

Date: March 2016

Open Architecture Radar Interface Standard
(OARISTM)

Version 1.0

OMG Document Number: formal/2016-03-02
Standard document URL: http://www.omg.org/spec/OARIS
Machine Consumable Files:

Normative:
http://www.omg.org/spec/OARIS/20150801/Air_Engagement_Support.idl
http://www.omg.org/spec/OARIS/20150801/Clutter_Reporting.idl
http://www.omg.org/spec/OARIS/20150801/Common_Types.idl
http://www.omg.org/spec/OARIS/20150801/Control_Battle_Override.idl
http://www.omg.org/spec/OARIS/20150801/Control_Emissions.idl
http://www.omg.org/spec/OARIS/20150801/Control_Fault_Scripts.idl
http://www.omg.org/spec/OARIS/20150801/Control_Recording.idl
http://www.omg.org/spec/OARIS/20150801/Control_Replay.idl
http://www.omg.org/spec/OARIS/20150801/Control_Simulation.idl
http://www.omg.org/spec/OARIS/20150801/Coordinates_and_Positions.idl
http://www.omg.org/spec/OARIS/20150801Defint_Fault_Scripts.idl
http://www.omg.org/spec/OARIS/20150801/Define_Simulation_Scenario.idl
http://www.omg.org/spec/OARIS/20150801/Define_Test_Target_Scenario.idl
http://www.omg.org/spec/OARIS/20150801/Delete_Sensor_Track.idl
http://www.omg.org/spec/OARIS/20150801/Encyclopaedic_Support.idl
http://www.omg.org/spec/OARIS/20150801/Engagement_Support.idl
http://www.omg.org/spec/OARIS/20150801/Extended_Subsystem_Control.idl
http://www.omg.org/spec/OARIS/20150801/Heartbeat_Signal.idl
http://www.omg.org/spec/OARIS/20150801/Initiate_Track.idl
http://www.omg.org/spec/OARIS/20150801/Manage_Frequency_Usage.idl
http://www.omg.org/spec/OARIS/20150801/Manage_Mastership.idl
http://www.omg.org/spec/OARIS/20150801/Manage_Operational_Mode.idl
http://www.omg.org/spec/OARIS/20150801/Manage_Physical_Configuration.idl
http://www.omg.org/spec/OARIS/20150801/Manage_Subsystem_Parameters.idl
http://www.omg.org/spec/OARIS/20150801/Manage_Technical_State.idl
http://www.omg.org/spec/OARIS/20150801/Manage_Tracking_Zones.idl

O B J E C T M A N A G E M E N T G R O U PO B J E C T M A N A G E M E N T G R O U P

http://www.omg.org/spec/OARIS/20150801/Manage_Transmission_Sectors.idl
http://www.omg.org/spec/OARIS/20150801/Missile_Guidance.idl
http://www.omg.org/spec/OARIS/20150801/Perform_Cued_Search.idl
http://www.omg.org/spec/OARIS/20150801/Perform_Illumination.idl
http://www.omg.org/spec/OARIS/20150801/Perform_Missile_Downlink.idl
http://www.omg.org/spec/OARIS/20150801/Perform_Missile_Uplink.idl
http://www.omg.org/spec/OARIS/20150801/Perform_Offline_Test.idl
http://www.omg.org/spec/OARIS/20150801/Perform_Splash_Spotting.idl
http://www.omg.org/spec/OARIS/20150801/Plot_Reporting.idl
http://www.omg.org/spec/OARIS/20150801/Process_Target_Designation.idl
http://www.omg.org/spec/OARIS/20150801/Provide_Area_with_Plot_Concentration.idl
http://www.omg.org/spec/OARIS/20150801/Provide_Clutter_Assessment.idl
http://www.omg.org/spec/OARIS/20150801/Provide_Health_State.idl
http://www.omg.org/spec/OARIS/20150801/Provide_Interference_Reports.idl
http://www.omg.org/spec/OARIS/20150801/Provide_Jammer_Assessment.idl
http://www.omg.org/spec/OARIS/20150801/Provide_Nominal_Performance.idl
http://www.omg.org/spec/OARIS/20150801/Provide_Performance_Assessment.idl
http://www.omg.org/spec/OARIS/20150801/Provide_Projectile_Positional_Information.idl
http://www.omg.org/spec/OARIS/20150801/Provide_Subsystem_Identification.idl
http://www.omg.org/spec/OARIS/20150801/Receive/Encyclopaedic_Data.idl
http://www.omg.org/spec/OARIS/20150801/Receive_Track_Information.idl
http://www.omg.org/spec/OARIS/20150801/Recording_and_Replay.idl
http://www.omg.org/spec/OARIS/20150801/Register_Interest.idl
http://www.omg.org/spec/OARIS/20150801/Requests.idl
http://www.omg.org/spec/OARIS/20150801/Restart.idl
http://www.omg.org/spec/OARIS/20150801/Search.idl
http://www.omg.org/spec/OARIS/20150801/Sensor_Control.idl
http://www.omg.org/spec/OARIS/20150801/Shape_Model.idl
http://www.omg.org/spec/OARIS/20150801/Shutdown.idl
http://www.omg.org/spec/OARIS/20150801/Simulation_Support.idl
http://www.omg.org/spec/OARIS/20150801/Startup.idl
http://www.omg.org/spec/OARIS/20150801/Subsystem_Control.idl
http://www.omg.org/spec/OARIS/20150801/Support_Kill_Assessment.idl
http://www.omg.org/spec/OARIS/20150801/Surface_Engagement _Support.idl
http://www.omg.org/spec/OARIS/20150801/System_Track.idl
http://www.omg.org/spec/OARIS/20150801/Test_Target_Facility.idl
http://www.omg.org/spec/OARIS/20150801/TimeBase.idl
http://www.omg.org/spec/OARIS/20150801/Tracking_Control.idl
http://www.omg.org/spec/OARIS/20150801/Track_Reporting.idl
http://www.omg.org/spec/OARIS/20150801/OARIS PSM XMI.xml

Copyright © 2013 BAE Systems
Copyright © 2013 THALES Group
Copyright © 2013 Selex ES
Copyright © 2013 DSTO
Copyright © 2013 Atlas Elektronik
Copyright © 2013 EADS Deutschland GmbH
Copyright © 2016, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes the
testing suites.

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Table of Contents

Preface...xix

1 Scope ... 1

2 Conformance ... 1

3 Normative References ... 5

4 Terms and Definitions .. 5

5 Symbols and Abbreviated Terms ... 7

6 Additional Information .. 7
6.1 Acknowledgements .. 7

7 Open Architecture Radar Information Specification 9
7.1 Introduction ... 9

 7.1.1 Document Structure ... 9
7.2 Usage Overview ... 10
7.3 Common_Types ... 28

 7.3.1 anonymous_blob_type ... 30
 7.3.2 identity_type ... 30
 7.3.3 subsystem_id_type .. 30
 7.3.4 system_track_id_type .. 30
 7.3.5 time_type .. 30
 7.3.6 System_Track .. 31

 7.3.6.1 system_track_type ... 31
 7.3.7 Coordinates_and_Positions ... 32

 7.3.7.1 absolute_duration_type .. 37
 7.3.7.2 altitude_coordinate_type .. 37
 7.3.7.3 angle_of_climb_type .. 38
 7.3.7.4 azimuth_coordinate_type ... 38
 7.3.7.5 azimuth_interval_type .. 38
 7.3.7.6 azimuth_qualification_type ... 38
 7.3.7.7 azimuth_rate_type ... 38
 7.3.7.8 cartesian_coordinate_type ... 39
 7.3.7.9 cartesian_interval_type .. 39
 7.3.7.10 cartesian_position_type ... 39
 7.3.7.11 cartesian_velocity_component_type .. 39
 7.3.7.12 cartesian_velocity_type .. 40
 7.3.7.13 coordinate_kind_type ... 40
 7.3.7.14 coordinate_orientation_type ... 40
Open Architecture Radar Interface Standard (OARIS), v1.0 i

 7.3.7.15 coordinate_origin_type ... 42
 7.3.7.16 coordinate_specification_type .. 42
 7.3.7.17 course_type .. 42
 7.3.7.18 covariance_matrix_type ... 43
 7.3.7.19 diagonal_covariance_matrix_type .. 43
 7.3.7.20 duration_type ... 43
 7.3.7.21 elevation_coordinate_type ... 43
 7.3.7.22 elevation_interval_type .. 44
 7.3.7.23 elevation_qualification_type ... 44
 7.3.7.24 elevation_rate_type .. 44
 7.3.7.25 full_covariance_matrix_type ... 44
 7.3.7.26 height_interval_type ... 45
 7.3.7.27 latitude_coordinate_type .. 45
 7.3.7.28 latitude_interval_type ... 45
 7.3.7.29 longitude_coordinate_type ... 46
 7.3.7.30 longitude_interval_type .. 46
 7.3.7.31 polar_position_type .. 46
 7.3.7.32 polar_velocity_type .. 46
 7.3.7.33 position_accuracy_coordinate_type ... 47
 7.3.7.34 position_coordinate_type ... 47
 7.3.7.35 range_coordinate_type .. 47
 7.3.7.36 range_interval_type .. 48
 7.3.7.37 range_qualification_type .. 48
 7.3.7.38 range_rate_type ... 48
 7.3.7.39 speed_interval_type ... 48
 7.3.7.40 speed_type ... 49
 7.3.7.41 velocity_accuracy_coordinate_type ... 49
 7.3.7.42 velocity_coordinate_type .. 49
 7.3.7.43 wgs84_position_type .. 50
 7.3.7.44 wgs84_velocity_type .. 50
 7.3.7.45 cartesian_position_accuracy_type ... 50
 7.3.7.46 cartesian_velocity_accuracy_type ... 51
 7.3.7.47 polar_position_accuracy_type .. 51
 7.3.7.48 polar_velocity_accuracy_type .. 51
 7.3.7.49 wgs84_position_accuracy_type ... 51
 7.3.7.50 wgs84_velocity_accuracy_type .. 52

