Notification Service Specification

New Edition: June 2000
Version1.0

Copyright 1998, BEA Systems, Inc.

Copyright 1998, Borland International

Copyright 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd).
Copyright 1998, Expersoft Corporation

Copyright 1998, FUJITSU LIMITED

Copyright 1998, GMD Fokus

Copyright 1998, International Business Machines Corporation
Copyright 1998, International Computers Limited

Copyright 1998, lona Technologies Ltd.

Copyright 1998, NEC Corporation

Copyright 1998, Nortel Technology

Copyright 1998, Oracle Corporation

Copyright 1998, TIBCO Software, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid uj
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyrig
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document do
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT

MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY

WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cove
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders liste
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be tl
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks
other special designations to indicate compliance with these materials. This document contains information which is protecte
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7018r0MG

Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Associated OMG Documents. i v
Acknowledgments iv
1. Service Description i 1-1
1.1 OVerVIEW ..o 1-1
1.2 Conformance ISsSUeso, 1-3
1.21 Compliance 1-3
2. Architectural Features 2-1
21 OVEeIVIEW . . 2-1
2.1.1 The Notification Service Event Channel Factory 2-4
2.1.2 The Notification Service Event Channel 2-5
2.1.3 Notification Service Style Admin Objects . . . 2-6
2.1.4 Notification Service Style Proxy Interfaces . . 2-7
2.1.5 Sending Events within a Transaction 2-12
2.2 Structured Events 2-12
2.3 Event Filtering with Filter Objects 2-17
2.3.1 Mapping Filter Objects 2-21
2.4 The Default Filter Constraint Language 2-23

2.4.1 Issues with the Trader Constraint Language . 2-23

2.4.2 Trader Constraint Language Extensions
for Notification 2-25

2.4.3 Arithmetic Conversions for Mixed Data Types 2-26

Notification Service V1.0 June 2000 i

Contents

2.4.4 Support for Name-Value Pairs 2-28
2.4.5 A Short-hand Notation for Filtering a
GenericEvent 2-29

2.4.6 Positional Notation and Intended Applications 2-30
2.4.7 Examples of Notification Service Constraints . 2-31
2.4.8 Extensions to Trader Constraint Language BNF 2-32

2.5 Quality of Service Administration 2-34
25.1 Model Components 2-35
2.5.2 QoS Property Representation 2-35
253 SettingQoS 2-35
254 End-to-End QoS, 2-36
2.5.5 Notification QoS Properties 2-37
2.5.6 Negotiating QoS and Conflict Resolution 2-42
2.5.7 Notification Channel Administrative Properties 2-48
2.6 Sharing Subscriptions o 2-49
2.6.1 Sharing Subscriptions Between Channels
andClients 2-49
26.2 Offer 2-49
2.6.3 SubscriptionChange 2-50
2.6.4 NotificationsonDemand 2-50
2.6.5 Obligations on Filter Objects 2-51
2.6.6 SpecialEventTypes..................... 2-51
2.7 Filtering Typed Events 2-52
2.8 The Event Type Repository 2-55
2.9 Issues with Interoperability 2-56
3. Modules and Interfaces 3-1
3.1 The CosNotification Module 3-2
3.1.1 The StructuredEvent Data Structure 3-6
3.1.2 The EventBatch Data Type 3-7
3.1.3 QoS and Administrative Constant Declarations 3-8
3.1.4 The QoSAdminiInterface 3-8
3.1.5 The AdminPropertiesAdmin Interface 3-9
3.2 The CosNotifyFilter Module 3-9
3.2.1 TheFilterInterface 3-14
3.2.2 The MappingFilter Interface 3-20
3.2.3 The FilterFactory Interface 3-26
3.2.4 The FilterAdmin Interface 3-27
3.3 The CosNotifyComm Module 3-28
3.3.1 The NotifyPublish Interface 3-30

ii Notification Service V1.0 June 2000

Contents

3.3.2 The NotifySubscribe Interface 3-31
3.3.3 The PushConsumer Interface 3-31
3.3.4 The PullConsumer Interface 3-32
3.3.5 The PullSupplier Interface 3-32
3.3.6 The PushSupplier Interface 3-32
3.3.7 The StructuredPushConsumer Interface 3-32
3.3.8 The StructuredPullConsumer Interface 3-34
3.3.9 The StructuredPullSupplier Interface 3-34
3.3.10 The StructuredPushSupplier Interface 3-36
3.3.11 The SequencePushConsumer Interface 3-37
3.3.12 The SequencePullConsumer Interface 3-38
3.3.13 The SequencePullSupplier Interface 3-38
3.3.14 The SequencePushSupplier Interface 3-41
3.4 The CosNotifyChannelAdmin Module 3-41
3.4.1 The ProxyConsumer Interface 3-50
3.4.2 The ProxySupplier Interface 3-53
3.4.3 The ProxyPushConsumer Interface 3-55
3.4.4 The StructuredProxyPushConsumer Interface . 3-57
3.4.5 The SequenceProxyPushConsumer Interface . 3-57
3.4.6 The ProxyPullSupplier Interface 3-58
3.4.7 The StructuredProxyPullSupplier Interface ... 3-59
3.4.8 The SequenceProxyPullSupplier Interface 3-60
3.4.9 The ProxyPullConsumer Interface 3-61
3.4.10 The StructuredProxyPullConsumer Interface . 3-63
3.4.11 The SequenceProxyPullConsumer Interface .. 3-65
3.4.12 The ProxyPushSupplier Interface 3-66
3.4.13 The StructuredProxyPushSupplier Interface .. 3-68
3.4.14 The SequenceProxyPushSupplier Interface ... 3-70
3.4.15 The ConsumerAdmin Interface 3-71
3.4.16 The SupplierAdmin Interface 3-76
3.4.17 The EventChannel Interface 3-79
3.4.18 The EventChannelFactory Interface 3-82
3.5 The CosTypedNotifyComm Module 3-84
3.5.1 The TypedPushConsumer Interface 3-84
3.5.2 The TypedPullSupplier Interface 3-85
3.6 CosTypedNotifyChannelAdmin 3-85
3.6.1 The TypedProxyPushConsumer Interface 3-89
3.6.2 The TypedProxyPullSupplier Interface 3-90
3.6.3 The TypedProxyPullConsumer Interface 3-92
3.6.4 The TypedProxyPushSupplier Interface 3-94
Notification Service V1.0 June 2000 iii

Contents

3.6.5
3.6.6
3.6.7
3.6.8

Notification Service V1.0

The TypedConsumerAdmin Interface 3-96
The TypedSupplierAdmin Interface 3-99
The TypedEventChannel Interface 3-102

The TypedEventChannelFactory Interface 3-105

June 2000

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

Notification Service V1.0 June 2000 iii

Associated OMG Documents

Acknowledgments

The CORBA documentation is organized as follows:

» Object Management Architecture Guidefines the OMG's technical objectives
and terminology and describes the conceptual models upon which OMG
standards are based. It defines the umbrella architecture for the OMG standards. It
also provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

* CORBA: Common Object Request Broker Architecture and Specificetiotains
the architecture and specifications for the Object Request Broker.

» CORBAservices: Common Object Services Specificatmtains specifications
for OMG’s Obiject Services.

The OMG collects information for each specification by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail irDthiect Management
Architecture Guide

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

The following companies submitted and/or supported parts oNibiication Service
specification:

* BEA Systems, Inc.

» Borland International

» Cooperative Research Centre for Distributed Systems Technology (DSTC Pty
Ltd).

» Expersoft Corporation

e FUJITSU LIMITED

» GMD Fokus

* International Business Machines Corporation
* International Computers Limited

Notification Service V1.0 June 2000

lona Technologies Ltd.
NEC Corporation
Nortel Technology
Oracle Corporation
TIBCO Software, Inc.

Concurrency Service V1.0 Acknowledgments June 2000

vi

Notification Service V1.0

June 2000

1.1 Overview

Service Description 1

Contents

This chapter contains the following topics.

Topic Page
“Overview” 1-1
“Conformance Issues” 1-3

This specification describes a CORBA-based Natification Service, a service which
extends the existing OMG Event Service, adding to it the following new capabilities:

The ability to transmit events in the form of a well-defined data structure, in
addition to Anys and Typed-events as supported by the existing Event Service.

The ability for clients to specify exactly which events they are interested in
receiving, by attaching filters to each proxy in a channel.

The ability for the event types required by all consumers of a channel to be
discovered by suppliers of that channel, so that suppliers can produce events on
demand, or avoid transmitting events in which no consumers have interest.

The ability for the event types offered by suppliers to an event channel to be
discovered by consumers of that channel so that consumers may subscribe to new
event types as they become available.

The ability to configure various quality of service properties on a per-channel, per-
proxy, or per-event basis.

An optional event type repository which, if present, facilitates the formation of filter
constraints by end-users, by making information about the structure of events which
will flow through the channel readily available.

Notification Service V1.0 June 2000 1-1

1-2

The Notification Service defined here attempts to preserve all of the semantics
specified for the OMG Event Service, allowing for interoperability between basic

Event Service clients and Notification Service clients. To recap, the OMG Event

Service supports asynchronous exchange of event messages between clients. The Even
Service introducesvent channels/hich broker event messagevent suppliersvhich

supply event messages, agnknt consumenshich consume event messages.

The figure below depicts a logical view of tlewent channetiefined by the OMG
Event Service, showing its IDL-defined interfaces.

ECA::ConsumerAdmin ECA::SupplierAdmin

ECA::ProxyPushSupplier* ECA::ProxyPushConsumer*

EC::PushConsumer*

EC::PushSupplier*

= —FO
Event Service

EC::PullConsumer*

Event Channel EC::PullSupplier*

5 po—

ECA::ProxyPullSupplier* —

-

ECA::ProxyPullConsumer*

ECA::EventChannel

Direction of Event Flow

Figure 1-1 Architecture of the untyped OMG Event Channel

The IDL module names of the interfaces defined by the OMG Event Service are
abbreviated in the above diagram. ECA standsGosEventChannelAdmin , while

EC stands folCosEventComm . The “*” next to an interface name denotes the fact
that each channel may support one or more of &ty interface, corresponding to

the existence of one or more connected suppliers and/or consumers. Events flow from
suppliers to consumers, as depicted by the arrow on the bottom of the figure. Note that
this figure depicts theintyped event channel defined by the OMG Event Service. A
typed version also exists that has similar architecture, with additional interfaces
defined to handle typed event communication.

Two serious limitations of the event channel defined by the OMG Event Service are
that it supports no event filtering capability, and no ability to be configured to support
different qualities of service. Thus, the choice of which consumers connected to a
channel receive which events, along with the delivery guarantee that is made to each
supplier, is hard-wired into the implementation of the channel. Most Event Service
implementations deliver all events sent to a particular channel to all consumers
connected to that channel on a best-effort basis.

A primary goal of the Notification Service defined here is to enhance the Event Service
by introducing the concepts of filtering, and configurability according to various
quality of service requirements. Clients of the Notification Service can subscribe to
specific events of interest by associating filter objects with the proxies through which
the clients communicate with event channels. These filter objects encapsulate

Notification Service V1.0 June 2000

1

constraints which specify the events the consumer is interested in receiving, enabling
the channel to only deliver events to consumers which have expressed interest in
receiving them. Furthermore, the Notification Service enables each channel, each
connection, and each message to be configured to support the desired quality of service
with respect to delivery guarantee, event aging characteristics, and event prioritization.

The Notification Service defined here supports event filtering on three fundamental
types of eventsuntyped events contained within a CORBA Antyped events as
defined by the OMG Event Service, astfuctured events, which are introduced in

this specificationStructured events define a well-known data structure which many
different types of events can be mapped into in order to support highly optimized event
filtering.

1.2 Conformance Issues

1.2.1 Compliance

In order to be conformant with this specification, all of the interfaces must be
supported and implemented using the specified semantics, with the exception of the
interfaces for typed notification channels, which are optional. In addition, a
conforming implementation must support filter objects that support constraints
expressed in the default constraint grammar defined in Section 2.4, “The Default Filter
Constraint Language,” on page 2-23. Lastly, this document defines a set of standard
QoS properties, which must at least be understood (although not necessarily
implemented) by all conformant implementations.

More precisely,

® A conforming implementation must support all interfaces defined in the
CosNotification , CosNotifyFilter , CosNotifyComm , and
CosNotifyChannelAdmin modules.

® A conforming implementation may also support, in addition to the interfaces
enumerated above, all of the interfaces defined in the
CosTypedNotifyChannelAdmin module.

® A conforming implementation will provide implementations of the
CosNotifyFilter::Filter andCosNotifyFilter::MappingFilter interfaces that
support constraints expressed in the default constraint grammar specified in
Section 2.4, “The Default Filter Constraint Language,” on page 2-23.

® All QoS properties defined in Chapter 2 of this specification must at least be
understood by any conforming implementation. However, a conforming
implementation may choose to not implement all standard QoS properties and/or
QoS property settings. In cases where a client requests a standard QoS property
with a setting that is not supported by a conformant implementation, the
implementation should raise tligosNotification::UnsupportedQoS exception.

Notification Service V1.0 Conformance Issues June 2000 1-3

Notification Service V1.0

June 2000

Architectural Features 2

Contents

This chapter contains the following topics.

Topic Page
“Overview” 2-1
“Structured Events” 2-12
“Event Filtering with Filter Objects” 2-17
“The Default Filter Constraint Language” 2-23
“Quality of Service Administration” 2-34
“Sharing Subscriptions” 2-49
“Filtering Typed Events” 2-52
“The Event Type Repository” 2-55
“Issues with Interoperability” 2-56

2.1 Overview

This section provides a general overview of the service architecture. The main design
goal of the Notification Service architecture is to define the service as a direct
extension of the existing OMG Event Service, enhancing the latter with important
features which are required to satisfy a variety of applications with a broad range of
scalability, performance, and quality of service (QoS) requirements. The guiding
principles which drove the definition of the Notification Service IDL interfaces were to
preserve both backward compatibility with and the programming model of the OMG
Event Service. The former principle lead to the specification of IDL modules which
have identical structure to corresponding Event Service IDL modules, containing
interfaces which inherit directly from those defined in the Event Service. The latter

Notification Service V1.0 June 2000 2-1

2-2

principle lead to the specification of Notification Service interfaces which are named
similarly to corresponding Event Service interfaces, and which define new operations
that preserve the semantic behavior of the Event Service operations whose
functionality they are intended to embellish.

The Notification Service defined here supports all of the interfaces and functionality
supported by the OMG Event Service. In fact, an implementation of the Notification
Service defined here can be thought of as subsuming an implementation of the Event
Service. The Notification Service, however, also supports new features that are
introduced by directly extending the interfaces defined by the Event Service. Both the
original Event Service interfaces, and these new extended interfaces specific to
Notification, are made available to Notification Service clients in order to preserve
backward compatibility.

The general architecture of the Notification Service is depicted in Figure .

Once again the IDL module names of the interfaces defined by the service are
abbreviated in the diagram. The following is a key to the abbreviations used:

® EC - CosEventComm
® ECA - CosEventChannelAdmin
® NC - CosNotifyComm
® NCA - CosNotifyChannelAdmin

As in Figure 1-1 on page 1-2, the “*” next to an interface name denotes the fact that
there may be multiple object instances supporting this interface in a given channel.
Note that in addition to supporting multiple instances of each Proxy interface, each
Notification Service event channel may also support multiple instances of the
ConsumerAdmin and SupplierAdmin interfaces defined in the
CosNotifyChannelAdmin module. The reason for this will be explained shortly.
Also note that this figure depicts the generic Notification Service event channel. As
with the Event Service, a typed version also exists that has similar architecture, with
additional interfaces to handle typed communication. fped Notification Service
event channel will also be described shortly.

As depicted in on page 2-3, an instance of the Notification Service event channel
(referred to henceforth as tmtification channel) logically supports all of the
interfaces supported by the Event Service event channel. In many cases the service
supports two methods for obtaining access to the Event Service version of a particular
interface:

1. Since the Notification Service version of a particular interface inherits from the
Event Service equivalent of the same interface, an instance of the former can be
widened to an instance of the latter. Examples of this areetrentChannel ,
ConsumerAdmin , andSupplierAdmin interfaces.

2. The factory operations supported by a Notification Service interface through
inheritance from the equivalent Event Service interface can be invoked to create a
true Event Service version of a particular interface. Examples of Event Service
interfaces that can be instantiated in this way areGbasumerAdmin ,
SupplierAdmin , and allProxy interfaces supported by the Event Service.

Notification Service V1.0 June 2000

ECA::ConsumerAdmin

ECA::ProxyPushSupplier*

ECA::EventChannel

EC::PushConsumer*

C <~

ECA::ProxyPullSupplier*
EC::PullConsumer*

D

NCA::ProxyPushSupplier*
EC::PushConsumer*

-

NCA::ProxyPullSupplier*
EC::PullConsumer*

NCA::StructuredProxyPushSupplier*
NC::StructuredPushConsumer*

-

NCA::StructuredProxyPullSupplier*
NC::StructuredPullConsumer*

C A<+

NCA::SequenceProxyPushSupplier?
NC::SequencePushConsumer*

COA=—""

NCA::SequenceProxyPullSupplier?

NC::SequencePullConsumer*
C“) | +—>

Notification Service
Event Channel

ECA::SupplierAdmin

ECA::ProxyPushConsumer*
EC::PushSupplier*

H

ECA::ProxyPullConsumer*
EC::PullSupplier*

B

NCA::ProxyPushConsumer*
EC::PushSupplier*

N

NCA::ProxyPullConsumer*

<\> EC::PuIISu??Iier*

NCA::StructuredProxyPushConsumer*
NC::StructuredPushSupplier*

~—()

NCA::StructuredProxyPullConsumer*
NC::StructuredPullSupplier*

I = D

NCA::SequenceProxyPushConsumer*
NC::SequencePushSupplier*

-

NCA::SequenceProxyPullConsumer*
NC::SequencePullSupplier*

D E—

NCA::ConsumerAdmin* NCA::SupplierAdmin*

NCA::EventChannel

Direction of Event Flow

Figure 2-1 General Architecture of the Notification Service

Note that in this specification, the issue of whether or not an instance of an Event
Service style interface obtained by method 2) above can be narrowed to an equivalent
Notification Service style interface is left as an implementation detail.

Notification Service V1.0 Overview June 2000 2-3

Due to interface inheritance, an instance of an object supporting the
NCA::EventChannel interface (i.e., an instance of a notification channel) can be
widened to one supporting tHeECA::EventChannel interface, and henceforth be
treated identically to the Event Service’s version of an event channel. The primary
reason for this is to support backward compatibility for existing applications that use
the Event Service. Furthermore, more fine-grained application migration is supported
as true Event Service clients (i.e., consumers and suppliers) can connect to the
Notification Service event channel using one of the following three techniques:

1. Using the operations of the inherit&CA::EventChannel interface, instantiate
the Event Service version of the appropridt@min interface (i.e.,
ConsumerAdmin or SupplierAdmin), use it to instantiate an Event Service style
Proxy interface, then connect to that interface.

2. Obtain the appropriate Notification Service stldmin interface. Then, using the
operations supported through inheritance of the Event Service version of the
analogousAdmin interface, instantiate an Event Service stylexy interface, and
connect to that interface.

3. Use strictly Notification Service style interfaces to instantiate and connect to the
ProxyPushConsumer , ProxyPullConsumer , ProxyPushSupplier , or
ProxyPullSupplier interface defined in th€osNotifyChannelAdmin model.

Techniques 1) and 2) described above differ only in at what pointEtlemtChannel

or Admin interface) the client begins treating the notification channel as a true event
channel. The end result of both techniques is identical: a true event service client is
connected to a true event service style proxy interface associated with the channel.
These techniques enable the client to achieve the identical functionality supported by
the Event Service event channel: events in the form of untyped Anys can be supplied to
and consumed from the channel.

Technique 3) enables an event service client to take advantage of some of the new
functionality supported by the notification channel. The main difference between this
and the previous techniques is that it results in an Event Service client being connected
to a Notification Service style proxy interface. The Notification Service style proxy
interface is capable of filtering events based on end-user provided constraints, and can
also be configured to support various qualities of service. Thus, in this case an Event
Service client is able to take advantage of the new features supported by Notification.

The previous discussion described how Event Service clients can use the Notification
Service. The following subsections will focus on the new features offered by
Notification, which are available to clients which have been newly developed to use
Notification.

2.1.1 The Notification Service Event Channel Factory

The Notification Service supports a well-defined factory interface, the
EventChannelFactory , for creating new instances of notification channels. At

creation time, the client can specify various QoS and administrative properties that will
be supported by the channel. The standard administrative properties that can be set on
a channel include the maximum number of events the channel will buffer at any one

Notification Service V1.0 June 2000

2

time (MaxQueueLength), and the maximum number of consumers and suppliers that
can connect to the channéfléxConsumers andMaxSuppliers). QoS

administration is described in detail in Section 2.5, “Quality of Service
Administration,” on page 2-34.

Although theEventChannelFactory is the only interface in the Notification Service
that is explicitly defined to be a factory (i.e., an object that creates other objects), it
turns out that the architecture of the service is hierarchical in nature, and all objects
defined as part of an event channel are created by some parent object. For instance,
consumer and supplier admin instances are created by event channels, and all proxy
objects are created by some admin instance.

One important design principle introduced by the Notification Service is that all

objects that create other objects assign numeric identifiers to the objects they have
created that are unique among all objects they have created. In addition, all objects that
create other objects support an operation that returns the list of all unique identifiers
they have assigned to objects they have created, and an operation that given a single
unique identifier corresponding to an object they have created, can return the object
reference of that child object. Additionally, all objects within the channel maintain

back references to their parent object (e.g., event channels maintain references to the
event channel factory that created them, admin objects maintain references to the event
channel that created them, etc.). This design principle significantly enhances the
administratibility of a Notification Service event channel, by enabling any client of a
channel to discover all objects that comprise the channel, starting from any object
within the channel. Note that a Notification Service event channel which contains
objects that support pure OMG Event Service style interfaces will not be able to
administer these objects in this fashion (since Event Service style objects will not have
associated unique identifiers, and will not maintain backreferences to their parent
objects).

2.1.2 The Notification Service Event Channel

The Notification Service event channel, also referred to as the “notification channel,”
supports theCosNotifyChannelAdmin::EventChannel interface. Through

interface inheritance, an instance supporting this interface can be treated exactly like
an Event Service event channel (as previously described), and can have both QoS and
administrative properties assigned to it.

A feature newly introduced by the notification channel is its ability to support multiple
instances of objects supporting tBensumerAdmin andSupplierAdmin interfaces
(referred to in generic terms as “Admin” interfaces). Each Admin interface is
essentially a factory that creates the Proxy interfaces to which clients will ultimately
connect. The Notification Service also treats each Admin object as the manager of the
group of Proxies it has created. Admin objects can themselves have QoS properties and
filter objects (explained in detail in Section 2.3, “Event Filtering with Filter Objects,”

on page 2-17) associated with them. The QoS properties associated with a given
Admin object are assigned to each Proxy object created by the Admin object upon
creation of the Proxy, but can subsequently be tailored on a per-proxy basis. On the
other hand, the set of filter objects associated with a given Admin are treated as a unit
which apply at all times to all Proxy objects which have been created by the Admin.

Notification Service V1.0 Overview June 2000 2-5

Additional filter objects can be associated with an individual Proxy, but the set of filter
objects associated with an Admin object are automatically associated with all Proxy
objects which have been created by the Admin object, and this set can only be
modified by invoking operations on the Admin object.

Sharing a set of filter objects among all Proxy objects created by an Admin object
provides a powerful mechanism for creating a set of event subscriptions that can be
shared by a group of clients. In addition, the filtering of a given event on behalf of a set
of clients can be optimized since the same subscription information applies to multiple
clients, implying that the filtering of a given event can be performed once for a given
set of clients. In summary, supporting multiple Admin objects in a given notification
channel enables the logical grouping of the Proxy objects associated with the channel
according to common subscription information. This feature is particularly useful with
respect taConsumerAdmin objects, since it enables the channel to optimize the
servicing of a group of consumers that are interested in receiving the same set of
events.

The CosNotifyChannelAdmin::EventChannel interface supports the operations

for creating newConsumerAdmin and SupplierAdmin instances. Each instance is
assigned a unique identifier upon creation, which can subsequently be used to obtain
the reference of a particular Admin object by invoking an operation on the
EventChannel interface. Upon creation, eagventChannel instance initially

supports a singl€onsumerAdmin and SupplierAdmin instance, viewed as the

default of each such type of object and assigned the unique identifier value of zero.
Note that through inheritance of tl@osEventChannelAdmin::EventChannel

interface, each Notification Service event channel is also capable of creating Event
Service style Admin instances, which can subsequently be used to create Event Service
style Proxy objects. These event service style Admin instances do not have unique
identifiers associated with them, and thus cannot subsequently be obtained by invoking
the notification channel operations to obtain an Admin object by unique identifier.

2.1.3 Notification Service Style Admin Objects

As described in the previous section, each notification channel can have associated
with it multiple instances oConsumerAdmin and SupplierAdmin objects. Both

styles of Admin object can have QoS properties and filter objects associated with them.
The QoS properties associated with a given Admin object are assigned as the default
QoS properties which will be associated with any Proxy object created by that Admin.
The properties can be subsequently tailored on a per-Proxy basis if so desired by
clients of the service. On the other hand, the filter objects associated with a given
Admin object are treated as a unit that are logically associated with every Proxy object
that has been created by the Admin. This unit can be modified only by invoking
operations on the Admin object itself, and such changes to the set of filters, or to the
internal state of the filters themselves, affect every Proxy which was created by the
Admin object.

The main idea underlying the support of multiple Admin objects per channel is to
optimize the handling of clients with identical requirements. For example, if it is
desired to connect multiple consumer applications that are interested in receiving an
identical set of events to a notification channel, this would be achieved by creating a

Notification Service V1.0 June 2000

2

single ConsumerAdmin object and associating with it the filters which encapsulate
the constraints specifying the desired set of events. Subsequently, each consumer
application interested in receiving the specific set of events would connect to the
channel using this particul@@onsumerAdmin object to create its associated Proxy
Supplier object. In addition, the same channel could be connected to by a different
group of consumer applications interested in receiving a different set of events by
creating a newConsumerAdmin object, associating with it a different set of filter
objects, and using it to create the new set of Proxy Supplier objects.

Each instance of Notification Service style Admin object is capable of creating and
managing a set of Proxy objects. Through inheritance of the analogous Event Service
style Admin interface, a Notification Service style Admin object can be used to create
Event Service style Proxy objects. In addition, the Admin interfaces defined by the
Notification Service support operations to create Notification Service style Proxy
objects. Upon creation of such a Proxy object, the Admin object assigns it a unique
identifier which can be subsequently used as input to an operation supported by the
Admin interface to return the object reference of the Proxy. Note that only Notification
Service style Proxy objects will have unique identifiers associated with them, and thus
be obtainable through the operations supported by the Admin interfaces which return a
Proxy object interface given a unique identifier as input.

The Notification Service introduces separate Proxy interfaces depending on the desired
form of message communication. Message communication to and from the channel can
be in terms of Anys, Structured Events, or sequences of Structured Events. The exact
form of message communication supported by the Proxy object created by a
Notification Service style Admin object is controlled by a flag provided as input to the
operations on the Admin objects which create new Proxies. The different styles of
Proxy object which can be created by invoking operations on a Notification Service
style Admin object are explained in the next subsection.

2.1.4 Notification Service Style Proxy Interfaces

Using the operations supported through inheritance of the analogous Event Service
interface, a client of the Notification Service can use a Notification Service style
Admin object to create a pure Event Service style Proxy object. Such a Proxy supports
the identical behavior of the Event Service style Proxy objects: a consumer Proxy is
capable of receiving events in the form of Anys, and a supplier Proxy is capable of
delivering events in the form of Anys.

Using the newly defined operations of the Notification Service style Admin objects, it's
possible to create Notification Service style Proxy objects. As with the Event Service,
both push and pull styles of each type of Proxy are supported. In addition, Notification
Service style Proxy objects can be further subdivided into three distinct categories:
those that send and receive events in the form of Anys, those that send and receive
events in the form of Structured Events (described in Section 2.2, “Structured Events,”
on page 2-12), and those that send and receive events in the form of sequences of
Structured Events. The Notification Service also defines new interfaces for clients that
send and receive events in the form of Structured Events or Sequences of Structured
Events.

Notification Service V1.0 Overview June 2000 2-7

2-8

The following table summarizes the Notification Service style Proxy interfaces, and the
types of clients of an object supporting each interface.

Table 2-1 Notification Service Style Proxy Interfaces

Proxy Interface

Connected To By

Form of Message

ProxyPushConsumer CosEventComm::PushSupplier Any

StructuredProxyPushConsumer CosNotifyComm::StructuredPushSupplier Structured Event

SequenceProxyPushConsumer CosNotifyComm::SequencePushSupplier Sequence of Strugtured
Event

ProxyPullConsumer

CosEventComm::PullSupplier

Any

StructuredProxyPullConsumer

CosNotifyComm::StructuredPullSupplier

Structured Event

SequenceProxyPullConsumer CosNotifyComm::SequencePullSupplief Sequence of Structured
Event

ProxyPushSupplier CosEventComm::PushConsumer Any

StructuredProxyPushSupplier CosNotifyComm::StructuredPushConsumer Structured Event

SequenceProxyPushSupplier CosNotifyComm::SequencePushConsumer Sequence of Structured
Event

ProxyPullSupplier CosEventComm::PullConsumer Any

StructuredProxyPullSupplier

CosNotifyComm::StructuredPullConsum

er

Structured Event

SequenceProxyPullSupplier

CosNotifyComm::SequencePullConsum

er

StructuredEvent

Sequence of

Notification Service style Proxy objects can have two different types of filters
associated with them. “Forwarding filters” can be attached to all types of Proxy objects
and constrain the events that the Proxy will forward. “Mapping filters” can only be
attached to supplier Proxy objects and affect the priority or lifetime properties of each
event received by a supplier Proxy. Mapping filters are discussed in more detail in
Section 2.3.1, “Mapping Filter Objects,” on page 2-21.

Both forwarding and mapping filters can be associated with a Proxy object either
explicitly or implicitly. Explicit association implies that the filters were associated with
the Proxy object by invoking an operation directly on the Proxy object to form the
association. Alternatively, filters can be associated with an Admin object. A Proxy
object also implicitly has associated with it all filter objects that are associated with the
Admin object which created it. Note that a Proxy object with no associated filter
objects defaults to forwarding all events it receives.

Each Notification Service style proxy object can also have various QoS properties
associated with it. The QoS properties which can be associated with a Notification

Service style Proxy object, and how they are treated with respect to QoS properties set
on a notification channel-wide basis, and potentially those set on a per-message basis,
are described in Section 2.5, “Quality of Service Administration,” on page 2-34.

Notification Service V1.0 June 2000

2

Note that by dividing the Notification Service style Proxy interfaces along the lines of
the form of message they are capable of transmitting, and by defining separate client
interfaces (in theCosNotifyComm module) for clients that deal with each specific
form of message, clients of the Notification Service have the freedom to implement
consumers and suppliers that deal with events in only the specific format(s) they are
interested in sending and receiving them. For instance, to develop a consumer
application which only receives events by push-style communication in the form of
Structured Events, the developer simply needs to implement the
CosNotifyComm::StructuredPushConsumer interface, which only supports a

push operation which receives events in the form of Structured Events. The
Notification Service supports well-defined translations of message format in the case
that an event is supplied in a format different than a particular consumer is designed to
receive (e.g., an event is supplied as an Any, but the consumer only implements the
StructuredPushConsumer interface). This translation is summarized in the table
below. Note that this translation model naturally extends to the Typed notification
channel to which typed event service clients may also connect, and thus translations
involving typed events are included in the table as well. Typed Notification is described
in Section 2.7, “Filtering Typed Events,” on page 2-52.

Table 2-2 Message Translations Performed by the Notification Channel

Form Supplier Sends Events
to Channel

Form Consumer Receives
Events from Channel

Translation Performed by Channel

Any

Structured Event

Event is packaged into a Structured Event data structure,

with the content of the Any assigned to the
“remainder_of body” portion of the structure (see
Section 2.2, “Structured Events,” on page 2-12). The

“type_name” data member of the Structured Event should

be set to the value “%ANY”, and the “domain_name”
member set to the empty string.

Any

Typed Event

The Any must contain a sequence of name-value pairg

whose first element must have the name “operation”, and

corresponding value of type string which nominates the

fully scoped operation name to be invoked. The additional

elements of the sequence will contain properties with
names and values corresponding to the names and val
types of the parameters of the typed operation signatur
The contents of an Any that do not follow this conventig
will not result in the event being delivered to any Typed
clients.

Structured Event

Any

A new Any is created, with the Structured Event assig
to its value field, and its Typecode set appropriately to
indicate a Structured Event data structure.

Notification Service V1.0

Le

>

ned

Overview June 2000 2-9

Table 2-2 Message Translations Performed by the Notification Channel

Form Supplier Sends Events | Form Consumer Receives | Translation Performed by Channel
to Channel Events from Channel

Structured Event Typed Event Channel presumes that the filterable data portion of the
Structured Event contains a sequence of name/value pairs
whose first element has the name “operation”, and
corresponding value of type string which nominates the
fully scoped operation name to be invoked. The additional
elements of the sequence are the name and value of each of
the parameters for this operation. If the contents of the
Structured Event follow this convention, the typed
operation is invoked. Otherwise, the typed client will not
receive the event.

Typed Event Any A new Any is created containing a data structure that is a
sequence of name-value pairs. The name of the first
element of this sequence is “operation”, and its value wi
be a string containing the fully scoped operation name. The
remaining elements of the sequence indicate the name|of

each parameter of the typed operation used to transmit the
event to the channel, and for each such name the
corresponding value is the value that was passed for that
parameter during the invocation by the typed supplier.

Typed Event Structured Event A new Structured Event is created, whose filterable data is
populated with the contents of the typed event. The firs
element of the name-value pair sequence that makes up the
filterable data has its name set to “operation”, and its value
will be a string containing the fully scoped operation name.
The remaining elements of the sequence indicate the name
of each parameter of the typed operation used to transmit
the event to the channel, and for each such name the
corresponding value is the value that was passed for that
parameter during the invocation by the typed supplier. The
“type_name” data member of the Structured Event should
be set to the value “%TYPED”, and the “domain_name’
member set to the empty string.

In addition to there being separate proxy interfaces for sending events as Anys and
Structured Events, there are also proxy interfaces which support transmission of
sequences of Structured Events. These proxies should be seen as a shortcut for the use
of equivalent proxies which transmit single Structured Events. For example, an
invocation of thepush_structured_events operation supported by a
SequencePushConsumer , which is passed a sequence of lengths input is

equivalent to performing calls to thepush_structured_event operation supported

by aStructuredPushConsumer . Any untyped events in the queue to be transmitted

to a sequence consumer are converted into Structured Events in the same way as

2-10 Notification Service V1.0 June 2000

2

described in Table 2-2 on page 2-9. Likewise, the translation of any Structured Event
supplied to a channel within a sequence, and destined for a consumer of untyped
events is performed in the same way as with a single Structured Event.

This translation scheme raises the potential for an event to beasappedmultiple

times as the result of multiple translations, thus deeply embedding the original contents
of the event inside multiple such wrappings. Suppose for example, notification channel
B is set up to be a consumer of events supplied to notification channel A by connecting
a SequenceProxyPushConsumer for channel B to a

SequenceProxyPushSupplier of channel A. Now suppose an event in the form of

an Any is supplied to channel A, and is destined for transmission to channel B.
Channel A will translate the Any event it received into a Structured Event before
delivering it to channel B. Now suppose a consumer of untyped events is connected to
channel B, and the wrapped Any event received from channel A is destined for that
consumer. Naively, channel B would perform the appropriate translation of the
Structured Event into an Any, delivering to the consumer an Any, wrapped within a
Structured Event, wrapped within another Any. In addition, all filters containing
expressions that address fields in the event will fail to match the wrapped event in
either channel.

To avoid this type of situation, the special event type %ANY is defined and assigned to
thetype _name field of the header of any Structured Event which contains an Any as
the result of the translation of the Any into a Structured Event. Proxy consumers
accepting Structured Events (including those which accept sequences of Structured
Events) must examine each event to see if its type is set to this value. In such cases,
before performing any filtering or further translations back into an Any, the original
Any is extracted from theemainder_of _body member of the Structured Event.

Similarly, the wrapping of an Any containing a Structured Event inside another
Structured Event must be avoided. Proxy consumers accepting Anys must look at the
TypeCode for the Any to see if it corresponds to tAgpeCode for a Structured

Event. In this case, the value portion of the Any is extracted into a Structured Event
data structure before any filtering or further translations are performed.

One additional aspect of the Notification Service style Proxy interfaces, and the newly
defined Natification client interfaces, is that they support a means to share event
subscription information between notification channels and their clients. Each type of
Notification Service supplier interface (e.g., the supplier clients defined in
CosNotifyComm and the supplier Proxies defined @osNotifyChannelAdmin)
inherits aNotifySubscribe interface. This interface supports an operation that allows
each notification supplier to be notified when the set of events for which there are
currently interested consumers changes. Likewise, each type of Notification Service
consumer interface (e.g., the consumer clients define@osNotifyComm and the
consumer Proxies defined @osNotifyChannelAdmin) inherits aNotifyPublish
interface. This interface supports an operation that allows each notification consumer
to be notified when the set of event types which are currently being offered to the
channel changes. These mechanisms can be used in concert by an implementation of
the Notification Service, transparently to clients of the service, in order to optimize
event communication by only transmitting events when necessary. How this can be
achieved is described in Section 2.6, “Sharing Subscriptions,” on page 2-49.

Notification Service V1.0 Overview June 2000 2-11

2.1.5 Sending Events within a Transaction

The recently adopted CORBA Messaging standard incorporates several changes to the
standard OMG Object Transaction Service (OTS). Included among these changes is the
deprecation of th@ransactionalObject interface, which was previously required to

be inherited by any interface that supported operations which could be invoked within
the context of a transaction.

In certain situations, it may be desirable to transmit one or more events within the
context of a transaction. Transactional event transmission can be considered in two
distinct cases:

® when a supplier sends one or more events to the channel

®* when the channel sends one or more events to consumers

Before the modifications to the OTS described above, it would have been necessary to
define special interfaces to support transactional event transmission. In order to support
the first case above, it would have been necessary to define a transactional variant of
each proxy push-style interface (to support passing the transaction context within the
suppliers invocation of the proxyfsush operation), and a transactional variant of each
client pull-style interface (to support passing the transaction context within the proxy
consumer’s invocation of the clientaull ortry_pull operation). Likewise, in order to
support the second case listed above, it would have been necessary to define a
transactional variant of each client push-style interface, and a transactional variant of
each proxy pull-style interface.

But due to the deprecation of tli@ansactionalObject interface, it is no longer
necessary to define special interfaces that inherit fioamsactionalObject in order

to enable a transaction context to be passed within a method invocation. This change
has both advantages and disadvantages from the perspective of the Notification
Service. On the positive side, the fact that it is not necessary to define specific
transactional interfaces simplifies the Notification Service IDL to some degree. On the
negative side, however, support of the full Notification Service IDL by an
implementation does not itself guarantee that the implementation supports
transactional event transmission.

As described in the CORBA Messaging specification, transactionality is viewed as an
attribute of an implementation of an interface, which is specified by defining a policy
attribute on the POA. In order to support transactional event transmission, an
implementation of the Notification Service should support implementations of the
various proxy interfaces that are POA objects that supp@msactionPolicy .

2.2 Structured Events

2-12

The OMG Event Service supports two styles of event communication: untyped and
typed. Untyped communication involves transmitting all events in the form of Anys.
While untyped event communication is generic and easy-to-use, many applications
require more strongly typed event messages. To satisfy this latter requirement, the
OMG Event Service defines interfaces and conventions for supporting typed event

Notification Service V1.0 June 2000

2

communication. Unfortunately, many users have found typed event communication as
defined by the OMG Event Service difficult to understand, and implementors have
found it particularly difficult to deal with.

For these reasons, the Notification Service introduces a new style of event message: the
Structured EventStructured Events provide a well-defined data structure into which a
wide variety of event types can be mapped. Typically when using the untyped style of
event communication supported by the Event Service, clients define a data structure
into which they store an event message, then package that data structure into an Any.
Structured Events define a standard data structure into which a wide variety of event
messages can be stored. New supplier and consumer interfaces are defined by the
Notification Service so that Structured Events can be transmitted directly, without
needing to be packaged into an Any. Because the structure of Structured Events is
known to both Notification Service clients and the notification channel, algorithms that
filter and manipulate Structured Events can be optimized. Structured Events provide
the equivalent generality and ease-of-use of untyped event communication, while
providing more strongly typed event communication.

In a sense, Structured Events can be viewed as a manifestation of typed event style
communication, where the typed interfaces defined for sending and receiving this
specific type of event message (i.e., thaterface as defined by the OMG Event
Service for typed event communication) are explicitly defined. Because the interfaces
for dealing with Structured Events are explicitly defined, it is straightforward to both
use and implement a notification channel that supports this style of event
communication. Structured Events thus provide the advantages of typed event
communication, without the difficulties inherent in implementing and using the typed
style of event communication defined by the OMG Event Service. Figure 2-2 on

page 2-14 shows the structure of a Structured Event.

Notification Service V1.0 Structured Events June 2000 2-13

domain_name

type_name — Fixed Header

event_name

Event Header— ohf_name | ohf_valug

ohf_name ohf_valug

— Variable Header

ohf_name ohf_valug

fd_name fd_valug

fd_name fd_value

- Filterable Body Fields
Event Body—

fd_name fd_valug

. Remaining Body
remainder_of_body

Figure 2-2 The structure of a Structured Event

Figure 2-2 depicts the general format of a structured event. Each event is comprised of
two main components: a header and a body. The header can be further decomposed
into a fixed portion and a variable portion. The goal of this decomposition is to
minimize the size of the header which is required in every Structured Event message,
thus enabling lightweight messages where the overhead of supplying additional header
fields is viewed as less desirable than any functional benefit achieved by supplying
these fields (e.g., additional header fields may contain QoS requirements for the
message).

The fixed portion of the event header is comprised of three string fields:

® adomain_name , which identifies the particular vertical industry domain in which
the event type is defined (e.g., telecommunications, finance, health care, etc.);

®* atype_name , which categorizes the type of event uniquely within the domain
(e.g.,CommunicationsAlarm , StockQuote , VitalSigns); and

®* anevent_name, which may uniquely identify the specific instance of event being
transmitted.

2-14 Notification Service V1.0 June 2000

Note that the combination of thdomain_name andtype name fields could be

used as indexes into the event type repository (see Section 2.8, “The Event Type
Repository,” on page 2-55), which contains a complete description of the fields of that
specific type of event. Thus when Structured Events are used in concert with the event
type repository, it is particularly convenient for consumers to receive new types of
events, and discover the structure of their contents.

The variable portion of the event header is comprised of a list of zero or more name-
value pairg (the “ohf_" prefacing each name-value pair in the figure stands for
“optional header field”), where each name is a string, and each value is an Any. While
inclusion of these fields is optional and their contents are virtually unbounded, this
specification standardizes a set of well-defined optional header field names and defines
the data types of their values. These standard optional header fields contain per-
message QoS related information. How this information is treated with respect to per-
Proxy QoS settings and per-channel QoS settings is described in Section 2.5, “Quality
of Service Administration,” on page 2-34. The table below summarizes the standard
optional header field names, the data types of their associated values, and a brief
description of their meanings. Note also that end-users can define additional
proprietary optional header fields. Those in the table below are viewed as standard,
however, and every implementation of the Notification Service must be capable of
interpreting and handling them with respect to their intended meaning.

1.Note that the phrase “list of name-value pairs” is used frequently throughout this
specification to mean an instance of the type CosNotification::PropertySeq. This phrase
should not be confused with the common CORBA terms “Named Value”, “Name Value
List”, or the data type CORBA::NVList.

Notification Service V1.0 Structured Events June 2000 2-15

Table 2-3 Standard optional header fields

Header field name Type of associated value Meaning

EventReliability short This value portion of this header field has two well defined
settings: 0 means “best effort”; 1 means “persistent”. If sef to
0, event can be treated as non-persistent and lost upon fajlure
of the channel. At least one attempt must be made to transmit
the event to each registered consumer, but in the case of a
failure to send to any consumer, no further action need be
taken. If set to 1, channel should make the event persistent,
and attempt to retransmit upon channel recovery from failure.
This setting only has meaning when ConnectionReliability|is
also set to 1, in which the combination essentially means
guaranteed delivery.

Priority short Indicates the relative priority of the event compared to other
events in the channel. Can take on any value between -32/767
and 32,767, with -32,767 being the lowest priority, 32,767
being the highest, and 0 being the default.

StartTime TimeBase::UtcT Gives an absolute time (e.g., 12/12/99 at 23:59) after which
the channel can deliver the event.

StopTime TimeBase::UtcT Gives an absolute time (e.g., 12/12/99 at 23:59) when the
channel should discard the event.

Timeout TimeBase:: TimeT Gives a relative time (e.g., 10 minutes from time received)
when the channel should discard the event). The special value
zeroindicates there is no timeout.

Note that the priority and timeout properties may optionally be set within the header of
a Structured Event. A proxy receiving a Structured Event may also have a priority and
timeout quality of service setting. In this case, if the priority and/or timeout fields are
set within the header of the Structured Event, these settings override those set at the
proxy level. If one or both of these properties is set on a proxy receiving a Structured
Event but not within the header of a Structured Event itself, the setting at the proxy
level is used to determine how that proxy treats that event with respect to priority
and/or timeout. An important point to note, however, is that no object within the
channel ever modifies the contents of a Structured Event.

The second main portion of the structured event is the event body, which is intended to
contain the contents of each event instance. The event body is also decomposed into
two parts: a filterable portion and the remainder of the body. The filterable portion is
intended to contain the most interesting fields of the event, upon which the consumer is
most likely to base filtering decisions. Like the optional header fields, the filterable
portion of the event body is also defined as a sequence of name-value pairs, with each
name being a string and each value an Any (the “fd_" prefacing each name-value pair
in the figure stands for “filterable data”).

2-16 Notification Service V1.0 June 2000

2

It is envisioned that different vertical domains will define standard mappings of
specific event types into Structured Events. Each such mapping will standardize the
name-value pairs that make up the filterable portion of a particular type of event
mapped into a Structured Event. Thus while the definition of the filterable data fields
contained within the Structured Event data structure may appear to be too generic to
provide any real advantage, the advantage of this structure becomes more apparent
when viewed in the context of mappings of actual event types into it, since these
mappings specify well-defined name-value pairs that go into the filterable portion of
the body.

The last portion of the body of a Structured Event is defined as an Any. This portion is
intended to provide a convenient place to transmit any event data in addition to that
which is viewed as interesting fields upon which consumers are likely to define filters.
This portion is particularly suitable to store large blobs of data that are related to the
event, such as contents of a file which was the causeGdrauptFile event. Note that
although this field is considered separate from the filterable data portion of the event,
there is nothing to preclude an end-user from defining a filter based on the contents of
this field.

The Structured Event is thus intended to provide a well-defined data structure into
which a wide range of specific types of events can be mapped, and upon which
optimized filtering and manipulating can be performed. This structure is particularly
useful when used in concert with an event type repository which will completely
describe the make-up of each type of event mapped into a structured event. As
described in Section 2.8, “The Event Type Repository,” on page 2-55, end-users can
use this meta-data to construct filters which subscribe to new instances of structured
events that are dynamically added to the system.

2.3 Event Filtering with Filter Objects

Undoubtedly the most important enhancement of the OMG Event Service introduced
by the Notification Service is the enabling of each client to subscribe to the precise set
of events it is interested in receiving. This feature is supported in the forfittesf

objects, each of which encapsulates a set of one or more constraints specified in a
particular constraint grammar.

Each Admin and Proxy interface defined by the Notification Service inherits the
CosNotifyFilter::FilterAdmin interface, which supports operations that enable the
maintenance of a list of filter objects. Thus, each Admin and Proxy object within a
Notification Service event channel can have associated with it one or more filter
objects. These filter objects could be co-located in the same server process as a
Notification Service event channel, or they can reside in their own addresszspace

There are two types of filter objects defined by the Notification Service: those that
affect event forwarding decisions made by Proxy objects, and those that affect the way
a Proxy object treats events with respect to certain QoS properties. The former type
support theCosNotifyFilter::Filter interface and are described here. The latter type
support theCosNotifyFilter::MappingFilter interface and are described in

Section 2.3.1, “Mapping Filter Objects,” on page 2-21.

Notification Service V1.0 Event Filtering with Filter Objects June 2000 2-17

2-18

Filter objects that affect the event forwarding decisions made by Proxy objects
encapsulate a set of constraints. Each constraint is a data structure comprised of two
components:

® A sequence of data structures, each of which indicates an event type.

® A string containing a boolean expression whose syntax conforms to some constraint
grammar.

Each element in the sequence of data structures which each indicate an event type is
comprised of a string field for the name of the domain within which the event type has
meaning (e.g., “Telecom”), and a string field for the name of the specific event type
within that domain to which the constraint applies (e.g., “CommunicationsAlarm”).
This sequence contains the list of event types to which the subscription encompassed
by a particular constraint applies. The second element in the constraint structure
contains a boolean expression over the values of the contents of instances of the event
types indicated in the first element of the same structure. Note that while there are no
limits placed on the number of different constraint grammars supported by an
implementation of the Notification Service, every implementation must support an
implementation of the&CosNotifyFilter::Filter interface that supports the grammar
described in Section 2.4, “The Default Filter Constraint Language,” on page 2-23.

This two component data structure for the expression of each constraint encapsulated
by a filter object is mainly provided for the convenience of both the end-user and the
implementor of the Notification Service. From the end-user’s perspective, the structure
allows for a short-hand notation for defining constraints which apply to one or more
event types. For instance instead of supplying a constraint expression of the following
form:

“(($domain_name == “Telecom” and $type_name == “Communica-
tionsAlarm”)

or ($domain_name == “Transport” and $type_name == “RoadIm-
passable™))

and severity 1= 4"

the same constraint can be expressed as a two element structure as follows:

2.Note that while filter objects can reside in a separate address space from the proxy objects,
each time an eventis received by a proxy object the “match” operation of the filter is invoked
to perform the filtering. Thus, there is a performance penalty paid when using remote filter
objects, since each “match” invocation will result in a network communication as opposed
to anintraprocess communication in the case of co-located filters.

