
Notification Service Specification

October 2004
Version 1.1

formal/04-10-13

An Available Specification of the Object Management Group, Inc.

Copyright © 1998, BEA Systems, Inc.
Copyright © 1998, Borland International
Copyright © 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd).
Copyright © 1998, Expersoft Corporation
Copyright © 1998, FUJITSU LIMITED
Copyright © 1998, GMD Fokus
Copyright © 1998, International Business Machines Corporation
Copyright © 1998, International Computers Limited
Copyright © 1998, Iona Technologies Ltd.
Copyright © 1998, NEC Corporation
Copyright © 1998, Nortel Technology
Copyright © 2002, Object Management Group, Inc.
Copyright © 1998, Oracle Corporation
Copyright © 1998, TIBCO Software, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Contents
Preface . iii

1. Service Description . 1-1
1.1 Overview . 1-1

1.2 Conformance Issues . 1-3
1.2.1 Compliance. 1-3

2. Architectural Features . 2-1
2.1 Overview . 2-1

2.1.1 The Notification Service Event Channel Factory 2-5
2.1.2 The Notification Service Event Channel 2-6
2.1.3 Notification Service Style Admin Objects 2-7
2.1.4 Notification Service Style Proxy Interfaces . . . 2-8
2.1.5 Notification Service QoS and Admin Property

Extensions . 2-13
2.1.6 Sending Events within a Transaction 2-14

2.2 Structured Events . 2-15

2.3 Event Filtering with Filter Objects 2-20
2.3.1 Mapping Filter Objects 2-24

2.4 The Default Filter Constraint Language. 2-26
2.4.1 Issues with the Trader Constraint Language . . . 2-26
2.4.2 Trader Constraint Language Extensions for

Notification . 2-28
2.4.3 Arithmetic Conversions for Mixed Data Types 2-29
2.4.4 Support for Name-Value Pairs 2-32
2.4.5 A Short-hand Notation for Filtering a Generic Event

2-32
2.4.6 Positional Notation and Intended Applications 2-33
2.4.7 Examples of Notification Service Constraints . 2-34
2.4.8 Extensions to Trader Constraint Language BNF 2-35

2.5 Quality of Service Administration 2-37
2.5.1 Model Components . 2-38
2.5.2 QoS Property Representation 2-38
2.5.3 Setting QoS . 2-38
2.5.4 End-to-End QoS . 2-39
2.5.5 Notification QoS Properties 2-40
2.5.6 Negotiating QoS and Conflict Resolution 2-45
2.5.7 Notification Channel Administrative Properties 2-51

2.6 Sharing Subscriptions. 2-52
2.6.1 Sharing Subscriptions Between Channels and Clients

2-52
October 2004 Notification Service, v1.1 i

Contents
2.6.2 Offer . 2-52
2.6.3 Subscription Change. 2-53
2.6.4 Notifications on Demand 2-53
2.6.5 Obligations on Filter Objects 2-54
2.6.6 Special Event Types . 2-54

2.7 Filtering Typed Events . 2-55

2.8 The Event Type Repository . 2-58

2.9 Issues with Interoperability . 2-59

3. Modules and Interfaces. 3-1

3.1 The CosNotification Module . 3-2
3.1.1 The StructuredEvent Data Structure 3-5
3.1.2 The EventBatch Data Type 3-7
3.1.3 QoS and Administrative Constant Declarations 3-7
3.1.4 The QoSAdmin Interface 3-7
3.1.5 The AdminPropertiesAdmin Interface 3-8

3.2 The CosNotifyFilter Module . 3-9
3.2.1 The Filter Interface . 3-12
3.2.2 The MappingFilter Interface. 3-18
3.2.3 The FilterFactory Interface 3-25
3.2.4 The FilterAdmin Interface 3-25

3.3 The CosNotifyComm Module . 3-26
3.3.1 The NotifyPublish Interface 3-28
3.3.2 The NotifySubscribe Interface 3-29
3.3.3 The PushConsumer Interface 3-29
3.3.4 The PullConsumer Interface 3-30
3.3.5 The PullSupplier Interface 3-30
3.3.6 The PushSupplier Interface 3-30
3.3.7 The StructuredPushConsumer Interface 3-30
3.3.8 The StructuredPullConsumer Interface. 3-31
3.3.9 The StructuredPullSupplier Interface 3-32
3.3.10 The StructuredPushSupplier Interface 3-34
3.3.11 The SequencePushConsumer Interface. 3-35
3.3.12 The SequencePullConsumer Interface 3-36
3.3.13 The SequencePullSupplier Interface. 3-36
3.3.14 The SequencePushSupplier Interface 3-39

3.4 The CosNotifyChannelAdmin Module. 3-39
3.4.1 The ProxyConsumer Interface 3-46
3.4.2 The ProxySupplier Interface. 3-49
3.4.3 The ProxyPushConsumer Interface 3-51
ii Notification Service, v1.1 October 2004

Contents
3.4.4 The StructuredProxyPushConsumer Interface . 3-52
3.4.5 The SequenceProxyPushConsumer Interface . . 3-53
3.4.6 The ProxyPullSupplier Interface 3-54
3.4.7 The StructuredProxyPullSupplier Interface . . . 3-55
3.4.8 The SequenceProxyPullSupplier Interface 3-56
3.4.9 The ProxyPullConsumer Interface 3-57
3.4.10 The StructuredProxyPullConsumer Interface . . 3-59
3.4.11 The SequenceProxyPullConsumer Interface. . . 3-60
3.4.12 The ProxyPushSupplier Interface 3-62
3.4.13 The StructuredProxyPushSupplier Interface. . . 3-64
3.4.14 The SequenceProxyPushSupplier Interface . . . 3-66
3.4.15 The ConsumerAdmin Interface 3-67
3.4.16 The SupplierAdmin Interface 3-72
3.4.17 The EventChannel Interface 3-75
3.4.18 The EventChannelFactory Interface 3-78

3.5 The CosTypedNotifyComm Module 3-80
3.5.1 The TypedPushConsumer Interface 3-80
3.5.2 The TypedPullSupplier Interface 3-81

3.6 CosTypedNotifyChannelAdmin . 3-81
3.6.1 The TypedProxyPushConsumer Interface. 3-84
3.6.2 The TypedProxyPullSupplier Interface. 3-86
3.6.3 The TypedProxyPullConsumer Interface 3-87
3.6.4 The TypedProxyPushSupplier Interface 3-89
3.6.5 The TypedConsumerAdmin Interface. 3-91
3.6.6 The TypedSupplierAdmin Interface 3-94
3.6.7 The TypedEventChannel Interface 3-97
3.6.8 The TypedEventChannelFactory Interface 3-100

3.7 IDL Modules . 3-102
3.7.1 The CosNotifyCommAck Module 3-102
3.7.2 The CosNotifyChannelAdminAck Module . . . 3-103
3.7.3 Overview of Event Acknowledgement 3-104
3.7.4 Scope of Event Acknowledgment. 3-105
3.7.5 Sequence Number Header Field 3-106
3.7.6 Acknowledge operation behavior 3-110
3.7.7 Reliable Delivery Sequence 3-110
3.7.8 QoS Properties for Reliable Event Delivery . . . 3-113
October 2004 Notification Service, v1.1 iii

Contents
iv Notification Service, v1.1 October 2004

Preface
About This Document

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.
October 2004 Notification Service, v1.1 iii

The mission of The Open Group is to drive the creation of boundary less information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating
certification programs and has extensive experience developing and facilitating
industry adoption of test suites used to validate conformance to an open standard or
specification. The Open Group portfolio of test suites includes tests for CORBA, the
Single UNIX Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX
Realtime, Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are
essential for proper development and maintenance of standards-based products,
ensuring conformance of products to industry-standard APIs, applications portability,
and interoperability. In-depth testing identifies defects at the earliest possible point in
the development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services: Common Object Services Specification contains specifications
for OMG’s Object Services.

• CORBA Facilities: Common Facilities Specification includes OMG’s Common
Facility specifications.

• CORBA Domain Technologies
iv Notification Service, v1.1 October 2004

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented
interfaces between related services and functions.

• CORBA Med: Comprised of specifications that relate to the health care industry
and represents vendors, health care providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services
and accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
so forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

OMG formal documents are available from our web site in PostScript and PDF format.
You can contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.
October 2004 Notification Service, v1.1: Associated OMG Documents v

Acknowledgments

The following companies submitted and/or supported parts of the Notification Service
specification:

• BEA Systems, Inc.

• Borland International

• Cooperative Research Centre for Distributed Systems Technology (DSTC Pty
Ltd).

• Expersoft Corporation

• FUJITSU LIMITED

• GMD Fokus

• International Business Machines Corporation

• International Computers Limited

• Iona Technologies Ltd.

• NEC Corporation

• Nortel Technology

• Oracle Corporation

• TIBCO Software, Inc.
vi Notification Service, v1.1 October 2004

Service Description 1
Contents

This chapter contains the following topics.

1.1 Overview

This specification describes a CORBA-based Notification Service, a service which
extends the existing OMG Event Service, adding to it the following new capabilities:

• The ability to transmit events in the form of a well-defined data structure, in
addition to Anys and Typed-events as supported by the existing Event Service.

• The ability for clients to specify exactly which events they are interested in
receiving, by attaching filters to each proxy in a channel.

• The ability for the event types required by all consumers of a channel to be
discovered by suppliers of that channel, so that suppliers can produce events on
demand, or avoid transmitting events in which no consumers have interest.

• The ability for the event types offered by suppliers to an event channel to be
discovered by consumers of that channel so that consumers may subscribe to new
event types as they become available.

• The ability to configure various quality of service properties on a per-channel, per-
proxy, or per-event basis.

• An optional event type repository which, if present, facilitates the formation of filter
constraints by end-users, by making information about the structure of events which
will flow through the channel readily available.

Topic Page

“Overview” 1-1

“Conformance Issues” 1-3
October 2004 Notification Service, v1.1 1-1

1

The Notification Service defined here attempts to preserve all of the semantics
specified for the OMG Event Service, allowing for interoperability between basic
Event Service clients and Notification Service clients. To recap, the OMG Event
Service supports asynchronous exchange of event messages between clients. The Event
Service introduces event channels which broker event messages, event suppliers which
supply event messages, and event consumers which consume event messages.

The figure below depicts a logical view of the event channel defined by the OMG
Event Service, showing its IDL-defined interfaces.

Figure 1-1 Architecture of the untyped OMG Event Channel

The IDL module names of the interfaces defined by the OMG Event Service are
abbreviated in the above diagram. ECA stands for CosEventChannelAdmin, while
EC stands for CosEventComm. The “*” next to an interface name denotes the fact
that each channel may support one or more of each Proxy interface, corresponding to
the existence of one or more connected suppliers and/or consumers. Events flow from
suppliers to consumers, as depicted by the arrow on the bottom of the figure. Note that
this figure depicts the untyped event channel defined by the OMG Event Service. A
typed version also exists that has similar architecture, with additional interfaces defined
to handle typed event communication.

Two serious limitations of the event channel defined by the OMG Event Service are
that it supports no event filtering capability, and no ability to be configured to support
different qualities of service. Thus, the choice of which consumers connected to a
channel receive which events, along with the delivery guarantee that is made to each
supplier, is hard-wired into the implementation of the channel. Most Event Service
implementations deliver all events sent to a particular channel to all consumers
connected to that channel on a best-effort basis.

A primary goal of the Notification Service defined here is to enhance the Event
Service by introducing the concepts of filtering, and configurability according to
various quality of service requirements. Clients of the Notification Service can
subscribe to specific events of interest by associating filter objects with the proxies
through which the clients communicate with event channels. These filter objects

ECA::ConsumerAdmin ECA::SupplierAdmin

ECA::ProxyPushConsumer*

ECA::ProxyPullConsumer*

ECA::ProxyPushSupplier*

ECA::ProxyPullSupplier*

EC::PushConsumer*

EC::PullConsumer*

ECA::EventChannel

EC::PushSupplier*

EC::PullSupplier*
Event Service
Event Channel

Direction of Event Flow
1-2 Notification Service, v1.1 October 2004

1

encapsulate constraints which specify the events the consumer is interested in
receiving, enabling the channel to only deliver events to consumers which have
expressed interest in receiving them. Furthermore, the Notification Service enables
each channel, each connection, and each message to be configured to support the
desired quality of service with respect to delivery guarantee, event aging
characteristics, and event prioritization.

The Notification Service defined here supports event filtering on three fundamental
types of events: untyped events contained within a CORBA Any, typed events as
defined by the OMG Event Service, and structured events, which are introduced in this
specification. Structured events define a well-known data structure which many
different types of events can be mapped into in order to support highly optimized event
filtering.

1.2 Conformance Issues

In order to be conformant with this specification, all of the interfaces must be
supported and implemented using the specified semantics, with the exception of the
interfaces for typed notification channels, which are optional. In addition, a
conforming implementation must support filter objects that support constraints
expressed in the default constraint grammar defined in “The Default Filter Constraint
Language” on page 2-26. Lastly, this document defines a set of standard QoS
properties, which must at least be understood (although not necessarily implemented)
by all conformant implementations.

More precisely,

• A conforming implementation must support all interfaces defined in the
CosNotification, CosNotifyFilter, CosNotifyComm, and
CosNotifyChannelAdmin modules.

• A conforming implementation may also support, in addition to the mandatory
interfaces enumerated above, all of the interfaces defined in the
CosTypedNotifyChannelAdmin module.

• A conforming implementation may also support, in addition to the mandatory
interfaces enumerated above, all of the interfaces defined in the
CosNotifyChannelAdminAck module.

• A conforming implementation may also support, in addition to the mandatory
interfaces enumerated above, all of the interfaces defined in the
CosNotifyCommAck module.

• A conforming implementation will provide implementations of the
CosNotifyFilter::Filter and CosNotifyFilter::MappingFilter interfaces that
support constraints expressed in the default constraint grammar specified in “The
Default Filter Constraint Language” on page 2-26.

• All QoS properties defined in this clause and subclause 3.7 of this specification,
must at least be understood by any conforming implementation. However, a
conforming implementation may choose to not implement all standard QoS
properties and/or QoS property settings. In cases where a client requests a standard
October 2004 Notification Service, v1.1: Conformance Issues 1-3

1

QoS property with a setting that is not supported by a conformant implementation,
the implementation should raise the CosNotification::UnsupportedQoS
exception.
1-4 Notification Service, v1.1 October 2004

Architectural Features 2
Contents

This chapter contains the following topics.

2.1 Overview

This clause provides a general overview of the service architecture. The main design
goal of the Notification Service architecture is to define the service as a direct
extension of the existing OMG Event Service, enhancing the latter with important
features which are required to satisfy a variety of applications with a broad range of
scalability, performance, and quality of service (QoS) requirements. The guiding
principles which drove the definition of the Notification Service IDL interfaces were to
preserve both backward compatibility with and the programming model of the OMG
Event Service. The former principle lead to the specification of IDL modules which
have identical structure to corresponding Event Service IDL modules, containing
interfaces which inherit directly from those defined in the Event Service. The latter

Topic Page

“Overview” 2-1

“Structured Events” 2-15

“Event Filtering with Filter Objects” 2-20

“The Default Filter Constraint Language” 2-26

“Quality of Service Administration” 2-37

“Sharing Subscriptions” 2-52

“Filtering Typed Events” 2-55

“The Event Type Repository” 2-58

“Issues with Interoperability” 2-59
October 2004 Notification Service, v1.1 2-1

2

principle lead to the specification of Notification Service interfaces which are named
similarly to corresponding Event Service interfaces, and which define new operations
that preserve the semantic behavior of the Event Service operations whose
functionality they are intended to embellish.

The Notification Service defined here supports all of the interfaces and functionality
supported by the OMG Event Service. In fact, an implementation of the Notification
Service defined here can be thought of as subsuming an implementation of the Event
Service. The Notification Service, however, also supports new features that are
introduced by directly extending the interfaces defined by the Event Service. Both the
original Event Service interfaces, and these new extended interfaces specific to
Notification, are made available to Notification Service clients in order to preserve
backward compatibility.

The general architecture of the Notification Service is depicted in Figure 2-1.
2-2 Notification Service, v1.1 October 2004

2

Figure 2-1 General Architecture of the Notification Service

Once again the IDL module names of the interfaces defined by the service are
abbreviated in the diagram. The following is a key to the abbreviations used:

• EC - CosEventComm

• ECA - CosEventChannelAdmin

• NC - CosNotifyComm

• NCA - CosNotifyChannelAdmin

ECA::ProxyPushConsumer*
ECA::ProxyPushSupplier*

ECA::ProxyPullSupplier*

EC::PushConsumer*

EC::PullConsumer*

EC::PushSupplier*

EC::PullSupplier*

ECA::ConsumerAdmin ECA::SupplierAdmin

NCA::ConsumerAdmin* NCA::SupplierAdmin*

NCA::EventChannel

ECA::EventChannel

NCA::ProxyPushConsumer*

NCA::ProxyPullConsumer*

EC::PushSupplier*

EC::PullSupplier*

NCA::ProxyPushSupplier*

NCA::ProxyPullSupplier*

EC::PushConsumer*

EC::PullConsumer*

Notification Service
Event Channel

NCA::StructuredProxyPushConsumer*

NCA::StructuredProxyPullConsumer*

NCA::SequenceProxyPushConsumer*

NCA::SequenceProxyPullConsumer*

NC::StructuredPushSupplier*

NC::StructuredPullSupplier*

NC::SequencePushSupplier*

NC::SequencePullSupplier*

NCA::StructuredProxyPullSupplier*

NC::StructuredPushConsumer*

NC::StructuredPullConsumer*

NCA::SequenceProxyPushSupplier*

NCA::SequenceProxyPullSupplier*

NC::SequencePushConsumer*

NC::SequencePullConsumer*

Direction of Event Flow
October 2004 Notification Service, v1.1: Overview 2-3

2

As shown in Figure 1-1 on page 1-2, the “*” next to an interface name denotes the fact
that there may be multiple object instances supporting this interface in a given channel.
Note that in addition to supporting multiple instances of each Proxy interface, each
Notification Service event channel may also support multiple instances of the
ConsumerAdmin and SupplierAdmin interfaces defined in the
CosNotifyChannelAdmin module. The reason for this will be explained shortly.
Also note that this figure depicts the generic Notification Service event channel. As
with the Event Service, a typed version also exists that has similar architecture, with
additional interfaces to handle typed communication. The typed Notification Service
event channel will also be described shortly.

As depicted on page 2-3, an instance of the Notification Service event channel
(referred to henceforth as the notification channel) logically supports all of the
interfaces supported by the Event Service event channel. In many cases the service
supports two methods for obtaining access to the Event Service version of a particular
interface:

1. Since the Notification Service version of a particular interface inherits from the
Event Service equivalent of the same interface, an instance of the former can be
widened to an instance of the latter. Examples of this are the EventChannel,
ConsumerAdmin, and SupplierAdmin interfaces.

2. The factory operations supported by a Notification Service interface through
inheritance from the equivalent Event Service interface can be invoked to create a
true Event Service version of a particular interface. Examples of Event Service
interfaces that can be instantiated in this way are the ConsumerAdmin,
SupplierAdmin, and all Proxy interfaces supported by the Event Service.

Note that in this specification, the issue of whether or not an instance of an Event
Service style interface obtained by method 2) above can be narrowed to an equivalent
Notification Service style interface is left as an implementation detail.

Due to interface inheritance, an instance of an object supporting the
NCA::EventChannel interface (i.e., an instance of a notification channel) can be
widened to one supporting the ECA::EventChannel interface, and henceforth be
treated identically to the Event Service’s version of an event channel. The primary
reason for this is to support backward compatibility for existing applications that use
the Event Service. Furthermore, more fine-grained application migration is supported
as true Event Service clients (i.e., consumers and suppliers) can connect to the
Notification Service event channel using one of the following three techniques:

1. Using the operations of the inherited ECA::EventChannel interface, instantiate
the Event Service version of the appropriate Admin interface (i.e.,
ConsumerAdmin or SupplierAdmin), use it to instantiate an Event Service style
Proxy interface, then connect to that interface.

2. Obtain the appropriate Notification Service style Admin interface. Then, using the
operations supported through inheritance of the Event Service version of the
analogous Admin interface, instantiate an Event Service style Proxy interface, and
connect to that interface.
2-4 Notification Service, v1.1 October 2004

2

3. Use strictly Notification Service style interfaces to instantiate and connect to the
ProxyPushConsumer, ProxyPullConsumer, ProxyPushSupplier, or
ProxyPullSupplier interface defined in the CosNotifyChannelAdmin model.

Techniques 1) and 2) described above differ only in at what point (the EventChannel
or Admin interface) the client begins treating the notification channel as a true event
channel. The end result of both techniques is identical: a true event service client is
connected to a true event service style proxy interface associated with the channel.
These techniques enable the client to achieve the identical functionality supported by
the Event Service event channel: events in the form of untyped Anys can be supplied
to and consumed from the channel.

Technique 3) enables an event service client to take advantage of some of the new
functionality supported by the notification channel. The main difference between this
and the previous techniques is that it results in an Event Service client being connected
to a Notification Service style proxy interface. The Notification Service style proxy
interface is capable of filtering events based on end-user provided constraints, and can
also be configured to support various qualities of service. Thus, in this case an Event
Service client is able to take advantage of the new features supported by Notification.

The previous discussion described how Event Service clients can use the Notification
Service. The following subclauses will focus on the new features offered by
Notification, which are available to clients which have been newly developed to use
Notification.

2.1.1 The Notification Service Event Channel Factory

The Notification Service supports a well-defined factory interface, the
EventChannelFactory, for creating new instances of notification channels. At
creation time, the client can specify various QoS and administrative properties that will
be supported by the channel. The standard administrative properties that can be set on
a channel include the maximum number of events the channel will buffer at any one
time (MaxQueueLength), and the maximum number of consumers and suppliers that
can connect to the channel (MaxConsumers and MaxSuppliers). QoS
administration is described in detail in “Quality of Service Administration” on
page 2-37.

Although the EventChannelFactory is the only interface in the Notification Service
that is explicitly defined to be a factory (i.e., an object that creates other objects), it
turns out that the architecture of the service is hierarchical in nature, and all objects
defined as part of an event channel are created by some parent object. For instance,
consumer and supplier admin instances are created by event channels, and all proxy
objects are created by some admin instance.

One important design principle introduced by the Notification Service is that all
objects that create other objects assign numeric identifiers to the objects they have
created that are unique among all objects they have created. In addition, all objects that
create other objects support an operation that returns the list of all unique identifiers
they have assigned to objects they have created, and an operation that given a single
unique identifier corresponding to an object they have created, can return the object
October 2004 Notification Service, v1.1: Overview 2-5

2

reference of that child object. Additionally, all objects within the channel maintain
back references to their parent object (e.g., event channels maintain references to the
event channel factory that created them, admin objects maintain references to the event
channel that created them, etc.). This design principle significantly enhances the
administratibility of a Notification Service event channel, by enabling any client of a
channel to discover all objects that comprise the channel, starting from any object
within the channel. Note that a Notification Service event channel which contains
objects that support pure OMG Event Service style interfaces will not be able to
administer these objects in this fashion (since Event Service style objects will not have
associated unique identifiers, and will not maintain backreferences to their parent
objects).

2.1.2 The Notification Service Event Channel

The Notification Service event channel, also referred to as the “notification channel,”
supports the CosNotifyChannelAdmin::EventChannel interface. Through
interface inheritance, an instance supporting this interface can be treated exactly like
an Event Service event channel (as previously described), and can have both QoS and
administrative properties assigned to it.

A feature newly introduced by the notification channel is its ability to support multiple
instances of objects supporting the ConsumerAdmin and SupplierAdmin interfaces
(referred to in generic terms as “Admin” interfaces). Each Admin interface is
essentially a factory that creates the Proxy interfaces to which clients will ultimately
connect. The Notification Service also treats each Admin object as the manager of the
group of Proxies it has created. Admin objects can themselves have QoS properties and
filter objects (explained in detail in “Event Filtering with Filter Objects” on page 2-20)
associated with them. The QoS properties associated with a given Admin object are
assigned to each Proxy object created by the Admin object upon creation of the Proxy,
but can subsequently be tailored on a per-proxy basis. On the other hand, the set of
filter objects associated with a given Admin are treated as a unit which apply at all
times to all Proxy objects which have been created by the Admin. Additional filter
objects can be associated with an individual Proxy, but the set of filter objects
associated with an Admin object are automatically associated with all Proxy objects
which have been created by the Admin object, and this set can only be modified by
invoking operations on the Admin object.

Sharing a set of filter objects among all Proxy objects created by an Admin object
provides a powerful mechanism for creating a set of event subscriptions that can be
shared by a group of clients. In addition, the filtering of a given event on behalf of a
set of clients can be optimized since the same subscription information applies to
multiple clients, implying that the filtering of a given event can be performed once for
a given set of clients. In summary, supporting multiple Admin objects in a given
notification channel enables the logical grouping of the Proxy objects associated with
the channel according to common subscription information. This feature is particularly
useful with respect to ConsumerAdmin objects, since it enables the channel to
optimize the servicing of a group of consumers that are interested in receiving the
same set of events.
2-6 Notification Service, v1.1 October 2004

2

The CosNotifyChannelAdmin::EventChannel interface supports the operations
for creating new ConsumerAdmin and SupplierAdmin instances. Each instance is
assigned a unique identifier upon creation, which can subsequently be used to obtain
the reference of a particular Admin object by invoking an operation on the
EventChannel interface. Upon creation, each EventChannel instance initially
supports a single ConsumerAdmin and SupplierAdmin instance, viewed as the
default of each such type of object and assigned the unique identifier value of zero.
Note that through inheritance of the CosEventChannelAdmin::EventChannel
interface, each Notification Service event channel is also capable of creating Event
Service style Admin instances, which can subsequently be used to create Event Service
style Proxy objects. These event service style Admin instances do not have unique
identifiers associated with them, and thus cannot subsequently be obtained by invoking
the notification channel operations to obtain an Admin object by unique identifier.

2.1.3 Notification Service Style Admin Objects

As described in the previous section, each notification channel can have associated
with it multiple instances of ConsumerAdmin and SupplierAdmin objects. Both
styles of Admin object can have QoS properties and filter objects associated with
them. The QoS properties associated with a given Admin object are assigned as the
default QoS properties which will be associated with any Proxy object created by that
Admin. The properties can be subsequently tailored on a per-Proxy basis if so desired
by clients of the service. On the other hand, the filter objects associated with a given
Admin object are treated as a unit that are logically associated with every Proxy object
that has been created by the Admin. This unit can be modified only by invoking
operations on the Admin object itself, and such changes to the set of filters, or to the
internal state of the filters themselves, affect every Proxy which was created by the
Admin object.

The main idea underlying the support of multiple Admin objects per channel is to
optimize the handling of clients with identical requirements. For example, if it is
desired to connect multiple consumer applications that are interested in receiving an
identical set of events to a notification channel, this would be achieved by creating a
single ConsumerAdmin object and associating with it the filters which encapsulate
the constraints specifying the desired set of events. Subsequently, each consumer
application interested in receiving the specific set of events would connect to the
channel using this particular ConsumerAdmin object to create its associated Proxy
Supplier object. In addition, the same channel could be connected to by a different
group of consumer applications interested in receiving a different set of events by
creating a new ConsumerAdmin object, associating with it a different set of filter
objects, and using it to create the new set of Proxy Supplier objects.

Each instance of Notification Service style Admin object is capable of creating and
managing a set of Proxy objects. Through inheritance of the analogous Event Service
style Admin interface, a Notification Service style Admin object can be used to create
Event Service style Proxy objects. In addition, the Admin interfaces defined by the
Notification Service support operations to create Notification Service style Proxy
objects. Upon creation of such a Proxy object, the Admin object assigns it a unique
identifier that can be subsequently used as input to an operation supported by the
October 2004 Notification Service, v1.1: Overview 2-7

2

Admin interface to return the object reference of the Proxy. Note that only Notification
Service style Proxy objects will have unique identifiers associated with them, and thus
be obtainable through the operations supported by the Admin interfaces which return a
Proxy object interface given a unique identifier as input.

The Notification Service introduces separate Proxy interfaces depending on the desired
form of message communication. Message communication to and from the channel can
be in terms of Anys, Structured Events, or sequences of Structured Events. The exact
form of message communication supported by the Proxy object created by a
Notification Service style Admin object is controlled by a flag provided as input to the
operations on the Admin objects which create new Proxies. The different styles of
Proxy object which can be created by invoking operations on a Notification Service
style Admin object are explained in the next subclause.

2.1.4 Notification Service Style Proxy Interfaces

Using the operations supported through inheritance of the analogous Event Service
interface, a client of the Notification Service can use a Notification Service style
Admin object to create a pure Event Service style Proxy object. Such a Proxy supports
the identical behavior of the Event Service style Proxy objects: a consumer Proxy is
capable of receiving events in the form of Anys, and a supplier Proxy is capable of
delivering events in the form of Anys.

Using the newly defined operations of the Notification Service style Admin objects,
it’s possible to create Notification Service style Proxy objects. As with the Event
Service, both push and pull styles of each type of Proxy are supported. In addition,
Notification Service style Proxy objects can be further subdivided into three distinct
categories: those that send and receive events in the form of Anys, those that send and
receive events in the form of Structured Events (described in “Structured Events” on
page 2-15), and those that send and receive events in the form of sequences of
Structured Events. The Notification Service also defines new interfaces for clients that
send and receive events in the form of Structured Events or Sequences of Structured
Events.

The following table summarizes the Notification Service style Proxy interfaces, and
the types of clients of an object supporting each interface.

Table 2-1 Notification Service Style Proxy Interfaces

Proxy Interface Connected To By Form of Message

ProxyPushConsumer CosEventComm::PushSupplier Any

StructuredProxyPushConsumer CosNotifyComm::StructuredPushSupplier Structured Event

SequenceProxyPushConsumer CosNotifyComm::SequencePushSupplier Sequence of Structured Event

ProxyPullConsumer CosEventComm::PullSupplier Any

StructuredProxyPullConsumer CosNotifyComm::StructuredPullSupplier Structured Event

SequenceProxyPullConsumer CosNotifyComm::SequencePullSupplier Sequence of Structured Event
2-8 Notification Service, v1.1 October 2004

2

Notification Service style Proxy objects can have two different types of filters
associated with them. “Forwarding filters” can be attached to all types of Proxy objects
and constrain the events that the Proxy will forward. “Mapping filters” can only be
attached to supplier Proxy objects and affect the priority or lifetime properties of each
event received by a supplier Proxy. Mapping filters are discussed in more detail in
“Mapping Filter Objects” on page 2-24.

Both forwarding and mapping filters can be associated with a Proxy object either
explicitly or implicitly. Explicit association implies that the filters were associated with
the Proxy object by invoking an operation directly on the Proxy object to form the
association. Alternatively, filters can be associated with an Admin object. A Proxy
object also implicitly has associated with it all filter objects that are associated with the
Admin object which created it. Note that a Proxy object with no associated filter
objects defaults to forwarding all events it receives.

Each Notification Service style proxy object can also have various QoS properties
associated with it. The QoS properties which can be associated with a Notification
Service style Proxy object, and how they are treated with respect to QoS properties set
on a notification channel-wide basis, and potentially those set on a per-message basis,
are described in “Quality of Service Administration” on page 2-37.

Note that by dividing the Notification Service style Proxy interfaces along the lines of
the form of message they are capable of transmitting, and by defining separate client
interfaces (in the CosNotifyComm module) for clients that deal with each specific
form of message, clients of the Notification Service have the freedom to implement
consumers and suppliers that deal with events in only the specific format(s) they are
interested in sending and receiving them. For instance, to develop a consumer
application which only receives events by push-style communication in the form of
Structured Events, the developer simply needs to implement the
CosNotifyComm::StructuredPushConsumer interface, which only supports a
push operation which receives events in the form of Structured Events. The
Notification Service supports well-defined translations of message format in the case
that an event is supplied in a format different than a particular consumer is designed to
receive (e.g., an event is supplied as an Any, but the consumer only implements the
StructuredPushConsumer interface). This translation is summarized in the table
below. Note that this translation model naturally extends to the Typed notification

ProxyPushSupplier CosEventComm::PushConsumer Any

StructuredProxyPushSupplier CosNotifyComm::StructuredPushConsumer Structured Event

SequenceProxyPushSupplier CosNotifyComm::SequencePushConsumer Sequence of Structured Event

ProxyPullSupplier CosEventComm::PullConsumer Any

StructuredProxyPullSupplier CosNotifyComm::StructuredPullConsumer Structured Event

SequenceProxyPullSupplier CosNotifyComm::SequencePullConsumer Sequence of StructuredEvent

Table 2-1 Notification Service Style Proxy Interfaces

Proxy Interface Connected To By Form of Message
October 2004 Notification Service, v1.1: Overview 2-9

2

channel to which typed event service clients may also connect, and thus translations
involving typed events are included in the table as well. Typed Notification is
described in “Filtering Typed Events” on page 2-55.

Table 2-2 Message Translations Performed by the Notification Channel

Form Supplier
Sends Events to
Channel

Form Consumer
Receives Events
from Channel

Translation Performed by Channel

Any Structured Event Event is packaged into a Structured Event data structure, with the
content of the Any assigned to the “remainder_of_body” portion of
the structure (see “Structured Events” on page 2-15). The
“type_name” data member of the Structured Event should be set to
the value “%ANY”, and the “domain_name” member set to the
empty string.

Any Typed Event The Any must contain a sequence of name-value pairs whose first
element must have the name “operation”, and corresponding value
of type string which nominates the fully scoped operation name to
be invoked. The additional elements of the sequence will contain
properties with names and values corresponding to the names and
value types of the parameters of the typed operation signature. The
contents of an Any that do not follow this convention will not
result in the event being delivered to any Typed clients.

Structured Event Any A new Any is created, with the Structured Event assigned to its
value field, and its Typecode set appropriately to indicate a
Structured Event data structure.
2-10 Notification Service, v1.1 October 2004

2

In addition to there being separate proxy interfaces for sending events as Anys and
Structured Events, there are also proxy interfaces that support transmission of
sequences of Structured Events. These proxies should be seen as a shortcut for the use
of equivalent proxies that transmit single Structured Events. For example, an
invocation of the push_structured_events operation supported by a
SequencePushConsumer, which is passed a sequence of length n as input is
equivalent to performing n calls to the push_structured_event operation supported
by a StructuredPushConsumer. Any untyped events in the queue to be transmitted
to a sequence consumer are converted into Structured Events in the same way as
described in Table 2-2 on page 2-10. Likewise, the translation of any Structured Event
supplied to a channel within a sequence, and destined for a consumer of untyped
events is performed in the same way as with a single Structured Event.

Structured Event Typed Event Channel presumes that the filterable data portion of the Structured
Event contains a sequence of name/value pairs whose first element
has the name “operation” and corresponding value of type string
that nominates the fully scoped operation name to be invoked. The
additional elements of the sequence are the name and value of each
of the parameters for this operation. If the contents of the
Structured Event follow this convention, the typed operation is
invoked. Otherwise, the typed client will not receive the event.

Typed Event Any A new Any is created containing a data structure that is a sequence
of name-value pairs. The name of the first element of this
sequence is “operation” and its value will be a string containing
the fully scoped operation name. The remaining elements of the
sequence indicate the name of each parameter of the typed
operation used to transmit the event to the channel, and for each
such name the corresponding value is the value that was passed for
that parameter during the invocation by the typed supplier.

Typed Event Structured Event A new Structured Event is created, whose filterable data is
populated with the contents of the typed event. The first element of
the name-value pair sequence that makes up the filterable data has
its name set to “operation” and its value will be a string containing
the fully scoped operation name. The remaining elements of the
sequence indicate the name of each parameter of the typed
operation used to transmit the event to the channel, and for each
such name the corresponding value is the value that was passed for
that parameter during the invocation by the typed supplier. The
“type_name” data member of the Structured Event should be set to
the value “%TYPED” and the “domain_name” member set to the
empty string.

Table 2-2 Message Translations Performed by the Notification Channel

Form Supplier
Sends Events to
Channel

Form Consumer
Receives Events
from Channel

Translation Performed by Channel
October 2004 Notification Service, v1.1: Overview 2-11

2

This translation scheme raises the potential for an event to become wrapped multiple
times as the result of multiple translations, thus deeply embedding the original contents
of the event inside multiple such wrappings. Suppose for example, notification channel
B is set up to be a consumer of events supplied to notification channel A by connecting
a SequenceProxyPushConsumer for channel B to a
SequenceProxyPushSupplier of channel A. Now suppose an event in the form of
an Any is supplied to channel A, and is destined for transmission to channel B.
Channel A will translate the Any event it received into a Structured Event before
delivering it to channel B. Now suppose a consumer of untyped events is connected to
channel B, and the wrapped Any event received from channel A is destined for that
consumer. Naively, channel B would perform the appropriate translation of the
Structured Event into an Any, delivering to the consumer an Any, wrapped within a
Structured Event, wrapped within another Any. In addition, all filters containing
expressions that address fields in the event will fail to match the wrapped event in
either channel.

To avoid this type of situation, the special event type %ANY is defined and assigned to
the type_name field of the header of any Structured Event that contains an Any as the
result of the translation of the Any into a Structured Event. Proxy consumers accepting
Structured Events (including those which accept sequences of Structured Events) must
examine each event to see if its type is set to this value. In such cases, before
performing any filtering or further translations back into an Any, the original Any is
extracted from the remainder_of_body member of the Structured Event.

Similarly, the wrapping of an Any containing a Structured Event inside another
Structured Event must be avoided. Proxy consumers accepting Anys must look at the
TypeCode for the Any to see if it corresponds to the TypeCode for a Structured
Event. In this case, the value portion of the Any is extracted into a Structured Event
data structure before any filtering or further translations are performed.

One additional aspect of the Notification Service style Proxy interfaces, and the newly
defined Notification client interfaces, is that they support a means to share event
subscription information between notification channels and their clients. Each type of
Notification Service supplier interface (e.g., the supplier clients defined in
CosNotifyComm and the supplier Proxies defined in CosNotifyChannelAdmin)
inherits a NotifySubscribe interface. This interface supports an operation that allows
each notification supplier to be notified when the set of events for which there are
currently interested consumers changes. Likewise, each type of Notification Service
consumer interface (e.g., the consumer clients defined in CosNotifyComm and the
consumer Proxies defined in CosNotifyChannelAdmin) inherits a NotifyPublish
interface. This interface supports an operation that allows each notification consumer
to be notified when the set of event types that are currently being offered to the
channel changes. These mechanisms can be used in concert by an implementation of
the Notification Service, transparently to clients of the service, in order to optimize
event communication by only transmitting events when necessary. How this can be
achieved is described in “Sharing Subscriptions” on page 2-52.
2-12 Notification Service, v1.1 October 2004

2

2.1.5 Notification Service QoS and Admin Property Extensions

To support transactions New QoS and AdminProperties are required. The Notification
Service QoS and Admin frameworks are flexible enough to add new QoS and
AdminProperty values without changing the Notification Service interfaces. A new
QoS and AdminProperties should be seen as an extension rather than a modification of
the Notification Service Interfaces. These new QoS and AdminProperties are:

• EnableTransaction QoS is a boolean that enables the notification service client to
activate or deactivate the support of the transaction at Notification Service object
levels. When this QoS is enabled and applied on the ProxyPullConsumer,
StructuredProxyPushSupplier, StructuredProxyPullConsumer, and
TypedProxyPushSupplier, TypedProxyPullConsumer7 levels it will allow
the latter to behave as a transaction client. When this QoS is disabled and applied
on those various types of proxy their transactional client behavior is disabled. This
is their default behavior. When the EnableTransaction QoS is enabled at the
ProxyPushConsumer, ProxyPullSupplier,
StructuredProxyPushConsumer, StructuredProxyPullSupplier,
TypedProxyPushConsumer, and TypedProxyPullSupplier7, the proxies’
implementations will set their TransctionalPolicy to Require_shared. By
default this QoS is disabled, meaning that for the ProxyPushConsumer various
types and the ProxyPullSupplier various types the proxies’ POAs
TransactionalPolicy attributes are set to Allows_none.

If this QoS is applied at the SupplierAdmin, ConsumerAdmin,
TypedSupplierAdmin7, or TypedConsumerAdmin7 levels each of their
proxy child will enable individually this QoS at their level according to their types.
If this QoS is applied at the channel, respectively TypedChannel7 level all the
SupplierAdmin and the ConsumerAdmin, respectively, all the
TypedSupplierAdmin and the TypedConsumerAdmin objects will enable this
QoS, subsequently all the proxy objects apply it individually.

Whenever the EnableTransaction QoS is enabled, the EventReliability and the
ConnectionReliabilty QoSs will be set up automatically by the Notification
Service to “Persistent.” Likewise, when this QoS is disabled, the EventReliability
and the ConnectionReliabilty are set to “BestEffort.”

• TransactionEvents AdminProperty defines the number of separate events sent
in the scope of a transaction. The scope of this property is the
ProxyPushSupplier, ProxyPullConsumer,
StructuredProxyPushSupplier, StructuredProxyPullConsumer,
TypedProxyPushSupplier, and TypedProxyPullSupplier.

• TransactionEventSequences AdminProperty defines the number of event
sequences sent in the scope of a transaction. The scope of this property is the
SequenceProxyPushSupplier and SequenceProxyPullConsumer.

• TransactionTimeout adminProperty defines the timeout period in number of
seconds associated with routing transaction created. If the parameter has a non-zero
value n, then the created routing transaction will be subject to being rolled back if
they do not complete before n seconds after their creation. If its value is zero, then
no application specified time-out is established. This adminProperty is aimed to
October 2004 Notification Service, v1.1: Overview 2-13

2

be mapped on the unsigned long input parameter of the OTS
Current.set_timeout() operation. This adminProperty is applied on all the
proxies that behave as transaction clients.

When those adminProperties are applied at the SupplierAdmin,
ConsumerAdmin, or EventChannel level they will affect only the proxies with
transaction client behavior. Table 2-3 summarizes the scope of the new QoS and
AdminProperties at the proxy level. It also summarizes proxies’ transactional roles.
Empty cells denote that QoS is not applicable.

2.1.6 Sending Events within a Transaction

The recently adopted CORBA Messaging standard incorporates several changes to the
standard OMG Object Transaction Service (OTS). Included among these changes is the
deprecation of the TransactionalObject interface, which was previously required to
be inherited by any interface that supported operations that could be invoked within the
context of a transaction.

Table 2-3 New Notification Service QoS and AdminProperties scope

QoS AdminProperties

Proxy Types Enable
Transaction

Transaction
Timeout

Transaction
EventSequences

Transaction
Events

T
ra

ns
ac

ti
on

C
li

en
tR

ol
e

ProxyPushSupplier, X X X

ProxyPullConsumer, X X X

StructuredProxyPushSupplier X X X

StructuredProxyPullConsumer X X X

SequenceProxyPushSupplier X X X

SequenceProxyPullConsumer X X X

TypedProxyPushSupplierr7, X X X

TypedProxyPullConsumer7 X X X

T
ra

ns
ac

ti
on

 S
er

ve
r

R
ol

e

ProxyPushConsumer X

ProxyPullSupplier X

StructuredProxyPushConsumer X

StructuredProxyPullSupplier X

SequenceProxyPushConsumer X

SequenceProxyPullSupplier X

TypedProxyPushConsumer7 X

TypedProxyPullSupplier7 X
2-14 Notification Service, v1.1 October 2004

2

In certain situations, it may be desirable to transmit one or more events within the
context of a transaction. Transactional event transmission can be considered in two
distinct cases:

• When a supplier sends one or more events to the channel.

• When the channel sends one or more events to consumers.

Before the modifications to the OTS described above, it would have been necessary to
define special interfaces to support transactional event transmission. In order to
support the first case above, it would have been necessary to define a transactional
variant of each proxy push-style interface (to support passing the transaction context
within the suppliers invocation of the proxy’s push operation), and a transactional
variant of each client pull-style interface (to support passing the transaction context
within the proxy consumer’s invocation of the client’s pull or try_pull operation).
Likewise, in order to support the second case listed above, it would have been
necessary to define a transactional variant of each client push-style interface, and a
transactional variant of each proxy pull-style interface.

But due to the deprecation of the TransactionalObject interface, it is no longer
necessary to define special interfaces that inherit from TransactionalObject in order
to enable a transaction context to be passed within a method invocation. This change
has both advantages and disadvantages from the perspective of the Notification
Service. On the positive side, the fact that it is not necessary to define specific
transactional interfaces simplifies the Notification Service IDL to some degree. On the
negative side, however, support of the full Notification Service IDL by an
implementation does not itself guarantee that the implementation supports transactional
event transmission.

As described in the CORBA Messaging specification, transactionality is viewed as an
attribute of an implementation of an interface, which is specified by defining a policy
attribute on the POA. In order to support transactional event transmission, an
implementation of the Notification Service should support implementations of the
various proxy interfaces that are POA objects that support TransactionPolicy.

2.2 Structured Events

The OMG Event Service supports two styles of event communication: untyped and
typed. Untyped communication involves transmitting all events in the form of Anys.
While untyped event communication is generic and easy-to-use, many applications
require more strongly typed event messages. To satisfy this latter requirement, the
OMG Event Service defines interfaces and conventions for supporting typed event
communication. Unfortunately, many users have found typed event communication as
defined by the OMG Event Service difficult to understand, and implementors have
found it particularly difficult to deal with.

For these reasons, the Notification Service introduces a new style of event message:
the Structured Event. Structured Events provide a well-defined data structure into
which a wide variety of event types can be mapped. Typically when using the untyped
style of event communication supported by the Event Service, clients define a data
structure into which they store an event message, then package that data structure into
October 2004 Notification Service, v1.1: Structured Events 2-15

2

an Any. Structured Events define a standard data structure into which a wide variety of
event messages can be stored. New supplier and consumer interfaces are defined by the
Notification Service so that Structured Events can be transmitted directly, without
needing to be packaged into an Any. Because the structure of Structured Events is
known to both Notification Service clients and the notification channel, algorithms that
filter and manipulate Structured Events can be optimized. Structured Events provide
the equivalent generality and ease-of-use of untyped event communication, while
providing more strongly typed event communication.

In a sense, Structured Events can be viewed as a manifestation of typed event style
communication, where the typed interfaces defined for sending and receiving this
specific type of event message (i.e., the I interface as defined by the OMG Event
Service for typed event communication) are explicitly defined. Because the interfaces
for dealing with Structured Events are explicitly defined, it is straightforward to both
use and implement a notification channel that supports this style of event
communication. Structured Events thus provide the advantages of typed event
communication, without the difficulties inherent in implementing and using the typed
style of event communication defined by the OMG Event Service. Figure 2-2 on
page 2-17 shows the structure of a Structured Event.
2-16 Notification Service, v1.1 October 2004

2

Figure 2-2 The structure of a Structured Event

Figure 2-2 depicts the general format of a structured event. Each event is comprised of
two main components: a header and a body. The header can be further decomposed
into a fixed portion and a variable portion. The goal of this decomposition is to
minimize the size of the header that is required in every Structured Event message,
thus enabling lightweight messages where the overhead of supplying additional header
fields is viewed as less desirable than any functional benefit achieved by supplying
these fields (e.g., additional header fields may contain QoS requirements for the
message).

The fixed portion of the event header is comprised of three string fields:

• A domain_name, which identifies the particular vertical industry domain in which
the event type is defined (e.g., telecommunications, finance, health care, etc.).

• A type_name, which categorizes the type of event uniquely within the domain
(e.g., CommunicationsAlarm, StockQuote, VitalSigns).

• An event_name, which may uniquely identify the specific instance of event being
transmitted.

type_name

event_name

ohf_name1 ohf_value1

ohf_name2 ohf_value2

ohf_namen ohf_valuen

...

fd_name1 fd_value1

fd_name2 fd_value2

fd_namen fd_valuen

...

remainder_of_body

Fixed Header

Event Header

Event Body

Variable Header

Filterable Body Fields

Remaining Body

domain_name
October 2004 Notification Service, v1.1: Structured Events 2-17

2

Note that the combination of the domain_name and type_name fields could be
used as indexes into the event type repository (see Section 2.8, “The Event Type
Repository,” on page 2-58), which contains a complete description of the fields of that
specific type of event. Thus when Structured Events are used in concert with the event
type repository, it is particularly convenient for consumers to receive new types of
events, and discover the structure of their contents.

The variable portion of the event header is comprised of a list of zero or more name-
value pairs1 (the “ohf_” prefacing each name-value pair in the figure stands for
“optional header field”), where each name is a string, and each value is an Any. While
inclusion of these fields is optional and their contents are virtually unbounded, this
specification standardizes a set of well-defined optional header field names and defines
the data types of their values. These standard optional header fields contain per-
message QoS related information. How this information is treated with respect to per-
Proxy QoS settings and per-channel QoS settings is described in “Quality of Service
Administration” on page 2-37. The table below summarizes the standard optional
header field names, the data types of their associated values, and a brief description of
their meanings. Note also that end-users can define additional proprietary optional
header fields. Those in the table below are viewed as standard, however, and every
implementation of the Notification Service must be capable of interpreting and
handling them with respect to their intended meaning.

1.Note that the phrase “list of name-value pairs” is used frequently throughout this
specification to mean an instance of the type CosNotification::PropertySeq. This phrase
should not be confused with the common CORBA terms “Named Value,” “Name Value
List,” or the data type CORBA::NVList.
2-18 Notification Service, v1.1 October 2004

2

Note that the priority and timeout properties may optionally be set within the header of
a Structured Event. A proxy receiving a Structured Event may also have a priority and
timeout quality of service setting. In this case, if the priority and/or timeout fields are
set within the header of the Structured Event, these settings override those set at the
proxy level. If one or both of these properties is set on a proxy receiving a Structured
Event but not within the header of a Structured Event itself, the setting at the proxy
level is used to determine how that proxy treats that event with respect to priority
and/or timeout. An important point to note, however, is that no object within the
channel ever modifies the contents of a Structured Event.

The second main portion of the structured event is the event body, which is intended to
contain the contents of each event instance. The event body is also decomposed into
two parts: a filterable portion and the remainder of the body. The filterable portion is
intended to contain the most interesting fields of the event, upon which the consumer
is most likely to base filtering decisions. Like the optional header fields, the filterable
portion of the event body is also defined as a sequence of name-value pairs, with each
name being a string and each value an Any (the “fd_” prefacing each name-value pair
in the figure stands for “filterable data”).

Table 2-4 Standard optional header fields

Header field name Type of associated
value

Meaning

EventReliability short The value portion of this header field has two well-defined settings: 0
means “best effort,” 1 means “persistent.” If set to 0, event can be
treated as non-persistent and lost upon failure of the channel. At least
one attempt must be made to transmit the event to each registered
consumer, but in the case of a failure to send to any consumer, no
further action need be taken. If set to 1, channel should make the
event persistent, and attempt to retransmit upon channel recovery
from failure. This setting only has meaning when
ConnectionReliability is also set to 1, in which the combination
essentially means guaranteed delivery.

Priority short Indicates the relative priority of the event compared to other events in
the channel. Can take on any value between -32,767 and 32,767, with
-32,767 being the lowest priority, 32,767 being the highest, and 0
being the default.

StartTime TimeBase::UtcT Gives an absolute time (e.g., 12/12/99 at 23:59) after which the
channel can deliver the event.

StopTime TimeBase::UtcT Gives an absolute time (e.g., 12/12/99 at 23:59) when the channel
should discard the event.

Timeout TimeBase::TimeT Gives a relative time (e.g., 10 minutes from time received) when the
channel should discard the event). The special value zero indicates
there is no timeout.
October 2004 Notification Service, v1.1: Structured Events 2-19

2

It is envisioned that different vertical domains will define standard mappings of
specific event types into Structured Events. Each such mapping will standardize the
name-value pairs that make up the filterable portion of a particular type of event
mapped into a Structured Event. Thus while the definition of the filterable data fields
contained within the Structured Event data structure may appear to be too generic to
provide any real advantage, the advantage of this structure becomes more apparent
when viewed in the context of mappings of actual event types into it, since these
mappings specify well-defined name-value pairs that go into the filterable portion of
the body.

The last portion of the body of a Structured Event is defined as an Any. This portion is
intended to provide a convenient place to transmit any event data in addition to that
which is viewed as interesting fields upon which consumers are likely to define filters.
This portion is particularly suitable to store large blobs of data that are related to the
event, such as contents of a file that was the cause of a CorruptFile event. Note that
although this field is considered separate from the filterable data portion of the event,
there is nothing to preclude an end-user from defining a filter based on the contents of
this field.

The Structured Event is thus intended to provide a well-defined data structure into
which a wide range of specific types of events can be mapped, and upon which
optimized filtering and manipulating can be performed. This structure is particularly
useful when used in concert with an event type repository that will completely describe
the make-up of each type of event mapped into a structured event. As described in
“The Event Type Repository” on page 2-58, end-users can use this meta-data to
construct filters that subscribe to new instances of structured events that are
dynamically added to the system.

