
January 09, 2003

OMG TC Document telecom/2002-01-06

Convenience Document with Proposed Changes for

Notification-JMS Interworking FTF

DTC 04-xx-xx

2

Table of Contents

1 OVERVIEW ..5

2 ARCHITECTURAL FEATURES ...7

2.1 BRIDGE ARCHITECTURE OVERVIEW.. 7
2.2 BRIDGE FACTORY ... 8
2.3 BRIDGE INSTANCE.. 9

2.4 MESSAGE MAPPING.. 12
2.4.1 JMS Message to Event 13

2.4.1.1 JMS message body mapping 16
2.4.1.1.1 Text Message .. 16

2.4.1.1.2 Stream Message 16
2.4.1.1.3 Map Message .. 16
2.4.1.1.4 Bytes Message 16
2.4.1.1.5 Object Message... 17

2.4.2 Event to JMS Message 17
2.5 QOS PROPERTIES MAPPING ... 21

2.5.1 Event Reliability... 21
2.5.2 Connection Reliability................................ .. 21

2.5.3 Delivery Reliability.. 22
2.5.4 Priority .. 22
2.5.5 Expiry times.. ... 23
2.5.6 Order Policy.. 23

2.6 ACKNOWLEDGMENT MAPPIN G... 25
2.6.1 Overview of Reliable Event Delivery with Event Acknowledgment .. 25

2.6.1.1 Event Acknowledgment on Push Model .. 26
2.6.1.2 Event Acknowledgment on Pull Model .. 27

2.6.2 Scope of Event Acknowledgment .. 28
2.6.3 Sequence Number Header Field.. ... 29
2.6.4 Notify Ack Interface.. ... 29

2.6.4.1 Acknowledge 30

2.6.5 Reliable Delivery Sequence................................ ... 31
2.6.5.1 Reliable Delivery Sequence for Push Model .. 31
2.6.5.2 Reliable Delivery Sequence for Pull Model .. 32
2.6.5.3 Recovery in Failue of Retries 33

2.6.6 QoS Properties for Reliable Event Delivery.. 34
2.6.6.1 DeliveryReliability.. 34

3

2.6.6.2 Retries 35
2.6.6.3 RetryInterval .. 35

2.6.6.4 Supported level of the QoS Properties 35
2.6.7 Mapping between Event Acknowledgment and JMS Message Acknowledgment.. 35

2.7 TRANSACTIONAL SUPPORT... 38
2.7.1 Asynchronous Transactional Model 38

2.7.2 Supported configurations.. 40
2.7.3 Notification Service Transactional Role.. 40

2.7.3.1 Data Flowing from Notification Service to JMS 41
2.7.3.2 Data flowing from JMS to Notification Service... 41

2.7.4 Bridge Transactional Roles .. 42
2.7.5 JMS service provider Transactional Role... 42

2.7.5.1 Data Flowing from Notification Service to JMS 42
2.7.5.2 Data Flowing from JMS to Notification Service 43

2.7.6 Bridge Transactional Monitoring .. 43
2.7.6.1 Notification Service QoS and Admin Property Extensions ... 43
2.7.6.2 Bridge Transaction Management Interface 46

2.8 CONFORMANCE.. 47

3 BRIDGE INTERFACES ..48

3.1 CO SBRIDGEADMIN MODULE ... 48
3.1.1 ExternalEndPoint 51

3.1.1.1 ExternalEndpointRole.. 51

3.1.1.2 ExternalEndpointConnector 51
3.1.1.3 MessageType 52

3.1.2 EndPointSender interface.. 52
3.1.3 EndpointReceiver interface................................ ... 52

3.1.4 Bridge Interface.. .. 52
3.1.4.1 start_bridge 52
3.1.4.2 stop_bridge... 52
3.1.4.3 get_status. 53

3.1.4.4 destroy 53
3.1.5 Bridge Factory Interface.. .. 53

3.1.5.1 create_bridge... 53
3.1.5.2 get_all_bridges ... 54

3.1.5.3 get_bridge_with_id ... 54
3.2 BRIDGETRANSACTIONMGMT MODULE .. 54

3.2.1 TransactionManagement interface................................. ... 54
3.2.1.1 enable_transaction 55

3.2.1.2 disable_transaction ... 55

4

5

1 Overview

Asynchronous messaging is a proven communication model for developing

large-scale, distributed enterprise applications. In order to support flexible and

end-to-end business integration, it is becoming necessary to provide messaging

interworking between CORBA applications and Java / EJB.

The CORBA Notification Service is the OMG mature standard that allows Corba

objects, named suppliers, to send event asynchronously to other Corba object named

consumers. Suppliers are de-coupled from consumers by means of event channel

concept, which takes care of dissemination of events to them.

The Java Message Service (JMS) defines a standard API that provides a simplified and

common way for Java clients to access message oriented middleware. More

importantly, JMS is tightly integrated into J2EE and is the messaging standard for

Enterprise Java Beans (EJB). Application publishing a message are de-coupled from

application receiving them by the mean of Queue or topic concept.

The Notification Service differs from JMS in that its specification covers both the client

interfaces and the messaging engine whereas JMS was designed as an abstraction

over existing and new messaging products. The JMS messaging engine

implementation may differ from one vender to another.

This document specifies architecture and interfaces for managing Notification Service

interworking with Java Message Service. The interworking involves several aspects

such as:

• Event -Message mapping,

• QoS mapping,

• Automatic federation between Notification Service channel concept and

topic/queue concepts

6

• Transaction support.

7

2 Architectural Features

2.1 Bridge Architecture Overview

The bridge defined by this specification is designed to manage and interconnect event

channel with JMS destination. A clear goal of this specification is to define the

capability to manage an inter-related channel and JMS destination that can be created

via existing implementations of those services. The guiding principles which drove the

definition of the Bridge IDL interfaces were to preserve backward compatibility with

both JMS and Notification Service programming models. Extensions to current

Notification Service can be required only in advanced use cases where

acknowledgment data delivery QoS is required.

The Figure 2-1 depicts bridge general architecture. The IDL module names of the

interfaces defined by the Notification Service and the Bridge are abbreviated in the

above diagram. NCA stands for CosNotifyChannelAdmin, while NC stands for

CosNotifyComm, finally BA stands for CosBridgeAdmin.

NCA::Channel

NCA::SupplierAdmin

NCA::StructuredProxyPushConsumer

NCA::SequenceProxyPushConsumer

NCA::StructuredProxyPushSupplier

NCA::SequenceProxyPushSupplier

NCA::ConsumerAdmin
Bridge

Notification
Serrvice

javax.jms.ConnectionFactory

javax.jms.Connection javax.jms.Session

javax.jms.MessageProducer

javax.jms.MessageConsumer

Javax.jms.MessageListener

NC::StructuredPushConsumer

NC::SequencePushConsumer

NC::SequencePushSupplier

NC::StructuredPushSupplier

Message flow

Message flow

JMS

CosBridgeAdmin

NCA::Channel

NCA::SupplierAdmin

NCA::StructuredProxyPushConsumer

NCA::SequenceProxyPushConsumer

NCA::StructuredProxyPushSupplier

NCA::SequenceProxyPushSupplier

NCA::ConsumerAdmin
Bridge

Notification
Serrvice

javax.jms.ConnectionFactory

javax.jms.Connection javax.jms.Session

javax.jms.MessageProducer

javax.jms.MessageConsumer

Javax.jms.MessageListener

NC::StructuredPushConsumer

NC::SequencePushConsumer

NC::SequencePushSupplier

NC::StructuredPushSupplier

Message flow

Message flow

JMS

CosBridgeAdmin

8

Figure 2-1General Architecture of the Bridge

The Bridge is used to create and manage bridges instances that perform automatic

mapping and forwarding of messages and events. The Figure 2-1 shows the different

relationships between the bridge, the notification service and the JMS. For the shake of

clarity only the push communication style is considered in the Figure 2-1.

To preserve the Notification service and JMS interfaces, the Bridge behaves as event

Consumer and as JMS sender when forwarding an event from event channel to JMS

destination. In addition, it behaves as JMS receiver and event Producer when

forwarding a message in the other way.

Event-grouping is crucial to improve interworking performance. This makes structured

events centric in the JMS –NS message mapping, consequently, when the push

communication style is selected the Bridge supports the standard

StructuredPushConsumer, SequencePushConsumer and

StructuredPushSupplier and SequencePushSupplier interfaces. It

supports also the StructuredPullConsumer, SequencePullConsumer and

StructuredPullSupplier and SequencePullSupplier interfaces.

To receive messages from JMS, the bridge offers the standard JMS

javax.jms.MessageListener interface and makes use of JMS

javax.jms.MessageProducer and javax.jms.MessageConsumer interfaces.

The bridge is also used to automate the connection setups between channel and JMS

destination. It performs on behalf of JMS the necessary steps to create and configure

entry points in the event channel. These steps involve StucturedProxyPush creation

and default QoS setting. Similarly, it performs on behalf of the notification service steps

needed to create and configure connection and session with JMS provider.

Note –. Issues related to detection of event or message duplication in complex topologies is out of the scope of the
RFP and are not taken into account. Alternatively, techniques such as those used in Event Domain Management
can be used.

2.2 Bridge Factory

A BridgeFactory is responsible for the creation of Bridge objects based on initial

parameters. In order to create a bridge, it is necessary to have provide information on

an existing Notification Service event channel and JMS destination. Channel and JMS

destination information are abstracted using external end point connector concept.

External end point connector may provide or suck up data flow. It can be either a

source or sink of data. When External end point connector describes JMS destination

9

it should indicate the type and the name of the destination should it be a topic or

queue. When it describes channel information it should indicates whether data will be

sent using sequence or single structured events. Finally, the BridgeFactory user

should indicate the communication style it wishes to use. The communication style

can be either Push or Pull.

Since the JMS specification supports Pull communication style on the application

receiver side only, the BridgeFactory should check the consistency of the end-to-end1

communication model in use before creating a bridge. For example, when forwarding

data from event channel t o JMS destination, the Pull communication style can’t be set

at the sink external endpoint. This scenario is summarized in Table 2-1

Some other consistency checking of the end-to-end communication model is

implementation dependent. For example, bridge implementation with storage

capabilities may support PUSH communication style at JMS side acting as a source

and PULL communication style at event channel side acting as a sink only and only if

the bridge uses buffer that desynchronize data transmission from its reception by

event channel.

Controls performed by Bridgefactory are summarized in Table 2-1.

 Sink : JMS Sink : Channel

 PUSH PULL

PUSH PULL

PUSH yes Not Allowed
by JMS
specification

PUSH Yes Implemtation
dependent

So
ur

ce
:

C
ha

nn
el

PULL yes Not Allowed
by JMS
specification

So
ur

ce
:

JM
S

PULL Yes 2 yes

Table 2-1: Communication consistency checking

A compliant bridge implementation is not required to support all communication

models described in Table 2-1. However, vendors are encouraged to provide several

communication styles to increase bridge flexibility.

2.3 Bridge Instance

To propagate unidirectional data flow a bridge instance connects a single source

endpoint to a single sink endpoint. This object offers two interfaces that fit the source

1 End-to-end portion concerns the source to sink endpoints.

2 To be able to pull the JMS and to push toward event channel, a kind of scheduling can be passed to the bridge using
the CoSNotification::PacingInterval QoS defined at each external endpoint side.

10

and sink natures and requirements. A source is connected to the bridge instance

through the Endpoint receiver and the sink is connected through the Endpoint sender.

When bi-directional interworking between the Notification Service and JMS is required

two bridge instances can be created separately. The Figure 2-2 summaries the bridge

architecture abstract view.