 7.3.8 Shape_Model ... 53
 7.3.8.1 figure_ref_point .. 53
 7.3.8.2 general_polar_volume_type ... 54
 7.3.8.3 polar_volume_type ... 54
 7.3.8.4 sector_type ... 55
 7.3.8.5 truncated_polar_volume_type .. 55
 7.3.8.6 truncated_sector_type .. 55

 7.3.9 Requests .. 56
 7.3.9.1 denial_reason_type .. 57
 7.3.9.2 denial_type ... 57
 7.3.9.3 error_reason_type .. 57
 7.3.9.4 parameter_reference_type ... 57
 7.3.9.5 request_ack_type ... 57
 7.3.9.6 request_id_type .. 58
 7.3.9.7 common_use_case_interface .. 58
ii Open Architecture Radar Interface Standard (OARIS), v1.0

7.4 Subsystem_Domain ... 58
 7.4.1 Encyclopaedic_Support ... 59

 7.4.1.1 data_descriptor_type ... 59
 7.4.1.2 url_type .. 59

 7.4.2 Extended_Subsystem_Control ... 60
 7.4.2.1 configuration_url_type .. 60
 7.4.2.2 offline_test_result_details_type .. 60
 7.4.2.3 offline_test_result_type .. 60
 7.4.2.4 offline_test_type ... 61

 7.4.3 Recording_and_Replay .. 61
 7.4.3.1 actual_time_type .. 62
 7.4.3.2 change_threshold_type .. 62
 7.4.3.3 parameter_type .. 63
 7.4.3.4 rate_type .. 63
 7.4.3.5 record_on_change_type .. 63
 7.4.3.6 recorded_data_type ... 63
 7.4.3.7 recorded_time_type ... 63
 7.4.3.8 recording_descriptor_type ... 63
 7.4.3.9 recording_id_type .. 64
 7.4.3.10 recording_set_type .. 64
 7.4.3.11 recording_type ... 64
 7.4.3.12 replay_set_type .. 64
 7.4.3.13 replay_speed_type ... 64

 7.4.4 Simulation_Support .. 65
 7.4.4.1 fault_script_id_type .. 65
 7.4.4.2 fault_script_ids_type .. 65
 7.4.4.3 fault_script_type ... 65
 7.4.4.4 fault_scripts_type ... 66
 7.4.4.5 sim_mode_status_type .. 66
 7.4.4.6 start_stop_sim_mode_request_type .. 66
 7.4.4.7 stop_freeze_session_request_type .. 66

 7.4.5 Subsystem_Control .. 67
 7.4.5.1 service_name_type .. 69
 7.4.5.2 battle_override_state_type ... 69
 7.4.5.3 descriptor ... 70
 7.4.5.4 descriptor_sequence .. 70
 7.4.5.5 device_identification_type .. 70
 7.4.5.6 device_name_type ... 71
 7.4.5.7 event_type ... 71
 7.4.5.8 fault .. 71
 7.4.5.9 fault_list .. 71
 7.4.5.10 health_state_reason_type .. 71
 7.4.5.11 health_state_type ... 72
 7.4.5.12 information_name_type ... 72
 7.4.5.13 interest ... 73
 7.4.5.14 interest_list ... 73
 7.4.5.15 mastership_state_type ... 73
 7.4.5.16 parameter_name_type ... 73
 7.4.5.17 name_error_pair_type .. 74
 7.4.5.18 name_error_sequence_type .. 74
Open Architecture Radar Interface Standard (OARIS), v1.0 iii

 7.4.5.19 parameter_name_sequence_type ... 74
 7.4.5.20 name_value_pair_type ... 74
 7.4.5.21 name_value_sequence_type ... 74
 7.4.5.22 operational_mode_type .. 75
 7.4.5.23 parameter_value_response_type ... 75
 7.4.5.24 registration_type ... 75
 7.4.5.25 service_type ... 75
 7.4.5.26 service_health_type ... 75
 7.4.5.27 service_indication_list_type ... 76
 7.4.5.28 service_indication_type .. 76
 7.4.5.29 service_information .. 76
 7.4.5.30 service_list_type ... 76
 7.4.5.31 subsystem_health_type ... 76
 7.4.5.32 technical_state_type .. 77
 7.4.5.33 version_type ... 78
 7.4.5.34 Initial ... 78

7.5 Sensor_Domain .. 78
 7.5.1 Clutter_Reporting ... 78

 7.5.1.1 clutter_assessment_request_type ... 79
 7.5.1.2 clutter_indication_type ... 79
 7.5.1.3 clutter_map_cell_type .. 80
 7.5.1.4 clutter_report_type ... 80
 7.5.1.5 concentration_plot_cell_type .. 80
 7.5.1.6 intensity_units_type .. 80
 7.5.1.7 plot_concentration_report_type .. 81
 7.5.1.8 plot_concentration_request_data_type .. 81

 7.5.2 Plot_Reporting ... 82
 7.5.2.1 plot_id_type .. 82
 7.5.2.2 plot_strength_type .. 82
 7.5.2.3 sensor_plot_set_type ... 82
 7.5.2.4 sensor_plot_type .. 83
 7.5.2.5 sensor_orientation_type ... 83

 7.5.3 Sensor_Control .. 84
 7.5.3.1 selected_frequency_list_type... 86
 7.5.3.2 transmission_frequency_state_type ... 86
 7.5.3.3 all_frequencies_state_type .. 86
 7.5.3.4 reported_frequency_state_type ... 86
 7.5.3.5 frequency_band_type ... 86
 7.5.3.6 transmission_frequency_mode_type ... 87
 7.5.3.7 transmission_sector_set_type .. 87
 7.5.3.8 transmission_sector_type .. 87
 7.5.3.9 transmission_sector_power_level_type ... 87
 7.5.3.10 sector_reference_type ... 88
 7.5.3.11 control_emission_state_type .. 88
 7.5.3.12 test_target_scenario_type .. 88
 7.5.3.13 test_target_scenario_independent_target_type 89
 7.5.3.14 test_target_scenario_common_parameter_target_type 89
 7.5.3.15 test_target_type ... 89
 7.5.3.16 test_target_plus_scenario_type ... 90
 7.5.3.17 test_target_scenario_id_type ... 90
iv Open Architecture Radar Interface Standard (OARIS), v1.0

 7.5.3.18 test_target_scenario_state_type .. 90
 7.5.4 Sensor_Performance ... 91

 7.5.4.1 interference_report_type .. 91
 7.5.4.2 interferer_kind .. 91
 7.5.4.3 interferer_type .. 92
 7.5.4.4 jamming_magnitude_type .. 92
 7.5.4.5 perfomance_bin_type .. 93
 7.5.4.6 performance_assessment_report_type ... 93
 7.5.4.7 performance_assessment_request_type ... 93
 7.5.4.8 performance_beam_type ... 94
 7.5.4.9 performance_sector_type .. 94
 7.5.4.10 performance_type .. 94

 7.5.5 Track_Reporting ... 95
 7.5.5.1 sensor_track_id_type ... 96
 7.5.5.2 environment_type .. 96
 7.5.5.3 initiation_mode_type .. 97
 7.5.5.4 recognition_type ... 97
 7.5.5.5 sensor_track_type .. 97
 7.5.5.6 sensor_track_set_type ... 98
 7.5.5.7 track_phase_type ... 98

 7.5.6 Tracking_Control .. 98
 7.5.6.1 track_info ... 99
 7.5.6.2 track_priority_type .. 100
 7.5.6.3 tracking_zone_set .. 100
 7.5.6.4 tracking_zone ... 100
 7.5.6.5 tracking_zone_type .. 100
 7.5.6.6 tracking_zone_id_type ... 101

7.6 Radar_Domain ... 101
 7.6.1 Air_Engagement_Support .. 101

 7.6.1.1 expected_hit_data_type ... 102
 7.6.1.2 miss_indication_data_type ... 102
 7.6.1.3 projectile_kinematics_type ... 102

 7.6.2 Engagement_Support .. 103
 7.6.2.1 available_fire_control_channels_type .. 103
 7.6.2.2 fire_control_channel_id_type ... 103
 7.6.2.3 kill_assessment_result_type .. 103
 7.6.2.4 kinematics_type ... 104

 7.6.3 Missile_Guidance ... 105
 7.6.3.1 downlink_report .. 106
 7.6.3.2 downlink_request ... 107
 7.6.3.3 frequency_channel_type .. 107
 7.6.3.4 illumination_request_type .. 107
 7.6.3.5 track_id_type .. 107
 7.6.3.6 uplink_report_type ... 108
 7.6.3.7 uplink_request_type ... 108