2.3 Event Filtering with Filter Objects

Undoubtedly the most important enhancement of the OMG Event Service introduced
by the Notification Service is the enabling of each client to subscribe to the precise set
of events it is interested in receiving. This feature is supported in the form of filter
objects, each of which encapsulates a set of one or more constraints specified in a
particular constraint grammar.

Each Admin and Proxy interface defined by the Notification Service inherits the
CosNotifyFilter::FilterAdmin interface, which supports operations that enable the
maintenance of a list of filter objects. Thus, each Admin and Proxy object within a
Notification Service event channel can have associated with it one or more filter
objects. These filter objects could be co-located in the same server process as a
Notification Service event channel, or they can reside in their own address space2.

There are two types of filter objects defined by the Notification Service: those that
affect event forwarding decisions made by Proxy objects, and those that affect the way
a Proxy object treats events with respect to certain QoS properties. The former type
support the CosNotifyFilter::Filter interface and are described here. The latter type
support the CosNotifyFilter::MappingFilter interface and are described in
“Mapping Filter Objects” on page 2-24.
2-20 Notification Service, v1.1 October 2004

2

Filter objects that affect the event forwarding decisions made by Proxy objects
encapsulate a set of constraints. Each constraint is a data structure comprised of two
components:

• A sequence of data structures, each of which indicates an event type.

• A string containing a boolean expression whose syntax conforms to some constraint
grammar.

Each element in the sequence of data structures which each indicate an event type is
comprised of a string field for the name of the domain within which the event type has
meaning (e.g., “Telecom”), and a string field for the name of the specific event type
within that domain to which the constraint applies (e.g., “CommunicationsAlarm”).
This sequence contains the list of event types to which the subscription encompassed
by a particular constraint applies. The second element in the constraint structure
contains a boolean expression over the values of the contents of instances of the event
types indicated in the first element of the same structure. Note that while there are no
limits placed on the number of different constraint grammars supported by an
implementation of the Notification Service, every implementation must support an
implementation of the CosNotifyFilter::Filter interface that supports the grammar
described in “The Default Filter Constraint Language” on page 2-26.

This two component data structure for the expression of each constraint encapsulated
by a filter object is mainly provided for the convenience of both the end-user and the
implementor of the Notification Service. From the end-user’s perspective, the structure
allows for a short-hand notation for defining constraints that apply to one or more
event types. For instance, instead of supplying a constraint expression of the following
form:

“(($domain_name == “Telecom” and $type_name == “CommunicationsAlarm”)
or ($domain_name == “Transport” and $type_name == “RoadImpassable”))
and severity != 4”

the same constraint can be expressed as a two element structure as follows:

{ [{“Telecom”, “CommunicationsAlarm” }, {“Transport”,
“RoadImpassable” }], “severity != 4” }

2.Note that while filter objects can reside in a separate address space from the proxy objects,
each time an event is received by a proxy object the “match” operation of the filter is
invoked to perform the filtering. Thus, there is a performance penalty paid when using
remote filter objects, since each “match” invocation will result in a network communication
as opposed to an intraprocess communication in the case of co-located filters.
October 2004 Notification Service, v1.1: Event Filtering with Filter Objects 2-21

2

The above two constraints have the same meaning: they both subscribe to all events
that are of either of the types indicated, and have a severity field within the contents of
the event not equal to four. Notice that the convenience of this structure for constraint
expressions becomes more obvious as the boolean expressions associated with the
event types become more complex, and are applicable to more types of event.

From an implementor’s perspective, this constraint structure provides facilities for the
extracting of event type information from constraint expressions. This information is
required in order to share event subscriptions between event channels and their clients
as described in “Sharing Subscriptions” on page 2-52.

Note that the convention is that an empty sequence of event type structures associated
with a boolean constraint expression implies that the expression applies to all types of
events, as does a single element in the sequence of event type structures in which both
fields are the empty string. Also note that an end-user may choose to provide no event
types in the sequence and then match on the type_name and domain_name fields in
the constraint expression. However, if event types are specified in the sequence, then
only these types will be matched, and any additional types that are specified using
constraints may never be matched (since the constraint will only be evaluated if the
types in the sequence match). When provided within an element of the sequence of
event types contained in the first field of a constraint structure, either the domain or
event type field can contain a string with the wildcard (“*”) symbol indicating the
boolean expression applies to any event whose type matches the indicated pattern. The
“*” character may be expanded to zero or more characters, and may appear in any
position in the string. As one would expect, a type element whose value is {“*”, “*”}
indicates that the boolean expression applies to all types of events.

Upon receipt of each event, each Proxy object within a Notification Service event
channel invokes an appropriate match operation on each of its associated filter
objects. A match operation accepts as input the contents of the event being filtered
against, and returns a boolean result. The result returned will be TRUE if the event
satisfies one or more of the constraints encapsulated by the filter object (i.e., OR
semantics are applied between the constraints encapsulated by a filter object), and
FALSE otherwise.

If the Proxy has multiple filter objects associated with it, it will invoke the match
operation on each of its associated filter objects until either one returns TRUE, or all
have returned FALSE (i.e., OR semantics are also applied between multiple filter
objects associated with a given Proxy object). Upon receipt of an event at a given
Proxy object, if the match operation of all filter objects associated with the Proxy
evaluates to FALSE, the Proxy will discard the event. Otherwise, the event will be
forwarded (to all proxy suppliers when the filtering is being performed by a proxy
consumer, or to the associated consumer when the filtering is being performed by a
proxy supplier)3. Note that this filtering by proxy objects is performed immediately
upon receipt of each event by a proxy. If a given event passes a proxy object’s filters
and there are currently no other events queued for delivery by that proxy, the event will
be forwarded immediately. Otherwise, if there are other events waiting to be delivered
by the proxy, the current event will be queued by the proxy for eventual delivery.
2-22 Notification Service, v1.1 October 2004

2

As previously stated, a set of filter objects can also be associated with each Admin
interface within a Notification Service event channel. Recall that each Admin interface
is responsible for the management of one or more Proxy objects. The set of filter
objects associated with an Admin object thus applies to each Proxy object associated
with that Admin. The set of filter objects associated with an Admin object can only be
modified by invoking operations on the Admin object itself (and not on the individual
Proxy objects managed by the Admin), and any such modifications affect all Proxy
objects under the management of that Admin. Filter objects can be added to an
individual Proxy object by invoking the add_filter operation directly on the Proxy
object itself, and filter objects added in this manner affect only the particular Proxy
upon which the operation was invoked. The set of filter objects added to an individual
Proxy object in this manner can thus be modified by invoking operations directly on
the Proxy.

The result of the semantics described in the previous paragraph are that each Proxy
object can essentially have two sets of filter objects associated with it: those that are
associated with its managing Admin object, and those that were added to it directly.
Upon creation of each Admin object, a flag can be set that indicates whether each
Proxy object created by the Admin will AND or OR the results of applying these two
sets of filter objects when determining whether or not to forward each event. (Note that
within each set, only OR semantics are applied in all cases; this flag only affects the
operator used to combine the results of applying each of the two sets of filter objects to
each event.)

The main advantage of enabling filter objects to be associated with Admin objects is
that end-users can define a single set of filters that apply to a group of Notification
Service clients. Note that because all Proxy objects associated with a given Admin
object essentially share the list of filter objects associated with the Admin,
implementations of the Notification Service can optimize the filtering of a given event
by a group of Proxies since each member of the group logically applies the same filters
to the same event. Thus, the results of the evaluation of a given event against a given
filter can be shared by all Proxy objects that are managed by a given Admin object.

A Proxy that has no filters associated with it (either by its Admin object, or through its
own FilterAdmin interface) will pass through all events it receives. In the case of
Proxy consumers, all events will be passed to the Proxy suppliers on its channel, and in
the case of Proxy suppliers, all events will be delivered to its connected consumer.

It’s worth noting that the CosNotifyFilter::Filter interface supports three styles of
match operation: match, match_structured, and match_typed. The purpose of
all of these operations is the same: take an event as input and evaluate it against the set
of constraints encapsulated by the filter object. These operations differ only in the form

3.A minor variation of this algorithm occurs when a Proxy object has some locally defined
filter objects, and some which it inherits from its parent Admin object, and the
InterProxyGroupOperator flag is set to AND. In this case, the two sets of filter objects are
ANDed together, as described shortly.
October 2004 Notification Service, v1.1: Event Filtering with Filter Objects 2-23

2

in which they accept the event as input. The match operation accepts an Any as input,
and is thus invoked by a Proxy object upon receipt of an untyped event. The
match_structured operation accepts a Structured Event data structure as input, and
is thus invoked by a Proxy object upon receipt of a structured event. The
match_typed operation is invoked by a Proxy object upon receipt of a typed event.
The input parameter to this operation is a sequence of name-value pairs. How a typed
event is parsed by the Proxy into the sequence of name-value pairs that is supplied as
input to the match_typed operation is described in “Filtering Typed Events” on
page 2-55.

Finally, note that the CosNotifyFilter::Filter interface supports an attach_callback
operation. The purpose of this operation is to associate with each filter object an
interface upon which the subscription_change operation should be invoked each
time the set of constraints associated with the filter object is modified. The reason the
filter object supports this feature is so that it can transparently (from the end-users’
perspective) notify event suppliers when the set of events being subscribed to by
potential consumers of their events changes. The semantics of the
subscription_change operation, and the rationale behind it, is explained in detail in
“Sharing Subscriptions” on page 2-52.

The above discussion describes the semantics of the Notification Service filter objects
whose purpose is to encapsulate constraints that affect the event forwarding decisions
made by each Proxy object within a Notification Service event channel. The
Notification Service also defines another type of filter object for use by consumers, the
mapping filter object, whose rationale and semantics are described in the following
subsection.

2.3.1 Mapping Filter Objects

The Notification Service recognizes two special properties of each event that could
influence the delivery policy applied to the event: its priority and its expiration time
(referred to here as its lifetime). While these properties are often populated by the
supplier as fields of the event, there are many scenarios in which a consumer’s opinion
of the relative importance of the event may differ from that of the supplier. In order to
enable consumers to affect the priority and lifetime properties of events, the
Notification Service introduces the concept of mapping filter objects.

Mapping filter objects support the CosNotifyFilter::MappingFilter interface. The
specification of this interface looks very similar to that of the interface for regular filter
objects. The main difference, however, is that mapping filters also associate a value
with each constraint they encapsulate.

Each proxy supplier within a Notification Service event channel can have associated
with it a mapping filter object that can affect the priority property of the events it
receives, and another mapping filter object that can affect the lifetime property of the
events it receives. The value associated with each constraint encapsulated by a
mapping filter that affects events’ priority property is of type short, and represents an
event priority. The value associated with each constraint encapsulated by a mapping
filter that affects events’ lifetime property is of type TimeBase::TimeT, and
represents a relative event lifetime.
2-24 Notification Service, v1.1 October 2004

2

Each mapping filter object can encapsulate one or more constraint-value pairs, and has
a default value associated with it. Upon receipt of an event by a proxy supplier with an
associated mapping filter for the priority4 property, the proxy supplier invokes the
appropriate match operation on the mapping filter. The mapping filter proceeds to
apply its encapsulated constraints in the order of highest to lowest with respect to the
value associated with each constraint, until either the event satisfies a constraint or else
does not satisfy all constraints. Upon encountering the first constraint that the event
satisfies, the operation returns a result of TRUE, and an output parameter set to the
value associated with the constraint. If the event satisfies none of the constraints
associated with the mapping filter object, the result of the match operation will be set
to FALSE, and the default value associated with the mapping filter object will be
returned as the output parameter. Upon return from the operation, if the output
parameter is TRUE, the proxy supplier treats the event with respect to its priority
according to the return value, as opposed to a priority setting contained within the
event. If the output parameter is FALSE, the proxy supplier will apply the following
rules in order to determine the priority that should be associated with the event:

1. If there is a priority property set in the header of the event, that value will be used.

2. If there is no priority property set in the header of the event, but the event has
inherited an associated priority by virtue of being processed by a proxy object
(either the current proxy supplier or the proxy consumer that first received the
event), which has an associated priority QoS property, that value will be used.

3. Otherwise, the output parameter returned by the match operation, which in this
case is the default value of the mapping filter object, will be used.

Proxy suppliers with an associated mapping filter for the lifetime property proceed
similarly to invoke the match operation on such a mapping filter. The behavior of the
match operation for a mapping filter related to event lifetime is identical to that for a
mapping filter related to priority; the only difference is in the type of the output
parameter returned when a constraint is encountered that the event satisfies. In this
case, the proxy supplier uses the output parameter as the lifetime property of the event.

Note that the results of applying a mapping filter to an event are used to modify the
way in which a proxy supplier treats its copy of the event with respect to priority and
lifetime, but not to modify the contents of the event itself. Even if the event contains
priority and lifetime fields, these should not be modified as the result of applying a
mapping filter to the event.

Notification Service style ConsumerAdmin interfaces can also have associated
mapping filter objects. The semantics in this case are identical to those with regular
filter objects: the mapping filters associated with a ConsumerAdmin object are

4.Note that the priority property is used as an example here to explain how mapping filters are
applied. Similarly, the lifetime property could have been used in the example. All mapping
filter processing rules that apply to priority mapping filters as explained in this paragraph
also apply to lifetime mapping filters.
October 2004 Notification Service, v1.1: Event Filtering with Filter Objects 2-25

2

shared by all proxy suppliers being managed by that ConsumerAdmin object. Note,
however, if a particular proxy supplier has a mapping filter associated with it, this
overrides any mapping filter set for the same proxy on the ConsumerAdmin that
manages that proxy supplier.

Finally, note that this specification uses mapping filters to affect the priority and
lifetime properties of events. The CosNotifyFilter::MappingFilter interface,
however, is generic enough to be applied to any property of an event. Implementations
of the Notification Service can thus support as a value-added extension the application
of mapping filters to other event properties besides priority and lifetime.

2.4 The Default Filter Constraint Language

This section describes the default filtering constraint language that must be supported
by all conformant implementations of the Notification Service. Note that as described
in the previous section, filters are supported in the Notification Service as objects that
can be associated with Proxy or Admin objects. These filter objects may or may not be
co-located with the same server in which the Notification Service event channel
resides. Each filter object has associated with it one or more constraints that have
meaning in a particular filtering constraint grammar. Implementations of the
Notification Service may provide native support for any number of filtering constraint
grammars, but each conformant implementation must, at a minimum, support the
grammar described in this section. In addition, users of this service may implement
their own filter objects external to the Notification Service event channel that may
support a proprietary filtering constraint grammar. As long as such a filter supports the
standard match operations with the appropriate signatures, the Notification Service
event channel will be able to use them the same as filters that support the default
grammar.

In essence, the default constraint grammar supported by any conformant
implementation of the Notification Service is the standard constraint language defined
by the OMG Trading Service, along with a few extensions. This section describes the
rationale behind the proposed extensions, which essentially make the Trader Constraint
Language more appropriate as a filtering constraint language for Notification. This
section also provides a detailed specification of the extensions to the Trader Constraint
Language defined for Notification. A complete BNF for the default Notification
Service filtering constraint language is thus formed by supplementing the BNF defined
in the OMG Trading Service specification with the extensions defined here.

2.4.1 Issues with the Trader Constraint Language

The following issues summarize deficiencies and ambiguities in the Trader Constraint
Language which, without modification, make it difficult to use as a filtering constraint
language for Notification. Included with each item is an indication of how the issue is
addressed in Notification.
2-26 Notification Service, v1.1 October 2004

2

• The specification is ambiguous as to whether a numeric constant may have a
leading plus sign. Section B.2.5 of the OMG Trading Service specification permits
this; however, the BNF does not. The Notification Service resolves this ambiguity
by explicitly permitting a leading plus sign.

• The grammar defines <String> as a sequence of zero or more <TextChar>s enclosed
in single quotes. At compile-time, if an event type repository is unavailable, it may
be impossible to distinguish between a <String> of length one and the numeric
char data type. In these cases, the Notification Service implementation must
determine the actual data type from context at run-time.

• The specification does not define operand order for the substring operator. The
Notification Service treats the expression “String1 ~ String2” to mean “String1 is
contained within String2.”

• Within a <String>, the grammar does not specify how to interpret undefined escape
sequences. Alternately, the grammar permits two escape sequences and the meaning
of a backslash is ambiguous until the following character is examined. Using the
first interpretation, the Notification Service treats a backslash as the start of an
escape sequence and removes it when followed by any undefined character
sequence.5

• The language provides no mechanism for casting a <Number> or <Ident> to a
specific type. This can be troublesome in expressions using mixed data types. For
example, if ‘$.one’ and ‘$.two’ represent integers, the constraint “2.5 * ($.one /
$.two) > 1” will yield FALSE since the division takes place using integer arithmetic
(where the result is 0). “Arithmetic Conversions for Mixed Data Types” on
page 2-29 details all arithmetic conversions for the Notification Service and
resolves the aforementioned problem.

• The purpose of the grouping operator ‘,’ is unclear; it is also not part of the BNF
and has no specified operator precedence. Constraints written for the Notification
Service must not use the comma operator.

• The specification defines a set of <preference> operators; these are not used by the
Notification Service.

• The grammar defined by the specification is not inherently context free. Since the
Notification grammar must be context free, any <Ident> that matches a constraint
language keyword must be escaped with a backslash. The <Ident> BNF token has
been updated to permit a leading backslash.

5.This emulates the behavior of most (if not all) C/C++ compilers.
October 2004 Notification Service, v1.1: The Default Filter Constraint Language 2-27

2

2.4.2 Trader Constraint Language Extensions for Notification

In order to fully support event filtering on complex data types, several extensions to
the Trader Constraint Language are defined. There are two basic types of extensions:
those that allow the components of complex data structures to be referenced, and those
that are considered features of the Notification Service implementation. The complete
list of language extensions is as follows:

• The special token ‘$’ is introduced to denote both the current event as well as any
run-time variables. The current event, ‘$’, is that on which the constraint expression
is evaluated. The form ‘$<Ident>’ is used to specify a run-time variable.

• The new symbol <Component> denotes a collection of named <Ident>s that may be
joined with subscript, associative array, or structure member operators (all defined
below).

• If <Component> refers to a named structure, discriminated union, or
CORBA::Any data structure, then the structure member operator ‘.’ may be used to
reference its members.

• If <Component> refers to an array or sequence of elements, then the subscript
operator ‘[<Digits>]’ may be used to reference a specific element in said list (e.g.,
array[2] would reference the third element in the array).

• If <Component> refers to a name-value pair list, then the associative array operator
‘(<Ident>)’ may be used to reference a specific value in said list (e.g.,
nv(priority)). This syntax is also used for positional notation in discriminated
unions as described in “Positional Notation and Intended Applications” on
page 2-33.”

• A <Component> has implicit members ‘_type_id’ and ‘_repos_id’. The former
identifies the unscoped IDL type name of the component (e.g., mystruct._typeid
== ‘mystruct’) and the latter returns the RepositoryId (e.g., mystruct._repos_id
== ‘IDL:module/mystruct:1.0’).

• If <Component> refers to an array or sequence of elements, then the implicit
member ‘_length’ refers to the number of elements in the list (e.g.,
sequence._length).

• If <Component> refers to a discriminated union, then the implicit member ‘_d’
refers to the discriminator (e.g., union._d).

• A new boolean operator, ‘default,’ is introduced to provide a means for checking
whether a union has a default member that is active (e.g., default union._d).

• The ‘exist’ operator is extended for use on all implicit members of a <Component>
(e.g., (exist any._d and any._d == 50) or any == 50).

• The ‘in’ operator is extended so that it may operate on a <Component>.

• The run-time variable ‘$curtime’ is reserved; its meaning is current time of day, its
data type is that of “TimeBase::UtcT” as defined in the OMG Time Service.

• A reserved run-time variable may be escaped by inserting a backslash between the
dollar sign and the <Ident> (e.g., $\curtime).
2-28 Notification Service, v1.1 October 2004

2

• Any vendor-defined keywords must be of the form ‘:<Ident>:’. The colons prevent
any new conflicts with event-specific enums and also make these extensions easy
to locate.

As stated above, a <Component> is a collection of named identifiers. Yet, multiple
layers of encapsulation may not actually have identifier names associated with them.
Fortunately, the constraint author need not be concerned with these unnamed layers. If
an event type repository is in use, it will be able to supply the encapsulation
information. Alternatively, when the run-time engine is responsible for pulling apart
the event structure, it will encounter (and quietly pass over) these unnamed layers.

To make this concept more clear, consider the following event components:

Event . memA . Any . struct { int val, cnt; };
Event . memB . Any . Any . int;
Event . char;
Event . methA . (char key, Any . int types[10]);

In the first example, the struct is encapsulated in the CORBA::Any named memA;
to reference cnt, one would use ‘$.memA.cnt’. In the second example, an int is
wrapped in an unnamed CORBA::Any and then again in memB (a named
CORBA::Any). Here, to reference the unnamed integer one would write ‘$.memB’.
In the third example, a char is immediately wrapped in a CORBA::Any and sent
through the channel; in this case, ‘$’ alone represents the data. The last event consists
of a method and its arguments; here, ‘$.methA.types[3]’ identifies the 4th element in
the 2nd argument to method methA.

As stated above, the constraint author need not be concerned about unnamed layers of
encapsulation. This implies that it is possible to write a single constraint that will
function on structured (typed or untyped) and unstructured events. For example,
consider the constraint “$.header.fixed_header.event_type.type_name ==
‘CommunicationsAlarm’”; if the unstructured event included a
‘header.fixed_header.event_type.type_name’ member, then both types of events
could be filtered by the same proxy using this constraint.

A complete specification of the enhancements to the Trader Constraint Language BNF
defined by the Notification Service can be found in “Extensions to Trader Constraint
Language BNF” on page 2-35.

2.4.3 Arithmetic Conversions for Mixed Data Types

In general, arithmetic conversions follow the “usual arithmetic conversion” rules set
forth by C/C++. However, in the context of the Notification Service, it is not always
possible to determine the data types of all operands at compile-time. Therefore, in
order to simplify data conversion rules, most arithmetic operations are performed using
either CORBA::Long or CORBA::Double. The result of each operation is then cast
back to the data type of the most capacious of the operands, along with its weak or
strong type attribute (as described below).

The following rules then, govern mathematical operations with mixed data types.
October 2004 Notification Service, v1.1: The Default Filter Constraint Language 2-29

2

• If either operand is a CORBA::LongDouble, the other is converted to
CORBA::LongDouble and the result is CORBA::LongDouble.

• Otherwise, if either operand is a CORBA::Double, the other is converted to:

• CORBA::Double and the result is CORBA::Double.

• if either operand is a CORBA::Float, both operands are converted to
CORBA::Double, but the result is CORBA::Float.

• if either operand is a CORBA::LongLong, the other is converted to
CORBA::LongLong and the result is CORBA::LongLong.

• the most strongly-typed of the two operands becomes the result type, and both
operands are converted to either CORBA::Long or CORBA::ULong.

• When:

• A shorter unsigned type is combined with a larger signed type, the unsigned
property does not propagate to the result type.

• A numeric constant is specified, it is treated as weakly-typed CORBA::Long or,
in the case of a floating point constant, a weakly-typed CORBA::Double.

• A boolean operand is used in an arithmetic operation, it is treated as weakly-typed
CORBA::Long with the values TRUE and FALSE corresponding 1 and 0,
respectively.

Going back to the example constraint in “Issues with the Trader Constraint Language”
on page 2-26:

2.5 * ($.one / $.two) > 1

In order for this constraint to return TRUE, the parenthesized expression may be cast
to floating point by rewriting it as:

2.5 * (1.0 * $.one / $.two) > 1

For the purpose of describing the operator restrictions, all operands may be classified
as one of the following generic types: boolean, enum, numeric, string, or sequence.
Numeric operands include boolean and strings of length one (i.e., char). Operator
restrictions are as follows:

• The substring operator ‘~’ may only be applied to string data types.

• The in operator may only be applied when the first operand is of a simple type and
the second is a sequence of the same type.

• Comparison operations are valid only when both operands are either boolean,
numeric, or string.

• Numeric operations are valid only on numeric types.

• For a divide operation, zero is invalid as a denominator.

• A numeric value may not be substituted when a boolean is required.

• Regarding the implicit members of a <Component>, ‘_length’ is only valid for
arrays or sequences, ‘_d’ may only be used on discriminated unions, and ‘_type_id’
and ‘_repos_id’ are only valid if said information can be obtained.
2-30 Notification Service, v1.1 October 2004

2

• The default operator may only be applied to a discriminated union. If a
discriminated union does not have a default member, this operator returns FALSE.

• Only equality and inequality operations (==, !=, >=, <=, >, or <) can be applied to
enums.

When first handed a constraint, the Notification Service can only guarantee that it is
syntactically correct. It is only when events are filtered, that it becomes possible to
check that operands have valid data types. When invalid operands are encountered or
when specified identifiers do not exist, the match operation must immediately return
FALSE.

The implication of the above rule is that a Notification Service implementation run-
time engine must implement short-circuiting of boolean ‘and’ and ‘or’ operations.
Specifically, ‘FALSE and <expression>’ must yield FALSE. Similarly, ‘TRUE
or <expression>’ must yield TRUE. In either case, it is not permissible to
evaluate <expression>.

As an example, consider the following 4 events and the associated constraint:

Event 1: <$.a, ‘Hawaii’>, <$.c, 5.0>
Event 2: <$.a, ‘H’>, <$.c, 5.0>
Event 3: <$.a, 5>, <$.c, 5.0>
Event 4: <$.a, 5>, <$.b, 5.0>

Constraint: ($.a + 1 > 32) or ($.b == 5) or ($.c > 3)

For the first event, the first expression becomes (‘Hawaii’ + 1 > 32). Since it is
not possible to add ‘1’ to a string data type, the constraint is invalid and the match
operation immediately returns FALSE.

In the second event, the first expression becomes (‘H’ + 1 > 32). Since ‘H’ is a
valid char data type, this yields TRUE (for the ASCII character set) and the match
operation immediately returns TRUE. Note that here, the fact that ‘$.b’ is not part of
the event is immaterial due to the defined short-circuit semantics.

For the third event, the first expression yields FALSE and the second expression can
not be resolved (since there is no ‘$.b’ member in the event). This is an error, so the
match operation immediately returns FALSE. Note that, the constraint author could
have dealt with the possibility of a missing ‘$.b’ by rewriting the constraint as:

($.a + 1 > 32) or (exist $.b and $.b == 5) or ($.c > 3)

In the fourth event, the first expression again yields FALSE, but this time ‘$b’ is
defined as a floating point ‘5.0’. Following the arithmetic conversion rules, the
constant ‘5’ is also cast to floating point and the second expression yields TRUE.
Here, the match operation returns TRUE even though the event has no ‘$.c’ member.
October 2004 Notification Service, v1.1: The Default Filter Constraint Language 2-31

2

2.4.4 Support for Name-Value Pairs

The Notification Service makes extensive use of name-value pair lists within
structured events. These are somewhat difficult to manage using the Trader Constraint
Language because each member of the list must be treated as a complex structure (i.e.,
with both a name and value field), as in:

($.header.variable_header[1].name == ‘priority’ and
 $.header.variable_header[1].value > 1163) or
($.header.variable_header[2].name == ‘priority’ and

 $.header.variable_header[2].value > 1163)

While the above syntax is correct, it is far more convenient to treat a name-value pair
as an associative array such that, when given a name, one expects its value. To
accomplish this, we extend the Trader Constraint Language to allow one to identify a
component as being that of a name-value pair list. For example,
‘$.header.variable_header(priority)’ returns the value of priority in
the variable_header name-value pair list.

2.4.5 A Short-hand Notation for Filtering a Generic Event

“Trader Constraint Language Extensions for Notification” on page 2-28 shows that it is
possible to use a single constraint across both structured and unstructured events.
However, for this to work, the layout of the filterable portion of the unstructured event
must match that of the structured event. In order to relax these requirements, run-time
variables may be employed as a short-hand notation for expressing commonly filtered
data.

Specifically, any simple-typed member of fixed_header or any property in the
name-value pairs variable_header and filterable_data may be represented
as run-time variables. For example, the constraint:

$.header.fixed_header.event_type.type_name == ‘CommunicationsAlarm’ and
$.header.fixed_header.event_name == ‘lost_packet’ and
$.header.variable_header(priority) < 2

can be rewritten using run-time variables as:

$type_name == ‘CommunicationsAlarm’ and
$event_name == ‘lost_packet’ and $priority < 2

The following rules govern translation of a run-time variable, ‘$variable’, into a
specific event field. If the run-time variable is reserved (e.g., $curtime) this
translation takes precedence. If the run-time variable is $domain_name,
$type_name, or $event_name, these are resolved to

$.header.fixed_header.event_type.domain_name,
$.header.fixed_header.event_type.type_name, or
$.header.fixed_header.event_name, respectively.
2-32 Notification Service, v1.1 October 2004

2

Next, the first matching translation is chosen respectively from properties in
$.header.variable_header, and properties in
$.header.filterable_data. If no match is found, the translation defaults to
either $.variable., or in the case of a CORBA::Any that encapsulates a single
unnamed name-value pair list (“Support for Name-Value Pairs” on page 2-32),
$(variable).

Given these rules, an unstructured event with a $.priority member and a
structured event using $.header.variable_header(priority) can be
specified in a generic constraint using the run-time variable ‘$priority’.
Alternatively, a constraint can be written specifically for a structured or unstructured
event by avoiding the use of run-time variables.

2.4.6 Positional Notation and Intended Applications

CORBA does not require that the names of IDL type members be marshaled into the
TypeCode of a CORBA::Any. This implies that a filter that matches on named parts
of an unstructured event will fail if the CORBA::Any was generated by an ORB that
does not populate these fields. The population of a TypeCode’s RepositoryId is also
optional, so one cannot depend on looking names up in the Interface Repository either.

To resolve this issue, the Notification Service permits constraints to be written in a
purely positional notation that can be used to extract the same data as the traditional
name-based filter expressions. For example, the constraint:

$.gpa < 80 or $.tests(midterm) > $.tests(final) or
$.monthly_attendance[3] < 10

might be rewritten using positional notation as:

$.3 < 80 or $1.(midterm) > $.1(final) or $.2[3] < 10

Except for discriminated unions, the translation of a constraint using identifiers to one
that uses positional notation is idempotent. In the case of structs and enums, the
members are indicated by their position starting from zero. For example, consider the
IDL:

struct X {
long A;
string B;
short C;

};
enum P { Q, R, S };

In ‘struct X’, member ‘A’ is denoted by ‘0’, ‘B’ by ‘1’ and ‘C’ by ‘2’. Similarly, in
‘enum P’, ‘Q’ is denoted by ‘0’, ‘R’ by ‘1’ and ‘S’ by ‘2’.
October 2004 Notification Service, v1.1: The Default Filter Constraint Language 2-33

2

Describing unions using positional notation is more complicated because the order of
members is not significant, rather, members are indexed by label value. Therefore here,
the “positional” notation for unions is really an index notation. The grammar defines
the <UnionVal> literal token to collect all possible discriminator types and uses
<UnionPos> to disambiguate this special case. For example, consider the IDL:

union K switch (short) {
case 0:
case 2: string K;
case 3: X L;
case 5: long M;
default: short N;

};

The member ‘M’ is denoted as ‘(5)’ and the constraint over an unstructured event
comprised of a ‘union K’ that read “$.M < 54” is translated into positional notation as
“$.(5) < 54”. A constraint involving the ‘C’ member of the ‘L’ member of the ‘union
X’, for example, “$.L.C < 128” would be translated as “$.(3).2 < 128”.

The member ‘K’ can be denoted using either ‘(0)’ or ‘(2)’, as in “‘putty’ ~ $.(2)”.
Note that the label is chosen independent of the actual discriminator. Therefore, either
of the following expressions will match a union with a discriminator value of 2, where
the string contained in the union is not ‘hoob’:

$._d == 2 and $(0) != ‘hoob’
$._d == 2 and $(2) != ‘hoob’

The last case is that of member ‘N’, indexed by the default label. This is translated as
‘()’. For example, the constraint “$.N == 999” is translated as “$.() == 999”.

The semantics of the exist operator is also special for discriminated unions. In the
case of any other data type, the assertion that a member name exists is sufficient
assurance that the value associated with that member may be accessed. For unions, this
is only true when the discriminator is set to the corresponding case. Therefore, the
expression “exist $.K” will return TRUE if and only if the event TypeCode contains
the member name information to identify ‘K’ and the union discriminator has the value
0 or 2. The label value notation is somewhat simpler as the expression “exist $.(0)”
will return TRUE if and only if the discriminator is set to 0. This implies that the
translation of “exist $.K” is “exist $.(0) or exist $.(2).” It also means that the
expression “exist $.(0)” is equivalent to “$._d == 0.”

2.4.7 Examples of Notification Service Constraints

This section provides annotated examples of constraints written in the Extended Trader
Constraint Language defined by the Notification Service. The following examples
intend to show the flexibility of this language.

• Accept all “CommunicationsAlarm” events but no “lost_packet” messages.
2-34 Notification Service, v1.1 October 2004

2

$type_name == ‘CommunicationsAlarm’ and not
($event_name == ‘lost_packet’)

• Accept “CommunicationsAlarm” events with priorities ranging from 1 to 5.
$type_name == ‘CommunicationsAlarm’ and
$priority >= 1 and $priority <= 5

• Select “MOVIE” events featuring at least 3 of the Marx Brothers.
$type_name == ‘MOVIE’ and

((‘groucho’ in $.starlist) + (‘chico’ in $.starlist) +
 (‘harpo’ in $.starlist) + (‘zeppo’ in $.starlist) +
 (‘gummo’ in $.starlist)) > 2

• Accept only recent events (e.g., generated within the last 15 minutes or so).
$origination_timestamp.high + 2 < $curtime.high

• Accept students that took all 3 tests and had an average score of at least 80%.
$.test._length == 3 and

($.test[0].score + $.test[1].score + $.test[2].score) / 3
>= 80

• Select processes that exceed a certain usage threshold.
$.memsize / 5.5 + $.cputime * 1275.0 + $.filesize * 1.25

> 500000.0

• Accept events with a default union discriminator set to the value 2.
default $._d and $.defvalue == 2

• Accept events where a threshold has the unscoped type name ‘short’.
exist $threshold._type_id and $threshold._type_id == ‘short’

• Accept only Notification Service structured events.
$._repos_id == ‘IDL:CosNotification/StructuredEvent:1.0’

• Accept events with a serviceUser property of the correct standard type.
$violation(serviceUser)._repos_id ==

‘IDL:TelecomNotification/ServiceUserType:1.0’

• Accept only those events that have a specified security “rights list”.
exist $.header.variable_header(required_rights)

• Accept events whose ‘in’ enum is set to the value ‘HOUSE’ or ‘CAR’.
$.\in == HOUSE or $.\in == CAR

2.4.8 Extensions to Trader Constraint Language BNF

This section details Notification Service extensions to the Trader Constraint Language
BNF as defined in Appendix B of the OMG Trading Object Service specification.

The new boolean operator default has the same precedence as the exist operator.
The new structure member operator ‘.’ has the highest precedence.

The lexical token <factor> now accepts:

| + <Number>
| exist $ <Component>
October 2004 Notification Service, v1.1: The Default Filter Constraint Language 2-35

2

| $ <Component>
| default $ <Component>

The lexical token <expr_in> now accepts:

| <expr_twiddle> in $ <Component>

The lexical token <Ident> now accepts:

| \ <Leader> <FollowSeq>

The following additional lexical tokens are also defined:

<Component> := /* empty */
| . <CompDot>
| <CompArray>
| <CompAssoc>
| <Ident> <CompExt> /* run-time variable */

<CompExt> := /* empty */
| . <CompDot>
| <CompArray>
| <CompAssoc>

<CompDot> := <Ident> <CompExt>
| <CompPos>
| <UnionPos>
| _length
| _d
| _type_id
| _repos_id

<CompArray> := [<Digits>] <CompExt>

<CompAssoc> := (<Ident>) <CompExt>

<CompPos> := <Digits> <CompExt>

<UnionPos> := (<UnionVal>) <CompExt>

<UnionVal> := /* empty */
| <Digits>
| - <Digits>
| + <Digits>
| <String>

The Notification Service uses the ASCII character set and adopts the same terminal
symbols defined in Subclause B.2.3 of the OMG Trading Service specification. For
Notification, the <Special> terminal symbol is the set of IDL escape sequences defined
in the Syntax and Semantics clause of the CORBA Specification.

A finite state automaton for <Component> is shown in Figure 2-3 on page 2-37.
Dashed lines represent transitions on any or no input symbol. Also note that, by
definition, the <Ident> state prohibits identifiers that match constraint language
keywords.
2-36 Notification Service, v1.1 October 2004

2

Figure 2-3 The finite automaton for <Component>

2.5 Quality of Service Administration

The existing OMG Event Service deliberately leaves the issue of Quality of Service as
an implementation choice. Subclause 4.1.6 of the Event Service specification
(http://www.omg.org/technology/documents/formal/event_service.htm) states:

“Note that the interfaces defined in this chapter are incomplete for
implementations that support strict notions of atomicity. That is, additional
interfaces are needed by an implementation to guarantee that either all
consumers receive an event or none of the consumers receive an event; and that
all events are received in the same order by all consumers.”

The Notification Service extends the Event Service, by defining standard interfaces for
controlling the QoS characteristics of event delivery.

This section describes each of the components in the Quality of Service (QoS) model
and their relationships.

Component
$

UnionPos
(<UnionVal>)

Ident
<Ident>

CompDot
_length,_d
_type_id
_repos_id

CompAssoc
(<Ident>)

“$”

<Leader>

“.”

<Digit>

“(”

CompExt

CompPos
<Digits>

CompArray
[<Digits>]

“(“

“[“

“[“

“(“

“.”
“\”

<Leader>
“\”
October 2004 Notification Service, v1.1: Quality of Service Administration 2-37

2

2.5.1 Model Components

The QoS abstract model consists of the following components:

• QoS property representation

• Accessor operations for setting and getting QoS at various levels of scope
throughout an application:

• Notification Channel

• Supplier/Consumer Group Administration

• Proxy suppliers and consumers

• individual event messages

• QoS properties for notification

• Negotiating QoS and conflict resolution.

2.5.2 QoS Property Representation

A variety of QoS properties, such as reliability and priority, may be expressed to
indicate the delivery characteristics of event messages. A particular property may have
a range of values that indicate different requirements or delivery characteristics. The
precise QoS requirements, at a particular level, can be expressed as a set of properties.

This specification defines a number of QoS properties and their permitted types and
value ranges. However, it is clear that whatever choices of properties and their
permitted values are, it is not possible to cover all use cases. Therefore a core design
principle is to enable implementors to extend the properties understood by a
Notification Service implementation, and to facilitate simple evolution of QoS
properties. To this end, this specification uses Properties (<String, Any> pairs) to
define QoS properties. Note that a special data type, CosNotification::PropertySeq
is defined in this specification to represent property lists. While it is straightforward to
declare and use a structurally equivalent data type wherever properties are called for, it
should be noted for purposes of type safety that wherever this specification refers to
property sequences or name-value pair lists, it explicitly means the
CosNotification::PropertySeq data type.

The Notification Service defines a number of standard property names, and defines the
expected type and value range that should be contained in the associated Any.

Implementations of the Notification Service are expected to understand all properties
defined in this specification (however they need not implement the full range of
qualities of service that these properties are capable of representing). Implementations
may also add to the set of properties understood by the service as vendor additions,
although doing so may restrict interoperability and portability.

2.5.3 Setting QoS

Programmers can set QoS at various levels of scope by creating a QoSProperties
sequence and selecting the interface for the particular scope. Accessor operations
(get_qos, and set_qos) are available at the following scope levels:
2-38 Notification Service, v1.1 October 2004

2

• notification channel

• admin objects

• individual proxy objects

In addition, for Structured Events, QoS properties can be set in the optional header
field on a per-event basis.

These levels of scope form a simple hierarchy, reflecting the ability to override QoS at
various levels. QoS set at the notification channel sets the default QoS requirements
for message delivery for all groups, proxies, and messages. Setting QoS at the proxy
group administration level overrides the notification channel level QoS for all proxies
that are a member of the group. Setting QoS at the individual proxy level overrides the
group admin or notification channel level settings, and setting QoS within a particular
message overrides any other QoS setting (note, however, that per-message priority and
lifetime settings can be overridden by use of a mapping filter, as explained in
“Mapping Filter Objects” on page 2-24).

The actual set of QoS properties that should be applied to a component is derived from
merging the set of properties passed within the invocation of the operation on the
factory that creates the component (for those creation operations that permit this) with
the properties currently set on the “parent” component (with respect to the newly
created component). In cases where a property is set in both places, the property value
explicitly expressed within the creation operation invocation applies.

In general, QoS properties can be passed to a factory when creating a component. The
actual set of properties that should be applied by a component is derived from merging
the set of properties passed to the factory with the properties of the component in the
higher scope level. In cases when a property is present in both places, the property
value explicitly expressed in the lower level applies. Note that this is only a conceptual
merge, since changing a QoS property in one scope should be reflected in the lower
scope.

It may not make sense to allow all properties to be overridden at all levels. For
example, setting reliable delivery at a message level may not make sense if the channel
level has only been set to best-effort, as the setting at the channel level may have
resulted in the use of an implementation that does not support reliability.

2.5.4 End-to-End QoS

When suppliers and consumers are connected together via a channel, there are three
conceptual points where a message may be transmitted: between the supplier and the
channel, within the channel, and between the channel and the consumer. In such a
supplier/consumer model, where there is no direct communication between the two
ends, it is not possible to set QoS in one place that covers the complete path from
supplier to consumer. Instead QoS must be set at the individual points that make up the
path. This introduces the problem of consistent QoS across a path. For example, both
the supplier and the channel may have QoS set to reliable delivery, but a consumer sets
the QoS for its individual proxy supplier to best-effort. Without the cooperation of all
three parties it is impossible to guarantee a QoS requirement.
October 2004 Notification Service, v1.1: Quality of Service Administration 2-39

2

Unfortunately it is not possible to solve this problem, due to the nature of the service,
and hence it is the user’s responsibility to ensure that QoS is consistent across the
whole path.

2.5.5 Notification QoS Properties

The Properties that have been defined for the Notification Service are defined below.

2.5.5.1 Reliability

There are a variety of delivery policies known in distributed systems, such as best-
effort, at-least-once, at-most-once, and exactly-once. However most of these only make
sense in a point-to-point, request-reply communication model. The Notification
Service is by definition a point-to-multipoint delivery mechanism with no explicit
reply mechanism.

The Notification Service treats the reliability of specific events, and the reliability of
the connections that provide a transport for events between clients of the notification
channel and the channel, as separate issues, and thus defines two separate QoS
properties to represent them: EventReliability and ConnectionReliability. Each of these
properties can take on one of two possible numeric constant values: BestEffort or
Persistent. The meanings associated with the settings of these properties are inter-
related, and are thus defined together below.

EventReliability=BestEffort & ConnectionReliability=BestEffort: No specific delivery
guarantees are made. In the presence of failures, the event may or may not be received
by each of the consumers, and a given consumer may receive the same event multiple
times.

EventReliability=BestEffort & ConnectionReliability=Persistent: The notification
channel will maintain all information about its connected clients persistently, implying
that connections will not be lost (logically) upon failure of the process within which
the notification channel is executing. Any clients that connect to the channel using
persistent object references may fail, but unless these object references raise an
OBJECT_NOT_EXIST exception, the channel will continue to retry using them.
Clients which then re-instantiate objects with these references will (logically)
reconnect to their associated proxies. The channel will not, however, store any buffered
events persistently. The implication of this combination is that upon restart from a
failure of the notification channel server process, the channel will automatically re-
establish connections to each of its clients, but will not attempt to retransmit any
events that had been buffered at the time the failure occurred.

EventReliability=Persistent & ConnectionRelability=BestEffort: This combination has
no meaning and need not be supported by a conformant Notification Service
implementation.

EventReliability=Persisent & ConnectionReliability=Persistent: Each event is
guaranteed to be delivered to all consumers registered to receive it at the time the event
was delivered to the channel, within expiry limits. If the connection between the
channel and a consumer is lost for any reason, the channel will persistently store any
2-40 Notification Service, v1.1 October 2004

2

events destined for that consumer until either: 1) each event times out due to expiry
limits, or 2) the consumer once again becomes available and the channel is
subsequently able to deliver the events to all registered consumers. In addition, upon
restart from a failure the notification channel will automatically re-establish
connections to all clients that were connected to it at the time the failure occurred.

Note that the ConnectionReliability QoS property can be set at the channel, group
admin, and proxy levels. This property has the special characteristic, however, that it
may not be set to Persistent on an object whose parent object in the hierarchy has this
property set to BestEffort. For example, it is not possible (or meaningful) to set
ConnectionReliability=Persistent at the group admin level, if at the channel level
ConnectionReliability has been set to BestEffort.

Note also that the validity of modifications to the reliability quality of service
properties depends on the state of the objects within the channel within which the
modification is being attempted. In general, reliability settings may not be modified
after a “child” object has been created. Such modifications may violate the quality of
service validation rules of the notification service.

Specifically,

• modifying the event channel’s ConnectionReliability setting through set_qos after
ConsumerAdmin or SupplierAdmin objects have been created is invalid, and

• modifying the ConsumerAdmin’s or SupplierAdmin’s ConnectionReliability setting
through set_qos after child proxy objects have been created is invalid.

One exception to the above rules is the case of an event channel that has not had any
new admin or proxy objects associated with it yet, and whose default admin objects
have not yet been accessed. Every event channel has one default ConsumerAdmin and
one default SupplierAdmin objects associated with it. However, these objects can be
viewed as being non-existent prior to the first invocation performed by a client to
access them. During that time when the default admins are (at least virtually) non-
existent, the ConnectionReliability of the channel may be modified, and this will affect
the ConnectionReliability of the default admins. Once either of the two default admins
has been accessed by a client, the current setting of the ConnectionReliability of the
associated channel essentially becomes permanent, and also applies to both default
admin objects.

Also note that the EventReliability property can be set per-channel, or per-message to
override the per-channel setting. Since all objects within the channel must cooperate to
assure an EventReliability setting of Persistent is satisfied, it makes no sense to set
some of them to Persistent, and some to BestEffort. Thus, EventReliability cannot be
set on an individual Admin or Proxy basis.
October 2004 Notification Service, v1.1: Quality of Service Administration 2-41

2

2.5.5.2 Priority

The event service does not define the order in which events are delivered to a
consumer. One way to be explicit is to allow delivery to be based on the priority of an
event. Priority is represented as a short value, where -32,767 is the lowest priority and
32,767 the highest. The default priority for all events is 0. By default, the notification
channel will attempt to deliver messages to consumers in priority order.

It is possible for a consumer to override the priority assigned to a message through the
use of mapping filters (see “Mapping Filter Objects” on page 2-24).

2.5.5.3 Expiry times

It is often desirable to indicate the time range in which an event is valid. If an event is
not delivered within a specified time, then it should be discarded.

There are two possible properties related to expiry times that can be expressed:

StopTime, a TimeBase::UtcT encoded value, states an absolute expiry time (e.g.,
January 1, 2000), after which the event can be discarded.

Timeout, a TimeBase::TimeT encoded value, states a relative expiry time (e.g., 10
minutes from now), after which the event can be discarded. It is possible for a
consumer to override the value associated with this property through the use of
mapping filters (see “Mapping Filter Objects” on page 2-24). Note that the time value
associated with the Timeout QoS property is viewed as relative to the time when the
channel (i.e., the receiving proxy consumer) first received the event.

Note that StopTime can only be used in the manner indicated above on a per-message
basis, and thus has an associated UtcT value only when supplied as a QoS property
within the header of a Structured Event. At other levels where QoS can be set (i.e.,
Proxies, Admins, and Channels), a StopTimeSupported QoS property is defined that
has an associated boolean value, indicating whether or not the setting of StopTime on a
per-message basis is supported.

2.5.5.4 Earliest Delivery Time

It is often desired that an event be held until at least a specified time, and become
eligible for delivery only after that time. StartTime, a TimeBase::UtcT encoded
value, states an absolute earliest delivery time (e.g., January 1, 2000), after which the
event can be delivered.

Note that StartTime can only be used in the manner indicated above on a per-message
basis, and thus has an associated UtcT value only when supplied as a QoS property
within the header of a Structured Event. At other levels where QoS can be set (i.e.,
Proxies, Admins, and Channels), a StartTimeSupported QoS property is defined which
has an associated boolean value, indicating whether or not the setting of StartTime on
a per-message basis is supported.
2-42 Notification Service, v1.1 October 2004

2

2.5.5.5 Maximum Events Per Consumer

As described in “Notification Channel Administrative Properties” on page 2-51, an
administrative property can be set on the channel to bound the maximum number of
events a given channel is allowed to queue at any given point in time. Note, however,
that a single badly behaved consumer could result in the channel holding the maximum
number of events it is allowed to queue for an extended period of time, preventing
further event communication through the channel. Thus, the
MaximumEventsPerConsumer property helps to avoid this situation by bounding the
maximum number of events the channel will queue on behalf of a given consumer. If
set only on a per-channel basis, the value of this property applies to all consumers
connected to the channel. If set on a per-ConsumerAdmin basis, this property applies
to all consumers connected to proxy suppliers created by that ConsumerAdmin. If set
on a per-proxy supplier basis, this property applies to the consumer connected to the
given proxy supplier. Note that setting this property on a SupplierAdmin or proxy
consumer has no meaning. Also note that the default setting of this property is 0,
meaning that the proxy imposes no limits on the maximum number of events that may
be queued for its consumer.

Order Policy

This QoS property sets the policy used by a given proxy to order the events it has
buffered for delivery (either to another proxy or a consumer). Constant values to
represent the following settings are defined:

AnyOrder - Any ordering policy is permitted.

FifoOrder - Events should be delivered in the order of their arrival.

PriorityOrder - Events should be buffered in priority order, such that higher priority
events will be delivered before lower priority events.

DeadlineOrder - Events should be buffered in the order of shortest expiry deadline
first, such that events that are destined to timeout soonest should be delivered first.

Note that this property has no meaning if set on a per-message basis.

Discard Policy

This QoS property enables a user of the Notification Service to specify in what order
the channel or a proxy supplier should begin discarding events in the case of an
internal buffer overflow. This property applies on a per-channel basis only if it is set on
a channel that has the RejectNewEvents admin property (defined in “Notification
Channel Administrative Properties” on page 2-51) set to FALSE. If set on such a
channel, the chosen discard policy will be applied whenever a supplier attempts to
send a new event to the channel, and the total number of events already queued within
the channel is equal to the MaxQueueLength administrative property (defined in
“Notification Channel Administrative Properties” on page 2-51). If set on a per-
ConsumerAdmin basis, the chosen discard policy will be applied whenever the number
of events queued on behalf of one of the consumers connected to one of the proxy
suppliers created by the ConsumerAdmin exceeds the MaxEventsPerConsumer
setting for that consumer. If set on a per-proxy supplier basis, the chosen discard policy
October 2004 Notification Service, v1.1: Quality of Service Administration 2-43

2

will be applied whenever the number of events queued on behalf of the consumer
connected to the proxy supplier exceeds the MaxEventsPerConsumer setting for
that proxy supplier. Note that in these latter two cases, an event will only be
“discarded” with respect to its scheduled delivery to the consumer(s) on whose behalf
the policy is being applied. In other words, if the event targeted for discarding is
scheduled for delivery to any consumer(s) on whose behalf the discard policy was not
invoked, the event remains queued for those consumers.

Constant values to represent the following settings are defined:

AnyOrder - Any event may be discarded on overflow. This is the default setting for this
property.

FifoOrder - The first event received will be the first discarded.

LifoOrder - The last event received will be the first discarded.

PriorityOrder - Events should be discarded in priority order, such that lower priority
events will be discarded before higher priority events.

DeadlineOrder - Events should be discarded in the order of shortest expiry deadline
first.

Note that this property has no meaning if set on a per-message basis.

Maximum Batch Size

This QoS property has meaning in the case of consumers that register to receive
sequences of Structured Events. For any such consumer, this property indicates the
maximum number of events that will be delivered within each sequence. The data type
associated with this property is long. The default setting for this property is 1, whereas
an attempt to set it to 0 will result in the UnsupportedQoS (BAD_VALUE)
exception being raised. Note that this property does not apply to Any or Structured
Event style proxy objects. It only applies to Sequence style proxies, and the Admins
and Channels that create them (so that the Sequence style proxies can derive a default
value from these higher level objects).

