
Notification/Java Message Service
(JMS) Interworking Specification

October 2004
Version 1.0

formal/04-10-09

An Available Specification of the Object Management Group, Inc.

Copyright © 2001, Alcatel
Copyright © 2001, Fujitsu Limited
Copyright © 2001, IONA
Copyright © 2004, Object Management Group, Inc.
Copyright © 2001, Prismtech

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

October 2004 Notification/JMS Interworking, v1.0 i

Contents

1. Overview . 1-1

1.1 Introduction . 1-1

2. Architectural Features . 2-1
2.1 Bridge Architecture Overview . 2-1

2.2 Bridge Factory . 2-3

2.3 Bridge Instance . 2-4

2.4 Message Mapping . 2-7
2.4.1 JMS Message to Event . 2-8
2.4.2 Event to JMS Message . 2-11

2.5 QoS Properties Mapping . 2-14
2.5.1 Event Reliability . 2-14
2.5.2 Connection Reliability . 2-15
2.5.3 Delivery Reliability . 2-15
2.5.4 Priority . 2-15
2.5.5 Expiry times . 2-16
2.5.6 Order Policy . 2-17

2.6 Acknowledgment Mapping . 2-18
2.6.1 Overview of Reliable Event Delivery with Event

Acknowledgment . 2-19
2.6.2 Mapping between Event Acknowledgment and JMS Message

Acknowledgment . 2-20

2.7 Transactional Support . 2-22
2.7.1 Asynchronous Transactional Model 2-22
2.7.2 Supported configurations . 2-24
2.7.3 Notification Service Transactional Role 2-25

ii Notification/JMS Interworking, v1.0 October 2004

2.7.4 Bridge Transactional Roles . 2-26
2.7.5 JMS service provider Transactional Role 2-26
2.7.6 Bridge Transactional Monitoring 2-27

2.8 Conformance . 2-30

3. Bridge Interfaces . 3-1

3.1 CosBridgeAdmin Module . 3-1
3.1.1 ExternalEndPoint . 3-3
3.1.2 Bridge Interface . 3-4
3.1.3 Bridge Factory Interface . 3-5

3.2 BridgeTransactionMgmt module . 3-6
3.2.1 TransactionManagement interface 3-6

4. Extension to Existing OMG Specifications 4-1
4.1 Editing Instructions for Extended Notification Service 4-1

4.2 IDL Modules . 4-2
4.2.1 The CosNotifyCommAck Module 4-2
4.2.2 The CosNotifyChannelAdminAck Module. 4-3
4.2.3 Overview of Event Acknowledgement 4-4
4.2.4 Scope of Event Acknowledgment 4-6
4.2.5 Sequence Number Header Field . 4-7
4.2.6 Acknowledge operation behavior 4-10
4.2.7 Reliable Delivery Sequence . 4-10
4.2.8 QoS Properties for Reliable Event Delivery 4-13

4.3 Notification Service QoS and Admin Property Extensions 4-14

October 2004 Notification/JMS Interworking, v1.0 iii

Preface

About This Document

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

OMG Documents

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

iv Notification/JMS Interworking, v1.0 October 2004

OMG Modeling Specifications

Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.) OMG formal documents are available from our web site in
PostScript and PDF format. Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

October 2004 Notification/JMS Interworking: Acknowledgments v

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Alcatel

• Fujitsu Limited

• IONA

• Prismtech

vi Notification/JMS Interworking, v1.0 October 2004

October 2004 Notification/JMS Interworking, v1.0 1-1

Overview 1

1.1 Introduction

Asynchronous messaging is a proven communication model for developing large-scale,
distributed enterprise applications. In order to support flexible and end-to-end business
integration, it is becoming necessary to provide messaging interworking between
CORBA applications and Java / EJB.

The CORBA Notification Service is the OMG mature standard that allows Corba objects,
named suppliers, to send event asynchronously to other Corba object named consumers.
Suppliers are de-coupled from consumers by means of event channel concept, which
takes care of dissemination of events to them.

The Java Message Service (JMS) defines a standard API that provides a simplified and
common way for Java clients to access message oriented middleware. More importantly,
JMS is tightly integrated into J2EE and is the messaging standard for Enterprise Java
Beans (EJB). Applications publishing a message are de-coupled from applications
receiving them by means of a Queue or topic concept.

The Notification Service differs from JMS in that its specification covers both the client
interfaces and the messaging engine whereas JMS was designed as an abstraction over
existing and new messaging products. The JMS messaging engine implementation may
differ from one vender to another.

This document specifies architecture and interfaces for managing Notification Service
interworking with Java Message Service. The interworking involves several aspects such
as:

• Event -Message mapping,

• QoS mapping,

• Automatic federation between Notification Service channel concept and topic/queue
concepts

• Transaction support.

1-2 Notification/JMS Interworking, v1.0 October 2004

1

October 2004 Notification/JMS Interworking, v1.0 2-1

Architectural Features 2

2.1 Bridge Architecture Overview

The bridge defined by this specification is designed to manage and interconnect an event
channel with a JMS destination. A clear goal of this specification is to define the
capability to manage an inter-related channel and JMS destination that can be created via
existing implementations of those services. The guiding principles that drove the
definition of the Bridge IDL interfaces were to preserve backward compatibility with
both JMS and Notification Service programming models. This specification is JMS 1.1
compliant. Extensions to current Notification Service can be required only in advanced
use cases where acknowledgment data delivery QoS is required.

Figure 2-1 depicts the general architecture for the bridge. The IDL module names of the
interfaces defined by the Notification Service and the Bridge are abbreviated in the
diagram. NCA stands for CosNotifyChannelAdmin, while NC stands for
CosNotifyComm, finally BA stands for CosBridgeAdmin.

2-2 Notification/JMS Interworking, v1.0 October 2004

2

Figure 2-1 General Architecture of the Bridge

The Bridge is used to create and manage bridges instances that perform automatic
mapping and forwarding of messages and events. Figure 2-1 shows the different
relationships between the bridge, the notification service, and the JMS. For the sake of
clarity only the push communication style is considered in Figure 2-1.

To preserve the Notification service and JMS interfaces, the Bridge behaves as an event
Consumer and as a JMS sender when forwarding an event from the event channel to the
JMS destination. In addition, it behaves as a JMS receiver and an event Producer when
forwarding a message in the other direction.

Event-grouping is crucial to improve interworking performance. This makes structured
events centric in the JMS-NS message mapping, consequently, when the push
communication style is selected the Bridge supports the standard
StructuredPushConsumer, SequencePushConsumer,
StructuredPushSupplier, and SequencePushSupplier interfaces. It also supports
the StructuredPullConsumer, SequencePullConsumer,
StructuredPullSupplier, and SequencePullSupplier interfaces.

This interworking specification also uses interfaces from the CosNotifyCommAck
module and the CosNotifyChannelAdminAck module.

To receive messages from JMS, the bridge offers the standard JMS
javax.jms.MessageListener interface and makes use of JMS javax.jms.MessageProducer
and javax.jms.MessageConsumer interfaces.

NCA::Channel

NCA::SupplierAdmin

NCA::StructuredProxyPushConsumer

NCA::SequenceProxyPushConsumer

NCA::StructuredProxyPushSupplier

NCA::SequenceProxyPushSupplier

NCA::ConsumerAdmin
Bridge

Notification
Serrvice

javax.jms.ConnectionFactory

javax.jms.Connection javax.jms.Session

javax.jms.MessageProducer

javax.jms.MessageConsumer

Javax.jms.MessageListener

NC::StructuredPushConsumer

NC::SequencePushConsumer

NC::SequencePushSupplier

NC::StructuredPushSupplier

Message flow

Message flow

JMS

CosBridgeAdmin

NCA::Channel

NCA::SupplierAdmin

NCA::StructuredProxyPushConsumer

NCA::SequenceProxyPushConsumer

NCA::StructuredProxyPushSupplier

NCA::SequenceProxyPushSupplier

NCA::ConsumerAdmin
Bridge

Notification
Serrvice

javax.jms.ConnectionFactory

javax.jms.Connection javax.jms.Session

javax.jms.MessageProducer

javax.jms.MessageConsumer

Javax.jms.MessageListener

NC::StructuredPushConsumer

NC::SequencePushConsumer

NC::SequencePushSupplier

NC::StructuredPushSupplier

Message flow

Message flow

JMS

CosBridgeAdmin

October 2004 Notification/JMS Interworking: Bridge Factory 2-3

2

The bridge is also used to automate the connection setups between channel and JMS
destination. It performs on behalf of JMS the necessary steps to create and configure
entry points in the event channel. These steps involve StucturedProxyPush creation
and default QoS setting. Similarly, it performs on behalf of the notification service steps
needed to create and configure connection and session with JMS provider.

Note – Issues related to detection of event or message duplication in complex
topologies is out of the scope of this specification and are not taken into account.
Alternatively, techniques such as those used in Event Domain Management can be
used.

2.2 Bridge Factory

A BridgeFactory is responsible for the creation of Bridge objects based on initial
parameters. In order to create a bridge, it is necessary to provide information on an
existing Notification Service event channel and JMS destination. Channel and JMS
destination information are abstracted using external end point connector concept.

An external end point connector may provide or consume data flow. It can be either a
source or sink of data. When an external end point connector describes a JMS destination
it should indicate the type and the name of the destination, given it be a topic or queue.
When it describes channel information it should indicate whether data will be sent using
sequence or single structured events. Finally, the BridgeFactory user should indicate
the communication style it wishes to use. The communication style can be either Push or
Pull.

Since the JMS specification supports Pull communication style on the application
receiver side only, the BridgeFactory should check the consistency of the end-to-end 1
communication model in use before creating a bridge. For example, when forwarding
data from event channel to JMS destination, the Pull communication style can’t be set at
the sink external endpoint. This scenario is summarized in Table 2-1.

Some other consistency checking of the end-to-end communication model is
implementation dependent. For example, bridge implementation with storage capabilities
may support PUSH communication style at JMS side acting as a source and PULL
communication style at event channel side acting as a sink only and only if the bridge
uses buffer that de-synchronize data transmission from its reception by event channel.

Controls performed by Bridgefactory are summarized in Table 2-1.

1.End-to-end portion concerns the source to sink endpoints.

2-4 Notification/JMS Interworking, v1.0 October 2004

2

A compliant bridge implementation is not required to support all communication models
described in Table 2-1. However, vendors are encouraged to provide several
communication styles to increase bridge flexibility.

2.3 Bridge Instance

To propagate unidirectional data flow a bridge instance connects a single source endpoint
to a single sink endpoint. This object offers two interfaces that fit the source and sink
nature and requirements. A source is connected to the bridge instance through the
Endpoint receiver and the sink is connected through the Endpoint sender. When bi-
directional interworking between the Notification Service and JMS is required two
bridge instances can be created separately. Figure 2-2 summarizes the bridge architecture
abstract view.

Figure 2-2 Bridge abstract Architecture

Depending on the source endpoint nature it is connected to, the endpoint receiver can be
a:

Table 2-1 Communication Consistency Checking

So
ur

ce
:

C
ha

nn
el

Sink: JMS

So
ur

ce
:

JM
S

Sink:: Channel

PUSH PULL PUSH PULL

PUSH yes Not Allowed by JMS
specification

PUSH Yes Implementation
dependent

PULL yes Not Allowed by JMS
specification

PULL Yes1

1. To be able to pull the JMS and to push toward event channel, a kind of scheduling can be passed to the bridge using the
CosNotification::PacingInterval QoS defined at each external endpoint side.

yes

PULL yes Not Allowed by JMS
specification

PULL Yes2

2. To be able to pull the JMS and to push toward event channel, a kind of scheduling can be passed to the bridge using the
CosNotification::PacingInterval QoS defined at each external endpoint side.

Yes

Data flow

ExternalEndPoint
“Source”

ExternalEndPoint
“Sink”

Bridge

EndPointReceiver EndPointSender

Data flow

ExternalEndPoint
“Source”

ExternalEndPoint
“Sink”

Bridge

EndPointReceiver EndPointSender

October 2004 Notification/JMS Interworking: Bridge Instance 2-5

2

• JMS Message Listener, if it receives messages from a JMS destination. At the
abstract level, the JMS Message Listener behaves as an event Push Consumer, in
that it offers the onMessage operation which, from the functional viewpoint, can be
compared to the push operation defined in Notification Service.

• JMS Message Consumer, when it retrieves messages from a JMS destination. It can
be compared to an event pull consumer.

• Structured push consumer, if it connects to an event channel pushing structured
events.

• Sequence push consumer, if it connects to an event channel pushing sequence of
structured events.

• Structured pull consumer, if it connects to an event channel offering pull structured
event operations.

• Sequence pull consumer, if it connects to an event channel offering pull sequence of
structured event operations.

The endpoint sender can behave as a:

• JMS Message producer, when sending events to a JMS destination.

• Structured push supplier, when sending events to an event channel.

• Sequence push supplier, when sending events to an event channel.

• Structured pull supplier, when pulling events from an event channel.

• Sequence pull supplier, when pulling events from an event channel.

When creating a bridge, regular steps to connect the event channel and the JMS
destination are performed. They consist of:

1. Obtaining administration object references from event channel and JMS. On event
channel side, those object references are SupplierAdmin or ConsumerAdmin
and on the JMS side those objects references correspond to Connection and
Session.

