Convenience Document with Proposed Changes for

Notification-JMS Interworking FTF

DTC 04 -x¢xx

January 09, 2003

OMG TC Document telecom/2002-01-06

1

2

Table of Contents

OVERVIEW ...oiiiietiintiiretissess st sbas st sas shssse e bbb 8484 b bR 4R s bbb bbbt 5
ARCHITECTURAL FEATURESooiiritstiititieies st sbsss s s sses ssbsssssssss et sss s b Shsse bbb se skt bbb bbbt 7
21 BRIDGE ARCHITECTURE OVERVIEW.......vteuiteutuesstsssesses sesssessssessssessssesessssesses stessesssssssssssassssessssesses stsssesassesessssessssesssesass ssessessssesss 7
22 BRIDGE FACTORY ..cutuiutiiuiririsieseseietemesesestsssesesessssesesesessssinssssssesssssssesessssenssssssssmsssssnssesssssssesessssensassssesesssnsnssssesssesesessssessssmmensssssnsse 8
23 BRIDGE INSTANCE......cuiuttttrtrerettutasieas etresesesestssasssssssssesesess sesesesesessssssesssassssesasas seesseststsssssesesassssestatsss shnbesesassessstatassesesesssnes sassntesens 9
24 IMTESSAGE IMAPPING.....couvutiiiertseresessesmeeseseesese s assse s s st s s s s ses e sttt st e e e e s s e s et 12
24.1 JMSMessage to Evert13
2.4.1.1 IMS message DoAY MEPPINGuuiunniteiei ettt e e e e e 16
T R I = 1= N 16
2.4.1.1.2 SHEAM IMESSA0E . .. et enetee ettt et et ettt e ettt ettt et et e a e et ettt e e ans 16
2.4.1.0.3 MBP MBSSA0R ... et ettt ettt ettt et e 16

2.4.1. 1.4 BYLES IMBSSA0E. . .t ttetite ettt ettt et ettt 16
24115 ODJECE MESSAGE........evveeeeteeeeeeeeeeeee et e et ettt e et ettt e, 17

24.2 EVENT 10 IMSIMESSAOE ... e 17
25 QOS PROPERTIESIMAPPIN G ...cuctritteiieestssastsssses sesessssssssssssssssssssassesass stessssessssssassssassssassssass stessssessssesessetessesessssess ssessssessssessassssesns 21
251 Event RElaDility.........cooooiiiii e 21
252 CONNECLION REITBDITTLY. ... eeeeeee e et e et e e et e e et e e e e e e e enbba e e aaes 21
253 DElIVENY RETBIIITY ...ttt 22
254 [L] PSP UUPPTTPPPPP 22
255 o LY 1111 =PRSS 23
25.6 [0= o TNt 23
26 ACKNOWLEDGMENT MAPPIN G...ouuutirirererinestasasaes seetseseseesssssssessssssessses sesesssesessssesssssssssssesass sessesstsssssesesassssssstnsas sesessssssssesess 25
26.1 Overview of Reliable Event Delivery with Event Acknowledgmentcoovviviiiiiiiiiiiiiiiii e 25
2.6.1.1 Event Acknowledgment On PUSh MOGELouieieiiii e 26
2.6.1.2 Event Acknowledgment on PUll MOGE!o.ieiiei e e 27
2.6.2 Soope of Event ACKNOWIEOGIMENTEouiiiiiiiiiiiiiii e 28
2.6.3 Sequence NUMDEr HEROEr FIElO........uun et ettt e e e e e e n b aa e 29
2.6.4 L0 Ao g 1= 7= o =T PPN 29
2.6.4. 1 ACKNOWIEAGEt 30
2.6.5 Reliahle DEIVENY SBOUENCE.cevviiii e e e et e e et e e e e e e ee s 31
2.6.5.1 Reliable Delivery Sequence for PUSh MOOE e 31
2.6.5.2 Reliable Delivery Sequence for PUl MOOELc.iuieii e e 32
2.6.5.3 Recovery in Faillue of REIMESo 33
2.6.6 QoS Properties for Reliable EVENt DElIVENY.........uuuiiiiiii et e e e 34
2.6.6.1 DelVEryREII@DIITY....c.ouniiii i e 34

B2 G = = 35

2.6.6.3 REINYIMEEIVA ...ttt e 35
2.6.6.4 Supported level of the QOS Properties.iiiiiiiii e 35
2.6.7 Mapping between Event Acknowledgment and IMS Message ACKNOWIEAgMENE.........vvvneviineeiiieei e ee e eeeeenn 35
27 TRANSACTIONAL SUPPORT
2.7.1 Asynchronous Transactional MOOEiiiiriiie i e e e e e ennee 38
2.7.2 UPPOEA CONFIGUIBIIONS. ...ttt ettt e et e et bt s e e e e et e et e e e e e e e et bbe e e e aaeeeaaes 40
2.7.3 Notification Service Transactional ROIE.............coiiiiiiiiiiii e 40
2.7.3.1 Data Flowing from Notification Service t0 IMS i e 41
2.7.3.2 Data flowing from JMS t0 NOtifiCation SEIVICE.iuniei e 41
2.7.4 Bridge TranSaCtioNal ROIES.iuueiii et et e e e et e e e e e e et e e e e e e e e e e e e e et e eeenns
2.75 JMS service provider Transactional Role
2.7.5.1 Data Flowing from Notification Service t0 IMSt e 42
2.7.5.2 Data Flowing from JMS to NOtTICAON SEIVICEiueit e e 43
2.7.6 Bridge Transactional MONITOIINGcceuuuuuiie ettt ettt e et e e e et e e e e e e e e et e e e e et e e e e ebaneeaeens 43
2.7.6.1 Notification Service QoS and AdmiN Property EXIENSIONS.c.uivuiiitiiiie e 43
2.7.6.2 Bridge Transaction Management INTErfaCecuuiu it 46
28 CONFORMANCEccuittteteteseteseestssimsssesesesssssssssesessssssssmsasesesessssssssssesesesssssssmmsssesesssssnssssssesesesesasssmsssesetesassssssssesasesssssssmensssessnsas 47
3 BRIDGE INTERFACEScooiiitiiiitns st issssesias sesssssss s sssess s ssssssss b8 s s s sss s S8 b bbbt arssssnes 48
31 CO BRIDGEADMIN IMODULE ..ottt isiresesessss ettt b e st ettt es s b s st sttt bbb st s e ine st na st esnntenas 48
311 | g0 T ale o]y USSP 51
3. 111 EXtErNAlENAPOINTROIEttt e 51
3.1.1.2 EXterNal ENAPOiNECOMMECTON ettt ettt ettt et e e et et e et et ettt e e et e et e e e et e e a e ens 51
LR O B Voot o T o= 52
312 ENdPOINtSENAEr INTEITACE.uiiiiiiiiiiiiii i e 52
3.1.3 ENApOiNtRECEIVE IMEITACE. ...ttt et e e e et ettt e e e e et e e e e e eeeenbaennns 52
3.1.4 12T To 0T 1= - o PP 52
O N - 4 o o o PP 52
3142 SIOP_BIIAGE.e it 52
L T R B« = s = (UL S PPN 53
BULiA.4 ESIIOY ..o e 53
3.15 12T o Tcl = Vo o Y [= o =N 53
T T o (= (= oo o =T PO 53
3152 get_all_Bridges 54
3153 gEL_BridgE WIth 1. ...t e s 54
32 BRIDGETRANSACTIONM GMT MODULEctiiitetiiiresisieiesesessestsssesesesessssssesesesesssesasesessssesesesessssssssesssmessssssesessnsssssssesesenssssmens 54
321 TransactioNManageMENt INMEEITACE. i ii e e e e et e e e e e et e e et r e e e e e ean e 54
T R = - o Lo (0 1 o 1 oo PP 55
3.2.1.2 diSADIE TFBNSACHION ...ttt s 55

1 Overview

Asynchronous messaging is a proven communication model for developing
large-scale, distributed enterprise applications. In ader to support flexible and
end-to-end business integration, it is becoming necessary to provide messaging

interworking between CORBA applications and Java / EJB.

The CORBA Notification Service is the OMG mature standard that allows Corba
objects, named suppliers, to send event asynchronously to other Corba object named
consumers. Suppliers are de-coupled from consumers by means of event channel

concept, which takes care of dissemination of events to them.

The Java Message Service (JMS) defines a standard API that provides a simplified and
common way for Java clients to access message oriented middleware. More
importantly, JMS is tightly integrated into J2EE and is the messaging standard for
Enterprise Java Beans (EJB). Application publishing a message are de-coupled from

application receiving them by the mean of Queue or topic concept.

The Notification Service differs from JMS in that its specification covers both the client
interfaces and the messaging engine whereas JMS was designed as an abstraction
over existing and new messaging products. The JMS messaging engine

implementation may differ from one vender to another.

This document specifies architecture and interfaces for managing Notification Service
interworking with Java Message Service The interworking involves several aspects

such as:
Event -Message mapping,
QoS mapping,

Automatic federation between Notification Service channel concept and

topic/queue concepts

- Transaction support.

2 Architectural Features

2.1 Bridge Architecture Overview

The bridge defined by this specification is designed to manage and interconnect event
channel with JMS destination. A clear goal of this specification is to define the
capability to manage an inter-related channel and JMS destination that can be created
via existing implementations of those services. The guiding principles which drove the
definition of the Bridge IDL interfaces were to preserve backward compatibility with
both JMS and Notification Service programming models. Extensions to current
Notification Service can be required only in advanced use cases where

acknowledgment data delivery QoS is required.

The Figure 21 depicts bridge general architecture. The IDL module names of the
interfaces defined by the Notification Service and the Bridge are abbreviated in the
above diagram. NCA stands for CosNotifyChannelAdmin, while NC stands for
CosNotifyComm, finally BA stands for CosBridgeAdmin.

CosBridgeAdmin
NCA::Channel i i i
e \ javax.jms.ConnectionFactory
NCA::ConsumerAdmin —INCA::SuppIierAdmin javax.jms.Co_nl_nection—l_javax.’ms.Session
NCA::StructuredProxyPushSupplier
_i; ;I javax.jms.MessageProducer
NC::StructuredPushConsumer]
L NCA::SequenceProxyPushSupplier Message flow
Notification < » IMS
Serrvice NC::SequencePushConsumer

NEA::StructuredProxyPushConsumer \
I NC::Structun-:‘dPushSuppIGI

javax.jms.MessageConsur:ler

=1 ™ |
M flow Javax.jms.MessageListener

I]IFCA::SequenceProxyPushConsumeL

NC::SequencePushSuppli'er

Figure 2-1General Architecture of the Bridge

The Bridge is used to create and manage bridges instances that perform automatic
mapping and forwarding of messages and events. The Figure 21 shows the different
relationships between the bridge, the notification service and the JMS. For the shake of

clarity only the push communication style is considered in the Figure 2-1.

To preserve the Notification service and JMS interfaces, the Bridge behaves as event
Consumer and as JMS sender when forwarding an event from event channel to JMS
destination. In addition, it behaves as JMS receiver and event Producer when

forwarding a message in the other way.

Event-grouping is crucial to improve interworking performance. This makes structured
events centric in the IMS -NS message mapping, consequently, when the push
communication style is selected the Bridge supports the standard
StructuredPushConsumer, SequencePushConsuner and

St ruct ur edPushSuppl i er and SequencePushSuppl i er interfaces. It
supports also the StructuredPullConsumer, SequencePullConsumer and

St ruct uredPul | Suppl i er and SequencePul | Suppl i er interfaces.

To receive messages from JMS, the bridge offers the standard JMS
javax.jms.MessageListener interface and makes use of JMS

javax.jms.MessageProducer and javax.jms.MessageConsumer interfaces.

The bridge is also used to automate the connection setups between channel and JMS
destination. It performs on behalf of IMS the necessary steps to create and configure
entry points in the event channel. These steps involve StucturedProxyPush creation

and default QoS setting. Similarly, it performs on behalf of the notification service steps

needed to create and configure connection and session with JMS provider.

Note—. Issuesrelated to detection of event or message duplication in complex topologiesisout of the scope of the
RFP and are not taken into account. Alternatively, techniques such asthose used in Event Domain Management

can be used.