Pacing Interval

This QoS property also has meaning in the case of consumers that register to receive
sequences of Structured Events. For any such consumer, this property defines the
maximum period of time the channel will collect individual events into a sequence
before delivering the sequence to the consumer. If the number of events received
within a given PacingInterval equals or exceeds MaximumBatchSize, the consumer
will receive a sequence of events whose length equals MaximumBatchSize. Otherwise,
the consumer will receive however many events arrived at the proxy supplier during
the PacingInterval, unless no events have arrived during the PacingInterval in which
case the sequence-style proxy supplier will wait for at least one event to arrive before
forwarding the sequence to its consumer. The data type of the value associated with
this property is TimeBase::TimeT. The default setting for this property is 0, meaning
that the object upon which it is set will never forward a sequence of events whose
length is less than MaximumBatchSize. Note that this property does not apply to Any
2-44 Notification Service, v1.1 October 2004

2

or Structured Event style proxy objects. It only applies to Sequence style proxies, and
the Admins and Channels that create them (so that the Sequence style proxies can
derive a default value from these higher level objects).

Note that setting certain QoS properties at a particular level is meaningless. For
example, it makes no sense to allow ConnectionReliability to be specified on a per-
message basis. The table below summarizes which QoS properties can be set at each
level (an ‘X’ in a cell indicates that setting the property indicated by the first column
in the row may be supported at the level indicated by the column heading).

2.5.6 Negotiating QoS and Conflict Resolution

QoS is intended to be both broad-ranging and extensible. Not all implementations will
support all possible Qualities of Service. Version updates and vendor-private
extensions will also mean that some QoS properties, or property values, will be
unsupported by some implementations. Therefore, a Notification Service client may be
unable to obtain exactly its desired QoS, and may need to negotiate the QoS. The
Notification Service provides several mechanisms related to QoS negotiation, as
follows:

1. The set_qos operation establishes QoS properties on its target object (notification
channel, proxy group admin, or individual proxy).

2. QoS properties can be inserted directly into the header of a structured event. Such
properties apply only to that particular event.

Table 2-5 Levels at Which Setting Each QoS Property is Supported

Property Per-Message Per-Proxy Per-Admin Per-Channel

EventReliability X X

ConnectionReliability X X X

Priority X X X X

StartTime X

StopTime X

Timeout X X X X

StartTimeSupported X X X

StopTimeSupported X X X

MaxEventsPerConsumer1

1. Note that setting this property on a per-SupplierAdmin or per-proxy consumer basis has no meaning.

X X X

OrderPolicy X X X

DiscardPolicy1 X X X

MaximumBatchSize2

2. At the proxy-level, this property only applies to Sequence-style proxies.

X X X

PacingInterval2 X X X
October 2004 Notification Service, v1.1: Quality of Service Administration 2-45

2

3. The get_qos operation returns the current QoS properties for its target object
(notification channel, proxy group admin, or individual proxy). This includes
properties initialized from higher-level objects, and properties which were never
explicitly set but have default values.

4. The validate_qos operation checks a potential QoS request to see if it would be
supported, without actually changing the QoS settings. This operation is available
for notification channels, proxy group admin objects, and individual proxies. If the
request can be supported, this operation returns additional optional QoS properties,
which could be added (if desired) to the given request.

5. The validate_event_qos operation is similar to validate_qos, but applies to
QoS properties that are to be set in the header of a structured event. The operation
is available only for proxy producers and consumers.

6. The UnsupportedQoS user exception is raised by certain operations, to indicate
that a QoS input parameter has an invalid or unsupported QoS. This exception
attempts to minimize negotiation effort, by returning a list of the offending
properties and their supported ranges (if they are supported at all).

7. The BAD_QOS system exception can be raised to indicate that a QoS property in
the header of a structured event is invalid or unsupported.

The following sections will explain the use of these mechanisms, and provide some
examples.

2.5.6.1 Use of set_qos

This is the principal way to set QoS in the Notification Service. QoS can be set at any
of three levels: a notification channel, a proxy group administration object, or an
individual proxy. If any of the requested QoS properties cannot be supported, this
operation raises the UnsupportedQoS exception, and the target object is unchanged. To
assist in negotiation, this exception provides feedback on how to fix the QoS request
(“UnsupportedQoS Exception” on page 2-48).

set_qos applies its input argument as a series of incremental changes to any existing
QoS of the target object. Values of existing QoS properties can be changed, and new
QoS properties can be added. Any existing QoS properties not mentioned in the input
to set_qos are unmodified.

When QoS is set on a notification channel, it changes only the channel, and not any
existing proxy group administration objects that are subordinate to the channel.
Likewise, when QoS is set on a proxy group administration object, existing proxies
that are subordinate to that object are not changed. Such changes affect only the initial
QoS of subordinate objects created after the change.

2.5.6.2 QoS in a Structured Event Header

For Structured Events, QoS can also be set by inserting QoS properties directly into the
event header, without using the set_qos operation. The setting applies just to a
particular event sent to the channel within a push or pull operation, and is not
2-46 Notification Service, v1.1 October 2004

2

remembered for future events. If the requested QoS cannot be supported, the
BAD_QOS system exception (“BAD_QOS System Exception” on page 2-49) is
raised. Like the use of set_qos, QoS properties in the event do not replace the QoS
specified for the proxy; they incrementally change it.

Care should be taken when setting QoS in an event header, because the BAD_QOS
exception may not provide details of any errors. Clients should verify such QoS
requests in advance, by means of validate_event_qos or some other means.

2.5.6.3 Use of get_qos()

The get_qos operation can be used to determine the current QoS properties in effect
for a notification channel, a proxy group admin object, or an individual proxy. It
returns all properties and their values, including those initialized from higher levels,
and those that were never explicitly set but have default values.

2.5.6.4 Use of validate_qos

The validate_qos operation has two uses:

1. It checks a QoS request to see if it could be supported in a set_qos operation,
without actually changing the current QoS in the target object.

2. If the supplied QoS is supported, it returns additional QoS properties that could be
optionally added as well. This may help a client interested in the range of supported
QoS in a given situation.

If the requested QoS cannot be supported, this operation raises the
UnsupportedQoS exception, which provides feedback in how to fix the problem
(“UnsupportedQoS Exception” on page 2-48).

If the request can be supported, then validate_qos checks whether any other QoS
properties could be specified as part of the same request. The operation returns these
additional properties, with a supported range of values for each one. Each additional
property and value range is strictly optional—the client can choose any or all of them
to add to an actual set_qos request. For each chosen property, the client can select
any value between the “low_val” and “high_val,” inclusive.

If a client has a rough idea of the desired QoS, the client should invoke validate_qos
against a property list of QoS it definitely requires. Then, the client can examine the
returned “available QoS,” to see other properties that can be optionally added to the
QoS request.

However, the client should not rely on validate_qos to return every available QoS
property. Only strictly optional properties are returned. Since any subset of them must
be chooseable, all returned properties must be independent of one another. If two
properties are interdependent—if support for one depends on the value of
another—then neither of them may be returned by validate_qos. See “Examples of
validate_qos and validate_event_qos” on page 2-49 for an example.
October 2004 Notification Service, v1.1: Quality of Service Administration 2-47

2

2.5.6.5 Use of validate_event_qos

The validate_event_qos operation has two uses:

1. It checks a QoS request to see if it could be supported in the header of a structured
event, without actually sending the event.

2. If the supplied QoS is supported, it returns additional QoS properties that could be
optionally added to the structured event as well. This may help a client interested in
the range of supported QoS in a given situation.

If the requested QoS cannot be supported, this operation raises the
UnsupportedQoS exception, which provides feedback in how to fix the problem
(“UnsupportedQoS Exception” on page 2-48).

If the request can be supported, then validate_event_qos checks whether any other
QoS properties could be specified as part of the same request. The operation returns
these additional properties, with a supported range of values for each one. Each
additional property and value range is strictly optional—the client can choose any or
all of them to include in an actual structured event. For each chosen property, the client
can select any value between the “low_val” and “high_val,” inclusive.

If a client has a rough idea of the desired QoS, the client should invoke
validate_event_qos against a property list of QoS it definitely requires. Then, the
client can examine the returned “available QoS,” to see other properties that can be
optionally added to the QoS request.

However, the client should not rely on validate_event_qos to return every available
QoS property. Only strictly optional properties are returned. Since any subset of them
must be chooseable, all returned properties must be independent of one another. If two
properties are interdependent—if support for one depends on the value of
another—then neither of them may be returned by validate_event_qos. See
“Examples of validate_qos and validate_event_qos” on page 2-49 for an example.

Use of validate_event_qos is particularly important, because it can avoid
BAD_QOS system exceptions caused by inserting an unsupportable QoS request into
an actual structured event. It may be difficult to recover from this system exception.

2.5.6.6 UnsupportedQoS Exception

Certain operations raise the UnsupportedQoS exception, when supplied with a QoS
property list that cannot be supported. The exception returns a sequence of QoS
properties and value ranges. Only properties from the request that were in error are
2-48 Notification Service, v1.1 October 2004

2

returned. Each returned property is accompanied by an error code, which identifies the
problem with that property. The meanings of the possible error codes are described in
the following table.

The returned property value range is meaningful only for the UNSUPPORTED_VALUE,
UNAVAILABLE_VALUE, and BAD_VALUE error codes; otherwise it should be ignored.

2.5.6.7 BAD_QOS System Exception

While the user exception UnsupportedQoS is the appropriate exception to raise for
operations on the objects that comprise a notification channel that involve QoS
property modifications, an exception must also be raised during the transmission of a
Structured Event from a supplier to the channel whenever the QoS properties indicated
in the header of such an event cannot be satisfied by the channel. For this situation, we
propose the addition of the BAD_QOS system exception to the CORBA standard.
This exception should be useful for other OMG standards (e.g., Messaging) and may
even make sense for the ORB itself to raise in certain situations.

2.5.6.8 Examples of validate_qos and validate_event_qos

Note – The QoS property names in this section are purely for example, and may not
represent the required set of QoS properties supported at any level.

Table 2-6 Meanings Of UnsupportedQoS Error Codes

Error Code Meaning

UNSUPPORTED_PROPERTY This property is not supported by this implementation for this type of target
object.

UNAVAILABLE_PROPERTY This property cannot be set (to any value) in the current context.1

1. “Current context” means in the context of other QoS properties.

UNSUPPORTED_VALUE The value requested for this property is not supported by this implementation
for this type of target object. A range of values which would be supported is
returned.

UNAVAILABLE_VALUE The value requested for this property is not supported in the current context.1
A range of values which would be supported is returned.

BAD_PROPERTY This property name is unrecognized. The implementation knows nothing
about it.

BAD_TYPE The type supplied for the value of this property is incorrect.

BAD_VALUE An illegal value is supplied for this property. A range of values which would
be supported is returned.
October 2004 Notification Service, v1.1: Quality of Service Administration 2-49

2

Example 1: Setting QoS in a structured event.

Suppose there are exactly two QoS properties supported for structured event headers:
Timeout and StopTime. These are independent of one another: all combinations are
allowed. If we invoke validate_event_qos with input “Timeout=50,” the request
will be accepted (no UnsupportedQoS exception) and the operation might return:

This indicates that the client can add a StopTime (with any possible value) to the
request if desired. Similarly, if we invoke validate_event_qos with input
“StopTime=January31,1999,” the request will be accepted and the operation might
return:

However, if we invoke validate_event_qos with input
“EventReliability=Persistent”, the operation will raise an UnsupportedQoS
exception, and no “Additional QoS” will be returned.

Example 2: Two interdependent QoS properties.

Suppose there are only three possible QoS properties supported by some proxy. The
properties are ConnectionReliability, EventReliability, and Timeout.
ConnectionReliability and EventReliability each have two possible values,
“BestEffort” and “Persistent,” but they are not independent—the combination

<ConnectionReliability=BestEffort, EventReliability=Persistent>

is not supported. Timeout can have any positive time value, independent of the other
two properties.

Suppose the current QoS setting for the proxy is

“Additional QoS” returned by validate_event_qos(Timeout=50)

Property Low_Val High_Val

StopTime (Dinosaur Era) (Armageddon)

“Additional QoS” returned by validate_event_qos(StopTime=...)

Property Low_Val High_Val

Timeout 0 99999

Property Value

ConnectionReliability Persistent

EventReliability Persistent

Timeout 100 sec.
2-50 Notification Service, v1.1 October 2004

2

If we invoke validate_qos with input “Timeout=50,” the QoS will be accepted (no
UnsupportedQoS exception), and the operation will return the following:

The only “additional QoS” returned is a change to EventReliability.
ConnectionReliability is not returned because it can’t be changed unless
EventReliability is also changed (recall the unsupported combination of these two).
All properties returned as “Additional QoS” must be optional and independent of each
other.

On the other hand, if we invoke validate_qos with input
“EventReliability=BestEffort,” the QoS will again be accepted, but more options will
be returned as “additional QoS”:

Why are more “additional QoS” options returned here? Once we change
EventReliability to BestEffort, any value for ConnectionReliability will be
supported. And Timeout will always be returned if the request did not already include
it, since it is totally independent of the others. If the client wants to add to his QoS
request, he can choose any ConnectionReliability value in the indicated range, or
any Timeout value in the indicated range, or both (or neither).

2.5.7 Notification Channel Administrative Properties

The notification channel also supports the configuration of certain administrative
properties. The following administrative properties, each of which has an associated
value of type long, can be set on a notification channel:

• MaxQueueLength - The maximum number of events that will be queued by the
channel before the channel begins discarding events (according to the Discard
Policy QoS parameter, which is defined in “Notification QoS Properties” on
page 2-40) or rejecting new events (depending on the setting of the
RejectNewEvents admin property described below) upon receipt of each new event.

• MaxConsumers - The maximum number of consumers that can be connected to the
channel at any given time.

• MaxSuppliers - The maximum number of suppliers that can be connected to the
channel at any given time.

“Additional QoS” returned by validate_qos(Timeout=50)

Property Low_Val High_Val

EventReliability BestEffort BestEffort

“Additional QoS” returned by validate_qos(EventReliability=BestEffort)

Property Low_Val High_Val

ConnectionReliability BestEffort BestEffort

Timeout 0 99999
October 2004 Notification Service, v1.1: Quality of Service Administration 2-51

2

For all of these properties, the default value is zero, which means that no limit applies
to that property.

In addition, the notification channel supports the RejectNewEvents administrative
property. This value associated with this property is of type Boolean, where TRUE and
FALSE have the following meanings:

• TRUE: When the total number of undelivered events within the channel is equal to
MaxQueueLength, each pull-style proxy consumer will stop attempting to
perform pull invocations on its supplier until the total number of undelivered events
within the channel is decreased. In addition, attempts to push new events to the
channel by push-style suppliers will result in the IMPL_LIMIT system exception
being raised.

• FALSE: When the total number of undelivered events within the channel is equal to
MaxQueueLength, attempts to pull new events to the channel by a pull-style
proxy consumer, or to push new events to the channel by a push-style supplier will
result in one of the currently queued undelivered events being discarded by the
channel to make room for the new event. The discarded event will be chosen based
on the setting of the DiscardPolicy QoS property.

2.6 Sharing Subscriptions

2.6.1 Sharing Subscriptions Between Channels and Clients

The flow of events through a Notification channel depends on the events supplied to
the channel and the subscriptions from event consumers that match them (or cause
them to be discarded). In order to convey end-to-end the knowledge of what is required
from suppliers, and what might be produced by them, we introduce two complimentary
operations, offer_change and subscription_change. These operations are
available on interfaces supported by channels and, due to the symmetry of design, also
on the interfaces supported by the clients of channels.

2.6.2 Offer

The offer_change operation, provided by the NotifyPublish interface is supported
by all Proxy Consumer interfaces and the SupplierAdmin interface, and may be
supported by consumers of events. It has two parameters: one for event types that are
newly offered, and one for event types no longer offered. This operation is used by
suppliers of events to indicate to the channel the new event types that they will supply,
and to indicate event types that they will no longer supply. Channels will then
aggregate the offers from all their suppliers. If a new or removed offer by a supplier
changes the aggregate list of event types offered to the channel, the channel will in turn
invoke the same operation on its consumers, informing those consumers of new event
types available to them, or event types no longer offered.

Consumers can use offer information to consult the Event Type Repository to discover
what property names and types the event type contains, and thus write well-formed
subscription expressions for these types.
2-52 Notification Service, v1.1 October 2004

2

Consumers may also discover the current set of event types that a channel has been
offered by its suppliers by calling the obtain_offered_types operation on their
ProxySupplier interface.

Consumers that are only interested in a fixed set of events may choose to supply a nil
object reference to the channel at connect time if they pull events from the channel.
They may also return a NO_IMPLEMENT exception from the offer_change
operation if they must support the interface that allows the channel to push events to
them.

2.6.3 Subscription Change

The subscription_change operation is provided by the NotifySubscribe interface,
which is supported by all Proxy Supplier interfaces and the ConsumerAdmin
interface, and may be supported by suppliers of events. It is a means of relaying
subscription information, in the form of required event types, back to the source of
events. It has two parameters: one to specify event types that are required, and one to
specify event types that are no longer required. Event Channels will aggregate the
event types that their consumers require. If a new event type required by a consumer
(or consumer group represented by a ConsumerAdmin) changes the aggregate list,
then the channel will inform its suppliers by their calling subscription_change
operation indicating that a new type is required. Likewise, if change from a consumer
removes an event type from the aggregate list of event types in the channel it will call
subscription_change on its suppliers indicating that the type is no longer required.

Suppliers may also discover the current set of event types that consumers of a channel
require by calling the obtain_subscription_types operation on the
ProxyConsumer interface.

Suppliers that are not interested in the event types currently subscribed to will not
invoke obtain_subscription_types, and will raise the NO_IMPLEMENT
exception in their implementation of the subscription_change operation.

2.6.4 Notifications on Demand

One consequence of suppliers being informed of the event types that clients require is
that they know which notifications are being consumed and which are not. This
knowledge can be used by end-suppliers to influence which notifications they will
produce. For instance, an operating system process watcher connected to a channel as
a supplier is informed that only notifications of certain process watching types are
being consumed. It might therefore choose to produce notifications only about those
kinds of processes rather than producing notifications for all processes. Another
example is where suppliers only generate notifications while there is an interested
party. For instance, a consumer indicates an interest in CPU load statistics by
subscribing to a particular event type. Intelligent suppliers would then begin to produce
these statistics only for as long as a consumer was interested in the information. When
no consumers are interested, the channel’s aggregate list of event types will change,
and the supplier will be notified via the subscription_change operation that these
October 2004 Notification Service, v1.1: Sharing Subscriptions 2-53

2

notifications are no longer being consumed. The supplier could then stop generating its
statistics until the relevant event type was received in subscription_change in the
parameter that indicates added types.

In these examples the anonymity of event suppliers and consumers is maintained while
enabling communication about notification requirements between them.

2.6.5 Obligations on Filter Objects

Filter objects support the operations attach_callback and detach_callback, which
are used by Proxy Suppliers and ConsumerAdmins to provide and remove object
references to their NotifySubscribe interfaces. Filter objects must call the references
that are currently attached when the set of event types that their constraints require
changes. This means that they must use the EventTypeSeq associated with their
constraints as a parameter to an invocation of subscription_change.
Implementations of Filters may choose whether to convey the event types for a
constraint as the added parameter to subscription_change when the constraint is
added and then as the removed parameter to subscription_change when that
constraint is removed, or whether to maintain an aggregate of the event types that all
its constraints require, and only call subscription_change when this changes.

Note that a Proxy or Admin object that is evaluating the suitability of an event that is
not of one of the types that the filter has indicated that it requires may assume that the
filter does not require this event and never call a match operation at that filter. See
“Special Event Types” on page 2-54 about special event types that force matching.

A consumer connected to a proxy supplier may use the subscription_change
operation instead of a filter object if it requires all events of one or more event types.
However, once it adds a filter to the proxy, it must then interact with the filter only,
and allow the filter to invoke subscription_change. An event channel will create an
aggregate list of all the event types required by its consumers, which it will return as
the result of obtain_subscription_types. It will also communicate any changes to
the list to its suppliers by invoking their subscription_change operation.

2.6.6 Special Event Types

If a constraint expression potentially applies to any event type, then the special event
type “%ALL” can be specified in a constraint’s event type sequence (with a domain
name of “*” or the empty string). When the filter calls back subscription_change
with this type it indicates to the channel that the filter wants to match on all event
types.

Alternatively the event type and domain specified by any combination of empty strings
or the “*” string is treated as the equivalent to “%ALL,” and upon receiving a
requirement for this type the channel will send “%ALL” to its suppliers by calling their
subscription_change operations.

The event type “%TYPED” is given by channels to the Structured Event representation
of events that are supplied by a typed event supplier using an operation other than the
push and pull operations (i.e., untyped) specified in this document. The domain field of
2-54 Notification Service, v1.1 October 2004

2

these events must be set to the empty string. This event type allows a Structured Event
supplier to create an event that is equivalent to the invocation of a typed operation
using the mapping given in Table 2-2 on page 2-10. It also allows Structured Event
consumers and event service style consumers to write filter constraints that match
events that were delivered to the channel by a typed supplier.

Note – The leader characters ‘%’ and ‘*’ are not legal for type names stored in the
Event Type Repository, and are chosen because they do not clash with any pre-existing
event type naming schemes known to the authors.

2.7 Filtering Typed Events

The Notification Service defines a typed version of the notification channel that is
analogous to the typed event channel defined in the OMG Event Service. The typed
notification channel extends the architecture of the notification channel depicted on
page 2-3 by adding to it typed versions of the EventChannel, Admin, and Proxy
interfaces. Essentially, a typed notification channel can be connected by traditional
untyped event service clients, notification service clients (which supply untyped
events, Structured Events, or sequences of Structured Events), and typed event service
clients (as defined by the OMG Event Service). The particular value-add of the typed
notification channel is that it enables typed event service clients to realize the
advantages of event filtering and configurable quality of service.

The typed notification service interfaces are defined in a separate IDL module, the
CosTypedNotifyChannelAdmin module, which defines interfaces that are
analogous to the untyped notification channel interfaces. The module defines a
TypedEventChannelFactory interface that supports an operation for creating new
typed notification channel instances. This operation accepts the same input parameters
as the operation supported by the factory interface for an untyped notification channel:

• a list of initial QoS settings for the channel,

• a list of initial administrative settings for the channel.

A typed notification channel supports the TypedEventChannel interface defined in
the CosTypedNotifyChannelAdmin module. This interface inherits from both the
CosNotifyChannelAdmin::EventChannel interface and the
CosTypedEventChannelAdmin::TypedEventChannel interface. The former
inheritance enables a typed notification channel to support untyped notification
channel Admin interfaces, which can in turn create untyped notification channel style
Proxy interfaces. Essentially, this enables untyped notification channel clients to
connect to a typed notification channel, if so desired. The latter inheritance enables
backward compatibility to the typed event channel as defined by the OMG Event
Service, analogous to the way the notification channel supports backward compatibility
to the untyped event channel. The operations supported through inheritance from the
CosTypedEventChannelAdmin::TypedEventChannel interface can be used to
create the Admin interfaces defined for the OMG Event Service version of the typed
event channel.
October 2004 Notification Service, v1.1: Filtering Typed Events 2-55

2

In similar fashion as the notification channel, the typed notification channel supports
operations that can be used to create typed notification service style Admin objects.
These objects have unique identifiers associated with them, whereas OMG Event
Service style typed Admin objects created by invoking the inherited operations do not.

The typed notification service style Admin interfaces inherit from both their untyped
notification service and typed event service counterparts. The former inheritance
enables instances supporting one of these interfaces to create untyped notification
service style proxy objects, which can in turn be connected to by untyped notification
service style clients. The latter inheritance enables creation of the OMG Event Service
style typed proxy objects, which can be connected to by OMG Event Service style
typed clients. Such clients can pass typed events through the channel, but do not
realize the benefits of filtering or QoS configurability.

The typed notification service style Admin interfaces also support operations that can
be used to create typed notification service Proxy objects. Such objects can be
connected to by clients that send and receive typed events as defined by the OMG
Event Service, and also support filtering and QoS configurability. Like their untyped
counterparts, typed notification service style proxies are assigned unique identifiers
upon creation, and can be administered in the same fashion. Exactly the same as the
operations that create typed event service style proxies, the operations supported by the
typed notification service style Admin interfaces accept a string input parameter that
indicates either the typed interface it should use (to receive events in the case of a
TypedProxyPullConsumer or to supply events in the case of a
TypedProxyPushSupplier) or the typed interface it must support (to receive events
in the case of a TypedProxyPushConsumer or to supply events in the case of a
TypedProxyPullSupplier).

The authors of the OMG Event Service realized that there is no difference in the
interfaces supported by a pull style consumer of typed events and a pull style consumer
of untyped events, and likewise between a push style supplier of typed events and a
push style supplier of untyped events. For this reason, they chose not to define new
Proxy interfaces for connections between the channel and either typed push consumers
(which connect to ProxyPushSuppliers) or typed pull suppliers (which connect to
ProxyPullConsumers). While the same model could have been followed when
defining the typed version of the notification channel’s proxy interfaces, it was
believed that this would have led to more confusion for the end user than if special
proxy interfaces for all styles of clients were defined. For this reason, the typed
notification channel explicitly defines TypedProxyPullConsumer and
TypedProxyPushSupplier interfaces, as well as TypedProxyPushConsumer and
TypedProxyPullSupplier. Each Proxy interface defined for the typed notification
channel has the following properties:

• It inherits from the appropriate base Proxy interface defined in the
CosNotifyChannelAdmin module, which enables it to support filtering and QoS
configurability.

• It inherits from the appropriate consumer or supplier interface defined by the OMG
Event Service to enable a traditional OMG Event Service typed event channel client
to connect to it.
2-56 Notification Service, v1.1 October 2004

2

• It supports an explicit “connect” operation to be invoked by its client in order to
establish the connection.

It is believed that this model of explicitly defining all four styles of Proxy interface for
the typed notification channel, each of which supports an explicit “connect” operation,
will result in a typed channel that is more straightforward to use than the typed channel
defined by the OMG Event Service, without significantly altering the programming
model of the latter.

Clients of the typed notification channel specify the interface type that they wish to use
for communication to the channel by supplying a “key” string parameter to the
“obtain” operation supported by the typed Admin objects. In the case where the
channel is the active participant (i.e., when interacting with pull model suppliers and
push model consumers), the channel expects that the proxy object reference supplied to
the “connect” operation may be narrowed to the interface type nominated by the “key.”
In the cases where the client of the channel is the active party, i.e. push suppliers and
pull consumers, the client will be able to narrow the proxy returned from the “obtain”
operation to the interface type that was supplied as the “key” to that operation.

Note that the clients of the typed notification channel support identical interfaces to
those of clients of the typed event channel defined by the OMG Event Service,
implying that the same rules apply to the operations supported by those clients’
interfaces as those defined for clients of the OMG Event Service typed event channel.
In the push model typed events will thus be transmitted to the typed notification
channel using a strongly typed interface <I> that supports operations that take only
input parameters and have a void return type. The equivalent interface to <I> for the
pull model will be called Pull<I>. The Pull<I> interface must support two operations
for every operation <op> in interface <I>. These operations are called pull_<op> that
has return type void and try_<op> that returns a boolean. Their parameters are
identical to those in <op> except that they are all out parameters rather than in
parameters.

The base interface name <I> is equivalent to the name of an event type domain, and
the base operation name <op> is the event type in that domain. Parameters to the
supported operation(s) of <I> and Pull<I> form the contents of the typed event. Each
filter object supports a match_typed operation that is used to perform filtering on
typed events. This operation accepts as input a sequence of name-value pairs. Upon
receipt of a typed event, the notification channel will disassemble the event into a
name-value pair sequence, where each name is the name of an input parameter to the
operation on the typed interface that was invoked to transmit the event to the channel,
and the value is the value associated with the parameter. The first element of such a
sequence will always have its name set to “event_type,” and its associated value set to
an event type structure containing the strings that are the name of the typed interface,
and the name of the operation in that interface.

An example of an interaction using typed notifications that uses both push and pull
models is as follows. The IDL interface Coffee is defined as

interface Coffee {
void drinking_coffee(in string name, in long minutes);
void cancel_coffee(in string name);
October 2004 Notification Service, v1.1: Filtering Typed Events 2-57

2

};

A typed push consumer for coffee notifications would need to provide a “key”
interface name, “Coffee,” to the “obtain” operation on its typed consumer admin
operation, and then when calling the “connect” operation on the returned proxy it
would provide an object reference of a type that multiply inherits from the
PushConsumer and Coffee interfaces, so that the channel can narrow to the coffee
interface and begin invoking drinking_coffee and cancel_coffee operations.

A typed pull consumer for coffee notifications would supply the same key, “Coffee,” to
its “obtain” operation, and then narrow the Proxy interface it receives as a result to the
interface type:

interface PullCoffee {
void drinking_coffee(out string name, out long minutes);
boolean try_drinking_coffee(out string name, out long minutes);
void cancel_coffee(out string name);
boolean try_cancel_coffee(out string name);

};

After calling the “connect” operation on the proxy, to which it provides an object
reference of type PullConsumer to allow the channel to inform it of disconnection, it
can begin calling the operations of the PullCoffee interface.

2.8 The Event Type Repository

This specification defines an Event Type Repository as a value-added, optional feature
that can be provided along with implementations of the Notification Service. The
Event Type Repository is treated as optional since it is not required in order for an
implementation of the Notification Service to operate correctly. An implementation of
the Notification Service that provides an Event Type Repository may or may not use
the Event Type Repository to perform run-time checking.

An Event Type Repository can provide significant advantages to end-users of the
Notification Service. Such a repository would be populated with the meta-data that
describes the structure of all known event types that may be supplied to an instance of
a notification channel supported by the implementation. End-users can use this
information to construct meaningful constraints that subscribe their applications to the
specific types of events that will be supplied within a given installation of the service.
In addition, an implementation of the Notification Service may choose to use the
information in the Event Type Repository to perform type checking of the event
properties referenced within constraints to ensure they are used appropriately in
mathematical or boolean expressions.

The standard schema for the Event Type Repository is provided in Appendix A of this
specification. As defined there, each event type in the repository is characterized by a
name and a set of properties. New event types can be defined in terms of existing event
types by either importing the properties of one or more pre-existing types, or by
inheriting a pre-existing type, or some combination of these. The new type’s full name
may be generated from a combination of its local name and the names of its base
types, according to the naming scheme of the type’s domain. The full name of any
2-58 Notification Service, v1.1 October 2004

2

event type must be unique within its domain. The default domain is named by the
empty string, and its types have a flat name space, that is their local name is the same
as their full name, and each type’s name must be unique.

Note that this scheme integrates naturally with the event naming scheme used by
Structured Events. The fixed portion of each Structured Event includes a domain_name
and a type_name field. The domain_name names a specific vertical industry (e.g.,
telecommunications, finance, health care, etc.) within which a given type_name has
meaning. These fields are accepted as the parameters to the query functions of the
Repository, and in combination they act as a key to uniquely identify any type in the
repository. The properties of the particular event type defined in the Event Type
Repository would then define the specific name-value pairs that would be present in an
instance of that type of event. Thus when Structured Events are used in concert with
the Event Type Repository, it is particularly convenient for consumers to learn of new
types of events, and to discover the structure of their contents.

The schema of the Event Type Repository is defined in Appendix A using the Meta-
Object Definition Language of the Meta-Object Facility (MOF).

2.9 Issues with Interoperability

It’s important to note that this specification guarantees interoperability of only those
implementations that comply with the following requirements:

• Support all standard optional header fields summarized in Table 2-4 on page 2-19.

• Support filter constraints expressed in the default constraint grammar described in
“The Default Filter Constraint Language” on page 2-26.

These requirements do not mean that implementations of the Notification Service
cannot support user or vendor specific event header field names, constraint grammars,
or event types. The implication here is that the use of such user or vendor specific
capabilities is outside of the scope of this specification, and therefore interoperability
of such features between different implementations is not guaranteed.
October 2004 Notification Service, v1.1: Issues with Interoperability 2-59

2

2-60 Notification Service, v1.1 October 2004

Modules and Interfaces 3
Contents

This chapter contains the following topics.

This section describes the semantic behavior of the interfaces that make up the
Notification Service. Each IDL module is presented, along with a brief description of
the purpose of the module. For each interface in the module, a brief description of its
purpose is provided, along with an explanation of the semantics of each of its
operations and attributes.

The Notification Service is defined in terms of the following IDL modules:

CosNotification - Defines the Structured Event data type, quality of service and
administrative properties, and interfaces that are used to administer these properties.

CosNotifyFilter - Defines the interfaces for filters supported by the Notification
Service.

CosNotifyComm - Defines supplier and consumer interfaces for basic notification
communication.

Topic Page

“The CosNotification Module” 3-2

“The CosNotifyFilter Module” 3-9

“The CosNotifyComm Module” 3-26

“The CosNotifyChannelAdmin Module” 3-39

“The CosTypedNotifyComm Module” 3-80

“CosTypedNotifyChannelAdmin” 3-81
October 2004 Notification Service, v1.1 3-1

3

CosNotifyChannelAdmin - Defines proxy, admin, and channel interfaces for
notification channels.

CosTypedNotifyChannelAdmin - Defines proxy, admin, and channel interfaces for
typed notification channels.

Each of these modules is defined in its own subsection as follows.

3.1 The CosNotification Module

The CosNotification module defines the Structured Event data type, along with a
data type used for transmitting sequences of Structured Events. In addition, this
module provides constant declarations for each of the standard quality of service (QoS)
and administrative properties supported by all Notification Service implementations.
Some properties also have associated constant declarations that indicate their possible
settings. Finally, administrative interfaces are defined for managing sets of QoS and
administrative properties.

module CosNotification {

typedef string Istring;
typedef Istring PropertyName;
typedef any PropertyValue;

struct Property {
PropertyName name;
PropertyValue value;

};
typedef sequence<Property> PropertySeq;

// The following are the same, but serve different purposes.
typedef PropertySeq OptionalHeaderFields;
typedef PropertySeq FilterableEventBody;
typedef PropertySeq QoSProperties;
typedef PropertySeq AdminProperties;

struct _EventType {
string domain_name;
string type_name;

};
typedef sequence<_EventType> EventTypeSeq;

struct PropertyRange {
PropertyValue low_val;
PropertyValue high_val;

};

struct NamedPropertyRange {
PropertyName name;
PropertyRange range;

};
typedef sequence<NamedPropertyRange> NamedPropertyRangeSeq;
3-2 Notification Service, v1.1 October 2004

3

enum QoSError_code {
UNSUPPORTED_PROPERTY,
UNAVAILABLE_PROPERTY,
UNSUPPORTED_VALUE,
UNAVAILABLE_VALUE,
BAD_PROPERTY,
BAD_TYPE,
BAD_VALUE

};

struct PropertyError {
QoSError_code code;
PropertyName name;
PropertyRange available_range;

};
typedef sequence<PropertyError> PropertyErrorSeq;

exception UnsupportedQoS { PropertyErrorSeq qos_err; };
exception UnsupportedAdmin { PropertyErrorSeq admin_err; };

// Define the Structured Event structure
struct FixedEventHeader {

_EventType event_type;
string event_name;

};

struct EventHeader {
FixedEventHeader fixed_header;
OptionalHeaderFields variable_header;

};

struct StructuredEvent {
EventHeader header;
FilterableEventBody filterable_data;
any remainder_of_body;

}; // StructuredEvent
typedef sequence<StructuredEvent> EventBatch;

// The following constant declarations define the standard

// QoS property names and the associated values each property
// can take on. The name/value pairs for each standard property
// are grouped, beginning with a string constant defined for the
// property name, followed by the values the property can take on.

const string EventReliability = “EventReliability”;
const short BestEffort = 0;
const short Persistent = 1;

const string ConnectionReliability = “ConnectionReliability”;
// Can take on the same values as EventReliability

const string Priority = “Priority”;
const short LowestPriority = -32767;
October 2004 Notification Service, v1.1: The CosNotification Module 3-3

3

const short HighestPriority = 32767;
const short DefaultPriority = 0;

const string StartTime = “StartTime”;
// StartTime takes a value of type TimeBase::UtcT.

const string StopTime = “StopTime”;
// StopTime takes a value of type TimeBase::UtcT.

const string Timeout = “Timeout”;
// Timeout takes on a value of type TimeBase::TimeT

const string OrderPolicy = “OrderPolicy”;
const short AnyOrder = 0;
const short FifoOrder = 1;
const short PriorityOrder = 2;
const short DeadlineOrder = 3;

const string DiscardPolicy = “DiscardPolicy”;
// DiscardPolicy takes on the same values as OrderPolicy, plus
const short LifoOrder = 4;

const string MaximumBatchSize = “MaximumBatchSize”;
// MaximumBatchSize takes on a value of type long

const string PacingInterval = “PacingInterval”;
// PacingInterval takes on a value of type TimeBase::TimeT

const string StartTimeSupported = “StartTimeSupported”;
// StartTimeSupported takes on a boolean value

const string StopTimeSupported = “StopTimeSupported”;
// StopTimeSupported takes on a boolean value

const string MaxEventsPerConsumer = “MaxEventsPerConsumer”;
// MaxEventsPerConsumer takes on a value of type long

interface QoSAdmin {

QoSProperties get_qos();

void set_qos (in QoSProperties qos)
raises (UnsupportedQoS);

void validate_qos (
in QoSProperties required_qos,
out NamedPropertyRangeSeq available_qos)

raises (UnsupportedQoS);

}; // QosAdmin

// Admin properties are defined in similar manner as QoS
// properties. The only difference is that these properties
// are related to channel administration policies, as opposed
3-4 Notification Service, v1.1 October 2004

3

// message quality of service

const string MaxQueueLength = “MaxQueueLength”;
// MaxQueueLength takes on a value of type long

const string MaxConsumers = “MaxConsumers”;
// MaxConsumers takes on a value of type long

const string MaxSuppliers = “MaxSuppliers”;
// MaxSuppliers takes on a value of type long

const string RejectNewEvents = “RejectNewEvents”;
// RejectNewEvents takes on a value of type Boolean

interface AdminPropertiesAdmin {

AdminProperties get_admin();

void set_admin (in AdminProperties admin)
raises (UnsupportedAdmin);

}; // AdminPropertiesAdmin

}; // CosNotification

3.1.1 The StructuredEvent Data Structure

The StructuredEvent data structure defines the fields that comprise a Structured
Event. The following subsections briefly describe each of these fields. A detailed
description of Structured Events is provided in “Structured Events” on page 2-15.

3.1.1.1 Fixed Header

The following fields make up the fixed portion of the header of every Structured
Event.

domain_name

The domain_name field contains a string that identifies the vertical industry domain
(e.g., telecommunications, healthcare, finance, etc.) within which the type of event that
characterizes a given Structured Event is defined. The definition of this field enables
each vertical domain to define their own set of event types without worrying about
name collisions with those defined by other vertical domains.

type_name

The type_name field contains a string that identifies the type of event contained
within a given Structured Event. This name should be unique among all event types
defined within a given vertical domain, which is identified by the domain_name
field.
October 2004 Notification Service, v1.1: The CosNotification Module 3-5

3

event_name

The event_name field contains a string that names a specific instance of Structured
Event. This name is not interpreted by any component of the Notification Service, and
thus the semantics associated with it can be defined by end-users of the service. This
field can be used, for instance, to associate names with individual Structured Events
that can be used to uniquely identify an instance of a particular type of Structured
Event within a given installation of the Notification Service.

3.1.1.2 Variable Header

The remainder of the header of a Structured Event is contained within the
variable_header field. The data type of this field is a sequence of name-value pairs,
where each name is a string and each value a CORBA::Any. While this field can
essentially contain any name-value pairs that users of the service deem to be useful to
provide in the header of a Structured Event, standard names and associated value types
are defined in Table 2-4 on page 2-19 of this document. The standard variable header
fields defined there provide QoS related information about the current Structured Event
that should override other QoS settings within the channel when objects within the
channel process the current Structured Event.

3.1.1.3 Body of a Structured Event

The body of a Structured Event is intended to contain the contents of an instance of a
Structured Event being published by a Notification Service supplier. Its contents are
broken down into two fields: the filterable_data and the remainder_of_body. The
purpose of each of these fields is defined below.

filterable_data

The filterable_data portion of the body of a Structured Event is a sequence of name-
value pairs, where name is of type string and the value is a CORBA::Any. The main
purpose of this portion of the event body is to provide a convenient structure into
which event body fields upon which filtering is likely to be performed can be placed.
It is anticipated that mappings of standard event types to the Structured Event will be
defined such that standard event body field names correspond to values of well-known
data types. Examples of such mappings for common event types used within the
Telecommunications industry are provided in “Conformance Issues” on page 1-3 of
this document. In addition, end users can define their own name-value pairs that
comprise the filterable portion of any proprietary event types.

remainder_of_body

The remainder_of_body portion of the event body is intended to hold event data
upon which filtering is not likely to be performed. From a logical point of view, the
“interesting” fields of the event data should be placed into the filterable_data portion,
and the “rest” of the event placed here. Obviously it is not possible to predict what
portion of the event will be interesting (or not) to all consumers. The division of the
event body within the structured event in this fashion merely provides a hint to
consumers. It is still possible to perform filtering on the contents of the
3-6 Notification Service, v1.1 October 2004

3

remainder_of_body portion of the event body, however this will require
decomposing the Any data structure that contains this portion into actual typed data
elements, using the typecode contained within the Any. Thus filtering on this portion
of the event body is likely to be less efficient than filtering on the filterable_data
portion.

3.1.2 The EventBatch Data Type

The CosNotification module defines the EventBatch data type as a sequence of
Structured Events. The CosNotifyComm module defined in “The CosNotifyComm
Module” on page 3-26 defines interfaces that support the transmission and receipt of
sequences of Structured Events within a single operation. Such a sequence of
Structured Events transmitted as a unit is referred to as an event batch, and is of the
EventBatch data type.

3.1.3 QoS and Administrative Constant Declarations

The CosNotification module declares several constants related to QoS properties of
event transmission, and administrative properties of notification channels. The
meanings of each property related to QoS and its associated values is described in
detail in “Notification QoS Properties” on page 2-40 of this document. The meanings
of each property related to channel administration and its associated values is
described in “Notification Channel Administrative Properties” on page 2-51.

3.1.4 The QoSAdmin Interface

The QoSAdmin interface defines operations that enable clients to get and set the
values of QoS properties. It also defines an operation that can verify whether or not a
set of requested QoS property settings can be satisfied, along with returning
information about the range of possible settings for additional QoS properties.
QoSAdmin is intended to be an abstract interface that is inherited by the Proxy,
Admin, and Event Channel interfaces defined in the CosNotifyChannelAdmin and
CosTypedNotifyChannelAmin modules. The semantics of the operations supported
by this interface are defined below.

3.1.4.1 get_qos

The get_qos operation takes no input parameters, and returns a sequence of name-
value pairs that encapsulates the current quality of service settings for the target object
(which could be an Event Channel, Admin, or Proxy object).

3.1.4.2 set_qos

The set_qos operation takes as an input parameter a sequence of name-value pairs
that encapsulates quality of service property settings that a client is requesting that the
target object (which could be an Event Channel, Admin, or Proxy object) supports as
its default quality of service. If the implementation of the target object is not capable
October 2004 Notification Service, v1.1: The CosNotification Module 3-7

3

of supporting any of the requested quality of service settings, or if any of the requested
settings would be in conflict with a QoS property defined at a higher level of the object
hierarchy with respect to QoS (see “Negotiating QoS and Conflict Resolution” on
page 2-45), the UnsupportedQoS exception is raised. This exception contains as
data a sequence of data structures, each of which identifies the name of a QoS property
in the input list whose requested setting could not be satisfied, along with an error code
and a range of settings for the property that could be satisfied. The meanings of the
error codes that might be returned are described in Table 2-6 on page 2-49.

3.1.4.3 validate_qos

The validate_qos operation accepts as input a sequence of QoS property name-value
pairs that specify a set of QoS settings that a client would like to know if the target
object is capable of supporting. If the any of the requested settings could not be
satisfied by the target object, the operation raises the UnsupportedQoS exception.
This exception contains as data a sequence of data structures, each of which identifies
the name of a QoS property in the input list whose requested setting could not be
satisfied, along with an error code and a range of settings for the property that could be
satisfied. The meanings of the error codes that might be returned are described in
Table 2-6 on page 2-49.

If all requested QoS property value settings could be satisfied by the target object, the
operation returns successfully (without actually setting the QoS properties on the target
object) with an output parameter that contains a sequence of PropertyRange data
structures. Each element in this sequence includes the name of an additional QoS
property supported by the target object that could have been included on the input list
and resulted in a successful return from the operation., along with the range of values
that would have been acceptable for each such property.

3.1.5 The AdminPropertiesAdmin Interface

The AdminPropertiesAdmin interface defines operations that enable clients to get
and set the values of administrative properties. This interface is intended to be an
abstract interface that is inherited by the Event Channel interfaces defined in the
CosNotifyChannelAdmin and CosTypedNotifyChannelAdmin modules. The
semantics of the operations supported by this interface are defined below.

3.1.5.1 get_admin

The get_admin operation takes no input parameters, and returns a sequence of name-
value pairs that encapsulates the current administrative settings for the target channel.

3.1.5.2 set_admin

The set_admin operation takes as an input parameter a sequence of name-value pairs
that encapsulates administrative property settings that a client is requesting that the
target channel support. If the implementation of the target object is not capable of
supporting any of the requested administrative property settings, the
3-8 Notification Service, v1.1 October 2004

3

UnsupportedAdmin exception is raised. This exception has associated with it a list
of name-value pairs of which each name identifies an administrative property whose
requested setting could not be satisfied, and each associated value the closest setting
for that property that could be satisfied.

3.2 The CosNotifyFilter Module

The CosNotifyFilter module defines the interfaces supported by the filter objects
used by the Notification Service. Two different types of filter objects are defined here.
The first type supports the Filter interface and encapsulates the constraints that will be
used by a proxy object associated with a notification channel in order to make
decisions about which events to forward, and which to discard. The second type
supports the MappingFilter interface and encapsulates constraints along with
associated values, whereby the constraints determine whether a proxy object will alter
the way it treats each event with respect to a particular property of the event, and the
value specifies the property value the proxy would apply to each event that satisfies the
associated constraint. In addition to the two types of filter object interface defined in
this module, the CosNotifyFilter module also defines the FilterFactory interface
that supports the operations required to create each type of filter object, and the
FilterAdmin interface that supports operations that enable an interface (Proxy or
Admin), which inherits it to manage a list of Filter instances.

module CosNotifyFilter {

typedef long ConstraintID;

struct ConstraintExp {
CosNotification::EventTypeSeq event_types;

string constraint_expr;
};

typedef sequence<ConstraintID> ConstraintIDSeq;
typedef sequence<ConstraintExp> ConstraintExpSeq;

struct ConstraintInfo {
ConstraintExp constraint_expression;
ConstraintID constraint_id;

};

typedef sequence<ConstraintInfo> ConstraintInfoSeq;

struct MappingConstraintPair {
ConstraintExp constraint_expression;
any result_to_set;

};

typedef sequence<MappingConstraintPair> MappingConstraintPairSeq;

struct MappingConstraintInfo {
ConstraintExp constraint_expression;
ConstraintID constraint_id;
any value;
October 2004 Notification Service, v1.1: The CosNotifyFilter Module 3-9

3

};

typedef sequence<MappingConstraintInfo> MappingConstraintInfoSeq;

typedef long CallbackID;
typedef sequence<CallbackID> CallbackIDSeq;

exception UnsupportedFilterableData {};
exception InvalidGrammar {};
exception InvalidConstraint {ConstraintExp constr;};
exception DuplicateConstraintID {ConstraintID id;};

exception ConstraintNotFound {ConstraintID id;};
exception CallbackNotFound {};

exception InvalidValue {ConstraintExp constr; any value;};

interface Filter {

readonly attribute string constraint_grammar;

ConstraintInfoSeq add_constraints (
in ConstraintExpSeq constraint_list)

raises (InvalidConstraint);

void modify_constraints (
in ConstraintIDSeq del_list,
in ConstraintInfoSeq modify_list)

raises (InvalidConstraint, ConstraintNotFound);

ConstraintInfoSeq get_constraints(
in ConstraintIDSeq id_list)

raises (ConstraintNotFound);

ConstraintInfoSeq get_all_constraints();

void remove_all_constraints();

void destroy();

boolean match (in any filterable_data)
raises (UnsupportedFilterableData);

boolean match_structured (
in CosNotification::StructuredEvent filterable_data)

raises (UnsupportedFilterableData);

boolean match_typed (
in CosNotification::PropertySeq filterable_data)

raises (UnsupportedFilterableData);

CallbackID attach_callback (
in CosNotifyComm::NotifySubscribe callback);

void detach_callback (in CallbackID callback)
3-10 Notification Service, v1.1 October 2004

3

raises (CallbackNotFound);

CallbackIDSeq get_callbacks();

}; // Filter

interface MappingFilter {

readonly attribute string constraint_grammar;

readonly attribute CORBA::TypeCode value_type;

readonly attribute any default_value;

MappingConstraintInfoSeq add_mapping_constraints (
in MappingConstraintPairSeq pair_list)

raises (InvalidConstraint, InvalidValue);

void modify_mapping_constraints (
in ConstraintIDSeq del_list,
in MappingConstraintInfoSeq modify_list)

raises (InvalidConstraint, InvalidValue,
ConstraintNotFound);

MappingConstraintInfoSeq get_mapping_constraints (
in ConstraintIDSeq id_list)

raises (ConstraintNotFound);

MappingConstraintInfoSeq get_all_mapping_constraints();

void remove_all_mapping_constraints();

void destroy();

boolean match (in any filterable_data,
out any result_to_set)

raises (UnsupportedFilterableData);

boolean match_structured (
in CosNotification::StructuredEvent filterable_data,
out any result_to_set)

raises (UnsupportedFilterableData);

boolean match_typed (
in CosNotification::PropertySeq filterable_data,
out any result_to_set)

raises (UnsupportedFilterableData);

}; // MappingFilter

interface FilterFactory {

Filter create_filter (
in string constraint_grammar)
October 2004 Notification Service, v1.1: The CosNotifyFilter Module 3-11

3

raises (InvalidGrammar);

MappingFilter create_mapping_filter (
in string constraint_grammar,
in any default_value)

raises(InvalidGrammar);

}; // FilterFactory

typedef long FilterID;
typedef sequence<FilterID> FilterIDSeq;

exception FilterNotFound {};

interface FilterAdmin {

FilterID add_filter (in Filter new_filter);

void remove_filter (in FilterID filter)
raises (FilterNotFound);

Filter get_filter (in FilterID filter)
raises (FilterNotFound);

FilterIDSeq get_all_filters();

void remove_all_filters();

}; // FilterAdmin

}; // CosNotifyFilter

3.2.1 The Filter Interface

The Filter interface defines the behaviors supported by objects that encapsulate
constraints used by the proxy objects associated with an event channel in order to
determine which events they receive will be forwarded, and which will be discarded.
Each object supporting the Filter interface can encapsulate a sequence of any number
of constraints. Each event received by a proxy object that has one or more objects
supporting the Filter interface associated with it must satisfy at least one of the
constraints associated with one of its associated Filter objects in order to be forwarded
(either to another proxy object or to the consumer, depending on the type of proxy the
filter is associated with), otherwise it will be discarded.

Each constraint encapsulated by a filter object is a structure comprised of two main
components. The first component is a sequence of data structures, each of which
indicates an event type comprised of a domain and a type name. The second
component is a boolean expression over the properties of an event, expressed in some
constraint grammar (more on this below). For a given constraint, the sequence of event
type structures in the first component nominates a set of event types to which the
constraint expression in the second component applies. Each element of the sequence
can contain strings that will be matched for equality against the domain_name and
3-12 Notification Service, v1.1 October 2004

3

type_name fields of each event being evaluated by the filter object, or it could
contain strings with wildcard symbols (*), indicating a pattern match should be
performed against the type contained in each event, rather than a comparison for
equality when determining if the boolean expression should be applied to the event, or
the event should simply be discarded without even attempting to apply the boolean
expression. Note that an empty sequence included as the first component of a
constraint implies that the associated expression applies to all types of events, as does
a sequence comprised of a single element whose domain and type name are both set to
either the empty string or else the wildcard symbol alone contained in quotes.

The constraint expressions associated with a particular object supporting the Filter
interface are expressed as strings that obey the syntax of a particular constraint
grammar (i.e., a BNF). Every conformant implementation of this service must support
constraint expressions expressed in the default constraint grammar described in “The
Default Filter Constraint Language” on page 2-26. In addition, implementations may
support other constraint grammars, and/or users of this service may implement their
own filter objects, which allow constraints to be expressed in terms of an alternative
constraint grammar. As long as such user-defined filter objects support the Filter
interface, they can be attached to Proxy or Admin objects in the same fashion as the
default Filter objects supported by the implementation of the service are, and the
channel should be able to use them to filter events in the same fashion.

