType(Classifier).attribute->exists(clientAttribute|clientAttribute.name=supplierName)

)))
8.2.17 <Stereotype> Restriction

Extends
e UML::Realization

Description

A Restriction Realization represents a relationship between two type definitions: the first is derived by restriction
from the second. The two types must either both be NIEMType Classes or both be DataTypes. If the two types are
Classes, then the attributes of the client class must be a subset of the attributes of the supplier class and omitted
attributes must have a multiplicity lower bound of zero. if the two classes are DataTypes, then the client type is
considered to have a value space that is a subset of that of the supplier, as may be further specified using a
ValueRestriction stereotype on the client. This relationship is implemented in XML Schema through the base
attribute on the xsd:restriction element of the first type definition, the actual value of which resolves to the second
type definition. If a type is a ValueRestriction the generalization owned by that type is implicitly an XSDRestriction.
Sections 3.4 and 3.14 of XML Schema Structures address the use of restriction in XML Schema; Sections 6.5.2 and
6.5.3 of NIEM NDR v1.3 address the use of restriction in NIEM-conformant XML Schema.

Constraints

o XSDRestrictionComplexTypeComplexContent
[OCL2.0]

self.base_Generalization.general.stereotypedBy('NIEMType") and
_self.pase_GeneraIization.general.cIientDependency->seIect(d|d.stereotypedBy('NIEMSimpIeContent‘))->isEmpty()
Isrgﬁ.l1:?(';1sse_GeneraIization.specificl.cIientDependency->select(d|d.stereotypedBy('NIEMSimpIeContent'))->isEmpty()
o XSDRestrictionComplexTypeSimpleContent

[OCL2.0]

self.base_Generalization.general.stereotypedBy('NIEMType") and
self.base_Generalization.general.clientDependency->select(d|d.stereotypedBy('NIEMSimpleContent'))->notEmpty()
implies self.base_Generalization.specific.stereotypedBy('NIEMType') and
self.base_Generalization.specificl.clientDependency->select(d|d.stereotypedBy('NIEMSimpleContent'))->notEmpty()

o XSDRestrictionSimpleType
[OCL2.0]

self.base_Generalization.general.oclisKindOf(DataType) implies
self.base_Generalization.specific.ocllsKindOf(DataType)

8.2.18 <Stereotype> Union

Extends
e UML::DataType

Description

A Union is a DataType whose value space is the union of one or more other DataTypes, which are the member types
of the Union. The member types are specified using UnionOf Usage dependencies. A Union DataType is
implemented in XML Schema as a union simple type definition. Each UnionOf dependency of which the Union is

NIEM-UML Beta 1 95

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

the client represents a relationship between two type definitions: the first is a union simple type definition whose
member type definition is the second. This relationship is implemented in XML Schema through the memberTypes
attribute on the xsd:union element of the union simple type definition, the actual value of which resolves to the
second type definition. Section 3.14 of XML Schema Structures addresses union simple type definitions in XML
Schema.

Constraints

e no generalizations

[OCL2.0]
self.base_DataType.generalization->isEmpty()
e no owned attributes

[OCL2.0]
self.base_DataType.ownedAttribute->isEmpty()

8.2.19 <Stereotype> UnionOf

Extends
e UML::Usage

Description

The UnionOf stereotype is applied to a Usage dependency, the client of which must be a Union DataType and the
supplier of which must be a DataType that represents a legal union member type. A UnionOf dependency specifies
that the supplier DataType is a member type of the client Union.

Constraints

e client must be union

[OCL2.0]
self.base_Usage.client.stereotypedBy(‘Union’)
e supplier must be data type

[OCL2.0]
self.base_Usage.supplier.oclKindOf(DataType)

8.2.20 <Stereotype> ValueRestriction

Extends
e UML::DataType

Description

The ValueRestriction stereotype applies to a DataType (Enumeration or Primitive type) that is a specialization of a
general DataType. It defines restrictions on which values of the general DataType that are allowed as values of the
specialized DataType. A ValueRestriction DataType is implemented in XML Schema as a simple type definition
that is a restriction of the simple type that implements the general DataType. The attributes of the ValueRestriction
are implemented as restriction facets. ValueRestriction represents a NIEM type which is implemented in XML
Schema as a simple type definition. Section 3.14 of XML Schema Structures addresses simple type definitions in
XML Schema; Sections 6.1.6.1, 7.2.1, 7.3, and 9.12.2 of NIEM NDR v1.3 address simple type definitions in NIEM-

NIEM-UML Beta 1 96

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

conformant XML Schema. The variety of the simple type definition may be union, list, or atomic. As the
ValueRestriction stereotype is a specialization of DataType, it may be applied to Enumeration. In this case, the
ValueRestriction represents a NIEM code type, which is implemented in XML Schema as a simple type definition
that contains multiple xsd:enumeration facets.

Attributes
e fractionDigits :PrimitiveTypes::Integer [0..1] {unique }

A restriction on the value space of a numeric data type that places an upper limit on the arithmetic precision of
decimal values. The value space is restricted to those values that can be represented lexically in decimal notation
using at most fractionDigits to the right of the decimal point. fractionDigits is implemented in XML Schema as the
value of the value attribute on the xsd:fractionDigits element, the child of the xsd:restriction element which is the
immediate child of the xsd:simpleType element..

o length :PrimitiveTypes::Integer [0..1] {unique }

A restriction on the value space of a data type to values with a specific length, where the units of length depends on
the base type being restricted. For String and URI values, the units are characters. For Binary values, the units are
octets. For lists, the length is the number of items in the list. length is implemented in XML Schema as the value of
the value attribute on the xsd:length element, the child of the xsd:restriction element which is the immediate child of
the xsd:simpleType element..

e maxExclusive :PrimitiveTypes::String [0..1] {unique }

The exclusive upper bound of the value space for a data type with ordered values. The value of maxExclusive must
be equal to some value in the value space of the base data type or to the maxExclusive restriction of the base type (if
it has one). maxExclusive is implemented in XML Schema as the value of the value attribute on the
xsd:maxExclusive element, the child of the xsd:restriction element which is the immediate child of the
xsd:simpleType element..

e maxinclusive :PrimitiveTypes::String [0..1] {unique }

The inclusive upper bound of the value space for a data type with ordered values. The value of maxInclusive must
be equal to some value in the value space of the base data type. maxInclusive is implemented in XML Schema as the
value of the value attribute on the xsd:maxInclusive element, the child of the xsd:restriction element which is the
immediate child of the xsd:simpleType element..

e maxLength :PrimitiveTypes::Integer [0..1] {unique }

A restriction on the value space of a data type to values with a specific maximum length, where the units of length
depends on the base type being restricted. For String and URI values, the units are characters. For Binary values, the
units are octets. For lists, the length is the number of items in the list. maxLength is implemented in XML Schema
as the value of the value attribute on the xsd:maxLength element, the child of the xsd:restriction element which is
the immediate child of the xsd:simpleType element.

e minExclusive :PrimitiveTypes::String [0..1] {unique }

The exclusive lower bound of the value space for a data type with ordered values. The value of minExclusive must
be equal to some value in the value space of the base data type or to the minExclusive restriction of the base type (if
it has one). minExclusive is implemented in XML Schema as the value of the value attribute on the
xsd:minExclusive element, the child of the xsd:restriction element which is the immediate child of the
xsd:simpleType element..

e minlinclusive :PrimitiveTypes::String [0..1] {unique }

The inclusive lower bound of the value space for a data type with ordered values. The value of mininclusive must be
equal to some value in the value space of the base data type. minInclusive is implemented in XML Schema as the
value of the value attribute on the xsd:minInclusive element, the child of the xsd:restriction element which is the
immediate child of the xsd:simpleType element..

e minLength :PrimitiveTypes::Integer [0..1] {unique }

NIEM-UML Beta 1 97

A restriction on the value space of a data type to values with a specific minimum length, where the units of length
depends on the base type being restricted. For String and URI values, the units are characters. For Binary values, the
units are octets. For lists, the length is the number of items in the list. minLength is implemented in XML Schema as
the value of the value attribute on the xsd:minLength element, the child of the xsd:restriction element which is the
immediate child of the xsd:simpleType element.

e pattern :PrimitiveTypes::String [*] {unique }

A constraint on the value space of a data type achieved by constraining the value space to those values represented
by literals that match each member of a set of regular expressions. Each pattern must be a valid regular expression.
pattern is implemented in XML Schema as the value of the value attribute on the xsd:pattern element, the child of
the xsd:restriction element which is the immediate child of the xsd:simpleType element.

e totalDigits :PrimitiveTypes::Integer [0..1] {unique }

Restricts the magnitude and arithmetic precision of values in the value space of a numeric data type. The value space
is restricted to those values that can be represented lexically using at most totalDigits digits in decimal notation or at
most totalDigits digits for the coefficient, in scientific notation. totalDigits is implemented in XML Schema as the
value of the value attribute on the xsd:totalDigits element, the child of the xsd:restriction element which is the
immediate child of the xsd:simpleType element.

Constraints

e ValueRestrictionGeneralization
[OCL2.0]

self.base_DataType.generalization.general->size()=1

8.3 NIEM PIM Profile

8.3.1 Overview

The NIEM PIM Profile comprises stereotypes that are used in NIEM PIMs but not NIEM PSMs. Further, the NIEM
PIM Profile imports the NIEM Common Profile and, therefore, includes all the stereotypes and metaclasses covered
by that profile. In addition, the UML metamodel subset covered by the NIEM PIM Profile also includes the
metaclasses Association and AssociationClass, even though they are not specifically extended by any stereotypes in
the profile.

«Metaclass» s«Metaclass» sMetaclass» ssterectypes
Proparty Generalization Elarmrent NIEM_UML_Profile::NIEM_Common_Profile::
/ \ Namespace
«stereotypes «steraotypes «stereotypes astereotypes sstereotypes
RoleOf RolePlayedBy Augments ReferenceMame InformationModel
NIEMName : String [1] defaultPurpose | DefaultPurposeCode [0..1]
- senumerations
| | DefaultPurposeCode
| | subsat
«Metaclass» «Metaclass» " constraint
| . . |— — — _]Additional metaclasses exchal
Association AssociationClass included in metamodal extensr:g:
I I subset without sterectype. incremental
| | reference
— - - replacement

Figure 8-3 NIEM PIM Profile

NIEM-UML Beta 1 98

8.3.2 <Stereotype> Augments

Extends

e UML::Generalization

Description

An Augments Generalization specifies that the special Class is an augmentation type that is restricted to apply to
instances of the general Class.

8.3.3 <Enumeration> DefaultPurposeCode

Description

The possible purposes for an information model. This enumeration provides the allowed values for the
defaultPurpose attribute of the InformationModel stereotype. The values correspond to the schema purpose codes for
an MPD artifact.

Enumeration Literals

e constraint

e exchange

e extension

e incremental

e reference

o replacement

e subset

8.3.4 <Stereotype> InformationModel

Generalization: NIEM_Common_Profile::Namespace

Extends
e UML::Package

Description

The contents of an InformationModel Package provide a platform-independent perspective on the structure of
information to be exchanged in NIEM messages. Such a model is always taken to represent a NIEM namespace, but
it may also be given a default purpose as modeled, independent of the implementation of that namespace. This
allows a modeler to identify the intended purposes (e.g., reference, subset, exchange, etc.) of various information
models within a set, without having to create a complete MPD model for the set.

Attributes
e defaultPurpose : NIEM_PIM_Profile :: DefaultPurposeCode [0..1] {unique }

The default purpose for which an information model is intended. If an InformationModel Package is modeled as
being included as an artifact in an MPD, then, unless otherwise specified, the purpose of the artifact is by default
taken to be the schema purpose code corresponding to the value of the defaultPurpose attribute.

NIEM-UML Beta 1 99

8.3.5 <Stereotype> ReferenceName

Extends
e UML::Element

Description

The ReferenceName stereotype is used on an Element that has a name that does not conform to the naming
conventions required by the NIEM NDR or is otherwise not the desired NIEM name. The NIEMName attribute
must provide a name for the Element that conforms to the relevant NDR naming rules for the specific kind of
Element to which the stereotype is applied.

Attributes
o NIEMName :PrimitiveTypes::String [1] {unique }

A NIEM NDR-conformant name to be applied to an Element. The NIEMName will override any name generated
from the UML name..

8.3.6 <Stereotype> RoleOf

Extends
e UML::Property

Description

The RoleOf stereotype is applied to a Property of a Class representing a NIEM role type, whose type identifies the
base type of that role type. A RoleOf Property must be a reference (i.e., have aggregation=none). A NIEM role type
is a type that represents a particular function, purpose, usage, or role of an object.

Constraints

e NDR [Rule 7-40]

[English] This constraint is implemented by the PIM/PSM transformation. ldentifying a <Property> as a
<<RoleOf>> corresponds to the NIEM naming convention used to identify the roleOf...reference and furthermore
establishes the owning <Classifier> as a NIEM Role.

e NDR [Rule 9-35]

[English] This constraint is enforced by the PIM/PSM transformation. The Transformation ensures that the
"RoleOf" property term becomes part of the target PSM property name.

8.3.7 <Stereotype> RolePlayedBy

Extends

e UML::Generalization

Description

RolePlayedBy Generalization specifies that the special class is to be considered the type of a role that is played by
instances of the general class. In the PSM this will map to a property with the "RoleOf" prefix.

NIEM-UML Beta 1 100

8.4 NIEM PSM Profile

8.4.1 Overview

The NIEM PSM Profile comprises stereotypes that are used in NIEM PSMs. These stereotypes need not be used

with a NIEM PIM, but they may be in order to provide additional platform-specific markup. Further, the NIEM PIM
Profile imports the NIEM Common Profile and, therefore, includes all the stereotypes and metaclasses covered by

that profile.
«Metaclass»
Property
- ..
/"i;
/// .
f"’(H“"'*—u.
ssterectypes sstereotypes T u«sterectypen
XSDProperty XSDAnyProperty SequencelD
kind : XSDPropertyKindCode [1] = element processContents | XSOProcessContentsCode [1] = "strict”
nillable : Boolean [0..1] = false valueNamespace : String [1] = "#any”
ficed : String [0..1]
wstereotypes aMetaclasss «Metaclasss
MIEM_UML_Profile::NIEM_Comman_Profile:: Realization DataType
References
wstereotypes wstersotypes wstereotypes
XSDDeclaration XSDSimpleContent XSDRepresentationRestriction
whiteSpace : XSDWhiteSpaceCode [0..1]
wenumeration: «enumerations» «enumerations
X5DPropertyKindCode XS5DProcessContentsCode XSDWhiteSpaceCode
element strict replace
attribute lax collapse
skip preserve

Figure 8-4 NIEM PSM Profile
8.4.2 <Stereotype> SequencelD

Extends
e UML::Property

Description

An Sequenceld Property is implemented in XML schema as a use of the structures:sequenceld property. The name

of the property must be "sequenceld”, the type must be integer and the multiplicity must be 1..1.

Constraints
e XSDStructureld
[OCL2.0]

self.base_Property.name = "sequenceld" and
self.base_Property.type.name = "integer" and
self.base_Property.type.oclisKindOf(PrimitiveType) and
self.base_Property.lower = 1 and self.base_Property.upper =1

NIEM-UML Beta 1

101

8.4.3 <Stereotype> XSDAnyProperty

Extends
e UML::Property

Description

XSDAnNyProperty stereotype represents a property that is unrestricted with respect to the properties type, which is
implemented in XML Schema as the xsd:any particle.

Attributes

e processContents : NIEM_PSM_Profile :: XSDProcessContentsCode [1] {unique }

Determines how or if the value of a NIEM property should be processed; values are: "lax", "skip", and "strict".
o valueNamespace :PrimitiveTypes::String [1] {unique }

The namespace in which values of this property must be defined. Implemented in XML Schema as the value of the
namespace attribute on the xsd:any element.

Constraints
o XSDAnyPropertyType
[OCL2.0]

self.base_Property.type.oclisUndefined() and
not(self.base_Property.isDerivedUnion) and
self.base_Property.subsettedProperty->isEmpty()

8.4.4 <Stereotype> XSDDeclaration

Generalization: NIEM_Common_Profile::References

Description

The XSDDeclaration stereotype is a specialization of the common References stereotype. However, it is constrained
such that its client must be an XSDProperty Property and its supplier must be an XSDProperty Property or a
Namepsace Package. By default, the namespace of the global XSD€pproperty declaration referenced by
XSDProperty is the namespace of its class. The XSDDeclaration stereotype allows the modeler to specify the
namespace a XSDProperty will reference based on the namespace of another XSDProperty or the target namespace
of a Namespace Package. Specifically, the client of the XSDDeclaration Realization shall reference the namespace
indicated by the supplier of the XSDDeclaration Realization, the client of the maps to one of the following: an
attribute use schema component or a particle component whose term property is an element declaration schema
component. In the first case, the supplier maps to the attribute declaration schema component for the attribute use
component. In the second case, the supplier maps to the element declaration schema component for the particle
schema component.

8.4.5 <Enumeration> XSDProcessContentsCode

Description
XSDProcessContentsCode supports the processContents attribute of the XSDAnyProperty stereotype.

Enumeration Literals

e Jax

NIEM-UML Beta 1 102

e skip

e strict
8.4.6 <Stereotype> XSDProperty

Extends
e UML::Property

Description

An XSDProperty Property represents a NIEM property, which is implemented in XML Schema as either an attribute
declaration and use or an element declaration and particle. If an XSDProperty Property is the client of a References
Realization, then the supplier of the Realization defines the declaration of the NIEM property. Otherwise, the
declaration of the NIEM property is defined implicitly to be the top-level attribute or element definition of the same
name within the target namespace of the Namespace Package that contains the XSDProperty Property. All NIEM
properties represented by XSDProperty Properties with the same name within the same package that are not clients
of References Realizations share the same implicit attribute or element declaration.

Attributes

o fixed :PrimitiveTypes::String [0..1] {unique }

If present, implemented as the value of the fixed attribute of the xsd:attribute or xsd:element.
e kind : NIEM_PSM Profile :: XSDPropertyKindCode [1] {unique }

Indicates whether the NIEM property is implemented in XML Schema as an attribute declaration and attribute use or
element declaration and element particle: if "attribute™, the NIEM property is implemented in XML Schema as an
attribute declaration and attribute use; if "element"”, the NIEM property is implemented as an element declaration
and element particle.

e nillable :PrimitiveTypes::Boolean [0..1] {unique }

Implemented in XML Schema as the value of the nillable attribute on the xsd:element element. Note that an
XSDProperty that represents an XML attribute may not have a nillable value.

Constraints
e XSDPropertyAttributeKind

[OCL2.0]

((self.kind=XSDPropertyKindCode::element) implies(
(self.base_Property.upper=1) and (self.base_Property.lower=1) and not
(self.base_Property.isDerivedUnion) and
self.base_Property.subsettedProperty->isEmpty())) and(
not(self.base_Property.type.ocllsUndefined()) implies
self.base_Property.type.oclisKindOf(DataType))

e XSDPropertyElementKind
[OCL2.0]

(((self.kind=XSDPropertyKindCode::element) and
not(self.base_Property.type.ocllsUndefined())) implies
self.base_Property.type.stereotypedBy('NIEMType')) and ((
(self.kind=XSDPropertyKindCode::element) and
self.base_Property.type.oclisUndefined()) implies
self.base_Property.isDerivedUnion)

o XSDPropertyOwner

NIEM-UML Beta 1 103

[OCL2.0]

self.base_Property.owner.ocllsKindOf(DataType) or
self.base_Property.owner.stereotypedBy(NIEMType)

8.4.7 <Enumeration> XSDPropertyKindCode

Description

XSDPropertyKindCode supports the kind attribute of XSDProperty by providing values to specify if an XSD
property is represented as an xsd:element or xsd:attribute.

Enumeration Literals

e attribute

e element
8.4.8 <Stereotype> XSDRepresentationRestriction

Extends
e UML::DataType

Description

XSDRepresentationRestriction specifies a restriction on the representation in an XML schema of the values of a
base DataType.

Attributes

e whiteSpace : NIEM_PSM Profile :: XSDWhiteSpaceCode [0..1] {unique }

whiteSpace is a restriction on the value space of the DataType. It is implemented in XML Schema as the value of
the value attribute on the xsd:whiteSpace element, the child of the xsd:restriction element which is the immediate
child of the xsd:simpleType element.

Constraints
e must have one generalization

[OCL2.0]

self.base_DataType.generalization->notEmpty()
8.4.9 <Stereotype> XSDSimpleContent

Extends
e UML::Realization

Description

XSDSimpleContent represents a relationship between two type definitions: the first is a complex type definition
with simple content whose content type is the second. This relationship is implemented in XML Schema through
base attribute on the xsd:extension or xsd:restriction element of the first type definition, the actual value of which
resolves to the second type definition. Section 3.4 of XML Schema Structures addresses simple content types in
XML Schema; Sections 6.5.1, 6.5.2, and 7.4 of NIEM NDR v1.3 address simple content types in NIEM-conformant
XML Schema.

NIEM-UML Beta 1 104

Constraints

e Client must be a <<NIEMType>>

[OCL2.0]
self.base_Realization.client->forAll(c|c.stereotypedBy('NIEMType")
e supplier must be a <DataType>

[OCL2.0]
self.base_Realization.supplier->forAll(s|s.oclisKindOf(DataType))

8.4.10 <Enumeration> XSDWhiteSpaceCode

Description

Enumeration XSDWhiteSpaceCode supports the whiteSpace attribute of the XSDWhiteSpaceCode attribute as per
the XSD definitions.

Enumeration Literals

o collapse
e preserve
o replace

8.5 Model Package Description Profile

8.5.1 Overview
The Model Package Description Profile comprises stereotypes that are used to model NIEM MPDs.

NIEM-UML Beta 1 105

«Metaclass»
Component

N

wstereotypes
ModelPackageDescription

wstereotypes

ModelPackageDescriptionFileSet

mpdVersionlD : String [1]
mpdBaseURI : String [1]
mpdClassCode : ModelPackageDescriptionClass Code [1]
descriptionText : String [0..1]
SecurityMarkingText : String [1]
CreationDate : String [1]
LastRevsionDate : String [0..1]
MextRevisionDate : String [0..1]
StatusText : String [0..1]
KeywordText : String [1..7]
DomainText : String [1..°]
PurposeText : String [0..%]
ExchangePatternText : String [0..7]
ExchangePartnerdame : String [0..7]
ASName : String [1]
ASAddressText : String [0..1]

externallURI : String [0..1]
natureCode : NatureCode [1]

descriptionText : String [0..1]

purposeCode | PurposeCode [1]

POCType

POCName : String [1]
POCEmail : String [1.."]

POCTelephone : String [1..%]

«enumaerations
PurposeCode

axtension_schema_set
reference_schema_set
subset_schema_sat
file

business_rules

catalog

documentation
administrative
andorsement
memaorandum

report
conformance_report
quality_assurance_report
test_report
technical_reference
non-normative_reference
normative_reference
metadata_extended
sample_instance
schema
constraint_schema
exchange_schema
axtension_schema
incremental_schema
reference_schema

replacement_schema
subset_schema

ASWebSiteURL : String [0..1]
POC : POCType [1..7]

tool_speciic_file
wantlist
file_set
«Metaclass» «Metaclass» scﬁ::na sat
Usage Dependency xsd constraint_schema_set
xsh axchange_schema_set
file_set
«enumeration» «wenumeration s
asteraotypes wstaraotypes shipCode alPack ClassCoda
ModelPackageDescriptionFile ModelPackageDescriptionRelationship hed
externalUR] : String [0..1] descriptionText : String [0..1] cmm = - ma'a“
relativePathName : String [1] relationshipCode : RelationshipCode [1] e core_update
natureCode : NatureCode [1] spmHEas releasa
purposeCode : PurposeCode [1] ’
descriptionText : String [0..1] Em““m':di domsin_pdats
deprecates
adapts

Figure 8-5 Model Package Description Profile
8.5.2 <Stereotype> ModelPackageDescription

Extends
e UML::Component

Description

A ModelPackageDescription Component represents a NIEM Model Package Description (MPD). Specifically, it
represents the information in an MPD catalog. Reference NIEM MPD Specification v1.0
(http://reference.niem.gov/niem/specification/model-package-description/1.0/)

An MPD is a logical set of electronic files aggregated and organized to fulfill a specific purpose in NIEM. Directory
organization and packaging of an MPD should be designed around major themes in NIEM: reuse, sharing,
interoperability, and efficiency. The inclusion of artifacts in an MPD is modeled using a Usage dependency from the
Component representing the MPD to the model element representing the artifact (most commonly a Namespace
Package).

Attributes
e ASAddressText :PrimitiveTypes::String [0..1] {unique ,composite }

NIEM-UML Beta 1 106

An address or description for the location of the authoritative source for the MPD. Implemented as the value of the
ASAddressText element in the catalog instance.

e ASName :PrimitiveTypes::String [1] {unique ,composite }

A name for the authoritative source for the MPD; can be author, creator, sponsor, etc. (person, organization, or
entity). Implemented as the value of the ASName element in the catalog instance.

o ASWebSiteURL :PrimitiveTypes::String [0..1] {unique ,composite }

A URL for the Web site of the authoritative source for the MPD. Implemented as the value of the ASWebSiteURL
element in the catalog instance.

e CreationDate :PrimitiveTypes::String [1] {unique ,composite }

Date this MPD was published or created. Implemented as the value of the CreationDate element in the catalog
instance.

o DomainText :PrimitiveTypes::String [1..*] {unique ,composite }

A NIEM Domain applicable to, associated with, or that uses the MPD. Implemented as the value of the DomainText
element in the catalog instance.

e ExchangePartnerName :PrimitiveTypes::String [*] {unique ,composite }

Name of an agency, organization, or entity that uses the MPD (in particular to share or exchange data). Implemented
as the value of the ExchangePartnerName element in the catalog instance.

o ExchangePatternText :PrimitiveTypes::String [*] {unique ,composite }

A description of a transactional, design, or exchange pattern the MPD uses (generally, applicable to IEPDs only).
Implemented as the value of the ExchangePatternText element in the catalog instance.

o KeywordText :PrimitiveTypes::String [1..*] {unique ,composite }

A keyword associated with the MPD; a common alias, term, or phrase that would help to facilitate search and
discovery of this MPD. Implemented as the value of the KeywordText element in the catalog instance.

e LastRevsionDate :PrimitiveTypes::String [0..1] {unique }
Date the MPD was last revised. Implemented as the value of the LastRevisionDate element in the catalog instance.
e NextRevisionDate :PrimitiveTypes::String [0..1] {unique }

An estimate of the projected date the MPD is expected to be revised again (if known). Implemented as the value of
the NextRevisionDate element in the catalog instance.

e PurposeText :PrimitiveTypes::String [*] {unique ,composite }

A description for the purpose, function, intended use of, or reason for the existence of the MPD. Implemented as the
value of the PurposeText element in the catalog instance.

e SecurityMarkingText :PrimitiveTypes::String [1] {unique ,composite }

A label that defines how this MPD must be handled or can be distributed to protect the information it contains; the
security marking for the MPD. Implemented as the value of the SecurityMarkingText element in the catalog
instance. Default is "unclassified".

e StatusText :PrimitiveTypes::String [0..1] {unique ,composite }

Description of the current state of development or usage of the MPD; may also project future plans for the MPD.
Implemented as the value of the StatusText element in the catalog instance.

e descriptionText :PrimitiveTypes::String [0..1] {unique ,composite }

A description of the MPD. A statement that provides an explanation or additional detail. Implemented as the value
of the descriptionText attribute of the Catalog element in the catalog instance.

NIEM-UML Beta 1 107

e mpdBaseURI :PrimitiveTypes::String [1] {unique ,composite }

The left hand substring of an MPD URI that does not include its mpdVersionID. The concatenation of mpdBaseURI
and mpdVersionID becomes the value of the mpdURI attribute of the Catalog element in the catalog instance.

e mpdClassCode : Model Package Description Profile :: ModelPackageDescriptionClassCode [1] {unique
,composite }

The classification code of the MPD. Implemented as the value of the mpdClassCode attribute of the Catalog element
in the catalog instance. This code designates the classification or kind of the MPD.

o mpdVersionID :PrimitiveTypes::String [1] {unique ,composite }

Many published MPDs will be periodically revised and updated; therefore, versioning is required to clearly indicate
that changes have occurred. A version number is actually part of the unique identification for an MPD (to be
discussed in a subsequent section). All NIEM version humbers adhere to the regular expression: [0-9]+(\.[0-
9]+)*((alphalbeta|rc|rev)[0-9]+)? Where: "alpha™ indicates early development "beta™ indicates late development;
but changing or incomplete "rc" indicates release candidate; complete but not approved as operational "rev"
indicates very minor revision that does not impact schema validation

Associations
e POC : Model Package Description_Profile :: POCType [1..*] {unique ,composite }

A point of contact (POC) for the authoritative source for the MPD; metadata used to contact the authoritative source.
Implemented as a POCType with values for name, email, and telephone in the catalog instance.

Constraints
e MPD [Rule 3-06]
[OCL2.0]

(self.base_Component.profiledBy('NIEM_PSM_Profile") and
(self.mpdClassCode=ModelPackageDescriptionClassCode::iepd)) implies
self.base_Component.elementimport ->exists(elementimport|
elementimport.stereotypedBy('ModelPackageDescriptionFile’) and (
elementimport.getStereotypeApplication('ModelPackageDescriptionFile’).purposeURI=
‘http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#exchange-schema'’
) and elementimport.importElement.oclAsType(Package).packagedElement
->exists(e|e.stereotypedBy(‘PropertyHolder') and
e.oclAsType(Class).ownedAttribute->notEmpty()))

e MPD [Rule 3-09]
[OCL2.0]

(self.base_Component.profiledBy('NIEM_PSM_Profile") and (
(self.mpdClassCode=ModelPackageDescriptionClassCode::iepd) or
(self.mpdClassCode=ModelPackageDescriptionClassCode::eiem))) implies

self.base_Component.elementimport
>select(elementimport|elementimport.stereotypedBy(‘ModelPackageDescriptionFile")).getStereotypeApplication('Mod
elPackageDescriptionFile").purposeURI

->exists(purposeURI|
(purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#tsubset-schema’)

or

(purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purposet#reference-schema’)

e MPD [Rule 3-10]
[English] This constraint is realized by PSM-MPD transformations.
e MPD [Rule 4-01]

NIEM-UML Beta 1 108

[English] Constraint is resolved via PSM-MPD transformations which produce the catalog as specified by the
MPD.

e MPD [Rule 4-02]
[OCL2.0]

not(self.mpdVersionID.ocllsUndefined()) and
(self.mpdVersionlD<>") -- This constraint also satisfied
by tag mpdVersionID, which is required to have a value.

e MPD [Rule 4-03.1]

[English] Satisfaction of this constraint requires comparative analysis between versions; can not be expressed
easily in OCL.

e MPD [Rule 4-03]

[OCL2.0]

self.mpdVersionID.match('[0-9]+(\\.[0-9]+)*((alpha]beta|rc|rev)[0-9]+)?")

e MPD [Rule 4-04]

[OCL2.0]

self. mpdBaseURI.repr().startsWith('http:/")

e MPD [Rule 4-06]

[English] Constraints for catalog construction are resolved in PSM-MPD transformation.
e MPD [Rule 4-07]

[English] Constraints for catalog construction are resolved in PSM-MPD transformations.
e MPD [Rule 4-08]

[English] All catalog constraints are resolved in PSM-MPD transformation.

e MPD [Rule 4-09]

[English] Explicit URI references are not modelled for well known artifacts such as schemas. Serialization of MPD
artifacts such as schemas are via PSM-MPD transformations which construct URI references according to this MPD

rule.

e MPD [Rule 4-10]

[English] Constraints on artifact URIs are resolved during PSM-MPD transformations.
e MPD [Rule 4-11]

[English] Constraints on changelog are resolved during PSM-MPD transformations.

e MPD [Rule 4-12]

[English] Constraints on changelogs are resolved by PSM-MPD transformations.

e MPD [Rule 4-13.1]

[English] Constraints on changelogs are resolved by PSM-MPD transformations.

e MPD [Rule 4-13]

[English] Constraints on changelogs are resolved during PSM-MPD transformation.

e MPD [Rule 4-14]

[English] Constraints on master document are resolved during PSM-MPD transformation.

e MPD [Rule 4-15]

NIEM-UML Beta 1

109

[English] Constraints on master document are resolved by PSM-MPD transformations.
e MPD [Rule 6-1]

[English] Constraints on packaging are resolved during PSM-MPD transformation.

e MPD [Rule 6-2]

[English] This constraint is resolved by a combination of applying all specified NDR-based constraints and
transformations to target artifacts.

e MPD [Rule 6-3]

[English] Packaging constraints are resolved by PSM-MPD transformations.
e MPD [Rule 6-3a]

[English] Packaging constraints are resolved by PSM-MPD transformations.
e MPD [Rule 6-3b]

[English] Packaging constraints are resolved by PSM-MPD transformations.
e MPD [Rule 6-3c]

[English] Packaging constraints are resolved by PSM-MPD transformations.
e MPD [Rule 6-3d]

[English] Packaging constraints are resolved by transformations.

e MPD [Rule 6-4]

[English] Packaging constraints are resolved by PSM-MPD transformations.
e MPD [Rule 6-5]

[English] Constraints on URIs are partially satisfied by specific URI Constraints expressed elsewhere in the NDR
and MPD. For URI references embedded elsewhere in the model, it would be difficult to express the constraint in
OCL. This constraint must be manually resolved by the modeler.

e MPD [Rule 6-6]
[English] This constraint is resolved by PSM-MPD transformations.
e MPD [Rule 6-7]

[English] An EIEM is an MPD with a packageCode of EIEM. An EIEM is typically bundled as a reusable model
library which can be referenced from IEPDs. This relationship between EIEM and IEPD is used by PSM-MPD
transformations to construct the catalog entries in resolution of this constraint.

e MPD [Rule 6-8]
[English] The schemaLocation constraints are resolved during PSM-MPD transformation.
e MPD [Rule 6-9]

[English] Packaging constraints are resolved by PSM-MPD transformations.
8.5.3 <Enumeration> ModelPackageDescriptionClassCode

Description

A specified classification (type or kind) of the MPD. Implemented as the value of the mpdClassCode attribute of the
Catalog element in the catalog instance. One and only one classification is allowed for any given MPD. [Note these
NIEM-UML enumeration literals differ from the NIEM MPD Specification v1.0 in that they use underscore ("_")

NIEM-UML Beta 1 110

instead of dash ("-"). This is due to issues with dashes in some UML tools.] Reference Section 4.2.5 and Appendix
B of NIEM MPD Specification v1.0 (http://reference.niem.gov/niem/specification/model-package-description/1.0/).

Enumeration Literals

e core_update When necessary, the NIEM PMO can publish a core update. This is essentially identical to a
domain update in terms of structure and use, with two important exceptions. First, a core update records changes that
apply to a particular NIEM core version or another core update. This also means it is applicable to all NIEM releases
using that same core version. Second, a core update is never published to replace a NIEM core. It is intended to add
new schemas, new data components, new code values, etc. to a core without waiting for the next major release. In
some cases, minor modifications to existing data components are possible.

e domain_update A domain update is an MPD containing reference schemas that represent changes to NIEM
domains. The [NIEM-HLVA] defines a domain update as both a process and a NIEM product. Through use and
analysis of NIEM releases and published content, domain users will identify issues and new data requirements for
the domain and sometimes Core. NIEM domains use these issues as the basis for incremental improvements,
extensions, and proposed changes to future NIEM releases. Both the process and product of the process are referred
to as domain update.

e eiem An Enterprise Information Exchange Model (EIEM) is an MPD that incorporates BIECs that meet
enterprise business needs for exchanging data using NIEM [NIEM-BIEC]. An EIEM is an adaptation of NIEM
schemas, tailored and constrained for and by an enterprise. An EIEM will contain the following schemas that are
commonly used or expected to be used by the authoring enterprise: one standard NIEM schema subset and one or
more NIEM extension schemas that extend existing NIEM data components or establish new data components.

e iepd NIEM Information Exchange Package Documentation (IEPD) is an MPD that defines a recurring XML
data exchange. An NIEM IEPD is a set of valid XML schemas that may include portions of NIEM Core schemas,
portions of NIEM Domain schemas, enterprise-specific or IEPD-specific extension schemas, and at least one
exchange schema that defines a document element (as defined in [W3-XML-InfoSet]). The schemas contained in an
IEPD work together to define a class of XML instances that consistently encapsulate data for information
exchanges. Each XML instance in this class validates against the set of XML schemas contained within the IEPD.

o release A NIEM release is an MPD containing a full set of harmonized reference schemas that coherently
define all content within a single version of NIEM. NIEM releases include major, minor, and micro releases (as
defined in the NIEM High Level Version Architecture (HLVA)).

8.5.4 <Stereotype> ModelPackageDescriptionFile

Extends
e UML::Usage

Description

The ModelPackageDescriptionFile stereotype applies to a Usage dependency that represents a relationship between
an MPD or a file set and an artifact (generally a namespace) to be included in the MPD. Reference Sections 4.2.3
and 4.2.4 of NIEM MPD Specification v1.0 (http://reference.niem.gov/niem/specification/model-package-
description/1.0/).

Attributes
e descriptionText :PrimitiveTypes::String [0..1] {unique }

A description of the file. Implemented as the value of the descriptionText attribute of the File element in the catalog
instance.

NIEM-UML Beta 1 111

o externalURI :PrimitiveTypes::String [0..1] {unique }

An external URI for the file; indicates a same-as relationship to a copy of the file. Implemented as the value of the
externalURI attribute of the File element in the catalog instance.

e natureCode : Model Package Description Profile :: NatureCode [1] {unique }

The nature (type) of the file. Implemented as the value of the natureURI attribute of the File element in the catalog
instance.

e purposeCode : Model Package Description_Profile :: PurposeCode [1] {unique }

The purpose for or function of the file. Implemented as the value of the purposeURI attribute of the File element in
the catalog instance.

o relativePathName :PrimitiveTypes::String [1] {unique }

The relative path name to the file within the MPD directory structure. Implemented as the value of the
relativePathName attribute of the File element in the catalog instance.

Constraints
e MPD [Rule 3-01]
[OCL2.0]

(self.base_Elementimport.profiledBy('NIEM_PSM_Profile") and (
self.purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#subset-schema’)
) implies
self.base_Elementimport.importedElement.oclAsType(Package).packagedElement
->forEach(subsetElement]|
subsetElement.clientDependency->exists(d|d.stereotypedBy('References'))

and
subsetElement.clientDependency->select(d|d.stereotypedBy('References')).supplier
->forEach(referenceElement|

(subsetElement.name=referenceElement.name) and
(subsetElement.metaClass()=referenceElement.metaClass()) and(
subsetElement.oclisKindOf(Namespace) implies
subsetElement.oclAstype(Namespace).ownedMember

->forEach(subsetMember|
referenceElement.oclAstype(Namespace).ownedMember
->exists(referenceMember|

(subsetMember.name=referenceMember.name) and
(subsetMember.metaClass()=referenceMember.metaClass()))))))

e MPD [Rule 3-03]

[English] Constraint satisfied by other documentedComponent rules which exclude subset schemas.
e MPD [Rule 3-04]

[OCL2.0]
self.purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#subset-schema’
implies

self.base_Elementimport.importedElement.oclAsType(Package).packagedElement

->exists(element| element.clientDependency
->select(d|d.stereotypedBy('References')).supplier.getNearestPackage()

->select(r|r.stereotypedBy('Namespace')).getStereotypeApplication('Namespace').targetNamespace=
element.owner.getStereotypeApplication('Namespace').targetNamespace))

e MPD [Rule 3-05.1]
[English] Constraint on xsd:import is realized by the PSM-XSD transformations.
e MPD [Rule 3-05]

NIEM-UML Beta 1 112

[English] UML well-formedness rules and semantics realize the constraint for referential integrity.
e MPD [Rule 3-07]

[English] Non-computable constraint.

e MPD [Rule 3-08]

[English] Constraint schemas are not modeled with the NIEM Profile. This constraint is not applied.

e NDR [Rule 5-1]

[English] This constraint is realized by PSM-XSD transformations.
e NDR [Rule 5-2]

[English] This constraint is realized by PSM-XSD transformations.
e NDR [Rule 5-3]

[English] This constraint is realized by PSM-XSD transformations.
e NDR [Rule 5-4]

[English] Non-computable constraint.

e NDR [Rule 5-5]

[English] Non-computable constraint.

e NDR [Rule 6-01]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-02]

[English] This constraint realized by PSM-XSD transformations.

e NDR [Rule 6-03]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-04]

[English] Constrained realized by PSM-XSD transformations.

e NDR [Rule 6-05]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-06]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-07]

[English] This constraint is realized by not defining an xsd:anyType as part of the type system.
e NDR [Rule 6-08]

[English] Constraint is realized by PSM-XSD transformations.

e NDR [Rule 6-09]

[English] Constraint is realized by PSM-XSD transformations.

e NDR [Rule 6-12]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-13]

NIEM-UML Beta 1

113

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-14]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-15]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-16]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-17]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-19]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-20]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-21]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-22]
[English] Definitional.
¢ NDR [Rule 6-23]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-24]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-25]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-26]

[English] Constraint realized by PSM-XSD transformations.

« NDR [Rule 6-27]

[English] Constraint realized by PSM-XSD transformations.

« NDR [Rule 6-28]

[English] Constraint realized by PSM-XSD transformations.

« NDR [Rule 6-29]

[English] Constraint realized by PSM-XSD transformations.