2. Creating on event channel side proxySupplier or proxyConsumer objects and
creating on JMS side MessageProducer or MessageConsumer objects that fit
communication style and data grouping policy selected by user.

A bridge is a stateful object that reflects the connection states with both proxy and JMS
destination entry. Consequently, the bridge state is an aggregation of Proxy states and the
JMS destination entry state it is connected to. The AND logical operator semantic should
be applied to obtain the bridge state.

When it is created the bridge status should be set to Inactive. When starting the bridge,
the endpoint receiver and sender should activate simultaneously the connections with the
proxy and JMS destination entry. If these two steps are successfully achieved, the bridge
state becomes Active.

The bridge evolves to Inactive state when at least one connection with the proxy or JMS
destination is lost or suspended.

2-6 Notification/JMS Interworking, v1.0 October 2004

2

The bridge interface offers the following operations: start_bridge, stop_bridge,
get_status, and destroy.

The operation activates the two connections with the proxy and JMS destination entry.
connect_xxx operations class provided in CosNotifyChannelAdmin module are used
to establish connection with event channel proxy object. The JMS
javax.jms.Connection.start operation can be used to activate connexion with JMS
provider. The invocation of the start_bridge operation on bridge inactivated by the use of
stop_bridge operation resumes the connections with the proxy and JMS destination entry.
The resume_connection operations class provided in CosNotifyChannelAdmin
module and the javax.jms.Connection.start operation can be respectively used. When the
bridge invokes successfully connect_xxx or resume_connection and
javax.jms.Connection.start its state become Active.

Note – Exception behavior of the Bridge Interface operations will be described in
Chapter 3.

The stop_bridge operation stops the connections with the proxy and JMS destination
entry. The suspend_connection operations class provided in CosNotifyChannelAdmin
module and the JMS javax.jms.Connection.stop operation can be respectively used to
suspend the connection with event channel proxy object and the connexion with JMS
provider. When the connections with the proxy and JMS destination entry are
successfully suspended the bridge state becomes Inactive.

The get_status operation is intended to describe the status of end-to-end connection
stating from source to sink endpoints. To return up-to-date status, the bridge can use the
JMS exceptionListener interface to detect Connexion problems with JMS provider. Since
Notification Service does not provide tools to get the connexion status of proxy, the
bridge implementation may use connect_structured_xxx operations to deduce the
connection status. The use of this operations class is idempotent. When receiving
AlreadyConnected exception, the connection status is active. Otherwise, the status is
considered inactive.

The destroy operation destroys the bridge object, invalidating its object reference. To
liberate resources on the event channel and JMS sides the disconnect_xxx class provided
in CosNotifyChannelAdmin module and the javax.jms.Connection.close1
operations should be respectively invoked before destroying the bridge object.

Besides the configuration steps described above, the bridge performs data mapping from
structured event format to JMS message formats and vice versa. The bi-directional
mapping is described in section 2.4.

1. Note that in JMS there is no need to close the sessions, producers, and consumers of a closed
connection.

October 2004 Notification/JMS Interworking: Message Mapping 2-7

2

2.4 Message Mapping

The JMS specification defines five different messages that all derive common
functionality from the base Message interface. The Notification Service specification
defines three event types and associates them well defined translation rules making the
consumption of events produced in different formats possible.

The Notification Service specification made event grouping possible through structured
event sequences only. Event-grouping is crucial to improve interworking performance.
This makes structured events centric in the JMS -NS message mapping. This section
describes the mapping between structured events and the different JMS message types,
namely:

• TextMessage

• StreamMessage

• BytesMessage

• MapMessage*

• ObjectMessage*

Figure 2-3 Structured event role in data mapping

A JMS message consists of a header, a set of properties, and a body. The header and
properties are the same for all message types. The body part is different for each of the
five different JMS message types.

Structured Events provide a well-defined data structure that is comprised of two main
components: a header and a body. The header can be further decomposed into a fixed
portion and a variable portion.

The current version of the specification addresses bidirectional mapping without
information loss. Future versions may be enhanced by customizable mapping interfaces
that discard irrelevant data for the application receiver and event consumer.

Structured Event

•Generic Event (ANY)

•Structured Event

•Typed Event

•BytesMessage

•MapMessage

•ObjectMessage

•StreamMessage

•TextMessage

2-8 Notification/JMS Interworking, v1.0 October 2004

2

2.4.1 JMS Message to Event

This section describes the mapping of messages sent by JMS client toward Notification
Service Consumer. The mapping of the JMS Message header and properties part is
independent from the message type. The body mapping depends on the message types
enumerated above.

JMS Header and properties mapping

When possible, the mapping from JMS to structured event should follow the general
naming conventions adopted by the Notification Service specification when translating
generic event (Any) or typed event types to structured event. Structured event fields such
as domain_name, type_name, and event_name should be compliant with the
notation adopted in section 2.1.4 of the Notification Service specification
(http://www.omg.org/technology/documents/formal/notification_service.htm).

• The domain_name data member should be set to empty string.

• The type_name data member should start with the “%” character and indicate the
JMS message source type, namely, the TextMessage, MapMessage,
StreamMessage, BytesMessage, or ObjectMessage. For example, the
type_name data member would be set to the value “%TextMessage” if the JMS
source message type is textMessage.

• The semantics associated with event_name data member is used by end-users
only, it is not interpreted by any component Notification Service. This field can be
optionally set to the Topic or the queue name through which JMS message was
published or sent. The extra-information delivered within event_name field may
be used by a JMS-aware event consumer.

October 2004 Notification/JMS Interworking: Message Mapping 2-9

2

Figure 2-4 JMS message to Structured Event mapping

The JMS Message header is made up by several fields for setting various Quality of
Service (QoS) such as JMSDeliveryMode, JMSExpiration, and JMSPriority. Those fields
have well-defined meanings in the structured event and they must be mapped as follows:

• JMSDeliveryMode maps to The EventReliability QoS in the variable header of a
structured event. It is set to Persistent when the delivery mode is PERSISTENT.
Otherwise, the EventReliability QoS is set to BestEffort.

• JMSExpiration maps to the Timeout in the variable header of a structured event.
JMS expiration time value is expressed in milliseconds. This value is converted to
units of 100 nanoseconds as this is the base unit of time in CORBA. Expired
messages are not visible to clients.

• JMSPriority maps to the JMS message priority. It is mapped to the Priority QoS in
the variable header of structured events. Priority delivery mode is used to ensure
that messages with higher priority are delivered before messages with lower priority
values.

JMS Message Structure

User-defined
properties

JMSReplyTo

JMSDestination

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSMessageID

JMSTimestamp

JMSCorrelationID

JMSType

JMSRedelivered

JMS
metadata

JMSXUserID JMSXAppID

JMSXGroupID JMSXGroupSeq

Header

Standard
Properties

Body

Domain_type= “ “

type_name

event_name

Event Reliability short

Timeout TimeT

Priority

fd_name 1 fd_value 1

fd_name 2 fd_value 2

… …

fd_name n fd_value n

Remainder_of_body

Fixed
header

Variable
header

Filterable
Body

short

[Topic/Queue]

[Message type]

Name_prt Value_prt1 1

… …

Event Structure… …

JMS Message Structure

User-defined
properties

JMSReplyTo

JMSDestination

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSMessageID

JMSTimestamp

JMSCorrelationID

JMSType

JMSRedelivered

JMS
metadata

JMSXUserID JMSXAppIDJMSXUserID JMSXAppID

JMSXGroupID JMSXGroupSeq

Header

Standard
Properties

Body

Domain_type= “ “

type_name

event_name

Event Reliability short

Timeout TimeT

Priority

fd_name 1 fd_value 1

fd_name 2 fd_value 2

… …

fd_name n fd_value n

Remainder_of_body

Fixed
header

Variable
header

Filterable
Body

short

[Topic/Queue]

[Message type]

Name_prt Value_prt1 1

… …

Event Structure… …

2-10 Notification/JMS Interworking, v1.0 October 2004

2

The rest of the JMS header fields can’t be mapped directly to standard structured event
fields of the variable header portion; however those fields can be viewed as optional
information that may be useful for JMS-aware event consumer. For example, a
JMSreplyTo field with a valid value can be used by event consumer that would like to
react, after receiving the JMS message converted into a structured event, by producing a
new event that can be seen as reply message. The reply message will be sent though
channel linked up with the destination specified into the JMSreplyTo field. In this case
the JMSCorrelationID may also be reused by event consumer in the reply message to
allow the JMS sender to tie up with the initial message it sent.

To increase filtering capability on the event channel side, the JMSType, JMSMessageID,
JMSTimestamp, JMSreplyTo, JMSCorrelationID, JMSDestination, JMSRedelivered
fields are mapped, by default, to the filterable date member of the structured event. Each
of them is inserted using the name-value pair, i.e., using the PropertySeq data type
defined in the CosNotification module.

To decrease the structured event length and increase performance, JMS header fields
with nil values can be omitted during the mapping process.

The JMS property fields, prefixed by JMSX, are an optional part of the JMS message
structure. Some of them are standard and well defined by JMS specification, as those
enumerated in Figure 2-4, others are defined by JMS end-user. In the current version of
the specification, the default behavior is to map all JMSX fields. Future versions may
restrict the mapping to JMSX fields that are relevant to the event consumer. This will
improve performance and mapping pertinence.

All JMSX Property values are java primitives data type, they can be boolean, byte, short,
int, long, float, double, and String. They are all entered into the filterable body of the
structured event using the name-value pair, i.e., using the PropertySeq data type
defined in the CosNotification module and they are mapped using the standard Java to
IDL mapping.

The order of JMS properties is not defined in JMS. The Notification-JMS specification
doesn’t mandate any particular order when implementing the mapping.

2.4.1.1 JMS message body mapping

It is expected that the text, map, and stream messages will be the three specific message
types intensively used in an environment that consists of both JMS and non-JMS clients.

2.4.1.1.1 Text Message

A TextMessage provides a body, which is a Java String. The body is inserted into a
remainder_of_body of the structured event by simply inserting the string into the Any.

2.4.1.1.2 Stream Message

A StreamMessage provides a body that contains a stream of Java primitive values. The
values on the stream stack are written onto the remainder_of_body of the structured
event using the AnySeq data type. The elements in this sequence are mapped using the
standard Java to IDL mapping.

October 2004 Notification/JMS Interworking: Message Mapping 2-11

2

2.4.1.1.3 Map Message

A MapMessage provides a body of name-value pairs where names are Strings and values
are Java primitives. The body can be inserted in the remainder_of_body field, of a
structured event using the PropertySeq data type.

2.4.1.1.4 Bytes Message

A bytes message supports a body with uninterpreted data. The message supports the
methods of the DataInputStream and DataOutputStream interfaces from the Java I/O
package. As the body is an array of bytes it is written to the remainder of the body field
of a structured event using an IDL octet sequence. The OctetSeq data type is defined in
the notification service IDL extension module.

2.4.1.1.5 Object Message

An object message provides a body that can contain any Java object that supports the
Serializable interface. This type of message is serialized onto a byte sequence and written
onto the any in the remainder of the body using the same OctetSeq data type described
above. On the receiver side the byte sequence is converted to an object input stream
where the object is read from.

2.4.2 Event to JMS Message

When a message is sent from a Notification Service event channel to JMS destination,
the construction of the JMS message is performed as follows:

1. When defined, the standard optional part of the event variable header is mapped to
corresponding fields in JMS header. If the event supplier does not define those
fields, then JMS header fields are populated using the default values specified in the
JMS specification.

2. The data in the event fixed header, the rest of the optional header fields as well as
the event filterable body are placed in the JMS properties fields. They will be seen
by the JMS receiver application as user-defined fields.

3. Meta data created by JMS-NS bridge is used to define complete JMS missing fields
such as JMSDestination or JMSMessageID.

4. The remainder_of_body section is mapped to the JMS message body depending on
the complexity of the data format wrapped in the Any.

Structured Event Header and filterable body mapping

When defined in structured event, the EventReliability, Timeout, or Priority fields are
respectively mapped to JMSDelivery, JMSpriority, and JMSTimetolive. If
EventReliabilty is not defined, JMSDelivery is set to PERSISTENT. If the Timeout is not
defined, JMSTimetolive to Unlimited. If the Priority is not defined, the JMSpriority is set
to 4.

2-12 Notification/JMS Interworking, v1.0 October 2004

2

The User-defined property fields are pair of name-value. The structured event fixed
header fields are mapped to the JMS message User-defined property fields are as
follows:

• domain_type: A new property name labeled $domain_type is created. It must
obey the rules for a message selector identifier1 specified in Section 3.8.1.1 of the
JMS specification. The content of the domain_type field in the event is converted to
java String.

• type_name: A new property name labeled $type_name is created. It must obey the
rules for a message selector identifier specified in Section 3.8.1.1 of the JMS
specification. The content of the type_name field in the event is converted to java
String.

• event_name: A new property name labeled $event_name is created. It must obey
the rules for a message selector identifier specified in Section 3.8.1.1 of the JMS
specification. The content of the event_name field in the event is converted to java
String.

Inputs of JMSMessageID, JMSTimestamp, JMSDestination, and JMSType fields are
fulfilled by JMS-NS bridge.