The Filter interface supports the operations required to manage the constraints
associated with an object instance that supports the interface, along with a readonly
attribute that identifies the particular constraint grammar in which the constraints
encapsulated by this object have meaning. In addition, the Filter interface supports
three variants of the match operation that can be invoked by an associated proxy
object upon receipt of an event (the specific variant selected depends upon whether the
event is received in the form of an Any, a Structured Event, or a Typed Event), to
determine if the event should be forwarded or discarded, based on whether or not the
event satisfies at least one criteria encapsulated by the filter object.

The Filter interface also supports operations that enable a client to associate with the
target filter object any number of “callbacks” that are notified each time there is a
change to the list of event types which the constraints encapsulated by the filter object
could potentially cause proxies to which the filter is attached to receive. Operations are
also defined to support administration of this callback list by unique identifier.

The operations supported by the Filter interface are described in more detail within the
following subsections.

3.2.1.1 constraint_grammar

The constraint_grammar attribute is a readonly attribute that identifies the
particular grammar within which the constraint expressions encapsulated by the target
filter object have meaning. The value of this attribute is set upon creation of a filter
object instance, based on the input provided to the factory creation operation for the
filter instance.
October 2004 Notification Service, v1.1: The CosNotifyFilter Module 3-13

3

The dependency of a filter object on its constraints being expressed within a particular
constraint grammar manifests itself within the implementation of the match
operations described below, which must be able to parse the constraints to determine
whether or not a particular event satisfies one of them.

Every conformant implementation of the Notification Service must support an
implementation of the Filter interface, which supports the default constraint grammar
described in “The Default Filter Constraint Language” on page 2-26. The value that
the constraint_grammar attribute is set to in the case the target filter object supports
this default grammar will be “EXTENDED_TCL.” In addition, implementations and/or
end users may provide additional implementations of the Filter interface, which
supports different constraint grammars, and thus would set the constraint_grammar
attribute to a different value upon creation of such a filter object.

3.2.1.2 add_contraints

The add_constraints operation is invoked by a client in order to associate one or
more new constraints with the target filter object. The operation accepts as input a
sequence of constraint data structures, each element of which consists of a sequence of
event type structures (described in “The Filter Interface” on page 3-12) and a
constraint expressed within the constraint grammar supported by the target object.
Upon processing each constraint, the target object associates a numeric identifier with
the constraint that is unique among all constraints it encapsulates. If any of the
constraints in the input sequence is not a valid expression within the supported
constraint grammar, the InvalidConstraint exception is raised. This exception
contains as data the specific constraint expression that was determined to be invalid.
Upon successful processing of all input constraint expressions, the add_constraints
operation returns a sequence in which each element will be a structure including one of
the input constraint expressions, along with the unique identifier assigned to it by the
target filter object.

Note that the semantics of the add_constraints operation are such that its side-
effects are performed atomically upon the target filter object. Once add_constraints
is invoked by a client, the target filter object is temporarily disabled from usage by any
proxy object it may be associated with. The operation is then carried out, either
successfully adding all of the input constraints to the target object or none of them (in
the case one of the input expressions was invalid). Upon completion of the operation,
the target filter object is effectively re-enabled and can once again be used by
associated filter objects in order to make event forwarding decisions.

3.2.1.3 modify_constraints

The modify_constraints operation is invoked by a client in order to modify the
constraints associated with the target filter object. This operation can be used both to
remove constraints currently associated with the target filter object, and to modify the
constraint expressions of constraints that have previously been added to the target filter
object.
3-14 Notification Service, v1.1 October 2004

3

The operation accepts two input parameters. The first input parameter is a sequence of
numeric values that are each intended to be the unique identifier associated with one of
the constraints currently encapsulated by the target filter object. If all input values
supplied within a particular invocation of this operation are valid, then the specific
constraints identified by the values contained in the first input parameter will be
deleted from the list of those encapsulated by the target filter object.

The second input parameter to this operation is a sequence of structures, each of which
contains a constraint structure and a numeric value. The numeric value contained by
each element of the sequence is intended to be the unique identifier associated with
one of the constraints currently encapsulated by the target filter object. If all input
values supplied within a particular invocation of this operation are valid, then the
constraint expression associated with the already encapsulated constraint identified by
the numeric value contained within each element of the input sequence will be
modified to the new constraint expression that is contained within the same sequence
element.

If any of the numeric values supplied within either of the two input sequences does not
correspond to the unique identifier associated with some constraint currently
encapsulated by the target filter object, the ConstraintNotFound exception is raised.
This exception contains as data the specific identifier that was supplied as input but did
not correspond to the identifier of some constraint encapsulated by the target object. If
any of the constraint expressions supplied within an element of the second input
sequence is not a valid expression in terms of the constraint grammar supported by the
target object, the InvalidConstraint exception is raised. This exception contains as
data the specific constraint that was determined to be invalid.

Note that the semantics of the modify_constraints operation are such that its side-
effects are performed atomically upon the target filter object. Once
modify_constraints is invoked by a client, the target filter object is temporarily
disabled from usage by any proxy object it may be associated with. The operation is
then carried out, either successfully deleting all of the constraints identified in the first
input sequence and modifying those associated with constraints identified in the
second input sequence, or performing no side effects to the target object (in the case
one of the inputs was invalid). Upon completion of the operation, the target filter
object is effectively re-enabled and can once again be used by associated filter objects
in order to make event forwarding decisions.

3.2.1.4 get_constraints

The get_constraints operation is invoked to return a sequence of a subset of the
constraints associated with the target filter object. The operation accepts as input a
sequence of numeric values that should correspond to the unique identifiers of
constraints encapsulated by the target object. If one of the input values does not
correspond to the identifier of some encapsulated constraint, the
ConstraintNotFound exception is raised, containing as data the numeric value that
did not correspond to some constraint. Upon successful completion, this operation
returns a sequence of data structures, each of which contains one of the input
identifiers along with its associated constraint.
October 2004 Notification Service, v1.1: The CosNotifyFilter Module 3-15

3

3.2.1.5 get_all_constraints

The get_all_constraints operation returns all of the constraints currently
encapsulated by the target filter object. The return value of this operation is a sequence
of structures, each of which contains one of the constraints encapsulated by the target
object along with its associated unique identifier.

3.2.1.6 remove_all_constraints

The remove_all_constraints operation is invoked to remove all of the constraints
currently encapsulated by the target filter object. Upon completion, the target filter
object will still exist but have no constraints associated with it.

3.2.1.7 destroy

The destroy operation destroys the target filter object, invalidating its object
reference.

3.2.1.8 match

The match operation evaluates the filter constraints associated with the target filter
object against an instance of an event supplied to the channel in the form of a
CORBA::Any. The operation accepts as input a CORBA::Any that contains an event
to be evaluated, and returns a boolean value that will be TRUE in cases where the
input event satisfies one of the filter constraints, and FALSE otherwise. The act of
determining whether or not a given event passes a given filter constraint is specific to
the type of grammar in which the filter constraint is specified. Thus, this operation will
need to be re-implemented for each supported grammar.

If the input parameter contains data that the match operation is not designed to
handle, the UnsupportedFilterableData exception will be raised. An example of
this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.1.9 match_structured

The match_structured operation evaluates the filter constraints associated with the
target filter object against an instance of an event supplied to the channel in the form
of a Structured Event. The operation accepts as input a data structure of type
CosNotification::StructuredEvent that contains an event to be evaluated, and
returns a boolean value that will be TRUE in cases where the input event satisfies one
of the filter constraints, and FALSE otherwise. The act of determining whether or not
a given event passes a given filter constraint is specific to the type of grammar in
which the filter constraint is specified. Thus, this operation will need to be re-
implemented for each supported grammar.
3-16 Notification Service, v1.1 October 2004

3

If the input parameter contains data that the match operation is not designed to
handle, the UnsupportedFilterableData exception will be raised. An example of
this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.1.10 match_typed

The match operation evaluates the filter constraints associated with the target filter
object against an instance of an event supplied to the channel in the form of a typed
event. The operation accepts as input a sequence of name-value pairs that contains the
contents of the event to be evaluated (how a typed event is converted to a sequence of
name-value pairs by the channel is described in “Filtering Typed Events” on
page 2-55), and returns a boolean value that will be TRUE in cases where the input
event satisfies one of the filter constraints, and FALSE otherwise. The act of
determining whether or not a given event passes a given filter constraint is specific to
the type of grammar in which the filter constraint is specified. Thus, this operation will
need to be re-implemented for each supported grammar.

If the input parameter contains data that the match operation is not designed to
handle, the UnsupportedFilterableData exception will be raised. An example of
this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.1.11 attach_callback

The attach_callback operation accepts as input the reference to an object supporting
the CosNotifyComm::NotifySubscribe interface, and returns a numeric value
assigned to this callback that is unique to all such callbacks currently associated with
the target object. This operation is invoked to associate with the target filter object an
object supporting the CosNotifyComm::NotifySubscribe interface. This interface
is inherited by all supplier interfaces (either those that are clients of a notification
channel, or those that are proxy objects within a notification channel) defined by the
Notification Service, and supports a subscription_change operation. After this
operation has been successfully invoked on a filter object, each time the set of
constraints associated with the target filter object is modified (either by an invocation
of its add_constraints or its modify_constraints operations), the filter object will
invoke the subscription_change object of all its associated callback objects in order
to inform suppliers to which the target filter object is attached of the change in the set
of event types to which clients of the filter object subscribe. This enables suppliers to
make intelligent decisions about which types of events it should actually produce, and
which it can suppress the production of. This mechanism is described in more detail in
“Sharing Subscriptions” on page 2-52.
October 2004 Notification Service, v1.1: The CosNotifyFilter Module 3-17

3

3.2.1.12 detach_callback

The detach_callback operation accepts as input a numeric value that should be one
of the unique identifiers associated with one of the callback objects attached to the
target filter object. If the input value does not correspond to the unique identifier of a
callback object currently attached to the target filter object, the CallbackNotFound
exception is raised. Otherwise, the callback object to which the input value
corresponds is removed from the list of those associated with the target filter object, so
that subsequent changes to the event type subscription list encapsulated by the target
filter object will not be propagated to the callback object that is being detached.

3.2.1.13 get_callbacks

The get_callbacks operation accepts no input parameters and returns the sequence of
all unique identifiers associated with callback objects attached to the target filter
object.

3.2.2 The MappingFilter Interface

The MappingFilter interface defines the behaviors of objects that encapsulate a
sequence of constraint-value pairs, where each constraint is a structure of the same
type as that described in “The Filter Interface” on page 3-12, and each value represents
a possible setting of a particular property of an event. Note that setting of a particular
property is not intended to imply that any contents of the event will be altered as a
result of applying a mapping filter, but rather the way a proxy treats the event with
respect to a particular property (i.e., priority or lifetime) could change. Upon receiving
each event, a proxy object with an associated object supporting the MappingFilter
interface will invoke the appropriate match operation variant (depending upon
whether the event is received in the form of an untyped event, a Structured Event, or a
typed event) on the mapping filter object in order to determine how it should modify a
particular property value associated with the event to one of the values associated with
one of the constraints encapsulated by the mapping filter. Internally, the mapping filter
object applies the constraints it encapsulates to the event in order to determine whether
or not the event’s property should be modified to one of the values associated with a
constraint, or else the default value associated with the mapping filter.

Each instance of an object supporting the MappingFilter interface is typically
associated with a specific event property. For instance, in this specification
MappingFilter object instances are used to affect the properties of priority and
lifetime for events received by a proxy supplier object. Each event received by a proxy
object, which has an object supporting the MappingFilter interface associated with it
must satisfy at least one of the constraints associated with the MappingFilter object in
order to have its property value modified, otherwise the property will remain
unchanged. A specific instance supporting the MappingFilter interface typically
applies its encapsulated constraints in an order that begins with the best possible
property setting (e.g., the highest priority or the longest lifetime) and ends with the
worst possible property setting. As soon as a matching constraint is encountered, the
associated value is returned as an output parameter and the proxy that invoked the
operation proceeds to modify the property of the event to the new value.
3-18 Notification Service, v1.1 October 2004

3

The constraint expressions associated with a particular object supporting the
MappingFilter interface are expressed as strings that obey the syntax of a particular
constraint grammar (i.e., a BNF). Every conformant implementation of this service
must support constraint expressions expressed in the default constraint grammar
described in “The Default Filter Constraint Language” on page 2-26. In addition,
implementations may support other constraint grammars, and/or users of this service
may implement their own filter objects that allow constraints to be expressed in terms
of an alternative constraint grammar. As long as such user-defined filter objects
support the MappingFilter interface, they can be attached to proxy objects in the
same fashion as the default MappingFilter objects supported by the implementation
of the service are, and the channel should be able to use them to potentially affect the
properties of events in the same fashion.

The MappingFilter interface supports the operations required to manage the
constraint-value pairs associated with an object instance that supports the interface. In
addition, the MappingFilter interface supports a readonly attribute that identifies the
particular constraint grammar in which the constraints encapsulated by this object have
meaning. The MappingFilter interface also supports a readonly attribute that
identifies the typecode associated with the datatype of the specific property value it is
intended to affect, and another readonly attribute that holds the default value, which
will be returned as the result of a match operation in cases when the event in question
is found to satisfy none of the constraints encapsulated by the mapping filter. Lastly,
the MappingFilter interface supports three variants of the operation that will be
invoked by an associated proxy object upon receipt of an event, to determine how the
property of the event, which the target mapping filter object was designed to affect
should be modified.

The operations supported by the MappingFilter object are described in more detail
within the following subsections.

3.2.2.1 constraint_grammar

The constraint_grammar attribute is a readonly attribute that identifies the
particular grammar within which the constraint expressions encapsulated by the target
filter object have meaning. The value of this attribute is set upon creation of a mapping
filter object instance, based on the input provided to the factory creation operation for
the mapping filter instance.

The dependency of a filter object on its constraints being expressed within a particular
constraint grammar manifests itself within the implementation of the match
operations described below, which must be able to parse the constraints to determine
whether or not a particular event satisfies one of them.

Every conformant implementation of the Notification Service must support an
implementation of the MappingFilter object that supports the default constraint
grammar described in “The Default Filter Constraint Language” on page 2-26. The
value that the constraint_grammar attribute is set to in case the target filter object
supports this default grammar will be “EXTENDED_TCL.” In addition,
implementations and/or end users may provide additional implementations of the
October 2004 Notification Service, v1.1: The CosNotifyFilter Module 3-19

3

MappingFilter interface that support different constraint grammars, and thus would
set the constraint_grammar attribute to a different value upon creation of such a
filter object.

3.2.2.2 value_type

The value_type attribute is a readonly attribute that identifies the datatype of the
property value that the target mapping filter object was designed to affect. Note that
the factory creation operation for mapping filter objects accepts as an input parameter
the default_value to associate with the mapping filter instance. This default_value
is a CORBA::Any. Upon creation of a mapping filter, the Typecode associated with
the default_value is extracted from the CORBA::Any, and its value is assigned to
this attribute. The value_type attribute thus serves mainly as a convenience for clients
attempting to examine the state of a mapping filter object.

3.2.2.3 default_value

The default_value attribute is a readonly attribute that will be the output parameter
returned as the result of any match operation during which the input event is found to
satisfy none of the constraints encapsulated by the mapping filter, within which the
constraints encapsulated by the target filter object have meaning. The value of this
attribute is set upon creation of a mapping filter object instance, based on the input
provided to the factory creation operation for the mapping filter instance.

3.2.2.4 add_mapping_contraints

The add_mapping_constraints operation is invoked by a client in order to
associate specific mapping constraints with the target filter object. Note that a mapping
constraint is comprised of a constraint structure paired with an associated value. The
operation accepts as input one parameter that is a sequence of constraint-value pairs.
Each constraint in this sequence must be expressed within the constraint grammar
supported by the target object, and each associated value must be of the data type
indicated by the value_type attribute of the target object.

Upon processing each element in the input sequence, the target object associates a
numeric identifier with this constraint-value pair that is unique among all those that it
encapsulates. If any of the constraint expressions in the input sequence is not a valid
expression within the supported constraint grammar, the InvalidConstraint exception
is raised. This exception contains as data the specific constraint that was determined to
be invalid. If any of the values supplied in the input sequence is not of the same
datatype as that indicated by the value_type attribute associated with the target
object, the InvalidValue exception is raised. This exception contains as data both the
invalid value and its corresponding constraint in the first input sequence. Upon
successful processing of all input constraints, the add_mapping_constraints
operation returns a sequence in which each element will be a structure including one of
the input constraint expressions, its corresponding value, and the unique identifier
assigned to this constraint-value pair by the target filter object.
3-20 Notification Service, v1.1 October 2004

3

Note that the semantics of the add_mapping_constraints operation are such that its
side-effects are performed atomically upon the target filter object. Once
add_mapping_constraints is invoked by a client, the target filter object is
temporarily disabled from usage by any proxy object it may be associated with. The
operation is then carried out, either successfully adding all of the input constraint-value
pairs to the target object or none of them (in case one of the input expressions or
values was invalid). Upon completion of the operation, the target filter object is
effectively re-enabled and can once again be used by associated filter objects in order
to make event property mapping decisions.

3.2.2.5 modify_mapping_constraints

The modify_mapping_constraints operation is invoked by a client in order to
modify the constraint-value pairs associated with the target filter object. This operation
can be used both to remove constraint-value pairs currently associated with the target
filter object, and to modify the constraints and/or values of constraint-value pairs that
have previously been added to the target filter object.

The operation accepts two input paramaters. The first input parameter is a sequence of
numeric values, which are each intended to be the unique identifier associated with one
of the constraint-value pairs currently encapsulated by the target filter object. If all
input values supplied within a particular invocation of this operation are valid, then the
specific constraint-value pairs identified by the values contained in the first input
parameter will be deleted from the list of those encapsulated by the target filter object.

The second input parameter to this operation is a sequence of structures, each of which
contains a constraint structure, an Any value, and a numeric identifier. The numeric
identifier contained by each element of the sequence is intended to be the unique
identifier associated with one of the constraint-value pairs currently encapsulated by
the target filter object. If all input values supplied within a particular invocation of this
operation are valid, then the constraint associated with the already encapsulated
constraint-value pair identified by the numeric identifier contained within each element
of the input sequence will be modified to the new constraint that is contained within
the same sequence element. Likewise, the data value associated with the already
encapsulated constraint-value pair identified by the numeric identifier contained within
each element of the input sequence will be modified to the new data value that is
contained in the same element of the sequence.

If any of the numeric identifiers supplied within either of the two input sequences does
not correspond to the unique identifier associated with some constraint-value pairs
currently encapsulated by the target filter object, the ConstraintNotFound exception
is raised. This exception contains as data the specific identifier that was supplied as
input but did not correspond to the identifier of some constraint-value pair
encapsulated by the target object. If any of the constraint expressions supplied within
an element of the second input sequence is not a valid expression in terms of the
constraint grammar supported by the target object, the InvalidConstraint exception is
raised. This exception contains as data the specific constraint that was determined to be
invalid. If any of the values supplied in the second input sequence is not of the same
October 2004 Notification Service, v1.1: The CosNotifyFilter Module 3-21

3

datatype as that indicated by the value_type attribute associated with the target
object, the InvalidValue exception is raised. This exception contains as data both the
invalid value and its corresponding constraint expression.

Note that the semantics of the modify_mapping_constraints operation are such
that its side-effects are performed atomically upon the target filter object. Once
modify_mapping_constraints is invoked by a client, the target filter object is
temporarily disabled from usage by any proxy object it may be associated with. The
operation is then carried out, either successfully deleting all of the constraint-value
pairs identified in the first input sequence and modifying the constraints and values
associated with constraints identified in the second input sequence, or performing no
side effects to the target object (in the case one of the inputs was invalid). Upon
completion of the operation, the target filter object is effectively re-enabled and can
once again be used by associated filter objects in order to make event property
mapping decisions.

3.2.2.6 get_mapping_constraints

The get_mapping_constraints operation is invoked to return a sequence of a subset
of the constraint-value pairs associated with the target filter object. The operation
accepts as input a sequence of numeric values that should correspond to the unique
identifiers of constraint-value pairs encapsulated by the target object. If one of the
input values does not correspond to the identifier of some encapsulated constraint-
value pair, the ConstraintNotFound exception is raised, containing as data the
numeric value that did not correspond to some such pair. Upon successful completion,
this operation returns a sequence of data structures, each of which contains one of the
input identifiers along with its associated constraint structure and constraint value.

3.2.2.7 get_all_mapping_constraints

The get_all_mapping_constraints operation returns all of the constraint-value
pairs currently encapsulated by the target filter object. The return value of this
operation is a sequence of structures, each of which contains one of the constraints
encapsulated by the target object along with its associated value and unique identifier.

3.2.2.8 remove_all_mapping_constraints

The remove_all_mapping_constraints operation is invoked to remove all of the
constraint-value pairs currently encapsulated by the target filter object. Upon
completion, the target filter object will still exist but have no constraint-value pairs
associated with it.

3.2.2.9 destroy

The destroy operation destroys the target filter object, invalidating its object
reference.
3-22 Notification Service, v1.1 October 2004

3

3.2.2.10 match

The match operation is invoked on an object supporting the MappingFilter interface
in order to determine how some property value of a particular event supplied to the
channel in the form of a CORBA::Any should be modified. The operation accepts an
Any as input, which contains the event being evaluated. Upon invocation, the target
mapping filter object begins applying the constraints it encapsulates in order according
to each constraints associated value, starting with the constraint with the “best”
associated value for the specific property the mapping filter object was designed to
affect (e.g., the highest priority, the longest lifetime, etc.), and ending with the
constraint with the “worst” associated value. Upon encountering a constraint that the
input filterable data matches, the operation sets the output parameter contained in its
signature to the value associated with the constraint, and sets the return value of the
operation to TRUE. If the input filterable data satisfies none of the constraints
encapsulated by the target mapping filter object, the return value of the operation is set
to FALSE, and the output parameter is set to the value of the default_value attribute
associated with the target mapping filter object. The act of determining whether or not
a given filterable event data passes a given filter constraint is specific to the type of
grammar in which the filter constraint is specified. Thus, this operation will need to be
re-implemented for each supported grammar.

If the input parameter contains data that the match operation is not designed to
handle, the UnsupportedFilterableData exception will be raised. An example of
this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.2.11 match_structured

The match_structured operation is invoked on an object supporting the
MappingFilter interface in order to determine how some property value of a
particular event supplied to the channel in the form of a Structured Event should be
modified. The operation accepts a CosNotification::StructuredEvent as input,
which contains the event being evaluated. Upon invocation, the target mapping filter
object begins applying the constraints it encapsulates in order according to each
constraints associated value, starting with the constraint with the “best” associated
value for the specific property the mapping filter object was designed to affect (e.g.,
the highest priority, the longest lifetime, etc.), and ending with the constraint with the
“worst” associated value. Upon encountering a constraint that the input filterable data
matches, the operation sets the output parameter contained in its signature to the value
associated with the constraint, and sets the return value of the operation to TRUE. If
the input filterable data satisfies none of the constraints encapsulated by the target
mapping filter object, the return value of the operation is set to FALSE, and the output
parameter is set to the value of the default_value attribute associated with the target
mapping filter object. The act of determining whether or not a given filterable event
data passes a given filter constraint is specific to the type of grammar in which the
filter constraint is specified. Thus, this operation will need to be re-implemented for
each supported grammar.
October 2004 Notification Service, v1.1: The CosNotifyFilter Module 3-23

3

If the input parameter contains data that the match operation is not designed to
handle, the UnsupportedFilterableData exception will be raised. An example of
this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.2.12 match_typed

The match_typed operation is invoked on an object supporting the MappingFilter
interface in order to determine how some property value of a particular event supplied
to the channel in the form of a typed event should be modified. The operation accepts
as input a sequence of name-value pairs, which contains the contents of the event to be
evaluated (how a typed event is converted to a sequence of name-value pairs by the
channel is described in “Filtering Typed Events” on page 2-55). Upon invocation, the
target mapping filter object begins applying the constraints it encapsulates in order
according to each constraints associated value, starting with the constraint with the
“best” associated value for the specific property the mapping filter object was designed
to affect (e.g., the highest priority, the longest lifetime, etc.), and ending with the
constraint with the “worst” associated value. Upon encountering a constraint that the
input filterable data matches, the operation sets the output parameter contained in its
signature to the value associated with the constraint, and sets the return value of the
operation to TRUE. If the input filterable data satisfies none of the constraints
encapsulated by the target mapping filter object, the return value of the operation is set
to FALSE, and the output parameter is set to the value of the default_value attribute
associated with the target mapping filter object. The act of determining whether or not
a given filterable event data passes a given filter constraint is specific to the type of
grammar in which the filter constraint is specified. Thus, this operation will need to be
re-implemented for each supported grammar.

If the input parameter contains data that the match operation is not designed to
handle, the UnsupportedFilterableData exception will be raised. An example of
this would be if the filterable data contained a field whose name corresponds to a
standard event field that has a numeric value, but the actual value associated with this
field name within the event is a string.

3.2.3 The FilterFactory Interface

The FilterFactory interface defines operations for creating filter objects.

3.2.3.1 create_filter

The create_filter operation is responsible for creating a new forwarding filter object.
It takes as input a string parameter that identifies the grammar in which constraints
associated with this filter will have meaning. If the client invoking this operation
supplies as input the name of a grammar that is not supported by any forwarding filter
implementation this factory is capable of creating, the InvalidGrammar exception is
3-24 Notification Service, v1.1 October 2004

3

raised. Otherwise, the operation returns the reference to an object supporting the Filter
interface, which can subsequently be configured to support constraints in the
appropriate grammar.

3.2.3.2 create_mapping_filter

The create_mapping_filter operation is responsible for creating a new mapping
filter object. It takes as input a string parameter that identifies the grammar in which
constraints associated with this filter will have meaning, and an Any that will be set as
the default_value of the newly created mapping filter. If the client invoking this
operation supplies as input the name of a grammar that is not supported by any
mapping filter implementation this factory is capable of creating, the
InvalidGrammar exception is raised. Otherwise, the operation returns the reference
to an object supporting the MappingFilter interface, which can subsequently be
configured to support constraints in the appropriate grammar, along with their
associated mapping values.

3.2.4 The FilterAdmin Interface

The FilterAdmin interface defines operations that enable an object supporting this
interface to manage a list of filter objects, each of which supports the Filter interface.
This interface is intended to be an abstract interface that is inherited by all of the
Proxy and Admin interfaces defined by the Notification Service. The difference in
the semantics between a list of filter objects that is associated with an Admin object,
and a list that is associated with a Proxy object, is described in “The Notification
Service Event Channel” on page 2-6.

3.2.4.1 add_filter

The add_filter operation accepts as input the reference to an object supporting the
Filter interface. The affect of this operation is that the input filter object is appended to
the list of filter objects associated with the target object upon which the operation was
invoked. The operation associates with the newly added filter object a numeric
identifier that is unique among all filter objects currently associated with the target,
and returns that value as the result of the operation.

3.2.4.2 remove_filter

The remove_filter operation accepts as input a numeric value that is intended to be
the unique identifier of a filter object that is currently associated with the target object.
If identifier supplied does correspond to a filter object currently associated with the
target object, then the corresponding filter object will be removed from the list of
filters associated with the target object. Otherwise, the FilterNotFound exception
will be raised.
October 2004 Notification Service, v1.1: The CosNotifyFilter Module 3-25

3

3.2.4.3 get_filter

The get_filter operation accepts as input a numeric identifier that is intended to
correspond to one of the filter objects currently associated with the target object. If this
is the case, the object reference of the corresponding filter object is returned.
Otherwise, the FilterNotFound exception is raised.

3.2.4.4 get_all_filters

The get_all_filters operation accepts no input parameters, and returns the list of
unique identifiers that correspond to all of the filters currently associated with the
target object.

3.2.4.5 remove_all_filters

The remove_all_filters operation accepts no input parameters, and removes all filter
objects from the list of those currently associated with the target object.

3.3 The CosNotifyComm Module

The CosNotifyComm module defines the interfaces that support Notification Service
clients that communicate using Anys, Structured Events, or sequences of Structured
Events. In addition, this module defines the interfaces that enable event suppliers to be
informed when the types of events being subscribed to by their associated consumers
change, and event consumers to be informed whenever there is a change in the types of
events being produced by their suppliers (this model is described in detail in “Sharing
Subscriptions” on page 2-52).

module CosNotifyComm {

exception InvalidEventType { CosNotification::_EventType type; };

interface NotifyPublish {

void offer_change (
in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeq removed)

raises (Invalid_EventType);

}; // NotifyPublish

interface NotifySubscribe {

void subscription_change(

in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeq removed)

raises (Invalid_EventType);

}; // NotifySubscribe
3-26 Notification Service, v1.1 October 2004

3

interface PushConsumer :
NotifyPublish,
CosEventComm::PushConsumer {

}; // PushConsumer

interface PullConsumer :
NotifyPublish,
CosEventComm::PullConsumer {

}; // PullConsumer

interface PullSupplier :
NotifySubscribe,
CosEventComm::PullSupplier {

}; // PullSupplier

interface PushSupplier :
NotifySubscribe,
CosEventComm::PushSupplier {

};

interface StructuredPushConsumer : NotifyPublish {

void push_structured_event(
in CosNotification::StructuredEvent notification)

raises(CosEventComm::Disconnected);

void disconnect_structured_push_consumer();

}; // StructuredPushConsumer

interface StructuredPullConsumer : NotifyPublish {
void disconnect_structured_pull_consumer();

}; // StructuredPullConsumer

interface StructuredPullSupplier : NotifySubscribe {

CosNotification::StructuredEvent pull_structured_event()
raises(CosEventComm::Disconnected);

CosNotification::StructuredEvent try_pull_structured_event(
out boolean has_event)

raises(CosEventComm::Disconnected);

void disconnect_structured_pull_supplier();

}; // StructuredPullSupplier

interface StructuredPushSupplier : NotifySubscribe {
void disconnect_structured_push_supplier();

}; // StructuredPushSupplier

interface SequencePushConsumer : NotifyPublish {

void push_structured_events(
in CosNotification::EventBatch notifications)
October 2004 Notification Service, v1.1: The CosNotifyComm Module 3-27

3

raises(CosEventComm::Disconnected);

void disconnect_sequence_push_consumer();

}; // SequencePushConsumer

interface SequencePullConsumer : NotifyPublish {
void disconnect_sequence_pull_consumer();

}; // SequencePullConsumer

interface SequencePullSupplier : NotifySubscribe {

CosNotification::EventBatch pull_structured_events(
in long max_number)

raises(CosEventComm::Disconnected);

CosNotification::EventBatch try_pull_structured_events(
in long max_number,
out boolean has_event)

raises(CosEventComm::Disconnected);

void disconnect_sequence_pull_supplier();

}; // SequencePullSupplier

interface SequencePushSupplier : NotifySubscribe {
void disconnect_sequence_push_supplier();

}; // SequencePushSupplier

}; // CosNotifyComm

3.3.1 The NotifyPublish Interface

The NotifyPublish interface supports an operation that allows a supplier of
Notifications to announce, or publish, the names of the types of events it will be
supplying. It is intended to be an abstract interface that is inherited by all Notification
Service consumer interfaces, and enables suppliers to inform consumers supporting
this interface of the types of events they intend to supply.

3.3.1.1 offer_change

The offer_change operation takes as input two sequences of event type names: the
first specifying those event types which the client of the operation (an event supplier)
is informing the target consumer object that it is adding to the list of event types it
plans to supply, and the second specifying those event types that the client no longer
plans to supply. This operation raises the InvalidEventType exception if one of the
event type names supplied in either input parameter is syntactically invalid. In this
case, the invalid name is returned in the type field of the exception.
3-28 Notification Service, v1.1 October 2004

3

Note that each event type name is comprised of two components: the name of the
domain in which the event type has meaning, and the name of the actual event type.
Also note that either component of a type name may specify a complete domain/event
type name, a domain/event type name containing the wildcard ‘*’ character, or the
special event type name “%ALL” described in “Special Event Types” on page 2-54.

3.3.2 The NotifySubscribe Interface

The NotifySubscribe interface supports an operation that allows a consumer of
notifications to inform suppliers of notifications of the types of notifications it wishes
to receive. It is intended to be an abstract interface that is inherited by all Notification
Service supplier interfaces. In essence, its main purpose is to enable notification
consumers to inform suppliers of the types of notifications that are of interest to them,
ultimately enabling the suppliers to avoid supplying notifications that are not of
interest to any consumer.

3.3.2.1 subscription_change

The subscription_change operation takes as input two sequences of event type
names: the first specifying those event types that the associated Consumer wants to add
to its subscription list, and the second specifying those event types that the associated
consumer wants to remove from its subscription list. This operation raises the
InvalidEventType exception if one of the event type names supplied in either input
parameter is syntactically invalid. If this case, the invalid name is returned in the type
field of the exception.

Note that each event type name is comprised of two components: the name of the
domain in which the event type has meaning, and the name of the actual event type.
Also note that either component of a type name may specify a complete domain/event
type name, a domain/event type name containing the wildcard ‘*’ character, or the
special event type name “%ALL” described in “Special Event Types” on page 2-54.

3.3.3 The PushConsumer Interface

The PushConsumer interface supports the functionality required by notification
service consumers that receive events as Anys using push-style communication. This
interface defines no new attributes or operations directly. Instead, it multiply inherits
the PushConsumer interface defined in the CosEventComm module of the OMG
Event Service, and the NotifyPublish interface described above. This enables push-
style consumers of Any events to also receive offer_change messages from the
channel, allowing it to learn about changes to the types of events being offered to the
channel by suppliers.

3.3.4 The PullConsumer Interface

The PullConsumer interface supports the functionality required by notification
service consumers that receive events as Anys using pull-style communication. This
interface defines no new attributes or operations directly. Instead, it multiply inherits
October 2004 Notification Service, v1.1: The CosNotifyComm Module 3-29

3

the PullConsumer interface defined in the CosEventComm module of the OMG
Event Service, and the NotifyPublish interface described above. This enables pull-
style consumers of Any events to also receive offer_change messages from the
channel, allowing it to learn about changes to the types of events being offered to the
channel by suppliers.

3.3.5 The PullSupplier Interface

The PullSupplier interface supports the functionality required by notification service
suppliers that transmit events as Anys using pull-style communication. This interface
defines no new attributes or operations directly. Instead, it multiply inherits the
PullSupplier interface defined in the CosEventComm module of the OMG Event
Service, and the NotifySubscribe interface described above. This enables pull-style
suppliers of Any events to also receive subscription_change messages from the
channel, allowing it to learn about changes to the types of events being subscribed to
by consumers connected to the channel.

3.3.6 The PushSupplier Interface

The PushSupplier interface supports the functionality required by notification
service suppliers that transmit events as Anys using push-style communication. This
interface defines no new attributes or operations directly. Instead, it multiply inherits
the PushSupplier interface defined in the CosEventComm module of the OMG
Event Service, and the NotifySubscribe interface described above. This enables
push-style suppliers of Any events to also receive subscription_change messages
from the channel, allowing it to learn about changes to the types of events being
subscribed to by consumers connected to the channel.

3.3.7 The StructuredPushConsumer Interface

The StructuredPushConsumer interface supports an operation that enables
consumers to receive Structured Events by the push model. It also defines an operation
that can be invoked to disconnect the push consumer from its associated supplier. In
addition, the StructuredPushConsumer interface inherits the NotifyPublish
interface described above, enabling a notification supplier to inform an instance
supporting this interface whenever there is a change to the types of events it intends to
produce.

Note that an object supporting the StructuredPushConsumer interface can receive
all events that were supplied to its associated channel, including events supplied in a
form other than a Structured Event. How events supplied to the channel in other forms
are internally mapped into a Structured Event for delivery to a
StructuredPushConsumer is summarized in Table 2-2 on page 2-10.
3-30 Notification Service, v1.1 October 2004

3

3.3.7.1 push_structured_event

The push_structured_event operation takes as input a parameter of type
StructuredEvent as defined in the CosNotification module. Upon invocation, this
parameter will contain an instance of a Structured Event being delivered to the
consumer by the supplier to which it is connected. If this operation is invoked upon a
StructuredPushConsumer instance that is not currently connected to the supplier
of the event, the Disconnected exception will be raised. Note that the condition that
a proxy supplier believes it is actively connected to a consumer, while the consumer
believes it is disconnected is an invalid state. Thus, if the invocation of
push_structured_event upon a StructuredPushConsumer instance by a
StructuredProxyPushSupplier instance results in the Disconnected exception
being raised, the StructuredProxyPushSupplier will invoke its own
disconnect_structured_push_supplier operation, resulting in the destruction of
that StructuredProxyPushSupplier instance.

In reality there are two types of objects that will support the
StructuredPushConsumer interface: an object representing an application that
receives Structured Events, and a StructuredProxyPushConsumer (defined in the
CosNotifyChannelAdmin module) associated with an event channel that receives
structured events from a supplier on behalf of the channel. For the first type of object,
the implementation of the push_structured_event operation is application specific,
and is intended to be supplied by application developers. For the second type of object,
the behavior of the operation is tightly linked to the implementation of the event
channel. Basically, it is responsible for applying any filters that have been registered
by with the StructuredProxyPushConsumer, then either discarding the event or
forwarding it to each proxy supplier within the channel depending on whether or not
the event passed the filter.

3.3.7.2 disconnect_structured_push_consumer

The disconnect_structured_push_consumer operation is invoked to terminate a
connection between the target StructuredPushConsumer and its associated
supplier. This operation takes no input parameters and returns no values. The result of
this operation is that the target StructuredPushConsumer will release all resources
it had allocated to support the connection, and dispose its own object reference.

3.3.8 The StructuredPullConsumer Interface

The StructuredPullConsumer interface supports the behavior of objects that receive
Structured Events using pull-style communication. It defines an operation that can be
invoked to disconnect the pull consumer from its associated supplier. In addition, the
StructuredPullConsumer interface inherits the NotifyPublish interface described
above, enabling a notification supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to produce.
October 2004 Notification Service, v1.1: The CosNotifyComm Module 3-31

3

Note that an object supporting the StructuredPullConsumer interface can receive
all events that were supplied to its associated channel, including events supplied in a
form other than a Structured Event. How events supplied to the channel in other forms
are internally mapped into a Structured Event for delivery to a
StructuredPullConsumer is summarized in Table 2-2 on page 2-10.

3.3.8.1 disconnect_structured_pull_consumer

The disconnect_structured_pull_consumer operation is invoked to terminate a
connection between the target StructuredPullConsumer and its associated supplier.
This operation takes no input parameters and returns no values. The result of this
operation is that the target StructuredPullConsumer will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.3.9 The StructuredPullSupplier Interface

The StructuredPullSupplier interface supports operations that enable suppliers to
transmit Structured Events by the pull model. It also defines an operation that can be
invoked to disconnect the pull supplier from its associated consumer. In addition, the
StructuredPullSupplier interface inherits the NotifySubscribe interface described
above, enabling a notification consumer to inform an instance supporting this interface
whenever there is a change to the types of events it is interested in receiving.

Note that an object supporting the StructuredPullSupplier interface can transmit
events that can potentially be received by any consumer connected to the channel,
including those that consume events in a form other than a Structured Event. How
events supplied to the channel in the form of a Structured Event are internally mapped
into different forms for delivery to consumers that receive events in a form other than
the Structured Event is summarized in Table 2-2 on page 2-10.

3.3.9.1 pull_structured_event

The pull_structured_event operation takes no input parameters, and returns a value
of type Structured Event as defined in the CosNotification module. Upon
invocation, the operation will block until an event is available for transmission, at
which time it will return an instance of a Structured Event, which contains the event
being delivered to its connected consumer. If invoked upon a
StructuredPullSupplier that is not currently connected to the consumer of the event,
the Disconnected exception will be raised. Note that the condition that a proxy
consumer believes it is actively connected to a supplier, while the supplier believes it
is disconnected is an invalid state. Thus, if the invocation of pull_structured_event
upon a StructuredPullSupplier instance by a StructuredProxyPullConsumer
instance results in the Disconnected exception being raised, the
StructuredProxyPullConsumer will invoke its own
disconnect_structured_pull_consumer operation, resulting in the destruction of
that StructuredProxyPullConsumer instance.
3-32 Notification Service, v1.1 October 2004

3

In reality there are two types of objects that will support the StructuredPullSupplier
interface: an object representing an application which transmits Structured Events, and
a StructuredProxyPullSupplier (defined in the CosNotifyChannelAdmin
module) associated with an event channel, which transmits events to a pull style
consumer on behalf of the channel. For the first type of object, the implementation of
the pull_structured_event operation is application specific, and is intended to be
supplied by application developers. The application specific implementation of this
operation should construct a structured event, and return it within a StructuredEvent
data structure. For the second type of object, the behavior of the operation is tightly
linked to the implementation of the event channel. Basically, it is responsible for
forwarding a structured event, within a StructuredEvent data structure, as the return
value to the consumer it is connected to upon the availability of an event that passes
the filter(s) associated with the StructuredProxyPullSupplier. Note that the
operation will block until such an event is available to return.

3.3.9.2 try_pull_structured_event

The try_pull_structured_event operation takes no input parameters, and returns a
value of type StructuredEvent as defined in the CosNotification module. It also
returns an output parameter of type boolean that indicates whether or not the return
value actually contains an event. Upon invocation, the operation will return an instance
of a Structured Event that contains the event being delivered to its connected
consumer, if such an event is available for delivery at the time the operation was
invoked. If an event is available for delivery and thus returned as the result, the output
parameter of the operation will be set to TRUE. If no event is available to return upon
invocation, the operation will return immediately with the value of the output
parameter set to FALSE. In this case, the return value will not contain a valid event. If
invoked upon a StructuredPullSupplier that is not currently connected to the
consumer of the event, the Disconnected exception will be raised. Note that the
condition that a proxy consumer believes it is actively connected to a supplier, while
the supplier believes it is disconnected is an invalid state. Thus, if the invocation of
try_pull_structured_event upon a StructuredPullSupplier instance by a
StructuredProxyPullConsumer instance results in the Disconnected exception
being raised, the StructuredProxyPullConsumer will invoke its own
disconnect_structured_pull_consumer operation, resulting in the destruction of
that StructuredProxyPullConsumer instance.

In reality there are two types of objects that will support the StructuredPullSupplier
interface: an object representing an application that transmits Structured Events, and a
StructuredProxyPullSupplier (defined within the CosNotifyChannelAdmin
module) associated with an event channel that transmits events to a PullConsumer on
behalf of the channel. For the first type of object, the implementation of the
try_pull_structured_event operation is application specific, and is intended to be
supplied by application developers. If an event is available to be returned upon
invocation of this operation, the application specific implementation of this operation
should construct a Structured Event, and return it within a StructuredEvent data
structure along with setting the value of the output parameter to TRUE. Otherwise, the
operation should return immediately after setting the value of the output parameter to
FALSE. For the second type of object, the behavior of the operation is tightly linked to
October 2004 Notification Service, v1.1: The CosNotifyComm Module 3-33

3

the implementation of the event channel. Basically, if an event is available to be
returned upon invocation of this operation, it is responsible for forwarding it, within a
StructuredEvent data structure, as the return value to the consumer it is connected
to, in addition to setting the output parameter to FALSE. If no event is available to
return to the consumer upon invocation of this operation, it will immediately return
with the output parameter to set to FALSE, and the return value not containing a valid
event.

3.3.9.3 disconnect_structured_pull_supplier

The disconnect_structured_pull_supplier operation is invoked to terminate a
connection between the target StructuredPullSupplier and its associated consumer.
This operation takes no input parameters and returns no values. The result of this
operation is that the target StructuredPullSupplier will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.3.10 The StructuredPushSupplier Interface

The StructuredPushSupplier interface supports the behavior of objects that
transmit Structured Events using push-style communication. It defines an operation
that can be invoked to disconnect the push supplier from its associated consumer. In
addition, the StructuredPushSupplier interface inherits the NotifySubscribe
interface described above, enabling a notification consumer to inform an instance
supporting this interface whenever there is a change to the types of events it is
interested in receiving.

Note that an object supporting the StructuredPushSupplier interface can transmit
events that can potentially be received by any consumer connected to the channel,
including those that consume events in a form other than a Structured Event. How
events supplied to the channel in the form of a Structured Event are internally mapped
into different forms for delivery to consumers that receive events in a form other than
the Structured Event is summarized in Table 2-2 on page 2-10.

3.3.10.1 disconnect_structured_push_supplier

The disconnect_structured_push_supplier operation is invoked to terminate a
connection between the target StructuredPushSupplier and its associated consumer.
This operation takes no input parameters and returns no values. The result of this
operation is that the target StructuredPushSupplier will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.3.11 The SequencePushConsumer Interface

The SequencePushConsumer interface supports an operation that enables
consumers to receive sequences Structured Events by the push model. It also defines
an operation that can be invoked to disconnect the push consumer from its associated
supplier. In addition, the SequencePushConsumer interface inherits the
3-34 Notification Service, v1.1 October 2004

3

NotifyPublish interface described above, enabling a notification supplier to inform an
instance supporting this interface whenever there is a change to the types of events it
intends to produce.

Note that an object supporting the SequencePushConsumer interface can receive
all events that were supplied to its associated channel, including events supplied in a
form other than a sequence of Structured Events. How events supplied to the channel
in other forms are internally mapped into a sequence of Structured Events for delivery
to a SequencePushConsumer is summarized in Table 2-2 on page 2-10.

3.3.11.1 push_structured_events

The push_structured_events operation takes as input a parameter of type
EventBatch as defined in the CosNotification module. This data type is the same as
a sequence of Structured Events. Upon invocation, this parameter will contain a
sequence of Structured Events being delivered to the consumer by the supplier to
which it is connected. If this operation is invoked upon a SequencePushConsumer
instance that is not currently connected to the supplier of the event, the
Disconnected exception will be raised. Note that the condition that a proxy supplier
believes it is actively connected to a consumer, while the consumer believes it is
disconnected is an invalid state. Thus, if the invocation of push_structured_events
upon a SequencePushConsumer instance by a SequenceProxyPushSupplier
instance results in the Disconnected exception being raised, the
SequenceProxyPushSupplier will invoke its own
disconnect_sequence_push_supplier operation, resulting in the destruction of
that SequenceProxyPushSupplier instance.

Note that the maximum number of events that will be transmitted within a single
invocation of this operation, along with the amount of time a supplier of a sequence of
Structured Events will accumulate individual events into the sequence before invoking
this operation, are controlled by QoS property settings as described in “Notification
QoS Properties” on page 2-40.

In reality there are two types of objects that will support the
SequencePushConsumer interface: an object representing an application that
receives sequences of Structured Events, and a SequenceProxyPushConsumer
(defined in the CosNotifyChannelAdmin module) associated with an event channel,
which receives sequences of Structured Events from a supplier on behalf of the
channel. For the first type of object, the implementation of the
push_structured_events operation is application specific, and is intended to be
supplied by application developers. For the second type of object, the behavior of the
operation is tightly linked to the implementation of the event channel. Basically, it is
responsible for applying any filters that have been registered by with the
SequenceProxyPushConsumer to each event in each sequence it receives, then
either discarding each event or forwarding it to each proxy supplier within the channel
depending on whether or not the event passed the filter.
October 2004 Notification Service, v1.1: The CosNotifyComm Module 3-35

3

3.3.11.2 disconnect_sequence_push_consumer

The disconnect_sequence_push_consumer operation is invoked to terminate a
connection between the target SequencePushConsumer and its associated supplier.
This operation takes no input parameters and returns no values. The result of this
operation is that the target SequencePushConsumer will release all resources it
had allocated to support the connection, and dispose its own object reference.

3.3.12 The SequencePullConsumer Interface

The SequencePullConsumer interface supports the behavior of objects that receive
sequences of Structured Events using pull-style communication. It defines an operation
that can be invoked to disconnect the pull consumer from its associated supplier. In
addition, the SequencePullConsumer interface inherits the NotifyPublish
interface described above, enabling a notification supplier to inform an instance
supporting this interface whenever there is a change to the types of events it intends to
produce.

Note that an object supporting the SequencePullConsumer interface can receive all
events that were supplied to its associated channel, including events supplied in a form
other than a sequence of Structured Events. How events supplied to the channel in
other forms are internally mapped into a sequence of Structured Events for delivery to
a SequencePullConsumer is summarized in Table 2-2 on page 2-10.

3.3.12.1 disconnect_sequence_pull_consumer

The disconnect_sequence_pull_consumer operation is invoked to terminate a
connection between the target SequencePullConsumer and its associated supplier.
This operation takes no input parameters and returns no values. The result of this
operation is that the target SequencePullConsumer will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.3.13 The SequencePullSupplier Interface

The SequencePullSupplier interface supports operations that enable suppliers to
transmit sequences of Structured Events by the pull model. It also defines an operation
that can be invoked to disconnect the pull supplier from its associated consumer. In
addition, the SequencePullSupplier interface inherits the NotifySubscribe
interface described above, enabling a notification consumer to inform an instance
supporting this interface whenever there is a change to the types of events it is
interested in receiving.

Note that an object supporting the SequencePullSupplier interface can transmit
events that can potentially be received by any consumer connected to the channel,
including those that consume events in a form other than a sequence of Structured
Events. How events supplied to the channel in the form of a sequence of Structured
Events are internally mapped into different forms for delivery to consumers that
receive events in a form other than a sequence of Structured Events is summarized in
Table 2-2 on page 2-10.
3-36 Notification Service, v1.1 October 2004

3

3.3.13.1 pull_structured_events

The pull_structured_events operation takes as an input parameter a numeric value,
and returns a value of type EventBatch as defined in the CosNotification module.
This data type is the same as a sequence of Structured Events. Upon invocation, the
operation will block until a sequence of Structured Events is available for transmission,
at which time it will return the sequence containing events being delivered to its
connected consumer. If invoked upon a SequencePullSupplier that is not currently
connected to the consumer of the event, the Disconnected exception will be raised.
Note that the condition that a proxy consumer believes it is actively connected to a
supplier, while the supplier believes it is disconnected is an invalid state. Thus, if the
invocation of pull_structured_events upon a SequencePullSupplier instance by
a SequenceProxyPullConsumer instance results in the Disconnected exception
being raised, the SequenceProxyPullConsumer will invoke its own
disconnect_sequence_pull_consumer operation, resulting in the destruction of
that SequenceProxyPullConsumer instance.

Note that the maximum length of the sequence returned will never exceed the value of
the input parameter. In addition, when this operation is invoked upon a
SequenceProxyPullSupplier, the amount of time the supplier will accumulate
events into the sequence before transmitting it is controlled by the PacingInterval
QoS property described in “Notification QoS Properties” on page 2-40. In this case,
the proxy will never return a sequence of less than MaximumBatchSize events until
at least PacingInterval amount of time has elapsed after the request was received by
the proxy. However if no events arrived at the proxy during a particular
PacingInterval, the request will block until at least one event arrives at the proxy.
Also note that MaximumBatchSize places an upper boundary on the total number of
events the proxy will return within an invocation. If the input parameter indicates more
than MaximumBatchSize events are being requested, the request will be treated as
though the input parameter was equivalent to MaximumBatchSize.

In reality there are two types of objects that will support the SequencePullSupplier
interface: an object representing an application that transmits sequences of Structured
Events, and a SequenceProxyPullSupplier (defined in the
CosNotifyChannelAdmin module) associated with an event channel that transmits
events to a pull style consumer on behalf of the channel. For the first type of object,
the implementation of the pull_structured_events operation is application specific,
and is intended to be supplied by application developers. The application specific
implementation of this operation should construct a sequence of Structured Events, and
return it within an EventBatch data structure. For the second type of object, the
behavior of the operation is tightly linked to the implementation of the event channel.
Basically, it is responsible for forwarding a sequence of Structured Events, within an
EventBatch data structure, as the return value to the consumer it is connected to upon
the availability of events that pass the filter(s) associated with the
SequenceProxyPullSupplier.
October 2004 Notification Service, v1.1: The CosNotifyComm Module 3-37

3

3.3.13.2 try_pull_structured_events

The try_pull_structured_events operation takes as an input parameter a numeric
value, and returns a value of type EventBatch as defined in the CosNotification
module. This data type is the same as a sequence of Structured Events. The operation
also returns an output parameter of type boolean that indicates whether or not the
return value actually contains a sequence of events. Upon invocation, the operation
will return a sequence of Structured Events that contains events being delivered to its
connected consumer, if such a sequence is available for delivery at the time the
operation was invoked. If an event sequence is available for delivery and thus returned
as the result, the output parameter of the operation will be set to TRUE. If no event
sequence is available to return upon invocation, the operation will return immediately
with the value of the output parameter set to FALSE. In this case, the return value will
not contain a valid event sequence. If invoked upon a SequencePullSupplier that is
not currently connected to the consumer of the event, the Disconnected exception
will be raised. Note that the condition that a proxy consumer believes it is actively
connected to a supplier, while the supplier believes it is disconnected is an invalid
state. Thus, if the invocation of try_pull_structured_events upon a
SequencePullSupplier instance by a SequenceProxyPullConsumer instance
results in the Disconnected exception being raised, the
SequenceProxyPullConsumer will invoke its own
disconnect_sequence_pull_consumer operation, resulting in the destruction of
that SequenceProxyPullConsumer instance.