2.2 Bridge Factory

A BridgeFactory is responsible for the creation of Bridge objects based on initial
parameters. In order to create a bridge, it is necessary to have provide information on
an existing Notification Service event channel and JMS destination. Channel and JMS

destination information are abstracted using external end point connector concept.

External end point connector may provide or suck up data flow. It can be either a

source or sink of data. When External end point connector describes JMS destination

it should indicate the type and the name of the destination should it be a topic or
queue. When it describes channel information it should indicates whether data will be
sent using sequence or single structured events. Finally, the BridgeFactory user
should indicate the communication style it wishes to use. The communication style

can be either Push or Pull.

Since the JMS specification supports Pull communication style on the application

receiver side only, the BridgeFactory should check the consistency of the end-to-end*
communication model in use before creating a bridge. For example, when forwarding
data from event channel t o JMS destination, the Pull communication style can't be set

at the sink external endpoint. This scenario is summarized in Table 2-1

Some other consistency checking of the end-to-end communication model is
implementation dependent. For example, bridge implementation with storage
capabilities may support PUSH communication style at JMS side acting as a source
and PULL communication style at event channel side acting as a sink only and only if
the bridge uses buffer that desynchronize data transmission from its reception by

event channel.

Controls performed by Bridgefactory are summarized in Table 2-1.

Sink : JMS Sink : Channel
PUSH PULL PUSH PULL
PUSH yes Not Allowed PUSH Yes Implemtation
— by IMS . dependent
§ qcé specification § v
§ S| L yes Not Allowed § S| PULL Yes? yes
by IMS
specification

2.3 Bridge Instance

Table 2-1: Communication consistency checking

A compliant bridge implementation is not required to support all communication
models described in Table 2-1. However, vendors are encouraged to provide several

communication styles to increase bridge flexibility.

To propagate unidirectional data flow a bridge instance connects a single source

endpoint to a single sink endpoint. This object offers two interfaces that fit the source

! End-to-end portion concerns the source to sink endpoints.

2 To be able to pull the JMS and to push toward event channel, a kind of scheduling can be passed to the bridge using
the CoSNotification::PacingInterval QoS defined at each external endpoint side.

and sink natures and requirements. A source is connected to the bridge instance

through the Endpoint receiver and the sink is connected through the Endpoint sender.
When bi-directional interworking between the Notification Service and JMS is required
two bridge instances can be created separately. The Figure 2-2 summaries the bridge

architecture abstract view.

BxtemdEndRart . . . ExardEdRart
“Suree BdRinResve BdRanSade “qri

Daaﬂ%
Figure 2-2: Bridge abstract Architecture

Depending on the source endpoint nature it is connected to, the endpoint receiver can

be a:

- JMS Message Listener, if it receives messages from JMS destination. At
abstract level, the JMS Message Listener behaves as an event Push Consumer, in
that it offers onMessage operation which, from functional viewpoint, can be

compared to push operation defined in Notification Service.

- JMS Message Consumer, when it retrieves messages from JMS destination. It

can be compared to event pull consumer.

- structured push consumer, if it connects an event channel pushing single

structured event,

- sequence push consumer, if it connects an event channel pushing sequence of

structured events,

- structured pull consumer, if it connects an event channel offering pull structured

event operations,

- structured pull consumer, if it connects an event channel offering pull structured

event operations.

The endpoint sender can behave as a:
- JMS Message producer, when sending events to JMS destination,
- Structured push supplier, when sending event to event channel,

- Sequence push supplier, when sending events to event channel,

10

- Structured pull supplier, when pulling event from event channel,
Sequence pull supplier, when pulling event from events channel.

When creating a bridge, regular steps to connect event channel and JMS destination

are performed. They consist of:

1. Obtaining administration object references from event channel and JMS. On
event channel side, those object references are Suppl i er Admi n or
Consuner Admi n and on the JMS side those objects references correspond

to Connection and Session.

2. Creating on event channel side proxySupplier or proxyConsumer objects and
creating on JMS side MessageProducer or MessageConsumer objects that fit

communication style and data grouping policy selected by user.

A bridge is a stateful object that reflects the connection states with both proxy and
JMS destination entry®. Consequently, the bridge state is an aggregation of Proxy
states and the JMS destination entry state it is connected to. The AND logical operator

semantic should be applied to obtain the bridge state.

When it is created the bridge status should be set to Inactive. When starting the
bridge, the endpoint receiver and sender should activate simultaneously the
connections with the proxy and JMS destination entry. If these two steps are

successfully achieved the bridge state become Active.

The bridge evolve to Inactive state when at least one connexion with the proxy or JMS

destination is lost or suspended.

Deleted: start
The bridge interface offers the following operations, idge, idge, Deleted: stop

get_status and destroy.

Deleted: start

Thegoperation activates the two connections with the proxy and JMS destination entry. A Deleted: start_bridge

connect_xxx operations class provided in CosNotifyChannelAdmin module are used to Inserted: start_bridge

establish connection with event channel proxy object. The JIMS

javax.jms.Connection.start operation can be used to activate connexion with JMS

provider. The invocation of thegtart_bridgeoperation on bridge inactivated by the use of /{ Deleted: start

Stop_bridge operation resumes the connections with the proxy and JMS destination Deleted: stop

Deleted: connexions

entry. The resume_connection operations class provided in CosNotifyChannelAdmin

module and the javax.jms.Connection.start operation can be respectively used. When

3 A JMS destination entry object can be either a Message Producer or MessageConsumer.

11

the bridge invokes successfully connect_xxx or resume_connection and

javax.jms.Connection.start its state become Active.

Note— exception behavior of the Bridge Interface operations will be described in section 3

Deleted: stop
The stop_bridge operation stops the connections with the proxy and JMS destination

entry. The suspend_connection operations class provided in CosNotifyChannelAdmin
module and the JMS javax.jms.Connection.stop operation can be respectively used to
suspend the connection with event channel proxy object and the connexion with IMS
provider. When the connections with the proxy and JMS destination entry are

successfully suspended the bridge state becomes Inactive.

The get_status operation is intended to describe the status of end-to-end connection
stating from source to sink endpoints. To return up-to-date status, the bridge can use
the JMS exceptionListener interface to detect Connexion problems with JMS provider.
Sicne Notifi cation Service does not provide tools to get the connexion status of proxy,
the bridge implementation mayuse connect_structrured_xxx operations to deduce the
connection status. The use of this operations class is idempotent. When receiving

AlreadyConnected exception, the connection status is active. Otherwise, the status is

considered inactive.

The destroy operation destroys the bridge object, invalidating its object reference. To
liberate resources on the event channel and JMS sides the disconnect_xxx class
provided in CosNotifyChannelAdmin module and the javax.jms.Connection.closé'

operations should be respectively invoked before destroying the bridge object.

Beside the configuration steps described above, the bridge perform data mapping from
structured event format to JMS message formats and vice versa. The bi-directional

mapping is described in section 2.4.
2.4 Message Mapping

The JMS specification defines five different messages that all derive common
functionality from the base Message interface. The Notification Service specification
defines three event types and associates them well defined translation rules making

the consumption of events produced in different formats possible.

The Notification Service specification made event grouping possible through structured

event sequences only. Event-grouping is crucial to improve interworking performance.

* Noe that in JMS there is no need to close the sessions, producers, and consumers of a closed connection.

12

This makes structured events centric in the IMS—NS message mapping. This section
describes the mapping between structured events and the different IMS message

types, namely:

- TextMessage,
StreamM essage,
BytesMessage,
MapM essage*,
ObjectMessage* .
BytesMessage
«Generic Event (Any) - gf :g;ﬂﬂﬁ::f:ge

- --\-\-l i
5"‘.‘%‘,,“.,’23 E::::?:svuntureﬁ Event g SroamMossage

TextMessage

Figure 23 Structured event role in data mapping

A JMS message consists of a header, a set of properties and a body. The header and
properties are the same for all message types. The body part is different for each of the

five different IMS message types.

Structured Events provide a welldefined data structure which is comprised of two main
components: a header and a body. The header can be further decomposed into a fixed

portion and a variable portion.

The current version of the specification addresses bidirectional mapping without
information loss. Future version may be enhanced by customizable mapping

interfaces that discard irrelevant data for the application receiver and event consumer.

2.4.1 JMS Message to Event

This section describes the mapping of message sent by JMS client toward Notification
Service Consumer. The mapping of the JMS Message header and properties part is
independent from the message type. The body mapping depends on the message

types enumerated above.
JMS Header and properties mapping

When possible, the mapping from JMS to structured event should follow the general
naming conventions adopted by the Notification Service specification when translating

generic event (Any) or typed event types to structured event. Structured event fields

13

such asdorei n_nane,t ype_naneand event _nane should be compliant with the

notation adopted in section 2.1.4 of the Notification Service specification.
The donmi n_name data member should be set to empty string.

The t ype_nane data member should start with the “%” character and indicate
the JMS message source type, namely, the Text Message, MapMessage,
StreamMessage, Byt esMessage or Obj ect Message. For example, the
t ype_nane data member would be set to the value “%Text Message” if the IMS

source message type is t ext Message.

The semantics associated with event _nane data member is used by
end-users only, itis not interpreted by any component Notification Service. This field
can be optionally set to the Topi ¢ or the queue name through which JMS message
was published or sent. The extra-information delivered withinevent _nane field may

be used by a JMS-aware event consumer.

Domain_type=“ “
Fixed
MS [Messagetypd =P type_name
metadata [TOPIC/QUELE] = event_name
r 3
JMSDeliveryMode Event Reliability short
o X - Varigble
IM SExpirat T t TimeT
piration imeou ime g header
JMSPriority —p Priority short
Header 3
< JMSType IJMSMessagel D fd_name | [fd_value 3
IMSTimestamp | JMSDestination fdrame 5 | fdvaue 5 | | Giaanie
d
JIMSReplyTo JM SRedelivered Body
L JIMSCorrelationl D <:> fdname | fdvaue | J
JMSXUserlD JMSXApplD
Standard Remainder_of_body
Properties JMSXGrouplD | IMSXGroupSeq
User-defined Event Structure
properties Name_prt | Vaue Jthl
Body

Figure 24 JMS message to Structured Event mapping

The JMS Message header is made up by several fields for setting various Quality of
Service (QoS) such as JMSDel i ver yMode, JMSExpi ration and JMSPriority.

14

Those fields have well-defined meanings in the structured event and they must be

mapped as follow:

JMSDel i ver yMode maps to The Event Rel i abi | ity QoS in the variable
header of a structured event. It is set to Per si st ent when the delivery mode is

PERSI STENT. Otherwise, the Event Rel i abi | ity QoS is setto Best Ef fort.

JMSExpi r at i on maps to the Ti neout in the variable header of a structured
event. JMS expiration time value is expressed in milliseconds. This value is converted
to units of 100 nanoseconds as this is the base unit of time in CORBA. Expired

messages are not visible to clients.

JMSPri ori ty maps to the IMS message priority. It is mapped to the
Pri ority QoS in the variable header of structured events. Priority delivery mode is
used to ensure that messages with higher priority are delivered before messages with

lower priority values.

The rest of the JMS header fields can’t be mapped directly to standard structured event
fields of the variable header portion; however those fields can be viewed as optional
information that may be useful for IMS -aware event consumer. For example, a

JMBr epl yTo field with a valid value can be used by event consumer that would like to
react, after receiving the JMS message converted into a structured event, by producing
a new event which can be seen as reply message. The reply message will be sent
though channel linked up with the destination specified into the IJMSr epl yTo field. In
this case the JMSCorr el ati onl D may also be reused by event consumer in the

reply message to allow the JMS sender to tie up with the initial message it sent.

To increase filtering capability on the event channel side, the JMSType,
JMsMessagel D, JMSTi nest anp, JMSr epl yTo, JMSCorr el ati onl D,

JMBDest i nati on, JMSRedi | i vr ed fields are mapped, by default, to the filterable
date member of the structured event. Each of them is inserted using the name-value
pair, i.e using the Pr oper t ySeq data type defined in the CosNot i fi cfati on

module.

To decrease the structured event length and increase performance, JMS header fields

with nil values can be omitted during the mapping process.