 7.6.4 Search .. 108
 7.6.4.1 cued_search_cue_type .. 108
 7.6.4.2 cued_search_report_type .. 109

 7.6.5 Surface_Engagement_Support .. 109
 7.6.5.1 splash_spotting_area_id_type ... 110
Open Architecture Radar Interface Standard (OARIS), v1.0 v

 7.6.5.2 splash_spotting_area_position_type .. 110
 7.6.5.3 splash_spotting_area_set_type ... 110
 7.6.5.4 splash_spotting_area_type .. 110

7.7 Subsystem_Services .. 110
 7.7.1 Encyclopaedic_Support ... 111

 7.7.1.1 Receive_Encyclopaedic_Data ... 111
 7.7.2 Extended_Subsystem_Control ... 113

 7.7.2.1 Manage Physical Configuration ... 114
 7.7.2.2 Perform Offline Test ... 116
 7.7.2.3 Restart .. 118
 7.7.2.4 Shutdown ... 120
 7.7.2.5 Startup .. 122

 7.7.3 Recording_and_Replay .. 124
 7.7.3.1 Control_Recording ... 124
 7.7.3.2 Control_Replay .. 126

 7.7.4 Simulation_Support .. 130
 7.7.4.1 Define_Simulation_Scenario .. 130
 7.7.4.2 Control_Simulation ... 133
 7.7.4.3 Define_Fault_Scripts .. 136
 7.7.4.4 Control_Fault_Scripts ... 138

 7.7.5 Subsystem_Control .. 140
 7.7.5.1 Manage Technical State .. 140
 7.7.5.2 Heartbeat_Signal ... 145
 7.7.5.3 Provide_Subsystem_Identification ... 146
 7.7.5.4 Provide_Health_State .. 149
 7.7.5.5 Manage_Operational_Mode ... 154
 7.7.5.6 Control_Battle_Override ... 156
 7.7.5.7 Manage_Subsystem_Parameters .. 159
 7.7.5.8 Provide_Subsystem_Services ... 163
 7.7.5.9 Manage_Mastership ... 166
 7.7.5.10 Register_Interest .. 172

7.8 Sensor_Services .. 174
 7.8.1 Clutter_Reporting ... 174

 7.8.1.1 Provide Area with Plot Concentration .. 174
 7.8.1.2 Provide Clutter Assessment ... 176

 7.8.2 Plot_Reporting ... 179
 7.8.2.1 Provide_Plots ... 179
 7.8.2.2 Provide_Sensor_Orientation .. 181

 7.8.3 Sensor_Control .. 184
 7.8.3.1 Manage_Frequency_Usage ... 184
 7.8.3.2 Manage_Transmission_Sectors ... 188
 7.8.3.3 Control_Emissions ... 191
 7.8.3.4 Define_Test_Target_Scenario ... 194
 7.8.3.5 Test_Target_Facility ... 197

 7.8.4 Sensor_Performance ... 200
 7.8.4.1 Provide_Interference_Reports ... 200
 7.8.4.2 Provide_Nominal_Performance ... 203
 7.8.4.3 Provide_Performance_Assessment ... 206
 7.8.4.4 Provide_Jammer_Assessment .. 208
vi Open Architecture Radar Interface Standard (OARIS), v1.0

 7.8.5 Track_Reporting ... 211
 7.8.5.1 Provide_Sensor_Tracks ... 211

 7.8.6 Tracking_Control .. 214
 7.8.6.1 Delete_Sensor_Track .. 214
 7.8.6.2 Receive_Track_Information ... 216
 7.8.6.3 Initiate_Track ... 218
 7.8.6.4 Manage_Tracking_Zones .. 221

7.9 Radar_Services .. 223
 7.9.1 Air_Engagement_Support .. 223

 7.9.1.1 Provide_Projectile_Positional_Information .. 223
 7.9.2 Engagement_Support .. 225

 7.9.2.1 Process_Target_Designation ... 225
 7.9.2.2 Support_Kill_Assessment .. 230
 7.9.2.3 Support_Surface_Target_Engagement ... 232

 7.9.3 Missile_Guidance ... 237
 7.9.3.1 Perform_Illumination .. 237
 7.9.3.2 Perform_Missile_Downlink ... 240
 7.9.3.3 Perform_Missile_Uplink ... 243

 7.9.4 Search .. 245
 7.9.4.1 Perform_Cued_Search .. 245

 7.9.5 Surface_Engagement_Support .. 248
 7.9.5.1 Perform_Splash_Spotting .. 248
Open Architecture Radar Interface Standard (OARIS), v1.0 vii

viii Open Architecture Radar Interface Standard (OARIS), v1.0

Table of Figures

Figure 1.1 - The OARIS specification exploits specialization and generalization to promote
 modularity and extensibility 1
Figure 7.1 - Specification Master (Documentation Diagram) 9
Figure 7.2 - Compliance Level 1 (Activity diagram) 11
Figure 7.3 - Compliance Level 2 - Initialization (Activity diagram) 12
Figure 7.4 - Compliance Level 2 - Operational Mode (Activity diagram) 13
Figure 7.5 - Compliance Level 2 - Subsystem Setup (Activity diagram) 14
Figure 7.6 - Compliance Level 3A - Fault Scripts and Test Targets (Activity diagram) 15
Figure 7.7 - Compliance Level 3A - Recording/Replay (Activity diagram) 16
Figure 7.8 - Compliance Level 3A - Simulation (Activity diagram) 17
Figure 7.9 - Compliance Level 3B - Macro State Management (Activity diagram) 18
Figure 7.10 - Compliance Level 3B - Manage Physical Configuration (Activity diagram) 19
Figure 7.11 - Compliance Level 3B - Perform Offline Test (Activity diagram) 20
Figure 7.12 - Compliance Level 3B - Receive Encyclopaedic Data (Activity diagram) 21
Figure 7.13 - Compliance Level 3C - Advanced Track Management (Activity diagram) 22
Figure 7.14 - Compliance Level 3C - Advanced Track and Plot Reporting (Activity diagram) 23
Figure 7.15 - Compliance Level 3D - Air Engagement Support (Activity diagram) 24
Figure 7.16 - Compliance Level 3D - Surface Engagement Support - Fire Control Radar
 (Activity diagram) 25
Figure 7.17 - Compliance Level 3D - Surface Engagement Support - Surveillance Radar (Activity diagram) 26
Figure 7.18 - Compliance Level 3E - Automatic Interference Reporting (Activity diagram) 27
Figure 7.19 - Compliance Level 3E - Requested Interference Reports (Activity diagram) 28
Figure 7.20 - Domain Model (Logical diagram) 29
Figure 7.21 - Domain Model (Logical diagram) 31
Figure 7.22 - Accuracies (Logical diagram) 32
Figure 7.23 - Coordinates and Positions (Logical diagram) 33
Figure 7.24 - Covariance and Qualification (Logical diagram) 34
Figure 7.25 - Intervals (Logical diagram) 35
Figure 7.26 - Time Derivatives (Logical diagram) 36
Figure 7.27 - World Coordinates and Positions (Logical diagram) 37
Figure 7.28 - Domain Model (Logical diagram) 53
Figure 7.29 - Domain Model (Logical diagram) 56
Figure 7.30 - Domain Model (Logical diagram) 59
Figure 7.31 - Domain Model (Logical diagram) 60
Figure 7.32 - Domain Model (Logical diagram) 62
Figure 7.33 - Domain Model (Logical diagram) 65
Figure 7.34 - Domain Model - 1 (Logical diagram) 67
Figure 7.35 - Domain Model - 2 (Logical diagram) 68
Figure 7.36 - Domain Model (Logical diagram) 79
Figure 7.37 - Domain Model (Logical diagram) 82
Figure 7.38 - Domain Model (Logical diagram) 85
Figure 7.39 - Domain Model (Logical diagram) 91
Figure 7.40 - Track Reporting - Sensor Track (Logical diagram) 95
Open Architecture Radar Interface Standard (OARIS), v1.0 ix