• JMSMessageID is a String value which should be a unique key, prefixed by 'ID'.
The exact scope of uniqueness is provider defined.

• JMSTimestamp field contains the time a message was handed off to JMS to be sent.
It is in the format of a normal Java millis time value.

• JMSDestination contains the topic or the Queue name to which the message is
being sent.

• JMSType is a String value that should be set to 'Structured Event'.

Complete specification of those header fields are defined in the JMS specification.

1. An identifier is an unlimited-length character sequence that must begin with a Java identi-
fier start character; all following characters must be Java identifier part characters. An iden-
tifier start character is any character for which the method Character.isJavaIdentifierStart
returns true. This includes'_' and '$'.

October 2004 Notification/JMS Interworking: Message Mapping 2-13

2

Figure 2-5 Structured Event to JMS message mapping

For each optional header (ohf_*) or filterable data (fd_*) field a new property name
labeled $ohf_* or $fd_* is created. It must obey the rules for a message selector
identifier specified in Section 3.8.1.1 of the JMS specification. The content of the ohf_*
or fd_* field is converted to java data type primitives.

If the optional header or filterable date field has the struct IDL type, then multiple JMS
properties are created, one for each primitive element of the complex type. The structure
is linearized as follows:

• The new $ohf_* or $fd_* field name is concatenated with the structure and the
member of the structure names. The structure member operator '.' is used to
delimitate each name. This process is repeated if the structure contains nested data
structures as elements, along with primitive elements. In turn, each Struct is
expanded if and only if all of its non-nested elements are primitive types.

• The content of the linearized field is converted to java data type primitives.

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSCorrelationID=“ “

Header

Body

Domain_type

type_name

event_name

Event Reliabilityshort

TimeoutTimeT

Priority

fd_name 1fd_value 1

……

fd_name mfd_value
m

Remainder_of_body

Fixed
header

Variable
header

Filterable
Body

short

Name_prt Value_prt

11

……

Event Structure

User-defined
properties

Name_prt Value_prt

JMSMessageID

JMSType=“Structured Event”

JMSDestination

JMSTimestamp

JMSReplyTo=nil

JMSRedelivered=0

[Topic/Queue]

Generated by
NS-JMS
Bridge

JMS Message Structure

n+m

ohf_name
1

ohf_value1

……

ohf_name nnohf_name n+m

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSCorrelationID=“ “

Header

Body

Domain_type

type_name

event_name

Event Reliabilityshort

TimeoutTimeT

Priority

fd_name 1fd_value 1

……

fd_name mfd_value
m

Remainder_of_body

Fixed
header

Variable
header

Filterable
Body

short

Name_prt Value_prt

11

……

Event Structure

User-defined
properties

Name_prt Value_prt

JMSMessageID

JMSType=“Structured Event”

JMSDestination

JMSTimestamp

JMSReplyTo=nil

JMSRedelivered=0

[Topic/Queue]

Generated by
NS-JMS
Bridge

JMS Message Structure

n+m

ohf_name
1

ohf_value1

……

ohf_name nnohf_name n+m

2-14 Notification/JMS Interworking, v1.0 October 2004

2

For example if the structured event contains the pair <name/value>= <Fd_name1,
CORBA::Any A>, and the A value wraps the structure named Alarm { string Al_name;
int Severity }, then this field will be transformed into two JMS user defined properties
(fields) : <$Fd_name1.Al_name, string> and <$Fd-name1.Severity, integer>.

If the optional header or filterable date field has other complex data types, it is mapped
to bytes stream, the JMS client that would receive a bytes stream have to use the
appropriate CORBA Helper classes to unmarshal the user data.

Structured Event Remainder of body mapping

The mapping of structured event body to given JMS message type body depends on the
complexity of the data wrapped into remainder_of_body field.

When remainder_of_body typed Any involves:

• IDL basic type elements - each element maps to a java primitive type using
standard IDL to java mapping. The set of elements obtained are entered in JMS
StreamMessage body.

• String type element only - it maps to java string type and is placed in JMS message
body.

• Sequence of Properties (PropertySeq) - it maps to a body of name-value where
names are strings and values are java primitives.

• Octet Sequence or other type such as user constructed types - it maps to a body of
BytesMessage. To reconstruct the IDL type, the JMS client that would receive a
BytesMessage have to use the appropriate CORBA Helper class.

2.5 QoS Properties Mapping

The Notification Service and the JMS each have specific QoS properties. In the
Notification Service, QoS properties are specified in the header of Structured Events,
Proxy, Admin, and Channel object. In the JMS, QoS Properties are specified in the
header of JMS messages and some objects in JMS Provider. This section describes the
bi-directional mapping of QoS properties between the Notification Service and the JMS.

2.5.1 Event Reliability

The Notification Service’s QoS property EventReliability is mapped to JMS QoS
property JMSDeliveryMode. Each value of the properties are mapped as follows:

Table 2-2 Event Reliability

EventReliability JMSDeliveryMode

BestEffort NON_PERSISTENT

Persistent PERSISTENT

October 2004 Notification/JMS Interworking: QoS Properties Mapping 2-15

2

2.5.2 Connection Reliability

The Notification Service’s QoS property ConnectionReliability is mapped to
QueueReceiver object in the JMS Point-to-Point model or TopicSubscriber object in the
JMS Publish/Subscribe model. Each value of the property is mapped as follows:

The JMS Publish/Subscribe model has both durable and not durable subscriber objects.
Each subscriber is mapped to the corresponding value of ConnectionReliability. The JMS
Point-to-point model has only the durable receiver object QueueReceiver. It is mapped to
the Persistent value of ConnectionReliability. Since the JMS Point-to-point model does
not have not durable subscriber objects, BestEffort of ConnectionReliability can't be used
in interworking with JMS Point-to-Point model.

2.5.3 Delivery Reliability

The Notification Service’s QoS property DeliveryReliability is an additional property of
this specification (see Section 2.6.6, "QoS Properties for Reliable Event Delivery"). This
QoS property is mapped to JMS reliable messaging functions. Each value of the property
is mapped as follows:

2.5.4 Priority

The Notification Service’s QoS property Priority is mapped to the JMS QoS property
JMSPriority. The value of the Notification Service’s Priority is represented by short
integer, where -32,767 is the lowest priority and 32,767 the highest. The JMSPriority is
represented by ten values, where 0 is the lowest priority and 9 the highest. Since the
range of the value is very different between Notification Service and JMS, this
specification defines the following priority mapping as default mapping that must be
supported. Other mappings may be supported in addition to the default mapping if
necessary.

Table 2-3 Connection Reliability Mapping

ConnectionReliability JMS Point-to-Point
model

JMS Publish/Subscribe
model

BestEffort [no supported] TopicSubscriber

Persistent QueueReceiver Durable TopicSubscriber

Table 2-4 Delivery Reliability Mapping

DeliveryReliability JMS reliable messaging functions

None [no use of any reliable messaging functions]

Acknowledgment Message Acknowledgment

2-16 Notification/JMS Interworking, v1.0 October 2004

2

When the value of JMSPriority is converted to the value of Notification Service’s
Priority, the same value on JMSPriority is used as the value of Notification Service’s
Priority as follows:

When the value of Notification Service’s Priority is converted to the value of
JMSPriority, some values on Notification Service’s Priority are integrated with value 0 or
9 on JMSPriority as follows:

2.5.5 Expiry times

The Notification Service’s QoS property StopTime is mapped to the JMS QoS property
Timeout.

Table 2-5 Priority mapping from JMS to Notification

JMSPriority Priority

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

Table 2-6 Priority mapping from Notification to JMS

Priority JMSPriority

-32,767 ... 0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 ... 32,767 9

October 2004 Notification/JMS Interworking: QoS Properties Mapping 2-17

2

2.5.6 Order Policy

The JMS’ order policy requires to satisfy the following two conditions:

1. Fifo ordering: Messages must be received in the order they were sent.

2. Priority ordering: However higher priority messages may jump lower priority
messages.

The priority ordering, second condition above, is not mandatory. The JMS specification
says:

JMS does not require that a provider strictly implement priority ordering of messages;
however, it should do its best to deliver expedited messages ahead of normal messages.
(“3.4.10 JMSPriority” in JMS 1.1).

Thus JMS’ order policy can be mapped to one of two values in the Notification Service’s
QoS property OrderPolicy as follows:

The selection of the mapping depends on Notification Service implementation. If an
implementation of Notification Service’s PriorityOrder value guarantees fifo ordering in
same priority events, it is best that JMS’ order policy is mapped to Notification Service’s
PriorityOrder value. In this case, both JMS’ two ording conditions are satisfied.

However the Notification Service specification does not require to guarantee fifo
ordering in same priority events on PriorityOrder value. If an implementation of
PriorityOrder value does not support this function, JMS’ order policy should be mapped
to Notification Service’s FifoOrder value. Because the fifo ordering is mandatory
condition, but the priority ordering is not mandatory condition in JMS.

Even if well-defined translation is executed on event channel between some Structured
Events on a logical connection and an event batch (sequence of Structured Event), event
order must be preserved for all events in FifoOrder value or for same priority events in
PriorityOrder value Figure 2-6 and Figure 2-7. The first event on the logical connection
is translated from/to the top of the event batch, and the last event on the logical
connection is translated from/to the bottom of the event batch.

Table 2-7 Priority Mapping

OrderPolicy JMS's order policy

AnyOrder [not supported]

FifoOrder Supported

PriorityOrder

DeadlineOrder [not supported]

2-18 Notification/JMS Interworking, v1.0 October 2004

2

Figure 2-6 Preservation of event order in translation from Structured Events to event batch

Figure 2-7 Preservation of event order in translation from event batch to Structured Events

2.6 Acknowledgment Mapping

The JMS QoS API has two kinds of function for reliable messaging on the JMS
MessageConsumer side:

• one using transactions, and

• the other using Message Acknowledgment.

The use of acknowledgments or transactions provide different forms of reliability. These
two forms represent different use models: The use of acknowledgments provides a model
where each message can be guaranteed to be delivered. If the message is not delivered,
the message queue or topic can take steps to redeliver it. While this could be done within
a transaction, the transactional model is fairly heavyweight for a single event, such as
assuring the delivery of a single message. However, messages can also be part of a more
complex set of actions, and in that context it makes a great deal of sense to include a
message in a distributed transaction. For example, there may be a sequence of events
where upon the receipt of a message, a database must be updated, and then a message
sent to trigger some additional processing. The application designer might choose to
bracket these actions within a transaction, so that if the message is not successfully
delivered, all of the additional actions can be rolled back. If a message is part of a
transaction, then the acknowledgment semantics are not used. The two models exist
because there are a range of possible applications, not all of which would require
transactions.

Event
C hannel

N o.1N o.2N o.3N o.4

N o.1

N o.2

N o.3

N o.4

first
event

last
event

top
event

bottom
event

events on a logical conn ection

an event batch

Event
Channel

No.1No.2No.3No.4

No.1

No.2

No.3

No.4

first
event

last
event

top
event

bottom
event

events on a logical connection

an event batch

October 2004 Notification/JMS Interworking: Acknowledgment Mapping 2-19

2

This section describes the mapping between the JMS Message Acknowledgment and the
Notification Service.

2.6.1 Overview of Reliable Event Delivery with Event Acknowledgment

According to the JMS specification, reliable messaging with JMS Message
Acknowledgment shall satisfy the following conditions:

• No lost messages

• No duplicate delivery of messages

• Preserve message order

However the Notification Service lacks the required acknowledgment functions to satisfy
the first and second conditions above. This specification adds the required
acknowledgment functions, called Event Acknowledgment, to the Notification Service so
that the JMS Message Acknowledgment can be mapped to the Notification Service.

To realize the Event Acknowledgment satisfying the conditions above, this specification
defines DeliveryReliability QoS property, AckNotify interface, SequenceNumber header
field, and Reliable Delivery Sequence.

• DeliveryReliability QoS property specifies what reliable event delivery mechanism
is used. When the value Acknowledgment is specified, the Event Acknowledgment
is applied to event delivery.

• The extended Notification Service defines an acknowledge operation. It is included
in a new set of interfaces, each of which extends one of the following interfaces:
StructuredPushSupplier, StructuredPullSupplier, SequencePushSupplier,
SequencePullSupplier, StructuredProxyPushSupplier,
StructuredProxyPullSupplier, SequenceProxyPushSupplier, and
SequenceProxyPullSupplier. These extended interfaces each add the
acknowledge operation to the interface they derive from. Each of these interfaces,
defined in the Extended Notification Service, each have the suffix “Ack” added the
name of the interface they inherit from.

• SequenceNumber header field, as defined in the Extended Notification Service,
indicates a serial number on each event. It is used to check duplication of same
event and to prevent loss of event.

• Reliable Delivery Sequence, as defined in the Extended Notification Service,
defines a sequence of reliable event delivery with the acknowledge operation and
the SequenceNumber header field. The Reliable Delivery Sequence is applied to
event delivery between supplier (or proxy supplier) and consumer (or proxy
consumer) when the value of DeliveryReliability property is Acknowledgment.

2-20 Notification/JMS Interworking, v1.0 October 2004

2

2.6.2 Mapping between Event Acknowledgment and JMS Message
Acknowledgment

The JMS Message Acknowledgment is mapped to the Notification Service’s Event
Acknowledgment. On one hand the JMS MessageConsumer has sending functions of
acknowledgment, on the other hand the JMS MessageProducer does not have received
functions of acknowledgment. Thus the acknowledgment functions between JMS and
Notification Service is mapped on only consumer side Bridge.