« NDR [Rule 6-30]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-31]

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 6-32]

NIEM-UML Beta 1

114

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-33]
[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-34]
[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-39]
[English] Constraint realized by PSM-MPD transformations.
e NDR [Rule 6-40]

[English] Since imports are derived (and not modeled), the namespace for an import is the same as the
targetNamespace modeled for the referenced schema, and the implementation of NDR [Rule 6-36] resolves this

constraint.

e NDR [Rule 6-41]

[English] Constraint realized by PSM-MPD transformations.
e NDR [Rule 6-42]

[English] This constraint is superceded by MPD [Rule 6-4]. Implementation of MPD [Rule 6-4] resolves this

constraint.

e NDR [Rule 6-43]

[English] Constraint realized by PSM-MPD transformations.
e NDR [Rule 6-44]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-45]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-46]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-47]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-48]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-49]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-50]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-51]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-52]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-54]

NIEM-UML Beta 1

115

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-56]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-58]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 6-59]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-01]

[OCL2.0]

self.base_Elementimport.profiledBy('NIEM_PSM_Profile") implies ((
(self.natureURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#reference-schema’)
or
(self.natureURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#extension-schema’)
) implies

self.importedElement.getStereotypeApplication('Namespace').isConformant

)
e NDR [Rule 7-02]

[English] Not computable.

e NDR [Rule 7-03]

[English] Non-computable constraint.
e NDR [Rule 7-04]

[OCL2.0]

(self.base_Elementimport.profiledBy('NIEM_PSM_Profile’) and ((
self.purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purposet#reference-schema’)
or (
self.purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#extension-schema’)
)) implies

self.base_Elementimport.importedElement.oclAsType(Package).packagedElement
->select(c|c.ocllsKindOf(Class) and

not(c.stereotypedBy('PropertyHolder’))).oclAsType(Class)

->forAll(complexType |
complexType.ownedComment->exists(documentation|documentation.stereotypedBy('Documentation')))

« NDR [Rule 7-05]
[OCL2.0]

(self.base_Elementimport.profiledBy('NIEM_PSM_Profile’) and ((
self.purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purposet#reference-schema’)
or (
self.purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#extension-schema’)
)) implies

self.base_Elementimport.importedElement.oclAsType(Package).packagedElement
->select(c|c.ocllsKindOf(DataType)).oclAsType(DataType)

->forAll(simpleType |
simpleType.ownedComment->exists(documentation|documentation.stereotypedBy(‘Documentation’)))

e NDR [Rule 7-06]
[OCL2.0]

(self.base_Elementimport.profiledBy('NIEM_PSM_Profile’) and ((
self.purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purposet#reference-schema’)

NIEM-UML Beta 1 116

or (
self.purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#extension-schema’)
)) implies

self.base_Elementimport.importedElement.oclAsType(Package).packagedElement
->select(c|c.ocllsKindOf(Classifier)).oclAsType(Classifier).attribute
->select(p|p.stereotypeApplication("XSDProperty').kind=XSDPropertyKindCode::element)
->forAll(attribute |
attribute.ownedComment->exists(documentation|documentation.stereotypedBy('Documentation’)))

e NDR [Rule 7-08]
[OCL2.0]

(self.base_Elementimport.profiledBy('NIEM_PSM_Profile") and ((
self.purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#reference-schema’)
or (
self.purposeURI="http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#extension-schema’)
)) implies

self.base_Elementimport.importedElement.oclAsType(Package).packagedElement
->select(c|c.ocllsKindOf(Enumeration)).oclAsType(Enumeration).ownedLiteral

->forAll(literal |
literal.ownedComment->exists(documentation|documentation.stereotypedBy('Documentation’)))

e NDR [Rule 7-10]

[English] Non-computable constraint.

e NDR [Rule 7-11]

[English] Non-computable constraint.

e NDR [Rule 7-12]

[English] Constraint realized by PSM-XSD transformation.
e NDR [Rule 7-13]

[English] Non-computable constraint.

e NDR [Rule 7-15]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-16]

[English] Deprecated indicator not currently in NIEM Profiles, no constraint specified.
e NDR [Rule 7-17]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-18]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-19]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-20]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-21]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-22]

[English] Constraint realized by PSM-XSD transformations.

NIEM-UML Beta 1

117

e NDR [Rule 7-23]
[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-30]
[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-31]
[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-32]

[English] Constraint resolved by PSM-XSD transformations.

e NDR [Rule 7-33]

[English] Constraint resolved by PSM-XSD transformations.

e NDR [Rule 7-34]

[English] Constraint resolved by PSM-XSD transformations.

e NDR [Rule 7-35]

[English] Constraint resolved by PSM-XSD transformations.

e NDR [Rule 7-36]
[English] Definitional.
e NDR [Rule 7-38]

[English] Constraint is resolved by PSM-XSD transformations. Constraint also addressed by UML Property order

and naming constraints.

e NDR [Rule 7-39]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-51]

[English] Constraint resolved by PSM-XSD transformations.

e NDR [Rule 7-52]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-53]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-54]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-55]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-56]

[English] (Constraint not enforced by this model).

e NDR [Rule 7-57]

[English] Constraint realized by PSM-XSD transformations.
e NDR [Rule 7-58]

NIEM-UML Beta 1

118

[English] Constraint realized by PSM-XSD transformations.

e NDR [Rule 7-59]
[English] Definitional.
¢ NDR [Rule 7-60]

[English] A Reference is modeled as a non-aggregate Property. A given property (from a referenced

PropertyHolder) may be redefined to be an aggregate (i.e., containment) Property. The naming and type constraints

are realized by PSM-XSD transformations.

e NDR [Rule 7-61]

[English] Constraint realized by PSM-MPD transformations, based on isConformant tag for referenced (external)

schema.
e NDR [Rule 7-62]

[English] Constraint realized by PSM-MPD transformations, based on required documentation for modeled

external schema.
e NDR [Rule 7-69]

[English] Constraint resolved by resolution to MPD [Rule 3-4]

¢ NDR [Rule 7-70]

[English] Constraint resolved by resolution to MPD [Rule 3-1]

e NDR [Rule 9-10]
[English] Non-computable constraint.
e NDR [Rule 9-11]
[English] Non-computable constraint.
¢ NDR [Rule 9-12]
[English] Non-computable constraint.
e NDR [Rule 9-13]
[English] Non-computable constraint.
e NDR [Rule 9-14]
[English] Non-computable constraint.
e NDR [Rule 9-15]
[English] Non-computable constraint.
e NDR [Rule 9-16]
[English] Non-computable constraint.
e NDR [Rule 9-17]
[English] Non-computable constraint.
e NDR [Rule 9-18]
[English] Non-computable constraint.
e NDR [Rule 9-20]
[English] Non-computable constraint.

e NDR [Rule 9-21]

NIEM-UML Beta 1

119

[English] Non-computable constraint.
e NDR [Rule 9-2]

[English] Non-computable constraint.
e NDR [Rule 9-30]

[English] The only Attribute Group allowed in NIEM is the structures:SimpleObjectAttributeGroup. The constraint
is realized by PSM-XSD transformations.

e NDR [Rule 9-4]
[English] Non-computable constraint.
e NDR [Rule 9-7]
[English] Non-computable constraint.
e NDR [Rule 9-8]
[English] Non-computable constraint.
e NDR [Rule 9-9]

[English] Non-computable constraint.
8.5.5 <Stereotype> ModelPackageDescriptionFileSet

Extends
e UML::Component

Description

A ModelPackageDescriptionFileSet Component represents a set of files in an MPD that are grouped for a specific
purpose, function, or classification. For example, a set of MPD files might represent a schema subset, extension
schema set, set of documentation, or set of test files. The MPD catalog uses the File element to represent artifacts,
and the FileSet element to represent a set of artifacts. Note that both files and file sets are considered MPD artifacts.
Reference Sections 4.2.3 and 4.2.4 of NIEM MPD Specification v1.0
(http://reference.niem.gov/niem/specification/model-package-description/1.0/).

Attributes

o descriptionText :PrimitiveTypes::String [0..1] {unique }

A description of the file set. Implemented as the value of the descriptionText attribute of the FileSet element in the
catalog instance.

o externalURI :PrimitiveTypes::String [0..1] {unique }

The external URI for the file set; indicates a same-as relationship to a copy of the file set. Implemented as the value
of the external URI attribute of the FileSet element in the catalog instance.

e natureCode : Model Package Description Profile :: NatureCode [1] {unique }

The nature (type) of the file set. Implemented as the value of the natureURI attribute of the FileSet element in the
catalog instance.

e purposeCode : Model Package Description Profile :: PurposeCode [1] {unique }

The purpose or function of the file set. Implemented as the value of the purposeURI attribute of the FileSet element
in the catalog instance.

NIEM-UML Beta 1 120

Constraints

e unnamedl
[OCL2.0]

self.base_Package.namespace.stereotypedBy('ModelPackageDescription')
8.5.6 <Stereotype> ModelPackageDescriptionRelationship

Extends
e UML::Dependency

Description

The ModelPackageDescriptionRelationship stereotype applies to a Dependency that represents a relationship
between MPDs or between an MPD and another resource (such as a NIEM specification; as in the case of conforms-
to). There are many ways one MPD may relate to another. This makes it extremely difficult to specify a fixed set of
values that could objectively define an exact relationship between a pair of MPDs. Therefore, the optional
descriptionText attribute is provided to further explain the nature of any of the eight relationshipCode values
available (version_of, specializes, generalizes, deprecates, supersedes, adapts, conforms_to, updates). In some cases,
the value of relationshipCode may be generic enough to require a more detailed explanation in descriptionText (for
example, if the value is "adapts™).

Attributes
e descriptionText :PrimitiveTypes::String [0..1] {unique ,composite }

A more detailed or specific textual explanation of the relationship between the MPDs or between an MPD and a
resource (such as a specification). The catalog provides a Relationship element with three attributes (resourceURI,
relationshipCode, and descriptionText) to identify the pedigree of an MPD. There are many ways that one MPD may
relate to another. This makes it extremely difficult to specify a fixed set of values that could objectively define an
exact relationship between a pair of MPDs. Therefore, the optional descriptionText attribute is provided to further
explain the nature of any of the eight relationshipCode values available (version_of, specializes, generalizes,
deprecates, supersedes, adapts, conforms_to, updates). In some cases, the value of relationshipCode may be generic
enough to require a more detailed explanation in descriptionText (for example, if the value is "adapts").

o relationshipCode : Model Package Description Profile :: RelationshipCode [1] {unique ,composite }

A classification or reason for the connectedness between the MPDs or between an MPD and a resource.
8.5.7 <Enumeration> NatureCode

Description

An indication of the type of an MPD artifact. This further indicates how it should be processed by software tools.
The literals of this enumeration correspond to MPD nature URIs of the form
"http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/nature#<nature-code>". [Note these NIEM-UML
enumeration literals differ from the NIEM MPD Specification v1.0 in that they use underscore (*_") instead of dash
("-"). This is due to issues with dashes in some UML tools.] Reference Section 4.2.5 and Appendix G of NIEM
MPD Specification v1.0 (http://reference.niem.gov/niem/specification/model-package-description/1.0/).

Enumeration Literals
e hinary

e catalog

NIEM-UML Beta 1 121

e changelog
e character
e Csv

e doc

e domain_update

o file_set
o gif

e html

e iepd

e image
* jpg

e mdb

e mpd

o owl

e pdf

e png

e ppt

o rdf

o release

e schematron

o svg

e text

o vsd

e wantlist
o wadl
e xhtml
e Xxls

e Xmi

e xml

e xsd

o Xxslt

o 7ip

NIEM-UML Beta 1

122

8.5.8 <Class> POCType

Description

A set of metadata used to contact the authoritative source for an MPD.

Attributes

e POCEmail :PrimitiveTypes::String [1..*] {unique ,composite }

An email address.

e POCName :PrimitiveTypes::String [1] {unique ,composite }

A name for a person, position, or title.

e POCTelephone :PrimitiveTypes::String [1..*] {unique ,composite }

A telephone number.
8.5.9 <Enumeration> PurposeCode

Description

An indication of the type of an MPD artifact. This further indicates how it should be processed by software tools.
The literals of this enumeration correspond to MPD nature URIs of the form
"http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#”. [Note these NIEM-UML enumeration literals
differ from the NIEM MPD Specification v1.0 in that they use underscore (*_") instead of dash ("'-"). This is due to
issues with dashes in some UML tools.] Reference Section 4.2.4 and Appendix G of NIEM MPD Specification v1.0
(http://reference.niem.gov/niem/specification/model-package-description/1.0/).

Enumeration Literals

e administrative

e business_rules

e catalog

e conformance_report

e constraint_schema

e constraint_schema_set

e documentation

e endorsement

e exchange_schema

e exchange_schema_set

e extension_schema

e extension_schema_set

o file

o file set

e incremental_schema

e memorandum

NIEM-UML Beta 1 123

e metadata_extended

e non-normative_reference
e normative_reference

e quality_assurance_report
e reference_schema

o reference_schema_set

e replacement_schema

e report

e sample_instance

e schema

e schema_set

e subset_schema

e subset_schema_set

o technical_reference

e test report

o tool_specific_file

o wantlist
8.5.10 <Enumeration> RelationshipCode

Description

The possible reasons for the connectedness between the MPDs or between an MPD and a resource. This
enumeration defines the possible values for the relationshipCode attribute of the
ModelPackageDescriptionRelationship stereotype. [Note these NIEM-UML enumeration literals differ from the
NIEM MPD Specification v1.0 in that they use underscore ("_") instead of dash ("-"). This is due to issues with
dashes in some UML tools.] Reference Section 4.2.5 and Appendix B of NIEM MPD Specification v1.0
(http://reference.niem.gov/niem/specification/model-package-description/1.0/).

Enumeration Literals

e adapts A relationshipCode value for indicating that this MPD is an adaptation of the MPD referenced in
resourceURI.

e conforms_to A relationshipCode value for indicating that this MPD conforms to the specification or standard
referenced in resourceURI.

o deprecates A relationshipCode value for indicating that content in this MPD is preferred over content in the
MPD referenced in resourceURI; and at some time in the future will supersede the MPD referenced in resourceURI

e generalizes A relationshipCode value for indicating that this MPD is a generalization of the MPD referenced
in resourceURI. This value is the inverse of specializes.

e specializes A relationshipCode value for indicating that this MPD is a specialization of the MPD referenced
in resourceURI. This value is the inverse of generalizes.

e supersedes A relationshipCode value for indicating that this MPD replaces the MPD referenced in
resourceURI.

NIEM-UML Beta 1 124

e updates A relationshipCode value for indicating that this MPD is an incremental update to the resource
referenced in resourceURI. Used by a core or domain update to identify the domain schema in a NIEM release being
incrementally updated (not replaced).

o version_of A relationshipCode value for indicating that this MPD is a different version of the MPD referenced
in resourceURI. This code value is only needed in cases where significant name changes might obscure the
relationship to the previous version. For example, NIEM Justice 4.1 is a version of GIXDM 3.0.3.

NIEM-UML Beta 1 125

9 NIEM-UML Transformation Reference

9.1 Introduction

This clause provides component, structural and abstract orientation to the transformations between the UML Profile
for NIEM and the concrete NIEM architectural artifacts, as specified in [NIEM-NDR] and [NIEM-MPD]. The
transformations are expressed in terms of OMG QVT [QVT]. The QVT and related metamodels and profiles are
provided as machine-readable artifacts associated with this specification (see Annex B). This clause, and its
associated QVT, are presented from a transformation engineering perspective and illustrate abstract model
manipulation. Other clauses in this specification provide illustrations of concrete target artifact syntax. The
associated QVT are the normative expression for the mapping (in the sense defined in Clause 2). In case of apparent
conflict between the orientation provided in this clause and the QVT, the QVT takes precedence.

9.1.1 NIEM Provisioning Context

The transformations referenced in this clause are intended to constitute provisioning process that enables
representation of MPD artifacts as UML Models or in their native NIEM-conformant XML format. The overall
provisioning process is illustrated in Figure 9-1. The focus of this clause is to transform UML Models between the
NIEM PIM and NIEM PSM, and between the NIEM PSM and the MPD Artifacts. The MPD Artifacts addressed by
these transformations are NIEM Conformant Schemas and the MPD Catalog. A meta-model for Schemas is
specified in Clause 10 (XML Schema InfosetModel) of the OMG MOF 2 XMI Mapping Specification [XMI]. A
metamodel for the MPD is included in the machine-readable artifacts for this specification (see Annex B). MPD
Acrtifacts are represented (serialized) in their native XSD form.

The NIEM MPD is pre-populated with a set of infrastructure schemas. During transformation, the schemas
transformed from the UML Models are wired into these infrastructure schemas, as specified in the NIEM NDR. The
components include:

e structures. The NIEM NDR Schema whose target namespace is “http://niem.gov/niem/structures/2.0”. Used
primarily to provide the base definitions for top-level XSDComplexTypeDefinitions originating from the NIEM
PSM.

e xsd. The NIEM NDR Schema whose target namespace is “http://niem.gov/niem/proxy/xsd/2.0”. This is the
NIEM “proxy” schema and is used to “wrap” XML Primitive Types with XSDComplexTypeDefinitions in
order to provide attributes carrying metadata.

e appinfo. Two versions of appinfo are included. The NIEM NDR Schema whose target namespaces are
“http://niem.gov/niem/appinfo/2.0” and “http://niem.gov/niem/appinfo/2.1”. These schemas are primarily used
to define names/namespaces used in NIEM Schema Annotations.

o XML Schema. A representation the XML Schema for Schemas. All versions of this schema are built into the
XSD meta-model. The XML Schema for Schemas is not physically materialized in the MPD, but is referenced
as the meta-model for all schemas, defining structure and constraints for all schema constructs. Additionally, it
defines the SimpleTypeDefinitions corresponding to the XML Primitive Type library used within a NIEM UML
model.

The transformations use a set of shared, reusable libraries for NIEM PIM and NIEM PSM :

e XML Primitive Types. The UML XML Primitive Types library represents the data types defined in the XML
Schema for Schemas. There is an isomorphic mapping between the types in the UML XML Primtive Type
library and the explicitly defined SimpleTypeDefinitions in the Schema for Schemas. In some cases, Schema
for Schema datatypes are “wrapped” by ComplexTypeDefinitions within the NIEM Infrastructure xsd Proxy
Schema in order to define meta information associated with the application of these datatypes.

o NIEM Reference Models. An optional extension to the NIEMmpdartifact2model transformation provides for
binding NIEM subset schemas to NIEM reference schemas, thus enabling NIEM-NDR and NIEM-MPD
conformance testing of NIEM MPD defined schema subsetting.

NIEM-UML Beta 1 126

{Common Libraries |MPD Static Infrastructure Components
| XML Primitive Types I «artifacts
| represent either XML _| _|http://www.w3.0rg/2001/XMLSchema
| «ModelLibrarys adl — — - Schen}a 1YP°§ or NEM .
XMLPrimitiveTypes RIOXY.LYREE. CRpRNcng.on
| yp context | <artifacts
| | http:/iniem.gov/niem/proxy/xsd/2.0
M
| |
| NIEM Reference Model A | SRrtTacts
l M) | http:/iniem.gov/niem/appinfo/2.0
niem
| |
| | «artifacts 0 —B
| | http:/iniem.gov/niem/appinfo/2.1 These
| | components are
J NIEM
- | <artifacts B inr:‘astructuTr:
| i i § schemas. This
| http://iniem.gov/niem/structures/2.0 § |reusable schema
) _ \ library is used by
Reusable external UML libraries which 4 Vhet psm2mpd
grsﬂrr&lpo:?d and bound to NIEM PIM and transform.
odels
The components
are pre-merged
7 A into the target MPD
\ Directory when
/ transforming from
_______ NIEM PSM Models.
[MPD Artifacts A
/
I 7
| 7
| | | artifacts [1] 4
«InformationModel» «Namespace» | MySchema.xsd
MySchema MySchema I
|
|
|
|
|
|
|
|
A
"~ V.
| ? !
|
l OperationalTransformation OperationalTransformation |
| ==>NIEMpim2psm ==>NIEMpsm2mpd |
; |
| |
OperationalTransformation
<==NIEMmpd2pim

Figure 9-1 NIEM Provisioning Context

The transformations referenced in this clause include:

e NIEMpim2psm. Transforms a NIEM PIM to a NIEM PSM.

o NIEMpsm2xsd. Transforms a NIEM PSM to MPD Schema Artifacts.

o NIEMmpdmodel2artifact. Transforms a NIEM MPD Model «ModelPackageDescription» and all its associated
«Namespace»s to an MPD Catalog.xml and its associated NIEM Conformant Schemas.

o NIEMmpdartifact2model. Transforms an MPD Catalog and its associated set of MPD Schemas to a NIEM MPD
Model.

Additionally, there are inherited common transformations:

NIEM-UML Beta 1 127

o NIEMplatformBinding. A set of platform-specific operations. For the purposes of this specification, these are
defined as abstract operations.

e NIEMglobals. A set of variables initialized at the beginning of the transformation, including references to
Profiles and Stereotypes from NIEM-UML, and various constants referenced in the NIEM NDR and MPD.

«OperationalTransformation=:
NIEMglobals

«OperationaITr'ansformation»
NIEMplatformBinding

AN

«OperationalTransformation= «OperationalTransformation: «OperationalTransformations
NIEMpim2psm NIEMmpd2pim NIEMpsm2mpd

Figure 9-2 NIEM Transformations

9.1.2 Transformation Notation

Reuse and composition facilities are associated with QVT mapping operations. Disjunction enables selecting, among
the set of disjunctive mappings, the first that satisfies the when clause and then invoking it. For the NIEM
transformations, disjunction is used to identify a concrete MappingOperation to be selected from a given disjunctive
MappingOperation. The disjunction hierarchy generally follows the Schema component inheritance hierarchy and/or
the UML metamodel inheritance hierarchy. Another reuse and composition facility associated with QVT mapping
operations is inheritance. Inheritance enables reuse of the execution logic of an inherited mapping. Thus, disjunction
is used to initially select a leaf mapping operation and inheritance is used to share common execution logic. For the
NIEM transformations, inheritance is used to identify the hierarchy of execution logic required to populate target
Elements from a source Element. The mapping inheritance generally follows the Schema component inheritance
hierarchy and/or the UML Meta-model inheritance hierarchy. Figure 9-3 illustrates the general pattern of disjunction
and inheritance used for all transformations. A detailed disjunction/inheritance hierarchy is provided for each
individual transformation.

NIEM-UML Beta 1 128

aMappingCperations
AbstractMappingOperation
aMappingCperations
sdigjunctss CommonMappingl ogic
zdigjunctss
. i zinheritss
ginherits:
eMappingOperation= «OperationalTransformation=
ConcreteMappingOperation ConcreteMappingOperation1
{when precondiion is satisfied and source model context matches} {when alternative preconcdtion is satisfied and source model context matches}

Figure 9-3 NIEM Transformation Disjunction and Inheritance
Figure 9-4 provides an example of how mappings are described for each transformation.

e Each transformation is decomposed into several abstract mapping figures, each figure depicting a related set of
model concepts.

e Each mapping figure has two models depicted, one being the source and the other being the target of the
transformation.

e Each model is adorned with sample model notation used to depict concepts associated with that model.

e MappingOperations are depicted as Realizations directed from a source model element to a target model
element. In cases where a Realization cannot be depicted, a Comment is shown annotating one or more model
elements from the source model and one or more model elements from the target model.

e Each MappingOperation is shown with the QVT mapping operation name. Details of the operation can be found
in the associated QVT Files for this specification.

o Note that the figures in this clause are primarily intended as a high-level orientation to key
«mappingOperations»s of the QVTs. Neither the figures or the accompanying narrative provide all detail
associated with a mapping operation. For definitive information about fine-grained aspects of the mapping,
please consult the associated QVT Files for this specification.

Objectd == <ObjectTypes
+property £ i Object4Type
[« X SDProperty=+Property

zPropertyHolders
PropertyHolderi

+property

aPropertyHolders
PropertyHolder1
[SDProperty=+Property

MappingOperation
MNIEMTopLevel_generalization

- «PropertyHolders
zPropertyHolders PropertyHolder2
PropertyHolder2 «XSDPropertys+SubsettingProperty{subsets Property }

+subsettingProperty{subsets property b

Figure 9-4 NIEM Transformation Mapping Notation Overviews

NIEM-UML Beta 1 129

9.1.3 Platform Binding

Platform Binding

There are variations in UML Platform implementations, particularly with respect to management of
Profile/Stereotype/tag values. Some platforms implement Profiles via MOF, others provide implementation of
applied Stereotypes via UML InstanceSpecifications. Transformation Operations which have variant
implementations across platforms have been isolated from the specified transformations, enabling the core
transformation to be applied to different platforms via a platform binding layer. In most cases, the variations can be
specified directly in QVT. Examples of core UML utility functions which have platform variations include:

e abstract query UML.::Profile::getOwnedStereotype(stereotypeName:String):UML.::Stereotype;
Retrieves the first Stereotype with the specified “Name” from the “Owned Stereotype” reference list.
e abstract query UML::Element::getNearestPackage():UML.::Package;

Retrieves the nearest package that owns (either directly or indirectly) this element, or the element itself (if it is a
package).

e abstract query UML::Element::isStereotypeApplied(stereotype: UML ::Stereotype):Boolean;
Determines whether the specified stereotype is applied to this element.
e abstract query UML::Element::getStereotypeApplication(stereotype: UML.::Stereotype):Stdlib::Element;

Retrieves the application of the specified stereotype for this element, or null if no such stereotype application
exists. The result is a Stdlib::Element, which may be implemented as a MOF instance or a UML
<InstanceSpecification>, depending upon platform.

e abstract helper Stdlib::Element::get<Classifier.name><Property.name>():<result>;

A basic getter for tag values. The context (Stdlib::Element) is an instance of a Classifier defined in the profile.
<Classifier.name> is the name of the Classifier (without the XSD prefix). <Property.name> (first character
capitalized) is the property to be retrieved.

<result> may be : an OCL Primitive type or Stdlib::Element (if it represents an instance of a Classifier in the
Profile) or some form of OCL Collection of OCL Primitive types or Stdlib::Elements.

e abstract helper Stdlib::Element::set<Classifier.name><Property.name=>(value:<valueType>);

A setter for tag values. The context (Stdlib::Element) is an instance of a Classifier defined in the profile.
<Classifier.name> is the name of the Classifier (without the prefix). <Property.name> (first character
capitalized) is the property to be set. The value argument may be : an OCL Primitive type or some form of
Enumeration defined within the Profile.

e abstract helper Stdlib::Element::get<Classifier.name><Property.name>List():Stdlib::Element;

The context is an instance of a Classifier from the Profile. <Classifier.name> is the name of the Classifier
(without the prefix). <Property.name> (first character capitalized) is the property to be retrieved. The value
returned represents a logical “Slot” for a list of objects.

e abstract helper Stdlib::Element::create<Classifier.name>Instance():Stdlib::Element;

The context is a logical “Slot”. The operation creates an instance of the Classifier named <Classifier.name>
from the Profile and adds it to the context..

e abstract helper UML::MultiplicityElement::setLower(lower: Integer);

Context is a UML Multiplicity Element. Platform-specific implementation of setting the lower bound of the
multiplicity interval.

e abstract helper UML::MultiplicityElement::setUpper(upper:Integer);

NIEM-UML Beta 1 130

Context is a UML Multiplicity Element. Platform-specific implementation of setting the upper bound of the
multiplicity interval.

e abstract helper UML::Package::applyProfile(profile : UML::Profile);

Context is a UML Package. Applies the current definition of the specified profile to this package and
automatically applies required stereotypes in the profile to elements within this package's namespace hierarchy.
If a different definition is already applied, automatically migrates any associated stereotype values on a “best
effort” basis (matching classifiers and structural features by name).

o abstract helper UML::Element::applyStereotype(stereotype: UML::Stereotype):Stdlib::Element;

Context is any UML Element. Applies the specified stereotype to this element. Returns an instance of the
applied stereotype.

Global Properties

Property names are shared between the transformations. Properties may be one of the following kinds, depending
upon the name syntax:

o <name>Profile The value is a UML Profile initialized during transformation startup.
e <name>Stereotype The value is a UML Stereotype initialized during transformation startup.

e Other. All other properties are string constants statically initialized.

9.2 NIEM PIM to NIEM PSM

The NIEMpim2psm transformation is defined as a set of mappings from the NIEM PIM Elements to Elements in the
NIEM PSM. In general, there is a one-to-one correspondence between Elements in the NIEM PIM and Elements in
the NIEM PSM. The transformation is minimal in the sense that any information in the NIEM PIM which is not
relevant to the NIEM PSM is not mapped, which may include state machines, applications of foreign profiles and
stereotypes, use cases, interfaces, ports, etc. Implementations of this transformation may extend the scope of mapped
elements to include modeling constructs in support of provisioning target MPD artifacts not specifically addressed
by this specification. Figure 9-5 illustrates the high-level packaging map between a NIEM PIM and a NIEM PSM
with respect to the Model Package Description Profile.

e Mapping to a NIEM PSM is driven from NIEM PIM ModelPackageDescription Component. The target NIEM
PSM will contain all NIEM-relevant elements mapped from the NIEM PIM, including packaging structure
nested to any level.

o Atop level NIEM PSM Model is constructed for a «ModelPackageDescription» Component. NIEM PSM
Profiles are applied to the target top-level model. The model will contain a mapping of the transitive closure of
all «InformationModel» Packages directly or indirectly referenced via «ModelPackageDescriptionFile»
Dependencies from the NIEM PIM «ModelPackageDescription» Component.

e NIEM PIM UML Packages nesting an «InformationModel» Package are mapped to the NIEM PSM, in the
same relative containment structure. Nesting Packages are followed until a package with applied NIEM PIM
Profiles is encountered. The nesting packages may be used to represent an MPD Folder Type.

e Stereotype applications from the NIEM PIM are cloned and applied to their mapped counterparts in the NIEM
PSM.

NIEM-UML Beta 1 131

rNIEM PIl

ModelPackageDescri

|
| | NIEM PSM Model
| NIEM PIM Model A |
(f 0
| D e an MPD Folder
| an MPD Folder | Mpcholder
| |
| | aMamespaces
[elnformationiiodels w _ _Ne F) NIEMNamespace
| NIEMNamespace {isConformant, i !
| {isConformant, targgtNaTelspace_ httpimyTargethlamespace”,
varsion="1"} version="1"}
|
| gl
| r — ingOperation _-___-____-__J
| eModelPackageDescriptionFile: 4 B eEE Ak sneDescrptionfile sMocdelPackageDescriptionFiles
| =ModelPackageDescriptions E] =ModelPackageDescriptions E]
| HIEM MPD) HIEM MPD
| {mpdBaseURI = "http://example.orgisampler, L _M"ie"jid(ﬁ_ ED_ESCLN‘EJ‘E"E' {mpdBaseURI = "hitp:ifexample.omisamplel”,
| mpdifersionIld = "1.0"} sMappingOperatio mpdVemsionlD ="1.0"}
|
|
|
|
|
L

Figure 9-5 NIEM PIM to NIEM PSM - Model Package Description Profile Mapping Overview

Figure 9-6 illustrates mappings between NIEM PIM and NIEM PSM Perspectives related to the
NIEM_PSM_Profile. Many of the NIEM PIM Elements are mapped to nearly identical counterpart NIEM PSM
Elements within the NIEM_PSM_Profile. Variations from an isomorphic representation include:

e NIEM PIM primitives are modeled as PrimitiveTypes and/or Enumerations. On the NIEM PSM side they are
mapped to Class, if they do not contain constraining facets or enumeration literals. A UML Generalization in
the NIEM PIM is mapped to an «Restriction» in the target NIEM PSM.

e Naming ina NIEM PIM may need to be coerced to be compliant with NDR naming rules during map to NIEM
PSM. This includes representation terms for Property names based on derivation from specific XML Primitive

types.
e Generalizations in NIEM PIM may map to Properties in the target NIEM PSM.

o Explicit stereotype application of NIEM concepts in the NIEM PIM may map to semantic elements based on
NDR naming rules in the target NIEM PSM.

e Use of Associations in NIEM PIM may map to simple Properties in the target NIEM PSM.

e NIEM PIM comments may be adjusted according to Standard Opening Phrase rules in NDR when mapped to
NIEM PSM.

e The foundational XML Primitive Types library is used to represent XML Primitives for both the NIEM PIM
and NIEM PSM.

NIEM-UML Beta 1 132

«ModelLibrarys
XMLPrimitiveTypes

A
MappingOperation
NIEMExtension —
«XSDRepresentationRestrictions
PrimitiveSimpleType
A

eprimitives
Primitive A

MappingOperation
eprimitives
Primitive2

NIEMSimpleContent
_enumerations

Enumeration
EnumerationLiteral o

«\/alueRestriction»
«ObjectTypes
Primitive2Type

«enumerations
EnumerationCodeSimpleType

EnumerationLiteralCodes

NIEMSimpleContent
«enumerations
Enumeration2 «ObjectType»
Enumeration2CodeType
N

<ObjectTypes
Class8Type

a— |
; j—]
MappingOperation
NIEMRestriction

«ObjectTypes
Classifier2 Classifier2Type

" {SDProperty »+Property1DateTime

y
cXSDPropenynéfstE_iatio nd7Reference : Classifier7Type
=ShPropeitiE+CompositeEnd7 : Classifier7Type
IassociationEnd? : Classifier7 l — Lt i E_ = —EV"
L

| compositeEnd7 : Classifier7 I =

«ObjectTypes
Classifier7Type
A

MappingOperation
NIEMExtension

«ObjectTypes
Classifier8Type

Figure 9-6 NIEM PIM to NIEM PSM - PSM Profile Mapping Overview

The Figure 9-7 illustrates some additional mappings between NIEM PIM and NIEM PSM related to the
NIEM_PSM_Profile. With the exception of some naming coercion, the mappings depicted in this diagram are
isomorphic.

NIEM-UML Beta 1

133

erty : Object4Type{subsets Property}

i «Namespac
NIEMNamespace NIEMNamespace
{isConformant, {isConformant,
version="1"} targetNamespace = "hitp://myTargetNamespace”,
version="1"}

Figure 9-7 NIEM PIM to NIEM PSM - PSM Profile Mapping Overview (2)

The NIEM_PIM_Profile provides alternate notations, constraints, and defaults for modeling NIEM. In many cases,
the NIEM_PIM_Profile Elements are mapped to nearly identical counterpart NIEM PSM Elements. Variations from
an isomorphic representation include:

e Naming in NIEM PIM is not necessarily constrained to NIEM NDR naming rules. Transformations must coerce
names to be compliant with NDR naming rules during map to NIEM PSM.

e Generalizations within NIEM PIM may map to Properties in the target NIEM PSM.

o Explicit stereotype application of NIEM concepts within NIEM PIM may map to semantic elements based on
NDR naming rules in the target NIEM PSM (such as “RoleOf”).

NIEM-UML Beta 1 134

«ObjectTypes
Class3Type
A

Classifier ClassifierType — __

+Property : Classifier2 < £SDProperty »+RoleOfClass3Reference : Class3Type
«“SDPIoperty»+RoleOfPropertyReference : Classifier2Typed

MappingOperation
NIEMRoleOf_generalization

MappingOperation
NIEMAugmentationApplication_augments

NIEMTopLevel
AEDProperty s+AugmentedWith : CIassSAugmentationTyp

NIEMTopLevel
+AugmentedWith : Classs
e

«ObjectTypes
Classifier6Type

«ASDProperty»+AugmentedWith : ClassSAugmentationType df

+AugmentedWith : ClassS

«AugmentationTypes «AugmentationTypes
Class5 ‘Class5AugmentationType

I |

[—]

MappingOperation
NIEMProperty_augmentation

Classifier7

chedTyne)\
Classifier7TType — —
<« XSDPropertys+augmentedWith : ClassS5AugmentationTyped

«ObjectTypes
Associated1Type

Associated1

| associated? : Associated? [0..*]

«AssociationTypes

= es
AssociationClass { AssociationClassAssaciationType
g < {SDProperty»+Associated2Reference :Es_onahizwpe 1K

Associated2

«ObjectTypes»
Associated2Type

Figure 9-8 NIEM PIM to NIEM PSM - PIM Profile Mapping Overview

Many of the NIEM PIM Elements within the NIEM_Commaon_Profile are mapped to nearly identical counterparts in
the target NIEM PSM. Variations from an isomorphic representation include:

e Naming within NIEM PIM may need to be coerced to be compliant with NDR naming rules during map to
NIEM PSM.

e Generalizations within NIEM PIM may map to Properties in the target NIEM PSM.

e Explicit stereotype application of NIEM concepts within NIEM PIM may map to semantic elements based on
NDR naming rules in the target NIEM PSM.

NIEM-UML Beta 1 135

Use of Associations within NIEM PIM map to simple Properties in the target NIEM PSM.

«dataTypes

Data3

+augmentedBy : Class5 o
/

f—]
[—]
<MetadataType»
Class4
j— |
]

mentationTypes
Class5

«documentations
adapts...

«ObjectTypes
Data3Type

« XSDProperty»+AugmentedByReference : ClassSAugmentationType{kind = element i

«ObjectTypes
Class3Type

eMetadataTypes
4MetadataType

~ «AugmentationTypes
Cl; ionType
~«AssociationTypes
ClassbAssociationType

«Choice»
Class14Type

primitives

Primitive13SimpleType

«Union»
Data12SimpleType

«AdapterTypes
Class7AdapterType
E—— |
—

A
«Documentations
(Standard Opening

Phrase) adapts...

A

MappingOperation
Description

Figure 9-9 NIEM PIM to NIEM PSM - Common Profile Mapping Overview

e Anunstereotyped AssociationClass within NIEM PIM maps to a Class stereotyped as AssociationType in target
NIEM PSM, with some cardinality adjustments.

e Use of Generalizations related to PrimitiveTypes/SimpleTypes may map to Dependencies in target NIEM PSM.

NIEM-UML Beta 1

136

e NIEM PIM defaults, including Documentation, ObjectType, ValueRestriction are explicitly stereotyped in
target NIEM PSM.

e NIEM PIM comments may be adjusted according to Standard Opening Phrase rules in NDR when mapped to
target NIEM PSM.

For NIEMpim2psm, mapping operations are generally invoked with the context of a source NIEM PIM Element and
produce some form of target NIEM PSM Element. Most mapping operations are also provided an argument which is
the NIEM PSM container context. The “when” condition for the MappingOperations is normally a function of the
source NIEM PIM element, the type of the source NIEM PIM element, the source NIEM PIM element's applied
stereotype, and/or the target NIEM PSM container context. The mapping operation connects its target NIEM PSM
Element to its container, applies a Stereotype as appropriate (or clones the NIEM PIM Stereotype application), and
populates the underlying UML Element properties and/or Stereotype Application tag values. Figure 9-10 illustrates
the disjunction pattern for the NIEMpim2psm transformation.

Figure 9-11 illustrates the inheritance for most of the MappingOperations in the NIEMpim2psm transformation.
Figure 9-12 illustrates the remaining MappingOperations for the NIEMpim2psm transformation.