Figure 2-2: Bridge abstract Architecture

Depending on the source endpoint nature it is connected to, the endpoint receiver can

be a:

• JMS Message Listener, if it receives messages from JMS destination. At

abstract level, the JMS Message Listener behaves as an event Push Consumer, in

that it offers onMessage operation which, from functional viewpoint, can be

compared to push operation defined in Notification Service.

• JMS Message Consumer, when it retrieves messages from JMS destination. It

can be compared to event pull consumer.

• structured push consumer, if it connects an event channel pushing single

structured event,

• sequence push consumer, if it connects an event channel pushing sequence of

structured events,

• structured pull consumer, if it connects an event channel offering pull structured

event operations,

• structured pull consumer, if it connects an event channel offering pull structured

event operations.

The endpoint sender can behave as a:

• JMS Message producer, when sending events to JMS destination,

• Structured push supplier, when sending event to event channel,

• Sequence push supplier, when sending events to event channel,

Data flow

ExternalEndPoint
“Source”

ExternalEndPoint
“Sink”

Bridge

EndPointReceiver EndPointSender

Data flow

ExternalEndPoint
“Source”

ExternalEndPoint
“Sink”

Bridge

EndPointReceiver EndPointSender

11

• Structured pull supplier, when pulling event from event channel,

• Sequence pull supplier, when pulling event from events channel.

When creating a bridge, regular steps to connect event channel and JMS destination

are performed. They consist of:

1. Obtaining administration object references from event channel and JMS. On

event channel side, those object references are SupplierAdmin or

ConsumerAdmin and on the JMS side those objects references correspond

to Connection and Session.

2. Creating on event channel side proxySupplier or proxyConsumer objects and

creating on JMS side MessageProducer or MessageConsumer objects that fit

communication style and data grouping policy selected by user.

A bridge is a stateful object that reflects the connection states with both proxy and

JMS destination entry3. Consequently, the bridge state is an aggregation of Proxy

states and the JMS destination entry state it is connected to. The AND logical operator

semantic should be applied to obtain the bridge state.

When it is created the bridge status should be set to Inactive. When starting the

bridge, the endpoint receiver and sender should activate simultaneously the

connections with the proxy and JMS destination entry. If these two steps are

successfully achieved the bridge state become Active.

The bridge evolve to Inactive state when at least one connexion with the proxy or JMS

destination is lost or suspended.

The bridge interface offers the following operations: start_bridge, stop_bridge,

get_status and destroy.

The operation activates the two connections with the proxy and JMS destination entry.

connect_xxx operations class provided in CosNotifyChannelAdmin module are used to

establish connection with event channel proxy object. The JMS

javax.jms.Connection.start operation can be used to activate connexion with JMS

provider. The invocation of the start_bridgeoperation on bridge inactivated by the use of

stop_bridge operation resumes the connections with the proxy and JMS destination

entry. The resume_connection operations class provided in CosNotifyChannelAdmin

module and the javax.jms.Connection.start operation can be respectively used. When

3 A JMS destination entry object can be either a Message Producer or MessageConsumer.

Deleted: start

Deleted: stop

Deleted: start

Deleted: start_bridge

Inserted: start_bridge

Deleted: start

Deleted: stop

Deleted: connexions

12

the bridge invokes successfully connect_xxx or resume_connection and

javax.jms.Connection.start its state become Active.

Note – exception behavior of the Bridge Interface operations will be described in section 3

The stop_bridge operation stops the connections with the proxy and JMS destination

entry. The suspend_connection operations class provided in CosNotifyChannelAdmin

module and the JMS javax.jms.Connection.stop operation can be respectively used to

suspend the connection with event channel proxy object and the connexion with JMS

provider. When the connections with the proxy and JMS destination entry are

successfully suspended the bridge state becomes Inactive.

The get_status operation is intended to describe the status of end-to-end connection

stating from source to sink endpoints. To return up-to-date status, the bridge can use

the JMS exceptionListener interface to detect Connexion problems with JMS provider.

Sicne Notifi cation Service does not provide tools to get the connexion status of proxy,

the bridge implementation may use connect_structrured_xxx operations to deduce the

connection status. The use of this operations class is idempotent. When receiving

AlreadyConnected exception, the connection status is active. Otherwise, the status is

considered inactive.

The destroy operation destroys the bridge object, invalidating its object reference. To

liberate resources on the event channel and JMS sides the disconnect_xxx class

provided in CosNotifyChannelAdmin module and the javax.jms.Connection.close4

operations should be respectively invoked before destroying the bridge object.

Beside the configuration steps described above, the bridge perform data mapping from

structured event format to JMS message formats and vice versa. The bi-directional

mapping is described in section 2.4.

2.4 Message Mapping

The JMS specification defines five different messages that all derive common

functionality from the base Message interface. The Notification Service specification

defines three event types and associates them well defined translation rules making

the consumption of events produced in different formats possible.

The Notification Service specification made event grouping possible through structured

event sequences only. Event-grouping is crucial to improve interworking performance.

4 Noe that in JMS there is no need to close the sessions, producers, and consumers of a closed connection.

Deleted: stop

13

This makes structured events centric in the JMS –NS message mapping. This section

describes the mapping between structured events and the different JMS message

types, namely:

• TextMessage,

• StreamMessage,

• BytesMessage,

• MapMessage*,

• ObjectMessage*.

Figure 2-3 Structured event role in data mapping

A JMS message consists of a header, a set of properties and a body. The header and

properties are the same for all message types. The body part is different for each of the

five different JMS message types.

Structured Events provide a well-defined data structure which is comprised of two main

components: a header and a body. The header can be further decomposed into a fixed

portion and a variable portion.

The current version of the specification addresses bidirectional mapping without

information loss. Future version may be enhanced by customizable mapping

interfaces that discard irrelevant data for the application receiver and event consumer.

2.4.1 JMS Message to Event

This section describes the mapping of message sent by JMS client toward Notification

Service Consumer. The mapping of the JMS Message header and properties part is

independent from the message type. The body mapping depends on the message

types enumerated above.

JMS Header and properties mapping

When possible, the mapping from JMS to structured event should follow the general

naming conventions adopted by the Notification Service specification when translating

generic event (Any) or typed event types to structured event. Structured event fields

14

such as domain_name , type_name and event_name should be compliant with the

notation adopted in section 2.1.4 of the Notification Service specification.

• The domain_name data member should be set to empty string.

• The type_name data member should start with the “%” character and indicate

the JMS message source type, namely, the TextMessage , MapMessage,

StreamMessage, BytesMessage or ObjectMessage. For example, the

type_name data member would be set to the value “%TextMessage” if the JMS

source message type is textMessage.

• The semantics associated with event_name data member is used by

end-users only, it is not interpreted by any component Notification Service. This field

can be optionally set to the Topic or the queue name through which JMS message

was published or sent. The extra-information delivered within event_name field may

be used by a JMS-aware event consumer.

JMS Message Structure

User-defined
properties

JMSReplyTo

JMSDestination

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSMessageID

JMSTimestamp

JMSCorrelationID

JMSType

JMSRedelivered

JMS
metadata

JMSXUserID JMSXAppID

JMSXGroupID JMSXGroupSeq

Header

Standard
Properties

Body

Domain_type= “ “

type_name

event_name

Event Reliability short

Timeout TimeT

Priority

fd_name 1 fd_value 1

fd_name 2 fd_value 2

… …

fd_name n fd_value n

Remainder_of_body

Fixed
header

Variable
header

Filterable
Body

short

[Topic/Queue]

[Message type]

Name_prt Value_prt1 1

… …

Event Structure… …

JMS Message Structure

User-defined
properties

JMSReplyTo

JMSDestination

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSMessageID

JMSTimestamp

JMSCorrelationID

JMSType

JMSRedelivered

JMS
metadata

JMSXUserID JMSXAppIDJMSXUserID JMSXAppID

JMSXGroupID JMSXGroupSeq

Header

Standard
Properties

Body

Domain_type= “ “

type_name

event_name

Event Reliability short

Timeout TimeT

Priority

fd_name 1 fd_value 1

fd_name 2 fd_value 2

… …

fd_name n fd_value n

Remainder_of_body

Fixed
header

Variable
header

Filterable
Body

short

[Topic/Queue]

[Message type]

Name_prt Value_prt1 1

… …

Event Structure… …

Figure 2-4 JMS message to Structured Event mapping

The JMS Message header is made up by several fields for setting various Quality of

Service (QoS) s uch as JMSDeliveryMode , JMSExpiration and JMSPriority.

15

Those fields have well-defined meanings in the structured event and they must be

mapped as follow:

• JMSDeliveryMode maps to The EventReliability QoS in the variable

header of a structured event. It is set to Persistent when the delivery mode is

PERSISTENT. Otherwise, the EventReliability QoS is set to BestEffort.

• JMSExpiration maps to the Timeout in the variable header of a structured

event. JMS expiration time value is expressed in milliseconds. This value is converted

to units of 100 nanoseconds as this is the base unit of time in CORBA. Expired

messages are not visible to clients.

• JMSPriority maps to the JMS message priority. It is mapped to the

Priority QoS in the variable header of structured events. Priority delivery mode is

used to ensure that messages with higher priority are delivered before messages with

lower priority values.

The rest of the JMS header fields can’t be mapped directly to standard structured event

fields of the variable header portion; however those fields can be viewed as optional

information that may be useful for JMS -aware event consumer. For example, a

JMSreplyTo field with a valid value can be used by event consumer that would like to

react, after receiving the JMS message converted into a structured event, by producing

a new event which can be seen as reply message. The reply message will be sent

though channel linked up with the destination specified into the JMSreplyTo field. In

this case the JMSCorrelationID may also be reused by event consumer in the

reply message to allow the JMS sender to tie up with the initial message it sent.

To increase filtering capability on the event channel side, the JMSType ,

JMSMessageID , JMSTimestamp , JMSreplyTo , JMSCorrelationID ,

JMSDestination, JMSRedilivred fields are mapped, by default, to the filterable

date member of the structured event. Each of them is inserted using the name-value

pair, i.e using the PropertySeq data type defined in the CosNotificfation

module.

To decrease the structured event length and increase performance, JMS header fields

with nil values can be omitted during the mapping process.

The JMS property fields, prefixed by JMSX, are optional part of the JMS message

structure. Some of them are standard and well defined by JMS specification, as those

enumerated in the Figure 2-4, others are defined by JMS end-user. In the current

version of the specification, the default behavior is to map all JMSX fields. Future

version may restrict the mapping to JMSX fields that are relevant to the event

consumer. This will improve performance and mapping pertinence.

16

All JMSX Property values are java primitives data type, they can be boolean , byte ,

short , int, long, float , double , and String. They are all entered into the

filterable body of the structured event using the name-value pair, i.e using the

PropertySeq data type defined in the CosNotificfation module and they are

mapped using the standard Java to IDL mapping.

The order of JMS properties is not defined in JMS. The Notification-JMS specification

doesn’t mandate any particular order when implementing the mapping.

2.4.1.1 JMS message body mapping

It is expected that the text, map, and stream messages will be the three specific

message types intensively used in an environment that consists of both JMS and

non-JMS clients.

2.4.1.1.1 Text Message

A TextMessage provides a body, which is a Java String. The body is inserted into a

remainder_of_body of the structured event by simply inserting the string into the

Any.

2.4.1.1.2 Stream Message

A StreamMessage provides a body which contains a stream of Java primitive values.

The values on the stream stack are written onto the remainder_of_body of the

structured event using the AnySeq data type. The elements in this sequence are

mapped using the standard Java to IDL mapping.

2.4.1.1.3 Map Message

A MapMessage provides a body of name-value pairs where names are Strings, and

values are Java primitives. The body can be inserted in the remainder_of_body

field, of a structured event using the PropertySeq data type.