The JMS MessageConsumer has two kinds of message delivery mode: asynchronous
delivery with onMessage method and synchronous delivery with receive or
receiveNoWait method. The asynchronous delivery is mapped to the Notification
Service’s push model as follows:

Figure 2-8 Asynchronous delivery mapping

The synchronous delivery is mapped to the Notification Service’s pull model as follows:

Table 2-8 Asynchronous delivery mapping

push model(XXXXXX: Structured or
Sequence)

JMS asynchronous delivery

push operation
in XXXXXPushConsumer interface

onMessage method without Message
Acknowledgment

push operation in XXXXXPushConsumer
interface and acknowledge operation
in XXXXXProxyPushSupplier interface

onMessage method with
DUPS_OK_ACKNOWLEDGE

onMessage method with
AUTO_ACKNOWLEDGE

push operation in
StructuredPushConsumer interface and
acknowledge operation
in StructuredProxyPushSupplier interface

onMessage method and acknowledge
method of
CLIENT_ACKNOWLEDGE

Bridge

push()

acknowledge()

onMessage()

acknowledge function
(DUPS_OK_ACK
or AUTO_ACK) JMS Message

acknowledge()
(CLIENT_ACK)

proxy supplier proxy consumer Message Consumer JMS application

October 2004 Notification/JMS Interworking: Acknowledgment Mapping 2-21

2

Figure 2-9 Synchronous delivery mapping

Table 2-9 Synchronous Delivery Mapping

waiting policy pull model(XXXXXX: Structured or
Sequence)

JMS synchronous delivery

waiting for message pull operation in
XXXXXProxyPullSupplier interface

receive method without Message
Acknowledgment

pull and acknowledge operations in
XXXXXProxyPullSupplier interface

receive method with
DUPS_OK_ACKNOWLEDGE

receive method with
AUTO_ACKNOWLEDGE

pull and acknowledge operations in
StructuredProxyPullSupplier interface

receive method andacknowledge
method of
CLIENT_ACKNOWLEDGE

no waiting try_pull operation in
XXXXXProxyPullSupplier interface

receive NoWait method without
Message Acknowledgment

try_pull and acknowledge operations
in XXXXXProxyPullSupplier
interface

receive NoWait method with
DUPS_OK_ACKNOWLEDGE

receive NoWait method with
AUTO_ACKNOWLEDGE

try_pull and acknowledge operations
in StructuredProxyPullSupplier
interface

receiveNoWait method and
acknowledge method of
CLIENT_ACKNOWLEDGE

Bridge

proxy supplier proxy consumer Message Consumer JMS application

receive() or
receiveNoWait()

pull() or
try_pull()

acknowledge()

acknowledge function
(DUPS_OK_ACK
or AUTO_ACK) JMS Message

acknowledge()
(CLIENT_ACK)

2-22 Notification/JMS Interworking, v1.0 October 2004

2

In the synchronous delivery mapping, when the JMS MessageConsumer works with
DUPS_OK_ACKNOWLEDGE or AUTO_ACKNOWLEDGE mode, the Bridge as
Notification Service consumer sets the value of SequenceNumber header field of
received event (or event batch) to the SequenceNumbers input parameter and invokes
acknowledge operation whenever an event is received.

In the synchronous delivery mapping, when the JMS MessageConsumer works with
CLIENT_ACKNOWLEDGE mode, the Bridge as Notification Service consumer sets
one or more values of SequenceNumber header field of received events (or event batchs)
to the SequenceNumbers input parameter and invokes acknowledge operation only when
the JMS application calls the acknowledge method of the JMS MessageObject.

In the asynchronous or the synchronous delivery, when Notification Service's Event
Acknowledgment is applied for mapping of JMS Message Acknowledgment, following
conditions must also be satisfied to apply combination 4 of the related QoS properties
(see Section 4.2.8.1, “DeliveryReliability,” on page 4-13):

• The EventReliability QoS property is set to Persistent, and

• the ConnectionReliability QoS property is set to Persistent.

Note – When the Notification Service push model is mapped with the JMS
DUPS_OK_ACKNOWLEDGE or AUTO_ACKNOWLEDGE mode, invoking
acknowledge operation is actually not needed. Because the supplier can know that sent
event reached the consumer by the end of push operation. However when the push
model is mapped with the JMS CLIENT_ACKNOWLEDGE mode, the end of push
operation can't be used for the purpose. Because in the JMS
CLIENT_ACKNOWLEDGE mode, JMS application notifies of receipt of an event by
an acknowledgment explicitly.

This difference between DUPS_OK_ACKNOWLEDGE/AUTO_ACKNOWLEDGE and
CLIENT_ACKNOWLEDGE makes design of supplier complex. So the specification
forces consumer to invoke acknowledge operation to remove the difference between
DUPS_OK_ACKNOWLEDGE/AUTO_ACKNOWLEDGE and
CLIENT_ACKNOWLEDGE from the viewpoint of supplier for simple design of
supplier.

2.7 Transactional Support

2.7.1 Asynchronous Transactional Model

To maintain the transaction semantic from a Notification Service client to a JMS client,
at least three different transactions are needed:

1. One transaction (T1) that involves a notification client, its transactional resources
(e.g., a database) and the notification service.

2. One transaction (T2) that involves the Notification Service, the bridge and the JMS
implementation. This transaction will be named Routing transaction.

October 2004 Notification/JMS Interworking: Transactional Support 2-23

2

3. One transaction (T3) that involves a JMS client, its transactional resources (e.g., a
database) and the JMS implementation.

These transactions are tied by precedence rules. When Sending an event from an event
supplier to a JMS consumer the precedence rules imply that:

• The transaction T3 will start only and only if T2 commits.

• T2 will start only and only if T1 commits.

• Each time one of these transactions commits the data sent in its scope is moved
toward its next destination.

• If one of those transactions rolls back, the data sent in its scope will be put back
into its initial destination. Subsequent trials will take place to send the data to its
next destination later.

These rules imply that once data is sent from the supplier, it will be conveyed to its final
destination that is the consumer, guaranteeing the transaction semantic from end-to-end.

When Sending a JMS message from a JMS sender (or publisher) to an event consumer
the precedence rules are reversed, meaning that T1 will not take place only and only if
T2 commits and T2 will not take place only and only if T3 commits.

Although the usage of end-to-end transaction semantic is recommended, this
specification does not mandate it. This specification covers the routing transaction (T2)
only which implies that a notification service client can send or receive events in a non-
transactional context, likewise the JMS client can send or receive JMS messages in a
non-transactional context, but the data sent between notification service and JMS may be
sent in the routing transaction context.

The rationale behind the use of the routing transaction without necessarily using
transactions at the Notification Service and JMS client sides is that the Notification
Service to JMS communication portion is hidden and transparent to the application client
developers preventing them from performing any recovery action if a failure, that will
lead to data loss, occurs.

Figure 2-10 Routing Transaction Scope

To guarantee the ACID transactional properties of the Routing Transaction it is expected
that the notification service and the JMS implementation rely on a transactional
persistent support.

Notification
Service JMS

Bridge

Persistent
support

Supplier Consumer

Persistent
support

Routing
Transaction

Notification
Service JMS

Bridge

Persistent
support

Supplier Consumer

Persistent
support

Routing
Transaction

2-24 Notification/JMS Interworking, v1.0 October 2004

2

Applying end-to-end transaction semantic and using transactional persistent support in an
effective way will guarantee the exactly-once delivery QoS.

Figure 2-10 denotes the Routing transaction scope. This transaction involves the bridge,
the Notification Service, the JMS service provider, and the Persistent Supports used by
them. All those components should be coordinated by a single root coordinator that is
hosted by a Transaction Service.

It is also expected that the interposition schema is applied between OTS (Object
Transaction Service) on the CORBA side and JTS (Java Transaction Service) on the Java
side. The interoperability between OTS and JTS is guaranteed by the fact that JTS is
mapped from OTS and its usage of IIOP as an underlying transport protocol to propagate
transaction context between OTS and JTS.

Both JMS and Notification specifications provide a model that outlines how a messaging
system should behave in a transactional environment. The transactional roles of the JMS,
the Bridge and the Notification Service are driven by the following considerations:

• The Notification Service specification allows a channel and its related proxy objects
to initiate a transaction and assumes the transaction client role.

• The Notification Service specification allows a channel and its related proxy queue
objects to assume the Resource object role.

• The JMS service provider doesn’t support the transactional client role.

• The Bridge should be as light as possible, meaning that it should not be assigned
complex transactional behaviors. This assertion will promote the bridge adoption by
the industry.

2.7.2 Supported configurations

By combining the communication consistency checking and the state of the art of the
transactional role of JMS and Notification, the only case where events can be sent from
Notification service to JMS in transaction scope is the case where the Channel pushes the
data to the bridge and the bridge pushes it to JMS. Likewise, the only case where data
can be sent from JMS to Notification service in transaction scope is the case where the
Channel pulls data from the bridge that will synchronously pull it from JMS.

In both cases the Notification Service assume the Routing Transaction client role.

Figure 2-11 summarizes the supported transactional configurations. The Transactional
Roles of different components are detailed in the next sections.

October 2004 Notification/JMS Interworking: Transactional Support 2-25

2

Figure 2-11 Supported transactional configuration

2.7.3 Notification Service Transactional Role

When events are sent in the routing transaction scope, the Notification Service assumes
always the transaction client and recoverable server roles, and as such the Notification
Service: Starts a transaction may use the OTS Current interface; Enlist a Resource object
that wraps events queues using the OTS Coordinator interface.

The notification service may also use direct transactional context management, by using
the OTS Control interface to manage the routing transaction.

The Notification Service queue managers participate into the two-phase commit
completion and the recovery protocols by implementing the Resource Object interface
and the transactional recovery protocol as it is specified in the OTS specification. The
behavior of the Notification Service Resource Objects depends on whether the
Notification Service is the source or the sink of the data.

2.7.3.1 Data Flowing from Notification Service to JMS

When the Notification Service sends one or several events in to the routing transaction
scope, the OTS transaction identifier is propagated implicitly to JTS in the Propagation
context.

If the events are sent successfully, the Notification Service asks the Transaction Service
to commit the routing transaction. When the root transactional coordinator decides
definitively to commit the routing transaction, the events associated to it are removed
from Notification Service events queue.

If the events were not correctly sent or if the root transactional coordinator rolls back the
routing transaction for any other reason, the events sequences associated with it will
remain in events queue, these events will be sent later when the notification service will
start a new transaction.

U serTransaction

N otification
Service JM S

Bridge

R outing
Transaction

pushpush

D ata flow

Notification
Service

JM S
Bridge

R outing

pullpull

D ata flow

N otification
Service JM S

Bridge

R outing
Transaction

pushpush
Notification

Service
JM S

Bridge

Transaction

pullpull

O TS

Current
Coordinator

Resource

JT S

X AResource

U serTransaction

O TS

Current
Coordinator

Resource

JT S

XA Resource

U serTransaction

N otification
Service JM S

Bridge

R outing
Transaction

pushpush

D ata flow

Notification
Service

JM S
Bridge

R outing

pullpull

D ata flow

N otification
Service JM S

Bridge

R outing
Transaction

pushpush
Notification

Service
JM S

Bridge

Transaction

pullpull

O TS

Current
Coordinator

Resource

JT SJT S

X AResource

U serTransaction

O TS

Current
Coordinator

Resource

JT SJT S

XA Resource

2-26 Notification/JMS Interworking, v1.0 October 2004

2

2.7.3.2 Data flowing from JMS to Notification Service

When the Notification Service receives one or several events in to the routing transaction
scope, the OTS transaction identifier is propagated implicitly to JTS in the Propagation
context.

If all the events are received and stored into the transactional persistent support
successfully, the Notification Service asks the Transaction Service to commit the routing
transaction. When the root transactional coordinator decides definitively to commit the
routing transaction, the events associated to it are durably added in to the Notification
Service events queue.

If the events were not correctly received or if the root transactional coordinator rolls back
the routing transaction for any other reason, the events that are potentially received in its
scope will be deleted from the events queue.

2.7.4 Bridge Transactional Roles

In order to keep the bridge simple, one design principle was to forbid attributing to it the
transaction client role. Furthermore, this specification does not define any recoverable
state and does not implement any transactional change at the Bridge level.

The bridge does not participate to the transaction completion protocol, but it can force
the transaction roll back. A typical case is when the bridge is unable to carry the data to
the JMS or to the Notification Service. To rollback the transaction the bridge may use
either the JTA/JTS or OTS interfaces. Therefore, the bridge is assuming the transactional
object role.

2.7.5 JMS service provider Transactional Role

The JMS specification does not attribute any transaction client role, meaning that the
JMS service provider is not allowed to initiate or start any transaction.

The JMS specification assigns to JMS a Resource Manager role, meaning that it can
integrate the sphere of control of the routing transaction by enlisting its transactional
queue manager using the javax.transaction.Transaction interface and implements the
transactional semantic on the message queues. The JMS queue managers participate into
the two-phase commit completion and the recovery protocols by implementing the
javax.transaction.xa.XAResource, javax.jms.XAConnection and the
javax.jms.XASession interfaces and the transactional recovery behavior as it is specified
in the JTA specification.