Note that the maximum length of the sequence returned will never exceed the value of
the input parameter. Also note that MaximumBatchSize places an upper boundary on
the total number of events the proxy will return within an invocation. If the input
parameter indicates more than MaximumBatchSize events are being requested, the
request will be treated as though the input parameter was equivalent to
MaximumBatchSize.

In reality there are two types of objects that will support the SequencePullSupplier
interface: an object representing an application that transmits sequences of Structured
Events, and a SequenceProxyPullSupplier (defined within the
CosNotifyChannelAdmin module) associated with an event channel that transmits
events to a PullConsumer on behalf of the channel. For the first type of object, the
implementation of the try_pull_structured_events operation is application specific,
and is intended to be supplied by application developers. If an event sequence is
available to be returned upon invocation of this operation, the application specific
implementation of this operation should construct an EventBatch instance, and return
it along with setting the value of the output parameter to TRUE. Otherwise, the
operation should return immediately after setting the value of the output parameter to
FALSE. For the second type of object, the behavior of the operation is tightly linked to
the implementation of the event channel. Basically, if an event sequence is available to
be returned upon invocation of this operation, it is responsible for forwarding it, within
an EventBatch data structure, as the return value to the consumer it is connected to,
in addition to setting the output parameter to FALSE. If no event sequence is available
to return to the consumer upon invocation of this operation, it will immediately return
with the output parameter to set to FALSE, and the return value not containing a valid
event.
3-38 Notification Service, v1.1 October 2004

3

3.3.13.3 disconnect_sequence_pull_supplier

The disconnect_sequence_pull_supplier operation is invoked to terminate a
connection between the target SequencePullSupplier, and its associated consumer.
This operation takes no input parameters and returns no values. The result of this
operation is that the target SequencePullSupplier will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.3.14 The SequencePushSupplier Interface

The SequencePushSupplier interface supports the behavior of objects that transmit
sequences of Structured Events using push-style communication. It defines an
operation that can be invoked to disconnect the push supplier from its associated
consumer. In addition, the SequencePushSupplier interface inherits the
NotifySubscribe interface described above, enabling a notification consumer to
inform an instance supporting this interface whenever there is a change to the types of
events it is interested in receiving.

Note that an object supporting the SequencePushSupplier interface can transmit
events that can potentially be received by any consumer connected to the channel,
including those that consume events in a form other than a sequence of Structured
Events. How events supplied to the channel in the form of a sequence of Structured
Events are internally mapped into different forms for delivery to consumers that
receive events in a form other than a sequence of Structured Events is summarized in
Table 2-2 on page 2-10.

3.3.14.1 disconnect_sequence_push_supplier

The disconnect_sequence_push_supplier operation is invoked to terminate a
connection between the target SequencePushSupplier and its associated consumer.
This operation takes no input parameters and returns no values. The result of this
operation is that the target SequencePushSupplier will release all resources it had
allocated to support the connection, and dispose its own object reference.

3.4 The CosNotifyChannelAdmin Module

The CosNotifyChannelAdmin module defines the interfaces necessary to create,
configure, and administer instances of a Notification Service event channel. It defines
the different types of proxy interfaces that support connections from the various types
of clients that are supported, the Admin interfaces, the EventChannel interface, and
a factory interface for instantiating new channels.

module CosNotifyChannelAdmin {

exception ConnectionAlreadyActive {};
exception ConnectionAlreadyInactive {};
exception NotConnected {};

// Forward declarations
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-39

3

interface ConsumerAdmin;
interface SupplierAdmin;
interface EventChannel;
interface EventChannelFactory;

enum ProxyType {
PUSH_ANY,
PULL_ANY,
PUSH_STRUCTURED,
PULL_STRUCTURED,
PUSH_SEQUENCE,
PULL_SEQUENCE,
PUSH_TYPED,
PULL_TYPED

};

enum ObtainInfoMode {
ALL_NOW_UPDATES_OFF,
ALL_NOW_UPDATES_ON,
NONE_NOW_UPDATES_OFF,
NONE_NOW_UPDATES_ON

};

interface ProxyConsumer :
CosNotification::QoSAdmin,
CosNotifyFilter::FilterAdmin {

readonly attribute ProxyType MyType;
readonly attribute SupplierAdmin MyAdmin;

CosNotification::EventTypeSeq obtain_subscription_types(
in ObtainInfoMode mode);

void validate_event_qos (
 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq available_qos)

raises (CosNotification::UnsupportedQoS);

}; // ProxyConsumer

interface ProxySupplier :
CosNotification::QoSAdmin,
CosNotifyFilter::FilterAdmin {

readonly attribute ProxyType MyType;
readonly attribute ConsumerAdmin MyAdmin;

attribute CosNotifyFilter::MappingFilter priority_filter;
attribute CosNotifyFilter::MappingFilter lifetime_filter;

CosNotification::EventTypeSeq obtain_offered_types(
in ObtainInfoMode mode);

void validate_event_qos (
3-40 Notification Service, v1.1 October 2004

3

 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq available_qos)

raises (CosNotification::UnsupportedQoS);

}; // ProxySupplier

interface ProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::PushConsumer {

void connect_any_push_supplier (
in CosEventComm::PushSupplier push_supplier)

raises(CosEventChannelAdmin::AlreadyConnected);

}; // ProxyPushConsumer

interface StructuredProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::StructuredPushConsumer {

void connect_structured_push_supplier (
in CosNotifyComm::StructuredPushSupplier push_supplier)

raises(CosEventChannelAdmin::AlreadyConnected);

}; // StructuredProxyPushConsumer

interface SequenceProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::SequencePushConsumer {

void connect_sequence_push_supplier (
in CosNotifyComm::SequencePushSupplier push_supplier)

raises(CosEventChannelAdmin::AlreadyConnected);

}; // SequenceProxyPushConsumer

interface ProxyPullSupplier :
ProxySupplier,
CosNotifyComm::PullSupplier {

void connect_any_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)

raises(CosEventChannelAdmin::AlreadyConnected);

}; // ProxyPullSupplier

interface StructuredProxyPullSupplier :
ProxySupplier,
CosNotifyComm::StructuredPullSupplier {

void connect_structured_pull_consumer (
in CosNotifyComm::StructuredPullConsumer pull_consumer)

raises(CosEventChannelAdmin::AlreadyConnected);
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-41

3

}; // StructuredProxyPullSupplier

interface SequenceProxyPullSupplier :
ProxySupplier,
CosNotifyComm::SequencePullSupplier {

void connect_sequence_pull_consumer (
in CosNotifyComm::SequencePullConsumer pull_consumer)

raises(CosEventChannelAdmin::AlreadyConnected);

}; // SequenceProxyPullSupplier

interface ProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::PullConsumer {

void connect_any_pull_supplier (
in CosEventComm::PullSupplier pull_supplier)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // ProxyPullConsumer

interface StructuredProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::StructuredPullConsumer {

void connect_structured_pull_supplier (
in CosNotifyComm::StructuredPullSupplier pull_supplier)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // StructuredProxyPullConsumer

interface SequenceProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::SequencePullConsumer {

void connect_sequence_pull_supplier (
in CosNotifyComm::SequencePullSupplier pull_supplier)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);
3-42 Notification Service, v1.1 October 2004

3

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // SequenceProxyPullConsumer

interface ProxyPushSupplier :
ProxySupplier,
CosNotifyComm::PushSupplier {

void connect_any_push_consumer (
in CosEventComm::PushConsumer push_consumer)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // ProxyPushSupplier

interface StructuredProxyPushSupplier :
ProxySupplier,
CosNotifyComm::StructuredPushSupplier {

void connect_structured_push_consumer (
in CosNotifyComm::StructuredPushConsumer push_consumer)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // StructuredProxyPushSupplier

interface SequenceProxyPushSupplier :
ProxySupplier,
CosNotifyComm::SequencePushSupplier {

void connect_sequence_push_consumer (
in CosNotifyComm::SequencePushConsumer push_consumer)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-43

3

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // SequenceProxyPushSupplier

typedef long ProxyID;
typedef sequence <ProxyID> ProxyIDSeq;

enum ClientType {
ANY_EVENT,
STRUCTURED_EVENT,
SEQUENCE_EVENT

};

enum InterFilterGroupOperator { AND_OP, OR_OP };

typedef long AdminID;
typedef sequence<AdminID> AdminIDSeq;

exception AdminNotFound {};
exception ProxyNotFound {};

struct AdminLimit {
CosNotification::PropertyName name;
CosNotification::PropertyValue value;

};

exception AdminLimitExceeded { AdminLimit admin_property_err; };

interface ConsumerAdmin :
CosNotification::QoSAdmin,
CosNotifyComm::NotifySubscribe,
CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin::ConsumerAdmin {

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

attribute CosNotifyFilter::MappingFilter priority_filter;
attribute CosNotifyFilter::MappingFilter lifetime_filter;

readonly attribute ProxyIDSeq pull_suppliers;
readonly attribute ProxyIDSeq push_suppliers;

ProxySupplier get_proxy_supplier (
in ProxyID proxy_id)

raises (ProxyNotFound);

ProxySupplier obtain_notification_pull_supplier (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded);
3-44 Notification Service, v1.1 October 2004

3

ProxySupplier obtain_notification_push_supplier (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded);

void destroy();

}; // ConsumerAdmin

interface SupplierAdmin :
CosNotification::QoSAdmin,
CosNotifyComm::NotifyPublish,
CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin::SupplierAdmin {

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

readonly attribute ProxyIDSeq pull_consumers;
readonly attribute ProxyIDSeq push_consumers;

ProxyConsumer get_proxy_consumer (
in ProxyID proxy_id)

raises (ProxyNotFound);

ProxyConsumer obtain_notification_pull_consumer (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded);

ProxyConsumer obtain_notification_push_consumer (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded);

void destroy();

}; // SupplierAdmin

interface EventChannel :
CosNotification::QoSAdmin,
CosNotification::AdminPropertiesAdmin,
CosEventChannelAdmin::EventChannel {

readonly attribute EventChannelFactory MyFactory;

readonly attribute ConsumerAdmin default_consumer_admin;
readonly attribute SupplierAdmin default_supplier_admin;

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-45

3

ConsumerAdmin new_for_consumers(
in InterFilterGroupOperator op,
out AdminID id);

SupplierAdmin new_for_suppliers(
in InterFilterGroupOperator op,
out AdminID id);

ConsumerAdmin get_consumeradmin (in AdminID id)
raises (AdminNotFound);

SupplierAdmin get_supplieradmin (in AdminID id)
raises (AdminNotFound);

AdminIDSeq get_all_consumeradmins();
AdminIDSeq get_all_supplieradmins();

}; // EventChannel

typedef long ChannelID;
typedef sequence<ChannelID> ChannelIDSeq;

exception ChannelNotFound {};

interface EventChannelFactory {

EventChannel create_channel (
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin,
out ChannelID id)

raises(CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

ChannelIDSeq get_all_channels();

EventChannel get_event_channel (in ChannelID id)
raises (ChannelNotFound);

}; // EventChannelFactory

}; // CosNotifyChannelAdmin

3.4.1 The ProxyConsumer Interface

The ProxyConsumer interface is intended to be an abstract interface that is inherited
by the different varieties of proxy consumers that can be instantiated within a
notification channel. It encapsulates the behaviors common to all Notification Service
proxy consumers. In particular, the ProxyConsumer interface inherits the
QoSAdmin interface defined within the CosNotification module, and the
FilterAdmin interface defined within the CosNotifyFilter module. The former
inheritance enables all proxy consumers to administer a list of associated QoS
properties, while the latter inheritance enables all proxy consumers to administer a list
of associated filter objects. Locally, the ProxyConsumer interface defines a readonly
3-46 Notification Service, v1.1 October 2004

3

attribute that should be set upon creation of each proxy consumer instance to indicate
the specific type of proxy consumer the instance represents, and a readonly attribute
that maintains a reference to the SupplierAdmin object that created it. In addition,
the ProxyConsumer interface defines an operation that returns the list of event types
a given proxy consumer instance is configured to forward, and an operation that can be
queried to determine which message level QoS properties can be set on a per-event
basis.

3.4.1.1 MyType

The MyType attribute is a readonly attribute that should be set upon creation of each
proxy consumer instance to indicate the specific type of proxy consumer the instance
represents. Enumerations are possible to distinguish the type of proxy consumer among
the following possibilities: ProxyPushConsumer, ProxyPullConsumer,
StructuredProxyPushConsumer, StructuredProxyPullConsumer,
SequenceProxyPushConsumer, SequenceProxyPullConsumer,
TypedProxyPushConsumer, and TypedProxyPullConsumer.

3.4.1.2 MyAdmin

The MyAdmin attribute is a readonly attribute that should be set upon creation of each
proxy consumer instance to maintain the reference of the instance supporting the
SupplierAdmin interface that created it.

3.4.1.3 obtain_subscription_types

The obtain_subscription_types operation returns a list of event type names. This
returned list represents the names of event types that consumers connected to the
channel are interested in receiving. Consumers express their interest in receiving
particular types of events by configuring filters associated with the proxy suppliers to
which they are connected to encapsulate constraints that express subscriptions to
specific event instances. Such subscriptions could be based on the types and/or
contents of events. The proxy suppliers extract the event type information from these
subscriptions, and share it with the proxy consumer objects connected to the same
channel. Supplier objects can thus obtain this information from the channel by
invoking the obtain_subscription_types operation on the proxy consumer object to
which they are connected. This information enables suppliers to suppress sending types
of events to the channel in which no consumer is currently interested.

Note that suppliers can also receive updates to subscription information automatically
by enabling the channel to invoke the subscription_change operation they support
through inheritence of the CosNotifyComm::NotifySubscribe interface each time a
new type of event is added or removed through modification of filters. The
obtain_subscription_types operation accepts as input a flag that enables
synchronization between the subscription information obtained through these
automatic updates, and that obtained through invocation of
obtain_subscription_types.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-47

3

The table below summarizes the possible values and associated meanings this flag can
take on.

3.4.1.4 validate_event_qos

The validate_event_qos operation accepts as input a sequence of QoS property
name-value pairs that specify a set of QoS settings that a client is interested in setting
on a per-event basis. Note that the QoS property settings contained in the optional
header fields of a Structured Event may differ from those that are configured on a
given proxy object. This operation is essentially a check to see if the target proxy
object will honor the setting of a set of QoS properties on a per-event basis to values
that may conflict with those set on the proxy itself. If any of the requested settings
would not be honored by the target object on a per-event basis, the operation raises the
UnsupportedQoS exception. This exception contains as data a sequence of data
structures, each of which identifies the name of a QoS property in the input list whose
requested setting could not be satisfied, along with an error code and a range of
settings for the property that could be satisfied. The meanings of the error codes that
might be returned are described in Table 2-6 on page 2-49.

If all requested QoS property value settings could be satisfied by the target object, the
operation returns successfully with an output parameter that contains a sequence of
PropertyRange data structures. Each element in this sequence includes the name of a
an additional QoS property whose setting is supported by the target object on a per-
event basis and which could have been included on the input list while still resulting in
a successful return from the operation. Each element also includes the range of values
that would have been acceptable for each such property.

Table 3-1 Possible values and associated meanings for “mode” argument

Value Meaning

ALL_NOW_UPDATES_OFF The invocation should return the current list of subscription types known
by the target proxy consumer, but subsequent automatic sending of
subscription update information should be disabled.

ALL_NOW_UPDATES_ON The invocation should return the current list of subscription types known
by the proxy consumer, and subsequent automatic sending of
subscription update information should be enabled. Note these two
actions should be atomic, guaranteeing that the supplier connected to the
proxy consumer does not miss any subscription change updates that may
be issued after the operation returns.

NONE_NOW_UPDATES_OFF The invocation should not return any data, and should disable the
subsequent automatic sending of subscription update information.

NONE_NOW_UPDATES_ON The invocation should not return any data, but should enable the
subsequent automatic sending of subscription update information.
3-48 Notification Service, v1.1 October 2004

3

3.4.2 The ProxySupplier Interface

The ProxySupplier interface is intended to be an abstract interface that is inherited
by the different varieties of proxy suppliers that can be instantiated within a
notification channel. It encapsulates the behaviors common to all Notification Service
proxy suppliers. In particular, the ProxySupplier interface inherits the QoSAdmin
interface defined within the CosNotification module, and the FilterAdmin interface
defined within the CosNotifyFilter module. The former inheritance enables all proxy
suppliers to administer a list of associated QoS properties, while the latter inheritance
enables all proxy suppliers to administer a list of associated filter objects. Locally, the
ProxySupplier interface defines a readonly attribute that should be set upon creation
of each proxy supplier instance to indicate the specific type of proxy supplier the
instance represents, and a readonly attribute that maintains a reference to the
ConsumerAdmin object that created it. In addition, the ProxySupplier interface
defines attributes that associate with each proxy supplier two mapping filter objects,
one for priority and one for lifetime. As described in “Mapping Filter Objects” on
page 2-24, these mapping filter objects enable proxy suppliers to be configured to alter
the way they treat events with respect to their priority and lifetime based on the type
and contents of each individual event. Lastly, the ProxySupplier interface defines an
operation that returns the list of event types that a given proxy supplier could
potentially forward to its associated consumer, and an operation that can be queried to
determine which message level QoS properties can be set on a per-event basis.

3.4.2.1 MyType

The MyType attribute is a readonly attribute that should be set upon creation of each
proxy supplier instance to indicate the specific type of proxy supplier the instance
represents. Enumerations are possible to distinguish the type of proxy supplier among
the following possibilities: ProxyPushSupplier, ProxyPullSupplier,
StructuredProxyPushSupplier, StructuredProxyPullSupplier,
SequenceProxyPushSupplier, SequenceProxyPullSupplier,
TypedProxyPushSupplier, and TypedProxyPullSupplier.

3.4.2.2 MyAdmin

The MyAdmin attribute is a readonly attribute that should be set upon creation of each
proxy supplier instance to maintain the reference of the instance supporting the
ConsumerAdmin interface that created it.

3.4.2.3 priority_filter

The priority_filter attribute contains a reference to an object supporting the
MappingFilter interface defined in the CosNotifyFilter module. Such an object
encapsulates a list of constraint-value pairs, where each constraint is a boolean
expression based on the type and contents of an event, and the value is a possible
priority setting for the event. Upon receipt of each event by a proxy supplier object
whose priority_filter attribute contains a non-nil reference, the proxy supplier will
invoke the appropriate variant of the match operation supported by the mapping filter
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-49

3

object. The mapping filter object will proceed to apply its encapsulated constraints to
the event, and return the one with the highest associated priority setting that evaluates
to TRUE, or else its associated default_value if no constraints evaluate to TRUE.
Upon return from the match operation, if the output parameter is TRUE, the proxy
supplier treats the event with respect to its priority according to the return value, as
opposed to a priority setting contained within the event. If the output parameter is
FALSE, the proxy supplier will treat the event with respect to its priority according to
the value set for the priority property in the event header if this property is present,
otherwise it will use the output parameter returned from the match operation (i.e., the
default value of the mapping filter object).

3.4.2.4 lifetime_filter

The lifetime_filter attribute contains a reference to an object supporting the
MappingFilter interface defined in the CosNotifyFilter module. Such an object
encapsulates a list of constraint-value pairs, where each constraint is a boolean
expression based on the type and contents of an event, and the value is a possible
lifetime setting for the event. Upon receipt of each event by a proxy supplier object
whose lifetime_filter attribute contains a non-nil reference, the proxy supplier will
invoke the appropriate variant of the match operation supported by the mapping filter
object. The mapping filter object will proceed to apply its encapsulated constraints to
the event, and return the one with the highest associated lifetime setting that evaluates
to TRUE, or else its associated default_value if no constraints evaluate to TRUE.
Upon return from the match operation, if the output parameter is TRUE, the proxy
supplier treats the event with respect to its lifetime according to the return value, as
opposed to a lifetime setting contained within the event. If the output parameter is
FALSE, the proxy supplier will treat the event with respect to its lifetime according to
the value set for the lifetime property in the event header if this property is present,
otherwise it will use the output parameter returned from the match operation (i.e., the
default value of the mapping filter object).

3.4.2.5 obtain_offered_types

The obtain_offered_types operation returns a list of event type names. Each
element of the returned list names a type of event that the target proxy supplier object
could potentially forward to its associated consumer. Note that through inheritance, all
proxy consumer objects will support the NotifyPublish interface defined in the
CosNotifyComm module. This interface supports the offer_change operation,
which can be invoked by suppliers each time there is a change to the list of event types
they plan to supply to their associated consumer. Thus, this mechanism relies on event
suppliers keeping the channel informed of the types of events they plan to supply by
invoking the offer_change operation on their associated proxy consumer object.
Internally to the channel, the proxy consumers will share the information about event
types that will be supplied to the channel with the proxy supplier objects associated
with the channel. This enables consumers to discover the types of events that could be
supplied to them by the channel by invoking the obtain_offered_types operation on
their associated proxy supplier.
3-50 Notification Service, v1.1 October 2004

3

Note that as mentioned above, consumers can also receive updates to offer information
automatically by enabling the channel to invoke the offer_change operation they
support through inheritance of the CosNotifyComm::NotifyPublish interface each
time a supplier informs the channel of a change to the types of events they plan to
supply. The obtain_offered_types operation accepts as input a flag that enables
synchronization between the offer information obtained through these automatic
updates, and that obtained through invocation of obtain_offered_types. The
possible values and associated meanings this flag can take on are similar to those
summarized in Table 3-1 on page 3-48, except that the information being shared is
“offer” information instead of “subscription” information.

3.4.2.6 validate_event_qos

The validate_event_qos operation accepts as input a sequence of QoS property
name-value pairs that specify a set of QoS settings that a client is interested in setting
on a per-event basis. Note that the QoS property settings contained in the optional
header fields of a Structured Event may differ from those that are configured on a
given proxy object. This operation is essentially a check to see if the target proxy
object will honor the setting of a set of QoS properties on a per-event basis to values
that may conflict with those set on the proxy itself. If any of the requested settings
would not be honored by the target object on a per-event basis, the operation raises the
UnsupportedQoS exception. This exception contains as data a sequence of data
structures, each of which identifies the name of a QoS property in the input list whose
requested setting could not be satisfied, along with an error code and a range of
settings for the property that could be satisfied. The meanings of the error codes that
might be returned are described in Table 2-6 on page 2-49.

If all requested QoS property value settings could be satisfied by the target object, the
operation returns successfully with an output parameter that contains a sequence of
PropertyRange data structures. Each element in this sequence includes the name of
an additional QoS property whose setting is supported by the target object on a per-
event basis and that could have been included on the input list while still resulting in a
successful return from the operation. Each element also includes the range of values
that would have been acceptable for each such property.

3.4.3 The ProxyPushConsumer Interface

The ProxyPushConsumer interface supports connections to the channel by
suppliers who will push events to the channel as untyped Anys.

Through inheritance of the ProxyConsumer interface, the ProxyPushConsumer
interface supports administration of various QoS properties, administration of a list of
associated filter objects, and a readonly attribute containing the reference of the
SupplierAdmin object that created it. In addition, this inheritance implies that a
ProxyPushConsumer instance supports an operation that will return the list of event
types that consumers connected to the same channel are interested in receiving, and an
operation that can return information about the instance’s ability to accept a per-event
QoS request.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-51

3

The ProxyPushConsumer interface also inherits from the PushConsumer
interface defined within the CosNotifyComm module. This interface supports the
push operation, which the supplier connected to a ProxyPushConsumer instance
will invoke to send an event to the channel in the form of an Any, and the operation
required to disconnect the ProxyPushConsumer from its associated supplier. In
addition, since the inherited PushConsumer interface inherits the
CosNotifyComm::NotifyPublish interface, a supplier connected to an instance
supporting the ProxyPushConsumer interface can inform it whenever the list of
event types the supplier plans to supply changes.

Finally, the ProxyPushConsumer interface defines the operation that can be
invoked by a push supplier to establish the connection over which the push supplier
will send events to the channel. Note that this can be either a pure event service style,
or a notification service style push supplier.

3.4.3.1 connect_any_push_supplier

The connect_any_push_supplier operation accepts as an input parameter the
reference to an object supporting the PushSupplier interface defined within the
CosEventComm module of the OMG Event Service. This reference is that of a
supplier that plans to push events to the channel with which the target object is
associated in the form of untyped Anys. This operation is thus invoked in order to
establish a connection between a push-style supplier of events in the form of Anys, and
the notification channel. Once established, the supplier can proceed to send events to
the channel by invoking the push operation supported by the target
ProxyPushConsumer instance. If the target object of this operation is already
connected to a push supplier object, the AlreadyConnected exception will be raised.

Note that because the PushSupplier interface defined in the CosNotifyComm
module inherits from the PushSupplier interface defined in the CosEventComm
module, the input parameter to this operation could be either a pure event service style,
or a notification service style push supplier. The only difference between the two are
that the latter also supports the NotifySubscribe interface, and thus can be the target
of subscription_change invocations. The implementation of the
ProxyPushConsumer interface should attempt to narrow the input parameter to
CosNotifyComm::PushSupplier in order to determine which style of push supplier
is connecting to it.

3.4.4 The StructuredProxyPushConsumer Interface

The StructuredProxyPushConsumer interface supports connections to the channel
by suppliers who will push events to the channel as Structured Events. Through
inheritance of the ProxyConsumer interface, the
StructuredProxyPushConsumer interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of the SupplierAdmin object that created it. In addition, this
inheritance implies that a StructuredProxyPushConsumer instance supports an
3-52 Notification Service, v1.1 October 2004

3

operation that will return the list of event types that consumers connected to the same
channel are interested in receiving, and an operation that can return information about
the instance’s ability to accept a per-event QoS request.

The StructuredProxyPushConsumer interface also inherits from the
StructuredPushConsumer interface defined in the CosNotifyComm module. This
interface supports the operation that enables a supplier of Structured Events to push
them to the StructuredProxyPushConumer, and also the operation that can be
invoked to close down the connection from the supplier to the
StructuredProxyPushConsumer. In addition, since the
StructuredPushConsumer interface inherits from the NotifyPublish interface, a
supplier can inform the StructuredProxyPushConsumer to which it is connected
whenever the list of event types it plans to supply to the channel changes.

Lastly, the StructuredProxyPushConsumer interface defines a method that can be
invoked by a push-style supplier of Structured Events in order to establish a connection
between the supplier and a notification channel over which the supplier will proceed to
send events.

3.4.4.1 connect_structured_push_supplier

The connect_structured_push_supplier operation accepts as an input parameter
the reference to an object supporting the StructuredPushSupplier interface defined
within the CosNotifyComm module. This reference is that of a supplier that plans to
push events to the channel with which the target object is associated in the form of
Structured Events. This operation is thus invoked in order to establish a connection
between a push-style supplier of events in the form of Structured Events, and the
notification channel. Once established, the supplier can proceed to send events to the
channel by invoking the push_structured_event operation supported by the target
StructuredProxyPushConsumer instance. If the target object of this operation is
already connected to a push supplier object, the AlreadyConnected exception will
be raised.

3.4.5 The SequenceProxyPushConsumer Interface

The SequenceProxyPushConsumer interface supports connections to the channel
by suppliers who will push events to the channel as sequences of Structured Events.
Through inheritance of the ProxyConsumer interface, the
SequenceProxyPushConsumer interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of the SupplierAdmin object that created it. In addition, this
inheritance implies that a SequenceProxyPushConsumer instance supports an
operation that will return the list of event types that consumers connected to the same
channel are interested in receiving, and an operation that can return information about
the instance’s ability to accept a per-event QoS request.

The SequenceProxyPushConsumer interface also inherits from the
SequencePushConsumer interface defined in the CosNotifyComm module. This
interface supports the operation that enables a supplier of sequences of Structured
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-53

3

Events to push them to the SequenceProxyPushConsumer, and also the operation
that can be invoked to close down the connection from the supplier to the
SequenceProxyPushConsumer. In addition, since the
SequencePushConsumer interface inherits from the NotifyPublish interface, a
supplier can inform the SequenceProxyPushConsumer to which it is connected
whenever the list of event types it plans to supply to the channel changes.

Lastly, the SequenceProxyPushConsumer interface defines a method that can be
invoked by a push-style supplier of sequences of Structured Events in order to
establish a connection between the supplier and a notification channel over which the
supplier will proceed to send events.

3.4.5.1 connect_sequence_push_supplier

The connect_sequence_push_supplier operation accepts as an input parameter
the reference to an object supporting the SequencePushSupplier interface defined
within the CosNotifyComm module. This reference is that of a supplier, which plans
to push events to the channel with which the target object is associated in the form of
sequences of Structured Events. This operation is thus invoked in order to establish a
connection between a push-style supplier of events in the form of sequences of
Structured Events, and the notification channel. Once established, the supplier can
proceed to send events to the channel by invoking the push_structured_events
operation supported by the target SequenceProxyPushConsumer instance. If the
target object of this operation is already connected to a push supplier object, the
AlreadyConnected exception will be raised.

3.4.6 The ProxyPullSupplier Interface

The ProxyPullSupplier interface supports connections to the channel by consumers
who will pull events from the channel as untyped Anys.

Through inheritance of the ProxySupplier interface, the ProxyPullSupplier
interface supports administration of various QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a readonly
attribute containing the reference of the ConsumerAdmin object that created it. In
addition, this inheritance implies that a ProxyPullSupplier instance supports an
operation that will return the list of event types that the proxy supplier will potentially
be supplying, and an operation that can return information about the instance’s ability
to accept a per-event QoS request.

The ProxyPullSupplier interface also inherits from the PullSupplier interface
defined within the CosNotifyComm module. This interface supports the pull and
try_pull operations that the consumer connected to a ProxyPullSupplier instance
will invoke to receive an event from the channel in the form of an Any, and the
operation required to disconnect the ProxyPullSupplier from its associated
consumer. In addition, since the inherited PullSupplier interface inherits the
CosNotifyComm::NotifySubscribe interface, an instance supporting the
ProxyPullSupplier interface can be informed whenever the list of event types that
the consumer connected to it is interested in receiving changes.
3-54 Notification Service, v1.1 October 2004

3

Finally, the ProxyPullSupplier interface defines the operation that can be invoked by
a pull consumer to establish the connection over which the pull consumer will receive
events from the channel. Note that this can be either a pure event service style, or a
notification service style pull consumer.

3.4.6.1 connect_any_pull_consumer

The connect_any_pull_consumer operation accepts as an input parameter the
reference to an object supporting the PullConsumer interface defined within the
CosEventComm module. This reference is that of a consumer that plans to pull
events from the channel with which the target object is associated in the form of
untyped Anys. This operation is thus invoked in order to establish a connection
between a pull-style consumer of events in the form of Anys, and the notification
channel. Once established, the consumer can proceed to receive events from the
channel by invoking the pull or try_pull operations supported by the target
ProxyPullSupplier instance. If the target object of this operation is already
connected to a pull consumer object, the AlreadyConnected exception will be
raised.

Note that because the PullConsumer interface defined in the CosNotifyComm
module inherits from the PullConsumer interface defined in the CosEventComm
module, the input parameter to this operation could be either a pure event service style,
or a notification service style pull consumer. The only difference between the two are
that the latter also supports the NotifyPublish interface, and thus can be the target of
offer_change invocations. The implementation of the ProxyPullSupplier interface
should attempt to narrow the input parameter to CosNotifyComm::PullConsumer
in order to determine which style of pull consumer is connecting to it.

3.4.7 The StructuredProxyPullSupplier Interface

The StructuredProxyPullSupplier interface supports connections to the channel by
consumers who will pull events from the channel as Structured Events. Through
inheritance of the ProxySupplier interface, the StructuredProxyPullSupplier
interface supports administration of various QoS properties, administration of a list of
associated filter objects, and a readonly attribute containing the reference of the
ConsumerAdmin object that created it. In addition, this inheritance implies that a
StructuredProxyPullSupplier instance supports an operation that will return the list
of event types, which the proxy supplier will potentially by supplying, and an
operation that can return information about the instance’s ability to accept a per-event
QoS request.

The StructuredProxyPullSupplier interface also inherits from the
StructuredPullSupplier interface defined in the CosNotifyComm module. This
interface supports the operations that enable a consumer of Structured Events to pull
them from the StructuredProxyPullSupplier, and also the operation that can be
invoked to close down the connection from the consumer to the
StructuredProxyPullSupplier. In addition, since the StructuredPullSupplier
interface inherits from the NotifySubscribe interface, a
StructuredProxyPullSupplier can be notified whenever the list of event types,
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-55

3

which its associated consumer is interested in receiving changes. This notification
occurs via the callback mechanism described in “Event Filtering with Filter Objects”
on page 2-20.

Lastly, the StructuredProxyPullSupplier interface defines a method that can be
invoked by a pull-style consumer of Structured Events in order to establish a
connection between the consumer and a notification channel over which the consumer
will proceed to receive events.

3.4.7.1 connect_structured_pull_consumer

The connect_structured_pull_consumer operation accepts as an input parameter
the reference to an object supporting the StructuredPullConsumer interface defined
within the CosNotifyComm module. This reference is that of a consumer that plans
to pull events from the channel to which the target object is associated in the form of
Structured Events. This operation is thus invoked in order to establish a connection
between a pull-style consumer of events in the form of Structured Events, and the
notification channel. Once established, the consumer can proceed to receive events
from the channel by invoking the pull_structured_event or
try_pull_structured_event operations supported by the target
StructuredProxyPullSupplier instance. If the target object of this operation is
already connected to a pull consumer object, the AlreadyConnected exception will
be raised.

3.4.8 The SequenceProxyPullSupplier Interface

The SequenceProxyPullSupplier interface supports connections to the channel by
consumers who will pull events from the channel as sequences of Structured Events.
Through inheritance of the ProxySupplier interface, the
SequenceProxyPullSupplier interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of the ConsumerAdmin object that created it. In addition,
this inheritance implies that a SequenceProxyPullSupplier instance supports an
operation that will return the list of event types, which the proxy supplier will
potentially be supplying, and an operation that can return information about the
instance’s ability to accept a per-event QoS request.

The SequenceProxyPullSupplier interface also inherits from the
SequencePullSupplier interface defined in the CosNotifyComm module. This
interface supports the operations that enable a consumer of sequences of Structured
Events to pull them from the SequenceProxyPullSupplier, and the operation that
can be invoked to close down the connection from the consumer to the
SequenceProxyPullSupplier. In addition, since the SequencePullSupplier
interface inherits from the NotifySubscribe interface, a
SequenceProxyPullSupplier can be notified whenever the list of event types,
which its associated consumer is interested in receiving changes. This notification
occurs via the callback mechanism described in “Event Filtering with Filter Objects”
on page 2-20.
3-56 Notification Service, v1.1 October 2004

3

Lastly, the SequenceProxyPullSupplier interface defines a method that can be
invoked by a pull-style consumer of sequences of Structured Events in order to
establish a connection between the consumer and a notification channel over which the
consumer will proceed to receive events.

3.4.8.1 connect_sequence_pull_consumer

The connect_sequence_pull_consumer operation accepts as an input parameter
the reference to an object supporting the SequencePullConsumer interface defined
within the CosNotifyComm module. This reference is that of a consumer that plans
to pull events from the channel to which the target object is associated in the form of
sequences of Structured Events. This operation is thus invoked in order to establish a
connection between a pull-style consumer of events in the form of sequences of
Structured Events, and the notification channel. Once established, the consumer can
proceed to receive events from the channel by invoking the pull_structured_events
or try_pull_structured_events operations supported by the target
SequenceProxyPullSupplier instance. If the target object of this operation is
already connected to a pull consumer object, the AlreadyConnected exception will
be raised.

3.4.9 The ProxyPullConsumer Interface

The ProxyPullConsumer interface supports connections to the channel by suppliers
who will make events available for pulling to the channel as untyped Anys.

Through inheritance of the ProxyConsumer interface, the ProxyPullConsumer
interface supports administration of various QoS properties, administration of a list of
associated filter objects, and a readonly attribute containing the reference of the
SupplierAdmin object that created it. In addition, this inheritance implies that a
ProxyPullConsumer instance supports an operation that will return the list of event
types that consumers connected to the same channel are interested in receiving, and an
operation that can return information about the instance’s ability to accept a per-event
QoS request.

The ProxyPullConsumer interface also inherits from the PullConsumer interface
defined within the CosEventComm module of the OMG Event Service. This
interface supports the operation required to disconnect the ProxyPullConsumer from
its associated supplier. In addition, since the inherited PullConsumer interface
inherits the CosNotifyComm::NotifyPublish interface, a supplier connected to an
instance supporting the ProxyPullConsumer interface can inform it whenever the
list of event types the supplier plans to supply changes.

Finally, the ProxyPullConsumer interface defines the operation that can be invoked
by a pull supplier to establish the connection over which the pull supplier will send
events to the channel. Note that this can be either a pure event service style, or a
notification service style pull supplier. The ProxyPullConsumer interface also
defines a pair of operations that can suspend and resume the connection between a
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-57

3

ProxyPullConsumer instance and its associated PullSupplier. During the time such
a connection is suspended, the ProxyPullConsumer will not attempt to pull events
from its associated PullSupplier.

3.4.9.1 connect_any_pull_supplier

The connect_any_pull_supplier operation accepts as an input parameter the
reference to an object supporting the PullSupplier interface defined within the
CosEventComm module. This reference is that of a supplier that plans to make
events available for pulling to the channel with which the target object is associated in
the form of untyped Anys. This operation is thus invoked in order to establish a
connection between a pull-style supplier of events in the form of Anys, and the
notification channel. Once established, the channel can proceed to receive events from
the supplier by invoking the pull or try_pull operations supported by the supplier
(whether the channel will invoke pull or try_pull, and the frequency with which it
will perform such invocations, is a detail that is specific to the implementation of the
channel). If the target object of this operation is already connected to a pull supplier
object, the AlreadyConnected exception will be raised. An implementation of the
ProxyPullConsumer interface may impose additional requirements on the interface
supported by a pull supplier (e.g., it may be designed to invoke some operation other
than pull or try_pull in order to receive events). If the pull supplier being connected
does not meet those requirements, this operation raises the TypeError exception.

Note that because the PullSupplier interface defined in the CosNotifyComm
module inherits from the PullSupplier interface defined in the CosEventComm
module, the input parameter to this operation could be either a pure event service style,
or a notification service style pull supplier. The only difference between the two is that
the latter also supports the NotifySubscribe interface, and thus can be the target of
subscription_change invocations. The implementation of the
ProxyPullConsumer interface should attempt to narrow the input parameter to
CosNotifyComm::PullSupplier in order to determine which style of pull supplier is
connecting to it.

3.4.9.2 suspend_connection

The suspend_connection operation causes the target object supporting the
ProxyPullConsumer interface to stop attempting to pull events (using pull or
try_pull) from the PullSupplier instance connected to it. This operation takes no
input parameters and returns no values. If the connection has been previously
suspended using this operation and not resumed by invoking resume_connection
(described below), the ConnectionAlreadyInactive exception is raised. If no
PullSupplier has been connected to the target object when this operation is invoked,
the NotConnected exception is raised. Otherwise, the ProxyPullConsumer will
not attempt to pull events from the PullSupplier connected to it until
resume_connection is subsequently invoked.
3-58 Notification Service, v1.1 October 2004

3

3.4.9.3 resume_connection

The resume_connection operation causes the target object supporting the
ProxyPullConsumer interface to resume attempting to pull events (using pull or
try_pull) from the PullSupplier instance connected to it. This operation takes no
input parameters and returns no values. If the connection has not been previously
suspended using this operation by invoking suspend_connection (described above),
the ConnectionAlreadyActive exception is raised. If no PullSupplier has been
connected to the target object when this operation is invoked, the NotConnected
exception is raised. Otherwise, the ProxyPullConsumer will resume attempting to
pull events from the PullSupplier connected to it.

3.4.10 The StructuredProxyPullConsumer Interface

The StructuredProxyPullConsumer interface supports connections to the channel
by suppliers who will make events available for pulling to the channel as Structured
Events. Through inheritance of the ProxyConsumer interface, the
StructuredProxyPullConsumer interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of the SupplierAdmin object that created it. In addition, this
inheritance implies that a StructuredProxyPullConsumer instance supports an
operation that will return the list of event types which consumers connected to the
same channel are interested in receiving, and an operation that can return information
about the instance’s ability to accept a per-event QoS request.

The StructuredProxyPullConsumer interface also inherits from the
StructuredPullConsumer interface defined in the CosNotifyComm module. This
interface supports the operation that can be invoked to close down the connection from
the supplier to the StructuredProxyPullConsumer. In addition, since the
StructuredPullConsumer interface inherits from the NotifyPublish interface, a
supplier can inform the StructuredProxyPullConsumer to which it is connected
whenever the list of event types it plans to supply to the channel changes.

Lastly, the StructuredProxyPullConsumer interface defines a method that can be
invoked by a pull-style supplier of Structured Events in order to establish a connection
between the supplier and a notification channel over which the supplier will proceed to
send events. The StructuredProxyPullConsumer interface also defines a pair of
operations that can suspend and resume the connection between a
StructuredProxyPullConsumer instance and its associated
StructuredPullSupplier. During the time such a connection is suspended, the
StructuredProxyPullConsumer will not attempt to pull events from its associated
StructuredPullSupplier.

3.4.10.1 connect_structured_pull_supplier

The connect_structured_pull_supplier operation accepts as an input parameter
the reference to an object supporting the StructuredPullSupplier interface defined
within the CosNotifyComm module. This reference is that of a supplier that plans to
make events available for pulling to the channel with which the target object is
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-59

3

associated in the form of Structured Events. This operation is thus invoked in order to
establish a connection between a pull-style supplier of events in the form of Structured
Events, and the notification channel. Once established, the channel can proceed to
receive events from the supplier by invoking the pull_structured_event or
try_pull_structured_event operations supported by the supplier (whether the
channel will invoke pull_structured_event or try_pull_structured_event, and
the frequency with which it will perform such invocations, is a detail that is specific to
the implementation of the channel). If the target object of this operation is already
connected to a pull supplier object, the AlreadyConnected exception will be raised.
An implementation of the StructuredProxyPullConsumer interface may impose
additional requirements on the interface supported by a pull supplier (e.g., it may be
designed to invoke some operation other than pull_structured_event or
try_pull_structured_event in order to receive events). If the pull supplier being
connected does not meet those requirements, this operation raises the TypeError
exception.

3.4.10.2 suspend_connection

The suspend_connection operation causes the target object supporting the
StructuredProxyPullConsumer interface to stop attempting to pull events (using
pull or try_pull) from the StructuredPullSupplier instance connected to it. This
operation takes no input parameters and returns no values. If the connection has been
previously suspended using this operation and not resumed by invoking
resume_connection (described below), the ConnectionAlreadyInactive
exception is raised. If no StructuredPullSupplier has been connected to the target
object when this operation is invoked, the NotConnected exception is raised.
Otherwise, the StructuredProxyPullConsumer will not attempt to pull events from
the StructuredPullSupplier connected to it until resume_connection is
subsequently invoked.

3.4.10.3 resume_connection

The resume_connection operation causes the target object supporting the
StructuredProxyPullConsumer interface to resume attempting to pull events
(using pull or try_pull) from the StructuredPullSupplier instance connected to it.
This operation takes no input parameters and returns no values. If the connection has
not been previously suspended using this operation by invoking
suspend_connection (described above), the ConnectionAlreadyActive
exception is raised. If no StructuredPullSupplier has been connected to the target
object when this operation is invoked, the NotConnected exception is raised.
Otherwise, the StructuredProxyPullConsumer will resume attempting to pull
events from the StrucuturedPullSupplier connected to it.

3.4.11 The SequenceProxyPullConsumer Interface

The SequenceProxyPullConsumer interface supports connections to the channel
by suppliers who will make events available for pulling to the channel as sequences of
Structured Events. Through inheritance of the ProxyConsumer interface, the
3-60 Notification Service, v1.1 October 2004

3

SequenceProxyPullConsumer interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of the SupplierAdmin object that created it. In addition, this
inheritance implies that a SequenceProxyPullConsumer instance supports an
operation that will return the list of event types that consumers connected to the same
channel are interested in receiving, and an operation that can return information about
the instance’s ability to accept a per-event QoS request.

The SequenceProxyPullConsumer interface also inherits from the
SequencePullConsumer interface defined in the CosNotifyComm module. This
interface supports the operation that can be invoked to close down the connection from
the supplier to the SequenceProxyPullConsumer. In addition, since the
SequencePullConsumer interface inherits from the NotifyPublish interface, a
supplier can inform the SequenceProxyPullConsumer to which it is connected
whenever the list of event types it plans to supply to the channel changes.

Lastly, the SequenceProxyPullConsumer interface defines a method that can be
invoked by a pull-style supplier of sequences of Structured Events in order to establish
a connection between the supplier and a notification channel over which the supplier
will proceed to send events. The SequenceProxyPullConsumer interface also
defines a pair of operations that can suspend and resume the connection between a
SequenceProxyPullConsumer instance and its associated
SequencePullSupplier. During the time such a connection is suspended, the
SequenceProxyPullConsumer will not attempt to pull events from its associated
SequencePullSupplier.

3.4.11.1 connect_sequence_pull_supplier

The connect_sequence_pull_supplier operation accepts as an input parameter the
reference to an object supporting the SequencePullSupplier interface defined within
the CosNotifyComm module. This reference is that of a supplier that plans to make
events available for pulling to the channel with which the target object is associated in
the form of sequences of Structured Events. This operation is thus invoked in order to
establish a connection between a pull-style supplier of events in the form of sequences
of Structured Events, and the notification channel. Once established, the channel can
proceed to receive events from the supplier by invoking the pull_structured_events
or try_pull_structured_events operations supported by the supplier (whether the
channel will invoke pull_structured_events or try_pull_structured_events, and
the frequency with which it will perform such invocations is a detail that is specific to
the implementation of the channel). If the target object of this operation is already
connected to a pull supplier object, the AlreadyConnected exception will be raised.
An implementation of the SequenceProxyPullConsumer interface may impose
additional requirements on the interface supported by a pull supplier (e.g., it may be
designed to invoke some operation other than pull_structured_events or
try_pull_structured_events in order to receive events). If the pull supplier being
connected does not meet those requirements, this operation raises the TypeError
exception.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-61

3

3.4.11.2 suspend_connection

The suspend_connection operation causes the target object supporting the
SequenceProxyPullConsumer interface to stop attempting to pull events (using
pull or try_pull) from the SequencePullSupplier instance connected to it. This
operation takes no input parameters and returns no values. If the connection has been
previously suspended using this operation and not resumed by invoking
resume_connection (described below), the ConnectionAlreadyInactive
exception is raised. If no SequencePullSupplier has been connected to the target
object when this operation is invoked, the NotConnected exception is raised.
Otherwise, the SequenceProxyPullConsumer will not attempt to pull events from
the SequencePullSupplier connected to it until resume_connection is
subsequently invoked.

3.4.11.3 resume_connection

The resume_connection operation causes the target object supporting the
SequenceProxyPullConsumer interface to resume attempting to pull events (using
pull or try_pull) from the SequencePullSupplier instance connected to it. This
operation takes no input parameters and returns no values. If the connection has not
been previously suspended using this operation by invoking suspend_connection
(described above), the ConnectionAlreadyActive exception is raised. If no
SequencePullSupplier has been connected to the target object when this operation
is invoked, the NotConnected exception is raised. Otherwise, the
SequenceProxyPullConsumer will resume attempting to pull events from the
SequencePullSupplier connected to it.

3.4.12 The ProxyPushSupplier Interface

The ProxyPushSupplier interface supports connections to the channel by consumers
who will receive events from the channel as untyped Anys.

Through inheritance of the ProxySupplier interface, the ProxyPushSupplier
interface supports administration of various QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a readonly
attribute containing the reference of the ConsumerAdmin object that created it. In
addition, this inheritance implies that a ProxyPushSupplier instance supports an
operation that will return the list of event types that the proxy supplier will potentially
be supplying, and an operation that can return information about the instance’s ability
to accept a per-event QoS request.

The ProxyPushSupplier interface also inherits from the PushSupplier interface
defined within the CosNotifyComm module. This interface supports the operation
required to disconnect the ProxyPushSupplier from its associated consumer. In
addition, since the inherited PushSupplier interface inherits the
CosNotifyComm::NotifySubscribe interface, an instance supporting the
ProxyPushSupplier interface can be informed whenever the list of event types that
the consumer connected to it is interested in receiving changes.
3-62 Notification Service, v1.1 October 2004

3

Lastly, the ProxyPushSupplier interface defines the operation that can be invoked
by a push consumer to establish the connection over which the push consumer will
receive events from the channel. Note that this can be either a pure event service style,
or a notification service style push consumer. The ProxyPushSupplier interface also
defines a pair of operations that can suspend and resume the connection between a
ProxyPushSupplier instance and its associated PushConsumer. During the time
such a connection is suspended, the ProxyPushSupplier will accumulate events
destined for the consumer but not transmit them until the connection is resumed.

3.4.12.1 connect_any_push_consumer

The connect_any_push_consumer operation accepts as an input parameter the
reference to an object supporting the PushConsumer interface defined within the
CosEventComm module. This reference is that of a consumer that will receive
events from the channel with which the target object is associated in the form of
untyped Anys. This operation is thus invoked in order to establish a connection
between a push-style consumer of events in the form of Anys, and the notification
channel. Once established, the ProxyPushSupplier will proceed to send events
destined for the consumer to it by invoking its push operation. If the target object of
this operation is already connected to a push consumer object, the
AlreadyConnected exception will be raised. An implementation of the
ProxyPushSupplier interface may impose additional requirements on the interface
supported by a push consumer (e.g., it may be designed to invoke some operation other
than push in order to transmit events). If the push consumer being connected does not
meet those requirements, this operation raises the TypeError exception.

Note that because the PushConsumer interface defined in the CosNotifyComm
module inherits from the PushConsumer interface defined in the CosEventComm
module, the input parameter to this operation could be either a pure event service style,
or a notification service style push consumer. The only difference between the two are
that the latter also supports the NotifyPublish interface, and thus can be the target of
offer_change invocations. The implementation of the ProxyPushSupplier
interface should attempt to narrow the input parameter to
CosNotifyComm::PushConsumer in order to determine which style of push
consumer is connecting to it.

3.4.12.2 suspend_connection

The suspend_connection operation causes the target object supporting the
ProxyPushSupplier interface to stop sending events to the PushConsumer
instance connected to it. This operation takes no input parameters and returns no
values. If the connection has been previously suspended using this operation and not
resumed by invoking resume_connection (described below), the
ConnectionAlreadyInactive exception is raised. If no PushConsumer has been
connected to the target object when this operation is invoked, the NotConnected
exception is raised. Otherwise, the ProxyPushSupplier will not forward events to
the PushConsumer connected to it until resume_connection is subsequently
invoked. During this time, the ProxyPushSupplier will continue to queue events
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-63

3

destined for the PushConsumer, although events that time out prior to resumption of
the connection will be discarded. Upon resumption of the connection, all queued
events will be forwarded to the PushConsumer.

3.4.12.3 resume_connection

The resume_connection operation causes the target object supporting the
ProxyPushSupplier interface to resume sending events to the PushConsumer
instance connected to it. This operation takes no input parameters and returns no
values. If the connection has not been previously suspended using this operation by
invoking suspend_connection (described above), the ConnectionAlreadyActive
exception is raised. If no PushConsumer has been connected to the target object
when this operation is invoked, the NotConnected exception is raised. Otherwise,
the ProxyPushSupplier will resume forwarding events to the PushConsumer
connected to it, including those that have been queued during the time the connection
was suspended, and have not yet timed out.

3.4.13 The StructuredProxyPushSupplier Interface

The StructuredProxyPushSupplier interface supports connections to the channel
by consumers who will receive events from the channel as Structured Events. Through
inheritance of the ProxySupplier interface, the StructuredProxyPushSupplier
interface supports administration of various QoS properties, administration of a list of
associated filter objects, and a readonly attribute containing the reference of the
ConsumerAdmin object that created it. In addition, this inheritance implies that a
StructuredProxyPushSupplier instance supports an operation that will return the
list of event types which the proxy supplier will potentially be supplying, and an
operation that can return information about the instance’s ability to accept a per-event
QoS request.

The StructuredProxyPushSupplier interface also inherits from the
StructuredPushSupplier interface defined in the CosNotifyComm module. This
interface supports the operation that can be invoked to close down the connection from
the consumer to the StructuredProxyPushSupplier. In addition, since the
StructuredPushSupplier interface inherits from the NotifySubscribe interface, a
StructuredProxyPushSupplier can be notified whenever the list of event types
which its associated consumer is interested in receiving changes. This notification
occurs via the callback mechanism described in “Event Filtering with Filter Objects”
on page 2-20.