2.4.1.1.4 Bytes Message

A bytes message supports a body with un-interpret ed data. The message supports the

methods of the DataInputStream and DataOutputStream interfaces from the Java I/O

package. As the body is an array of bytes it is written to the remainder of the body field

of a structured event using an IDL octet sequence. The OctetSeq data type is defined

in the notification service IDL extension module.

17

2.4.1.1.5 Object Message

An object message provides a body that can contain any Java object that supports the

Serializable interface. This type of message is serialized onto a byte sequence and

written onto the any in the remainder of the body using the same OctetSeq data type

described above. On the receiver side the byte sequence is converted to an object

input stream where the object is read from.

2.4.2 Event to JMS Message

When a message is sent from a Notification Service event channel to JMS destination,

the construction of the JMS message is performed as follows:

1. When defined, the standard optional part of the event variable header is

mapped to corresponding fields in JMS header. If the event supplier does not

define those fields, then JMS header fields are populated using the default

values specified in the JMS specification.

2. The data in the event fixed header, the rest of the optional header fields as well

as the event filterable body are placed in the JMS properties fields. They will

be seen by the JMS receiver application as user-defined fields.

3. Meta data created by JMS -NS bridge is used to define complete JMS missing

fields such as JMSDestination or JMSMessageID .

4. The remainder_of_body section is mapped to the JMS message body

depending on the complexity of the data format wrapped in the Any.

Structured Event Header and filterable body mapping

When defined in structured event, the EventReliability, Timeout or Priority

fields are respectively mapped to JMSDelivery , JMSpriority and JMSTimetolive.

If EventReliabilty is not defined JMSDelivery is set to PERSISTENT. If the

Timeout is not defined JMSTimetolive to Unlimeted. If the Priority is not defined

the JMSpriority is set to 4.

The User-defined property fields are pair of name-value. The structured event fixed

header fields are mapped to the JMS message User-defined property fields as follow:

18

• The domain_type: A new property name labeled $domain_type is created.

It must obey the rules for a message selector identifier5 specified in Section 3.8.1.1

of JMS specification. The content of the domain_type field in the event is

converted to java String.

• The type_name: A new property name labeled $type_name is created. It

must obey the rules for a message selector identifier specified in Section 3.8.1.1 of

JMS specification. The content of the type_name field in the event is converted

to java String.

• The event_name: A new property name labeled $event_name is created. It

must obey the rules for a message selector identifier specified in Section 3.8.1.1 of

JMS specification. The content of the event_name field in the event is

converted to java String.

Inputs of JMSMessageID, JMSTimestamp, JMSDestination and JMSType fields

are fulfilled by JMS-NS bridge.

• JMSMessageID is a String value which should be a unique key, prefixed by

‘ID’. The exact scope of uniqueness is provider defined.

• JMSTimestamp field contains the time a message was handed off to JMS to be

sent. It is in the format of a normal Java millis time value.

• JMSDestination contains the topic or the Queue name to which the message

is being sent.

• JMSType is a String value that should be set to ‘Structured Event’.

Complete specification those header fields are defined in the JMS specification.

5 An identifier is an unlimited-length character sequence that must begin with a Java

identifier start character; all following characters must be Java identifier part characters. An

identifier start character is any character for which the method

Character.isJavaIdentifierStart returns true. This includes‘_’ and ‘$’ .

19

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSCorrelationID=“ “

Header

Body

Domain_type

type_name

event_name

Event Reliabilityshort

TimeoutTimeT

Priority

fd_name 1fd_value 1

……

fd_name mfd_value m

Remainder_of_body

Fixed
header

Variable
header

Filterable
Body

short

Name_prt Value_prt

11

……

Event Structure

User-defined
properties

Name_prt Value_prt

JMSMessageID

JMSType=“Structured Event”

JMSDestination

JMSTimestamp

JMSReplyTo=nil

JMSRedelivered=0

[Topic/Queue]

Generated by
NS-JMS
Bridge

JMS Message Structure

n+m

ohf_name
1

ohf_value1

……

ohf_name nnohf_name n+m

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSCorrelationID=“ “

Header

Body

Domain_type

type_name

event_name

Event Reliabilityshort

TimeoutTimeT

Priority

fd_name 1fd_value 1

……

fd_name mfd_value m

Remainder_of_body

Fixed
header

Variable
header

Filterable
Body

short

Name_prt Value_prt

11

……

Event Structure

User-defined
properties

Name_prt Value_prt

JMSMessageID

JMSType=“Structured Event”

JMSDestination

JMSTimestamp

JMSReplyTo=nil

JMSRedelivered=0

[Topic/Queue]

Generated by
NS-JMS
Bridge

JMS Message Structure

n+m

ohf_name
1

ohf_value1

……

ohf_name nnohf_name n+m

Figure 2-5 Structured Event to JMS message mapping

For each optional header (ohf_*) or filterable data (fd_*) field a new property name

labeled $ohf_* or $fd_* is created. It must obey the rules for a message selector

identifier specified in Section 3.8.1.1 of JMS specification. The content of the ohf_* or

fd_* field is converted to java data type primitives.

If the optional header or filterable date field has the struct IDL type then multiple JMS

properties are created, one for each primitive element of the complex type. The

structure is linearized as follow:

• The new $ohf_* or $fd_* field name is concatenated with the structure and the

member of the structure names. The structure member operator ‘.’ is used to

delimitate eac h name. This process is repeated if the structure contains

nested data structures meaning that struct types are expanded if and only if

the structure contains only primitive types.

• The content of the linearized field is converted to java data type primitives.

For example if the structured event contains the pair <name/value>= <Fd_name1,

CORBA::Any A>, and the A value wraps the structure named Alarm { string Al_name;

int Severity } then this field will be transformed in to two JMS user defined properties

(fields) : <$Fd_name1.Al_name, string> and <$Fd-name1.Serverity, integer>.

20

If the optional header or filterable date field has other complex data types it is mapped

to bytes stream, the JMS client that would receive a bytes stream have to use the

appropriate CORBA Helper classes to unmarshal the user data.

Structured Event Remainder of body mapping

The mapping of structured event body to given JMS message type body depends on

the complexity of the data wrapped into remainder_of_body field.

When remainder_of_body typed Any involves:

• IDL basic type elements, each element maps to a java primitive type using

standard IDL to java mapping. The set of elements obtained are enterer in JMS

StreamMessage body.

• String type element only, it maps to java string type and is placed in JMS

message body.

• Sequence of Properties (PropertySeq), it maps to a body of name-value

where names are strings and values are java primitives.

• Octet Sequence or other type such as user constructed types, it maps to a

body of BytesMessage . To reconstruct the IDL type, the JMS client that would

receive a BytesMessage have to use the appropriate CORBA Helper class.

21

2.5 QoS Properties Mapping

The Notification Service and the JMS have each specific QoS properties. In the

Notification Service, QoS properties are specified in the header of Structured Events,

Proxy, Admin and Channel object. In the JMS, QoS Properties are specified in the

header of JMS messages and some objects in JMS Provider. This section describes

the bi-directional mapping of QoS properties between the Notification Service and the

JMS.

2.5.1 Event Reliability

The Notification Service’s QoS property EventReliability is mapped to JMS QoS

property JMSDeliveryMode . Each value of the properties are mapped as follows:

EventReliability JMSDeliveryMode

BestEffort NON_PERSISTENT
Persistent PERSISTENT

Table 2-2 Event Reliability

2.5.2 Connection Reliability

The Notification Service’s QoS property ConnectionReliability is mapped to

QueueReceiver object in the JMS Point-to-Point model or TopicSubscriber

object in the JMS Publish/Subscribe model. Each value of the property is mapped as

follows:

ConnectionReliability JMS Point-to-Point model JMS Publish/Subscribe
model

BestEffort [no supported] TopicSubscriber
Persistent QueueReceiver Durable TopicSubscriber

Table 2-3 Connection Reliability mapping

The JMS Publish/Subscribe model has both durable and not durable subscriber

objects. Each subscriber is mapped to the corresponding value of

ConnectionReliability. The JMS Point-to-point model has only the durable

receiver object QueueReceiver . It is mapped to the Persistent value of

ConnectionReliability. Since the JMS Point-to-point model does not have not

durable subscriber objects, BestEffort of ConnectionReliability can’t be

used in interworking with JMS Point-to-Point model.

22

2.5.3 Delivery Reliability

The Notification Service’s QoS property DeliveryReliability is an additional

property of this specification (see Section 2.6.6, “QoS Properties for Reliable Event

Delivery”). This QoS property is mapped to JMS reliable messaging functions. Each

value of the property is mapped as follows:

DeliveryReliability JMS reliable messaging functions
None [no use of any reliable messaging functions]
Acknowledgment Message Acknowledgment

Table 2-4 Delivery Reliability mapping

2.5.4 Priority

The Notification Service’s QoS property Priority is mapped to the JMS QoS

property JMSPriority. The value of the Notification Service’s Priority is

represented by short integer, where –32,767 is the lowest priority and 32,767 the

highest. The JMSPriority is represented by ten values, where 0 is the lowest

priority and 9 the highest. Since the range of the value is very different between

Notification Service and JMS, this specification defines following priority mapping as

default mapping which must be supported. Other mappings may be supported in

addition to the default mapping if necessary.

When the value of JMSPriority is converted to the value of Notification Service’s

Priority , same value on JMSPriority is used as the value of Notification

Service’s Priority as follows:

JMSPriority Priority
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Table 2-5, Priority mapping from JMS to Notification

When the value of Notification Service’s Priority is converted to the value of

JMSPriority, some values on Notification Service’s Priority are integrated with

value 0 or 9 on JMSPriority as follows:

23

Priority JMSPriority
-32,767 ... 0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 ... 32,767 9

Table 2-6 Priority mapping from Notification to JMS

2.5.5 Expiry times

The Notification Service’s QoS property StopTime is mapped to the JMS QoS

property Timeout.

2.5.6 Order Policy

The JMS has only one order policy: messages must be received in the order they were

sent. However messages of higher priority may jump lower priority messages. Thus

JMS’s order policy can be mapped to one of two values in the Notification Service’s

QoS property OrderPolicy as follows:

OrderPolicy JMS’s order policy
AnyOrder [not supported]
FifoOrder
PriorityOrder

Supported

DeadlineOrder [not supported]

Table 2-7 Priority mapping

The selection of the mapping depends on implementation or system configuration.

However when the PriorityOrder value is selected, the order of same priority

events must be preserved.

Even if well-defined translation is executed on event channel between some Structured

Events on a logical connection and an event batch (sequece of Structured Event),

event order must be preserved for all events in FifoOrder value or for same priority

events in PriorityOrder value Figure 2-6and Figure2-7. The first event on the

logical connection is translated from/to the top of the event batch, and the last event on

the logical connection is translated from/to the bottom of the event batch.

24

Event
Channel

No.1No.2No.3No.4

No.1
No.2
No.3
No.4

first
event

last
event

top
event

bottom
event

events on a logical connection

an event batch

Figure 2-6 Preservation of event order in translation from Structured Events to event batch

Event
Channel

No.1No.2No.3No.4

No.1
No.2

No.3

No.4

first
event

last
event

top
event

bottom
event

events on a logical connection

an event batch

Figure2-7 Preservation of event order in translation from event batch to Structured Events

25

2.6 Acknowledgment Mapping

The JMS QoS API has two kinds of function for reliable messaging on the JMS

MessageConsumer side:

• one using transactions, and;

• the other using Message Acknowledgment.