The behavior of JMS XAResource objects depends on whether the JMS Service is the
source or the sink of the data.

October 2004 Notification/JMS Interworking: Transactional Support 2-27

2

2.7.5.1 Data Flowing from Notification Service to JMS

Due to the considerations described in Section 2.7.2, “Supported configurations,” on
page 2-24 only the notification service is the component that is allowed to initiate routing
transactions. When the Notification Service sends successfully events that are translated
to messages to JMS and commits the routing transaction all the messages are durably
stored in the JMS message queues and the transactional persistent support.

If the messages were not correctly sent or if the root transactional coordinator rolls back
the routing transaction for any other reason, the messages are potentially sent in the
routing transaction scope will be removed from the JMS message queue and the
transactional persistent support. The messages will be received later when the
notification service will start a new transaction.

2.7.5.2 Data Flowing from JMS to Notification Service

When the bridge pulls JMS in to the scope of the routing transaction the OTS transaction
identifier is propagated implicitly to JTS in the Propagation context. The propagation
context will be in turn propagated to the JMS XAResource Object that encapsulates the
message queues.

If the JMS returns successfully the messages in to the routing transaction scope and if the
notification service receives them successfully, the Notification Service asks the
Transaction Service to commit the routing transaction. When the root transactional
coordinator decides definitively to commit the routing transaction, the events associated
to the routing transactions are durably removed from the JMS message queue.

If the translated messages to events were not correctly received into the notification
service or if the root transactional coordinator rolls back the routing transaction for any
other reason, the messages that are potentially sent in the routing transaction scope will
remain in the JMS message queue.

2.7.6 Bridge Transactional Monitoring

2.7.6.1 Notification Service QoS and Admin Property Extensions

The notification service specification status that in order to support transactional event
transmission, an implementation of the Notification Service, should support
implementations of the various proxy interfaces that are POA objects that support
TransactionPolicy. Unfortunately the specification was not precise enough to define the
way an application program will dynamically control the transactionality of its proxy in
the notification service. Furthermore, the specification did not offer to the developer the
way to specify the number of events that are sent or retrieved by the event channel in the
scope of a transaction. To make up for those gaps the Notification Service quality of
services and administration properties Framework is extended by a new QoS and three
administrative properties.

2-28 Notification/JMS Interworking, v1.0 October 2004

2

Fortunately, the Notification Service QoS and Admin frameworks are flexible enough to
add new QoS and AdminProperty values without changing the Notification Service
interfaces. Therefore the new QoS and AdminProperties should be seen as an extension
rather than a modification of the Notification Service Interfaces. These new QoS and
AdminProprerties are:

• EnableTransaction QoS is a boolean that enables the notification service client to
activate or deactivate the support of the transaction at Notification Service object
levels. When this QoS is enabled and applied on the ProxyPushSupplier,
ProxyPullConsumer, StructuredProxyPushSupplier,
StructuredProxyPullConsumer, and TypedProxyPushSupplier,
TypedProxyPullConsumer7 levels it will allow the latter to behave as a
transaction client. When this QoS is disabled and applied on those various types of
proxy, their transactional client behavior is disabled. This is their default behavior.
When the EnableTransaction QoS is enabled at the ProxyPushConsumer,
ProxyPullSupplier, StructuredProxyPushConsumer,
StructuredProxyPullSupplier,TypedProxyPushConsumer, and
TypedProxyPullSupplier7, the proxies’ implementations will set their
TransctionalPolicy to Require_shared. By default this QoS is disabled,
meaning that for the ProxyPushConsumer various types and the
ProxyPullSupplier various types the proxies’ POAs TransactionalPolicy
attributes are set to Allows_none.

If this QoS is applied at the SupplierAdmin, ConsumerAdmin,
TypedSupplierAdmin7, or TypedConsumerAdmin7 levels, each of their proxy
child will enable individually this QoS at their level according to their types. If this
QoS is applied at the channel, respectively TypedChannel7 level all the
SupplierAdmin and the ConsumerAdmin, respectively, all the
TypedSupplierAdmin and the TypedConsumerAdmin objects will enable this
QoS, subsequently all the proxy objects apply it individually.

Whenever the EnableTransaction QoS is enabled the EventReliability and the
ConnectionReliabilty QoS will be setup automatically by the Notification
Service to “Persistent.” Likewise, when this QoS is disabled the EventReliability
and the ConnectionReliabilty are set to “BestEffort.”

• TransactionEvents AdminProperty defines the number of separate events sent
in the scope of a transaction. The scope of this property is the
ProxyPushSupplier, ProxyPullConsumer, StructuredProxyPushSupplier,
StructuredProxyPullConsumer, TypedProxyPushSupplier, and
TypedProxyPullSupplier.

• TransactionEventSequences AdminProperty defines the number of event
sequences sent in the scope of a transaction. The scope of this property is the
SequenceProxyPushSupplier and SequenceProxyPullConsumer.

• TransactionTimeout adminProperty defines the timeout period in number of
seconds associated with routing transaction created. If the parameter has a non-zero
value n, then the created routing transaction will be subject to being rolled back if
they do not complete before n seconds after their creation. If its value is zero, then
no application specified time-out is established. This adminProperty is aimed to

October 2004 Notification/JMS Interworking: Transactional Support 2-29

2

be mapped on the unsigned long input parameter of the OTS
Current.set_timeout() operation. This adminProperty is applied on all the
proxies that behave as transaction clients.

When those adminProperty are applied at the SupplierAdmin,
ConsumerAdmin or EventChannel level they will affect only the proxies with
transaction client behavior. Table 2-10 summarizes the scope of the new QoS and
AdminProperties at the proxy level. It also summarizes proxies’ transactional
roles. Empty Cells denotes that QoS is not applicable.

2.7.6.2 Bridge Transaction Management Interface

The TransactionManagement interface provides the bridge application clients the
ability to enable and disable automatically the routing transactions. This interface is
optionally inherited by the Bridge interface.

This interface contains two operations: enable_transaction() and
disable_transaction().

The invocation of the enable_transaction operation will enable the proxies with a
transaction client behavior (StructuredProxyPushSuppliers,
StructuredProxyPullConsumer, SequenceProxyPushSupplier,

Table 2-10 New Notification Service QoS and AdminProperties scope

QoS AdminProperties

Proxy Types Enable
Transaction

Transaction
Timeout

Transaction
EventSequences

Transaction
Events

T
ra

ns
ac

tio
nC

lie
nt

R
ol

e

ProxyPushSupplier, X X X

ProxyPullConsumer, X X X

StructuredProxyPushSupplier X X X

StructuredProxyPullConsumer X X X

SequenceProxyPushSupplier X X X

SequenceProxyPullConsumer X X X

TypedProxyPushSupplierr7, X X X

TypedProxyPullConsumer7 X X X

Tr
an

sa
ct

io
n

S
er

ve
r

R
ol

e

ProxyPushConsumer X

ProxyPullSupplier X

StructuredProxyPushConsumer X

StructuredProxyPullSupplier X

SequenceProxyPushConsumer X

SequenceProxyPullSupplier X

TypedProxyPushConsumer7 X

TypedProxyPullSupplier7 X

2-30 Notification/JMS Interworking, v1.0 October 2004

2

SequenceProxyPullComsumer) to start routing transactions and manage their
events queues as OTS recoverable objects. It also enables the bridge EndPoint objects
that are connected to the notification service to set their Transactional POA Policies to
Require_shared. The EndPoint objects affected by this operation are:

• StructuredPushConsumer

• SequencePushConsumer

• StructuredPullSupplier

• SequencePullSupplier

This operation takes as an input the number of events sent in the scope of the routing
transaction and the routing transaction lifetime.

The invocation of the disable_transaction operation will disable subsequent routing
transactions.

2.8 Conformance

The Transaction mapping capabilities, specified in Section 2.7, are an optional
conformance point for this specification. All other interfaces defined in this specification
are required to be implemented for conformance to this specification.

October 2004 Notification/JMS Interworking, v1.0 3-1

Bridge Interfaces 3

This chapter describes the semantic and the behavior of the interfaces that make up the
NS-JMS bridge. All the data structures and the interfaces are defined in the
CoSBridgeAdmin module.

3.1 CosBridgeAdmin Module

The CosBridgeAdmin module defines the ExternalEndPoint data type. In addition,
this module provides declarations for administrative interfaces that are defined for
managing the Bridge Life cycle.

#ifndef _COS_BRIDGE_ADMIN_
#define _COS_BRIDGE_ADMIN_
#include <orbdefs.idl>
#include <CosNotifyChannelAdmin.idl>
#pragma prefix "omg.org"

module CosBridgeAdmin
{
 enum ExternalEndpointRole
 {
 SOURCE,
 SINK
 };

 enum JMSDestinationType
 {
 QUEUE,
 TOPIC
 };

 enum MessageType
 {
 JMS_MESSAGE,
 STRUCTURED_EVENT,

3-2 Notification/JMS Interworking, v1.0 October 2004

3

 SEQUENCE_EVENT
 };

 struct JMSDestination
 {
 JMSDestinationType destination_type;
 string destination_name;
 string factory_name;
 };
enum FlowStyle
 {
 PUSH,
 PULL
 };

 union ExternalEndpointConnector switch (MessageType)
 {
 case JMS_MESSAGE: JMSDestination destination;
 default: CosNotifyChannelAdmin::ChannelID channel_id;
 };

 struct ExternalEndpoint
 {
 ExternalEndpointRole role;
 ExternalEndpointConnector connector;
FlowStyle style;
 MessageType type;
 };

 enum ExternalEndpointErrorCode
 {
 INVALID_CHANNELID,
 INVALID_JMSDESTINATION,
 MISMATCH_ENDPOINTROLE_NOTIFSTYLE
 };

 struct ExternalEndpointError
 {
 ExternalEndpointRole role;
 ExternalEndpointErrorCode code;
 };

 typedef sequence<ExternalEndpointError> ExternalEndpointErrorSeq;

 exception InvalidExternalEndPoints
 {
 ExternalEndpointErrorSeq error;
 };

 typedef long BridgeID;
 typedef sequence<BridgeID> BridgeIDSeq;

 exception BridgeAlreadyStarted {};
 exception BridgeInactive {};
 exception BridgeNotFound {};

October 2004 Notification/JMS Interworking: CosBridgeAdmin Module 3-3

3

interface BridgeFactory;

 interface Bridge
 {
readonly attribute ExternalEndpoint end_point_receiver;
 readonly attribute ExternalEndpoint end_point_sender;

 void start_bridge() raises (BridgeAlreadyStarted, InvalidExternalEndPoints);
 void stop_bridge () raises (BridgeInactive);
 status get_status();
 void destroy ();
 };

 interface BridgeFactory
 {
 Bridge create_bridge (in ExternalEndpoint source, in ExternalEndpoint sink, out
BridgeID id)
 raises (InvalidExternalEndPoints);
 Bridge get_bridge_with_id (in BridgeID id)
 raises (BridgeNotFound);
 BridgeIDSeq get_all_bridges();
 };
};

#endif

3.1.1 ExternalEndPoint

ExternalEndPoints are abstract entities that represent the sender and the receiver of
the data through the NS-JMS bridge. These entities are represented by a data structure
ExternalEndPoint which specifies:

1. The role of the external end point which can be either a Source or a Sink of data.

2. The nature of the external end point, be it a JMS destination or an EventChannel.

3. The Notification style used by the ExternalEndPoint, which can be either a Push
or a Pull.

4. The type of message that it handles. This type can be either a JMS message, a
structured event or a sequence of the structured events.

Each of the previous points is described by an ExternalEndPoint field in the structure.
The following subsections describe briefly those fields.

3.1.1.1 ExternalEndpointRole

The ExternalEndpointRole is an enumeration that describes the role of the
ExternalEndPoint. The enumeration is made by the following values: {SOURCE,
SINK };

3-4 Notification/JMS Interworking, v1.0 October 2004

3

3.1.1.2 ExternalEndpointConnector

The ExternalEndpointConnector is an IDL union structure that represents
exclusively a JMSDestination or an EventChannel. If the
ExternalEndpointConnector handles a JMS_MESSAGE message type, it refers to a
JMSDestination. If it handles a structured event or a sequence of structured events, it
refers to an EventChannel.

The JMSDestination is a data structure that includes:

1. The JMSDestinatonType, which is an enumeration that can be either a Queue or
a Topic,

2. a string that specifies the destination name,

3. a string that specifies the JMS factory name.

The EventChannel is represented by its identifier, the
CosNotifyChannelAdmin::ChannelID.

3.1.1.3 MessageType

The MessageType specifies the type of messages that can be processed by the bridge.
The MessageType is an enumeration that can be either a JMS_MESSAGE, a
STRUCTURED_EVENT, or SEQUENCE_EVENT.

3.1.2 Bridge Interface

The Bridge interface encapsulates the behaviors supported by a NS-JMS bridge
instance.

Each instance of the Bridge interface has two ExternalEndPoint readonly attributes
that describe JMS and Notification service destinations. Due to the architectural
restriction described in Section 2.3, “Bridge Instance,” on page 2-4 this interface does not
allow the creation of new Endpoint instances.