NIEM-UML Beta 1 137

aMappingDperations
AbstractXSDTypeDefinition

T

Tﬁulsjunc‘[s»

o
eMappingCperationz
AbstractXSDTypeDefinition_datatype
adisjunctss
adisjunctss
)
- " = " " - aMappingOperations
aMappingCperations aMappingDperations aMappingOperations aMappingDperations ObjectT: d
MIEMComplexType_ ation NIEMSimple Type HIEMComplexType_datatype HIEMSimpleType_s ation iectType_datatype
[[
L L
" " aMappingOperation: ‘ «MappingOperation: aMappingOperations
«MappingOperations = 4 N A
NIEMSImpleType_primitive ‘NIEMSImpIeT_vDB_IIs’l INIEMSImpIeTyDe_unIDn AbstractNIEMComplexType
_—] '
adisjunctss adisjunctss Tidisjund” Tﬂdlsjuncts»
i a disjunctsz
adisjunctss - - edisjunctss aMappingOperationz «
aMappingOperations adislunctss [pappingOperations xﬁ:::p}ll_ﬂgc)perlatlonx Type_class
A fationType_: fationClass ObjectType_class clype_class
=MappingCperation:
eMappingOperation= eMappingOperation: TopLevel
eMappingOperation: AssociationType_class ionType_class
AdapterType_class
A A «MappingOperations
eMappingDperationz
|AbstractBaseTypeDefinition sl ActPackage
T_xalsjunas» Tzalsjunas» Td\sjuncls» disjunctss
=MappingOperations eMappingCperations eMappingOperations xm:;;::gc)perahonx al:l:p:rglgperTatlonx
HIE i NIEMTopLevel_gener MIEMSimpleContent Eusspace pcrolcer 'ype
[[
L L
eMappingCperationz
AbstractXSDFeature
edisjunctss adisjunctss T«diSJ'UHCTS»
i MappingOperation: disjuncts dijunctes |SMERPIngOperations adisjunctss
aMappingCperationz adisjunctss eMappingOp! g =clis) = ks . HIEMRoleOf
HIEMRoleOf_generalization NIEMAnyProperty
" . A " eMappingCperationz
aMappingCperations ‘NIEM::‘ETII_EO::W;_::“ ion {M:Ip;:s?:azl;nx ‘NIEMProperlyjssuciaﬁnnClﬂssEnd
HIEMProperty_propertyAugmentation I L _augl Ld I
[
I L
eMappingCperations
aMappingOperations bl i icat «MappingOperationz
AbstractReference AbstractTypeDefinition
- -
T;dls;unctsx Tmsjuna” grd\sjunds» adisjunctss
zMappingCperations ‘ xMappingOPeraiianx_ ‘ xMaepingOpe_ramfnx <MappingOperations
Reference INl[NIE s TypeDefinition
L
= [Abstr | —
1]
ModelPackageDescriptionFile| HIEI icati | ati
]

[
[

Figure 9-10 NIEM PIM to NIEM PSM Disjunction

NIEM-UML Beta 1

138

«MappingOperations
XSDComponent
‘l’(inherits»
«MappingOperations
XSDNamedComponent
T«inherits: T«inherﬂs» T«inheritsx =z T«inher'ﬂs;
«MappingOperation» «OperationalTransformations «MappingOperations «MappingOperations
Pack _init NIEMCodeValue Reference XSDFeature_init
ainheritsy sinheritss
> lrinherits:
«MappingOperations <inheritss [eMappingOperations .) «MappingOperations «MappingOperations
ModelPackageDescription NIEpl:Nangsplce aihiprtey NIEMProperty_associationClassEnd NIEMAnyProperty
|
| .
¢h'II‘ap::\°glgzt:rTatlo:) <MappingOperations «MappingOperations |eMappingOperations | |&«MappingOperations
e VB ModelF iption_Model XSDTypeDefinition NIEMProperty Choice
I
L
T Ay
<l> * Tinherﬂs: [
«MappingOperations
NIEMSimpleType «MappingOperations
NIEMSimpleType_typedefinition
= <inherits»
‘r <inherits»
zinheritss zinherits» A A
inheritss inheritss
«MappingOperations «MappingOperations «MappingOperations «MappingOperations
NIEMSimpleType_enumeration NIEMSimpleType_primitive NIEMSimpleType_list NIEMSimpleType_union
| | | |
= L [L
«MappingOperations
NIEMComplexType
flnﬁeri(s» Ay Txlnherirs» TxlnheriE» T.inhems, [AY TxlnherE» Txlnh-sr'ﬁs:
:Mapplng()p_era:l_on; «M;;;;::\gft:?atmem cM:;:’p.lngo:):rat:nx eMappingOperations «Mep::\lge(:per:tlonx ¢Mag;|:’n_negc(:$erazom
yp yp! pter Typ: TopLevel yp! jectTyp
inherit s inherit inherit cinherts . inherit G
T«ln erits» sinhertss T«m erits» T«m erits» «inheritss Txinherits» T«inherits»
cMappingOperation» <MappingOperation» «MappingOperations «MappingOperation» | |«MappingOperations «MappingOperation»
AugmentationType_class MetadataType_class | |AdapterType_class RoleType_class ObjectType_class ObjectType_datatype
|
L
«MappingOperations
«MappingOperation» NIEMComplexType_simpleContent
AssociationType {
p— T E— inherits T inherits>
2 T T
«MappingOperations «MappingOperation» «MappingOperations» «MappingOperation»
& iationType_: iati lass | A iationType_class NIEMComplexType_datatype NIEMComplexType_enumeration
| |
L L

XSDSimpleContent

MpdFileSetType

Figure 9-11 NIEM PIM to NIEM PSM Inheritance (1)

NIEM-UML Beta 1 139

«MappingOperations
NIEMProperty_implicit

lrlnnel L5

Txinhems»

«MappingOperation»
BaseTypeDefinition

Tmher'rls»

Txinherits»

«MappingOperation= «MappingOperations «MappingOperation» «MappingOperations «MappingOperations | |«MappingOperations
NIEMProperty_propertyAugmentation | | NIEMRoleOf_generalization | |(NIEMProperty_metadata | |NIEMTopLevel_generalizati NIEME NIEMRestriction
I I [[

L [[L
«MappingOperations
HNIEMProperty_augmentation
|
L
«MappingOperations «MappingOperations l «MappingOperations I;'" .g\fpe.ratlon» <MappingOperations
NIEMProperty ModelP iptionFile [MEMSimpleContent Escription TypeDefinition
| I
I L L
T{inucli\)) T«inuclil >3 |
«MappingOperations «MappingOperations «MappingOperations
NIEMRoleOf NIEMProperty_propertyAugmentation NIEMProperty_associationClassEnd
|
| l
«MappingOperation»

NIEMAppliesTo

—

T«inherits»

T«inherits»

«MappingOperations
NIEMAugmentationApplication

«MappingOperation»
NIEMMetadataApplicati

«MappingOperations

[

I

|

[

Figure 9-12 NIEM PIM to NIEM PSM Inheritance (2)

9.3 NIEM PSM to NIEM-Conforming XML Schema

There are various forms of metadata embodied in the components of a NIEM conformant Schema. The metadata are
represented in schemas as text-based user/application information embodied within an XSDAnnotation. The
metadata includes documentation, cross-component references, and extended properties for the XSDComponents.
All forms of XSDComponent metadata are based on NIEM-NDR rules for representation within constructs of an
XSDAnnotation. Figure 9-13 illustrates many specific cases of metadata usage:

o XSDAnnotations are owned by an XSDComponent. The ownership association name and semantic varies by
specific XSDComponent. The UML Element/ownedComment association maps to one of the XSDComponent-
specific ownership associations with XSDAnnotation.

e An XSDAnnotation has a property “userInformation” which contains an xsd:documentation (DOM) Element. A
UML «Documentation» Comment body is mapped to the textual value of the xsd:documentation Element.

e An XSDAnnotation also has a property “applicationinformation” which contains an xsd:appinfo
(DOM) Element. The xsd:appinfo Element contains (DOM) Elements defined by the NDR rules. All NDR
defined elements are either in the NIEM appinfo namespace or the NIEM appinfo2 namespace.

e appinfo:Conformantindicator is used to indicate NIEM conformance for an XSDSchema or an XSDImport of
an XSDSchema. The UML «Namespace» isConformant tag is mapped to the value of the
appinfo:Conformantindicator for either a target XSDSchema or a referencing XSDImport.

NIEM-UML Beta 1

140

e appinfo:Base is a NIEM defined element which has 2 attributes: appinfo:name and appinfo:namespace.
Together, the name and namespace uniquely reference an XSDComponent within a particular symbol space.
The value of appinfo:name and appinfo:namespace are mapped from UML Generalizations, «Restriction»s,
and/or NDR rules regarding default appinfo:Base, depending upon the specific <NIEMType».

o appinfo:ReferenceTarget is a NIEM defined element which has 2 attributes: appinfo:name and
appinfo:namespace. Together, the name and namespace uniquely reference an XSDTypeDefinition. The value
of appinfo:name and appinfo:namespace are mapped from a UML Property type declaration for a “Reference”
Element. In these cases the typeDefinition of the target XSDElementDeclaration is set to
structures:ReferenceType.

e appinfo:AppliesTo is a NIEM defined element which has 2 attributes: appinfo:name and appinfo:namespace.
Together, the name and namespace uniquely reference an XSDTypeDefinition. The value of appinfo:name and
appinfo:namespace are mapped from the supplier of a UML «Application» Usage.

o appinfo:External AdapterTypelndicator is a NIEM-defined (DOM) Element. A UML «AdapterType» is mapped
to an appinfo:External AdapterTypelndicator with value “true”.

NIEM-UML Beta 1 141

ﬁsm Perspective [MPD Schema

-
7 appinfo ExternalAdapter Typelndicator : DOMElement

xternalAdapterTypelndicator”
="http://niem. 2.0
‘true”

<AdapterTypes 8
<<MappingOperatio
MyAdapter Type n>> AdapterType
]

| «Metaclass» |
| Element |
I il I
| A i |
| maps dComment to |
XSD, ion and
| __ — —jattachesittoits |
| i XSDConcreteComponent | |
o container in a container
| specific way. [.
! ! {ordered} (ordered} (ordered} |{ordered} fordered}
| -ownedComment +anhotation |0..1 ion |0..1 ks ion |0..1 ion |0..1
| [i [XSDAnnotation |
| Comment | — — — — — — — — — — — - - |
| 1 | Tinstanceof
| \ | |eabstractions
| \ | schemaAnnotati
\
) \ ! ion = schemaD:
g \ <<helper=>
|
\ s
| maps <<Documentation>>
| Comment body to locumentatio
Docinentations — Txsd:documentation text — — —| pamespace = "hitp:/www.w3.0rg/2001/XMLSchema"
| rn‘v e value. value = "my documentation®
|
|
! ! schemaAppinfo : XSDAppinfo
| | element ppinfo Conformantindicator, appinfo Base, appinfo ExternalAdapterTypelndicator
| | name = "appinfo" =
| | namespace = "http:/Mmww.w3.0rg/2001/XMLSchema"
| |
| appinfo Conformantindicator : DOMElement
Ehanespaces name ="Conformantindicator”
MEMNRamespace ‘when element is http:liniem i info/2.0"
{isConformant, e } — |<<Namespace>> from — — walue ="true"
= "httpimy 4
version="1"} isConformant tag
|
| | eValueRestriction» | appinfo Base : DOMElement
| MyV: striction | appinfo name, appinfo namespace
= L8 " m e
| via <<Helper>> setTypeDefintionAppinfoBase. — "hito-fini X . -
| [eassocitonTypes vae of ppifanae, ap =¢hipJmiem, 20
MyAssociati — — — —attributes based on inheritance,
| EachationType <<Restriction>>, NDR base rules for the |
_|specific <<NEMType>> = appinfo name : DOMAttr
| = "
= lame’
| | ~ ="http:/iniem. 2.0"
| | \
~ .
| | L
| | 3 appinfo namespace : DOMAtts
! | "wamaspace"
| | ="hfip:/ipiem. i 2.0"
| | value="?" A
| | / o7
| | / 3
| |
| |
| |
| |
|

<PropertyHolders XSDElementDeclaration_topLevelin appinfo ReferenceTarget : DOMEloment
tyi conjunction with a substitutionGroup attribute = appinfo nameReferenceTarget, appinfo
|« XSDPropertys-MyBaseProperty(kind = element} & "’meSE?CERE'E’E“‘eTZ";’e‘
ituti perty} | name = "ReferenceTarget'
-MyReference : MyObjectType L "http:/iniem i info/2.0"
_MyAugmentation : MyAugmentationType - |
== 1
! <<MappingOperation>> appinfo nameReferenceTarget : DOMAttr
| TopLevelElement_reference sets emEmnes
| name/namespace to type of UML Property e | name =:nal s
| T =2 value ="?"
I [T
! ! ~ [appinfo namespaceReferenceTarget : DOMAttr
| | namg=“ReferenceTarget'
| | “http://niem. info/2.0"
| |
| |
| | appinfo AppliesTo : DOMElement
| | attribute = appinfo nameAppliesTo, appinfo
| «ObjectTypes» | namespaceAppliesTo
| MyObjectType | name = "ReferenceTarget"
— ="http:/Iniem. i i 0
—
| |
! |eMetadataApplications
| * i on>> MetadataType via info nameAppliesTo : DOI
| <<Helper>> setAppinfoElement - name = "name’
| T " T e = —| namespace = "http:/niem.gov/iniem/appinfo/2.0"
B value ="?
| | = =
| | sy =
| | = = it H
| <ObjectTypes \ name="ReferenceTarget'
| yObjectType | it = "http/iniem.govini info/2.0"
= S valus =
! «<AugmentationApplication> ! e —
| ! | _ - o SR
| <PropertyHolders S e -
| MyPropertyHolder =l
I e = <<MappingOperation>>
| R ey AtignectationType 9 | |XSDElementDeciaration_topLevel via
| | |2<Helper>> setAppinfoflemert
| |
\ |

Figure 9-13 NIEM PSM to MPD Schema Artifacts — Annotation Mapping Overview

NIEM-UML Beta 1 142

A UML «Namespace» maps to an XSDSchema, as illustrated in Figure 9-14.

e Tags on the «<Namespace» are mapped to either tags on the XSDSchema, or to XSDAnNnotation as outlined
in the previous paragraph.

e XSDImports are produced for the NIEM Infrastructure Schemas.

e XSDImports are produced for any XSDSchema referenced by the (nested) components of the target
XSDSchema.

e Any packagedElements of the UML «Namespace», plus the contents of any container representing a
schema symbol space (such as «PropertyHolders») are mapped to XSDSchemaContent.

______________ e e s *
|PSM Perspective 3 [VD:Schema
| { |
| ﬁ | | HIEMNamespace : XSDSchema
| «Namespaces» | | contents = schemaAnnotation, infrastrgct_ure, mpdimport, m_pdlmport
NIEMNamespace HIEMNamespace schemalocation= .l...some location within the M?Dtarget directory structure...
I'| fisconformant, - - - = = = - —{ targetNamespace = "http://myTargetNamespace’
| | targetNamespace = "http://myTargetNamespace", [| version="1"
version ="1"} | |
|
|
| | | l T
| | | l |
| | | l |
| packagedElement | I |contgnts - -
plus [| | [infrastructure : XSDimport
eIe|nerﬁIaﬁnbutelmodeleup t - - -
nepted symbol space cclntem N i namespace = "http://niem.gov/iniem/appinfo/2.0"
[Implicitly include each NIEM T = | |7 | schemaLocation = "some location within target MPD"
| \Infrastructure schema
) Y cortents

|
| : ! | mpdimport : XSDimport
i ;) -l
|
|

[| namespace = "hitp:/l...some URI....

referenced by this schema schemalocation = "some relative URI to resolved schema location

within target MPD"

implicitly include each schema r — T - Thisis setto targetNamespace of referenced <<Namespace>>."
|
|

e e ey M e Pty

|
|
|
|
|
|
| v | contents
|
| aeiEciasss «MappingOperations A
| Element . ‘Ab_sﬂ@_ct)(»SDSchemaComLm | XSDSchema Content
il bl

| \ | i
| \ I
| : R 7;
l 1 AN

|Actual
| |<<MappingOperation>>,
| |source, and target by

|disjunctive selection |
2 bl bl devctaland)
\

Figure 9-14 NIEM PSM to MPD Schema Artifacts — «Namespace>> Mapping Overview

«NIEMType»s are mapped to XSDComplexTypeDefinitions, as illustrated in Figure 9-15. Properties of the target
XSDComplexTypeDefinition are set in conformance with NDR rules. NIEM-specific meta information is set in the
XSDAnnotation, as outlined earlier.

e Inheritance in the NIEM-UML model may be specified as a Generalization or as a «Restriction» Realization. In
the case of «Restriction» the derivationMethod of the target XSDComplexTypeDefinition is set to restriction.
In all other cases, the derivationMethod is set to extension.

e When there is no inheritance defined for a source model «<NIEMType», then the target model
XSDComplexTypeDefinition will have a baseTypeDefinition set to one of the NIEM NDR-defined
XSDComplexTypeDefinitions defined in the “structures” XSDSchema, based on the specific subtype of
«NIEMType».

e When the baseTypeDefinition is st ructures:ComplexObjectType, then appinfo:Base will be either
structures:Object or structures:Association, depending upon the source model NIEMType.

e When the baseTypeDefinition is not st ructures:ComplexObjectType, the appinfo:Base is set to the
baseTypeDefinition.

NIEM-UML Beta 1 143

e OwnedAttributes of «<NIEMType» which are «XSDProperty»{kind=attribute} are mapped to
XSDAttributeGroupContent as the attributeContents of the target XSDComplexTypeDefinition. For NIEM
conformant schemas, the XSDAttributeGroupContent will be more specifically an XSDAttributeUse.

o The «NIEMType» is also mapped to XSDComplexTypeContent, the content of the target
XSDComplexTypeDefinition. The abstract XSDComplexTypeContent will be either an
XSDSimpleTypeDefinition or an XSDParticle, depending upon the baseTypeDefinition.

XSDNamedComponent

name : String [1]
targetNamespace : String [1]
JaliasName : String [1]

JURI: String [1]

JaliasURI : String [1]

«Metaclass»
NamedElement

‘ |
|
| |
—_— 1 I
| i | |/aName : String [1]
’ T~
| | T
. prent: .. ;_ _DIXSDRedeﬁnaMeCo.ponnt I
| 1 |

«Metaclass»
Classifier

jo— |

O

[

XSDTypeDefinition

T

|
|
«AugmentationTypes | XSDComplexTypeDefinition
MyAugmentationType - — — —1 —Pi+derivationMethod : XSDDerivationMethod [0..1]
[|) +/final : XSDComplexFinal [0..*]
—] | +abstract : Boolean [0..1]
| +/contentTypeCategory : XSDContentTypeCategory [1]
| +/prohibitedSubstitutions : XSDProhibitedSubstitutions [0..*]
«AdapterTypes 1 | +lexicalFinal : XSDComplexFinal [0..*]
MyAdapterType s —p{+block : XSDProhibitedSubstitutions [0..*]
[| | g +mixed : Boolean [0..1]
P—] { |
«AssociationTypes i |
MyAssociationType } — — =o
—— |
] |
«MetadataTypes I
etadataType |
— 3 ==
f—]
|
|
|
|
-roleQfObject : MyObjectType
i lyObjectTyp —
|
|
| Y{ordered}
| +content (0..1
«Metaclass» Content | XSDComplexType Content
Classifier — -
| |

Figure 9-15 NIEM PSM to MPD Schema Artifacts-«<NIEMType» Mapping Overview

Figure 9-16 illustrates mappings between a NIEM PSM and MPD Schema Artifacts, as related to XSDFacets. Facets
in the NIEM PSM are represented as tag values on a «ValueRestriction». Facets in the XSD meta-model are
XSDFacets owned by an XSDSimpleTypeDefinition. The mapping provides for the construction of a specific
XSDFacet for each populated tag value in the source model «ValueRestriction>>. An Enumeration in the NIEM
PSM is mapped to an XSDSimpleTypeDefinition in the MPD Schema Artifact. Unless otherwise specified, the
baseTypeDefinition for the Enumeration mapped XSDSimpleTypeDefinition is the XML Schema token type.

NIEM-UML Beta 1 144

! lMPD Schema
ns

R e s

«XSDRepresentationRestrictions

XSDFacet

«ValueRestriction»
PrimitiveSimpleType

' _ _ _ _| _;/xspSimpleTypeDefinition
, | — ,

+lexicalValue : String [0.1] | _

" |MappedOperation
XSDFacet

{fractionDigits = 1,

length = 10,
maxExclusive = "abe",
maxinclusive = "abex",
maxLength = 12,
minExclusive = "aaa",
mininclusive = "aax",
minLength =5,

AN
MappedOperation
XSDConstrainingFacet

+facetContents |0..
XSDConstrainingFacet

pattern = "z==",
totalDigits = 4, J
whiteSpace = replace} L MappedOperation MappedOperation
N\ XSDMaxFacet XSDMinFacet
MappedOperation 1 I XSDRepeatableFacet
XSDFixedFact \ |
: A A
L A 2y T~ D
) | XSDMaxFacet XSDMinFacet
: N +value : Value [1] +value : Value [1]
MappedOperation
XSDLengthFacet
XSDMinExclusiveFacet
————————— E— |
XSDMininclusiveFacet
—————————— [|
—]
XSDMinLengthFacet
————————————— +value : Integer [1]
XSDTotalDigitsFacet
——————————————— +/value : Integer [1]
XSDPatternFacet
_____________________ “+ivalue : String [0..*]
XSDWhiteSpaceFacet
__________________ +ivalue : XSDWhiteSpace [1]
ek
5 XSDSimpleTypeDefinition
EnumerationLiteralCode (=

Enumeration

also creates
XSDEnumerationFacet for
each EnumerationLiteral

XSDEnumerationFacet
————————— +ivalue : Value [0.4] j

Figure 9-16 NIEM PSM to MPD Schema Artifacts - Common Profile Facet Mapping Overview
Figure 9-17 illustrates mappings to non-atomic XSDSimpleTypeDefinitions, XSDComplexTypeDefinitions, and top

level features:

[]
computed as list. A «List» has a single property. The type of that property is
property of XSDSimpleTypeDefinition, making it a list.

«List»s are represented in the target MPD Schema as XSDSimpleTypeDefinitions with the “variety” tag value

mapped to the itemTypeDefinition

«Union»s are represented in the MPD Schema as XSDSimpleTypeDefinitions with the “variety” tag value

computed as union. The suppliers of any «UnionOf» Usage cliented by the «Union» are mapped to the

memberTypeDefinition property of XSDSimpleTypeDefinition, making it a

union.

A «NIEMType» is mapped to an XSDComplexTypeDefinition. The «<NIEMType» is also mapped to

XSDComplexTypeContent, the content of the target XSDComplexTypeDefinition. The abstract
XSDComplexTypeContent will be either an XSDSimpleTypeDefinition or an XSDParticle, depending upon the

baseTypeDefinition.

NIEM-UML Beta 1

145

o When the XSDComplexTypeContent is an XSDParticle, then the «NIEMType» is also mapped to the
content of the XSDParticle, which is an XSDParticleContent. The XSDParticleContent is typically an
XSDModelGroup{compositor=sequence}.

o The ownedAttributes of the UML «NIEMType» which are «XSDProperty»{kind=element} are mapped to
contents of XSDModelGroup as XSDParticles. The upper/lower multiplicity bounds of the «XSDProperty»
are mapped to the maxOccurs/minOccurs of the XSDParticle.

o The «XSDProperty» is also mapped to the content of the XSDParticle as an XSDElementDeclaration. The
XSDElementDeclaration will have no name and no typeDefinition.

o For NIEM-compliant features, there will always be a «References» Realization from the «XSDProperty»
owned by a «<NIEMType» to a resolved top-level Element owned by a «PropertyHolder» (in the same or a
different Schema). The «References» Realization is mapped to the resolvedElementDeclaration property of
the target XSDElementDeclaration.

e An «XSDProperty» contained by a «PropertyHolder» is mapped to an XSDElementDeclaration directly
contained by an XSDSchema.

e An «XSDProperty» which has a subsetProperty reference to another «XSDProperty» is mapped to a
substitutionGroup reference between elements.

e «PropertyHolder»s contained by a «Namespace» represent schema symbol spaces. Within a «PropertyHolder»,
an «XSDProperty»{kind=element} represents a member of the schema element symbol space. Correspondingly,
an «XSDProperty»{kind=attribute} represents a member of the schema attribute symbol space. There is no
direct physical manifestation of symbol spaces within an XSDSchema, they are implicit based on whether the
top level components are XSDAttribute or XSDElement (hence the «PropertyHolder» itself is not mapped to an
XSDComponent). Additionally, any Generalization relationship between «PropertyHolder»s (which may be
required to satisfy subsetsProperty reference semantics) are not mapped.

NIEM-UML Beta 1 146

aLists

+item : string [0..*]

«Unions
MyUnionSimpleType —_——

T
«UnionOf» |

«ObjectTypes
Object4Type
«XSDProperty»+Property : ObjectdType [O..']e =

|
|
|
|
|
I
|
I
|
|

«References» l

[
I
I
|
|

|
I

|
|
4
|
|
|
I
o
|
|
|
|
|
|
|
|
|

|
PropertyHolder1 ‘1

MyListSimpleType NIEMList

_ ObjectType_t cl

{ TopLevelElement_decle
«XSDPropertys+Property : Object4Typeg- — — — — — 3}

L

SDPartlc

|
|
1=
|
|
|
[b odeIGrq
|
|
|

XSDPafticle |

- —

XSD_EIenLentEJI

XSDElemey

PropertyHolder2

«XSDProperty»+SubsettingProperty : Object4Type{subsets Property g

_ | itemTypeDefinition = string

— 4 memberTypeDefinitions = decimal

thec|aration_ref

Myl istSimpleType :
XSDSimpleTypeDefinition

name = "MyListSimpleType"
variety = list

string : XSDSimpleTypeDefinition |

MyUnionSimpleType :
XSDSimpleTypeDefinition

name ="MyUnionSimpleType"
variety = union

|
|
|
|
| decimal : XSDSimpleTypeDefinition
|
|
|

s _ N ObjectaType : XSDComplexTypeDefinition

content= object4dTypeParticle
name = "Ohjectd4Type"

content= objectdTypeModelGroup
maxOccurs =1
minOccurs =1

|
|
|
P | —- objectd4TypeParticle : XSDParticle
|
|
|
|

up object4TypeModelGroup : XSDModelGroup

compositor = sequence
contents = objectd TypeParticle2

- — objectd4TypeParticle2 : XSDParticle

content= PropertyElementReference
I | maxoccurs = -1
| minOccurs =0

PropertyflementReference :

ecliriﬁgn_r f XSDElementDeclaration

I resolvedElementDeclaration = Property
|

—————— A

| Property : XSDElementDeclaration

aration abstract= false

name = "Property"
nillable = false
type = ObjectdType

SubsettingProperty : XSDElementDeclaration

abstract = false

To evelElement_declaration name = "SubsettingPropery’

nillable = false

type = OhjectdType

substitutionGroup = Property

s

Figure 9-17 NIEM PSM to MPD Schema Artifacts - Common Profile Type Overview

NIEM-UML Beta 1

147

Figure 9-18 illustrates mappings related to «Choice». The mapping is similar to a <NIEMType» to
XSDComplexTypeDefinition, the variation being that the XSDParticleContent mapped from a Property is an
XSDModelGroup{compositor=choice} instead of an XSDElementDeclaration:

o A «NIEMType» typically maps to an XSDComplexTypeDefinition, an XSDParticle, and an
XSDModelGroup.

o A «NIEMType» may have ownedAttributes which are typed by a «Choice» As with «XSDProperty», these
are mapped to an XSDParticle contained by the XSDModelGroup just mentioned.

e For a Property typed by a «Choice», the content of the XSDParticle is an XSDModelGroup (instead of an
XSDElementDeclaration). The compositor of the XSDModelGroup is choice.

e The contents of the XSDModelGroup are XSDParticles mapped from the «XSDProperty»s owned by the
«Choice». The content of each of these XSDParticles is an XSDElementDeclaration (also mapped from the
«XSDProperty»), as in the case for «XXSDProperty»s owned directly by a «<NIEMType».

rF‘SM Perspective i rMF‘D Infrastructure

«ObjectTypes ObjectTypd_class ——
B o ey e .
MyChoiceObjectType —1 MyChoiceObjectType

XsSDComplexTypeDefinition
+Property : MyChoice [1] g =

content = MyChoiceObjectParticle
name ="0hjectdType"

| MyChoiceObjectParticle : XSDParticle
________ —4 content= MyChoiceObjectModelGroup
| max0ccurs =1
minQceurs =1

| [
| | MyChoiceObjectModelGroup :
:{SDMode|Group XSDModelGroup
compositar = sequence
| contents = MyChoiceObjectParticle2

|
[
|
|
|
XSOParticle MyChoiceObjectParticle? : XSDParticle
R — — content= MyChoiceQbjectModelGroup
I MaxQceurs = 1
l | minCcecurs =1
|
|

ChoiceJarlopeth' MyChoiceModelGroup : XSDModelGroup

— — = — b — — — compositor = choice
contents = MyChoiceParticle

«Choices
MyChoice

XSDParticle

-MyChoiceProperty [0/} — — — — — — — — — —

MyChoiceParticle : XSDParticle
content= MyChoiceElementDeclaration
— — —3 maxQceurs =-1
minOccurs =0

|
|
! MyChoiceFlementDeclaration :
)-(éDElememDeclaration rLf | XSDElementDeclaration
L -
|
|

T

Figure 9-18 NIEM PSM to MPD Schema Artifacts - «Choice» Mapping Overview

Figure 9-19 illustrates some mappings related to baseTypeDefinitions:

NIEM-UML Beta 1 148

e «ValueRestriction» inheritance from NIEM XML Primitive Types is mapped to an XSDSimpleTypeDefinition
baseTypeDefinition referencing the datatype counterpart from the XML Schema for Schemas.

e «ValueRestriction» specialization from a general «ValueRestriction» is mapped to an
XSDSimpleTypeDefinition baseTypeDefinition referencing the mapped general «ValueRestriction».

o A «NIEMType» is mapped to an XSDComplexTypeDefinition.

o When the <NIEMType» has an «XSDSimpleContent» Realization to a «ValueRestriction» then the content
of the XSDComplexTypeDefinition is an XSDSimpleTypeDefinition whose baseTypeDefinition is the
XSDTypeDefinition mapped from the supplier of the «XSDSimpleContent».

= When the supplier is a type from the XML Primitive Types library, and the type is also present in the
NIEM Infrastructure proxy schema, then the proxy type becomes the baseTypeDefinition.

= When the supplier is a type from the XML Primitive Types library, and the type is not present in the
NIEM Infrastructure proxy schema, then the XML Schema for Schemas XSDSimpleTypeDefinition is
the baseTypeDefinition.

= Inall other cases, the baseTypeDefinition is the XSDSimpleTypeDefinition mapped from the
«XSDSimpleContent» supplier.

= When the baseTypeDefinition is not a proxy, then an XSDAttributeGroupDefinition is added to the
attributeContents of the XSDComplexTypeDefinition. The resolvedAttributeGroupDefinition of the
XSDAttributeGroupDefinition is set to the NIEM Infrastructure
structures:SimpleObjectAttributeGroup.

o A «NIEMType» which has a «Restriction» Realization to a supplier <NIEMType» is mapped to an
XSDComplexTypeDefinition with a derivationMethod of restriction. The baseTypeDefinition is set to the
XSDComplexTypeDefinition mapped from the supplier of the «Restriction».

o «NIEMType»s that have no Generalizations or «Restriction»s are coerced to inherit from an appropriate Type
in the “structures” schema, depending upon the subtype of «NIEMType».

NIEM-UML Beta 1 149

xsd float : XSDSimpleTypeDefinition
float name ="float'

targetNamespace = "http:/imww.w3.0rg/2001/XMLSchema"
variety = atomic

ey MySimpleType :
‘mfﬂef";‘“’“’ XSDSimpleTypeDefinition
imple e
VP haseTypeDefinition = xsd float
name ="MySimpleType"
variety = atomic

My2SimpleType : XSDSimpleTypeDefinition
«ValueRestriction» i+ i
[haseTypeDefinition = MySimpleType
My2SimpleType == = name = "My2SimpleType"
variety = atomic

«ObjectType» A s
My20bjectType ObjectType : XSDComplexTypeDefinition
| attributeContents = My20hjectType SOAP

—— e]
. J haseType = My2SimpleType
FimpleContent | content = My20bjectTypeSimpleContent
derivationMethod = extension
name = "My20hjectType"
pOontefRimETHRERalcul SR — My20bjectTypeSimpleTypeDefinition :
XSDSimpleTypeDefinition A
baseTypeDefinition = My2SimpleType
variety = atomic
| My20bjectTypeSOAP : XSDAttributeGroupDefinition
==y resolvedAttributeGroupDefinition = SimpleObjectAttributeGroup

SimpleObjectAttributeGroup :
XSDAttributeGroupDefinition

name = "SimpleObjectAttribute Group"
targetNamespace = "http://niem.goviniem/structures/2.0"

<<Helper>> setBaseNiemClassifier

«ObjectTypes | - e
My30bjectType : XSDComplexTypeDefinition
My30bjectType | ObjectType : XSDComplexTypeDefinition
— — — i baseTypeDefinition = My20bjectType
| derivationMethod = restriction
name = "My30bjectType"

Figure 9-19 NIEM PSM to MPD Schema Artifact- baseTypeDefinition Overview

For NIEMpsm2mpd, mapping operations are generally invoked with the context of a source NIEM-UML Element
and produce some form of target XSDComponent. Most mapping operations are also provided an argument which is
the XSDComponent container context. The “when” condition for the MappingOperations are normally a function of
the source NIEM-UML element, the type of the source NIEM-UML element, the source NIEM-UML element's

NIEM-UML Beta 1 150

applied stereotype, and/or the target XSDComponent container context. The mapping operation connects its target
XSDComponent to its container and populates the XSDComponent properties.

Figure 9-20 illustrates the disjunction pattern for the NIEMpsm2mpd transformation.

For the NIEMpsm2mpd transformation, each level of the inheritance hierarchy populates properties of a target
XSDComponent from the stereotype tag values and/or UML elements of the source NIEM-UML Model. Figure
9-21 illustrates the inheritance for most of the MappingOperations in the NIEMpsm2mpd transformation.

Figure 9-22 illustrates the remaining MappingOperations for the NIEMpsm2mpd transformation.

NIEM-UML Beta 1 151

/AbstractXsDSchemaContent
L —

«MappingOperations XSDNotationDeclaration I I «MappingOperations
Topl Topl
—_ 1 s
:

«MappingOperations [AbstractxsDimport
_topLevel 1

1 | |
1

[XSbinclude | ingOperations XSDRedefine

] defil ontent [— «MappingOperations

| ——

_— XSDimport
|
| ——

disjunctss

«MappingOperations l «MappingOperations

|AbstractXSDTypeDefinition_dataType |
| 1 E 1
L 1 L 1

T

=
| <MappingOperation» I ’—‘—"mppingop“ s
[1

’ ' i;l

T‘di; =z

IappingOperati ati i ‘ [
‘{"Wai?ﬁﬂemieﬁon I I Union | ObjectType_ ntent |||
! 1 1 F

[L

1 1 [1
Operations
List

I 1
_

I |objectType_class I |
1 | 1 !

L |l
kdisjuncts» <«disjuncts> «disjuncts>

CtXSD! ntent | ype | '!?e_‘l [M-pten'&__l |ob]oettype_d~tntype |
| I [I |
1 | i

1L

«MappingOperations
Enumeration

I <disjuncts»
1
1

[WEMC. i ition | [XSDSi iti P

|
[L

«MappingOperations

T

] T | disjuncts:

«MappingOperation» l i ati | = =
perty . ype | | perty_s _ref ‘—‘—l operty. S tvpe
1 [| 1
| 1

L ——— |

«MappingOperation»
ntent. i

«MappingOperation»
AbstractXSDSchema

<disjuncts>

—_—
==

)|) e

L=

EpepingOperations | o : I| <MappingOperations E I z l | I ﬁﬂ
i XSDLengthFacet
|XSDF
I | 1
|

i 4 i | | V7

| XSDProperty_Attril _attril ation |
1 I 1 I 1
1§ | E 1 |

AbstractxsbTerm | XSDModelGroupDefinition_Property |
| E 1

i

' : rer] Choice_property |
I] I 1 —
s | i | 1 L e———— |

Figure 9-20 NIEM PSM to NIEM-Conforming XML Schema - Disjunction

NIEM-UML Beta 1 152

aMappingOperation
XSDNamedComponent

«inheritss

MappingOperations [[ation
XSDFeature I] I]
XSDAttributeDeclaration_base XSDElementDeclaration_base
I 1 I]
[] []
5
I
[| 1
I] []
[] [‘f]
.
XSDAttributeDeclaration | _attributeUse | [xsbEtlementDeclaration_ref | XsDElementDeclaration_topLevel
I 1 I 1 | —
[] [] L e ——
ainheritss ? ainherits> ainheritss
«MappingOperations XSDProperty _attr ation I ¥ Y ation <MappingOperations «MappingOperations
i ation_topLevel }] } } TopL. ¥ TopLevelElement reference
<lappingOperations
XSDFacet
ainheritss
<hlappingOperations
XSDConstrainingFacet
? cinherits>
=MappingCperations «MappingCperation:
XSDRepeatableFacet XSDFixedFacet
ainheritss ainheritss ?
T;W\am 3 T T Twm 1 T Tginheritsx
<MappingOperations <MappingOperations <MappingOperations «MappingOperations <MappingOperations <MappingOperations <MappingOperations <MappingOperations
ionFacet XSDPatternFacet XSDMaxFacet XSDMinLengthFacet XSDMaxL acet| | . /XSDFractionDigitsFacet | | IXSDTotalDigitsFacet XSDMinFacet
I [
cinherits> _sinheritss
Theriss inheritss
O i SR =MappingOperations shlappingOperations &MappingOperations shlappingOperations
acet eFacet XSDLengthFacet i acet i iveFacet i iveFacet
<MappingOperations [
XSDAttributeUse [] [1
" <inheritss
<hlappingOperations
XSDProperty_AttributeUse RN EElSERErt N XSDAnyProperty
— |
—]
s
ainheritss ainheritss
<MappingOperations <MappingOperations <MappingOperations SequencelD
XSDProperty_AttributeUse_ref XSDProperty_Attributelse_type XSDProperty_Attri X Type
—]
XSDModelGroup_base [_Property | [¥sDimport_infrastructure
— I
[

[enoice _property |
[]

_Property |
]

Figure 9-21 NIEM PSM to NIEM-Conforming XML Schema - Inheritance

NIEM-UML Beta 1

153

eMappingOperations
XSDNamedComponent

XSDRedefinableComponent
S
]
a
T zr T zrzinherits»
iti i T iti Type | |lSI]mirihmeGmupDeﬁnitinn «MappingOperations
|

XSDTypeDefinition

‘fln erfiss T«inherits» T Z‘ﬁxinher'rts»

eMappingOperations . "
NIEMModelGroupDefinition | |<MNErtss MappindOperations NIEMTypeDefinition «MappingOperations XsDSimple TypeDefinition sMappingOperations
NIEMAttributeGroupDefinition XSDAttributeGroupContent_attributeGr it XSDComplexTypeDefinition
T
T 2
«MappingOperations NIEMType
ValueRestriction — |
—]
a
anm:m T anmum (rmnherils» T T. 1|5 1|5
sMappingOperations sMappingOperations «lMappingCperations aMappingCperations sMappingCperations aMappingCperations eMappingOperations
Union Enumeration HIEMList ObjectType Type AdapterType AssociationType
Tmn:m Tﬂnmcm T ?
aMappingOperationz =MappingOperation: «MappingOperationz ;Mﬁpplnriﬁz‘p_era}rlon» xMap;:lg?[peratmn»
ObjectType_datatype ObjectType_class ObjectType_datatypeSimpleContent ummentationType elype
XSDSchemabDirective «MappingOperations «MappingOperations MIEMComplexTypeC T
il] ibuteGrou p XSDParticle I I
7
XSDRedefine
= —
[xsDimport_init | [|
[| | |
L] L |
eMappingOperations w
XSDimport —]

Figure 9-22 NIEM PSM to NIEM-Conforming XML Schema - Inheritance Other

9.4 NIEM MPD Model to NIEM MPD Artifact

Figure 9-23 NIEM MPD Model to NIEM MPD Artifact Mapping Overview illustrates the high-level packaging map
between NIEM MPD Model and MPD Atrtifacts.

e A NIEM MPD «ModelPackageDescription» component is mapped to an MPD Catalog, and will contain all
NIEM PSM packaging structure nested to any level. The Catalog includes File, Folder, and FileSet entries

related to all component schemas, plus (at least) placeholder entries for MPD required and/or recommended
artifacts.

«Namespace» is mapped to XSDSchema (via NIEMpsm2xsd transformation) within an MPD directory
structure determined by the relativePathName of «ModelPackageDescriptionFile» Usages. XSDImports for
each XSDSchema is determined from the transitive closure of all cross-schema references embodied in the
source «Namespace», plus all the NIEM NDR-required imports. Any «ModelPackageDescriptionRelationship»
Usage from the source model «ModelPackageDescription» maps to a Catalog RelationshipType contained by
the MetadataType entry within the CatalogType.

NIEM-UML Beta 1 154

]

NIEM MPD Model A 5
|
! 5 =
| MPD Artifact Root Directory A
|
an MPD Folder '
ppingOperationk |
FolderType | =
— — — — ! an MPD Folder (a subdirectory)
einformationodels |
NIEMNamespace? | HIEMNamespace? :
{isConfarmant, | XSDSchema
version="1"} i resolvedschema
7
| ehodelPackageDescriptionFile» | + XSDImport
|| = = —
| <<NMappingOper ation>:> I
|] ¥SDimport |
«InformationModels < T 5 I
| NIEMNamespace 3 | = |
| {isConformant, [~
| Lirrg:éwa_rnsﬁpsce: http:ifmyTargetNamespace", | R RS SRR
| : | : XSDimport : XSDImport : XSDimport I
|
|
|
|
| |
| resolvedSchema
| 1ema
|
|
<<MappingOperation=>ode! =
PackageDescriptionFile = :FileType
naturelUR| = "http:fireference.niem.goviniemiresource/mpd/lexicon/1 O/nature#xsd"
purposelRI = "hitp:ireference.niem. cefm 11.0/pL -schema’
relativePathMame = "/MpdFolder/NIEMMNamespace”
N aritact =
<<MappingOperation:= : FileSetType
KRB RuesC PuonieSet naturelUR| = "hitp:fireference.niem.goviniemiresource/mpdflexicon/1 .O/nature#file-set’
| purposeURI = "http:#reference niem.govini celn 1.0/pL 15ion-schi it
eMadelPackageDescriptions |
| HIEM MPD artifact —
{mpdBaseUR| = "http: lfexamp\e.orgtsamp)eﬁ(| iFolderType | i Type
| mpdversionin =1 07 ~ | |relativePathName:“.fMdeoIder‘ I
T eimports e | et relationship
!
shlodelPackageDescriptionFsSets] I S—— !
Mudelpankasg;uescnpuunnle ok 4a:kageDescriD;..n N Catalog.xmi : CatalogTvpe =
[natureCade = file_set, ! mpdName = "NIEM MPD" .
purposeCade = extension_schema_set} | mpdUR| = "http:fiexample.org/sample/ .0
| mpdVersionlD ="1.0"
|
|
|
|
|
|
J

Figure 9-23 NIEM MPD Model to NIEM MPD Artifact Mapping Overview

9.5 NIEM MPD Artifact to NIEM MPD Model

The mapping of MPD Catalog and Schema Artifacts to the NIEM MPD Model removes much of the explicit
representation of XSD constructs, NIEM relations, and binding to the NIEM NDR infrastructure.

Figure 9-24 illustrates the high-level packaging map between NIEM MPD Artifacts and the NIEM MPD Model.

e A «ModelPackageDescription» component is mapped from an MPD Catalog, and will contain MPD packaging
structure (as specified by Catalog Files, Folders, and FileSets), nested to any level. The Catalog includes file,
folder, and fileSet entries related to all component XSDSchemas, plus entries for other MPD-required and/or
recommended artifacts.

e «InformationModel» is mapped from an XSDSchema. XSDImports for that XSDSchema are used to ensure
transitive closure of all Schemas required, even if they have not been properly registered in the MPD Catalog.
Those XSDSchemas constituting the NIEM Infrastructure components are not mapped. The actual XSDImport
is also not mapped, since it can be derived based on cross «InformationModel» relations.