Figure 7.41 - Track Reporting - Type Definitions (Logical diagram) 96
Figure 7.42 - Domain Model (Logical diagram) 99
Figure 7.43 - Domain Model (Logical diagram) 101
Figure 7.44 - Domain Model (Logical diagram) 103
Figure 7.45 - Missile Guidance - Track (Logical diagram) 105
Figure 7.46 - Illumination (Logical diagram) 105
Figure 7.47 - Missile Uplink (Logical diagram) 106
Figure 7.48 - Missile Downlink (Logical diagram) 106
Figure 7.49 - Domain Model (Logical diagram) 108
Figure 7.50 - Domain Model (Logical diagram) 109
Figure 7.51 - Alternate Flow - Receive Encyclopaedic Data (Sequence diagram) 113
Figure 7.52 - Basic Flow - Receive Encyclopaedic Data (Sequence diagram) 113
Figure 7.53 - Manage Physical Configuration - Change (Sequence diagram) 115
Figure 7.54 - Manage Physical Configuration - Request (Sequence diagram) 116
Figure 7.55 - Perform Offline Test (Sequence diagram) 118
Figure 7.56 - Basic Flow - Restart (Sequence diagram) 119
Figure 7.57 - Alternative Flow - Restart (Sequence diagram) 120
Figure 7.58 - Basic Flow - Shutdown (Sequence diagram) 121
Figure 7.59 - Alternative Flow - Shutdown (Sequence diagram) 122
Figure 7.60 - Basic Flow -Startup (Sequence diagram) 123
Figure 7.61 - Alternative Flow - Startup (Sequence diagram) 124
Figure 7.62 - Control Recording (Sequence diagram) 126
Figure 7.63 - Control Replay (Sequence diagram) 129
Figure 7.64 - Control Replay (RAW) (Sequence diagram) 130
Figure 7.65 - Basic Flow - Define Simulation Scenario Data (Sequence diagram) 132
Figure 7.66 - Basic Flow - Define Subsystem Scenario Data (Sequence diagram) 133
Figure 7.67 - Basic Flow - Control Simulation Start/Resume (Sequence diagram) 135
Figure 7.68 - Basic Flow - Control Simulation Stop/Freeze (Sequence diagram) 135
Figure 7.69 - Basic Flow - Control Simulation Mode (Sequence diagram) 136
Figure 7.70 - Alternative Flow - Define Fault Scripts (Sequence diagram) 137
Figure 7.71 - Basic Flow - Define Fault Scripts (Sequence diagram) 138
Figure 7.72 - Alternative Flow - Control Fault Scripts (Sequence diagram) 139
Figure 7.73 - Basic Flow - Control Fault Scripts (Sequence diagram) 140
Figure 7.74 - Basic Flow - Manage Technical State - Change (Sequence diagram) 142
Figure 7.75 - Alternative Flow - Manage Technical State - Change (Sequence diagram) 143
Figure 7.76 - Basic Flow - Manage Technical State - Periodic Reporting (Sequence diagram) 144
Figure 7.77 - Basic Flow - Manage Technical State - Request (Sequence diagram) 144
Figure 7.78 - Basic Flow - Heartbeat Signal (Sequence diagram) 146
Figure 7.79 - Alternative Flow - Introduction of subsystems (Sequence diagram) 148
Figure 7.80 - Basic Flow - Introduction of the subsystem (Sequence diagram) 148
Figure 7.81 - Basic Flow - Fault Reporting (Sequence diagram) 151
Figure 7.82 - Basic Flow - Service Health Reporting (Sequence diagram) 152
Figure 7.83 - Basic Flow - Subsystem Health Reporting (Sequence diagram) 153
Figure 7.84 - Manage Operational Mode - get current operational mode (Sequence diagram) 155
Figure 7.85 - Manage Operational Mode - set operational mode (Sequence diagram) 156
Figure 7.86 - Basic Flow - Control Battle Override - Set/Reset (Sequence diagram) 158
Figure 7.87 - Alternative Flow - Control Battle Override - Set/Reset - loss of mastership (Sequence diagram) 158
x Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.88 - Basic Flow - Parameter Retrieval (Sequence diagram) 161
Figure 7.89 - Basic Flow - Parameter Value Modification (Sequence diagram) 162
Figure 7.90 - Basic Flow - Parameter Descriptor Retrieval (Sequence diagram) 163
Figure 7.91 - Alternative Flow - Service negotiation (Sequence diagram) 165
Figure 7.92 - Basic Flow - Service negotiation (Sequence diagram) 166
Figure 7.93 - Basic Flow - Mastership Acquisition - asynchronous request (Sequence diagram) 169
Figure 7.94 - Basic Flow - Mastership Acquisition - periodic request (Sequence diagram) 170
Figure 7.95 - Basic Flow - Mastership Release - asynchronous request (Sequence diagram) 171
Figure 7.96 - Basic Flow - Mastership Release - periodic request (Sequence diagram) 172
Figure 7.97 - Basic Flow - Interest Registration (Sequence diagram) 173
Figure 7.98 - Provide Plot Concentration - Report Requested by CMS (Sequence diagram) 175
Figure 7.99 - Provide Plot Concentration - Periodic (Sequence diagram) 176
Figure 7.100 - Provide Clutter Assessment (Sequence diagram) 178
Figure 7.101 - Periodic Clutter Reporting (Sequence diagram) 179
Figure 7.102 - Basic Flow - Provide Plots (Individual) (Sequence diagram) 180
Figure 7.103 - Basic Flow - Provide Plots (Sets) (Sequence diagram) 181
Figure 7.104 - Basic Flow - Provide Sensor Orientation (Sequence diagram) 182
Figure 7.105 - Provide_Sensor_Orientation (Logical diagram) 183
Figure 7.106 - Basic Flow - Frequency Availability Change Notification (Sequence diagram) 186
Figure 7.107 - Basic Flow - Enable/Disable Frequency Usage (Sequence diagram) 186
Figure 7.108 - Alternative Flow - Enable/Disable Frequency Usage - loss of mastership (Sequence diagram) 187
Figure 7.109 - Basic Flow - Transmission Mode Selection (Sequence diagram) 187
Figure 7.110 - Alternative Flow - Transmission Mode Selection - loss of mastership (Sequence diagram) 188
Figure 7.111 - Basic Flow - Manage Transmission Sectors - Enable/Disable (Sequence diagram) 190
Figure 7.112 - Alternative Flow - Manage Transmission Sectors - Enable/Disable - loss of masterhip
 (Sequence diagram) 191
Figure 7.113 - Basic Flow - Control Emissions - On/Off (Sequence diagram) 193
Figure 7.114 - Alternative Flow - Control Emissions - On/Off - loss of mastership (Sequence diagram) 193
Figure 7.115 - Basic Flow - Write a Target Test Target Scenario (Sequence diagram) 196
Figure 7.116 - Alternative Flow - Write a Target Test Target Scenario - loss of mastership
 (Sequence diagram) 196
Figure 7.117 - Basic Flow - Inspect a Test Target Scenario (Sequence diagram) 197
Figure 7.118 - Basic Flow - Activate/Deactivate Test Target Facility (Sequence diagram) 199
Figure 7.119 - Alternative Flow - Activate/Deactivate Test Target Facility - loss of mastership
 Sequence diagram) 199
Figure 7.120 - Alternative Flow - Provide Interference Reports (Sequence diagram) 202
Figure 7.121 - Basic Flow - Provide Interference Reports (Sequence diagram) 203
Figure 7.122 - Alternative Flow - Provide Nominal Performance (Sequence diagram) 205
Figure 7.123 - Basic Flow - Provide Nominal Performance (Sequence diagram) 205
Figure 7.124 - Alternate Flow - Provide_Performance_Assessment (Sequence diagram) 207
Figure 7.125 - Basic Flow - Provide Performance Assessment (Sequence diagram) 208
Figure 7.126 - Alternate Flow - Provide Jammer Assessment (Sequence diagram) 210
Figure 7.127 - Basic Flow - Provide Jammer Assessment (Sequence diagram) 210
Figure 7.128 - Basic Flow - Sensor Track Reporting (Individual) (Sequence diagram) 213
Figure 7.129 - Basic Flow - Sensor Track Reporting (Sets) (Sequence diagram) 213
Figure 7.130 - Basic Flow - Delete Sensor Track (Sequence diagram) 215
Figure 7.131 - Alternative Flow - Delete Sensor Track (Sequence diagram) 215
Open Architecture Radar Interface Standard (OARIS), v1.0 xi

Figure 7.132 - Basic Flow - Receive Track Information (Sequence diagram) 217
Figure 7.133 - Alternative Flow - Receive Track Information (Sequence diagram) 218
Figure 7.134 - Basic Flow Initiate Track (Sequence diagram) 220
Figure 7.135 - Alternative Flow - Initiate Track - loss of mastership (Sequence diagram) 220
Figure 7.136 - Basic Flow - Manage Tracking Zone - Enable/Disable (Sequence diagram) 222
Figure 7.137 - Alternative Flow - Manage Tracking Zone - Enable/Disable - loss of Mastership
 (Sequence diagram) 223
Figure 7.138 - Provide projectile positional information - Request reporting of miss indications
 (Sequence diagram) 225
Figure 7.139 - Process Target Designation - Designation by track (Sequence diagram) 228
Figure 7.140 - Process Target Designation - Designation by position (Sequence diagram) 229
Figure 7.141 - Process Target Designation - De-designation (Sequence diagram) 230
Figure 7.142 - Basic Flow - Support Kill Assessment - Request Kill Assessment Support
 (Sequence diagram) 232
Figure 7.143 - Support surface target engagement - Check availability (Sequence diagram) 235
Figure 7.144 - Support surface target engagement - Designate fire control channel (Sequence diagram) 236
Figure 7.145 - Support surface target engagement - De-designate fire control channel (Sequence diagram) 237
Figure 7.146 - Basic Flow - Illumination (Sequence diagram) 239
Figure 7.147 - Basic Flow - Downlink (Sequence diagram) 242
Figure 7.148 - Basic Flow - Uplink (Sequence diagram) 245
Figure 7.149 - Alternative Flow - Sensor does not Perform Cued Search (Sequence diagram) 247
Figure 7.150 - Basic Flow - Perform Cued Search (Sequence diagram) 248
Figure 7.151 - Perform Splash Spotting - Check Activation (Sequence diagram) 251
Figure 7.152 - Perform Splash Spotting - Activate Splash Spotting Area by Position (Sequence diagram) 251
Figure 7.153 - Perform Splash Spotting - Re-position Splash Spotting Area (Sequence diagram) 252
Figure 7.154 - Perform Splash Spotting - Activate Splash Spotting Area by Fire Control Track
 (Sequence diagram) 253
Figure 7.155 - Perform Splash Spotting - Report On Splash Spotting Information (Sequence diagram) 254
Figure 7.156 - Perform Splash Spotting - Deactivate Splash Spotting Area (Sequence diagram) 255
xii Open Architecture Radar Interface Standard (OARIS), v1.0