The JMS property fields, prefixed by JMSX, are optional part of the IMS message
structure. Some of them are standard and well defined by JMS specification, as those
enumerated in the Figure 2-4, others are defined by JMS end-user. In the current
version of the specification, the default behavior is to map all IMSX fields. Future
version may restrict the mapping to JIMSX fields that are relevant to the event

consumer. This will improve performance and mapping pertinence.

15

All IMSX Property values are java primitives data type, they can be bool ean, byt e,
short,int, | ong, float, doubl e,and Stri ng. They are all entered into the
filterable body of the structured event using the name-value pair, i.e using the

Pr oper t ySeq data type defined in the CosNot i fi cf ati on module and they are

mapped using the standard Java to IDL mapping.

The order of JMS properties is not defined in JMS. The Notificationr-JMS specification

doesn’t mandate any particular order when implementing the mapping.

2.4.1.1 JMS message body mapping

24111 TextMessage

2.4.1.1.2 Stream Message

2.4.1.1.3 Map Message

2.4.1.1.4 Bytes Message

It is expected that the text, map, and stream messages will be the three specific
message types intensively used in an environment that consists of both JIMS and

non-JMS clients.

AText Message provides a body, which is a Java String. The body is inserted into a
remai nder _of _body of the structured event by simply inserting the string into the

Any .

A St reamVessage provides a body which contains a stream of Java primitive values.
The values on the stream stack are written onto the r emai nder _of _body ofthe
structured event using the Any Seq data type. The elements in this sequence are

mapped using the standard Java to IDL mapping.

A MapMessage provides a body of name-value pairs where names are Strings, and
values are Java primitives. The body can be inserted in the r emai nder _of _body

field, of a structured event using the Pr opert ySeqdata type.

A bytes message supports a body with un-interpret ed data. The message supports the
methods of the Dat al nput St r eam and Dat aCQut put St r eaminterfaces from the Java I/O
package. As the body is an array of bytes it is written to the remainder of the body field
of a structured event using an IDL octet sequence The Cct et Seq data type is defined

in the notification service IDL extension module.

16

2.4.1.1.5 Object Message

An object message provides a body that can contain any Java object that supports the
Serializable interface. This type of message is serialized onto a byte sequence and
written onto the any in the remainder of the body using the same Cct et Seq data type
described above. On the receiver side the byte sequence is converted to an object

input stream where the object is read from.

2.4.2 Eventto JMS Message

When amessage is sent from a Notification Service event channel to JMS destination,

the construction of the JIMS message is performed as follows:

1. When defined, the standard optional part of the event variable header is
mapped to corresponding fields in IMS header. If the event supplier does not
define those fields, then JMS header fields are populated using the default

values specified in the JMS specification.

2. The data in the event fixed header, the rest of the optional header fields as well
as the event filterable body are placed in the JMS properties fields. They will

be seen by the JMS receiver application as user-defined fields.

3. Meta data created by JMS -NS bridge is used to define complete JMS missing
fields such as JMSDest i nati on or JMSMessagel D.

4. Theremi nder _of _body section is mapped to the IMS message body

depending on the complexity of the data format wrapped in the Any.
Structured Event Header and filterable body mapping

When defined in structured event, the Event Rel i abi | i ty, Ti neout or Priority
fields are respectively mapped to JMsDel i very,JMspri ori ty and JMSTimetolive.
If Event Rel i abi | ty isnot defined JMSDel i very is set to PERSI STENT. If the

Ti meout isnotdefined JMSTi net ol i ve toUnl i met ed. If the Priority is not defined

the JMSpriority is setto 4.

The User-defined property fields are pair of name-value. The structured event fixed

header fields are mapped to the JMS message User-defined property fields as follow:

17

- Thedonmi n_t ype: A new property namelabeled $domai n_t ype iscreated.
It must obey the rules for amessage selector identifier® specified in Section 3.8.1.1
of IMS specification. The content of thedorai n_t ype fidd in the event is

converted to java String.

- Thet ype_nane: A new property name labeled & ype_nane iscreated. It
must obey the rulesfor a message selector identifier specified in Section 3.8.1.1 of
JM S specification. The content of thet ype_nare field in the event is converted
to java String.

- Theevent _nane: A new property namelabeled vent _nane is created. It
must obey therulesfor amessage selector identifier specified in Section 3.8.1.1 of
JMS specification. The content of theevent _name fied in the event is
converted to java String.

Inputs of IMSMessagel D, JMSTi nest anp, JMSDest i nat i on and JMSType fields

are fulfilled by JMS-NS bridge.

- JMBMessagel DisaSt ri ng vaue which should be a unique key, prefixed by

‘ID’. The exact scope of uniqueness is provider defined.

- JMBTi mest anp field contains the time a message was handed off to IMS to be

sent. It isin the format of anormal Java millistime value.

- JMBDest i nat i on containsthe topic or the Queue name to which the message
is being sent.

- JMBType isaStri ng vaue that should be set to * Structured Event'.

Complete specification those header fields are defined in the JIMS specification.

® An identifier is an unlimited-length character sequence that must begin with a Java
identifier start character; all following characters must be Java identifier part characters. An
identifier start character is any character for which the method

Character.isJavaldentifierStart returns true. This includes'_'and ‘$’.

18

Generated by
NS IMS

Bridge

[Topic/Queus] =

IJMSMessagel D

JM STimestamp

JMSDestination

JMSType="Structured Event”

JMSReplyTo=nil

JMSCorrelationlD=" *

JM SRedelivered=0

JIMSDeliveryMode

JM SExpiration

JM SPriority

Name_prt 1 ValueJth

Name_prt nem

Value_prt e

Body

Domain_type
Fixed
t name
header ype
event_name
(short | Event Relibility
Variable : :
header TimeT Timeout
{ short Priority
ohf_name i ohf_value s
\ ohf_name ohf_name
fd_vaue fd_name
Filterable
Body fd_value | fd_name

Remainder_of_body

Event Structure

Figure 25 Structured Event to JMS message mapping

JMS Message Structure

>Heﬁer

User-defined
properties

For each optional header (ohf_*) or filterable data (fd_*) field a new property name

labeled $ohf_* or $fd_* is created. It must obey the rules for a message selector

identifier specified in Section 3.8.1.1 of JMS specification. The content of the ohf_* or

fd_* field is converted to java data type primitives.

If the optional header or filterable date field has thest r uct IDL type then multiple IMS

properties are created, one for each primitive element of the complex type. The

structure is linearized as follow:

For example if the structured event contains the pair <name/value>= <Fd_namel,
CORBA::Any A>, and the A value wraps the structure named Alarm { string Al_name;

int Severity } then this field will be transformed in to two JMS user defined properties

The new $ohf_* or $fd_* field name is concatenated with the structure and the
member of the structure names. The structure member operator ‘.’ is used to
delimitate eac h name. This process is repeated if the structure contains

nested data structures meaning that struct types are expanded if and only if

the structure contains only primitive types.

The content of the linearized field is converted to java data type primitives.

(fields) : <$Fd_namel.Al_name, string> and <$Fd-namel.Serverity, integer>.

If the optional header or filterable date field has other complex data types it is mapped
to bytes stream, the JMS client that would receive a byt es stream have to use the

appropriate CORBA Helper classes to unmarshal the user data.
Structured Event Remainder of body mapping

The mapping of structured event body to given JMS message type body depends on

the complexity of the data wrapped into r emai nder _of _body field.
When r emai nder _of _body typed Any involves:

IDL basic type elements, each element maps to a java primitive type using
standard IDL to java mapping. The set of elements obtained are enterer in JIMS

StreamMessage body.

Stri ng type element only, it maps to java string type and is placed in IMS

message body.

Sequence of Properties (Pr oper t ySeq), it maps to a body of name-value

where names are strings and values are java primitives.

Octet Sequence or other type such as user constructed types, it maps to a
body of Byt esMessage. To reconstruct the IDL type, the JMS client that would

receive a Byt esMessage have to use the appropriate CORBA Helper class.

20

2.5 QoS Properties Mapping

The Notification Service and the JMS have each specific QoS properties. In the
Notification Service, QoS properties are specified in the header of Structured Events,
Proxy, Admin and Channel object. In the JMS, QoS Properties are specified in the
header of JIMS messages and some objects in JMS Provider. This section describes
the bi-directional mapping of QoS properties between the Notification Service and the
JMS.

2.5.1 Event Reliability

The Notification Servicés QoS propertyEvent Rel i abi | ity ismapped to IMS QoS

property JMSDel i ver yMode . Each value of the properties are mapped as follows:

EventReliability JVBDel i ver yMode
BestEffort NON_PERSISTENT
Persistent PERSISTENT

Table 2-2 Event Reliability

2.5.2 Connection Reliability

The Notification Service’s QoS property Connecti onRel i abi | ity is mapped to
QueueRecei ver object in the JMS Point-to-Point model or Topi cSubscri ber

object in the IMS Publish/Subscribe model. Each value of the property is mapped as

follows:

ConnectionReliability JMSS Point-to-Point model JM S Publish/Subscribe
model

BestEffort [no supported] TopicSubscriber

Persistent QueueReceiver Durable TopicSubscriber

Table 2-3 Connection Reliability mapping

The JMS Publish/Subscribe model has both durable and not durable subscriber
objects. Each subscriber is mapped to the corresponding value of

Connecti onRel i abi | i ty. The JMS Point-to-point model has only the durable
receiver object QueueRecei ver . It is mapped to the Per si st ent value of
Connecti onRel i abi | ity. Since the JMS Point-to-point model does not have not
durable subscriber objects, Best Ef f ort of Connecti onRel i abilitycan'tbe

used in interworking with JMS Point-to-Point model.

21

2.5.3 Delivery Reliability

The Notification Service’s QoS property Del i ver yRel i abi | i ty is an additional
property of this specification Gee Section 2.6.6, “QoS Properties for Reliable Event
Delivery”). This QoS property is mapped to JMS reliable messaging functions. Each

value of the property is mapped as follows:

DeliveryReliability JMS reliable messaging functions
None [no use of any reliable messaging functions]
Acknowledgment Message Acknowledgment

Table 2-4 Delivery Reliability mapping

2.5.4 Priority

The Notification Service's QoS property Pri ori ty is mapped to the JIMS QoS
property JMSPr i or i ty. The value of the Notification Service’s Pri ority is
represented by short integer, where —32,767 is the lowest priority and 32,767 the
highest. The JMSPr i ori ty is represented by ten values, where 0 is the lowest
priority and 9 the highest. Since the range of the value is very different between
Notification Service and JMS, this specification defines following priority mapping as
default mapping which must be supported. Other mappings may be supported in

addition to the default mapping if necessary.

When the value of JMSPri ori ty is converted to the value of Notification Servicés
Priority, same value on JMSPri ority is used as the value of Notification

Servicés Priority as follows:

JM SPriority Priority
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Table 2-5, Priority mapping from JMS to Notification

When the value of Notification Service's Pri ori ty is converted to the value of

JMSPri ori ty, some values on Notification Serviceés Pri ori ty are integrated with

value 0 or9on JMSPri ority as follows:

22

2.5.5 Expiry times

2.5.6 Order Policy

Priority JM SPriority
-32,767 .0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9..32767 9

Table 2-6 Priority mapping from Notification to JIMS

The Notification Service’'s QoS property St opTi nme is mapped to the JMS QoS

property Ti meout .

The JMS has only one order policy: messages must be received in the order they were
sent. However messages of higher priority may jump lower priority messages. Thus
JMS'’s order policy can be mapped to one of two values in the Notification Service’s

QoS property Or der Pol i cy as follows:

Order Palicy JMS's order policy
AnyOrder [nat supported]
FifoOrder Supported
PriorityOrder

DeadlineOrder [nat supported]

Table 2-7 Priority mapping

The selection of the mapping depends on implementation or system configuration.
However when the Pri ori t yOr der value is selected, the order of same priority

events must be preserved.

Even if welldefined translation is executed on event channel between some Structured
Events on a logical connection and an event batch (sequece of Structured Event),
event order must be preserved for all events in Fi f oOr der value or for same priority
eventsin PriorityOrder value Figure 2-6and Figure2-7. The first event on the
logical connection is translated from/to the top of the event batch, and the last event on

the logical connection is translated from/to the bottom of the event batch.