Notification Service V1.0 June 2000

{[{“Telecom”, “CommunicationsAlarm” }, {“Transport”,
“Roadlmpassable” }], “severity = 4"}

The above two constraints have the same meaning: they both subscribe to all events
which are of either of the types indicated, and haweeerityfield within the contents

of the event not equal to four. Notice that the convenience of this structure for
constraint expressions becomes more obvious as the boolean expressions associated
with the event types become more complex, and are applicable to more types of event.

From an implementor’s perspective, this constraint structure provides facilities for the
extracting of event type information from constraint expressions. This information is
required in order to share event subscriptions between event channels and their clients
as described in Section 2.6, “Sharing Subscriptions,” on page 2-49.

Note that the convention is that an empty sequence of event type structures associated
with a boolean constraint expression implies that the expression applies to all types of
events, as does a single element in the sequence of event type structures in which both
fields are the empty string. Also note that an end-user may choose to provide no event
types in the sequence and then match ortype_name anddomain_name fields in

the constraint expression. However, if event types are specified in the sequence, then
only these types will be matched, and any additional types that are specified using
constraints may never be matched (since the constraint will only be evaluated if the
types in the sequence match). When provided within an element of the sequence of
event types contained in the first field of a constraint structure, either the domain or
event type field can contain a string with the wildcard (“*”) symbol indicating the
boolean expression applies to any event whose type matches the indicated pattern. The
“*” character may be expanded to zero or more characters, and may appear in any
position in the string. As one would expect, a type element whose value is {**”, “*"}
indicates that the boolean expression applies to all types of events.

Upon receipt of each event, each Proxy object within a Notification Service event
channel invokes an appropriatgatch operation on each of its associated filter
objects. Amatch operation accepts as input the contents of the event being filtered
against, and returns a boolean result. The result returned will be TRUE if the event
satisfies one or more of the constraints encapsulated by the filter object (i.e., OR
semantics are applied between the constraints encapsulated by a filter object), and
FALSE otherwise.

If the Proxy has multiple filter objects associated with it, it will invoke thatch
operation on each of its associated filter objects until either one returns TRUE, or all
have returned FALSE (i.e., OR semantics are also applied between multiple filter
objects associated with a given Proxy object). Upon receipt of an event at a given
Proxy object, if thematch operation of all filter objects associated with the Proxy
evaluates to FALSE, the Proxy will discard the event. Otherwise, the event will be
forwarded (to all proxy suppliers when the filtering is being performed by a proxy
consumer, or to the associated consumer when the filtering is being performed by a
proxy supplierﬁ. Note that this filtering by proxy objects is performed immediately
upon receipt of each event by a proxy. If a given event passes a proxy object’s filters
and there are currently no other events queued for delivery by that proxy, the event will
be forwarded immediately. Othewise, if there are other events waiting to be delivered
by the proxy, the current event will be queued by the proxy for eventual delivery.

Notification Service V1.0 Event Filtering with Filter Objects June 2000 2-19

2-20

As previously stated, a set of filter objects can also be associated with each Admin
interface within a Notification Service event channel. Recall that each Admin interface
is responsible for the management of one or more Proxy objects. The set of filter
objects associated with an Admin object thus applies to each Proxy object associated
with that Admin. The set of filter objects associated with an Admin object can only be
modified by invoking operations on the Admin object itself (and not on the individual
Proxy objects managed by the Admin), and any such modifications affect all Proxy
objects under the management of that Admin. Filter objects can be added to an
individual Proxy object by invoking thadd_filter operation directly on the Proxy
object itself, and filter objects added in this manner affect only the particular Proxy
upon which the operation was invoked. The set of filter objects added to an individual
Proxy object in this manner can thus be modified by invoking operations directly on
the Proxy.

The result of the semantics described in the previous paragraph are that each Proxy
object can essentially have two sets of filter objects associated with it: those that are
associated with its managing Admin object, and those that were added to it directly.
Upon creation of each Admin object, a flag can be set which indicates whether each
Proxy object created by the Admin will AND or OR the results of applying these two
sets of filter objects when determining whether or not to forward each event (note that
within each set, only OR semantics are applied in all cases; this flag only affects the
operator used to combine the results of applying each of the two sets of filter objects to
each event).

The main advantage of enabling filter objects to be associated with Admin objects is
that end-users can define a single set of filters that apply to a group of Notification
Service clients. Note that because all Proxy objects associated with a given Admin
object essentially share the list of filter objects associated with the Admin,
implementations of the Notification Service can optimize the filtering of a given event
by a group of Proxies since each member of the group logically applies the same filters
to the same event. Thus, the results of the evaluation of a given event against a given
filter can be shared by all Proxy objects which are managed by a given Admin object.

A Proxy which has no filters associated with it (either by its Admin object, or through
its own FilterAdmin interface) will pass through all events it receives. In the case of
Proxy consumers, all events will be passed to the Proxy suppliers on its channel, and in
the case of Proxy suppliers, all events will be delivered to its connected consumer.

It's worth noting that theCosNotifyFilter::Filter interface supports three styles of

match operation:match , match_structured , andmatch_typed . The purpose of

all of these operations is the same: take an event as input and evaluate it against the set
of constraints encapsulated by the filter object. These operations differ only in the form

3.A minor variation of this algorithm occurs when a Proxy object has some locally defined
filter objects, and some which it inherits from its parent Admin object, and the
InterProxyGroupOperator flag is set to AND. In this case, the two sets of filter objects are
ANDed together, as described shortly.

Notification Service V1.0 June 2000

2

in which they accept the event as input. Thatch operation accepts an Any as input,

and is thus invoked by a Proxy object upon receipt of an untyped event. The
match_structured operation accepts a Structured Event data structure as input, and
is thus invoked by a Proxy object upon receipt of a structured event. The

match_typed operation is invoked by a Proxy object upon receipt of a typed event.
The input parameter to this operation is a sequence of nhame-value pairs. How a typed
event is parsed by the Proxy into the sequence of nhame-value pairs which is supplied
as input to thematch_typed operation is described in Section 2.7, “Filtering Typed
Events,” on page 2-52.

Finally, note that theCosNotifyFilter::Filter interface supports aattach_callback
operation. The purpose of this operation is to associate with each filter object an
interface upon which thsubscription_change operation should be invoked each

time the set of constraints associated with the filter object is modified. The reason the
filter object supports this feature is so that it can transparently (from the end-users’
perspective) notify event suppliers when the set of events being subscribed to by
potential consumers of their events changes. The semantics of the
subscription_change operation, and the rationale behind it, is explained in detail in
Section 2.6, “Sharing Subscriptions,” on page 2-49.

The above discussion describes the semantics of the Notification Service filter objects
whose purpose is to encapsulate constraints which affect the event forwarding
decisions made by each Proxy object within a Notification Service event channel. The
Notification Service also defines another type of filter object for use by consumers, the
mapping filter objectwhose rationale and semantics are described in the following
subsection.

2.3.1 Mapping Filter Objects

The Notification Service recognizes two special properties of each event that could
influence the delivery policy applied to the event: fisority and its expiration time
(referred to here as itifetime). While these properties are often populated by the
supplier as fields of the event, there are many scenarios in which a consumer’s opinion
of the relative importance of the event may differ from that of the supplier. In order to
enable consumers to affect the priority and lifetime properties of events, the
Notification Service introduces the conceptroépping filter objects

Mapping filter objects support th€osNotifyFilter::MappingFilter interface. The
specification of this interface looks very similar to that of the interface for regular filter
objects. The main difference, however, is that mapping filters also associate a value
with each constraint they encapsulate.

Each proxy supplier within a Notification Service event channel can have associated
with it a mapping filter object which can affect the priority property of the events it
receives, and another mapping filter object which can affect the lifetime property of the
events it receives. The value associated with each constraint encapsulated by a
mapping filter which affects events’ priority property is of type short, and represents an
event priority. The value associated with each constraint encapsulated by a mapping
filter which affects events’ lifetime property is of typeémeBase:: TimeT , and
represents a relative event lifetime.

Notification Service V1.0 Event Filtering with Filter Objects June 2000 2-21

2-22

Each mapping filter object can encapsulate one or more constraint-value pairs, and also
has a default value associated with it. Upon receipt of an event by a proxy supplier
with an associated mapping filter for the priofitgroperty, the proxy supplier invokes

the appropriatenatchoperation on the mapping filter. The mapping filter proceeds to
apply its encapsulated constraints in the order of highest to lowest with respect to the
value associated with each constraint, until either the event satisfies a constraint or else
does not satisfy all constraints. Upon encountering the first constraint which the event
satisfies, the operation returns a result of TRUE, and an output parameter set to the
value associated with the constraint. If the event satisfies none of the constraints
associated with the mapping filter object, the result oftfech operation will be set

to FALSE, and the default value associated with the mapping filter object will be
returned as the output parameter. Upon return from the operation, if the output
parameter is TRUE, the proxy supplier treats the event with respect to its priority
according to the return value, as opposed to a priority setting contained within the
event. If the output parameter is FALSE, the proxy supplier will apply the following
rules in order to determine the priority that should be associated with the event:

1. If there is a priority property set in the header of the event, that value will be used.

2. If there is no priority property set in the header of the event, but the event has
inherited an associated priority by virtue of being processed by a proxy object
(either the current proxy supplier or the proxy consumer which first received the
event) that has an assoicated priority QoS property, that value will be used.

3. Otherwise, the output parameter returned byrtfagch operation, which in this
case is the default value of the mapping filter object, will be used.

Proxy suppliers with an associated mapping filter for the lifetime property proceed
similarly to invoke thematch operation on such a mapping filter. The behavior of the
match operation for a mapping filter related to event lifetime is identical to that for a
mapping filter related to priority; the only difference is in the type of the output
parameter returned when a constraint is encountered which the event satisfies. In this
case, the proxy supplier uses the output parameter as the lifetime property of the event.

Note that the results of applying a mapping filter to an event are used to modify the
way in which a proxy supplier treats its copy of the event with respect to priority and
lifetime, but not to modify the contents of the event itself. Even if the event contains
priority and lifetime fields, these should not be modified as the result of applying a
mapping filter to the event.

Notification Service styl&ConsumerAdmin interfaces can also have associated
mapping filter objects. The semantics in this case are identical to those with regular
filter objects: the mapping filters associated witiCansumerAdmin object are

4.Note that the priority property is used as an example here to explain how mapping filters are
applied. Similarly, the lifetime property could have been used in the example. All mapping
filter processing rules that apply to priority mapping filters as explained in this paragraph
also apply to lifetime mapping filters.

Notification Service V1.0 June 2000

2

shared by all proxy suppliers being managed by @atsumerAdmin object. Note,
however, if a particular proxy supplier has a mapping filter associated with it, this
overrides any mapping filter set for the same proxy onGe@sumerAdmin that
manages that proxy supplier.

Finally, note that this specification uses mapping filters to affect the priority and
lifetime properties of events. TheosNotifyFilter::MappingFilter interface,

however, is generic enough to be applied to any property of an event. Implementations
of the Notification Service can thus support as a value-added extension the application
of mapping filters to other event properties besides priority and lifetime.

2.4 The Default Filter Constraint Language

This section describes the default filtering constraint language which must be
supported by all conformant implementations of the Notification Service. Note that as
described in the previous section, filters are supported in the Notification Service as
objects which can be associated with Proxy or Admin objects. These filter objects may
or may not be colocated with the same server in which the Notification Service event
channel resides. Each filter object has associated with it one or more constraints which
have meaning in a particular filtering constraint grammar. Implementations of the
Notification Service may provide native support for any number of filtering constraint
grammars, but each conformant implementation must, at a minimum, support the
grammar described in this section. In addition, users of this service may implement
their own filter objects external to the Notification Service event channel which may
support a proprietary filtering constraint grammar. As long as such a filter supports the
standardmatch operations with the appropriate signatures, the Notification Service
event channel will be able to use them the same as filters which support the default
grammar.

In essence, the default constraint grammar supported by any conformant
implementation of the Notification Service is the standard constraint language defined
by the OMG Trading Service, along with a few extensions. This section describes the
rationale behind the proposed extensions, which essentially make the Trader Constraint
Language more appropriate as a filtering constraint language for Notification. This
section also provides a detailed specification of the extensions to the Trader Constraint
Language defined for Notification. A complete BNF for the default Notification

Service filtering constraint language is thus formed by supplementing the BNF defined
in the OMG Trading Service specification with the extensions defined here.

2.4.1 Issues with the Trader Constraint Language

The following issues summarize deficiencies and ambiguities in the Trader Constraint
Language which, without modification, make it difficult to use as a filtering constraint
language for Notification. Included with each item is an indication of how the issue is
addressed in Notification.

Notification Service V1.0 The Default Filter Constraint Language June 2000 2-23

® The specification is ambiguous as to whether a numeric constant may have a
leading plus sign. Section B.2.5 of the OMG Trading Service specification permits
this; however, the BNF does not. The Notification Service resolves this ambiguity
by explicitly permitting a leading plus sign.

®* The grammar definesString> as a sequence of zero or moréextChars enclosed
in single quotes. At compile-time, if an event type repository is unavailable, it may
be impossible to distinguish between &tding> of length one and the numeric
char data type. In these cases, the Notification Service implementation must
determine the actual data type from context at run-time.

®* The specification does not define operand order for the substring operator. The
Notification Service treats the expressidattingl ~ String2 to mean ‘Stringlis
contained withinString2'.

® Within a <String>, the grammar does not specify how to interpret undefined escape
sequences. Alternately, the grammar permits two escape sequences and the meaning
of a backslash is ambiguous until the following character is examined. Using the
first interpretation, the Notification Service treats a backslash as the start of an
escape sequence and removes it when followed by any undefined character
sequence.

®* The language provides no mechanism for castindNamber or <ldent> to a
specific type. This can be troublesome in expressions using mixed data types. For
example, if $.one’and ‘$.two’ represent integers, the constrai@t5 * ($.one /
$.two) > 1" will yield FALSE since the division takes place using integer arithmetic
(where the result is 0). section 2.4.3 details all arithmetic conversions for the
Notification Service and resolves the aforementioned problem.

®* The purpose of the grouping operatgris unclear; it is also not part of the BNF
and has no specified operator precedence. Constraints written for the Notification
Service must not use the comma operator.

®* The specification defines a set opreference operators; these are not used by the
Notification Service.

®* The grammar defined by the specification is not inherently context free. Since the
Notification grammar must be context free, anglent- that matches a constraint
language keyword must be escaped with a backslash. Tdent: BNF token has
been updated to permit a leading backslash.

5.This emulates the behavior of most (if not all) C/C++ compilers.

2-24 Notification Service V1.0 June 2000

2.4.2 Trader Constraint Language Extensions for Notification

In order to fully support event filtering on complex data types, several extensions to the
Trader Constraint Language are defined. There are two basic types of extensions: those
that allow the components of complex data structures to be referenced, and those that
are considerefkaturesof the Notification Service implementation. The complete list

of language extensions is as follows:

®* The special token ‘$’ is introduced to denote both the current event as well as any
run-time variables. The current event, ‘$’, is that on which the constraint expression
is evaluated. The form ‘$#dent’ is used to specify a run-time variable.

®* The new symbol €omponent denotes a collection of namedidents that may be
joined with subscript, associative array, or structure member operators (all defined
below).

* |f <Componernt refers to a named structure, discriminatedon , or
CORBA::Any data structure, then the structure member operator ‘. may be used to
reference its members.

* |f <Componernt refers to an array or sequence of elements, then the subscript
operator ‘[Digits>]' may be used to reference a specific element in said list (e.g.,
array[2] would reference the third element in the array).

* |f <Component refers to a name-value pair list, then the associative array operator
‘(<ldent)’ may be used to reference a specific value in said list (e.g.,
nv(priority)). This syntax is also used for positional notation in discriminated
unions as described in Section 2.4.6, “Positional Notation and Intended
Applications

®* A <Componernt has implicit members ‘_type_id’ and ‘_repos_id’. The former
identifies the unscoped IDL type name of the component (egstruct._typeid
== ‘mystruct’) and the latter returns the Repositoryld (ergystruct._repos_id
== ‘IDL:module/mystruct:1.0").

* |f <Component refers to an array or sequence of elements, then the implicit
member ‘_length’ refers to the number of elements in the list (e.g.,
sequence._length).

* |f <Componernt refers to a discriminatednion, then the implicit member *_d
refers to the discriminator (e.gunion._d).

®* A new boolean operator, ‘default’, is introduced to provide a means for checking
whether a union has a default member that is active (dafgqult union._d).

®* The ‘exist’ operator is extended for use on all implicit members oCamponent
(e.g.,(exist any. d and any. d == 50) or any == 50).

® The ‘in’ operator is extended so that it may operate orCamponer.

® The run-time variable$curtime ' is reserved; its meaning is current time of day, its
data type is that of TimeBase::UtcT " as defined in the OMG Time Service.

® Areserved run-time variable may be escaped by inserting a backslash between the
dollar sign and the Kdent> (e.g.,$\curtime).

Notification Service V1.0 The Default Filter Constraint Language June 2000 2-25

2-26

® Any vendor-defined keywords must be of the formldent:". The colons prevent
any new conflicts with event-specifenums and also make these extensions easy
to locate.

As stated above, aGomponent is a collection of named identifiers. Yet, multiple

layers of encapsulation may not actually have identifier names associated with them.
Fortunately, the constraint author need not be concerned with these unnamed layers. If
an event type repository is in use, it will be able to supply the encapsulation
information. Alternatively, when the run-time engine is responsible for pulling apart

the event structure, it will encounter (and quietly pass over) these unnamed layers.

To make this concept more clear, consider the following event components:

Event . memA . Any . struct { int val, cnt; };
Event. memB . Any . Any . int;

Event . char;

Event . methA . (char key, Any . int types[10]);

In the first example, thatruct is encapsulated in theORBA::Any namedmemA;

to referencecnt, one would use$.memA.cnt '. In the second example, ant is
wrapped in an unnamedORBA::Any and then again imemB (a named

CORBA::Any). Here, to reference the unnamed integer one would witmémB .

In the third example, &har is immediately wrapped in EORBA::Any and sent
through the channel; in this cas&, alone represents the data. The last event consists
of a method and its arguments; her®methA.types[3] ’ identifies the 4th element in
the 2nd argument to method methA.

As stated above, the constraint author need not be concerned about unnamed layers of
encapsulation. This implies that it is possible to write a single constraint that will
function on structured (typed or untyped) and unstructured events. For example,
consider the constrain:header.fixed_header.event_type.type_name ==
‘CommunicationsAlarm’ ”; if the unstructured event included a
‘header.fixed_header.event_type.type_name ' member, then both types of events
could be filtered by the same proxy using this constraint.

A complete specification of the enhancements to the Trader Constraint Language BNF
defined by the Notification Service can be found in Section 2.4.8, “Extensions to
Trader Constraint Language BNF,” on page 2-32.

2.4.3 Arithmetic Conversions for Mixed Data Types

In general, arithmetic conversions follow the “usual arithmetic conversion” rules set
forth by C/C++. However, in the context of the Notification Service, it is not always
possible to determine the data types of all operands at compile-time. Therefore, in
order to simplify data conversion rules, most arithmetic operations are performed using
eitherCORBA::.Long or CORBA::Double . The result of each operation is then cast
back to the data type of the most capacious of the operands, along wittedkor
strongtype attribute (as described below).

The following rules then, govern mathematical operations with mixed data types.

Notification Service V1.0 June 2000

* If either operand is £ORBA::.LongDouble , the other is converted to
CORBA::LongDouble and the result i€CORBA::LongDouble .

® Otherwise, if either operand is@ORBA::Double , the other is converted to:
» CORBA::Double and the result iCORBA::Double .

« if either operand is £ORBA::Float , both operands are converted to
CORBA::Double , but the result iCORBA::Float

« if either operand is £ORBA::LongLong , the other is converted to
CORBA::LongLong and the result i€CORBA::LongLong .

» the most strongly-typed of the two operands becomes the result type, and both
operands are converted to eitte®RBA::Long or CORBA::ULong.

®* When:
» a shorter unsigned type is combined with a larger signed type, the unsigned
property does not propagate to the result type.

* a numeric constant is specified, it is treated as weakly-typ@RBA::Long or,
in the case of a floating point constant, a weakly-ty@@RBA::Double .

» a boolean operand is used in an arithmetic operation, it is treated as weakly-
typed CORBA::Long with the values TRUE and FALSE corresponding 1 and O,
respectively.

Going back to the example constraint in Section 2.4.1, “Issues with the Trader
Constraint Language,” on page 2-23:
2.5 * ($.one / $.two) > 1

In order for this constraint to return TRUE, the parenthesized expression may be cast
to floating point by rewriting it as:
25*(1.0*$.0one/ $.two) > 1

For the purpose of describing the operator restrictions, all operands may be classified
as one of the following generic types: boolean, enum, numeric, string, or sequence.
Numeric operands include boolean and strings of length one ¢har). Operator
restrictions are as follows:

®* The substring operator-* may only be applied to string data types.

®* Thein operator may only be applied when the first operand is of a simple type and
the second is a sequence of the same type.

® Comparison operations are valid only when both operands are either boolean,
numeric, or string.

®* Numeric operations are valid only on numeric types.
® For a divide operation, zero is invalid as a denominator.
®* A numeric value may not be substituted when a boolean is required.

® Regarding the implicit members of &omponert, ‘_length’ is only valid for
arrays or sequences, ‘_d’ may only be used on discriminated unions, and ‘_type_id’
and ‘_repos_id’ are only valid if said information can be obtained.

®* Thedefault operator may only be applied to a discriminated union. If a
discriminated union does not have a default member, this operator rétAtrfSE

Notification Service V1.0 The Default Filter Constraint Language June 2000 2-27

2-28

® Only equality and inequality operations (==, =, >=, <=, >, or <) can be applied to
enums.

When first handed a constraint, the Notification Service can only guarantee that it is
syntactically correct. It is only when events are filtered, that it becomes possible to
check that operands have valid data types. When invalid operands are encountered or
when specified identifiers do not exist, the match operation must immediately return
FALSE.

The implication of the above rule is that a Notification Service implementation run-
time engine must implement short-circuiting of booleand’ and ‘or ’ operations.
Specifically, FALSE and <expression> ' must yield FALSE. Similarly, TRUE

or <expression> ' must yield TRUE. In either case, it is not permissible to
evaluate<expression>

As an example, consider the following 4 events and the associated constraint:

Event 1: <$.a, ‘Hawaii'>, <$.c, 5.0>
Event 2: <$.a, ‘H’>, <$.c, 5.0>
Event 3: <$.a, 5>, <$.c, 5.0>
Event 4: <$.a, 5>, <$.b, 5.0>

Constraint: ($.a+ 1> 32) or ($.b ==5) or ($.c > 3)

For the first event, the first expression becométavai’ + 1 > 32). Since itis
not possible to addl” to a string data type, the constraint is invalid and the match
operation immediately returns FALSE.

In the second event, the first expression becortids ¢+ 1 > 32). Since H is a
valid char data type, this yields TRUE (for the ASCII character set) and the match
operation immediately returns TRUE. Note that here, the fact that " is not part of
the event is immaterial due to the defined short-circuit semantics.

For the third event, the first expression yields FALSE and the second expression can
not be resolved (since there is MRb ' member in the event). This is an error, so the
match operation immediately returns FALSE. Note that, the constraint author could

have dealt with the possibility of a missin§.b ' by rewriting the constraint as:
($.a+1>32)or (exist $.b and $.b == 5) or ($.c > 3)

In the fourth event, the first expression again yields FALSE, but this tfbhe i's

defined as a floating poin&:0 '. Following the arithmetic conversion rules, the
constant5’ is also cast to floating point and the second expression yields TRUE. Here,
the match operation returns TRUE even though the event ha$.ad member.

2.4.4 Support for Name-Value Pairs

The Notification Service makes extensive usenafme-value paitists within
structured events. These are somewhat difficult to manage using the Trader Constraint
Language because each member of the list must be treated as a complex structure (i.e.,

with both a name and value field), as in:
($.header.variable_header[1].name == ‘priority’ and
$.header.variable_header[1].value > 1163) or

Notification Service V1.0 June 2000

($.header.variable_header[2].name == ‘priority’ and
$.header.variable_header[2].value > 1163)

While the above syntax is correct, it is far more convenient to treat a name-value pair
as an associative array such that, when given a name, one expects its value. To
accomplish this, we extend the Trader Constraint Language to allow one to identify a
component as being that of a name-value pair list. For example,
‘$.header.variable_header(priority) ' returns the value ofriority in

the variable_header name-value pair list.

2.4.5 A Short-hand Notation for Filtering a Generic Event

Section 2.4.2, “Trader Constraint Language Extensions for Notification,” on page 2-25
shows that it is possible to use a single constraint across both structured and
unstructured events. However, for this to work, the layout of the filterable portion of
the unstructured event must match that of the structured event. In order to relax these
requirements, run-time variables may be employed as a short-hand notation for
expressing commonly filtered data.

Specifically, any simple-typed member fifed_header or any property in the name-
value pairsvariable_header andfilterable_data may be represented as run-time
variables. For example, the constraint:

$.header.fixed_header.event_type.type_name == ‘CommunicationsAlarm’ and
$.header.fixed_header.event_name == ‘lost_packet’ and
$.header.variable_header(priority) < 2

can be rewritten using run-time variables as:

$type _name == ‘CommunicationsAlarm’ and
$event_name == ‘lost_packet’ and $priority < 2

The following rules govern translation of a run-time variablkydriable ’, into a
specific event field. If the run-time variable is reserved (eSgyrtime) this
translation takes precedence. If the run-time variabledigr®ain_name ,
$type_name , or $event_name , these are resolved to

$.header.fixed_header.event_type.domain_name ,
$.header.fixed_header.event_type.type name , or
$.header.fixed_header.event_name , respectively.

Next, the first matching translation is chosen respectively from properties in

$.header.variable_header , and properties in
$.header filterable_data . If no match is found, the translation defaults to
either$.variable ., or in the case of £ORBA::Any that encapsulates a single

unnamed name-value pair list (Section 2.4.4, “Support for Name-Value Pairs,” on
page 2-28)$(variable)

Notification Service V1.0 The Default Filter Constraint Language June 2000 2-29

2-30

Given these rules, an unstructured event withiority member and a structured
event usingb.header.variable_header(priority) can be specified in a
generic constraint using the run-time varialb$priority ". Alternatively, a

constraint can be written specifically for a structured or unstructured event by avoiding
the use of run-time variables.

2.4.6 Positional Notation and Intended Applications

CORBA does not require that the names of IDL type members be marshalled into the
TypeCode of &&ORBA::Any . This implies that a filter that matches on named parts of

an unstructured event will fail if th€ORBA::Any was generated by an ORB that

does not populate these fields. The population of a TypeCode’s Repositoryld is also
optional, so one can not depend on looking names up in the Interface Repository either.

To resolve this issue, the Notification Service permits constraints to be written in a
purely positional notation which can be used to extract the same data as the traditional
name-based filter expressions. For example, the constraint:

$.gpa < 80 or $.tests(midterm) > $.tests(final) or
$.monthly_attendance[3] < 10

might be rewritten using positional notation as:

$.3 < 80 or $1.(midterm) > $.1(final) or $.2[3] < 10

Except for discriminated unions, the translation of a constraint using identifiers to one
that uses positional notation is idempotent. In the casstratts andenums, the
members are indicated by their position starting from zero. For example, consider the
IDL:

struct X {
long A;
string B;
short C;
3

enumP{Q,R, S}

In ‘struct X ', member ‘A’ is denoted by ‘0", ‘B’ by ‘1’ and ‘C’ by ‘2’. Similarly, in
‘enum P, ‘Q’is denoted by ‘0", ‘R’ by ‘1" and ‘'S’ by ‘2"

Describingunions using positional notation is more complicated because the order of
members is not significant, rather, members are indexed by label value. Therefore here,
the “positional” notation founions is really an index notation. The grammar defines
the <UnionVab literal token to collect all possible discriminator types and uses
<UnionPos to disambiguate this special case. For example, consider the IDL:

Notification Service V1.0 June 2000

union K switch (short) {

case 0:
case 2: string K;
case 3. XL;

case 5. long M;
default: short N;

k

The member ‘M’ is denoted as ‘(5)’ and the constraint over an unstructured event
comprised of aunion K 'thatread ‘$.M < 547" is translated into positional
notation as $.(5) < 54 . A constraint involving the ‘C’ member of the ‘L’ member
of the ‘union X ’, for example, ‘$.L.C < 128 " would be translated as$:(3).2

< 128",

The member ‘K’ can be denoted using either ‘(0)' or ‘(2)’, as Iputty’ ~

$.(2) ". Note that the label is chosen independent of the actual discriminator.
Therefore, either of the following expressions will matchrdaon with a
discriminator value of 2, where the string contained in tinén is not ‘hoob’:

$._d == 2 and $(0) != ‘hoob’
$._d == 2 and $(2) != ‘hoob’

The last case is that of member ‘N’, indexed by the default label. This is translated as
‘()’. For example, the constraint$:N == 999 " is translated as$.() == 999 "

The semantics of thexist operator is also special for discriminated unions. In the

case of any other data type, the assertion that a member name exists is sufficient
assurance that the value associated with that member may be accessed. For unions, this
is only true when the discriminator is set to the corresponding case. Therefore, the
expression éxist $.K " will return TRUE if and only if the event TypeCode

contains the member name information to identify ‘K’ and the union discriminator has
the value 0 or 2. The label value notation is somewhat simpler as the expression

“exist $.(0) " will return TRUE if and only if the discriminator is set to 0. This
implies that the translation ofkist $.K " is “exist $.(0) orexist $.(2)
It also means that the expressioexist $.(0) " is equivalentto $._d == 0 "

2.4.7 Examples of Notification Service Constraints

This section provides annotated examples of constraints written in the Extended Trader
Constraint Language defined by the Notification Service. The following examples
intend to show the flexibility of this language.

* Accept all “CommunicationsAlarm” events but no “lost_packet” messages.
$type_name == ‘CommunicationsAlarm’ and not
($event_name == ‘lost_packet’)

® Accept “CommunicationsAlarm” events with priorities ranging from 1 to 5.
$type_name == ‘CommunicationsAlarm’ and
$priority >= 1 and $priority <=5

® Select “MOVIE” events featuring at least 3 of the Marx Brothers.

Notification Service V1.0 The Default Filter Constraint Language June 2000 2-31

$type _name == ‘MOVIE’ and
((‘groucho’ in $.starlist) + (‘chico’ in $.starlist) +
(‘harpo’ in $.starlist) + (‘zeppo’ in $.starlist) +
(‘gummo’ in $.starlist)) > 2

® Accept onlyrecentevents (e.g., generated within the last 15 minutes or so).
$origination_timestamp.high + 2 < $curtime.high

® Accept students that took all 3 tests and had an average score of at least 80%.
$.test._length == 3 and

($.test[0].score + $.test[1].score + $.test[2].score) / 3

>= 80

® Select processes that exceed a certain usage threshold.
$.memsize / 5.5 + $.cputime * 1275.0 + $.filesize * 1.25
> 500000.0

* Accept events with a default union discriminator set to the value 2.
default $._d and $.defvalue ==

® Accept events where a threshold has the unscoped type name ‘short’.
exist $threshold._type_id and $threshold._type_id == ‘short’

® Accept only Notification Service structured events.
$._repos_id == ‘IDL:CosNotification/StructuredEvent:1.0’

® Accept events with a serviceUser property of the correct standard type.
$violation(serviceUser)._repos_id ==
‘IDL:TelecomNotification/ServiceUserType:1.0’

® Accept only those events that have a specified security “rights list”.
exist $.header.variable_header(required_rights)

® Accept events whosér ' enum is set to the valueHOUSEor ‘ CAR.
$.\in == HOUSE or $.\in == CAR

2.4.8 Extensions to Trader Constraint Language BNF

This section details Notification Service extensions to the Trader Constraint Language
BNF as defined in appendix B of the OMGading Object Servicgpecification.

The new boolean operatdefault has the same precedence asdRkist operator.
The new structure member operator ‘.’ has the highest precedence.

The lexical token factor> now accepts:

| +< Number>

| exist$< Component >

| $< Component>

| default$< Component >
The lexical token €xpr_ir> now accepts:

| < expr_twiddle >in$< Component>

The lexical token fdent> now accepts:

2-32 Notification Service V1.0 June 2000

\ < Leader > < FollowSeq >

The following additional lexical tokens are also defined:

<Component > =

<CompExt> =

<CompDot> =

<CompArray > =
<CompAssoc> =
<CompPos> =

<UnionPos > =

<UnionVal >

The Notification Service uses the ASCII character set and adopts the same terminal

[* empty */

.< CompDot>

< CompArray >

< CompAssoc>

< Ildent > < CompExt> [* run-time variable */

[* empty */

.< CompDot>
< CompArray >
< CompAssoc>

< Ildent >< CompExt>
< CompPos>

< UnionPos >

_length

d

_type_id

_repos_id

[< Digits >]< CompExt>
(< Ident >)< CompExt>

< Digits > < CompExt>

(< Unionval >)< CompExt>
/* empty */

< Digits >

-< Digits >

+ < Digits >
< String >

symbols defined in Section B.2.3 of the OMG Trading Service specification. For

Notification, the Speciab terminal symbol is the set of IDL escape sequences defined

in Section 3.2.5 of the CORBA Specification.

A finite state automaton for@omponer# is shown in Figure 2-3 on page 2-34.
Dashed lines represent transitions on any or no input symbol. Also note that, by
definition, the 4dent> state prohibits identifiers that match constraint language

keywords.

Notification Service V1.0

The Default Filter Constraint Language

June 2000 2-33

u$n
u(u
Component ‘T CompArray CompAssoc
$ [<Digits >] (<Ident>)
Leader>
I\H
~
\
\
\
Ident - &~ UnionPos |
<Ident> CompExt T 7 7 "\(<UnionVal >) |
|
(ln I
/
<Leader>
o /

CompDot

CompPos
_length, d

<Digits >

_type_id
_repos_id

Figure 2-3 The finite automaton for €omponer

2.5 Quality of Service Administration

The existing OMG Event Service deliberately leaves the issue of Quality of Service as
an implementation choice. Section 4.1.6 of the Event Service specification (formal/97-
09-13) states:

“Note that the interfaces defined in this chapter are incomplete for
implementations that support strict notions of atomicity. That is, additional
interfaces are needed by an implementation to guarantee that either all
consumers receive an event or none of the consumers receive an event; and that
all events are received in the same order by all consumers”

The Notification Service extends the Event Service, by defining standard interfaces for
controlling the QoS characteristics of event delivery.

This section describes each of the components in the Quality of Service (QoS) model
and their relationships.

2-34 Notification Service V1.0 June 2000

2.5.1 Model Components

The QoS abstract model consists of the following components:
® QoS property representation

® accessor operations for setting and getting QoS at various levels of scope
throughout an application:

» Notification Channel.

» Supplier/Consumer Group Administration
» Proxy suppliers and consumers

« individual event messages

® QoS properties for notification

® negotiating QoS and conflict resolution

2.5.2 QoS Property Representation

A variety of QoS properties, such as reliability and priority, may be expressed to
indicate the delivery characteristics of event messages. A particular property may have
a range of values that indicate different requirements or delivery characteristics. The
precise QoS requirements, at a particular level, can be expressed as a set of properties

This specification defines a number of QoS properties and their permitted types and
value ranges. However, it is clear that whatever choices of properties and their
permitted values are, it is not possible to cover all use cases. Therefore a core design
principle is to enable implementors to extend the properties understood by a
Notification Service implementation, and to facilitate simple evolution of QoS
properties. To this end, this specification uses Properties (<String, Any> pairs) to
define QoS properties. Note that a special data t@wesNotification::PropertySeq

is defined in this specification to represent property lists. While it is straightforward to
declare and use a structurally equivalent data type wherever properties are called for, it
should be noted for purposes of type safetyness that wherever this specification refers
to property sequences or name-value pair lists, it explicitly means the
CosNotification::PropertySeq data type.

The Notification Service defines a number of standard property names, and defines the
expected type and value range that should be contained in the associated Any.

Implementations of the Notification Service are expected to understand all properties
defined in this specification (however they need moplementhe full range of

qualities of service that these properties are capable of representing). Implementations
may also add to the set of properties understood by the service as vendor additions,
although doing so may restrict interoperability and portability.

2.5.3 Setting QoS

Programmers can set QoS at various levels of scope by crea@@ufs®roperties
sequence and selecting the interface for the particular scope. Accessor operations
(get_qos , andset_qos) are available at the following scope levels:

Notification Service V1.0 Quality of Service Administration June 2000 2-35

2-36

® notification channel
® admin objects
® individual proxy objects

In addition, for Structured Events, QoS properties can be set in the optional header
field on a per-event basis.

These levels of scope form a simple hierarchy, reflecting the ability to override QoS at
various levels. QoS set at the notification channel sets the default QoS requirements for
message delivery for all groups, proxies, and messages. Setting QoS at the proxy group
administration level overrides the notification channel level QoS for all proxies which
are a member of the group. Setting QoS at the individual proxy level overrides the
group admin or notification channel level settings, and setting QoS within a particular
message overrides any other QoS setting (note, however, that per-message priority and
lifetime settings can be overridden by use of a mapping filter, as explained in

Section 2.3.1, “Mapping Filter Objects,” on page 2-21).

The actual set of QoS properties that should be applied to a component is derived from
merging the set of properties passed within the invocation of the operation on the
factory that creates the component (for those creation operations that permit this) with
the properties currently set on the “parent” component (with respect to the newly
created component). In cases where a property is set in both palces, the property value
explicitly expressed within the creation operation invocation applies.

In general, QoS properties can be passed to a factory when creating a component. The
actual set of properties that should be applied by a component is derived from merging
the set of properties passed to the factory with the properties of the component in the
higher scope level. In cases when a property is present in both places, the property
value explicitly expressed in the lower level applies. Note that this is only a conceptual
merge, since changing a QoS property in one scope should be reflected in the lower
scope.

It may not make sense to allow all properties to be overridden at all levels. For
example, setting reliable delivery at a message level may not make sense if the channel
level has only been set to best-effort, as the setting at the channel level may have
resulted in the use of an implementation that does not support reliability.

2.5.4 End-to-End QoS

When suppliers and consumers are connected together via a channel, there are three
conceptual points where a message may be transmitted: between the supplier and the
channel, within the channel, and between the channel and the consumer. In such a
supplier/consumer model, where there is no direct communication between the two
ends, it is not possible to set QoS in one place that covers the complete path from
supplier to consumer. Instead QoS must be set at the individual points that make up the
path. This introduces the problem of consistent QoS across a path. For example, both
the supplier and the channel may have QoS set to reliable delivery, but a consumer sets
the QoS for its individual proxy supplier to best-effort. Without the cooperation of all
three parties it is impossible to guarantee a QoS requirement.

Notification Service V1.0 June 2000

2

Unfortunately it is not possible to solve this problem, due to the nature of the service,
and hence it is the user’s responsibility to ensure that QoS is consistent across the
whole path.

2.5.5 Notification QoS Properties

The Properties that have been defined for the Notification Service are defined below.

2.5.5.1 Reliability

There are a variety of delivery policies known in distributed systems, such as best-
effort, at-least-once, at-most-once, and exactly-once. However most of these only make
sense in a point-to-point, request-reply communication model. The Notification
Service is by definition a point-to-multipoint delivery mechanism with no explicit reply
mechanism.

The Notification Service treats the reliability of specific events, and the reliability of
the connections which provide a transport for events between clients of the notification
channel and the channel, as separate issues, and thus defines two separate QoS
properties to represent thefventReliabilityand ConnectionReliabilityEach of these
properties can take on one of two possible numeric constant vabgssEffortor
Persistent The meanings associated with the settings of these properties are inter-
related, and are thus defined together below.

EventReliability=BestEffort & ConnectionReliability=BestEffoko specific delivery
guarantees are made. In the presence of failures, the event may or may not be received
by each of the consumers, and a given consumer may receive the same event multiple
times.

EventReliability=BestEffort & ConnectionReliability=Persisteiihe notification

channel will maintain all information about its connected clients persistently, implying
that connections will not be lost (logically) upon failure of the process within which
the notification channel is executing. Any clients which connect to the channel using
persistent object references may fail, but unless these object references raise an
OBJECT_NOT_EXIST exception, the channel will continue to retry using them.
Clients which then re-instantiate objects with these references will (logically)
reconnect to their associated proxies. The channel will not, however, store any buffered
events persistently. The implication of this combination is that upon restart from a
failure of the notification channel server process, the channel will automatically re-
establish connections to each of its clients, but will not attempt to retransmit any events
that had been buffered at the time the failure occurred.

EventReliability=Persistent & ConnectionRelability=BestEffaFhis combination has
no meaning and need not be supported by a conformant Notification Service
implementation.

EventReliability=Persisent & ConnectionReliability=PersisteBach event is

guaranteed to be delivered to all consumers registered to receive it at the time the event
was delivered to the channel, within expiry limits. If the connection between the
channel and a consumer is lost for any reason, the channel will persistently store any

Notification Service V1.0 Quality of Service Administration June 2000 2-37

2-38

events destined for that consumer until either each event times out due to expiry limits,
or the consumer once again becomes available and the channel is subsequently able to
deliver the events to all registered consumers. In addition, upon restart from a failure
the notification channel will automatically re-establish connections to all clients that
were connected to it at the time the failure occurred.

Note that theConnectionReliabilityQoS property can be set at the channel, group
admin, and proxy levels. This property has the special characteristic, however, that it
may not be set t®ersistenton an object whose parent object in the hierarchy has this
property set tdBestEffort For example, it is not possible (or meaningful) to set
ConnectionReliability=Persisterst the group admin level, if at the channel level
ConnectionReliabilitthas been set tBestEffort

Note also that the validity of modifications to the reliability quality of service
properties depends on the state of the objects within the channel within which the
modification is being attempted. In general, reliability settings may not be modified
after a “child” object has been created. Such modifications may violate the quality of
service validation rules of the notificaiton service.

Specifically,

®* modifying the event channel8onnectionReliabilitysetting througtset_qosafter
ConsumerAdmin or SupplierAdmin objects have been created is invalid, and

* modifying theConsumerAdmia or SupplierAdmin’sConnectionReliabilitysetting
throughset_gosafter child proxy objects have been created is invalid.

One exception to the above rules is the case of an event channel that has not had any
new admin or proxy objects associated with it yet, and whose default admin objects
have not yet been accessed. Every event channel has one default ConsumerAdmin and
one default SupplierAdmin objects associated with it. However, these objects can be
viewed as being non-existent prior to the first invocation performed by a client to
access them. During that time when the default admins are (at least virtually) non-
existent, theConnectionReliabilityf the channel may be modified, and this will affect

the ConnectionReliabilityf the default admins. Once either of the two default admins
has been accessed by a client, the current setting dEtmmectionReliabilityof the
associated channel essentially becomes permanent, and also applies to both default
admin objects.

Also note that theeventReliabilityproperty can be set per-channel, or per-message to
override the per-channel setting. Since all objects within the channel must cooperate to
assure artventReliabilitysetting ofPersistents satisfied, it makes no sense to set

some of them tdPersistent and some tdBestEffort Thus,EventReliabilitycannot be

set on an individual Admin or Proxy basis.

Notification Service V1.0 June 2000

255.2

2553

2554

Priority

The event service does not define the order in which events are delivered to a
consumer. One way to be explicit is to allow delivery to be based on the priority of an
event. Priority is represented as a short value, where -32,767 is the lowest priority and
32,767 the highest. The default priority for all events is 0. By default, the notification
channel will attempt to deliver messages to consumers in priority order.

It is possible for a consumer to override the priority assigned to a message through the
use of mapping filters (see section 2.3.1).

Expiry times

It is often desirable to indicate the time range in which an event is valid. If an event is
not delivered within a specified time then it should be discarded.

There are two possible properties related to expiry times that can be expressed:

StopTimea TimeBase::UtcT encoded value, states an absolute expiry time (e.g.,
January 1, 2000), after which the event can be discarded.

Timeout a TimeBase::TimeT encoded value, states a relative expiry time (e.g., 10
minutes from now), after which the event can be discarded. It is possible for a
consumer to override the value associated with this property through the use of
mapping filters (see Section 2.3.1, “Mapping Filter Objects,” on page 2-21). Note that
the time value associated with tH@meoutQoS property is viewed as relative to the
time when the channel (i.e., the receiving proxy consumer) first received the event.

Note thatStopTimecan only be used in the manner indicated above on a per-message
basis, and thus has an associated UtcT value only when supplied as a QoS property
within the header of a Structured Event. At other levels where QoS can be set (i.e.,
Proxies, Admins, and Channels)StopTimeSupporteQoS property is defined which

has an associated boolean value, indicating whether or not the sett8tgmfimeon a
per-message basis is supported.

Earliest Delivery Time

It is often desired that an event be held until at least a specified time, and become
eligible for delivery only after that timeStartTime a TimeBase::UtcT encoded

value, states an absolute earliest delivery time (e.g., January 1, 2000), after which the
event can be delivered.

Note thatStartTimecan only be used in the manner indicated above on a per-message
basis, and thus has an associated UtcT value only when supplied as a QoS property
within the header of a Structured Event. At other levels where QoS can be set (i.e.,
Proxies, Admins, and Channels)SsartTimeSupporte®oS property is defined which

has an associated boolean value, indicating whether or not the sett8tgréfimeon

a per-message basis is supported.

Notification Service V1.0 Quality of Service Administration June 2000 2-39

2-40

2.5.5.5 Maximum Events Per Consumer

As described in Section 2.5.7, “Notification Channel Administrative Properties,” on
page 2-48, an administrative property can be set on the channel to bound the maximum
number of events a given channel is allowed to queue at any given point in time. Note,
however, that a single badly behaved consumer could result in the channel holding the
maximum number of events it is allowed to queue for an extended period of time,
preventing further event communication through the channel. Thus, the
MaximumEventsPerConsumgroperty helps to avoid this situation by bounding the
maximum number of events the channel will queue on behalf of a given consumer. If
set only on a per-channel basis, the value of this property applies to all consumers
connected to the channel. If set on a per-ConsumerAdmin basis, this property applies
to all consumers connected to proxy suppliers created by that ConsumerAdmin. If set
on a per-proxy supplier basis, this property applies to the consumer connected to the
given proxy supplier. Note that setting this property on a SupplierAdmin or proxy
consumer has no meaning. Also note that the default setting of this property is 0,
meaning that the proxy imposes no limits on the maximum number of events that may
be queued for its consumer.

Order Policy

This QoS property sets the policy used by a given proxy to order the events it has
buffered for delivery (either to another proxy or a consumer). Constant values to
represent the following settings are defined:

AnyOrder- Any ordering policy is permitted.
FifoOrder - Events should be delivered in the order of their arrival.

PriorityOrder - Events should be buffered in priority order, such that higher priority
events will be delivered before lower priority events.

DeadlineOrder -Events should be buffered in the order of shortest expiry deadline
first, such that events that are destined to timeout soonest should be delivered first.

Note that this property has no meaning if set on a per-message basis.

Discard Policy

This QoS property enables a user of the Notification Service to specify in what order
the channel or a proxy supplier should begin discarding events in the case of an
internal buffer overflow. This property applies on a per-channel basis only if it is set on
a channel that has theejectNewEvents admin property (defined in Section 2.5.7,
“Notification Channel Administrative Properties,” on page 2-48) set to FALSE. If set
on such a channel, the chosen discard policy will be applied whenever a supplier
attempts to send a new event to the channel, and the total number of events already
queued within the channel is equal to thiiexQueuelLength administrative property
(defined in Section 2.5.7, “Notification Channel Administrative Properties,” on

page 2-48). If set on a per-ConsumerAdmin basis, the chosen discard policy will be
applied whenever the number of events queued on behalf of one of the consumers
connected to one of the proxy suppliers created by the ConsumerAdmin exceeds the
MaxEventsPerConsumer setting for that consumer. If set on a per-proxy supplier

Notification Service V1.0 June 2000

2

basis, the chosen discard policy will be applied whenever the number of events queued
on behalf of the consumer connected to the proxy supplier exceeds the
MaxEventsPerConsumer setting for that proxy supplier. Note that in these latter

two cases, an event will only be “discarded” with respect to its scheduled delivery to
the consumer(s) on whose behalf the policy is being applied. In other words, if the
event targeted for discarding is scheduled for delivery to any consumer(s) on whose
behalf the discard policy was not invoked, the event remains queued for those
consumers.

Constant values to represent the following settings are defined:

AnyOrder- Any event may be discarded on overflow. This is the default setting for this
property.

FifoOrder - The first event received will be the first discarded.
LifoOrder - The last event received will be the first discarded.

PriorityOrder - Events should be discarded in priority order, such that lower priority
events will be discarded before higher priority events.

DeadlineOrder -Events should be discarded in the order of shortest expiry deadline
first.

Note that this property has no meaning if set on a per-message basis.

Maximum Batch Size

This QoS property has meaning in the case of consumers that register to receive
sequences of Structured Events. For any such consumer, this property indicates the
maximum number of events that will be delivered within each sequence. The data type
associated with this property isng. The default setting for this property is 1, whereas

an attempt to set it to 0 will result in thgnsupportedQoS (BAD_VALUE)

exception being raised. Note that this property does not apply to Any or Structured
Event style proxy objects. It only applies to Sequence style proxies, and the Admins
and Channels that create them (so that the Sequence style proxies can derived a default
value from these higher level objects).