List of Tables

Table 7.1- Attributes of IDLEnum Identity_type 30
Table 7.2- Attributes of IDLStruct system_track_type 31
Table 7.3- Attributes of IDLStruct absolute_duration_type 37
Table 7.4- Attributes of IDLStruct azimuth_interval_type 38
Table 7.5- Attributes of IDLStruct azimuth_qualification_type 38
Table 7.6- Attributes of IDLStruct cartesian_interval_type 39
Table 7.7- Attributes of IDLStruct cartesian_position_type 39
Table 7.8 - Attributes of IDLStruct cartesian_velocity_type 40
Table 7.9- Attributes of IDLEnum coordinate_kind_type 40
Table 7.10- Attributes of IDLEnum coordinate_orientation_type 40
Table 7.11- Attributes of IDLEnum coordinate_origin_type 42
Table 7.12- Attributes of IDLStruct coordinate_specification_type 42
Table 7.13- Attributes of IDLUnion covariance_matrix_type 43
Table 7.14- Attributes of IDLStruct diagonal_covariance_matrix_type 43
Table 7.15- Attributes of IDLStruct elevation_internal_type 44
Table 7.16- Attributes of IDLStruct elevation_qualification_type 44
Table 7.17- Attributes of IDLStruct full_covariance_matrix_type 44
Table 7.18- Attributes of IDLStruct height_interval_type 45
Table 7.19- Attributes of IDLStruct latitude_interval_type 46
Table 7.20- Attributes of IDLStruct longitude_interval_type 46
Table 7.21- Attributes of IDLStruct polar_position_type 46
Table 7.22- Attributes of IDLStruct polar_velocity_type 47
Table 7.23- Attributes of IDLunion position_accuracy_coordinate_type 47
Table 7.24- Attributes of IDLUnion position_coordinate_type 47
Table 7.25- Attributes of IDLStruct range_interval_type 48
Table 7.26- Attributes of IDLStruct range_qualification_type 48
Table 7.27- Attributes of IDLStruct speed_interval_type 49
Table 7.28- Attributes of IDLUnion velocity_accuracy_coordinate_type 49
Table 7.29- Attributes of IDLUnion velocity_coordinate_type 49
Table 7.30- Attributes of IDLStruct wgs84_position_type 50
Table 7.31- Attributes of IDLStruct wgs84_velocity_type 50
Table 7.32- Attributes of IDLStruct cartesian_position_accuracy_type 50
Table 7.33- Attributes of IDLStruct cartesian_velocity_accuracy_type 51
Table 7.34- Attributes of IDLStruct polar_position_accuracy_type 51
Table 7.35- Attributes of IDLStruct polar_velocity_accuracy_type 51
Table 7.36- Attributes of IDLStruct wgs84_position_accuracy_type 52
Table 7.37- Attributes of IDLStruct wgs_velocity_accuracy_type 52
Table 7.38- Attributes of IDLStruct figure_ref_point 54
Table 7.39- Attributes of IDLUnion general_polar_volume_type 54
Table 7.40- Attributes of IDLStruct polar_volume_type 54
Table 7.41- Attributes of IDLStruct sector_type 55
Table 7.42- Attributes of IDLStruct truncated_polar_volume_type 55
Open Architecture Radar Interface Standard (OARIS), v1.0 xiii

Table 7.43- Attributes of IDLStruct truncated_sector_type 56
Table 7.44- Attributes of IDLStruct denial_type 57
Table 7.45- Attributes of IDLStruct request_ack_type 57
Table 7.46- Methods of IDL Interface common_use_case_interface 58
Table 7.47- Attributes of IDLEnum offline_test_result_type 61
Table 7.48- Attributes of IDLStruct parameter_type 63
Table 7.49- Attributes of IDLStruct recorded_data_type 63
Table 7.50- Attributes of IDLStruct recording_descriptor_type 64
Table 7.51- Attributes of IDLStruct fault_script_type 65
Table 7.52- Attributes of IDLStruct sim_mode_states_type 66
Table 7.53- Attributes of IDLStruct start_stop_sim_mode_request_type 66
Table 7.54- Attributes of IDLStruct stop_freeze_session_request_type 66
Table 7.55- Attributes of IDLEnum service_name_type 69
Table 7.56- Attributes of IDLStruct battle_override_state_type 70
Table 7.57- Attributes of IDLStruct descriptor 70
Table 7.58- Attributes of IDLStruct device_identification_type 70
Table 7.59- Attributes of IDLEnum event_type 71
Table 7.60- Attributes of IDLStruct fault 71
Table 7.61- Attributes of IDLStruct health_state_reason_type 72
Table 7.62- Attributes of IDLEnum health_state_type 72
Table 7.63- Attributes of IDLEnum information_name_type 72
Table 7.64- Attributes of IDLStruct interest 73
Table 7.65- Attributes of IDLEnum mastership_state_type 73
Table 7.66- Attributes of IDLStruct parameter_name_type 74
Table 7.67- Attributes of IDLStruct name_error_pair_type 74
Table 7.68- Attributes of IDLStruct name_value_pair_type 74
Table 7.69- Attributes of IDLStruct parameter_value_response_type 75
Table 7.70- Attributes of IDL Enum registration_type 75
Table 7.71- Attributes of IDLStruct service_type 75
Table 7.72- Attributes of IDLStruct service_health_type 75
Table 7.73- Attributes of IDLStruct service_indication_type 76
Table 7.74- Attributes of IDLStruct service_information 76
Table 7.75- Attributes of IDLStruct subsystem_health_type 77
Table 7.76- Attributes of IDLEnum technical_state_type 77
Table 7.77- Attributes of IDLStruct version_type 78
Table 7.78- Attributes of IDLStruct clutter_assessment_request_type 79
Table 7.79- Attributes of IDLEnum clutter_indication_type 79
Table 7.80- Attributes of IDLStruct clutter_map_cell_type 80
Table 7.81- Attributes of IDLStruct clutter_report_type 80
Table 7.82- Attributes of IDLStruct concentration_plot_cell_type 80
Table 7.83- Attributes of IDLEnum intensity_units_type 81
Table 7.84- Attributes of IDLStruct plot_concentration_report_type 81
Table 7.85- Attributes of IDLStruct plot_concentration_request_data_type 81
Table 7.86- Attributes of IDLStruct sensor_plot_type 83
Table 7.87- Attributes of IDLStruct sensor_orientation_type 84
Table 7.88- Attributes of IDLStruct transmission_frequency_state_type 86
Table 7.89- Attributes of IDLStruct reported_frequency_state_type 86
xiv Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.90- Attributes of IDLEnum transmission_frequency_mode_type 87
Table 7.91- Attributes of IDLStruct transmission_sector_type 87
Table 7.92- Attributes of IDLEnum transmission_sector_power_level_type 88
Table 7.93- Attributes of IDLEnum sector_reference_type 88
Table 7.94- Attributes of IDLStruct control_emission_state_type 88
Table 7.95- Attributes of IDLUnion test_target_scenario_type 88
Table 7.96- Attributes of IDLStruct test_target_scenario_independent_target_type 89
Table 7.97- Attributes of IDLStruct test_target_scenario_common_parameter_target_type 89
Table 7.98- Attributes of IDLStruct test_target_type 89
Table 7.99- Attributes of IDLStruct test_target_plus_scenario_type 90
Table 7.100- Attributes of IDLStruct test_target_scenario_state_type 90
Table 7.101- Attributes of IDLEnum interferer_kind 92
Table 7.102- Attributes of IDLStruct interferer_type 92
Table 7.103- Attributes of IDLStruct performance_bin_type 93
Table 7.104- Attributes of IDLStruct performance_assessment_report_type 93
Table 7.105- Attributes of IDLStruct performance_assessment_request_type 93
Table 7.106- Attributes of IDLStruct performance_beam_type 94
Table 7.107- Attributes of IDLStruct performance_sector_type 94
Table 7.108- Attributes of IDLEnum environment_type 96
Table 7.109- Attributes of IDLEnum initiation_mode_type 97
Table 7.110- Attributes of IDLStruct sensor_track_type 97
Table 7.111- Attributes of IDLEnum track_phase_type 98
Table 7.112- Attributes of IDLStruct track_info 99
Table 7.113- Attributes of IDLStruct tracking_zone 100
Table 7.114- Attributes of IDLEnum tracking_zone_type 101
Table 7.115- Attributes of IDLStruct expected_hit_data_type 102
Table 7.116- Attributes of IDLStruct miss_indication_data_type 102
Table 7.117- Attributes of IDLStruct projectile_kinematics_type 102
Table 7.118- Attributes of IDLEnum kill_assessment_result_type 103
Table 7.119- Attributes of IDLStruct kinematics_type 104
Table 7.120- Attributes of IDLStruct downlink_report 106
Table 7.121- Attributes of IDLStruct downlink_request 107
Table 7.122- Attributes of IDLStruct illumination_request_type 107
Table 7.123- Attributes of IDLUnion track_id_type 107
Table 7.124- Attributes of IDLStruct uplink_report_type 108
Table 7.125- Attributes of IDLStruct uplink_request_type 108
Table 7.126- Attributes of IDLStruct cued_search_cue_type 109
Table 7.127- Attributes of IDLStruct cued_search_report_type 109
Table 7.128- Attributes of IDLStruct splash_spotting_area_position_type 110
Table 7.129- Attributes of IDLStruct splash_spotting_area_type 110
Table 7.130- Methods of IDLInterfaceReceive_Encyclopaedic_Data_CMS 112
Table 7.131- Methods of IDLInterfaceReceive_Encyclopaedic_Data_Sub 112
Table 7.132- Methods of IDLInterface Manage_physical_Configuration_CMS 114
Table 7.133- Methods of IDLInterface Manage_Physical_Configuration_Sub 115
Table 7.134- Methods of IDLInterfacePerform_Offline_Test_CMS 117
Table 7.135- Methods of IDLInterfacePerform_Offline_Test_Sub 117
Table 7.136- Methods of IDLInterface Restart_CMS 119
Open Architecture Radar Interface Standard (OARIS), v1.0 xv