23

Event . top
last first Channel No.14|" event
event event No.2
No.4 [[No.3 ||No.2|| No.1 -

[No4][Wo3][Noz][No1] , =
events on a logical connection No.4¥|.
~>~-bottom
an event batch eyent

Figure 2-6 Preservation of event order in translation from Structured Events to event batch

top
event.. . Event
M No.1 Channel last first
No.2 event event
— N [No.4] [No.3] [No2][No1] |
[No.4 events on alogical connection
bottom--~"
event an event batch

Figure2-7 Preservation of event order in translation from event batch to Structured Events

24

2.6 Acknowledgment Mapping

The JMS QoS API has two kinds of function for reliable messaging on the JMS

MessageConsumer side:
one using transactions, and;
the other using Message Acknowledgment.

The use of acknowledgmentsor transactions provide different form of reliability. These
two forms represent different use models: The use of acknowledgments provides a
model where each message can be guaranteed to be delivered. If the message is not
delivered, the message queue or topic can take steps to redeliver it. While this could
be done within a transaction, the transactional model is fairly heavyweight for a single
event, such as assuring the delivery of a single message. However, messages can
also be part of a more complex set of actions, and in that context it makes a great deal
of sense to include a message in a distributed transaction. For example, there may be
a sequence of events where upon the receipt of a message, a database must be
updated, and then a message sent to trigger some additional processing. The
application designer might choose to bracket these actions within a transaction, so
that if the message is not successfully delivered, all of the additional actions can be
rolled back. If a message is part of a transaction, then the acknowledgment semantics
are not used. The two models exist because there are a range of possible applications,

not all of which would require transactions.

This section describes the mapping bet ween the JIMS Message Acknowledgment and

the Notification Service.

2.6.1 Overview of Reliable Event Delivery with Event Acknowledgment

According to the JMS specification, reliable messaging with IMS Message

Acknowledgment shall satisfy the following conditions:
No lost messages
No duplicate delivery of messages

Preserve message order

However the Notification Service lacks the required acknowledgment functions to
satisfy these conditions. This specification adds the required acknowledgment
functions, called Event Acknowledgment, to the Notification Service so that the IMS

Message Acknowledgment can be mapped to the Notification Service.

25

To realize the Event Acknowledgment satisfying the conditions above, this
specification definesDel i ver yRel i abi | i ty QoS property, AckNot i f y interface,

SequenceNunber header field and Reliable Delivery Sequence.

Del i veryRel i abi | i ty QoS property specifies what reliable event delivery
mechanism is used. When the value Acknow edgnent is specified, the Event

Acknowledgment is applied to event delivery.

- AckNot i fy interface definesan acknow edge operation. It isinherited by
Struct uredPushSuppl i er ,Struct uredPul | Supplier,
SequencePushSuppl i er and SequencePul | Suppl i er interface to add the

acknow edge operation to their interfaces.

SequenceNunber header field indicates aserial number on each event. It isused

to check event order and duplication of same event.

Reliable Ddlivery Sequence defines a sequence of reliable event ddivery with the
acknow edge operation and the SequenceNunber header field. The Reliable
Delivery Sequenceis applied to event delivery between supplier (or proxy
supplier) and consumer (or proxy consumer) when the value of

Del i veryRel i abi | i ty property is Acknow edgnent .

2.6.1.1 Event Acknowledgment on Push Model

Figure 28 shows an overview of reliable event delivery with Event Acknowledgment

using the push model.

1. Push-style supplier (or proxy supplier) adds SequenceNurber header field

to an event.

2. Supplier sends the event to push-style consumer (or proxy consumer)

invoking push operation.

3. Consumer checks duplication of the received event using the

SequenceNunber .
4. Consumer holds the event in order specified by the SequenceNunber.
5. Consumer invokes acknow edge operation

6. Supplier removes the sent and acknowledged event.

26

2.6.1.2

Event Ack

(Proxy)PushConsumer Interface

(Proxy)PushSupplier

(2) push() with
SeguenceNumber

L
‘.‘ (Proxy)PushConsumer

|‘ (3) check dtplication

1) add with
)Se uenceNumber SequenieNumber
(4) hold in order
T Sy specified by
ackno
(6) remove ®) wiedge() Sequence Number

3

7.

(Proxy)PushsdppIier Interface
inheriting NotifyAck interface

with Event Acknowledgment

sul | operation of pulkstyle

Supplier adds SequenceNunber header field to an event.

Supplier sends the event to consumer as return value of invoked pul |

operation.

Consumer checks duplication of the received event using the

SequenceNunber .

Consumer holds the event in order specified by the SequenceNunber.

Consumer invokes acknowl edge operation.

Supplier removes the sent and acknowledged event.
(Proxy)PullSupplier

(1) pullQ)

(Proxy)PullConsumer

2) add (3) return of pull()
()Sequence with

Number SequenceNumber
(7|) remove (6) acknowledge()

(4) check dtﬁ)lication
with
SequenceNumber

(5) hold in order
specified b

Sequence Number

(Proxy)PuIISuprier Interface

inheriting Not
27

ifyAck interface

Figure 2-9 Event Acknowledgment on push model

2.6.2 Scope of Event Acknowledgment

Event Acknowledgment supports delivery of Structured Events and delivery of event

batches (sequence of Structured Events) for both the push model and the pull model.

Note: T he notification channel mechanismsfor translation of Typed events and untyped
events (i.e., syntax Any) from aproxy consumer to a proxy supplier, can be used to convert
such notifications to structured event syntax. Thus, it is sufficient to specify event
acknowledgment extensions only for Structured events and sequence of structured events.

Event Acknowledgment can be applied to any logical connection between a supplier
(or proxy supplier) and a consumer (or proxy consumer), even if the supplier or the

consumer is a Bridge for interworking with JMS (see Figure 2-10).

Applying Event Acknowledgment to all the logical connections at same time on an
event domain can realize end-to-end reliability between supplier and consumer. Each
Event Acknowledgment on a logical connection is managed independently. Figure
2-10 shows an example of Reliable Delivery Sequence with end-to-end reliability on an
event domain using the push model. Since the Reliable Delivery Sequence on the
logical connection 1 is managed independently from the next logical connection 2,
when “(1) push” operation is invoked, the event channel A may invoke “(2)
acknowledge” operation soon thereafter. The event channel A is not required to invoke
“(3) push’ operation or wait for “(4) acknowledge” operation on the next logical

connection before invocation of “(2) acknowledge”.

supplier or proxy proxy proxy proxy consumer or
Bridgeassupplier consumer supplier consumer supplier Bridge as consumer
Event Event
1) Channel [©) Channel)

A B
pusi| pusp| push|

@ @ ©
ack ack ack

L I S —

logical connection 1 logical connection 2 logical connection 3
.. P O 4

/ Lo

Reliable event delivery with Event
Acknowledgment can be applied

Figure 2-10 Event Acknowledgment on event domain in push model

Note: Whenthe Event Acknowledgment is used on alogical connection in an event domain,
the supplier (not proxy supplier) can create and add SequenceNunber header field (see

Section 2.6.3, “ Sequence Number Header Field”) to events for improvement of performance.
Becauseinsertion of SequenceNunber header field by proxy supplierwould requireal ot of

overhead.

28

2.6.3 Sequence Number Header Field

The bllowing definition is added to the CosNot i f ycat i on module for

SequenceNunber header field:

const string SequenceNunber = “SequenceNunber”;

/I SequenceNumber takes a value of type long.

The SequenceNunber header field is an event identifier defined as a standard
optional header field. The type of its associated value is | ong. When the Event
Acknowledgment is applied to event delivery, the supplier (or proxy supplier) adds the
header field to the variable header in the Structured Event before sending the event to
the consumer (or proxy consumer). In the case of delivery of an event batch, the
supplier adds the header field to only the first Structured Event in the sequence of
Structured Events. If the SequenceNunber header field was already added for
previous event delivery, the event channel overrides the SequenceNunber header

field with a new value. The consumer uses the SequenceNunber header field to:
Detect and remove duplicate events

Detect and correct invalid order of events

The SequenceNunber is an integer value which takes a value in the range 0..2%-1. It
is created and managed per each logical connection between supplier and consumer.
In the first event or event batch within the logical connection, SequenceNunber takes
the value 0. It is incremented (ex. 0, 1, 2, ..) for each event (in the case of delivery of
Structured Event) or for each event batch (in the case of delivery of sequence of
Structured Events) sent by the supplier within the logical connection. The next value of
2"-1in the increment is 0. Only when the logical connection is disconnected explicitly
by invocation of di sconnect operations, SequenceNunber for the logical

connection is reset to 0. Otherwise SequenceNunber is never reset.

Note—Theassociated value of theSequenceNunber header field takesapositive value or
0. However| ong typeisapplied to the valuerather thanunsi gned | ong for natural
mapping wit h Java. It isadesign policy of the Notification Service specification.

2.6.4 Notify Ack Interface

The JIMSMessageConsumner can explicitly acknowledge receipt of messages in both
synchronous and asynchronous messaging using the acknowl edge method of JMS
MessageObject. However the Notification Service lacks an operation which can be
mapped with the acknowl edge method of the IMS MessageObj ect . This

specification defines an additional interface, AckNot i f y, which has an

29

2.6.4.1 Acknowledge

acknow edge operation to be mapped with the acknowl edge method of the JMS
MessageObj ect.

This specification maps JMS messages with Notification Service’s Structured Events.
The acknowl edge operation is therefore added to the

Struct ur edPushSuppl i er, StructuredPul | Suppli er,
SequencePushSuppl i er , SequencePul | Suppl i er and their proxy interfaces

through inheritance of the AckNot i f y interface.

The bllowing types and interface are added to the CosNot i f yConm module.

typedef sequence<l ong> SequenceNunbers;
interface NotifyAck {
voi d acknow edge(SequenceNunbers sequence_numnbers);

}s

The St ruct ur edPushSuppl i er, StructuredPul | Supplier,
SequencePushSuppl i er and SequencePul | Suppl i er interfaces in

CosNot i f yCommmodule are changed (creating new versions) as follows, to inherit
the Not i f yAck interface. By this change, the Not i f yAck interface is also inherited
by the St ruct ur edPr oxyPushSuppl i er, Struct uredProxyPul | Suppli er,
SequencePr oxyPushSuppl i er and SequencePr oxyPul | Suppl i er interfaces

in CosNot i f yChannel Admi n module.

interface StructuredPushSupplier : NotifySubscribe, NotifyAck {
g -

interface StructuredPul | Supplier : NotifySubscribe, NotifyAck {
h -

interface SequencePushSupplier : NotifySubscribe, NotifyAck {
H

interface SequencePul | Supplier : NotifySubscribe, NotifyAck {

}s

The acknow edge operation in the Not i f yAck interface causes the supplier (or
proxy supplier) to acknowledge that the consumer (or proxy consumer) received the
events which the supplier sent previously. When the operation is invoked, the supplier

may remove sent events indicated by the SequenceNunber s input parameter, which

30

specifies values of the SequenceNunber header field in the received events by the

consumer.

A Consumer does not always need to invoke the acknowl edge operation after each
invocationof push or pul | operation. A Consumer may convey multiple
SequenceNunber values of received events to the supplier at once by one invocation

of acknowl edge operation after some invocations of push or pul | operations.
2.6.5 Reliable Delivery Sequence

To realize reliable event delivery with Event Acknowledgment, the Notification Service
supplier (or proxy supplier) and consumer (or proxy consumer) must support the
Reliable Delivery Sequence which detects a lost event (or event batch) at system

failure or communication error and recovers it.

2.6.5.1 Reliable Delivery Sequence for Push Model

The Reliable Delivery Sequence using the push model consists of the following steps:

1. The supplier sends events to the consumer by invocations of the push

operation of the consumer.

2. Thesupplier detects possibility, in the invocations of push operation, that the
events were lost at system failure or communication error using exceptions or
timeout of acknowledgment. The timeout means that the suppliers
acknowl edge operation is not invoked after the invocations of push
operation for a time which is specified by QoS parameter Ret ryl nt er val .