Pacing Interval

This QoS property also has meaning in the case of consumers that register to receive
sequences of Structured Events. For any such consumer, this property defines the
maximum period of time the channel will collect individual events into a sequence
before delivering the sequence to the consumer. If the number of events received
within a givenPacingIntervalequals or exceeddaximumBatchSizehe consumer will
receive a sequence of events whose length edqdaldmumBatchSizeOtherwise, the
consumer will receive however many events arrived at the proxy supplier during the
Pacinglnterval,unless no events have arrived during fecinglntervalin which case

the sequence-style proxy supplier will wait for at least one event to arrive before
forwarding the sequence to its consumer. The data type of the value associated with
this property isTimeBase::TimeT . The default setting for this property is 0, meaning
that the object upon which it is set will never forward a sequence of events whose

Notification Service V1.0 Quality of Service Administration June 2000 2-41

2-42

length is less thaMaximumBatchSizeNote that this property does not apply to Any

or Structured Event style proxy objects. It only applies to Sequence style proxies, and
the Admins and Channels that create them (so that the Sequence style proxies can
derive a default value from these higher level objects).

Note that setting certain QoS properties at a particular level is meaningless. For
example, it makes no sense to all@wonnectionReliability to be specified on a per-
message basis. The table below summarizes which QoS properties can be set at each
level (an ‘X’ in a cell indicates that setting the property indicated by the first column in
the row may be supported at the level indicated by the column heading).

Table 2-4 Levels at Which Setting Each QoS Property is Supported

Property Per-Message Per-Proxy Per-Admin Per-Channel
EventReliability X X
ConnectionReliability X X X
Priority X X X X
StartTime X

StopTime X

Timeout X X X X
StartTimeSupported X X X
StopTimeSupported X X X
MaxEventsPerConsumer X X X
OrderPolicy X X X
DiscardPolicy X X X
MaximumBatchSiz& X X X
PacingInterva X X X

1. Note that setting this property on a per-SupplierAdmin or per-proxy consumer basis has no meaning.

2. Atthe proxy-level, this property only applies to Sequence-style proxies.

2.5.6 Negotiating QoS and Conflict Resolution

QoS is intended to be both broad-ranging and extensible. Not all implementations will
support all possible Qualities of Service. Version updates and vendor-private
extensions will also mean that some QoS properties, or property values, will be
unsupported by some implementations. Therefore, a Notification Service client may be
unable to obtain exactly its desired QoS, and may need to negotiate the QoS. The
Notification Service provides several mechanisms related to QoS negotiation:

1. Theset_qos operation establishes QoS properties on its target object (notification
channel, proxy group admin, or individual proxy).

2. QoS properties can be inserted directly into the header of a structured event. Such
properties apply only to that particular event.

Notification Service V1.0 June 2000

2

25.6.1

2.5.6.2

3. Theget_gos operation returns the current QoS properties for its target object
(notification channel, proxy group admin, or individual proxy). This includes
properties initialized from higher-level objects, and properties which were never
explicitly set but have default values.

4. Thevalidate _qos operation checks a potential QoS request to see if it would be
supported, without actually changing the QoS settings. This operation is available
for naotification channels, proxy group admin objects, and individual proxies. If the
request can be supported, this operation returns additional optional QoS properties,
which could be added (if desired) to the given request.

5. Thevalidate_event_qos operation is similar tovalidate_qos , but applies to
QoS properties which are to be set in the header of a structured event. The operation
is available only for proxy producers and consumers.

6. TheUnsupportedQoS user exception is raised by certain operations, to indicate
that a QoS input parameter has an invalid or unsupported QoS. This exception
attempts to minimize negotiation effort, by returning a list of the offending
properties and their supported ranges (if they are supported at all).

7. TheBAD_QOS system exception can be raised, to indicate that a QoS property in
the header of a structured event is invalid or unsupported.

The following sections will explain the use of these mechanisms, and provide some
examples.

Use of set_qos

This is the principal way to set QoS in the Notification Service. QoS can be set at any
of three levels: a notification channel, a proxy group administration object, or an
individual proxy. If any of the requested QoS properties cannot be supported, this
operation raises thensupportedQo®xception, and the target object is unchanged. To
assist in negotiation, this exception provides feedback on how to fix the QoS request
(Section 2.5.6.6, “UnsupportedQoS Exception,” on page 2-45).

set_gos applies its input argument as a seriesrafremental changew any existing

QoS of the target object. Values of existing QoS properties can be changed, and new
QoS properties can be added. Any existing QoS properties not mentioned in the input
to set_gos are unmodified.

When QoS is set on a notification channel, it changes only the channel, and not any
existing proxy group administration objects which are subordinate to the channel.
Likewise, when QoS is set on a proxy group administration object, existing proxies
which are subordinate to that object are not changed. Such changes affect only the
initial QoS of subordinate objects createffer the change.

QoS in a Structured Event Header

For Structured Events, QoS can also be set by inserting QoS properties directly into
the event header, without using thet_qos operation. The setting applies just to a
particular event sent to the channel within a push or pull operation, and is not

Notification Service V1.0 Quality of Service Administration June 2000 2-43

2-44

remembered for future events. If the requested QoS cannot be supported, the
BAD_QOSsystem exception (Section 2.5.6.7, “BAD_QOS System Exception,” on
page 2-46) is raised. Like the use sdt_qos , QoS properties in the event do not
replace the QoS specified for the proxy; they incrementally change it.

Care should be taken when setting QoS in an event header, becalBAEheQOS
exception may not provide details of any errors. Clients should verify such QoS
requests in advance, by meansvafidate_event_qos or some other means.

2.5.6.3 Useofget_qgos()

The get_qgos operation can be used to determine the current QoS properties in effect
for a notification channel, a proxy group admin object, or an individual proxy. It
returns all properties and their values, including those initialized from higher levels,
and those which were never explicitly set but have default values.

2.5.6.4 Use of validate _gos

Thevalidate_qos operation has two uses:

1. It checks a QoS request to see if it could be supportedsiet agos operation,
without actually changing the current QoS in the target object.

2. If the supplied QoS is supported, it returns additional QoS properties which could
be optionally added as well. This may help a client interested in the range of
supported QoS in a given situation.

If the requested QoS cannot be supported, this operation raises the
UnsupportedQoS exception, which provides feedback in how to fix the problem
(Section 2.5.6.6, “UnsupportedQoS Exception,” on page 2-45).

If the requestan be supported, thewmalidate_qos checks whether any other QoS
properties could be specified as part of the same request. The operation returns these
additional properties, with a supported range of values for each one. Each additional
property and value range is strictly optional—the client can chaoseor all of them

to add to an actuaet_gos request. For each chosen property, the client can select
any value between the “low_val” and “high_val,” inclusive.

If a client has a rough idea of the desired QoS, the client should invaligate gos
against a property list of QoS it definitely requires. Then, the client can examine the
returned “available Qo0S,” to see other properties which can be optionally added to the
QoS request.

However, the client should not rely oralidate _gos to return every available QoS
property. Onlystrictly optionalproperties are returned. Since any subset of them must
be chooseable, all returned properties must be independent of one another. If two
properties are interdependent—if support for one depends on the value of
another—then neither of them may be returned/éydate _qos . See Section 2.5.6.8,
“Examples of validate_qos and validate_event_qos,” on page 2-46 for an example.

Notification Service V1.0 June 2000

2.5.6.5 Use of validate_event_qgos
Thevalidate_event_qos operation has two uses:

1. It checks a QoS request to see if it could be supported in the header of a structured
event, without actually sending the event.

2. If the supplied QoS is supported, it returns additional QoS properties which could
be optionally added to the structured event as well. This may help a client interested
in the range of supported QoS in a given situation.

If the requested QoS cannot be supported, this operation raises the
UnsupportedQoS exception, which provides feedback in how to fix the problem
(Section 2.5.6.6, “UnsupportedQoS Exception,” on page 2-45).

If the requestan be supported, themalidate_event_qos checks whether any other
QoS properties could be specified as part of the same request. The operation returns
these additional properties, with a supported range of values for each one. Each
additional property and value range is strictly optional—the client can chaog®r

all of them to include in an actual structured event. For each chosen property, the client
can select any value between the “low_val” and “high_val”, inclusive.

If a client has a rough idea of the desired QoS, the client should invoke
validate_event_qos against a property list of QoS it definitely requires. Then, the
client can examine the returned “available QoS,” to see other properties which can be
optionally added to the QoS request.

However, the client should not rely omlidate_event_gos to return every available

QoS property. Onlstrictly optional properties are returned. Since any subset of them
must be chooseable, all returned properties must be independent of one another. If two
properties are interdependent—if support for one depends on the value of
another—then neither of them may be returnedvaljdate_event qos . See

Section 2.5.6.8, “Examples of validate_qos and validate_event_qgos,” on page 2-46 for
an example.

Use ofvalidate_event_qos is particularly important, because it can avoid
BAD_QOS system exceptions caused by inserting an unsupportable QoS request into
an actual structured event. It may be difficult to recover from this system exception.

2.5.6.6 UnsupportedQoS Exception

Certain operations raise ttignsupportedQoS exception, when supplied with a QoS
property list which cannot be supported. The exception returns a sequence of QoS
properties and value ranges. Only properties from the request which were in error are

Notification Service V1.0 Quality of Service Administration June 2000 2-45

returned. Each returned property is accompanied by an error code, which identifies the
problem with that property. The meanings of the possible error codes are described in
the following table.

Table 2-5 Meanings Of UnsupportedQoS Error Codes

Error Code Meaning

UNSUPPORTED_PROPERTY This property is not supported by this implementation for thi
type of target object.

UNAVAILABLE_PROPERTY This property cannot be set (to any value) in the current cohtext.

S

UNSUPPORTED_VALUE The value requested for this property is not supported by this
implementation for this type of target object. A range of values
which would be supported is returned.

UNAVAILABLE_VALUE The value requested for this property is not supported in the
current context. A range of values whiclvould be supported is
returned.

BAD_PROPERTY This property name is unrecognized. The implementation knows
nothing about it.

BAD_TYPE The type supplied for the value of this property is incorrect.

BAD_VALUE An illegal value is supplied for this property. A range of values

which would be supported is returned.

1. “Current context” means in the context of other QoS properties.

The returned property value range is meaningful only foruNSUPPORTED_VALUE
UNAVAILABLE_VALUE , andBAD_VALUE error codes; otherwise it should be ignored.

2.5.6.7 BAD_QOS System Exception

While the user exceptioblnsupportedQosS is the appropriate exception to raise for
operations on the objects that comprise a notification channel that involve QoS
property modifications, an exception must also be raised during the transmission of a
Structured Event from a supplier to the channel whenever the QoS properties indicated
in the header of such an event cannot be satisfied by the channel. For this situation, we
propose the addition of thBAD_ _QOS system exception to the CORBA standard.

This exception, which should be useful for other OMG standards (e.g., Messaging) and
may even make sense for the ORB itself to raise in certain situations, is described in
more detail in Section 2.10.1, “A New Standard Exception,” on page 2-56.

2.5.6.8 Examples of validate_gos and validate_event_qos

Note —The QoS property hames in this section are purely for example, and may not
represent the required set of QoS properties supported at any level.

2-46 Notification Service V1.0 June 2000

Example 1: Setting QoS in a structured event.

Suppose there are exactly two QoS properties supported for structured event headers:
Timeoutand StopTime These are independent of one another: all combinations are
allowed. If we invokevalidate_event_gos with input “Timeout=50", the request will

be accepted (nbJnsupportedQoS exception), and the operation might return:

“Additional QoS” returned by validate_event_gos(Timeout=50Q

Property Low_Val High_Val

StopTime (Dinosaur Era) (Armageddon)

This indicates that the client can add a StopTime (with any possible value) to the
request if desired. Similarly, if we invokealidate _event_qos with input
“StopTime=January31,1999", the request will be accepted, and the operation might
return:

“Additional QoS” returned by validate_event_gos(StopTime=.))

Property Low_Val High_Val
Timeout 0 99999

However, if we invokevalidate_event_gos with input “EventReliability=Persistent”,
the operation will raise abnsupportedQoS exception, and no “Additional QoS”
will be returned.

Example 2: Two interdependent QoS properties.

Suppose there are only three possible QoS properties supported by some proxy. The
properties are€ConnectionReliabilityEventReliability and Timeout

ConnectionReliability andEventReliability each have two possible values,
“BestEffort” and “Persistent”, but they are not independent—the combination

<ConnectionReliabilityBestEffort, EventReliabilityPersistent>

is not supportedTimeoutcan have any positive time value, independent of the other
two properties.

Suppose the current QoS setting for the proxy is

Property Value
ConnectionReliability Persistent
EventReliability Persistent
Timeout 100 sec.

Notification Service V1.0 Quality of Service Administration June 2000 2-47

2-48

If we invoke validate_qos with input “Timeout=50", the QoS will be accepted (no
UnsupportedQoS exception), and the operation will return the following:

“Additional QoS” returned by validate_gos(Timeout=50

Property Low_Val High_Val
EventReliability BestEffort BestEffort

The only “additional QoS” returned is a changeBweentReliability .
ConnectionReliability is not returned, because it can’'t be changed unless
EventReliability is alsochanged (recall the unsupported combination of these two).
All properties returned as “Additional QoS” must be optional and independent of each
other.

On the other hand, if we invokealidate_gos with input
“EventReliability=BestEffort,” the QoS will be again be accepted, but more options
will be returned as “additional QoS”:

“Additional QoS” returned by validate_qos(EventReliability=BestEffoit

Property Low_Val High_Val
ConnectionReliability BestEffort BestEffort
Timeout 0 99999

Why are more “additional QoS” options returned here? Once we change
EventReliability to BestEffort, any value foConnectionReliability — will be

supported. And Timeout will always be returned if the request did not already include
it, since it is totally independent of the others. If the client wants to add to his QoS
request, he can chose a@gnnectionReliability value in the indicated range, or any
Timeout value in the indicated range, or both (or neither).

2.5.7 Notification Channel Administrative Properties

The natification channel also supports the configuration of certain administrative
properties. The following administrative properties, each of which has an associated
value of typelong, can be set on a notification channel:

®* MaxQueuelength - The maximum number of events that will be queued by the
channel before the channel begins discarding events (according to the Discard
Policy QoS parameter, which is defined in Section 2.5.5, “Notification QoS
Properties,” on page 2-37) or rejecting new events (depending on the setting of the
RejectNewEvents admin property described below) upon receipt of each new event.

* MaxConsumers - The maximum number of consumers that can be connected to the
channel at any given time

* MaxSuppliers - The maximum number of suppliers that can be connected to the
channel at any given time

Notification Service V1.0 June 2000

2

For all of these properties, the default value is zero, which means that no limit applies
to that property.

In addition, the notification channel supports tRejectNewEvents administrative
property. This value associated with this property is of tio®lean where TRUE and
FALSE have the following meanings:

®* TRUE: When the total number of undelivered events within the channel is equal to
MaxQueuelLength , each pull-style proxy consumer will stop attempting to
performpull invocations on its supplier until the total number of undelivered events
within the channel is decreased. In addition, attempts to push new events to the
channel by push-style suppliers will result in thHdPL_LIMIT system exception
being raised.

® FALSE: When the total number of undelivered events within the channel is equal to
MaxQueuelLength , attempts to pull new events to the channel by a pull-style
proxy consumer, or to push new events to the channel by a push-style supplier will
result in one of the currently queued undelivered events being discarded by the
channel to make room for the new event. The discarded event will be chosen based
on the setting of the DiscardPolicy QoS property.

2.6 Sharing Subscriptions

2.6.1 Sharing Subscriptions Between Channels and Clients

2.6.2 Offer

The flow of events through a Notification channel depends on the events supplied to
the channel and the subscriptions from event consumers which match them (or cause
them to be discarded). In order to convey end-to-end the knowledge of what is required
from suppliers, and what might be produced by them, we introduce two
complementary operationsffer_change andsubscription_change . These

operations are available on interfaces supported by channels and, due to the symmetry
of design, also on the interfaces supported by the clients of channels.

The offer_change operation, provided by thNotifyPublish interface is supported

by all Proxy Consumer interfaces and tBapplierAdmin interface, and may be
supported by consumers of events. It has two paramaters: one for event types that are
newly offered, and one for event types no longer offered. This operation is used by
suppliers of events to indicate to the channel the new event types that they will supply,
and to indicate event types that they will no longer supply. Channels will then
aggregate the offers from all their suppliers. If a new or removed offer by a supplier
changes the aggregate list of event types offered to the channel, the channel will in turn
invoke the same operation on its consumers, informing those consumers of new event
types available to them, or events types no longer offered.

Consumers can use offer information to consult the Event Type Repository to discover
what property names and types the event type contains, and thus write well-formed
subscription expressions for these types.

Notification Service V1.0 Sharing Subscriptions June 2000 2-49

2-50

Consumers may also discover the current set of event types that a channel has been
offered by its suppliers by calling thebtain_offered_types operation on their
ProxySupplier interface.

Consumers which are only interested in a fixed set of events may choose to supply a
nil object reference to the channel at connect time if they pull events from the channel.
They may also return AIO_IMPLEMENT exception from theoffer_change

operation if they must support the interface which allows the channel to push events to
them.

2.6.3 Subscription Change

Thesubscription_change operation is provided by thotifySubscribe interface,
which is supported by all Proxy Supplier interfaces and Go@sumerAdmin

interface, and may be supported by suppliers of events. It is a means of relaying
subscription information, in the form of required event types, back to the source of
events. It has two parameters: one to specify event types that are required, and one to
specify event types that are no longer required. Event Channels will aggregate the
event types that their consumers require. If a new event type required by a consumer
(or consumer group represented bZansumerAdmin) changes the aggregate list
then the channel will inform its suppliers by their callisgbscription_change

operation indicating that a new type is required. Likewise, if change from a consumer
removes an event type from the aggregate list of event types in the channel it will call
subscription_change on it suppliers indicating that the type is no longer required.

Suppliers may also discover the current set of event types that consumers of a channel
require by calling thebtain_subscription_types operation on the
ProxyConsumer interface.

Suppliers that are not interested in the event types currently subscribed to will not
invoke obtain_subscription_types , and will raise thNO_IMPLEMENT
exception in their implementation of tteibscription_change operation.

2.6.4 Notifications on Demand

One consequence of suppliers being informed of the event types that clients require is
that they know which notifications are being consumed and which are not. This
knowledge can be used by end-suppliers to influence which notifications they will
produce. For instance, an operating system process watcher connected to a channel as
a supplier is informed that only notifications of certain process watching types are
being consumed. It might therefore choose to produce notifications only about those
kinds of processes rather than producing notifications for all processes. Another
example is where suppliers only generate notifications while there is an interested
party. For instance, a consumer indicates an interest in CPU load statistics by
subscribing to a particular event type. Intelligent suppliers would then begin to produce
these statistics only for as long as a consumer was interested in the information. When
no consumers are interested, the channel's aggregate list of event types will change,
and the supplier will be notified via theubscription_change operation that these

Notification Service V1.0 June 2000

2

notifications are no longer being consumed. The supplier could then stop generating its
statistics until the relevant event type was receiveduhscription_change in the
parameter which indicates added types.

In these examples the anonymity of event suppliers and consumers is maintained while
enabling communication about notification requirements between them.

2.6.5 Obligations on Filter Objects

Filter objects support the operatioattach_callback anddetach_callback , which

are used by Proxy Suppliers and ConsumerAdmins to provide and remove object
references to theiNotifySubscribe interfaces. Filter objects must call the references
that are currently attached when the set of event types that their constraints require
changes. This means that they must useBhentTypeSeq associated with their
constraints as a parameter to an invocatiosufscription_change

Implementations of Filters may choose whether to convey the event types for a
constraint as the added parametestdbscription_change when the constraint is
added and then as the removed parametsubscription_change when that
constraint is removed, or whether to maintain an aggregate of the event types that all
its constraints require, and only callibscription_change when this changes.

Note that a Proxy or Admin object that is evaluating the suitability of an event that is
not of one of the types that the filter has indicated that it requires may assume that the
filter does not require this event and never call a match operation at that filter. See
Section 2.6.6, “Special Event Types,” on page 2-51 about special event types that force
matching.

A consumer connected to a proxy supplier may usestitescription_change

operation instead of a filter object if it requires all events of one or more event types.
However, once it adds a filter to the proxy, it must then interact with the filter only, and
allow the filter to invokesubscription_change . An event channel will create an
aggregate list of all the event types required by its consumers, which it will return as
the result ofobtain_subscription_types . It will also communicate any changes to
the list to its suppliers by invoking thegubscription_change operation.

2.6.6 Special Event Types

If a constraint expression potentially applies to any event type, then the special event
type “%ALL” can be specified in a constraint’s event type sequence (with a domain
name of “*” or the empty string). When the filter calls baskbscription_change

with this type it indicates to the channel that the filter wants to match on all event
types.

Alternatively the event type and domain specified by any combination of empty strings
or the “*” string is treated as the equivalent to “%ALL", and upon receiving a
requirement for this type the channel will send “%ALL" to its suppliers by calling
their subscription_change operations.

Notification Service V1.0 Sharing Subscriptions June 2000 2-51

The event type “%TYPED?” is given by channels to the Structured Event representation
of events that are supplied by a typed event supplier using an operation other then the
push and pull operations (i.e., untyped) specified in this document. The domain field of
these events must be set to the empty string. This event type allows a Structured Event
supplier to create an event that is equivalent to the invocation of a typed operation
using the mapping given in Table 2-2 on page 2-9. It also allows Structured Event
consumers and event service style consumers to write filter constraints that match
events which were delivered to the channel by a typed supplier.

Note —the leader characters ‘%’ and **’ are not legal for type names stored in the
Event Type Repository, and are chosen because they do not clash with any pre-existing
event type naming schemes known to the authors.

2.7 Filtering Typed Events

2-52

The Notification Service definestgpedversion of the natification channel that is
analogous to the typed event channel defined in the OMG Event Service. The typed
notification channel extends the architecture of the notification channel depicted in on
page 2-3 by adding to it typed versions of the EventChannel, Admin, and Proxy
interfaces. Essentially, a typed notification channel can be connected to by traditional
untyped event service clients, notification service clients (which supply untyped events,
Structured Events, or sequences of Structured Events), and typed event service clients
(as defined by the OMG Event Service). The particular value-add of the typed
notification channel is that it enables typed event service clients to realize the
advantages of event filtering and configurable quality of service.

The typed notification service interfaces are defined in a separate IDL module, the
CosTypedNotifyChannelAdmin module, which defines interfaces that are

analogous to the untyped notification channel interfaces. The module defines a
TypedEventChannelFactory interface which supports an operation for creating new
typed notification channel instances. This operation accepts the same input parameters
as the operation supported by the factory interface for an untyped notification channel:

® a list of initial QoS settings for the channel

® a list of initial administrative settings for the channel

A typed notification channel supports tligpedEventChannel interface defined in

the CosTypedNotifyChannelAdmin module. This interface inherits from both the
CosNotifyChannelAdmin::EventChannel interface and the
CosTypedEventChannelAdmin:: TypedEventChannel interface. The former
inheritance enables a typed notification channel to support untyped notification channel
Admin interfaces, which can in turn create untyped notification channel style Proxy
interfaces. Essentially, this enables untyped notification channel clients to connect to a
typed notification channel, if so desired. The latter inheritance enables backward
compatibility to the typed event channel as defined by the OMG Event Service,
analogous to the way the notification channel supports backward compatibility to the
untyped event channel. The operations supported through inheritance from the

Notification Service V1.0 June 2000

2

CosTypedEventChannelAdmin:: TypedEventChannel interface can be used to
create the Admin interfaces defined for the OMG Event Service version of the typed
event channel.

In similar fashion as the notification channel, the typed notification channel supports
operations that can be used to create typed notification service style Admin objects.
These objects have unique identifiers associated with them, whereas OMG Event
Service style typed Admin objects created by invoking the inherited operations do not.

The typed notification service style Admin interfaces inherit from both their untyped
notification service and typed event service counterparts. The former inheritance
enables instances supporting one of these interfaces to create untyped notification
service style proxy objects, which can in turn be connected to by untyped notification
service style clients. The latter inheritance enables creation of the OMG Event Service
style typed proxy objects, which can be connected to by OMG Event Service style
typed clients. Such clients can pass typed events through the channel, but do not
realize the benefits of filtering or QoS configurability.

The typed notification service style Admin interfaces also support operations which
can be used to create typed notification service Proxy objects. Such objects can be
connected to by clients which send and receive typed events as defined by the OMG
Event Service, and also support filtering and QoS configurability. Like their untyped
counterparts, typed notification service style proxies are assigned unique identifiers
upon creation, and can be administered in the same fashion. Exactly the same as the
operations which create typed event service style proxies, the operations supported by
the typed notification service style Admin interfaces accept a string input parameter
which indicates either the typed interface it should use (to receive events in the case of
a TypedProxyPullConsumer or to supply events in the case of a
TypedProxyPushSupplier) or the typed interface it must support (to receive events

in the case of &ypedProxyPushConsumer or to supply events in the case of a
TypedProxyPullSupplier).

The authors of the OMG Event Service realized that there is no difference in the
interfaces supported by a pull style consumer of typed events and a pull style consumer
of untyped events, and likewise between a push style supplier of typed events and a
push style supplier of untyped events. For this reason, they chose not to define new
Proxy interfaces for connections between the channel and either typed push consumers
(which connect tdProxyPushSuppliers) or typed pull suppliers (which connect to
ProxyPullConsumers). While the same model could have been followed when
defining the typed version of the notification channel’s proxy interfaces, it was

believed that this would have lead to more confusion for the end user than if special
proxy interfaces for all styles of clients were defined. For this reason, the typed
notification channel explicitly define$ypedProxyPullConsumer and
TypedProxyPushSupplier interfaces, as well abypedProxyPushConsumer and
TypedProxyPullSupplier . Each Proxy interface defined for the typed notification
channel has the following properties:

® |t inherits from the appropriate base Proxy interface defined in the
CosNotifyChannelAdmin module, which enables it to support filtering and QoS
configurability.

Notification Service V1.0 Filtering Typed Events June 2000 2-53

2-54

® It inherits from the appropriate consumer or supplier interface defined by the OMG
Event Service to enable a traditional OMG Event Service typed event channel client
to connect to it.

® |t supports an explicit “connect” operation to be invoked by its client in order to
establish the connection.

It is believed that this model of explicitly defining all four styles of Proxy interface for
the typed notification channel, each of which supports an explicit “connect” operation,
will result in a typed channel that is more straightforward to use than the typed channel
defined by the OMG Event Service, without significantly altering the programming
model of the latter.

Clients of the typed notification channel specify the interface type that they wish to use
for communication to the channel by supplying a “key” string parameter to the

“obtain” operation supported by the typed Admin objects. In the case where the
channel is the active participant (i.e., when interacting with pull model suppliers and
push model consumers), the channel expects that the proxy object reference supplied to
the “connect” operation may be narrowed to the interface type nominated by the “key.”
In the cases where the client of the channel is the active party, i.e. push suppliers and
pull consumers, the client will be able to narrow the proxy returned from the “obtain”
operation to the interface type that was supplied as the “key” to that operation.

Note that the clients of the typed notification channel support identical interfaces to
those of clients of the typed event channel defined by the OMG Event Service,
implying that the same rules apply to the operations supported by those clients’
interfaces as those defined for clients of the OMG Event Service typed event channel.
In the push model typed events will thus be transmitted to the typed natification
channel using a strongly typed interfack><which supports operations which take
only input parameters and have a void return type. The equivalent interfade tfor

the pull model will be called PUlll>. The Pulkl> interface must support two
operations for every operatiofop> in interface<I>. These operations are called
pull_<op> which has return type void and trgop> which returns a boolean. Their
parameters are identical to those<iop> except that they are all out parameters rather
than in paramters.

The base interface nam@> is equivalent to the name of an event type domain, and

the base operation nam®p> is the event type in that domain. Parameters to the
supported operation(s) &fi> and Pulkl> form the contents of the typed event. Each
filter object supports anatch_typed operation which is used to perform filtering on
typed events. This operation accepts as input a sequence of name-value pairs. Upon
receipt of a typed event, the notification channel will disassemble the event into a
name-value pair sequence, where each name is the name of an input parameter to the
operation on the typed interface which was invoked to transmit the event to the
channel, and the value is the value associated with the parameter. The first element of
such a sequence will always have its name set to “event_type,” and its associated value
set to an event type structure containing the strings which are the name of the typed
interface, and the name of the operation in that interface.

An example of an interaction using typed notifications which uses both push and pull
models is as follows. The IDL interface Coffee is defined as

Notification Service V1.0 June 2000

interface Coffee {
void drinking_coffee(in string name, in long minutes);
void cancel_coffee(in string name);

k

A typed push consumer for coffee notifications would need to provide a “key”
interface name, “Coffee,” to the “obtain” operation on its typed consumer admin
operation, and then when calling the “connect” operation on the returned proxy it
would provide an object reference of a type that multiply inherits from the
PushConsumer andCoffee interfaces, so that the channel can narrow to the coffee
interface and begin invokindrinking_coffee andcancel_coffee operations.

A typed pull consumer for coffee notifications would supply the same key, “Coffee,” to
its “obtain” operation, and then narrow the Proxy interface it receives as a result to the
interface type:

interface PullCoffee {
void drinking_coffee(out string name, out long minutes);
boolean try_drinking_coffee(out string name, out long minutes);
void cancel_coffee(out string name);
boolean try_cancel_coffee(out string name);

3

After calling the “connect” operation on the proxy, to which it provides an object
reference of typ&ullConsumer to allow the channel to inform it of disconnection, it
can begin calling the operations of tRelllCoffee interface.

2.8 The Event Type Repository

This specification defines an Event Type Repository as a value-added, optional feature
which can be provided along with implementations of the Notification Service. The
Event Type Repository is treated as optional since it is not required in order for an
implementation of the Notification Service to operate correctly. An implementation of
the Notification Service which provides an Event Type Repository may or may not use
the Event Type Repository to perform run-time checking.

An Event Type Repository can provide significant advantages to end-users of the
Notification Service. Such a repository would be populated with the meta-data which
describes the structure of all known event types which may be supplied to an instance
of a notification channel supported by the implementation. End-users can use this
information to construct meaningful constraints which subscribe their applications to
the specific types of events that will be supplied within a given installation of the
service. In addition, an implementation of the Notification Service may choose to use
the information in the Event Type Repository to perform type checking of the event
properties referenced within constraints to ensure they are used appropriately in
mathematical or boolean expressions.

The standard schema for the Event Type Repository is provided in Appendix A of this
specification. As defined there, each event type in the repository is characterized by a
name and a set of properties. New event types can be defined in terms of existing event
types by eitheimporting the properties of one or more pre-existing types, or by

Notification Service V1.0 The Event Type Repository June 2000 2-55

inheriting a pre-existing type, or some combination of these. The new type’s full name
may be generated from a combination of its local name and the names of its base
types, according to the naming scheme of the type’s domain. The full name of any
event type must be unique within its domain. The default domain is named by the
empty string, and its types have a flat name space, that is their local name is the same
as their full name, and each type’'s name must be unique.

Note that this scheme integrates naturally with the event naming scheme used by
Structured Events. The fixed portion of each Structured Event includesnain_name

and atype_name field. Thedomain_name names a specific vertical industry (e.g.,
telecommunications, finance, health care, etc.) within which a giye@ name has
meaning. These fields are accepted as the parameters to the query functions of the
Repository, and in combination they act as a key to uniquely identify any type in the
repository. The properties of the particular event type defined in the Event Type
Repository would then define the specific name-value pairs that would be present in an
instance of that type of event. Thus when Structured Events are used in concert with
the Event Type Repository, it is particularly convenient for consumers to learn of new
types of events, and to discover the structure of their contents.

The schema of the Event Type Repository is defined in Appendix A using the Meta-
Object Definition Language of the Meta-Object Facility (MOF) joint submission being
developed by DSTC, Unisys, and other submitters.

2.9 Issues with Interoperability

2-56

It's important to note that this specification guarantees interoperability of only those
implementations that comply with the following requirements:

® Support all standard optional header fields summarized in Table 2-3 on page 2-16.

® Support filter constraints expressed in the default constraint grammar described in
Section 2.4, “The Default Filter Constraint Language,” on page 2-23.

These requirements do not mean that implementations of the Notification Service
cannot support user or vendor specific event header field names, constraint grammars,
or event types. The implication here is that the use of such user or vendor specific
capabilities is outside of the scope of this specification, and therefore interoperability
of such features between different implementations is not guaranteed.

Notification Service V1.0 June 2000

Modules and Interfaces 3

Contents

This chapter contains the following topics.

Topic Page
“The CosNotification Module” 3-2

“The CosNotifyFilter Module” 3-9

“The CosNotifyComm Module” 3-28
“The CosNotifyChannelAdmin Module” 3-41
“The CosTypedNotifyComm Module” 3-84
“CosTypedNotifyChannelAdmin” 3-85

This section describes the semantic behavior of the interfaces which make up the
Notification Service. Each IDL module is presented, along with a brief description of
the purpose of the module. For each interface in the module, a brief description of its
purpose is provided, along with an explanation of the semantics of each of its
operations and attributes.

The Naotification Service is defined in terms of the following IDL modules:

CosNotification - Defines the Structured Event data type, quality of service and
administrative properties, and interfaces which are used to administer these properties.

CosNotifyFilter - Defines the interfaces for filters supported by the Notification
Service.

CosNotifyComm - Defines supplier and consumer interfaces for basic notification
communication.

Notification Service V1.0 June 2000 3-1

CosNotifyChannelAdmin - Defines proxy, admin and channel interfaces for
notification channels.

CosTypedNotifyChannelAdmin - Defines proxy, admin and channel interfaces for
typed natification channels.

Each of these modules is defined in its own subsection as follows.

3.1 The CosNotification Module

The CosNotification module defines the Structured Event data type, along with a
data type used for transmitting sequences of Structured Events. In addition, this
module provides constant declarations for each of the standard quality of service (QoS)
and administrative properties supported by all Notification Service implementations.
Some properties also have associated constant declarations which indicate their
possible settings. Finally, administrative interfaces are defined for managing sets of
QoS and administrative properties.

module CosNotification {

typedef string Istring;
typedef Istring PropertyName;
typedef any PropertyValue;

struct Property {
PropertyName name,;
PropertyValue value;
3
typedef sequence<Property> PropertySeq;

/I The following are the same, but serve different purposes.
typedef PropertySeq OptionalHeaderFields;

typedef PropertySeq FilterableEventBody;

typedef PropertySeq QoSProperties;

typedef PropertySeq AdminProperties;

struct EventType {
string domain_name;
string type_name;
h
typedef sequence<EventType> EventTypeSeq;

struct PropertyRange {
PropertyValue low_val;
PropertyValue high_val;

struct NamedPropertyRange {

Notification Service V1.0 June 2000

PropertyName name;
PropertyRange range;
b
typedef sequence<NamedPropertyRange> NamedPropertyRangeSeq;

enum QoSError_code {
UNSUPPORTED_PROPERTY,
UNAVAILABLE_PROPERTY,
UNSUPPORTED_VALUE,
UNAVAILABLE_ VALUE,
BAD_PROPERTY,
BAD_TYPE,
BAD_VALUE

struct PropertyError {
QoSError_code code;
PropertyName name;
PropertyRange available_range;
3

typedef sequence<PropertyError> PropertyErrorSeq;

exception UnsupportedQoS { PropertyErrorSeq qos_err; };
exception UnsupportedAdmin { PropertyErrorSeq admin_err; };

/I Define the Structured Event structure
struct FixedEventHeader {

EventType event_type;

string event_name;

struct EventHeader {
FixedEventHeader fixed_header;
OptionalHeaderFields variable_header;

struct StructuredEvent {
EventHeader header;
FilterableEventBody filterable_data;
any remainder_of_body;
}; /I StructuredEvent
typedef sequence<StructuredEvent> EventBatch;

I/l The following constant declarations define the standard
Il QoS property names and the associated values each property

/I can take on. The name/value pairs for each standard property
Il are grouped, beginning with a string constant defined for the

Notification Service V1.0 The CosNotification Module June 2000

Il property name, followed by the values the property can take on.

const string EventReliability = “EventReliability”;
const short BestEffort = 0;
const short Persistent = 1;

const string ConnectionReliability = “ConnectionReliability”;
/I Can take on the same values as EventReliability

const string Priority = “Priority”;
const short LowestPriority = -32767;
const short HighestPriority = 32767,
const short DefaultPriority = 0;

const string StartTime = “StartTime”;
// StartTime takes a value of type TimeBase::UtcT.

const string StopTime = “StopTime”;
I/l StopTime takes a value of type TimeBase::UtcT.

const string Timeout = “Timeout”;
// Timeout takes on a value of type TimeBase::TimeT

const string OrderPolicy = “OrderPolicy”;
const short AnyOrder = 0;

const short FifoOrder = 1;

const short PriorityOrder = 2;

const short DeadlineOrder = 3;

const string DiscardPolicy = “DiscardPolicy”;
/I DiscardPolicy takes on the same values as OrderPolicy, plus
const short LifoOrder = 4;

const string MaximumBatchSize = “MaximumBatchSize”;
/l MaximumBatchSize takes on a value of type long

const string Pacinglnterval = “Pacinginterval”;
/I Pacinglnterval takes on a value of type TimeBase::TimeT

const string StartTimeSupported = “StartTimeSupported”;
// StartTimeSupported takes on a boolean value

const string StopTimeSupported = “StopTimeSupported”;

3-4 Notification Service V1.0 June 2000

I/l StopTimeSupported takes on a boolean value

const string MaxEventsPerConsumer = “MaxEventsPerConsumer”;
/I MaxEventsPerConsumer takes on a value of type long

interface QoSAdmin {

QoSProperties get_qgos();

void set_gos (in QoSProperties qos)
raises (UnsupportedQoS);

void validate_qos (

in QoSProperties required_qos,

out NamedPropertyRangeSeq available_qgos)
raises (UnsupportedQoS);

}; I QosAdmin

/I Admin properties are defined in similar manner as QoS

/I properties. The only difference is that these properties

/I are related to channel administration policies, as opposed
/I message quality of service

const string MaxQueuelLength = “MaxQueueLength”;
/l MaxQueuelLength takes on a value of type long

const string MaxConsumers = “MaxConsumers”;
Il MaxConsumers takes on a value of type long

const string MaxSuppliers = “MaxSuppliers”;
/I MaxSuppliers takes on a value of type long

const string RejectNewEvents = “RejectNewEvents”;
/l RejectNewEvents takes on a value of type Boolean

interface AdminPropertiesAdmin {

AdminProperties get_admin();

void set_admin (in AdminProperties admin)

Notification Service V1.0 The CosNotification Module June 2000 3-5

raises (UnsupportedAdmin);

}; /I AdminPropertiesAdmin

}; I/ CosNotification

3.1.1 The StructuredEvent Data Structure

The StructuredEvent data structure defines the fields which comprise a Structured
Event. The following subsections briefly describe each of these fields. A detailed
description of Structured Events is provided in Section 2.2, “Structured Events,” on
page 2-12.

3.1.1.1 Fixed Header

The following fields make up the fixed portion of the header of every Structured Event.

domain_name

Thedomain_name field contains a string which identifies the vertical industry
domain (e.g., telecommunications, healthcare, finance, etc.) within which the type of
event which characterizes a given Structured Event is defined. The definition of this
field enables each vertical domain to define their own set of event types without
worrying about name collisions with those defined by other vertical domains.

type_name

Thetype_name field contains a string which identifies the type of event contained
within a given Structured Event. This name should be unique among all event types
defined within a given vertical domain, which is identified by th@main_name

field.

event_name

Theevent_name field contains a string which names a specific instance of Structured
Event. This name is not interpreted by any component of the Notification Service, and
thus the semantics associated with it can be defined by end-users of the service. This
field can be used, for instance, to associate names with individual Structured Events
which can be used to uniquely identify an instance of a particular type of Structured
Event within a given installation of the Notification Service.

3.1.1.2 Variable Header

The remainder of the header of a Structured Event is contained within the
variable_header field. The data type of this field is a sequence of name-value pairs,
where each name is a string and each val@Od&RBA::Any . While this field can
essentially contain any name-value pairs which users of the service deem to be useful

Notification Service V1.0 June 2000

3

to provide in the header of a Structured Event, standard names and associated value
types are defined in Table 2-3 on page 2-16 of this document. The standard variable
header fields defined there provide QoS related information about the current
Structured Event that should override other QoS settings within the channel when
objects within the channel process the current Structured Event.

3.1.1.3 Body of a Structured Event

The body of a Structured Event is intended to contain the contents of an instance of a
Structured Event being published by a Notification Service supplier. It's contents are
broken down into two fields: thélterable_data and theremainder_of_body . The
purpose of each of these fields is defined below.

filterable_data

Thefilterable_data portion of the body of a Structured Event is a sequence of name-
value pairs, where name is of tyglring and the value is £ORBA::Any . The main
purpose of this portion of the event body is to provide a convenient structure into
which event body fields upon which filtering is likely to be performed can be placed. It
is anticipated that mappings of standard event types to the Structured Event will be
defined such that standard event body field names correspond to values of well-known
data types. Examples of such mappings for common event types used within the
Telecommunications industry are provided in Section 1.2, “Conformance Issues,” on
page 1-3 of this document. In addition, end users can define their own name-value
pairs which comprise the filterable portion of any proprietary event types.

remainder_of body

Theremainder_of body portion of the event body is intended to hold event data
upon which filtering is not likely to be performed. From a logical point of view, the
“interesting” fields of the event data should be placed intofiterable_data portion,

and the “rest” of the event placed here. Obviously it is not possible to predict what
portion of the event will be interesting (or not) to all consumers. The division of the
event body within the structured event in this fashion merely provides a hint to
consumers. It is still possible to perform filtering on the contents of the

remainder_of body portion of the event body, however this will require
decomposing the Any data structure which contains this portion into actual typed data
elements, using the typecode contained within the Any. Thus filtering on this portion of
the event body is likely to be less efficient than filtering on fiiterable_data

portion.

3.1.2 The EventBatch Data Type

The CosNotification module defines th&ventBatch data type as a sequence of
Structured Events. Th€osNotifyComm module defined in Section 3.3, “The
CosNotifyComm Module,” on page 3-28 defines interfaces which support the
transmission and receipt of sequences of Structured Events within a single operation.
Such a sequence of Structured Events transmitted as a unit is referred t@asnan
batch and is of theEventBatch data type.

Notification Service V1.0 The CosNotification Module June 2000 3-7

3.1.3 QoS and Administrative Constant Declarations

The CosNotification module declares several constants related to QoS properties of
event transmission, and administrative properties of notification channels. The
meanings of each property related to QoS and its associated values is described in
detail in Section 2.5.5, “Notification QoS Properties,” on page 2-37 of this document.
The meanings of each property related to channel administration and its associated
values is described in Section 2.5.7, “Notification Channel Administrative Properties,”
on page 2-48.

3.1.4 The QoSAdmin Interface

The QoSAdmin interface defines operations which enable clients to get and set the
values of QoS properties. It also defines an operation that can verify whether or not a
set of requested QoS property settings can be satisfied, along with returning
information about the range of possible settings for additional QoS properties.
QoSAdmin is intended to be an abstract interface which is inherited by the Proxy,
Admin, and Event Channel interfaces defined in @esNotifyChannelAdmin and
CosTypedNotifyChannelAmin modules. The semantics of the operations supported
by this interface are defined below.

3.1.4.1 get_qos

Theget_qos operation takes no input parameters, and returns a sequence of name-
value pairs which encapsulates the current quality of service settings for the target
object (which could be an Event Channel, Admin, or Proxy object).

3.1.4.2 set_qos

Theset_gos operation takes as an input parameter a sequence of name-value pairs
which encapsulates quality of service property settings that a client is requesting that
the target object (which could be an Event Channel, Admin, or Proxy object) support
as its default quality of service. If the implementation of the target object is not
capable of supporting any of the requested quality of service settings, or if any of the
requested settings would be in conflict with a QoS property defined at a higher level of
the object hierarchy with respect to QoS (see Section 2.5.6, “Negotiating QoS and
Conflict Resolution,” on page 2-42), tiénsupportedQoS exception is raised. This
exception contains as data a sequence of data structures, each of which identifies the
name of a QoS property in the input list whose requested setting could not be satisfied,
along with an error code and a range of settings for the property which could be
satisfied. The meanings of the error codes which might be returned are described in
Table 2-5 on page 2-46.

3.1.4.3 validate _qos

Thevalidate_qos operation accepts as input a sequence of QoS property name-value
pairs which specify a set of QoS settings that a client would like to know if the target
object is capable of supporting. If the any of the requested settings could not be

Notification Service V1.0 June 2000

3

satisfied by the target object, the operation raisesthsupportedQoS exception.

This exception contains as data a sequence of data structures, each of which identifies
the name of a QoS property in the input list whose requested setting could not be
satisfied, along with an error code and a range of settings for the property which could
be satisfied. The meanings of the error codes which might be returned are described in
Table 2-5 on page 2-46.

If all requested QoS property value settings could be satisfied by the target object, the
operation returns successfully (without actually setting the QoS properties on the target
object) with an output parameter that contains a sequen&eopfertyRange data
structures. Each element in this sequence includes the name of an additional QoS
property supported by the target object which could have been included on the input
list and resulted in a successful return from the operation., along with the range of
values that would have been acceptable for each such property.

3.1.5 The AdminPropertiesAdmin Interface

The AdminPropertiesAdmin interface defines operations which enable clients to get
and set the values of administrative properties. This interface is intended to be an
abstract interface which is inherited by the Event Channel interfaces defined in the
CosNotifyChannelAdmin andCosTypedNotifyChannelAmin modules. The
semantics of the operations supported by this interface are defined below.

3.1.5.1 get_admin

Theget _admin operation takes no input parameters, and returns a sequence of name-
value pairs which encapsulates the current administrative settings for the target
channel.

3.1.5.2 set_admin

Theset_admin operation takes as an input parameter a sequence of name-value pairs
which encapsulates administrative property settings that a client is requesting that the
target channel support. If the implementation of the target object is not capable of
supporting any of the requested administrative property settings, the
UnsupportedAdmin exception is raised. This exception has associated with it a list
of name-value pairs of which each name identifies an administrative property whose
requested setting could not be satisfied, and each associated value the closest setting
for that property which could be satisfied.

3.2 The CosNotifyFilter Module

The CosNotifyFilter module defines the interfaces supported by the filter objects used
by the Notification Service. Two different types of filter objects are defined here. The
first type support thé-ilter interface and encapsulate the constraints which will be
used by a proxy object associated with a notification channel in order to make
decisions about which events to forward, and which to discard. The second type
support theMappingFilter interface and encapsulate constraints along with associated

Notification Service V1.0 The CosNotifyFilter Module June 2000 3-9

values, whereby the constraints determine whether a proxy object will alter the way it
treats each event with respect to a particular property of the event, and the value
specifies the property value the proxy would apply to each event which satisfies the
associated constraint. In addition to the two types of filter object interface defined in
this module, theCosNotifyFilter module also defines thiilterFactory interface

which supports the operations required to create each type of filter object, and the
FilterAdmin interface which supports operations which enable an interface (Proxy or
Admin) which inherits it to manage a list &filter instances.

module CosNoatifyFilter {
typedef long ConstraintID;
struct ConstraintExp {

CosNatification::EventTypeSeq event_types;
string constraint_expr;

typedef sequence<ConstraintiID> ConstraintiDSeq;
typedef sequence<ConstraintExp> ConstraintExpSeq;

struct Constraintinfo {
ConstraintExp constraint_expression;
ConstraintID constraint_id;

typedef sequence<Constraintinfo> ConstraintinfoSeq;

struct MappingConstraintPair {
ConstraintExp constraint_expression;
any result_to_set;

typedef sequence<MappingConstraintPair> MappingConstraintPairSeq;

struct MappingConstraintinfo {
ConstraintExp constraint_expression;
ConstraintID constraint_id;
any value;

typedef sequence<MappingConstraintinfo> MappingConstraintinfoSeq;

typedef long CallbackID;
typedef sequence<CallbacklD> CallbackiDSeq;

3-10 Notification Service V1.0 June 2000

exception UnsupportedFilterableData {};

exception InvalidGrammar {};

exception InvalidConstraint {ConstraintExp constr;};
exception DuplicateConstraintID {ConstraintID id;};

exception ConstraintNotFound {ConstraintID id;};
exception CallbackNotFound {};

exception InvalidValue {ConstraintExp constr; any value;};

interface Filter {

readonly attribute string constraint_grammar;

ConstraintinfoSeq add_constraints (
in ConstraintExpSeq constraint_list)
raises (InvalidConstraint);

void modify_constraints (
in ConstraintiDSeq del_list,
in ConstraintinfoSeq modify_list)
raises (InvalidConstraint, ConstraintNotFound);

ConstraintinfoSeq get_constraints(
in ConstraintiDSeq id_list)
raises (ConstraintNotFound);

ConstraintinfoSeq get_all_constraints();

void remove_all_constraints();

void destroy();

boolean match (in any filterable_data)
raises (UnsupportedFilterableData);

boolean match_structured (
in CosNotification::StructuredEvent filterable_data)
raises (UnsupportedFilterableData);

Notification Service V1.0 The CosNotifyFilter Module June 2000 3-11

boolean match_typed (
in CosNotification::PropertySeq filterable_data)
raises (UnsupportedFilterableData);

CallbackID attach_callback (
in CosNotifyComm::NotifySubscribe callback);

void detach_callback (in CallbackID callback)
raises (CallbackNotFound);

CallbackiDSeq get_callbacks();

}; I Filter

interface MappingFilter {

readonly attribute string constraint_grammar;

readonly attribute CORBA::TypeCode value_type;

readonly attribute any default_value;

MappingConstraintinfoSeq add_mapping_constraints (
in MappingConstraintPairSeq pair_list)
raises (InvalidConstraint, InvalidVvalue);

void modify_mapping_constraints (
in ConstraintiDSeq del_list,
in MappingConstraintinfoSeq modify_list)
raises (InvalidConstraint, Invalidvalue,
ConstraintNotFound);

MappingConstraintinfoSeq get_mapping_constraints (
in ConstraintIDSeq id_list)
raises (ConstraintNotFound);

MappingConstraintinfoSeq get_all_mapping_constraints();

void remove_all_mapping_constraints();

void destroy();

3-12 Notification Service V1.0 June 2000

boolean match (in any filterable_data,
out any result_to_set)
raises (UnsupportedFilterableData);

boolean match_structured (
in CosNotification::StructuredEvent filterable_data,
out any result_to_set)
raises (UnsupportedFilterableData);

boolean match_typed (
in CosNotification::PropertySeq filterable_data,
out any result_to_set)
raises (UnsupportedFilterableData);

}; I MappingFilter

interface FilterFactory {

Filter create_filter (
in string constraint_grammar)
raises (InvalidGrammar);

MappingFilter create_mapping_filter (
in string constraint_grammar,
in any default_value)

raises(InvalidGrammar);

}; /I FilterFactory

typedef long FilterID;
typedef sequence<FilterID> FilterIDSeq;

exception FilterNotFound {};

interface FilterAdmin {

FilterID add_filter (in Filter new_filter);

void remove_filter (in FilterID filter)
raises (FilterNotFound);

Notification Service V1.0 The CosNotifyFilter Module June 2000 3-13

3-14

Filter get_filter (in FilterID filter)
raises (FilterNotFound);

FilterIDSeq get_all_filters();

void remove_all_filters();

}; Il FilterAdmin

}; I/ CosNotifyFilter

3.2.1 The Filter Interface

TheFilter interface defines the behaviors supported by objects which encapsulate
constraints used by the proxy objects associated with an event channel in order to
determine which events they receive will be forwarded, and which will be discarded.
Each object supporting thélter interface can encapsulate a sequence of any number
of constraints. Each event received by a proxy object which has one or more objects
supporting theFilter interface associated with it must satisfy at least one of the
constraints associated with one of its associ&ti#tdr objects in order to be forwarded
(either to another proxy object or to the consumer, depending on the type of proxy the
filter is associated with), otherwise it will be discarded.