Table 7.137- Methods of IDLInterface Restart_Sub 119
Table 7.138- Methods of IDL Interface Shutdown_CMS 121
Table 7.139- Methods of IDL Interface Shutdown_Sub 121
Table 7.140- Methods of IDLInterfaceStartup_CMS 123
Table 7.141- Methods of IDLInterfaceStartup_Sub 123
Table 7.142- Methods of IDLInterfaceControl_Recording_Sub 125
Table 7.143- Methods of IDLInterfaceControl_Replay_CMS 127
Table 7.144- Methods of IDLInterfaceControl_Replay_Sub 127
Table 7.145- Methods of IDLInterface Define_Simulation_Scenario_CMS 131
Table 7.146- Methods of IDLInterface Define_SImulation_Scenario_Sub 132
Table 7.147- Methods of IDLInterface Control_Simulation_CMS 134
Table 7.148- Methods of IDLInterface Control_Simulation_Sub 134
Table 7.149- Methods of IDLInterface Define_Fault_Scripts_CMS 136
Table 7.150- Methods of IDLInterface Define_Fault_Scripts_Sub 137
Table 7.151- Methods of IDLInterface Control_Fault_Scripts_Sub 139
Table 7.152- Methods of IDLInterface Manage_Technical_State_CMS 141
Table 7.153- Methods of IDLInterface Manage_Technical_State_Sub 141
Table 7.154- Methods of IDLInterface Heartbeat_Signal_CMS 145
Table 7.155- Methods of IDLInterface Heartbeat_Signal_Sub 145
Table 7.156- Methods of IDLInterface Provide_Subsystem_Identification_CMS 147
Table 7.157- Methods of IDLInterface Provide_Subsystem_Identification_Sub 147
Table 7.158- Methods of IDLInterface Provide_Health_State_CMS 150
Table 7.159- Methods of IDLInterface Provide_Health_State_Sub 151
Table 7.160- Methods of IDLInterface Manage_Operational_Mode_CMS 154
Table 7.161- Methods of IDLInterface Manage_Operational_Mode_Sub 155
Table 7.162- Methods of IDLInterface Control_Battle_Override_CMS 157
Table 7.163- Methods of IDLInterface Control_Battle_Override_Sub 157
Table 7.164- Methods of IDLInterface Manage_Subsystem_Parameters_CMS 160
Table 7.165- Methods of IDLInterface Manage_Subsystem_Parameters_Sub 160
Table 7.166- Methods of Interface Provide_Subsystem_Services_CMS 164
Table 7.167- Methods of Interface Provide_Subsystem_Services_Sub 164
Table 7.168- Methods of IDLInterface Manage_Mastership_CMS 168
Table 7.169- Methods of IDLInterface Manage_Mastership_Sub 168
Table 7.170- Methods of IDLInterface Register_Interest_CMS 173
Table 7.171- Methods of IDLInterface Register_Interest_Sub 173
Table 7.172- Methods of IDLInterface Provide_Plot_Concentration_CMS 174
Table 7.173- Methods of IDLInterface Provide_Plot_Concentration_Sub 175
Table 7.174- Methods of IDLInterface Provide_Clutter_Assessment_CMS 177
Table 7.175- Methods of IDLInterface Provide_Clutter_Assessment_Sub 177
Table 7.176- Methods of IDLInterface Provide_Plots_CMS 180
Table 7.177- Methods of IDLInterface Provide_Sensor_Orientation_CMS 181
Table 7.178- Methods of IDLInterface Manage_Frequency_Usage_CMS 185
Table 7.179- Methods of IDLInterface Manage_Frequency_Usage_Sub 186
Table 7.180- Methods of IDLInterface Manage_Transmission_Sectors_CMS 189
Table 7.181- Methods of IDLInterface Manage_Transmission_Sectors_Sub 189
Table 7.182- Methods of IDLInterface Control_Emissions_CMS 192
Table 7.183- Methods of IDLInterface Control_Emissions_Sub 192
xvi Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.184- Methods of IDLInterface Define_Test_Target_Scenario_CMS 195
Table 7.185- Methods of IDLInterface Define_Test_Target_Scenario_Sub 195
Table 7.186- Methods of IDLInterface Test_Target_Facility_CMS 198
Table 7.187- Methods of IDLInterface Test_Target_Facility_Sub 198
Table 7.188- Methods of IDLInterface Provide_Interference_Reports_CMS 201
Table 7.189- Methods of IDLInterface Provide_Interference_Reports_Sub 201
Table 7.190- Methods of IDLInterface Provide_Nominal_Performance_CMS 204
Table 7.191- Methods of IDLInterface Provide_Nominal_Performance_Sub 204
Table 7.192- Methods of IDLInterface Provide_Performance_Assessment_CMS 206
Table 7.193- Methods of IDLInterface Provide_Performance_Assessment_Sub 207
Table 7.194- Methods of IDLInterface Provide_Jammer_Assessment_CMS 209
Table 7.195- Methods of IDLInterface Provide_Jammer_Assessment_Sub 209
Table 7.196- Methods of IDLInterface Provide_Sensor_Tracks_CMS 212
Table 7.197- Methods of IDLInterface Delete_Sensor_Track_Sub 214
Table 7.198- Methods of IDLInterface Receive_Track_Information_Sub 217
Table 7.199- Methods of IDLInterface Initiate_Track_CMS 219
Table 7.200- Methods of IDLInterface Initiate_Track_Sub 219
Table 7.201- Methods of IDLInterface Manage_Tracking_Zones_CMS 222
Table 7.202- Methods of IDLInterface Manage_Tracking_Zones_Sub 222
Table 7.203- Methods of IDLInterface Provide_Projectile_Positional_Information_CMS 224
Table 7.204- Methods of IDLInterface Provide_Projectile_Positional_Information_Sub 224
Table 7.205- Methods of IDLInterface Process_Target_Designation_CMS 226
Table 7.206- Methods of IDLInterface Process_Target_Designation_Sub 227
Table 7.207- Methods of IDLInterface Support_Kill_Assessment_CMS 231
Table 7.208- Methods of IDLInterface Support_Kill_Assessment_Sub 231
Table 7.209- Methods of IDLInterface Support_Surface_Target_Engagement_CMS 233
Table 7.210- Methods of IDLInterface Support_Surface_Target_Engagement_Sub 234
Table 7.211- Methods of IDLInterface Perform_Illumination_CMS 238
Table 7.212- Methods of IDLInterface Perform_Illumination_Sub 238
Table 7.213- Methods of IDLInterface Perform_Missile_Downlink_CMS 241
Table 7.214- Methods of IDLInterface Perform_Missile_Downlink_Sub 241
Table 7.215- Methods of IDLInterface Perform_Missile_Uplink_CMS 244
Table 7.216- Methods of IDLInterface Perform_Missile_Uplink_Sub 244
Table 7.217- Methods of IDLInterface Perform_Cued_Search_CMS 246
Table 7.218- Methods of IDLInterface Perform_Cued_Search_Sub 246
Table 7.219- Methods of IDLInterface Perform_Splash_Spotting_CMS 249
Table 7.220- Methods of IDLInterface Perform_Splash_Spotting_Sub 249
Open Architecture Radar Interface Standard (OARIS), v1.0 xvii

xviii Open Architecture Radar Interface Standard (OARIS), v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language®); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel™);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
Open Architecture Radar Interface Standard (OARIS), v1.0 xix

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the link cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under documents, Report a Bug/Issue.
xx Open Architecture Radar Interface Standard (OARIS), v1.0

1 Scope
This specification primarily defines the interface between the CMS and a Radar system within a modular combat system
architecture for naval platforms. However, it is structured to aligned with the objective of dividing the interface into three
categories, namely subsystem services (interfaces applicable to any module within a combat system), sensor services
(interfaces applicable to any sensor component within a combat system) and radar services (interfaces applicable to any
radar component within a combat system), as illustrated below. As such it has potential to provide the basis for
specifications for other combat system sensors and subsystems.

Figure 1.1 - The OARIS specification exploits specialization and generalization to promote modularity
 and extensibility

2 Conformance
In order to support utilization by a range of radars from simple navigation radars to complex multi-function radars the
RFP defines the following compliance levels:

• Level 1
The simplest radar operation providing just plots and tracks

• Level 2
Basic radar operation, but a complete interface supporting control and essential system configuration for a combat
system context
Open Architecture Radar Interface Standard (OARIS), v1.0 1

• Level 3A
In addition to basic operation (level 2), interfaces for training support

• Level 3B
In addition to basic operation (level 2), full system configuration interfaces

• Level 3C
In addition to basic operation (level 2), the full track and plot reporting interfaces

• Level 3D
In addition to basic operation (level 2), the engagement support interface

• Level 3E
In addition to basic operation (level 2), the advanced radar interfaces

• Level 3F
In addition to basic operation (level 2), compliance with NNSI (Not supported in this version of the response.)