If the supplier does not detect the possibility of lost events, it jumps to step

@)

3. The supplier retries the invocations in the step (1) to re-send the events to
supplier.
When the invocations have failed again due to system failure or
communication error, the supplier repeats the same invocations until
succeeds in the invocations or the total number of retries specified by QoS
parameter Ret r i es is satisfied. The interval between original invocations and
first retry, or between retries is specified by QoS parameter

Retrylnterval .

4. The consumer checks the received events in duplication and order of event
using SequenceNunber header field.
If it is not received events previously, the consumer checks the order of the

events and stores them in persistent storage. If the order is invalid, the

31

consumer corrects the order at passing the events to next event delivery or
application.

If they are received events previously, the consumer ignores the events.

5. The consumer invokes acknow edge operation of the supplier to notify the
supplier of successful of the event delivery. The event channel removes the
events specified by the SequenceNunber s parameter of the acknow edge
operation from persistent storage. Even if the consumer detects possibility in
the invocations of acknowl edge operation that the acknowledgment was
lost at system failure or communication error using exceptions, the consumer
does not need to retry the acknowl edge operation in this step. Because if
the acknowledgment was lost, the supplier retries the push operation (see

step (2)). As the result, the consumer will execute this step again.

The retry count is managed per each logical connection. When invocation of
acknow edge operation is successful or the logical connection is disconnected

explicitly by invocation of di sconnect operations, the retry count is reset to 0.

2.6.5.2 Reliable Delivery Sequence for Pull Model

The Reliable Delivery Sequence using the pull model consists of the following steps:

1. The consumer receives events from the supplier by invocations of the pul |

operation of the supplier.

2. The consumer detects possibility, in the invocations of the pul | operation,
that the events were lost at system failure or communication error using
exceptions.

If the supplier does not detect the possibility of lost events, it jumps to step

@

3. The consumer retries the invocations in the step (1) to re-receive the events
from the supplier.
When the invocations have failed again due to system failure or
communication error, the consumer repeats the same invocations until
succeeds in the invocations or the total number of retries specified by QoS
parameter Ret r i es is satisfied. The interval between original invocations and
first retry, or between retries is specified by QoS parameter

Retrylnterval .

4. The consumer checks the received events in duplication and order of event
using SequenceNunber header field.

If it has not received events previously, the consumer checks the order of the

32

events and stores them in persistent storage. If the order is invalid, the
consumer corrects the order at passing the events to next event delivery or
application.

If they are received events previously, the consumer ignores the events.

5. The consumer invokes acknowl edge operation of the supplier to notify the
supplier of successful of the event delivery. The event channel removes the
events specified by the SequenceNunber s parameter of the acknow edge

operation from persistent storage.

6. If the consumer detects possibility in the invocations of acknowl edge
operation that the acknowledgment was lost at system failure or
communication error using exceptions, the consumer retries the invocation.
When the invocation has failed again due to system failure or communication
error, the consumer repeats the same invocation until succeeds in the
invocation or the total number of retries specified by QoS parameter Ret ri es
is satisfied. The count of retries for acknowl edge operation is individual from
the count of retry for pul | operation in step (3). The interval between original
invocation and first retry, or between retries is specified by the QoS parameter

Retrylnterval .

The retry count is managed per each logical connection. When invocation of
acknow edge operation is successful or the logical connection is disconnected

explicitly by invocation of di sconnect operations, the retry count is reset to 0.
2.6.5.3 Recovery in Failue of Retries
When the supplier (or proxy supplier) or the consumer (or proxy consumer) fails in all

the retries, the supplier or the consumer stops the event delivery on the logical

connection, and reports the unrecoverable failure to system administrators.

How to report and recover the failure is out of scope of the specification. The bllowing

recovery schemes are shown for example:
The system administrators resolve the failure by hand and then:

1. Reset the retry count and restart the event delivery on the logical connection,

or

2. Invoke disconnect operation for the logical connection and then invoke
connect operation to restart the event delivery (the SequenceNunber and

retry count are reset by the disconnect operation).

In the firstscheme, non duplication and event order semantics are preserved between
before the failure and after it. But in the second scheme, the semantics might be lost

between before the failure and after it.

2.6.6 QoS Properties for Reliable Event Delivery

The Event Acknowledgment uses three additional QoS properties,

DeliveryReliability, Retries andRetrylnterval .

2.6.6.1 DeliveryReliability

The Notification Service has no way to specify what mechanism is used for reliable
event delivery. The specification defines additional QoS property
Del i veryRel i abi | i ty to provide this way. Following definition is added to

CosNot i fycat i on module to define this QoS property.
const string DeliveryReliability = “DeliveryReliability”

const short None = O;
const short Acknow edgnent = 1;

The QoS property specifies a mechanism used by a given supplier (or proxy supplier)
and consumer (or proxy consumer) to realize reliable event delivery. Constant values to

represent the following setting are defined:
None— Any reliable delivery mechanism is not applied to event delivery

Acknowledgment — The Event Acknowledgment described in the specification is
gpplied to event ddivery

Table 2-8 shows possible combinations of related QoS properties when the

Del i veryRel i abi | i ty peroperty is set to Acknow edgnent .

Event Connection | Delivery Description
Reliability Reliability Reliability
combination1 BestEffort BestEffort | Acknowledgment | |mplementations may support these
combinations. But they can’t redize
combination2 BestEffort Persistent Acknowledgment | complete reliability.
Thiscombination hasno meaning and
combination3 Persistent BestEffort need nqt_be_s_u pporteq (according to
the Notificaition Service
specification).
combination4 Persistent Persistent Acknowledgment Implementations must support this
d combination for complete reliability.

Table 2-8 Combination of related properties for Event Acknowledgment

2.6.6.2 Retries

The following definition is added to CosNot i f ycat i on module for Ret ri es QoS

property:

const string Retries = “Retries”
/'l Retries takes on a vlaue of type |ong

The QoS property Ret ri es specifies minimum number of retries in the Reliable

Delivery Sequence. The type of associated value is| ong.

2.6.6.3 Retrylnterval
The following definition is added to CosNot i f ycat i on module for Ret ryl nt er val
QoS property:

const string Retrylnterval = “Retrylnterval”
/I RetryInterval takes on a vlaue of TimeBase::TimeT

The QoS propertyRet ryl nt er val specifies interval between original invocation and

first retry or between retries. The type of associated value is Ti neBase: : Ti neT.

2.6.6.4 Supported level of the QoS Properties

Supported level of the QoS property is described in following table.

Property Per-M essage Per-Proxy Per-Admin Per-Channel
DeliveryReliability X X X
Retries X X X
RetryInterval X X X

Table 2-9 Levels at which setting the QoS properties for Reliable Event Deliveryis supported

The admin level setting overrides the channel level setting, and proxy level setting
overrides the admin level or channel level setting. Note that their properties have no

meaning if set on a per-message basis.

2.6.7 Mapping between Event Acknowledgment and JMS Message

Acknowledgment

The JMS Message Acknowledgment is mapped to the Notification Serviceés Event
Acknowledgment. On one hand the JMS MessageConsuner has sending functions
of acknowledgment, on the other hand the JMS MessagePr oducer does not have
received functions of acknowledgment. Thus the acknowledgment functions between

JMS and Notification Service is mapped on only consumer side Bridge.

35

The JMS MessageConsuner has two kinds of message delivery mode:

asynchronous delivery with onMessage method and synchronous delivery with

recei ve or recei veNoWai t method. The asynchronous delivery is mapped to the

Notification Service’s push model as follows:

push model JMS asynchronous delivery
(XXXXXX: Structured or Sequence)

push operation onM essage method

in XXXXXPushConsumer interface without M essage Acknowledgment
push operation onMessage method

in XXXXXPushConsumer interface and withDUPS OK_ACKNOWLEDGE
acknowledge operation onM essage method

in XXXXXPr oxyPushSuppl i er
interface

with AUTO_ACKNOWLEDGE

push operation

in StructuredPushConsumer interface and
acknowledge operation

in StructuredPr oxyPushSuppl i er
interface

onM essage method and
acknowledge method
of CLIENT_ACKNOWLEDGE

Table 2-10 Asynchronous delivery mapping

proxy supplier proxy consumer Message Consumer JMS application
push(). onMessage()
_acknowledge function
| (DUPS_OK_ACK
acknowledge() 470 | | or AUTO_ACK) IMS Message
T e 1| acknowledge()
CLIENT ACK

Bridge |

Figure 2-11 Asynchronous delivery mapping

The synchronous delivery is mapped to the Notification Service’s pull model as follows:

waiting pull model JMS synchronous delivery

policy (XXXXXX: Structured or Sequence)

waiting pull operation receive method

for inXXXXXPr oxyPul | Suppl i er without M essage Acknowledgment
message | interface

pull and acknowledge operations
inXXXXXPr oxyPul | Suppl i er
interface

pull and acknowledge operations
in StructuredPr oxy Pul | Suppl i er
interface

receive method

withDUPS OK ACKNOWLEDGE
receive method
withAUTO_ACKNOWLEDGE
receive method and

acknowledge method

of CLIENT_ACKNOWLEDGE

36

no
waiting

try_pull operation receiveNoWait method

in XXXXXPr oxyPul | Suppl i er without M essage Acknowledgment

interface

try_pull and acknowledge operations receiveNoWait method

iNXXXXXPr oxyPul | Suppl i er withDUPS OK_ACKNOWLEDGE

interface receiv eNoWait method
withAUTO_ACKNOWLEDGE

try_pull and acknowledge operations receiveNoWait method and

in StructuredPr oxyPul | Suppl i er acknowledge method

interface of CLIENT_ACKNOWLEDGE

Table 2-11, Synchronous delivery mapping

proxy supplier proxy consumer Message Consumer JMS application
pull() or - - receive() or <
try_pull () receiveNoWait()
_acknowledge function
" (buPs_OK_ACK
acknowl edge() L or AUTO_ACK) JMS Message
T o - | acknowledge()
CLIENT_ACK

Bridge

Figure 212 Synchronous delivery mapping

When the JMS MessageConsuner works with DUPS_OK_ ACKNOW.EDGE or
AUTO_ACKNOWLEDGE mode, the Bridge as Notification Service consumer sets the
value of SequenceNunber header field of received event (or event batch) to the
SequenceNunber s input parameter and invokes acknow edge operation whenever
an event is received. When DUPS_OK_ACKNOWLEDGE is specified, the Bridge may

omit the check of duplicated events.

When the JMS MessageConsumer works with CLI ENT_ACKNOW.EDGE mode, the
Bridge as Notification Service consumer sets one or more values of
SequenceNunber header field of received events (or event batchs) to the
SequenceNumber s input parameter and invokes acknow edge operation only when

the JMS application calls the acknow edge method of the IMS Message(hj ect .

When Notification Servicés Event Acknowledgment is applied for mapping of JIMS
Message Acknowledgment, following conditions must also be satisfi ed to apply

combination 4 of the related QoS properteis (see “2.6.6.1 DeliveryReliability”):
TheEvent Rel i abi | i t y QoS property isset to Per si st ent, and

TheConnecti onRel i abi | i ty QoS property issetto Per si stent.

Note — When the Notification Service push model ismapped withthe IMS
DUPS_OK_ACKNOW.EDGE or AUTO_ACKNOW.EDGE mode, invokingacknowledge

37

operation is actually not needed. Because the supplier can know that sent event reached the
consumer by the end of pushoperation. But the specification forcesconsumer to invoke
acknowledge operation to realize consistent design of operations among mapping with
DUPS_OK_ACKNOW.EDGE, AUTO_ACKNOW.EDGE andCL | ENT_ ACKNOW.EDGE mode,
and consistent design of operations among push and pull model.

2.7 Transactional Support

2.7.1 Asynchronous Transactional Model
To maintain the transaction semantic from a Notification Service client to a JMS client,
at least three different transactions are needed:

1. One transaction (T1) that involves a natification client, its transactional

resources (e.g a database) and the notification service.

2. One transaction (T2) that involves the Notification Service , the bridge and the

JMS implementation. This transaction will be named Routing transaction.

3. One transaction (T3) that involves a JMS client, its transactional resources

(e.g a database) and the JMS implementation.
These transactions are tied by precedence rules:

When Sending an event from an event supplier to a JMS consumer the precedence

rules imply that :
The transaction T3 will start only and only if T2 commits,
T2 will start only and only if T1 commits.