Each constraint encapsulated by a filter object is a structure comprised of two main
components. The first component is a sequence of data structures, each of which
indicates an event type comprised of a domain and a type name. The second
component is a boolean expression over the properties of an event, expressed in some
constraint grammar (more on this below). For a given constraint, the sequence of event
type structures in the first component nominates a set of event types to which the
constraint expression in the second component applies. Each element of the sequence
can contain strings which will be matched for equality againsdirain_name and
type_name fields of each event being evaluated by the filter object, or it could

contain strings with wildcard symbols (*), indicating a pattern match should be
performed against the type contained in each event, rather than a comparison for
equality when determining if the boolean expression should be applied to the event, or
the event should simply be discarded without even attempting to apply the boolean
expression. Note that an empty sequence included as the first component of a
constraint implies that the associated expression applies to all types of events, as does
a sequence comprised of a single element whose domain and type name are both set to
either the empty string or else the wildcard symbol alone contained in quotes.

The constraint expressions associated with a particular object supportifgttre
interface are expressed as strings which obey the syntax of a particular constraint
grammar (i.e., a BNF). Every conformant implementation of this service must support
constraint expressions expressed in the default constraint grammar described in
Section 2.4, “The Default Filter Constraint Language,” on page 2-23. In addition,

Notification Service V1.0 June 2000

3

implementations may support other constraint grammars, and/or users of this service
may implement their own filter objects which allow constraints to be expressed in
terms of an alternative constraint grammar. As long as such user-defined filter objects
support theFilter interface, they can be attached to Proxy or Admin objects in the
same fashion as the defalliliter objects supported by the implementation of the
service are, and the channel should be able to use them to filter events in the same
fashion.

TheFilter interface supports the operations required to manage the constraints
associated with an object instance which supports the interface, along with a readonly
attribute which identifies the particular constraint grammar in which the constraints
encapsulated by this object have meaning. In additionfFther interface supports

three variants of thenatch operation which can be invoked by an associated proxy
object upon receipt of an event (the specific variant selected depends upon whether the
event is received in the form of an Any, a Structured Event, or a Typed Event), to
determine if the event should be forwarded or discarded, based on whether or not the
event satisfies at least one criteria encapsulated by the filter object.

TheFilter interface also supports operations which enable a client to associate with
the target filter object any number of “callbacks” which are notified each time there is
a change to the list of event types which the constraints encapsulated by the filter
object could potentially cause proxies to which the filter is attached to receive.
Operations are also defined to support administration of this callback list by unique
identifier.

The operations supported by tRéter interface are described in more detail within the
following subsections.

3.2.1.1 constraint_grammar

The constraint_grammar attribute is a readonly attribute which identifies the
particular grammar within which the constraint expressions encapsulated by the target
filter object have meaning. The value of this attribute is set upon creation of a filter
object instance, based on the input provided to the factory creation operation for the
filter instance.

The dependency of a filter object on its constraints being expressed within a particular
constraint grammar manifests itself within the implementation ofntia¢ch

operations described below, which must be able to parse the constraints to determine
whether or not a particular event satisfies one of them.

Every conformant implementation of the Notification Service must support an
implementation of thé-ilter interface which supports the default constraint grammar
described in Section 2.4, “The Default Filter Constraint Language,” on page 2-23.
[Reviewer please clarify the following: The value which theonstraint_grammar

attribute is set to in the case the target filter object supports this default grammar will be
“EXTENDED_TCL".] In addition, implementations and/or end users may provide
additional implementations of theilter interface which support different constraint
grammars, and thus would set tbenstraint_grammar attribute to a different value
upon creation of such a filter object.

Notification Service V1.0 The CosNotifyFilter Module June 2000 3-15

3-16

3.2.1.2 add_contraints

The add_constraints operation is invoked by a client in order to associate one or
more new constraints with the target filter object. The operation accepts as input a
sequence of constraint data structures, each element of which consists of a sequence of
event type structures (described in Section 3.2.1, “The Filter Interface,” on page 3-14)
and a constraint expressed within the constraint grammar supported by the target
object. Upon processing each constraint, the target object associates a numeric
identifier with the constraint that is unigue among all constraints it encapsulates. If any
of the constraints in the input sequence is not a valid expression within the supported
constraint grammar, thiwvalidConstraint exception is raised. This exception

contains as data the specific constraint expression that was determined to be invalid.
Upon successful processing of all input constraint expressiongdtheconstraints
operation returns a sequence in which each element will be a structure including one of
the input constraint expressions, along with the unique identifier assigned to it by the
target filter object.

Note that the semantics of tlaeld_constraints operation are such that its side-

effects are performed atomically upon the target filter object. Gauttk constraints

is invoked by a client, the target filter object is temporarily disabled from usage by any
proxy object it may be associated with. The operation is then carried out, either
successfully adding all of the input constraints to the target object or none of them (in
the case one of the input expressions was invalid). Upon completion of the operation,
the target filter object is effectively re-enabled and can once again be used by
associated filter objects in order to make event forwarding decisions.

3.2.1.3 modify_constraints

The modify_constraints operation is invoked by a client in order to modify the
constraints associated with the target filter object. This operation can be used both to
remove constraints currently associated with the target filter object, and to modify the
constraint expressions of constraints which have previously been added to the target
filter object.

The operation accepts two input parameters. The first input parameter is a sequence of
numeric values which are each intended to be the unique identifier associated with one
of the constraints currently encapsulated by the target filter object. If all input values
supplied within a particular invocation of this operation are valid, then the specific
constraints identified by the values contained in the first input parameter will be
deleted from the list of those encapsulated by the target filter object.

The second input parameter to this operation is a sequence of structures, each of which
contains a constraint structure and a numeric value. The numeric value contained by
each element of the sequence is intended to be the unique identifier associated with one
of the constraints currently encapsulated by the target filter object. If all input values
supplied within a particular invocation of this operation are valid, then the constraint
expression associated with the already encapsulated constraint identified by the
numeric value contained within each element of the input sequence will be modified to
the new constraint expression that is contained within the same sequence element.

Notification Service V1.0 June 2000

3

3.2.14

3.2.1.5

3.2.1.6

If any of the numeric values supplied within either of the two input sequences does not
correspond to the unique identifier associated with some constraint currently
encapsulated by the target filter object, tBenstraintNotFound exception is raised.

This exception contains as data the specific identifier which was supplied as input but
did not correspond to the identifier of some constraint encapsulated by the target
object. If any of the constraint expressions supplied within an element of the second
input sequence is not a valid expression in terms of the constraint grammar supported
by the target object, thivalidConstraint exception is raised. This exception

contains as data the specific constraint that was determined to be invalid.

Note that the semantics of tieodify _constraints operation are such that its side-
effects are performed atomically upon the target filter object. Once

modify_constraints is invoked by a client, the target filter object is temporarily
disabled from usage by any proxy object it may be associated with. The operation is
then carried out, either successfully deleting all of the constraints identified in the first
input sequence and modifying those associated with constraints identified in the second
input sequence, or performing no side effects to the target object (in the case one of the
inputs was invalid). Upon completion of the operation, the target filter object is
effectively re-enabled and can once again be used by associated filter objects in order
to make event forwarding decisions.

get_constraints

The get_constraints operation is invoked to return a sequence of a subset of the
constraints associated with the target filter object. The operation accepts as input a
sequence of numeric values which should correspond to the unique identifiers of
constraints encapsulated by the target object. If one of the input values does not
correspond to the identifier of some encapsulated constraint, the
ConstraintNotFound exception is raised, containing as data the numeric value that
did not correspond to some constraint. Upon successful completion, this operation
returns a sequence of data structures, each of which contains one of the input
identifiers along with its associated constraint.

get_all_constraints

Theget_all_constraints operation returns all of the constraints currently

encapsulated by the target filter object. The return value of this operation is a sequence
of structures, each of which contains one of the constraints encapsulated by the target
object along with its associated unique identifier.

remove_all_constraints

Theremove_all_constraints operation is invoked to remove all of the constraints
currently encapsulated by the target filter object. Upon completion, the target filter
object will still exist but have no constraints associated with it.

Notification Service V1.0 The CosNotifyFilter Module June 2000 3-17

3-18

3.2.1.7

3.2.1.8

destroy

Thedestroy operation destroys the target filter object, invalidating its object
reference.

match

The match operation evaluates the filter constraints associated with the target filter
object against an instance of an event supplied to the channel in the form of a
CORBA::Any . The operation accepts as inpuC®RBA::Any which contains an

event to be evaluated, and returns a boolean value which will be TRUE in cases where
the input event satisfies one of the filter constraints, and FALSE otherwise. The act of
determining whether or not a given event passes a given filter constraint is specific to
the type of grammar in which the filter constraint is specified. Thus, this operation will
need to be re-implemented for each supported grammar.

If the input parameter contains data that thatch operation is not designed to

handle, thdJnsupportedFilterableData exception will be raised. An example of

this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.1.9 match_structured

The match_structured operation evaluates the filter constraints associated with the
target filter object against an instance of an event supplied to the channel in the form of
a Structured Event. The operation accepts as input a data structure of type
CosNotification::StructuredEvent which contains an event to be evaluated, and
returns a boolean value which will be TRUE in cases where the input event satisfies
one of the filter constraints, and FALSE otherwise. The act of determining whether or
not a given event passes a given filter constraint is specific to the type of grammar in
which the filter constraint is specified. Thus, this operation will need to be re-
implemented for each supported grammar.

If the input parameter contains data that thatchoperation is not designed to handle,
theUnsupportedFilterableData exception will be raised. An example of this would

be if the filterable data contained a field whose name corresponds to a standard event
field that has a numeric value, but the actual value associated with this field name
within the event is a string.

3.2.1.10 match_typed

Thematch operation evaluates the filter constraints associated with the target filter
object against an instance of an event supplied to the channel in the form of a typed
event. The operation accepts as input a sequence of name-value pairs which contains
the contents of the event to be evaluated (how a typed event is converted to a sequence
of name-value pairs by the channel is described in Section 2.7, “Filtering Typed
Events,” on page 2-52), and returns a boolean value which will be TRUE in cases
where the input event satisfies one of the filter constraints, and FALSE otherwise. The

Notification Service V1.0 June 2000

3

act of determining whether or not a given event passes a given filter constraint is
specific to the type of grammar in which the filter constraint is specified. Thus, this
operation will need to be re-implemented for each supported grammar.

If the input parameter contains data that thatch operation is not designed to

handle, thdJnsupportedFilterableData exception will be raised. An example of

this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.1.11 attach_callback

Theattach_callback operation accepts as input the reference to an object supporting
the CosNotifyComm::NotifySubscribe interface, and returns a numeric value
assigned to this callback that is unique to all such callbacks currently associated with
the target object. This operation is invoked to associate with the target filter object an
object supporting th€osNotifyComm::NotifySubscribe interface. This interface

is inherited by all supplier interfaces (either those that are clients of a notification
channel, or those that are proxy objects within a notification channel) defined by the
Notification Service, and supportssabscription_change operation. After this
operation has been successfully invoked on a filter object, each time the set of
constraints associated with the target filter object is modified (either by an invocation
of its add_constraints or its modify_constraints operations), the filter object will
invoke thesubscription_change object of all its associated callback objects in order
to inform suppliers to which the target filter object is attached of the change in the set
of event types to which clients of the filter object subscribe. This enables suppliers to
make intelligent decisions about which types of events it should actually produce, and
which it can suppress the production of. This mechanism is described in more detail in
Section 2.6, “Sharing Subscriptions,” on page 2-49.

3.2.1.12 detach_callback

Thedetach_callback operation accepts as input a numeric value which should be
one of the unique identifiers associated with one of the callback objects attached to the
target filter object. If the input value does not correspond to the unique identifier of a
callback object currently attached to the target filter object,GladlbackNotFound
exception is raised. Otherwise, the callback object to which the input value
corresponds is removed from the list of those associated with the target filter object, so
that subsequent changes to the event type subscription list encapsulated by the target
filter object will not be propagated to the callback object which is being detached.

3.2.1.13 get_callbacks

Theget_callbacks operation accepts no input parameters and returns the sequence of
all unique identifiers associated with callback objects attached to the target filter
object.

Notification Service V1.0 The CosNotifyFilter Module June 2000 3-19

3-20

3.2.2 The MappingFilter Interface

The MappingFilter interface defines the behaviors of objects which encapsulate a
sequence of constraint-value pairs, where each constraint is a structure of the same
type as that described in Section 3.2.1, “The Filter Interface,” on page 3-14, and each
value represents a possible setting of a particular property of an event. Nosettiad

of a particular propertyis not intended to imply that any contents of the event will be
altered as a result of applying a mapping filter, but rather the way a proxy treats the
event with respect to a particular property (i.e., priority or lifetime) could change.
Upon receiving each event, a proxy object with an associated object supporting the
MappingFilter interface will invoke the appropriat@match operation variant

(depending upon whether the event is received in the form of an untyped event, a
Structured Event, or a typed event) on the mapping filter object in order to determine
how it should modify a particular property value associated with the event to one of the
values associated with one of the constraints encapsulated by the mapping filter.
Internally, the mapping filter object applies the constraints it encapsulates to the event
in order to determine whether or not the event's property should be modified to one of
the values associated with a constraint, or else the default value associated with the
mapping filter.

Each instance of an object supporting MappingFilter interface is typically

associated with a specific event property. For instance, in this specification
MappingFilter object instances are used to affect the properties of priority and
lifetime for events received by a proxy supplier object. Each event received by a proxy
object, which has an object supporting tMappingFilter interface associated with it
must satisfy at least one of the constraints associated withl#ppingFilter objectin

order to have its property value modified, otherwise the property will remain
unchanged. A specific instance supporting kappingFilter interface typically

applies its encapsulated constraints in an order which begins with the best possible
property setting (e.g., the highest priority or the longest lifetime), and ends with the
worst possible property setting. As soon as a matching constraint is encountered, the
associated value is returned as an output parameter and the proxy which invoked the
operation proceeds to modify the property of the event to the new value.

The constraint expressions associated with a particular object supporting the
MappingFilter interface are expressed as strings which obey the syntax of a particular
constraint grammar (i.e., a BNF). Every conformant implementation of this service
must support constraint expressions expressed in the default constraint grammar
described in Section 2.4, “The Default Filter Constraint Language,” on page 2-23. In
addition, implementations may support other constraint grammars, and/or users of this
service may implement their own filter objects which allow constraints to be expressed
in terms of an alternative constraint grammar. As long as such user-defined filter
objects support th#¥appingFilter interface, they can be attached to proxy objects in
the same fashion as the defaMlappingFilter objects supported by the

implementation of the service are, and the channel should be able to use them to
potentially affect the properties of events in the same fashion.

The MappingFilter interface supports the operations required to manage the
constraint-value pairs associated with an object instance which supports the interface.
In addition, theMappingFilter interface supports a readonly attribute which identifies

Notification Service V1.0 June 2000

3

the particular constraint grammar in which the constraints encapsulated by this object
have meaning. Th#appingFilter interface also supports a readonly attribute which
identifies the typecode associated with the datatype of the specific property value it is
intended to affect, and another readonly attribute which holds the default value which
will be returned as the result of a match operation in cases when the event in question
is found to satisfy none of the constraints encapsulated by the mapping filter. Lastly,
the MappingFilter interface supports three variants of the operation which will be
invoked by an associated proxy object upon receipt of an event, to determine how the
property of the event which the target mapping filter object was designed to affect
should be modified.

The operations supported by tMappingFilter object are described in more detail
within the following subsections.

3.2.2.1 constraint_grammar

The constraint_grammar attribute is a readonly attribute which identifies the
particular grammar within which the constraint expressions encapsulated by the target
filter object have meaning. The value of this attribute is set upon creation of a mapping
filter object instance, based on the input provided to the factory creation operation for
the mapping filter instance.

The dependency of a filter object on its constraints being expressed within a particular
constraint grammar manifests itself within the implementation ofnia¢ch

operations described below, which must be able to parse the constraints to determine
whether or not a particular event satisfies one of them.

Every conformant implementation of the Notification Service must support an
implementation of thélappingFilter object which supports the default constraint
grammar described in Section 2.4, “The Default Filter Constraint Language,” on

page 2-23. The value which tle®nstraint_grammar attribute is set to in case the
target filter object supports this default grammar will be “EXTENDED_TCL.” In
addition, implementations and/or end users may provide additional implementations of
the MappingFilter interface that support different constraint grammars, and thus
would set theconstraint_grammar attribute to a different value upon creation of

such a filter object.

3.2.2.2 value_type

Thevalue_type attribute is a readonly attribute which identifies the datatype of the
property value which the target mapping filter object was designed to affect. Note that
the factory creation operation for mapping filter objects accepts as an input parameter
the default_value to associate with the mapping filter instance. Ttiefault_value

is aCORBA::Any . Upon creation of a mapping filter, the Typecode associated with
the default_value is extracted from th€ORBA::Any , and its value is assigned to

this attribute. Thevalue_type attribute thus serves mainly as a convenience for clients
attempting to examine the state of a mapping filter object.

Notification Service V1.0 The CosNotifyFilter Module June 2000 3-21

3-22

3.2.2.3 default_value

The default_value attribute is a readonly attribute that will be the output parameter
returned as the result of amyatch operation during which the input event is found to

satisfy none of the constraints encapsulated by the mapping filter. within which the

constraints encapsulated by the target filter object have meaning. The value of this
attribute is set upon creation of a mapping filter object instance, based on the input
provided to the factory creation operation for the mapping filter instance.

3.2.2.4 add_mapping_contraints

The add_mapping_constraints operation is invoked by a client in order to

associate specific mapping constraints with the target filter object. Note that a mapping
constraint is comprised of a constraint structure paired with an associated value. The
operation accepts as input one parameter that is a sequence of constraint-value pairs.
Each constraint in this sequence must be expressed within the constraint grammar
supported by the target object, and each associated value must be of the data type
indicated by thevalue_type attribute of the target object.

Upon processing each element in the input sequence, the target object associates a
numeric identifier with this constraint-value pair that is unique among all those that it
encapsulates. If any of the constraint expressions in the input sequence is not a valid
expression within the supported constraint grammar)ivalidConstraint exception

is raised. This exception contains as data the specific constraint that was determined to
be invalid. If any of the values supplied in the input sequence is not of the same
datatype as that indicated by thalue_type attribute associated with the target

object, thelnvalidValue exception is raised. This exception contains as data both the
invalid value and its corresponding constraint in the first input sequence. Upon
successful processing of all input constraints, ddd_mapping_constraints

operation returns a sequence in which each element will be a structure including one of
the input constraint expressions, its corresponding value, and the unique identifier
assigned to this constraint-value pair by the target filter object.

Note that the semantics of tlaeld_mapping_constraints operation are such that its
side-effects are performed atomically upon the target filter object. Once
add_mapping_constraints is invoked by a client, the target filter object is

temporarily disabled from usage by any proxy object it may be associated with. The
operation is then carried out, either successfully adding all of the input constraint-value
pairs to the target object or none of them (in case one of the input expressions or
values was invalid). Upon completion of the operation, the target filter object is
effectively re-enabled and can once again be used by associated filter objects in order
to make event property mapping decisions.

Notification Service V1.0 June 2000

3.2.2.5 modify_mapping_constraints

The modify_mapping_constraints operation is invoked by a client in order to

modify the constraint-value pairs associated with the target filter object. This operation
can be used both to remove constraint-value pairs currently associated with the target
filter object, and to modify the constraints and/or values of constraint-value pairs
which have previously been added to the target filter object.

The operation accepts two input paramaters. The first input parameter is a sequence of
numeric values which are each intended to be the unique identifier associated with one
of the constraint-value pairs currently encapsulated by the target filter object. If all
input values supplied within a particular invocation of this operation are valid, then the
specific constraint-value pairs identified by the values contained in the first input
parameter will be deleted from the list of those encapsulated by the target filter object.

The second input parameter to this operation is a sequence of structures, each of which
contains a constraint structure, an Any value, and a numeric identifier. The numeric
identifier contained by each element of the sequence is intended to be the unique
identifier associated with one of the constraint-value pairs currently encapsulated by
the target filter object. If all input values supplied within a particular invocation of this
operation are valid, then the constraint associated with the already encapsulated
constraint-value pair identified by the numeric identifier contained within each element
of the input sequence will be modified to the new constraint that is contained within
the same sequence element. Likewise, the data value associated with the already
encapsulated constraint-value pair identified by the numeric identifier contained within
each element of the input sequence will be modified to the new data value that is
contained in the same element of the sequence.

If any of the numeric identifiers supplied within either of the two input sequences does
not correspond to the unique identifier associated with some constraint-value pairs
currently encapsulated by the target filter object, B@nstraintNotFound exception

is raised. This exception contains as data the specific identifier which was supplied as
input but did not correspond to the identifier of some constraint-value pair
encapsulated by the target object. If any of the constraint expressions supplied within
an element of the second input sequence is not a valid expression in terms of the
constraint grammar supported by the target object|nialidConstraint exception is
raised. This exception contains as data the specific constraint that was determined to be
invalid. If any of the values supplied in the second input sequence is not of the same
datatype as that indicated by thialue_type attribute associated with the target

object, thelnvalidValue exception is raised. This exception contains as data both the
invalid value and its corresponding constraint expression.

Note that the semantics of theodify_mapping_constraints operation are such

that its side-effects are performed atomically upon the target filter object. Once
modify_mapping_constraints is invoked by a client, the target filter object is
temporarily disabled from usage by any proxy object it may be associated with. The
operation is then carried out, either successfully deleting all of the constraint-value
pairs identified in the first input sequence and modifying the constraints and values
associated with constraints identified in the second input sequence, or performing no
side effects to the target object (in the case one of the inputs was invalid). Upon

Notification Service V1.0 The CosNotifyFilter Module June 2000 3-23

3-24

3.2.2.6

3.2.2.7

3.2.2.8

3.2.2.9

completion of the operation, the target filter object is effectively re-enabled and can
once again be used by associated filter objects in order to make event property
mapping decisions.

get_mapping_constraints

Theget_mapping_constraints operation is invoked to return a sequence of a subset

of the constraint-value pairs associated with the target filter object. The operation
accepts as input a sequence of numeric values which should correspond to the unique
identifiers of constraint-value pairs encapsulated by the target object. If one of the
input values does not correspond to the identifier of some encapsulated constraint-
value pair, theConstraintNotFound exception is raised, containing as data the
numeric value that did not correspond to some such pair. Upon successful completion,
this operation returns a sequence of data structures, each of which contains one of the
input identifiers along with its associated constraint structure and constraint value.

get_all_mapping_constraints

Theget_all_mapping_constraints operation returns all of the constraint-value

pairs currently encapsulated by the target filter object. The return value of this
operation is a sequence of structures, each of which contains one of the constraints
encapsulated by the target object along with its associated value and unique identifier.

remove_all_mapping_constraints

The remove_all_mapping_constraints operation is invoked to remove all of the
constraint-value pairs currently encapsulated by the target filter object. Upon
completion, the target filter object will still exist but have no constraint-value pairs
associated with it.

destroy

Thedestroy operation destroys the target filter object, invalidating its object
reference.

3.2.2.10 match

Thematch operation is invoked on an object supporting MappingFilter interface

in order to determine how some property value of a particular event supplied to the
channel in the form of £ORBA::Any should be modified. The operation accepts an
Any as input, which contains the event being evaluated. Upon invocation, the target
mapping filter object begins applying the constraints it encapsulates in order according
to each constraints associated value, starting with the constraint with the “best”
associated value for the specific property the mapping filter object was designed to
affect (e.g., the highest priority, the longest lifetime, etc.), and ending with the
constraint with the “worst” associated value. Upon encountering a constraint which the
input filterable data matches, the operation sets the output parameter contained in its

Notification Service V1.0 June 2000

3

signature to the value associated with the constraint, and sets the return value of the
operation to TRUE. If the input filterable data satisfies none of the constraints
encapsulated by the target mapping filter object, the return value of the operation is set
to FALSE, and the output parameter is set to the value ofifault_value attribute
associated with the target mapping filter object. The act of determining whether or not
a given filterable event data passes a given filter constraint is specific to the type of
grammar in which the filter constraint is specified. Thus, this operation will need to be
re-implemented for each supported grammar.

If the input parameter contains data that thatch operation is not designed to

handle, thdJnsupportedFilterableData exception will be raised. An example of

this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.2.11 match_structured

The match_structured operation is invoked on an object supporting the
MappingFilter interface in order to determine how some property value of a
particular event supplied to the channel in the form of a Structured Event should be
modified. The operation acceptsConsNotification::StructuredEvent as input,

which contains the event being evaluated. Upon invocation, the target mapping filter
object begins applying the constraints it encapsulates in order according to each
constraints associated value, starting with the constraint with the “best” associated
value for the specific property the mapping filter object was designed to affect (e.g., the
highest priority, the longest lifetime, etc.), and ending with the constraint with the
“worst” associated value. Upon encountering a constraint which the input filterable
data matches, the operation sets the output parameter contained in its signature to the
value associated with the constraint, and sets the return value of the operation to
TRUE. If the input filterable data satisfies none of the constraints encapsulated by the
target mapping filter object, the return value of the operation is set to FALSE, and the
output parameter is set to the value of ttefault_value attribute associated with the
target mapping filter object. The act of determining whether or not a given filterable
event data passes a given filter constraint is specific to the type of grammar in which
the filter constraint is specified. Thus, this operation will need to be re-implemented for
each supported grammar.

If the input parameter contains data that thatch operation is not designed to

handle, thdJnsupportedFilterableData exception will be raised. An example of

this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.2.12 match_typed

The match_typed operation is invoked on an object supporting MappingFilter

interface in order to determine how some property value of a particular event supplied
to the channel in the form of a typed event should be modified. The operation accepts
as input a sequence of name-value pairs which contains the contents of the event to be

Notification Service V1.0 The CosNotifyFilter Module June 2000 3-25

3-26

evaluated (how a typed event is converted to a sequence of name-value pairs by the
channel is described in Section 2.7, “Filtering Typed Events,” on page 2-52). Upon
invocation, the target mapping filter object begins applying the constraints it
encapsulates in order according to each constraints associated value, starting with the
constraint with the “best” associated value for the specific property the mapping filter
object was designed to affect (e.g., the highest priority, the longest lifetime, etc.), and
ending with the constraint with the “worst” associated value. Upon encountering a
constraint which the input filterable data matches, the operation sets the output
parameter contained in its signature to the value associated with the constraint, and sets
the return value of the operation to TRUE. If the input filterable data satisfies none of
the constraints encapsulated by the target mapping filter object, the return value of the
operation is set to FALSE, and the output parameter is set to the value of the
default_value attribute associated with the target mapping filter object. The act of
determining whether or not a given filterable event data passes a given filter constraint
is specific to the type of grammar in which the filter constraint is specified. Thus, this
operation will need to be re-implemented for each supported grammar.

If the input parameter contains data that thatch operation is not designed to

handle, thdJnsupportedFilterableData exception will be raised. An example of

this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.3 The FilterFactory Interface

The FilterFactory interface defines operations for creating filter objects.

3.2.3.1 create_filter

Thecreate_filter operation is responsible for creating a new forwarding filter object.

It takes as input a string parameter which identifies the grammar in which constraints
associated with this filter will have meaning. If the client invoking this operation
supplies as input the name of a grammar that is not supported by any forwarding filter
implementation this factory is capable of creating, thealidGrammar exception is
raised. Otherwise, the operation returns the reference to an object supportifitiethe
interface, which can subsequently be configured to support constraints in the
appropriate grammar.

3.2.3.2 create_mapping_filter

The create_mapping_filter operation is responsible for creating a new mapping
filter object. It takes as input a string parameter which identifies the grammar in which
constraints associated with this filter will have meaning, and an Any which will be set
as thedefault_value of the newly created mapping filter. If the client invoking this
operation supplies as input the name of a grammar that is not supported by any
mapping filter implementation this factory is capable of creating, the
InvalidGrammar exception is raised. Otherwise, the operation returns the reference

Notification Service V1.0 June 2000

3

to an object supporting thielappingFilter interface, which can subsequently be
configured to support constraints in the appropriate grammar, along with their
associated mapping values.

3.2.4 The FilterAdmin Interface

The FilterAdmin interface defines operations that enable an object supporting this
interface to manage a list of filter objects, each of which supports$-iter interface.
This interface is intended to be an abstract interface which is inherited by all of the
Proxy andAdmin interfaces defined by the Notification Service. The difference in the
semantics between a list of filter objects that is associated withdmnin object, and

a list that is associated withRroxy object, is described in Section 2.1.2, “The
Notification Service Event Channel,” on page 2-5.

3.2.4.1 add_filter

The add_filter operation accepts as input the reference to an object supporting the
Filter interface. The affect of this operation is that the input filter object is appended to
the list of filter objects associated with the target object upon which the operation was
invoked. The operation associates with the newly added filter object a numeric
identifier that is unique among all filter objects currently associated with the target, and
returns that value as the result of the operation.

3.2.4.2 remove_filter

Theremove_filter operation accepts as input a numeric value that is intended to be
the unique identifier of a filter object that is currently associated with the target object.
If identifier supplied does correspond to a filter object currently associated with the
target object, then the corresponding filter object will be removed from the list of

filters associated with the target object. Otherwise FiterNotFound exception will
be raised.

3.2.4.3 get_filter

Theget_filter operation accepts as input a numeric identifier that is intended to
correspond to one of the filter objects currently associated with the target object. If this
is the case, the object reference of the corresponding filter object is returned.
Otherwise, theFilterNotFound exception is raised.

3.2.4.4 get_all_filters

Theget_all_filters operation accepts no input parameters, and returns the list of
unique identifiers which correspond to all of the filters currently associated with the
target object.

Notification Service V1.0 The CosNotifyFilter Module June 2000 3-27

3.2.4.5 remove_all_filters

Theremove_all_filters operation accepts no input parameters, and removes all filter
objects from the list of those currently associated with the target object.

3.3 The CosNotifyComm Module

The CosNotifyComm module defines the interfaces which support Notification

Service clients that communicate using Anys, Structured Events, or sequences of
Structured Events. In addition, this module defines the interfaces which enable event
suppliers to be informed when the types of events being subscribed to by their
associated consumers change, and event consumers to be informed whenever there is ¢
change in the types of events being produced by their suppliers (this model is
described in detail in Section 2.6, “Sharing Subscriptions,” on page 2-49).

module CosNotifyComm {

exception InvalidEventType { CosNoatification::EventType type; };
interface NotifyPublish {

void offer_change (
in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeq removed)
raises (InvalidEventType);

}; /I NotifyPublish
interface NotifySubscribe {

void subscription_change(

in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeq removed)
raises (InvalidEventType);

}; /I NotifySubscribe

interface PushConsumer :
NotifyPublish,
CosEventComm::PushConsumer {
}; Il PushConsumer

interface PullConsumer :
NotifyPublish,

3-28 Notification Service V1.0 June 2000

CosEventComm::PullConsumer {
}; /1 PullConsumer

interface PullSupplier :
NotifySubscribe,
CosEventComm::PullSupplier {
}; 1l PullSupplier

interface PushSupplier :
NotifySubscribe,
CosEventComm::PushSupplier {

interface StructuredPushConsumer : NotifyPublish {

void push_structured_event(
in CosNotification::StructuredEvent notification)
raises(CosEventComm::Disconnected);

void disconnect_structured_push_consumer();

}; /I StructuredPushConsumer

interface StructuredPullConsumer : NotifyPublish {
void disconnect_structured_pull_consumer();
}; /I StructuredPullConsumer

interface StructuredPullSupplier : NotifySubscribe {

CosNatification::StructuredEvent pull_structured_event()
raises(CosEventComm::Disconnected);
CosNoatification::StructuredEvent try_pull_structured_event(
out boolean has_event)
raises(CosEventComm::Disconnected);

void disconnect_structured_pull_supplier();

}; 1l StructuredPullSupplier

interface StructuredPushSupplier : NotifySubscribe {
void disconnect_structured_push_supplier();
}; /I StructuredPushSupplier

Notification Service V1.0 The CosNotifyComm Module June 2000 3-29

interface SequencePushConsumer : NotifyPublish {

void push_structured_events(
in CosNotification::EventBatch notifications)
raises(CosEventComm::Disconnected);

void disconnect_sequence_push_consumer();
}; I SequencePushConsumer

interface SequencePullConsumer : NotifyPublish {
void disconnect_sequence_pull_consumer();
}; I SequencePullConsumer

interface SequencePullSupplier : NotifySubscribe {

CosNoatification::EventBatch pull_structured_events(
in long max_number)
raises(CosEventComm::Disconnected);

CosNoatification::EventBatch try_pull_structured_events(
in long max_number,
out boolean has_event)
raises(CosEventComm::Disconnected);

void disconnect_sequence_pull_supplier();
}; /I SequencePullSupplier

interface SequencePushSupplier : NotifySubscribe {
void disconnect_sequence_push_supplier();
}; /I SequencePushSupplier

}; /I CosNotifyComm

3.3.1 The NotifyPublish Interface

The NotifyPublish interface supports an operation which allows a supplier of
Notifications to announce, or publish, the names of the types of events it will be
supplying, It is intended to be an abstract interface which is inherited by all
Notification Service consumer interfaces, and enables suppliers to inform consumers
supporting this interface of the types of events they intend to supply.

3-30 Notification Service V1.0 June 2000

3.3.1.1 offer_change

The offer_change operation takes as input two sequences of event type names: the
first specifying those event types which the client of the operation (an event supplier)
is informing the target consumer object that it is adding to the list of event types it
plans to supply, and the second specifying those event types which the client no longer
plans to supply. This operation raises fiwalidEventType exception if one of the

event type names supplied in either input parameter is syntactically invalid. In this
case, the invalid name is returned in tiype field of the exception.

Note that each event type name is comprised of two components: the name of the
domain in which the event type has meaning, and the name of the actual event type.
Also note that either component of a type name may specify a complete domain/event
type name, a domain/event type name containing the wildcard ‘*' character, or the
special event type name “%ALL” described in Section 2.6.6, “Special Event Types,” on
page 2-51.

3.3.2 The NotifySubscribe Interface

The NotifySubscribe interface supports an operation which allows a consumer of
notifications to inform suppliers of notifications of the types of notifications it wishes
to receive. It is intended to be an abstract interface which is inherited by all
Notification Service supplier interfaces. In essence, its main purpose is to enable
notification consumers to inform suppliers of the types of notifications that are of
interest to them, ultimately enabling the suppliers to avoid supplying notifications that
are not of interest to any consumer.

3.3.2.1 subscription_change

The subscription_change operation takes as input two sequences of event type
names: the first specifying those event types which the associated Consumer wants to
add to its subscription list, and the second specifying those event types which the
associated consumer wants to remove from its subscription list. This operation raises
the InvalidEventType exception if one of the event type names supplied in either
input parameter is syntactically invalid. If this case, the invalid name is returned in the
typefield of the exception.

Note that each event type name is comprised of two components: the name of the
domain in which the event type has meaning, and the name of the actual event type.
Also note that either component of a type name may specify a complete domain/event
type name, a domain/event type name containing the wildcard *’ character, or the
special event type name “%ALL” described in Section 2.6.6, “Special Event Types,” on
page 2-51.

3.3.3 The PushConsumer Interface

The PushConsumer interface supports the functionality required by notification
service consumers that receive events as Anys using push-style communication. This
interface defines no new attributes or operations directly. Instead, it multiply inherits

Notification Service V1.0 The CosNotifyComm Module June 2000 3-31

3-32

the PushConsumer interface defined in th€osEventComm module of the OMG
Event Service, and thdotifyPublish interface described above. This enables push-
style consumers of Any events to also recedffer_change messages from the
channel, allowing it to learn about changes to the types of events being offered to the
channel by suppliers.

3.3.4 The PullConsumer Interface

The PullConsumer interface supports the functionality required by notification
service consumers that receive events as Anys using pull-style communication. This
interface defines no new attributes or operations directly. Instead, it multiply inherits
the PullConsumer interface defined in th€osEventComm module of the OMG

Event Service, and th&otifyPublish interface described above. This enables pull-
style consumers of Any events to also recedfer_change messages from the
channel, allowing it to learn about changes to the types of events being offered to the
channel by suppliers.

3.3.5 The PullSupplier Interface

The PullSupplier interface supports the functionality required by notification service
suppliers that transmit events as Anys using pull-style communication. This interface
defines no new attributes or operations directly. Instead, it multiply inherits the
PullSupplier interface defined in th€osEventComm module of the OMG Event
Service, and thé&otifySubscribe interface described above. This enables pull-style
suppliers of Any events to also receigabscription_change messages from the
channel, allowing it to learn about changes to the types of events being subscribed to
by consumers connected to the channel.

3.3.6 The PushSupplier Interface

The PushSupplier interface supports the functionality required by notification
service suppliers that transmit events as Anys using push-style communication. This
interface defines no new attributes or operations directly. Instead, it multiply inherits
the PushSupplier interface defined in th€osEventComm module of the OMG

Event Service, and thdotifySubscribe interface described above. This enables
push-style suppliers of Any events to also recesubscription_change messages
from the channel, allowing it to learn about changes to the types of events being
subscribed to by consumers connected to the channel.

3.3.7 The StructuredPushConsumer Interface

The StructuredPushConsumer interface supports an operation which enables
consumers to receive Structured Events by the push model. It also defines an operation
which can be invoked to disconnect the push consumer from its associated supplier. In
addition, theStructuredPushConsumer interface inherits théotifyPublish

Notification Service V1.0 June 2000

3

3.3.7.1

3.3.7.2

interface described above, enabling a notification supplier to inform an instance
supporting this interface whenever there is a change to the types of events it intends to
produce.

Note that an object supporting tigtructuredPushConsumer interface can receive

all events which were supplied to its associated channel, including events supplied in a
form other than a Structured Event. How events supplied to the channel in other forms
are internally mapped into a Structured Event for delivery to a
StructuredPushConsumer is summarized in Table 2-2 on page 2-9.

push_structured_event

The push_structured_event operation takes as input a parameter of type
StructuredEvent as defined in theCosNotification module. Upon invocation, this
parameter will contain an instance of a Structured Event being delivered to the
consumer by the supplier to which it is connected. If this operation is invoked upon a
StructuredPushConsumer instance that is not currently connected to the supplier
of the event, thdisconnected exception will be raised. Note that the condition that
a proxy supplier believes it is actively connected to a consumer, while the consumer
believes it is disconnected is an invalid state. Thus, if the invocation of
push_structured_event upon aStructuredPushConsumer instance by a
StructuredProxyPushSupplier instance results in thBisconnected exception

being raised, th&tructuredProxyPushSupplier will invoke its own
disconnect_structured_push_supplier operation, resulting in the destruction of
that StructuredProxyPushSupplier instance.

In reality there are two types of objects that will support the

StructuredPushConsumer interface: an object representing an application which
receives Structured Events, an®aucturedProxyPushConsumer (defined in the
CosNotifyChannelAdmin module) associated with an event channel which receives
structured events from a supplier on behalf of the channel. For the first type of object,
the implementation of thpush_structured_event operation is application specific,

and is intended to be supplied by application developers. For the second type of object,
the behavior of the operation is tightly linked to the implementation of the event
channel. Basically, it is responsible for applying any filters that have been registered by
with the StructuredProxyPushConsumer , then either discarding the event or
forwarding it to each proxy supplier within the channel depending on whether or not
the event passed the filter.

disconnect_structured_push_consumer

Thedisconnect_structured_push_consumer operation is invoked to terminate a
connection between the targstructuredPushConsumer , and its associated

supplier. This operation takes no input parameters and returns no values. The result of
this operation is that the targ8tructuredPushConsumer will release all resources

it had allocated to support the connection, and dispose its own object reference.

Notification Service V1.0 The CosNotifyComm Module June 2000 3-33

3-34

3.3.8 The StructuredPullConsumer Interface

3.3.8.1

3.3.9.1

The StructuredPullConsumer interface supports the behavior of objects that receive
Structured Events using pull-style communication. It defines an operation which can be
invoked to disconnect the pull consumer from its associated supplier. In addition, the
StructuredPullConsumer interface inherits théotifyPublish interface described
above, enabling a notification supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to produce.

Note that an object supporting ti8ructuredPullConsumer interface can receive

all events which were supplied to its associated channel, including events supplied in a
form other than a Structured Event. How events supplied to the channel in other forms
are internally mapped into a Structured Event for delivery to a
StructuredPullConsumer is summarized in Table 2-2 on page 2-9.

disconnect_structured_pull_consumer

Thedisconnect_structured_pull_consumer operation is invoked to terminate a
connection between the targétructuredPullConsumer , and its associated supplier.
This operation takes no input parameters and returns no values. The result of this
operation is that the targ&tructuredPullConsumer will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.3.9 The StructuredPullSupplier Interface

The StructuredPullSupplier interface supports operations which enable suppliers to
transmit Structured Events by the pull model. It also defines an operation which can be
invoked to disconnect the pull supplier from its associated consumer. In addition, the
StructuredPullSupplier interface inherits thé&lotifySubscribe interface described
above, enabling a notification consumer to inform an instance supporting this interface
whenever there is a change to the types of events it is interested in receiving.

Note that an object supporting ti8tructuredPullSupplier interface can transmit
events which can potentially be received by any consumer connected to the channel,
including those which consume events in a form other than a Structured Event. How
events supplied to the channel in the form of a Structured Event are internally mapped
into different forms for delivery to consumers which receive events in a form other
than the Structured Event is summarized in Table 2-2 on page 2-9.

pull_structured_event

The pull_structured_event operation takes no input parameters, and returns a value
of type Structured Event as defined in the&€CosNotification module. Upon

invocation, the operation will block until an event is available for transmission, at
which time it will return an instance of a Structured Event, which contains the event
being delivered to its connected consumer. If invoked upon a

StructuredPullSupplier that is not currently connected to the consumer of the event,
the Disconnected exception will be raised. Note that the condition that a proxy
consumer believes it is actively connected to a supplier, while the supplier believes it is

Notification Service V1.0 June 2000

3.3.9.2

disconnected is an invalid state. Thus, if the invocatiopuwf_structured_event

upon aStructuredPullSupplier instance by &tructuredProxyPullConsumer
instance results in thBisconnected exception being raised, the
StructuredProxyPullConsumer will invoke its own
disconnect_structured_pull_consumer operation, resulting in the destruction of
that StructuredProxyPullConsumer instance.

In reality there are two types of objects that will support 8teucturedPullSupplier
interface: an object representing an application which transmits Structured Events, and
a StructuredProxyPullSupplier (defined in theCosNotifyChannelAdmin

module) associated with an event channel which transmits events to a pull style
consumer on behalf of the channel. For the first type of object, the implementation of
the pull_structured_event operation is application specific, and is intended to be
supplied by application developers. The application specific implementation of this
operation should construct a structured event, and return it witBitnecturedEvent

data structure. For the second type of object, the behavior of the operation is tightly
linked to the implementation of the event channel. Basically, it is responsible for
forwarding a structured event, within®tructuredEvent data structure, as the return
value to the consumer it is connected to upon the availability of an event which passes
the filter(s) associated with th®tructuredProxyPullSupplier . Note that the

operation will block until such an event is available to return.

try_pull_structured_event

Thetry_pull_structured_event operation takes no input parameters, and returns a
value of typeStructuredEvent as defined in theCosNotification module. It also
returns an output parameter of type boolean which indicates whether or not the return
value actually contains an event. Upon invocation, the operation will return an instance
of a Structured Event which contains the event being delivered to its connected
consumer, if such an event is available for delivery at the time the operation was
invoked. If an event is available for delivery and thus returned as the result, the output
parameter of the operation will be set to TRUE. If no event is available to return upon
invocation, the operation will return immediately with the value of the output
parameter set to FALSE. In this case, the return value will not contain a valid event. If
invoked upon &tructuredPullSupplier that is not currently connected to the
consumer of the event, tHeisconnected exception will be raised. Note that the
condition that a proxy consumer believes it is actively connected to a supplier, while
the supplier believes it is disconnected is an invalid state. Thus, if the invocation of
try_pull_structured_event upon aStructuredPullSupplier instance by a
StructuredProxyPullConsumer instance results in thBisconnected exception

being raised, th&tructuredProxyPullConsumer will invoke its own
disconnect_structured_pull_consumer operation, resulting in the destruction of
that StructuredProxyPullConsumer instance.

In reality there are two types of objects that will support 8teucturedPullSupplier
interface: an object representing an application which transmits Structured Events, and
a StructuredProxyPullSupplier (defined within theCosNotifyChannelAdmin

module) associated with an event channel which transmits events to a PullConsumer on
behalf of the channel. For the first type of object, the implementation of the

Notification Service V1.0 The CosNotifyComm Module June 2000 3-35

3-36

try_pull_structured_event operation is application specific, and is intended to be
supplied by application developers. If an event is available to be returned upon
invocation of this operation, the application specific implementation of this operation
should construct a Structured Event, and return it withBtaucturedEvent data
structure along with setting the value of the output parameter to TRUE. Otherwise, the
operation should return immediately after setting the value of the output parameter to
FALSE. For the second type of object, the behavior of the operation is tightly linked to
the implementation of the event channel. Basically, if an event is available to be
returned upon invocation of this operation, it is responsible for forwarding it, within a
StructuredEvent data structure, as the return value to the consumer it is connected
to, in addition to setting the output parameter to FALSE. If no event is available to
return to the consumer upon invocation of this operation, it will immediately return
with the output parameter to set to FALSE, and the return value not containing a valid
event.

3.3.9.3 disconnect_structured_pull_supplier

Thedisconnect_structured_pull_supplier operation is invoked to terminate a
connection between the targétructuredPullSupplier , and its associated consumer.
This operation takes no input parameters and returns no values. The result of this
operation is that the targ&tructuredPullSupplier will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.3.10 The StructuredPushSupplier Interface

The StructuredPushSupplier interface supports the behavior of objects that

transmit Structured Events using push-style communication. It defines an operation
which can be invoked to disconnect the push supplier from its associated consumer. In
addition, theStructuredPushSupplier interface inherits thé&otifySubscribe

interface described above, enabling a notification consumer to inform an instance
supporting this interface whenever there is a change to the types of events it is
interested in receiving.

Note that an object supporting ti8tructuredPushSupplier interface can transmit
events which can potentially be received by any consumer connected to the channel,
including those which consume events in a form other than a Structured Event. How
events supplied to the channel in the form of a Structured Event are internally mapped
into different forms for delivery to consumers which receive events in a form other
than the Structured Event is summarized in Table 2-2 on page 2-9.

3.3.10.1 disconnect_structured push_supplier

Thedisconnect_structured_push_supplier operation is invoked to terminate a
connection between the targstructuredPushSupplier , and its associated

consumer. This operation takes no input parameters and returns no values. The result
of this operation is that the targ8tructuredPushSupplier will release all resources

it had allocated to support the connection, and dispose its own object reference.

Notification Service V1.0 June 2000

3.3.11 The SequencePushConsumer Interface

The SequencePushConsumer interface supports an operation which enables
consumers to receive sequences Structured Events by the push model. It also defines an
operation which can be invoked to disconnect the push consumer from its associated
supplier. In addition, th&equencePushConsumer interface inherits the

NotifyPublish interface described above, enabling a notification supplier to inform an
instance supporting this interface whenever there is a change to the types of events it
intends to produce.

Note that an object supporting ti8equencePushConsumer interface can receive

all events which were supplied to its associated channel, including events supplied in a
form other than a sequence of Structured Events. How events supplied to the channel
in other forms are internally mapped into a sequence of Structured Events for delivery
to aSequencePushConsumer is summarized in Table 2-2 on page 2-9.

3.3.11.1 push_structured_events

The push_structured_events operation takes as input a parameter of type
EventBatch as defined in th&€osNotification module. This data type is the same as
a sequence of Structured Events. Upon invocation, this parameter will contain a
sequence of Structured Events being delivered to the consumer by the supplier to
which it is connected. If this operation is invoked upoBequencePushConsumer
instance that is not currently connected to the supplier of the event, the
Disconnected exception will be raised. Note that the condition that a proxy supplier
believes it is actively connected to a consumer, while the consumer believes it is
disconnected is an invalid state. Thus, if the invocatiopudh_structured_events

upon aSequencePushConsumer instance by é&equenceProxyPushSupplier
instance results in thBisconnected exception being raised, the
SequenceProxyPushSupplier will invoke its own
disconnect_sequence_push_supplier operation, resulting in the destruction of
that SequenceProxyPushSupplier instance.

Note that the maximum number of events that will be transmitted within a single
invocation of this operation, along with the amount of time a supplier of a sequence of
Structured Events will accumulate individual events into the sequence before invoking
this operation, are controlled by QoS property settings as described in Section 2.5.5,
“Notification QoS Properties,” on page 2-37.