• Level 3G
In addition to basic operation (level 2), compliance with METOC (Not supported in this version of the response.)

Radars conforming to this specification shall indicate which compliance levels are supported. The following options are
possible:

• Level 1

• Level 2

• Any combination of levels 3A to 3E (in addition to level 2)

In order to comply with the specification levels the following respective interfaces shall be supported in full, with the
exception of level 3C where at least one of the environment types (Space/Air/Land/Surface) shall be supported and
appropriately qualified, e.g., level 3C Air and Surface:

Compliance
Level

Required Interfaces

1 Register Interest

Track Reporting

Plot Reporting
2 Open Architecture Radar Interface Standard (OARIS), v1.0

2 Control Interface Connection

Provide Subsystem Identification

Provide Subsystem Services

Manage Subsystem Parameters

Provide Health State

Manage Mastership

Manage Technical State

Exchange Heartbeat

Register Interest

Track Reporting

Plot Reporting

Manage Operational Mode

Manage Tracking Zones

Manage Frequency Usage

Manage Transmission Sectors

Control Battle Override

Control Emissions
3A Define Test Target Scenario

Define Fault Scripts

Control Simulation

Control Fault Script

Control Test Target Facility

Control Recording

Control Replay

Provide Simulation Data
3B Shutdown

Restart

Startup

Manage Physical Configuration

Perform Offline Test

Receive Encyclopedic Data
Open Architecture Radar Interface Standard (OARIS), v1.0 3

3C Receive Track Information

Delete Sensor Track

Initiate Track

Perform Cued Search

Provide Space Plots

Provide Land Plots

Provide Surface Plots

Provide Air Plots

Provide Sensor Space Tracks

Provide Sensor Land Tracks

Provide Sensor Surface Tracks

Provide Sensor Air Tracks
3D Process Target Designation

Provide Projectile Positional Information

Perform Missile Downlink

Perform Missile Uplink

Kill Assessment

Support Surface Engagement

Perform Splash Plotting
3E Provide Interference Reports

Provide Jammer Strobes

Provide Jammer Tracks

Provide Area with Plot Concentration

Provide Clutter Assessment

Provide Jamming Effect Assessment

Provide Performance Assessment

Provide Nominal Performance
4 Open Architecture Radar Interface Standard (OARIS), v1.0

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• ALMAS (formal/2009-11-01)

• AMSM (formal/2010-11-02)

• CORBA (formal/2011-11-01,02,03)

• DDS (formal/2007-01-01)

• DIS (IEEE 1278.1-1995, IEEE 1278.1A-1998 and Enumeration and Bit-encoded values for use with IEEE 1278.1-
1995)

• EVOT (formal/2008-08-01)

• HLA (IEEE 1516 2000-series and RPR-FOM 2.0)

• ISO 19111 (www.iso.org/)

• ISO 19115 (www.iso.org/)

• METOC RFP (c4i/08-12-02)

• NNSI RFP (c4i/07-12-01)

• Network Time Protocol (www.ntp.org)

• Precision Time Protocol (IEEE 1588 - http://www.ieee1588.com)

• SoaML (www.omg.org/spec/SoaML)

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

• AB (Architecture Board)

• ALMAS (Alert Management Service)

• AMSM (Application Management and Status Monitoring)

• API (Application Programming Interface)

• ATC (Air Traffic Control)

• BC (Business Committee)

• BCQ (Business Committee Questionnaire)

• BoD (Board of Directors)

• CCM (CORBA Component Model)

• CMS (Combat Management System)
Open Architecture Radar Interface Standard (OARIS), v1.0 5

• CORBA (Common Object Request Broker Architecture)

• CSIV2 (Common Secure Interoperability Protocol Version 2)

• CWM (Common Warehouse Metamodel)

• DAIS (Data Acquisition from Industrial Systems)

• DDS (Data Distribution Service)

• EDOC (Enterprise Distributed Object Computing)

• EJB (Enterprise Java Bean)

• EVOT (Enhanced View of Time)

• FTF (Finalization Task Force)

• GE (Gene Expression)

• GIOP (General Inter-Orb Protocol)

• GLS (General Ledger Specification)

• IDL (Interface Definition Language)

• IFF (Interrogation, Friend or Foe)

• IIOP (Internet Inter-Orb Protocol)

• IPR (Intellectual Property Right)

• ISO (International Organization for Standardization)

• LOI (Letter of Intent)

• MDA (Model Driven Architecture)

• METOC (Meteorological and Oceanographic)

• MOF (Meta Object Facility)

• MQS (MQSeries)

• NNSI (Naval Navigation System Interface)

• NS (Naming Service)

• OARIS (Open Architecture Radar Interface Standard)

• OASIS (Organization for Advancement of Structured Information Standards)

• OCL (Object Constraint Language)

• ODF (Open Document Format)

• OMA (Object Management Architecture)

• OMG (Object Management Group)

• OTS (Object Transaction Service)
6 Open Architecture Radar Interface Standard (OARIS), v1.0

• PIDS (Personal Identification Service)

• PIM (Platform Independent Model)

• PSM (Platform Specific Model)

• P&P (Policies and Procedures of the OMG Technical Process)

• RFC (Request For Call)

• RFP (Request For Proposal)

• RM-ODP (Reference Model of Open Distributed Processing)

• RTF (Revision Task Force)

• SEC (Security Service)

• SOA (Service Oriented Architecture)

• SoaML (Service oriented architecture Modeling Language)

• SOLAS (Safety Of Life At Sea)

• SPEM (Software Process Engineering Metamodel)

• TC (Technology Committee)

• TF (Task Force)

• TOS (Trading Object Service)

• UML (Unified Modeling Language)

• XMI (XML Metadata Interchange)

• XML (eXtensible Markup Language)

5 Symbols and Abbreviated Terms
No special symbols are introduced in this specification.

6 Additional Information

6.1 Acknowledgements

The following companies submitted this specification:

• BAE Systems

• Thales

The following companies supported this specification:
Open Architecture Radar Interface Standard (OARIS), v1.0 7

• Atlas Elektronik

• Cassidian

• DSTO

• John Hopkins University APL

• Selex ES

• US Navy
8 Open Architecture Radar Interface Standard (OARIS), v1.0

7 Open Architecture Radar Information Specification

7.1 Introduction

The specification is captured as an Enterprise Architect (EA) UML version 2.1 model, with this document being
automatically generated as a report from the model.

7.1.1 Document Structure

The Dependability Conceptual Model package in Figure 7.1 is specified as the top-level package of all the other packages
for DCM.

Figure 7.1 - Specification Master (Documentation Diagram)

 doc Specification Master

Ov erv iew

+ Usage Overview: Package

Common

+ Common_Types: Package

Domain

+ Subsystem_Domain: Package
+ Sensor_Domain: Package
+ Radar_Domain: Package

Serv ice

+ Subsystem_Services: Package
+ Sensor_Services: Package
+ Radar_Services: Package
Open Architecture Radar Interface Standard (OARIS), v1.0 9

7.2 Usage Overview

Parent Package: Analysis Model (PIM)

The RFP defines a number of compliance levels as follows:

• Level 1: A simple radar which provides just plots and tracks.

• Level 2: Basic radar operation, but a complete interface supporting control and essential system configuration for a
combat system context.

• Level 3A: In addition to basic operation (level 2), interfaces for training support

• Level 3B: In addition to basic operation (level 2), full system configuration interfaces

• Level 3C: In addition to basic operation (level 2), the full track and plot reporting interfaces

• Level 3D: In addition to basic operation (level 2), the engagement support interface

• Level 3E: In addition to basic operation (level 2), the advanced radar interfaces

• Level 3F (compliance with NNSI) and Level 3G (compliance with METOC). These are not covered by this response.

Radars conforming to this specification shall indicate which compliance levels are supported. The following options are
possible:

• Level 1

• Level 2

• Any combination of levels 3A to 3E (in addition to level 2)

The activity diagrams and the associated notes below show how the interfaces defined in 7.7 to 7.9 interact in order to
support these compliance levels.
10 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.2 - Compliance Level 1 (Activity diagram)

For compliance level 1, the radar powers up and commences track and plot reporting either without intervention or using
an out of scope facility, such as a maintainer interface. The CMS detects the presence of the interface, registers interest
then processes the incoming track and plot streams.

 act Compliance Lev el 1

S
u

b
s

y
s

te
m

C
M

S

Register Interest

Plot ReportingTrack Reporting

CMS detects that an
interface to the
Subsystem is present

ActivityFinal

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

[Deregister Interest]

[Continue to receive tracks and plots]

[Interest Registered]

[Interest Deregistered]
Open Architecture Radar Interface Standard (OARIS), v1.0 11

Figure 7.3 - Compliance Level 2 - Initialization (Activity diagram)

 act Compliance Lev el 2 - Initialization

Subsystem CMS

Power
Applied

Prov ide Subsystem
Identification

Exchange Heart Beat Prov ide Subsystem
Serv ices

Register Interest

Manage Mastership

ActivityFinal

Manage Technical State

Prov ide Health State

Manage Subsystem
Parameters
12 Open Architecture Radar Interface Standard (OARIS), v1.0

For compliance level 2 a more versatile startup sequence is supported, with the subsystem and CMS going through a
negotiation and configuration stage followed by more detailed interface control and reporting, including management of
reversionary modes.