Lastly, the StructuredProxyPushSupplier interface defines the operation that can
be invoked by a push consumer to establish the connection over which the push
consumer will receive events from the channel. The StructuredProxyPushSupplier
interface also defines a pair of operations that can suspend and resume the connection
between a StructuredProxyPushSupplier instance and its associated
StructuredPushConsumer. During the time such a connection is suspended, the
StructuredProxyPushSupplier will accumulate events destined for the consumer
but not transmit them until the connection is resumed.
3-64 Notification Service, v1.1 October 2004

3

3.4.13.1 connect_structured_push_consumer

The connect_structured_push_consumer operation accepts as an input parameter
the reference to an object supporting the StructuredPushConsumer interface
defined within the CosNotifyComm module. This reference is that of a consumer
that will receive events from the channel with which the target object is associated in
the form of Structured Events. This operation is thus invoked in order to establish a
connection between a push-style consumer of events in the form of Structured Events,
and the notification channel. Once established, the StructuredProxyPushSupplier
will proceed to send events destined for the consumer to it by invoking its
push_structured_event operation. If the target object of this operation is already
connected to a push consumer object, the AlreadyConnected exception will be
raised. An implementation of the StructuredProxyPushSupplier interface may
impose additional requirements on the interface supported by a push consumer (e.g., it
may be designed to invoke some operation other than push_structured_event in
order to transmit events). If the push consumer being connected does not meet those
requirements, this operation raises the TypeError exception.

3.4.13.2 suspend_connection

The suspend_connection operation causes the target object supporting the
StructuredProxyPushSupplier interface to stop sending events to the
StructuredPushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has been previously suspended
using this operation and not resumed by invoking resume_connection (described
below), the ConnectionAlreadyInactive exception is raised. If no
StructuredPushConsumer has been connected to the target object when this
operation is invoked, the NotConnected exception is raised. Otherwise, the
StructuredProxyPushSupplier will not forward events to the
StructuredPushConsumer connected to it until resume_connection is
subsequently invoked. During this time, the StructuredProxyPushSupplier will
continue to queue events destined for the StructuredPushConsumer, although
events that time out prior to resumption of the connection will be discarded. Upon
resumption of the connection, all queued events will be forwarded to the
StructuredPushConsumer.

3.4.13.3 resume_connection

The resume_connection operation causes the target object supporting the
StructuredProxyPushSupplier interface to resume sending events to the
StructuredPushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has not been previously suspended
using this operation by invoking suspend_connection (described above), the
ConnectionAlreadyActive exception is raised. If no StructuredPushConsumer
has been connected to the target object when this operation is invoked, the
NotConnected exception is raised. Otherwise, the StructuredProxyPushSupplier
will resume forwarding events to the StructuredPushConsumer connected to it,
including those that have been queued during the time the connection was suspended,
and have not yet timed out.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-65

3

3.4.14 The SequenceProxyPushSupplier Interface

The SequenceProxyPushSupplier interface supports connections to the channel by
consumers who will receive events from the channel as sequences of Structured
Events. Through inheritance of the ProxySupplier interface, the
SequenceProxyPushSupplier interface supports administration of various QoS
properties, administration of a list of associated filter objects, and a readonly attribute
containing the reference of the ConsumerAdmin object that created it. In addition,
this inheritance implies that a SequenceProxyPushSupplier instance supports an
operation that will return the list of event types that the proxy supplier will potentially
be supplying, and an operation that can return information about the instance’s ability
to accept a per-event QoS request.

The SequenceProxyPushSupplier interface also inherits from the
SequencePushSupplier interface defined in the CosNotifyComm module. This
interface supports the operation that can be invoked to close down the connection from
the consumer to the SequenceProxyPushSupplier. In addition, since the
SequencePushSupplier interface inherits from the NotifySubscribe interface, a
SequenceProxyPushSupplier can be notified whenever the list of event types that
its associated consumer is interested in receiving changes. This notification occurs via
the callback mechanism described in “Event Filtering with Filter Objects” on
page 2-20.

Lastly, the SequenceProxyPushSupplier interface defines the operation that can be
invoked by a push consumer to establish the connection over which the push consumer
will receive events from the channel. The SequenceProxyPushSupplier interface
also defines a pair of operations that can suspend and resume the connection between
a SequenceProxyPushSupplier instance and its associated
SequencePushConsumer. During the time such a connection is suspended, the
SequenceProxyPushSupplier will accumulate events destined for the consumer
but not transmit them until the connection is resumed.

3.4.14.1 connect_sequence_push_consumer

The connect_sequence_push_consumer operation accepts as an input parameter
the reference to an object supporting the SequencePushConsumer interface
defined within the CosNotifyComm module. This reference is that of a consumer
which will receive events from the channel with which the target object is associated in
the form of sequences of Structured Events. This operation is thus invoked in order to
establish a connection between a push-style consumer of events in the form of
sequences of Structured Events, and the notification channel. Once established, the
SequenceProxyPushSupplier will proceed to send events destined for the
consumer to it by invoking its push_structured_events operation. If the target
object of this operation is already connected to a push consumer object, the
AlreadyConnected exception will be raised. An implementation of the
SequenceProxyPushSupplier interface may impose additional requirements on the
interface supported by a push consumer (e.g., it may be designed to invoke some
3-66 Notification Service, v1.1 October 2004

3

operation other than push_structured_events in order to transmit events). If the
push consumer being connected does not meet those requirements, this operation raises
the TypeError exception.

3.4.14.2 suspend_connection

The suspend_connection operation causes the target object supporting the
SequenceProxyPushSupplier interface to stop sending events to the
SequencePushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has been previously suspended
using this operation and not resumed by invoking resume_connection (described
below), the ConnectionAlreadyInactive exception is raised. If no
SequencePushConsumer has been connected to the target object when this
operation is invoked, the NotConnected exception is raised. Otherwise, the
SequenceProxyPushSupplier will not forward events to the
SequencePushConsumer connected to it until resume_connection is
subsequently invoked. During this time, the SequenceProxyPushSupplier will
continue to queue events destined for the SequencePushConsumer, although
events that time out prior to resumption of the connection will be discarded. Upon
resumption of the connection, all queued events will be forwarded to the
SequencePushConsumer.

3.4.14.3 resume_connection

The resume_connection operation causes the target object supporting the
SequenceProxyPushSupplier interface to resume sending events to the
SequencePushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has not been previously suspended
using this operation by invoking suspend_connection (described above), the
ConnectionAlreadyActive exception is raised. If no SequencePushConsumer
has been connected to the target object when this operation is invoked, the
NotConnected exception is raised. Otherwise, the SequenceProxyPushSupplier
will resume forwarding events to the SequencePushConsumer connected to it,
including those that have been queued during the time the connection was suspended,
and have not yet timed out.

3.4.15 The ConsumerAdmin Interface

The ConsumerAdmin interface defines the behavior supported by objects that create
and manage lists of proxy supplier objects within a Notification Service event channel.
Recall that a Notification Service event channel can have any number of
ConsumerAdmin instances associated with it. Each such instance is responsible for
creating and managing a list of proxy supplier objects that share a common set of QoS
property settings, and a common set of filter objects. This feature enables clients to
conveniently group proxy supplier objects within a channel into groupings that each
support a set of consumers with a common set of QoS requirements and event
subscriptions.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-67

3

The ConsumerAdmin interface inherits the QoSAdmin interface defined within the
CosNotification module, enabling each ConsumerAdmin instance to manage a set
of QoS property settings. These QoS property settings are assigned as the default QoS
property settings for any proxy supplier object created by a ConsumerAdmin
instance. In addition, the ConsumerAdmin interface inherits from the FilterAdmin
interface defined within the CosNotifyFilter module, enabling each
ConsumerAdmin instance to maintain a list of filter objects. These filter objects
encapsulate subscriptions that will apply to all proxy supplier objects that have been
created by a given ConsumerAdmin instance. In order to enable optimizing the
notification of a group of proxy supplier objects that have been created by the same
ConsumerAdmin instance of changes to these shared filter objects, the
ConsumerAdmin interface also inherits from the NotifySubscribe interface
defined in the CosNotifyComm module. This inheritance enables a
ConsumerAdmin instance to be registered as the callback object for notification of
subscription changes made upon filter objects.

The ConsumerAdmin interface defined in the CosNotifyChannelAdmin module
also inherits from the ConsumerAdmin interface defined in the
CosEventChannelAdmin module. This inheritance enables clients to use the
ConsumerAdmin interface defined in the CosNotifyChannelAdmin module to
create pure OMG Event Service style proxy supplier objects. Proxy supplier objects
created in this manner may not support configuration of QoS properties, and may not
have associated filter objects. In addition, proxy supplier objects created through the
inherited ConsumerAdmin interface will not have unique identifiers associated with
them, whereas proxy supplier objects created by invoking the operations supported by
the ConsumerAdmin interface defined in the CosNotifyChannelAdmin module
will.

Locally, the ConsumerAdmin interface supports a readonly attribute that maintains a
reference to the EventChannel instance that created a given ConsumerAdmin
instance. The ConsumerAdmin interface also supports a readonly attribute that
contains a numeric identifier that will be assigned to an instance supporting this
interface by its associated Notification Service event channel upon creation of the
ConsumerAdmin instance. This identifier will be unique among all
ConsumerAdmin instances created by a given channel.

As described above, due to inheritance from the FilterAdmin interface, a
ConsumerAdmin can maintain a list of filter objects that will be applied to all proxy
suppliers it creates. Also recall that each proxy supplier may itself support a list of
filter objects that apply only it. When combining multiple filter objects within each of
these two lists of filter objects that may be associated with a given proxy supplier, OR
semantics are applied. However when combining these two lists during the evaluation
of a given event, either AND or OR semantics may be applied. The choice is
determined by an input flag upon creation of the ConsumerAdmin, and the operator
that will be used for this purpose by a given ConsumerAdmin is maintained in a
readonly attribute.

The ConsumerAdmin interface also supports attributes that maintain references to
priority and lifetime mapping filter objects. These mapping filter objects will be
applied to all proxy supplier objects created by a given ConsumerAdmin instance.
3-68 Notification Service, v1.1 October 2004

3

Each ConsumerAdmin instance assigns a unique numeric identifier to each proxy
supplier object it maintains. The ConsumerAdmin interface supports attributes that
maintain the list of these unique identifiers associated with the proxy pull and the
proxy push suppliers created by a given ConsumerAdmin instance. The
ConsumerAdmin interface also supports an operation which, given the unique
identifier of a proxy supplier a given ConsumerAdmin instance has created as input,
will return the object reference of that proxy supplier object. Additionally, the
ConsumerAdmin interface supports operations that can create the various styles of
proxy supplier objects supported by the Notification Service event channel. Finally,
because clients of a given Notification Service event channel can create any number of
ConsumerAdmin instances, a destroy operation is provided by this interface so that
clients can clean up instances that are no longer needed.

3.4.15.1 MyID

The MyID attribute is a readonly attribute that maintains the unique identifier of the
target ConsumerAdmin instance, which is assigned to it upon creation by the
Notification Service event channel.

3.4.15.2 MyChannel

The MyChannel attribute is a readonly attribute that maintains the object reference of
the Notification Service event channel, which created a given ConsumerAdmin
instance.

3.4.15.3 MyOperator

The MyOperator attribute is a readonly attribute that maintains the information
regarding whether AND or OR semantics will be used during the evaluation of a given
event against a set of filter objects, when combining the filter objects associated with
the target ConsumerAdmin and those defined locally on a given proxy supplier.

3.4.15.4 priority_filter

The priority_filter attribute maintains a reference to a mapping filter object that
affects the way in which each proxy supplier object created by the target
ConsumerAdmin instance treats each event it receives with respect to priority.

Note that each proxy supplier object also has an associated attribute that maintains a
reference to a mapping filter object for the priority property. If this attribute is set to
the reference of a valid mapping filter object, this mapping filter will override that set
at the admin level. Otherwise, the mapping filter object referred to by the
priority_filter attribute of the ConsumerAdmin is used.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-69

3

3.4.15.5 lifetime_filter

The lifetime_filter attribute maintains a reference to a mapping filter object that
affects the way in which each proxy supplier object created by the target
ConsumerAdmin instance treats each event it receives with respect to lifetime.

Note that each proxy supplier object also has an associated attribute that maintains a
reference to a mapping filter object for the lifetime property. If this attribute is set to
the reference of a valid mapping filter object, this mapping filter will override that set
at the admin level. Otherwise, the mapping filter object referred to by the
lifetime_filter attribute of the ConsumerAdmin is used.

3.4.15.6 pull_suppliers

The pull_suppliers attribute is a readonly attribute that contains the list of unique
identifiers that have been assigned by a ConsumerAdmin instance to each pull-style
proxy supplier object it has created.

3.4.15.7 push_suppliers

The push_suppliers attribute is a readonly attribute that contains the list of unique
identifiers that have been assigned by a ConsumerAdmin instance to each push-style
proxy supplier object it has created.

3.4.15.8 get_proxy_supplier

The get_proxy_supplier operation accepts as an input parameter the numeric unique
identifier associated with one of the proxy supplier objects that has been created by the
target ConsumerAdmin instance. If the input parameter corresponds to the unique
identifier of a proxy supplier object that has been created by the target
ConsumerAdmin instance, that proxy supplier object’s reference is returned as the
result of the operation. Otherwise, the ProxyNotFound exception is raised.

3.4.15.9 obtain_notification_pull_supplier

The obtain_notification_pull_supplier operation can create instances of the
various types of pull-style proxy supplier objects defined within the
CosNotifyChannelAdmin module. Recall that three varieties of pull-style proxy
supplier objects are defined within this module:

• instances of the ProxyPullSupplier interface support connections to pull
consumers that receive events as Anys,

• instances of the StructuredProxyPullSupplier interface support connections to
pull consumers that receive events as Structured Events, and

• instances of the SequenceProxyPullSupplier interface support connections to
pull consumers that receive events as sequences of Structured Events.
3-70 Notification Service, v1.1 October 2004

3

The obtain_notification_pull_supplier operation thus accepts as an input
parameter a flag that indicates which style of pull-style proxy supplier instance should
be created. If the number of consumers currently connected to the channel with which
the target ConsumerAdmin object is associated exceeds the value of the
MaxConsumers administrative property, the AdminLimitExceeded exception is
raised. Otherwise, the target ConsumerAdmin creates the new pull-style proxy
supplier instance and assigns a numeric identifier to it that is unique among all proxy
suppliers it has created. The unique identifier is returned as the output parameter of the
operation, and the reference to the new proxy supplier instance is returned as the
operation result.

3.4.15.10 obtain_notification_push_supplier

The obtain_notification_push_supplier operation can create instances of the
various types of push-style proxy supplier objects defined within the
CosNotifyChannelAdmin module. Recall that three varieties of push-style proxy
supplier objects are defined within this module:

• instances of the ProxyPushSupplier interface support connections to push
consumers that receive events as Anys,

• instances of the StructuredProxyPushSupplier interface support connections to
push consumers that receive events as Structured Events, and

• instances of the SequenceProxyPushSupplier interface support connections to
push consumers that receive events as sequences of Structured Events.

The obtain_notification_push_supplier operation thus accepts as an input
parameter a flag that indicates which style of push-style proxy supplier instance should
be created. If the number of consumers currently connected to the channel with which
the target ConsumerAdmin object is associated exceeds the value of the
MaxConsumers administrative property, the AdminLimitExceeded exception is
raised. Otherwise, the target ConsumerAdmin creates the new push-style proxy
supplier instance and assigns a numeric identifier to it that is unique among all proxy
suppliers it has created. The unique identifier is returned as the output parameter of the
operation, and the reference to the new proxy supplier instance is returned as the
operation result.

3.4.15.11 destroy

The destroy operation can be invoked to destroy the target ConsumerAdmin
instance, freeing all resources consumed by the instance. Note that destroy can be
invoked on a ConsumerAdmin instance that is current managing proxy supplier
objects that support open connections to consumers. In this case, the effect of invoking
destroy on the ConsumerAdmin is that the operation will disconnect each of the
proxy supplier objects being managed by the target ConsumerAdmin from their
consumers, and destroy each of these proxy suppliers. Ultimately, the
ConsumerAdmin instance itself will be destroyed.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-71

3

3.4.16 The SupplierAdmin Interface

The SupplierAdmin interface defines the behavior supported by objects that create
and manage lists of proxy consumer objects within a Notification Service event
channel. Recall that a Notification Service event channel can have any number of
SupplierAdmin instances associated with it. Each such instance is responsible for
creating and managing a list of proxy consumer objects that share a common set of
QoS property settings, and a common set of filter objects. This feature enables clients
to conveniently group proxy consumer objects within a channel into groupings that
each support a set of suppliers with a common set of QoS requirements, and that make
common event forwarding decisions driven by the association of a common set of filter
objects.

The SupplierAdmin interface inherits the QoSAdmin interface defined within the
CosNotification module, enabling each SupplierAdmin instance to manage a set of
QoS property settings. These QoS property settings are assigned as the default QoS
property settings for any proxy consumer object created by a SupplierAdmin
instance. In addition, the SupplierAdmin interface inherits from the FilterAdmin
interface defined within the CosNotifyFilter module, enabling each SupplierAdmin
instance to maintain a list of filter objects. These filter objects encapsulate
subscriptions that will apply to all proxy consumer objects that have been created by a
given SupplierAdmin instance. In order to enable optimizing the notification of a
group of proxy consumer objects that have been created by the same SupplierAdmin
instance of changes to the types of events being offered by suppliers, the
SupplierAdmin interface also inherits from the NotifyPublish interface defined in
the CosNotifyComm module. This inheritance enables a SupplierAdmin instance
to be the target of an offer_change request made by a supplier object, and for the
change in event types being offered to be shared by all proxy consumer objects that
were created by the target SupplierAdmin.

The SupplierAdmin interface defined in the CosNotifyChannelAdmin module
also inherits from the SupplierAdmin interface defined in the
CosEventChannelAdmin module. This inheritance enables clients to use the
SupplierAdmin interface defined in the CosNotifyChannelAdmin module to
create pure OMG Event Service style proxy consumer objects. Proxy consumer objects
created in this manner may not support configuration of QoS properties, and may not
have associated filter objects. In addition, proxy consumer objects created through the
inherited SupplierAdmin interface will not have unique identifiers associated with
them, whereas proxy consumer objects created by invoking the operations supported
by the SupplierAdmin interface defined in the CosNotifyChannelAdmin module
will.

Locally, the SupplierAdmin interface supports a readonly attribute that maintains a
reference to the EventChannel instance that created a given SupplierAdmin
instance. The SupplierAdmin interface also supports a readonly attribute, which
contains a numeric identifier that will be assigned to an instance supporting this
interface by its associated Notification Service event channel upon creation of the
SupplierAdmin instance. This identifier will be unique among all SupplierAdmin
instances created by a given channel.
3-72 Notification Service, v1.1 October 2004

3

As described above, due to inheritance from the FilterAdmin interface, a
SupplierAdmin can maintain a list of filter objects that will be applied to all proxy
consumers it creates. Also recall that each proxy consumer may itself support a list of
filter objects that apply only to it. When combining multiple filter objects within each
of these two lists of filter objects that may be associated with a given proxy consumer,
OR semantics are applied. However when combining these two lists during the
evaluation of a given event, either AND or OR semantics may be applied. The choice
is determined by an input flag upon creation of the SupplierAdmin, and the operator
that will be used for this purpose by a given SupplierAdmin is maintained in a
readonly attribute.

Each SupplierAdmin instance assigns a unique numeric identifier to each proxy
consumer object it maintains. The SupplierAdmin interface supports attributes that
maintain the list of these unique identifiers associated with the proxy pull and the
proxy push consumers created by a given SupplierAdmin instance. The
SupplierAdmin interface also supports an operation which, given the unique
identifier of a proxy consumer a given SupplierAdmin instance has created as input,
will return the object reference of that proxy consumer object. Additionally, the
SupplierAdmin interface supports operations that can create the various styles of
proxy consumer objects supported by the Notification Service event channel. Finally,
because clients of a given Notification Service event channel can create any number of
SupplierAdmin instances, a destroy operation is provided by this interface so that
clients can clean up instances that are no longer needed.

3.4.16.1 MyID

The MyID attribute is a readonly attribute that maintains the unique identifier of the
target SupplierAdmin instance, which is assigned to it upon creation by the
Notification Service event channel.

3.4.16.2 MyChannel

The MyChannel attribute is a readonly attribute that maintains the object reference of
the Notification Service event channel, which created a given SupplierAdmin
instance.

3.4.16.3 MyOperator

The MyOperator attribute is a readonly attribute that maintains the information
regarding whether AND or OR semantics will be used during the evaluation of a given
event against a set of filter objects, when combining the filter objects associated with
the target SupplierAdmin and those defined locally on a given proxy consumer.

3.4.16.4 pull_consumers

The pull_consumers attribute is a readonly attribute that contains the list of unique
identifiers, which have been assigned by a SupplierAdmin instance to each pull-style
proxy consumer object it has created.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-73

3

3.4.16.5 push_consumers

The push_consumers attribute is a readonly attribute that contains the list of unique
identifiers, which have been assigned by a SupplierAdmin instance to each push-
style proxy consumer object it has created.

3.4.16.6 get_proxy_consumer

The get_proxy_consumer operation accepts as an input parameter the numeric
unique identifier associated with one of the proxy consumer objects that has been
created by the target SupplierAdmin instance. If the input parameter does correspond
to the unique identifier of a proxy consumer object that has been created by the target
SupplierAdmin instance, that proxy consumer object’s reference is returned as the
result of the operation. Otherwise, the ProxyNotFound exception is raised.

3.4.16.7 obtain_notification_pull_consumer

The obtain_notification_pull_consumer operation can create instances of the
various types of pull-style proxy consumer objects defined within the
CosNotifyChannelAdmin module. Recall that three varieties of pull-style proxy
consumer objects are defined within this module:

• instances of the ProxyPullConsumer interface support connections to pull
suppliers that send events as Anys,

• instances of the StructuredProxyPullConsumer interface support connections to
pull suppliers that send events as Structured Events, and

• instances of the SequenceProxyPullConsumer interface support connections to
pull suppliers that send events as sequences of Structured Events.

The obtain_notification_pull_consumer operation thus accepts as an input
parameter a flag that indicates which style of pull-style proxy consumer instance
should be created. If the number of suppliers currently connected to the channel with
which the target SupplierAdmin object is associated exceeds the value of the
MaxSuppliers administrative property, the AdminLimitExceeded exception is
raised. Otherwise, the target SupplierAdmin creates the new pull-style proxy
consumer instance and assigns a numeric identifier to it that is unique among all proxy
consumers it has created. The unique identifier is returned as the output parameter of
the operation, and the reference to the new proxy consumer instance is returned as the
operation result.

3.4.16.8 obtain_notification_push_consumer

The obtain_notification_push_consumer operation can create instances of the
various types of push-style proxy consumer objects defined within the
CosNotifyChannelAdmin module. Recall that three varieties of push-style proxy
consumer objects are defined within this module:

• instances of the ProxyPushConsumer interface support connections to push
suppliers that send events as Anys,
3-74 Notification Service, v1.1 October 2004

3

• instances of the StructuredProxyPushConsumer interface support connections
to push suppliers that send events as Structured Events, and

• instances of the SequenceProxyPushConsumer interface support connections
to push suppliers that send events as sequences of Structured Events.

The obtain_notification_push_consumer operation thus accepts as an input
parameter a flag that indicates which style of push-style proxy consumer instance
should be created. If the number of suppliers currently connected to the channel with
which the target SupplierAdmin object is associated exceeds the value of the
MaxSuppliers administrative property, the AdminLimitExceeded exception is
raised. Otherwise, the target SupplierAdmin creates the new push-style proxy
consumer instance and assigns a numeric identifier to it that is unique among all proxy
consumers it has created. The unique identifier is returned as the output parameter of
the operation, and the reference to the new proxy consumer instance is returned as the
operation result.

3.4.16.9 destroy

The destroy operation can be invoked to destroy the target SupplierAdmin instance,
freeing all resources consumed by the instance. Note that destroy can be invoked on
a SupplierAdmin instance that is current managing proxy consumer objects that
support open connections to suppliers. In this case, the effect of invoking destroy on
the SupplierAdmin is that the operation will disconnect each of the proxy consumer
objects being managed by the target SupplierAdmin from their suppliers, and destroy
each of these proxy consumers. Ultimately, the SupplierAdmin instance itself will be
destroyed.

3.4.17 The EventChannel Interface

The EventChannel interface encapsulates the behaviors supported by a Notification
Service event channel. This interface inherits from the EventChannel interface
defined within the CosEventChannelAdmin module of the OMG Event Service,
making an instance of the Notification Service EventChannel interface fully
backward compatible with an OMG Event Service style untyped event channel.

Inheritance of the EventChannel interface defined within the
CosEventChannelAdmin module enables an instance of the EventChannel
interface defined within the CosNotifyChannelAdmin module to create event
service style ConsumerAdmin and SupplierAdmin instances. These instances can
subsequently be used to create pure event service style proxy interfaces, which support
connections to pure event service style suppliers and consumers. Note that while
Notification Service style proxies and admin objects have unique identifiers associated
with them, enabling their references to be obtained by invoking operations on the
Notification Service style admin and event channel interfaces, Event Service style
proxies and admin objects do not have associated unique identifiers, and thus cannot
be returned by invoking an operation on the Notification Service style admin or event
channel interfaces.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-75

3

The EventChannel interface defined within the CosNotifyChannelAdmin module
also inherits from the QoSAdmin and the AdminPropertiesAdmin interfaces
defined within the CosNotification module. Inheritance of these interfaces enables a
Notification Service style event channel to manage lists of associated QoS and
administrative properties, respectively.

Locally, the EventChannel interface supports a readonly attribute that maintains a
reference to the EventChannelFactory instance that created it. In addition, each
instance of the EventChannel interface has an associated default ConsumerAdmin
and an associated default SupplierAdmin instance, both of which exist upon creation
of the channel and have the unique identifier of zero (note that admin object identifiers
only need to be unique among a given type of admin, implying that the identifiers
assigned to ConsumerAdmin objects can overlap those assigned to SupplierAdmin
objects). The EventChannel interface supports readonly attributes that maintain
references to these default admin objects.

The EventChannel interface supports operations that create new ConsumerAdmin
and SupplierAdmin instances. In addition, the EventChannel interface supports
operations that can return references to the ConsumerAdmin and SupplierAdmin
instances associated with a given EventChannel instance, given the unique identifier
of an admin object as input. Finally, the EventChannel interface supports operations,
which return the sequence of unique identifiers of all ConsumerAdmin and
SupplierAdmin instances associated with a given EventChannel instance.

3.4.17.1 MyFactory

The MyFactory attribute is a readonly attribute that maintains the object reference of
the event channel factory, which created a given Notification Service EventChannel
instance.

3.4.17.2 default_consumer_admin

The default_consumer_admin attribute is a readonly attribute that maintains a
reference to the default ConsumerAdmin instance associated with the target
EventChannel instance. Each EventChannel instance has an associated default
ConsumerAdmin instance, which exists upon creation of the channel and is assigned
the unique identifier of zero. Subsequently, clients can create additional Event Service
style ConsumerAdmin instances by invoking the inherited for_consumers
operation, and additional Notification Service style ConsumerAdmin instances by
invoking the new_for_consumers operation defined by the EventChannel
interface.

3.4.17.3 default_supplier_admin

The default_supplier_admin attribute is a readonly attribute that maintains a
reference to the default SupplierAdmin instance associated with the target
EventChannel instance. Each EventChannel instance has an associated default
SupplierAdmin instance, which exists upon creation of the channel and is assigned
the unique identifier of zero. Subsequently, clients can create additional Event Service
3-76 Notification Service, v1.1 October 2004

3

style SupplierAdmin instances by invoking the inherited for_suppliers operation,
and additional Notification Service style SupplierAdmin instances by invoking the
new_for_suppliers operation defined by the EventChannel interface.

3.4.17.4 default_filter_factory

The default_filter_factory attribute is a readonly attribute that maintains an object
reference to the default factory to be used by the EventChannel instance with which
it’s associated for creating filter objects. If the target channel does not support a default
filter factory, the attribute will maintain the value of OBJECT_NIL.

3.4.17.5 new_for_consumers

The new_for_consumers operation is invoked to create a new Notification Service
style ConsumerAdmin instance. The operation accepts as an input parameter a
boolean flag, which indicates whether AND or OR semantics will be used when
combining the filter objects associated with the newly created ConsumerAdmin
instance with those associated with a supplier proxy, which was created by the
ConsumerAdmin during the evaluation of each event against a set of filter objects.
The new instance is assigned a unique identifier by the target EventChannel instance
that is unique among all ConsumerAdmin instances currently associated with the
channel. Upon completion, the operation returns the reference to the new
ConsumerAdmin instance as the result of the operation, and the unique identifier
assigned to the new ConsumerAdmin instance as the output parameter.

3.4.17.6 new_for_suppliers

The new_for_suppliers operation is invoked to create a new Notification Service
style SupplierAdmin instance. The operation accepts as an input parameter a boolean
flag, which indicates whether AND or OR semantics will be used when combining the
filter objects associated with the newly created SupplierAdmin instance with those
associated with a consumer proxy, which was created by the SupplierAdmin during
the evaluation of each event against a set of filter objects. The new instance is assigned
a unique identifier by the target EventChannel instance that is unique among all
SupplierAdmin instances currently associated with the channel. Upon completion,
the operation returns the reference to the new SupplierAdmin instance as the result
of the operation, and the unique identifier assigned to the new SupplierAdmin
instance as the output parameter.

3.4.17.7 get_consumeradmin

The get_consumeradmin operation returns a reference to one of the
ConsumerAdmin instances associated with the target EventChannel instance. The
operation accepts as an input parameter a numeric value that is intended to be the
unique identifier of one of the ConsumerAdmin instances associated with the target
EventChannel instance. If this turns out to be the case, the object reference of the
associated ConsumerAdmin instance is returned as the operation result. Otherwise,
the AdminNotFound exception is raised.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-77

3

Note that while a Notification Service style event channel can support both Event
Service and Notification Service style ConsumerAdmin instances, only Notification
Service style ConsumerAdmin instances have associated unique identifiers.

3.4.17.8 get_supplieradmin

The get_supplieradmin operation returns a reference to one of the SupplierAdmin
instances associated with the target EventChannel instance. The operation accepts as
an input parameter a numeric value which is intended to be the unique identifier of one
of the SupplierAdmin instances associated with the target EventChannel instance.
If this turns out to be the case, the object reference of the associated SupplierAdmin
instance is returned as the operation result. Otherwise, the AdminNotFound
exception is raised.

Note that while a Notification Service style event channel can support both Event
Service and Notification Service style SupplierAdmin instances, only Notification
Service style SupplierAdmin instances have associated unique identifiers.

3.4.17.9 get_all_consumeradmins

The get_all_consumeradmins operation takes no input parameters and returns a
sequence of the unique identifiers assigned to all Notification Service style
ConsumerAdmin instances, which have been created by the target EventChannel
instance.

3.4.17.10 get_all_supplieradmins

The get_all_supplieradmins operation takes no input parameters and returns a
sequence of the unique identifiers assigned to all Notification Service style
SupplierAdmin instances, which have been created by the target EventChannel
instance.

3.4.18 The EventChannelFactory Interface

The EventChannelFactory interface defines operations for creating and managing
new Notification Service style event channels. It supports a routine that creates new
instances of Notification Service event channels and assigns unique numeric identifiers
to them. In addition, the EventChannelFactory interface supports a routine, which
can return the unique identifiers assigned to all event channels created by a given
instance of EventChannelFactory, and another routine which, given the unique
identifier of an event channel created by a target EventChannelFactory instance,
returns the object reference of that event channel.
3-78 Notification Service, v1.1 October 2004

3

3.4.18.1 create_channel

The create_channel operation is invoked to create a new instance of the Notification
Service style event channel. This operation accepts two input parameters. The first
input parameter is a list of name-value pairs, which specify the initial QoS property
settings for the new channel. The second input parameter is a list of name-value pairs,
which specify the initial administrative property settings for the new channel.

If no implementation of the EventChannel interface exists that can support all of the
requested QoS property settings, the UnsupportedQoS exception is raised. This
exception contains as data a sequence of data structures, each of which identifies the
name of a QoS property in the input list whose requested setting could not be satisfied,
along with an error code and a range of settings for the property that could be satisfied.
The meanings of the error codes that might be returned are described in Table 2-6 on
page 2-49.

Likewise, if no implementation of the EventChannel interface exists that can support
all of the requested administrative property settings, the UnsupportedAdmin
exception is raised. This exception contains as data a sequence of data structures, each
of which identifies the name of an administrative property in the input list whose
requested setting could not be satisfied, along with an error code and a range of
settings for the property that could be satisfied. The meanings of the error codes that
might be returned are described in Table 2-6 on page 2-49.

If neither of these exceptions is raised, the create_channel operation will return a
reference to a new Notification Service style event channel. In addition, the operation
assigns to this new event channel a numeric identifier, which is unique among all event
channels created by the target object. This numeric identifier is returned as an output
parameter.

3.4.18.2 get_all_channels

The get_all_channels operation returns a sequence of all of the unique numeric
identifiers corresponding to Notification Service event channels, which have been
created by the target object.

3.4.18.3 get_event_channel

The get_event_channel operation accepts as input a numeric value that is supposed
to be the unique identifier of a Notification Service event channel, which has been
created by the target object. If this input value does not correspond to such a unique
identifier, the ChannelNotFound exception is raised. Otherwise, the operation
returns the object reference of the Notification Service event channel corresponding to
the input identifier.
October 2004 Notification Service, v1.1: The CosNotifyChannelAdmin Module 3-79

3

3.5 The CosTypedNotifyComm Module

The CosTypedNotifyComm module defines the client interfaces required for doing
typed event style communication. Note that typed client interfaces are only required
for push-style consumers and pull-style suppliers, since these are the interfaces that
need to support event type specific transmission operations. Since no new operations
are required to perform typed event communication for pull-style consumers and push-
style suppliers, the analogous client interfaces defined in CosNotifyComm can be
reused for those types of typed clients.

Note that in addition to requiring special interfaces for typed style push consumers,
and typed style pull suppliers, it is necessary that these clients support the
NotifyPublish and NotifySubscribe interfaces, respectively, in order to support the
offer and type information sharing mechanism provided by the Notification Service.
This is the reason that a special module must be defined for these types of notification
service clients, as opposed to reusing those defined in the CosTypedEventComm
module of the OMG event service.

module CosTypedNotifyComm {

interface TypedPushConsumer :
CosTypedEventComm::TypedPushConsumer,
CosNotifyComm::NotifyPublish {

}; // TypedPushConsumer

interface TypedPullSupplier :
CosTypedEventComm::TypedPullSupplier,
CosNotifyComm::NotifySubscribe {

}; // TypedPullSupplier

}; // CosTypedNotifyComm

3.5.1 The TypedPushConsumer Interface

The TypedPushConsumer interface supports the behavior required by typed event
style push consumers connected to a Notification Service typed channel. This interface
inherits from the TypedPushConsumer interface defined by the
CosTypedEventComm module of the OMG Event Service. This inherited interface
supports the get_typed_consumer operation that enables an instance supporting the
TypedPushConsumer interface to return a reference to a type-specific interface that
supports type-specific event transmission.

In addition, the TypedPushConsumer interface inherits the NotifyPublish
interface defined by the CosNotifyComm module. This inheritence enables an
instance supporting the TypedPushConsumer interface to have its offer_change
operation invoked, keeping it informed of the types of events being offered by
suppliers connected to the same channel.
3-80 Notification Service, v1.1 October 2004

3

3.5.2 The TypedPullSupplier Interface

The TypedPullSupplier interface supports the behavior required by typed event style
pull suppliers connected to a Notification Service typed channel. This interface inherits
from the TypedPullSupplier interface defined by the CosTypedEventComm
module of the OMG Event Service. This inherited interface supports the
get_typed_supplier operation that enables an instance supporting the
TypedPullSupplier interface to return a reference to a type-specific interface that
supports type-specific event transmission.

In addition, the TypedPullSupplier interface inherits the NotifySubscribe interface
defined by the CosNotifyComm module. This inheritence enables an instance
supporting the TypedPullSupplier interface to have its subscription_change
operation invoked, keeping it informed of the types of events being subscribed to by
consumers connected to the same channel.

3.6 CosTypedNotifyChannelAdmin

The CosTypedNotifyChannelAdmin module defines the interfaces necessary to
create, configure, and administer instances of a Notification Service typed event
channel. The Notification Service typed event channel is essentially a hybrid of the
typed event channel defined by the OMG Event Service, and the Notification Service
event channel described in the previous section. The Notification Service typed event
channel supports typed event service clients, exactly as defined in the OMG Event
Service, but provides the advantages of QoS administration of the channel, admin, and
proxy interfaces, and enables filtering to be performed on typed events.

Through inheritance of analogous interfaces defined in the
CosTypedEventChannelAdmin module of the OMG Event Service, a Notification
Service typed event channel supports backward compatibility with an Event Service
typed event channel. In addition, the CosTypedNotifyChannelAdmin module
defines new versions of the TypedEventChannel, admin, and proxy interfaces that
support connections from clients who will communicate via typed events, but also
desire the ability to configure their connections to the channel to support various QoS
properties, and the ability to define filters based on the type and contents of typed
events.

The concepts involved with filter of typed events are described in “Filtering Typed
Events” on page 2-55. The interfaces and modules that comprise the
CosTypedNotifyChannelAdmin module are specified below.

module CosTypedNotifyChannelAdmin {

// Forward declaration
interface TypedEventChannelFactory;

typedef string Key;

interface TypedProxyPushConsumer :
CosNotifyChannelAdmin::ProxyConsumer,
CosTypedNotifyComm::TypedPushConsumer {
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-81

3

void connect_typed_push_supplier (
in CosEventComm::PushSupplier push_supplier)

raises (CosEventChannelAdmin::AlreadyConnected);

}; // TypedProxyPushConsumer

interface TypedProxyPullSupplier :
CosNotifyChannelAdmin::ProxySupplier,
CosTypedNotifyComm::TypedPullSupplier {

void connect_typed_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)

raises (CosEventChannelAdmin::AlreadyConnected);

}; // TypedProxyPullSupplier

interface TypedProxyPullConsumer :
CosNotifyChannelAdmin::ProxyConsumer,
CosNotifyComm::PullConsumer {

void connect_typed_pull_supplier (
in CosTypedEventComm::TypedPullSupplier pull_supplier)

raises (CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyInactive,

CosNotifyChannelAdmin::NotConnected);

void resume_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyActive,

CosNotifyChannelAdmin::NotConnected);

}; // TypedProxyPullConsumer

interface TypedProxyPushSupplier :
CosNotifyChannelAdmin::ProxySupplier,
CosNotifyComm::PushSupplier {

void connect_typed_push_consumer (
in CosTypedEventComm::TypedPushConsumer push_consumer)

raises (CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyInactive,

CosNotifyChannelAdmin::NotConnected);

void resume_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyActive,

CosNotifyChannelAdmin::NotConnected);

}; // TypedProxyPushSupplier
3-82 Notification Service, v1.1 October 2004

3

interface TypedConsumerAdmin :
CosNotifyChannelAdmin::ConsumerAdmin,
CosTypedEventChannelAdmin::TypedConsumerAdmin {

 TypedProxyPullSupplier obtain_typed_notification_pull_supplier(
in Key supported_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)

raises(CosTypedEventChannelAdmin::InterfaceNotSupported,
CosNotifyChannelAdmin::AdminLimitExceeded);

 TypedProxyPushSupplier obtain_typed_notification_push_supplier(
in Key uses_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)

raises(CosTypedEventChannelAdmin::NoSuchImplementation,
CosNotifyChannelAdmin::AdminLimitExceeded);

}; // TypedConsumerAdmin

interface TypedSupplierAdmin :
CosNotifyChannelAdmin::SupplierAdmin,
CosTypedEventChannelAdmin::TypedSupplierAdmin {

 TypedProxyPushConsumer obtain_typed_notification_push_consumer(
in Key supported_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)

raises(CosTypedEventChannelAdmin::InterfaceNotSupported,
CosNotifyChannelAdmin::AdminLimitExceeded);

 TypedProxyPullConsumer obtain_typed_notification_pull_consumer(
in Key uses_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)

raises(CosTypedEventChannelAdmin::NoSuchImplementation,
CosNotifyChannelAdmin::AdminLimitExceeded);

}; // TypedSupplierAdmin

interface TypedEventChannel :
CosNotification::QoSAdmin,
CosNotification::AdminPropertiesAdmin,
CosTypedEventChannelAdmin::TypedEventChannel {

readonly attribute TypedEventChannelFactory MyFactory;

readonly attribute TypedConsumerAdmin default_consumer_admin;
readonly attribute TypedSupplierAdmin default_supplier_admin;

readonly attribute CosNotifyFilter::FilterFactory

default_filter_factory;

TypedConsumerAdmin new_for_typed_notification_consumers(
in CosNotifyChannelAdmin::InterFilterGroupOperator op,
out CosNotifyChannelAdmin::AdminID id);
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-83

3

TypedSupplierAdmin new_for_typed_notification_suppliers(
in CosNotifyChannelAdmin::InterFilterGroupOperator op,
out CosNotifyChannelAdmin::AdminID id);

TypedConsumerAdmin get_consumeradmin (
in CosNotifyChannelAdmin::AdminID id)

raises (CosNotifyChannelAdmin::AdminNotFound);

TypedSupplierAdmin get_supplieradmin (
in CosNotifyChannelAdmin::AdminID id)

raises (CosNotifyChannelAdmin::AdminNotFound);

CosNotifyChannelAdmin::AdminIDSeq get_all_consumeradmins();
CosNotifyChannelAdmin::AdminIDSeq get_all_supplieradmins();

}; // TypedEventChannel

interface TypedEventChannelFactory {

TypedEventChannel create_typed_channel (
in CosNotification::QoSProperties initial_QoS,
in CosNotification::AdminProperties initial_admin,
out CosNotifyChannelAdmin::ChannelID id)

raises(CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

CosNotifyChannelAdmin::ChannelIDSeq get_all_typed_channels();

TypedEventChannel get_typed_event_channel (
in CosNotifyChannelAdmin::ChannelID id)

raises (CosNotifyChannelAdmin::ChannelNotFound);

}; // TypedEventChannelFactory

}; // CosTypedNotifyChannelAdmin

3.6.1 The TypedProxyPushConsumer Interface

The TypedProxyPushConsumer interface supports connections to the channel by
suppliers who will push OMG Event Service style typed events to the channel.

Through inheritance of the ProxyConsumer interface defined in the
CosNotifyChannelAdmin module, the TypedProxyPushConsumer interface
supports administration of various QoS properties, administration of a list of associated
filter objects, and a readonly attribute containing the object reference of the
SupplierAdmin1 instance, which created a given TypedProxyPushConsumer
instance. In addition, this inheritance implies that a TypedProxyPushConsumer
instance supports an operation that will return the list of event types that consumers
connected to the same channel are interested in receiving, and an operation that can
return information about the instance’s ability to accept a per-event QoS request.
3-84 Notification Service, v1.1 October 2004

3

The TypedProxyPushConsumer interface also inherits from the
TypedPushConsumer interface defined within the CosTypedNotifyComm
module. This interface supports the event type specific operation(s), which the supplier
connected to a TypedProxyPushConsumer instance will invoke to send events to
the channel in the form of typed events. And, since the TypedPushConsumer
interface inherits from the PushConsumer interface defined in the
CosEventComm module, an instance supporting the TypedProxyPushConsumer
interface supports the standard push operation with which it can be supplied untyped
events, and the operation required to disconnect the TypedProxyPushConsumer
from its associated supplier. In addition, since the inherited TypedPushConsumer
interface inherits the CosNotifyComm::NotifyPublish interface, a supplier
connected to an instance supporting the TypedProxyPushConsumer interface can
inform it whenever the list of event types the supplier plans to supply changes.

Finally, the TypedProxyPushConsumer interface defines the operation, which can
be invoked by a push supplier to establish the connection over which the push supplier
will send events to the channel. Note that this can be either a pure event service style,
or a notification service style push supplier.

3.6.1.1 connect_typed_push_supplier

The connect_typed_push_supplier operation accepts as an input parameter the
reference to an object supporting the PushSupplier interface defined within the
CosEventComm module. This reference is that of a supplier that plans to push typed
events to the channel with which the target object is associated. This operation is thus
invoked in order to establish a connection between a push-style supplier of typed
events, and the notification channel. Once established, the supplier can proceed to send
events to the channel by invoking the event type specific operation(s) supported by the
target TypedProxyPushConsumer instance. If the target object of this operation is
already connected to a push supplier object, the AlreadyConnected exception will
be raised.

Note that since there is no difference between the interfaces of suppliers of untyped
and typed events, it would have sufficed to have the TypedProxyPushConsumer
interface to inherit from the ProxyPushConsumer interface defined in the
CosNotifyChannelAdmin module, and to not define a separate “connect” method
for push-style suppliers of typed events. It was felt, however, that explicitly defining
this operation makes the usage model of the TypedProxyPushConsumer interface
more intuitive.

Note also that because the PushSupplier interface defined in the CosNotifyComm
module inherits from the PushSupplier interface defined in the CosEventComm
module, the input parameter to this operation could be either a pure event service style,

1.In this case, the reference is really to a TypedSupplierAdmin instance, which is valid since
TypedSupplierAdmin inherits from CosNotifyChannelAdmin::SupplierAdmin.
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-85

3

or a notification service style push supplier. The only difference between the two are
that the latter also supports the NotifySubscribe interface, and thus can be the target
of subscription_change invocations. The implementation of the
TypedProxyPushConsumer interface should attempt to narrow the input parameter
to CosNotifyComm::PushSupplier in order to determine which style of push
supplier is connecting to it.

3.6.2 The TypedProxyPullSupplier Interface

The TypedProxyPullSupplier interface supports connections to the channel by
consumers who will pull OMG Event Service style typed events from the channel.

Through inheritance of the ProxySupplier interface, the TypedProxyPullSupplier
interface supports administration of various QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a readonly
attribute containing the object reference of the ConsumerAdmin2 instance, which
created a given TypedProxyPullSupplier instance. In addition, this inheritance
implies that a TypedProxyPullSupplier instance supports an operation that will
return the list of event types, which the proxy supplier will potentially be supplying,
and an operation that can return information about the instance’s ability to accept a
per-event QoS request.

The TypedProxyPullSupplier interface also inherits from the TypedPullSupplier
interface defined within the CosTypedNotifyComm module. This interface supports
the event type specific operation(s), which the consumer connected to a
TypedProxyPullSupplier instance will invoke to receive events from the channel in
the form of typed events. And, since the TypedPullSupplier interface inherits from
the PullSupplier interface defined in the CosEventComm module, an instance
supporting the TypedProxyPullSupplier interface supports the standard pull and
try_pull operations with which it can supply untyped events, and the operation
required to disconnect the TypedProxyPullSupplier from its associated consumer. In
addition, since the inherited TypedPullSupplier interface inherits the
CosNotifyComm::NotifySubscribe interface, an instance supporting the
TypedProxyPullSupplier interface can be informed whenever the list of event types
that the consumer connected to it is interested in receiving changes.

Finally, the TypedProxyPullSupplier interface defines the operation that can be
invoked by a pull consumer to establish the connection over which the pull consumer
will receive events from the channel. Note that this can be either a pure event service
style, or a notification service style pull consumer.

2.In this case, the reference is really to a TypedConsumerAdmin instance, which is valid since
TypedConsumerAdmin inherits from CosNotifyChannelAdmin::ConsumerAdmin.
3-86 Notification Service, v1.1 October 2004

3

3.6.2.1 connect_typed_pull_consumer

The connect_typed_pull_consumer operation accepts as an input parameter the
reference to an object supporting the PullConsumer interface defined within the
CosEventComm module. This reference is that of a consumer, which plans to pull
typed events from the channel with which the target object is associated. This
operation is thus invoked in order to establish a connection between a pull-style
consumer of typed events, and the notification channel. Once established, the
consumer can proceed to receive events from the channel by invoking the event type
specific operation(s) supported by the target TypedProxyPullSupplier instance. If
the target object of this operation is already connected to a pull consumer object, the
AlreadyConnected exception will be raised.

Note that since there is no difference between the interfaces of consumers of untyped
and typed events, it would have sufficed to have the TypedProxyPullSupplier
interface to inherit from the ProxyPullSupplier interface defined in the
CosNotifyChannelAdmin module, and to not define a separate “connect” method
for pull-style consumers of typed events. It was felt, however, that explicitly defining
this operation makes the usage model of the TypedProxyPullSupplier interface
more intuitive.

Note also that because the PullConsumer interface defined in the CosNotifyComm
module inherits from the PullConsumer interface defined in the CosEventComm
module, the input parameter to this operation could be either a pure event service style,
or a notification service style pull consumer. The only difference between the two are
that the latter also supports the NotifyPublish interface, and thus can be the target of
offer_change invocations. The implementation of the TypedProxyPullSupplier
interface should attempt to narrow the input parameter to
CosNotifyComm::PullConsumer in order to determine which style of pull
consumer is connecting to it.

3.6.3 The TypedProxyPullConsumer Interface

The TypedProxyPullConsumer interface supports connections to the channel by
suppliers who will make OMG Event Service style typed events available for pulling
to the channel.

Through inheritance of the ProxyConsumer interface, the ProxyPullConsumer
interface supports administration of various QoS properties, administration of a list of
associated filter objects, and a readonly attribute containing the object reference of the
SupplierAdmin3 instance, which created a given TypedProxyPullConsumer
instance. In addition, this inheritance implies that a TypedProxyPullConsumer

3.In this case, the reference is really to a TypedSupplierAdmin instance, which is valid since
TypedSupplierAdmin inherits from CosNotifyChannelAdmin::SupplierAdmin.
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-87

3

instance supports an operation that will return the list of event types, which consumers
connected to the same channel are interested in receiving, and an operation that can
return information about the instance’s ability to accept a per-event QoS request.

The TypedProxyPullConsumer interface also inherits from the PullConsumer
interface defined within the CosNotifyComm module. This interface supports the
operation required to disconnect the TypedProxyPullConsumer from its associated
supplier. In addition, since the inherited PullConsumer interface inherits the
CosNotifyComm::NotifyPublish interface, a supplier connected to an instance
supporting the TypedProxyPullConsumer interface can inform it whenever the list
of event types the supplier plans to supply changes.

Finally, the TypedProxyPullConsumer interface defines the operation that can be
invoked by a typed pull supplier to establish the connection over which the typed pull
supplier will send events to the channel. Note that this can be either a pure event
service style, or a notification service style typed pull supplier. The
TypedProxyPullConsumer interface also defines a pair of operations, which can
suspend and resume the connection between a TypedProxyPullConsumer instance
and its associated TypedPullSupplier. During the time such a connection is
suspended, the TypedProxyPullConsumer will not attempt to pull events from its
associated TypedPullSupplier.

3.6.3.1 connect_typed_pull_supplier

The connect_typed_pull_supplier operation accepts as an input parameter the
reference to an object supporting the TypedPullSupplier interface defined within the
CosTypedEventComm module. This reference is that of a supplier that plans to
make OMG Event Service style typed events available for pulling to the channel with
which the target object is associated. This operation is thus invoked in order to
establish a connection between a pull-style supplier of typed events, and the
notification channel. Once established, the channel can proceed to receive events from
the supplier by invoking the event type specific operation(s) supported by the supplier.
If the target object of this operation is already connected to a typed pull supplier
object, the AlreadyConnected exception will be raised. An implementation of the
TypedProxyPullConsumer interface may impose additional requirements on the
interface supported by a typed pull supplier (e.g., it may be designed to invoke some
specific pull-style operation to receive events). If the typed pull supplier being
connected does not meet those requirements, this operation raises the TypeError
exception.

Note that because the TypedPullSupplier interface defined in the
CosTypedNotifyComm module inherits from the TypedPullSupplier interface
defined in the CosTypedEventComm module, the input parameter to this operation
could be either a pure event service style, or a notification service style typed pull
supplier. The only difference between the two are that the latter also supports the
NotifySubscribe interface, and thus can be the target of subscription_change
invocations. The implementation of the TypedProxyPullConsumer interface should
attempt to narrow the input parameter to
CosTypedNotifyComm::TypedPullSupplier in order to determine which style of
typed pull supplier is connecting to it.
3-88 Notification Service, v1.1 October 2004

3

3.6.3.2 suspend_connection

The suspend_connection operation causes the target object supporting the
TypedProxyPullConsumer interface to stop attempting to pull events (using pull or
try_pull) from the TypedPullSupplier instance connected to it. This operation takes
no input parameters and returns no values. If the connection has been previously
suspended using this operation and not resumed by invoking resume_connection
(described below), the ConnectionAlreadyInactive exception is raised. If no
TypedPullSupplier has been connected to the target object when this operation is
invoked, the NotConnected exception is raised. Otherwise, the
TypedProxyPullConsumer will not attempt to pull events from the
TypedPullSupplier connected to it until resume_connection is subsequently
invoked.