In reality there are two types of objects that will support the
SequencePushConsumer interface: an object representing an application which
receives sequences of Structured Events, aBdquenceProxyPushConsumer

(defined in theCosNotifyChannelAdmin module) associated with an event channel,
which receives sequences of Structured Events from a supplier on behalf of the
channel. For the first type of object, the implementation of the
push_structured_events operation is application-specific, and is intended to be
supplied by application developers. For the second type of object, the behavior of the
operation is tightly linked to the implementation of the event channel. Basically, it is
responsible for applying any filters that have been registered by with the

Notification Service V1.0 The CosNotifyComm Module June 2000 3-37

3-38

SequenceProxyPushConsumer to each event in each sequence it receives, then
either discarding each event or forwarding it to each proxy supplier within the channel
depending on whether or not the event passed the filter.

3.3.11.2 disconnect_sequence_push_consumer

Thedisconnect_sequence_push_consumer operation is invoked to terminate a
connection between the targgéquencePushConsumer , and its associated

supplier. This operation takes no input parameters and returns no values. The result of
this operation is that the targ8equencePushConsumer will release all resources

it had allocated to support the connection, and dispose its own object reference.

3.3.12 The SequencePullConsumer Interface

The SequencePullConsumer interface supports the behavior of objects that receive
sequences of Structured Events using pull-style communication. It defines an operation
which can be invoked to disconnect the pull consumer from its associated supplier. In
addition, theSequencePullConsumer interface inherits thé&lotifyPublish

interface described above, enabling a notification supplier to inform an instance
supporting this interface whenever there is a change to the types of events it intends to
produce.

Note that an object supporting tisequencePullConsumer interface can receive all
events which were supplied to its associated channel, including events supplied in a
form other than a sequence of Structured Events. How events supplied to the channel
in other forms are internally mapped into a sequence of Structured Events for delivery
to a SequencePullConsumer is summarized in Table 2-2 on page 2-9.

3.3.12.1 disconnect_sequence_pull_consumer

Thedisconnect_sequence_pull_consumer operation is invoked to terminate a
connection between the targgeéquencePullConsumer , and its associated supplier.
This operation takes no input parameters and returns no values. The result of this
operation is that the targ&equencePullConsumer will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.3.13 The SequencePullSupplier Interface

The SequencePullSupplier interface supports operations that enable suppliers to
transmit sequences of Structured Events by the pull model. It also defines an operation
that can be invoked to disconnect the pull supplier from its associated consumer. In
addition, theSequencePullSupplier interface inherits thé&lotifySubscribe

interface described above, enabling a notification consumer to inform an instance
supporting this interface whenever there is a change to the types of events it is
interested in receiving.

Notification Service V1.0 June 2000

3

Note that an object supporting ti8equencePullSupplier interface can transmit

events that can potentially be received by any consumer connected to the channel,
including those that consume events in a form other than a sequence of Structured
Events. How events supplied to the channel in the form of a sequence of Structured
Events are internally mapped into different forms for delivery to consumers which
receive events in a form other than a sequence of Structured Events is summarized in
Table 2-2 on page 2-9.

3.3.13.1 pull_structured_events

The pull_structured_events operation takes as an input parameter a numeric value,
and returns a value of typeventBatch as defined in theCosNotification module.

This data type is the same as a sequence of Structured Events. Upon invocation, the
operation will block until a sequence of Structured Events is available for transmission,
at which time it will return the sequence containing events being delivered to its
connected consumer. If invoked uporSaquencePullSupplier that is not currently
connected to the consumer of the event, Bisconnected exception will be raised.
Note that the condition that a proxy consumer believes it is actively connected to a
supplier, while the supplier believes it is disconnected is an invalid state. Thus, if the
invocation ofpull_structured_events upon aSequencePullSupplier instance by

a SequenceProxyPullConsumer instance results in thBisconnected exception
being raised, th&equenceProxyPullConsumer will invoke its own
disconnect_sequence_pull_consumer operation, resulting in the destruction of
that SequenceProxyPullConsumer instance.

Note that the maximum length of the sequence returned will never exceed the value of
the input parameter. In addition, when this operation is invoked upon a
SequenceProxyPullSupplier , the amount of time the supplier will accumulate

events into the sequence before transmitting it is controlled by the Pacinglnterval QoS
property described in Section 2.5.5, “Notification QoS Properties,” on page 2-37. In
this case, the proxy will never return a sequence of less k@imumBatchSize

events until at leagPacinginterval amount of time has elapsed after the request was
received by the proxy. However if no events arrived at the proxy during a particular
Pacinglinterval , the request will block until at least one event arrives at the proxy.
Also note thatMaximumBatchSize places an upper boundary on the total number of
events the proxy will return within an invocation. If the input parameter indicates more
thanMaximumBatchSize events are being requested, the request will be treated as
though the input parameter was equivalenMaximumBatchSize .

In reality there are two types of objects that will support 8exjuencePullSupplier
interface: an object representing an application which transmits sequences of
Structured Events, and $equenceProxyPullSupplier (defined in the
CosNotifyChannelAdmin module) associated with an event channel which transmits
events to a pull style consumer on behalf of the channel. For the first type of object, the
implementation of theull_structured_events operation is application specific, and

is intended to be supplied by application developers. The application specific
implementation of this operation should construct a sequence of Structured Events, and
return it within aEventBatch data structure. For the second type of object, the
behavior of the operation is tightly linked to the implementation of the event channel.

Notification Service V1.0 The CosNotifyComm Module June 2000 3-39

3-40

Basically, it is responsible for forwarding a sequence of Structured Events, within an
EventBatch data structure, as the return value to the consumer it is connected to upon
the availability of events which pass the filter(s) associated with the
SequenceProxyPullSupplier

3.3.13.2 try_pull_structured_events

Thetry_pull_structured_events operation takes as an input parameter a numeric
value, and returns a value of tyfiventBatch as defined in the&CosNaotification

module. This data type is the same as a sequence of Structured Events. The operation
also returns an output parameter of type boolean which indicates whether or not the
return value actually contains a sequence of events. Upon invocation, the operation will
return a sequence of a Structured Events which contains events being delivered to its
connected consumer, if such a sequence is available for delivery at the time the
operation was invoked. If an event sequence is available for delivery and thus returned
as the result, the output parameter of the operation will be set to TRUE. If no event
sequence is available to return upon invocation, the operation will return immediately
with the value of the output parameter set to FALSE. In this case, the return value will
not contain a valid event sequence. If invoked updeguencePullSupplier that is

not currently connected to the consumer of the eventlsEonnected exception

will be raised. Note that the condition that a proxy consumer believes it is actively
connected to a supplier, while the supplier believes it is disconnected is an invalid
state. Thus, if the invocation afy_pull_structured_events upon a
SequencePullSupplier instance by é&equenceProxyPullConsumer instance

results in theDisconnected exception being raised, the

SequenceProxyPullConsumer will invoke its own
disconnect_sequence_pull_consumer operation, resulting in the destruction of

that SequenceProxyPullConsumer instance.

Note that the maximum length of the sequence returned will never exceed the value of
the input parameter. Also note thdbaximumBatchSize places an upper boundary on

the total number of events the proxy will return within an invocation. If the input
parameter indicates more thdaximumBatchSize events are being requested, the
request will be treated as though the input parameter was equivalent to
MaximumBatchSize .

In reality there are two types of objects that will support 8exjuencePullSupplier
interface: an object representing an application which transmits sequences of
Structured Events, and $equenceProxyPullSupplier (defined within the
CosNotifyChannelAdmin module) associated with an event channel which transmits
events to &ullConsumer on behalf of the channel. For the first type of object, the
implementation of théry pull_structured_events operation is application-specific,
and is intended to be supplied by application developers. If an event sequence is
available to be returned upon invocation of this operation, the application-specific
implementation of this operation should construcEaentBatch instance, and return

it along with setting the value of the output parameter to TRUE. Otherwise, the
operation should return immediately after setting the value of the output parameter to
FALSE. For the second type of object, the behavior of the operation is tightly linked to
the implementation of the event channel. Basically, if an event sequence is available to

Notification Service V1.0 June 2000

3

be returned upon invocation of this operation, it is responsible for forwarding it, within
an EventBatch data structure, as the return value to the consumer it is connected to,
in addition to setting the output parameter to FALSE. If no event sequence is available
to return to the consumer upon invocation of this operation, it will immediately return
with the output parameter to set to FALSE, and the return value not containing a valid
event.

3.3.13.3 disconnect_sequence_pull_supplier

The disconnect_sequence_pull_supplier operation is invoked to terminate a
connection between the targeéquencePullSupplier , and its associated consumer.
This operation takes no input parameters and returns no values. The result of this
operation is that the targ&equencePullSupplier will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.3.14 The SequencePushSupplier Interface

The SequencePushSupplier interface supports the behavior of objects that transmit
sequences of Structured Events using push-style communication. It defines an
operation that can be invoked to disconnect the push supplier from its associated
consumer. In addition, thBequencePushSupplier interface inherits the
NotifySubscribe interface described above, enabling a notification consumer to
inform an instance supporting this interface whenever there is a change to the types of
events it is interested in receiving.

Note that an object supporting ti8equencePushSupplier interface can transmit
events that can potentially be received by any consumer connected to the channel,
including those that consume events in a form other than a sequence of Structured
Events. How events supplied to the channel in the form of a sequence of Structured
Events are internally mapped into different forms for delivery to consumers that
receive events in a form other than a sequence of Structured Events is summarized in
Table 2-2 on page 2-9.

3.3.14.1 disconnect_sequence_push_supplier

Thedisconnect_sequence_push_supplier operation is invoked to terminate a
connection between the targ@equencePushSupplier , and its associated consumer.
This operation takes no input parameters and returns no values. The result of this
operation is that the targ&equencePushSupplier will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.4 The CosNotifyChannelAdmin Module

The CosNotifyChannelAdmin module defines the interfaces necessary to create,
configure, and administer instances of a Notification Service event channel. It defines
the different types of proxy interfaces that support connections from the various types
of clients that are supported, th@min interfaces, the&eventChannel interface, and

a factory interface for instantiating new channels.

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-41

module CosNotifyChannelAdmin {

exception ConnectionAlreadyActive {};
exception ConnectionAlreadylnactive {};
exception NotConnected {};

/I Forward declarations
interface ConsumerAdmin;
interface SupplierAdmin;
interface EventChannel;
interface EventChannelFactory;

enum ProxyType {
PUSH_ANY,
PULL_ANY,
PUSH_STRUCTURED,
PULL_STRUCTURED,
PUSH_SEQUENCE,
PULL_SEQUENCE,
PUSH_TYPED,
PULL_TYPED

enum ObtainIinfoMode {
ALL_NOW_UPDATES_OFF,
ALL_NOW_UPDATES_ON,
NONE_NOW_UPDATES_OFF,
NONE_NOW_UPDATES_ON

interface ProxyConsumer :
CosNatification::QoSAdmin,
CosNotifyFilter::FilterAdmin {

readonly attribute ProxyType MyType;
readonly attribute SupplierAdmin MyAdmin;

CosNatification::EventTypeSeq obtain_subscription_types(
in ObtaininfoMode mode);

void validate_event_gos (
in CosNoatification::QoSProperties required_qos,
out CosNotification::NamedPropertyRangeSeq available_qos)
raises (CosNatification::UnsupportedQoS);

}; I ProxyConsumer

3-42 Notification Service V1.0 June 2000

interface ProxySupplier :
CosNotification::QoSAdmin,
CosNotifyFilter::FilterAdmin {

readonly attribute ProxyType MyType;
readonly attribute ConsumerAdmin MyAdmin;

attribute CosNotifyFilter::MappingFilter priority_filter;
attribute CosNotifyFilter::MappingFilter lifetime_filter;

CosNoatification::EventTypeSeq obtain_offered_types(
in ObtaininfoMode mode);

void validate_event_gos (
in CosNoatification::QoSProperties required_qos,
out CosNotification::NamedPropertyRangeSeq available_qos)
raises (CosNoatification::UnsupportedQoS);

}; 1l ProxySupplier

interface ProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::PushConsumer {

void connect_any_push_supplier (
in CosEventComm::PushSupplier push_supplier)
raises(CosEventChannelAdmin::AlreadyConnected);

}; Il ProxyPushConsumer

interface StructuredProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::StructuredPushConsumer {

void connect_structured_push_supplier (
in CosNotifyComm::StructuredPushSupplier push_supplier)
raises(CosEventChannelAdmin::AlreadyConnected);

}; 1l StructuredProxyPushConsumer

interface SequenceProxyPushConsumer :
ProxyConsumer,

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-43

CosNotifyComm::SequencePushConsumer {

void connect_sequence_push_supplier (
in CosNotifyComm::SequencePushSupplier push_supplier)
raises(CosEventChannelAdmin::AlreadyConnected);

}; Il SequenceProxyPushConsumer

interface ProxyPullSupplier :
ProxySupplier,
CosNotifyComm::PullSupplier {

void connect_any_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)
raises(CosEventChannelAdmin::AlreadyConnected);

}; 11 ProxyPullSupplier

interface StructuredProxyPullSupplier :
ProxySupplier,
CosNotifyComm::StructuredPullSupplier {

void connect_structured_pull_consumer (
in CosNotifyComm::StructuredPullConsumer pull_consumer)
raises(CosEventChannelAdmin::AlreadyConnected);

}; /I StructuredProxyPullSupplier

interface SequenceProxyPullSupplier :
ProxySupplier,
CosNotifyComm::SequencePullSupplier {

void connect_sequence_pull_consumer (
in CosNotifyComm::SequencePullConsumer pull_consumer)
raises(CosEventChannelAdmin::AlreadyConnected);

}; I SequenceProxyPullSupplier

interface ProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::PullConsumer {

3-44 Notification Service V1.0 June 2000

void connect_any_pull_supplier (
in CosEventComm::PullSupplier pull_supplier)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; Il ProxyPullConsumer

interface StructuredProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::StructuredPullConsumer {

void connect_structured_pull_supplier (
in CosNotifyComm::StructuredPullSupplier pull_supplier)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; 1l StructuredProxyPullConsumer

interface SequenceProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::SequencePullConsumer {

void connect_sequence_pull_supplier (
in CosNotifyComm::SequencePullSupplier pull_supplier)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-45

raises(ConnectionAlreadyActive, NotConnected);

}; /I SequenceProxyPullConsumer

interface ProxyPushSupplier :
ProxySupplier,
CosNotifyComm::PushSupplier {

void connect_any_push_consumer (
in CosEventComm::PushConsumer push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; Il ProxyPushSupplier

interface StructuredProxyPushSupplier :
ProxySupplier,
CosNotifyComm::StructuredPushSupplier {

void connect_structured_push_consumer (
in CosNotifyComm::StructuredPushConsumer push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; 1l StructuredProxyPushSupplier

interface SequenceProxyPushSupplier :
ProxySupplier,
CosNotifyComm::SequencePushSupplier {

3-46 Notification Service V1.0 June 2000

void connect_sequence_push_consumer (
in CosNotifyComm::SequencePushConsumer push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}. Il SequenceProxyPushSupplier

typedef long ProxyID;
typedef sequence <ProxylD> ProxylDSeq;

enum ClientType {
ANY_EVENT,
STRUCTURED_EVENT,
SEQUENCE_EVENT

enum InterFilterGroupOperator { AND_OP, OR_OP };

typedef long AdminID;
typedef sequence<AdminID> AdminIDSeq;

exception AdminNotFound {};
exception ProxyNotFound {};

struct AdminLimit {
CosNoatification::PropertyName name;
CosNotification::PropertyValue value;

exception AdminLimitExceeded { AdminLimit admin_property_err; };

interface ConsumerAdmin :
CosNatification::QoSAdmin,
CosNotifyComm::NotifySubscribe,
CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin::ConsumerAdmin {

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-47

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

attribute CosNotifyFilter::MappingFilter priority_filter;
attribute CosNotifyFilter::MappingFilter lifetime_filter;

readonly attribute ProxylDSeq pull_suppliers;
readonly attribute ProxylDSeq push_suppliers;

ProxySupplier get_proxy_supplier (
in ProxylID proxy_id)
raises (ProxyNotFound);

ProxySupplier obtain_notification_pull_supplier (
in ClientType ctype,
out ProxyID proxy_id)
raises (AdminLimitExceeded);

ProxySupplier obtain_notification_push_supplier (
in ClientType ctype,
out ProxyID proxy_id)
raises (AdminLimitExceeded);

void destroy();

}; /I ConsumerAdmin

interface SupplierAdmin :
CosNotification::QoSAdmin,
CosNotifyComm::NotifyPublish,
CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin::SupplierAdmin {

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

readonly attribute ProxylDSeq pull_consumers;
readonly attribute ProxylDSeq push_consumers;

3-48 Notification Service V1.0 June 2000

ProxyConsumer get_proxy_consumer (
in ProxylID proxy_id)
raises (ProxyNotFound);

ProxyConsumer obtain_natification_pull_consumer (
in ClientType ctype,
out ProxyID proxy_id)
raises (AdminLimitExceeded);

ProxyConsumer obtain_natification_push_consumer (
in ClientType ctype,
out ProxyID proxy_id)
raises (AdminLimitExceeded);

void destroy();

}; /I SupplierAdmin

interface EventChannel :
CosNoatification::QoSAdmin,
CosNoatification::AdminPropertiesAdmin,
CosEventChannelAdmin::EventChannel {

readonly attribute EventChannelFactory MyFactory;

readonly attribute ConsumerAdmin default_consumer_admin;
readonly attribute SupplierAdmin default_supplier_admin;

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;

ConsumerAdmin new_for_consumers(
in InterFilterGroupOperator op,
out AdminID id);

SupplierAdmin new_for_suppliers(
in InterFilterGroupOperator op,
out AdminID id);

ConsumerAdmin get_consumeradmin (in AdminID id)
raises (AdminNotFound);

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-49

3-50

SupplierAdmin get_supplieradmin (in AdminID id)
raises (AdminNotFound);

AdminIDSeq get_all_consumeradmins();
AdminIDSeq get_all_supplieradmins();

}; /I EventChannel

typedef long ChannellD;
typedef sequence<ChannellD> ChannellDSeq;

exception ChannelNotFound {};

interface EventChannelFactory {

EventChannel create_channel (
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin,
out ChannellD id)
raises(CosNatification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

ChannellDSeq get_all_channels();

EventChannel get_event_channel (in ChannellD id)
raises (ChannelNotFound);

}; /I EventChannelFactory

}; /I CosNotifyChannelAdmin

3.4.1 The ProxyConsumer Interface

TheProxyConsumer interface is intended to be an abstract interface that is inherited
by the different varieties of proxy consumers that can be instantiated within a
notification channel. It encapsulates the behaviors common to all Notification Service
proxy consumers. In particular, tilroxyConsumer interface inherits the

QoSAdmin interface defined within th€osNotification module, and the

FilterAdmin interface defined within th€osNotifyFilter module. The former
inheritance enables all proxy consumers to administer a list of associated QoS
properties, while the latter inheritance enables all proxy consumers to administer a list
of associated filter objects. Locally, tiRroxyConsumer interface defines a readonly
attribute that should be set upon creation of each proxy consumer instance to indicate

Notification Service V1.0 June 2000

3

34.11

3.4.1.2

3.4.1.3

the specific type of proxy consumer the instance represents, and a readonly attribute
which maintains a reference to tlseipplierAdmin object that created it. In addition,

the ProxyConsumer interface defines an operation that returns the list of event types

a given proxy consumer instance is configured to forward, and an operation which can
be queried to determine which message level QoS properties can be set on a per-event
basis.

MyType

The MyType attribute is a readonly attribute that should be set upon creation of each
proxy consumer instance to indicate the specific type of proxy consumer the instance
representsiReviewer please clarify the followingEnumerations are possible to
distinguish the type of proxy consumer among the following possibilities:
ProxyPushConsumer , ProxyPullConsumer

StructuredProxyPushConsumer , StructuredProxyPullConsumer
SequenceProxyPushConsumer , SequenceProxyPullConsumer
TypedProxyPushConsumer , andTypedProxyPullConsumer]

MyAdmin

The MyAdmin attribute is a readonly attribute that should be set upon creation of each
proxy consumer instance to maintain the reference of the instance supporting the
SupplierAdmin interface that created it.

obtain_subscription_types

The obtain_subscription_types operation returns a list of event type names. This
returned list represents the names of event types which consumers connected to the
channel are interested in receiving. Consumers express their interest in receiving
particular types of events by configuring filters associated with the proxy suppliers to
which they are connected to encapsulate constraints which express subscriptions to
specific event instances. Such subscriptions could be based on the types and/or
contents of events. The proxy suppliers extract the event type information from these
subscriptions, and share it with the proxy consumer objects connected to the same
channel. Supplier objects can thus obtain this information from the channel by
invoking theobtain_subscription_types operation on the proxy consumer object to
which they are connected. This information enables suppliers to suppress sending types
of events to the channel in which no consumer is currently interested.

Note that suppliers can also receive updates to subscription information automatically
by enabling the channel to invoke teabscription_change operation they support
through inheritence of th€osNotifyComm::NotifySubscribe interface each time a
new type of event is added or removed through modification of filters. The
obtain_subscription_types operation accepts as input a flag that enables
synchronization between the subscription information obtain through these automatic
updates, and that obtained through invocatiomlofin_subscription_types

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-51

3-52

The table below summarizes the possible values and associated meanings this flag can
take on.

Table 3-1 Possible values and associated meanings for “mode” argument

Value Meaning

ALL_NOW_UPDATES_OFF The invocation should return the current list of
subscription types known by the target proxy
consumer, but subsequent automatic sending of
subscription update information should be
disabled.

ALL_NOW_UPDATES_ON The invocation should return the current list of
subscription types known by the proxy consumer,
and subsequent automatic sending of subscription
update information should be enabled. Note these
two actions should be atomic, guaranteeing that
the supplier connected to the proxy consumer
does not miss any subscription change update
that may be issued after the operation returns.

NONE_NOW_UPDATES_OFF| The invocation should not return any data, and
should disable the subsequent automatic sending
of subscription update information.

NONE_NOW_UPDATES_ON | The invocation should not return any data, by
should enable the subsequent automatic sending
of subscription update information.

n

—

3.4.1.4 validate _event_gos

Thevalidate_event_qos operation accepts as input a sequence of QoS property
name-value pairs which specify a set of QoS settings that a client is interested in
setting on a per-event basis. Note that the QoS property settings contained in the
optional header fields of a Structured Event may differ from those that are configured
on a given proxy object. This operation is essentially a check to see if the target proxy
object will honor the setting of a set of QoS properties on a per-event basis to values
that may conflict with those set on the proxy itself. If any of the requested settings
would not be honored by the target object on a per-event basis, the operation raises the
UnsupportedQoS exception. This exception contains as data a sequence of data
structures, each of which identifies the name of a QoS property in the input list whose
requested setting could not be satisfied, along with an error code and a range of
settings for the property which could be satisfied. The meanings of the error codes
which might be returned are described in Table 2-5 on page 2-46.

If all requested QoS property value settings could be satisfied by the target object, the
operation returns successfully with an output parameter that contains a sequence of
PropertyRange data structures. Each element in this sequence includes the name of a
an additional QoS property whose setting is supported by the target object on a per-

Notification Service V1.0 June 2000

3

event basis and which could have been included on the input list while still resulting in
a successful return from the operation. Each element also includes the range of values
that would have been acceptable for each such property.

3.4.2 The ProxySupplier Interface

The ProxySupplier interface is intended to be an abstract interface that is inherited
by the different varieties of proxy suppliers that can be instantiated within a
notification channel. It encapsulates the behaviors common to all Notification Service
proxy suppliers. In particular, theroxySupplier interface inherits th€oSAdmin
interface defined within th€osNotification module, and thé&ilterAdmin interface
defined within theCosNotifyFilter module. The former inheritance enables all proxy
suppliers to administer a list of associated QoS properties, while the latter inheritance
enables all proxy suppliers to administer a list of associated filter objects. Locally, the
ProxySupplier interface defines a readonly attribute that should be set upon creation
of each proxy supplier instance to indicate the specific type of proxy supplier the
instance represents, and a readonly attribute which maintains a reference to the
ConsumerAdmin object that created it. In addition, thiroxySupplier interface
defines attributes that associate with each proxy supplier two mapping filter objects,
one for priority and one for lifetime. As described in Section 2.3.1, “Mapping Filter
Objects,” on page 2-21, these mapping filter objects enable proxy suppliers to be
configured to alter the way they treat events with respect to their priority and lifetime
based on the type and contents of each individual event. Lastlrhe/Supplier
interface defines an operation that returns the list of event types that a given proxy
supplier could potentially forward to its associated consumer, and an operation which
can be queried to determine which message level QoS properties can be set on a per-
event basis.

3.4.2.1 MyType

The MyType attribute is a readonly attribute that should be set upon creation of each
proxy supplier instance to indicate the specific type of proxy supplier the instance
represents. Enumerations are possible to distinguish the type of proxy supplier among
the following possibilitiesProxyPushSupplier , ProxyPullSupplier ,
StructuredProxyPushSupplier , StructuredProxyPullSupplier
SequenceProxyPushSupplier , SequenceProxyPullSupplier
TypedProxyPushSupplier , andTypedProxyPullSupplier

3.4.2.2 MyAdmin

The MyAdmin attribute is a readonly attribute that should be set upon creation of each
proxy supplier instance to maintain the reference of the instance supporting the
ConsumerAdmin interface that created it.

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-53

3-54

3.4.2.3 priority_filter

The priority_filter attribute contains a reference to an object supporting the
MappingFilter interface defined in th€osNotifyFilter module. Such an object
encapsulates a list of constraint-value pairs, where each constraint is a boolean
expression based on the type and contents of an event, and the value is a possible
priority setting for the event. Upon receipt of each event by a proxy supplier object
whosepriority_filter attribute contains a non-nil reference, the proxy supplier will
invoke the appropriate variant of timeatch operation supported by the mapping filter
object. The mapping filter object will proceed to apply its encapsulated constraints to
the event, and return the one with the highest associated priority setting that evaluates
to TRUE, or else its associatet@fault_value if no constraints evaluate to TRUE.

Upon return from thematch operation, if the output parameter is TRUE, the proxy
supplier treats the event with respect to its priority according to the return value, as
opposed to a priority setting contained within the event. If the output parameter is
FALSE, the proxy supplier will treat the event with respect to its priority according to
the value set for the priority property in the event header if this property is present,
otherwise it will use the output parameter returned fromrttagch operation (i.e., the
default value of the mapping filter object).

3.4.2.4 lifetime_filter

Thelifetime_filter attribute contains a reference to an object supporting the
MappingFilter interface defined in th€osNotifyFilter module. Such an object
encapsulates a list of constraint-value pairs, where each constraint is a boolean
expression based on the type and contents of an event, and the value is a possible
lifetime setting for the event. Upon receipt of each event by a proxy supplier object
whoselifetime_filter attribute contains a non-nil reference, the proxy supplier will
invoke the appropriate variant of tmeatchoperation supported by the mapping filter
object. The mapping filter object will proceed to apply its encapsulated constraints to
the event, and return the one with the highest associated lifetime setting which
evaluates to TRUE, or else its associatiediault_value if no constraints evaluate to
TRUE. Upon return from thenatch operation, if the output parameter is TRUE, the
proxy supplier treats the event with respect to its lifetime according to the return value,
as opposed to a lifetime setting contained within the event. If the output parameter is
FALSE, the proxy supplier will treat the event with respect to its lifetime according to
the value set for the lifetime property in the event header if this property is present,
otherwise it will use the output parameter returned fromrtta#¢ch operation (i.e., the
default value of the mapping filter object).

3.4.2.5 obtain_offered_types

The obtain_offered_types operation returns a list of event type names. Each

element of the returned list names a type of event that the target proxy supplier object
could potentially forward to its associated consumer. Note that through inheritance, all
proxy consumer objects will support tinotifyPublish interface defined in the
CosNotifyComm module. This interface supports théer_change operation,

which can be invoked by suppliers each time there is a change to the list of event types
they plan to supply to their associated consumer. Thus, this mechanism relies on event

Notification Service V1.0 June 2000

3

suppliers keeping the channel informed of the types of events they plan to supply by
invoking theoffer_change operation on their associated proxy consumer object.
Internally to the channel, the proxy consumers will share the information about event
types that will be supplied to the channel with the proxy supplier objects associated
with the channel. This enables consumers to discover the types of events that could be
supplied to them by the channel by invoking thietain_offered_types operation on

their associated proxy supplier.

Note that as mentioned above, consumers can also receive updates to offer information
automatically by enabling the channel to invoke tifter_change operation they

support through inheritence of tl@osNotifyComm::NotifyPublish interface each

time a supplier informs the channel of a change to the types of events they plan to
supply. Theobtain_offered_types operation accepts as input a flag that enables
synchronization between the offer information obtained through these automatic
updates, and that obtained through invocatioplwthin_offered_types . The possible
values and associated meanings this flag can take on are similar to those summarized
in Table 3-1 on page 3-52, except that the information being shared is “offer”
information instead of “subscription” information.

3.4.2.6 validate_event_gos

Thevalidate_event_qos operation accepts as input a sequence of QoS property
name-value pairs which specify a set of QoS settings that a client is interested in
setting on a per-event basis. Note that the QoS property settings contained in the
optional header fields of a Structured Event may differ from those that are configured
on a given proxy object. This operation is essentially a check to see if the target proxy
object will honor the setting of a set of QoS properties on a per-event basis to values
that may conflict with those set on the proxy itself. If any of the requested settings
would not be honored by the target object on a per-event basis, the operation raises the
UnsupportedQoS exception. This exception contains as data a sequence of data
structures, each of which identifies the name of a QoS property in the input list whose
requested setting could not be satisfied, along with an error code and a range of
settings for the property which could be satisfied. The meanings of the error codes
which might be returned are described in Table 2-5 on page 2-46.

If all requested QoS property value settings could be satisfied by the target object, the
operation returns successfully with an output parameter that contains a sequence of
PropertyRange data structures. Each element in this sequence includes the name of
an additional QoS property whose setting is supported by the target object on a per-
event basis and which could have been included on the input list while still resulting in
a successful return from the operation. Each element also includes the range of values
that would have been acceptable for each such property.

3.4.3 The ProxyPushConsumer Interface

The ProxyPushConsumer interface supports connections to the channel by
suppliers who will push events to the channel as untyped Anys.

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-55

3-56

Through inheritance of thBroxyConsumer interface, the®roxyPushConsumer
interface supports administration of various QoS properties, administration of a list of
associated filter objects, and a readonly attribute containing the reference of the
SupplierAdmin object which created it. In addition, this inheritance implies that a
ProxyPushConsumer instance supports an operation which will return the list of
event types which consumers connected to the same channel are interested in
receiving, and an operation which can return information about the instance’s ability to
accept a per-event QoS request.

The ProxyPushConsumer interface also inherits from thRushConsumer

interface defined within th€osNotifyComm module. This interface supports the
push operation, which the supplier connected t®@r@xyPushConsumer instance

will invoke to send an event to the channel in the form of an Any, and the operation
required to disconnect theroxyPushConsumer from its associated supplier. In
addition, since the inheriteBushConsumer interface inherits the
CosNotifyComm::NotifyPublish interface, a supplier connected to an instance
supporting theProxyPushConsumer interface can inform it whenever the list of
event types the supplier plans to supply changes.

Finally, the ProxyPushConsumer interface defines the operation which can be
invoked by a push supplier to establish the connection over which the push supplier
will send events to the channel. Note that this can be either a pure event service style,
or a notification service style push supplier.

3.4.3.1 connect_any_push_supplier

Theconnect_any push_supplier operation accepts as an input parameter the
reference to an object supporting tRashSupplier interface defined within the
CosEventComm module of the OMG Event Service. This reference is that of a
supplier that plans to push events to the channel with which the target object is
associated in the form of untyped Anys. This operation is thus invoked in order to
establish a connection between a push-style supplier of events in the form of Anys, and
the notification channel. Once established, the supplier can proceed to send events to
the channel by invoking thpush operation supported by the target
ProxyPushConsumer instance. If the target object of this operation is already
connected to a push supplier object, thigeadyConnected exception will be raised.

Note that because tHeushSupplier interface defined in th€osNotifyComm

module inherits from th&ushSupplier interface defined in th€osEventComm

module, the input parameter to this operation could be either a pure event service style,
or a notification service style push supplier. The only difference between the two are
that the latter also supports tiNetifySubscribe interface, and thus can be the target

of subscription_change invocations. The implementation of the

ProxyPushConsumer interface should attempt to narrow the input parameter to
CosNotifyComm::PushSupplier in order to determine which style of push supplier

is connecting to it.

Notification Service V1.0 June 2000

3.4.4 The StructuredProxyPushConsumer Interface

The StructuredProxyPushConsumer interface supports connections to the channel
by suppliers who will push events to the channel as Structured Events. Through
inheritance of thé’roxyConsumer interface, the

StructuredProxyPushConsumer interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of ti@upplierAdmin object which created it. In addition,

this inheritance implies that &tructuredProxyPushConsumer instance supports

an operation which will return the list of event types which consumers connected to the
same channel are interested in receiving, and an operation which can return
information about the instance’s ability to accept a per-event QoS request.

The StructuredProxyPushConsumer interface also inherits from the
StructuredPushConsumer interface defined in th€osNotifyComm module. This
interface supports the operation that enables a supplier of Structured Events to push
them to theStructuredProxyPushConumer , and also the operation that can be
invoked to close down the connection from the supplier to the
StructuredProxyPushConsumer . In addition, since the

StructuredPushConsumer interface inherits from th&lotifyPublish interface, a
supplier can inform thé&tructuredProxyPushConsumer to which it is connected
whenever the list of event types it plans to supply to the channel changes.

Lastly, theStructuredProxyPushConsumer interface defines a method that can be
invoked by a push-style supplier of Structured Events in order to establish a connection
between the supplier and a notification channel over which the supplier will proceed to
send events.

3.4.4.1 connect_structured_push_supplier

The connect_structured_push_supplier operation accepts as an input parameter
the reference to an object supporting SteucturedPushSupplier interface defined
within the CosNotifyComm module. This reference is that of a supplier which plans
to push events to the channel with which the target object is associated in the form of
Structured Events. This operation is thus invoked in order to establish a connection
between a push-style supplier of events in the form of Structured Events, and the
notification channel. Once established, the supplier can proceed to send events to the
channel by invoking th@ush_structured_event operation supported by the target
StructuredProxyPushConsumer instance. If the target object of this operation is
already connected to a push supplier object,AlreadyConnected exception will

be raised.

3.4.5 The SequenceProxyPushConsumer Interface

The SequenceProxyPushConsumer interface supports connections to the channel
by suppliers who will push events to the channel as sequences of Structured Events.
Through inheritance of thBroxyConsumer interface, the
SequenceProxyPushConsumer interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-57

3-58

containing the reference of ttgupplierAdmin object which created it. In addition,
this inheritance implies that @equenceProxyPushConsumer instance supports an
operation which will return the list of event types which consumers connected to the
same channel are interested in receiving, and an operation which can return
information about the instance’s ability to accept a per-event QoS request.

The SequenceProxyPushConsumer interface also inherits from the
SequencePushConsumer interface defined in th€osNotifyComm module. This
interface supports the operation which enables a supplier of sequences of Structured
Events to push them to tHgequenceProxyPushConsumer , and also the operation
that can be invoked to close down the connection from the supplier to the
SequenceProxyPushConsumer . In addition, since the

SequencePushConsumer interface inherits from th&lotifyPublish interface, a
supplier can inform th&equenceProxyPushConsumer to which it is connected
whenever the list of event types it plans to supply to the channel changes.

Lastly, theSequenceProxyPushConsumer interface defines a method that can be
invoked by a push-style supplier of sequences of Structured Events in order to establish
a connection between the supplier and a notification channel over which the supplier
will proceed to send events.

3.4.5.1 connect_sequence_push_supplier

The connect_sequence_push_supplier operation accepts as an input parameter

the reference to an object supporting ®equencePushSupplier interface defined
within the CosNotifyComm module. This reference is that of a supplier, which plans
to push events to the channel with which the target object is associated in the form of
sequences of Structured Events. This operation is thus invoked in order to establish a
connection between a push-style supplier of events in the form of sequences of
Structured Events, and the notification channel. Once established, the supplier can
proceed to send events to the channel by invokingpleh_structured_events

operation supported by the targ@équenceProxyPushConsumer instance. If the
target object of this operation is already connected to a push supplier object, the
AlreadyConnected exception will be raised.

3.4.6 The ProxyPullSupplier Interface

The ProxyPullSupplier interface supports connections to the channel by consumers
who will pull events from the channel as untyped Anys.

Through inheritance of thBroxySupplier interface, theProxyPullSupplier

interface supports administration of various QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a readonly
attribute containing the reference of tensumerAdmin object that created it. In
addition, this inheritance implies thatRroxyPullSupplier instance supports an
operation which will return the list of event types which the proxy supplier will
potentially by supplying, and an operation which can return information about the
instance’s ability to accept a per-event QoS request.

Notification Service V1.0 June 2000

The ProxyPullSupplier interface also inherits from theullSupplier interface

defined within theCosNotifyComm module. This interface supports tpell and
try_pull operations which the consumer connected ®raxyPullSupplier instance

will invoke to receive an event from the channel in the form of an Any, and the
operation required to disconnect tReoxyPullSupplier from its associated

consumer. In addition, since the inheritBdlISupplier interface inherits the
CosNotifyComm::NotifySubscribe interface, an instance supporting the
ProxyPullSupplier interface can be informed whenever the list of event types that the
consumer connected to it is interested in receiving changes.

Finally, the ProxyPullSupplier interface defines the operation which can be invoked

by a pull consumer to establish the connection over which the pull consumer will
receive events from the channel. Note that this can be either a pure event service style,
or a notification service style pull consumer.

3.4.6.1 connect_any_pull_consumer

Theconnect_any_pull_consumer operation accepts as an input parameter the
reference to an object supporting tRallConsumer interface defined within the
CosEventComm module. This reference is that of a consumer that plans to pull
events from the channel with which the target object is associated in the form of
untyped Anys. This operation is thus invoked in order to establish a connection
between a pull-style consumer of events in the form of Anys, and the notification
channel. Once established, the consumer can proceed to receive events from the
channel by invoking theull or try_pull operations supported by the target
ProxyPullSupplier instance. If the target object of this operation is already connected
to a pull consumer object, thélreadyConnected exception will be raised.

Note that because tHeullConsumer interface defined in th€osNotifyComm

module inherits from th&@ullConsumer interface defined in th€osEventComm

module, the input parameter to this operation could be either a pure event service style,
or a notification service style pull consumer. The only difference between the two are
that the latter also supports tihetifyPublish interface, and thus can be the target of
offer_change invocations. The implementation of thiroxyPullSupplier interface
should attempt to narrow the input parameteCmsNotifyComm::PullConsumer

in order to determine which style of pull consumer is connecting to it.

3.4.7 The StructuredProxyPullSupplier Interface

The StructuredProxyPullSupplier interface supports connections to the channel by
consumers who will pull events from the channel as Structured Events. Through
inheritance of thé’roxySupplier interface, theStructuredProxyPullSupplier

interface supports administration of various QoS properties, administration of a list of
associated filter objects, and a readonly attribute containing the reference of the
ConsumerAdmin object that created it. In addition, this inheritance implies that a
StructuredProxyPullSupplier instance supports an operation that will return the list
of event types, which the proxy supplier will potentially by supplying, and an
operation which can return information about the instance’s ability to accept a per-
event QoS request.

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-59

3-60

The StructuredProxyPullSupplier interface also inherits from the
StructuredPullSupplier interface defined in th€osNotifyComm module. This
interface supports the operations that enable a consumer of Structured Events to pull
them from theStructuredProxyPullSupplier , and also the operation that can be
invoked to close down the connection from the consumer to the
StructuredProxyPullSupplier . In addition, since thé&tructuredPullSupplier
interface inherits from th&lotifySubscribe interface, a
StructuredProxyPullSupplier can be notified whenever the list of event types,
which its associated consumer is interested in receiving changes. This notification
occurs via the callback mechanism described in Section 2.3, “Event Filtering with
Filter Objects,” on page 2-17.

Lastly, theStructuredProxyPullSupplier interface defines a method that can be
invoked by a pull-style consumer of Structured Events in order to establish a
connection between the consumer and a notification channel over which the consumer
will proceed to receive events.

3.4.7.1 connect_structured_pull_consumer

The connect_structured_pull_consumer operation accepts as an input parameter
the reference to an object supporting BteucturedPullConsumer interface defined
within the CosNotifyComm module. This reference is that of a consumer that plans
to pull events from the channel to which the target object is associated in the form of
Structured Events. This operation is thus invoked in order to establish a connection
between a pull-style consumer of events in the form of Structured Events, and the
notification channel. Once established, the consumer can proceed to receive events
from the channel by invoking theull_structured_event or

try_pull_structured_event operations supported by the target
StructuredProxyPullSupplier instance. If the target object of this operation is
already connected to a pull consumer object, AtiewadyConnected exception will

be raised.

3.4.8 The SequenceProxyPullSupplier Interface

The SequenceProxyPullSupplier interface supports connections to the channel by
consumers who will pull events from the channel as sequences of Structured Events.
Through inheritance of thBroxySupplier interface, the

SequenceProxyPullSupplier interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of tt@onsumerAdmin object that created it. In addition,

this inheritance implies that SequenceProxyPullSupplier instance supports an
operation that will return the list of event types, which the proxy supplier will
potentially be supplying, and an operation that can return information about the
instance’s ability to accept a per-event QoS request.

The SequenceProxyPullSupplier interface also inherits from the
SequencePullSupplier interface defined in th€osNotiyComm module. This
interface supports the operations that enable a consumer of sequences of Structured
Events to pull them from th&equenceProxyPullSupplier , and the operation that

Notification Service V1.0 June 2000

can be invoked to close down the connection from the consumer to the
SequenceProxyPullSupplier . In addition, since th&equencePullSupplier

interface inherits from th&lotifySubscribe interface, a

SequenceProxyPullSupplier can be notified whenever the list of event types, which

its associated consumer is interested in receiving changes. This notification occurs via
the callback mechanism described in Section 2.3, “Event Filtering with Filter Objects,”
on page 2-17.

Lastly, theSequenceProxyPullSupplier interface defines a method that can be
invoked by a pull-style consumer of sequences of Structured Events in order to
establish a connection between the consumer and a notification channel over which the
consumer will proceed to receive events.

3.4.8.1 connect_sequence_pull_consumer

The connect_sequence_pull_consumer operation accepts as an input parameter
the reference to an object supporting BequencePullConsumer interface defined
within the CosNotifyComm module. This reference is that of a consumer that plans
to pull events from the channel to which the target object is associated in the form of
sequences of Structured Events. This operation is thus invoked in order to establish a
connection between a pull-style consumer of events in the form of sequences of
Structured Events, and the notification channel. Once established, the consumer can
proceed to receive events from the channel by invokingptlle structured_events

or try_pull_structured_events operations supported by the target
SequenceProxyPullSupplier instance. If the target object of this operation is
already connected to a pull consumer object, AtieeadyConnected exception will

be raised.

3.4.9 The ProxyPullConsumer Interface

The ProxyPullConsumer interface supports connections to the channel by suppliers
who will make events available for pulling to the channel as untyped Anys.

Through inheritance of thBroxyConsumer interface, theProxyPullConsumer

interface supports administration of various QoS properties, administration of a list of
associated filter objects, and a readonly attribute containing the reference of the
SupplierAdmin object that created it. In addition, this inheritance implies that a
ProxyPullConsumer instance supports an operation that will return the list of event
types that consumers connected to the same channel are interested in receiving, and an
operation that can return information about the instance’s ability to accept a per-event
QoS request.

The ProxyPullConsumer interface also inherits from theullConsumer interface
defined within theCosEventComm module of the OMG Event Service. This
interface supports the operation required to disconnedPtbeyPullConsumer from
its associated supplier. In addition, since the inherRetlConsumer interface
inherits theCosNotifyComm::NotifyPublish interface, a supplier connected to an
instance supporting theroxyPullConsumer interface can inform it whenever the
list of event types the supplier plans to supply changes.

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-61

3-62

3.49.1

3.4.9.2

Finally, theProxyPullConsumer interface defines the operation which can be

invoked by a pull supplier to establish the connection over which the pull supplier will
send events to the channel. Note that this can be either a pure event service style, or a
notification service style pull supplier. THeroxyPullConsumer interface also

defines a pair of operations that can suspend and resume the connection between a
ProxyPullConsumer instance and its associatBdllSupplier . During the time such

a connection is suspended, tReoxyPullConsumer will not attempt to pull events

from its associate@ullSupplier .

connect_any_pull_supplier

The connect_any_pull_supplier operation accepts as an input parameter the
reference to an object supporting tRellSupplier interface defined within the
CosEventComm module. This reference is that of a supplier which plans to make
events available for pulling to the channel with which the target object is associated in
the form of untyped Anys. This operation is thus invoked in order to establish a
connection between a pull-style supplier of events in the form of Anys, and the
notification channel. Once established, the channel can proceed to receive events from
the supplier by invoking theull or try_pull operations supported by the supplier
(whether the channel will invokpull ortry_pull , and the frequency with which it will
perform such invocations, is a detail which is specific to the implementation of the
channel). If the target object of this operation is already connected to a pull supplier
object, theAlreadyConnected exception will be raised. An implementation of the
ProxyPullConsumer interface may impose additional requirements on the interface
supported by a pull supplier (e.g., it may be designed to invoke some operation other
thanpull ortry_pull in order to receive events). If the pull supplier being connected
does not meet those requirements, this operation raiseByfeError exception.

Note that because tHeullSupplier interface defined in th€osNotifyComm

module inherits from thé&ullSupplier interface defined in th€osEventComm

module, the input parameter to this operation could be either a pure event service style,
or a notification service style pull supplier. The only difference between the two is that
the latter also supports theotifySubscribe interface, and thus can be the target of
subscription_change invocations. The implementation of the

ProxyPullConsumer interface should attempt to narrow the input parameter to
CosNotifyComm::PullSupplier in order to determine which style of pull supplier is
connecting to it.

suspend_connection

The suspend_connection operation causes the target object supporting the
ProxyPullConsumer interface to stop attempting to pull events (usmgl or

try_pull) from the PullSupplier instance connected to it. This operation takes no
input parameters and returns no values. If the connection has been previously
suspended using this operation and not resumed by invakisigme_connection
(described below), th€onnectionAlreadylnactive exception is raised. If no
PullSupplier has been connected to the target object when this operation is invoked,

Notification Service V1.0 June 2000

the NotConnected exception is raised. Otherwise, tReoxyPullConsumer will
not attempt to pull events from tHeullSupplier connected to it until
resume_connection is subsequently invoked.

3.4.9.3 resume_connection

Theresume_connection operation causes the target object supporting the
ProxyPullConsumer interface to resume attempting to pull events (ugpad) or
try_pull) from the PullSupplier instance connected to it. This operation takes no
input parameters and returns no values. If the connection has not been previously
suspended using this operation by invokswugpend_connection (described above),
the ConnectionAlreadyActive exception is raised. If n®ullSupplier has been
connected to the target object when this operation is invokedNtht€onnected
exception is raised. Otherwise, tReoxyPullConsumer will resume attempting to
pull events from thdPullSupplier connected to it.

3.4.10 The StructuredProxyPullConsumer Interface

The StructuredProxyPullConsumer interface supports connections to the channel

by suppliers who will make events available for pulling to the channel as Structured
Events. Through inheritance of tiR¥oxyConsumer interface, the
StructuredProxyPullConsumer interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of tf&upplierAdmin object that created it. In addition, this
inheritance implies that &tructuredProxyPullConsumer instance supports an
operation that will return the list of event types which consumers connected to the
same channel are interested in receiving, and an operation that can return information
about the instance’s ability to accept a per-event QoS request.

The StructuredProxyPullConsumer interface also inherits from the
StructuredPullConsumer interface defined in th€osNotifyComm module. This
interface supports the operation that can be invoked to close down the connection from
the supplier to the&tructuredProxyPullConsumer . In addition, since the
StructuredPullConsumer interface inherits from th&lotifyPublish interface, a
supplier can inform thé&tructuredProxyPullConsumer to which it is connected
whenever the list of event types it plans to supply to the channel changes.

Lastly, theStructuredProxyPullConsumer interface defines a method that can be
invoked by a pull-style supplier of Structured Events in order to establish a connection
between the supplier and a notification channel over which the supplier will proceed to
send events. Th8tructuredProxyPullConsumer interface also defines a pair of
operations that can suspend and resume the connection between a
StructuredProxyPullConsumer instance and its associated

StructuredPullSupplier . During the time such a connection is suspended, the
StructuredProxyPullConsumer will not attempt to pull events from its associated
StructuredPullSupplier

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-63

3-64

3.4.10.1 connect_structured_pull_supplier

The connect_structured_pull_supplier ~ operation accepts as an input parameter

the reference to an object supporting SieucturedPullSupplier interface defined
within the CosNotifyComm module. This reference is that of a supplier which plans
to make events available for pulling to the channel with which the target object is
associated in the form of Structured Events. This operation is thus invoked in order to
establish a connection between a pull-style supplier of events in the form of Structured
Events, and the notification channel. Once established, the channel can proceed to
receive events from the supplier by invoking tal_structured_event or
try_pull_structured_event operations supported by the supplier (whether the
channel will invokepull_structured_event ortry pull_structured_event , and the
frequency with which it will perform such invocations, is a detail which is specific to
the implementation of the channel). If the target object of this operation is already
connected to a pull supplier object, tAdreadyConnected exception will be raised.

An implementation of thé&tructuredProxyPullConsumer interface may impose
additional requirements on the interface supported by a pull supplier (e.g., it may be
designed to invoke some operation other tipahi_structured_event or
try_pull_structured_event in order to receive events). If the pull supplier being
connected does not meet those requirements, this operation raisBggError
exception.