The Bridge interface supports operations that:

1. activates the Bridge instance to start forwarding and transforming data,

2. de-activates the Bridge instance,

3. obtains the status of the bridge for the administration purposes,

4. destroys the Bridge instance.

3.1.2.1 start_bridge

The start_bridge operation activates the bridge in order to receive and forward data.
This operation maps on the Proxy’s connect_ operation on the Notification Service side
and on the javax.jms.Connection.start operation on the JMS side to initiate the JMS
Connection’s delivery of incoming messages.

October 2004 Notification/JMS Interworking: CosBridgeAdmin Module 3-5

3

When the start_bridge operation is successfully executed the bridge state becomes
started. Restarting an already started bridge raises the BridgeAlreadyStarted
exception.

Passing wrong external end point raises the InvalidExternalEndPoints exception.

3.1.2.2 stop_bridge

When a Bridge is created it is in stopped mode. The stop_bridge operation deactivates
the bridge. That means that no messages are being delivered to it. This operation maps
on the Proxy's disconnect_ operation on the Notification Service side and on the
javax.jms.Connection.stop operation on the JMS side.

When the stop_bridge operation is successfully executed the bridge state becomes
stopped. Stopping an inactive bridge raises the BridgeInactive exception.

3.1.2.3 get_status

The get_status operation returns the current state of the bridge, which can be either in
stopped or in a started mode. The state of the bridge is not necessarily persistent.

3.1.2.4 destroy

The destroy operation destroys the Bridge instance. The EndPointReceiver and
EndPointSender implementations invoke the disconnect operation on the
corresponding Notification Service and invoke the stop operation on the JMS side. When
those operations are successfully executed both of the end points are destroyed.

3.1.3 Bridge Factory Interface

A BridgeFactory is responsible for the creation of Bridge objects based on initial
parameters. In order to create a bridge, it is necessary to have the identifier of an existing
Notification Service event channel and a JMS destination information.

3.1.3.1 create_bridge

The create_bridge operation creates new instances of NS-JMS bridge. At creation
time, the client must specify two external points. One external point must represent an
EventChannel Instance the other one must represent a JMS destination. Furthermore,
the external points information must be consistent with the communication consistency
checking table defined in Section 2.2, “Bridge Factory,” on page 2-3. For example,
connecting an external point behaving as an EventChannel, assuming the Source role
and using the PUSH NotifyStyle with an external point behaving as a
JMSDestination, assuming the Sink role and using the PULL NotifyStyle is not
consistent.

The create_bridge operation raises the InvalidExternalEndPoints exception when
an inconsistent external endpoint is passed as input parameters.

3-6 Notification/JMS Interworking, v1.0 October 2004

3

If no exception is raised, the create_bridge operation will return a reference to a new
bridge and will assign to this new bridge a unique numeric identifier. This identifier is
returned as an output parameter.

3.1.3.2 get_all_bridges

The get_all_bridges operation returns a sequence of all of the unique numeric
identifiers corresponding to NS-JMS bridge instances, which have been created by the
Bridge factory.

3.1.3.3 get_bridge_with_id

The get_bridge_with_id operation returns a reference to the Bridge object identified
by the supplied bridge id. If the bridge cannot be found, then the BridgeNotFound
exception is thrown.

3.2 BridgeTransactionMgmt module

The BridgeTransactionMgmt module defines a single TransactionManagement
interface.

3.2.1 TransactionManagement interface

The TransactionManagement interface is optionally inherited by the Bridge
interface. It manages the activation and the disactivation of the routing transaction. This
interface is made up by two operations: enable_transaction and
disable_transaction.

module BridgeTransactionMgmt
{
 exception UnsupportedTransaction {};
 exception TransactionAlreadyActive {};
 exception TransactionActive {} ;

 interface TransactionManagement
 {
 void enable_transaction (in unsigned long events, in unsigned long tim-
eout)
 raises (UnsupportedTransaction, TransactionAlreadyActive);
 void disable_transaction() raises (TransactionActive);
 };
}; // BridgeTransactionMgmt

October 2004 Notification/JMS Interworking: BridgeTransactionMgmt module 3-7

3

3.2.1.1 enable_transaction

The enable_transaction operation configures the proxies, namely the
StructuredProxyPushSuppliers, StructuredProxyPullConsumer,
SequenceProxyPushSupplier, SequenceProxyPullConsumer with a
transactional client behavior. It allows also those proxies to manage their event queues as
OTS recoverable objects.

This operation sets EnableTransaction new Notification Service QoS to true. It
configures the bridge EndPoint objects, namely the StructuredPushConsumer,
SequencePushConsumer, StructuredPullSupplier, SequencePullSupplier
that are connected to the notification service to set their Transactional POA Policies to
Require_shared.

This operation takes as an input parameter the number of events sent in the scope of the
routing transaction. When the bridge convey event sequences, this input parameter
denotes the number of event sequences, meaning that the total number of events sent in
the routing transaction scope is obtained by multiplying the number of events within a
sequence by the value of the input parameter. The number of events, respectively, the
number of event sequences sent in the scope of the routing transaction are mapped on the
new notification service TransactionEvents, respectively,
TransactionEventSequences AdminProperties.

The enable_transaction operation also takes as an input parameter the lifetime of the
routing transaction. The lifetime of the routing transaction is mapped on the Notification
Service TransactionTimeout AdminProperty.

This operation raises the UnsupportedTransaction exception if the Notification
Service or the JMS Implementations does not support distributed transactions.

It raises theTransactionAlreadyActive exception if an active transaction is already
associated to the bridge object.

3.2.1.2 disable_transaction

The disable_transaction operation invocation disables the bridge, the notification
service and the JMS transactional behaviors. Invoking this operation on an in progress
transaction will raise an exception TransactionActive and it will disable the
subsequent routing transaction from taking place. The actual execution of this operation
will take place as soon as the active transaction finishes.

The implementation of the disable_transaction will configure the bridge EndPoint
objects, namely the StructuredPushConsumer, SequencePushConsumer,
StructuredPullSupplier, SequencePullSupplier to set their Transactional POA
Policies to Allows_none. It will also set the Notification Service EnableTransaction
QoS to False.

3-8 Notification/JMS Interworking, v1.0 October 2004

3

October 2004 Notification/JMS Interworking, v1.0 4-1

Extension to Existing OMG
Specifications 4

This specification adds two new modules defined in a new subsection of the OMG
Notification Service. Support for each of these two new modules forms a new optional
conformance point for the Extended Notification Service.

4.1 Editing Instructions for Extended Notification Service

The following text (new text is in outline format) needs to replace the compliance clause
in the notification service subsection 1.2.1 :

"

In order to be conformant with this specification, all of the interfaces must be supported
and implemented using the specified semantics, with the exception of the interfaces for
typed notification channels, which are optional. In addition, a conforming
implementation must support filter objects that support constraints expressed in the
default constraint grammar defined in Section 2.4, "The Default Filter Constraint
Language," on page 2-23. Lastly, this document defines a set of standard QoS properties,
which must at least be understood (although not necessarily implemented) by all
conformant implementations.

More precisely,

• A conforming implementation must support all interfaces defined in the

• CosNotification, CosNotifyFilter, CosNotifyComm, and

• CosNotifyChannelAdmin modules.

• A conforming implementation may also support, in addition to the mandatory
interfaces enumerated above, all of the interfaces defined in the

• CosTypedNotifyChannelAdmin module.

• A conforming implementation may also support, in addition to the mandatory
interfaces enumerated above, all of the interfaces defined in the

• CosNotifyChannelAdminAck module,

4-2 Notification/JMS Interworking, v1.0 October 2004

4

• A conforming implementation may also support, in addition to the mandatory
interfaces enumerated above, all of the interfaces defined in the

• CosNotifyCommAck module,

• A conforming implementation will provide implementations of the

• CosNotifyFilter::Filter and CosNotifyFilter::MappingFilter interfaces that support
constraints expressed in the default constraint grammar specified in Section 2.4,
"The Default Filter Constraint Language," on page 2-23.

• All QoS properties defined in Chapter 2 and 3.7 of this specification, must at least
be understood by any conforming implementation. However, a conforming
implementation may choose to not implement all standard QoS properties and/or
QoS property settings. In cases where a client requests a standard QoS property
with a setting that is not supported by a conformant implementation, the
implementation should raise the CosNotification::UnsupportedQoS exception.

"

Insert the following section 4.2 as a new section 3.7 (with appropriate renumbering) of
the OMG Notification Service.

Insert, also, the section 4.3 as a new subsection section 2.1.5 (Sending Events within a
Transaction) of the OMG Notification Service.

4.2 IDL Modules

This subsection specifies two IDL modules, CosNotifyCommAck and
CosNotificationChannelAdminAck, for Notification acknowledgement.

The IDL behavior required for support and use of the interfaces in these two modules,
including:

• sender including a sequence number field in the structured notification, with the
parameter name "SequenceNumber";

• behavior of the "acknowledge" operation;

• the message retry sequence; and

• new QOS parameters associated with these ack interfaces

is specified in this subsection.

4.2.1 The CosNotifyCommAck Module

To provide a SequenceNumber and an explicit acknowledgement to invoke on Push and
Pull supplier interfaces, the module, Cos Notify Comm Ack, is defined.

Support of its interfaces, which extend the structuredxxxSupplier, and the
sequenceStructuredxxxSupplier interfaces by adding a single "acknowledge" operation,
is subject to an optional conformance point.

October 2004 Notification/JMS Interworking: IDL Modules 4-3

4

//File: CosNotifyCommAck.idl
//Part of the extended Notification Service
#ifndef _COS_NOTIFY_COMM_ACK_IDL_
#define _COS_NOTIFY_COMM_ACK_IDL_
#include <CosNotifyComm.idl>
#pragma prefix "omg.org"

module CosNotifyCommAck {
const string SequenceNumber = "SequenceNumber";
// SequenceNumber takes a value of type long.
// Structured events must include a SequenceNumber field to be acknowledged

typedef sequence<long> SequenceNumbers;

const string DeliveryReliability = "DeliveryReliability";
const short None = 0;
const short Acknowledgment = 1;
// DeliveryReliability takes value of None or Acknowledgement as Notification Qos

const string RetryInterval = "RetryInterval";
// RetryInterval takes on a value of TimeBase::TimeT as Notification Qos

const string Retries = "Retries";
// Retries takes on a value of type long as Notification Qos Parameter

interface StructuredPushSupplierAck : CosNotifyComm::StructuredPushSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};

interface StructuredPullSupplierAck : CosNotifyComm::StructuredPullSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};

interface SequencePushSupplierAck : CosNotifyComm::SequencePushSupplier {
 void acknowledge(in SequenceNumbers sequence_numbers);
};

interface SequencePullSupplierAck : CosNotifyComm::SequencePullSupplier {
 void acknowledge(in SequenceNumbers sequence_numbers);
};
};
#endif

4.2.2 The CosNotifyChannelAdminAck Module

To provide explicit acknowledgement in proxy interfaces, the
CosNotifyChannelAdminAck module is defined.

Implementation of its interfaces, which extend the StructuredProxy and SequenceProxy
interfaces by adding a single “acknowledge” operation, is subject to an optional
conformance point:.

//File: CosNotifyChannelAdminAck.idl
//Part of the extended Notification Service

4-4 Notification/JMS Interworking, v1.0 October 2004

4

#ifndef _COS_NOTIFY_CHANNEL_ADMIN_ACK_IDL_
#define _COS_NOTIFY_CHANNEL_ADMIN_ACK_IDL_
#include <CosNotifyChannelAdmin.idl>
#pragma prefix "omg.org"

module CosNotifyChannelAdminAck {

typedef sequence<long> SequenceNumbers;

interface StructuredProxyPushSupplierAck :
 CosNotifyChannelAdmin::StructuredProxyPushSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};

interface StructuredProxyPullSupplierAck :
 CosNotifyChannelAdmin::StructuredProxyPullSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};

interface SequenceProxyPushSupplierAck :
CosNotifyChannelAdmin::SequenceProxyPushSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};

interface SequenceProxyPullSupplierAck :
CosNotifyChannelAdmin::SequenceProxyPullSupplier {
void acknowledge(in SequenceNumbers sequence_numbers);
};
};
#endif

4.2.3 Overview of Event Acknowledgement

4.2.3.1 Event Acknowledgment on Push Model

Figure 4-1 shows an overview of reliable event delivery with Event Acknowledgment
using the push model.

1. Push-style supplier (or proxy supplier) adds SequenceNumber header field to an
event.

2. Supplier sends the event to push-style consumer (or proxy consumer) invoking push
operation.

3. Consumer checks duplication of the received event using the SequenceNumber.

4. Consumer stores the event to persistent storage.

5. Consumer invokes acknowledge operation

6. Supplier removes the sent and acknowledged event.

October 2004 Notification/JMS Interworking: IDL Modules 4-5

4

Figure 4-1 Event Acknowledgment on push model

4.2.3.2 Event Acknowledgment on Pull Model

Figure 4-2 shows an overview of the reliable event delivery with Event Acknowledgment
using the pull model.