3.6.3.3 resume_connection

The resume_connection operation causes the target object supporting the
TypedProxyPullConsumer interface to resume attempting to pull events (using pull
or try_pull) from the TypedPullSupplier instance connected to it. This operation
takes no input parameters and returns no values. If the connection has not been
previously suspended using this operation by invoking suspend_connection
(described above), the ConnectionAlreadyActive exception is raised. If no
TypedPullSupplier has been connected to the target object when this operation is
invoked, the NotConnected exception is raised. Otherwise, the
TypedProxyPullConsumer will resume attempting to pull events from the
TypePullSupplier connected to it.

3.6.4 The TypedProxyPushSupplier Interface

The TypedProxyPushSupplier interface supports connections to the channel by
consumers who will receive OMG Event Service style events from the channel.

Through inheritance of the ProxySupplier interface, the
TypedProxyPushSupplier interface supports administration of various QoS
properties, administration of a list of associated filter objects, mapping filters for event
priority and lifetime, and a readonly attribute containing the object reference of the
ConsumerAdmin4 instance, which created a given TypedProxyPushSupplier
instance. In addition, this inheritance implies that a TypedProxyPushSupplier
instance supports an operation, which will return the list of event types that the proxy
supplier will potentially be supplying, and an operation that can return information
about the instance’s ability to accept a per-event QoS request.

4.In this case, the reference is really to a TypedConsumerAdmin instance, which is valid since
TypedConsumerAdmin inherits from CosNotifyChannelAdmin::ConsumerAdmin.
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-89

3

The TypedProxyPushSupplier interface also inherits from the PushSupplier
interface defined within the CosNotifyComm module. This interface supports the
operation required to disconnect the TypedProxyPushSupplier from its associated
consumer. In addition, since the inherited PushSupplier interface inherits the
CosNotifyComm::NotifySubscribe interface, an instance supporting the
TypedProxyPushSupplier interface can be informed whenever the list of event
types that the consumer connected to it is interested in receiving changes.

Lastly, the TypedProxyPushSupplier interface defines the operation, which can be
invoked by a typed push consumer to establish the connection over which the typed
push consumer will receive events from the channel. Note that this can be either a pure
event service style, or a notification service style typed push consumer. The
TypedProxyPushSupplier interface also defines a pair of operations that can
suspend and resume the connection between a TypedProxyPushSupplier instance
and its associated TypedPushConsumer. During the time such a connection is
suspended, the TypedProxyPushSupplier will accumulate events destined for the
consumer but not transmit them until the connection is resumed.

3.6.4.1 connect_typed_push_consumer

The connect_typed_push_consumer operation accepts as an input parameter the
reference to an object supporting the TypedPushConsumer interface defined within
the CosTypedEventComm module. This reference is that of a consumer, which will
receive OMG Event Service style typed events from the channel with which the target
object is associated. This operation is thus invoked in order to establish a connection
between a push-style consumer of typed events, and the notification channel. Once
established, the TypedProxyPushSupplier will proceed to send events destined for
the consumer to it by invoking its event type specific push-style operation(s). If the
target object of this operation is already connected to a typed push consumer object,
the AlreadyConnected exception will be raised. An implementation of the
TypedProxyPushSupplier interface may impose additional requirements on the
interface supported by a typed push consumer (e.g., it may be designed to invoke some
specific operation in order to transmit events). If the typed push consumer being
connected does not meet those requirements, this operation raises the TypeError
exception.

Note that because the TypedPushConsumer interface defined in the
CosTypedNotifyComm module inherits from the TypedPushConsumer interface
defined in the CosTypedEventComm module, the input parameter to this operation
could be either a pure event service style, or a notification service style typed push
consumer. The only difference between the two are that the latter also supports the
NotifyPublish interface, and thus can be the target of offer_change invocations.
The implementation of the TypedProxyPushSupplier interface should attempt to
narrow the input parameter to CosTypedNotifyComm::TypedPushConsumer in
order to determine which style of typed push consumer is connecting to it.
3-90 Notification Service, v1.1 October 2004

3

3.6.4.2 suspend_connection

The suspend_connection operation causes the target object supporting the
TypedProxyPushSupplier interface to stop sending events to the
TypedPushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has been previously suspended
using this operation and not resumed by invoking resume_connection (described
below), the ConnectionAlreadyInactive exception defined in the
CosNotifyChannelAdmin module is raised. If no TypedPushConsumer has been
connected to the target object when this operation is invoked, the NotConnected
exception is raised. Otherwise, the TypedProxyPushSupplier will not forward
events to the TypedPushConsumer connected to it until resume_connection is
subsequently invoked. During this time, the TypedProxyPushSupplier will continue
to queue events destined for the TypedPushConsumer, although events that time
out prior to resumption of the connection will be discarded. Upon resumption of the
connection, all queued events will be forwarded to the TypedPushConsumer.

3.6.4.3 resume_connection

The resume_connection operation causes the target object supporting the
TypedProxyPushSupplier interface to resume sending events to the
TypedPushConsumer instance connected to it. This operation takes no input
parameters and returns no values. If the connection has not been previously suspended
using this operation by invoking suspend_connection (described above), the
ConnectionAlreadyActive exception defined in the CosNotifyChannelAdmin
module is raised. If no TypedPushConsumer has been connected to the target object
when this operation is invoked, the NotConnected exception is raised. Otherwise,
the TypedProxyPushSupplier will resume forwarding events to the
TypedPushConsumer connected to it, including those that have been queued during
the time the connection was suspended, and have not yet timed out.

3.6.5 The TypedConsumerAdmin Interface

The TypedConsumerAdmin interface defines the behavior supported by objects that
create and manage lists of proxy supplier objects within a Notification Service typed
event channel. Similar to its untyped counterpart, a Notification Service typed event
channel can have any number of TypedConsumerAdmin instances associated with
it. Each such instance is responsible for creating and managing a list of proxy supplier
objects that share a common set of QoS property settings, and a common set of filter
objects. This feature enables clients to conveniently group proxy supplier objects
within a channel into groupings that each support a set of consumers with a common
set of QoS requirements and event subscriptions.

Note that the TypedConsumerAdmin interface inherits from ConsumerAdmin
interface defined in the CosNotifyChannelAdmin module, and the
TypedConsumerAdmin interface defined in the CosTypedEventChannelAdmin
module. These inheritance relationships have several implications for a Notification
Service style TypedConsumerAdmin instance.
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-91

3

First, inheritance of the ConsumerAdmin interface defined in the
CosNotifyChannelAdmin module implies that in addition to being capable of
creating and managing Notification Service style typed proxy supplier objects, a
TypedConsumerAdmin instance can also create and manage instances supporting
any of the proxy supplier interfaces defined in the CosNotifyChannelAdmin
module. In addition, since the ConsumerAdmin interface defined in the
CosNotifyChannelAdmin module inherits from the ConsumerAdmin interface
defined in the CosEventChannelAdmin module, a TypedConsumerAdmin can
also create and manage OMG Event service style untyped proxy supplier objects.

Likewise, inheritance of the TypedConsumerAdmin interface defined in the
CosTypedEventChannelAdmin module implies that an instance supporting the
CosTypedNotifyChannelAdmin’s version of TypedConsumerAdmin can create
and manage OMG Event Service style typed proxy supplier objects as well.

Thus, instances supporting the TypedConsumerAdmin interface defined in the
CosTypedNotifyChannelAdmin module can potentially create and manage
instances supporting any of the proxy supplier interfaces defined in the
CosEventChannelAdmin, CosNotifyChannelAdmin,
CosTypedEventChannelAdmin, and the CosTypedNotifyChannelAdmin (due
to locally defined factory operations) modules. The implication of this is that a
Notification Service style typed event channel can support OMG Event Service style
untyped and typed consumers, along with all variations of consumers defined in the
Notification Service as clients.

Note also that the inherited CosNotifyChannelAdmin::ConsumerAdmin interface
provides an instance supporting the
CosTypedNotifyChannelAdmin::TypedConsumerAdmin interface with the
behaviors necessary to associate unique identifiers with the proxy supplier objects it
creates. While the TypedConsumerAdmin interface defined here is capable of
creating OMG Event Service style untyped and typed proxy supplier objects, only
instances of the proxy supplier interfaces defined in the Notification Service can have
associated unique identifiers.

Similarly, the inheritance of the ConsumerAdmin interface defined in the
CosNotifyChannelAdmin module provides an instance supporting the
TypedConsumerAdmin interface defined in the CosTypedNotifyChannelAdmin
module with the behaviors necessary to maintain associated QoS property settings and
filter objects. The relationships between the QoS property settings and filter objects to
the proxy supplier objects created by a TypedConsumerAdmin instance are
identical to those described in “The ConsumerAdmin Interface” on page 3-67. Note
again that QoS property settings and filter objects can only be associated with
Notification Service style proxy suppliers, both typed and untyped.

Inheritance of the ConsumerAdmin interface defined in CosNotifyChannelAdmin
also implies that TypedConsumerAdmin also inherits from the NotifySubscribe
interface defined in CosNotifyComm. This inheritance enables optimizing the
notification of a group of proxy supplier objects that have been created by the same
TypedConsumerAdmin instance of changes to shared filter objects, since this
inheritance enables a TypedConsumerAdmin instance to be registered as the
callback object for notification of subscription changes made upon filter objects.
3-92 Notification Service, v1.1 October 2004

3

Lastly, inheritance of the ConsumerAdmin interface defined in
CosNotifyChannelAdmin implies that an instance of the TypedConsumerAdmin
interface supports readonly attributes that maintain the unique identifier of the instance
supplied to it by its creating channel, the object reference of the creating channel, and
the flag which indicates whether AND or OR semantics will be used when combining
the filter objects associated with a TypedConsumerAdmin with those defined on
specific proxy suppliers created by the TypedConsumerAdmin.

Locally, the TypedConsumerAdmin interface supports the operations that create
new Notification Service style typed proxy supplier instances. Note lastly that due to
inheritance of the ConsumerAdmin interface defined in the
CosNotifyChannelAdmin module, an instance supporting the
TypedConsumerAdmin interface supports a readonly attribute that maintains a
unique identifier assigned to the instance by the channel that created it.

3.6.5.1 obtain_typed_notification_pull_supplier

The obtain_typed_notification_pull_supplier operation is used to create a new
Notification Service style proxy supplier instance, which will support a connection to
the channel with which the target TypedConsumerAdmin instance is associated by a
pull-style consumer of typed events. The operation accepts as input a string, which
identifies the name of the strongly typed interface that the newly created
TypedProxyPullSupplier instance should support. The consumer that connects to
the new TypedProxyPullSupplier would use this strongly typed interface to invoke
operations to receive typed events.

If the target TypedConsumerAdmin instance cannot locate an occurrence of the
TypedProxyPullSupplier interface, which also supports the requested strongly typed
interface, the InterfaceNotSupported exception defined the
CosTypedEventChannelAdmin module is raised. If the number of consumers
currently connected to the channel with which the target TypedConsumerAdmin
object is associated exceeds the value of the MaxConsumers administrative property,
the AdminLimitExceeded exception is raised. Otherwise, the target
TypedConsumerAdmin instance creates a new instance supporting the
TypedProxyPullSupplier interface defined in the
CosTypedNotifyChannelAdmin module. This interface can subsequently be used
for a pull-style consumer of typed events to establish a connection to the Notification
Service typed event channel. Upon creating the new TypedProxyPullSupplier
instance, the target TypedConsumerAdmin instance associates with it a unique
identifier that it returns as an output parameter. This unique identifier could
subsequently be used as the input parameter to the get_proxy_supplier operation
inherited by the target TypedConsumerAdmin instance in order to obtain the
reference to the newly created TypedProxyPullSupplier instance. This reference is
returned as the result of the obtain_typed_notification_pull_supplier operation.
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-93

3

3.6.5.2 obtain_typed_notification_push_supplier

The obtain_typed_notification_push_supplier operation is used to create a new
Notification Service style proxy supplier instance, which will support a connection to
the channel with which the target TypedConsumerAdmin instance is associated by a
push-style consumer of typed events. The operation accepts as input a string, which
identifies the name of a strongly typed interface that the newly created
TypedProxyPushSupplier instance should use when invoking operations upon its
associated TypedPushConsumer instance to send it events.

If the target TypedConsumerAdmin instance cannot locate an implementation of the
TypedProxyPullSupplier interface, which will use the requested strongly typed
interface to send events to a TypedPushConsumer, the NoSuchImplementation
exception defined in the CosTypedEventChannelAdmin module is raised. If the
number of consumers currently connected to the channel with which the target
TypedConsumerAdmin object is associated exceeds the value of the
MaxConsumers administrative property, the AdminLimitExceeded exception is
raised. Otherwise, the target TypedConsumerAdmin instance creates a new instance
supporting the TypedProxyPushSupplier interface defined in the
CosTypedNotifyChannelAdmin module. This interface can subsequently be used
for a push-style consumer of typed events to establish a connection to the Notification
Service typed event channel. Upon creating the new TypedProxyPushSupplier
instance, the target TypedConsumerAdmin instance associates with it a unique
identifier, which it returns as an output parameter. This unique identifier could
subsequently be used as the input parameter to the get_proxy_supplier operation
inherited by the target TypedConsumerAdmin instance in order to obtain the
reference to the newly created TypedProxyPushSupplier instance. This reference is
returned as the result of the obtain_typed_notification_push_supplier operation.

3.6.6 The TypedSupplierAdmin Interface

The TypedSupplierAdmin interface defines the behavior supported by objects that
create and manage lists of proxy consumer objects within a Notification Service typed
event channel. Similar to its untyped counterpart, a Notification Service typed event
channel can have any number of TypedSupplierAdmin instances associated with it.
Each such instance is responsible for creating and managing a list of proxy consumer
objects that share a common set of QoS property settings, and a common set of filter
objects. This feature enables clients to conveniently group proxy supplier objects
within a channel into groupings that each support a set of consumers with a common
set of QoS requirements and event subscriptions.

Note that the TypedSupplierAdmin interface inherits from SupplierAdmin
interface defined in the CosNotifyChannelAdmin module, and the
TypedSupplierAdmin interface defined in the CosTypedEventChannelAdmin
module. These inheritance relationships have several implications for a Notification
Service style TypedSupplierAdmin instance.

First, inheritance of the SupplierAdmin interface defined in the
CosNotifyChannelAdmin module implies that in addition to being capable of
creating and managing Notification Service style typed proxy consumer objects, a
3-94 Notification Service, v1.1 October 2004

3

TypedSupplierAdmin instance can also create and manage instances supporting any
of the proxy consumer interfaces defined in the CosNotifyChannelAdmin module.
In addition, since the SupplierAdmin interface defined in the
CosNotifyChannelAdmin module inherits from the SupplierAdmin interface
defined in the CosEventChannelAdmin module, a TypedSupplierAdmin can also
create and manage OMG Event service style untyped proxy consumer objects.

Likewise, inheritance of the TypedSupplierAdmin interface defined in the
CosTypedEventChannelAdmin module implies that an instance supporting the
CosTypedNotifyChannelAdmin’s version of TypedSupplierAdmin can create
and manage OMG Event Service style typed proxy consumer objects as well.

Thus, instances supporting the TypedSupplierAdmin interface defined in the
CosTypedNotifyChannelAdmin module can potentially create and manage
instances supporting any of the proxy consumer interfaces defined in the
CosEventChannelAdmin, CosNotifyChannelAdmin,
CosTypedEventChannelAdmin, and the CosTypedNotifyChannelAdmin (due
to locally defined factory operations) modules. The implication of this is that a
Notification Service style typed event channel can support OMG Event Service style
untyped and typed suppliers, along with all variations of suppliers defined in the
Notification Service as clients.

Note also that the inherited CosNotifyChannelAdmin::SupplierAdmin interface
provides an instance supporting the
CosTypedNotifyChannelAdmin::TypedSupplierAdmin interface with the
behaviors necessary to associate unique identifiers with the proxy consumer objects it
creates. While the TypedSupplierAdmin interface defined here is capable of creating
OMG Event Service style untyped and typed proxy supplier objects, only instances of
the proxy supplier interfaces defined in the Notification Service can have associated
unique identifiers.

Similarly, the inheritance of the SupplierAdmin interface defined in the
CosNotifyChannelAdmin module provides an instance supporting the
TypedSupplierAdmin interface defined in the CosTypedNotifyChannelAdmin
module with the behaviors necessary to maintain associated QoS property settings and
filter objects. The relationships between the QoS property settings and filter objects to
the proxy consumer objects created by a TypedSupplierAdmin instance are identical
to those described in “The SupplierAdmin Interface” on page 3-72. Note again that
QoS property settings and filter objects can only be associated with Notification
Service style proxy consumers, both typed and untyped.

Inheritance of the SupplierAdmin interface defined in CosNotifyChannelAdmin
also implies that TypedSupplierAdmin also inherits from the NotifyPublish
interface defined in CosNotifyComm. This inheritance enables optimizing the
notification of a group of proxy consumer objects that have been created by the same
TypedSupplierAdmin instance of changes to the types of events being offered to
them by suppliers, since this inheritance enables a TypedSupplierAdmin instance to
be the target of an offer_change operation. Lastly, inheritance of the
SupplierAdmin interface defined in CosNotifyChannelAdmin implies that an
instance of the TypedSupplierAdmin interface supports readonly attributes that
maintain the unique identifier of the instance supplied to it by its creating channel, the
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-95

3

object reference of the creating channel, and the flag that indicates whether AND or
OR semantics will be used when combining the filter objects associated with a
TypedSupplierAdmin with those defined on specific proxy consumers created by the
TypedSupplierAdmin.

Locally, the TypedSupplierAdmin interface supports the operations that create new
Notification Service style typed proxy consumer instances. Note lastly that due to
inheritance of the SupplierAdmin interface defined in the
CosNotifyChannelAdmin module, an instance supporting the
TypedSupplierAdmin interface supports a readonly attribute that maintains a unique
identifier assigned to the instance by the channel that created it.

3.6.6.1 obtain_typed_notification_push_consumer

The obtain_typed_notification_push_consumer operation is used to create a new
Notification Service style proxy consumer instance, which will support a connection to
the channel with which the target TypedSupplierAdmin instance is associated by a
push-style supplier of typed events. The operation accepts as input a string, which
identifies the name of the strongly typed interface that the newly created
TypedProxyPushConsumer instance should support. The supplier, which connects
to the new TypedProxyPushConsumer would use this strongly typed interface to
invoke operations to send typed events to the channel.

If the target TypedSupplierAdmin instance cannot locate an occurrence of the
TypedProxyPushConsumer interface, which also supports the requested strongly
typed interface, the InterfaceNotSupported exception defined the
CosTypedEventChannelAdmin module is raised. If the number of suppliers
currently connected to the channel with which the target TypedSupplierAdmin
object is associated exceeds the value of the MaxSuppliers administrative property,
the AdminLimitExceeded exception is raised. Otherwise, the target
TypedSupplierAdmin instance creates a new instance supporting the
TypedProxyPushConsumer interface defined in the
CosTypedNotifyChannelAdmin module. This interface can subsequently be used
for a push-style supplier of typed events to establish a connection to the Notification
Service typed event channel. Upon creating the new TypedProxyPushConsumer
instance, the target TypedSupplierAdmin instance associates with it a unique
identifier, which it returns as an output parameter. This unique identifier could
subsequently be used as the input parameter to the get_proxy_consumer operation
inherited by the target TypedSupplierAdmin instance in order to obtain the reference
to the newly created TypedProxyPushConsumer instance. This reference is
returned as the result of the obtain_typed_notification_push_consumer
operation.

3.6.6.2 obtain_typed_notification_pull_consumer

The obtain_typed_notification_pull_consumer operation is used to create a new
Notification Service style proxy consumer instance, which will support a connection to
the channel with which the target TypedSupplierAdmin instance is associated by a
pull-style supplier of typed events. The operation accepts as input a string, which
3-96 Notification Service, v1.1 October 2004

3

identifies the name of a strongly typed interface that the newly created
TypedProxyPullConsumer instance should use when invoking operations upon its
associated TypedPullSupplier instance to receive events.

If the target TypedSupplierAdmin instance cannot locate an implementation of the
TypedProxyPullConsumer interface, which will use the requested strongly typed
interface to receive events from a TypedPullSupplier, the
NoSuchImplementation exception defined the CosTypedEventChannelAdmin
module is raised. If the number of suppliers currently connected to the channel with
which the target TypedSupplierAdmin object is associated exceeds the value of the
MaxSuppliers administrative property, the AdminLimitExceeded exception is
raised. Otherwise, the target TypedSupplierAdmin instance creates a new instance
supporting the TypedProxyPullConsumer interface defined in the
CosTypedNotifyChannelAdmin module. This interface can subsequently be used
for a pull-style supplier of typed events to establish a connection to the Notification
Service typed event channel. Upon creating the new TypedProxyPullConsumer
instance, the target TypedSupplierAdmin instance associates with it a unique
identifier, which it returns as an output parameter. This unique identifier could
subsequently be used as the input parameter to the get_proxy_consumer operation
inherited by the target TypedSupplierAdmin instance in order to obtain the reference
to the newly created TypedProxyPullConsumer instance. This reference is returned
as the result of the obtain_typed_notification_pull_consumer operation.

3.6.7 The TypedEventChannel Interface

The TypedEventChannel interface defines the behaviors supported by the
Notification Service version of a typed event channel. As previously stated, the
Notification Service version of a typed event channel is really a hybrid between the
Notification Service event channel defined in the CosNotifyChannelAdmin module,
and the typed event channel defined in the OMG Event Service. This is evidenced by
the fact that the TypedEventChannel interface defined here supports similar
inheritence and defines similar attributes and operations of the former, and directly
inherits from the latter5.

Inheritance of the TypedEventChannel of the CosTypedEventChannel module
essentially implies backward compatibility between the Notification Service style
typed event channel, and the OMG Event Service style typed event channel. It means
that pure OMG Event Service style typed admin instances, which can create pure
OMG Event Service style typed proxy instances, which can support pure OMG Event

5.In fact the TypedEventChannel interface defined here would multiply inherit from the
EventChannel interface defined in CosNotifyChannelAdmin, and the
TypedEventChannel interface defined in CosTypedNotifyChannelAdmin, except
that this multiple inheritence would result in the new interface inheriting two different
versions of the for_consumers and for_suppliers operations, which is not allowed in
IDL.
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-97

3

Service style typed event clients, can be associated with the Notification Service style
typed event channel. As usual, none of the pure OMG style objects will support QoS
property configuration, associated filter objects, or administration by unique
identifiers.

Inheritance of the QoSAdmin and AdminPropertiesAdmin interfaces defined in
the CosNotification module implies that instances of the TypedEventChannel
interface can have associated QoS property and administrative property settings.
Locally, the TypedEventChannel interface defined here supports a readonly attribute
that maintains the reference to the factory that created it, and a pair of readonly
attributes that maintain references to the default TypedConsumerAdmin and
TypedSupplierAdmin instances that exist upon creation of an instance of the
TypedEventChannel interface. The TypedEventChannel interface also defines a
readonly attribute that maintains the reference of the default filter factory used by the
channel to create new filter objects.

Additionally, the TypedEventChannel interface defines operations to create new
instances of the TypedConsumerAdmin and the TypedSupplierAdmin interfaces
defined in the CosTypedNotifyChannelAdmin module. These instances also have
associated unique identifiers. Similar to the EventChannel interface defined in the
CosNotifyChannelAdmin module, the TypedEventChannel interface defines
operations that can return the lists of identifiers associated with the
TypedConsumerAdmin and TypedSupplierAdmin instances it has created, and
operations that given the unique identifier to one of its Admin instance, the object
reference associated with it.

3.6.7.1 MyFactory

The MyFactory attribute is a readonly attribute that maintains the object reference of
the event channel factory, which created a given Notification Service
TypedEventChannel instance.

3.6.7.2 default_consumer_admin

The default_consumer_admin attribute is a readonly attribute that maintains a
reference to the default TypedConsumerAdmin instance associated with the target
TypedEventChannel instance. Each TypedEventChannel instance has an
associated default TypedConsumerAdmin instance, which exists upon creation of
the channel and is assigned the unique identifier of zero. Subsequently, clients can
create additional Event Service style TypedConsumerAdmin instances by invoking
the inherited for_consumers operation, and additional Notification Service style
TypedConsumerAdmin instances by invoking the new_for_typed_consumers
operation defined by the TypedEventChannel interface.

3.6.7.3 default_supplier_admin

The default_supplier_admin attribute is a readonly attribute, which maintains a
reference to the default TypedSupplierAdmin instance associated with the target
TypedEventChannel instance. Each TypedEventChannel instance has an
3-98 Notification Service, v1.1 October 2004

3

associated default TypedSupplierAdmin instance, which exists upon creation of the
channel and is assigned the unique identifier of zero. Subsequently, clients can create
additional Event Service style TypedSupplierAdmin instances by invoking the
inherited for_suppliers operation, and additional Notification Service style
TypedSupplierAdmin instances by invoking the new_for_typed_suppliers
operation defined by the TypedEventChannel interface.

3.6.7.4 default_filter_factory

The default_filter_factory attribute is a readonly attribute, which maintains an object
reference to the default factory to be used by the TypedEventChannel instance with
which it’s associated for creating filter objects. If the target channel does not support a
default filter factory, the attribute will maintain the value of OBJECT_NIL.

3.6.7.5 new_for_typed_notification_consumers

The new_for_typed_consumers operation is invoked to create a new Notification
Service style TypedConsumerAdmin instance. The operation accepts as an input
parameter a boolean flag that indicates whether AND or OR semantics will be used
when combining the filter objects associated with the newly created
TypedConsumerAdmin instance with those associated with a supplier proxy, which
was created by the TypedConsumerAdmin during the evaluation of each event
against a set of filter objects. The new instance is assigned a unique identifier by the
target TypedEventChannel instance that is unique among all ConsumerAdmin and
TypedConsumerAdmin instances currently associated with the channel. Upon
completion, the operation returns the reference to the new TypedConsumerAdmin
instance as the result of the operation, and the unique identifier assigned to the new
TypedConsumerAdmin instance as the output parameter.

3.6.7.6 new_for_typed_notification_suppliers

The new_for_typed_suppliers operation is invoked to create a new Notification
Service style TypedSupplierAdmin instance. The operation accepts as an input
parameter a boolean flag, which indicates whether AND or OR semantics will be used
when combining the filter objects associated with the newly created
TypedSupplierAdmin instance with those associated with a consumer proxy, which
was created by the TypedSupplierAdmin during the evaluation of each event against
a set of filter objects. The new instance is assigned a unique identifier by the target
TypedEventChannel instance that is unique among all SupplierAdmin and
TypedSupplierAdmin instances currently associated with the channel. Upon
completion, the operation returns the reference to the new TypedSupplierAdmin
instance as the result of the operation, and the unique identifier assigned to the new
TypedSupplierAdmin instance as the output parameter.
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-99

3

3.6.7.7 get_consumeradmin

The get_consumeradmin operation returns a reference to one of the
TypedConsumerAdmin instances associated with the target TypedEventChannel
instance. The operation accepts as an input parameter a numeric value, which is
intended to be the unique identifier of one of the TypedConsumerAdmin instances
associated with the target TypedEventChannel instance. If this turns out to be the
case, the object reference of the associated TypedConsumerAdmin instance is
returned as the operation result. Otherwise, the AdminNotFound exception is raised.

Note that while a Notification Service style event channel can support both Event
Service and Notification Service style TypedConsumerAdmin instances, only
Notification Service style TypedConsumerAdmin instances have associated unique
identifiers.

3.6.7.8 get_supplieradmin

The get_supplieradmin operation returns a reference to one of the
TypedSupplierAdmin instances associated with the target TypedEventChannel
instance. The operation accepts as an input parameter a numeric value, which is
intended to be the unique identifier of one of the TypedSupplierAdmin instances
associated with the target TypedEventChannel instance. If this turns out to be the
case, the object reference of the associated TypedSupplierAdmin instance is
returned as the operation result. Otherwise, the AdminNotFound exception is raised.

Note that while a Notification Service style event channel can support both Event
Service and Notification Service style TypedSupplierAdmin instances, only
Notification Service style TypedSupplierAdmin instances have associated unique
identifiers.

3.6.7.9 get_all_consumeradmins

The get_all_consumeradmins operation takes no input parameters and returns a
sequence of the unique identifiers assigned to all Notification Service style
TypedConsumerAdmin instances, which have been created by the target
TypedEventChannel instance.

3.6.7.10 get_all_supplieradmins

The get_all_supplieradmins operation takes no input parameters and returns a
sequence of the unique identifiers assigned to all Notification Service style
TypedSupplierAdmin instances, which have been created by the target
TypedEventChannel instance.

3.6.8 The TypedEventChannelFactory Interface

The TypedEventChannelFactory interface defines an operation for creating new
Notification Service style typed event channels. This interface also supports an
operation that can return the list of unique numeric identifiers assigned to all channels
3-100 Notification Service, v1.1 October 2004

3

that have been created by such an instance, and another which, given the unique
identifier of a channel that has been created by the target instance, can return the object
reference associated with that channel.

3.6.8.1 create_typed_channel

The create_typed_channel operation is invoked to create a new instance of the
Notification Service style typed event channel. This operation accepts two input
parameters. The first input parameter is a list of name-value pairs that specify the
initial QoS property settings for the new channel. The second input parameter is a list
of name-value pairs that specify the initial administrative property settings for the new
channel.

If no implementation of the TypedEventChannel interface exists that can support all
of the requested QoS property settings, the UnsupportedQoS exception defined in
the CosNotifyChannelAdmin module is raised. This exception contains as data a
sequence of data structures, each of which identifies the name of a QoS property in the
input list whose requested setting could not be satisfied, along with an error code and
a range of settings for the property which could be satisfied. The meanings of the error
codes that might be returned are described in Table 2-6 on page 2-49.

Likewise, if no implementation of the TypedEventChannel interface exists that can
support all of the requested administrative property settings, the UnsupportedAdmin
exception defined in the CosNotifyChannelAdmin module is raised. This exception
contains as data a sequence of data structures, each of which identifies the name of an
administrative property in the input list whose requested setting could not be satisfied,
along with an error code and a range of settings for the property that could be satisfied.
The meanings of the error codes that might be returned are described in Table 2-6 on
page 2-49.

If neither of these exceptions is raised, the create_typed_channel operation will
return a reference to a new Notification Service style typed event channel. In addition,
the operation assigns to this new typed event channel a numeric identifier, which is
unique among all event channels created by the target object. This numeric identifier is
returned as an output parameter.

3.6.8.2 get_all_typed_channels

The get_all_typed_channels operation returns a sequence of all of the unique
numeric identifiers corresponding to Notification Service typed event channels, which
have been created by the target object.

3.6.8.3 get_typed_event_channel

The get_typed_event_channel operation accepts as input a numeric value, which is
supposed to be the unique identifier of a Notification Service typed event channel that
has been created by the target object. If this input value does not correspond to such a
October 2004 Notification Service, v1.1: CosTypedNotifyChannelAdmin 3-101

3

unique identifier, the ChannelNotFound exception is raised. Otherwise, the
operation returns the object reference of the Notification Service typed event channel
corresponding to the input identifier.

3.7 IDL Modules

This subclause specifies two IDL modules, CosNotifyCommAck and
CosNotificationChannelAdminAck, for Notification acknowledgement.

The IDL behavior required for support and use of the interfaces in these two modules,
including:

• sender including a sequence number field in the structured notification, with the
parameter name “SequenceNumber;”

• behavior of the “acknowledge” operation;

• the message retry sequence; and

• new QOS parameters associated with these ack interfaces

are specified in this subsection.

3.7.1 The CosNotifyCommAck Module

To provide a SequenceNumber and an explicit acknowledgement to invoke on Push
and Pull supplier interfaces, the module, CosNotifyCommAck, is defined.

Support of its interfaces, which extend the structuredxxxSupplier, and the
sequenceStructuredxxxSupplier interfaces by adding a single “acknowledge”
operation, is subject to an optional conformance point.

//File: CosNotifyCommAck.idl
//Part of the extended Notification Service
#ifndef _COS_NOTIFY_COMM_ACK_IDL_
#define _COS_NOTIFY_COMM_ACK_IDL_
#include <CosNotifyComm.idl>
#pragma prefix "omg.org"

module CosNotifyCommAck {
const string SequenceNumber = "SequenceNumber";
// SequenceNumber takes a value of type long.
// Structured events must include a SequenceNumber field to be acknowledged

typedef sequence<long> SequenceNumbers;

const string DeliveryReliability = "DeliveryReliability";
const short None = 0;
const short Acknowledgment = 1;
// DeliveryReliability takes value of None or Acknowledgement as Notification Qos

const string RetryInterval = "RetryInterval";
// RetryInterval takes on a value of TimeBase::TimeT as Notification Qos
3-102 Notification Service, v1.1 October 2004

3

const string Retries = "Retries";
// Retries takes on a value of type long as Notification Qos Parameter

interface StructuredPushSupplierAck : CosNotifyComm::StructuredPushSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};

interface StructuredPullSupplierAck : CosNotifyComm::StructuredPullSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};

interface SequencePushSupplierAck : CosNotifyComm::SequencePushSupplier {
 void acknowledge(in SequenceNumbers sequence_numbers);
};

interface SequencePullSupplierAck : CosNotifyComm::SequencePullSupplier {
 void acknowledge(in SequenceNumbers sequence_numbers);
};
};
#endif

3.7.2 The CosNotifyChannelAdminAck Module

To provide explicit acknowledgement in proxy interfaces, the
CosNotifyChannelAdminAck module is defined.

Implementation of its interfaces, which extend the StructuredProxy and
SequenceProxy interfaces by adding a single “acknowledge” operation, is subject to
an optional conformance point.

//File: CosNotifyChannelAdminAck.idl
//Part of the extended Notification Service
#ifndef _COS_NOTIFY_CHANNEL_ADMIN_ACK_IDL_
#define _COS_NOTIFY_CHANNEL_ADMIN_ACK_IDL_
#include <CosNotifyChannelAdmin.idl>
#pragma prefix "omg.org"

module CosNotifyChannelAdminAck {

typedef sequence<long> SequenceNumbers;

interface StructuredProxyPushSupplierAck :
 CosNotifyChannelAdmin::StructuredProxyPushSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};

interface StructuredProxyPullSupplierAck :
 CosNotifyChannelAdmin::StructuredProxyPullSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};

interface SequenceProxyPushSupplierAck :
CosNotifyChannelAdmin::SequenceProxyPushSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
October 2004 Notification Service, v1.1: IDL Modules 3-103

3

};

interface SequenceProxyPullSupplierAck :
CosNotifyChannelAdmin::SequenceProxyPullSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};
};
#endif

3.7.3 Overview of Event Acknowledgement

3.7.3.1 Event Acknowledgment on Push Model

Figure 3-1 shows an overview of reliable event delivery with Event Acknowledgment
using the push model.

1. Push-style supplier (or proxy supplier) adds SequenceNumber header field to an
event.

2. Supplier sends the event to push-style consumer (or proxy consumer) invoking push
operation.

3. Consumer checks duplication of the received event using the SequenceNumber.

4. Consumer stores the event to persistent storage.

5. Consumer invokes acknowledge operation

6. Supplier removes the sent and acknowledged event.

Figure 3-1 Event Acknowledgment on push model

(Proxy)PushSupplier (Proxy)PushConsumer

Event Event

(2) push() with
SequenceNumber

(5) acknowledg()

(3) check duplication
with
SequenceNumber

(4) store the event to
storage

(Proxy)PushConsumer Interface

(1) add
SequenceNumber

(6) remove

(5) (Proxy)PushSupplier Interface
3-104 Notification Service, v1.1 October 2004

3

3.7.3.2 Event Acknowledgment on Pull Model

Figure 3-1 shows an overview of the reliable event delivery with Event Acknowledgment
using the pull model.

1. Pull-style consumer (or proxy consumer) invokes pull operation of pull-style
supplier (or proxy supplier).

2. Supplier adds SequenceNumber header field to an event.

3. Supplier sends the event to consumer as return value of invoked pull operation.

4. Consumer checks duplication of the received event using the SequenceNumber and
stores it to persistent storage.

5. Consumer invokes acknowledge operation.

6. Supplier removes the sent and acknowledged event.

Figure 3-2 Event Acknowledgment on pull model

3.7.4 Scope of Event Acknowledgment

Event Acknowledgment supports delivery of Structured Events and delivery of event
batches (sequence of Structured Events) for both the push model and the pull model.

Note – The notification channel mechanisms for translation of Typed events and
untyped events (i.e., syntax Any) from a proxy consumer to a proxy supplier, can be
used to convert such notifications to structured event syntax. Thus, it is sufficient to
specify event acknowledgment extensions only for Structured events and sequence of
structured events.

Event Acknowledgment can be applied to any logical connection between a supplier
(or proxy supplier) and a consumer (or proxy consumer), even if the supplier or the
consumer is a Bridge for interworking with other messaging systems (see Figure 3-3).

(P ro x y)P u llS u p p lie r (P ro x y)P u llC o n su m er

E v en t E v en t

(3) re tu rn o f p u ll()
w ith
S eq u en c eN u m b e r

(5) a ck n o w le d g e ()

(4) c h e c k d u p lic a tio n
w ith
S e q u e n c e N u m b e r
a n d s to re it to s to ra g e

(P ro x y)P u l lS u p p li e r In te rfa c e
in h e ritin g N o tify A ck in te r fa ce

(2) ad d
S e q u e n c e
N u m b e r

(6) re m o v e

(1) p u ll()
October 2004 Notification Service, v1.1: IDL Modules 3-105

3

Applying Event Acknowledgment to all the logical connections at same time on an
event domain can realize end-to-end reliability between supplier and consumer. Each
Event Acknowledgment on a logical connection is managed independently. Figure 3-3
shows an example of Reliable Delivery Sequence with end-to-end reliability on an
event domain using the push model. Since the Reliable Delivery Sequence on the
logical connection 1 is managed independently from the next logical connection 2,
when “(1) push” operation is invoked, the event channel A may invoke “(2)
acknowledge” operation soon thereafter. The event channel A is not required to invoke
“(3) push” operation or wait for “(4) acknowledge” operation on the next logical
connection before invocation of “(2) acknowledge.”

Figure 3-3 Event Acknowledgment on event domain in push model

Note – When the Event Acknowledgment is used on a logical connection in an event
domain, the supplier (not proxy supplier) can create and add SequenceNumber header
field (see Section 3.7.5, “Sequence Number Header Field to events for improvement of
performance. Because insertion of SequenceNumber header field by proxy supplier
would require a lot of overhead.

3.7.5 Sequence Number Header Field

The following definition is added to the modules CosNotifyCommAck and
CosNotifyChannelAdminAck for SequenceNumber header field:

const string SequenceNumber = "SequenceNumber";
// SequenceNumber takes a value of type long.

The SequenceNumber header field is an event identifier defined as a standard
optional header field. The type of its associated value is long. When the Event
Acknowledgment is applied to event delivery, the supplier (or proxy supplier) adds the
header field to the variable header in the Structured Event before sending the event to
the consumer (or proxy consumer). In the case of delivery of an event batch, the
supplier adds the header field to only the first Structured Event in the sequence of

Event
Channel

A

proxy
consumer

proxy
supplier

consumer or
Bridge as consumer

Event
Channel

B

proxy
consumer

proxy
supplier

Reliable event delivery with Event
Acknowledgment can be applied

supplier or
Bridge as supplier

(1)
push

(2)
ack

(3)
push

(4)
ack

(5)
push

(6)
ack

logical connection 1 logical connection 2 logical connection 3
3-106 Notification Service, v1.1 October 2004

3

Structured Events. If the SequenceNumber header field was already added for
previous event delivery, the event channel overrides the SequenceNumber header
field with a new value.

The SequenceNumber is an integer value that takes a value in the range 0..231-1. It
is created and managed per each logical connection between supplier and consumer. In
the first event or event batch within the logical connection, SequenceNumber takes
the value 0. It is incremented (ex., 0, 1, 2, ..) for each event (in the case of delivery of
Structured Event) or for each event batch (in the case of delivery of sequence of
Structured Events) sent by the supplier within the logical connection. The next value of
231-1 in the increment is 0.

Note – The associated value of the SequenceNumber header field takes a positive
value or 0. However, long type is applied to the value rather than unsigned long for
natural mapping with Java. It is a design policy of the Notification Service
specification.

3.7.5.1 Lifetime and Scope of Sequence Number

The lifetime of SequenceNumber is the same as the applied logical connection.
When a logical connection is created by invocation of connect operations, a series of
SequenceNumber values starts from value 0 for the logical connection. Only when
the logical connection is disconnected explicitly by invocation of disconnect
operations, is the series of SequenceNumber values for the connection terminated.
If a logical connection is created between the same supplier and consumer again, the
SequenceNumber is reset and starts from value 0. Otherwise the
SequenceNumber is never lost or reset.

The scope of a series of SequenceNumber values is a logical connection between a
supplier (or proxy supplier) and a consumer (or proxy consumer). Figure 3-4 shows an
example of SequenceNumber management. Since the SequenceNumber is
generated and managed per each logical connection, the logical connection 1 and
logical connection 2 applies each connection specific SequenceNumber to same
events independently.
October 2004 Notification Service, v1.1: IDL Modules 3-107

3

Figure 3-4 Scope of Sequence Number in cascade channel connection

Figure 3-5 shows another example of SequenceNumber management. Even if two
or more logical connections are connected to a single Event Channel, each logical
connection has its specific series of SequenceNumber values.

Event
Channel

A

Event
Channel

B

proxy
consumer

proxy
supplier

Event
Channel

C

proxy
consumer

push

logical connection 1

proxy
supplier

SN=3 SN=15
push

push
SN=4 SN=16

push

push
SN=5 SN=17

push

push
SN=6 SN=18

push

logical connection 2
3-108 Notification Service, v1.1 October 2004

3

.

Figure 3-5 Scope of Sequence Number in parallel channel connection

3.7.5.2 Sequence Number Usages

In the push model, Sequence Number is used for duplication check of events on
consumer. After a supplier sends an event to a consumer using push operation, if
system failure or a communication error occurs before the invocation of the
acknowledge operation, the supplier can't know whether the sent event reached the
consumer and was processed (ex., stored to persistent storage). In this case, the
supplier invokes push operation again to resend the same event. Thus, when a
consumer receives an event from a suppler, the consumer must always execute
duplication checking for the event using the Sequence Number, since it might be
resending the same event.

Note – In the Notification/JMS interworking, the end of invocation of the push
operation does not always mean that the sent even reached the consumer and was
processed completely. Because in the case of JMS CLIENT_ACKNOWLEDGE mode,
it must be notified by JMS application with an acknowledgment explicitly. Thus the
end of the push operation can’t be used instead of acknowledge operation.

Event
Channel

A

Event
Channel

C

proxy
consumer

push

logical connection 1

proxy
supplier

SN=10

pushSN=11

pushSN=12

Event
Channel

B

proxy
supplier

logical connection 2

pushSN=59

pushSN=60

pushSN=61

pushSN=62
October 2004 Notification Service, v1.1: IDL Modules 3-109

3

In the pull model, Sequence Number is used to indicate what events reached a
consumer successfully. To reduce the number of acknowledge operation invocations, a
consumer may convey multiple SequenceNumber values of received events to the
supplier at once by one invocation of acknowledge operation, after some invocations
of pull operations.

In the pull model, even if a consumer invokes acknowledge operation once per pull
operation invocation, Sequence Number is needed. After a consumer obtains an event
using pull operation and sends the Sequence Number of the obtained event using
acknowledge operation, if a system failure or a communication error occurs before the
end of the invocation of the acknowledge operation, the consumer can’t know whether
the sent Sequence Number reached the suppler. In this case, the consumer invokes
acknowledge operation again to resend the same Sequence Number. Thus when
acknowledge operation is invoked, the supplier must always check the value of
Sequence Number before removal of the next event in persistent storage, since it might
be a resend of the same Sequence Number.

3.7.6 Acknowledge operation behavior

This specification defines additional interfaces, (defined in the two modules specified
in this section), each of which has an acknowledge operation to be invoked by the
message consumer on these extended supplier interfaces.

The acknowledge operation is added to interfaces derived, in turn, from the interfaces
StructuredPushSupplier, StructuredPullSupplier, SequencePushSupplier,
SequencePullSupplier and their proxy interfaces in a set of derived interfaces
defined in this section (their names add the suffix “Ack” to the interface they are
derived from).

The acknowledge operation in each of these interfaces causes the supplier (or proxy
supplier) to acknowledge that the consumer (or proxy consumer) received the events
that the supplier sent previously. When the operation is invoked, the supplier may
remove sent events indicated by the SequenceNumbers input parameter, which
specifies values of the SequenceNumber header field in the received events by the
consumer.

A Consumer does not always need to invoke the acknowledge operation after each
invocation of push or pull operation. A Consumer may convey multiple
SequenceNumber values of received events to the supplier at once by one
invocation of acknowledge operation after some invocations of push or pull operations.

Note – This function is provided for mapping to JMS Message Acknowledgment (see
"OMG Notification / JMS Interworking” specification (formal/04-10-09), “Mapping
between Event Acknowledgment and JMS Message Acknowledgment” clause.
3-110 Notification Service, v1.1 October 2004

3

3.7.6.1 Reliable Delivery Sequence

To realize reliable event delivery with Event Acknowledgment, the Notification
Service supplier (or proxy supplier) and consumer (or proxy consumer) must support
the Reliable Delivery Sequence, which detects a lost event (or event batch) at system
failure or communication error and recovers it.

3.7.6.2 Reliable Delivery Sequence for Push Model

The Reliable Delivery Sequence using the push model consists of the following steps:

1. The supplier sends events to the consumer by invocations of the push operation of
the consumer.

2. The supplier detects possibility, in the invocations of push operation, that the events
were lost at system failure or communication error using exceptions or timeout of
acknowledgment. The timeout means that the supplier’s acknowledge operation is
not invoked after the invocations of push operation for a time that is specified by
QoS parameter RetryInterval. If the supplier does not detect the possibility of lost
events, it jumps to step (4).

3. The supplier retries the invocations in the step (1) to resend the events to supplier.
When the invocations have failed again due to system failure or communication
error, the supplier repeats the same invocations until succeeds in the invocations or
the total number of retries specified by QoS parameter Retries is satisfied. The
interval between original invocations and first retry, or between retries is specified
by QoS parameter RetryInterval.

4. The consumer checks the received events in duplication using SequenceNumber
header field. If it is not received events previously, the consumer stores them in
persistent storage. If they are received events previously, the consumer ignores the
events.

5. The consumer invokes acknowledge operation of the supplier to notify the supplier
of successful of the event delivery. The event channel removes the events specified
by the SequenceNumbers parameter of the acknowledge operation from
persistent storage. Even if the consumer detects possibility in the invocations of
acknowledge operation that the acknowledgment was lost at system failure or
communication error using exceptions, the consumer does not need to retry the
acknowledge operation in this step. Because if the acknowledgment was lost, the
supplier retries the push operation (see step (2)). As the result, the consumer will
execute this step again. The retry count is managed per each logical connection.
When invocation of acknowledge operation is successful, or the logical connection
is disconnected explicitly by invocation of disconnect operations, the retry count is
reset to 0.

3.7.6.3 Reliable Delivery Sequence for Pull Model

The Reliable Delivery Sequence using the pull model consists of the following steps:
October 2004 Notification Service, v1.1: IDL Modules 3-111

3

1. The consumer receives events from the supplier by invocations of the pull operation
of the supplier.

2. The consumer detects possibility, in the invocations of the pull operation, that the
events were lost at system failure or communication error using exceptions. If the
supplier does not detect the possibility of lost events, it jumps to step (4).

3. The consumer retries the invocations in the step (1) to re-receive the events from
the supplier.

4. When the invocations have failed again due to system failure or communication
error, the consumer repeats the same invocations until succeeds in the invocations
or the total number of retries specified by QoS parameter Retries is satisfied. The
interval between original invocations and first retry, or between retries is specified
by QoS parameter RetryInterval.

5. The consumer stores the received events in persistent storage.

6. The consumer invokes acknowledge operation of the supplier to notify the supplier
of successful of the event delivery. The event supplier removes the events specified
by the SequenceNumbers parameter of the acknowledge operation from
persistent storage.

A consumer does not always need to invoke the acknowledge operation after each
invocation of pull operation. A consumer may convey multiple SequenceNumber
values of received events to the supplier at once by one invocation of acknowledge
operation after some invocations of pull.

7. If the consumer detects possibility in the invocations of acknowledge operation that
the acknowledgment was lost at system failure or communication error using
exceptions, the consumer retries the invocation.

When the invocation has failed again due to system failure or communication error,
the consumer repeats the same invocation until succeeds in the invocation or the
total number of retries specified by QoS parameter Retries is satisfied. The count of
retries for acknowledge operation is individual from the count of retry for pull
operation in step (3). The interval between original invocation and first retry, or
between retries is specified by the QoS parameter RetryInterval.

The retry count is managed per each logical connection. When invocation of
acknowledge operation is finished successfully or the logical connection is
disconnected explicitly by invocation of disconnect operations, the retry count is
reset to 0.

3.7.6.4 Recovery in Failure of Retries

When the supplier (or proxy supplier) or the consumer (or proxy consumer) fails in all
the retries, the supplier or the consumer stops the event delivery on the logical
connection, and reports the unrecoverable failure to system administrators.

How to report and recover the failure is out of scope of the specification. The
following recovery schemes are shown for example:
3-112 Notification Service, v1.1 October 2004

3

The system administrators resolve the failure by hand and then:

1. Reset the retry count and restart the event delivery on the logical connection, or

2. Invoke disconnect operation for the logical connection and then invoke connect
operation to restart the event delivery (the SequenceNumber and retry count are
reset by the disconnect operation).

In the first scheme, non-duplication semantics are preserved between before the failure
and after it. But in the second scheme, the semantics might be lost between before the
failure and after it.

3.7.7 QoS Properties for Reliable Event Delivery

The Event Acknowledgment uses three additional QoS properties:
DeliveryReliability, Retries, and RetryInterval.

3.7.7.1 DeliveryReliability

The Notification Service has no way to specify what mechanism is used for reliable
event delivery. The specification defines additional QoS property DeliveryReliability
to provide this way. The following definition is added to CosNotifyCommAck
module to define this QoS property.

const string DeliveryReliability = "DeliveryReliability"
const short None = 0;
const short Acknowledgment = 1;

The QoS property specifies a mechanism used by a given supplier (or proxy supplier)
and consumer (or proxy consumer) to realize reliable event delivery. Constant values
to represent the following setting are defined:

• None - Any reliable delivery mechanism is not applied to event delivery.

• Acknowledgment - The Event Acknowledgment described in the specification is
applied to event delivery.

Table 3-2 shows possible combinations of related QoS properties when the
DeliveryReliability property is set to Acknowledgment
October 2004 Notification Service, v1.1: IDL Modules 3-113

3

.

3.7.7.2 Retries

The following definition is added to CosNotifyCommAck module for Retries QoS
property:

const string Retries = "Retries"
// Retries takes on a value of type long

The QoS property Retries specifies minimum number of retries in the Reliable
Delivery Sequence. The type of associated value is long.

3.7.7.3 RetryInterval

The following definition is added to CosNotifyCommAck module for RetryInterval
QoS property:

const string RetryInterval = "RetryInterval"

// RetryInterval takes on a value of TimeBase::TimeT

The QoS property RetryInterval specifies interval between original invocation and
first retry or between retries. The type of associated value is TimeBase::TimeT.

3.7.7.4 Supported level of the QoS Properties

Supported level of the QoS property is described in following table.

Table 3-2 Combination of related properties for Event Acknowledgment

Event
Reliability

Connection
Reliability

Delivery
Reliability

Description

combination 1 BestEffort BestEffort Acknowledgment Implementations may support these
combinations. But they can't realize complete
reliability.

combination 2 BestEffort Persistent Acknowledgment

combination 3 Persistent BestEffort ---- This combination has no meaning and need
not be supported (according to the
Notification Service specification).

combination 4 Persistent Persistent Acknowledgment Implementations must support this
combination for complete reliability.
3-114 Notification Service, v1.1 October 2004

3

The admin level setting overrides the channel level setting, and proxy level setting
overrides the admin level or channel level setting. Note that their properties have no
meaning if set on a per-message basis.

Table 3-3 Levels at which setting the QoS properties for Reliable Event Delivery is supported

Property Per-Message Per-Proxy Per-Admin Per-Channel

DeliveryReliability X X X

Retries X X X

RetryInterval X X X
October 2004 Notification Service, v1.1: IDL Modules 3-115

3

3-116 Notification Service, v1.1 October 2004

Event Type Repository A
The Event Type Repository is a specification of a set of interfaces that are used to store
type information about events. The interfaces are generated using the mapping from a
meta-model of event types to IDL representing this type information, as specified in
the Meta-Object Facility (ptc/2003-11-04). This appendix begins by providing an
explanation of the meta-model of event types and their names. It then presents the
model in terms of equivalent UML (Unified Modeling Language) and MODL (Meta
Object Definition Language). Finally, the IDL that is generated from these high-level
notations is given in full.