3.4.10.2 suspend_connection

The suspend_connection operation causes the target object supporting the
StructuredProxyPullConsumer interface to stop attempting to pull events (using
pull ortry_pull) from the StructuredPullSupplier instance connected to it. This
operation takes no input parameters and returns no values. If the connection has been
previously suspended using this operation and not resumed by invoking
resume_connection (described below), th€onnectionAlreadylnactive
exception is raised. If n&tructuredPullSupplier has been connected to the target
object when this operation is invoked, thitConnected exception is raised.
Otherwise, theStructuredProxyPullConsumer will not attempt to pull events from
the StructuredPullSupplier connected to it untitesume_connection is
subsequently invoked.

3.4.10.3 resume_connection

Theresume_connection operation causes the target object supporting the
StructuredProxyPullConsumer interface to resume attempting to pull events (using
pull ortry_pull) from the StructuredPullSupplier instance connected to it. This
operation takes no input parameters and returns no values. If the connection has not
been previously suspended using this operation by invokirgpend_connection
(described above), theéonnectionAlreadyActive exception is raised. If no
StructuredPullSupplier has been connected to the target object when this operation
is invoked, theNotConnected exception is raised. Otherwise, the
StructuredProxyPullConsumer will resume attempting to pull events from the
StrucuturedPullSupplier connected to it.

Notification Service V1.0 June 2000

3.4.11 The SequenceProxyPullConsumer Interface

The SequenceProxyPullConsumer interface supports connections to the channel

by suppliers who will make events available for pulling to the channel as sequences of
Structured Events. Through inheritance of frexyConsumer interface, the
SequenceProxyPullConsumer interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of ti&upplierAdmin object which created it. In addition,

this inheritance implies that 8equenceProxyPullConsumer instance supports an
operation which will return the list of event types which consumers connected to the
same channel are interested in receiving, and an operation which can return
information about the instance’s ability to accept a per-event QoS request.

The SequenceProxyPullConsumer interface also inherits from the
SequencePullConsumer interface defined in th€osNotifyComm module. This
interface supports the operation which can be invoked to close down the connection
from the supplier to th&equenceProxyPullConsumer . In addition, since the
SequencePullConsumer interface inherits from th&lotifyPublish interface, a
supplier can inform th&equenceProxyPullConsumer to which it is connected
whenever the list of event types it plans to supply to the channel changes.

Lastly, theSequenceProxyPullConsumer interface defines a method that can be
invoked by a pull-style supplier of sequences of Structured Events in order to establish
a connection between the supplier and a natification channel over which the supplier
will proceed to send events. TtgequenceProxyPullConsumer interface also

defines a pair of operations which can suspend and resume the connection between a
SequenceProxyPullConsumer instance and its associated

SequencePullSupplier . During the time such a connection is suspended, the
SequenceProxyPullConsumer will not attempt to pull events from its associated
SequencePullSupplier .

3.4.11.1 connect_sequence_pull_supplier

Theconnect_sequence_pull_supplier operation accepts as an input parameter the
reference to an object supporting tBequencePullSupplier interface defined within

the CosNotifyComm module. This reference is that of a supplier that plans to make
events available for pulling to the channel with which the target object is associated in
the form of sequences of Structured Events. This operation is thus invoked in order to
establish a connection between a pull-style supplier of events in the form of sequences
of Structured Events, and the notification channel. Once established, the channel can
proceed to receive events from the supplier by invokingpthke structured_events

or try_pull_structured_events operations supported by the supplier (whether the
channel will invokepull_structured_events ortry_pull_structured_events , and

the frequency with which it will perform such invocations, is a detail that is specific to
the implementation of the channel). If the target object of this operation is already
connected to a pull supplier object, tAdreadyConnected exception will be raised.

An implementation of th&equenceProxyPullConsumer interface may impose
additional requirements on the interface supported by a pull supplier (e.g., it may be
designed to invoke some operation other tipaili_structured_events or

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-65

3-66

try_pull_structured_events in order to receive events). If the pull supplier being
connected does not meet those requirements, this operation raisBgoglerror
exception.

3.4.11.2 suspend_connection

The suspend_connection operation causes the target object supporting the
SequenceProxyPullConsumer interface to stop attempting to pull events (using
pull ortry pull) from the SequencePullSupplier instance connected to it. This
operation takes no input parameters and returns no values. If the connection has been
previously suspended using this operation and not resumed by invoking
resume_connection (described below), th€onnectionAlreadylnactive
exception is raised. If n@equencePullSupplier has been connected to the target
object when this operation is invoked, thitConnected exception is raised.
Otherwise, theSequenceProxyPullConsumer will not attempt to pull events from
the SequencePullSupplier connected to it untitesume_connection is
subsequently invoked.

3.4.11.3 resume_connection

Theresume_connection operation causes the target object supporting the
SequenceProxyPullConsumer interface to resume attempting to pull events (using
pull ortry_pull) from the SequencePullSupplier instance connected to it. This
operation takes no input parameters and returns no values. If the connection has not
been previously suspended using this operation by invokirgpend_connection
(described above), theéonnectionAlreadyActive exception is raised. If no
SequencePullSupplier has been connected to the target object when this operation
is invoked, theNotConnected exception is raised. Otherwise, the
SequenceProxyPullConsumer will resume attempting to pull events from the
SequencePullSupplier connected to it.

3.4.12 The ProxyPushSupplier Interface

The ProxyPushSupplier interface supports connections to the channel by consumers
who will receive events from the channel as untyped Anys.

Through inheritance of thBroxySupplier interface, theProxyPushSupplier

interface supports administration of various QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a readonly
attribute containing the reference of t@ensumerAdmin object which created it. In
addition, this inheritance implies thatRroxyPushSupplier instance supports an
operation that will return the list of event types which the proxy supplier will
potentially by supplying, and an operation which can return information about the
instance’s ability to accept a per-event QoS request.

The ProxyPushSupplier interface also inherits from thRushSupplier interface

defined within theCosNotifyComm module. This interface supports the operation
required to disconnect theroxyPushSupplier from its associated consumer. In
addition, since the inheriteBushSupplier interface inherits the

Notification Service V1.0 June 2000

CosNotifyComm::NotifySubscribe interface, an instance supporting the
ProxyPushSupplier interface can be informed whenever the list of event types that
the consumer connected to it is interested in receiving changes.

Lastly, theProxyPushSupplier interface defines the operation which can be invoked

by a push consumer to establish the connection over which the push consumer will
receive events from the channel. Note that this can be either a pure event service style,
or a naotification service style push consumer. RrexyPushSupplier interface also
defines a pair of operations that can suspend and resume the connection between a
ProxyPushSupplier instance and its associat®dishConsumer . During the time

such a connection is suspended, BrexyPushSupplier will accumulate events

destined for the consumer but not transmit them until the connection is resumed.

3.4.12.1 connect_any_push_consumer

The connect_any push_consumer operation accepts as an input parameter the
reference to an object supporting tRashConsumer interface defined within the
CosEventComm module. This reference is that of a consumer that will receive
events from the channel with which the target object is associated in the form of
untyped Anys. This operation is thus invoked in order to establish a connection
between a push-style consumer of events in the form of Anys, and the notification
channel. Once established, tReoxyPushSupplier will proceed to send events
destined for the consumer to it by invoking jtsish operation. If the target object of

this operation is already connected to a push consumer object, the
AlreadyConnected exception will be raised. An implementation of the
ProxyPushSupplier interface may impose additional requirements on the interface
supported by a push consumer (e.g., it may be designed to invoke some operation other
thanpush in order to transmit events). If the push consumer being connected does not
meet those requirements, this operation raisesl{fgeError exception.

Note that because tHeushConsumer interface defined in th€osNotifyComm

module inherits from th@ushConsumer interface defined in th€osEventComm
module, the input parameter to this operation could be either a pure event service style,
or a notification service style push consumer. The only difference between the two are
that the latter also supports tietifyPublish interface, and thus can be the target of
offer_change invocations. The implementation of tieoxyPushSupplier interface
should attempt to narrow the input paramete€CtmsNotifyComm::PushConsumer

in order to determine which style of push consumer is connecting to it.

3.4.12.2 suspend_connection

The suspend_connection operation causes the target object supporting the
ProxyPushSupplier interface to stop sending events to theshConsumer

instance connected to it. This operation takes no input parameters and returns no
values. If the connection has been previously suspended using this operation and not
resumed by invokingesume_connection (described below), the
ConnectionAlreadylnactive exception is raised. If neushConsumer has been
connected to the target object when this operation is invokedNtht€onnected
exception is raised. Otherwise, tReoxyPushSupplier will not forward events to

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-67

3-68

the PushConsumer connected to it untitesume_connection is subsequently
invoked. During this time, th@roxyPushSupplier will continue to queue events
destined for the?ushConsumer , although events that time out prior to resumption of
the connection will be discarded. Upon resumption of the connection, all queued
events will be forwarded to theushConsumer .

3.4.12.3 resume_connection

Theresume_connection operation causes the target object supporting the
ProxyPushSupplier interface to resume sending events to FheshConsumer

instance connected to it. This operation takes no input parameters and returns no
values. If the connection has not been previously suspended using this operation by
invoking suspend_connection (described above), theéonnectionAlreadyActive
exception is raised. If n®ushConsumer has been connected to the target object
when this operation is invoked, théotConnected exception is raised. Otherwise,

the ProxyPushSupplier will resume forwarding events to tHfeushConsumer

connected to it, including those that have been queued during the time the connection
was suspended, and have not yet timed out.

3.4.13 The StructuredProxyPushSupplier Interface

The StructuredProxyPushSupplier interface supports connections to the channel

by consumers who will receive events from the channel as Structured Events. Through
inheritance of thé’roxySupplier interface, theStructuredProxyPushSupplier

interface supports administration of various QoS properties, administration of a list of
associated filter objects, and a readonly attribute containing the reference of the
ConsumerAdmin object which created it. In addition, this inheritance implies that a
StructuredProxyPushSupplier instance supports an operation which will return the
list of event types which the proxy supplier will potentially be supplying, and an
operation which can return information about the instance’s ability to accept a per-
event QoS request.

The StructuredProxyPushSupplier interface also inherits from the
StructuredPushSupplier interface defined in th€osNotifyComm module. This
interface supports the operation that can be invoked to close down the connection from
the consumer to th8tructuredProxyPushSupplier . In addition, since the
StructuredPushSupplier interface inherits from th&lotifySubscribe interface, a
StructuredProxyPushSupplier can be notified whenever the list of event types

which its associated consumer is interested in receiving changes. This notification
occurs via the callback mechanism described in Section 2.3, “Event Filtering with
Filter Objects,” on page 2-17.

Lastly, theStructuredProxyPushSupplier interface defines the operation that can

be invoked by a push consumer to establish the connection over which the push
consumer will receive events from the channel. BteicturedProxyPushSupplier

interface also defines a pair of operations that can suspend and resume the connection
between &tructuredProxyPushSupplier instance and its associated

Notification Service V1.0 June 2000

3

StructuredPushConsumer . During the time such a connection is suspended, the
StructuredProxyPushSupplier will accumulate events destined for the consumer
but not transmit them until the connection is resumed.

3.4.13.1 connect_structured_push_consumer

The connect_structured_push_consumer operation accepts as an input

parameter the reference to an object supportingStnecturedPushConsumer

interface defined within th€osNotifyComm module. This reference is that of a
consumer that will receive events from the channel with which the target object is
associated in the form of Structured Events. This operation is thus invoked in order to
establish a connection between a push-style consumer of events in the form of
Structured Events, and the notification channel. Once established, the
StructuredProxyPushSupplier will proceed to send events destined for the
consumer to it by invoking itpush_structured _event operation. If the target object

of this operation is already connected to a push consumer object, the
AlreadyConnected exception will be raised. An implementation of the
StructuredProxyPushSupplier interface may impose additional requirements on

the interface supported by a push consumer (e.g., it may be designed to invoke some
operation other thapush_structured_event in order to transmit events). If the push
consumer being connected does not meet those requirements, this operation raises the
TypeError exception.

3.4.13.2 suspend_connection

The suspend_connection operation causes the target object supporting the
StructuredProxyPushSupplier interface to stop sending events to the
StructuredPushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has been previously suspended
using this operation and not resumed by invokiegume_connection (described
below), theConnectionAlreadylnactive exception is raised. If no
StructuredPushConsumer has been connected to the target object when this
operation is invoked, tht&lotConnected exception is raised. Otherwise, the
StructuredProxyPushSupplier will not forward events to the
StructuredPushConsumer connected to it untifesume_connection s
subsequently invoked. During this time, tB&ructuredProxyPushSupplier — will
continue to queue events destined for 8teucturedPushConsumer , although
events that time out prior to resumption of the connection will be discarded. Upon
resumption of the connection, all queued events will be forwarded to the
StructuredPushConsumer

3.4.13.3 resume_connection

Theresume_connection operation causes the target object supporting the
StructuredProxyPushSupplier interface to resume sending events to the
StructuredPushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has not been previously suspended
using this operation by invokinguspend_connection (described above), the

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-69

3-70

ConnectionAlreadyActive exception is raised. If n&tructuredPushConsumer
has been connected to the target object when this operation is invoked, the
NotConnected exception is raised. Otherwise, tB&ucturedProxyPushSupplier
will resume forwarding events to thgtructuredPushConsumer connected to it,
including those which have been queued during the time the connection was
suspended, and have not yet timed out.

3.4.14 The SequenceProxyPushSupplier Interface

The SequenceProxyPushSupplier interface supports connections to the channel by
consumers who will receive events from the channel as sequences of Structured
Events. Through inheritance of tl¥oxySupplier interface, the
SequenceProxyPushSupplier interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of tl@onsumerAdmin object which created it. In addition,
this inheritance implies that 8equenceProxyPushSupplier instance supports an
operation that will return the list of event types which the proxy supplier will
potentially be supplying, and an operation that can return information about the
instance’s ability to accept a per-event QoS request.

The SequenceProxyPushSupplier interface also inherits from the
SequencePushSupplier interface defined in th€osNotifyComm module. This
interface supports the operation that can be invoked to close down the connection from
the consumer to th8equenceProxyPushSupplier . In addition, since the
SequencePushSupplier interface inherits from th&lotifySubscribe interface, a
SequenceProxyPushSupplier can be notified whenever the list of event types

which its associated consumer is interested in receiving changes. This notification
occurs via the callback mechanism described in Section 2.3, “Event Filtering with
Filter Objects,” on page 2-17.

Lastly, theSequenceProxyPushSupplier interface defines the operation that can be
invoked by a push consumer to establish the connection over which the push consumer
will receive events from the channel. TBequenceProxyPushSupplier interface

also defines a pair of operations that can suspend and resume the connection between a
SequenceProxyPushSupplier instance and its associated

SequencePushConsumer . During the time such a connection is suspended, the
SequenceProxyPushSupplier will accumulate events destined for the consumer

but not transmit them until the connection is resumed.

3.4.14.1 connect_sequence_push_consumer

Theconnect_sequence_push_consumer operation accepts as an input parameter
the reference to an object supporting ®equencePushConsumer interface

defined within theCosNotifyComm module. This reference is that of a consumer
which will receive events from the channel with which the target object is associated in
the form of sequences of Structured Events. This operation is thus invoked in order to
establish a connection between a push-style consumer of events in the form of
sequences of Structured Events, and the notification channel. Once established, the
SequenceProxyPushSupplier will proceed to send events destined for the

Notification Service V1.0 June 2000

consumer to it by invoking itpush_structured_events operation. If the target

object of this operation is already connected to a push consumer object, the
AlreadyConnected exception will be raised. An implementation of the
SequenceProxyPushSupplier interface may impose additional requirements on the
interface supported by a push consumer (e.g., it may be designed to invoke some
operation other thapush_structured_events in order to transmit events). If the

push consumer being connected does not meet those requirements, this operation raises
the TypeError exception.

3.4.14.2 suspend_connection

The suspend_connection operation causes the target object supporting the
SequenceProxyPushSupplier interface to stop sending events to the
SequencePushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has been previously suspended
using this operation and not resumed by invokiegume_connection (described
below), theConnectionAlreadylnactive exception is raised. If no
SequencePushConsumer has been connected to the target object when this
operation is invoked, thdlotConnected exception is raised. Otherwise, the
SequenceProxyPushSupplier will not forward events to the
SequencePushConsumer connected to it untitesume_connection is
subsequently invoked. During this time, tBequenceProxyPushSupplier will
continue to queue events destined for 8ejuencePushConsumer , although
events that time out prior to resumption of the connection will be discarded. Upon
resumption of the connection, all queued events will be forwarded to the
SequencePushConsumer .

3.4.14.3 resume_connection

Theresume_connection operation causes the target object supporting the
SequenceProxyPushSupplier interface to resume sending events to the
SequencePushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has not been previously suspended
using this operation by invokinguspend_connection (described above), the
ConnectionAlreadyActive exception is raised. If n@equencePushConsumer

has been connected to the target object when this operation is invoked, the
NotConnected exception is raised. Otherwise, tBequenceProxyPushSupplier

will resume forwarding events to tHeequencePushConsumeronnected to it,
including those which have been queued during the time the connection was
suspended, and have not yet timed out.

3.4.15 The ConsumerAdmin Interface

The ConsumerAdmin interface defines the behavior supported by objects which
create and manage lists of proxy supplier objects within a Notification Service event
channel. Recall that a Notification Service event channel can have any number of
ConsumerAdmin instances associated with it. Each such instance is responsible for
creating and managing a list of proxy supplier objects that share a common set of QoS

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-71

3-72

property settings, and a common set of filter objects. This feature enables clients to
conveniently group proxy supplier objects within a channel into groupings that each
support a set of consumers with a common set of QoS requirements and event
subscriptions.

The ConsumerAdmin interface inherits th€oSAdmin interface defined within the
CosNotification module, enabling eacBonsumerAdmin instance to manage a set
of QoS property settings. These QoS property settings are assigned as the default QoS
property settings for any proxy supplier object created liyoasumerAdmin

instance. In addition, th€onsumerAdmin interface inherits from th&ilterAdmin
interface defined within th€osNotifyFilter module, enabling each

ConsumerAdmin instance to maintain a list of filter objects. These filter objects
encapsulate subscriptions that will apply to all proxy supplier objects that have been
created by a giveonsumerAdmin instance. In order to enable optimizing the
notification of a group of proxy supplier objects that have been created by the same
ConsumerAdmin instance of changes to these shared filter objects, the
ConsumerAdmin interface also inherits from thiotifySubscribe interface

defined in theCosNotifyComm module. This inheritance enables a

ConsumerAdmin instance to be registered as the callback object for notification of
subscription changes made upon filter objects.

The ConsumerAdmin interface defined in th€osNotifyChannelAdmin module

also inherits from the&ConsumerAdmin interface defined in the
CosEventChannelAdmin module. This inheritance enables clients to use the
ConsumerAdmin interface defined in th€osNotifyChannelAdmin module to

create pure OMG Event Service style proxy supplier objects. Proxy supplier objects
created in this manner may not support configuration of QoS properties, and may not
have associated filter objects. In addition, proxy supplier objects created through the
inheritedConsumerAdmin interface will not have unique identifiers associated with
them, whereas proxy supplier objects created by invoking the operations supported by
the ConsumerAdmin interface defined in th€osNotifyChannelAdmin module

will.

Locally, theConsumerAdmin interface supports a readonly attribute which

maintains a reference to tlieventChannel instance that created a given
ConsumerAdmin instance. TheConsumerAdmin interface also supports a

readonly attribute which contains a numeric identifier which will be assigned to an
instance supporting this interface by its associated Notification Service event channel
upon creation of th€onsumerAdmin instance. This identifier will be unique among

all ConsumerAdmin instances created by a given channel.

As described above, due to inheritance from fileerAdmin interface, a
ConsumerAdmin can maintain a list of filter objects that will be applied to all proxy
suppliers it creates. Also recall that each proxy supplier may itself support a list of
filter objects that apply only it. When combining multiple filter objects within each of
these two lists of filter objects that may be associated with a given proxy supplier, OR
semantics are applied. However when combining these two lists during the evaluation
of a given event, either AND or OR semantics may be applied. The choice is

Notification Service V1.0 June 2000

3

determined by an input flag upon creation of iensumerAdmin , and the operator
that will be used for this purpose by a giv@onsumerAdmin is maintained in a
readonly attribute.

The ConsumerAdmin interface also supports attributes which maintain references to
priority and lifetime mapping filter objects. These mapping filter objects will be
applied to all proxy supplier objects created by a gi@msumerAdmin instance.

EachConsumerAdmin instance assigns a unique numeric identifier to each proxy
supplier object it maintains. TheéonsumerAdmin interface supports attributes

which maintain the list of these unique identifiers associated with the proxy pull and
the proxy push suppliers created by a giveonsumerAdmin instance. The
ConsumerAdmin interface also supports an operation which, given the unique
identifier of a proxy supplier a give@onsumerAdmin instance has created as input,
will return the object reference of that proxy supplier object. Additionally, the
ConsumerAdmin interface supports operations that can create the various styles of
proxy supplier objects supported by the Notification Service event channel. Finally,
because clients of a given Notification Service event channel can create any number of
ConsumerAdmin instances, a@estroy operation is provided by this interface so that
clients can clean up instances that are no longer needed.

3.4.15.1 MyID

The MyID attribute is a readonly attribute that maintains the unique identifier of the
targetConsumerAdmin instance, which is assigned to it upon creation by the
Notification Service event channel.

3.4.15.2 MyChannel

TheMyChannel attribute is a readonly attribute that maintains the object reference of
the Notification Service event channel, which created a gi@ensumerAdmin
instance.

3.4.15.3 MyOperator

The MyOperator attribute is a readonly attribute that maintains the information
regarding whether AND or OR semantics will be used during the evaluation of a given
event against a set of filter objects, when combining the filter objects associated with
the targetConsumerAdmin and those defined locally on a given proxy supplier.

3.4.15.4 priority_filter

The priority_filter attribute maintains a reference to a mapping filter object that
affects the way in which each proxy supplier object created by the target
ConsumerAdmin instance treats each event it receives with respect to priority.

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-73

3-74

Note that each proxy supplier object also has an associated attribute that maintains a
reference to a mapping filter object for the priority property. If this attribute is set to
the reference of a valid mapping filter object, this mapping filter will override that set
at the admin level..Otherwise, the mapping filter object referred to by the

priority_filter attribute of theConsumerAdmin is used.

3.4.15.5 lifetime_filter

Thelifetime_filter attribute maintains a reference to a mapping filter object that
affects the way in which each proxy supplier object created by the target
ConsumerAdmin instance treats each event it receives with respect to lifetime.

Note that each proxy supplier object also has an associated attribute that maintains a
reference to a mapping filter object for the lifetime property. If this attribute is set to
the reference of a valid mapping filter object, this mapping filter will override that set
at the admin level. Otherwise, the mapping filter object referred to by the
lifetime_filter attribute of theConsumerAdmin is used.

3.4.15.6 pull_suppliers

The pull_suppliers attribute is a readonly attribute that contains the list of unique
identifiers which have been assigned bZansumerAdmin instance to each pull-
style proxy supplier object it has created.

3.4.15.7 push_suppliers

The push_suppliers attribute is a readonly attribute that contains the list of unique
identifiers which have been assigned bZansumerAdmin instance to each push-
style proxy supplier object it has created.

3.4.15.8 get_proxy_supplier

Theget_proxy_supplier operation accepts as an input parameter the numeric unique
identifier associated with one of the proxy supplier objects that has been created by the
targetConsumerAdmin instance. If the input parameter does correspond to the
unique identifier of a proxy supplier object that has been created by the target
ConsumerAdmin instance, that proxy supplier object’s reference is returned as the
result of the operation. Otherwise, tReoxyNotFound exception is raised.

3.4.15.9 obtain_notification_pull_supplier

The obtain_notification_pull_supplier ~ operation can create instances of the
various types of pull-style proxy supplier objects defined within the
CosNotifyChannelAdmin module. Recall that three varieties of pull-style proxy
supplier objects are defined within this module:

® instances of th&roxyPullSupplier interface support connections to pull
consumers that receive events as Anys,

Notification Service V1.0 June 2000

3

® instances of thé&tructuredProxyPullSupplier interface support connections to
pull consumers that receive events as Structured Events, and

® instances of th&equenceProxyPullSupplier interface support connections to
pull consumers that receive events as sequences of Structured Events.

The obtain_natification_pull_supplier ~ operation thus accepts as an input

parameter a flag that indicates which style of pull-style proxy supplier instance should
be created. If the number of consumers currently connected to the channel with which
the targetConsumerAdmin object is associated exceeds the value of the
MaxConsumers administrative property, thAdminLimitExceeded exception is

raised. Otherwise, the targ€onsumerAdmin creates the new pull-style proxy

supplier instance and assigns a numeric identifier to it that is unigue among all proxy
suppliers it has created. The unique identifier is returned as the output parameter of the
operation, and the reference to the new proxy supplier instance is returned as the
operation result.

3.4.15.10 obtain_notification_push_supplier

The obtain_notification_push_supplier ~ operation can create instances of the
various types of push-style proxy supplier objects defined within the
CosNotifyChannelAdmin module. Recall that three varieties of push-style proxy
supplier objects are defined within this module:

® instances of th&roxyPushSupplier interface support connections to push
consumers which receive events as Anys,

® instances of th&tructuredProxyPushSupplier interface support connections to
push consumers which receive events as Structured Events, and

® instances of th&equenceProxyPushSupplier interface support connections to
push consumers which receive events as sequences of Structured Events.

The obtain_notification_push_supplier ~ operation thus accepts as an input
parameter a flag that indicates which style of push-style proxy supplier instance should
be created. If the number of consumers currently connected to the channel with which
the targetConsumerAdmin object is associated exceeds the value of the
MaxConsumers administrative property, thAdminLimitExceeded exception is

raised. Otherwise, the targ€bnsumerAdmin creates the new push-style proxy
supplier instance and assigns a numeric identifier to it that is unique among all proxy
suppliers it has created. The unique identifier is returned as the output parameter of the
operation, and the reference to the new proxy supplier instance is returned as the
operation result.

3.4.15.11 destroy

The destroy operation can be invoked to destroy the tarGensumerAdmin

instance, freeing all resources consumed by the instance. Notddbimby can be

invoked on aConsumerAdmin instance that is current managing proxy supplier
objects that support open connections to consumers. In this case, the effect of invoking
destroy on theConsumerAdmin is that the operation will disconnect each of the

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-75

3-76

proxy supplier objects being managed by the ta@@tsumerAdmin from their
consumers, and destroy each of these proxy suppliers. Ultimately, the
ConsumerAdmin instance itself will be destroyed.

3.4.16 The SupplierAdmin Interface

The SupplierAdmin interface defines the behavior supported by objects which create
and manage lists of proxy consumer objects within a Notification Service event
channel. Recall that a Notification Service event channel can have any number of
SupplierAdmin instances associated with it. Each such instance is responsible for
creating and managing a list of proxy consumer objects that share a common set of
QoS property settings, and a common set of filter objects. This feature enables clients
to conveniently group proxy consumer objects within a channel into groupings that
each support a set of suppliers with a common set of QoS requirements, and that make
common event forwarding decisions driven by the association of a common set of filter
objects.

The SupplierAdmin interface inherits th€oSAdmin interface defined within the
CosNotification module, enabling eacBupplierAdmin instance to manage a set of
QoS property settings. These QoS property settings are assigned as the default QoS
property settings for any proxy consumer object created By@aplierAdmin

instance. In addition, th8upplierAdmin interface inherits from th&ilterAdmin

interface defined within th€osNotifyFilter module, enabling eacBupplierAdmin
instance to maintain a list of filter objects. These filter objects encapsulate
subscriptions that will apply to all proxy consumer objects that have been created by a
given SupplierAdmin instance. In order to enable optimizing the notification of a
group of proxy consumer objects that have been created by the SappdierAdmin
instance of changes to the types of events being offered by suppliers, the
SupplierAdmin interface also inherits from thiotifyPublish interface defined in

the CosNotifyComm module. This inheritance enablesSapplierAdmin instance

to be the target of aoffer_change request made by a supplier object, and for the
change in event types being offered to be shared by all proxy consumer objects which
were created by the targ8upplierAdmin .

The SupplierAdmin interface defined in th€osNotifyChannelAdmin module

also inherits from thé&SupplierAdmin interface defined in the

CosEventChannelAdmin module. This inheritance enables clients to use the
SupplierAdmin interface defined in th€osNotifyChannelAdmin module to

create pure OMG Event Service style proxy consumer objects. Proxy consumer objects
created in this manner may not support configuration of QoS properties, and may not
have associated filter objects. In addition, proxy consumer objects created through the
inheritedSupplierAdmin interface will not have unique identifiers associated with
them, whereas proxy consumer objects created by invoking the operations supported
by the SupplierAdmin interface defined in th€osNotifyChannelAdmin module

will.

Locally, theSupplierAdmin interface supports a readonly attribute that maintains a
reference to th&ventChannel instance that created a giv&upplierAdmin

instance. The&supplierAdmin interface also supports a readonly attribute, which
contains a numeric identifier which will be assigned to an instance supporting this

Notification Service V1.0 June 2000

3

interface by its associated Notification Service event channel upon creation of the
SupplierAdmin instance. This identifier will be unique among &lipplierAdmin
instances created by a given channel.

As described above, due to inheritance from EileerAdmin interface, a

SupplierAdmin can maintain a list of filter objects that will be applied to all proxy
consumers it creates. Also recall that each proxy consumer may itself support a list of
filter objects that apply only to it. When combining multiple filter objects within each
of these two lists of filter objects that may be associated with a given proxy consumer,
OR semantics are applied. However when combining these two lists during the
evaluation of a given event, either AND or OR semantics may be applied. The choice
is determined by an input flag upon creation of BwpplierAdmin , and the operator

that will be used for this purpose by a giv&upplierAdmin is maintained in a

readonly attribute.

EachSupplierAdmin instance assigns a unique numeric identifier to each proxy
consumer object it maintains. Ti8&upplierAdmin interface supports attributes that
maintain the list of these unique identifiers associated with the proxy pull and the
proxy push consumers created by a gigupplierAdmin instance. The

SupplierAdmin interface also supports an operation which, given the unique
identifier of a proxy consumer a givedupplierAdmin instance has created as input,
will return the object reference of that proxy consumer object. Additionally, the
SupplierAdmin interface supports operations that can create the various styles of
proxy consumer objects supported by the Notification Service event channel. Finally,
because clients of a given Notification Service event channel can create any number of
SupplierAdmin instances, a@estroy operation is provided by this interface so that
clients can clean up instances that are no longer needed.

3.4.16.1 MyID

The MyID attribute is a readonly attribute that maintains the unique identifier of the
targetSupplierAdmin instance, which is assigned to it upon creation by the
Notification Service event channel.

3.4.16.2 MyChannel

TheMyChannel attribute is a readonly attribute that maintains the object reference of
the Notification Service event channel, which created a givepplierAdmin
instance.

3.4.16.3 MyOperator

The MyOperator attribute is a readonly attribute that maintains the information
regarding whether AND or OR semantics will be used during the evaluation of a given
event against a set of filter objects, when combining the filter objects associated with
the targetSupplierAdmin and those defined locally on a given proxy consumer.

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-77

3-78

3.4.16.4 pull_consumers

The pull_consumers attribute is a readonly attribute that contains the list of unique
identifiers, which have been assigned b8w@pplierAdmin instance to each pull-style
proxy consumer object it has created.

3.4.16.5 push_consumers

Thepush_consumers attribute is a readonly attribute that contains the list of unique
identifiers, which have been assigned bg@pplierAdmin instance to each push-
style proxy consumer object it has created.

3.4.16.6 get_proxy_consumer

Theget_proxy_consumer operation accepts as an input parameter the numeric
unique identifier associated with one of the proxy consumer objects that has been
created by the targ&upplierAdmin instance. If the input parameter does correspond
to the unique identifier of a proxy consumer object that has been created by the target
SupplierAdmin instance, that proxy consumer object’s reference is returned as the
result of the operation. Otherwise, tReoxyNotFound exception is raised.

3.4.16.7 obtain_notification_pull _consumer

The obtain_notification_pull_consumer operation can create instances of the
various types of pull-style proxy consumer objects defined within the
CosNotifyChannelAdmin module. Recall that three varieties of pull-style proxy
consumer objects are defined within this module:

® instances of thé&roxyPullConsumer interface support connections to pull
suppliers which send events as Anys,

® instances of th&tructuredProxyPullConsumer interface support connections to
pull suppliers which send events as Structured Events, and

® instances of th&equenceProxyPullConsumer interface support connections to
pull suppliers which send events as sequences of Structured Events.

The obtain_natification_pull_consumer operation thus accepts as an input
parameter a flag that indicates which style of pull-style proxy consumer instance
should be created. If the number of suppliers currently connected to the channel with
which the targeSupplierAdmin object is associated exceeds the value of the
MaxSuppliers administrative property, thAdminLimitExceeded exception is

raised. Otherwise, the targ8upplierAdmin creates the new pull-style proxy

consumer instance and assigns a numeric identifier to it that is unique among all proxy
consumers it has created. The unique identifier is returned as the output parameter of
the operation, and the reference to the new proxy consumer instance is returned as the
operation result.

Notification Service V1.0 June 2000

3.4.16.8 obtain_notification_push_consumer

The obtain_notification_push_consumer operation can create instances of the
various types of push-style proxy consumer objects defined within the
CosNotifyChannelAdmin module. Recall that three varieties of push-style proxy
consumer objects are defined within this module:

® instances of théroxyPushConsumer interface support connections to push
suppliers which send events as Anys,

® instances of th&tructuredProxyPushConsumer interface support connections
to push suppliers which send events as Structured Events, and

® instances of th&equenceProxyPushConsumer interface support connections
to push suppliers which send events as sequences of Structured Events.

The obtain_notification_push_consumer operation thus accepts as an input
parameter a flag which indicates which style of push-style proxy consumer instance
should be created. If the number of suppliers currently connected to the channel with
which the targeSupplierAdmin object is associated exceeds the value of the
MaxSuppliers administrative property, thAdminLimitExceeded exception is

raised. Otherwise, the targ8upplierAdmin creates the new push-style proxy

consumer instance and assigns a numeric identifier to it that is unique among all proxy
consumers it has created. The unique identifier is returned as the output parameter of
the operation, and the reference to the new proxy consumer instance is returned as the
operation result.

3.4.16.9 destroy

Thedestroy operation can be invoked to destroy the tarfgapplierAdmin instance,
freeing all resources consumed by the instance. Notedisttoy can be invoked on a
SupplierAdmin instance that is current managing proxy consumer objects that
support open connections to suppliers. In this case, the effect of invaleisigoy on

the SupplierAdmin is that the operation will disconnect each of the proxy consumer
objects being managed by the tar@etpplierAdmin from their suppliers, and destroy
each of these proxy consumers. Ultimately, 8uoplierAdmin instance itself will be
destroyed.

3.4.17 The EventChannel Interface

The EventChannel interface encapsulates the behaviors supported by a Notification
Service event channel. This interface inherits from BventChannel interface

defined within theCosEventChannelAdmin module of the OMG Event Service,
making an instance of the Notification ServiEgentChannel interface fully

backward compatible with an OMG Event Service style untyped event channel.

Inheritance of theeventChannel interface defined within the

CosEventChannelAdmin module enables an instance of theentChannel

interface defined within th€osNotifyChannelAdmin module to create event

service styleConsumerAdmin andSupplierAdmin instances. These instances can
subsequently be used to create pure event service style proxy interfaces, which support

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-79

connections to pure event service style suppliers and consumers. Note that while
Notification Service style proxies and admin objects have unique identifiers associated
with them, enabling their references to be obtained by invoking operations on the
Notification Service style admin and event channel interfaces, Event Service style
proxies and admin objects do not have associated unique identifiers, and thus cannot be
returned by invoking an operation on the Notification Service style admin or event
channel interfaces.

The EventChannel interface defined within th€osNotifyChannelAdmin module
also inherits from th&€QoSAdmin and theAdminPropertiesAdmin interfaces

defined within theCosNotification module. Inheritance of these interfaces enables a
Notification Service style event channel to manage lists of associated QoS and
administrative properties, respectively.

Locally, theEventChannel interface supports a readonly attribute that maintains a
reference to th&ventChannelFactory instance that created it. In addition, each
instance of th&eventChannel interface has an associated defaidinsumerAdmin

and an associated defa@upplierAdmin instance, both of which exist upon creation
of the channel and which have the unique identifier of zero (note that admin object
identifiers only need to be unique among a given type of admin, implying that the
identifiers assigned t€onsumerAdmin objects can overlap those assigned to
SupplierAdmin objects). TheEventChannel interface supports readonly attributes
which maintain references to these default admin objects.

The EventChannel interface supports operations that create @msumerAdmin
and SupplierAdmin instances. In addition, thEventChannel interface supports
operations which can return references to@mmsumerAdmin andSupplierAdmin
instances associated with a giveaentChannel instance, given the unique identifier
of an admin object as input. Finally, tiieventChannel interface supports operations,
which return the sequence of unique identifiers ofGtinsumerAdmin and
SupplierAdmin instances associated with a givEmentChannel instance.

3.4.17.1 MyFactory

The MyFactory attribute is a readonly attribute that maintains the object reference of
the event channel factory, which created a given Notification SefgientChannel
instance.

3.4.17.2 default_consumer_admin

The default_consumer_admin attribute is a readonly attribute that maintains a
reference to the defau@onsumerAdmin instance associated with the target
EventChannel instance. EacliEeventChannel instance has an associated default
ConsumerAdmin instance, which exists upon creation of the channel and is assigned
the unique identifier of zero. Subsequently, clients can create additional Event Service
style ConsumerAdmin instances by invoking the inheritddr_consumers

operation, and additional Notification Service st@lensumerAdmin instances by
invoking thenew_for_consumers operation defined by thEventChannel

interface.

3-80 Notification Service V1.0 June 2000

3.4.17.3 default_supplier_admin

The default_supplier_admin attribute is a readonly attribute that maintains a
reference to the defauBupplierAdmin instance associated with the target
EventChannel instance. EaclitventChannel instance has an associated default
SupplierAdmin instance, which exists upon creation of the channel and is assigned
the unique identifier of zero. Subsequently, clients can create additional Event Service
style SupplierAdmin instances by invoking the inheritddr_suppliers operation,

and additional Notification Service stylBupplierAdmin instances by invoking the
new_for_suppliers operation defined by thEventChannel interface.

3.4.17.4 default_filter_factory

The default_filter_factory attribute is a readonly attribute that maintains an object
reference to the default factory to be used by BventChannel instance with which

it's associated for creating filter objects. If the target channel does not support a default
filter factory, the attribute will maintain the value of OBJECT_NIL.

3.4.17.5 new_for_consumers

The new_for_consumers operation is invoked to create a new Notification Service
style ConsumerAdmin instance. The operation accepts as an input parameter a
boolean flag, which indicates whether AND or OR semantics will be used when
combining the filter objects associated with the newly cre&tedsumerAdmin
instance with those associated with a supplier proxy, which was created by the
ConsumerAdmin during the evaluation of each event against a set of filter objects.
The new instance is assigned a unique identifier by the t&gentChannel instance
that is unique among allonsumerAdmin instances currently associated with the
channel. Upon completion, the operation returns the reference to the new
ConsumerAdmin instance as the result of the operation, and the unique identifier
assigned to the ne®@onsumerAdmin instance as the output parameter.

3.4.17.6 new_for_suppliers

Thenew_for_suppliers operation is invoked to create a new Notification Service
style SupplierAdmin instance. The operation accepts as an input parameter a boolean
flag, which indicates whether AND or OR semantics will be used when combining the
filter objects associated with the newly createdpplierAdmin instance with those
associated with a consumer proxy, which was created bysthpplierAdmin during

the evaluation of each event against a set of filter objects. The new instance is assigned
a unique identifier by the targ&ventChannel instance that is unique among all
SupplierAdmin instances currently associated with the channel. Upon completion,
the operation returns the reference to the r&ypplierAdmin instance as the result

of the operation, and the unique identifier assigned to the SepplierAdmin

instance as the output parameter.

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-81

3-82

3.4.17.7 get_consumeradmin

The get_consumeradmin operation returns a reference to one of the
ConsumerAdmin instances associated with the targ@entChannel instance. The
operation accepts as an input parameter a numeric value which is intended to be the
unique identifier of one of th€onsumerAdmin instances associated with the target
EventChannel instance. If this turns out to be the case, the object reference of the
associatedConsumerAdmin instance is returned as the operation result. Otherwise,
the AdminNotFound exception is raised.

Note that while a Notification Service style event channel can support both Event
Service and Notification Service styl@onsumerAdmin instances, only Notification
Service styleConsumerAdmin instances have associated unique identifiers.

3.4.17.8 get_supplieradmin

Theget_supplieradmin operation returns a reference to one of wplierAdmin
instances associated with the targeentChannel instance. The operation accepts as
an input parameter a numeric value which is intended to be the unique identifier of one
of the SupplierAdmin instances associated with the targ@entChannel instance.

If this turns out to be the case, the object reference of the assoSatmalierAdmin
instance is returned as the operation result. OtherwiseAtminNotFound

exception is raised.

Note that while a Notification Service style event channel can support both Event
Service and Notification Service styfupplierAdmin instances, only Notification
Service styleSupplierAdmin instances have associated unique identifiers.

3.4.17.9 get_all_consumeradmins

Theget_all_consumeradmins operation takes no input parameters and returns a
sequence of the unique identifiers assigned to all Notification Service style
ConsumerAdmin instances, which have been created by the tagyentChannel
instance.

3.4.17.10 get_all_supplieradmins

The get_all_supplieradmins operation takes no input parameters and returns a
sequence of the unique identifiers assigned to all Notification Service style
SupplierAdmin instances which have been created by the tafgentChannel
instance.

3.4.18 The EventChannelFactory Interface

The EventChannelFactory interface defines operations for creating and managing
new Notification Service style event channels. It supports a routine that creates new
instances of Notification Service event channels and assigns unique numeric identifiers
to them. In addition, th&ventChannelFactory interface supports a routine, which

can return the unique identifiers assigned to all event channels created by a given

Notification Service V1.0 June 2000

3

instance ofEventChannelFactory , and another routine which, given the unique
identifier of an event channel created by a tar§eéntChannelFactory instance,
returns the object reference of that event channel.

3.4.18.1 create_channel

Thecreate_channel operation is invoked to create a new instance of the Notification
Service style event channel. This operation accepts two input parameters. The first
input parameter is a list of name-value pairs, which specify the initial QoS property
settings for the new channel. The second input parameter is a list of name-value pairs,
which specify the initial administrative property settings for the new channel.

If no implementation of thé&eventChannel interface exists that can support all of the
requested QoS property settings, tdasupportedQoS exception is raised. This
exception contains as data a sequence of data structures, each of which identifies the
name of a QoS property in the input list whose requested setting could not be satisfied,
along with an error code and a range of settings for the property that could be satisfied.
The meanings of the error codes that might be returned are described in Table 2-5 on
page 2-46.

Likewise, if no implementation of thEventChannel interface exists that can support

all of the requested administrative property settings,WnsupportedAdmin

exception is raised. This exception contains as data a sequence of data structures, each
of which identifies the name of an administrative property in the input list whose
requested setting could not be satisfied, along with an error code and a range of
settings for the property which could be satisfied. The meanings of the error codes that
might be returned are described in Table 2-5 on page 2-46.

If neither of these exceptions is raised, treate_channel operation will return a
reference to a new Notification Service style event channel. In addition, the operation
assigns to this new event channel a numeric identifier, which is uniqgue among all event
channels created by the target object. This numeric identifier is returned as an output
parameter.

3.4.18.2 get_all_channels

Theget_all_channels operation returns a sequence of all of the unique numeric
identifiers corresponding to Notification Service event channels, which have been
created by the target object.

3.4.18.3 get_event_channel

Theget_event_channel operation accepts as input a numeric value that is supposed
to be the unique identifier of a Notification Service event channel, which has been
created by the target object. If this input value does not correspond to such a unique
identifier, theChannelNotFound exception is raised. Otherwise, the operation

returns the object reference of the Notification Service event channel corresponding to
the input identifier.

Notification Service V1.0 The CosNotifyChannelAdmin Module June 2000 3-83

3.5 The CosTypedNotifyComm Module

3-84

The CosTypedNotifyComm module defines the client interfaces required for doing
typed event style communication. Note that typed client interfaces are only required
for push-style consumers and pull-style suppliers, since these are the interfaces that
need to support event type specific transmission operations. Since no new operations
are required to perform typed event communication for pull-style consumers and push-
style suppliers, the analogous client interfaces definedaaNotifyComm can be

reused for those types of typed clients.

Note that in addition to requiring special interfaces for typed style push consumers,
and typed style pull suppliers, it is necessary that these clients support the
NotifyPublish andNotifySubscribe interfaces, respectively, in order to support the
offer and type information sharing mechanism provided by the Notification Service.
This is the reason that a special module must be defined for these types of notification
service clients, as opposed to reusing those defined iiCtsdypedEventComm

module of the OMG event service.

module CosTypedNotifyComm {

interface TypedPushConsumer :
CosTypedEventComm::TypedPushConsumer,
CosNotifyComm::NotifyPublish {

}; Il TypedPushConsumer

interface TypedPullSupplier :
CosTypedEventComm::TypedPullSupplier,
CosNotifyComm::NotifySubscribe {

}; Il TypedPullSupplier

}; I CosTypedNotifyComm

3.5.1 The TypedPushConsumer Interface

The TypedPushConsumer interface supports the behavior required by typed event
style push consumers connected to a Notification Service typed channel. This interface
inherits from theTypedPushConsumer interface defined by the

CosTypedEventComm module of the OMG Event Service. This inherited interface
supports theget_typed_consumer operation that enables an instance supporting the
TypedPushConsumer interface to return a reference to a type-specific interface that
supports type-specific event transmission.

In addition, theTypedPushConsumer interface inherits th&lotifyPublish
interface defined by th€osNotifyComm module. This inheritence enables an
instance supporting th&ypedPushConsumer interface to have iteffer_change
operation invoked, keeping it informed of the types of events being offered by
suppliers connected to the same channel.

Notification Service V1.0 June 2000

3.5.2 The TypedPullSupplier Interface

The TypedPullSupplier interface supports the behavior required by typed event style
pull suppliers connected to a Notification Service typed channel. This interface inherits
from the TypedPullSupplier interface defined by th€osTypedEventComm

module of the OMG Event Service. This inherited interface supports the
get_typed_supplier operation that enables an instance supporting the
TypedPullSupplier interface to return a reference to a type-specific interface that
supports type-specific event transmission.

In addition, theTypedPullSupplier interface inherits thé&otifySubscribe interface
defined by theCosNotifyComm module. This inheritence enables an instance
supporting theTypedPullSupplier interface to have itsubscription_change

operation invoked, keeping it informed of the types of events being subscribed to by
consumers connected to the same channel.

3.6 CosTypedNotifyChannelAdmin

The CosTypedNotifyChannelAdmin module defines the interfaces necessary to
create, configure, and administer instances of a Notification Service typed event
channel. The Notification Service typed event channel is essentially a hybrid of the
typed event channel defined by the OMG Event Service, and the Notification Service
event channel described in the previous section. The Notification Service typed event
channel supports typed event service clients, exactly as defined in the OMG Event
Service, but provides the advantages of QoS administration of the channel, admin, and
proxy interfaces, and also enables filtering to be performed on typed events.

Through inheritance of analogous interfaces defined in the
CosTypedEventChannelAdmin module of the OMG Event Service, a Notification
Service typed event channel supports backward compatibility with an Event Service
typed event channel. In addition, t®sTypedNotifyChannelAdmin module

defines new versions of thEypedEventChannel , admin, and proxy interfaces that
support connections from clients who will communicate via typed events, but also
desire the ability to configure their connections to the channel to support various QoS
properties, and the ability to define filters based on the type and contents of typed
events.