Each time one of these transactions commits the data sent in its scope is

moved toward its next destination.

If one of those transactions rolls back, the data sent in its scope will be put
back into its initial destination. Subsequent trials will take place to send the

data to its next destination later.

These rules imply that once data is sent from the supplier, it will be conveyed to its final
destination that is the consumer, guaranteeing the transaction semantic from

end-to-end.

When Sending a JMS message from a JMS sender (or publisher) to an event
consumer the precedence rules are reversed, meaning that T1 will not take place only

and only if T2 commits and T2 will not take place only and only if T3 commits.

Although the usage of end-to-end transaction semantic is recommended this
specification does not mandate it. This specification covers the routing transaction (T2)
only which implies that a notification service client can send or receive events in a
non-transactional context, likewise the JMS client can send or receive JMS messages
in a non-transactional context, but the data sent between notification service and JMS

may be sent in the routing transaction context.

The rational behind the use of the routing transaction without necessarily using
transactions at the Notification Service and JMS client sides is that the Notification
Service to JMS communication portion is hidden and transparent to the application
client developers preventing them from performing any recovery action if a failure, that

will lead to data loss, occurs.

Notification Bridge
Service IMS

Routing

Transaction Persistent

support

Figure 2-13 Routing Transaction Scope

To guarantee the ACID transactional properties of the Routing Transaction it is
expected that the notification service and the JMS implementation rely on a

transactional persistent support.

Applying end-to-end transaction semantic and using transactional persistent support

in an effective way will guarantee the exactly-once delivery QoS.

The Figure 213 denotes the Routing transaction scope. This transaction involves the
bridge, the Notification Service, the JMS service provider and the Persistent Supports
used by them. All those components should be coordinated by a ¢éngle root

coordinator which is hosted by a Transaction Service.

It is also expected that the interposition schema is applied between OTS (Object
Transaction Service) on the CORBA side and JTS (Java Transaction Service) on the
Java side. The interoperability between OTS and JTS is guaranteed by the fact that JTS
is mapped from OTS and its usage of IIOP as an underlying transport protocol to

propagate transaction context between OTS and JTS.

Both JMS and Notification specifications provide a model that outlines how a
messaging system should behave in a transactional environment. The transactional
roles of the JMS, the Bridge and the Notification Service are driven by the following

considerations:

39

The Natification Service specification allows a channd and its related proxy

objectsto initiate a transaction and assumes the transaction client role.

The Notification Service specification allowsachannel and itsrelated proxy queue

objects to assume the Resource object role.
The IMS service provider doesn't support the transactiona client role.

The Bridge should be as light as possible, meaning that it should not be assigned
complex transactiona behaviors. This assertion will promote the bridge adoption
by the industry.

2.7.2 Supported configurations

By combining the communication consistency checking defined in Table 2-1and the
state of the art of the transactional role of JMS and Notification, the only case where
events can be sent from Notification service to JMS in transaction scope is the case
where the Channel pushes the data to the bridge and the bridge pushes it to JMS.
Likewise, the only case where data can be sent from JMS to Notification service in
transaction scope is the case where the Channel pulls data from the bridge that will

synchronously pull it from JMS.
In both cases the Notification Service assume the Routing Transaction client role.

The Figure 214 summarizes the supported transactional configurations. The

Transactional Roles of different components are detailed in the next sections.

Dataflow Data flow

4

—>

MS Notification

Service

Resource Resource XAResource

Notification

Current ion Current
Coordinator Coardinator

o

User Transaction

Figure 214 Supported transactional configuration

2.7.3 Notification Service Transactional Role

When events are sent in the routing transaction scope, the Notification Service

assumes always the transaction client and recoverable server roles, and as such the

Notification Service: Starts a transaction may use the OTS Cur r ent interface; Enlist

a Resource object that wraps events queues using the OTS Coor di nat or interface.

The notification service may also use direct transactional context management, by

using the OTS Control interface, to manage the routing transaction.

The Notification Service queue managers participate into the two-phase commit
completion and the recovery protocols by implementing the Resource Object interface
and the transactional recovery protocol as it is specified in the OTS specification. The
behavior of the Notification Service Resource Objects depends on whether the

Notification Service is the source or the sink of the data.

2.7.3.1 Data Flowing from Notification Service to JMS

When the Notification Service sends one or several events in to the routing transaction
scope, the OTS transaction identifier is propagated implicitly to JTS in the Propagation

context.

If the events are sent successfully the Notification Service asks the Transaction
Service to commit the routing transaction. When the root transactional coordinator
decides definitively to commit the routing transaction the events associated to it are

removed from Notification Service events queue.

If the events were not correctly sent or if the root transactional coordinator rolls back
the routing transaction for any other reason, the events sequences associated with it
will remain in events queue, these events will be sent later when the notification service

will start a new transaction.

2.7.3.2 Data flowing from JMS to Notification Service

When the Notification Service receives one or several events in to the routing
transaction scope, the OTS transaction identifer is propagated implicitly to JTS in the

Propagation context.

If all the events are received and stored into the transactional persistent support
successfully the Notification Service asks the Transaction Service to commits the
routing transaction. When the root transactional coordinator decides definitively to
commit the routing transaction the events associated to it are durably added in to the

Notification Service events queue.

If the events were not correctly received or if the root transactional coordinator rolls
back the routing transaction for any other reason, the events that are potentially

received in its scope will be deleted from the events queue.

41

2.7.4 Bridge Transactional Roles

In order to keep the bridge simple, one design principle was to forbid attributing to it the
transaction client role. Furthermore, this specification does not define any recoverable

state and does not implement any transactional change at the Bridge level.

The bridge does not participate to the transaction completion protocol, but it can force
the transaction roll back. A typical case is when the bridge is unable to carry the data
to the JMS or to the Notification Service. To rollback the transaction the bridge may
use either the JTA/JTS or OTS interfaces. Therefore, the bridge is assuming the

transactional object role.
2.7.5 JMS service provider Transactional Role

The JMS specification does not attribute any transaction client role, meaning that the

JMS service provider is not allowed to initiate or start any transaction.

The JMS specification assigns to JMS a Resource Manager role, meaning that it can

integrate the sphere of control of the routing transaction by enlisting its transactional
queue manager using the j avax. t ransacti on. Transact i on interface and
implements the transactional semantic on the message queues. The JMS queue
managers participate into the two-phase commit completion and the recovery
protocols by implementing the j avax. t ransacti on. xa. XAResour ce,

j avax. j ms. XAConnecti on and the j avax. j ns. XASessi on interfaces and the

transactional recovery behavior as it is specified in the JTA specification.

The behavior of IMS XAResour ce objects depends on whether the JMS Service is the

source or the sink of the data.

2.7.5.1 Data Flowing from Notification Service to JMS

Due to the considerations described in section2.7.2 only the notification service is the
component that is allowed to initiate routing transactions. When the Notification
Service sends successfully events that are translated to messages to JMS and
commits the routing transaction all the messages are durably stored in the JMS

message queues and the transactional persistent support.

If the messages were not correctly sent or if the root transactional coordinator rolls
back the routing transaction for any other reason the messages are potentially sent in
the routing transaction scope will be removed from the JMS message queue and the
transactional persistent support. The messages will be received later when the

notification service will start a new transaction.

42

2.75.2

Data Flowing from JMS to Notification Service

When the bridge pulls JMS in to the scope of the routing transaction the OTS
transaction identifier is propagated implicitly to JTS in the Propagation context. The
propagation context will be in turn propagated to the JMS XAResour ce Object that

encapsulates the message queues.

If the JMS returns successfully the messages in to the routing transaction scope and
if the notification service receives them successfully the Notification Service asks the
Transaction Service to commits the routing transaction. When the root transactional
coordinator decides definitively to commit the routing transaction the events
associated to the routing transactions are durably removed from the JMS message

queue.

If the translated messages to events were not correctly received into the notification
service or if the root transactional coordinator rolls back the routing transaction for any
other reason, the messages that are potentially sent in the routing transaction scope

will remain in the JMS message queue.

2.7.6 Bridge Transactional Monitoring

2761

Notification Service QoS and Admin Property Extensions

The notification service specification status that in order to support transactional event
transmission, an implementation of the Notification Service should support
implementations of the various proxy interfaces that are POA objects that support
TransactionPolicy. Unfortunately the specification was not precise enough to define
the way an application program will dynamically control the transactionality of its proxy
in the notification service. Furthermore, the specification did not offer to the developer
the way to specify the number of events that are sent or retrieved by the event channel
in the scope of a transaction. To make up for those gaps we propose to extend the
Notification Service quality of services and administration properties Framework by a

new QoS and three administrative properties.

Fortunately, the Notification Service QoS and Admin frameworks are flexible enough to
add new QoS and AdminProperty values without changing the Notification Service
interfaces. Therefore the new QoS and AdminProprerties should be seen as an
extension rather then a modification of the Notification Service Interfaces. These new

QoS and AdminProprerties are:

Enabl eTr ansact i on QoS is a boolean that enables the notification

service client to activate or deactivate the support of the transaction at

Notification Service object levels. When this QoS is enabled and applied on
the ProxyPushSuppl i er , ProxyPul | Consuner,

St ruct ur edPr oxyPushSuppl i er ,

Struct ur edPr oxyPul | Consuner and TypedPr oxyPushSuppl i er,
TypedPr oxyPul | Consumer® levels it will allow the later to behave as a
transaction client. When this QoS is disabled and applied on those various
types of proxy their transactional client behavior is disabled. This is their
default behavior. When the EnableTransaction QoS is enabled at the

Pr oxyPushConsuner, ProxyPul | Suppli er,

St ruct ur edPr oxyPushConsumer, Struct uredPr oxyPul | Suppl i er
TypedProxyPushConsumer®, and TypedPr oxyPul | Suppl i er 8, the
proxies’ implementations will set their TransctionalPolicy to

Requi re_shared. By default this QoS is disabled, meaning that for the

Pr oxyPushConsumer various types and the Pr oxyPul | Suppl i er
various types the proxies’ POAs TranactionalPolicy attributes are set to

A | ows_none.

If this QoS is applied at the Suppl i er Adm n, Consuner Admi n,
TypedSuppl i er Admi n®or TypedConsumer Admi n® levels each of their
proxy child will enable individually this QoS at their level according to their
types. If this QoS is applied at the channel, respectively TypedChannef level
all the Suppl i er Adm n and the Consuner Admi n, respectively, all the
TypedSuppl i er Adm n and the TypedConsuner Adni n objects will

enable this QoS, subsequently all the proxy objects apply it individually.

Whenever the Enabl eTr ansact i on QoS is enabled the

Event Rel i abi |l ity andthe Connecti onRel i abilty QoSs will be
setup automatically by the Notification Service to “Persistent”. Likewise, when
this QoS is disabled the Event Rel i abi | i ty and the

Connecti onRel i abilty are setto “Best Ef fort”

Transacti onEvent s AdminProperty defines the number of separate
events sent in the scope of a transaction. The scope of this property is the
Pr oxyPushSuppl i er, ProxyPul | Consuner ,

St ruct ur edPr oxyPushSuppl i er,

% Although this specification is not directly concerned by the generic and Typed Events it specifies the transactional
behavior of their proxies. This is because this section is aiming to update the section 2- 12 of the Notification Service
specification.

StructuredProxyPul | Consuner, ,TypedPr oxyPushSuppl i er and
TypedPr oxyPul | Supplier.

Transact i onEvent Sequences’ AdminProperty defines the number of
event sequences sent in the scope of a transaction. The scope of this property
is the SequencePr oxyPushSuppl i er and

SequencePr oxyPul | Consunrer .

Transact i onTi neout adminProperty defines the timeout period in number
of seconds associated with routing transaction created. If the parameter has a
non-zero value n, then the created routing transaction will be subject to being
rolled back if they do not complete before n seconds after their creation If its
value is zero, then no application specified time-out is established. This

adminProperty is aimed to be mapped on the unsigned long input parameter of
the OTS Current . set _ti neout () operation. This adminProperty is

applied on all the proxies that behave as transaction clients.

When those adminProperty are applied at the Suppl i er Adni n, Consuner Admi n or
Event Channel level they will affect only the proxies with transaction client behavior.
The Table 2-12 summarizes the scope of the new QoS and AdminProperties at the

proxy level. It also summarizes proxies’ transactional roles. Empty Cells denotes that

QoS is not applicable.