NIEM-UML Beta 1 155

NIEM MPD Model a MO ARs T T T T T oo

|
|
| MPD Artifact Root Directory A
|
|

ppingOperation
ETypePackage —‘
e an MPD Folder (a subdirectory)

einformationhodels «hlappingOperations
NIEMNamespace2 | =~ MPDSchema
{isConfarmant,

version="1"}

XSDSchema

|
| HIEMHamespace? :
|
|

«hodelPackageDescriptionFiles

mport not mapped directly;
references to external
sinformationModels schema XSDComponents
NIEMNamespace will resutt in mapping via
<<NlappingOperation==
{isCanfarmant, MPDSchema. ¥SDimport not
targetNamespace = "hitp:/myTargetNamespace", mapped directly; references
version ="1" lto external schema .
L XSDComponents will result 1 XSDimport. M&KJ :XSDimport.
in mapping via
<<MappingOperations=
MPDSchema.
Infrastructure ¥SDSchemas

contents conterts contents

™
|
|
|
|
|
|
|
|
|
|
|
|

net mapped to tar geted PIbt resolvedSchema
jpocel resolvedSchema TR
:FileType
naturelUR| = "http:fireference.niem.goviniemiresource/mpd/lexicon/1 O/nature#xsd"
purposelUR| = "http:ireference niem celm 1.0/pL -schema"
relativePathMame = "/MpdFolder/NIEMMNamespace”
artifact E
: FileSetType
naturelUR| = "hitp:fireference.niem.goviniemiresource/mpdflexicon/1 .O/nature#file-set’
| purposeURI = "http:#reference niem.govini celn 1.0/pL 15ion-schi it
eModelPackageDescriptions |
| NIEM MPD artifact
{mpdBaseURI = "httpiizxample.orgisampler” | iFolderType |
| mpdVersionlD ="1.0"} - | relativePathMame = "/MpdFolder’
T almports A | artifact relationship
L
ahlodelPackageDescriptionFileSets =] KMappingol_rmm
MyMndeIPal:I(asg:tDescriminnFile Cata\ngi = Catalogmi: CatalogType

mpdMame="NIEM MPD"

| mpdURI = "http/iexample. org/sample/1 .0
ppingOperatiol mpdVersionlD ="1.0"
_ProvisioningComponent

[natureCade = file_set,
purpeseCode = extension_schema_sef}

I
I
I
|
I
I
I
I
I
|
I
I
I
|
I
I
I
I
I
|
I
I
|
appinfo ;. XSDSchema |
s XSDSchema |
I
I
[
I
I
I
I
I
|
I
I
|
|
I
I
I
I
I
|
I
I
|

Figure 9-24 NIEM MPD Artifact to NIEM MPD Model - Overview

There are various forms of metadata embodied in the components of a NIEM conformant Schema. The metadata are
represented in schemas as text-based user/application information embodied within an XSDAnnotation. The
metadata includes documentation, cross-component references, and extended properties for the XSDComponents.
All forms of XSDComponent metadata are based on NIEM-NDR rules for representation within constructs of an
XSDAnnotation. Figure 9-25 illustrates many specific cases of metadata usage:

e XSDAnnotations are owned by an XSDComponent. The ownership association name and semantic varies by
specific XSDComponent.

e An XSDAnnotation has a property “userInformation” which contains an xsd:documentation (DOM) Element.
The value of the xsd:documentation Element is mapped to a UML «Documentation» Comment body. The UML
contextual container has the new Comment added to its ownedComments.

e An XSDAnnotation also has a property “applicationinformation” which contains an xsd:appinfo
(DOM) Element. The xsd:appinfo Element contains (DOM) Elements defined by the NDR rules. All NDR
defined elements are either in the NIEM appinfo namespace or the NIEM appinfo2 namespace.

o appinfo:Conformantindicator is used to indicate NIEM conformance for an XSDSchema or an XSDImport of
an XSDSchema. The UML «Namespace» isConformant tag is mapped from the value of the
appinfo:Conformantindicator in the source XSDSchema.

o appinfo:Base is a NIEM defined element which has 2 attributes: appinfo:name and appinfo:namespace.
Together, the name and namespace uniquely reference an XSDComponent within a particular symbol space.
The value of appinfo:name and appinfo:namespace are used in the determination of a particular subtype of the
«NIEMType» Stereotype is to be applied to the UML Class. The information is used when it identifies an

NIEM-UML Beta 1 156

XSDTypeDefinition within the structures schema. For XSDTypeDefinitions located in schemas other than the
structures schema, the baseTypeDefinition inheritance chain is followed until a structures reference is found.
For an ObjectType or RoleType, the stereotype is not applied.

o appinfo:ReferenceTarget is a NIEM defined element which has 2 attributes: appinfo:name and
appinfo:namespace. Together, the name and namespace uniquely reference an XSDTypeDefinition. The value
of appinfo:name and appinfo:namespace are mapped to a UML Property type declaration representing a
“Reference” Element.

o appinfo:AppliesTo is a NIEM defined element which has 2 attributes: appinfo:name and appinfo:namespace.
Together, the name and namespace uniquely reference an XSDTypeDefinition. The value of appinfo:name and
appinfo:namespace are mapped to the supplier of a UML «Application» Usage.

e appinfo:External AdapterTypelndicator is a NIEM-defined (DOM) Element. A UML «AdapterType» is mapped
from an appinfo:External AdapterTypelndicator with value “true”.

NIEM-UML Beta 1 157

|MPD Schema Artifact

| aMetaclass> |
| Etement |
I i I
| |
i maps i I on || §
on/value to Comment and |—|
| . —fattaches it to its Element |
s =t container as
! - ownedComment. L
| i o
| | {ordered) {ordered} fordered} |{ordered} {ordered}
| -ownedCommert +anhotation |0..1 ion |0..1 i 5 i Al i 1
I mapXSD) ./ |
T i 1]
| | "instanceof
| | |<abstractions
| \ | schemaAnnotation : XSDAnnotation
\ 5 =
| | PP
\ = schemaD
! \ <<helper>>
| \ mapXsDAnnotation maps -
| XSDDocumentation value ‘schemaDocumentation : XSDDocumentation
to <<Documentation>> s on’
| - = - gy -
! — ~|Comment body. — —| ramespace = "http:/www.w3.0rg/2001/XMLSchema'

| EDecumcniations value = "my documentation”
| my Documentation
|
! ! ‘schemaAppinfo : XSDApinfo
| | element = appinfo Conformantindicator, appinfo Base, appinfo ExternalAdapterTypelndicator
| | name = "appinfo” —
| | namespace = "http/Mmww.w3.0rg/2001/XMLSchema”
| |
| ™ appinfo Conformantindicator : DOMElement
| InformationModel a;'s;%mggp:;;‘;";‘;;n'u_ name = "Conformantindicator’
| | fisConformant, g - “{eanrormantiiator vais to |- pnamesgace = "http:/iniem goviniem/appinfo/2.0"

9 ="http:iimy’ f { value ="true"
I | version="1"} isConformant tag.
| T
| |
| | ppinfo Base : DOMElement
| i ppinfo name, appinfo namespace

name = "Base"
| . Saptet i -
| .M;ncimnry}r,e, o] ;;lé?wny()perstwﬁ;s_ o Tive i = "http:/iniem. 0
MyAssociationType
— =
[— i R ~ ‘appinfo name : DOMARtr
| o
name ="nam

| __|=<MappingOperation>> o &= "http:iniem i i o
| XSDT _Class _ yoe |~ = Tvalue="7" b
| T = —_
| MetadataTypes g | = = =

MyMetadataType @ “appinfo namespace : DOMAttr
I =] name = “namespace”

| eee— <<MappingOperation>> ST “hiby-liniem. i info/2.0"
! — . XSDTypeDefintion_Class_MetadataType = == e
| value ="?
| |
| |
| L appinfo ExternalAdapter Typelindicator : DOMElement
| <AdapterTypes <<MappingOperation>> name = "ExternalAdapterTypelndicator”

/Adapter Type XSDTypeDefintion_Class_AdapterType |~ — — — — 7| ="http:#/niem. i info/2.0"

| MyAdapterTyp:
| p—) value ="true"

—
|

appinfo ReferenceTarget : DOMElement
attribute = appinfo nameReferenceTarget, appinfo

|
|
«PropertyHolders |
| namespaceReferenceTarget
|
|
1

MyPropertyHolder
| XSDProperty»-MyBaseProperty(ind = element }
i bset p

name = "ReferenceTarget’
="http:/iniem i info/2.0"

-MyReference : MyObjectType -
-WyAugmentation : MyAugmentationType: 2

appinfo nameReferenceTarget : DOMAttr
name ¥
S pace = "http:/iniem. 2.0"
valug ="?"

sets type of Property to XSDTypeDefintion
kit X

| appinfo namespaceReferenceTarget : DOMAttr

name= ¢ReLerenceTarget'
= "hitp/iniem 2.0"

value="?"

appinfo AppliesTo : DOMElement
attribute = appinfo nameAppliesTo, appinfo
namespaceAppliesTo
name = "ReferenceTarget"
"http://niem i info/2.0"

ippinfo nameAppliesTo : DOMAttr

ame”
= =i = "http:/iniem i info/2.0"

|
MetadataTypes
MyMetadataType |

= appinfohamespaceAppliesTo : DOMAttr
name="ReferenceTarget'
E. = "hitp://niem i info/2.0"

- value="?"
-~ .

<ObjectTypes

MyObjectType
—

<AugmentationApplications
!

<PropertyHolder> - o
MyPropertyHolder
MyAugmentation : MyAugmentationType

<<MappingOperation=>
AugmentationApplication

Figure 9-25 MPD Schema Artifacts to NIEM-UML MPD Model — Annotation Mapping Overview

NIEM-UML Beta 1 158

An «InformationModel» is mapped from an XSDSchema, as illustrated in Figure 9-26.

e Tags on the «InformationModel » are mapped from either properties of the XSDSchema, or from
XSDAnnotation as outlined in the previous paragraph.

e XSDImports are ignored for mapping. Any reference to XSDComponents within an external Schema will
result in mapping the Schema to an «InformationModel».

e XSDSchemaContent is mapped to packagedElements within the «InformationModel». For schema symbol
spaces other than XSDTypeDefinitions, a container is produced (such as «PropertyHolder» to hold element
and attribute symbol spaces).

L L B -
|MPD Model 3 |fu1PD Schema Artifact
| | |
| | | HIEMNamespace : XSDSchema

—| | | contents = schemaAnnotation, infrastructure, mpdimport, mpdimport
I - | schemalocation ="..some location within the MPD target directory structure..”
| nitumaticniipdel M]PDSchema targethlamespace = "http:imyTargetMamespace”
| {isConformant, kb —|— — — = "|version="1"

targetilamespace = "hitpJimyTargetiamespace”, | |
|| version="1"} |
| | | I T
[| ' [
| | : I I

|

| packagedElemert | | ! |conterts

| plus
elelnerd.l’aﬂribme!modeld'nup
neisted symbol space cqntent

| infrastructure : XSDimport

namespace = "hitp:niem.goviniemiappinfo/2.0"

- = | | schemaLocation = "some location within target MPD"

|

|

|

|

|

|

|

|

|

|

|

|

|

I [
] cortents |

1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

infrastructure schemas not mapped

to external schema ¥SDComponents — This is setto targetMamespace of referenced <=Mamespaces==."
schemalocation = "some relative URI to resolved schema location
within target MPD"

will result in mapping via

|

| | mpdimport : XSDimport
| import not mapped directly; references namespace = "http:/l...some URI....

|

| ==MappingOperation== MPDSchema

|

|

|

|

|

|

| " l I contents
| zMetaclassz I |
|

|

|

|

|

|

|

e

zMappingOperation=z
Element | pperactxsbschemaContbrt |
0 R ST
\

XSDSchema Content

Actual
==MappingOperation==,
source, and target by
disjunctive selection

Figure 9-26 MPD Schema Artifacts to NIEM-UML MPD Model — «InformationModel» Mapping Overview

«NIEMType»s are mapped from XSDComplexTypeDefinitions, as illustrated in Figure 9-27. NIEM-specific meta
information from XSDAnnotations are used to help determine the stereotype to be applied, as outlined earlier.

¢ Inheritance in the NIEM-UML model may be specified as a Generalization or as a «Restriction» Realization.
«Restriction» will be used when the derivationMethod of the source XSDComplexTypeDefinition is set to
restriction. In all other cases, Generalization is used to represent inheritance.

e When the the baseTypeDefinitions of the source XSDComplexTypeDefinition is one of the NIEM NDR-
defined XSDComplexTypeDefinitions from the “structures” XSDSchema, no inheritance is produced for the
target UML Class.

e The attributeContents of the source XSDComplexTypeDefinition are mapped to
«XSDProperty»{kind=attribute}.

e For a NIEM-PIM, an XSDComplexTypeDefinition whose XSDComplexTypeContent is an
XSDSimpleTypeDefinition will normally be mapped to the same UML MetaClass as the baseTypeDefinition of
the XSDSimpleTypeDefinition. A ComplexType with simpleContent derived from a schema datatype will be
mapped to a PrimitiveType and will be a specialization of a PrimitiveType. In this case, the «ValueRestriction»
Stereotype is not applied. A ComplexType with simpleContent derived from an Enumeration (i.e., a

NIEM-UML Beta 1 159

SimpleType with enumeration facets) will be an Enumeration with no owned literals. A ComplexType with

simpleContent derived from a DataType mapping will be an unstereotyped DataType.

«Metaclass»
NamedElement |
jasm———r——_ "}
«Metaclass»

lassifier
fom— |
j—]

«AugmentationTypes

MyAugmentationType
[2)
]

«AdapterTypes
MyAdapterType

XSDNamedComponent

name : String [1]
targetNamespace : String [1]
J/aliasName : String [1]

JURI: String [1]

J/aliasURI : String [1]

IgName : String [1]

|
|
— | T—

3
a
2

= — — — |XSDRedefinableComponent |
B ||

[

XSDTypeDefinition

XSDComplexTypeDefinition

+derivationMethod : XSDDerivationMethod [0..1]

+/final : XSDComplexFinal [0..4]

+abstract : Boolean [0..1]

+/contentTypeCategory : XSDContentTypeCategory [1]
+/prohibitedSubstitutions : XSDProhibitedSubstitutions [0..*]
+lexicalFinal : XSDComplexFinal [0..*]

+block : XSDProhibitedSubstitutions [0..*]

+mixed : Boolean [0..1]

«AssociationTypes

etadataTypes &
etadataType

«enumerations
MyEnumerationCodeType

eprimitives
rimitiveType

«dataTypes
ataType

Figure 9-27 MPD Schema Artifacts to NIEM-UML MPD Model — Type Mapping Overview

Figure 9-28 illustrates mappings between a NIEM PSM and MPD Schema Artifacts, as related to XSDFacets. Facets
in the NIEM PSM are represented as tag values on a «ValueRestriction». Facets in the XSD meta-model are
XSDFacets owned by an XSDSimpleTypeDefinition. The mapping provides for populating «ValueRestriction» tag
values from XSDFacets. An XSDSimpleTypeDefinition containing enumeration facets is mapped to a UML
Enumeration.

NIEM-UML Beta 1 160

e R R R R R R R R A R R A R AR A R I R IR A TN

«XSDRepresentationRestriction» XSDFacet
«ValueRestrictions | | XSDSimpleTypeDefinition | +lexicalValue : String [0..1]
PrimitiveSimpleType . = - T T|MappedOperation
{fractionDigits = 1, XSDFacet
length = 10, | = }
maxExclusive = "abe", | +facetContents |0..*
maxInclusive = "abex", XSDConstrainingFacet
maxLength = 12, |
minExclusive = "aaa", |
mininclusive = "aax",
minLength =5, |
pattern = "z==", | Fay
totalDigits = 4,
whiteSpace = replace} | MappedOperation MappedOperation
| XSDMaxFacet XSDMinFacet
| 1 I XSDRepeatableFacet
| \ |
| A A o A x5 D 723 7.y
it sorractionvgtaracet | | [L
XSDTypeDefinition_PrimitiveType | | XSDMaxFacet XSDMinFacet
- | +value : Value [1] | ||+value : Value [1]
agedoperaton 1 — — — —[XSDLengthFacet |
SDTypeDefinition_PrimitiveType l
MappedOperation _l. (e ey
XSDTypeDefinttion_PrimitiveType
AN
MappedOperation
XSDTypeDefinition_PrimitiveType
MappedOperation
XSDTypeDefintion_PrimitiveType |
XSDMinExclusiveFacet
————————— E— |
MappedOperation | P —]
XSDTypeDefinttion_PrimitiveType
XSDMininclusiveFacet
N oo N o == == —]
MappedOperation E—]
SDTypeDefinttion_PrimitiveType
N B 7] XSDMinLengthFacet
N N +value : Integer [1]
Mapped®peration
XSDTypeDefinttion_PrimitiveType
NG N] XSDTotalDigitsFacet
N S +ivalue : Integer [1]
MappedOperation iz
XSDTypeDefintion_PrimitiveType
N XSDPatternFacet
MappedOperaton | — — — — — — &/ — — = = = = = = = = — — — — “+/value : String [0..*
XSDTypeDefinttion_PrimitiveType 9[0.]
XSDWhiteSpaceFacet
_________________ +ivalue : XSDWhiteSpace [1]
XSDSimpleTypeDefinition l
<<MappedOperation>> Lo
XSDTypeDefinttion_Enumeration
creates EnumerationLiteral for each

XSDEnumerationFacet

____________ XSDEnumerationFacet
———————— +value : Value [0.°] J

Figure 9-28 MPD Schema Artifacts to NIEM-UML MPD Model — Facet Mapping Overview
Figure 9-29 illustrates mappings from non-atomic XSDSimpleTypeDefinitions, XSDComplexTypeDefinitions, and

top level features:

o «List»s are represented in the source MPD Schema as XSDSimpleTypeDefinitions with the “variety” tag value
computed as list. This maps to a «List» with a single property. The type of that property is mapped from the
itemTypeDefinition property of XSDSimpleTypeDefinition.

e «Unionys are represented in the MPD Schema as XSDSimpleTypeDefinitions with the “variety” tag value
computed as union. This maps to a «Union» with a «UnionOf» Usage for each memberTypeDefinition.

o A «NIEMType» is mapped from an XSDComplexTypeDefinition. The abstract XSDComplexTypeContent will
be either an XSDSimpleTypeDefinition or an XSDParticle, depending upon the baseTypeDefinition.

o When the XSDComplexTypeContent is an XSDParticle, then the «NIEMType» is also mapped from the
content of the XSDParticle, which is an XSDParticleContent. The XSDParticleContent is typically an
XSDModelGroup{compositor=sequence}.

NIEM-UML Beta 1

161

o The contents of the XSDModelGroup are XSDParticles. When the particleContent is an
XSDElementDeclaration, it is mapped to an «XSDProperty»{kind=element} owned by the UML container
context. The upper/lower multiplicity bounds of the «XSDProperty» are mapped from the
maxOccurs/minOccurs of the XSDParticle.

o The resolvedElementDeclaration property of a source XSDElementDeclaration is mapped to a
«References» Realization. The supplier of the «References» is set to the Property mapped from the
resolvedElementDeclaration.

e An «XSDProperty» contained by a «PropertyHolder» is mapped from an XSDElementDeclaration directly
contained by an XSDSchema.

e An «XSDProperty» which has a subsetProperty reference to another «XSDProperty» is mapped from a
substitutionGroup reference between elements.

o «PropertyHolder»s contained by a «Namespace» represent schema symbol spaces. Within a «PropertyHolder»,
an «XSDProperty»{kind=element} represents a member of the schema element symbol space. Correspondingly,
an «XSDProperty»{kind=attribute} represents a member of the schema attribute symbol space. There is no
direct physical manifestation of symbol spaces within an XSDSchema, they are implicit based on whether the
top level components are XSDAttribute or XSDEIlement (hence the «PropertyHolder» itself is not mapped from
an XSDComponent and «PropertyHolder»s are generated on demand when mapping a top-level
XSDElementDeclaration and/or XSDAttributeDeclaration). Generalizations may be added to some
«PropertyHolder»s to satisfy subsetsProperty reference semantics.

o XSDComplexTypeDefinitions which have baseTypeDefinitions residing in the structures XSDSchema become
some subtype of NIEMType having no inheritance.

NIEM-UML Beta 1 162

(NEM MPD Mol PD Schema Artifacts

|
|
. XSDTypeDefinition_ListTyp l Myl istSimpleType :
EEEL = == == = ~ T| xsbDSimpleTypeDefinition
MyListSimpleType n — =
e aED. itemTypeDefinition = string
: g [U.. name = "MyListSimpleType'
variety = list

string : XSDSimpleTypeDefinition |

MyUnionSimpleType :
- XSDSimpleTypeDefinition
«Unionz

MyUnionSimpleType | XSDTypeDefintion_UnionType | | MEMPErTypeDefinitions = decimal
H=a—i =ik 3 name ="MyUnionSimpleType"

variety = union

|
|
|
|
|
|
|
|
|
|

’
«UnionOfs |

|
|
|
| decimal : XSDSimpleTypeDefinition
|
|

«ObjectTypes ” .
Objectd4Type niSDlypi) efintidn_Clags_ObjectType Object4Type : XSDComplexTypeDefinition
«XSDPropertys+Property : Object4Type [0..*]d, == I content= object4TypeParticle
4 1 | name ="ObjectdType"
| - |
|
| | I | object4TypeParticle : XSDParticle
! I | content= object4dTypeModelGroup
| 1 - maxOccurs = 1
| k— *Xgpcimpfj_pelfﬁ.f“’"_ _ | minOccurs =1
I I |
| | | | object4TypeModelGroup : XSDModelGroup
| [rheleerz> P_af'ic_‘ﬁc_"“err_" compaositor = sequence
| I contents = ohjectd TypeParticle2
|
! I |
«References» 5\ [<<helpgr>> r\qodeleroup object4TypeParticle2 : XSDParticle
el S 7 R e content= PropertyElementReference
~ I maxOccurs =-1
I ~ | minOccurs = 0
] s
S |
I |<<helper>>\nlDQeIQroupPanicleContem
I e T f\r— = PropertyFlementReference :
| ~ XSDElementDeclaration
~
| ' ~esolvedElementDeclaration = Property
|
| ~
T L’ropenyReference
|
| | Property : XSDElementDeclaration
Prope older1 =
— L0 Al — - \DRElementDeciaration fopLevel | abstract= fals
«XSDPropertys+Property : ObjectdTypesf}— — — — — — - T name ="Property"
nillable = false
_ I | type = Objectd Type
|
|
|
|
|
|
|

SubsettingProperty : XSDElementDeclaration
PropertyHolder2 | | abstract= false
nJ\IDRE'ememDeclaralion_topLeveI name = "SubsettingProperty’
| nillable = false
I substitutionGroup = Property
type = ObjectdType

“SDProperty»+SubsettingProperty : ObjectdType{subsets Property 4

Figure 9-29 MPD Schema Artifacts to NIEM-UML MPD Model — Non-atomic Type Mapping Overview

NIEM-UML Beta 1 163

Figure 9-30 illustrates mappings related to «Choice». The mapping is similar to a <NIEMType» to

XSDComplexTypeDefinition, the variation being that the XSDParticleContent mapped to a Property is from an

XSDModelGroup{compositor=choice} instead of an XSDElementDeclaration:

o A «NIEMType» typically maps from an XSDComplexTypeDefinition, an XSDParticle, and an
XSDModelGroup. For a NIEM-conformant schema, the XSDModelGroup compositor is sequence.

e The XSDModelGroup contents are an ordered set of XSDParticles, each having an XSDParticleContent as

content. Each XSDParticle normally maps to a UML Property with multiplicity as specified by the

XSDParticle minOccurs/maxOccurs. The XSDParticleContent is typically an XSDElementDeclaration and

further refines the Property to be an «XSDProperty»{kind=element}. If the XSDParticleContent is an

XSDModelGroup{compositor=choice}, the XSDModelGroup is mapped to a «Choice» and the Property is

refined to have a

type of that «Choice».

e The XSDModelGroup{compositor=choice} has contents which are an ordered set of XSDParticles, each
having an XSDParticleContent as content. These XSDParticles define the contents of a «Choice», which
typically map to the sequence of «XSDProperty»s.

|N|EM MPD Model

) |Tu1PD Schema Artifacts

z0hjectTypes
MyChoiceObjectType

-){SDTvpeDefin'rtiJn_CIaBs_ObjectType

+Property : MyChoice [1]

MyChoiceObjectType =
XSDComplexTypeDefinition

h— — — — — |

content = MyChoiceObjectParticle
name ="0bjectdType"

I
)(SDCoﬂlpExTyﬁeDefin'rtion

[
|| |
N
N

|| |
_ <<helpdrk= Parficlecontent

MyChoiceObjectParticle : XSDParticle
content = MyChoiceObjectModelGroup
maxOccurs = 1
minQcecurs =1

|
MyChoiceObjectModelGroup :
XSDModelGroup
compositor = sequence
_| contents = MyChoiceObjectParticle2

MyChoiceObjectParticle? : XSDParticle

I M. — —
<helper== ModelGroup

content = MyChoiceObjectModelGroup
maxQceurs =1
minOcecurs =1

MyChoiceModelGroup : XSDModelGroup

XSDModelGrogp

compositor = choice

«Choices -
MyChoice
-MyChoiceProperty [D..‘}:a:

|
|
— T _|— — — _| contents = MyChoiceParticle
|
|

MyChoiceParticle : XSDParticle

content= MyChoiceElementDeclaration
————————— - maxQccurs = -1
minOccurs =0

MyChoiceFlementDeclaration :
XSDElementDeclaration

Figure 9-30 MPD Schema Artifacts to NIEM-UML MPD Model — Choice Mapping Overview

NIEM-UML Beta 1

164

Figure 9-31 illustrates some mappings related to baseTypeDefinitions:

«ValueRestriction» inheritance from NIEM XML Primitive Types is mapped from an
XSDSimpleTypeDefinition baseTypeDefinition referencing the datatype counterpart from the XML Schema for
Schemas.

«ValueRestriction» specialization from a general «ValueRestriction» is mapped from an
XSDSimpleTypeDefinition baseTypeDefinition

A «NIEMType» is mapped from an XSDComplexTypeDefinition.

o When the the content of the XSDComplexTypeDefinition is an XSDSimpleTypeDefinition the mapping
creates an «XSDSimpleContent» Realization from the client «<NIEMType» (mapped from
XSDComplexTypeDefinition) to the supplier «ValueRestriction» (mapped from the baseTypeDefinition of
the XSDSimpleTypeDefinition).

= When the referenced XSDSimpleTypeDefinition is a type defined by the XML Schema for Schemas,
or by the NIEM Infrastructure proxy schema, then the XSDSimpleTypeDefinition maps to a type in the
XML Primitive Types library of the same name.

= In all other cases, the «ValueRestriction» mapped from the baseTypeDefinition is the supplier for the
«XSDSimpleContent».

= Any occurance of an XSDAttributeGroupDefinition resolving to
structures:SimpleObjectAttributeGroup within the attributeContents of the
XSDComplexTypeDefinition are not mapped.

XSDComplexTypeDefinition with a derivationMethod of restriction results in creation of a «Restriction»
Realization to a supplier «<NIEMType» (mapped from the baseTypeDefinition).

No Generalization or «Restriction» is created when the baseTypeDefinition of the
XSDComplexTypeDefinition is an XSDTypeDefinition contained by the NIEM Infrastructure structures
schema.

NIEM-UML Beta 1 165

xsd float : XSDSimpleTypeDefinition
float name ="float'

targetNamespace = "http:/mwww.w3.0rg/2001/XMLSchema"
variety = atomic

«ValueRestrictions
MySimpleType

MySimpleType :
—_ XSDSimpleTypeDefinition
baseTypeDefinition = xsd float
name ="MySimpleType"
variety = atomic

My2SimpleType : XSDSimpleTypeDefinition
— | baseTypeDefinition = MySimpleType

haseTypeDefinition = My30bjectType

name ="My2SimpleType"

variety = atomic

«ValueRestrictions
My2SimpleType

«ObjectType» A o
My20bjectType ObjectType : XSDComplexTypeDefinition

attribute Contents = My20bjectType SOAP

f——
f baseType = My2SimpleType
__ | content= My20hjectTypeSimpleContent
derivationMethod = extension
name = "My20hjectType"
My20bjectTypeSimpleTypeDefinition :
= was =aul XSDSimpleTypeDefinition
- baseTypeDefinition = My2SimpleType
variety = atomic
My20bjectTypeSOAP : XSDAttributeGroupDefinition
resolvedAttributeGroupDefinition = SimpleOhjectAttributeGroup

SimpleObjectAttributeGroup :
XSDAttributeGroupDefinition

name ="SimpleObjectAttributeGroup"
targetNamespace = "http://niem.gov/iniem/structures/2.0"

«ObjectTypes = =
H
My30bjectType My30bjectType : XSDComplexTypeDefinition
baseTypeDefinition = My20hjectType
— - derivationMethod = restriction
name = "My30hjectType"

Figure 9-31 MPD Schema Artifacts to NIEM-UML MPD Model — baseType Mapping Overview

For NIEMmpdartifact2model, mapping operations are generally invoked with the context of a source
XSDComponent and produce some form of target NIEM PSM Element. Most mapping operations are also provided
an argument that is the target NIEM-UML container context. The “when” condition for the MappingOperations is

NIEM-UML Beta 1 166

normally a function of the source MPD XSDComponent, the type of the source XSDComponent, and/or the target
NIEM-UML container context. The mapping operation connects its target NIEM-UMLElement to its container,
applies a Stereotype as appropriate, and populates the underlying UML Element properties and/or applied
Stereotype tag values.

Figure 9-32 illustrates the disjunction pattern for the NIEMmpdartifact2model transformation.

«MappingOperations
AbstractXSDSchemaContent
T disjunct ”
‘[}‘(disiunc'ts» Lll Lrul Junctss zral TUNCtss erls]uncts:
«MappingOperation» «MappingOperations = 3 = s = =
= 5 «MappingOperations fisiunct «MappingOperations A «MappingOperation»
ontent ation_: 5 < |sgun 3 P < 5
NDREI _topLevel XSDEI ation_ lementDeclaration_roleOf
I I
AISUNCtss L IS
«MappingOperations «MappingOperation» = 7
3 S eMappingOperations
SORAIrbulcOechrstion NDRElementDeclaration
disiunctss = 7 dlisj T disjuncts»
«MappingOperation» o «MappingOperati » «MappingOperations
? disjuncts: disjuncts disjuncts. E disjuncts»
z . p N 2 T
«MappingOperation» «MappingOperation» «MappingOperation» «MappingOperation»
il yp: iti omplexTyp iti NDRALttril p! it il p iti
dsm) i Q«disiuncts» Analslunas» T
«MappingOperations «MappingOperation» «MappingOperations T‘m L] Lk L a Z R
XSDTypeDefinition_ListType XSD ition_| «di [¥) _UnionType <MappingOperations caibiinkies
I XSDT ition_Class_/ ionType
digjuncts
«MappingOperation» «MappingOperation» 40
XSDTypeDefinition_PrimitiveType NDRSimpleTypeDefinitionDataType «MappingOperation» disjunct:
I yp ition_Class_ObjectType
[«disjungtss
z = disjurictss|
<«MappingOperations g 5 «
«MappingOperation»
s KSDschema XSDComplexTypeDefinition_PrimitiveType cdisunctss
«MappingOperations s
- AbstractXSDTypeDefinition «MappingOperations aesncles,
«disjuncts» 24
3% _Class_| ype
«MappingOperations USIUICSs disjuncts» R =
MPDSchema T‘ T‘ «MappingOperations
SWapPGOpaTations IVERpInGOpeTations XSDComplexTypeDefinition_Enumeration
itil i I
«MappingOperations
m— iti A itionTs
qulsluncls» %disjunctsx disjuncts» 30T idon-Class ype
«MappingOperations «MappingOperations «MappingOperations» T
XSDComplexTypeDefinition XSDComplexTypeDefinitionDataType XsDSimpleTypeDefinitionDataType S EPRICPRraions
[XSDT _Class_AdapterType
L
MaronaORerati «MappingOperation»
il mn»“ NDRComplexTypeDefinitionDataType
AbstractBaseTypeDefinition
4|}u|§|u||\,1§~ dIsjunctss AIsiunctss T«disjuncts»
«MappingOperation» S «MappingOperation» disidnct «MappingOperations «MappingOperation»
= i «disjupels, el = «disjunctss. 5% o | = =
BaseTypeDefinition_restriction &1 P _simpleContent_lib B: yp ¢ _simpleContent] ¢
I I
L L
«MappingOperation» R pa g Tperations

BaseTypeDefinition_primitiveType HesElypelefinition fib

Figure 9-32 NIEM MPD Artifact to NIEM MPD Model - Disjunction

For the NIEMmpdartifact2model transformation, each level of the inheritance hierarchy populates properties of a
target NIEM-UML Element from the source MPD Avrtifacts model. Figure 9-33 illustrates the inheritance for most
of the MappingOperations in the NIEMmpdartifact2model transformation.

NIEM-UML Beta 1 167

«MappingOperations
XSDNamedComponent

T

«MappingOperation»
XSDRedefinableComponent

1
I

i

1

«MappingOperations
XSDNotationDeclaration

«MappingOperations
XSDFeature

«MappingOperations
XSDIdentityConstraintDefinition

i i i i
«MappingOperation:» «MappingOperation» «MappingOperation» &MappingOperations
XSDModelGroupDefinition XSDAttributeGroupDefinition XSDEI ation XSDAttril i
«MappingOperations «MappingOperations «MappingOperation» <MappingOperations
NDRAttributeGroupDefinition ation_topLevel NDR ation NDRAttril i
I I I
L L [r L
«MappingOperations «MappingOperations
XSDEI ion _: XSDElementDeclaration_roleOf
«MappingOperations «MappingOperations «MappingOperation: <MappingOperations
XSDSchema XSDSchemaDirective NDRAttributeDeclaration CatalogType
T =
- - ‘r - - T - «MappingOperations
Dperations «MappingOperations «MappingOperations MpdCatalog_ProvisioningComponent
MPDSchema_init XSDImport_init XSDSchemaCompositor «MappingOperations
i ation_: L
T T T «MappingOperations |
<MappingOperations <MappingOperations <«MappingOperations FileType
MPDSchema XSDimport XSDinclude
<MappingOperations
FileTypePackage
<«MappingOperations «MappingOperations «MappingOperations «MappingOperations
XSDWildcard i icati icati PropertyReference z 5
<«MappingOperations
FileSetType
«MappingOperations «MappingOperations «MappingOperation» «MappingOperations
XSDXF it XSDModelGroup XSDAnnotation XSDRedefine

Figure 9-33 NIEM MPD Artifact to NIEM MPD Model - Inheritance

For the NIEMmpdartifact2model transformation, each level of the inheritance hierarchy populates properties of a
target NIEM-UML Element from the stereotype tag values and/or UML elements of the source MPD Schemas.
Figure 9-34 illustrates the inheritance for most of the MappingOperations in the NIEMmpdartifact2model

transformation.

NIEM-UML Beta 1

168

eMappingOperations
NDRTypeDefinition

i

Txinhemsx

zMappingCperations

XSDSimpleT

Type

sznm 1t

j;;inhemsx

XSDTypeDefinition_AssociationType

XSDTypeDefinition_MetadataType

XSDTypeDefinition_Class

XSDTypeDefinition_AugmentationType

ahlappingDperations ahlappingDperations #MappingOperations
NDRComplexT itionCommon XSDT jition_Enumeration NDRSimpleTypeDefinitionDataType
=MappingOperations
XSDComplexTypeDefinition
ahlappingDperations
XSDC iti yp
ainheritsz
inheritss inheritss inherits»
ginheritsz
aMappingOperations =MappingOperation «MappingOperations
«inheritss NDRComplexT iti XSDComplexTypeDefinition_Enumeration HDRComplexT iti
cinherftss
«MappingOperation:
XSDTypeDefinition_StructuredClassifier
«inheritss
sMappingOperations eMappingOperations sMappingOperations «MappingOperations sMappingOperations

XSDTypeDefinition_ObjectType

<inheritss ixinhemsx T cinherftss <inheritss
.;[ymnr:l Lt | 1|yu|r|m L l_ru et lrginhantsx
«MappingOperation =MappingOperation «MappingOperation zMappingCperationz
XSDTypeDefinition_Class_AssociationType XSDT ition_Class_| Type XSDT ition_Class_ ionType XSDTypeDefinition_Class_ObjectType
its:
&MappingOperations
XSDRedefinableComponent ahlappingOperations
XSDTypeDefinition_Class_Adapter Type
inhert:
Twnnm Lei
=MappingOperations
XSDTypeDefinition | |«inherftss sMappingOperations
XSDTypeDefinition_AdapterType

inherit:

zMappingCperationz

XSDComplexTypeDefinitionCommon

inheritss

» inhim

Tzlml:l 1t

sznm it

sznm 1t

4|y\nherils»

allappingOperations

XSDComplexTypeDefinition_PrimitiveType

aMappingCperations
XSDTypeDefinition_ListType

aMappingOperations.
XSDTypeDefinition_UnionType

XsDSimpleTypeDefinitionDataType

allappingCperations

alappingCperations
XSDTypeDefinition_Primitive Type

BaseTypeDefinition_enumeration_simpleContent

BaseTypeDefinition_simpleContent_lib

«MappingOperations =MappingOperations =MappingOperations =MappingOperations
BaseTypeDefinition_primitive Type XSDTypeDefinition_Primitive Type BaseT ition_restriction BaseTypeDefinition_lib
=MappingCperations «MappingOperation: «MappingOperation:

BaseTypeDefinition_enumeration

Figure 9-34 NIEM MPD Artifact to NIEM MPD Model - Inheritance NIEM Type Mapping

NIEM-UML Beta 1

169

Annex A NIEM-UML PIM Example (informative)

A.1 Example Description

This example is intended to illustrate use of the NIEM-UML PIM. This is a fictitious example that uses many, but
not all, of the NIEM-UML features. This example assumes some knowledge of UML and NIEM, but you don’t need
to be an expert. Note that this example is intended to be read with the normative NIEM-UML specification.

The business use case is for “Pet Adoption Centers” which need to share information on their pet adoptions with
each other and with government agencies. The information required includes data about the pets, the people
adopting the pets and the pet adoption centers. Information for sets of adoptions is defined in a NIEM exchange as
part of an “IEPD”.

A.2 Organization of NIEM Information Models and Classes

As with all NIEM exchanges an essential part of the analysis is the reuse of the NIEM reference vocabularies. Since
there is no established domain for pet adoptions NIEM-Core is reused, much of the information required is already
defined in NIEM-Core and thus needs to be structured for our particular use case.

PetAdoptionPIM

elnformationMoclelz
PetAdoptionExchange
{defaultPurpose = exchange,
isConformant,
targethlamespace = "hitpJ/iwww. modeldriven.orginiem/examples/PetAdoptionExchange”,
version ="1"}

I«USE»

| o
zlnformationiaoclels

PetAdoptionExtension

{defaultPurpose = extension,

isConformant,
targethlamespace = "hitp/mww.modeldriven.arginiem/examples/PetAdoptionExtension”,
version="1"}
Zuses ri
13

zlnformationMocdel=
PetAdoptionNIEMCoreSubset
{defaultPurpose = subset,
isConformant,
targethamespace = "hitpJiniem.goviniemiiem-core/2.0",
version="1"}

aReferencess |
|

v
ainformationModel=
niem-core
{defaultPurpose = reference,
isConformant,
targethlamespace = "hitp:iniem.govinieminiem-corel/2.0",
version="1"}

Figure A-1 Namespace Organization

NIEM-UML Beta 1 170

What cannot be found in NIEM-Core is defined as new information types in an “extension information model” for
pet adoptions. The reused and extended classes are then combined to form an exchange information model — the
actual data structure for a specific data exchange.

The Pet Adoption PIM model is organized into three subpackages, each representing a particular kind of NIEM
information model. Each package is stereotyped as a NIEM «InformationModel» which has tags for the URI,
version and NIEM compliance. The nature of the namespace (as subset, exchange, extension, etc. is defined as the
package is used in an MPD). The packages are:

o PetAdoptionNIEMCoreSubset — this is a NIEM “subset namespace” (or subset schema) that has the special
role of subsetting a single reference namespace for use in a particular MPD. A subset namespace can’t add any
new information.

e PetAdoptionExtension — this is a NIEM “extension schema” and includes new concepts about pets and pet
adoptions that could be reused in other MPDs. The extension namespace uses and extends elements from the
subset namespace.

o PetAdoptionExchange — this is a NIEM exchange namespace and includes the classes representing actual
exchanges between parties. The exchange namespace uses classes from the subset and exchange namespace to
specify these data packages.

The model elements, below, are all defined inside one of these namespaces, the namespace name is shown below the
class names.

Note that there is one additional package, which is used to hold the Model Package Description, defined in
Subclause A.23.

A.3 High-level design

This high-level UML model shows the primary classes of our information model:
e Pets

e Persons

e Pet Adoption Centers

e Pet Adoptions

PetAdoption
(PetAdoptionPIM.Pet AdoptionExtension)

PetAdoptionCenter
(PetAdoptionPIM Pet AdoptionExtension)

-AdoptionByCenter -AdoptionCenter |
. 1 ‘

-AdoptionByPerson -AdoptingPerson |
. 1 ‘

P;rson
(PetAdoptionPIM.Pet AdoptionNIEMCoreSubset)

Pet

_AdoptionOfPet -AdoptedPet i(PeQAdopﬁonPIM PetAdoptionExtension)

. 1 ‘

Figure A-2 High Level Design

NIEM-UML Beta 1 171

A pet adoption is the event that binds together all of these elements and will be the primary subject of our
information exchange.

Each UML class has both a name and an owning package (shown below the name). The package owning a class
corresponds with a NIEM namespace and is an essential element of the design. Note that “Pet”, “PetAdoption” and
“PetAdotionCenter” are part of the “PetAdoptionExtension” schema. An extension schema is normally where new
domain concepts are defined.

A.4 Documenting Elements

NIEM requires most elements to be documented. A single UML comment is used to document an element using the
NIEM rules regarding the format of documentation. Most UML tools provide an easy way to create such
documentation elements. The documentation for class “Pet” illustrates NIEM compatible documentation in Figure
A-3.

2% Foom- [£] Documentation Properties

Documentation
Documentation of Class Pet

JIHL ([F] 47 ~B I UCc

& data type for an animal owned for pleasure,

Figure A-3 Documenting Elements

A.5 UML Associations Defining NIEM Properties

The lines between the classes in the above diagram are UML associations. UML associations define the relationship
between classes. Note that there is also the concept of a NIEM association which has some additional capabilities;
we will look at these later. At each end of the association is an “association end”. Each association end defines a
NIEM property for the opposite end_that specifies the property’s name, type and multiplicity. Along with the end
you will notice a multiplicity notation; multiplicity defines how many values a property may have. Where there is a
“*” any number is allowed. Frequently you will see a range of values, such as 1..* which means at least one with no
limit. Given this you can see that six properties are defined by the above associations as follows:

e The “AdoptionOfPet” property of pet (a Pet Adoption), of which there can be any number of values (including
zero)

e The “AdoptedPet” property of “PetAdoptions” (a Pet), which must have one value (each adoption is for a single
pet)

e The “AdoptingPerson” property of “PetAdoption” (A Person), which has one value per adoption.
e The “AdoptionCenter” property of “PetAdoption”, which also has one value, and,

e The “AdoptionByCenter” property of “PetAdoptionCenter” (An adoption), which can have any number of
values (an adoption center adopts many pets).

e The "AdoptionByPerson" property of "Person” (An Adoption) which can have any number of values.

Each of these properties is a reference to an instance of the other class — they are each separate entities connected by
these associations. If the information about the entities was contained in one of these classes (as embedded content),
a UML “Aggregation” (diamond) would be used, we will see this later as well.