The concepts involved with filter of typed events are described in Section 2.7,
“Filtering Typed Events,” on page 2-52. The interfaces and modules that comprise the
CosTypedNotifyChannelAdmin module are specified below.

module CosTypedNotifyChannelAdmin {
/I Forward declaration
interface TypedEventChannelFactory;

typedef string Key;

interface TypedProxyPushConsumer :

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000 3-85

CosNotifyChannelAdmin::ProxyConsumer,
CosTypedNotifyComm::TypedPushConsumer {

void connect_typed_push_supplier (
in CosEventComm::PushSupplier push_supplier)
raises (CosEventChannelAdmin::AlreadyConnected);

}; 1l TypedProxyPushConsumer

interface TypedProxyPullSupplier :
CosNotifyChannelAdmin::ProxySupplier,
CosTypedNotifyComm::TypedPullSupplier {

void connect_typed_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)
raises (CosEventChannelAdmin::AlreadyConnected);

}; /I TypedProxyPullSupplier

interface TypedProxyPullConsumer :
CosNotifyChannelAdmin::ProxyConsumert,
CosNotifyComm::PullConsumer {

void connect_typed_pull_supplier (
in CosTypedEventComm::TypedPullSupplier pull_supplier)
raises (CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadylnactive,
CosNotifyChannelAdmin::NotConnected);

void resume_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyActive,
CosNotifyChannelAdmin::NotConnected);

}; /I TypedProxyPullConsumer

interface TypedProxyPushSupplier :
CosNotifyChannelAdmin::ProxySupplier,
CosNotifyComm::PushSupplier {

void connect_typed_push_consumer (

3-86 Notification Service V1.0 June 2000

in CosTypedEventComm::TypedPushConsumer push_consumer)
raises (CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()

raises (CosNotifyChannelAdmin::ConnectionAlreadylnactive,
CosNotifyChannelAdmin::NotConnected);

void resume_connection()

raises (CosNotifyChannelAdmin::ConnectionAlreadyActive,
CosNotifyChannelAdmin::NotConnected);

}; Il TypedProxyPushSupplier

interface TypedConsumerAdmin :
CosNotifyChannelAdmin::ConsumerAdmin,
CosTypedEventChannelAdmin::TypedConsumerAdmin {

TypedProxyPullSupplier obtain_typed_notification_pull_supplier(
in Key supported_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)
raises(CosTypedEventChannelAdmin::InterfaceNotSupported,
CosNotifyChannelAdmin::AdminLimitExceeded);

TypedProxyPushSupplier obtain_typed_notification_push_supplier(
in Key uses_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)
raises(CosTypedEventChannelAdmin::NoSuchimplementation,
CosNotifyChannelAdmin::AdminLimitExceeded);

}; I/ TypedConsumerAdmin

interface TypedSupplierAdmin :
CosNotifyChannelAdmin::SupplierAdmin,
CosTypedEventChannelAdmin:: TypedSupplierAdmin {

TypedProxyPushConsumer obtain_typed_notification_push_consumer(
in Key supported_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)
raises(CosTypedEventChannelAdmin::InterfaceNotSupported,
CosNotifyChannelAdmin::AdminLimitExceeded);

TypedProxyPullConsumer obtain_typed_notification_pull_consumer(
in Key uses_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000

3-87

raises(CosTypedEventChannelAdmin::NoSuchimplementation,
CosNotifyChannelAdmin::AdminLimitExceeded);

}; 1l TypedSupplierAdmin

interface TypedEventChannel :
CosNotification::QoSAdmin,
CosNoatification::AdminPropertiesAdmin,
CosTypedEventChannelAdmin::TypedEventChannel {

readonly attribute TypedEventChannelFactory MyFactory;

readonly attribute TypedConsumerAdmin default_consumer_admin;
readonly attribute TypedSupplierAdmin default_supplier_admin;
readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;
TypedConsumerAdmin new_for_typed_notification_consumers(

in CosNotifyChannelAdmin::InterFilterGroupOperator op,
out CosNotifyChannelAdmin::AdminID id);

TypedSupplierAdmin new_for_typed_notification_suppliers(
in CosNotifyChannelAdmin::InterFilterGroupOperator op,
out CosNotifyChannelAdmin::AdminID id);

TypedConsumerAdmin get_consumeradmin (
in CosNotifyChannelAdmin::AdminID id)
raises (CosNotifyChannelAdmin::AdminNotFound);

TypedSupplierAdmin get_supplieradmin (
in CosNotifyChannelAdmin::AdminID id)
raises (CosNotifyChannelAdmin::AdminNotFound);

CosNotifyChannelAdmin::AdminIDSeq get_all_consumeradmins();
CosNotifyChannelAdmin::AdminIDSeq get_all_supplieradmins();

}; Il TypedEventChannel

interface TypedEventChannelFactory {

3-88 Notification Service V1.0 June 2000

TypedEventChannel create_typed_channel (
in CosNotification::QoSProperties initial_QoS,
in CosNotification::AdminProperties initial_admin,
out CosNotifyChannelAdmin::ChannellD id)
raises(CosNotification::UnsupportedQoS,
CosNoatification::UnsupportedAdmin);

CosNotifyChannelAdmin::ChannellDSeq get_all_typed_channels();

TypedEventChannel get_typed_event_channel (
in CosNotifyChannelAdmin::ChannellD id)
raises (CosNotifyChannelAdmin::ChannelNotFound);

}; /I TypedEventChannelFactory

}; I CosTypedNotifyChannelAdmin

3.6.1 The TypedProxyPushConsumer Interface

The TypedProxyPushConsumer interface supports connections to the channel by
suppliers who will push OMG Event Service style typed events to the channel.

Through inheritance of thBroxyConsumer interface defined in the
CosNotifyChannelAdmin module, theTypedProxyPushConsumer interface

supports administration of various QoS properties, administration of a list of associated
filter objects, and a readonly attribute containing the object reference of the
SupplierAdmin Linstance, which created a giva@ypedProxyPushConsumer

instance. In addition, this inheritance implies thakygedProxyPushConsumer

instance supports an operation which will return the list of event types which
consumers connected to the same channel are interested in receiving, and an operation
which can return information about the instance’s ability to accept a per-event QoS
request.

The TypedProxyPushConsumer interface also inherits from the
TypedPushConsumer interface defined within th€osTypedNotifyComm

module. This interface supports the event type specific operation(s), which the supplier
connected to d&ypedProxyPushConsumer instance will invoke to send events to

the channel in the form of typed events. And, since TgpedPushConsumer

interface inherits from th®ushConsumer interface defined in the

1.In this case, the reference is really to a TypedSupplierAdmin instance, which is valid since
TypedSupplierAdmin inherits from CosNotifyChannelAdmin::SupplierAdmin.

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000 3-89

CosEventComm module, an instance supporting thgpedProxyPushConsumer
interface supports the standgydsh operation with which it can be supplied untyped
events, and the operation required to disconnecftipedProxyPushConsumer

from its associated supplier. In addition, since the inheriiggedPushConsumer
interface inherits th€osNotifyComm::NotifyPublish interface, a supplier
connected to an instance supporting TlypedProxyPushConsumer interface can
inform it whenever the list of event types the supplier plans to supply changes.

Finally, the TypedProxyPushConsumer interface defines the operation, which can

be invoked by a push supplier to establish the connection over which the push supplier
will send events to the channel. Note that this can be either a pure event service style,
or a notification service style push supplier.

3.6.1.1 connect_typed_push_supplier

The connect_typed _push_supplier operation accepts as an input parameter the
reference to an object supporting tRashSupplier interface defined within the
CosEventComm module. This reference is that of a supplier that plans to push typed
events to the channel with which the target object is associated. This operation is thus
invoked in order to establish a connection between a push-style supplier of typed
events, and the notification channel. Once established, the supplier can proceed to send
events to the channel by invoking the event type specific operation(s) supported by the
targetTypedProxyPushConsumer instance. If the target object of this operation is
already connected to a push supplier object,AlreadyConnected exception will

be raised.

Note that since there is no difference between the interfaces of suppliers of untyped
and typed events, it would have sufficed to have ThpedProxyPushConsumer
interface to inherit from th&roxyPushConsumer interface defined in the
CosNotifyChannelAdmin module, and to not define a separate “connect” method
for push-style suppliers of typed events. It was felt, however, that explicitly defining
this operation makes the usage model of TgpedProxyPushConsumer interface
more intuitive.

Note also that because tiRrishSupplier interface defined in th€osNotifyComm

module inherits from th&ushSupplier interface defined in th€osEventComm

module, the input parameter to this operation could be either a pure event service style,
or a notification service style push supplier. The only difference between the two are
that the latter also supports tiNetifySubscribe interface, and thus can be the target

of subscription_change invocations. The implementation of the
TypedProxyPushConsumer interface should attempt to narrow the input parameter

to CosNotifyComm::PushSupplier in order to determine which style of push

supplier is connecting to it.

3.6.2 The TypedProxyPullSupplier Interface

The TypedProxyPullSupplier interface supports connections to the channel by
consumers who will pull OMG Event Service style typed events from the channel.

3-90 Notification Service V1.0 June 2000

Through inheritance of thBroxySupplier interface, theTypedProxyPullSupplier
interface supports administration of various QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a readonly
attribute containing the object reference of thensumerAdmin 2 instance, which
created a giveypedProxyPullSupplier instance. In addition, this inheritance
implies that aTypedProxyPullSupplier instance supports an operation that will

return the list of event types, which the proxy supplier will potentially be supplying,
and an operation that can return information about the instance’s ability to accept a
per-event QoS request.

The TypedProxyPullSupplier interface also inherits from th&pedPullSupplier
interface defined within th€osTypedNotifyComm module. This interface supports
the event type specific operation(s), which the consumer connected to a
TypedProxyPullSupplier instance will invoke to receive events from the channel in
the form of typed events. And, since tiigpedPullSupplier interface inherits from
the PullSupplier interface defined in th€osEventComm module, an instance
supporting theTypedProxyPullSupplier interface supports the standagrdil and
try_pull operations with which it can supply untyped events, and the operation
required to disconnect thBypedProxyPullSupplier from its associated consumer. In
addition, since the inherite@lypedPullSupplier interface inherits the
CosNotifyComm::NotifySubscribe interface, an instance supporting the
TypedProxyPullSupplier interface can be informed whenever the list of event types
that the consumer connected to it is interested in receiving changes.

Finally, the TypedProxyPullSupplier interface defines the operation which can be
invoked by a pull consumer to establish the connection over which the pull consumer
will receive events from the channel. Note that this can be either a pure event service
style, or a natification service style pull consumer.

3.6.2.1 connect_typed_pull_consumer

The connect_typed_pull_consumer operation accepts as an input parameter the
reference to an object supporting tRallConsumer interface defined within the
CosEventComm module. This reference is that of a consumer, which plans to pull
typed events from the channel with which the target object is associated. This
operation is thus invoked in order to establish a connection between a pull-style
consumer of typed events, and the naotification channel. Once established, the consumer
can proceed to receive events from the channel by invoking the event type specific
operation(s) supported by the targgipedProxyPullSupplier instance. If the target
object of this operation is already connected to a pull consumer object, the
AlreadyConnected exception will be raised.

2.Inthis case, the reference is really to a TypedConsumerAdmin instance, which is valid since
TypedConsumerAdmin inherits from CosNotifyChannelAdmin::ConsumerAdmin.

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000 3-91

Note that since there is no difference between the interfaces of consumers of untyped
and typed events, it would have sufficed to have TgpedProxyPullSupplier

interface to inherit from th&roxyPullSupplier interface defined in the
CosNotifyChannelAdmin module, and to not define a separate “connect” method

for pull-style consumers of typed events. It was felt, however, that explicitly defining
this operation makes the usage model of TgpedProxyPullSupplier interface

more intuitive.

Note also that because tRalllConsumer interface defined in th€osNotifyComm

module inherits from th&@ullConsumer interface defined in th€osEventComm

module, the input parameter to this operation could be either a pure event service style,
or a notification service style pull consumer. The only difference between the two are
that the latter also supports thetifyPublish interface, and thus can be the target of
offer_change invocations. The implementation of tigpedProxyPullSupplier

interface should attempt to narrow the input parameter to
CosNotifyComm::PullConsumer in order to determine which style of pull

consumer is connecting to it.

3.6.3 The TypedProxyPullConsumer Interface

The TypedProxyPullConsumer interface supports connections to the channel by
suppliers who will make OMG Event Service style typed events available for pulling to
the channel.

Through inheritance of thBroxyConsumer interface, theProxyPullConsumer

interface supports administration of various QoS properties, administration of a list of

associated filter objects, and a readonly attribute containing the object reference of the
SupplierAdmin 2 instance, which created a givaiypedProxyPullConsumer

instance. In addition, this inheritance implies thafygpedProxyPullConsumer

instance supports an operation that will return the list of event types, which consumers
connected to the same channel are interested in receiving, and an operation that can

return information about the instance’s ability to accept a per-event QoS request.

The TypedProxyPullConsumer interface also inherits from theullConsumer
interface defined within th€osNotifyComm module. This interface supports the
operation required to disconnect tigpedProxyPullConsumer from its associated
supplier. In addition, since the inherit&lllConsumer interface inherits the
CosNotifyComm::NotifyPublish interface, a supplier connected to an instance
supporting theTypedProxyPullConsumer interface can inform it whenever the list
of event types the supplier plans to supply changes.

3.Inthis case, the reference is really to a TypedSupplierAdmin instance, which is valid since
TypedSupplierAdmin inherits from CosNotifyChannelAdmin::SupplierAdmin.

3-92 Notification Service V1.0 June 2000

3

Finally, the TypedProxyPullConsumer interface defines the operation that can be
invoked by a typed pull supplier to establish the connection over which the typed pull
supplier will send events to the channel. Note that this can be either a pure event
service style, or a notification service style typed pull supplier. The
TypedProxyPullConsumer interface also defines a pair of operations, which can
suspend and resume the connection betwe&ypadProxyPullConsumer instance

and its associatetlypedPullSupplier . During the time such a connection is
suspended, th&ypedProxyPullConsumer will not attempt to pull events from its
associatedypedPullSupplier .

3.6.3.1 connect_typed_pull_supplier

The connect_typed_pull_supplier operation accepts as an input parameter the
reference to an object supporting thgpedPullSupplier interface defined within the
CosTypedEventComm module. This reference is that of a supplier that plans to
make OMG Event Service style typed events available for pulling to the channel with
which the target object is associated. This operation is thus invoked in order to
establish a connection between a pull-style supplier of typed events, and the
notification channel. Once established, the channel can proceed to receive events from
the supplier by invoking the event type specific operation(s) supported by the supplier.
If the target object of this operation is already connected to a typed pull supplier
object, theAlreadyConnected exception will be raised. An implementation of the
TypedProxyPullConsumer interface may impose additional requirements on the
interface supported by a typed pull supplier (e.g., it may be designed to invoke some
specific pull-style operation to receive events). If the typed pull supplier being
connected does not meet those requirements, this operation raisBgoglerror
exception.

Note that because thEypedPullSupplier interface defined in the
CosTypedNotifyComm module inherits from th&ypedPullSupplier interface
defined in theCosTypedEventComm module, the input parameter to this operation
could be either a pure event service style, or a notification service style typed pull
supplier. The only difference between the two are that the latter also supports the
NotifySubscribe interface, and thus can be the targesabscription_change
invocations. The implementation of tAigpedProxyPullConsumer interface should
attempt to narrow the input parameter to

CosTypedNotifyComm::TypedPullSupplier in order to determine which style of
typed pull supplier is connecting to it.

3.6.3.2 suspend_connection

The suspend_connection operation causes the target object supporting the
TypedProxyPullConsumer interface to stop attempting to pull events (usmdl or
try_pull) from the TypedPullSupplier instance connected to it. This operation takes
no input parameters and returns no values. If the connection has been previously
suspended using this operation and not resumed by invakisigme _connection
(described below), th€onnectionAlreadylnactive exception is raised. If no
TypedPullSupplier has been connected to the target object when this operation is
invoked, theNotConnected exception is raised. Otherwise, the

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000 3-93

3-94

TypedProxyPullConsumer will not attempt to pull events from the
TypedPullSupplier connected to it untifesume_connection is subsequently
invoked.

3.6.3.3 resume_connection

Theresume_connection operation causes the target object supporting the
TypedProxyPullConsumer interface to resume attempting to pull events (ugod

or try_pull) from the TypedPullSupplier instance connected to it. This operation
takes no input parameters and returns no values. If the connection has not been
previously suspended using this operation by invoksngpend_connection

(described above), theéonnectionAlreadyActive exception is raised. If no
TypedPullSupplier has been connected to the target object when this operation is
invoked, theNotConnected exception is raised. Otherwise, the
TypedProxyPullConsumer will resume attempting to pull events from the
TypePullSupplier connected to it.

3.6.4 The TypedProxyPushSupplier Interface

The TypedProxyPushSupplier interface supports connections to the channel by
consumers who will receive OMG Event Service style events from the channel.

Through inheritance of theroxySupplier interface, theTypedProxyPushSupplier
interface supports administration of various QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a readonly
attribute containing the object reference of thensumerAdmin 4 instance, which
created a giveMypedProxyPushSupplier instance. In addition, this inheritance
implies that aTypedProxyPushSupplier instance supports an operation, which will
return the list of event types that the proxy supplier will potentially by supplying, and
an operation that can return information about the instance’s ability to accept a per-
event QoS request.

The TypedProxyPushSupplier interface also inherits from theushSupplier
interface defined within th€osNotifyComm module. This interface supports the
operation required to disconnect tigpedProxyPushSupplier from its associated
consumer. In addition, since the inheritedshSupplier interface inherits the
CosNotifyComm::NotifySubscribe interface, an instance supporting the
TypedProxyPushSupplier interface can be informed whenever the list of event
types that the consumer connected to it is interested in receiving changes.

Lastly, theTypedProxyPushSupplier interface defines the operation, which can be
invoked by a typed push consumer to establish the connection over which the typed
push consumer will receive events from the channel. Note that this can be either a pure

4.Inthis case, the reference is really to a TypedConsumerAdmin instance, which is valid since
TypedConsumerAdmin inherits from CosNotifyChannelAdmin::ConsumerAdmin.

Notification Service V1.0 June 2000

event service style, or a notification service style typed push consumer. The
TypedProxyPushSupplier interface also defines a pair of operations that can
suspend and resume the connection betwe@&ypadProxyPushSupplier instance
and its associate@lypedPushConsumer . During the time such a connection is
suspended, th&ypedProxyPushSupplier will accumulate events destined for the
consumer but not transmit them until the connection is resumed.

3.6.4.1 connect_typed_push_consumer

The connect_typed_push_consumer operation accepts as an input parameter the
reference to an object supporting thgpedPushConsumer interface defined within

the CosTypedEventComm module. This reference is that of a consumer, which will
receive OMG Event Service style typed events from the channel with which the target
object is associated. This operation is thus invoked in order to establish a connection
between a push-style consumer of typed events, and the notification channel. Once
established, th&ypedProxyPushSupplier will proceed to send events destined for
the consumer to it by invoking its event type specific push-style operation(s). If the
target object of this operation is already connected to a typed push consumer object,
the AlreadyConnected exception will be raised. An implementation of the
TypedProxyPushSupplier interface may impose additional requirements on the
interface supported by a typed push consumer (e.g., it may be designed to invoke some
specific operation in order to transmit events). If the typed push consumer being
connected does not meet those requirements, this operation raisBgoglerror
exception.

Note that because thEypedPushConsumer interface defined in the
CosTypedNotifyComm module inherits from th&ypedPushConsumer interface
defined in theCosTypedEventComm module, the input parameter to this operation
could be either a pure event service style, or a notification service style typed push
consumer. The only difference between the two are that the latter also supports the
NotifyPublish interface, and thus can be the targebifer_change invocations.

The implementation of th@ypedProxyPushSupplier interface should attempt to
narrow the input parameter ©osTypedNotifyComm::TypedPushConsumer in
order to determine which style of typed push consumer is connecting to it.

3.6.4.2 suspend_connection

The suspend_connection operation causes the target object supporting the
TypedProxyPushSupplier interface to stop sending events to the
TypedPushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has been previously suspended
using this operation and not resumed by invokirgume_connection (described
below), theConnectionAlreadylnactive exception defined in the
CosNotifyChannelAdmin module is raised. If nG@ypedPushConsumer has been
connected to the target object when this operation is invokedNtht€onnected
exception is raised. Otherwise, tigpedProxyPushSupplier will not forward
events to théfypedPushConsumer connected to it untitesume_connection is
subsequently invoked. During this time, thgpedProxyPushSupplier will continue

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000 3-95

3-96

to queue events destined for thgpedPushConsumer , although events that time out
prior to resumption of the connection will be discarded. Upon resumption of the
connection, all queued events will be forwarded to TypedPushConsumer .

3.6.4.3 resume_connection

Theresume_connection operation causes the target object supporting the
TypedProxyPushSupplier interface to resume sending events to the
TypedPushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has not been previously suspended
using this operation by invokinguspend_connection (described above), the
ConnectionAlreadyActive exception defined in th€osNotifyChannelAdmin
module is raised. If n@ypedPushConsumer has been connected to the target
object when this operation is invoked, thitConnected exception is raised.
Otherwise, thelTypedProxyPushSupplier will resume forwarding events to the
TypedPushConsumer connected to it, including those which have been queued
during the time the connection was suspended, and have not yet timed out.

3.6.5 The TypedConsumerAdmin Interface

The TypedConsumerAdmin interface defines the behavior supported by objects
which create and manage lists of proxy supplier objects within a Notification Service
typed event channel. Similar to its untyped counterpart, a Notification Service typed
event channel can have any numbefMgpedConsumerAdmin instances associated

with it. Each such instance is responsible for creating and managing a list of proxy
supplier objects that share a common set of QoS property settings, and a common set
of filter objects. This feature enables clients to conveniently group proxy supplier
objects within a channel into groupings that each support a set of consumers with a
common set of QoS requirements and event subscriptions.

Note that theTypedConsumerAdmin interface inherits fromConsumerAdmin
interface defined in th€osNotifyChannelAdmin module, and the
TypedConsumerAdmin interface defined in th€osTypedEventChannelAdmin
module. These inheritance relationships have several implications for a Notification
Service styleTypedConsumerAdmin instance.

First, inheritance of th€onsumerAdmin interface defined in the
CosNotifyChannelAdmin module implies that in addition to being capable of
creating and managing Notification Service style typed proxy supplier objects, a
TypedConsumerAdmin instance can also create and manage instances supporting
any of the proxy supplier interfaces defined in esNotifyChannelAdmin

module. In addition, since theonsumerAdmin interface defined in the
CosNotifyChannelAdmin module inherits from th€onsumerAdmin interface
defined in theCosEventChannelAdmin module, aTypedConsumerAdmin can

also create and manage OMG Event service style untyped proxy supplier objects.

Notification Service V1.0 June 2000

Likewise, inheritance of th&ypedConsumerAdmin interface defined in the
CosTypedEventChannelAdmin module implies that an instance supporting the
CosTypedNotifyChannelAdmin ’s version of TypedConsumerAdmin can create
and manage OMG Event Service style typed proxy supplier objects as well.

Thus, instances supporting tigpedConsumerAdmin interface defined in the
CosTypedNotifyChannelAdmin module can potentially create and manage
instances supporting any of the proxy supplier interfaces defined in the
CosEventChannelAdmin , CosNotifyChannelAdmin ,
CosTypedEventChannelAdmin , and theCosTypedNotifyChannelAdmin (due

to locally defined factory operations) modules. The implication of this is that a
Notification Service style typed event channel can support OMG Event Service style
untyped and typed consumers, along with all variations of consumers defined in the
Notification Service as clients.

Note also that the inheritedosNotifyChannelAdmin::ConsumerAdmin interface
provides an instance supporting the

CosTypedNotifyChannelAdmin:: TypedConsumerAdmin interface with the
behaviors necessary to associate unique identifiers with the proxy supplier objects it
creates. While th&@ypedConsumerAdmin interface defined here is capable of
creating OMG Event Service style untyped and typed proxy supplier objects, only
instances of the proxy supplier interfaces defined in the Notification Service can have
associated unique identifiers.

Similarly, the inheritance of th€onsumerAdmin interface defined in the
CosNotifyChannelAdmin module provides an instance supporting the
TypedConsumerAdmin interface defined in th€osTypedNotifyChannelAdmin

module with the behaviors necessary to maintain associated QoS property settings and
filter objects. The relationships between the QoS property settings and filter objects to
the proxy supplier objects created byrgoedConsumerAdmin instance are

identical to those described in Section 3.4.15, “The ConsumerAdmin Interface,” on
page 3-71. Note again that QoS property settings and filter objects can only be
associated with Notification Service style proxy suppliers, both typed and untyped.

Inheritance of th&€ConsumerAdmin interface defined ifCosNotifyChannelAdmin

also implies thaffypedConsumerAdmin also inherits from théotifySubscribe

interface defined irCosNotifyComm . This inheritance enables optimizing the
notification of a group of proxy supplier objects that have been created by the same
TypedConsumerAdmin instance of changes to shared filter objects, since this
inheritance enables BypedConsumerAdmin instance to be registered as the

callback object for notification of subscription changes made upon filter objects.
Lastly, inheritance of th€onsumerAdmin interface defined in
CosNotifyChannelAdmin implies that an instance of thiegypedConsumerAdmin
interface supports readonly attributes that maintain the unique identifier of the instance
supplied to it by its creating channel, the object reference of the creating channel, and
the flag which indicates whether AND or OR semantics will be used when combining
the filter objects associated withTaypedConsumerAdmin with those defined on
specific proxy suppliers created by thigpedConsumerAdmin

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000 3-97

3-98

Locally, theTypedConsumerAdmin interface supports the operations that create
new Notification Service style typed proxy supplier instances. Note lastly that due to
inheritance of theConsumerAdmin interface defined in the

CosNotifyChannelAdmin module, an instance supporting the
TypedConsumerAdmin interface supports a readonly attribute which maintains a
unique identifier assigned to the instance by the channel which created it.

3.6.5.1 obtain_typed_notification_pull_supplier

3.6.5.2

The obtain_typed_notification_pull_supplier operation is used to create a new
Notification Service style proxy supplier instance, which will support a connection to
the channel with which the targ@&ypedConsumerAdmin instance is associated by

a pull-style consumer of typed events. The operation accepts as input a string, which
identifies the name of the strongly typed interface that the newly created
TypedProxyPullSupplier instance should support. The consumer that connects to
the newTypedProxyPullSupplier would use this strongly typed interface to invoke
operations to receive typed events.

If the targetTypedConsumerAdmin instance cannot locate an occurrence of the
TypedProxyPullSupplier interface, which also supports the requested strongly typed
interface, thdnterfaceNotSupported exception defined the
CosTypedEventChannelAdmin module is raised. If the number of consumers
currently connected to the channel with which the tagiedConsumerAdmin

object is associated exceeds the value ofMlaaConsumers administrative property,
the AdminLimitExceeded exception is raised. Otherwise, the target
TypedConsumerAdmin instance creates a new instance supporting the
TypedProxyPullSupplier interface defined in the

CosTypedNotifyChannelAdmin module. This interface can subsequently be used
for a pull-style consumer of typed events to establish a connection to the Notification
Service typed event channel. Upon creating the figpedProxyPullSupplier

instance, the targéiypedConsumerAdmin instance associates with it a unique
identifier which it returns as an output parameter. This unique identifier could
subsequently be used as the input parameter tgeheproxy_supplier operation
inherited by the targefypedConsumerAdmin instance in order to obtain the
reference to the newly creatdgpedProxyPullSupplier instance. This reference is
returned as the result of thabtain_typed_notification_pull_supplier operation.

obtain_typed_notification_push_supplier

The obtain_typed_natification_push_supplier operation is used to create a new
Notification Service style proxy supplier instance, which will support a connection to
the channel with which the targ@ypedConsumerAdmin instance is associated by

a push-style consumer of typed events. The operation accepts as input a string, which
identifies the name of a strongly typed interface that the newly created
TypedProxyPushSupplier instance should use when invoking operations upon its
associatedypedPushConsumer instance to send it events.

Notification Service V1.0 June 2000

3

If the targetTypedConsumerAdmin instance cannot locate an implementation of the
TypedProxyPullSupplier interface, which will use the requested strongly typed
interface to send events toTgpedPushConsumer , the NoSuchimplementation
exception defined in th€osTypedEventChannelAdmin module is raised. If the
number of consumers currently connected to the channel with which the target
TypedConsumerAdmin object is associated exceeds the value of the
MaxConsumers administrative property, thAdminLimitExceeded exception is
raised. Otherwise, the targégypedConsumerAdmin instance creates a new instance
supporting theTypedProxyPushSupplier interface defined in the
CosTypedNotifyChannelAdmin module. This interface can subsequently be used
for a push-style consumer of typed events to establish a connection to the Notification
Service typed event channel. Upon creating the igpedProxyPushSupplier

instance, the targédiypedConsumerAdmin instance associates with it a unique
identifier, which it returns as an output parameter. This unique identifier could
subsequently be used as the input parameter tg¢heproxy supplier operation
inherited by the targetypedConsumerAdmin instance in order to obtain the
reference to the newly creatd@gpedProxyPushSupplier instance. This reference is
returned as the result of thabtain_typed_notification_push_supplier operation.

3.6.6 The TypedSupplierAdmin Interface

The TypedSupplierAdmin interface defines the behavior supported by objects that
create and manage lists of proxy consumer objects within a Notification Service typed
event channel. Similar to its untyped counterpart, a Notification Service typed event
channel can have any numberDfpedSupplierAdmin instances associated with it.
Each such instance is responsible for creating and managing a list of proxy consumer
objects that share a common set of QoS property settings, and a common set of filter
objects. This feature enables clients to conveniently group proxy supplier objects
within a channel into groupings that each support a set of consumers with a common
set of QoS requirements and event subscriptions.

Note that theTypedSupplierAdmin interface inherits fronBupplierAdmin

interface defined in th€osNotifyChannelAdmin module, and the
TypedSupplierAdmin interface defined in th€osTypedEventChannelAdmin
module. These inheritance relationships have several implications for a Notification
Service styleTypedSupplierAdmin instance.

First, inheritance of th&upplierAdmin interface defined in the
CosNotifyChannelAdmin module implies that in addition to being capable of
creating and managing Notification Service style typed proxy consumer objects, a
TypedSupplierAdmin instance can also create and manage instances supporting any
of the proxy consumer interfaces defined in thesNotifyChannelAdmin module.

In addition, since th&upplierAdmin interface defined in the

CosNotifyChannelAdmin module inherits from th&upplierAdmin interface

defined in theCosEventChannelAdmin module, aTypedSupplierAdmin can also
create and manage OMG Event service style untyped proxy consumer objects.

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000 3-99

3-100

Likewise, inheritance of th&ypedSupplierAdmin interface defined in the
CosTypedEventChannelAdmin module implies that an instance supporting the
CosTypedNotifyChannelAdmin s version of TypedSupplierAdmin can create
and manage OMG Event Service style typed proxy consumer objects as well.

Thus, instances supporting tigpedSupplierAdmin interface defined in the
CosTypedNotifyChannelAdmin module can potentially create and manage
instances supporting any of the proxy consumer interfaces defined in the
CosEventChannelAdmin , CosNotifyChannelAdmin ,
CosTypedEventChannelAdmin , and theCosTypedNotifyChannelAdmin (due

to locally defined factory operations) modules. The implication of this is that a
Notification Service style typed event channel can support OMG Event Service style
untyped and typed suppliers, along with all variations of suppliers defined in the
Notification Service as clients.

Note also that the inherite@osNotifyChannelAdmin::SupplierAdmin interface
provides an instance supporting the

CosTypedNotifyChannelAdmin:: TypedSupplierAdmin interface with the

behaviors necessary to associate unique identifiers with the proxy consumer objects it
creates. While th@ypedSupplierAdmin interface defined here is capable of creating
OMG Event Service style untyped and typed proxy supplier objects, only instances of
the proxy supplier interfaces defined in the Notification Service can have associated
unigue identifiers.

Similarly, the inheritance of th8upplierAdmin interface defined in the
CosNotifyChannelAdmin module provides an instance supporting the
TypedSupplierAdmin interface defined in th€osTypedNotifyChannelAdmin

module with the behaviors necessary to maintain associated QoS property settings and
filter objects. The relationships between the QoS property settings and filter objects to
the proxy consumer objects created biyaedSupplierAdmin instance are identical

to those described in Section 3.4.16, “The SupplierAdmin Interface,” on page 3-76.
Note again that QoS property settings and filter objects can only be associated with
Notification Service style proxy consumers, both typed and untyped.

Inheritance of theSupplierAdmin interface defined irCosNotifyChannelAdmin

also implies thaffypedSupplierAdmin also inherits from théNotifyPublish

interface defined irCosNotifyComm . This inheritance enables optimizing the
notification of a group of proxy consumer objects that have been created by the same
TypedSupplierAdmin instance of changes to the types of events being offered to
them by suppliers, since this inheritance enabl@g@edSupplierAdmin instance to

be the target of anffer_change operation. Lastly, inheritance of the

SupplierAdmin interface defined irCosNotifyChannelAdmin implies that an

instance of thelypedSupplierAdmin interface supports readonly attributes that
maintain the unique identifier of the instance supplied to it by its creating channel, the
object reference of the creating channel, and the flag which indicates whether AND or
OR semantics will be used when combining the filter objects associated with a
TypedSupplierAdmin with those defined on specific proxy consumers created by the
TypedSupplierAdmin

Notification Service V1.0 June 2000

3

Locally, theTypedSupplierAdmin interface supports the operations that create new
Notification Service style typed proxy consumer instances. Note lastly that due to
inheritance of thesupplierAdmin interface defined in the

CosNotifyChannelAdmin module, an instance supporting the

TypedSupplierAdmin interface supports a readonly attribute which maintains a
unique identifier assigned to the instance by the channel which created it.

3.6.6.1 obtain_typed_notification_push_consumer

The obtain_typed_notification_push_consumer operation is used to create a

new Notification Service style proxy consumer instance, which will support a
connection to the channel with which the targgpedSupplierAdmin instance is
associated by a push-style supplier of typed events. The operation accepts as input a
string, which identifies the name of the strongly typed interface that the newly created
TypedProxyPushConsumer instance should support. The supplier, which connects
to the newTypedProxyPushConsumer would use this strongly typed interface to
invoke operations to send typed events to the channel.

If the targetTypedSupplierAdmin instance cannot locate an occurrence of the
TypedProxyPushConsumer interface, which also supports the requested strongly
typed interface, thénterfaceNotSupported exception defined the
CosTypedEventChannelAdmin module is raised. If the number of suppliers
currently connected to the channel with which the tafgtedSupplierAdmin

object is associated exceeds the value ofMaxSuppliers administrative property,
the AdminLimitExceeded exception is raised. Otherwise, the target
TypedSupplierAdmin instance creates a new instance supporting the
TypedProxyPushConsumer interface defined in the
CosTypedNotifyChannelAdmin module. This interface can subsequently be used
for a push-style supplier of typed events to establish a connection to the Notification
Service typed event channel. Upon creating the igpedProxyPushConsumer
instance, the targéiypedSupplierAdmin instance associates with it a unique
identifier, which it returns as an output parameter. This unique identifier could
subsequently be used as the input parameter tgéheproxy _consumer operation
inherited by the targefypedSupplierAdmin instance in order to obtain the reference
to the newly createdypedProxyPushConsumer instance. This reference is
returned as the result of thabtain_typed_notification_push_consumer

operation.

3.6.6.2 obtain_typed_notification_pull_consumer

The obtain_typed_noatification_pull_consumer operation is used to create a new
Notification Service style proxy consumer instance, which will support a connection to
the channel with which the targ@ypedSupplierAdmin instance is associated by a
pull-style supplier of typed events. The operation accepts as input a string, which
identifies the name of a strongly typed interface that the newly created
TypedProxyPullConsumer instance should use when invoking operations upon its
associatedypedPullSupplier instance to receive events.

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000 3-101

If the targetTypedSupplierAdmin instance cannot locate an implementation of the
TypedProxyPullConsumer interface, which will use the requested strongly typed
interface to receive events fromTgpedPullSupplier , the

NoSuchlmplementation exception defined th€osTypedEventChannelAdmin
module is raised. If the number of suppliers currently connected to the channel with
which the targeffypedSupplierAdmin object is associated exceeds the value of the
MaxSuppliers administrative property, thAdminLimitExceeded exception is
raised. Otherwise, the targéypedSupplierAdmin instance creates a new instance
supporting theTypedProxyPullConsumer interface defined in the
CosTypedNotifyChannelAdmin module. This interface can subsequently be used
for a pull-style supplier of typed events to establish a connection to the Notification
Service typed event channel. Upon creating the igpedProxyPullConsumer
instance, the targéiypedSupplierAdmin instance associates with it a unique
identifier, which it returns as an output parameter. This unique identifier could
subsequently be used as the input parameter tgéheproxy consumer operation
inherited by the targefypedSupplierAdmin instance in order to obtain the reference
to the newly createdypedProxyPullConsumer instance. This reference is returned
as the result of thebtain_typed_notification_pull_consumer operation.

3.6.7 The TypedEventChannel Interface

The TypedEventChannel interface defines the behaviors supported by the
Notification Service version of a typed event channel. As previously stated, the
Notification Service version of a typed event channel is really a hybrid between the
Notification Service event channel defined in BesNotifyChannelAdmin module,

and the typed event channel defined in the OMG Event Service. This is evidenced by
the fact that thélypedEventChannel interface defined here supports similar
inheritence and defines similar attributes and operations of the former, and directly
inherits from the lattet:

Inheritance of thelypedEventChannel of the CosTypedEventChannel module
essentially implies backward compatibility between the Notification Service style
typed event channel, and the OMG Event Service style typed event channel. It means
that pure OMG Event Service style typed admin instances, which can create pure
OMG Event Service style typed proxy instances, which can support pure OMG Event
Service style typed event clients, can be associated with the Notification Service style
typed event channel. As usual, none of the pure OMG style objects will support QoS
property configuration, associated filter objects, or administration by unique identifiers.

5.In fact theTypedEventChannel interface defined here would multiply inherit from the
EventChannel interface defined itCosNotifyChannelAdmin , andthe
TypedEventChannel interface defined il€CosTypedNotifyChannelAdmin , except
that this multiple inheritence would result in the new interface inheriting two different
versions of théor_consumers andfor_suppliers operations, which is not allowed in
IDL.

3-102 Notification Service V1.0 June 2000

3

3.6.7.1

3.6.7.2

3.6.7.3

Inheritance of th&QoSAdmin and AdminPropertiesAdmin interfaces defined in

the CosNotification module implies that instances of tigpedEventChannel

interface can have associated QoS property and administrative property settings.
Locally, theTypedEventChannel interface defined here supports a readonly attribute
which maintains the reference to the factory that created it, and a pair of readonly
attributes that maintain references to the defayfiedConsumerAdmin and
TypedSupplierAdmin instances that exist upon creation of an instance of the
TypedEventChannel interface. TheTypedEventChannel interface also defines a
readonly attribute that maintains the reference of the default filter factory used by the
channel to create new filter objects.

Additionally, theTypedEventChannel interface defines operations to create new
instances of thypedConsumerAdmin and theTypedSupplierAdmin interfaces
defined in theCosTypedNotifyChannelAdmin module. These instances also have
associated unique identifiers. Similarly to tBgentChannel interface defined in the
CosNotifyChannelAdmin module, theTypedEventChannel interface defines
operations that can return the lists of identifiers associated with the
TypedConsumerAdmin and TypedSupplierAdmin instances it has created, and
operations that given the unique identifier to one of its Admin instance, the object
reference associated with it.

MyFactory

The MyFactory attribute is a readonly attribute that maintains the object reference of
the event channel factory, which created a given Notification Service
TypedEventChannel instance.

default_consumer_admin

The default_consumer_admin attribute is a readonly attribute which maintains a
reference to the defaufypedConsumerAdmin instance associated with the target
TypedEventChannel instance. EacfiypedEventChannel instance has an
associated defauliypedConsumerAdmin instance, which exists upon creation of
the channel and is assigned the unique identifier of zero. Subsequently, clients can
create additional Event Service styfgpedConsumerAdmin instances by invoking
the inheritedfor_consumers operation, and additional Notification Service style
TypedConsumerAdmin instances by invoking theew_for_typed_consumers
operation defined by th@ypedEventChannel interface.

default_supplier_admin

The default_supplier_admin attribute is a readonly attribute, which maintains a
reference to the defaufypedSupplierAdmin instance associated with the target
TypedEventChannel instance. EacfiypedEventChannel instance has an

associated defaultypedSupplierAdmin instance, which exists upon creation of the
channel and is assigned the unique identifier of zero. Subsequently, clients can create
additional Event Service styleypedSupplierAdmin instances by invoking the

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000 3-103

3-104

inheritedfor_suppliers operation, and additional Notification Service style
TypedSupplierAdmin instances by invoking theew_for_typed_suppliers
operation defined by th@&ypedEventChannel interface.

3.6.7.4 default_filter_factory

Thedefault_filter_factory attribute is a readonly attribute, which maintains an object
reference to the default factory to be used by TgpedEventChannel instance with
which it's associated for creating filter objects. If the target channel does not support a
default filter factory, the attribute will maintain the value of OBJECT_NIL.

3.6.7.5 new_for_typed_notification_consumers

Thenew_for_typed consumers operation is invoked to create a new Notification
Service styleTypedConsumerAdmin instance. The operation accepts as an input
parameter a boolean flag that indicates whether AND or OR semantics will be used
when combining the filter objects associated with the newly created
TypedConsumerAdmin instance with those associated with a supplier proxy, which
was created by th&ypedConsumerAdmin during the evaluation of each event
against a set of filter objects. The new instance is assigned a unique identifier by the
targetTypedEventChannel instance that is unique among &lbnsumerAdmin

and TypedConsumerAdmin instances currently associated with the channel. Upon
completion, the operation returns the reference to the iigredConsumerAdmin
instance as the result of the operation, and the unique identifier assigned to the new
TypedConsumerAdmin instance as the output parameter.

3.6.7.6 new_for_typed_notification_suppliers

The new_for_typed_suppliers operation is invoked to create a new Notification
Service styleTypedSupplierAdmin instance. The operation accepts as an input
parameter a boolean flag, which indicates whether AND or OR semantics will be used
when combining the filter objects associated with the newly created
TypedSupplierAdmin instance with those associated with a consumer proxy, which
was created by th&ypedSupplierAdmin during the evaluation of each event against
a set of filter objects. The new instance is assigned a unique identifier by the target
TypedEventChannel instance that is unique among &upplierAdmin and
TypedSupplierAdmin instances currently associated with the channel. Upon
completion, the operation returns the reference to the igvedSupplierAdmin

instance as the result of the operation, and the unique identifier assigned to the new
TypedSupplierAdmin instance as the output parameter.

3.6.7.7 get_consumeradmin

The get_consumeradmin operation returns a reference to one of the
TypedConsumerAdmin instances associated with the tar@gpedEventChannel
instance. The operation accepts as an input parameter a numeric value, which is
intended to be the unique identifier of one of thgpedConsumerAdmin instances

Notification Service V1.0 June 2000

3

associated with the targ@ypedEventChannel instance. If this turns out to be the
case, the object reference of the associdiggtedConsumerAdmin instance is
returned as the operation result. Otherwise, AlgkiminNotFound exception is raised.

Note that while a Notification Service style event channel can support both Event
Service and Notification Service stylgypedConsumerAdmin instances, only
Notification Service styleTypedConsumerAdmin instances have associated unique
identifiers.

3.6.7.8 get_supplieradmin

Theget_supplieradmin operation returns a reference to one of the
TypedSupplierAdmin instances associated with the targgpedEventChannel
instance. The operation accepts as an input parameter a numeric value, which is
intended to be the unique identifier of one of thgpedSupplierAdmin instances
associated with the targ@&ypedEventChannel instance. If this turns out to be the
case, the object reference of the associdigtedSupplierAdmin instance is
returned as the operation result. Otherwise, AittninNotFound exception is raised.

Note that while a Notification Service style event channel can support both Event
Service and Notification Service stylgypedSupplierAdmin instances, only
Notification Service styleTypedSupplierAdmin instances have associated unique
identifiers.

3.6.7.9 get_all_consumeradmins

Theget_all_consumeradmins operation takes no input parameters and returns a
sequence of the unique identifiers assigned to all Notification Service style
TypedConsumerAdmin instances, which have been created by the target
TypedEventChannel instance.

3.6.7.10 get_all_supplieradmins

The get_all_supplieradmins operation takes no input parameters and returns a
sequence of the unique identifiers assigned to all Notification Service style
TypedSupplierAdmin instances, which have been created by the target
TypedEventChannel instance.

3.6.8 The TypedEventChannelFactory Interface

The TypedEventChannelFactory interface defines an operation for creating new
Notification Service style typed event channels. This interface also supports an
operation which can return the list of unique numeric identifiers assigned to all
channels that have been created by such an instance, and another which, given the
unique identifier of a channel that has been created by the target instance, can return
the object reference associated with that channel.

Notification Service V1.0 CosTypedNotifyChannelAdmin June 2000 3-105

3-106

3.6.8.1 create_typed_channel

3.6.8.2

3.6.8.3

The create_typed_channel operation is invoked to create a new instance of the
Notification Service style typed event channel. This operation accepts two input
parameters. The first input parameter is a list of name-value pairs which specify the
initial QoS property settings for the new channel. The second input parameter is a list
of name-value pairs which specify the initial administrative property settings for the
new channel.

If no implementation of th&ypedEventChannel interface exists that can support all

of the requested QoS property settings, thesupportedQoS exception defined in

the CosNotifyChannelAdmin module is raised. This exception contains as data a
sequence of data structures, each of which identifies the name of a QoS property in the
input list whose requested setting could not be satisfied, along with an error code and
a range of settings for the property which could be satisfied. The meanings of the error
codes which might be returned are described in Table 2-5 on page 2-46.

Likewise, if no implementation of th&ypedEventChannel interface exists that can
support all of the requested administrative property settingdtigupportedAdmin
exception defined in th€osNotifyChannelAdmin module is raised. This exception
contains as data a sequence of data structures, each of which identifies the name of an
administrative property in the input list whose requested setting could not be satisfied,
along with an error code and a range of settings for the property which could be
satisfied. The meanings of the error codes which might be returned are described in
Table 2-5 on page 2-46.

If neither of these exceptions is raised, treate_typed_channel operation will

return a reference to a new Notification Service style typed event channel. In addition,
the operation assigns to this new typed event channel a numeric identifier, which is
unique among all event channels created by the target object. This numeric identifier is
returned as an output parameter.

get_all _typed_channels

The get_all_typed_channels operation returns a sequence of all of the unique
numeric identifiers corresponding to Notification Service typed event channels which
have been created by the target object.

get_typed_event_channel

Theget_typed_event_channel operation accepts as input a numeric value, which is
supposed to be the unique identifier of a Natification Service typed event channel that
has been created by the target object. If this input value does not correspond to such a
unique identifier, theChannelNotFound exception is raised. Otherwise, the

operation returns the object reference of the Notification Service typed event channel
corresponding to the input identifier.

Notification Service V1.0 June 2000

Event Type Repository A

The Event Type Repository is a specification of a set of interfaces that are used to store
type information about events. The interfaces are generated using the mapping from a
meta-model of event types to IDL representing this type information, as specified in
the Meta-Object Facility (ad/97-08-14 and ad/97-08-015). This appendix begins by
providing an explanation of the meta-model of event types and their names. It then
presents the model in terms of equivalent UML (Unified Modeling Language) and
MODL (Meta Object Definition Language). Finally, the IDL that is generated from
these high-level notations is given in full.

A.1 Event Type Meta-Model

The Event Type Repository is designed to store information about the kinds of
filterable data that events with certain names will provide to consumers. It is a
queriable store that can be used by event suppliers to determine the names and types of
the properties that an event of a certain type must contain to be conformant to that
type. It can also be used by consumers to discover the properties that they can expect
to be contained in events of a certain type, so that they can write well-formed
subscription expressions to match events in which they are interested.

The Repository acts as a common reference so that the events transmitted by suppliers
can contain the right properties to match against subscriptions which contain
expressions over those property names. It is complementary to the use of the interfaces
NotifyPublish and NotifySubscribe, which convey the names of event types that are
offered or required between consumers and suppliers of events. A supplier which
indicates that it will supply events of a certain type, by passing the name of that type
to theoffer_changeoperation, can register that type in the Repository so that it can be
looked up by clients receiving the offer.

Properties consist simply of a string name and a TypeCode to indicate the type of the
value associated with that name. An Event Type can be composed of zero or more
properties. These correspond to the properties irfilleeable _datacomponent of a
Structured Event. They can also be interpreted as the named members of a struct,

Notification Service V1.0 June 2000 A-1

which includes the string membedsmainandevent_typeThe variable name notation
of the standard constraint grammar will allow either of these kinds of events to be
matched,

Event Types also have names. In the simplest case they will have a string name that is
an attribute. This name will be unique within the naming domain, which is indicated

by the “domain” attribute of an Event Type. They also havi@lanamewhich is

returned from an operation. In the simplest case this will be the same as its name
attribute. In the default domain, represented by the empty string, this will always be the
case. In other domains, however, the name of an Event Type can be derived from the
Event Types which are inherited.

*EventTypeRepository

* Singleton class

DomainNameSeq : supported_domains

EventType lookup(in string name, in string domain)

raises (InvalidName, TypeNotFound, UnknownDomain);

EventTypeSeq events_in_domain (in string domain)
raises (UnknownDomain);

A-2

]
“inherits”
“contains” “imports”
0.1 0.*V 0.*

EventType
domain : string 0. Property
name : string 1 name : string
string full_name(); -> ‘composes” 0.*| 'ype : TypeCode

Figure A-1 UML meta-model of the Event Type Repository

New event types may be based upon the definition of existing event types in two ways:
* new types maynherit an existing type, implying that the new type “is an”
instance of the existing type. In this case the name of the derived type may be
generated from its base types’ names by some domain naming scheme.

Notification Service V1.0 June 2000

A

* new types maymport the definition of existing types to obtain a number of
property names and types, but there is no asserted semantic relationship between
them.

The naming scheme adopted by a domain is implementation dependent. An example
would be the use of all the names of the derived types separated by dots. As only
single inheritance is permitted, the composition of such names is very straight-forward.

Property names defined in an inherited or imported type cannot be re-defined or
overridden in a new type. When importing properties from previously declared Event
Types, the same property name may not be declared in more than one imported type
unless the property type is also the same. For example an event type X:A containing a
property K of type string may not be inherited or imported into the same derived type
as X:B which contains a property K or type short.

A.2 Other functionality

A.3 MODL Model

The EventTypeRepository class has only one instance in any given implementation of
a Repository. It provides a lookup interface to users of the repository so that they can
find a event type by name, within its domain naming scheme. The default domain,
nominated by the empty string, is a flat name space, and each of its event types must
have a unique name. Implementations may implement other domains with the same
naming scheme, or with a more complex naming scheme that reflects an inheritance
hierarchy.

The EventTypeRepository also provides a mechanism to look up all the types in a
particular domain, as well as an attribute indicating which domains it supports. All
repositories will support the default domain, and must not return the empty string as
one of the results of the supported_domains() attribute.

The Meta Object Definition Language (MODL) is a language for the textual
representation of meta-models. It is explained in an appendix to the Meta Object
Facility specification. The following MODL represents the same meta-model of event
types as shown in UML in Figure A-1.

I

/I Notification Service - Event Type Meta-Model
I

package Notification_Types {

type Property {
attribute string name;
attribute TypeCode type_code;

h
type EventType {

attribute string domain;
attribute string name;

Notification Service V1.0 June 2000 A-3

A.4 Generated IDL

The following IDL is generated using the mapping for meta-models as specified in the
MOF. It provides operations corresponding to the attributes and associations shown in
the meta-model, and also inherits from the standard MOF interfaces defined in the
moduleReflective This means that implementations of the repository can be
interrogated using the operations specific to Event Types, and via the reflective

#ifndef Notification_Types_IDL
#define Notification_Types_IDL

#include <Reflective.idl>

A-4

string get_full_name();

I3

exception InvalidName { string name; };
exception UnknownDomain { string domain; };
exception TypeNotFound { string name; };

singleton type EventTypeRepository {
readonly attribute set [1..*] of string supported_domains;

EventType lookup (in string name, in string domain)
raises (InvalidName, TypeNotFound, UnknownDomain);

ordered set [0..*] of EventType events_in_domain (in string domain)
raises (UnknownDomain);

kh

association Contains {
role single EventTypeRepository container;
composite role set [0..*] of EventType contained;

I

association Inherits {
role set [0..*] of EventType sub_type;
role single EventType super_type;

I3

association Imports {

role set [0..*] of EventType importer;
role set [0..*] of EventType imported,;
3
association Composes {

role single EventType composition;

composite role ordered set [0..*] of Property component;

I3

interfaces that generic browsing tools use.