QoS AdminProperties
Enable |Transaction Transaction Transaction
Proxy Types Transactio] Timeout EventSequenc Events
es

ProxyPushSupplier, X X X
ProxyPullConsumer, X X X

[}

E StructuredProxyPushSupplier X X X

5

S StructuredProxyPullConsumer X X X

o

i)

‘g SequenceProxyPushSupplier X X X

2

o

| SequenceProxyPullConsumer X X X
TypedProxyPushSupplierr®, X X X
TypedProxyPuIIConsumer6 X X X
ProxyPushConsumer X
ProxyPullSupplier X

o | StructuredRroxyPushConsumer X

g

g StructuredProxyPullSupplier X

i

é SequenceProxyPushConsum X

Q

g |er

o

'_
SequenceProxyPullSupplier X
TypedProxyPushConsumer6 X
TypedProxyPuIISuppIier6 X

Table 2-12 New Notification Service QoS and AdminProperties scope

2.7.6.2 Bridge Transaction Management Interface

The Tr ansact i onManagenent interface provides the bridge application clients the
ability to enable and disable automatically the routing transactions. This interface is

optionally inherited by the Bridge interface.

This interface contains two operations: enabl e_t ransact i on() and

di sabl e_transacti on().

2.8 Conformance

The invocation of theenabl e_t r ansact i on operation will enable the proxies with a
transaction client behavior (St r uct ur edPr oxyPushSuppl i ers,

Struct uredPr oxyPul | Consuner , SequencePr oxyPushSuppl i er ,
SequencePr oxyPul | Comsuner) to start routing transactions and manage their
events queues as OTS recoverable objects. It also enables the bridge EndPoint
objects that are connected to the notification service to set their Transactional POA

Policies to Requi r e_shar ed. The EndPoint objects affected by this operation are:
St ruct ur edPushConsuner,
SequencePushConsuner,
Struct uredPul | Supplier,
SequencePul | Supplier.

This operation takes as an input the number of events sent in the scope of the routing

transaction and the routing transaction lifetime.

The invocation of the di sabl e_transacti on operation will disable subsequent

routing transactions.

The Transaction mapping capabilities, specified in Section 2.7, are an optional
conformance point for this specification. All other interfaces defined in this

specification are required to be implemented for conformance to this specification.

{ Deleted: <#>1 }

Formatted: Bulletsand Numbering}

47

3 Bridge Interfaces

This section describes the semantic and the behavior of the interfaces which make up

the NS -JMS bridge. All the data structures and the interfaces are defined in the

CoSBridgeAdmin module.

3.1 CosBridgeAdmin Module

The CosBri dgeAdnmi n module defines the Ext er nal EndPoi nt data type, In v

addition, this module provides declarations for administrative interfaces which are

defined for managing the Bridge Life cycle.

Note that the EndPointSender and EndPointReeceiver described in section 2 are

implementation objects, therefore they are not modulised in the public IDL files.

#i fndef _COS_BRI DGE_ADM N_
#define _COS_BRI DGE_ADM N_

#i ncl ude <orbdefs.idl>

F#include <CosNotifyChannel Admi n.idl >

Deleted: , along with
EndPointSender and
EndPointReceiver types

/1

Deleted: #i ncl ude
<CosNoti fyComm i dl >

#pragma prefix "ong.org"

nmodul e CosBri dgeAdmni n
{
enum Ext er nal Endpoi nt Rol e
{
SOURCE,
SI NK

I

enum JMSDest i nati onType

{
QUEUE,

Deleted: #i ncl ude
<CosEvent Domai nAdmi n. i dl
>

TOPI C

b
enum MessageType
{
JMS_MESSAGE,
STRUCTURED_EVENT,
SEQUENCE_EVENT
b
struct JMSDestination
{
JMSDest i nati onType destination_type;
string destination_nane;
string factory_nane;
b
enum Fl owStyl e
_{
_ PUSH
—PUL
b

uni on External Endpoi nt Connector switch (MessageType)

{
case JMS_MESSAGE: JMSDestination destination;

default: GosNotifyChannel Adm n:: Channel | D channel _i d;

b
struct External Endpoi nt
{
Ext er nal Endpoi nt Rol e rol e;
Ext er nal Endpoi nt Connect or connect or;
A\ 4
Fl owStyl e style;
MessageType type;
b
enum Ext er nal Endpoi nt Er r or Code
{
I NVALI D_CHANNELI D,
I NVALI D_JMSDESTI NATI ON,
M SMATCH_ENDPOI NTROLE_NOTI FSTYLE
b

struct External Endpoi nt Error

{

Ext er nal Endpoi nt Rol e rol e;

Deleted: CosEvent Domai nAd
mn::NotificationStyle
styl e;

49

Ext er nal Endpoi nt Er r or Code code;
b

typedef sequence<Ext ernal Endpoi nt Error > Ext er nal Endpoi nt Err or Seq;

exception Invali dExternal EndPoi nts

{

Ext er nal Endpoi nt Error Seq error;

s

typedef | ong Bridgel D
typedef sequence<Bridgel D> Bri dgel DSeq;

exception BridgeAl readyStarted {};
exception Bridgelnactive {};
exception BridgeNot Found {};

Deleted: enum
Endpoi nt Recei ver Typef
{1

STRUCTURED_PUSH_CONS,
SEQUENCE_PUSH_CONS, 1
STRUCTURED_PULL_CONS, 1
SEQUENCE_PULL_CONS, 1
MESSAGE_LI STENER, 1

MESSAGE_CONSUVERY
b

interface BridgeFactory;

interface Bridge

Deleted: uni on
Endpoi nt Recei ver switch
(Endpoi nt Recei ver Type) |
{1

case
STRUCTURED_PUSH_CONS:
CosNoti fyConm : Structure
dPushConsuner
structured_push_consuner
il

case
SEQUENCE_PUSH_CONS:
CosNot i f yConm : SequenceP
ushConsumner
sequence_push_consumer; 1

case
STRUCTURED_PULL_CONS:
CosNoti fyConm : Structure
dPul | Consumer
structured_pul | _consuner

{
readonly attribute External Endpoi nt end point_receiver;
readonly attribute External Endpoi nt end_poi nt _sender;
voi dgstart_bridge() rai ses (BridgeAlreadyStarted, |nvali dExternal EndPoints);
voi d stop_bridge () raises (Bridgelnactive);
status get_status();
voi d destroy ();
b

interface BridgeFactory

{

Bri dge create_bridge (in External Endpoi nt source, in External Endpoint sink,

out Bridgel D id)

1

rai ses (IlnvalidExternal EndPoints);
Bridge get_bridge_with_id (in BridgelD id)
rai ses (BridgeNot Found);
Bri dgel DSeq get _al | _bridges();
b

#endi f

il 10
Deleted: enum
Endpoi nt Sender Typef

{1

STRUCTURED_PUSH_SUPL, 1

SEQUENCE_PUSH_SUPL, 1
.12

Deleted: uni on
Endpoi nt Sender switch
(Endpoi nt Sender Type) 1
{1
case
STRUCTURED_PUSH_SUPL: Cos
Not i fyComm : Struct uredPu

shSupplier 13
Deleted: readonly
attribute

Endpoi nt Recei ver

end_poi nt _receiver;
readonly attribute

Endpoi nt Sender

end_poi nt _sender;

| Deleted: st art }

| Deleted: st op }

3.1.1 ExternalEndPoint

Ext er nal EndPoi nt s are abstract entities that represent the sender and the

receiver of the data through the NS-JMS bridge. These entities are represented by a

data structure Ext er nal EndPoi nt which specifies :
1. the role of the external end point which can be either a Source or a Sink of data

2. the nature of the external end point, be it a JMS destination or an
Event Channel

3. the Notification style used by the Ext er nal EndPoi nt , which can be either

a Push or a Pull.

4. the type of message that it handles. This type can be either a JMS message,

a structured event or a sequence of the structured events.

Each of the previous points is described by a Ext er nal EndPoi nt field in the

structure.

The following subsections describe briefly those fields.

3.1.1.1 ExternalEndpointRole

The Ext er nal Endpoi nt Rol e is an enumeration that describes the role of the
Ext er nal EndPoi nt. The enumeration is made by the following values: {SOURCE,

SINK};

3.1.1.2 ExternalEndpointConnector

The Ext er nal Endpoi nt Connect or is an IDL union structure that represents
exclusively a JMSDest i nati on or an EvenChannel . If the

Ext er nal Endpoi nt Connect or handles a JM5_MESSAGE message type it refers
toa JMSDest i nat i on. If it handles a structured event or a sequence of structured

events it refers to an Event Channel .
The JMSDest i nat on is a data structure that includes :

1. The JMSDest i nat onType, which is an enumeration that can be either a

Queue ora Topi c,
2. a string that specifies the destination name,

3. a string that specifies the JMS factory name.

51

3.1.1.3 MessageType

3.1.2 Bridge Interface '}

The Event Channel is represented by its identifier, the

CosNot i f yChannel Admi n: : Channel | D.

The MessagaType specifies the type of messages that can be processed by the
bridge. The MessageType is an enumeration that can be either a JMS_MESSAGE, a
STRUCTURED_EVENT or SEQUENCE_EVENT.

3.1.2.1 start bridge

The Br i dge interface encapsulates the behaviors supported by a NS -JMS bridge

instance.

Each instance of the Bri dge interface has two Ext er nal EndPoi ntyeadonly

attributes _that describes JMS and Notification service desstinations :, Due to the

architectural restriction described in section 2.3this interface does not allow the

creation of new Endpoint instances.

The Br i dge interface supports operations that:
1. activates the Bridge instance to start forwarding and transforming data,
2. disactivates the Bridge instance,
3. obtains the status of the bridge for the administration purposes,

4. destroys the Bridge instance.

\

3.1.2.2 stop bridge

Thest art _bri dge operation activates the bridge in order to receive and forward data.

This operation maps on the Proxy's connect _ operation on the Notification Service

side and on the j avax. j ms. Connecti on. st art operation on the JMS side to

initiate the JMS Connection's delivery of incoming messages.

Deleted: <#>EndPointSender
interfacef

The EndPoi nt Sender interface
connects and fits the

Ext er nal EndPoi nt type when
the later behaves as data Consumer.
The EndPoi nt Sender behaves as
data supplier. Depending on the
values of the

CosEvent Domai nAdmi n: : Not i
ficationStyle andthe
MessageType fields, the

EndPoi nt Sender can be either :
<#>CosNot i f yConm : Struct ur
edPushSuppl i er if the
CosEvent Domai nAdmi n: : Not i
ficationStyle andthe
MessageType of the

Ext er nal EndPoi nt values are
respectively PUSH and
STRUCTURED_EVENT. This means
that the EndpPoi nt Sender Type
is

STURCTURED_PUSH_SUPPLI ERY
<#>CosNot i f yConm : Sequence
PushSuppl i er if the

CosEvent Domai nAdmi n: : Not i
ficationStyle andthe
MessageType of the

Ext er nal EndPoi nt values are
respectively PUSH and
SEQUENCE_EVENT . This means that
the EndpPoi nt Sender Type is
SEQUENCE_PUSH_SUPPLI ER.Y
<#>CosNot i f yComm : Structur
edPul | Suppl i er if the
CosEvent Domai nAdmi n: : Not i
ficationStyle andthe
MessageType of the

Ext er nal EndPoi nt values are
respectively PULL and
STRUCTURED_EVENT. This means
thatthe EndpPoi nt Sender Type is
STURCTURED_PULL_SUPPLI ERY
<#>CosNot i f yComm : Sequence
Pul | Suppl i er ifthe

CosEvent Domai nAdmi n: : Not i

ficationStyle andthe (1]

Formatted: Bulletsand Numbering}

When the st art _br i dge operation is successfully executed the bridge state

Deleted: two }

becomes st ar t ed. Restarting an already started bridge raises the

Bri dgeAl readySt art ed exception.