A.6 UML Enumerations Defining NIEM Code Types

One thing we would like to know about our pets is what kind of pet they are. We will define a UML “Enumeration”
for our kinds of pets called “PetKind”.

NIEM-UML Beta 1 172

The enumeration is a type with a specific set of values. In Figure A-4 we have defined values with tokens for each
kind of pet we are concerned with; Dog, Cat, Bird, etc. The UML enumeration defines a NIEM “Code Type”.

genumeration:
PetKind

Dog

Cat

Bird

Rabbit
GerbilOrHampster
Reptile

Horse

Cther

Figure A-4 Enumeration

A.7 Defining a simple property for an adoption center

Now that we have our enumeration type defined we can use it as the type of a property. We will add a simple
property to the “PetAdoptionCenter” to define the kinds of pets it offers.

In Figure A-5 we have added a property called “PetKindsOffered” to “PetAdoptionCenter” with a “type” of
“PetKind”. By putting a “*” multiplicity after it we have also said that an adoption center may offer many kinds of
pets. As a property the value for “PetKindsOffered” is an “aggregation” and will be contained as nested elements
inside of PetAdoptionCenter data.

PetAdoptionCenter
(PetAdoptionPIM PetAdoptionExtension)

-PetKindsOffered © Petkind [*]

Figure A-5 Simple Properties

A.8 Properties of Pet

Classes may have any number of properties of any type. There are also built in types for strings, integers, numbers,
dates, etc. Any primitive data type that you can use in XML schema can be used in NIEM-UML. The expanded
“Pet” class shows additional properties.

Pet
(PetAdoptionPIM.PetAdoptionExtension)

-PetKind : PetKind [1]

-PetName : String [0..1]
-PetBreed : String [*]
-Petldentification : Identification [*]

Figure A-6 Properties of Pet
Pet has four properties:
e PetKind, using the same enumeration, above. A pet can only have one kind.

e PetName, a string. The pet name is optional.

NIEM-UML Beta 1 173

e PetBreed, also a string. To support mixed breeds pets can have multiple breeds.

e And Petldentification, which we will explore next.

A.9 Properties Using Classes as Their Types

The type of the Petldentification property is “Identification”, let’s take a look at the Identification class.

The identification class in Figure A-7 is another class like pet or person, but it already has several properties. Note
that the properties have types like “String”, “Text” and “Date” — these are all built-in primitive types. But where did
all this come from? Note that it is in “PetAdoptionNIEMCoreSubset”. This means that Identification reuses an
existing class in NIEM Core.

Identification
(PetAdoptionPIM.PetAdoptionNIEMCoreSubset)

IdentificationID : String [1]{nillable]
IdentificationCategoryText : Text [1]{nillable} G
IdentificationCategoryDescriptionText : Text [0..1]{nillab !r—
IdentificationEffectiveDate : Date [0..1]{nillable }
IdentificationExpirationDate : Date [0..1]{nillable]
IdentificationJurisdictionText : Text [0..1]){nillable] C
IdentificationSourceText : Text [0..1]{nillable}

Figure A-7 Properties Using Identification Class

A.10Finding Classes in Reference Namespaces

A primary feature of NIEM is the ability to reuse existing definitions. Being able to identify something is very
common task for NIEM modelers so we looked in “NIEM-Core” to see what was there. NIEM-Core is one of the
several reusable vocabularies defined in NIEM. On the right are a few of the classes in NIEM-Core as seen from a
UML tool.

You can see in Figure A-8 that we are “in” the “niem-core”, version “2.0”. We see a start of the list of classes; there
are a lot of them. We may use search features of the UML tooI or just scan for what we want.

BB niem-care
E‘D 2.0
BB niem-care

G- Relations
B Activity
E AckivibyZonvewancehssociation
E ActivityDateRepresentationProperty Holder
E ActivityDispositionPropertyHolder
E AckivityDocumentAssaciakion
Q ActivityInvolvedPersonfssociation
BB ActivityTbemassoriation
E AckivibyiDrganizationAssaciation
E AckivibyPersondssociakion
E ActivityReferencePropertyHolder
E ActivitySchedule Association
- address

ﬁ O addrezcnelivervPaintPronerbeHAlder

Figure A-8 NIEM-Core Listing

NIEM-UML Beta 1 174

Further down we see classes having to do with Identification:

B2 Highway
B2 Identification
Q IdentkificationCakegoryPropertyHolder
E IdentificationIDPropertyHolder
E IdentificationJurisdictionPropertyHolder
B2 Identity
B1-E Identityassaciation
BB Image
Figure A-9 Finding the Identification Class

Pulling the identification class into a UML diagram in Figure A-10 we see:

Identification
(NIEM Reference Model.niem.niem-core.2.0.niem-core)

IdentificationID : String [0..*]{nillable}
IdentificationCategory [0..*]
IdentificationCategoryDescriptionText : Text [0..*]{nilable}
IdentificationEffectiveDate : Date [0..*]{nillable
IdentificationExpirationDate : Date [0..*]{nillable}
IdentificationJurisdiction [0..*]

IdentificationSourceText : Text [0..*){nillable}
IdentificationStatus : Status [0..*]{nillable }

Figure A-10 Identification Class Contents

This seems to have a lot of the identification properties we need, perhaps more than we need! We also see that some

of the properties have no type, these are placeholders for a “substitution group”. A substitution groups allows
different representations of a concept that can either be defined in your model or at runtime. Finding these in our

model we see what representations these properties can have.

«PropertyHolders
IdentificationCategoryPropertyHolder
(NIEM Reference Model.niem.niem-core.2.0.niem-core)

AdentificationCategory [1]
AdentificationCategoryText : Text [1]{subsets IdentificationCategory nillable }

G

«PropertyHolders

IdentificationJurisdictionPropertyHolder
(NIEM Reference Model.niem.niem-core.2.0.niem-core)

NdentificationJurisdiction [1]

NdentificationdurisdictionText : Text [1]{subsets |dentificationJurisdiction nillable }
NdentificationJurisdictionFIPS10-4Code : CountryCode [1]){subsets IdentificationJurisdiction nillable }
AdentificationdurisdictionlSO3166Alpha3Code : CountryAlpha3Code [1]{subsets |dentificationJurisdiction nillable

qg

Figure A-11 Identification Substitution Groups

Note that in NIEM-Core “IdentificationCategory” can only have one representation (Text), however this could be

expanded in other information models. On the other hand “IdentificationJurisdiction” can have 3 kinds of values,
lets say that for our simple pets we only want one of these, the text version. We know that each of these is an

NIEM-UML Beta 1

175

alternate representation because it “‘subsets” another property. When one property subsets another, it defines a NIEM
substitution group and these subset properties can be used in place of the property they subset.

There is one other special feature being used here, that is «PropertyHolder». The property holders define properties
that can be used in classes but aren’t used in any class yet. The property class is kind of invisible to NIEM. The
properties in a property holder are known as “global properties”. Since these global properties subset another they

can be used in place of them, anywhere.

What we want to do now is use all these parts and pieces to define “Identification” in our model.

A.11Defining a subset namespace with «References»

A NIEM subset information model (which should not be confused with UML subset properties) is a special
information model where standard NIEM elements are reused and tailored for a specific purpose. A subset
information model can only tailor existing material, not define anything new. What we are going to do is define our
own configuration for “Identification” that builds on all these parts.

Identification
(MIEM Reference Model niem.niem-core 2.0 .niem-core)

IentificationD ; String [0, .*]{nilaklz}
IdentificationCategory [0..%]
IdentificationCategoryDescriptionText ; Text [0..*]{nilakle}
ldentificationEffectiveDate : Date [0..*]{nilable}
IdentificationExpirationDate : Date [0..*){nillakle}
IdentificationJurisdiction [0..*]

IdentificationSourceText : Text [0.*]{nilablz}
IdentificationStatus : Status [0.*]{nilablz}

A
=Referencess _
-
-
- zPropertyHolders
Identification IdentificationCategoryPropertyHolder
(PetAdoptionPIM Pet AdoptionNIEMCoreSubset) (MIEM Reference Madel.niem .niem-core.2.0.niem-core)
ldertificationlD : String [1]{nilable zReferencess NdlentificationCategory [1]
ldertificationCategoryText | Text [1]fn|II1I e} 4= — — — — —IF MelentificationCategoryText : Text [1]{subsets [dentificationCateqory nilable} o
IdentificationCategoryDescriptionText : Text [0..1]{nillak I-—
IdentificationEffectiveDate ; Date [0..1]{nilabls}
IdentificationExpirationDate : Date [0..1]{nillal -I+}
IdentificationdurisdictionText : Text [0..1]{nilablz} [=
= . i
IdentificationSourceText : Text [0..1]{nillable N PropertyHolders
A Identification JurisdictionPropertyHolder
A (MIEM Reference Maodel niem.niem-core.2 .0 niem-core)
Y eReferencess | ldentificationJurisdiction [1]

- — -

NelentificationJurisdictionText : Text [1]{subsets |dertificationJurisdiction nillakle } [+
NelentificationJurisdictionFIPS10-4Code | CountryCode [1]{zubsets IdentificationJurisdiction nillaklz}

NelentificationJurisdictionS031 B6Alpha3Code ;| CountryAlpha3Code [1]{subsets ldentificationJurisdiction nilable}

Figure A-12 Identification Subset Class Using References

The “Identification” class in “PetAdoptionNIEMCoreSubset” «References» Identification in NIEM-Core. What we
did is copy-paste properties from the NIEM-core version to make the class we want for our pet model. We also don’t
need all these options for categories and jurisdictions so we also referenced specific properties in those property
holders. Since these subset properties in NIEM-Core “Identification” it is legal to reuse them here. We could have
also chosen to keep all these options, but that just seemed like overkill.

Note that «References» is used between information models, classes or properties. When between classes all the
properties with matching names are implicitly referenced. Each property that is referenced uses its definition from

NIEM-Core and must be compatible with it.

So the “Identification” class on the left is the one we are going to use, it is the one that is the type of the pets
identification but will also be used to identify people and adoption centers. Note that the multiplicities of our
properties have been narrowed — this is a legal and normal thing to do in a subset schema.

So what we have done is find existing concepts in NIEM-Core and configure these for reuse in our customized class.
This is a primary activity in NIEM — get used to it!

NIEM-UML Beta 1

176

A.12Reusing Person

Our exchange also deals with people. NIEM-Core has a LOT of information about people. Here we see “Person”
from NIEM core and also the small subset of it we will use in our example.

As you can see in Figure A-13, “Person” in NIEM-Core is huge! What we did is just pick 2 properties that we want
out NIEM-Core person — we really don’t care much about their DNA or Disguises! As before, we just made
properties with the same name and type as the reference person to reuse them, in most tools you can do this with a
copy/paste.

Notice that we are already reusing parts of our own model, “Identification”. We have been able to use the very
general idea of identification for both Pets and people, and we will be able to use if for adoption centers as well.

NIEM-UML Beta 1 177

Person
(PetAdoptionPIM.PetAdoptionNIEMCoreSubset)
-PersonName : PersonMName [1]

-PersonSSNidentification : Identification [0..1]
PersonBirthDate : Date [0..*]{nillable}

|
«References»
|

4

Person
(NIEM Reference Model.niem.niem-core.2.0.niem-core)

PersonAccentText : Text [0..*]{nillable}
PersonAgeDescriptionText : Text [0..*]{nillable}
PersonAge re : TimeM re [0. *{nillable }
PersonAlternateName : PersonName [0..*]{nillable }
PersonBirthDate : Date [0..*]{nillable }
PersonBirthLocation : Location [0..*]{nillable }
PersonBloodType [0..*]

PersonBodyXRaysAvailable [0..*]

PersonBuildText : Text [0..*]{nillable }

PersonCapability : Capability [0..*}{nillable }
PersonCircumcisionindicator : Boolean [0..*]){nillable }
PersonCitizenship [0..*]

PersonClothing : Clothing [0..*]{nillable }
PersonComplexionText : Text [0..*]{nillable }
PersonDeathDate : Date [0..*}{nillable}
PersonDependentQuantity : Quantity [0..*]{nillable }
PersonDescriptionText : Text [0..*}{nillable}
PersonDigitallmage : Image [0..*]{nillable }
PersonDigitizedSignaturelmage : Image [0..*]{nillable }
PersonDisguiseDescriptionText : Text [0..*]{nillable }
PersonDNA : DNA [0..*]{nillable }

PersonDonorOrgan [0..*]

PersonEducationLevelText : Text [0..*}{nillable}
PersonEthnicity [0..*]

PersonEyeColor [0..*]

PersonEyewearDescriptionText : Text [0..*]{nillable}
PersonFacialHairText : Text [0..*]{nillable }
PersonFingerprintSet : FingerprintSet [0..*){nillable }
PersonGeneralAppearanceDescriptionText : Text [0.*]{nilable}
PersonHairAppearanceText : Text [0..*]{nillable}
PersonHairCategoryText : Text [0..*]{nillable }
PersonHairColor [0..*]

PersonHairLengthText : Text [0..*){nillable}
PersonHairStyleText : Text [0.*]{nillable }
PersonHandednessText : Text [0..*]{nillable}
PersonHeightDescriptionText : Text [0..*]{nillable}
PersonHeightMeasure : LengthMeasure [0..*]{nillable }
PersonHumanResourceldentification : Identification [0..*]{nillable }
Personinjury : Injury [0..*]){nillable }

Personintoxication : Intoxication [0..*]{nillable }
PersonJewelryDescriptionText : Text [0..*}{nillable }
PersonLanguageEnglishindicator : Boolean [0..*]{nillable }
PersonLearningDisabilityText : Text [0..*){nillable}
PersonLicenseldentification : Identification [0..*]{nillable}
PersonLivingindicator : Boolean [0..*]{nillable }
PersonMaritalStatusText : Text [0..*]{nillable }
PersonMedicalCondition : MedicalCondition [0..*]{nillable }
PersonMedicalDescriptionText : Text [0..*]){nillable}
PersonMedicalFileindicator : Boolean [0..*){nillable ;
PersonMedicationRequiredText : Text [0..*]{nillable }
PersonMentalStateText : Text [0..*{nilable }
PersonMilitarySummary : MilitarySummary [0..*]{nillable }
PersonMoodDescriptionText : Text [0..*]{nilable}
PersonName : PersonName [0..*]{nillable }
PersonNationalldentification : Identification [0..*]{nillable }
PersonNationalityText : Text [0..*]{nillable}
PersonOrganDonatorindicator : Boolean [0..*){nillable }
PersonOtherldentification : Identification [0..*]{nillable }
PersonPassportldentification : Identification [0..*]{nillable }
PersonPhysicalDisabilityText : Text [0..*]{nillable}
PersonPhysicalFeature : PhysicalFeature [0..*]{nillable }
PersonPrimaryLanguage : PersonLanguage [0..*]{nillable }
PersonRace [0..*]

PersonReligionText : Text [0..*]{nilable }
PersonResident [0..*]

PersonSecondaryLanguage : PersonLanguage [0..*]{nillable }
PersonSecurityClearance [0..*]

PersonSex [0..*]

PersonSexualOrientationText : Text [0..*){nillable}
PersonSkinTone [0..*]

PersonSpeechDescriptionText : Text [0..*]{nillable }
PersonSSNIdentification : Identification [0..*]{nillable }
PersonStateldentification : Identification [0..*]{nillable }
PersonTaxldentification : Identification [0..*){nillable }
PersonTooth : Tooth [0..*}{nillable }
PersonUSCitizenIndicator : Boolean [0..*){nillable }
PersonVisionPrescriptionText : Text [0..*]{nillable }
PersonWeightDescriptionText : Text [0..*]{nillable}
PersonWeightMeasure : WeightiMeasure [0..*]{nillable }
PersonXRaylmage : Image [0..*]{nillable }
PersonNationality [0..*]

Figure A-13 Reuse of Person Class

NIEM-UML Beta 1 178

A.13Reusing Person Name

The name of a person in NIEM core has a type of “PersonName”. Without much problem we find “PersonName” in
NIEM-Core. This is a very complete treatment of name, but since this has all been thought out we will use most of

it, just not “personNameCommentText”. So we have a person and a person’s name. We can now use the
“PersonName” property already defined in NIEM-Core

PersonName
(PetAdoptionPIM.Pet AdoptionNIEMCoreSubset)

PersonNamePrefixText : Text [0..1]{nillable}
PersonGivenName : PersonNameText [0..1]){nillable }
PersonMiddleName : PersonNameText [0..1]){nillable }
PersonSurName : PersonNameText [0..1]{nillable }
PersonNameSuffixText : Text [0..1]{nillable}
PersonMaidenName : PersonNameText [0..1]{nillable }
PersonFullName : PersonNameText [1]{nillable }

|
«Referencess
|

¥

PersonName
(NIEM Reference Model.niem.niem-core.2.0.niem-core)

PersonNamePrefixText : Text [0..*){nillable}
PersonGivenName : PersonMNameText [0..*){nillable }
PersonMiddieName : PersonMameText [0..*]{nillable}
PersonSurName : PersonNameText [0..*){nillable}
PersonNameSuffixText : Text [0..*){nillable}
PersonMaidenName : PersonNameText [0..*]{nillable }
PersonFullName : PersonMNameText [0..*]{nillable}
personNameCommentText : String [0..1]

Figure A-14 Reusing Person Name

A.14 Contact Information

In addition to their name we are also going to want to record multiple ways to contact people (as well as adoption

centers, but that is later).

There are two considerations for contact information with respect to Person — defining the contact information as
well as creating an association between the contact information and person. First let’s look at our definition of
contact information; you should understand most of this picture now in Figure A-15.

NIEM-UML Beta 1

179

Contactinformation
(PetAdoptionPIM PetAdoptionMIEMCoreSubset)

ContactMeansPropertyHolder
(PetAdoptionPIM PetAdoptionMIEMCoreSubset)

ContactMeans [1]

ContactMeans [1]
ContactEmaillD : String [1]{subsets Contactheans nillable }

I
[
|xReferencesx
[

ContactTelephoneNumber : TelephoneMurmber [1]{subsets ContactMeans nillable
ContactMailingAddress : Address [1]{subsets ContactVeans nillable

|eReferencess
Contactinformation zPropertyHolders

(MIEM Reference Model.niem.niem-core.2.0.niem-core)

ContactMeansPropertyHolder

ContactMeans [0..%]

ContactEntity : Entity [0..*]{nillablz}
ContactEntityDescriptionTexdt : Text [0..*]{nilable}
ContactinformationDescriptionText : Text [0, *]{nillable}
ContactResponder : Person [0,]{nillable |

(MIEM Reference Mocdel.niem.niem-core.2.0.niem-core)

ContactMeans [1]

[ContactEmailD : String [1]{subsets ContactMeans nillakle}
[ContactinstantMessenger : InstantMessenger [1]{subsets Contactheans nillable}
[ContactTelephoneMumber : TelephoneMumber [1]{subsets Cortactieans nillable}

[ContactPagerNumber : TelephoneMumber [1{subsets ContactTelephoneMumber nillable }

[ContactFaxMumber : TelephoneMumber [1]{subsets ContactTelephoneMumber nillable
[ContactMobileTelephoneMumber : TelephoneMumber [1]{subsets
[ContactMailingAddress : Address [1]{subsets CortactMeans nillable}
[ContactRadio : ContactRadio [1){subsets ContactMeans nillable }
[ContactWebsiteURI . AnyURI [1]{subsets ContactMeans nillable }

ContactTelephoneMumber nillable }

Figure A-15 Referencing Contact Information

As you can see in Figure A-15, this is a very general idea of contact information that can have any number of
various kinds of contacts. Note that “ContactInformation” references “ContactMeans” which is used as the base of a
substitution group with a set of properties that subset it. Contact means is further defined on the right as a set of
possible properties. We have chosen to allow 4 possibilities out of the 10 pre-defined in NIEM-Core:

ContactEmaillD, ContactTelephoneNumner, ContactMobileTelephoneNumber and ContactMailingAddress. Any of
these forms of contact may be used as contact information in our model. By the way, if we didn’t find it here we can
also extend the list of possible representations by subclassing the property holder. Since we have used telephone
number we have to define this as well, drawing from NIEM-Core. In Figure A-16 we will just show you this model
fragment as it uses the same pattern of referencing.

TelephoneNumber
(PetAdoptionPIM.PetAdoptionNIEMCoreSubset)

InternationalTelephoneNumber : InternationalTelephoneNumberc

«References» \

InternationalTelephoneNumber
(PetAdoptionPIM.Pet AdoptionNIEMCoreSubset)

TelephoneCountryCodelD : String [0..1){nillable }
TelephoneNumberlD : String [1]{nillable
TelephoneSuffixID : String [0..1]{nillable }

Figure A-16 Telephone Number

NIEM-UML Beta 1

\

«References»

«References»

TelephoneNumber
(NIEM Reference Model.niem.niem-core.2.0.niem-core)

TelephoneNumhberRepresentation [0..*]

«PropertyHolders

\ TelephoneNumberRepresentationPropertyHolder

\ (NIEM Reference Model.niem.niem-core.2.0.niem-core)

TelephoneNumberRepresentation [1]
\ /INANPTelephoneNumber : NANPTelephoneNumber [1]{subsets Telep

/[FullTelephoneNumber : FullTelephoneNumber [1]{subsets TelephoneNumberRepresentation nillable }
el

\ l l.
—» InternationalTelephoneNumber : InternationalTelephoneNumber [1]{subsets TelephoneNumberRepres >:I|I ation nillable

InternationalTelephoneNumber
(NIEM Reference Model.niem.niem-core.2.0.niem-core)
—{ TelephoneCountryCodelD : String [0..*] mllql le}

TelephoneNumberlD : String [0..*]{nillable
TelephoneSuffixID : String [0..*]{nillable

180

A.15Augmenting Telephone Number

Consider that we wanted some additional information about telephone numbers and wanted to be able to “mix in”
that information with a variety of telephone numbers. This is the use case for NIEM augmentations. An
augmentation defines a type that can be “mixed in” with other types. Unlike regular objects it is legal to inherit
multiple augmentations into a type since they are not represented as XML extensions, rather as augmentation
properties. Augmentation properties can also be defined directly in NIEM-UML.

Our use case is that we want to define a telephone number augmentation for the type of telephone (i.e. land ling,
mobile, etc). We then want to extend the NIEM-core TelephoneNumber and define a new type in our extension
schema that includes the telephone type.

The augmentation type in Figure A-17 is stereotyped as an «AugmentationType» and is also specified to
«Augment» telephone number. This means that anything that uses TelephoneNumberAugmentation must be a
telephone, note that specifying «Augments» is optional. In the NIEM XSD the TelephoneNumber in
PetAdoptionExtension will extend telephone number but also include an augmentation property for
TelephoneNumberAugmentation based on the NDR pattern for supporting augmentation in XML. Our new
TelephoneNumber can now be used anywhere the NIEM-Core representation of telephone number may be used.

TelephoneHumber
(Pet AdoptionPIM Pet AdoptionMIEMCoreSubset)

InternationalTelephonebumber ; InternationalTelephoneMumber

iy i
zhAugments:

zAugmentationTypes:
TelephoneHumberAugmentation
(PetAdoptionPIM Pet AdoptionExtension)

-TelephoneTypeDescriptionText : Text

Fa

TelephoneNumber
(PetAdoptionPIM Pet AdoptionExtension)

Figure A-17 Augmenting Telephone Number

A.16Using a NIEM Association for Contact Information

Remember that when we used a UML association it made properties in the classes on the ends. For somewhat more
flexibility NIEM-Core uses a “NIEM Association” between Person and Contact Information. A NIEM association
isn’t just a property; it is a first-class, stand-alone piece of data that relates two or more things.

In this Figure A-18 (which is still a subset of all the information) we put more of the pieces together and see a NIEM
association “PersonContactInformationAssoiciation” that is defined in NIEM core and then reused in our example.
This association class allows us to connect any person with any piece of contact information. So, for example, we
could represent two people with the same address. As always, we reference the NIEM-Core and pick out the
properties we want.

Note that PersonContactinformationAssoiciation on the right is an «AssociationType» where as we modeled it as a
UML “Association Class”, both of these representations mean the same thing in NIEM but we are using some built-
in UML functionality in our PIM whereas the NIEM-Core is based on the structure as it is found in the XML
schema. You have the choice of using association classes or classes with the «AssoiciatonType» stereotype. Note

NIEM-UML Beta 1 181

that there are some edge-cases that can only be expressed using «AssoiciatoonType» but that association classes
have some additional power to define the multiplicity between the associated classes.

Since PersonContactInformationAssoiciation in our PIM is both an association and a class we can use it like any
other class, it can be the type of properties or other associations — this provides for a very powerful network of

information.

(PetAdoptionPIM Pet AdoptionNIEMCoreSubset)

Person

-PersonName : PersonName [1]
-PersonSSNidentification : Identification [0..1]

*

-PersonReference

«Referencess

PersonContactinformationAssociation
(PetAdoptionPIM Pet AdoptionNIEMCoreSubset)

«Referencess

ContactinformationlsPrimaryindicator : Boolean [0..*]{nillabl
ContactinformationlsHomelndicator : Boolean [0..*]{nillal

=
1

J
ContactinformationlsWorkIndicator : Boolean [0..*]{nillable }

-ContactinformationReference

Contactinformation
(PetAdoptionPIM. PetAdoptionNIEMCoreSubset)

ContactMeans [1]

«References»

Figure A-18 Contact Information Association

Person
=== (NIEM Reference Model.niem.niem-core.2.0.niem-core)

PersonReference (0.*

«AssociationTypes
PersonContactinformationAssociation
(NIEM Reference Model.niem.niem-core.2.0.niem-core)

ContactinformationlsPrimaryindicator : Boolean [0..*]{nillab
ContactinformationlsHomelndicator : Boolean [0..*]{nillable }
ContactinformationlsWorkIndicator : Boolean [0..*){nillable }
ContactinformationlsEmergencylindicator : Boolean [0..*){nillable }
ContactinformationlsDayIndicator : Boolean [0..*]{nilla
ContactinformationlsEveningindicator : Boolean [0..*]{nillable }
ContactinformationlsNightindicator : Boolean [0..*]{nillable }

le

ContactinformationReference |0..*

Contactinformation
(NIEM Reference Model.niem.niem-core.2.0.niem-core)

ContactMeans [0..*]

— —p ContactEntity : Entity [0..*]{nillable }

ContactEntityDescriptionText : Text [0..*]{nillable }
ContactinformationDescriptionText : Text [0..*]{nilable }
ContactResponder : Person [0..*]{nillable}

A.17 Pet Adoptions as a kind of activity

There are some more properties of a pet adoption we would like to consider, these come from it being a kind of
activity and activities being available in NIEM-Core.

This pattern of reuse in Figure A-19 should look quite familiar now; we are combining the NIEM-Core concept of
activity with one of the representations of that activities date. Since pet adoptions are a kind of activity it makes
sense for pet adoptions to be a subclass of activity.

NIEM-UML Beta 1

182

Activity
(PetAdoptionPIM.PetAdoptionNIEMCoreSubset)
Activityldentification : Identification [0..1){nillable}

ActivityDate : Date [1]{nillable}
ActivityDescriptionText : Text [0..1){nilable }

Activity
(NIEM Reference Model.niem.niem-core.2.0.niem-core)

«Referencess

Activityldentification : Identification [0..*]{nillable}
ActivityCategoryText : Text [0..*}{nillable}
ActivityDateRepresentation [0..*]
ActivityDescriptionText : Text [0..*]{nillable}
ActivityName : Text [0..*]{nillable}
ActivityStatus : Status [0..*]{ni H
ActivityReasonText : Text [0..*){nillable}
ActivityDisposition : Disposition [0..*]{nillable }

«PropertyHolders

ActivityDateRepresentationPropertyHolder
(NIEM Reference Model.niem.niem-core.2.0.niem-core)

- - —

ActivityDateRepresentation [1]

> /ActivityDate : Date [1]{subsets ActivityDateRepresentation nillable}
ActivityDateRange : DateRange [1]{subsets ActivityDateRepre

«Referencess

ntation nillable :7

Figure A-19 Defining Activity From NIEM-Core
By making PetAdoption a UML Subclass of Activity all the properties of activity become available to Pet Adoption

— every pet adoption is an activity.

Activity
(PetAdoptionPIM Pet AdoptionMIEMCoreSubset)

ActivityDate : Date [1]{nillakle }

Activityldertification : [dentification [0..1]{nillaklz}

ActivityDescriptionText : Text [0..1]nillakle}

PetAdoption
(PetAdoptionPIM Pet AdoptionExtension)

Figure A-20 PetAdoption as a kind of Activity

The constraint in NIEM (Due to XML Schema restrictions) is that a class can only be a subclass of at most one other

class. So you want to use a subclass only when the superclass can’t be anything else at the same time (in the next

section we will see how to handle other cases).

A UML subclass, or generalization, maps to an “extension” in XML schema unless it is generalizing an

augmentation type or uses RolePlayedBY (see below). So in the XML, PetAdoption will extend Activity.

A.18 Pet Adoption Centers as arole of an organization

It may have occurred to you by now that while pet adoption centers are not that common a concept, that these are

organizations that have a lot in common with other organizations. There is a well-developed model for organizations
in NIEM-Core which we can reuse. Figure A-21 uses the same «References» pattern we have seen previously and

we pick up some of the standard properties. We are not going to reproduce all the properties of Organization to save
some space — you should understand this pattern by now and can look at the model for the details.

NIEM-UML Beta 1

183

Organization
(PetAdoptionPIM.PetAdoptionNIEMCoreSubset)

OrganizationBranchName : Text [0..1]{nillable }
OrganizationDayContactinformation : Contactinformation [0..1]{nillable }
OrganizationDescriptionText : Text [0..1]{nilable}
OrganizationEmergencyContactinformation : Contactinformation [0..*){nillable}
Organizationldentification : Identification [0..*]{nillable }

OrganizationLocation : Location [1..*]{nillable }

OrganizationName : Text [1]{nillable}

OrganizationTaxldentification : Identification [0..*]{nillable }
|«Referencess
Organization

(NIEM Reference Model.niem.niem-core.2.0.niem-core)

Figure A-21 Using Organization from Core

But, what is the relationship between pet adoption center and organization? One common way to express this is for
something like adoption center to subclass organization —after all it is an organization. Another option is for per
adoption center to be considered a “role” of an organization — this would allow for an organization to “play the role”
of an adoption center while also playing other roles, perhaps as a rescue center or veterinarian.

Figure A-22 shows that PetAdoptionCenter is a «RolePlayedBy» an organization. An organization may play
multiple roles and these roles can come and go over time. This kind of role happens at most once for an
organization, the organization isn’t a PetAdoptionCenter multiple times. Such roles are defined by using the
«RolePlayedBy» stereotype on a generalization. There is another type of role where a base type can play the role
many times — for example a person may be a prize winner multiple times and each time has different characteristics.
This other kind of role uses «RoleOf» properties. NIEM-UML supports both kinds of roles but they are both
represented as properties in NIEM-XML (NIEM XML does not formally distinguish role types, it is implied by their
multiplicities).

Organization
(PetAdoptionPIM PetAdoptionMIEMCoreSubset)

OrganizationBranchMame : Text [0..1]{nillable}

OrganizationDay Contactinformation ;. Contactinformation [0..1]{nilaklz}
OrganizationDescriptionText : Text [0..1]{nillable }
OrganizationEmergencyContactinformation | Cortactinformation [0, {nillaklz}
Organizationldentification : |dentification [0..*]{nillable}

OrganizationLocation : Location [1..*){nillaklz}

OrganizationMame : Text [1]{nillable }

OrganizationTaxldentification : [dentification [0, *]{nillakblz}

zRolePlayedBy=

PetAdoptionCenter
(PetAdoptionPIM Pet AdoptionExtension)

-PetkindsOffered ; Petkind [*]

Figure A-22 Adoption Centers as a ROLE of an Organization

NIEM-UML Beta 1 184

A.19Putting together the high-level picture

With the “parts and pieces” we have built-up so far we can now fill out our high level diagram in Figure A-23,
complete with properties, but not showing all the associations.

As we can see, the high-level diagram we started with has been filled-out with a combination of properties from
NIEM-Core as well as some we defined for this domain. Of course this is augmented by the additional classes
referenced by this model and the NIEM associations for contact information. While pet adoption is an unusual use
case, we were still able to reuse most of our classes and properties from NIEM-Core. Note that there are additional
contact associations for people and adoption centers that are not shown here.

Activity

(Pet AdoptionPIM Pet AdoptionMIEMCoreSubset)

Activityldentification : dentification [0..1]{nilakle}

ActivityDate : Date [1]{nillablz}

ActivityDescriptionText : Text [0..1]{nillakle}

Organization
(Pet AdoptionPIM Pet AdoptionMIEMCoreSubset)

OrganizationBranchMame : Text [0..1]{nillablz}
OrganizationDayCortactinformation | Contactinformation [0..1]{nilakle}
OrganizationDescriptionText © Text [0..1]{nilakle}
OrganizationEmergencyContactinformation | Contactinformation [0..*){nillakle }
Organizationldentification : [dentification [0..*]{nillakble}

OrganizationLocation : Location [1..*){nillable}

OrganizationMame : Text [1]{nilakle}

OrganizationTaxldertification : Identification [0, *{nilakle}

PetAdoption
(Pet AdoptionPIM Pet AdoptionExtension)

zRolePlayedBy=

PetAdoptionCenter
(PetAdoptionPIM Pet AdoptionExtension)

-AdoptionBy Center -AdoptionCerter |-PetiindsOffered : Petiine [*]
3 1
Person
(Pet AdoptionPIM Pet AdoptionMIEMCoreSubset)
| - _ : PersonBirthDate : Date [0..*]){nilakle }
AdoptionByPerson AdoptingFerson B AR RN BB A TIzatEn - |dentificstion [0.1]
" 1 -Personiame : Personhilame [1]
zenumeration:
Pet PetKind
(Pet AdoptionPIM Pet AdoptionExtension) Dog
| : . -Petiind : Petiing [1] Cat
AdoptionDfPet AdoptedPet B NamE - String [0.1] Bird .
i 1 |-PetBreed : String [*] Rabhbit
-Petidentification : ldertification [*] GerbilOrHampster
Reptile
Horse
Cther

Figure A-23 Completed High Level Picture

A.20 Primitive types

We have been using properties with “primitive types” like strings numbers and dates. We have also seen some more
specialized primitive types like “PersonNameText”. Where do these come from? The basic types like Strings come
from a “Primitive type library” that is standard in NIEM-UML. It is imported by using the profile and always
available. More specialized primitive types are either in NIEM-Core or defined within a model as subtypes of these
built-in types. The following are the primitive types used in this example model.

The above are shown for clarity — it is not nessisary to reference each and every primitive type. Any type that is
referenced is automaticly included in the subset information model.

NIEM-UML Beta 1

185

gprimitives

String
eprimitives T :
Text «Referencess - «primitive»
; ! L Dl . Text
RN el doptoniiEhiCareSubssl) (NIEM Reference Model.niem.niem-core.2.0 .niem-core)
eprimitives ? -
ProperiameText «References» eprimitives
) : T ST mmwem M ProperNameText
R coRtionE et doptionhiEMCoreSubiset) (NIEM Reference Model.niem.niem-core.2.0.niem-core)
eprimitives <Referencess eprimitives
PersonNameText = |— — — — — — PersonlameText
(PetAdoptionPIM.PetAdoptionNIEMCoreSubset) (NIEM Reference Model.niem.niem-core.2.0.niem-core)
Date oa R ey Date
{PetAdoptionPIM.Pet AdoptionNIEMCoreSubset) «Referencess (NIEM Reference Model.niem.niem-core.2.0.niem-core)
«XSDProperty» /Date : Date [1]{nillable } q DateRepresentation [0..*]
| «XSDProperty» DateAccuracyCode : DateAccuracyindicatorCode [0..1]{nillable}
\ «XSDPropertys MarginDuration : Duration [0..1){nillable }
\
\
\ «PropertyHolders
\ DateRepresentationPropertyHolder
\ (NIEM Reference Model.niem.niem-core.2.0.niem-core)
\ DateRepresentation [1]
«XSDPropertys /Year : GYear [1]{subsets DateRepresentation nillable }
\ DPropertys DateTime : DateTime [1]{subsets DateRepresentation nillable }
< =iy DPropertys /Date : Date [1]{subsets DateRepresentation nillable } d
«Referencess «XSDPropertys /YearMonth : GYearMonth [1]{subsets DateRepresentation nillable }

Figure A-24 Primitive Types

A.21The Pet Adoption Exchange

The classes above serve to define information about pet adoption, but what exactly does a particular data exchange

for a pet adoption look like? For a particular exchange we could have multiple adoptions, people, pets, etc.

What we do is gather all of the classes we are concerned with together into a class defined in an “exchange schema
package”, these become the top level messages. The PetAdoptionExchange” in Figure A-25 is defined to contain a

set of: People, Pets, PetAdoptions, PetAdoptionCenters, Addresses, Contact Information and associations. This
information package aggregates all the others into a handy grab bag of pet related data.

PetAdoptionExchange
(PetAdoptionPIM.PetAdoptionExchange)

-people : Person [1..%]

-pets : Pet [1..%]

-petAdoptions : PetAdoption [1..*]
-petAdoptionCenters : PetAdoptionCenter [1..%]
-addresses : Address [*]

-contactinformation : Contactinformation [*]

-personContactinformationAssociations : PersonContactinformationAssociation [*]

Figure A-25 Pet Adoption Exchange

NIEM-UML Beta 1

A.22Using classes by default

Figure A-26 shows that the entire “PetAdoptionNIEMCoreSubset” model «references» the “niem-core” model. By
referencing the entire package anyNEIM-CORE elements that are used by PetAdoptionNIEMCoreSubset but not
explicitly included are included by default. Also, any reference to an element in NEIM_CORE will automaticly be
redefined to reference the cooresponding element in PetAdoptionNIEMCoreSubset. It is good practice to inspect the
types and properties automaticly included to make sure you are not including more than is nessisary — this may be
done in the PSM model or some tools may provide features for doing so.

|
ginformationModel=
PetAdoptionNIEMCoreSubset
{defaultFurpose = subset,
isConformant,
targethlamespace = "hitp/niem.gowniem/niem-core/2.0",
version="1"}

Figure A-26 Referencing NIEM Core

L *T’fe_"e"c_es”_p {defaultPurpose = reference,

[TN

zinformationModelz
niem-core

isConformant,
targethamespace = "hitp:/iniem.govinieminiem-core/2.0",
version="1"}

This concludes the platform independent part of the example.

A.23The Pet Adoption IEPD Model

The platform independent model, above, specifies the information model relative to pet adoption, but not the IEPD
its self. An IEPD is a NIEM artifact that includes all of the data and metadata relative to a kind of data exchange. An
IEPD is a kind of “MPD” as defined in the NIEM “Model Package Description” specification. An IEPD has a very
specific format and contents, part of which is the XML Schema files that may have been produced from a NIEM-

UML model.

MPDs and IEPDs are also defined in a model, a model of the MPD artifact. This model is primarily the metadata
concerning the MPD. It also references the PIM and PSM packages that contain the classes used in an exchange.

Figure A-27 is the IEPD model for our example.

I

«ModelPackageDescriptions

Eeidouionl el PetAdoptionExchange
{descriptionText="Sample IEPD for pet adoption", (defauItPurpose o exchange
c dsaseu:.l-- e S SorLRn aunoE, g isConformant,
M e o . cimports .| targetNamespace = "http:/www.modeldriven.org/niem/examples/PetAdoptionExchange”,

mpdClassCode = iepd,
PurposeText="Sample IEPD PIM",
StatusText = "Prototype"}

| version="1"}

«informationModel»

|
cuses

I

isConformant,

version="1"}

{defaultPurpose = extension,

targetNamespace = "http:/imvww.modeldriven.org/niem/examples/PetAdoptionExtension”,

«InformationModels
PetAdoptionExtension

= |

7
«uses
/

©

isConformant,

version="1"}

«InformationModel»
PetAdoptionNIEMCoreSubset
{defaultPurpose = subset,

targetNamespace = "http://niem.gov/niem/niem-core/2.0",

«InformationModel»
niem-core
«Befgeniesib {defaultPurpose = reference,
isConformant,

version="1"}

Figure A-27 IEPD Specification

targetNamespace = "http://niem.gov/iniem/niem-core/2.0",

The component stereotyped as “ModelPackageDescription” on the left represents the IEPD. The tag values of this
stereotype define the IEPD metadata such as the description, URI and purpose. The “meat” of an IEPD is in the
information models imported using a UML «import». The packages imported are those that we have been building

all-along in our PIM, these are:

NIEM-UML Beta 1

187

e PetAdoptionExchange — the package that holds the PetAdoptionExchange class. Each class in such a package
will be a top-level unit of information exchange.

e PetAdoptionExtension — these are the new concepts defined for Pet Adoption, some of which use or extend
NIEM-Core concepts.

o PetAdoptionNIEMCoreSubset — this is the namespace that subsets NIEM-Core using «References» and
configures those concepts for our use in pet adoption.

Note that each information model has a defaultPurpose that cooresponds to the NIEM schema types. This purpose
will be used unless that purpose is overridden using the «ModelPackegDescriptionFile» stereotype of an import.

Each namespace will produce an XML schema that becomes part of the IEPD.

Note that each namespace has a “targetNamespace” tag, its URI, a version and an indicator that the namespace
conforms to NIEM. Also, for each package that uses elements of another, there is a UML «uses» dependency
between those packages — this is required to establish the context for each information model.

Based on the PIM model combined with the MPD model, NIEM-UML compliant tools are able to produce a
complete NIEM-Compliant MPD from a NIEM-UML model. The machine-readable files of this specification
include the complete model as well as the generated IEPD.

NIEM-UML Beta 1 188

Annex B Structured English Mapping
Specifications (normative)

B.1 Mapping Between a NIEM-conforming Platform Specific
Model and an MPD Catalog XML Instance

B.1.1 Scope

The following subclause describes a mapping between a NIEM-conforming Platform Specific Model and an MPD
Catalog XML Instance.

B.1.2 Conventions
This subclause employs the following conventions.
[Convention: To reference a specification]
If the subclause references a specification, the subclause represents the reference as follows:
1. the prefix "[Reference: ";
2. the title of the specification;
3. the character "]"; and
4

on the following line, the word to indicate the specification and the URI for the specification, indented from
the "[Reference:" prefix.