Notification Service V1.0 June 2000

1
/I Notification Service - Event Type Meta-Model
)

module NotificationTypes {

typedef sequence < string > StringSet;
interface NotificationTypesPackage;

interface PropertyClass;
interface Property;

typedef sequence < Property > PropertyUList;
interface EventTypeClass;
interface EventType;

typedef sequence < EventType > EventTypeSet;
typedef sequence < EventType > EventTypeUList;
interface EventTypeRepositoryClass;

interface EventTypeRepository;

typedef sequence < EventTypeRepository > EventTypeRepositoryUList;
/I typedef string TypeCode;

interface PropertyClass
: Reflective::RefObject

{
/I get all property including subtypes of property
readonly attribute PropertyUList all_of_kind_property;

Il get all property excluding subtypes of property
readonly attribute PropertyUList all_of_type_property;

/I Factory operation for Property objects
Property create_property (
[* from Property */ in string name,
[* from Property */ in TypeCode type_code)
raises (Reflective::SemanticError);

}; Il end of interface PropertyClass

interface Property :
PropertyClass

string name ()
raises (Reflective::StructuralError,
Reflective::SemanticError);
void set_name (in string new_value)
raises (Reflective::SemanticError);

Notification Service V1.0 June 2000

TypeCode type_code ()
raises (Reflective::StructuralError,
Reflective::SemanticError);
void set_type_code (in TypeCode new_value)
raises (Reflective::SemanticError);

}; Il end of interface Property

interface EventTypeClass
: Reflective::RefObject

{
Il get all event_type including subtypes of event_type
readonly attribute EventTypeUList all_of_kind_event_type;

/I get all event_type excluding subtypes of event_type
readonly attribute EventTypeUList all_of_type_event_type;

/I Factory operation for EventType objects
EventType create_event_type (
[* from EventType */ in string domain,
[* from EventType */ in string name)
raises (Reflective::SemanticError);

}; Il end of interface EventTypeClass

interface EventType :
EventTypeClass

string domain ()
raises (Reflective::StructuralError,
Reflective::SemanticError);
void set_domain (in string new_value)
raises (Reflective::SemanticError);

string name ()
raises (Reflective::StructuralError,
Reflective::SemanticError);
void set_name (in string new_value)
raises (Reflective::SemanticError);

string get_full_name ()
raises (
Reflective::SemanticError);

}; /l end of interface EventType

exception InvalidName {
string name;

h

exception UnknownDomain {

string domain;

h

A-6 Notification Service V1.0

June 2000

exception TypeNotFound {
string name;

kh

interface EventTypeRepositoryClass
: Reflective::RefObject
{
// get all event_type_repository including subtypes of event_type_repository
readonly attributeEventTypeRepositoryUListall_of _kind_event_type_repository;

/I get all event_type_repository excluding subtypes of event_type_repository
readonly attribute EventTypeRepositoryUList all_of _type_event_type_repository;

Il Factory operation for EventTypeRepository objects
EventTypeRepository create_event_type_repository (
[* from EventTypeRepository */ in StringSet supported_domains)
raises (Reflective::AlreadyCreated,
Reflective::SemanticError);

}. Il end of interface EventTypeRepositoryClass

interface EventTypeRepository :
EventTypeRepositoryClass

StringSet supported_domains ()
raises (Reflective::SemanticError);

EventType lookup (
in string name,
in string domain)

raises (

InvalidName,
TypeNotFound,
UnknownDomain,
Reflective::SemanticError);

EventTypeUList events_in_domain (
in string domain)
raises (
UnknownDomain,
Reflective::SemanticError);

}; /I end of interface EventTypeRepository

/I data types for Association Contains

struct ContainsLink {
EventTypeRepository container;
EventType contained;

k

typedef sequence <ContainsLink> ContainsLinkSet;

Notification Service V1.0 June 2000

interface Contains : Reflective::RefAssociation {
ContainsLinkSet all_Contains_links ();
boolean exists (in EventTypeRepository container, in EventType contained);
EventTypeSet with_container (in EventTypeRepository container);
EventTypeRepository with_contained (in EventType contained);
void add (in EventTypeRepository container, in EventType contained)
raises (Reflective::StructuralError,
Reflective::SemanticError);
void modify_container (in EventTypeRepository container, in EventType contained, in EventTypeRepository
new_container)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);
void modify_contained (in EventTypeRepository container, in EventType contained, in EventType
new_contained)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);
void remove (in EventTypeRepository container, in EventType contained)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

3
/l data types for Association Inherits

struct InheritsLink {
EventType sub_type;
EventType super_type;
h

typedef sequence <InheritsLink> InheritsLinkSet;

interface Inherits : Reflective::RefAssociation {
InheritsLinkSet all_Inherits_links ();
boolean exists (in EventType sub_type, in EventType super_type);
EventType with_sub_type (in EventType sub_type);
EventTypeSet with_super_type (in EventType super_type);
void add (in EventType sub_type, in EventType super_type)
raises (Reflective::StructuralError,
Reflective::SemanticError);
void modify_sub_type (in EventType sub_type, in EventType super_type, in EventType new_sub_type)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);
void modify_super_type (in EventType sub_type, in EventType super_type, in EventType new_super_type)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);
void remove (in EventType sub_type, in EventType super_type)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

A-8 Notification Service V1.0 June 2000

I/ data types for Association Imports

struct ImportsLink {
EventType importer;
EventType imported;

3
typedef sequence <ImportsLink> ImportsLinkSet;

interface Imports : Reflective::RefAssociation {
ImportsLinkSet all_Imports_links ();
boolean exists (in EventType importer, in EventType imported);
EventTypeSet with_importer (in EventType importer);
EventTypeSet with_imported (in EventType imported);
void add (in EventType importer, in EventType imported)
raises (Reflective::StructuralError,
Reflective::SemanticError);
void modify_importer (in EventType importer, in EventType imported, in EventType new_importer)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);
void modify_imported (in EventType importer, in EventType imported, in EventType new_imported)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);
void remove (in EventType importer, in EventType imported)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

3
/Il data types for Association Composes

struct ComposesLink {
EventType composition;
Property component;

h
typedef sequence <ComposesLink> ComposesLinkSet;

interface Composes : Reflective::RefAssociation {
ComposesLinkSet all_Composes_links ();
boolean exists (in EventType composition, in Property component);
PropertyUList with_composition (in EventType composition);
EventType with_component (in Property component);
void add (in EventType composition, in Property component)
raises (Reflective::StructuralError,
Reflective::SemanticError);
void add_before_component (in EventType composition, in Property component, in Property before)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);
void modify_composition (in EventType composition, in Property component, in EventType
new_composition)

Notification Service V1.0 June 2000 A-9

raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);
void modify_component (in EventType composition, in Property component, in Property new_component)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);
void remove (in EventType composition, in Property component)
raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

b

interface NotificationTypesPackageFactory
{
NotificationTypesPackage create_noatification_types_package ()
raises (
Reflective::SemanticError);

kh

interface NotificationTypesPackage
: Reflective::RefPackage
{
readonly attribute PropertyClass property_class_ref;
readonly attribute EventTypeClass event_type_class_ref;
readonly attribute EventTypeRepositoryClass event_type_repository_class_ref;
readonly attribute Contains contains_ref;
readonly attribute Inherits inherits_ref;
readonly attribute Imports imports_ref;
readonly attribute Composes composes_ref;

h
}; /I end of module NotificationTypes

#endif
/I end of IDL generation

A-10 Notification Service V1.0 June 2000

Complete IDL

The following lists the full IDL of the Notification Service:
module CosNoatification {

typedef string Istring;
typedef Istring PropertyName;
typedef any PropertyValue;

struct Property {

PropertyName name;

PropertyValue value;

h

typedef sequence<Property> PropertySeq;

/I The following are the same, but serve different purposes.
typedef PropertySeq OptionalHeaderFields;

typedef PropertySeq FilterableEventBody;

typedef PropertySeq QoSProperties;

typedef PropertySeq AdminProperties;

struct EventType {
string domain_name;
string type_name;

typedef sequence<EventType> EventTypeSeq;
struct PropertyRange {

PropertyValue low_val,
PropertyValue high_val;

k

Notification Service V1.0 June 2000

B-2

struct NamedPropertyRange {
PropertyName name,;
PropertyRange range;

h

typedef sequence<NamedPropertyRange> NamedPropertyRangeSeq;

enum QoSError_code {
UNSUPPORTED_PROPERTY,
UNAVAILABLE_PROPERTY,
UNSUPPORTED_VALUE,
UNAVAILABLE_VALUE,
BAD_PROPERTY,

BAD_TYPE,

BAD_VALUE

k

struct PropertyError {
QoSError_code code;
PropertyName name,;
PropertyRange available_range;
h

typedef sequence<PropertyError> PropertyErrorSeq;

exception UnsupportedQoS { PropertyErrorSeq qos_err; };
exception UnsupportedAdmin { PropertyErrorSeq admin_err; };

/I Define the Structured Event structure
struct FixedEventHeader {

EventType event_type;

string event_name;

b

struct EventHeader {
FixedEventHeader fixed_header;
OptionalHeaderFields variable_header;

b

struct StructuredEvent {

EventHeader header;

FilterableEventBody filterable_data;

any remainder_of_body;

}; /I StructuredEvent

typedef sequence<StructuredEvent> EventBatch;

/I The following constant declarations define the standard
/I QoS property names and the associated values each property
/I can take on. The name/value pairs for each standard property

Notification Service V1.0 June 2000

/I are grouped, beginning with a string constant defined for the
Il property name, followed by the values the property can take on.

const string EventReliability = “EventReliability”;
const short BestEffort = 0;
const short Persistent = 1;

const string ConnectionReliability = “ConnectionReliability”;
/I Can take on the same values as EventReliability

const string Priority = “Priority”;
const short LowestPriority = -32767;
const short HighestPriority = 32767;
const short DefaultPriority = 0;

const string StartTime = “StartTime”;
// StartTime takes a value of type TimeBase::UtcT.

const string StopTime = “StopTime”;
I/l StopTime takes a value of type TimeBase::UtcT.

const string Timeout = “Timeout”;
// Timeout takes on a value of type TimeBase::TimeT

const string OrderPolicy = “OrderPolicy”;
const short AnyOrder = 0;

const short FifoOrder = 1;

const short PriorityOrder = 2;

const short DeadlineOrder = 3;

const string DiscardPolicy = “DiscardPolicy”;
/I DiscardPolicy takes on the same values as OrderPolicy, plus
const short LifoOrder = 4;

const string MaximumBatchSize = “MaximumBatchSize”;
/l MaximumBatchSize takes on a value of type long

const string Pacinglnterval = “PacingInterval’;
/I PacingInterval takes on a value of type TimeBase::TimeT

const string StartTimeSupported = “StartTimeSupported”;
// StartTimeSupported takes on a boolean value

Notification Service V1.0 June 2000 B-3

const string StopTimeSupported = “StopTimeSupported”;
I/ StopTimeSupported takes on a boolean value

const string MaxEventsPerConsumer = “MaxEventsPerConsumer”;
/l MaxEventsPerConsumer takes on a value of type long

interface QoSAdmin {

QoSProperties get_qgos();

void set_gos (in QoSProperties qos)
raises (UnsupportedQosS);

void validate_qos (
in QoSProperties required_qos,
out NamedPropertyRangeSeq available_qos)
raises (UnsupportedQosS);

}; /1 QosAdmin

/I Admin properties are defined in similar manner as QoS

Il properties. The only difference is that these properties

I are related to channel administration policies, as opposed
/l message quality of service

const string MaxQueuelLength = “MaxQueueLength”;
/l MaxQueuelLength takes on a value of type long

const string MaxConsumers = “MaxConsumers”;
Il MaxConsumers takes on a value of type long

const string MaxSuppliers = “MaxSuppliers”;
/I MaxSuppliers takes on a value of type long

const string RejectNewEvents = “RejectNewEvents”;
/l RejectNewEvents takes on a value of type Boolean

interface AdminPropertiesAdmin {

AdminProperties get_admin();

Notification Service V1.0 June 2000

void set_admin (in AdminProperties admin)
raises (UnsupportedAdmin);

}; /I AdminPropertiesAdmin

}; I/ CosNotification

module CosNotifyFilter {

typedef long ConstraintlID;

struct ConstraintExp {
CosNotification::EventTypeSeq event_types;
string constraint_expr;

k

typedef sequence<ConstraintiID> ConstraintiDSeq;
typedef sequence<ConstraintExp> ConstraintExpSeq;

struct Constraintinfo {
ConstraintExp constraint_expression;
ConstraintID constraint_id;

b

typedef sequence<Constraintinfo> ConstraintinfoSeq;

struct MappingConstraintPair {
ConstraintExp constraint_expression;
any result_to_set;

kh

typedef sequence<MappingConstraintPair> MappingConstraintPairSeq;

struct MappingConstraintinfo {
ConstraintExp constraint_expression;
ConstraintID constraint_id;

any value;

h

typedef sequence<MappingConstraintinfo> MappingConstraintinfoSeq;

typedef long CallbackID;

Notification Service V1.0 June 2000 B-5

B-6

typedef sequence<CallbackiD> CallbackiDSeq;

exception UnsupportedFilterableData {};

exception InvalidGrammar {};

exception InvalidConstraint {ConstraintExp constr;};
exception DuplicateConstraint|D {ConstraintID id;};

exception ConstraintNotFound {ConstraintID id;};
exception CallbackNotFound {};

exception InvalidValue {ConstraintExp constr; any value;};

interface Filter {

readonly attribute string constraint_grammar;

ConstraintinfoSeq add_constraints (
in ConstraintExpSeq constraint_list)
raises (InvalidConstraint);

void modify_constraints (
in ConstraintiDSeq del_list,
in ConstraintinfoSeq modify_list)
raises (InvalidConstraint, ConstraintNotFound);

ConstraintinfoSeq get_constraints(
in ConstraintiDSeq id_list)
raises (ConstraintNotFound);

ConstraintinfoSeq get_all_constraints();

void remove_all_constraints();

void destroy();

boolean match (in any filterable_data)
raises (UnsupportedFilterableData);

boolean match_structured (
in CosNotification::StructuredEvent filterable_data)
raises (UnsupportedFilterableData);

Notification Service V1.0 June 2000

boolean match_typed (
in CosNotification::PropertySeq filterable_data)
raises (UnsupportedFilterableData);

CallbacklD attach_callback (
in CosNotifyComm::NotifySubscribe callback);

void detach_callback (in CallbackID callback)
raises (CallbackNotFound);

CallbackiDSeq get_callbacks();

}; /I Filter

interface MappingFilter {

readonly attribute string constraint_grammar;

readonly attribute CORBA::TypeCode value_type;

readonly attribute any default_value;

MappingConstraintinfoSeq add_mapping_constraints (
in MappingConstraintPairSeq pair_list)
raises (InvalidConstraint, Invalidvalue);

void modify_mapping_constraints (
in ConstraintiDSeq del_list,
in MappingConstraintinfoSeq modify_list)
raises (InvalidConstraint, Invalidvalue,
ConstraintNotFound);

MappingConstraintinfoSeq get_mapping_constraints (
in ConstraintiDSeq id_list)
raises (ConstraintNotFound);

MappingConstraintinfoSeq get_all_mapping_constraints();

void remove_all_mapping_constraints();

Notification Service V1.0 June 2000 B-7

void destroy();

boolean match (in any filterable_data,
out any result_to_set)
raises (UnsupportedFilterableData);

boolean match_structured (
in CosNotification::StructuredEvent filterable _data,
out any result_to_set)
raises (UnsupportedFilterableData);

boolean match_typed (
in CosNotification::PropertySeq filterable_data,
out any result_to_set)
raises (UnsupportedFilterableData);

}; /I MappingFilter

interface FilterFactory {

Filter create_filter (
in string constraint_grammar)
raises (InvalidGrammar);

MappingFilter create_mapping_filter (
in string constraint_grammar,
in any default_value)
raises(InvalidGrammar);

}; I FilterFactory

typedef long FilterID;
typedef sequence<FilterID> FilterIDSeq;

exception FilterNotFound {};

interface FilterAdmin {

FilterID add_filter (in Filter new_filter);

void remove_filter (in FilterID filter)
raises (FilterNotFound);

Notification Service V1.0 June 2000

Filter get_filter (in FilterID filter)
raises (FilterNotFound);

FilterIDSeq get_all_filters();

void remove_all_filters();

}; Il FilterAdmin

}; /I CosNotifyFilter

module CosNotifyComm {

exception InvalidEventType { CosNoatification::EventType type; };

interface NotifyPublish {

void offer_change (
in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeq removed)
raises (InvalidEventType);

}; /1 NotifyPublish

interface NotifySubscribe {

void subscription_change(
in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeq removed)
raises (InvalidEventType);

}; /I NotifySubscribe

interface PushConsumer :
NotifyPublish,
CosEventComm::PushConsumer {
}; /I PushConsumer

Notification Service V1.0 June 2000 B-9

interface PullConsumer :
NotifyPublish,
CosEventComm::PullConsumer {
}; /1 PullConsumer

interface PullSupplier :
NotifySubscribe,
CosEventComm::PullSupplier {
}; /1 PullSupplier

interface PushSupplier :
NotifySubscribe,
CosEventComm::PushSupplier {

k

interface StructuredPushConsumer : NotifyPublish {

void push_structured_event(
in CosNotification::StructuredEvent notification)
raises(CosEventComm::Disconnected);

void disconnect_structured_push_consumer();

}; 1l StructuredPushConsumer

interface StructuredPullConsumer : NotifyPublish {
void disconnect_structured_pull_consumer();
}; /I StructuredPullConsumer

interface StructuredPullSupplier : NotifySubscribe {

CosNoatification::StructuredEvent pull_structured_event()
raises(CosEventComm::Disconnected);

CosNotification::StructuredEvent try_pull_structured_event(
out boolean has_event)
raises(CosEventComm::Disconnected);

void disconnect_structured_pull_supplier();

}; /I StructuredPullSupplier

interface StructuredPushSupplier : NotifySubscribe {
void disconnect_structured_push_supplier();

B-10 Notification Service V1.0 June 2000

}; 1l StructuredPushSupplier

interface SequencePushConsumer : NotifyPublish {

void push_structured_events(
in CosNotification::EventBatch notifications)
raises(CosEventComm::Disconnected);

void disconnect_sequence_push_consumer();

}; I SequencePushConsumer

interface SequencePullConsumer : NotifyPublish {
void disconnect_sequence_pull_consumer();
}; I SequencePullConsumer

interface SequencePullSupplier : NotifySubscribe {

CosNatification::EventBatch pull_structured_events(
in long max_number)
raises(CosEventComm::Disconnected);

CosNatification::EventBatch try_pull_structured_events(
in long max_number,
out boolean has_event)
raises(CosEventComm::Disconnected);

void disconnect_sequence_pull_supplier();

}; /I SequencePullSupplier

interface SequencePushSupplier : NotifySubscribe {
void disconnect_sequence_push_supplier();
}; /I SequencePushSupplier

}; /I CosNotifyComm

module CosNotifyChannelAdmin {

exception ConnectionAlreadyActive {};

Notification Service V1.0 June 2000 B-11

exception ConnectionAlreadylnactive {};
exception NotConnected {};

/I Forward declarations
interface ConsumerAdmin;
interface SupplierAdmin;
interface EventChannel;
interface EventChannelFactory;

enum ProxyType {
PUSH_ANY,
PULL_ANY,
PUSH_STRUCTURED,
PULL_STRUCTURED,
PUSH_SEQUENCE,
PULL_SEQUENCE,
PUSH_TYPED,
PULL_TYPED

h

enum ObtaininfoMode {
ALL_NOW_UPDATES_OFF,
ALL_NOW_UPDATES_ON,
NONE_NOW_UPDATES_OFF,
NONE_NOW_UPDATES_ON

k

interface ProxyConsumer :
CosNotification::QoSAdmin,
CosNotifyFilter::FilterAdmin {

readonly attribute ProxyType MyType;
readonly attribute SupplierAdmin MyAdmin;

CosNoatification::EventTypeSeq obtain_subscription_types(
in ObtaininfoMode mode);

void validate_event_gos (
in CosNotification::QoSProperties required_qos,
out CosNotification::NamedPropertyRangeSeq available_qos)
raises (CosNatification::UnsupportedQoS);

}; /I ProxyConsumer

interface ProxySupplier :
CosNatification::QoSAdmin,

B-12 Notification Service V1.0 June 2000

CosNoatifyFilter::FilterAdmin {

readonly attribute ProxyType MyType;
readonly attribute ConsumerAdmin MyAdmin;

attribute CosNotifyFilter::MappingFilter priority_filter;
attribute CosNotifyFilter::MappingFilter lifetime_filter;

CosNotification::EventTypeSeq obtain_offered_types(
in ObtaininfoMode mode);

void validate_event_gos (
in CosNotification::QoSProperties required_gos,
out CosNotification::NamedPropertyRangeSeq available_qos)
raises (CosNatification::UnsupportedQoS);

}; Il ProxySupplier

interface ProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::PushConsumer {

void connect_any_push_supplier (
in CosEventComm::PushSupplier push_supplier)
raises(CosEventChannelAdmin::AlreadyConnected);

}; /I ProxyPushConsumer

interface StructuredProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::StructuredPushConsumer {

void connect_structured_push_supplier (
in CosNotifyComm::StructuredPushSupplier push_supplier)
raises(CosEventChannelAdmin::AlreadyConnected);

}; /I StructuredProxyPushConsumer

interface SequenceProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::SequencePushConsumer {

Notification Service V1.0 June 2000 B-13

void connect_sequence_push_supplier (
in CosNotifyComm::SequencePushSupplier push_supplier)
raises(CosEventChannelAdmin::AlreadyConnected);

}; Il SequenceProxyPushConsumer

interface ProxyPullSupplier :
ProxySupplier,
CosNotifyComm::PullSupplier {

void connect_any_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)
raises(CosEventChannelAdmin::AlreadyConnected);

}; /I ProxyPullSupplier

interface StructuredProxyPullSupplier :
ProxySupplier,
CosNotifyComm::StructuredPullSupplier {

void connect_structured_pull_consumer (
in CosNotifyComm::StructuredPullConsumer pull_consumer)
raises(CosEventChannelAdmin::AlreadyConnected);

}; /I StructuredProxyPullSupplier

interface SequenceProxyPullSupplier :
ProxySupplier,
CosNotifyComm::SequencePullSupplier {

void connect_sequence_pull_consumer (
in CosNotifyComm::SequencePullConsumer pull_consumer)
raises(CosEventChannelAdmin::AlreadyConnected);

}; /I SequenceProxyPullSupplier

interface ProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::PullConsumer {

void connect_any_pull_supplier (
in CosEventComm::PullSupplier pull_supplier)
raises(CosEventChannelAdmin::AlreadyConnected,

Notification Service V1.0 June 2000

CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; /I ProxyPullConsumer

interface StructuredProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::StructuredPullConsumer {

void connect_structured_pull_supplier (
in CosNotifyComm::StructuredPullSupplier pull_supplier)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; /I StructuredProxyPullConsumer

interface SequenceProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::SequencePullConsumer {

void connect_sequence_pull_supplier (
in CosNotifyComm::SequencePullSupplier pull_supplier)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

Notification Service V1.0 June 2000 B-15

}; Il SequenceProxyPullConsumer

interface ProxyPushSupplier :
ProxySupplier,
CosNotifyComm::PushSupplier {

void connect_any_push_consumer (
in CosEventComm::PushConsumer push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; /I ProxyPushSupplier

interface StructuredProxyPushSupplier :
ProxySupplier,
CosNotifyComm::StructuredPushSupplier {

void connect_structured_push_consumer (
in CosNotifyComm::StructuredPushConsumer push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; /1 StructuredProxyPushSupplier

interface SequenceProxyPushSupplier :
ProxySupplier,
CosNotifyComm::SequencePushSupplier {

void connect_sequence_push_consumer (
in CosNotifyComm::SequencePushConsumer push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,

B-16 Notification Service V1.0 June 2000

CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadylnactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; Il SequenceProxyPushSupplier

typedef long ProxylD;
typedef sequence <ProxylD> ProxylDSeq;

enum ClientType {
ANY_EVENT,
STRUCTURED_EVENT,
SEQUENCE_EVENT

k

enum InterFilterGroupOperator { AND_OP, OR_OP };

typedef long AdminID;
typedef sequence<AdminIlD> AdminIDSeq;

exception AdminNotFound {};
exception ProxyNotFound {};

struct AdminLimit {
CosNatification::PropertyName name;
CosNoatification::PropertyValue value;

k

exception AdminLimitExceeded { AdminLimit admin_property_err; };

interface ConsumerAdmin :
CosNotification::QoSAdmin,
CosNotifyComm::NotifySubscribe,
CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin::ConsumerAdmin {

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

Notification Service V1.0 June 2000 B-17

readonly attribute InterFilterGroupOperator MyOperator;

attribute CosNotifyFilter::MappingFilter priority_filter;
attribute CosNotifyFilter::MappingFilter lifetime_filter;

readonly attribute ProxylDSeq pull_suppliers;
readonly attribute ProxylDSeq push_suppliers;

ProxySupplier get_proxy_supplier (
in ProxylID proxy_id)
raises (ProxyNotFound);

ProxySupplier obtain_notification_pull_supplier (
in ClientType ctype,
out ProxyID proxy_id)
raises (AdminLimitExceeded);

ProxySupplier obtain_notification_push_supplier (
in ClientType ctype,
out ProxyID proxy_id)
raises (AdminLimitExceeded);

void destroy();

}; /I ConsumerAdmin

interface SupplierAdmin :
CosNatification::QoSAdmin,
CosNotifyComm::NotifyPublish,
CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin::SupplierAdmin {

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

readonly attribute ProxylDSeq pull_consumers;
readonly attribute ProxylDSeq push_consumers;

ProxyConsumer get_proxy_consumer (
in ProxylID proxy_id)

B-18 Notification Service V1.0 June 2000

raises (ProxyNotFound);

ProxyConsumer obtain_notification_pull_consumer (
in ClientType ctype,
out ProxyID proxy_id)
raises (AdminLimitExceeded);

ProxyConsumer obtain_notification_push_consumer (
in ClientType ctype,
out ProxyID proxy_id)
raises (AdminLimitExceeded);

void destroy();

}; I/ SupplierAdmin

interface EventChannel :
CosNotification::QoSAdmin,
CosNotification::AdminPropertiesAdmin,
CosEventChannelAdmin::EventChannel {

readonly attribute EventChannelFactory MyFactory;

readonly attribute ConsumerAdmin default_consumer_admin;
readonly attribute SupplierAdmin default_supplier_admin;

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;

ConsumerAdmin new_for_consumers(
in InterFilterGroupOperator op,
out AdminID id);

SupplierAdmin new_for_suppliers(
in InterFilterGroupOperator op,
out AdminID id);

ConsumerAdmin get_consumeradmin (in AdminID id)
raises (AdminNotFound);

SupplierAdmin get_supplieradmin (in AdminID id)
raises (AdminNotFound);

Notification Service V1.0 June 2000 B-19

AdminIDSeq get_all_consumeradmins();
AdminIDSeq get_all_supplieradmins();

}; I/ EventChannel

typedef long ChannellD;
typedef sequence<ChannellD> ChannellDSeq;

exception ChannelNotFound {};

interface EventChannelFactory {

EventChannel create_channel (
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin,
out ChannellD id)
raises(CosNotification::UnsupportedQoS,
CosNoatification::UnsupportedAdmin);

ChannellDSeq get_all_channels();

EventChannel get_event_channel (in ChannellD id)
raises (ChannelNotFound);

}; /I EventChannelFactory

}; Il CosNotifyChannelAdmin

module CosTypedNotifyComm {

interface TypedPushConsumer :
CosTypedEventComm::TypedPushConsumer,
CosNotifyComm::NotifyPublish {

}; I TypedPushConsumer

interface TypedPullSupplier :
CosTypedEventComm:: TypedPullSupplier,
CosNotifyComm::NotifySubscribe {

}; /I TypedPullSupplier

B-20 Notification Service V1.0 June 2000

}; I CosTypedNotifyComm

module CosTypedNotifyChannelAdmin {

/I Forward declaration
interface TypedEventChannelFactory;

typedef string Key;

interface TypedProxyPushConsumer :
CosNotifyChannelAdmin::ProxyConsumer,
CosTypedNotifyComm::TypedPushConsumer {

void connect_typed_push_supplier (
in CosEventComm::PushSupplier push_supplier)
raises (CosEventChannelAdmin::AlreadyConnected);

}; /I TypedProxyPushConsumer

interface TypedProxyPullSupplier :
CosNotifyChannelAdmin::ProxySupplier,
CosTypedNotifyComm::TypedPullSupplier {

void connect_typed_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)
raises (CosEventChannelAdmin::AlreadyConnected);

}; 1l TypedProxyPullSupplier

interface TypedProxyPullConsumer :
CosNotifyChannelAdmin::ProxyConsumer,
CosNotifyComm::PullConsumer {

void connect_typed_pull_supplier (
in CosTypedEventComm::TypedPullSupplier pull_supplier)
raises (CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadylnactive,
CosNotifyChannelAdmin::NotConnected);

Notification Service V1.0 June 2000 B-21

void resume_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyActive,
CosNotifyChannelAdmin::NotConnected);

}; 1l TypedProxyPullConsumer

interface TypedProxyPushSupplier :
CosNotifyChannelAdmin::ProxySupplier,
CosNotifyComm::PushSupplier {

void connect_typed_push_consumer (
in CosTypedEventComm::TypedPushConsumer push_consumer)
raises (CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadylnactive,
CosNotifyChannelAdmin::NotConnected);

void resume_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyActive,
CosNotifyChannelAdmin::NotConnected);

}; 1l TypedProxyPushSupplier

interface TypedConsumerAdmin :
CosNotifyChannelAdmin::ConsumerAdmin,
CosTypedEventChannelAdmin:: TypedConsumerAdmin {

TypedProxyPullSupplier obtain_typed_notification_pull_supplier(
in Key supported_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)
raises(CosTypedEventChannelAdmin::InterfaceNotSupported,
CosNotifyChannelAdmin::AdminLimitExceeded);

TypedProxyPushSupplier obtain_typed_notification_push_supplier(
in Key uses_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)
raises(CosTypedEventChannelAdmin::NoSuchimplementation,
CosNotifyChannelAdmin::AdminLimitExceeded);

}; Il TypedConsumerAdmin

interface TypedSupplierAdmin :

B-22 Notification Service V1.0 June 2000

CosNotifyChannelAdmin::SupplierAdmin,
CosTypedEventChannelAdmin:: TypedSupplierAdmin {

TypedProxyPushConsumer obtain_typed_notification_push_consumer(
in Key supported_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)
raises(CosTypedEventChannelAdmin::InterfaceNotSupported,
CosNotifyChannelAdmin::AdminLimitExceeded);

TypedProxyPullConsumer obtain_typed_notification_pull_consumer(
in Key uses_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)
raises(CosTypedEventChannelAdmin::NoSuchimplementation,
CosNotifyChannelAdmin::AdminLimitExceeded);

}; 1l TypedSupplierAdmin

interface TypedEventChannel :
CosNoatification::QoSAdmin,
CosNoatification::AdminPropertiesAdmin,
CosTypedEventChannelAdmin::TypedEventChannel {

readonly attribute TypedEventChannelFactory MyFactory;

readonly attribute TypedConsumerAdmin default_consumer_admin;
readonly attribute TypedSupplierAdmin default_supplier_admin;

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;

TypedConsumerAdmin new_for_typed_notification_consumers(
in CosNotifyChannelAdmin::InterFilterGroupOperator op,
out CosNotifyChannelAdmin::AdminID id);

TypedSupplierAdmin new_for_typed_notification_suppliers(
in CosNotifyChannelAdmin::InterFilterGroupOperator op,
out CosNotifyChannelAdmin::AdminID id);

TypedConsumerAdmin get_consumeradmin (
in CosNotifyChannelAdmin::AdminID id)
raises (CosNotifyChannelAdmin::AdminNotFound);

TypedSupplierAdmin get_supplieradmin (

Notification Service V1.0 June 2000 B-23

in CosNotifyChannelAdmin::AdminID id)
raises (CosNotifyChannelAdmin::AdminNotFound);

CosNotifyChannelAdmin::AdminIDSeq get_all_consumeradmins();
CosNotifyChannelAdmin::AdminIDSeq get_all_supplieradmins();

}; Il TypedEventChannel

interface TypedEventChannelFactory {

TypedEventChannel create_typed_channel (
in CosNotification::QoSProperties initial_QoS,
in CosNotification::AdminProperties initial_admin,
out CosNotifyChannelAdmin::ChannellD id)
raises(CosNatification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

CosNotifyChannelAdmin::ChannellDSeq get_all_typed_channels();

TypedEventChannel get_typed_event_channel (
in CosNotifyChannelAdmin::ChannellD id)
raises (CosNotifyChannelAdmin::ChannelNotFound);

}; Il TypedEventChannelFactory

}; I CosTypedNotifyChannelAdmin

B-24 Notification Service V1.0 June 2000

Changes to CORBA C

C.1 Changestothe CORBA Standard

C.1.1 A New Standard Exception

This specification defines a user exception calldisupportedQoS that is raised

within many invocations to indicate that a component of the notification channel, or the
channel itself, is unable to satisfy a client’'s QoS request. In addition, however, there
may be cases in which the client requests QoS at the message level when sending an
event to the channel (e.g., by specifying QoS properties within the header of a
Structured Event). Note, though, that it would only make sense to raise an exception in
the case when the client is delivering the event to the channel, but not when using the
same send operation (e.gush_structured_event) for the channel to deliver the

event to the consumer. For this reason, we feel it is appropriate to introduce a new
standard system exception in CORBA, calBAD_QOS, which can be raised

whenever a supplier sends an event to a channel over a connection that cannot support
the request message-level QoS.

Section 3.15.1 of the CORBA specification will have the following IDL text appended:
exception BAD_QOS ex_body; // bad quality of service

A new section 3.15.4 will be added:

3.15.4 Bad Quality of Service

TheBAD_QOS exception is raised whenever an object cannot support the
quality of service required by an invocation parameter that has a quality of
service semantics.

Notification Service V1.0 June 2000 C-1

Note that this same exception will be meaningful with regard to the Messaging Service
specification under roughly the same development schedule as this specification. We
highly recommend this exception be used for the purpose described above within
implementations of both the Notification and Messaging Services.

C.1.2 Resolving Initial References

This service may be required, in some installations, to be accessible via the ORB’s
resolve_initial_referencesoperation. In order to facilitate this the following changes to
CORBA v2.1 are required:

Section 5.6 will be changed so that the following text:

In addition to defining the id, the type of object being returned must be
defined (i.e., “InterfaceRepository” returns a object of type Repository, and
“NameService” returns a CosNamingContext object).

is replaced by:

In addition to defining the id, the type of object being returned must be defined. The
following table represents the ids and types of current object services:

Service Id Object Type
InterfaceRepository CORBA::Repository
NameService CosNaming::Context
TradingService CosTrading::Lookup
NotificationService CosNotifyChannelAdmin::

EventChannelFactory

TypedNatificationService | CosTypedNotifyChannelAdm
in:
TypedEventChannelFactory

Also, the following text:

In the future, specifications for Object Services GORBAservices:
Common Object Services Specificadiovill state whether it is expected
that a service’s initial reference be made available via the
resolve_initial_referencesoperation or not (i.e., whether the service is
necessary or desirable for bootstrap purposes).

is replaced by:

In the future, specifications for Object Services GORBAservices: Common Object
Services SpecificatiQmwill state whether it is desirable that a service’s initial reference
be made available via thesolve_initial_referencesoperation or not (i.e., whether the
service is necessary or desirable for bootstrap purposes). If so, then the service must
specify a change to the table above to add the necessary id and type information.

Notification Service V1.0 June 2000

C.2 RFP Requirement Not Addressed

Note that a conscious decision was made to not address the Notification Service RFP
requirement related to Federated Channels. Essentially, satisfaction of that requirement
encompasses the specification of interfaces that support creation and management of
networks of connected natification channels. During the authors’ discussion of that
topic, we determined that it raises many complex issues related to transactions,
security, and unique message identification.

Thus, due to the fact that considerable effort was spent to address all other
requirements from the Notification Service RFP within the specification of the
notification channel itself, and that networks of notification channels raise several
additional issues of considerable complexity, we decided to defer addressing issues
related to federations of notification channels altogetibe authors of this

Notification Service specification feel this is a very important topic, however, and we
highly recommend to the OMG Telecommunications Domain Task Force that a new
RFP be drafted to specifically address this issue

Notification Service V1.0 June 2000 C-3

c-4

Notification Service V1.0

June 2000

Index

A

AdminPropertiesAdmin Interface
get_admin 3-9
set_admin 3-9

B
BAD_QOS system exception 2-43

C
Changes to the CORBA Standard C-1
CORBA

contributors iv

documentation set iv
CosNotification Module 3-2
CosNotifyChannelAdmin Module 3-41
CosNotifyComm Module 3-28
CosNotifyFilter Module 3-9
CosTypedNotifyChannelAdmin 3-85
CosTypedNotifyComm Module 3-84

D
Default Filter Constraint Language 2-23

E

End-to-End QoS 2-36

Event Filtering 2-17

Event Type Meta-Model A-1

Event Type Repository 2-55

EventBatch Data Type 3-7

EventChannel Interface
default_consumer_admin 3-80
default_filter_factory 3-81
default_supplier_admin 3-80
get_all_consumeradmins 3-82
get_all_supplieradmins 3-82
get_consumeradmin 3-81
get_supplieradmin 3-82
MyFactory 3-80
new_for_consumers 3-81
new_for_suppliers 3-81

EventChannelFactory
create_channel 3-83

EventChannelFactory Interface
get_all_channels 3-83
get_event_channel 3-83

F

Filter Interface
add_constraints 3-16
attach_callback 3-19
constraint_grammar 3-15
destroy 3-18
detach_callback 3-19
get_all_constraints 3-17
get_callbacks 3-19
get_constraints 3-17
match 3-18
match_structured 3-18
match_typed 3-18
modify_constraints 3-16
remove_all_constraints 3-17

FilterAdmin Interface

add_filter 3-27
get_all_filters 3-27
get_filter 3-27
remove_all_filters 3-28
remove_filter 3-27
FilterFactory Interface
create_filter 3-26
create_mapping_filter 3-26
Filtering Typed Events 2-52

G

Generated IDL A-4
get_qos 3-8

get_qos operation 2-43

|
Intended Applications 2-30
Interoperability

Issues 2-56

M

Mapping Filter Interface
add_mapping_constraints 3-22
constraint_grammar 3-21
default_value 3-22
destroy 3-24
get_all_mapping_constraints 3-24
get_mapping_constraints 3-24
match 3-24
match_structured 3-25
match_typed 3-25
modify_mapping_constraints 3-23
remove_all_mapping_constraints 3-24
value_type 3-21

Mapping Filter Objects 2-21

MODL Model A-3

N
Name-Value Pairs 2-28
New Standard Exception C-1
Notification Service Constraints 2-31
Notification Service Event Channel 2-5
Notification Service Event Channel Factory 2-4
Notification Service Style Admin Objects 2-6
Notification Service Style Proxy Interfaces 2-7
NotifyPublish Interface
offer_change 3-31
NotifySubscribe Interface
subscription_change 3-31

0]
Object Management Group iii
address of iv

P
Positional Notation 2-30
ProxyConsumer Interface
MyAdmin 3-51
MyType 3-51
obtain_subscription_types 3-51
validate_event_qos 3-52
ProxyPullConsumer Interface

Notification Service V1.0 June 2000

Index-5

Index

connect_any_pull_supplier 3-62
resume_connection 3-63
suspend_connection 3-62
ProxyPullSupplier Interface
connect_any_pull_consumer 3-59
ProxyPushConsumer Interface
connect_any_push_supplier 3-56
ProxyPushSupplier Interface
connect_any_push_consumer 3-67
connect_structured_push_consumer 3-69
resume_connection 3-68, 3-69
suspend_connection 3-67, 3-69
ProxySupplier Interface
lifetime_filter 3-54
MyAdmin 3-53
MyType 3-53
obtain_offered_types 3-54
priority_filter 3-54
validate_event_qgos 3-55
PullConsumer Interface 3-32
PullSupplier Interface 3-32
PushConsumer Interface 3-31
PushSupplier Interface 3-32

Q
Qos
Property Representation 2-35
Setting 2-35
QoS and Administrative Constant Declarations 3-8
Qos Model
Components 2-35
Qos Properties
Earliest Delivery Time 2-39
Expiry times 2-39
Maximum Events Per Consumer 2-40
Priority 2-39
Reliability 2-37
QoSAdmin Interface 3-8

R
Resolving Initial References C-2
RFP Requirement Not Addressed C-3

S
SequenceProxyPullConsumer Inteface
resume_connection 3-66
SequenceProxyPullConsumer Interface
connect_sequence_pull_supplier 3-65
suspend_connection 3-66
SequenceProxyPullSupplier Interface
connect_sequence_pull_consumer 3-61
SequenceProxyPushConsumer Interface
connect_sequence_push_supplier 3-58
SequenceProxySupplier Interface
connect_sequence_push_consumer 3-70
destroy 3-75
get_proxy_supplier 3-74
lifetime_filter 3-74
MyChannel 3-73
MyID 3-73
MyOperator 3-73

Index-6 Notification Service V1.0

obtain_natification_pull_supplier 3-74
obtain_notification_push_supplier 3-75
priority_filter 3-73
pull_suppliers 3-74
push_suppliers 3-74
resume_connection 3-71
suspend_connection 3-71
SequencePullConsumer Interface
disconnect_sequence_pull_consumer 3-38
SequencePullSupplier Interface
disconnect_sequence_pull_supplier 3-41
pull_structured_events 3-39
try_pull_structured_events 3-40
SequencePushConsumer Interface
disconnect_sequence_push_consumer 3-38
push_structured_events 3-37
SequencePushSupplier Interface
disconnect_sequence_push_supplier 3-41
set_qos 3-8
set_qgos operation 2-42
Sharing Subscriptions
Offer 2-49

Sharing Subscriptions Between Channels and Clients 2-49

Subscription Change 2-50
Special Event Types 2-51
Structured Events 2-12
StructuredEvent Data Structure
Body of a Structured Event 3-7
Fixed Header 3-6
Variable Header 3-6
StructuredProxyPullConsumer Interface
connect_structured_pull_supplier 3-64
resume_connection 3-64
suspend_connection 3-64
StructuredProxyPullSupplier Interface
connect_structured_pull_consumer 3-60
StructuredProxyPushConsumer Interface
connect_structured_push_supplier 3-57
StructuredPullConsumer Interface
disconnect_structured_pull_consumer 3-34
StructuredPullSupplier Interface
disconnect_structured_pull_supplier 3-36
pull_structured_event 3-34
try_pull_structured_event 3-35
StructuredPushConsumer Interface
disconnect_structured_push_consumer 3-33
push_structured_event 3-33
StructuredPushSupplier Interface
disconnect_structured_push_supplier 3-36
SupplierAdmin Interface
destroy 3-79
get_proxy_consumer 3-78
MyChannel 3-77
MyID 3-77
MyOperator 3-77
obtain_notification_pull_consumer 3-78
obtain_notification_push_consumer 3-78
pull_consumers 3-77
push_consumers 3-78

June 2000

Index

T
Trader Constraint Language 2-23
Trader Constraint Language BNF 2-32
TransactionalObject interface 2-12
TypedConsumerAdmin Interface
obtain_typed_notification_pull_supplier 3-98
obtain_typed_notification_push_supplier 3-98
TypedEventChannel Interface
default_consumer_admin 3-103
default_filter_factory 3-104
default_supplier_admin 3-103
get_all_consumeradmins 3-105
get_all_supplieradmins 3-105
get_consumeradmin 3-104
get_supplieradmin 3-105
MyFactory 3-103
new_for_notification_consumers 3-104
new_for_typed_notification_suppliers 3-104
TypedEventChannelFactory Interface
create_typed_channel 3-106
get_all_typed_channels 3-106
get_typed_event_channel 3-106
TypedProxyPullConsumer Interface
connect_typed_pull_supplier 3-93

resume_connection 3-94

suspend_connection 3-93
TypedProxyPullSupplier Interface

connect_typed_pull_consumer 3-91
TypedProxyPushConsumer Interface

conect_typed_push_supplier 3-90
TypedProxyPushSupplier Interface

connect_typed_push_consumer 3-95

resume_connection 3-96

suspend_connection 3-95
TypedPullSupplier Interface 3-85
TypedPushConsumer Interface 3-84
TypedSupplierAdmin Interface

obtain_typed_notification_pull_consumer 3-101

obtain_typed_notification_push_consumer 3-101

U
UnsupportedQoS user exception 2-43

\%

validate_event_gos operation 2-43
validate_qos 3-8

validate_qos operation 2-43

Notification Service V1.0 June 2000 Index-7

Index

Index-8 Notification Service V1.0 June 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	Service Description
	1.1 Overview
	1.2 Conformance Issues
	1.2.1 Compliance

	Architectural Features
	2.1 Overview
	2.1.1 The Notification Service Event Channel Factory
	2.1.2 The Notification Service Event Channel
	2.1.3 Notification Service Style Admin Objects
	2.1.4 Notification Service Style Proxy Interfaces
	2.1.5 Sending Events within a Transaction

	2.2 Structured Events
	2.3 Event Filtering with Filter Objects
	2.3.1 Mapping Filter Objects

	2.4 The Default Filter Constraint Language
	2.4.1 Issues with the Trader Constraint Language
	2.4.2 Trader Constraint Language Extensions for Notification
	2.4.3 Arithmetic Conversions for Mixed Data Types
	2.4.4 Support for Name-Value Pairs
	2.4.5 A Short-hand Notation for Filtering a Generic Event
	2.4.6 Positional Notation and Intended Applications
	2.4.7 Examples of Notification Service Constraints
	2.4.8 Extensions to Trader Constraint Language BNF

	2.5 Quality of Service Administration
	2.5.1 Model Components
	2.5.2 QoS Property Representation
	2.5.3 Setting QoS
	2.5.4 End-to-End QoS
	2.5.5 Notification QoS Properties
	2.5.6 Negotiating QoS and Conflict Resolution
	2.5.7 Notification Channel Administrative Properties

	2.6 Sharing Subscriptions
	2.6.1 Sharing Subscriptions Between Channels and Clients
	2.6.2 Offer
	2.6.3 Subscription Change
	2.6.4 Notifications on Demand
	2.6.5 Obligations on Filter Objects
	2.6.6 Special Event Types

	2.7 Filtering Typed Events
	2.8 The Event Type Repository
	2.9 Issues with Interoperability

	Modules and Interfaces
	3.1 The CosNotification Module
	3.1.1 The StructuredEvent Data Structure
	3.1.2 The EventBatch Data Type
	3.1.3 QoS and Administrative Constant Declarations
	3.1.4 The QoSAdmin Interface
	3.1.5 The AdminPropertiesAdmin Interface

	3.2 The CosNotifyFilter Module
	3.2.1 The Filter Interface
	3.2.2 The MappingFilter Interface
	3.2.3 The FilterFactory Interface
	3.2.4 The FilterAdmin Interface

	3.3 The CosNotifyComm Module
	3.3.1 The NotifyPublish Interface
	3.3.2 The NotifySubscribe Interface
	3.3.3 The PushConsumer Interface
	3.3.4 The PullConsumer Interface
	3.3.5 The PullSupplier Interface
	3.3.6 The PushSupplier Interface
	3.3.7 The StructuredPushConsumer Interface
	3.3.8 The StructuredPullConsumer Interface
	3.3.9 The StructuredPullSupplier Interface
	3.3.10 The StructuredPushSupplier Interface
	3.3.11 The SequencePushConsumer Interface
	3.3.12 The SequencePullConsumer Interface
	3.3.13 The SequencePullSupplier Interface
	3.3.14 The SequencePushSupplier Interface

	3.4 The CosNotifyChannelAdmin Module
	3.4.1 The ProxyConsumer Interface
	3.4.2 The ProxySupplier Interface
	3.4.3 The ProxyPushConsumer Interface
	3.4.4 The StructuredProxyPushConsumer Interface
	3.4.5 The SequenceProxyPushConsumer Interface
	3.4.6 The ProxyPullSupplier Interface
	3.4.7 The StructuredProxyPullSupplier Interface
	3.4.8 The SequenceProxyPullSupplier Interface
	3.4.9 The ProxyPullConsumer Interface
	3.4.10 The StructuredProxyPullConsumer Interface
	3.4.11 The SequenceProxyPullConsumer Interface
	3.4.12 The ProxyPushSupplier Interface
	3.4.13 The StructuredProxyPushSupplier Interface
	3.4.14 The SequenceProxyPushSupplier Interface
	3.4.15 The ConsumerAdmin Interface
	3.4.16 The SupplierAdmin Interface
	3.4.17 The EventChannel Interface
	3.4.18 The EventChannelFactory Interface

	3.5 The CosTypedNotifyComm Module
	3.5.1 The TypedPushConsumer Interface
	3.5.2 The TypedPullSupplier Interface

	3.6 CosTypedNotifyChannelAdmin
	3.6.1 The TypedProxyPushConsumer Interface
	3.6.2 The TypedProxyPullSupplier Interface
	3.6.3 The TypedProxyPullConsumer Interface
	3.6.4 The TypedProxyPushSupplier Interface
	3.6.5 The TypedConsumerAdmin Interface
	3.6.6 The TypedSupplierAdmin Interface
	3.6.7 The TypedEventChannel Interface
	3.6.8 The TypedEventChannelFactory Interface