)

Deleted: EndPoi nt Sender,
EndPoi nt Recei ver both of them
exist upon creation of the bridge

\

Deleted: start

(S

|

=

Formatted: Bulletsand Numbering

[

Deleted: start

Deleted: start

When a Bridge is created it is in st opped mode.. The st op _br i dge operation

Deleted: stop

A

Formatted: Bulletsand Numbering

deactivates the bridge. That means that no messages are being delivered to it. This \{

Deleted: st op

-

52

3.1.2.3 get_status

3.1.2.4 destroy

operation maps on the Proxy’s disconnect _ operation on the Notification Service

side and on the j avax. j ms. Connecti on. st op operation on the JMS side.

Deleted: st op }
When the st op_br i dge operation is successfully executed the bridge state

becomes st opped. Stopping an inactive bridge raises the Bri dgel nacti ve

exception. -
’/{ Formatted: Bulletsand Numberlng]

The get _st at us operation returns the current state of the bridge which can be either

in st opped orinastarted mode. The state of the bridge is not necessarily

persistent.
‘/{ Formatted: Bulletsand Numbering}

The dest r oy operation destroys the Bridge instance. The EndPoi nt Recei ver and
EndPoi nt Sender implementations invoke the disconnect operation on the
corresponding Notification Service and invoke the stop operation on the JMS side.

When those operations are successfully executed both of the end points are

I .
destroyed /{ Formatted: Bulletsand Numbering]

3.1.3 Bridge Factory Interface

3.1.3.1 create_bridge

A Bri dgeFact ory is responsible for the creation of Bridge objects based on initial

parameters. In order to create a bridge, it is necessary to have the identifier of an

existing Notification Service event channel and a JMS destination information. -
/ Formatted: Bulletsand Numberlng}

The cr eat e_br i dge operation creates new instances of NS-JMS bridge. At creation
time, the client must specify two external points. One external point must represent an
Event Channel Instance the other one must represent a JMS destination.
Furthermore, the external points information must be consistent with the
communication consistency checking table defined in section 2.2. For example,
connecting an external point behaving as an Event Channel , assuming the Source
role and using the PUSH Not i f ySt yl e with an external point behaving as a
JMBDest i nat i on, assuming the Sink role and using the PULLNot i f ySt yl e is not

consistent.

The create_bridge operation raises the | nval i dExt er nal EndPoi nt s exception

when an inconsistent external endpoint is passed as input parameters.

If no exception is raised, the cr eat e_br i dge operation will return a reference to a

new bridge and will assign to this new bridge a unique numeric identifier. This identifier

is returned as an output parameter. -
/ Formatted: Bulletsand Numbermg}

3.1.3.2 get_all_bridges

The get _al | _bri dges operation returns a sequence of all of the unique numeric

identifiers corresponding to NS-JMS bridge instances, which have been created by the

Bridge factory. ‘/(Formatted: Bulletsand Numbering}
3.1.3.3 get_bridge_with_id

The get _bri dge_wi t h_i d operation returns a reference to the Bridge object
identified by the supplied bridge id. If the bridge cannot be found, then the

Br i dgeNot Found exception is thrown.
3.2 BridgeTransactionMgmt module

The Bri dgeTr ansact i onMgnt module defines a single

Transact oi nManagenent interface.
3.2.1 TransactionManagement interface.

The Tr ansact oi nManagenent interface is optionally inherited by the Bridge
interface. It manages the activation and the disactivation of the routing transaction.
This interface is made up by two operations: enabl e_t ransacti on and

di sabl e_transaction.

nmodul e BridgeTransacti onMgnt

{
exception UnsupportedTransaction {};
exception TransactionAl readyActive {};

exception Transacti onActive {};

i nterface Transacti onManagenent

voi d enabl e_transaction (in unsigned | ong events, in unsigned | ong timeout)

voi d di sabl e_transaction() raises (TransactionActive) ;

rai ses (UnsupportedTransacti on, Transacti onAl readyActive);

b

3.2.1.1 enable_transaction
The enabl e_transacti on operation configures the proxies, namely the
Struct uredPr oxyPushSuppl i ers, StructuredProxyPul | Consurer ,
SequencePr oxyPushSuppl i er, SequencePr oxyPul | Consuner with a
transactional client behavior. It allows also those proxies to manage their events
queues as OTS recoverable objects.
This operation sets Enabl eTr ansact i on new Notification Service QoS to true. It
configures the bridge EndPoint objects, namely the St r uct ur edPushConsuner ,
SequencePushConsuner , Struct ur edPul | Supplier,
SequencePul | Suppl i er that are connected to the notification service to set their
Transactional POA Policies to Requi re_shar ed.
This operation takes as an input parameter the number of events sent in the scope of
the routing transaction. When the bridge convey event sequences, this input
parameter denotes the number of event sequences, meaning that the total number of
events sent in the routing transaction scope is obtained by multiplying the number of
events within a sequence by the value of the input parameter. The number of events,
respectively, the number of event sequences sent in the scope of the routing
transaction are mapped on the new notification service Tr ansact i onEvent s,
respectively, Tr ansact i onEvent Sequences AdminProperties.
The enabl e_t ransact i on operation takes also as an input parameter the lifetime
of the routing transaction. The lifetime of the routing transaction is mapped on the
Notification Service Tr ansacti onTi meout AdminProperty.
This operation raises the UnsupportedTransaction exception if the Notification Service
or the JMS Implementations does not support distributed transactions.
It raises the Exception Tr ansact i onAl r eadyAct i ve if an active transaction is
already associated to the bridge object.

3.2.1.2 disable_transaction

The di sabl e_t ransact i on operation invocation disables the bridge, the

notification service and the JMS transactional behaviors. Invoking this operation on an

55

in progress transaction will raise an exception TransactionActive and it will disable the
subsequent routing transaction from taking place. The actual execution of this

operation will take place as soon as the active transaction finishes.

The implementation of the di sabl e_t ransact i on will configure the bridge
EndPoint objects, namely the St r uct ur edPushConsuner,
SequencePushConsuner , St ruct ur edPul | Suppl i er,

SequencePul | Suppl i er to set their Transactional POA Policies to Al | ows_none.

It will also set the Notification Service Enabl eTr ansacti on QoS to False.

56

57

Page 50: [1] Deleted Karoui 10/27/2003 11:38 AM
union EndpointRecelver switch (EndpointReceiverType)
{
case STRUCTURED_PUSH_CONS: CosNotifyComm:: StructuredPushConsumer
structured push_consumer;
case SEQUENCE _PUSH_CONS: CosNotifyComm:: SequencePushConsumer
sequence_push_consumer;
case STRUCTURED PULL_CONS: CosNotifyComm:: StructuredPull Consumer
structured pull_consumer;
case SEQUENCE _PULL_CONS: CosNotifyComm::SequencePull Consumer
sequence_pull_consumer;
case MESSAGE _LISTENER: Messagel istener msg ligtener;

b

Page 50: [2] Deleted Karoui 10/27/2003 12:02 PM
enum EndpointSenderType
{

STRUCTURED_PUSH _SUPL,

SEQUENCE_PUSH_SUPL,

STRUCTURED PULL_SUPL,

SEQUENCE_PULL_SUPL,

MESSAGE_PRODUCER

H

Page 50: [3] Deleted Karoui 10/27/2003 11:38 AM
union EndpointSender switch (EndpointSenderType)

{

case STRUCTURED_PUSH_SUPL:CosNotifyComm:: StructuredPushSupplier
sructured push _supplier;

case SEQUENCE PUSH_SUPL: CosNotifyComm::SequencePushSupplier
sequence _push_Supplier;

case STRUCTURED_PULL_SUPL :CosNotifyComm:: StructuredPul | Supplier
sructured push supplier;

case SEQUENCE_PULL_SUPL: CosNotifyComm::SequencePul | Supplier
sequence_push_supplier;

1

Page 52: [4] Deleted Karoui 10/27/2003 11:49 AM

EndPointSender interface

TheEndPoi nt Sender interface connectsand fitsthe Ext er nal EndPoi nt typewhen
the later behaves as data Consumer. The EndPoi nt Sender behaves as data supplier.
Depending on the values of the CosEvent Domai nAdm n: : Noti fi cati onStyl e
andtheMessageType fidds theEndPoi nt Sender canbeether:

CosNot i fyConm : St ruct ur edPushSuppl i er ifthe

CosEvent Domai nAdmi n: : NotificationStyle andtheMessageType of

the Ext er nal EndPoi nt vauesare respectivdly PUSH and STRUCTURED_EVENT.
Thismeansthat theEndpPoi nt Sender Type isSTURCTURED PUSH_SUPPLI ER.
CosNot i f yConmm : SequencePushSuppl i er ifthe

CosEvent Domai nAdmi n: : NotificationStyle andtheMessageType of
the Ext er nal EndPoi nt vauesare respectivdy PUSH and SEQUENCE_EVENT. This
meanstha the EndpPoi nt Sender Type isSEQUENCE_PUSH_SUPPLI ER.
CosNot i fyConm : Struct uredPul | Suppli er ifthe

CosEvent Domai nAdmi n: : NotificationStyle andtheMessageType of
the Ext er nal EndPoi nt vauesare respectively PULL and STRUCTURED_EVENT.
Thismeansthat theEndpPoi nt Sender Type isSTURCTURED_PULL_SUPPLI ER.
CosNot i f yComm : SequencePul | Suppl i er if the

CosEvent Domai nAdmi n: : NotificationStyle andtheMessageType of
the External EndPoint values are respectively PULL and SEQUENCE_EVENT. This means that
the EndpPointSender Type is SEQUENCE_PULL_SUPPLIER

Whenthe CosEvent Domai nAdm n: : NotificationStyl e vadueisPUSH and
theMessageType isIMS MESSAGE the EndPointSender behaves as IM S producer.
According to the IMS specification, the IM S producer does not offer any interface.

The EndpPointSender Type vaue MESSAGE_PRODUCER is specified for afuture usage if the
JCP community decides to extend the IM S PushSuppllier with a new interface.

EndpointReceiver interface

TheEndPoi nt Recei ver interface connects and fits the Externd EndPoint type when the
later behaves as a data supplier. The EndPoi nt Recei ver behaves as data consumer.
Depending on the vaues of the CosEventDomainAdmin:;NoatificationStyle and the
MessageType fidds, the EndPointRecelver can be ether a

CosNot i f yComm : StructuredPushConsumer if the

CosEvent Domai nAdm n: : NotificationStyl e andtheMessageType of
the Externd EndPoint values are respectively PUSH and STRUCTURED _EVENT. This means
that theEndpPoi nt Recei ver Type isSTURCTURED PUSH CONSUMER.
CosNot i f yConmm : SequencePushSuppl i er ifthe

CosEvent Domai nAdm n: : NotificationStyle andtheMessageType of
the Externd EndPoint values are respectively PUSH and SEQUENCE_EVENT. This means that
theEndpPoi nt Recei ver Type isSEQUENCE PUSH CONSUMER.

CosNot i fyConm : StructuredPul | Suppli er ifthe

CosEvent Domai nAdm n: : NotificationStyl e andtheMessageType of
theExt er nal EndPoi nt vauesarerespectively PULL and STRUCTURED EVENT. This
meanstha the EndpPoi nt Recei ver Type isSTURCTURED_PULL_ CONSUMER.
CosNot i f yComm : SequencePul | Suppl i er if the

CosEvent Domai nAdm n: : NotificationStyl e andtheMessageType of
the Ext er nal EndPoi nt vaues are respectively PULL and SEQUENCE_EVENT. This
meansthat the EndpPoi nt Consunmer Type isSEQUENCE_PULL_ CONSUMER.
Messagelistener IM S standard interface, if the EndpPoi nt Consuner Type isthe
CosEvent Domai nAdm n: : NotificationStyl e andtheMessageType

vauesof theExt er nal EndPoi nt arerespectively PUSH and IMS_ MESSAGE.
EndpPoi nt Consumer Type correspondsto MESSAGE _LISTENER.
WhentheCosEvent Domai nAdm n: : Noti ficati onStyl e vdueisPULL andthe
MessageType isIMS MESSAGE the EndPointReceveir behaves as IM S Consume.
According to the IM S specification, the IM S consumer that pulls messages does not offer any
interface.

TheEndpPoi nt Recei ver Type vadue sMESSAGE_CONSUMER is specified for a
future usageif the JCP community decidesto extend the IM S Pull Consumer with anew interface.