A.1 Event Type Meta-Model

The Event Type Repository is designed to store information about the kinds of
filterable data that events with certain names will provide to consumers. It is a
queriable store that can be used by event suppliers to determine the names and types of
the properties that an event of a certain type must contain to be conformant to that
type. It can also be used by consumers to discover the properties that they can expect
to be contained in events of a certain type, so that they can write well-formed
subscription expressions to match events in which they are interested.

The Repository acts as a common reference so that the events transmitted by suppliers
can contain the right properties to match against subscriptions that contain expressions
over those property names. It is complementary to the use of the interfaces
NotifyPublish and NotifySubscribe, which convey the names of event types that
are offered or required between consumers and suppliers of events. A supplier that
indicates that it will supply events of a certain type, by passing the name of that type
to the offer_change operation, can register that type in the Repository so that it can
be looked up by clients receiving the offer.

Properties consist simply of a string name and a TypeCode to indicate the type of the
value associated with that name. An Event Type can be composed of zero or more
properties. These correspond to the properties in the filterable_data component of a
October 2004 Notification Service, v1.1 A-1

A

Structured Event. They can also be interpreted as the named members of a struct, that
includes the string members domain and event_type. The variable name notation of the
standard constraint grammar will allow either of these kinds of events to be matched.

Event Types also have names. In the simplest case they will have a string name that is
an attribute. This name will be unique within the naming domain, which is indicated
by the “domain” attribute of an Event Type. They also have a full name, which is
returned from an operation. In the simplest case this will be the same as its name
attribute. In the default domain, represented by the empty string, this will always be
the case. In other domains, however, the name of an Event Type can be derived from
the Event Types that are inherited.

Figure A-1 UML meta-model of the Event Type Repository

New event types may be based upon the definition of existing event types in two ways:

• New types may inherit an existing type, implying that the new type “is an”
instance of the existing type. In this case the name of the derived type may be
generated from its base types’ names by some domain naming scheme.

*EventTypeRepository

EventType lookup(in string name, in string domain)

raises (InvalidName, TypeNotFound, UnknownDomain);

EventTypeSeq events_in_domain (in string domain)

raises (UnknownDomain);

DomainNameSeq : supported_domains

EventType

domain : string

name : string

string full_name();

“inherits”

“imports”

0..*

1

0..*

“contains”

0..*

Property

name : string

type : TypeCode0..*“composes”

* Singleton class

0..*
A-2 Notification Service, v1.1 October 2004

A

• New types may import the definition of existing types to obtain a number of
property names and types, but there is no asserted semantic relationship between
them.

The naming scheme adopted by a domain is implementation dependent. An example
would be the use of all the names of the derived types separated by dots. As only
single inheritance is permitted, the composition of such names is very straight forward.

Property names defined in an inherited or imported type cannot be redefined or
overridden in a new type. When importing properties from previously declared Event
Types, the same property name may not be declared in more than one imported type
unless the property type is also the same. For example an event type X:A containing a
property K of type string may not be inherited or imported into the same derived type
as X:B which contains a property K or type short.

A.2 Other Functionality

The EventTypeRepository class has only one instance in any given implementation
of a Repository. It provides a lookup interface to users of the repository so that they
can find an event type by name, within its domain naming scheme. The default
domain, nominated by the empty string, is a flat name space, and each of its event
types must have a unique name. Implementations may implement other domains with
the same naming scheme, or with a more complex naming scheme that reflects an
inheritance hierarchy.

The EventTypeRepository also provides a mechanism to look up all the types in a
particular domain, as well as an attribute indicating which domains it supports. All
repositories will support the default domain, and must not return the empty string as
one of the results of the supported_domains() attribute.

A.3 MODL Model

The Meta Object Definition Language (MODL) is a language for the textual
representation of meta-models. It is explained in an appendix to the Meta Object
Facility specification. The following MODL represents the same meta-model of event
types as shown in UML in Figure A-1 on page A-2.

//
// Notification Service - Event Type Meta-Model
//
package Notification_Types {

 type Property {
 attribute string name;
 attribute TypeCode type_code;
 };

 type _EventType {
 attribute string domain;
 attribute string name;
October 2004 Notification Service, v1.1: Other Functionality A-3

A

 string get_full_name();
 };

 exception InvalidName { string name; };
 exception UnknownDomain { string domain; };
 exception TypeNotFound { string name; };

 singleton type EventTypeRepository {
 readonly attribute set [1..*] of string supported_domains;

 _EventType lookup (in string name, in string domain)
 raises (InvalidName, TypeNotFound, UnknownDomain);

 ordered set [0..*] of _EventType events_in_domain (in string domain)
 raises (UnknownDomain);
 };

 association Contains {
 role single EventTypeRepository container;
 composite role set [0..*] of _EventType contained;
 };

 association Inherits {
 role set [0..*] of _EventType sub_type;
 role single _EventType super_type;
 };

 association Imports {
 role set [0..*] of _EventType importer;
 role set [0..*] of _EventType imported;
 };

 association Composes {
 role single _EventType composition;
 composite role ordered set [0..*] of Property component;
 };

};

A.4 Generated IDL

The following IDL is generated using the mapping for meta-models as specified in the
MOF. It provides operations corresponding to the attributes and associations shown in
the meta-model, and also inherits from the standard MOF interfaces defined in the
module Reflective. This means that implementations of the repository can be
interrogated using the operations specific to Event Types, and via the reflective
interfaces that generic browsing tools use.

#ifndef Notification_Types_IDL
#define Notification_Types_IDL

#include <Reflective.idl>
A-4 Notification Service, v1.1 October 2004

A

//
// Notification Service - Event Type Meta-Model
//

module NotificationTypes {

typedef sequence < string > StringSet;
interface NotificationTypesPackage;

interface PropertyClass;
interface Property;

typedef sequence < Property > PropertyUList;
interface EventTypeClass;
interface _EventType;

typedef sequence < _EventType > EventTypeSet;
typedef sequence < _EventType > EventTypeUList;
interface EventTypeRepositoryClass;
interface EventTypeRepository;

typedef sequence < EventTypeRepository > EventTypeRepositoryUList;

// typedef string TypeCode;

interface PropertyClass
: Reflective::RefObject

{
// get all property including subtypes of property
readonly attribute PropertyUList all_of_kind_property;

// get all property excluding subtypes of property
readonly attribute PropertyUList all_of_type_property;

// Factory operation for Property objects
Property create_property (

/* from Property */ in string name,
/* from Property */ in TypeCode type_code)
raises (Reflective::SemanticError);

}; // end of interface PropertyClass

interface Property :
PropertyClass

{

string name ()
raises (Reflective::StructuralError,

Reflective::SemanticError);
void set_name (in string new_value)

raises (Reflective::SemanticError);
October 2004 Notification Service, v1.1: Generated IDL A-5

A

TypeCode type_code ()
raises (Reflective::StructuralError,

Reflective::SemanticError);
void set_type_code (in TypeCode new_value)

raises (Reflective::SemanticError);

}; // end of interface Property

interface EventTypeClass
: Reflective::RefObject

{
// get all event_type including subtypes of event_type
readonly attribute EventTypeUList all_of_kind_event_type;

// get all event_type excluding subtypes of event_type
readonly attribute EventTypeUList all_of_type_event_type;

// Factory operation for _EventType objects
_EventType create_event_type (

/* from _EventType */ in string domain,
/* from _EventType */ in string name)
raises (Reflective::SemanticError);

}; // end of interface EventTypeClass

interface _EventType :
EventTypeClass

{

string domain ()
raises (Reflective::StructuralError,

Reflective::SemanticError);
void set_domain (in string new_value)

raises (Reflective::SemanticError);

string name ()
raises (Reflective::StructuralError,

Reflective::SemanticError);
void set_name (in string new_value)

raises (Reflective::SemanticError);

string get_full_name ()
raises (

Reflective::SemanticError);

}; // end of interface _EventType

exception InvalidName {
string name;

};

exception UnknownDomain {
string domain;

};
A-6 Notification Service, v1.1 October 2004

A

exception TypeNotFound {
string name;

};

interface EventTypeRepositoryClass
: Reflective::RefObject

{
// get all event_type_repository including subtypes of event_type_repository

readonly
attributeEventTypeRepositoryUListall_of_kind_event_type_repository;

// get all event_type_repository excluding subtypes of
event_type_repository

readonly attribute EventTypeRepositoryUList
all_of_type_event_type_repository;

// Factory operation for EventTypeRepository objects
EventTypeRepository create_event_type_repository (

/* from EventTypeRepository */ in StringSet supported_domains)
raises (Reflective::AlreadyCreated,

Reflective::SemanticError);

}; // end of interface EventTypeRepositoryClass

interface EventTypeRepository :
EventTypeRepositoryClass

{

StringSet supported_domains ()
raises (Reflective::SemanticError);

_EventType lookup (
in string name,
in string domain)

raises (
InvalidName,
TypeNotFound,
UnknownDomain,
Reflective::SemanticError);

EventTypeUList events_in_domain (
in string domain)

raises (
UnknownDomain,
Reflective::SemanticError);

}; // end of interface EventTypeRepository

// data types for Association Contains

struct ContainsLink {
EventTypeRepository container;
_EventType contained;
October 2004 Notification Service, v1.1: Generated IDL A-7

A

};

typedef sequence <ContainsLink> ContainsLinkSet;

interface Contains : Reflective::RefAssociation {
ContainsLinkSet all_Contains_links ();
boolean exists (in EventTypeRepository container, in _EventType con-

tained);
EventTypeSet with_container (in EventTypeRepository container);
EventTypeRepository with_contained (in _EventType contained);
void add (in EventTypeRepository container, in _EventType contained)

raises (Reflective::StructuralError,
Reflective::SemanticError);

void modify_container (in EventTypeRepository container,
 in _EventType contained,
 in EventTypeRepository new_container)

raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

void modify_contained (in EventTypeRepository container,
 in _EventType contained,
 in _EventType new_contained)

raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

void remove (in EventTypeRepository container, in _EventType contained)
raises (Reflective::StructuralError,

Reflective::NotFound,
Reflective::SemanticError);

};

// data types for Association Inherits

struct InheritsLink {
_EventType sub_type;
_EventType super_type;

};

typedef sequence <InheritsLink> InheritsLinkSet;

interface Inherits : Reflective::RefAssociation {
InheritsLinkSet all_Inherits_links ();
boolean exists (in _EventType sub_type, in _EventType super_type);
_EventType with_sub_type (in _EventType sub_type);
EventTypeSet with_super_type (in _EventType super_type);
void add (in _EventType sub_type, in _EventType super_type)

raises (Reflective::StructuralError,
Reflective::SemanticError);

void modify_sub_type (in _EventType sub_type,
 in _EventType super_type,
 in _EventType new_sub_type)

raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);
A-8 Notification Service, v1.1 October 2004

A

void modify_super_type (in _EventType sub_type,
 in _EventType super_type,

 in _EventType new_super_type)
raises (Reflective::StructuralError,

Reflective::NotFound,
Reflective::SemanticError);

void remove (in _EventType sub_type, in _EventType super_type)
raises (Reflective::StructuralError,

Reflective::NotFound,
Reflective::SemanticError);

};

// data types for Association Imports

struct ImportsLink {
_EventType importer;
_EventType imported;

};

typedef sequence <ImportsLink> ImportsLinkSet;

interface Imports : Reflective::RefAssociation {
ImportsLinkSet all_Imports_links ();
boolean exists (in _EventType importer, in _EventType imported);
EventTypeSet with_importer (in _EventType importer);
EventTypeSet with_imported (in _EventType imported);
void add (in _EventType importer, in _EventType imported)

raises (Reflective::StructuralError,
Reflective::SemanticError);

void modify_importer (in _EventType importer, in _EventType imported, in
_EventType new_importer)

raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

void modify_imported (in _EventType importer, in _EventType imported, in
_EventType new_imported)

raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

void remove (in _EventType importer, in _EventType imported)
raises (Reflective::StructuralError,

Reflective::NotFound,
Reflective::SemanticError);

};

// data types for Association Composes

struct ComposesLink {
_EventType composition;
Property component;

};

typedef sequence <ComposesLink> ComposesLinkSet;

interface Composes : Reflective::RefAssociation {
October 2004 Notification Service, v1.1: Generated IDL A-9

A

ComposesLinkSet all_Composes_links ();
boolean exists (in _EventType composition, in Property component);
PropertyUList with_composition (in _EventType composition);
_EventType with_component (in Property component);
void add (in _EventType composition, in Property component)

raises (Reflective::StructuralError,
Reflective::SemanticError);

void add_before_component (in _EventType composition, in Property
component, in Property before)

raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

void modify_composition (in _EventType composition, in Property compo-
nent, in _EventType new_composition)

raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

void modify_component (in _EventType composition, in Property com-
ponent, in Property new_component)

raises (Reflective::StructuralError,
Reflective::NotFound,
Reflective::SemanticError);

void remove (in _EventType composition, in Property component)
raises (Reflective::StructuralError,

Reflective::NotFound,
Reflective::SemanticError);

};

interface NotificationTypesPackageFactory
{

NotificationTypesPackage create_notification_types_package ()
raises (

Reflective::SemanticError);

};

interface NotificationTypesPackage
: Reflective::RefPackage

{
readonly attribute PropertyClass property_class_ref;
readonly attribute EventTypeClass event_type_class_ref;
readonly attribute EventTypeRepositoryClass

event_type_repository_class_ref;
readonly attribute Contains contains_ref;
readonly attribute Inherits inherits_ref;
readonly attribute Imports imports_ref;
readonly attribute Composes composes_ref;
};

}; // end of module NotificationTypes

#endif
// end of IDL generation
A-10 Notification Service, v1.1 October 2004

Complete IDL B
The following lists the full IDL of the Notification Service:

module CosNotification {

typedef string Istring;
typedef Istring PropertyName;
typedef any PropertyValue;

struct Property {
PropertyName name;
PropertyValue value;

};
typedef sequence<Property> PropertySeq;

// The following are the same, but serve different purposes.
typedef PropertySeq OptionalHeaderFields;
typedef PropertySeq FilterableEventBody;
typedef PropertySeq QoSProperties;
typedef PropertySeq AdminProperties;

struct _EventType {
string domain_name;
string type_name;

};
typedef sequence<_EventType> EventTypeSeq;

struct PropertyRange {
PropertyValue low_val;
PropertyValue high_val;

};

struct NamedPropertyRange {
PropertyName name;
PropertyRange range;
October 2004 Notification Service, v1.1 B-1

B

};
typedef sequence<NamedPropertyRange> NamedPropertyRangeSeq;

enum QoSError_code {
UNSUPPORTED_PROPERTY,
UNAVAILABLE_PROPERTY,
UNSUPPORTED_VALUE,
UNAVAILABLE_VALUE,
BAD_PROPERTY,
BAD_TYPE,
BAD_VALUE

};

struct PropertyError {
QoSError_code code;
PropertyName name;
PropertyRange available_range;

};
typedef sequence<PropertyError> PropertyErrorSeq;

exception UnsupportedQoS { PropertyErrorSeq qos_err; };
exception UnsupportedAdmin { PropertyErrorSeq admin_err; };

// Define the Structured Event structure
struct FixedEventHeader {

_EventType event_type;
string event_name;

};

struct EventHeader {
FixedEventHeader fixed_header;
OptionalHeaderFields variable_header;

};

struct StructuredEvent {
EventHeader header;
FilterableEventBody filterable_data;
any remainder_of_body;

}; // StructuredEvent
typedef sequence<StructuredEvent> EventBatch;

// The following constant declarations define the standard
// QoS property names and the associated values each property
// can take on. The name/value pairs for each standard property
// are grouped, beginning with a string constant defined for the
// property name, followed by the values the property can take on.

const string EventReliability = “EventReliability”;
const short BestEffort = 0;
const short Persistent = 1;

const string ConnectionReliability = “ConnectionReliability”;
// Can take on the same values as EventReliability
B-2 Notification Service, v1.1 October 2004

B

const string Priority = “Priority”;
const short LowestPriority = -32767;
const short HighestPriority = 32767;
const short DefaultPriority = 0;

const string StartTime = “StartTime”;
// StartTime takes a value of type TimeBase::UtcT.

const string StopTime = “StopTime”;
// StopTime takes a value of type TimeBase::UtcT.

const string Timeout = “Timeout”;
// Timeout takes on a value of type TimeBase::TimeT

const string OrderPolicy = “OrderPolicy”;
const short AnyOrder = 0;
const short FifoOrder = 1;
const short PriorityOrder = 2;
const short DeadlineOrder = 3;

const string DiscardPolicy = “DiscardPolicy”;
// DiscardPolicy takes on the same values as OrderPolicy, plus
const short LifoOrder = 4;

const string MaximumBatchSize = “MaximumBatchSize”;
// MaximumBatchSize takes on a value of type long

const string PacingInterval = “PacingInterval”;
// PacingInterval takes on a value of type TimeBase::TimeT

const string StartTimeSupported = “StartTimeSupported”;
// StartTimeSupported takes on a boolean value

const string StopTimeSupported = “StopTimeSupported”;
// StopTimeSupported takes on a boolean value

const string MaxEventsPerConsumer = “MaxEventsPerConsumer”;
// MaxEventsPerConsumer takes on a value of type long

interface QoSAdmin {

QoSProperties get_qos();

void set_qos (in QoSProperties qos)
raises (UnsupportedQoS);

void validate_qos (
in QoSProperties required_qos,
out NamedPropertyRangeSeq available_qos)
raises (UnsupportedQoS);

}; // QosAdmin

// Admin properties are defined in similar manner as QoS
October 2004 Notification Service, v1.1 B-3

B

// properties. The only difference is that these properties
// are related to channel administration policies, as opposed
// message quality of service

const string MaxQueueLength = “MaxQueueLength”;
// MaxQueueLength takes on a value of type long

const string MaxConsumers = “MaxConsumers”;
// MaxConsumers takes on a value of type long

const string MaxSuppliers = “MaxSuppliers”;
// MaxSuppliers takes on a value of type long

const string RejectNewEvents = “RejectNewEvents”;
// RejectNewEvents takes on a value of type Boolean

interface AdminPropertiesAdmin {

AdminProperties get_admin();

void set_admin (in AdminProperties admin)
raises (UnsupportedAdmin);

}; // AdminPropertiesAdmin

}; // CosNotification

module CosNotifyFilter {

typedef long ConstraintID;

struct ConstraintExp {
CosNotification::EventTypeSeq event_types;
string constraint_expr;

};

typedef sequence<ConstraintID> ConstraintIDSeq;
typedef sequence<ConstraintExp> ConstraintExpSeq;

struct ConstraintInfo {
ConstraintExp constraint_expression;
ConstraintID constraint_id;

};

typedef sequence<ConstraintInfo> ConstraintInfoSeq;

struct MappingConstraintPair {
ConstraintExp constraint_expression;
any result_to_set;

};

typedef sequence<MappingConstraintPair> MappingConstraintPairSeq;
B-4 Notification Service, v1.1 October 2004

B

struct MappingConstraintInfo {
ConstraintExp constraint_expression;
ConstraintID constraint_id;
any value;

};

typedef sequence<MappingConstraintInfo> MappingConstraintInfoSeq;

typedef long CallbackID;
typedef sequence<CallbackID> CallbackIDSeq;

exception UnsupportedFilterableData {};
exception InvalidGrammar {};
exception InvalidConstraint {ConstraintExp constr;};
exception DuplicateConstraintID {ConstraintID id;};

exception ConstraintNotFound {ConstraintID id;};
exception CallbackNotFound {};

exception InvalidValue {ConstraintExp constr; any value;};

interface Filter {

readonly attribute string constraint_grammar;

ConstraintInfoSeq add_constraints (
in ConstraintExpSeq constraint_list)

raises (InvalidConstraint);

void modify_constraints (
in ConstraintIDSeq del_list,
in ConstraintInfoSeq modify_list)

raises (InvalidConstraint, ConstraintNotFound);

ConstraintInfoSeq get_constraints(
in ConstraintIDSeq id_list)

raises (ConstraintNotFound);

ConstraintInfoSeq get_all_constraints();

void remove_all_constraints();

void destroy();

boolean match (in any filterable_data)
raises (UnsupportedFilterableData);

boolean match_structured (
in CosNotification::StructuredEvent filterable_data)

raises (UnsupportedFilterableData);

boolean match_typed (
in CosNotification::PropertySeq filterable_data)

raises (UnsupportedFilterableData);
October 2004 Notification Service, v1.1 B-5

B

CallbackID attach_callback (
in CosNotifyComm::NotifySubscribe callback);

void detach_callback (in CallbackID callback)
raises (CallbackNotFound);

CallbackIDSeq get_callbacks();

}; // Filter

interface MappingFilter {

readonly attribute string constraint_grammar;

readonly attribute CORBA::TypeCode value_type;

readonly attribute any default_value;

MappingConstraintInfoSeq add_mapping_constraints (
in MappingConstraintPairSeq pair_list)

raises (InvalidConstraint, InvalidValue);

void modify_mapping_constraints (
in ConstraintIDSeq del_list,
in MappingConstraintInfoSeq modify_list)

raises (InvalidConstraint, InvalidValue,
ConstraintNotFound);

MappingConstraintInfoSeq get_mapping_constraints (
in ConstraintIDSeq id_list)

raises (ConstraintNotFound);

MappingConstraintInfoSeq get_all_mapping_constraints();

void remove_all_mapping_constraints();

void destroy();

boolean match (in any filterable_data,
out any result_to_set)

raises (UnsupportedFilterableData);

boolean match_structured (
in CosNotification::StructuredEvent filterable_data,
out any result_to_set)

raises (UnsupportedFilterableData);

boolean match_typed (
in CosNotification::PropertySeq filterable_data,
out any result_to_set)

raises (UnsupportedFilterableData);

}; // MappingFilter
B-6 Notification Service, v1.1 October 2004

B

interface FilterFactory {

Filter create_filter (
in string constraint_grammar)

raises (InvalidGrammar);

MappingFilter create_mapping_filter (
in string constraint_grammar,
in any default_value)

raises(InvalidGrammar);

}; // FilterFactory

typedef long FilterID;
typedef sequence<FilterID> FilterIDSeq;

exception FilterNotFound {};

interface FilterAdmin {

FilterID add_filter (in Filter new_filter);

void remove_filter (in FilterID filter)
raises (FilterNotFound);

Filter get_filter (in FilterID filter)
raises (FilterNotFound);

FilterIDSeq get_all_filters();

void remove_all_filters();

}; // FilterAdmin

}; // CosNotifyFilter

module CosNotifyComm {

exception InvalidEventType { CosNotification::_EventType type; };

interface NotifyPublish {

void offer_change (
in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeq removed)

raises (InvalidEventType);

}; // NotifyPublish

interface NotifySubscribe {

void subscription_change(
in CosNotification::EventTypeSeq added,
October 2004 Notification Service, v1.1 B-7

B

in CosNotification::EventTypeSeq removed)
raises (InvalidEventType);

}; // NotifySubscribe

interface PushConsumer :
NotifyPublish,
CosEventComm::PushConsumer {

}; // PushConsumer

interface PullConsumer :
NotifyPublish,
CosEventComm::PullConsumer {

}; // PullConsumer

interface PullSupplier :
NotifySubscribe,
CosEventComm::PullSupplier {

}; // PullSupplier

interface PushSupplier :
NotifySubscribe,
CosEventComm::PushSupplier {

};

interface StructuredPushConsumer : NotifyPublish {

void push_structured_event(
in CosNotification::StructuredEvent notification)

raises(CosEventComm::Disconnected);

void disconnect_structured_push_consumer();

}; // StructuredPushConsumer

interface StructuredPullConsumer : NotifyPublish {
void disconnect_structured_pull_consumer();
}; // StructuredPullConsumer

interface StructuredPullSupplier : NotifySubscribe {

CosNotification::StructuredEvent pull_structured_event()
raises(CosEventComm::Disconnected);

CosNotification::StructuredEvent try_pull_structured_event(
out boolean has_event)

raises(CosEventComm::Disconnected);

void disconnect_structured_pull_supplier();

}; // StructuredPullSupplier

interface StructuredPushSupplier : NotifySubscribe {
void disconnect_structured_push_supplier();
}; // StructuredPushSupplier
B-8 Notification Service, v1.1 October 2004

B

interface SequencePushConsumer : NotifyPublish {

void push_structured_events(
in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

void disconnect_sequence_push_consumer();

}; // SequencePushConsumer

interface SequencePullConsumer : NotifyPublish {
void disconnect_sequence_pull_consumer();
}; // SequencePullConsumer

interface SequencePullSupplier : NotifySubscribe {

CosNotification::EventBatch pull_structured_events(
in long max_number)

raises(CosEventComm::Disconnected);

CosNotification::EventBatch try_pull_structured_events(
in long max_number,
out boolean has_event)

raises(CosEventComm::Disconnected);

void disconnect_sequence_pull_supplier();

}; // SequencePullSupplier

interface SequencePushSupplier : NotifySubscribe {
void disconnect_sequence_push_supplier();
}; // SequencePushSupplier

}; // CosNotifyComm

module CosNotifyChannelAdmin {

exception ConnectionAlreadyActive {};
exception ConnectionAlreadyInactive {};
exception NotConnected {};

// Forward declarations
interface ConsumerAdmin;
interface SupplierAdmin;
interface EventChannel;
interface EventChannelFactory;

enum ProxyType {
PUSH_ANY,
PULL_ANY,
PUSH_STRUCTURED,
PULL_STRUCTURED,
October 2004 Notification Service, v1.1 B-9

B

PUSH_SEQUENCE,
PULL_SEQUENCE,
PUSH_TYPED,
PULL_TYPED

};

enum ObtainInfoMode {
ALL_NOW_UPDATES_OFF,
ALL_NOW_UPDATES_ON,
NONE_NOW_UPDATES_OFF,
NONE_NOW_UPDATES_ON

};

interface ProxyConsumer :
CosNotification::QoSAdmin,
CosNotifyFilter::FilterAdmin {

readonly attribute ProxyType MyType;
readonly attribute SupplierAdmin MyAdmin;

CosNotification::EventTypeSeq obtain_subscription_types(
in ObtainInfoMode mode);

void validate_event_qos (
 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq available_qos)

raises (CosNotification::UnsupportedQoS);

}; // ProxyConsumer

interface ProxySupplier :
CosNotification::QoSAdmin,
CosNotifyFilter::FilterAdmin {

readonly attribute ProxyType MyType;
readonly attribute ConsumerAdmin MyAdmin;

attribute CosNotifyFilter::MappingFilter priority_filter;
attribute CosNotifyFilter::MappingFilter lifetime_filter;

CosNotification::EventTypeSeq obtain_offered_types(
in ObtainInfoMode mode);

void validate_event_qos (
 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq available_qos)

raises (CosNotification::UnsupportedQoS);

}; // ProxySupplier

interface ProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::PushConsumer {

void connect_any_push_supplier (
B-10 Notification Service, v1.1 October 2004

B

in CosEventComm::PushSupplier push_supplier)
raises(CosEventChannelAdmin::AlreadyConnected);

}; // ProxyPushConsumer

interface StructuredProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::StructuredPushConsumer {

void connect_structured_push_supplier (
in CosNotifyComm::StructuredPushSupplier push_supplier)

raises(CosEventChannelAdmin::AlreadyConnected);

}; // StructuredProxyPushConsumer

interface SequenceProxyPushConsumer :
ProxyConsumer,
CosNotifyComm::SequencePushConsumer {

void connect_sequence_push_supplier (
in CosNotifyComm::SequencePushSupplier push_supplier)

raises(CosEventChannelAdmin::AlreadyConnected);

}; // SequenceProxyPushConsumer

interface ProxyPullSupplier :
ProxySupplier,
CosNotifyComm::PullSupplier {

void connect_any_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)

raises(CosEventChannelAdmin::AlreadyConnected);

}; // ProxyPullSupplier

interface StructuredProxyPullSupplier :
ProxySupplier,
CosNotifyComm::StructuredPullSupplier {

void connect_structured_pull_consumer (
in CosNotifyComm::StructuredPullConsumer pull_consumer)

raises(CosEventChannelAdmin::AlreadyConnected);

}; // StructuredProxyPullSupplier

interface SequenceProxyPullSupplier :
ProxySupplier,
CosNotifyComm::SequencePullSupplier {

void connect_sequence_pull_consumer (
in CosNotifyComm::SequencePullConsumer pull_consumer)

raises(CosEventChannelAdmin::AlreadyConnected);

}; // SequenceProxyPullSupplier
October 2004 Notification Service, v1.1 B-11

B

interface ProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::PullConsumer {

void connect_any_pull_supplier (
in CosEventComm::PullSupplier pull_supplier)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // ProxyPullConsumer

interface StructuredProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::StructuredPullConsumer {

void connect_structured_pull_supplier (
in CosNotifyComm::StructuredPullSupplier pull_supplier)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // StructuredProxyPullConsumer

interface SequenceProxyPullConsumer :
ProxyConsumer,
CosNotifyComm::SequencePullConsumer {

void connect_sequence_pull_supplier (
in CosNotifyComm::SequencePullSupplier pull_supplier)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // SequenceProxyPullConsumer

interface ProxyPushSupplier :
ProxySupplier,
CosNotifyComm::PushSupplier {
B-12 Notification Service, v1.1 October 2004

B

void connect_any_push_consumer (
in CosEventComm::PushConsumer push_consumer)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // ProxyPushSupplier

interface StructuredProxyPushSupplier :
ProxySupplier,
CosNotifyComm::StructuredPushSupplier {

void connect_structured_push_consumer (
in CosNotifyComm::StructuredPushConsumer push_consumer)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // StructuredProxyPushSupplier

interface SequenceProxyPushSupplier :
ProxySupplier,
CosNotifyComm::SequencePushSupplier {

void connect_sequence_push_consumer (
in CosNotifyComm::SequencePushConsumer push_consumer)

raises(CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

}; // SequenceProxyPushSupplier

typedef long ProxyID;
typedef sequence <ProxyID> ProxyIDSeq;

enum ClientType {
ANY_EVENT,
STRUCTURED_EVENT,
October 2004 Notification Service, v1.1 B-13

B

SEQUENCE_EVENT
};

enum InterFilterGroupOperator { AND_OP, OR_OP };

typedef long AdminID;
typedef sequence<AdminID> AdminIDSeq;

exception AdminNotFound {};
exception ProxyNotFound {};

struct AdminLimit {
CosNotification::PropertyName name;
CosNotification::PropertyValue value;

};

exception AdminLimitExceeded { AdminLimit admin_property_err; };

interface ConsumerAdmin :
CosNotification::QoSAdmin,
CosNotifyComm::NotifySubscribe,
CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin::ConsumerAdmin {

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

attribute CosNotifyFilter::MappingFilter priority_filter;
attribute CosNotifyFilter::MappingFilter lifetime_filter;

readonly attribute ProxyIDSeq pull_suppliers;
readonly attribute ProxyIDSeq push_suppliers;

ProxySupplier get_proxy_supplier (
in ProxyID proxy_id)

raises (ProxyNotFound);

ProxySupplier obtain_notification_pull_supplier (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded);

ProxySupplier obtain_notification_push_supplier (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded);

void destroy();

}; // ConsumerAdmin

interface SupplierAdmin :
B-14 Notification Service, v1.1 October 2004

B

CosNotification::QoSAdmin,
CosNotifyComm::NotifyPublish,
CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin::SupplierAdmin {

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

readonly attribute ProxyIDSeq pull_consumers;
readonly attribute ProxyIDSeq push_consumers;

ProxyConsumer get_proxy_consumer (
in ProxyID proxy_id)

raises (ProxyNotFound);

ProxyConsumer obtain_notification_pull_consumer (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded);

ProxyConsumer obtain_notification_push_consumer (
in ClientType ctype,
out ProxyID proxy_id)

raises (AdminLimitExceeded);

void destroy();

}; // SupplierAdmin

interface EventChannel :
CosNotification::QoSAdmin,
CosNotification::AdminPropertiesAdmin,
CosEventChannelAdmin::EventChannel {

readonly attribute EventChannelFactory MyFactory;

readonly attribute ConsumerAdmin default_consumer_admin;
readonly attribute SupplierAdmin default_supplier_admin;

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;

ConsumerAdmin new_for_consumers(
in InterFilterGroupOperator op,
out AdminID id);

SupplierAdmin new_for_suppliers(
in InterFilterGroupOperator op,
out AdminID id);

ConsumerAdmin get_consumeradmin (in AdminID id)
raises (AdminNotFound);
October 2004 Notification Service, v1.1 B-15

B

SupplierAdmin get_supplieradmin (in AdminID id)
raises (AdminNotFound);

AdminIDSeq get_all_consumeradmins();
AdminIDSeq get_all_supplieradmins();

}; // EventChannel

typedef long ChannelID;
typedef sequence<ChannelID> ChannelIDSeq;

exception ChannelNotFound {};

interface EventChannelFactory {

EventChannel create_channel (
in CosNotification::QoSProperties initial_qos,
in CosNotification::AdminProperties initial_admin,
out ChannelID id)

raises(CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

ChannelIDSeq get_all_channels();

EventChannel get_event_channel (in ChannelID id)
raises (ChannelNotFound);

}; // EventChannelFactory

}; // CosNotifyChannelAdmin

module CosTypedNotifyComm {

interface TypedPushConsumer :
CosTypedEventComm::TypedPushConsumer,
CosNotifyComm::NotifyPublish {

}; // TypedPushConsumer

interface TypedPullSupplier :
CosTypedEventComm::TypedPullSupplier,
CosNotifyComm::NotifySubscribe {

}; // TypedPullSupplier

}; // CosTypedNotifyComm

module CosTypedNotifyChannelAdmin {

// Forward declaration
interface TypedEventChannelFactory;

typedef string Key;
B-16 Notification Service, v1.1 October 2004

B

interface TypedProxyPushConsumer :
CosNotifyChannelAdmin::ProxyConsumer,
CosTypedNotifyComm::TypedPushConsumer {

void connect_typed_push_supplier (
in CosEventComm::PushSupplier push_supplier)

raises (CosEventChannelAdmin::AlreadyConnected);

}; // TypedProxyPushConsumer

interface TypedProxyPullSupplier :
CosNotifyChannelAdmin::ProxySupplier,
CosTypedNotifyComm::TypedPullSupplier {

void connect_typed_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)

raises (CosEventChannelAdmin::AlreadyConnected);

}; // TypedProxyPullSupplier

interface TypedProxyPullConsumer :
CosNotifyChannelAdmin::ProxyConsumer,
CosNotifyComm::PullConsumer {

void connect_typed_pull_supplier (
in CosTypedEventComm::TypedPullSupplier pull_supplier)

raises (CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyInactive,

CosNotifyChannelAdmin::NotConnected);

void resume_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyActive,

CosNotifyChannelAdmin::NotConnected);

}; // TypedProxyPullConsumer

interface TypedProxyPushSupplier :
CosNotifyChannelAdmin::ProxySupplier,
CosNotifyComm::PushSupplier {

void connect_typed_push_consumer (
in CosTypedEventComm::TypedPushConsumer push_consumer)

raises (CosEventChannelAdmin::AlreadyConnected,
CosEventChannelAdmin::TypeError);

void suspend_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyInactive,

CosNotifyChannelAdmin::NotConnected);

void resume_connection()
raises (CosNotifyChannelAdmin::ConnectionAlreadyActive,
October 2004 Notification Service, v1.1 B-17

B

CosNotifyChannelAdmin::NotConnected);

}; // TypedProxyPushSupplier

interface TypedConsumerAdmin :
CosNotifyChannelAdmin::ConsumerAdmin,
CosTypedEventChannelAdmin::TypedConsumerAdmin {

 TypedProxyPullSupplier obtain_typed_notification_pull_supplier(
in Key supported_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)

raises(CosTypedEventChannelAdmin::InterfaceNotSupported,
CosNotifyChannelAdmin::AdminLimitExceeded);

 TypedProxyPushSupplier obtain_typed_notification_push_supplier(
in Key uses_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)

raises(CosTypedEventChannelAdmin::NoSuchImplementation,
CosNotifyChannelAdmin::AdminLimitExceeded);

}; // TypedConsumerAdmin

interface TypedSupplierAdmin :
CosNotifyChannelAdmin::SupplierAdmin,
CosTypedEventChannelAdmin::TypedSupplierAdmin {

 TypedProxyPushConsumer obtain_typed_notification_push_consumer(
in Key supported_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)

raises(CosTypedEventChannelAdmin::InterfaceNotSupported,
CosNotifyChannelAdmin::AdminLimitExceeded);

 TypedProxyPullConsumer obtain_typed_notification_pull_consumer(
in Key uses_interface,
out CosNotifyChannelAdmin::ProxyID proxy_id)

raises(CosTypedEventChannelAdmin::NoSuchImplementation,
CosNotifyChannelAdmin::AdminLimitExceeded);

}; // TypedSupplierAdmin

interface TypedEventChannel :
CosNotification::QoSAdmin,
CosNotification::AdminPropertiesAdmin,
CosTypedEventChannelAdmin::TypedEventChannel {

readonly attribute TypedEventChannelFactory MyFactory;

readonly attribute TypedConsumerAdmin default_consumer_admin;
readonly attribute TypedSupplierAdmin default_supplier_admin;

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;

TypedConsumerAdmin new_for_typed_notification_consumers(
in CosNotifyChannelAdmin::InterFilterGroupOperator op,
B-18 Notification Service, v1.1 October 2004

B

out CosNotifyChannelAdmin::AdminID id);

TypedSupplierAdmin new_for_typed_notification_suppliers(
in CosNotifyChannelAdmin::InterFilterGroupOperator op,
out CosNotifyChannelAdmin::AdminID id);

TypedConsumerAdmin get_consumeradmin (
in CosNotifyChannelAdmin::AdminID id)

raises (CosNotifyChannelAdmin::AdminNotFound);

TypedSupplierAdmin get_supplieradmin (
in CosNotifyChannelAdmin::AdminID id)

raises (CosNotifyChannelAdmin::AdminNotFound);

CosNotifyChannelAdmin::AdminIDSeq get_all_consumeradmins();
CosNotifyChannelAdmin::AdminIDSeq get_all_supplieradmins();

}; // TypedEventChannel

interface TypedEventChannelFactory {

TypedEventChannel create_typed_channel (
in CosNotification::QoSProperties initial_QoS,
in CosNotification::AdminProperties initial_admin,
out CosNotifyChannelAdmin::ChannelID id)

raises(CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

CosNotifyChannelAdmin::ChannelIDSeq get_all_typed_channels();

TypedEventChannel get_typed_event_channel (
in CosNotifyChannelAdmin::ChannelID id)

raises (CosNotifyChannelAdmin::ChannelNotFound);

}; // TypedEventChannelFactory

}; // CosTypedNotifyChannelAdmin
October 2004 Notification Service, v1.1 B-19

B

B-20 Notification Service, v1.1 October 2004

Index
A
AdminPropertiesAdmin Interface

get_admin 3-9
set_admin 3-9

B
BAD_QOS system exception 2-46

C
CORBA

contributors 1-vi
documentation set 1-iv

CosNotification Module 3-2
CosNotifyChannelAdmin Module 3-39
CosNotifyComm Module 3-26
CosNotifyFilter Module 3-9
CosTypedNotifyChannelAdmin 3-81
CosTypedNotifyComm Module 3-80

D
Default Filter Constraint Language 2-26

E
End-to-End QoS 2-39
Event Filtering 2-20
Event Type Meta-Model A-1
Event Type Repository 2-58
EventBatch Data Type 3-7
EventChannel Interface

default_consumer_admin 3-76
default_filter_factory 3-77
default_supplier_admin 3-76
get_all_consumeradmins 3-78
get_all_supplieradmins 3-78
get_consumeradmin 3-77
get_supplieradmin 3-78
MyFactory 3-76
new_for_consumers 3-77
new_for_suppliers 3-77

EventChannelFactory
create_channel 3-79

EventChannelFactory Interface
get_all_channels 3-79
get_event_channel 3-79

F
Filter Interface

add_constraints 3-14
attach_callback 3-17
constraint_grammar 3-14
destroy 3-16
detach_callback 3-18
get_all_constraints 3-16
get_callbacks 3-18
get_constraints 3-16
match 3-16
match_structured 3-17
match_typed 3-17
modify_constraints 3-15
remove_all_constraints 3-16

FilterAdmin Interface
add_filter 3-25

get_all_filters 3-26
get_filter 3-26
remove_all_filters 3-26
remove_filter 3-26

FilterFactory Interface
create_filter 3-25
create_mapping_filter 3-25

Filtering Typed Events 2-55

G
Generated IDL A-4
get_qos 3-8
get_qos operation 2-46

I
Intended Applications 2-33
Interoperability

Issues 2-59

M
Mapping Filter Interface

add_mapping_constraints 3-20
constraint_grammar 3-19
default_value 3-20
destroy 3-23
get_all_mapping_constraints 3-22
get_mapping_constraints 3-22
match 3-23
match_structured 3-23
match_typed 3-24
modify_mapping_constraints 3-21
remove_all_mapping_constraints 3-23
value_type 3-20

Mapping Filter Objects 2-24
MODL Model A-3

N
Name-Value Pairs 2-32
Notification Service Constraints 2-34
Notification Service Event Channel 2-6
Notification Service Event Channel Factory 2-5
Notification Service Style Admin Objects 2-7
Notification Service Style Proxy Interfaces 2-8
NotifyPublish Interface

offer_change 3-29
NotifySubscribe Interface

subscription_change 3-29

O
Object Management Group 1-iii

address of 1-v

P
Positional Notation 2-33
ProxyConsumer Interface

MyAdmin 3-47
MyType 3-47
obtain_subscription_types 3-47
validate_event_qos 3-48

ProxyPullConsumer Interface
connect_any_pull_supplier 3-58
resume_connection 3-59
October 2004 Notification Service, v1.1 Index-1

Index
suspend_connection 3-58
ProxyPullSupplier Interface

connect_any_pull_consumer 3-55
ProxyPushConsumer Interface

connect_any_push_supplier 3-52
ProxyPushSupplier Interface

connect_any_push_consumer 3-63
connect_structured_push_consumer 3-65
resume_connection 3-64, 3-65
suspend_connection 3-63, 3-65

ProxySupplier Interface
lifetime_filter 3-50
MyAdmin 3-49
MyType 3-49
obtain_offered_types 3-50
priority_filter 3-49
validate_event_qos 3-51

PullConsumer Interface 3-30
PullSupplier Interface 3-30
PushConsumer Interface 3-29
PushSupplier Interface 3-30

Q
Qos

Property Representation 2-38
Setting 2-38

QoS and Administrative Constant Declarations 3-7
Qos Model

Components 2-38
Qos Properties

Earliest Delivery Time 2-42
Expiry times 2-42
Maximum Events Per Consumer 2-43
Priority 2-42
Reliability 2-40

QoSAdmin Interface 3-7

S
SequenceProxyPullConsumer Inteface

resume_connection 3-62
SequenceProxyPullConsumer Interface

connect_sequence_pull_supplier 3-61
suspend_connection 3-62

SequenceProxyPullSupplier Interface
connect_sequence_pull_consumer 3-57

SequenceProxyPushConsumer Interface
connect_sequence_push_supplier 3-54

SequenceProxySupplier Interface
connect_sequence_push_consumer 3-66
destroy 3-71
get_proxy_supplier 3-70
lifetime_filter 3-70
MyChannel 3-69
MyID 3-69
MyOperator 3-69
obtain_notification_pull_supplier 3-70
obtain_notification_push_supplier 3-71
priority_filter 3-69
pull_suppliers 3-70
push_suppliers 3-70
resume_connection 3-67

suspend_connection 3-67
SequencePullConsumer Interface

disconnect_sequence_pull_consumer 3-36
SequencePullSupplier Interface

disconnect_sequence_pull_supplier 3-39
pull_structured_events 3-37
try_pull_structured_events 3-38

SequencePushConsumer Interface
disconnect_sequence_push_consumer 3-36
push_structured_events 3-35

SequencePushSupplier Interface
disconnect_sequence_push_supplier 3-39

set_qos 3-8
set_qos operation 2-45
Sharing Subscriptions

Offer 2-52
Sharing Subscriptions Between Channels and Clients 2-52
Subscription Change 2-53

Special Event Types 2-54
Structured Events 2-15
StructuredEvent Data Structure

Body of a Structured Event 3-6
Fixed Header 3-5
Variable Header 3-6

StructuredProxyPullConsumer Interface
connect_structured_pull_supplier 3-59
resume_connection 3-60
suspend_connection 3-60

StructuredProxyPullSupplier Interface
connect_structured_pull_consumer 3-56

StructuredProxyPushConsumer Interface
connect_structured_push_supplier 3-53

StructuredPullConsumer Interface
disconnect_structured_pull_consumer 3-32

StructuredPullSupplier Interface
disconnect_structured_pull_supplier 3-34
pull_structured_event 3-32
try_pull_structured_event 3-33

StructuredPushConsumer Interface
disconnect_structured_push_consumer 3-31
push_structured_event 3-31

StructuredPushSupplier Interface
disconnect_structured_push_supplier 3-34

SupplierAdmin Interface
destroy 3-75
get_proxy_consumer 3-74
MyChannel 3-73
MyID 3-73
MyOperator 3-73
obtain_notification_pull_consumer 3-74
obtain_notification_push_consumer 3-74
pull_consumers 3-73
push_consumers 3-74

T
Trader Constraint Language 2-26
Trader Constraint Language BNF 2-35
TransactionalObject interface 2-14
TypedConsumerAdmin Interface

obtain_typed_notification_pull_supplier 3-93
obtain_typed_notification_push_supplier 3-94
Index-2 Notification Service, v1.1 October 2004

Index
TypedEventChannel Interface
default_consumer_admin 3-98
default_filter_factory 3-99
default_supplier_admin 3-98
get_all_consumeradmins 3-100
get_all_supplieradmins 3-100
get_consumeradmin 3-100
get_supplieradmin 3-100
MyFactory 3-98
new_for_notification_consumers 3-99
new_for_typed_notification_suppliers 3-99

TypedEventChannelFactory Interface
create_typed_channel 3-101
get_all_typed_channels 3-101
get_typed_event_channel 3-101

TypedProxyPullConsumer Interface
connect_typed_pull_supplier 3-88
resume_connection 3-89
suspend_connection 3-89

TypedProxyPullSupplier Interface

connect_typed_pull_consumer 3-87
TypedProxyPushConsumer Interface

conect_typed_push_supplier 3-85
TypedProxyPushSupplier Interface

connect_typed_push_consumer 3-90
resume_connection 3-91
suspend_connection 3-91

TypedPullSupplier Interface 3-81
TypedPushConsumer Interface 3-80
TypedSupplierAdmin Interface

obtain_typed_notification_pull_consumer 3-96
obtain_typed_notification_push_consumer 3-96

U
UnsupportedQoS user exception 2-46

V
validate_event_qos operation 2-46
validate_qos 3-8
validate_qos operation 2-46
October 2004 Notification Service, v1.1 Index-3

Index
Index-4 Notification Service, v1.1 October 2004

Notification Service, v1.1
Reference Sheet

This is an editorial update of the Notification Service that includes changes to Chapters 1, 2, and 3. You
will find specific changes marked with change bars and colored text.

This version supercedes formal/02-08-04.

Reason for this update: Notification/JMS Interworking specification (formal/04-10-09).
October 26, 2004

October 26, 2004

	Preface
	Associated OMG Documents
	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Conformance Issues

	2. Architectural Features
	2.1 Overview
	2.1.1 The Notification Service Event Channel Factory
	2.1.2 The Notification Service Event Channel
	2.1.3 Notification Service Style Admin Objects
	2.1.4 Notification Service Style Proxy Interfaces
	2.1.5 Notification Service QoS and Admin Property Extensions
	2.1.6 Sending Events within a Transaction

	2.2 Structured Events
	2.3 Event Filtering with Filter Objects
	2.3.1 Mapping Filter Objects

	2.4 The Default Filter Constraint Language
	2.4.1 Issues with the Trader Constraint Language
	2.4.2 Trader Constraint Language Extensions for Notification
	2.4.3 Arithmetic Conversions for Mixed Data Types
	2.4.4 Support for Name-Value Pairs
	2.4.5 A Short-hand Notation for Filtering a Generic Event
	2.4.6 Positional Notation and Intended Applications
	2.4.7 Examples of Notification Service Constraints
	2.4.8 Extensions to Trader Constraint Language BNF

	2.5 Quality of Service Administration
	2.5.1 Model Components
	2.5.2 QoS Property Representation
	2.5.3 Setting QoS
	2.5.4 End-to-End QoS
	2.5.5 Notification QoS Properties
	2.5.6 Negotiating QoS and Conflict Resolution
	2.5.7 Notification Channel Administrative Properties

	2.6 Sharing Subscriptions
	2.6.1 Sharing Subscriptions Between Channels and Clients
	2.6.2 Offer
	2.6.3 Subscription Change
	2.6.4 Notifications on Demand
	2.6.5 Obligations on Filter Objects
	2.6.6 Special Event Types

	2.7 Filtering Typed Events
	2.8 The Event Type Repository
	2.9 Issues with Interoperability

	3. Modules and Interfaces
	3.1 The CosNotification Module
	3.1.1 The StructuredEvent Data Structure
	3.1.2 The EventBatch Data Type
	3.1.3 QoS and Administrative Constant Declarations
	3.1.4 The QoSAdmin Interface
	3.1.5 The AdminPropertiesAdmin Interface

	3.2 The CosNotifyFilter Module
	3.2.1 The Filter Interface
	3.2.2 The MappingFilter Interface
	3.2.3 The FilterFactory Interface
	3.2.4 The FilterAdmin Interface

	3.3 The CosNotifyComm Module
	3.3.1 The NotifyPublish Interface
	3.3.2 The NotifySubscribe Interface
	3.3.3 The PushConsumer Interface
	3.3.4 The PullConsumer Interface
	3.3.5 The PullSupplier Interface
	3.3.6 The PushSupplier Interface
	3.3.7 The StructuredPushConsumer Interface
	3.3.8 The StructuredPullConsumer Interface
	3.3.9 The StructuredPullSupplier Interface
	3.3.10 The StructuredPushSupplier Interface
	3.3.11 The SequencePushConsumer Interface
	3.3.12 The SequencePullConsumer Interface
	3.3.13 The SequencePullSupplier Interface
	3.3.14 The SequencePushSupplier Interface

	3.4 The CosNotifyChannelAdmin Module
	3.4.1 The ProxyConsumer Interface
	3.4.2 The ProxySupplier Interface
	3.4.3 The ProxyPushConsumer Interface
	3.4.4 The StructuredProxyPushConsumer Interface
	3.4.5 The SequenceProxyPushConsumer Interface
	3.4.6 The ProxyPullSupplier Interface
	3.4.7 The StructuredProxyPullSupplier Interface
	3.4.8 The SequenceProxyPullSupplier Interface
	3.4.9 The ProxyPullConsumer Interface
	3.4.10 The StructuredProxyPullConsumer Interface
	3.4.11 The SequenceProxyPullConsumer Interface
	3.4.12 The ProxyPushSupplier Interface
	3.4.13 The StructuredProxyPushSupplier Interface
	3.4.14 The SequenceProxyPushSupplier Interface
	3.4.15 The ConsumerAdmin Interface
	3.4.16 The SupplierAdmin Interface
	3.4.17 The EventChannel Interface
	3.4.18 The EventChannelFactory Interface

	3.5 The CosTypedNotifyComm Module
	3.5.1 The TypedPushConsumer Interface
	3.5.2 The TypedPullSupplier Interface

	3.6 CosTypedNotifyChannelAdmin
	3.6.1 The TypedProxyPushConsumer Interface
	3.6.2 The TypedProxyPullSupplier Interface
	3.6.3 The TypedProxyPullConsumer Interface
	3.6.4 The TypedProxyPushSupplier Interface
	3.6.5 The TypedConsumerAdmin Interface
	3.6.6 The TypedSupplierAdmin Interface
	3.6.7 The TypedEventChannel Interface
	3.6.8 The TypedEventChannelFactory Interface

	3.7 IDL Modules
	3.7.1 The CosNotifyCommAck Module
	3.7.2 The CosNotifyChannelAdminAck Module
	3.7.3 Overview of Event Acknowledgement
	3.7.4 Scope of Event Acknowledgment
	3.7.5 Sequence Number Header Field
	3.7.6 Acknowledge operation behavior
	3.7.7 QoS Properties for Reliable Event Delivery

	A. Event Type Repository
	B. Complete IDL
	Index
	Reference Sheet