The use of acknowledgments or transactions provide different form of reliability. These

two forms represent different use models: The use of acknowledgments provides a

model where each message can be guaranteed to be delivered. If the message is not

delivered, the message queue or topic can take steps to redeliver it. While this could

be done within a transaction, the transactional model is fairly heavyweight for a single

event, such as assuring the delivery of a single message. However, messages can

also be part of a more complex set of actions, and in that context it makes a great deal

of sense to include a message in a distributed transaction. For example, there may be

a sequence of events where upon the receipt of a message, a database must be

updated, and then a message sent to trigger some additional processing. The

application designer might choose to bracket these actions within a transaction, so

that if the message is not successfully delivered, all of the additional actions can be

rolled back. If a message is part of a transaction, then the acknowledgment semantics

are not used. The two models exist because there are a range of possible applications,

not all of which would require transactions.

This section describes the mapping bet ween the JMS Message Acknowledgment and

the Notification Service.

2.6.1 Overview of Reliable Event Delivery with Event Acknowledgment

According to the JMS specification, reliable messaging with JMS Message

Acknowledgment shall satisfy the following conditions:

• No lost messages

• No duplicate delivery of messages

• Preserve message order

However the Notification Service lacks the required acknowledgment functions to

satisfy these conditions. This specification adds the required acknowledgment

functions, called Event Acknowledgment, to the Notification Service so that the JMS

Message Acknowledgment can be mapped to the Notification Service.

26

To realize the Event Acknowledgment satisfying the conditions above, this

specification defines DeliveryReliability QoS property, AckNotify interface,

SequenceNumber header field and Reliable Delivery Sequence.

• DeliveryReliability QoS property specifies what reliable event delivery

mechanism is used. When the value Acknowledgment is specified, the Event

Acknowledgment is applied to event delivery.

• AckNotify interface defines an acknowledge operation. It is inherited by

StructuredPushSupplier , StructuredPullSupplier,

SequencePushSupplier and SequencePullSupplier interface to add the

acknowledge operation to their interfaces.

• SequenceNumber header field indicates a serial number on each event. It is used

to check event order and duplication of same event.

• Reliable Delivery Sequence defines a sequence of reliable event delivery with the

acknowledge operation and the SequenceNumber header field. The Reliable

Delivery Sequence is applied to event delivery between supplier (or proxy

supplier) and consumer (or proxy consumer) when the value of

DeliveryReliability property is Acknowledgment.

2.6.1.1 Event Acknowledgment on Push Model

Figure 2-8 shows an overview of reliable event delivery with Event Acknowledgment

using the push model.

1. Push-style supplier (or proxy supplier) adds SequenceNumber header field

to an event.

2. Supplier sends the event to push-style consumer (or proxy consumer)

invoking push operation.

3. Consumer checks duplication of the received event using the

SequenceNumber .

4. Consumer holds the event in order specified by the SequenceNumber.

5. Consumer invokes acknowledge operation

6. Supplier removes the sent and acknowledged event.

27

Figure 2-8 Event Acknowledgment on push model

2.6.1.2 Event Acknowledgment on Pull Model

Figure 2-9 shows an overview of the reliable event delivery with Event Acknowledgment

using the pull model.

1. Pull-style consumer (or proxy consumer) invokes pull operation of pull-style

supplier (or proxy supplier).

2. Supplier adds SequenceNumber header field to an event.

3. Supplier sends the event to consumer as return value of invoked pull

operation.

4. Consumer checks duplication of the received event using the

SequenceNumber .

5. Consumer holds the event in order specified by the SequenceNumber.

6. Consumer invokes acknowledge operation.

7. Supplier removes the sent and acknowledged event.

(P r o x y)P u l l S u p p l i e r (P r o x y) P u l l C o n s u m e r

E v e n t E v e n t

(3) r e t u r n o f p u l l ()
w i t h
S e q u e n c e N u m b e r

(6) a c k n o w l e d g e ()

(4) c h e c k d u p l i c a t i o n
w i t h
S e q u e n c e N u m b e r

(P r o x y)P u l l S u p p l i e r I n t e r f a c e
i n h e r i t i n g N o t i f y A c k i n t e r f a c e

(2) a d d
S e q u e n c e
N u m b e r

(7) r e m o v e

(1) p u l l ()

(5) h o l d i n o r d e r
s p e c i f i e d b y
S e q u e n c e N u m b e r

(Proxy)PushSupplier (Proxy)PushConsumer

Event Event

(2) push() with
SequenceNumber

(5) acknowledge()

(3) check duplication
with
SequenceNumber

(4) hold in order
specified by
Sequence Number

(Proxy)PushConsumer Interface

(Proxy)PushSupplier Interface
inheriting NotifyAck interface

(1) add
SequenceNumber

(6) remove

28

Figure 2-9 Event Acknowledgment on push model

2.6.2 Scope of Event Acknowledgment

Event Acknowledgment supports delivery of Structured Events and delivery of event

batches (sequence of Structured Events) for both the push model and the pull model.

Note: The notification channel mechanisms for translation of Typed events and untyped
events (i.e., syntax Any) from a proxy consumer to a proxy supplier, can be used to convert
such notifications to structured event syntax. Thus, it is sufficient to specify event
acknowledgment extensions only for Structured events and sequence of structured events.

Event Acknowledgment can be applied to any logical connection between a supplier

(or proxy supplier) and a consumer (or proxy consumer), even if the supplier or the

consumer is a Bridge for interworking with JMS (see Figure 2-10).

Applying Event Acknowledgment to all the logical connections at same time on an

event domain can realize end-to-end reliability between supplier and consumer. Each

Event Acknowledgment on a logical connection is managed independently. Figure

2-10 shows an example of Reliable Delivery Sequence with end-to-end reliability on an

event domain using the push model. Since the Reliable Delivery Sequence on the

logical connection 1 is managed independently from the next logical connection 2,

when “(1) push” operation is invoked, the event channel A may invoke “(2)

acknowledge” operation soon thereafter. The event channel A is not required to invoke

“(3) push” operation or wait for “(4) acknowledge” operation on the next logical

connection before invocation of “(2) acknowledge”.

Figure 2-10 Event Acknowledgment on event domain in push model

Note: When the Event Acknowledgment is used on a logical connection in an event domain,
the supplier (not proxy supplier) can create and add SequenceNumber header field (see
Section 2.6.3, “Sequence Number Header Field ”) to events for improvement of performance.
Because insertion of SequenceNumber header field by proxy supplier would require a lot of
overhead.

Event
Channel

A

proxy
consumer

proxy
supplier

consumer or
Bridge as consumer

Event
Channel

B

proxy
consumer

proxy
supplier

Reliable event delivery with Event
Acknowledgment can be applied

supplier or
Bridge as supplier

(1)
push

(2)
ack

(3)
push

(4)
ack

(5)
push

(6)
ack

logical connection 1 logical connection 2 logical connection 3

29

2.6.3 Sequence Number Header Field

The following definition is added to the CosNotifycation module for

SequenceNumber header field:

const string SequenceNumber = “SequenceNumber”;
// SequenceNumber takes a value of type long.

The SequenceNumber header field is an event identifier defined as a standard

optional header field. The type of its associated value is long. When the Event

Acknowledgment is applied to event delivery, the supplier (or proxy supplier) adds the

header field to the variable header in the Structured Event before sending the event to

the consumer (or proxy consumer). In the case of delivery of an event batch, the

supplier adds the header field to only the first Structured Event in the sequence of

Structured Events. If the SequenceNumber header field was already added for

previous event delivery, the event channel overrides the SequenceNumber header

field with a new value. The consumer uses the SequenceNumber header field to:

• Detect and remove duplicate events

• Detect and correct invalid order of events

The SequenceNumber is an integer value which takes a value in the range 0..231-1. It

is created and managed per each logical connection between supplier and consumer.

In the first event or event batch within the logical connection, SequenceNumber takes

the value 0. It is incremented (ex. 0, 1, 2, ..) for each event (in the case of delivery of

Structured Event) or for each event batch (in the case of delivery of sequence of

Structured Events) sent by the supplier within the logical connection. The next value of

231-1 in the increment is 0. Only when the logical connection is disconnected explicitly

by invocation of disconnect operations, SequenceNumber for the logical

connection is reset to 0. Otherwise SequenceNumber is never reset.

Note – The associated value of the SequenceNumber header field takes a positive value or
0. However long type is applied to the value rather than unsigned long for natural
mapping wit h Java. It is a design policy of the Notification Service specification.

2.6.4 Notify Ack Interface

The JMS MessageConsumer can explicitly acknowledge receipt of messages in both

synchronous and asynchronous messaging using the acknowledge method of JMS

MessageObject. However the Notification Service lacks an operation which can be

mapped with the acknowledge method of the JMS MessageObject . This

specification defines an additional interface, AckNotify , which has an

30

acknowledge operation to be mapped with the acknowledge method of the JMS

MessageObject.

This specification maps JMS messages with Notification Service’s Structured Events.

The acknowledge operation is therefore added to the

StructuredPushSupplier , StructuredPullSupplier,

SequencePushSupplier , SequencePullSupplier and their proxy interfaces

through inheritance of the AckNotify interface.

The following types and interface are added to the CosNotifyComm module.

typedef sequence<long> SequenceNumbers;
interface NotifyAck {
 void acknowledge(SequenceNumbers sequence_numbers);
};

The StructuredPushSupplier , StructuredPullSupplier,

SequencePushSupplier and SequencePullSupplier interfaces in

CosNotifyComm module are changed (creating new versions) as follows, to inherit

the NotifyAck interface. By this change, the NotifyAck interface is also inherited

by the StructuredProxyPushSupplier , StructuredProxyPullSupplier ,

SequenceProxyPushSupplier and SequenceProxyPullSupplier interfaces

in CosNotifyChannelAdmin module.

interface StructuredPushSupplier : NotifySubscribe, NotifyAck {
 ...
};

interface StructuredPullSupplier : NotifySubscribe, NotifyAck {
 ...
};

interface SequencePushSupplier : NotifySubscribe, NotifyAck {
 ...
};

interface SequencePullSupplier : NotifySubscribe, NotifyAck {
 ...
};

2.6.4.1 Acknowledge

The acknowledge operation in the NotifyAck interface causes the supplier (or

proxy supplier) to acknowledge that the consumer (or proxy consumer) received the

events which the supplier sent previously. When the operation is invoked, the supplier

may remove sent events indicated by the SequenceNumbers input parameter, which

31

specifies values of the SequenceNumber header field in the received events by the

consumer.

A Consumer does not always need to invoke the acknowledge operation after each

invocation of push or pull operation. A Consumer may convey multiple

SequenceNumber values of received events to the supplier at once by one invocation

of acknowledge operation after some invocations of push or pull operations.

2.6.5 Reliable Delivery Sequence

To realize reliable event delivery with Event Acknowledgment, the Notification Service

supplier (or proxy supplier) and consumer (or proxy consumer) must support the

Reliable Delivery Sequence, which detects a lost event (or event batch) at system

failure or communication error and recovers it.

2.6.5.1 Reliable Delivery Sequence for Push Model

The Reliable Delivery Sequence using the push model consists of the following steps:

1. The supplier sends events to the consumer by invocations of the push

operation of the consumer.

2. The supplier detects possibility, in the invocations of push operation, that the

events were lost at system failure or communication error using exceptions or

timeout of acknowledgment. The timeout means that the supplier’s

acknowledge operation is not invoked after the invocations of push

operation for a time which is specified by QoS parameter RetryInterval .

If the supplier does not detect the possibility of lost events, it jumps to step

(4).

3. The supplier retries the invocations in the step (1) to re-send the events to

supplier.

When the invocations have failed again due to system failure or

communication error, the supplier repeats the same invocations until

succeeds in the invocations or the total number of retries specified by QoS

parameter Retries is satisfied. The interval between original invocations and

first retry, or between retries is specified by QoS parameter

RetryInterval.

4. The consumer checks the received events in duplication and order of event

using SequenceNumber header field.