If this subclause were to reference the specification with the title "XML Information Set (Second Edition)" and the
URI "http://www.w3.0rg/TR/xml-infoset™, and if it were to associate the specification with the word "infoset", the
subclause would represent the reference as follows:

[Reference: XML Information Set (Second Edition)]
The word "infoset" indicates a term from this specification.
http://www.w3.0rg/TR/xml-infoset

[Convention: To indicate a term from another specification]

If the subclause employs a term from another specification, or a term derived from another specification, the
subclause represents the term as follows:

1. the character "{";

2. aword to indicate the specification;
3. the character ":";

4. the term itself; and

5. the character "}".

If this subclause were to employ the term "attribute information item™ from the specification "XML Information Set
(Second Edition)", and presuming the word to indicate the specification is "infoset", the representation of that term
would be {infoset:attribute}.

[Convention: To indicate a rule]
If this subclause specifies a rule, the subclause represents the rule as follows:

1. the prefix "[Rule ";

NIEM-UML Beta 1 189

2. the character ":";

3. the rule name;

4. the character "]"; and

5. on the following line, the rule itself, indented from the "[Rule " prefix.

If this subclause were to specify a rule for which the name is "Example Rule" and for which rule itself is "This is an
example rule.”, the subclause would represent the definition as follows:

[Rule: Example Rule]

This is an example rule.

B.1.3 References

This subclause references the following specifications.

[Reference: OMG Unified Modeling LanguageTM (OMG UML), Superstructure Version 2.4.1]
The word "uml™ indicates a term from this specification. Example: {uml:Class}.
http://www.omg.org/spec/UML/2.4/Superstructure

[Reference: Namespaces in XML 1.0 (Third Edition)]

The word "namespace” indicates a term from this specification. Example: {namespace:qualified name}.
http://www.w3.0rg/TR/xml-names/

[Reference: XML Information Set (Second Edition)]

The word "infoset™ indicates a term from this specification. Example: {infoset:attribute}.
http://www.w3.0rg/TR/xml-infoset

[Reference: NIEM Model Package Description Specification, Version 1.0]

The word "mpd" indicates a term from this specification. Example: {mpd:artifact}.

http://reference.niem.gov/niem/specification/model-package-description/1.0/model-package-description-1.0.pdf
B.1.4 Terminology

B.1.4.1 {uml} Terminology
The following definitions derive from {uml}.
[Definition: attribute-name attribute of the {uml:metaclass}]

This phrase refers to the attribute of the {uml:metaclass} with the name attribute-name. Example: The name
attribute of the {uml:Property}.

[Definition: end-name {uml:end-type} of the {uml:metaclass}]

This phrase refers to the opposite association end of the {uml:metaclass} with the name end-name, the type of
which is {uml:end-type}. Example: the subsettedProperty of the {uml:Property}.

[Definition: end-name of the {uml:metaclass}]
This phrase refers to the opposite association end of the metaclass with the name end-name. Unlike the above
definition, the type of the association end is not specified. Example: The type of the {uml:Property}.
B.1.4.2 {infoset} Terminology

The following definitions derive from {infoset}.

NIEM-UML Beta 1 190

[Definition: {infoset:element}]

Same as {infoset:element information item}.
[Definition: {infoset:attribute}]

Same as {infoset:attribute information item}.
[Definition: "prefix:local-name' {infoset:attribute}]

This phrase references an {infoset:attribute}

1. for which the value of the namespace name property is the namespace name associated by this subclause
with the namespace prefix "prefix" and

2. for which the value of the local name property is "local-name".
[Definition: *"prefix:local-name™ {infoset:element}]
This phrase references an {infoset:element}

1. for which the value of the namespace name property is the namespace name associated by this subclause
with the namespace prefix "prefix" and

2. for which the value of the local name property is "local-name™.
[Definition: content Of the "prefix:local-name" {infoset:element}]

This phrase references the character information items among the children property of the referenced
{infoset:element}.

B.1.4.3 {mpd} Terminology
The following definitions derive from {infoset}.
[Definition: catalog namespace]

The catalog namespace is the namespace for which the namespace name is
"http://reference.niem.gov/niem/resource/mpd/catalog/1.0/". This subclause associates the namespace name
with the namespace prefix "ca".

B.1.5 Mapping

B.1.5.1 Mapping ca:Catalog {infoset:element}
[Rule: Mapping between a {stereotype:ModelPackageDescription} and a ca:Catalog {infoset:element}]

A mapping shall exist between a {stereotype:ModelPackageDescription} and a ca:Catalog {infoset:element} if and
only if the following are true:

1. Given the {infoset:attribute}s among the attributes of the ca:Catalog {infoset:element}:

a. The value of the mpdVersionlD attribute of the {stereotype:ModelPackageDescription} must equal the
normalized value of the ca:mpdVersionID {infoset:attribute}.

b. The concatenation of the value of the mpdBaseURI and the value of the mpdVersionID attributes of the
{stereotype:ModelPackageDescription} must equal the normalized value of the ca:mpdURI
{infoset:attribute}.

c. The value of the mpdClassCode attribute of the {stereotype:ModelPackageDescription} must equal the
normalized value of the ca:mpdClassCode {infoset:attribute}.

d. Exactly one of the following must be true:

i the value of the descriptionText attribute of the {stereotype:ModelPackageDescription} must be
present and must equal the normalized value of the ca:descriptionText {infoset:attribute}; or

NIEM-UML Beta 1 191

ii. the value of the descriptionText attribute of the {stereotype:ModelPackageDescription} must be absent
and the ca:descriptionText {infoset:attribute} must be absent.

2. For each {stereotype:ModelPackageDescriptionFile} for which the {stereotype:ModelPackageDescription} is a
client {uml:NamedElement}, a mapping must exist between the {stereotype:ModelPackageDescriptionFile}
and a ca:File {infoset:element} among the children of the ca:Catalog {infoset:element}.

3. For each {uml:Usage} for which the {stereotype:ModelPackageDescription} is a client {uml:NamedElement},
a mapping must exist between the supplier {uml:NamedElement} of the {uml:Usage} and a ca:FileSet
{infoset:element} among the children of the ca:Catalog {infoset:element}.

4. A mapping must exist between the {stereotype:ModelPackageDescription} and the ca:Metadata
{infoset:element} among the children of the ca:Catalog {infoset:element}.

B.1.5.2 Mapping ca:Metadata {infoset:element}
[Rule: Mapping between a {stereotype:ModelPackageDescription} and a ca:Metadata {infoset:element}]

A mapping shall exist between a {stereotype:ModelPackageDescription} and a ca:Metadata {infoset:element} only
if the following are true:

1. The value of the SecurityMarkingText attribute of the {stereotype:ModelPackageDescription} must equal the
content of the ca:SecurityMarkingText {infoset:element} among the children of the ca:Metadata
{infoset:element}.

2. The value of the CreationDate attribute of the {stereotype:ModelPackageDescription} must equal the content of
the ca:CreationDate {infoset:element} among the children of the ca:Metadata {infoset:element}.

3. Exactly one of the following must be true:

a. the LastRevisionDate attribute of the {stereotype:ModelPackageDescription} must be present and the value
of the attribute must equal the content of the ca:LastRevisionDate {infoset:element} among the children of
the ca:Metadata {infoset:element}; or

b. the LastRevisionDate attribute of the {stereotype:ModelPackageDescription} must be absent, and the
ca:LastRevisionDate {infoset:element} must be absent from the children of the ca:Metadata
{infoset:element}.

4. Exactly one of the following must be true:

a. the NextRevisionDate attribute of the {stereotype:ModelPackageDescription} must be present and the
value of the attribute must equal the content of the ca:NextRevisionDate {infoset:element} among the
children of the ca:Metadata {infoset:element}; or

b. the NextRevisionDate attribute of the {stereotype:ModelPackageDescription} must be absent, and the
ca:NextRevisionDate {infoset:element} must be absent from the children of the ca:Metadata
{infoset:element}.

5. Exactly one of the following must be true:

a. The StatusText attribute of the {stereotype:ModelPackageDescription} must be present and the value of the
attribute must equal the content of the ca:StatusText {infoset:element} among the children of the
ca:Metadata {infoset:element}; or

b. the StatusText attribute of the {stereotype:ModelPackageDescription} must be absent, and the
ca:StatusText {infoset:element} must be absent from the children of the ca:Metadata {infoset:element}.

6. For each value of the KeywordText attribute of the {stereotype:ModelPackageDescription}, a ca:KeywordText
{infoset:element} must exist among the children of the of the ca:Metadata {infoset:element}, and the content of
the ca:KeywordText {infoset:element} must equal that value of the KeywordText attribute of the
{stereotype:ModelPackageDescription}.

7. For each value of the DomainText attribute of the {stereotype:ModelPackageDescription}, a ca:DomainText
{infoset:element} must exist among the children of the of the ca:Metadata {infoset:element}, and the content of

NIEM-UML Beta 1 192

10.

11.

the ca:DomainText {infoset:element} must equal that value of the DomainText attribute of the
{stereotype:ModelPackageDescription}.

For each value of the PurposeText attribute of the {stereotype:ModelPackageDescription}, a ca:PurposeText
{infoset:element} must exist among the children of the of the ca:Metadata {infoset:element}, and the content of
the ca:PurposeText {infoset:element} must equal that value of the PurposeText attribute of the
{stereotype:ModelPackageDescription}.

For each value of the ExchangePatternText attribute of the {stereotype:ModelPackageDescription}, a
ca:ExchangePatternText {infoset:element} must exist among the children of the of the ca:Metadata
{infoset:element}, and the content of the ca:ExchangePatternText {infoset:element} must equal that value of
the ExchangePatternText attribute of the {stereotype:ModelPackageDescription}.

For each {stereotype:ModelPackageDescriptionRelationship} for which the
{stereotype:ModelPackageDescription} is the client {uml:NamedElement}, a mapping must exist between the
{stereotype:ModelPackageDescriptionRelationship} and a ca:Relationship {infoset:element} among the
children of the of the ca:Metadata {infoset:element}.

A mapping must exist between the {stereotype:ModelPackageDescription} and the ca: AuthoritativeSource
{infoset:element} among the children of the ca:Metadata {infoset:element}.

B.1.5.3 Mapping ca:AuthoritativeSource {infoset:element}

[Rule: Mapping between a {stereotype:ModelPackageDescription} and a ca:AuthoritativeSource
{infoset:element}]

A mapping shall exist between a {stereotype:ModelPackageDescription} and a ca:AuthoritativeSource
{infoset:element} only if the following are true:

1.

The value of the ASName attribute of the {stereotype:ModelPackageDescription} must equal the content of the
ca:ASName {infoset:element} among the children of the ca: AuthoritativeSource {infoset:element}.

Exactly one of the following must be true:

a. the ASAddressText attribute of the {stereotype:ModelPackageDescription} must be present and the value
of the attribute must equal the content of the ca: ASAddressText {infoset:element} among the children of
the ca:AuthoritativeSource {infoset:element}; or

b. the ASAddressText attribute of the {stereotype:ModelPackageDescription} must be absent, and the
ca:ASAddressText {infoset:element} must be absent from the children of the ca: AuthoritativeSource
{infoset:element}

Exactly one of the following must be true:

a. The ASWebSiteURL attribute of the {stereotype:ModelPackageDescription} must be present and the value
of the attribute must equal the content of the ca:ASWebSiteURL {infoset:element} among the children of
the ca:AuthoritativeSource {infoset:element}; or

b. the ASWebSiteURL attribute of the {stereotype:ModelPackageDescription} must be absent, and the
ca:ASWebSiteURL {infoset:element} must be absent from the children of the ca:AuthoritativeSource
{infoset:element}.

For each value of the POC attribute of the {stereotype:ModelPackageDescription}, a mapping must exist
between an instance of a POCType and a ca:POC {infoset:element} among the children of the
ca:AuthoritativeSource {infoset:element}.

B.1.5.4 Mapping ca:POC {infoset:element}

[Rule: Mapping between for an instance of POCType and a ca:POC {infoset:element}]

A mapping shall exist between an instance of POCType and a ca:POC {infoset:element} only if the following are

true:

NIEM-UML Beta 1 193

1. The value of the POCName attribute of the instance of POCType must equal the content of the ca:POCName
{infoset:element} among the children of the ca:POC {infoset:element}.

2. For each value of the POCEmail attribute of the instance of POCType, a ca:POCEmail {infoset:element} must
exist among the children of the ca:POC {infoset:element} and the content of the ca:POCEmail
{infoset:element} must equal the value of that POCEmail attribute of the instance of POCType.

3. For each value of the POCTelephone attribute of the instance of POCType, a ca:POCTelephone
{infoset:element} must exist among the children of the ca:POC {infoset:element} and the content of the
ca:POCTelephone {infoset:element} must equal the value of that POCTelephone attribute of the instance of
POCType.

B.1.5.5 Mapping ca:Relationship {infoset:element}

[Rule: Mapping between a {stereotype:ModelPackageDescriptionRelationship} and a ca:Relationshop
{infoset:element}]

A mapping shall exist between a {stereotype:ModelPackageDescriptionRelationship} and a ca:Relationship
{infoset:element} only if the following are true:

1. The value of the relationshipCode attribute of the {stereotype:ModelPackageDescriptionRelationship} must
equal the normalized value of the ca:relationshipCode {infoset:attribute} of the ca:Relationship
{infoset:element}.

2. Exactly one of the following must be true:

a. the value of the descriptionText attribute of the {stereotype:ModelPackageDescriptionRelationship} must
be present the value of the attribute and must equal the normalized value of the ca:descriptionText
{infoset:attribute} of the ca:Relationship {infoset:element}; or

b. the value of the descriptionText attribute of the {stereotype:ModelPackageDescription} must be absent, and
the ca:descriptionText {infoset:attribute} of the ca:Relationship {infoset:element} must be absent.

3. The value of the mpdURI attribute of the {stereotype:ModelPackageDescription} that is the supplier
{uml:NamedElement} of the {uml:ModelPackageDescriptionRealtionship} must equal the normalized value of
the ca:resourceURI {infoset:attribute} of the Relationship {infoset:element}.

B.1.5.6 Mapping ca:FileSet {infoset:element}
[Rule: Mapping between a {stereotype:ModelPackageDescriptionFileSet} and a ca:FileSet {infoset:element}]

A mapping shall exist between a {stereotype:ModelPackageDescriptionFileSet} and a ca:FileSet {infoset:element}
only if the following are true:

1. Exactly one of the following must be true:

a. the value of the externalURI attribute of the {stereotype:ModelPackageDescriptionFileSet} must be present
and the value of the attribute must equal the normalized value of the ca:external URI {infoset:attribute} of
the ca:FileSet {infoset:element}; or

b. the value of the externalURI attribute of the {stereotype:ModelPackageDescriptionFileSet} must be absent,
and the ca:externalURI {infoset:attribute} of the ca:FileSet {infoset:element} must be absent.

2. The concatenation of "http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/nature#" and the value of the
natureCode attribute of the {stereotype:ModelPackageDescriptionFileSet} must equal the normalized value of
the ca:natureURI {infoset:attribute} of the ca:FileSet {infoset:element}.

3. The concatenation of "http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#" and the purposeCode
attribute of the {stereotype:ModelPackageDescriptionFileSet} must equal the normalized value of the
ca:purposeURI {infoset:attribute} of the ca:FileSet {infoset:element}.

4. Exactly one of the following must be true:

NIEM-UML Beta 1 194

a. the value of the descriptionText attribute of the {stereotype: ModelPackageDescriptionFileSet} must be
present and the value of the attribute must equal the normalized value of the ca:descriptionText
{infoset:attribute} of the ca:FileSet {infoset:element}; or

b. the value of the descriptionText attribute of the {stereotype:ModelPackageDescriptionFileSet} must be
absent, and the ca:descriptionText {infoset:attribute} of the ca:FileSet {infoset:element} must be absent.

5. For each {stereotype:ModelPackageDescriptionFile} for which the
{stereotype:ModelPackageDescriptionFileSet} is a client {uml:NamedElement}, a mapping must exist between
the {stereotype:ModelPackageDescriptionFile} and a ca:File {infoset:element} among the children of the
ca:FileSet {infoset:element}.

B.1.5.7 Mapping ca:File {infoset:element}
[Rule: Mapping between a {stereotype:ModelPackageDescriptionFile} and a ca:File {infoset:element}]

A mapping shall exist between a {stereotype:ModelPackageDescriptionFile} and a ca:File {infoset:element} only if
the following are true:

6. Exactly one of the following must be true:

a. the value of the externalURI attribute of the {stereotype:ModelPackageDescriptionFile} must be present
and the value of the attribute must equal the normalized value of the ca:external URI {infoset:attribute} of
the ca:File {infoset:element}; or

b. the value of the externalURI attribute of the {stereotype:ModelPackageDescriptionFile} must be absent,
and the ca:externalURI {infoset:attribute} of the ca:File {infoset:element} must be absent.

7. The value of the relativePathName attribute of the {stereotype:ModelPackageDescriptionFile} must equal the
normalized value of the ca:relativePathName {infoset:attribute} of the ca:File {infoset:element}.

8. The concatenation of "http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/nature#" and the value of the
natureCode attribute of the {stereotype:ModelPackageDescriptionFile} must equal the normalized value of the
ca:natureURI {infoset:attribute} of the ca:File {infoset:element}.

9. The concatenation of "http://reference.niem.gov/niem/resource/mpd/lexicon/1.0/purpose#" and the purposeCode
attribute of the {stereotype:ModelPackageDescriptionFile} must equal the normalized value of the
ca:purposeURI {infoset:attribute} of the ca: File {infoset:element}.

10. Exactly one of the following must be true:

a. the value of the descriptionText attribute of the {stereotype:ModelPackageDescriptionFile} must be present
and the value of the attribute must equal the normalized value of the ca:descriptionText {infoset:attribute}
of the ca:File {infoset:element}; or

b. the value of the descriptionText attribute of the {stereotype:ModelPackageDescriptionFile} must be
absent, and the ca:descriptionText {infoset:attribute} of the ca:File {infoset:element} must be absent.

B.2 Mapping Between NIEM-conformant XML Schema and
NIEM-conforming Platform Specific Model

B.2.1 Scope

This subclause specifies the mapping between a NIEM-conformant XML Schema and a NIEM-conforming Platform
Specific Model.

B.2.2 Conventions
This subclause employs the following conventions.

[Convention: To reference a specification]

NIEM-UML Beta 1 195

If the subclause references a specification, the subclause represents the reference as follows:
5. the prefix "[Reference: ";

6. the title of the specification;

7. the character "]"; and
8

on the following line, the word to indicate the specification and the URI for the specification, indented from
the "[Reference:" prefix.

If this subclause were to reference the specification with the title "XML Information Set (Second Edition)" and the
URI "http://www.w3.0rg/TR/xml-infoset", and if it were to associate the specification with the word "infoset", the
subclause would represent the reference as follows:

[Reference: XML Information Set (Second Edition)]
The word "infoset" indicates a term from this specification.
http://www.w3.0rg/TR/xml-infoset

[Convention: To indicate a term from another specification]

If the subclause employs a term from another specification, or a term derived from another specification, the
subclause represents the term as follows:

6. the character "{";

7. aword to indicate the specification;
8. the character ":";

9. the term itself; and

10. the character "}".

If this subclause were to employ the term "attribute information item" from the specification "XML Information Set
(Second Edition)", and presuming the word to indicate the specification is "infoset", the representation of that term
would be {infoset:attribute}.

This convention serves distinguish between same term employed by different specifications for different purposes.
For example, the term "component” occurs in both "XML Schema Part 1: Structures Second Edition” and "OMG
Unified Modeling Language (TM) (OMG UML), Superstructure Version 2.4.1". In the former, the term
"component" refers to any schema component; in the latter, the term "Component" refers to a particular metaclass.
Rather than leave the reader to infer the intended meaning from the context of the sentence, this subclause
distinguishes between the two: the former is {schema:component} and the latter is {uml:Component}.

[Convention: To indicate a definition]
If this subclause defines a term, the subclause represents the definition as follows:
1. the prefix "[Definition: ";
2. theterm;
3. the character "1"; and
4. on the following line, the definition itself, indented from the "[Definition:" prefix.
If the term includes formatted text, the use of the term will instantiate the formatted text.

If this subclause were to define a term "Example Definition™ for which the definition is "This is an example
definition."”, the subclause would represent the definition as follows:

[Definition: Example Definition]
This is an example definition.

[Convention: To indicate a rule]

NIEM-UML Beta 1 196

If this subclause specifies a rule, the subclause represents the rule as follows:
6. the prefix "[Rule ";

7. the character ":";

8. the rule name;

9. the character "]"; and

10. on the following line, the rule itself, indented from the "[Rule " prefix.

If this subclause were to specify a rule for which the name is "Example Rule" and for which rule itself is "This is an
example rule.”, the subclause would represent the definition as follows:

[Rule: Example Rule]

This is an example rule.

B.2.3 References

This subclause references the following specifications.

[Reference: OMG Unified Modeling LanguageTM (OMG UML), Superstructure Version 2.4.1]
The word "uml™ indicates a term from this specification. Example: {uml:Class}.
http://www.omg.org/spec/UML/2.4/Superstructure

[Reference: Namespaces in XML 1.0 (Third Edition)]
The word "namespace" indicates a term from this specification. Example: {namespace:qualified name}.
http://www.w3.0rg/TR/xml-names/

[Reference: XML Information Set (Second Edition)]
The word "infoset" indicates a term from this specification. Example: {infoset:attribute}.
http://www.w3.0rg/TR/xml-infoset

[Reference: XML Schema Part 1: Structures Second Edition]
The word "schema" indicates a term from this specification. Example: {schema:complex type definition}.
http://www.w3.0rg/TR/xmlschema-1/

[Reference: XML Schema Part 2: Datatypes Second Edition]
The word "schema" also indicates a term from this specification. Example: {schema:simple type definition}.
http://www.w3.0rg/TR/xmlschema-2/

[Reference: NIEM Naming and Design Rules Version 1.3]
The word "niem" indicates a term from this specification. Example: {niem:object type}.

http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/niem-ndr-1.3.pdf
B.2.4 Terminology

B.2.4.1 {uml} Terminology
The following definitions derive from {uml}.
[Definition: attribute-name attribute of the {uml:metaclass}]

This phrase refers to the attribute of the {uml:metaclass} with the name attribute-name. Example: The name
attribute of the {uml:Property}.

NIEM-UML Beta 1 197

[Definition: end-name {uml:end-type} of the {uml:metaclass}]

This phrase refers to the opposite association end of the {uml:metaclass} with the name end-name, the type of
which is {uml:end-type}. Example: the subsettedProperty of the {uml:Property}.

[Definition: end-name of the {uml:metaclass}]

This phrase refers to the opposite association end of the metaclass with the name end-name. Unlike the above
definition, the type of the association end is not specified. Example: The type of the {uml:Property}.

B.2.4.2 {infoset} Terminology
The following definitions derive from {infoset}.
[Definition: {infoset:element}]
Same as {infoset:element information item}.
[Definition: {infoset:attribute}]
Same as {infoset:attribute information item}.
[Definition: "prefix:local-name' {infoset:attribute}]
This phrase references an {infoset:attribute}

3. for which the value of the namespace name property is the namespace name associated by this subclause
with the namespace prefix "prefix" and

4. for which the value of the local name property is "local-name™.
[Definition: "prefix:local-name™ {infoset:element}]
This phrase references an {infoset:element}

3. for which the value of the namespace name property is the namespace name associated by this subclause
with the namespace prefix "prefix" and

4. for which the value of the local name property is "local-name".

B.2.4.3 {schema} Terminology
The following definitions derive from {schema}.
[Definition: XML Schema namespace]

The XML Schema namespace is the namespace for which the namespace name is
"http://lwww.w3.0rg/2001/XMLSchema". This subclause associates the namespace name with the namespace
prefix "xsd".

The above definition serves to associate the namespace prefix "“xsd" with the namespace name
"http://www.w3.0rg/2001/XMLSchema".

[Definition: explicit members of the facets property of a {schema:simple type definition}]

The XML representation of a {schema:simple type definition} is an xsd:simpleType {infoset:element}, the
children property of which includes a xsd:restriction {infoset:element}, the children property of which may
include a set of {infoset:element}.

A subset of these {infoset:element}s represent a set of {schema:facet}s. The explicit members of the facets
property of a {schema:simple type definition} are these {schema:facet}s.

The above definition distinguishes between the explicit members of the facets property of a {schema:simple type
definition} and all members of the facets property, which also include the members of the facets property of the
{schema:base type definition} for the {schema:simple type definition}.

NIEM-UML Beta 1 198

[Definition: explicit members of the member type definitions property of a {schema:union simple type
definition}]

The XML representation of a {schema:simple type definition} derived by union from a set of {schema:simple
type definition}s is an xsd:simpleType {infoset:element}. The children property of this {infoset:element}
includes an xsd:union {infoset:element}, the attributes property of which includes an xsd:memberTypes
{infoset:attribute}.

The items in the actual value of the xsd:memberTypes {infoset:attribute} resolve to {schema:simple type
definition}s. These {schema:simple type definition}s are the explicit members of the member type definitions
property of the {schema:union simple type definition}.

The above definition distinguishes between the explicit members of the member type definitions property of a
{schema:union simple type definition} and the members of the member type definitions property; the members of
the member type definitions property are the explicit members of the member type definitions property, with those
explicit members that are {schema:union simple type definitions} with the members of their member type
definitions property.

[Definition: explicit members of the attribute uses property of a {schema:complex type definition}]

The XML representation of a {schema:complex type definition} is an xsd:complexType {infoset:element}. The
descendants of this {infoset:element} include xsd:attribute {infoset:element}s and xsd:attributeGroup
{infoset:element}s.

In the case of the former, each xsd:attribute {infoset:element} represents an {schema:attribute use}; each of
these {schema:attribute use}s is an explicit member of the attribute uses property of the {schema:complex type
definition}.

In the case of the latter, the xsd:ref {infoset:attribute} of the xsd:attributeGroup {infoset:element} resolves to a
{schema:attribute group}. Each member of the attribute uses property of the {schema:attribute group} is an
explicit member of the attribute uses property of the {schema:complex type definition}

The above definition distinguishes between the explicit members of the attribute uses property of a
{schema:complex type definition} and all members of the attribute uses property, which also include the members
of the attribute uses property of the {schema:base type definition} for the {schema:complex type definition}.

[Definition: {schema:element use}]

A {schema:element use} is a {schema:particle} for which the term property is a {schema:element declaration}.
[Definition: {schema:wildcard use}]

A {schema:wildcard use} is a {schema:particle} for which the term property is a {schema:wildcard}.
[Definition: {schema:model group use}]

A {schema:model group use} is a {schema:particle} for which the term property is a {schema:model group}.
The above definitions distinguish between {schema:particle}s based on the term property of the {schema:particle}.
[Definition: {schema:choice}]

A {schema:choice} is a {schema:model group use} and for which the value of the compositor property of the
{schema:model group} is "choice".

[Definition: {schema:sequence}]

A {schema:choice} is a {schema:model group use} and for which the value of the compositor property of the
{schema:model group} is "sequence".

The above definitions distinguish between {schema:model group use}s based on the value of the compositor
property of the {schema:model group}.

B.2.4.4 {niem} Terminology

The following definitions derive from {niem}.

NIEM-UML Beta 1 199

[Definition: structures namespace]

The structures namespace is the namespace for which the namespace name is
"http://niem.gov/niem/structures/2.0". This subclause associates the namespace name with the namespace prefix
Ilsll.

The above definition serves to associate the namespace prefix "s" with the namespace name

"http://niem.gov/niem/structures/2.0".

[Definition: appinfo namespace]

The appinfo namespace is the namespace for which the namespace name is "http://niem.gov/niem/appinfo/2.0".
This subclause associates the namespace name with the hamespace prefix "i".

The above definition serves to associate the namespace prefix "i" with the namespace name
"http://niem.gov/niem/appinfo/2.0".

[Definition: documentation for {schema:component}]

The annotation property of a {schema:component} is a {schema:annotation}; the user information property of
this {schema:annotation} is represented in XML as a sequence of {infoset:element}s. This phrase references the
first xsd:documentation {infoset:element} in that sequence.

[Definition: documentation for prefix:local-name {infoset:element}]

The children property of the prefix:local-name {infoset:element} includes an xsd:annotation {infoset:element};
this phrase references the first xsd:documentation {infoset:element} in the children property of the
xsd:annotation {infoset:element}.

The above definitions specify the {infoset:element} that represents the documentation for either a
{schema:component} or an {infoset:element}.

[Definition: ""application-information-gname'* application information for {schema:component}]

The annotation property of a {schema:component} is a {schema:annotation}; the application information
property of this {schema:annotation} is represented in XML as a sequence of {infoset:element}s. This phrase
references the "application-information-qname” {infoset:element} in that sequence.

[Definition: ""application-information-gname* application information for {schema:component} must
indicateprefix:local-name]

The members of the attributes property of the referenced {infoset:element} include each of the following:

1. An"i:znamespace" {infoset:attribute} for which the normalized value is the namespace name associated by
this specification with the namespace prefix prefix.

2. An"i:zname" {infoset:attribute} for which the normalized value is local-name.

[Definition: value of the "application-information-qname"* application information for {schema:component}
must be "application-information-value']

The children property of the referenced {infoset:element} are the character information items "application-
information-value".

B.2.5 Built-In {uml:Element}

The following definitions identify {uml:Element}s that correspond to the XML Schema namespace and to built-in
{schema:simple type definition}s.

B.2.5.1 Built-In {uml:Package}
The following definition identifies a {uml:Package} that corresponds to the XML Schema namespace.
[Definition: Built-In {uml:Package}]

A built-in {uml:Package} is any {uml:Package} that corresponds to the XML Schema namespace.

NIEM-UML Beta 1 200

A built-in {uml:Package} corresponds to the XML Schema namespace. This subclause employs the built-in
{uml:Package} as a container for any {uml:DataType} that corresponds to a built-in {schema:simple type

definition}.

B.2.5.2 Built-In {uml:DataType}

The following definitions identify a {uml:DataType} that corresponds to a built-in {schema:simple type definition}.

[Definition: Built-In Atomic {uml:DataType}]
A built-in atomic {uml:DataType} is a {uml:DataType}
1. for which the namespace is the built-in {uml:Package}; and

2. for which the value of the name attribute is exactly one of the following:

Name of Built-In Atomic {uml:DataType}

anyURI base64Binary byte boolean

date dateTime decimal double
duration ENTITY float gDay

gMonth gMonthDay gYear gYearMonth
hexBinary ID IDREF int

integer language long Name
NCName negativelnteger NMTOKEN nonNegativelnteger
nonPositivelnteger normalizedString NOTATION positivelnteger
QName short string time

token unsignedByte unsignedint unsignedLong
unsignedShort

A built-in atomic {uml:DataType} corresponds to a built-in {schema:atomic simple type definition}.

[Definition: Built-In List {uml:DataType}]

A built-in list {uml:DataType} is a {uml:DataType}

1. for which the namespace is the built-in {uml:Package}; and

2. for which the value of the name attribute is exactly one of the following:
a. "NMTOKENS",

b. "IDREFS", or
c. "ENTITIES".

A built-in list {fuml:DataType} corresponds to a built-in {schema:list simple type definition}.
[Definition: Built-In {uml:DataType}]

A built-in {uml:DataType} is any {uml:DataType} that is

NIEM-UML Beta 1

201

1. abuilt-in atomic {uml:DataType} or
2. abuilt-in list {uml:DataType}.
A built-in {uml:DataType} corresponds to a built-in {schema:simple type definition}.

While it would be unwise for a modeler to represent a built-in {uml:DataType} in a way that is inconsistent with its
definition in XML Schema, this subclause does not require a built-in {uml:DataType} reflect its definition in XML
Schema, other than sharing its name and its target namespace, as this is sufficient to specify a mapping.

B.2.6 Categorized {uml:Element}

The following definitions place a {uml:Element} into a category based on its context.

B.2.6.1 Categorized {stereotype:Namespace}

The following definitions place a {stereotype:Namespace} into a category based on the value of the isConformant
attribute.

[Definition: Conformant {stereotype:Namespace}]
A conformant {stereotype:Namespace} is any {stereotype:Namespace}
1. thatis not a built-in {uml:Package} and
2. for which the value of the isConformant attribute is "true".
[Definition: Non-Conformant {stereotype:Namespace}]
A non-conformant {stereotype:Namespace} is any {stereotype:Namespace}
1. thatis not a built-in {uml:Package} and
2. for which the value of the isConformant attribute is "false".
The above correspond to conformant and non-conformant {schema:schema}.
[Definition: Categorized {stereotype:Namespace}]

A categorized {stereotype:Namespace} is any Conformant {stereotype:Namespace} or a Non-Conformant
{stereotype:Namespace}.

[Definition: Uncategorized {stereotype:Namespace}]

An uncategorized {stereotype:Namespace} is any {stereotype:Namespace} that is not a categorized
{stereotype:Namespace}.

The subclause defines a categorized {stereotype:Namespace} and uncategorized {stereotype:Namespace} for use in
definitions and rules.
B.2.6.2 Categorized {uml:DataType}

The following definitions place a {uml:DataType} into a category based on its context: its relationship to a
{stereotype:Restriction}, its relationship to a {stereotype:UnionOf}, and its ownedAttribute {uml:Property}.

[Definition: Category 1 {uml:DataType}]
A Category 1 {uml:DataType} is any {uml:DataType}
1. thatis not a built-in {uml:DataType},
2. for which no {uml:Property} is its ownedAttribute {uml:Property},
3. thatis the client {uml:NamedElement} of exactly one {stereotype:Restriction}, and

4. that is not the client {uml:NamedElement} of any {stereotype:UnionOf}.

NIEM-UML Beta 1 202

A Category 1 {uml:DataType} corresponds to a user-derived {schema:simple type definition} that is derived by
restriction from another {schema:simple type definition}.

[Definition: Category 2 {uml:DataType}]
A Category 2 {uml:DataType} is any {uml:DataType}
1. thatis not a built-in {uml:DataType},
2. for which exactly one {uml:Property} is its ownedAttribute {uml:Property},
3. thatis not the client {uml:NamedElement} of any {stereotype:Restriction}, and
4. thatis not the client {uml:NamedElement} of any {stereotype:UnionOf}.

A Category 2 {uml:DataType} corresponds to a user-defined {schema:simple type definition} that is derived by list
from another {schema:simple type definition}.

[Definition: Category 3 {uml:DataType}]
A Category 3 {uml:DataType} is any {uml:DataType}
1. thatis not a built-in {uml:DataType},
2. for which no {uml:Property} is its ownedAttribute {uml:Property},
3. thatis not the client {uml:NamedElement} of any {stereotype:Restriction}, and
4. thatis the client {uml:NamedElement} of at least one {stereotype:UnionOf}.

A Category 3 {uml:DataType} corresponds to a user-defined {schema:simple type definition} that is derived by
union from at least one {schema:simple type definition}.

[Definition: Categorized {uml:DataType}]
A categorized {uml:DataType} is any {uml:DataType} that is
1. aCategory 1 {uml:DataType},
2. aCategory 2 {uml:DataType}, or
3. acCategory 3 {uml:DataType}.
[Definition: Uncategorized {uml:DataType}]
An uncategorized {uml:DataType} is any {uml:DataType} that is not a categorized {uml:DataType}.

The subclause defines a categorized {uml:DataType} and uncategorized {uml:DataType} for use in definitions and
rules.

The following table summarizes the characteristics of the above {uml:DataType}s.

Characteristic of {uml:DataType}

{uml:DataType} Category

1 |2 |3
must not be a built-in {uml:DataType} Y |Y |Y
must be client {uml:NamedElement} of {stereotype:Restriction} Y
no {uml:Property} may be its ownedAttribute {uml:Property} Y Y
exactly one {uml:Property} must be its ownedAttribute {uml:Property} Y

NIEM-UML Beta 1 203

Characteristic of {uml:DataType}

{uml:DataType} Category

1 2 3
must not be client {uml:NamedElement} of any {stereotype:UnionOf} Y |Y
must be client {uml:NamedElement} of at least one {stereotype:UnionOf} Y

The following table summarizes the characteristics of the {schema:component} that correspond to the above
categories of {uml:DataType}.

Characteristic of Corresponding {schema:component}

Corresponding {schema:component} Category

1 2 3
must be user-derived {schema:simple type definition} Y Y Y
must be user-derived {schema:atomic simple type definition} Y
must be user-derived {schema:list simple type definition} Y
must be user-derived {schema:union simple type definition} Y

B.2.6.3 Categorized {uml:Enumeration}
The following definitions place a {uml:Enumeration} into a category.
[Definition: Category 1 {uml:Enumeration}]
A Category 1 {uml:Enumeration} is any Category 1 {uml:DataType} that is also a {uml:Enumeration}.

A Category 1 {uml:Enumeration} corresponds to a {schema:simple type definition} that is derived by restriction
from another {schema:simple type definition}.

[Definition: Categorized {uml:Enumeration}]

A categorized {uml:Enumeration} is any {uml:Enumeration} that is a Category 1 {uml:Enumeration}.
[Definition: Uncategorized {uml:Enumeration}]

An uncategorized {uml:Enumeration} is any {uml:Enumeration} that is not a categorized {uml:Enumeration}.
The subclause defines a categorized {uml:Enumeration} and uncategorized {uml:Enumeration} for use in
definitions and rules.

B.2.6.4 Categorized {stereotype:List}

The following definitions place a {stereotype:List} into a category based on the category of the {uml:DataType} to
which the stereotype is applied.

[Definition: Category 1 {stereotype:List}]
A Category 1 {stereotype:List} is any Category 1 {uml:DataType} to which the {stereotype:List} is applied.

NIEM-UML Beta 1 204

A Category 1 {stereotype:List} corresponds to a {schema:list simple type definition} that is derived by restriction
from another {schema:list simple type definition}.

[Definition: Category 2 {stereotype:List}]
A Category 2 {stereotype:List} is any Category 2 {uml:DataType} to which the {stereotype:List} is applied.

A Category 2 {stereotype:List} corresponds to a {schema:list simple type definition} that is derived by list from a
{schema:simple type definition}.

[Definition: Categorized {stereotype:List}]
A categorized {stereotype:List} is any {stereotype:List} that is
1. acCategory 1 {stereotype:List} or
2. aCategory 2 {stereotype:List}.
[Definition: Uncategorized {stereotype:L.ist}]
An uncategorized {stereotype:List} is any {stereotype:List} that is not a categorized {stereotype:List}.

The subclause defines a categorized {stereotype:List} and uncategorized {stereotype:List} for use in definitions and
rules.

B.2.6.5 Categorized {stereotype:Union}

The following definitions place a {stereotype:Union} into a category based on the category of the {uml:DataType}
to which the stereotype is applied.

[Definition: Category 1 {stereotype:Union}]

A Category 1 {stereotype:Union} is any Category 1 {uml:DataType} to which the {stereotype:Union} is
applied.

A Category 1 {stereotype:Union} corresponds to a {schema:union simple type definition} that is derived by
restriction from another {schema:union simple type definition}.

[Definition: Category 3 {stereotype:Union}]

A Category 3 {stereotype:Union} is any Category 3 {uml:DataType} to which the {stereotype:Union} is
applied.

A Category 3 {stereotype:Union} corresponds to a {schema:union simple type definition} that is derived by union
from more than one {schema:simple type definition}.

[Definition: Categorized {stereotype:Union}]

A categorized {stereotype:Union} is any {stereotype:Union} that is

1. aCategory 1 {stereotype:Union}, or

2. aCategory 3 {stereotype:Union}.

[Definition: Uncategorized {stereotype:Union}]

An uncategorized {stereotype:Union} is any {stereotype:Union} that is not a categorized {stereotype:Union}.
The subclause defines a categorized {stereotype:Union} and uncategorized {stereotype:Union} for use in definitions
and rules.

B.2.6.6 Categorized {uml:Class}

The following definitions place a {uml:Class} into a category based on its context: its relationship to
{stereotype: XSDSimpleContent}, its relationship to {stereotype:Restriction}, and its relationship to
{uml:Generalization}.

[Definition: Category 1 {uml:Class}]

NIEM-UML Beta 1 205

A Category 1 {uml:Class} is any {uml:Class}

1. thatis not the client {uml:NamedElement} of any {stereotype: XSDSimpleContent},
2. thatis not the client {uml:NamedElement} of any {stereotype:Restriction},

3. that is not the specific {uml:Classifier} of any {uml:Generalization},

4. that is not the supplier {uml:NamedElement} of any {stereotype:Restriction}, and
5. that is not the general {uml:Classifier} of any {uml:Generalization}.

A Category 1 {uml:Class} is a {uml:Class} that corresponds to a {schema:complex type definition with complex
content} that is derived by extension from exactly one of "s:ComplexObjectType", "s:MetadataType", or
"s:AugmentationType".

[Definition: Category 2 {uml:Class}]
A Category 2 {uml:Class} is any {uml:Class}
1. thatis not the client {uml:NamedElement} of any {stereotype:XSDSimpleContent},
2. that is not the client {uml:NamedElement} of any {stereotype:Restriction},
3. that is not the specific {uml:Classifier} of any {uml:Generalization}, and
4. that is exactly one of the following:
1. the supplier {uml:NamedElement} of at least one {stereotype:Restriction} or
2. the general {uml:Classifier} of at least one {uml:Generalization}.

A Category 2 {uml:Class} is a {uml:Class} that corresponds to a {schema:complex type definition with complex
content} that is derived by extension from exactly one of "s:ComplexObjectType" or "s:AugmentationType".

[Definition: Category 3 {uml:Class}]
A Category 3 {uml:Class} is any {uml:Class}
1. thatis not the client {uml:NamedElement} of any {stereotype:XSDSimpleContent},
2. that is not the client {uml:NamedElement} of any {stereotype:Restriction}, and
3. thatis the specific {uml:Classifier} of exactly one {uml:Generalization}.

A Category 3 {uml:Class} is a {uml:Class} that corresponds to a {schema:complex type definition with complex
content} that is derived by extension from a {schema:complex type definition with complex content}.

[Definition: Category 4 {uml:Class}]
A Category 4 {uml:Class} is any {uml:Class}
1. thatis not the client {uml:NamedElement} of any {stereotype: XSDSimpleContent},
2. thatis the client {uml:NamedElement} of exactly one {stereotype:Restriction}, and
3. that is not the specific {uml:Classifier} of any {uml:Generalization}.