1. Pull-style consumer (or proxy consumer) invokes pull operation of pull-style
supplier (or proxy supplier).

2. Supplier adds SequenceNumber header field to an event.

3. Supplier sends the event to consumer as return value of invoked pull operation.

4. Consumer checks duplication of the received event using the SequenceNumber and
stores it to persistent storage.

5. Consumer invokes acknowledge operation.

6. Supplier removes the sent and acknowledged event.

(Proxy)PushSupplier (Proxy)PushConsumer

Event Event

(2) push() with
SequenceNumber

(5) acknowledg()

(3) check duplication
with
SequenceNumber

(4) store the event to
storage

(Proxy)PushConsumer Interface

(1) add
SequenceNumber

(6) remove

(5) (Proxy)PushSupplier Interface

4-6 Notification/JMS Interworking, v1.0 October 2004

4

Figure 4-2 Event Acknowledgment on pull model

4.2.4 Scope of Event Acknowledgment

Event Acknowledgment supports delivery of Structured Events and delivery of event
batches (sequence of Structured Events) for both the push model and the pull model.

Note: The notification channel mechanisms for translation of Typed events and untyped
events (i.e., syntax Any) from a proxy consumer to a proxy supplier, can be used to
convert such notifications to structured event syntax. Thus, it is sufficient to specify
event acknowledgment extensions only for Structured events and sequence of structured
events.

Event Acknowledgment can be applied to any logical connection between a supplier (or
proxy supplier) and a consumer (or proxy consumer), even if the supplier or the
consumer is a Bridge for interworking with other messaging systems (see Figure 4-3).

Applying Event Acknowledgment to all the logical connections at same time on an event
domain can realize end-to-end reliability between supplier and consumer. Each Event
Acknowledgment on a logical connection is managed independently. Figure 4-3 shows
an example of Reliable Delivery Sequence with end-to-end reliability on an event
domain using the push model. Since the Reliable Delivery Sequence on the logical
connection 1 is managed independently from the next logical connection 2, when "(1)
push" operation is invoked, the event channel A may invoke "(2) acknowledge"
operation soon thereafter. The event channel A is not required to invoke "(3) push"
operation or wait for "(4) acknowledge" operation on the next logical connection before
invocation of "(2) acknowledge".

(P ro x y)P u llS u p p lie r (P ro x y)P u llC o n su m er

E v en t E v en t

(3) re tu rn o f p u ll()
w ith
S eq u en c eN u m b e r

(5) a ck n o w le d g e ()

(4) c h e c k d u p lic a tio n
w ith
S e q u e n c e N u m b e r
a n d s to re it to s to ra g e

(P ro x y)P u l lS u p p li e r In te rfa c e
in h e ritin g N o tify A ck in te r fa ce

(2) ad d
S e q u e n c e
N u m b e r

(6) re m o v e

(1) p u ll()

October 2004 Notification/JMS Interworking: IDL Modules 4-7

4

Figure 4-3 Event Acknowledgment on event domain in push model

Note – When the Event Acknowledgment is used on a logical connection in an event
domain, the supplier (not proxy supplier) can create and add SequenceNumber header
field (see Section 4.2.5, "Sequence Number Header Field") to events for improvement
of performance. Because insertion of SequenceNumber header field by proxy supplier
would require a lot of overhead.

4.2.5 Sequence Number Header Field

The following definition is added to the modules CosNotifyCommAck and
CosNotifyChannelAdminAck for SequenceNumber header field:

const string SequenceNumber = "SequenceNumber";

// SequenceNumber takes a value of type long.

The SequenceNumber header field is an event identifier defined as a standard optional
header field. The type of its associated value is long. When the Event Acknowledgment
is applied to event delivery, the supplier (or proxy supplier) adds the header field to the
variable header in the Structured Event before sending the event to the consumer (or
proxy consumer). In the case of delivery of an event batch, the supplier adds the header
field to only the first Structured Event in the sequence of Structured Events. If the
SequenceNumber header field was already added for previous event delivery, the event
channel overrides the SequenceNumber header field with a new value.

The SequenceNumber is an integer value which takes a value in the range 0..231-1. It is
created and managed per each logical connection between supplier and consumer. In the
first event or event batch within the logical connection, SequenceNumber takes the value
0. It is incremented (ex. 0, 1, 2, ..) for each event (in the case of delivery of Structured
Event) or for each event batch (in the case of delivery of sequence of Structured Events)
sent by the supplier within the logical connection. The next value of 231-1 in the
increment is 0.

Event
Channel

A

proxy
consumer

proxy
supplier

consumer or
Bridge as consumer

Event
Channel

B

proxy
consumer

proxy
supplier

Reliable event delivery with Event
Acknowledgment can be applied

supplier or
Bridge as supplier

(1)
push

(2)
ack

(3)
push

(4)
ack

(5)
push

(6)
ack

logical connection 1 logical connection 2 logical connection 3

4-8 Notification/JMS Interworking, v1.0 October 2004

4

Note – The associated value of the SequenceNumber header field takes a positive
value or 0. However long type is applied to the value rather than unsigned long for
natural mapping with Java. It is a design policy of the Notification Service
specification.

4.2.5.1 Lifetime and Scope of Sequence Number

The lifetime of SequenceNumber is the same as the applied logical connection. When a
logical connection is created by invocation of connect operations, a series of
SequenceNumber values starts from value 0 for the logical connection. Only when the
logical connection is disconnected explicitly by invocation of disconnect operations, is
the series of SequenceNumber values for the connection terminated. If a logical
connection is created between the same supplier and consumer again, the
SequenceNumber is reset and starts from value 0. Otherwise the SequenceNumber is
never lost or reset.

The scope of a series of SequenceNumber values is a logical connection between a
supplier (or proxy supplier) and a consumer (or proxy consumer). Figure 4-4 shows an
example of SequenceNumber management. Since the SequenceNumber is generated and
managed per each logical connection, the logical connection 1 and logical connection 2
applies each connection specific SequenceNumber to same events independently.

Figure 4-4 Scope of Sequence Number in cascade channel connection

Figure 4-4 shows another example of SequenceNumber management. Even if two or
more logical connections are connected to a single Event Channel, each logical
connection has its specific series of SequenceNumber values.

Event
Channel

A

Event
Channel

B

proxy
consumer

proxy
supplier

Event
Channel

C

proxy
consumer

push

logical connection 1

proxy
supplier

SN=3 SN=15
push

push
SN=4 SN=16

push

push
SN=5 SN=17

push

push
SN=6 SN=18

push

logical connection 2

October 2004 Notification/JMS Interworking: IDL Modules 4-9

4

Figure 4-5 Scope of Sequence Number in parallel channel connection

4.2.5.2 Sequence Number Usages

In the push model, Sequence Number is used for duplication check of events on
consumer. After a supplier sends an event to a consumer using push operation, if system
failure or a communication error occurs before the invocation of the acknowledge
operation, the suppler can’t know whether the sent event reached the consumer and was
processed (ex. stored to persistent storage). In this case, the supplier invokes push
operation again to re-send the same event. Thus, when a consumer receives an event
from a suppler, the consumer must always execute duplication checking for the event
using the Sequence Number, since it might be re-sending the same event.

Note – In the Notification/JMS interworking, the end of invocation of the push
operation does always not mean that the sent even reached the consumer and was
processed completely. Because in the case of JMS CLIENT_ACKNOWLEDGE mode,
it must be notified by JMS application with an acknowledgment explicitly. Thus the
end of the push operation can't be used instead of acknowledge operation.

In the pull model, Sequence Number is used to indicate what events reached a consumer
successfully. To reduce the number of acknowledge operation invocations, a consumer
may convey multiple SequenceNumber values of received events to the supplier at once
by one invocation of acknowledge operation, after some invocations of pull operations.

Event
Channel

A

Event
Channel

C

proxy
consumer

push

logical connection 1

proxy
supplier

SN=10

pushSN=11

pushSN=12

Event
Channel

B

proxy
supplier

logical connection 2

pushSN=59

pushSN=60

pushSN=61

pushSN=62

4-10 Notification/JMS Interworking, v1.0 October 2004

4

In the pull model, even if a consumer invokes acknowledge operation once per pull
operation invocation, Sequence Number is needed. After a consumer obtains an event
using pull operation and sends the Sequence Number of the obtained event using
acknowledge operation, if a system failure or a communication error occurs before the
end of the invocation of the acknowledge operation, the consumer can't know whether
the sent Sequence Number reached the suppler. In this case, the consumer invokes
acknowledge operation again to re-send the same Sequence Number. Thus when
acknowledge operation is invoked, the suppler must always check the value of Sequence
Number before removal of the next event in persistent storage, since it might be a re-send
of the same Sequence Number.

4.2.6 Acknowledge operation behavior

This specification defines additional interfaces, (defined in the two modules specified in
this section), each of which has an acknowledge operation to be invoked by the message
consumer on these extended supplier interfaces..

The acknowledge operation is added to interfaces derived, in turn, from the interfaces
StructuredPushSupplier, StructuredPullSupplier, SequencePushSupplier,
SequencePullSupplier and their proxy interfaces in a set of derived interfaces defined in
this section (their names add the suffix "Ack" to the interface they are derived from).

The acknowledge operation in each of these interfaces causes the supplier (or proxy
supplier) to acknowledge that the consumer (or proxy consumer) received the events
which the supplier sent previously. When the operation is invoked, the supplier may
remove sent events indicated by the SequenceNumbers input parameter, which specifies
values of the SequenceNumber header field in the received events by the consumer.

A Consumer does not always need to invoke the acknowledge operation after each
invocation of push or pull operation. A Consumer may convey multiple
SequenceNumber values of received events to the supplier at once by one invocation of
acknowledge operation after some invocations of push or pull operations.

Note – This function is provided for mapping to JMS Message Acknowledgment (see
"OMG Notification / JMS Interworking " section 2.6.1, "Mapping between Event
Acknowledgment and JMS Message Acknowledgment").

4.2.7 Reliable Delivery Sequence

To realize reliable event delivery with Event Acknowledgment, the Notification Service
supplier (or proxy supplier) and consumer (or proxy consumer) must support the Reliable
Delivery Sequence, which detects a lost event (or event batch) at system failure or
communication error and recovers it.

4.2.7.1 Reliable Delivery Sequence for Push Model

The Reliable Delivery Sequence using the push model consists of the following steps:

October 2004 Notification/JMS Interworking: IDL Modules 4-11

4

1. The supplier sends events to the consumer by invocations of the push operation of
the consumer.

2. The supplier detects possibility, in the invocations of push operation, that the events
were lost at system failure or communication error using exceptions or timeout of
acknowledgment. The timeout means that the supplier’s acknowledge operation is
not invoked after the invocations of push operation for a time which is specified by
QoS parameter RetryInterval. If the supplier does not detect the possibility of lost
events, it jumps to step (4).

3. The supplier retries the invocations in the step (1) to re-send the events to supplier.
When the invocations have failed again due to system failure or communication
error, the supplier repeats the same invocations until succeeds in the invocations or
the total number of retries specified by QoS parameter Retries is satisfied. The
interval between original invocations and first retry, or between retries is specified
by QoS parameter RetryInterval.

4. The consumer checks the received events in duplication using SequenceNumber
header field. If it is not received events previously, the consumer stores them in
persistent storage. If they are received events previously, the consumer ignores the
events.

5. The consumer invokes acknowledge operation of the supplier to notify the supplier
of successful of the event delivery. The event channel removes the events specified
by the SequenceNumbers parameter of the acknowledge operation from persistent
storage. Even if the consumer detects possibility in the invocations of acknowledge
operation that the acknowledgment was lost at system failure or communication
error using exceptions, the consumer does not need to retry the acknowledge
operation in this step. Because if the acknowledgment was lost, the supplier retries
the push operation (see step (2)). As the result, the consumer will execute this step
again.The retry count is managed per each logical connection. When invocation of
acknowledge operation is successful, or the logical connection is disconnected
explicitly by invocation of disconnect operations, the retry count is reset to 0.

4.2.7.2 Reliable Delivery Sequence for Pull Model

The Reliable Delivery Sequence using the pull model consists of the following steps:

1. The consumer receives events from the supplier by invocations of the pull operation
of the supplier.

2. The consumer detects possibility, in the invocations of the pull operation, that the
events were lost at system failure or communication error using exceptions. If the
supplier does not detect the possibility of lost events, it jumps to step (4).

3. The consumer retries the invocations in the step (1) to re-receive the events from
the supplier.

4-12 Notification/JMS Interworking, v1.0 October 2004

4

When the invocations have failed again due to system failure or communication
error, the consumer repeats the same invocations until succeeds in the invocations
or the total number of retries specified by QoS parameter Retries is satisfied. The
interval between original invocations and first retry, or between retries is specified
by QoS parameter RetryInterval.

4. The consumer stores the received events in persistent storage.

5. The consumer invokes acknowledge operation of the supplier to notify the supplier
of successful of the event delivery. The event suppler removes the events specified
by the SequenceNumbers parameter of the acknowledge operation from
persistent storage.

A consumer does not always need to invoke the acknowledge operation after each
invocation of pull operation. A consumer may convey multiple SequenceNumber
values of received events to the supplier at once by one invocation of acknowledge
operation after some invocations of pull.

6. If the consumer detects possibility in the invocations of acknowledge operation that
the acknowledgment was lost at system failure or communication error using
exceptions, the consumer retries the invocation.