If it is not received events previously, the consumer checks the order of the

events and stores them in persistent storage. If the order is invalid, the

32

consumer corrects the order at passing the events to next event delivery or

application.

If they are received events previously, the consumer ignores the events.

5. The consumer invokes acknowledge operation of the supplier to notify the

supplier of successful of the event delivery. The event channel removes the

events specified by the SequenceNumbers parameter of the acknowledge

operation from persistent storage. Even if the consumer detects possibility in

the invocations of acknowledge operation that the acknowledgment was

lost at system failure or communication error using exceptions, the consumer

does not need to retry the acknowledge operation in this step. Because if

the acknowledgment was lost, the supplier retries the push operation (see

step (2)). As the result, the consumer will execute this step again.

The retry count is managed per each logical connection. When invocation of

acknowledge operation is successful or the logical connection is disconnected

explicitly by invocation of disconnect operations, the retry count is reset to 0.

2.6.5.2 Reliable Delivery Sequence for Pull Model

The Reliable Delivery Sequence using the pull model consists of the following steps:

1. The consumer receives events from the supplier by invocations of the pull

operation of the supplier.

2. The consumer detects possibility, in the invocations of the pull operation,

that the events were lost at system failure or communication error using

exceptions.

If the supplier does not detect the possibility of lost events, it jumps to step

(4).

3. The consumer retries the invocations in the step (1) to re-receive the events

from the supplier.

When the invocations have failed again due to system failure or

communication error, the consumer repeats the same invocations until

succeeds in the invocations or the total number of retries specified by QoS

parameter Retries is satisfied. The interval between original invocations and

first retry, or between retries is specified by QoS parameter

RetryInterval.

4. The consumer checks the received events in duplication and order of event

using SequenceNumber header field.

If it has not received events previously, the consumer checks the order of the

33

events and stores them in persistent storage. If the order is invalid, the

consumer corrects the order at passing the events to next event delivery or

application.

If they are received events previously, the consumer ignores the events.

5. The consumer invokes acknowledge operation of the supplier to notify the

supplier of successful of the event delivery. The event channel removes the

events specified by the SequenceNumbers parameter of the acknowledge

operation from persistent storage.

6. If the consumer detects possibility in the invocations of acknowledge

operation that the acknowledgment was lost at system failure or

communication error using exceptions, the consumer retries the invocation.

When the invocation has failed again due to system failure or communication

error, the consumer repeats the same invocation until succeeds in the

invocation or the total number of retries specified by QoS parameter Retries

is satisfied. The count of retries for acknowledge operation is individual from

the count of retry for pull operation in step (3). The interval between original

invocation and first retry, or between retries is specified by the QoS parameter

RetryInterval.

The retry count is managed per each logical connection. When invocation of

acknowledge operation is successful or the logical connection is disconnected

explicitly by invocation of disconnect operations, the retry count is reset to 0.

2.6.5.3 Recovery in Failue of Retries

When the supplier (or proxy supplier) or the consumer (or proxy consumer) fails in all

the retries, the supplier or the consumer stops the event delivery on the logical

connection, and reports the unrecoverable failure to system administrators.

How to report and recover the failure is out of scope of the specification. The following

recovery schemes are shown for example:

The system administrators resolve the failure by hand and then:

1. Reset the retry count and restart the event delivery on the logical connection,

or

2. Invoke disconnect operation for the logical connection and then invoke

connect operation to restart the event delivery (the SequenceNumber and

retry count are reset by the disconnect operation).

34

In the first scheme, non duplication and event order semantics are preserved between

before the failure and after it. But in the second scheme, the semantics might be lost

between before the failure and after it.

2.6.6 QoS Properties for Reliable Event Delivery

The Event Acknowledgment uses three additional QoS properties,

DeliveryReliability, Retries and RetryInterval.

2.6.6.1 DeliveryReliability

The Notification Service has no way to specify what mechanism is used for reliable

event delivery. The specification defines additional QoS property

DeliveryReliability to provide this way. Following definition is added to

CosNotifycation module to define this QoS property.

const string DeliveryReliability = “DeliveryReliability”
const short None = 0;
const short Acknowledgment = 1;

The QoS property specifies a mechanism used by a given supplier (or proxy supplier)

and consumer (or proxy consumer) to realize reliable event delivery. Constant values to

represent the following setting are defined:

• None – Any reliable delivery mechanism is not applied to event delivery

• Acknowledgment – The Event Acknowledgment described in the specification is

applied to event delivery

Table 2-8 shows possible combinations of related QoS properties when the

DeliveryReliability peroperty is set to Acknowledgment .

 Event
Reliability

Connection
Reliability

Delivery
Reliability

Description

combination 1 BestEffort BestEffort Acknowledgment

combination 2 BestEffort Persistent Acknowledgment

Implementations may support these
combinations. But they can’t realize
complete reliability.

combination 3 Persistent BestEffort ----

This combination has no meaning and
need not be supported (according to
the Notificaition Service
specification).

combination 4 Persistent Persistent Acknowledgment Implementations must support this
combination for complete reliability.

Table 2-8 Combination of related properties for Event Acknowledgment

35

2.6.6.2 Retries

The following definition is added to CosNotifycation module for Retries QoS

property:

const string Retries = “Retries”
// Retries takes on a vlaue of type long

The QoS property Retries specifies minimum number of retries in the Reliable

Delivery Sequence. The type of associated value is long.

2.6.6.3 RetryInterval

The following definition is added to CosNotifycation module for RetryInterval

QoS property:

const string RetryInterval = “RetryInterval”
// RetryInterval takes on a vlaue of TimeBase::TimeT

The QoS property RetryInterval specifies interval between original invocation and

first retry or between retries. The type of associated value is TimeBase::TimeT .

2.6.6.4 Supported level of the QoS Properties

Supported level of the QoS property is described in following table.

Property Per-Message Per-Proxy Per-Admin Per-Channel
DeliveryReliability X X X
Retries X X X
RetryInterval X X X

Table 2-9 Levels at which setting the QoS properties for Reliable Event Delivery is supported

The admin level setting overrides the channel level setting, and proxy level setting

overrides the admin level or channel level setting. Note that their properties have no

meaning if set on a per-message basis.

2.6.7 Mapping between Event Acknowledgment and JMS Message

Acknowledgment

The JMS Message Acknowledgment is mapped to the Notification Service’s Event

Acknowledgment. On one hand the JMS MessageConsumer has sending functions

of acknowledgment, on the other hand the JMS MessageProducer does not have

received functions of acknowledgment. Thus the acknowledgment functions between

JMS and Notification Service is mapped on only consumer side Bridge.

36

The JMS MessageConsumer has two kinds of message delivery mode:

asynchronous delivery with onMessage method and synchronous delivery with

receive or receiveNoWait method. The asynchronous delivery is mapped to the

Notification Service’s push model as follows:

push model
(XXXXXX: Structured or Sequence)

JMS asynchronous delivery

push operation
in XXXXXPushConsumer interface

onMessage method
without Message Acknowledgment
onMessage method
with DUPS_OK_ACKNOWLEDGE

push operation
in XXXXXPushConsumer interface and
acknowledge operation
in XXXXXProxyPushSupplier
interface

onMessage method
with AUTO_ACKNOWLEDGE

push operation
in StructuredPushConsumer interface and
acknowledge operation
in StructuredProxyPushSupplier
interface

onMessage method and
acknowledge method
of CLIENT_ACKNOWLEDGE

Table 2-10 Asynchronous delivery mapping

Bridge

push()

acknowledge()

onMessage()
acknowledge function
(DUPS_OK_ACK
or AUTO_ACK) JMS Message

acknowledge()
(CLIENT_ACK)

proxy supplier proxy consumer Message Consumer JMS application

Figure 2-11 Asynchronous delivery mapping

The synchronous delivery is mapped to the Notification Service’s pull model as follows:

waiting
policy

pull model
(XXXXXX: Structured or Sequence)

JMS synchronous delivery

pull operation
in XXXXXProxyPullSupplier
interface

receive method
without Message Acknowledgment

receive method
with DUPS_OK_ACKNOWLEDGE

pull and acknowledge operations
in XXXXXProxyPullSupplier
interface receive method

with AUTO_ACKNOWLEDGE

waiting
for
message

pull and acknowledge operations
in StructuredProxyPullSupplier
interface

receive method and
acknowledge method
of CLIENT_ACKNOWLEDGE

37

try_pull operation
in XXXXXProxyPullSupplier
interface

receiveNoWait method
without Message Acknowledgment

receiveNoWait method
with DUPS_OK_ACKNOWLEDGE

try_pull and acknowledge operations
in XXXXXProxyPullSupplier
interface receiv eNoWait method

with AUTO_ACKNOWLEDGE

no
waiting

try_pull and acknowledge operations
in StructuredProxyPullSupplier
interface

receiveNoWait method and
acknowledge method
of CLIENT_ACKNOWLEDGE

Table 2-11, Synchronous delivery mapping

Bridge

proxy supplier proxy consumer Message Consumer JMS application

receive() or
receiveNoWait()

pull() or
try_pull ()

acknowledge()

acknowledge function
(DUPS_OK_ACK
or AUTO_ACK) JMS Message

acknowledge()
(CLIENT_ACK)

Figure 2-12 Synchronous delivery mapping

When the JMS MessageConsumer works with DUPS_OK_ACKNOWLEDGE or

AUTO_ACKNOWLEDGE mode, the Bridge as Notification Service consumer sets the

value of SequenceNumber header field of received event (or event batch) to the

SequenceNumbers input parameter and invokes acknowledge operation whenever

an event is received. When DUPS_OK_ACKNOWLEDGE is specified, the Bridge may

omit the check of duplicated events.

When the JMS MessageConsumer works with CLIENT_ACKNOWLEDGE mode, the

Bridge as Notification Service consumer sets one or more values of

SequenceNumber header field of received events (or event batchs) to the

SequenceNumbers input parameter and invokes acknowledge operation only when

the JMS application calls the acknowledge method of the JMS MessageObject .

When Notification Service’s Event Acknowledgment is applied for mapping of JMS

Message Acknowledgment, following conditions must also be satisfi ed to apply

combination 4 of the related QoS properteis (see “2.6.6.1 DeliveryReliability”):

• The EventReliability QoS property is set to Persistent, and

• The ConnectionReliability QoS property is set to Persistent.

Note – When the Notification Service push model is mapped with the JMS
DUPS_OK_ACKNOWLEDGE or AUTO_ACKNOWLEDGE mode, invoking acknowledge

38

operation is actually not needed. Because the supplier can know that sent event reached the
consumer by the end of push operation. But the specification forces consumer to invoke
acknowledge operation to realize consistent design of operations among mapping with
DUPS_OK_ACKNOWLEDGE, AUTO_ACKNOWLEDGE and CLIENT_ACKNOWLEDGE mode,
and consistent design of operations among push and pull model.

2.7 Transactional Support

2.7.1 Asynchronous Transactional Model

To maintain the transaction semantic from a Notification Service client to a JMS client,

at least three different transactions are needed:

1. One transaction (T1) that involves a notification client, its transactional

resources (e.g a database) and the notification service.

2. One transaction (T2) that involves the Notification Service , the bridge and the

JMS implementation. This transaction will be named Routing transaction.

3. One transaction (T3) that involves a JMS client, its transactional resources

(e.g a database) and the JMS implementation.

These transactions are tied by precedence rules:

When Sending an event from an event supplier to a JMS consumer the precedence

rules imply that :

• The transaction T3 will start only and only if T2 commits,

• T2 will start only and only if T1 commits.

• Each time one of these transactions commits the data sent in its scope is

moved toward its next destination.