A Category 4 {uml:Class} is a {uml:Class} that corresponds to a {schema:complex type definition with complex
content} that is derived by restriction from a {schema:complex type definition with complex content}.

[Definition: Category 5 {uml:Class}]
A Category 5 {uml:Class} is any {uml:Class}
1. thatis the client {fuml:NamedElement} of exactly one {stereotype:XSDSimpleContent},
2. thatis not the client {uml:NamedElement} of any {stereotype:Restriction}, and

3. that is not the specific {uml:Classifier} of any {uml:Generalization}.

NIEM-UML Beta 1 206

A Category 5 {uml:Class} is a {uml:Class} that corresponds to a {schema:complex type definition with simple
content} that is derived by extension from a {schema:simple type definition}.

[Definition: Category 6 {uml:Class}]
A Category 6 {uml:Class} is a {uml:Class}
1. thatis the client {fuml:NamedElement} of a {stereotype:XSDSimpleContent},
2. thatis the client {uml:NamedElement} of a {stereotype:Restriction}, and
3. that is not the specific {uml:Classifier} of any {uml:Generalization}.

A Category 6 {uml:Class} is a {uml:Class} that corresponds to a {schema:complex type definition with simple
content} that is derived by restriction from a {schema:complex type definition with simple content}.

[Definition: Categorized {uml:Class}]

A categorized {uml:Class} is any {uml:Class} that is

1. acCategory 1 {uml:Class},

2. aCategory 2 {uml:Class},

3. aCategory 3 {uml:Class},

4. aCategory 4 {uml:Class},

5. aCategory 5 {uml:Class}, or

6. a Category 6 {uml:Class}.
[Definition: Uncategorized {uml:Class}]

An uncategorized {uml:Class} is any {uml:Class} that is not a categorized {uml:Class}.
The subclause defines a categorized {uml:Class} and uncategorized {uml:Class} for use in definitions and rules.

The following table summarizes the characteristics of the above categories of {uml:Class}.

Characteristic of {uml:Class}

{uml:Class} Category

112 |3 |4 |5 |6
must be client {uml:NamedElement} of {stereotype:XSDSimpleContent} Y |Y
must be client {uml:NamedElement} of {stereotype:Restriction} Y Y
must be specific {uml:Classifier} of {uml:Generalization} Y
may be supplier {uml:NamedElement} of {stereotype:Restriction} Y|Y|Y]|]Y]|Y
may be general {uml:Classifier} of {uml:Generalization} Y|Y|Y]|]Y]|Y

The following table summarizes the characteristics of the {schema:component} that correspond to the above
categories of {uml:Class}.

Characteristic of Corresponding {schema:component}

Corresponding {schema:component} Category

NIEM-UML Beta 1 207

1 2 |3 |4 5 6
{schema:complex type definition with complex content} Y |Y |Y |Y
{schema:complex type definition with simple content} Y |Y
may be derived by extension from "s:AugmentationType" Y |Y
may be derived by extension from "s:ComplexObjectType" Y |Y
may be derived by extension from "s:MetadataType" Y
must be derived by extension from {schema:ct with cc} Y
must be derived by restriction from {schema:ct with cc} Y
must be derived by extension from {schema:simple type definition} Y
must be derived by restriction from {schema:ct with sc} Y

B.2.6.7 Categorized {stereotype:AdapterType}

The following definitions place a {stereotype: AdapterType} into a category based on the category of the
{uml:Class} to which the stereotype is applied.

[Definition: Category 1 {stereotype:AdapterType}]

A Category 1 {stereotype: AdapterType} is any {stereotype: AdapterType} that is applied to a Category 1
{uml:Class}.

A {stereotype:AdapterType} corresponds to a {niem:adapter type}. It may only be applied to a Category 1
{uml:Class}, as a {niem:adapter type} must be a {schema:complex type definition with complex content} and must
not be the base type definition of any {schema:complex type definition}.

[Definition: Categorized {stereotype:AdapterType}]

A categorized {stereotype: AdapterType} is any {stereotype: AdapterType} that is a Category 1
{stereotype: AdapterType}.

[Definition: Uncategorized {stereotype: AdapterType}]

An uncategorized {stereotype: AdapterType} is any {stereotype:AdapterType} that is not a categorized
{stereotype: AdapterType}.

The subclause defines a categorized {stereotype: AdapterType} and uncategorized {stereotype: AdapterType} for use
in definitions and rules.
B.2.6.8 Categorized {stereotype:AssociationType}

The following definitions place a {stereotype:AssociationType} into a category based on the category of the
{uml:Class} to which the stereotype is applied.

[Definition: Category 1 {stereotype:AssociationType}]

A Category 1 {stereotype:AssociationType} is any {stereotype:AssociationType} that is applied to a Category 1
{uml:Class}.

[Definition: Category 2 {stereotype:AssociationType}]

NIEM-UML Beta 1 208

A Category 2 {stereotype:AssociationType} is any {stereotype:AssociationType} that is applied to a Category 2
{uml:Class}.

[Definition: Category 3 {stereotype:AssociationType}]

A Category 3 {stereotype:AssociationType} is any {stereotype:AssociationType} that is applied to a Category 3
{uml:Class}.

[Definition: Category 4 {stereotype:AssociationType}]

A Category 4 {stereotype:AssociationType} is any {stereotype:AssociationType} that is applied to a Category 4
{uml:Class}.

A {stereotype:AssociationType} corresponds to a {niem:association type}. It may be applied to any categorized
{uml:Class} except a Category 5 {uml:Class} and a Category 6 {uml:Class}, as a {niem:association type} must be a
{schema:complex type definition with complex content}.

[Definition: Categorized {stereotype:AssociationType}]
A categorized {stereotype:AssociationType} is any {stereotype:AssociationType} that is
1. aCategory 1 {stereotype:AssociationType},
2. aCategory 2 {stereotype:AssociationType},
3. aCategory 3 {stereotype:AssociationType}, or
4. aCategory 4 {stereotype: AssociationType}.
[Definition: Uncategorized {stereotype:AssociationType}]

An uncategorized {stereotype: AssociationType} is any {stereotype: AssociationType} that is not a categorized
{stereotype: AssociationType}.

The subclause defines a categorized {stereotype:AssociationType} and uncategorized {stereotype:AssociationType}
for use in definitions and rules.

B.2.6.9 Categorized {stereotype:AugmentationType}

The following definitions place a {stereotype: AugmentationType} into a category based on the category of the
{uml:Class} to which the stereotype is applied.

[Definition: Category 1 {stereotype: AugmentationType}]

A Category 1 {stereotype:AugmentationType} is any {stereotype: AugmentationType} that is applied to a
Category 1 {uml:Class}.

[Definition: Category 2 {stereotype: AugmentationType}]

A Category 2 {stereotype:AugmentationType} is any {stereotype: AugmentationType} that is applied to a
Category 2 {uml:Class}.

[Definition: Category 3 {stereotype: AugmentationType}]

A Category 3 {stereotype:AugmentationType} is any {stereotype: AugmentationType} that is applied to a
Category 3 {uml:Class}.

[Definition: Category 4 {stereotype: AugmentationType}]

A Category 4 {stereotype: AugmentationType} is any {stereotype: AugmentationType} that is applied to a
Category 4 {uml:Class}.

A {stereotype: AugmentationType} corresponds to an augmentation type. It may be applied to any categorized
{uml:Class} except a Category 5 {uml:Class} and a Category 6 {uml:Class}, as a {niem:augmentation type} must
be a {schema:complex type definition with complex content}.

[Definition: Categorized {stereotype: AugmentationType}]

NIEM-UML Beta 1 209

A categorized {stereotype: AugmentationType} is any {stereotype: AugmentationType} that is
1. aCategory 1 {stereotype:AugmentationType},
2. aCategory 2 {stereotype: AugmentationType},
3. aCategory 3 {stereotype:AugmentationType}, or
4. aCategory 4 {stereotype:AugmentationType}.
[Definition: Uncategorized {stereotype: AugmentationType}]

An uncategorized {stereotype: AugmentationType} is any {stereotype: AugmentationType} that is not a
categorized {stereotype: AugmentationType}.

The subclause defines a categorized {stereotype: AugmentationType} and uncategorized
{stereotype: AugmentationType} for use in definitions and rules.

B.2.6.10 Categorized {stereotype:MetadataType}

The following definitions place a {stereotype:MetadataType} into a category based on the category of the
{uml:Class} to which the stereotype is applied.

[Definition: Category 1 {stereotype:MetadataType}]

A Category 1 {stereotype:MetadataType} is any {stereotype:MetadataType} that is applied to a Category 1
{uml:Class}.

A {stereotype:MetadataType} corresponds to a {niem:metadata type}. It may only be applied to a Category 1
{uml:Class}, as a {niem:metadata type} must be a {schema:complex type definition with complex content} and
must not be the base type definition of any {schema:complex type definition}.

[Definition: Categorized {stereotype:MetadataType}]

A categorized {stereotype:MetadataType} is any {stereotype:MetadataType} that is a Category 1
{stereotype:MetadataType}.

[Definition: Uncategorized {stereotype:MetadataType}]

An uncategorized {stereotype:MetadataType} is any {stereotype:MetadataType} that is not a categorized
{stereotype:MetadataType}.

The subclause defines a categorized {stereotype:MetadataType} and uncategorized {stereotype:MetadataType} for
use in definitions and rules.
B.2.6.11 Categorized {stereotype:ObjectType}

The following definitions place a {stereotype:ObjectType} into a category based on the category of the {uml:Class}
to which the stereotype is applied.

[Definition: Category 1 {stereotype:ObjectType}]

A Category 1 {stereotype:ObjectType} is any {stereotype:ObjectType} that is applied to a Category 1
{uml:Class}.

[Definition: Category 2 {stereotype:ObjectType}]

A Category 2 {stereotype:ObjectType} is any {stereotype:ObjectType} that is applied to a Category 2
{uml:Class}.

[Definition: Category 3 {stereotype:ObjectType}]

A Category 3 {stereotype:ObjectType} is any {stereotype:ObjectType} that is applied to a Category 3
{uml:Class}.

[Definition: Category 4 {stereotype:ObjectType}]

NIEM-UML Beta 1 210

A Category 4 {stereotype:ObjectType} is any {stereotype:ObjectType} that is applied to a Category 4
{uml:Class}.

[Definition: Category 5 {stereotype:ObjectType}]

A Category 5 {stereotype:ObjectType} is any {stereotype:ObjectType} that is applied to a Category 5
{uml:Class}.

[Definition: Category 6 {stereotype:ObjectType}]

A Category 6 {stereotype:ObjectType} is any {stereotype:ObjectType} that is applied to a Category 6
{uml:Class}.

A {stereotype:ObjectType} corresponds to a {niem:object type}. It may be applied to any categorized {uml:Class}.
[Definition: Categorized {stereotype:ObjectType}]
A categorized {stereotype:ObjectType} is any {stereotype:ObjectType} that is
1. aCategory 1 {stereotype:ObjectType},
a Category 2 {stereotype:ObjectType},
a Category 3 {stereotype:ObjectType},

2

3

4. a Category 4 {stereotype:ObjectType},

5. aCategory 5 {stereotype:ObjectType}, or
6

a Category 6 {stereotype:ObjectType}.

[Definition: Uncategorized {stereotype:ObjectType}]

An uncategorized {stereotype:ObjectType} is any {stereotype:ObjectType} that is not a categorized
{stereotype:ObjectType}.

The subclause defines a categorized {stereotype:ObjectType} and uncategorized {stereotype:ObjectType} for use in
definitions and rules.
B.2.6.12 Categorized {uml:Property}

The following definitions place a {uml:Property} into a category based on its context: its class, its type, and whether
it is the client {uml:NamedElement} of a {stereotype:References}.

[Definition: Category 1 {uml:Property}]
A Category 1 {uml:Property} is any {uml:Property}
1. for which the class is a {stereotype:PropertyHolder},
2. for which the type is not a {stereotype:Choice}, and
3. that is not the client {uml:NamedElement} of any {stereotype:References}.

A Category 1 {uml:Property} corresponds to either a {schema:element declaration} or a {schema:attribute
declaration}.

[Definition: Category 2 {uml:Property}]
A Category 2 {uml:Property} is any {uml:Property}
1. for which the class is a categorized {uml:Class},
2. for which the type is not a {stereotype:Choice}, and
3. thatis not the client {uml:NamedElement} of any {stereotype:References}.

A Category 2 {uml:Property} corresponds to exactly one of the following:

NIEM-UML Beta 1 211

1. both a {schema:element declaration} and a {schema:element use} that is an item in the particles property of a
{schema:sequence},

2. both a {schema:attribute declaration} and a {schema:attribute use} that is an explicit member of the attribute
uses property of a {schema:complex type definition}, or

3. a{schema:wildcard use} that is an item in the particles property of a {schema:sequence}.
[Definition: Category 3 {uml:Property}]
A Category 3 {uml:Property} is any {uml:Property}
1. for which the class is a categorized {uml:Class},
2. for which the type is not a {stereotype:Choice}, and
3. thatis the client {uml:NamedElement} of exactly one {stereotype:References}.
A Category 3 {uml:Property} corresponds to exactly one of the following:
1. a{schema:element use} that is an item in the particles property of a {schema:sequence} or

2. a{schema:attribute use} that is an explicit member of the attribute uses property of a {schema:complex type
definition}.

[Definition: Category 4 {uml:Property}]

A Category 4 {uml:Property} is any {uml:Property}

1. for which the class is a {stereotype:Choice},

2. for which the type is not a {stereotype:Choice}, and

3. thatis not the client {uml:NamedElement} of any {stereotype:References}.
A Category 4 {uml:Property} corresponds to exactly one of the following:

1. both a {schema:element declaration} and a {schema:element use} that is an item in the particles property of a
{schema:choice} or

2. a{schema:wildcard use} that is an item in the particles property of a {schema:choice}.
[Definition: Category 5 {uml:Property}]

A Category 5 {uml:Property} is any {uml:Property}

1. for which the class is a {stereotype:Choice},

2. for which the type is not a {stereotype:Choice}, and

3. thatis the client {uml:NamedElement} of exactly one {stereotype:References}.

A Category 5 {uml:Property} corresponds to a {schema:element use} that is an item in the particles property of a
{schema:choice}.

[Definition: Category 6 {uml:Property}]

A Category 6 {uml:Property} is any {uml:Property}

1. for which the class is a categorized {uml:Class},

2. for which the type is a {stereotype:Choice}, and

3. that is not the client {uml:NamedElement} of any {stereotype:References}.
A Category 6 {uml:Property} corresponds to a {schema:choice}.
[Definition: Categorized {uml:Property}]

A categorized {uml:Property} is any {uml:Property} that is

1. aCategory 1 {uml:Property},

NIEM-UML Beta 1 212

2. aCategory 2 {uml:Property},
3. aCategory 3 {uml:Property},
4. aCategory 4 {uml:Property},
5. aCategory 5 {uml:Property}, or
6. a Category 6 {uml:Property}.
[Definition: Uncategorized {uml:Property}]
An uncategorized {uml:Property} is any {uml:Property} that is not a categorized {uml:Property}.

The subclause defines a categorized {uml:Property} and uncategorized {uml:Property} for use in definitions and
rules.

The following table summarizes the characteristics of the above categories of {uml:Property}

Characteristic of {uml:Property}

{uml:Property} Category

1 2 3 4 5 6
class must be {stereotype:PropertyHolder} Y
class must be categorized {uml:Class} Y |Y Y
class must be {stereotype:Choice} Y |Y
type must be {stereotype:Choice} Y
type must not be {stereotype:Choice} Y |Y |Y |Y |Y
must be client {uml:NamedElement} of {stereotype:References} Y Y

The following table summarizes the characteristics of the {schema:component} that correspond to the above
categories of {uml:Property}.

Characteristic of Corresponding {schema:component}

Corresponding {schema:component} Category

1 2 3 4 5 6
{schema:element declaration} Y |Y Y
{schema:element use} in {schema:sequence} Y |Y
{schema:element use} in {schema:choice} Y |Y
{schema:wildcard use} in {schema:sequence} Y
{schema:wildcard use} in {schema:choice} Y
{schema:attribute declaration} Y |Y

NIEM-UML Beta 1

213

Characteristic of Corresponding {schema:component}

Corresponding {schema:component} Category

1 2 3 4 5 6

{schema:attribute use} in {schema:complex type definition} Y |Y

{schema:choice} Y

B.2.6.13 Categorized {stereotype: XSDProperty}

The following definitions place a {stereotype:XSDProperty} into a category based on the category of the
{uml:Property} to which the stereotype is applied.

[Definition: Category 1 {stereotype:XSDProperty}]

A Category 1 {stereotype: XSDProperty} is any Category 1 {uml:Property} to which the
{stereotype: XSDProperty} is applied.

[Definition: Category 2 {stereotype:XSDProperty}]

A Category 2 {stereotype: XSDProperty} is any Category 2 {uml:Property} to which the
{stereotype: XSDProperty} is applied.

[Definition: Category 3 {stereotype:XSDProperty}]

A Category 3 {stereotype: XSDProperty} is any Category 3 {uml:Property} to which the
{stereotype: XSDProperty} is applied.

The above {stereotype:XSDProperty} correspond to a {schema:element declaration}, {schema:element use},
{schema:attribute declaration}, or {schema:attribute use}.

[Definition: Category 4 {stereotype:XSDProperty}]

A Category 4 {stereotype: XSDProperty} is any Category 4 {uml:Property} to which the
{stereotype: XSDProperty} is applied.

[Definition: Category 5 {stereotype:XSDProperty}]

A Category 5 {stereotype: XSDProperty} is any Category 5 {uml:Property} to which the
{stereotype: XSDProperty} is applied.

The above {stereotype:XSDProperty} correspond to a {schema:element declaration} or a {schema:element use}.

A {stereotype:XSDProperty} may be applied to any categorized {uml:Property} except a Category 6
{uml:Property}, as a {stereotype:XSDProperty} must correspond to a {schema:element declaration},
{schema:element use}, {schema:attribute declaration}, or {schema:attribute use}, while a Category 6
{uml:Property} corresponds to a {schema:choice}.

[Definition: Categorized {stereotype: XSDProperty}]
A categorized {stereotype: XSDProperty} is a {stereotype: XSDProperty} that is
1. aCategory 1 {stereotype:XSDProperty},
2. aCategory 2 {stereotype:XSDProperty},
3. aCategory 3 {stereotype:XSDProperty},
4. aCategory 4 {stereotype:XSDProperty}, or
5. aCategory 5 {stereotype:XSDProperty}.

NIEM-UML Beta 1 214

[Definition: Uncategorized {stereotype: XSDProperty}]

An uncategorized {stereotype: XSDProperty} is any {stereotype: XSDProperty} that is not a categorized
{stereotype: XSDProperty}.

The subclause defines a categorized {stereotype:XSDProperty} and uncategorized {stereotype: XSDProperty} for
use in definitions and rules.

B.2.6.14 Categorized {stereotype:XSDAnyProperty}

The following definitions place a {stereotype:XSDAnyProperty} into a category based on the category of the
{uml:Property} to which the stereotype is applied.

[Definition: Category 2 {stereotype: XSDANnyProperty}]

A Category 2 {stereotype: XSDAnyProperty} is any Category 2 {uml:Property} to which the
{stereotype: XSDAnyProperty} is applied.

[Definition: Category 4 {stereotype: XSDAnyProperty}]

A Category 4 {stereotype: XSDAnyProperty} is any Category 4 {uml:Property} to which the
{stereotype: XSDAnyProperty} is applied.

The above {stereotype:XSDAnyProperty} correspond to a {schema:wildcard use}.
[Definition: Categorized {stereotype: XSDAnyProperty}]
A categorized {stereotype: XSDAnyProperty} is a {stereotype: XSDAnyProperty} that is
1. aCategory 1 {stereotype:XSDAnyProperty} or
2. aCategory 2 {stereotype:XSDAnyProperty}.
[Definition: Uncategorized {stereotype: XSDAnyProperty}]

An uncategorized {stereotype:XSDAnyProperty} is any {stereotype: XSDAnyProperty} that is not a categorized
{stereotype: XSDAnyProperty}.

The subclause defines a categorized {stereotype:XSDAnyProperty} and uncategorized
{stereotype: XSDAnyProperty} for use in definitions and rules.

9.5.1.1 Categorized {stereotype:SequencelD}

The following definitions place a {stereotype:SequencelD} into a category based on the category of the
{uml:Property} to which the stereotype is applied.

[Definition: Category 2 {stereotype:SequencelD}]

A Category 2 {stereotype:SequencelD} is any Category 2 {uml:Property} to which the
{stereotype:SequencelD} is applied.

The above {stereotype:SequencelD} corresponds to a {schema:attribute use}.
[Definition: Categorized {stereotype:SequencelD}]

A categorized {stereotype:SequencelD} is a {stereotype:SequencelD} that is a Category 2
{stereotype:SequencelD}.

[Definition: Uncategorized {stereotype:SequencelD}]

An uncategorized {stereotype:SequencelD} is any {stereotype:SequencelD} that is not a categorized
{stereotype:SequencelD}.

The subclause defines a categorized {stereotype:SequencelD} and uncategorized {stereotype:SequencelD} for use
in definitions and rules.

NIEM-UML Beta 1 215

B.2.7 Stereotyped {uml:Element}

For the purpose of this subclause, a stereotyped {uml:Element} is not merely a {uml:Element} to which a stereotype
is applied, nor even a {uml:Element} to which a stereotype from this profile is applied; it is instead a member of the
set of the above categorized stereotypes.

B.2.7.1 Stereotyped {uml:DataType}

The following definitions distinguish a categorized {uml:DataType} based on whether a stereotype is applied to the
{uml:DataType}.

[Definition: Stereotyped {uml:DataType}]
A stereotyped {uml:DataType} is
1. any Category 1 {stereotype:List},
2. any Category 2 {stereotype:List},
3. any Category 1 {stereotype:Union}, or
4. any Category 3 {stereotype:Union}.
[Definition: Unstereotyped {uml:DataType}]
An unstereotyped {uml:DataType} is any categorized {uml:DataType} that is not a stereotyped
{uml:DataType}.
B.2.7.2 Stereotyped {uml:Class}

The following definitions distinguish a categorized {uml:Class} based on whether a stereotype is applied to the
{uml:Class}.

[Definition: Stereotyped {uml:Class}]

A stereotyped {uml:Class} is

1. any Category 1 {stereotype:AdapterType},
any Category 1 {stereotype:AssociationType},
any Category 2 {stereotype:AssociationType},
any Category 3 {stereotype:AssociationType},
any Category 4 {stereotype:AssociationType},
any Category 1 {stereotype: AugmentationType},
any Category 2 {stereotype: AugmentationType},
any Category 3 {stereotype: AugmentationType},

© 0o N o g &~ D

any Category 4 {stereotype: AugmentationType},

[EY
o

. any Category 1 {stereotype:MetadataType},

[N
[N

. any Category 1 {stereotype:ObjectType},

[EE
N

. any Category 2 {stereotype:ObjectType},

[N
w

. any Category 3 {stereotype:ObjectType},

[N
N

. any Category 4 {stereotype:ObjectType},

[N
a1

. any Category 5 {stereotype:ObjectType}, or

-
(o2}

. any Category 6 {stereotype:ObjectType}.

NIEM-UML Beta 1 216

[Definition: Unstereotyped {uml:Class}]
An unstereotyped {uml:Class} is any categorized {uml:Class} that is not a stereotyped {uml:Class}.

B.2.7.3 Stereotyped {uml:Property}

The following definitions distinguish a categorized {uml:Property} based on whether a stereotype is applied to the
{uml:Property}.

[Definition: Stereotyped {uml:Property}]
A stereotyped {uml:Property} is
1. any Category 1 {stereotype:XSDProperty},
any Category 2 {stereotype:XSDProperty},
any Category 3 {stereotype:XSDProperty},

2

3

4. any Category 4 {stereotype:XSDProperty},

5. any Category 5 {stereotype:XSDProperty},

6. any Category 2 {stereotype:XSDAnyProperty},

7. any Category 4 {stereotype:XSDAnyProperty}, or

8. any Category 2 {stereotype:SequencelD}.
[Definition: Unstereotyped {uml:Property}]

An unstereotyped {uml:Property} is any categorized {uml:Property} that is not a stereotyped {uml:Property}.

B.2.8 Equality for the Value of a Property of a {schema:component}

Ultimately, a mapping between a NIEM-conformant XML schema and a NIEM-conforming Platform Specific
Model expands to a set of mappings between the values of the properties of the {schema:component} of the former
and the values of the attributes of the {uml:Element} of the latter. Thus to define a mapping between the schema and
the model, it is necessary to define a mapping between the values in the schema and the values in the model.

[Rule: Equality for instance of {uml:Boolean}]

A value that is an instance of {uml:Boolean} shall equal the actual value of an instance of the {schema:boolean
datatype} if and only if the truth value of the former is equal to the truth value of the latter.

[Rule: Equality for instance of {uml:Integer}]

A value that is an instance of {uml:Integer} shall equal the actual value of an instance of the {schema:decimal
datatype} if and only if the number value of the former is equal to the number value of the latter.

[Rule: Equality for instance of {uml:String}]

A value that is an instance of {uml:String} shall equal the actual value of an instance of the {schema:string
datatype} if and only if the Universal Character Set encoding of the former is a lexical representation of the
latter.

[Rule: Equality for instance of {uml:UnlimitedNatural}]

If the value of an instance of {uml:UnlimitedNatural} is numeric, the value shall equal the actual value of an
instance of the {schema:decimal datatype} if and only if the numeric value of the former is equal to the numeric
value of the latter.

If the value of an instance of {uml:UnlimitedNatural} is "*", the value shall equal the value of a property of a
{schema:component} if and only if the value of the {schema:component} is "unbounded".

NIEM-UML Beta 1 217

B.2.9 Mapping

B.2.9.1 Mapping the Documentation for a {schema:component}
[Definition: documentation for a {uml:Element}]

The documentation for a {uml:Element} is the ownedComment of the {uml:Element} to which the
{stereotype:Documentation} is applied.

[Rule: Mapping for a {stereotype:Documentation}]

A mapping shall exist between the documentation for a {schema:component} and the documentation for a
{uml:Element} if and only if exactly one of the following is true:

1. (annotation property) The documentation for a {schema:component} is present, the documentation for a
{uml:Element} is present, and the character information items of the documentation for the
{schema:component} equal the value of the body attribute of the documentation for the {uml:Element}.

2. (annotation property) The documentation for a {schema:component} is absent and the documentation for a
{uml:Element} is absent.

B.2.9.2 Mapping the Facets Property of a {schema:simple type definition}
[Definition: facet for a {uml:DataType}]

A facet for a {uml:DataType} is a (name, value, documentation) tuple derived from a {uml:DataType}.
[Definition: facet set for a {uml:DataType}]

A facet set for a {uml:DataType} is a set of facets for a {uml:DataType}, derived as follows:

1. If the {stereotype:ValueRestriction} is applied to the {uml:DataType}, for each attribute of the
{stereotype:ValueRestriction} that is present and has exactly one value, the facet set must include a facet

a. for which the value of the name element is the name of the attribute and
b. for which the value of the value element is the value of the attribute.
c. for which the value of the documentation element is absent.

2. If the {stereotype:ValueRestriction} is applied to the {uml:DataType}, for each attribute of the
{stereotype:ValueRestriction} that is present and has more than one value, for each value of the attribute,
the facet set must include a facet

a. for which the value of the name element is the name of the attribute and
b. for which the value of the value element is that value of the attribute.
c. for which the value of the documentation element is absent.

3. If the {stereotype:XSDRepresentationRestriction} is applied to the {uml:DataType}, for each attribute of
the {stereotype:XSDRepresentationRestriction} that is present and has exactly one value, the facet set must
include a facet

a. for which the value of the name element is the name of the attribute and
b. for which the value of the value element is the value of the attribute.
c. for which the value of the documentation element is absent.

4. If the {uml:DataType} is a {uml:Enumeration}, for each ownedLiteral {uml:EnumerationL.iteral}, the facet
set must include a facet

a. for which the value of the name element is "enumeration”,

b. for which the value of the value element is the value of the name attribute of the ownedLiteral
{uml:EnumerationL.iteral}, and

NIEM-UML Beta 1 218

c. for which the value of the documentation element is the documentation for the ownedLiteral
{uml:EnumerationL.iteral}.

[Rule: Mapping for the facet set for a {uml:DataType}]

A mapping shall exist between the facets property of a {schema:simple type definition} and the facet set for a
{uml:DataType} if and only if each of the following is true:

1. (facets property) For each explicit member of the facets property of the {schema:simple type definition}, a
mapping must exist between the {schema:component} and exactly one facet in the facet set for the
{uml:DataType}.

2. (facets property) For each facet in the facet set for the {uml:DataType}, a mapping must exist between the
facet and exactly one {schema:component} among the explicit members of the facets property of the
{schema:simple type definition}.

[Rule: Mapping for a facet for a {uml:DataType}]

A mapping shall exist between a {schema:component} in the facets property of a {schema:simple type
definition} and a facet of a {uml:DataType} if and only if each of the following is true:

1. (annotation property) A mapping must exist between the documentation for the {schema:component} and
the documentation element of the facet.

2. (name property) The value of the name property of the {schema:component} must equal the value of the
name element of the facet.

3. (value property) The value of the value property of the {schema:component} must equal the value of the
value element of the facet.

B.2.9.3 Mapping a {schema:simple type definition}

The following rules ensure that a relationship between two instances of {uml:DataType} correspond to the
relationship between two {schema:simple type definition}.

[Rule: The supplier {uml:NamedElement} for an Unstereotyped Category 1 {uml:DataType}]

The supplier {uml:NamedElement} of the {stereotype:Restriction} for which an unstereotyped Category 1
{uml:DataType} is the client {uml:NamedElement} must be exactly one of

1. abuilt-in atomic {uml:DataType} or
2. anunstereotyped Category 1 {uml:DataType}.

The base type definition property for a {schema:atomic simple type definition} must be a {schema:atomic simple
type definition}.

[Rule: The supplier {uml:NamedElement} for a Category 1 {stereotype:List}]

The supplier {uml:NamedElement} of the {stereotype:Restriction} for which a Category 1 {stereotype:List} is
the client {uml:NamedElement} must be exactly one of

1. abuilt-in list {uml:DataType} or
2. acategorized {stereotype:List}.

The base type definition property for a {schema:list simple type definition} must be a {schema:list simple type
definition}.

[Rule: The type of the {uml:Property} which is the ownedAttribute {uml:Property} of a Category 2
{stereotype:List}]

The type of the {uml:Property} which is the ownedAttribute {uml:Property} of a Category 2 {stereotype:List}
must be exactly one of

1. abuilt-in atomic {uml:DataType},

NIEM-UML Beta 1 219

2. an unstereotyped Category 1 {uml:DataType}, or
3. acategorized {stereotype:Union}.

The item type definition property for a {schema:list simple type definition} must be exactly one of a
{schema:atomic simple type definition} or a {schema:union simple type definition}.

[Rule: The supplier {uml:NamedElement} for a Category 1 {stereotype:Union}]

The supplier {uml:NamedElement} of the {stereotype:Restriction} for which a Category 1 {stereotype:Union}
is the client {uml:NamedElement} must be a categorized {stereotype:Union}.

The base type definition property for a {schema:union simple type definition} must be a {schema:union simple type
definition}.

[Rule: The supplier {uml:NamedElement} for a Category 3 {stereotype:Union}]

For each {stereotype:UnionOf} for which a Category 3 {stereotype:Union} is the client {uml:NamedElement},
the supplier {uml:NamedElement} of the {stereotype:UnionOf} must be exactly one of

1. abuilt-in {uml:DataType},

2. anunstereotyped Category 1 {uml:DataType},
3. acategorized {stereotype:List}, or

4. acategorized {stereotype:Union}.

The member type definitions property for a {schema:union simple type definition} must be a sequence consisting of
{schema:atomic simple type definition}, {schema:list simple type definition}, or {schema:union simple type
definition}.

[Rule: Mapping for a Built-In {uml:DataType}]

A mapping shall exist between a {schema:simple type definition} and a built-in {uml:DataType} if and only if
each of the following is true:

1. (name property) The value of the name property of the {schema:simple type definition} must equal the
value of the name attribute of the {uml:DataType}.

2. (target namespace property) The value of the target namespace property must be the XML Schema
namespace.

[Rule: Mapping for a Categorized {uml:DataType}]

A mapping shall exist between a {schema:simple type definition} and a categorized {uml:DataType} only if
each of the following is true:

1. (name property) The value of the name property of the {schema:simple type definition} must equal the
value of the name attribute of the {uml:DataType}.

2. (target namespace property) The value of the target namespace property must equal the value of the
targetNamespace attribute of the {stereotype:Namespace} that is the namespace of the {uml:DataType}.

3. (final property) The value of the final property of the {schema:simple type definition} must be the empty
set.

4. (annotation property) A mapping must exist between the documentation for the {schema:simple type
definition} the documentation for the {uml:DataType}.

5. (annotation property) The "i:Base" application information for the {schema:simple type definition} must
indicate "s:Object".

The above rule is necessary for the following rules -
1. Mapping for an Unstereotyped Category 1 {uml:DataType}
2. Mapping for a Category 1 {stereotype:List}

NIEM-UML Beta 1 220

3. Mapping for a Category 2 {stereotype:List}

4. Mapping for a Category 1 {stereotype:Union}

5. Mapping for a Category 3 {stereotype:Union}

- but not sufficient in itself to specify a mapping.

[Rule: Mapping for an Unstereotyped Category 1 {uml:DataType}]

A mapping shall exist between a {schema:atomic simple type definition} and an unstereotyped Category 1
{uml:DataType} if and only if each of the following is true:

1.
2.
3.

The rule "Mapping for a Categorized {uml:DataType}" must hold.
(variety property) The value of the variety property must be "atomic".

(primitive type definition property) The value of the primitive type definition property of the
{schema:atomic simple type definition} must be the value of the primitive type definition property of the
base type definition property of the {schema:atomic simple type definition}.

(facets property) A mapping must exist between the explicit members of the facets property of the
{schema:atomic simple type definition} and the facet set for the {uml:DataType}.

(base type definition property) A mapping must exist between the base type definition property of the
{schema:atomic simple type definition} and the supplier {uml:NamedElement} of the
{stereotype:Restriction} for which the {uml:DataType} is the client {uml:NamedElement}.

[Rule: Mapping for a Category 1 {stereotype:List}]

A mapping shall exist between a {schema:list simple type definition} and a Category 1 {stereotype:List} if and
only if each of the following is true:

1.
2.
3.

The rule "Mapping for a Categorized {uml:DataType}" must hold.
(variety property) The value of the variety property must be "list".

(item type definition property) The value of the item type definition property of the {schema:list simple
type definition} must be the value of the item type definition property of the base type definition property
of the {schema:list simple type definition}.

(facets property) A mapping must exist between the explicit members of the facets property of the
{schema:list simple type definition} and the facet set for the {stereotype:List}.

(base type definition property) A mapping must exist between the base type definition property of the
{schema:list simple type definition} and the supplier {uml:NamedElement} of the {stereotype:Restriction}
for which the {stereotype:List} is the client {uml:NamedElement}.

[Rule: Mapping for a Category 2 {stereotype:List}]

A mapping shall exist between a {schema:list simple type definition} and a Category 2 {stereotype:List} if and
only if each of the following is true:

1.
2.
3.

[Rule

The rule "Mapping for a Categorized {uml:DataType}" must hold.
(variety property) The value of the variety property must be "list".

(item type definition property) A mapping must exist between the item type definition property of the
{schema:list simple type definition} and the type of the {uml:Property} that is the ownedAttribute
{uml:Property} of the {stereotype:List}.

(base type definition property) The value of the base type definition property of the {schema:list simple
type definition} must be the {schema:simple type definition} for {schema:anySimpleType}.

: Mapping for a Category 1 {stereotype:Union}]

A mapping shall exist between a {schema:union simple type definition} and a Category 1 {stereotype:Union} if
and only if each of the following is true:

NIEM-UML Beta 1 221

1. The rule "Mapping for a Categorized {uml:DataType}" must hold.
2. (variety property) The value of the variety property must be "union".

3. (union member type definitions property) The value of the union member types definition property of the
{schema:union simple type definition} must be the value of the union member types definition property of
the base type definition property of the {schema:union simple type definition}.

4. (facets property) A mapping must exist between the explicit members of the facets property of the
{schema:union simple type definition} and the facet set for the {stereotype:Union}.

5. (base type definition property) A mapping must exist between the base type definition property of the
{schema:union simple type definition} and the supplier {uml:NamedElement} of the
{stereotype:Restriction} for which the {stereotype:Union} is the client {uml:NamedElement}.

[Rule: Mapping for a Category 3 {stereotype:Union}]

A mapping shall exist between a {schema:union simple type definition} and a Category 3 {stereotype:Union} if
and only if each of the following is true:

1. The rule "Mapping for a Categorized {uml:DataType}" must hold.
2. (variety property) The value of the variety property must be "union”.

3. (member type definitions property) For each explicit member of the member type definitions property of
the {schema:union simple type definition}, a mapping must exist between the {schema:component} and a
supplier {uml:NamedElement} of a {stereotype:UnionOf} for which the {stereotype:Union} is the client
{uml:NamedElement}.

4. (member type definitions property) For each supplier {uml:NamedElement} of a {stereotype:UnionOf} for
which the {stereotype:Union} is the client {uml:NamedElement}, a mapping must exist between the
supplier {uml:NamedElement} and an explicit member in the member type definitions property of the
{schema:union simple type definition}.

5. (base type definition property) The value of the base type definition property of the {schema:union simple
type definition} must be the {schema:simple type definition} for {schema:anySimpleType}.

B.2.9.4 Mapping the Attribute Uses Property of a {schema:complex type
definition}
[Definition: Attribute Use {uml:Property}]
An attribute use {uml:Property} is
1. aCategory 2 {stereotype:XSDProperty} for which the value of the kind attribute is "attribute",
2. aCategory 3 {stereotype:XSDProperty} for which the value of the kind attribute is "attribute", or
3. aCategory 2 {stereotype:SequencelD}.
[Definition: Attribute Use Set for a {uml:Class}]

The attribute use set for a {uml:Class} is the subset of ownedAttribute {uml:Property} which are attribute use
{uml:Property}.

[Rule: The supplier {uml:NamedElement} for an attribute use {uml:Property}]

For the each supplier {uml:NamedElement} of a {stereotype:References} for which the client
{uml:NamedElement} is an attribute use {uml:Property}, each of the following must be true:

1. the supplier {uml:NamedElement} must be an attribute declaration {uml:Property},

2. the name of the client {uml:NamedElement} must equal the name of the supplier {uml:NamedElement},
and

3. The type of the client {uml:NamedElement} must be the type of the supplier {uml:NamedElement}.

NIEM-UML Beta 1 222

[Rule: Mapping for the Attribute Use Set for a {uml:Class}]

A mapping shall exist between the explicit members of the attribute uses property of a {schema:complex type
definition} and the attribute use set for a {uml:Class} if and only if the following each of the following are true

1. (attribute uses property) For each {schema:attribute use} among the explicit members of the attribute uses
property of the {schema:complex type definition}, a mapping must exist between the {schema:attribute
use} and exactly one attribute use {uml:Property} in the attribute use set for the {uml:Class}.

2. (attribute uses property) For each attribute use {uml:Property} in the attribute use set for the {uml:Class}, a
mapping must exist between the attribute use {uml:Property} and exactly one {schema:attribute use}
among the explicit members of the attribute uses property of the {schema:complex type definition}.

[Rule: Mapping for an Attribute Use {uml:Property}]

A mapping shall exist between a {schema:attribute use} and an Attribute Use {uml:Property} only if each of the
following is true:

1. (required property) Exactly one of the following must be true:

a. The lower value of the {uml:Property} must be "0", the upper value of the {uml:Property} must be
"1", and the value of the required property must be “false".

b. The lower value of the {uml:Property} must be "1", the upper value of the {uml:Property} must be
"1", and the value of the required property must be "true".

2. (value constraint property) Exactly one of the following must be true:

a. The fixed attribute of the {uml:Property} is absent and the value constraint property of the
{schema:attribute declaration} is absent.

b. The fixed attribute of the {uml:Property} is present; the value constraint property of the
{schema:attribute declaration} is a pair consisting of "fixed" and a value; and that value equals the
value of the fixed attribute of the {uml:Property}.

The above rule is necessary for the following rules -

1. Mapping for a Category 2 Attribute Use {stereotype:XSDProperty}

2. Mapping for a Category 3 Attribute Use {stereotype:XSDProperty}

3. Mapping for a Category 2 Attribute Use {stereotype:SequencelD}

- but not sufficient in itself to specify a mapping.

[Rule: Mapping for a Category 2 Attribute Use {stereotype: XSDProperty}]

A mapping shall exist between a {schema:attribute use} and a Category 2 Attribute Use
{stereotype: XSDProperty} if and only if each of the following is true:

1. The rule "Mapping for an Attribute Use {uml:Property}" must hold.

2. (attribute declaration property) A mapping must exist between the attribute declaration property of the
{schema:attribute use} and the {stereotype:XSDProperty}.

[Rule: Mapping for a Category 3 Attribute Use {stereotype: XSDProperty}]

A mapping shall exist between a {schema:attribute use} and a Category 3 Attribute Use
{stereotype: XSDProperty} if and only if each of the following is true:

1. The rule "Mapping for an Attribute Use {uml:Property}" must hold.

2. (attribute declaration property) A mapping must exist between the attribute declaration property of the
{schema:attribute use} and the supplier {uml:NamedElement} of the {stereotype:References} for the
{stereotype: XSDProperty}.

[Rule: Mapping for a Category 2 Attribute Use {stereotype:SequencelD}]

NIEM-UML Beta 1 223

A mapping shall exist between a {schema:attribute use} and a Category 2 Attribute Use
{stereotype:SequencelD} if and only if each of the following is true:

1. The rule "Mapping for an Attribute Use {uml:Property}" must hold.

2. (attribute declaration property) The attribute declaration must be s:sequencelD.