When the invocation has failed again due to system failure or communication error,
the consumer repeats the same invocation until succeeds in the invocation or the
total number of retries specified by QoS parameter Retries is satisfied. The count of
retries for acknowledge operation is individual from the count of retry for pull
operation in step (3). The interval between original invocation and first retry, or
between retries is specified by the QoS parameter RetryInterval.

The retry count is managed per each logical connection. When invocation of
acknowledge operation is finished successfully or the logical connection is
disconnected explicitly by invocation of disconnect operations, the retry count is
reset to 0.

4.2.7.3 Recovery in Failure of Retries

When the supplier (or proxy supplier) or the consumer (or proxy consumer) fails in all
the retries, the supplier or the consumer stops the event delivery on the logical
connection, and reports the unrecoverable failure to system administrators.

How to report and recover the failure is out of scope of the specification. The following
recovery schemes are shown for example:

The system administrators resolve the failure by hand and then:

1. Reset the retry count and restart the event delivery on the logical connection, or

2. Invoke disconnect operation for the logical connection and then invoke connect
operation to restart the event delivery (the SequenceNumber and retry count are
reset by the disconnect operation).

October 2004 Notification/JMS Interworking: IDL Modules 4-13

4

In the first scheme, non duplication semantics are preserved between before the failure
and after it. But in the second scheme, the semantics might be lost between before the
failure and after it.

4.2.8 QoS Properties for Reliable Event Delivery

The Event Acknowledgment uses three additional QoS properties, DeliveryReliability,
Retries and RetryInterval.

4.2.8.1 DeliveryReliability

The Notification Service has no way to specify what mechanism is used for reliable
event delivery. The specification defines additional QoS property DeliveryReliability to
provide this way. Following definition is added to CosNotifyCommAck module to define
this QoS property.

const string DeliveryReliability = "DeliveryReliability"
const short None = 0;
const short Acknowledgment = 1;

The QoS property specifies a mechanism used by a given supplier (or proxy supplier)
and consumer (or proxy consumer) to realize reliable event delivery. Constant values to
represent the following setting are defined:

• None - Any reliable delivery mechanism is not applied to event delivery

• Acknowledgment - The Event Acknowledgment described in the specification is
applied to event delivery

Table 4-1 shows possible combinations of related QoS properties when the
DeliveryReliability property is set to Acknowledgment.

4.2.8.2 Retries

The following definition is added to CosNotifyCommAck module for Retries QoS
property:

Table 4-1 Combination of related properties for Event Acknowledgment

Event
Reliability

Connection
Reliability

Delivery
Reliability

Description

combination 1 BestEffort BestEffort Acknowledgment Implementations may support these
combinations. But they can't realize complete
reliability.

combination 2 BestEffort Persistent Acknowledgment

combination 3 Persistent BestEffort ---- This combination has no meaning and need
not be supported (according to the
Notification Service specification).

combination 4 Persistent Persistent Acknowledgment Implementations must support this
combination for complete reliability.

4-14 Notification/JMS Interworking, v1.0 October 2004

4

const string Retries = "Retries"
// Retries takes on a value of type long

The QoS property Retries specifies minimum number of retries in the Reliable Delivery
Sequence. The type of associated value is long.

4.2.8.3 RetryInterval

The following definition is added to CosNotifyCommAck module for RetryInterval
QoS property:

const string RetryInterval = "RetryInterval"

// RetryInterval takes on a value of TimeBase::TimeT

The QoS property RetryInterval specifies interval between original invocation and first
retry or between retries. The type of associated value is TimeBase::TimeT.

4.2.8.4 Supported level of the QoS Properties

Supported level of the QoS property is described in following table.

The admin level setting overrides the channel level setting, and proxy level setting
overrides the admin level or channel level setting. Note that their properties have no
meaning if set on a per-message basis.

4.3 Notification Service QoS and Admin Property Extensions

To support transactions New QoS and AdminProperties are required. The Notification
Service QoS and Admin frameworks are flexible enough to add new QoS and
AdminProperty values without changing the Notification Service interfaces. A new QoS
and AdminProprerties should be seen as an extension rather then a modification of the
Notification Service Interfaces. These new QoS and AdminProprerties are:

• EnableTransaction QoS is a boolean that enables the notification service client to
activate or deactivate the support of the transaction at Notification Service object
levels. When this QoS is enabled and applied on the ProxyPushSupplier,
ProxyPullConsumer, StructuredProxyPushSupplier, StructuredProxyPullConsumer
and TypedProxyPushSupplier, TypedProxyPullConsumer7 levels it will allow the
later to behave as a transaction client. When this QoS is disabled and applied on
those various types of proxy their transactional client behavior is disabled. This is
their default behavior. When the EnableTransaction QoS is enabled at the

Table 4-2 Levels at which setting the QoS properties for Reliable Event Delivery is supported

Property Per-Message Per-Proxy Per-Admin Per-Channel

DeliveryReliability X X X

Retries X X X

RetryInterval X X X

October 2004 Notification/JMS Interworking: Notification Service QoS and Admin Property Extensions 4-15

4

ProxyPushConsumer, ProxyPullSupplier, StructuredProxyPushConsumer,
StructuredProxyPullSupplier TypedProxyPushConsumer , and
TypedProxyPullSupplier7, the proxies’ implementations will set their
TransctionalPolicy to Require_shared. By default this QoS is disabled, meaning that
for the ProxyPushConsumer various types and the ProxyPullSupplier various types
the proxies' POAs TransactionalPolicy attributes are set to Allows_none.

If this QoS is applied at the SupplierAdmin, ConsumerAdmin,
TypedSupplierAdmin7 or TypedConsumerAdmin7 levels each of their proxy child
will enable individually this QoS at their level according to their types. If this QoS
is applied at the channel, respectively TypedChannel7 level all the SupplierAdmin
and the ConsumerAdmin, respectively, all the TypedSupplierAdmin and the
TypedConsumerAdmin objects will enable this QoS, subsequently all the proxy
objects apply it individually.

Whenever the EnableTransaction QoS is enabled the EventReliability and the
ConnectionReliabilty QoSs will be setup automatically by the Notification Service
to “Persistent.” Likewise, when this QoS is disabled the EventReliability and the
ConnectionReliabilty are set to “BestEffort.”

• TransactionEvents AdminProperty defines the number of separate events sent in the
scope of a transaction. The scope of this property is the ProxyPushSupplier,
ProxyPullConsumer, StructuredProxyPushSupplier, StructuredProxyPullConsumer,
TypedProxyPushSupplier, and TypedProxyPullSupplier.

• TransactionEventSequences AdminProperty defines the number of event sequences
sent in the scope of a transaction. The scope of this property is the
SequenceProxyPushSupplier and SequenceProxyPullConsumer.

• TransactionTimeout adminProperty defines the timeout period in number of seconds
associated with routing transaction created. If the parameter has a non-zero value n,
then the created routing transaction will be subject to being rolled back if they do
not complete before n seconds after their creation If its value is zero, then no
application specified time-out is established. This adminProperty is aimed to be
mapped on the unsigned long input parameter of the OTS Current.set_timeout()
operation. This adminProperty is applied on all the proxies that behave as
transaction clients.

When those adminProperties are applied at the SupplierAdmin, ConsumerAdmin, or
EventChannel level they will affect only the proxies with transaction client behavior.
Table 4-3 summarizes the scope of the new QoS and AdminProperties at the proxy level.
It also summarizes proxies' transactional roles. Empty Cells denotes that QoS is not
applicable.

4-16 Notification/JMS Interworking, v1.0 October 2004

4

Table 4-3 New Notification Service QoS and AdminProperties scope

QoS AdminProperties

Proxy Types Enable
Transaction

Transaction
Timeout

Transaction
EventSequences

Transaction
Events

T
ra

ns
ac

tio
nC

lie
nt

R
ol

e

ProxyPushSupplier, X X X

ProxyPullConsumer, X X X

StructuredProxyPushSupplier X X X

StructuredProxyPullConsumer X X X

SequenceProxyPushSupplier X X X

SequenceProxyPullConsumer X X X

TypedProxyPushSupplierr7, X X X

TypedProxyPullConsumer7 X X X

T
ra

ns
ac

tio
n

S
er

ve
r

R
ol

e

ProxyPushConsumer X

ProxyPullSupplier X

StructuredProxyPushConsumer X

StructuredProxyPullSupplier X

SequenceProxyPushConsumer X

SequenceProxyPullSupplier X

TypedProxyPushConsumer7 X

TypedProxyPullSupplier7 X

Index

October 2004 Notification/JMS Interworking, v1.0 Index-1

A
Acknowledgment Mapping 2-18
Asynchronous messaging 1-1
Asynchronous Transactional Model 2-22

B
BA 2-1
bridge 2-1
Bridge Factory Interface 3-5
Bridge interface 3-4
Bridge Transaction Management Interface 2-29
Bridge Transactional Monitoring 2-27
Bridge Transactional Roles 2-26
BridgeFactory 2-3
bytes message 2-11

C
compliant 2-1
Configurations 2-24
Conformance 2-30
Connection Reliability 2-15
Consumer 2-2
CORBA

contributors v
documentation set iii

CORBA Notification Service 1-1
CosBridgeAdmin 2-1
CosBridgeAdmin Module 3-1
CosNotifyChannelAdmin 2-1
CosNotifyComm 2-1

D
Delivery Reliability 2-15

E
Enterprise Java Beans (EJB) 1-1
Event Acknowledgment 2-19
Event Reliability 2-14
Expiry times 2-16
external end point connector concept 2-3
ExternalEndPoint 3-3
ExternalEndpointConnector 3-4

G
general architecture 2-1

J
J2EE 1-1
Java / EJB 1-1
Java clients 1-1
Java Message Service (JMS) 1-1
javax.jms.MessageConsumer 2-2
javax.jms.MessageListener interface 2-2
javax.jms.MessageProducer 2-2
JMS destination 2-1
JMS message 2-7
JMS Message Acknowledgment 2-20
JMS message body mapping 2-10
JMS Message Consumer 2-5
JMS Message header 2-9

JMS Message Listener 2-5
JMS Message producer 2-5
JMS service provider Transactional Role 2-26
JMSCorrelationID 2-10
JMSDeliveryMode 2-9
JMSDestination 2-12
JMSExpiration 2-9
JMSMessageID 2-12
JMSPriority 2-9
JMSreplyTo 2-10
JMSTimestamp 2-12
JMSType 2-12

M
MapMessage 2-11
Message interface 2-7
MessageType 3-4

N
NCA 2-1
Notification Service 1-1
Notification Service QoS and Admin Property Extensions 2-27
Notification Service Transactional Role 2-25

O
Object Management Group iii

address of iv
object message 2-11
Order Policy 2-17

P
Priority 2-15
Producer 2-2

Q
QoS Properties Mapping 2-14

R
receiver 2-2
Reliable Event Delivery 2-19
Routing transaction 2-24

S
sender 2-2
Sequence pull supplier 2-5
Sequence push consumer 2-5
Sequence push supplier 2-5
StreamMessage 2-10
Structured Event Header and filterable body mapping 2-11
Structured Event Remainder of body mapping 2-14
Structured pull consumer 2-5
Structured pull supplier 2-5
Structured push consumer 2-5
Structured push supplier 2-5
StucturedProxyPush 2-3

T
TextMessage 2-10
Transactional Support 2-22

Index

Index-2 Notification/JMS Interworking, v1.0 October 2004

	Typographical Conventions
	Overview
	1.1 Introduction

	Architectural Features
	2.1 Bridge Architecture Overview
	2.2 Bridge Factory
	2.3 Bridge Instance
	2.4 Message Mapping
	2.4.1 JMS Message to Event
	2.4.2 Event to JMS Message

	2.5 QoS Properties Mapping
	2.5.1 Event Reliability
	2.5.2 Connection Reliability
	2.5.3 Delivery Reliability
	2.5.4 Priority
	2.5.5 Expiry times
	2.5.6 Order Policy

	2.6 Acknowledgment Mapping
	2.6.1 Overview of Reliable Event Delivery with Event Acknowledgment
	2.6.2 Mapping between Event Acknowledgment and JMS Message Acknowledgment

	2.7 Transactional Support
	2.7.1 Asynchronous Transactional Model
	2.7.2 Supported configurations
	2.7.3 Notification Service Transactional Role
	2.7.4 Bridge Transactional Roles
	2.7.5 JMS service provider Transactional Role
	2.7.6 Bridge Transactional Monitoring

	2.8 Conformance

	Bridge Interfaces
	3.1 CosBridgeAdmin Module
	3.1.1 ExternalEndPoint
	3.1.2 Bridge Interface
	3.1.3 Bridge Factory Interface

	3.2 BridgeTransactionMgmt module
	3.2.1 TransactionManagement interface

	Extension to Existing OMG Specifications
	4.1 Editing Instructions for Extended Notification Service
	4.2 IDL Modules
	4.2.1 The CosNotifyCommAck Module
	4.2.2 The CosNotifyChannelAdminAck Module
	4.2.3 Overview of Event Acknowledgement
	4.2.4 Scope of Event Acknowledgment
	4.2.5 Sequence Number Header Field
	4.2.6 Acknowledge operation behavior
	4.2.7 Reliable Delivery Sequence
	4.2.8 QoS Properties for Reliable Event Delivery

	4.3 Notification Service QoS and Admin Property Extensions