• If one of those transactions rolls back, the data sent in its scope will be put

back into its initial destination. Subsequent trials will take place to send the

data to its next destination later.

These rules imply that once data is sent from the supplier, it will be conveyed to its final

destination that is the consumer, guaranteeing the transaction semantic from

end-to-end.

When Sending a JMS message from a JMS sender (or publisher) to an event

consumer the precedence rules are reversed, meaning that T1 will not take place only

and only if T2 commits and T2 will not take place only and only if T3 commits.

39

Although the usage of end-to-end transaction semantic is recommended this

specification does not mandate it. This specification covers the routing transaction (T2)

only which implies that a notification service client can send or receive events in a

non-transactional context, likewise the JMS client can send or receive JMS messages

in a non-transactional context, but the data sent between notification service and JMS

may be sent in the routing transaction context.

The rational behind the use of the routing transaction without necessarily using

transactions at the Notification Service and JMS client sides is that the Notification

Service to JMS communication portion is hidden and transparent to the application

client developers preventing them from performing any recovery action if a failure, that

will lead to data loss, occurs.

Figure 2-13 Routing Transaction Scope

To guarantee the ACID transactional properties of the Routing Transaction it is

expected that the notification service and the JMS implementation rely on a

transactional persistent support.

Applying end-to-end transaction semantic and using transactional persistent support

in an effective way will guarantee the exactly-once delivery QoS.

The Figure 2-13 denotes the Routing transaction scope. This transaction involves the

bridge, the Notification Service, the JMS service provider and the Persistent Supports

used by them. All those components should be coordinated by a single root

coordinator which is hosted by a Transaction Service.

It is also expected that the interposition schema is applied between OTS (Object

Transaction Service) on the CORBA side and JTS (Java Transaction Service) on the

Java side. The interoperability between OTS and JTS is guaranteed by the fact that JTS

is mapped from OTS and its usage of IIOP as an underlying transport protocol to

propagate transaction context between OTS and JTS.

Both JMS and Notification specifications provide a model that outl ines how a

messaging system should behave in a transactional environment. The transactional

roles of the JMS, the Bridge and the Notification Service are driven by the following

considerations:

Notification
Service JMS

Bridge

Persistent
support

Supplier Consumer

Persistent
support

Routing
Transaction

Notification
Service JMS

Bridge

Persistent
support

Supplier Consumer

Persistent
support

Routing
Transaction

40

• The Notification Service specification allows a channel and its related proxy

objects to initiate a transaction and assumes the transaction client role.

• The Notification Service specification allows a channel and its related proxy queue

objects to assume the Resource object role.

• The JMS service provider doesn’t support the transactional client role.

• The Bridge should be as light as possible, meaning that it should not be assigned

complex transactional behaviors. This assertion will promote the bridge adoption

by the industry.

2.7.2 Supported configurations

By combining the communication consistency checking defined in Table 2-1and the

state of the art of the transactional role of JMS and Notification, the only case where

events can be sent from Notification service to JMS in transaction scope is the case

where the Channel pushes the data to the bridge and the bridge pushes it to JMS.

Likewise, the only case where data can be sent from JMS to Notification service in

transaction scope is the case where the Channel pulls data from the bridge that will

synchronously pull it from JMS.

In both cases the Notification Service assume the Routing Transaction client role.

The Figure 2-14 summarizes the supported transactional configurations. The

Transactional Roles of different components are detailed in the next sections.

Figure 2-14 Supported transactional configuration

2.7.3 Notification Service Transactional Role

When events are sent in the routing transaction scope, the Notification Servi ce

assumes always the transaction client and recoverable server roles, and as such the

UserTransaction

Notification
Service JMS

Bridge

Routing
Transaction

pushpush

Data flow

Notification
Service

JMS
Bridge

Routing

pullpull

Data flow

Notification
Service JMS

Bridge

Routing
Transaction

pushpush
Notification

Service
JMS

Bridge

Transaction

pullpull

OTS

Current
Coordinator

Resource

JTS

XAResource

UserTransaction

OTS

Current
Coordinator

Resource

JTS

XAResource

UserTransaction

Notification
Service JMS

Bridge

Routing
Transaction

pushpush

Data flow

Notification
Service

JMS
Bridge

Routing

pullpull

Data flow

Notification
Service JMS

Bridge

Routing
Transaction

pushpush
Notification

Service
JMS

Bridge

Transaction

pullpull

OTS

Current
Coordinator

Resource

JTSJTS

XAResource

UserTransaction

OTS

Current
Coordinator

Resource

JTSJTS

XAResource

41

Notification Service: Starts a transaction may use the OTS Current interface; Enlist

a Resource object that wraps events queues using the OTS Coordinator interface.

The notification service may also use direct transactional context management, by

using the OTS Control interface, to manage the routing transaction.

The Notification Service queue managers participate into the two-phase commit

completion and the recovery protocols by implementing the Resource Object interface

and the transactional recovery protocol as it is specified in the OTS specification. The

behavior of the Notification Service Resource Objects depends on whether the

Notification Service is the source or the sink of the data.

2.7.3.1 Data Flowing from Notification Service to JMS

When the Notification Service sends one or several events in to the routing transaction

scope, the OTS transaction identifier is propagated implicitly to JTS in the Propagation

context.

If the events are sent successfully the Notification Service asks the Transaction

Service to commit the routing transaction. When the root transactional coordinator

decides definitively to commit the routing transaction the events associated to it are

removed from Notification Service events queue.

If the events were not correctly sent or if the root transactional coordinator rolls back

the routing transaction for any other reason, the events sequences associated with it

will remain in events queue, these events will be sent later when the notification service

will start a new transaction.

2.7.3.2 Data flowing from JMS to Notification Service

When the Notification Service receives one or several events in to the routing

transaction scope, the OTS transaction identifier is propagated implicitly to JTS in the

Propagation context.

If all the events are received and stored into the transactional persistent support

successfully the Notification Service asks the Transaction Service to commits the

routing transaction. When the root transactional coordinator decides definitively to

commit the routing transaction the events associated to it are durably added in to the

Notification Service events queue.

If the events were not correctly received or if the root transactional coordinator rolls

back the routing transaction for any other reason, the events that are potentially

received in its scope will be deleted from the events queue.

42

2.7.4 Bridge Transactional Roles

In order to keep the bridge simple, one design principle was to forbid attributing to it the

transaction client role. Furthermore, this specification does not define any recoverable

state and does not implement any transactional change at the Bridge level.

The bridge does not participate to the transaction completion protocol, but it can force

the transaction roll back. A typical case is when the bridge is unable to carry the data

to the JMS or to the Notification Service. To rollback the transaction the bridge may

use either the JTA/JTS or OTS interfaces. Therefore, the bridge is assuming the

transactional object role.

2.7.5 JMS service provider Transactional Role

The JMS specification does not attribute any transaction client role, meaning that the

JMS service provider is not allowed to initiate or start any transaction.

The JMS specification assigns to JMS a Resource Manager role, meaning that it can

integrate the sphere of control of the routing transaction by enlisting its transactional

queue manager using the javax.transaction.Transaction interface and

implements the transactional semantic on the message queues. The JMS queue

managers participate into the two-phase commit completion and the recovery

protocols by implementing the javax.transaction.xa.XAResource,

javax.jms.XAConnection and the javax.jms.XASession interfaces and the

transactional recovery behavior as it is specified in the JTA specification .

The behavior of JMS XAResource objects depends on whether the JMS Service is the

source or the sink of the data.

2.7.5.1 Data Flowing from Notification Service to JMS

Due to the considerations described in section 2.7.2 only the notification service is the

component that is allowed to initiate routing transactions. When the Notification

Service sends successfully events that are translated to messages to JMS and

commits the routing transaction all the messages are durably stored in the JMS

message queues and the transactional persistent support.

If the messages were not correctly sent or if the root transactional coordinator rolls

back the routing transact ion for any other reason the messages are potentially sent in

the routing transaction scope will be removed from the JMS message queue and the

transactional persistent support. The messages will be received later when the

notification service will start a new transaction.

43

2.7.5.2 Data Flowing from JMS to Notification Service

When the bridge pulls JMS in to the scope of the routing transaction the OTS

transaction identifier is propagated implicitly to JTS in the Propagation context. The

propagation context will be in turn propagated to the JMS XAResource Object that

encapsulates the message queues.

If the JMS returns successfully the messages in to the routing transaction scope and

if the notification service receives them successfully the Notification Service asks the

Transaction Service to commits the routing transaction. When the root transactional

coordinator decides definitively to commit the routing transaction the events

associated to the routing transactions are durably removed from the JMS message

queue.

If the translated messages to events were not correctly received into the notification

service or if the root transactional coordinator rolls back the routing transaction for any

other reason, the messages that are potentially sent in the routing transaction scope

will remain in the JMS message queue.

2.7.6 Bridge Transactional Monitoring

2.7.6.1 Notification Service QoS and Admin Property Extensions

The notification service specification status that in order to support transactional event

transmission, an implementation of the Notification Service should support

implementations of the various proxy interfaces that are POA objects that support

TransactionPolicy. Unfortunately the specification was not precise enough to define

the way an application program will dynamically control the transactionality of its proxy

in the notification service. Furthermore, the specification did not offer to the developer

the way to specify the number of events that are sent or retrieved by the event channel

in the scope of a transaction. To make up for those gaps we propose to extend the

Notification Service quality of services and administration properties Framework by a

new QoS and three administrative properties.

Fortunately, the Notification Service QoS and Admin frameworks are flexible enough to

add new QoS and AdminProperty values without changing the Notification Service

interfaces. Therefore the new QoS and AdminProprerties should be seen as an

extension rather then a modification of the Notification Service Interfaces. These new

QoS and AdminProprerties are:

• EnableTransaction QoS is a boolean that enables the notification

service client to activate or deactivate the support of the transaction at

44

Notification Service object levels. When this QoS is enabled and applied on

the ProxyPushSupplier , ProxyPullConsumer,

StructuredProxyPushSupplier ,

StructuredProxyPullConsumer and TypedProxyPushSupplier ,

TypedProxyPullConsumer6 levels it will allow the later to behave as a

transaction client. When this QoS is disabled and applied on those various

types of proxy their transactional client behavior is disabled. This is their

default behavior. When the EnableTransaction QoS is enabled at the

ProxyPushConsumer, ProxyPullSupplier ,

StructuredProxyPushConsumer, StructuredProxyPullSupplier

TypedProxyPushConsumer6, and TypedProxyPullSupplier6, the

proxies’ implementations will set their TransctionalPolicy to

Require_shared. By default this QoS is disabled, meaning that for the

ProxyPushConsumer various types and the ProxyPullSupplier

various types the proxies’ POAs TranactionalPolicy attributes are set to

Allows_none.

If this QoS is applied at the SupplierAdmin , ConsumerAdmin,

TypedSupplierAdmin6 or TypedConsumerAdmin6 levels each of their

proxy child will enable individually this QoS at their level according to their

types. If this QoS is applied at the channel, respectively TypedChannel6 level

all the SupplierAdmin and the ConsumerAdmin, respectively, all the

TypedSupplierAdmin and the TypedConsumerAdmin objects will

enable this QoS, subsequently all the proxy objects apply it individually.

Whenever the EnableTransaction QoS is enabled the

EventReliability and the ConnectionReliabilty QoSs will be

setup automatically by the Notification Service to “Persistent”. Likewise, when

this QoS is disabled the EventReliability and the

ConnectionReliabilty are set to “BestEffort”.

• TransactionEvents AdminProperty defines the number of separate

events sent in the scope of a transaction. The scope of this property is the

ProxyPushSupplier, ProxyPullConsumer ,

StructuredProxyPushSupplier,

6 Although this specification is not directly concerned by the generic and Typed Events it specifies the transactional
behavior of their proxies. This is because this section is aiming to update the section 2-12 of the Notification Service
specification.