B.2.9.5 Mapping the {schema:element use} for a {schema:complex type
definition}
[Definition: Element Use {uml:Property}]
An element use {uml:Property} is
any unstereotyped Category 2 {uml:Property},
any unstereotyped Category 3 {uml:Property},
any unstereotyped Category 4 {uml:Property},
any unstereotyped Category 5 {uml:Property},
any Category 2 {stereotype: XSDProperty} for which the value of the kind attribute is "element",
any Category 3 {stereotype: XSDProperty} for which the value of the kind attribute is "element",

N o g o~ 0w Db E

any Category 4 {stereotype:XSDProperty} for which the value of the kind attribute is "element", or
8. any Category 5 {stereotype:XSDProperty} for which the value of the kind attribute is "element”.
[Definition: Choice {uml:Property}]
A choice {uml:Property} is any Category 6 {uml:Property}.
[Definition: Wildcard {stereotype: XSDAnyProperty}]
A wildcard {uml:Property} is
1. any Category 2 {stereotype:XSDAnyProperty} or
2. any Category 4 {stereotype:XSDAnyProperty}.
[Definition: Particle {uml:Property}]

A particle {uml:Property} is any element use {uml:Property}, any choice {uml:Property}, or any wildcard
{stereotype: XSDAnNyProperty}.

[Definition: Model Group for a {uml:Class}]

The model group for a {uml:Class} is the sublist of ownedAttribute {uml:Property} which are particle
{uml:Property}.

[Rule: The supplier {uml:NamedElement} for an element use {uml:Property}]

For the each supplier {uml:NamedElement} of a {stereotype:References} for which the client
{uml:NamedElement} is an element use {uml:Property}, each of the following must be true:

1. the supplier {uml:NamedElement} must be an element declaration {uml:Property},

2. the name of the client {uml:NamedElement} must equal the name of the supplier {uml:NamedElement},
and

3. The type of the client {uml:NamedElement} must be the type of the supplier {uml:NamedElement}.
[Rule: Mapping for the Model Group for a {uml:Class}]

A mapping shall exist between a {schema:model group} and the model group for a {uml:Class} if and only if
each of the following are true:

NIEM-UML Beta 1 224

1. (particles property) For each {schema:particle} in the particles property of the {schema:model group}, a
mapping must exist between the {schema:particle} and exactly one particle {uml:Property} in model group
for the {uml:Class}.

2. (particles property) For each particle {uml:Property} in model group for the {uml:Class}, a mapping must
exist between the particle {uml:Property} and exactly one {schema:particle} in the particles property of the
{schema:sequence}.

[Rule: Mapping for a Particle {uml:Property}]

A mapping shall exist between a {schema:particle} and a particle {uml:Property} only if each of the following
is true:

1. (min occurs property) The value of the min occurs property of the {schema:particle} must equal the value
of the lower attribute of the {uml:Property}.

2. (max occurs property) The value of the max occurs property of the {schema:particle} must equal the value
of the upper attribute of the {uml:Property}.

The above rule is necessary for the following rules -

1. Mapping for a Category 2 or Category 4 Element Use {uml:Property}

2. Mapping for a Category 3 or Category 5 Element Use {uml:Property}

3. Mapping for a Choice {uml:Property}

4. Mapping for a Wildcard {stereotype:XSDAnyProperty}

- but not sufficient in itself to specify a mapping.

[Rule: Mapping for a Category 2 or Category 4 Element Use {uml:Property}]

A mapping shall exist between a {schema:element use} and a Category 2 or Category 4 Element Use
{uml:Property} if and only if each of the following is true:

1. The rule "Mapping for a Particle {uml:Property}" must hold.

2. (term property) A mapping must exist between the term property of the {schema:element use} and the
{uml:Property}.

[Rule: Mapping for a Category 3 or Category 5 Element Use {uml:Property}]

A mapping shall exist between a {schema:element use} and a Category 3 or Category 5 Element Use
{uml:Property} if and only if each of the following is true:

1. The rule "Mapping for a Particle {uml:Property}" must hold.

2. (term property) A mapping must exist between the term property of the {schema:element use} and the
supplier {uml:NamedElement} of the {stereotype:References} for the {uml:Property}.

[Rule: Mapping for a Choice {uml:Property}]

A mapping shall exist between a {schema:choice} and a Choice {uml:Property} if and only if each of the
following is true:

1. The rule "Mapping for a Particle {uml:Property}" must hold.

2. (term property) A mapping must exist between the term property of the {schema:choice} and the model
group for the class of the {uml:Property}.

[Rule: Mapping for a Wildcard {stereotype: XSDAnyProperty}]

A mapping shall exist between a {schema:wildcard use} and a wildcard {uml:Property} if and only if each of
the following is true:

1. The rule "Mapping for a Particle {uml:Property}" must hold.

2. (term property) The term property must be a {schema:wildcard} for which each of the following is true:

NIEM-UML Beta 1 225

a. (namespace constraint property) The value of the namespace constraint property of the
{schema:wildcard} must equal the value of the namespace attribute of the
{stereotype: XSDAnNyProperty}.

b. (process contents property) The value of the process contents property of the {schema:wildcard} must
equal the value of the processContents attribute of the {stereotype: XSDAnyProperty}.

B.2.9.6 Mapping a {schema:complex type definition}

[Rule: The general {uml:Classifier} for an Unstereotyped {uml:Class} or a categorized
{stereotype:ObjectType}]

The general {uml:Classifier} of a {uml:Generalization} for which an unstereotyped {uml:Class} or categorized
{stereotype:ObjectType} is the specific {uml:Classifier} must be exactly one of an unstereotyped {uml:Class}
or a categorized {stereotype:ObjectType}.

[Rule: The supplier {uml:NamedElement} for an Unstereotyped {uml:Class} or a categorized
{stereotype:ObjectType}]

The supplier{uml:NamedElement} of a {stereotype:Restriction} for which an unstereotyped {uml:Class} or
categorized {stereotype:ObjectType} is the client{fuml:NamedElement} must be exactly one of an
unstereotyped {uml:Class} or a categorized {stereotype:ObjectType}.

The base type definition property of a {niem:object type} must be exactly one of ""s:ComplexObjectType"” and a
{niem:object type}.

[Rule: The general {uml:Classifier} for a categorized {stereotype:AssociationType}]

The general {uml:Classifier} of a {uml:Generalization} for which a categorized {stereotype:AssociationType}
is the specific {uml:Classifier} must be a categorized {stereotype:AssociationType}.

[Rule: The supplier {uml:NamedElement} for a categorized {stereotype:AssociationType}]

The supplier {uml:NamedElement} of a {stereotype:Restriction} for which a categorized
{stereotype:AssociationType} is the client {uml:NamedElement} must be a categorized
{stereotype: AssociationType}.

The base type definition property of a {niem:object type} must be exactly one of "s:ComplexObjectType" and a
{niem:association type}.

[Rule: The general {uml:Classifier} for a categorized {stereotype: AugmentationType}]

The general {uml:Classifier} of a {uml:Generalization} for which a categorized
{stereotype:AugmentationType} is the specific {uml:Classifier} must be a categorized
{stereotype: AugmentationType}.

[Rule: The supplier {uml:NamedElement} for a categorized {stereotype: AugmentationType}]

The supplier {uml:NamedElement} of a {stereotype:Restriction} for which a categorized
{stereotype: AugmentationType} is the client {uml:NamedElement} must be a categorized {stereotype:
AugmentationType }.

The base type definition property of a {niem:augmentation type} must be exactly one of "s:AugmentationType" and
an augmentation type.

[Rule: Mapping for a Categorized {uml:Class}]

A mapping shall exist between a categorized {uml:Class} and a {schema:complex type definition} only if each
of the following is true:

1. (name property) The value of the name property of the of the {schema:complex type definition} must equal
the value of the name attribute of the {uml:Class}.

2. (target namespace property) The value of the target namespace property must equal the value of the
targetNamespace attribute of the {stereotype:Namespace} that is the namespace of the {uml:Class}.

NIEM-UML Beta 1 226

3. (final property) The value of the final property of the {schema:complex type definition} must be the empty
set.

4. (abstract property) The value of the abstract property of the {schema:complex type definition} must equal
the value of the isAbstract attribute of the {uml:Class}.

5. (attribute wildcard property) The attribute wildcard property of the {schema:complex type definition} must
be absent.

6. (prohibited substitutions property) The value of the prohibited substitutions property must be the empty set.

7. (annotation property) A mapping must exist between the documentation for the {schema:complex type
definition} the documentation for the {uml:Class}.

The above rule is necessary for the following rules -

© © N o g &~ w0 Db PP

e
N R O

Mapping for an Unstereotyped Category 1 or 2 {uml:Class} or a Category 1 or 2 {stereotype:ObjectType}
Mapping for an Unstereotyped Category 3 {uml:Class} or a Category 3 {stereotype:ObjectType}
Mapping for an Unstereotyped Category 4 {uml:Class} or a Category 4 {stereotype:ObjectType}
Mapping for an Unstereotyped Category 5 {uml:Class} or a Category 5 {stereotype:ObjectType}
Mapping for an Unstereotyped Category 6 {uml:Class} or a Category 6 {stereotype:ObjectType}
Mapping for a Category 1 {stereotype: AdapterType}

Mapping for a Category 1 or 2 {stereotype:AssociationType}

Mapping for a Category 3 {stereotype: AssociationType}

Mapping for a Category 4 {stereotype: AssociationType}

. Mapping for a Category 1 or 2 {stereotype: AugmentationType}
. Mapping for a Category 3 {stereotype: AugmentationType}
. Mapping for a Category 4 {stereotype: AugmentationType}
13.

Mapping for a Category 1 {stereotype:MetadataType}

- but not sufficient in itself to specify a mapping.

[Rule: Mapping for an Unstereotyped Category 1 or 2 {uml:Class} or a Categoryl or 2
{stereotype:ObjectType}]

A mapping shall exist between an unstereotyped Category 1 or 2 {uml:Class} or a Category 1 or 2
{stereotype:ObjectType} and a {schema:complex type definition} if and only if each of the following is true:

1. The rule "Mapping for a Categorized {uml:Class}" must hold.

2. (base type definition property) The base type definition property of the {schema:complex type definition}
must be "s:ComplexObjectType".

3. (derivation method property) The derivation method property of the {schema:complex type definition}
must be "extension".

4. (attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

5. (content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";

b. (max occurs property) the value of the max occurs property must be "1"; and

NIEM-UML Beta 1 227

6.

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

(annotation property) The "i:Base" application information for the {schema:complex type definition} must
indicate "s:Object".

[Rule: Mapping for an Unstereotyped Category 3 {uml:Class} or a Category 3 {stereotype:ObjectType}]

A mapping shall exist between an unstereotyped Category 3 {uml:Class} or a Category 3
{stereotype:ObjectType} and a {schema:complex type definition} if and only if each of the following is true:

1.
2.

The rule "Mapping for a Categorized {uml:Class}" must hold.

(base type definition property) A mapping must exist between the base type definition property of the
{schema:complex type definition} and the general {uml:Classifier} of the {uml:Generalization} for which
the {uml:Class} is the specific {uml:Classifier}.

(derivation method property) The derivation method property of the {schema:complex type definition}
must be "extension”.

(attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml.Class}.

(content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";
b. (max occurs property) the value of the max occurs property must be "1"; and

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

(annotation property) The "i:Base™ application information for the {schema:complex type definition} must
indicate the base type definition for the {schema:complex type definition}.

[Rule: Mapping for an Unstereotyped Category 4 {uml:Class} or a Category 4 {stereotype:ObjectType}]

A mapping shall exist between an unstereotyped Category 4 {uml:Class} or a Category 4
{stereotype:ObjectType} and a {schema:complex type definition} if and only if each of the following is true:

1.
2.

The rule "Mapping for a Categorized {uml:Class}" must hold.

(base type definition property) A mapping must exist between the base type definition property of the
{schema:complex type definition} and the supplier {uml:NamedElement} of the {stereotype:Restriction}
for which the {uml:Class} is the client {uml:NamedElement}.

(derivation method property) The derivation method property of the {schema:complex type definition}
must be "restriction".

(attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

(content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";
b. (max occurs property) the value of the max occurs property must be "1"; and

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

(annotation property) The "i:Base" application information for the {schema:complex type definition} must
indicate the base type definition for the {schema:complex type definition}.

NIEM-UML Beta 1 228

[Rule: Mapping for an Unstereotyped Category 5 {uml:Class} or a Category 5 {stereotype:ObjectType}]

A mapping shall exist between a Category 5 {uml:Class} or a Category 5 {stereotype:ObjectType} and a
{schema:complex type definition} if and only if each of the following is true:

1.
2.

The rule "Mapping for a Categorized {uml:Class}" must hold.

(base type definition property) A mapping must exist between the base type definition property of the
{schema:complex type definition} and the supplier {uml:NamedElement} of the
{stereotype:XSDSimpleContent} for which the {uml:Class} is the client {uml:Classifier}.

(derivation method property) The derivation method property of the {schema:complex type definition}
must be "extension".

a. (attribute uses property) The XML representation of the {schema:complex type definition} is an
xsd:complexType {infoset:element}, the children property of which includes an xsd:simpleContent
{infoset:element}, the children property of which includes an xsd:extension {infoset:element}.

The children property of that xsd:extension {infoset:element} must include an xsd:attributeGroup
{infoset:element}, the attributes property of which must include an xsd:ref {infoset:attribute} for
which the normalized value must indicate "'s:SimpleObjectAttributeGroup".

b. (attribute uses property) Except for those explicit members of the attribute uses property specified in
a., a mapping must exist between the explicit members of the attribute uses property of the
{schema:complex type definition} and the attribute use set for the {uml:Class}.

(content type property) A mapping must exist between the content type property of the {schema:complex
type definition} and the supplier {uml:NamedElement} of the {stereotype:XSDSimpleContent} for which
the {uml:Class} is the client {uml:Classifier}.

(annotation property) The "i:Base™ application information for the {schema:complex type definition} must
indicate the base type definition for the {schema:complex type definition}.

[Rule: Mapping for an Unstereotyped Category 6 {uml:Class} or a Category 6 {stereotype:ObjectType}]

A mapping shall exist between an unstereotyped Category 6 {uml:Class} or a Category 6
{stereotype:ObjectType} and a {schema:complex type definition} if and only if each of the following is true:

1.
2.

The rule "Mapping for a Categorized {uml:Class}" must hold.

(base type definition property) A mapping must exist between the base type definition property of the
{schema:complex type definition} and the supplier {uml:NamedElement} of the {stereotype:Restriction}
for which the {uml:Class} is the client {uml:NamedElement}.

(derivation method property) The derivation method property of the {schema:complex type definition}
must be "restriction".

(attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

(content type property) A mapping must exist between the content type property of the {schema:complex
type definition} and the supplier {uml:NamedElement} of the {stereotype:XSDSimpleContent} for which
the {uml:Class} is the client {uml:Classifier}.

(annotation property) The "i:Base" application information for the {schema:complex type definition} must
indicate the base type definition for the {schema:complex type definition}.

[Rule: Mapping for a Category 1 {stereotype:AdapterType}]

A mapping shall exist between a Category 1 {stereotype: AdapterType} and a {schema:complex type definition}
if and only if each of the following is true:

1.

The rule "Mapping for a Categorized {uml:Class}" must hold.

NIEM-UML Beta 1 229

(base type definition property) The base type definition property of the {schema:complex type definition}
must be "s:ComplexObjectType".

(derivation method property) The derivation method property of the {schema:complex type definition}
must be "extension".

(attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

(content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";
b. (max occurs property) the value of the max occurs property must be "1"; and

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

(annotation property) The "i:Base™ application information for the {schema:complex type definition} must
indicate "s:Object".

(annotation property) The value of the "i:External AdapterTypelndicator” application information for the
{schema:complex type definition} must be "true".

[Rule: Mapping for a Category 1 or Category 2 {stereotype:AssociationType}]

A mapping shall exist between a Category 1 or Category 2 {stereotype: AssociationType} and a
{schema:complex type definition} if and only if each of the following is true:

1.
2.

The rule "Mapping for a Categorized {uml:Class}" must hold.

(base type definition property) The base type definition property of the {schema:complex type definition}
must be "'s:ComplexObjectType".

(derivation method property) The derivation method property of the {schema:complex type definition}
must be "extension”.

(attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

(content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";
b. (max occurs property) the value of the max occurs property must be "1"; and

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

(annotation property) The "i:Base" application information for the {schema:complex type definition} must
indicate "'s:Association”.

[Rule: Mapping for a Category 3 {stereotype:AssociationType}]

A mapping shall exist between a Category 3 {stereotype: AssociationType} and a {schema:complex type
definition} if and only if each of the following is true:

1.
2.

The rule "Mapping for a Categorized {uml:Class}" must hold.

(base type definition property) A mapping must exist between the base type definition property of the
{schema:complex type definition} and the general {uml:Classifier} of the {uml:Generalization} for which
the {stereotype:AssociationType} is the specific {uml:Classifier}.

NIEM-UML Beta 1 230

3. (derivation method property) The derivation method property of the {schema:complex type definition}
must be "extension".

4. (attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

5. (content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";
b. (max occurs property) the value of the max occurs property must be "1"; and

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

6. (annotation property) The "i:Base" application information for the {schema:complex type definition} must
indicate the base type definition for the {schema:complex type definition}.

[Rule: Mapping for a Category 4 {stereotype:AssociationType}]

A mapping shall exist between a Category 4 {stereotype:AssociationType} and a {schema:complex type
definition} if and only if each of the following is true:

1. The rule "Mapping for a Categorized {uml:Class}" must hold.

2. (base type definition property) A mapping must exist between the base type definition property of the
{schema:complex type definition} and the supplier {uml:NamedElement} of the {stereotype:Restriction}
for which the {stereotype:AssociationType} is the client {uml:NamedElement}.

3. (derivation method property) The derivation method property of the {schema:complex type definition}
must be "restriction”.

4. (attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

5. (content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";
b. (max occurs property) the value of the max occurs property must be "1"; and

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

6. (annotation property) The "i:Base" application information for the {schema:complex type definition} must
indicate the base type definition for the {schema:complex type definition}.

[Rule: Mapping for a Category 1 or Category 2 {stereotype:AugmentationType}]

A mapping shall exist between a Category 1 or Category 2 {stereotype:AugmentationType} and a
{schema:complex type definition} if and only if each of the following is true:

1. The rule "Mapping for a Categorized {uml:Class}" must hold.

2. (base type definition property) The base type definition property of the {schema:complex type definition}
must be "s:AugmentationType".

3. (derivation method property) The derivation method property of the {schema:complex type definition}
must be "extension".

4. (attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

NIEM-UML Beta 1 231

(content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";
b. (max occurs property) the value of the max occurs property must be "1"; and

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

(annotation property) The "i:Base" application information for the {schema:complex type definition} must
indicate "s:Object".

[Rule: Mapping for a Category 3 {stereotype: AugmentationType}]

A mapping shall exist between a Category 3 {stereotype: AugmentationType} and a {schema:complex type
definition} if and only if each of the following is true:

1.
2.

The rule "Mapping for a Categorized {uml:Class}" must hold.

(base type definition property) A mapping must exist between the base type definition property of the
{schema:complex type definition} and the general {uml:Classifier} of the {uml:Generalization} for which
the {stereotype: AugmentationType} is the specific {uml:Classifier}.

(derivation method property) The derivation method property of the {schema:complex type definition}
must be "extension".

(attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

(content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";
b. (max occurs property) the value of the max occurs property must be "1"; and

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

(annotation property) The "i:Base" application information for the {schema:complex type definition} must
indicate the base type definition for the {schema:complex type definition}.

[Rule: Mapping for a Category 4 {stereotype:AugmentationType}]

A mapping shall exist between a Category 4 {stereotype: AugmentationType} and a {schema:complex type
definition} if and only if each of the following is true:

1.
2.

The rule "Mapping for a Categorized {uml:Class}" must hold.

(base type definition property) A mapping must exist between the base type definition property of the
{schema:complex type definition} and the supplier {uml:NamedElement} of the {stereotype:Restriction}
for which the {stereotype: AugmentationType} is the client {uml:NamedElement}.

(derivation method property) The derivation method property of the {schema:complex type definition}
must be "restriction”.

(attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

(content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";

NIEM-UML Beta 1 232

b. (max occurs property) the value of the max occurs property must be "1"; and

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

(prohibited substitutions property) The value of the prohibited substitutions property must be the empty set.

(annotation property) The "i:Base" application information for the {schema:complex type definition} must
indicate the base type definition for the {schema:complex type definition}.

[Rule: Mapping for a Category 1 {stereotype:MetadataType}]

A mapping shall exist between a Category 1 {stereotype:MetadataType} and a {schema:complex type
definition} if and only if each of the following is true:

1.
2.

The rule "Mapping for a Categorized {uml:Class}" must hold.

(base type definition property) The base type definition property of the {schema:complex type definition}
must be "s:MetadataType".

(derivation method property) The derivation method property of the {schema:complex type definition}
must be "extension”.

(attribute uses property) A mapping must exist between the explicit members of the attribute uses property
of the {schema:complex type definition} and the attribute use set for the {uml:Class}.

(content type property) The content type property of the {schema:complex type definition} must be a pair
consisting of a content model and "element-only". The content model must be a {schema:sequence} for
which each of the following is true:

a. (min occurs property) the value of the min occurs property must be "1";
b. (max occurs property) the value of the max occurs property must be "1"; and

c. (term property) a mapping must exist between the term property of the {schema:sequence} and the
model group for the {uml:Class}.

(annotation property) The "i:Base™ application information for the {schema:complex type definition} must
indicate "s:Object".

(annotation property) For each {stereotype:MetadataApplication} for which the
{stereotype:MetadataType} is the client {uml:NamedElement},

a. exactly one "i:AppliesTo" application information for the {schema:complex type definition} must
exist, and

b. amapping must exist between the {schema:component} indicated by the "i:AppliesTo" application
information and the supplier {uml:NamedElement}.

(annotation property) For each "i:AppliesTo" application information for the {schema:complex type
definition},

a. exactly one {stereotype:MetadataApplication} for which the {stereotype:MetadataType} is the client
{uml:NamedElement} must exist, and

b. amapping must exist between the {schema:component} indicated by the "i:AppliesTo" application
information and the supplier {uml:NamedElement}.

B.2.9.7 Mapping a {schema:attribute declaration}

[Definition: Attribute Declaration {stereotype:XSDProperty}]

An attribute declaration {uml:Property} is

1.
2.

a Category 1 {stereotype:XSDProperty} for which the value of the kind attribute is "attribute" or
a Category 2 {stereotype:XSDProperty} for which the value of the kind attribute is "attribute".

NIEM-UML Beta 1 233

[Rule: Mapping for an Attribute Declaration {stereotype: XSDProperty}]

A mapping shall exist between a {schema:attribute declaration} and an attribute declaration
{stereotype: XSDProperty} if and only if each of the following is true:

1.

(name property) The value of the name property of the {schema:attribute declaration} must equal the value
of the name attribute of the {stereotype:XSDProperty}.

(target namespace property) The value of the target namespace property must equal the value of the
targetNamespace attribute of the {stereotype:Namespace} that is the namespace of the class of the
{stereotype: XSDProperty}.

(type definition property) A mapping must exist between the type definition property of the
{schema:attribute declaration} and the type of the {stereotype: XSDProperty}.

(scope property) The scope property of the {schema:attribute declaration} must be "global™.
(value constraint property) Exactly one of the following must be true:

a. The fixed attribute of the {stereotype: XSDProperty} is absent and the value constraint property of the
{schema:attribute declaration} is absent.

b. The fixed attribute of the {stereotype:XSDProperty} is present; the value constraint property of the
{schema:attribute declaration} is a pair consisting of "fixed" and a value; and that value equals the
value of the fixed attribute of the {stereotype: XSDProperty}.

(annotation property) A mapping must exist between the documentation for the {schema:attribute
declaration} the documentation for the {stereotype:XSDProperty}.

B.2.9.8 Mapping a {schema:element declaration}

[Definition: Element Declaration {uml:Property}]

An element declaration {uml:Property} is

1.
2.
3.
4
5

6.

any unstereotyped Category 1 {uml:Property},

any unstereotyped Category 2 {uml:Property},

any unstereotyped Category 4 {uml:Property},

a Category 1 {stereotype: XSDProperty} for which the value of the kind attribute is "element",

a Category 2 {stereotype: XSDProperty} for which the value of the kind attribute is "element", or
a Category 4 {stereotype:XSDProperty} for which the value of the kind attribute is "element".

[Definition: Reference Element Declaration {uml:Property}]

A reference element declaration {uml:Property} is any Element Declaration {uml:Property} for which the value
of the name attribute ends with "Reference".

[Definition: Content Element Declaration {uml:Property}]

A content element declaration {uml:Property} is any element declaration {uml:Property} that is not a reference
element declaration {uml:Property}.

[Rule: Mapping for an Element Declaration {uml:Property}]

A mapping shall exist between a {schema:element declaration} and an element declaration {uml:Property} only
if each of the following is true:

1.

(name property) The value of the name property of the {schema:element declaration} must equal the value
of the name attribute of the {uml:Property}.

(target namespace property) The value of the target namespace property must equal the value of the
targetNamespace attribute of the {stereotype:Namespace} that is the namespace of the class of the
{uml:Property}.

NIEM-UML Beta 1 234

(scope property) The scope property of the {schema:element declaration} must be “global”.
(identity-constraint definitions property) The identity-constraint definitions property must be the empty set.

(substitution group exclusions property) The substitution group exclusions property of the {schema:element
declaration} must be the empty set.

(disallowed substitutions property) The disallowed substitutions property of the {schema:element
declaration} must be the empty set.

(abstract property) The value of the abstract property of the {schema:element declaration} must equal the
value of the isDerivedUnion attribute of the {uml:Property}.

(annotation property) A mapping must exist between the documentation for the {schema:element
declaration} and the documentation for the {uml:Property}.

The above rule is necessary for the following rules -

1.

2
3.
4

Mapping for an Unstereotyped Reference Element Declaration {uml:Property}

Mapping for a Reference Element Declaration {stereotype: XSDProperty}

Mapping for an Unstereotyped Content Element Declaration {uml:Property}

Mapping for a Content Element Declaration {stereotype:XSDProperty}

- but not sufficient in itself to specify a mapping.

[Rule: Mapping for an Unstereotyped Reference Element Declaration {uml:Property}]

A mapping shall exist between a {schema:element declaration} and an unstereotyped reference element
declaration {uml:Property} if and only if each of the following is true:

1.
2.

The rule "Mapping for an Element Declaration {uml:Property}" must hold.

(type definition property) The type definition property of the {schema:element declaration} must be
"s:ReferenceType".

(value constraint property) The value constraint property of the {schema:element declaration} must be
absent.

(nillable property) The value of the nillable property of the {schema:element declaration} must be false.

(substitution group affiliation property) A mapping must exist between the substitution group affiliation of
the {schema:element declaration} and the subsettedProperty of the {uml:Property}.

(annotation property) A mapping must exist between the {schema:component} indicated by the
"i:ReferenceTarget" application information for the {schema:element declaration} and the type of the
{uml:Property}.

[Rule: Mapping for a Reference Element Declaration {stereotype: XSDProperty}]

A mapping shall exist between a {schema:element declaration} and a reference element declaration
{stereotype: XSDProperty} if and only if each of the following is true:

1.
2.

The rule "Mapping for an Element Declaration {uml:Property}" must hold.

(type definition property) The type definition property of the {schema:element declaration} must be
"s:ReferenceType".

(value constraint property) The value constraint property of the {schema:element declaration} must be
absent.

(nillable property) The value of the nillable property of the {schema:element declaration} must equal the
value of the nillable attribute of the {stereotype: XSDProperty}.

(substitution group affiliation property) A mapping must exist between the substitution group affiliation of
the {schema:element declaration} and the subsettedProperty of the {uml:Property}.

NIEM-UML Beta 1 235

6.

(annotation property) A mapping must exist between the {schema:component} indicated by the
"i:ReferenceTarget" application information for the {schema:element declaration} and the type of the
{stereotype: XSDProperty}.

[Rule: Mapping for an Unstereotyped Content Element Declaration {uml:Property}]

A mapping shall exist between a {schema:element declaration} and an unstereotyped content element
declaration {uml:Property} if and only if each of the following is true:

1.
2.

The rule "Mapping for an Element Declaration {uml:Property}" must hold.

(type definition property) A mapping must exist between the type definition property of the
{schema:element declaration} and the type of the {uml:Property}.

(value constraint property) The value constraint property of the {schema:element declaration} must be
absent.

(nillable property) The value of the nillable property of the {schema:element declaration} must be false.

a. (substitution group affiliation property) If there exactly one subsettedProperty, a mapping must exist
between the substitution group affiliation of the {schema:element declaration} and the
subsettedProperty of the {uml:Property}.

b. (substitution group affiliation property) If there not any subsettedProperty and if the type is a
categorized {stereotype: AugmentationType}, the substitution group affiliation must be
s:Augmentation.

(annotation property) For each {stereotype: AugmentationApplication} for which the {uml:Property} is the
client {uml:NamedElement},

a. exactly one "i:AppliesTo" application information for the {schema:element declaration} must exist,
and

b. a mapping must exist between the {schema:component} indicated by the "i:AppliesTo" application
information and the supplier {uml:NamedElement}.

(annotation property) For each "i:AppliesTo" application information for the {schema:element
declaration},

a. exactly one {stereotype: AugmentationApplication} for which the {uml:Property} is the client
{uml:NamedElement} must exist, and

b. amapping must exist between the {schema:component} indicated by the "i:AppliesTo" application
information and the supplier {uml:NamedElement}.

[Rule: Mapping for a Content Element Declaration {stereotype: XSDProperty}]

A mapping shall exist between a {schema:element declaration} and a content element declaration
{stereotype: XSDProperty} if and only if each of the following is true:

1.
2.

The rule "Mapping for an Element Declaration {uml:Property}" must hold.

(type definition property) A mapping must exist between the type definition property of the
{schema:element declaration} and the type of the {uml:Property}.

(value constraint property) Exactly one of the following must be true:

a. The fixed attribute of the {stereotype: XSDProperty} is absent and the value constraint property of the
{schema:element declaration} is absent.

b. The fixed attribute of the {stereotype:XSDProperty} is present; the value constraint property of the
{schema:element declaration} is a pair consisting of "fixed" and a value; and that value equals the
value of the fixed attribute of the {stereotype:XSDProperty}.

NIEM-UML Beta 1 236

4. (nillable property) The value of the nillable property of the {schema:element declaration} must equal the
value of the nillable attribute of the {stereotype: XSDProperty}.

a. (substitution group affiliation property) If there exactly one subsettedProperty, a mapping must exist
between the substitution group affiliation of the {schema:element declaration} and the
subsettedProperty of the {uml:Property}.

b. (substitution group affiliation property) If there not any subsettedProperty and if the type is a
categorized {stereotype: AugmentationType}, the substitution group affiliation must be
s:Augmentation.

6. (annotation property) For each {stereotype: AugmentationApplication} for which the {uml:Property} is the
client {uml:NamedElement},

a. exactly one "i:AppliesTo" application information for the {schema:element declaration} must exist,
and

b. amapping must exist between the {schema:component} indicated by the "i:AppliesTo" application
information and the supplier {uml:NamedElement}.

7. (annotation property) For each "i:AppliesTo" application information for the {schema:element
declaration},

c. exactly one {stereotype: AugmentationApplication} for which the {uml:Property} is the client
{uml:NamedElement} must exist, and

d. amapping must exist between the {schema:component} indicated by the "i:AppliesTo" application
information and the supplier {uml:NamedElement}.

B.2.9.9 Mapping for a {schema:schema}
[Definition: Import for a {uml:DataType}]

The import for a {uml:DataType} is the {stereotype:Namespace} that is the namespace of the {uml:DataType}.
[Definition: Import for a {uml:Class}]

The import for a {uml:Class} is the {stereotype:Namespace} that is the namespace of the {uml:Class}.
[Definition: Import for a {uml:Property}]

The import for a {uml:Property} is the {stereotype:Namespace} that is the namespace of the class of the
{uml:Property}.

[Definition: Import set for a {stereotype:Namespace}]

An import set for a {stereotype:Namespace} (call it the importing {stereotype:Namespace}) is a set of
{stereotype:Namespace} constructed as follows:

1. For each unstereotyped categorized {uml:Class}, each stereotyped {uml:Class}, each
{stereotype:PropertyHolder}, and each {stereotype:Choice} in the importing {stereotype:Namespace}:

a. For each element use {uml:Property} in the {uml:Class} which is the client {uml:NamedElement} of a
{stereotype:References}:

i If the supplier {uml:NamedElement} of the {stereotype:References} is a {stereotype:Namespace}
and if that {stereotype:Namespace} is not the importing {stereotype:Namespace}, add the
{stereotype:Namespace} that is the supplier {uml:NamedElement}.

ii. If the supplier {uml:NamedElement} of the {stereotype:References} is a element declaration
{uml:Property} and if the import for that element declaration {uml:Property} is not the importing
{stereotype:Namespace}, add the import for the element declaration {uml:Property}.

NIEM-UML Beta 1 237

b. For each attribute use {uml:Property} in the {uml:Class} which is the client {uml:NamedElement} of
a {stereotype:References}:

i If the supplier {uml:NamedElement} of the {stereotype:References} is a {stereotype:Namespace}
and if that {stereotype:Namespace} is not the importing {stereotype:Namespace}, add the
{stereotype:Namespace} that is the supplier {uml:NamedElement}.

ii. If the supplier {uml:NamedElement} of the {stereotype:References} is an attribute declaration
{uml:Property} and if the import for that attribute declaration {uml:Property} is not the importing
{stereotype:Namespace}, add the import for the attribute declaration {uml:Property}.

c. For each element declaration {uml:Property} in the {uml:Class}:

i If the import for the type of the {uml:Property} is not the importing {stereotype:Namespace}, add
the import for the type of the {uml:Property}.

d. For each attribute declaration {uml:Property} in the {uml:Class}:

ii. If the import for the type of the {uml:Property} is not the importing {stereotype:Namespace}, add
the import for the type of the {uml:Property}.

[Definition: Conformant Import]

A conformant import is an import that is also a conformant {stereotype:Namespace}.
[Definition: Non-Conformant Import]

A non-conformant import is an import that is also a non-conformant {stereotype:Namespace}.
[Rule: Mapping for a Conformant Import for a {stereotype:Namespace}]

A mapping shall exist between a conformant import for a {stereotype:Namespace} and an xsd:import
{infoset:element} in the children property of an xsd:schema {infoset:element} if and only if the following is
true:

1. (xsd:namespace {infoset:attribute}) The value of the normalized value property of the xsd:namespace
{infoset:attribute} must equal the value of the targetNamespace attribute of the {stereotype:Namespace}.

[Rule: Mapping for a Non-Conformant Import for a {stereotype:Namespace}]

A mapping shall exist between a non-conformant import for a {stereotype:Namespace} and an xsd:import
{infoset:element} in the children property of the xsd:schema {infoset:element} if and only if each of the
following is true:

1. (xsd:namespace {infoset:attribute}) The value of the normalized value property of the xsd:namespace
{infoset:attribute} must equal the value of the targetNamespace attribute of the {stereotype:Namespace}.

2. (annotation property) A mapping must exist between the documentation for the xsd:import
{infoset:element} and the documentation for the non-conformant import.

3. (annotation property) The "i:ConformantIndicator" application information for the xsd:import
{infoset:element} must be "false".

[Rule: Mapping for the Import Set for a {stereotype:Namespace}]

A mapping shall exist between the import set for a {stereotype:Namespace} and the xsd:import
{infoset:element}s in the children property of the xsd:schema {infoset:element} if any only if each of the
following are true:

1. For each import in the import set for a {stereotype:Namespace}, a mapping must exist between the import
and exactly one xsd:import {infoset:element} in the children property.

2. For each xsd:import {infoset:element} in the children property, a mapping must exist between the
xsd:import {infoset:element} and exactly one import in the import set for the {stereotype:Namespace}.

[Rule: Mapping for a Conformant {stereotype:Namespace}]

NIEM-UML Beta 1 238

A mapping shall exist between a {schema:schema} and a conformant {stereotype:Namespace} if and only if
each of the following is true:

1.

10.

11.

12.

13.

(type definitions property) For each {schema:simple type definition} in the type definitions property of the
{schema:schema}, a mapping must exist between the {schema:simple type definition} and exactly one
{uml:DataType} for which the namespace is the {stereotype:Namespace}.

(type definitions property) For each {uml:DataType} for which the namespace is the
{stereotype:Namespace}, a mapping must exist between the {uml:DataType} and exactly one
{schema:simple type definition} in the type definitions property of the {schema:schema}.

(type definitions property) For each {schema:complex type definition} in the type definitions property of
the {schema:schema}, a mapping must exist between the {schema:complex type definition} and exactly
one {uml:Class} for which the namespace is the {stereotype:Namespace}.

(type definitions property) For each {uml:Class} for which the namespace is the {stereotype:Namespace},
a mapping must exist between the {uml:Class} and exactly one {schema:complex type definition} in the
type definitions property of the {schema:schema}.

(element declarations property) For each {schema:element declaration} in the element declarations
property of the {schema:schema}, a mapping must exist between the {schema:element declaration} and
exactly one element declaration {uml:Property} for which the import is the {stereotype:Namespace}.

(element declarations property) For each element declaration {uml:Property} for which import is the
{stereotype:Namespace}, a mapping must exist between the {uml:Property} and exactly one
{schema:element declaration} in the element declarations property of the {schema:schema}.

(attribute declarations property) For each {schema:attribute declaration} in the attribute declarations
property of the {schema:schema}, a mapping must exist between the {schema:attribute declaration} and
exactly one attribute declaration {uml:Property} for which the import is the {stereotype:Namespace}.

(attribute declarations property) For each attribute declaration {uml:Property} for which import is the
{stereotype:Namespace}, a mapping must exist between the {uml:Property} and exactly one
{schema:attribute declaration} in the attribute declarations property of the {schema:schema}.

(annotation property) A mapping must exist between the documentation for the {schema:schema} and the
documentation for the {stereotype:Namespace}.

(annotation property) The "i:Conformantindicator" application information for the {schema:schema} must
be "true".

(xsd:import {infoset:element}s) In the XML representation of the {schema:schema}, a mapping must exist
between the xsd:import {infoset:element}s in the children property of the xsd:schema and the import set for
the {stereotype:Namespace}.

(xsd:targetNamespace {infoset:attribute}) In the XML representation of the {schema:schema},

a. the attributes property of the xsd:schema {infoset:element} must include an xsd:targetNamespace
{infoset:attribute}; and

b. the normalized value of the {infoset:attribute} must equal the value of the targetNamespace property of
the {stereotype:Namespace}.

(xsd:version {infoset:attribute}) In the XML representation of the {schema:schema},

a. the attributes property of the xsd:schema {infoset:element} must include an xsd:version
{infoset:attribute}; and

b. the normalized value of the {infoset:attribute} must equal the value of the version property of the
{stereotype:Namespace}.

NIEM-UML Beta 1 239

Annex C Machine Readable Artifacts
(normative)

C.1 Normative

NIEM-UML includes three UML models, the normative XMI for which may referenced using the following
standard URISs:

e NIEM UML Profile

http://www.omg.org/spec/NIEM UML/20120501/NIEM-UML-Profile.xmi
e XML Primitive Types Library

http://www.omg.org/spec/NIEM UML/20120501/XMIPrimitiveTypes.xmi

o Reference Vocabulary Library — This consists of several XMl files located in the following directory,
containing NIEM-UML models of the various NIEM reference schema. They are provided in separate files to
allow a user to easily access only the specific domain areas of interest.

http://www.omg.org/spec/NIEM UML/20120501/NIEM-Reference/NIEM-Reference

The NIEM UML Profile model contains the overall NIEM UML Profile and the three sub-profiles, as specified in
Clause 8. Each of these have specified namespace prefixes and URIs (as recommended in Subclause 18.3.7 of
[UMLY]). The prefix for each profile is the same as the name of the profile and the URI is as follows:

e NIEM_UML_Profile
http://www.omg.org/spec/NIEM UML/20120501
e NIEM_Common_Profile
http://www.omg.org/spec/NIEM UML/20120501/NIEM Common Profile
e NIEM_PIM_Profile
http://www.omg.org/spec/NIEM UML/20120501/NIEM PIM Profile
e NIEM_PSM_Profile
http://www.omg.org/spec/NIEM UML/20120501/NIEM PSM Profile
e Model_Package_Description_Profile
http://www.omg.org/spec/NIEM UML/20120501/Model Package Description Profile

NIEM-UML also includes four normative QVT transformations, as described in Clause 9, which may be found at
the following URIs:

e NIEM PIM to NIEM PSM
http://www.omg.org/spec/NIEM UML/20120501/NIEMpim2psm.qgvto
e NIEM PSM to NIEM-Conforming XML Schema
http://www.omg.org/spec/NIEM UML/20120501/NIEMpsm2xsd.qvto
e NIEM MPD Model to NIEM MPD Artifact
http://www.omg.org/spec/NIEM UML/20120501/NIEMmpdmodel2artifact.qgvto
e NIEM MPD Artifact to NIEM MPD Model
http://www.omg.org/spec/NIEM UML/20120501/NIEMmpdartifact2model.qgvto

These transformations in turn use the following common transformations:

NIEM-UML Beta 1 240

http://www.omg.org/spec/NIEM_UML_Profile/20120301/NIEM_UML_Profile.xmi
http://www.omg.org/spec/NIEM_UML_Profile/20120301/XMIPrimitiveTypes.xmi
http://www.omg.org/spec/NIEM_UML_Profile/20120301/NIEMReferenceVocabulary.xmi

e NIEM Globals

http://www.omg.org/spec/NIEM UML/20120501/NIEMglobals.qgvto
e NIEM Platform Binding

http://www.omg.org/spec/NIEM UML/20120501/NIEMplatformBinding.qgvto

C.2 Non-Normative

The following artifacts are used in the normative QVT specification of transformations between a NIEM PSM and
MPD artifacts, as discussed in Clause 9. However, they are not considered a normative part of NIEM-UML itself.

e XML Schema Metamodel (based on Clause 10 of [XMI])
http://www.omg.org/spec/NIEM UML/20120501/Nonnormative/XSD.emof

e MPD Catalog Metamodel

http://www.omg.org/spec/NIEM UML/20120501/Nonnormative/mpd.catalog.emof

NIEM-UML Beta 1 241