45

StructuredProxyPullConsumer, ,TypedProxyPushSupplier and

TypedProxyPullSupplier.

• TransactionEventSequences7 AdminProperty defines the number of

event sequences sent in the scope of a transaction. The scope of this property

is the SequenceProxyPushSupplier and

SequenceProxyPullConsumer.

• TransactionTimeout adminProperty defines the timeout period in number

of seconds associated with routing transaction created. If the parameter has a

non-zero value n, then the created routing transaction will be subject to being

rolled back if they do not complete before n seconds after their creation If its

value is zero, then no application specified time-out is established. This

adminProperty is aimed to be mapped on the unsigned long input parameter of

the OTS Current.set_timeout() operation. This adminProperty is

applied on all the proxies that behave as transaction clients.

When those adminProperty are applied at the SupplierAdmin , ConsumerAdmin or

EventChannel level they will affect only the proxies with transaction client behavior.

The Table 2-12 summarizes the scope of the new QoS and AdminProperties at the

proxy level. It also summarizes proxies’ transactional roles. Empty Cells denotes that

QoS is not applicable.

46

 QoS AdminProperties

Proxy Types
Enable

Transaction
Transaction

Timeout
Transaction

EventSequenc
es

Transaction
Events

ProxyPushSupplier, X X X

ProxyPullConsumer, X X X

StructuredProxyPushSupplier X X X

StructuredProxyPullConsumer X X X

SequenceProxyPushSupplier X X X

SequenceProxyPullConsumer X X X

TypedProxyPushSupplierr6, X X X

Tr
an

sa
ct

io
n

C
lie

nt
 R

ol
e

TypedProxyPullConsumer 6 X X X

ProxyPushConsumer X

ProxyPullSupplier X

StructuredProxyPushConsumer X

StructuredProxyPullSupplier X

SequenceProxyPushConsum

er

X

SequenceProxyPullSupplier X

TypedProxyPushConsumer6 X

Tr
an

sa
ct

io
n

S
er

ve
r

R
ol

e

TypedProxyPullSupplier6 X

Table 2-12 New Notification Service QoS and AdminProperties scope

2.7.6.2 Bridge Transaction Management Interface

The TransactionManagement interface provides the bridge application clients the

ability to enable and disable automatically the routing transactions. This interface is

optionally inherited by the Bridge interface.

This interface contains two operations: enable_transaction() and

disable_transaction().

47

The invocation of the enable_transaction operation will enable the proxies with a

transaction client behavior (StructuredProxyPushSuppliers ,

StructuredProxyPullConsumer , SequenceProxyPushSupplier ,

SequenceProxyPullComsumer) to start routing transactions and manage their

events queues as OTS recoverable objects. It also enables the bridge EndPoint

objects that are connected to the notification service to set their Transactional POA

Policies to Require_shared. The EndPoint objects affected by this operation are:

• StructuredPushConsumer,

• SequencePushConsumer,

• StructuredPullSupplier,

• SequencePullSupplier .

This operation takes as an input the number of events sent in the scope of the routing

transaction and the routing transaction lifetime.

The invocation of the disable_transaction operation will disable subsequent

routing transactions.

2.8 Conformance

The Transaction mapping capabilities, specified in Section 2.7, are an optional

conformance point for this specification. All other interfaces defined in this

specification are required to be implemented for conformance to this specification.

Formatted: Bullets and Numbering

Deleted: <#>¶

48

3 Bridge Interfaces

This section describes the semantic and the behavior of the interfaces which make up

the NS -JMS bridge. All the data structures and the interfaces are defined in the

CoSBridgeAdmin module.

3.1 CosBridgeAdmin Module

The CosBridgeAdmin module defines the ExternalEndPoint data type. In

addition, this module provides declarations for administrative interfaces which are

defined for managing the Bridge Life cycle.

Note that the EndPointSender and EndPointReeceiver described in section 2 are

implementation objects, therefore they are not modulised in the public IDL files.

#ifndef _COS_BRIDGE_ADMIN_
#define _COS_BRIDGE_ADMIN_
#include <orbdefs.idl>
#include <CosNotifyChannelAdmin.idl>

#pragma prefix "omg.org"

module CosBridgeAdmin
{
 enum ExternalEndpointRole
 {
 SOURCE,
 SINK

 };

 enum JMSDestinationType
 {
 QUEUE,

Deleted: , along with
EndPointSender and
EndPointReceiver types

Deleted: #include
<CosNotifyComm.idl>¶

Deleted: #include
<CosEventDomainAdmin.idl
>

49

 TOPIC
 };

 enum MessageType
 {
 JMS_MESSAGE,
 STRUCTURED_EVENT,
 SEQUENCE_EVENT
 };

 struct JMSDestination
 {
 JMSDestinationType destination_type;

 string destination_name;
 string factory_name;
 };
enum FlowStyle
 {
 PUSH,
 PULL
 };

 union ExternalEndpointConnector switch (MessageType)
 {
 case JMS_MESSAGE: JMSDestination destination;
 default: CosNotifyChannelAdmin::ChannelID channel_id;
 };

 struct ExternalEndpoint
 {
 ExternalEndpointRole role;
 ExternalEndpointConnector connector;

 FlowStyle style;
 MessageType type;
 };

 enum ExternalEndpointErrorCode
 {
 INVALID_CHANNELID,
 INVALID_JMSDESTINATION,
 MISMATCH_ENDPOINTROLE_NOTIFSTYLE
 };

 struct ExternalEndpointError
 {
 ExternalEndpointRole role;

Deleted: CosEventDomainAd
min::NotificationStyle
style;

50

 ExternalEndpointErrorCode code;
 };

 typedef sequence<ExternalEndpointError> ExternalEndpointErrorSeq;

 exception InvalidExternalEndPoints
 {
 ExternalEndpointErrorSeq error;
 };

 typedef long BridgeID;
 typedef sequence<BridgeID> BridgeIDSeq;

 exception BridgeAlreadyStarted {};
 exception BridgeInactive {};
 exception BridgeNotFound {};

 interface BridgeFactory;

 interface Bridge
 {

 readonly attribute ExternalEndpoint end_point_receiver;
 readonly attribute ExternalEndpoint end_point_sender;

 void start_bridge() raises (BridgeAlreadyStarted, InvalidExternalEndPoints);
 void stop_bridge () raises (BridgeInactive);
 status get_status();
 void destroy ();
 };

 interface BridgeFactory
 {

 Bridge create_bridge (in ExternalEndpoint source, in ExternalEndpoint sink,
out BridgeID id)
 raises (InvalidExternalEndPoints);
 Bridge get_bridge_with_id (in BridgeID id)
 raises (BridgeNotFound);

 BridgeIDSeq get_all_bridges();
 };
};

#endif

Deleted: enum
EndpointReceiverType¶
 {¶

STRUCTURED_PUSH_CONS,¶

SEQUENCE_PUSH_CONS,¶

STRUCTURED_PULL_CONS,¶

SEQUENCE_PULL_CONS,¶
 MESSAGE_LISTENER,¶
 MESSAGE_CONSUMER¶
 };¶

Deleted: union
EndpointReceiver switch
(EndpointReceiverType)¶
 { ¶
 case
STRUCTURED_PUSH_CONS:
CosNotifyComm::Structure
dPushConsumer
structured_push_consumer
;¶
 case
SEQUENCE_PUSH_CONS:
CosNotifyComm::SequenceP
ushConsumer
sequence_push_consumer; ¶
 case
STRUCTURED_PULL_CONS:
CosNotifyComm::Structure
dPullConsumer
structured_pull_consumer
;¶

Deleted: enum
EndpointSenderType¶
 {¶

STRUCTURED_PUSH_SUPL,¶

SEQUENCE_PUSH_SUPL,¶

Deleted: union
EndpointSender switch
(EndpointSenderType)¶
 {¶
 case
STRUCTURED_PUSH_SUPL:Cos
NotifyComm::StructuredPu
shSupplier
structured_push_supplier
Deleted: readonly
attribute
EndpointReceiver
end_point_receiver;¶
 readonly attribute
EndpointSender
end_point_sender;

Deleted: start

Deleted: stop

... [1]

... [3]

... [2]

51

3.1.1 ExternalEndPoint

ExternalEndPoints are abstract entities that represent the sender and the

receiver of the data through the NS-JMS bridge. These entities are represented by a

data structure ExternalEndPoint which specifies :

1. the role of the external end point which can be either a Source or a Sink of data

2. the nature of the external end point, be it a JMS destination or an

EventChannel

3. the Notification style used by the ExternalEndPoint , which can be either

a Push or a Pull.

4. the type of message that it handles. This type can be either a JMS message,

a structured event or a sequence of the structured events.

Each of the previous points is described by a ExternalEndPoint field in the

structure.

The following subsections describe briefly those fields.

3.1.1.1 ExternalEndpointRole

The ExternalEndpointRole is an enumeration that describes the role of the

ExternalEndPoint. The enumeration is made by the following values: {SOURCE,

SINK };

3.1.1.2 ExternalEndpointConnector

The ExternalEndpointConnector is an IDL union structure that represents

exclusively a JMSDestination or an EvenChannel. If the

ExternalEndpointConnector handles a JMS_MESSAGE message type it refers

to a JMSDestination. If it handles a structured event or a sequence of structured

events it refers to an EventChannel .

The JMSDestinaton is a data structure that includes :

1. The JMSDestinatonType, which is an enumeration that can be either a

Queue or a Topic,

2. a string that specifies the destination name,

3. a string that specifies the JMS factory name.

52

The EventChannel is represented by its identifier, the

CosNotifyChannelAdmin::ChannelID .

3.1.1.3 MessageType

The MessagaType specifies the type of messages that can be processed by the

bridge. The MessageType is an enumeration that can be either a JMS_MESSAGE, a

STRUCTURED_EVENT or SEQUENCE_EVENT.

3.1.2 Bridge Interface

The Bridge interface encapsulates the behaviors supported by a NS -JMS bridge

instance.

Each instance of the Bridge interface has two ExternalEndPointreadonly

attributes that describes JMS and Notification service desstinations : . Due to the

architectural restriction described in section 2.3 this interface does not allow the

creation of new Endpoint instances.

The Bridge interface supports operations that:

1. activates the Bridge instance to start forwarding and transforming data,

2. disactivates the Bridge instance,

3. obtains the status of the bridge for the administration purposes,

4. destroys the Bridge instance.

3.1.2.1 start_bridge

The start_bridgeoperation activates the bridge in order to receive and forward data.

This operation maps on the Proxy’s connect_ operation on the Notification Service

side and on the javax.jms.Connection.start operation on the JMS side to

initiate the JMS Connection's delivery of incoming messages.

When the start_bridgeoperation is successfully executed the bridge state

becomes started. Restarting an already started bridge raises the

BridgeAlreadyStarted exception.

Passing wrong external end point raises the InvalidExternalEndPoints exception.

3.1.2.2 stop_bridge

When a Bridge is created it is in stopped mode.. The stop_bridge operation

deactivates the bridge. That means that no messages are being delivered to it. This

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Deleted: <#>EndPointSender
interface¶
The EndPointSender interface
connects and fits the
ExternalEndPoint type when
the later behaves as data Consumer.
The EndPointSender behaves as
data supplier. Depending on the
values of the
CosEventDomainAdmin::Noti
ficationStyle and the
MessageType fields, the
EndPointSender can be either :¶
<#>CosNotifyComm::Structur
edPushSupplier if the
CosEventDomainAdmin::Noti
ficationStyle and the
MessageType of the
ExternalEndPoint values are
respectively PUSH and
STRUCTURED_EVENT. This means
that the EndpPointSenderType
is
STURCTURED_PUSH_SUPPLIER.¶
<#>CosNotifyComm::Sequence
PushSupplier if the
CosEventDomainAdmin::Noti
ficationStyle and the
MessageType of the
ExternalEndPoint values are
respectively PUSH and
SEQUENCE_EVENT . This means that
the EndpPointSenderType is
SEQUENCE_PUSH_SUPPLIER .¶
<#>CosNotifyComm::Structur
edPullSupplier if the
CosEventDomainAdmin::Noti
ficationStyle and the
MessageType of the
ExternalEndPoint values are
respectively PULL and
STRUCTURED_EVENT. This means
that the EndpPointSenderType is
STURCTURED_PULL_SUPPLIER.¶
<#>CosNotifyComm::Sequence
PullSupplier if the
CosEventDomainAdmin::Noti
ficationStyle and the

Deleted: two

Deleted: EndPointSender,
EndPointReceiver both of them
exist upon creation of the bridge

Deleted: start

Deleted: start

Deleted: start

Deleted: stop

Deleted: stop

... [4]

53

operation maps on the Proxy’s disconnect_ operation on the Notification Service

side and on the javax.jms.Connection.stop operation on the JMS side.

When the stop_bridge operation is successfully executed the bridge state

becomes stopped. Stopping an inactive bridge raises the BridgeInactive

exception.

3.1.2.3 get_status

The get_status operation returns the current state of the bridge which can be either

in stopped or in a started mode. The state of the bridge is not necessarily

persistent.

3.1.2.4 destroy

The destroy operation destroys the Bridge instance. The EndPointReceiver and

EndPointSender implementations invoke the disconnect operation on the

corresponding Notification Service and invoke the stop operation on the JMS side.

When those operations are successfully executed both of the end points are

destroyed.

3.1.3 Bridge Factory Interface

A BridgeFactory is responsible for the creation of Bridge objects based on initial

parameters. In order to create a bridge, it is necessary to have the identifier of an

existing Notification Service event channel and a JMS destination information.

3.1.3.1 create_bridge

The create_bridge operation creates new instances of NS-JMS bridge. At creation

time, the client must specify two external points. One external point must represent an

EventChannel Instance the other one must represent a JMS destination.

Furthermore, the external points information must be consistent with the

communication consistency checking table defined in section 2.2. For example,

connecting an external point behaving as an EventChannel , assuming the Source

role and using the PUSH NotifyStyle with an external point behaving as a

JMSDestination, assuming the Sink role and using the PULL NotifyStyle is not

consistent.

The create_bridge operation raises the InvalidExternalEndPoints exception

when an inconsistent external endpoint is passed as input parameters.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Deleted: stop

54

If no exception is raised, the create_bridge operation will return a reference to a

new bridge and will assign to this new bridge a unique numeric identifier. This identifier

is returned as an output parameter.

3.1.3.2 get_all_bridges

The get_all_bridges operation returns a sequence of all of the unique numeric

identifiers corresponding to NS-JMS bridge instances, which have been created by the

Bridge factory.

3.1.3.3 get_bridge_with_id

The get_bridge_with_id operation returns a reference to the Bridge object

identified by the supplied bridge id. If the bridge cannot be found, then the

BridgeNotFound exception is thrown.

3.2 BridgeTransactionMgmt module

The BridgeTransactionMgmt module defines a single

TransactoinManagement interface.

3.2.1 TransactionManagement interface.

The TransactoinManagement interface is optionally inherited by the Bridge

interface. It manages the activation and the disactivation of the routing transaction.

This interface is made up by two operations: enable_transaction and

disable_transaction.

module BridgeTransactionMgmt
{
 exception UnsupportedTransaction {};
 exception TransactionAlreadyActive {};

 exception TransactionActive {} ;

 interface TransactionManagement
 {
 void enable_transaction (in unsigned long events, in unsigned long timeout)

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

55

 raises (UnsupportedTransaction, TransactionAlreadyActive);

 void disable_transaction() raises (TransactionActive);
 };

}

3.2.1.1 enable_transaction

The enable_transaction operation configures the proxies, namely the

StructuredProxyPushSuppliers, StructuredProxyPullConsumer ,

SequenceProxyPushSupplier, SequenceProxyPullComsumer with a

transactional client behavior. It allows also those proxies to manage their events

queues as OTS recoverable objects.

This operation sets EnableTransaction new Notification Service QoS to true. It

configures the bridge EndPoint objects, namely the StructuredPushConsumer,

SequencePushConsumer , StructuredPullSupplier,

SequencePullSupplier that are connected to the notification service to set their

Transactional POA Policies to Require_shared.

This operation takes as an input parameter the number of events sent in the scope of

the routing transaction. When the bridge convey event sequences, this input

parameter denotes the number of event sequences, meaning that the total number of

events sent in the routing transaction scope is obtained by multiplying the number of

events within a sequence by the value of the input parameter. The number of events,

respectively, the number of event sequences sent in the scope of the routing

transaction are mapped on the new notification service TransactionEvents ,

respectively, TransactionEventSequences AdminProperties.

The enable_transaction operation takes also as an input parameter the lifetime

of the routing transaction. The lifetime of the routing transaction is mapped on the

Notification Service TransactionTimeout AdminProperty.

This operation raises the UnsupportedTransaction exception if the Notification Service

or the JMS Implementations does not support distributed transactions.

It raises the Exception TransactionAlreadyActive if an active transaction is

already associated to the bridge object.

3.2.1.2 disable_transaction

The disable_transaction operation invocation disables the bridge, the

notification service and the JMS transactional behaviors. Invoking this operation on an

56

in progress transaction will raise an exception TransactionActive and it will disable the

subsequent routing transaction from taking place. The actual execution of this

operation will take place as soon as the active transaction finishes.

The implementation of the disable_transaction will configure the bridge

EndPoint objects, namely the StructuredPushConsumer,

SequencePushConsumer , StructuredPullSupplier,

SequencePullSupplier to set their Transactional POA Policies to Allows_none.

It will also set the Notification Service EnableTransaction QoS to False.

57

Page 50: [1] Deleted Karoui 10/27/2003 11:38 AM

 union EndpointReceiver switch (EndpointReceiverType)
 {
 case STRUCTURED_PUSH_CONS: CosNotifyComm::StructuredPushConsumer
structured_push_consumer;
 case SEQUENCE_PUSH_CONS: CosNotifyComm::SequencePushConsumer
sequence_push_consumer;
 case STRUCTURED_PULL_CONS: CosNotifyComm::StructuredPullConsumer
structured_pull_consumer;
 case SEQUENCE_PULL_CONS: CosNotifyComm::SequencePullConsumer
sequence_pull_consumer;
 case MESSAGE_LISTENER: MessageListener msg_listener;
 };

Page 50: [2] Deleted Karoui 10/27/2003 12:02 PM

 enum EndpointSenderType
 {
 STRUCTURED_PUSH_SUPL,
 SEQUENCE_PUSH_SUPL,
 STRUCTURED_PULL_SUPL,
 SEQUENCE_PULL_SUPL,
 MESSAGE_PRODUCER
 };

Page 50: [3] Deleted Karoui 10/27/2003 11:38 AM

 union EndpointSender switch (EndpointSenderType)
 {
 case STRUCTURED_PUSH_SUPL:CosNotifyComm::StructuredPushSupplier
structured_push_supplier;
 case SEQUENCE_PUSH_SUPL: CosNotifyComm::SequencePushSupplier
sequence_push_Supplier;
 case STRUCTURED_PULL_SUPL:CosNotifyComm::StructuredPullSupplier
structured_push_supplier;
 case SEQUENCE_PULL_SUPL: CosNotifyComm::SequencePullSupplier
sequence_push_supplier;
 };

Page 52: [4] Deleted Karoui 10/27/2003 11:49 AM

EndPointSender interface
The EndPointSender interface connects and fits the ExternalEndPoint type when
the later behaves as data Consumer. The EndPointSender behaves as data supplier.
Depending on the values of the CosEventDomainAdmin::NotificationStyle
and the MessageType fields, the EndPointSender can be either :
CosNotifyComm::StructuredPushSupplier if the
CosEventDomainAdmin::NotificationStyle and the MessageType of

the ExternalEndPoint values are respectively PUSH and STRUCTURED_EVENT.
This means that the EndpPointSenderType is STURCTURED_PUSH_SUPPLIER.
CosNotifyComm::SequencePushSupplier if the
CosEventDomainAdmin::NotificationStyle and the MessageType of
the ExternalEndPoint values are respectively PUSH and SEQUENCE_EVENT. This
means that the EndpPointSenderType is SEQUENCE_PUSH_SUPPLIER.
CosNotifyComm::StructuredPullSupplier if the
CosEventDomainAdmin::NotificationStyle and the MessageType of
the ExternalEndPoint values are respectively PULL and STRUCTURED_EVENT.
This means that the EndpPointSenderType is STURCTURED_PULL_SUPPLIER.
CosNotifyComm::SequencePullSupplier if the
CosEventDomainAdmin::NotificationStyle and the MessageType of
the ExternalEndPoint values are respectively PULL and SEQUENCE_EVENT. This means that
the EndpPointSenderType is SEQUENCE_PULL_SUPPLIER
When the CosEventDomainAdmin::NotificationStyle value is PUSH and
the MessageType is JMS_MESSAGE the EndPointSender behaves as JMS producer.
According to the JMS specification, the JMS producer does not offer any interface.
The EndpPointSenderType value MESSAGE_PRODUCER is specified for a future usage if the
JCP community decides to extend the JMS PushSuppllier with a new interface.

EndpointReceiver interface
The EndPointReceiver interface connects and fits the ExternalEndPoint type when the
later behaves as a data supplier. The EndPointReceiver behaves as data consumer.
Depending on the values of the CosEventDomainAdmin:;NotificationStyle and the
MessageType fields, the EndPointReceiver can be either a
CosNotifyComm::StructuredPushConsumer if the
CosEventDomainAdmin::NotificationStyle and the MessageType of
the ExternalEndPoint values are respectively PUSH and STRUCTURED_EVENT. This means
that the EndpPointReceiverType is STURCTURED_PUSH_CONSUMER.
CosNotifyComm::SequencePushSupplier if the
CosEventDomainAdmin::NotificationStyle and the MessageType of
the ExternalEndPoint values are respectively PUSH and SEQUENCE_EVENT. This means that
the EndpPointReceiverType is SEQUENCE_PUSH_ CONSUMER.
CosNotifyComm::StructuredPullSupplier if the
CosEventDomainAdmin::NotificationStyle and the MessageType of
the ExternalEndPoint values are respectively PULL and STRUCTURED_EVENT. This
means that the EndpPointReceiverType is STURCTURED_PULL_ CONSUMER.
CosNotifyComm::SequencePullSupplier if the
CosEventDomainAdmin::NotificationStyle and the MessageType of
the ExternalEndPoint values are respectively PULL and SEQUENCE_EVENT. This
means that the EndpPointConsumerType is SEQUENCE_PULL_CONSUMER.
MessageListener JMS standard interface, if the EndpPointConsumerType is the
CosEventDomainAdmin::NotificationStyle and the MessageType

values of the ExternalEndPoint are respectively PUSH and JMS_MESSAGE.
EndpPointConsumerType corresponds to MESSAGE_LISTENER.
When the CosEventDomainAdmin::NotificationStyle value is PULL and the
MessageType is JMS_MESSAGE the EndPointReceveir behaves as JMS Consumer.
According to the JMS specification, the JMS consumer that pulls messages does not offer any
interface.
The EndpPointReceiverType value’s MESSAGE_CONSUMER is specified for a
future usage if the JCP community decides to extend the JMS PullConsumer with a new interface.