Figure 7.4 - Compliance Level 2 - Operational Mode (Activity diagram)

Level 2 continues to manage the operational mode while the CMS has mastership.

 act Compliance Lev el 2 - Operational Mode

CMS

Manage Operational Mode

ActivityFinal

Manage Subsystem Parameters has completed
successfully and has identified the currently
available operational modes and CMS has
mastership
Open Architecture Radar Interface Standard (OARIS), v1.0 13

Figure 7.5 - Compliance Level 2 - Subsystem Setup (Activity diagram)

Level 2 caters for continuous management of sensor configuration when the CMS has mastership.

 act Compliance Lev el 2 - Subsystem Setup

CMS

Control EmissionsManage Frequency Usage Manage Transmission
Sectors

Manage Tracking Zones Control Battle Ov erride

Provide Subsystem Services
has successfully executed and
CMS has mastership

Manage Technical State

ActivityFinal

[Subsystem is ONLINE]

[Subsystem is ONLINE]

[Subsystem is not ONLINE]
14 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.6 - Compliance Level 3A - Fault Scripts and Test Targets (Activity diagram)

Level 3 provide for the simulation of faults and targets for test and training purposes.

 act Compliance Lev el 3A - Fault Scripts and Test Targets

Define Fault Scripts

Control Fault Script

Provide Subsystem
Services has
successfully
executed

Manage Mastership

Manage Technical State

Control Simulation

ActivityFinal

Define Test Target
Scenario

Control Test Target Facility

C
M

S

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

[Subsystem is not in a
READY or ONLINE state]

[CMS has mastership]

[Subsystem is in a READY or
ONLINE state]

[CMS decides to activate
a fault script that has
been previously defined]

[CMS decides to activate a
test target scenario that has
been previously defined]

[Simulation mode is OFF]

[Simulation mode is ON]

[CMS does not have mastership]

[CMS has mastership]

[CMS decides to define a test target scenario] [CMS decides to define a fault script]
Open Architecture Radar Interface Standard (OARIS), v1.0 15

Figure 7.7 - Compliance Level 3A - Recording/Replay (Activity diagram)

Recording and replay facilities support recording and replay of subsystem parameters for the purposes of training and/or
post exercise review.

 act Compliance Lev el 3A - Simulation

Prov ide Simulation Data

ActivityFinal

Control Simulation

Subsystem is READY or
ONLINE, and CMS has
mastership

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

C
M

S

[CMS starts or allows Simulation
Scenario to continue]

[CMS ends simulation Scenario]
16 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.8 - Compliance Level 3A - Simulation (Activity diagram)

The simulation interfaces are used to support training.

 act Compliance Lev el 3B - Macro State Management

Shutdown Restart
Startup

Provide Subsystem Services
Successful, CMS has mastership
of subsystem

ActivityFinal

C
M

S

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.
Open Architecture Radar Interface Standard (OARIS), v1.0 17

Figure 7.9 - Compliance Level 3B - Macro State Management (Activity diagram)

These interfaces provide for more finely grained control of startup and shutdown.

 act Compliance Lev el 3B - Manage Physical Configuration

CMS

Manage Physical
Configuration

Manage Mastership

Manage Technical State

ActivityFinal

Provide Subsystem
Services has successfully
executed

[Subsystem is not in STANDBY]

[Subsystem is in STANDBY]

[Subsystem is in STANDBY]

[Request Change to Configuration]

[Request Current Configuration]

[CMS does not have mastership]

[CMS has mastership]

[CMS has mastership]
18 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.10 - Compliance Level 3B - Manage Physical Configuration (Activity diagram)

These interfaces support more detailed control of the subsystem configuration.

 act Compliance Lev el 3B - Perform Offline Test

Perform Offline Test

Provide Subsystem Services
Successful (Subsystem is able to
communicate with the CMS),
Subsystem is in any state except for
ONLINE, CMS has mastership of
subsystem

Manage Technical State

ActivityFinal

C
M

S
S

u
b

s
y

s
te

m

The subsystem initiates
this state change to
FAILED, and uses this
service to report the
change to the CMS

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

[No critical failures detected]

[Detection of critical fai lure requires subsystem to transition to FAILED]
Open Architecture Radar Interface Standard (OARIS), v1.0 19

Figure 7.11 - Compliance Level 3B - Perform Offline Test (Activity diagram)

Offline test provides a mechanism for diagnosing subsystem failures, after which the subsystem’s technical state is
adjusted accordingly.

 act Compliance Level 3B - Perform Offline Test

Perform Offline Test

Provide Subsystem Services
Successful (Subsystem is able to
communicate with the CMS),
Subsystem is in any state except for
ONLINE, CMS has mastership of
subsystem

Manage Technical State

ActivityFinal

C
M

S
S

u
b

s
y

s
te

m

The subsystem initiates
this state change to
FAILED, and uses this
service to report the
change to the CMS

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

[No critical failures detected]

[Detection of critical failure requires subsystem to transition to FAILED]
20 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.12 - Compliance Level 3B - Receive Encyclopaedic Data (Activity diagram)

The subsystem is able to receive relevant encyclopaedic data from the CMS.

 act Compliance Lev el 3B - Receiv e Encyclopaedic Data

CMS

Receiv e Encyclopaedic
Data

Provide Subsystem
Services has successfully
executed and CMS has
mastership

ActivityFinal
Open Architecture Radar Interface Standard (OARIS), v1.0 21

Figure 7.13 - Compliance Level 3C - Advanced Track Management (Activity diagram)

The sensor supports detailed track management.

 act Compliance Lev el 3C - Adv anced Track Management

Delete Sensor TrackReceiv e Track Information Initiate Track Perform Cued Search

Subsystem is READY and
Simulation Mode is ON, or
Subsytem is ONLINE; CMS
has mastership

Track Reporting

ActivityFinal

C
M

S
S

u
b

s
y

s
te

m

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

Track Reporting is also
occurring as an
ongoing process
22 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.14 - Compliance Level 3C - Advanced Track and Plot Reporting (Activity diagram)

The sensor supports reporting tracks and plots selectively based on the operational environment (space/air/land/surface).

 act Compliance Lev el 3C - Adv anced Track and Plot Reporting

Prov ide Air Plots

Prov ide Surface Plots

Prov ide Land Plots

Prov ide Space Plots Prov ide Sensor Space
Track

Prov ide Sensor Surface
Track

Prov ide Sensor Air Tracks

Prov ide Sensor Land
Tracks

Register Interest

S
u

b
s

y
s

te
m

ActivityFinal

This diagram is valid
for any of the Plot and
Track services depicted
on this diagram in l ieu
of the Provide
Plots/Tracks container.

C
M

S

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

Interface
Connection
Successful

Prov ide plots/tracks
container

[Interest Deregistered]

[Interest Registered]

[Continue to receive tracks and plots]

[Deregister Interest]
Open Architecture Radar Interface Standard (OARIS), v1.0 23

Figure 7.15 - Compliance Level 3D - Air Engagement Support (Activity diagram)

Level 3D provides additional information to support air engagements, including missile links and kill assessment.

 act Compliance Lev el 3D - Air Engagement Support

Subsystem CMS

Process Target
Designation

Perform Missile UplinkPerform Missile Downlink

Perform Illumination

Kill Assessment

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

CMS has determined an
engagement is required against an
air track, CMS has mastership,
Subsystem is ONLINE or READY (for
simulated engagements only)

Track Reporting

ActivityFinal

Prov ide Projectile
Positional Information

[Missile communications required]

[Il lumination required]

[If service required]
24 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.16 - Compliance Level 3D - Surface Engagement Support - Fire Control Radar (Activity diagram)

This provides additional surface engagement support for fire control.

 act Compliance Lev el 3D - Surface Engagement Support - Fire Control Radar

Subsystem CMS

Process Target
Designation

CMS has determined an engagement is
required against a surface track, CMS has
mastership, Subsystem is ONLINE
(simulated engagements may be
performed in READY as well)

ActivityFinal

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

Track Reporting
Open Architecture Radar Interface Standard (OARIS), v1.0 25

Figure 7.17 - Compliance Level 3D - Surface Engagement Support - Surveillance Radar (Activity diagram)

This provides additional surface engagement support for surveillance purposes.

 act Compliance Lev el 3D - Surface Engagement Support - Surv eillance Radar

Subsystem CMS

Support Surface
Engagement

Perform Splash Spotting

CMS has determined an engagement is
required against a surface track, CMS has
mastership, Subsystem is ONLINE
(simulated engagements may be
performed in READY as well)

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

ActivityFinal

Track Reporting
26 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.18 - Compliance Level 3E - Automatic Interference Reporting (Activity diagram)

Level 3E provides for detailed interference reporting, including jammers.

 act Compliance Lev el 3E - Automatic Interference Reporting

Prov ide Jammer Tracks

Prov ide Jammer Strobes

Prov ide Interference
Reports

Prov ide Area with Plot
Concentration

Prov ide Clutter
Assessment

Register Interest

ActivityFinal

C
M

S
S

u
b

s
y

s
te

m

This diagram is valid
for any of the Plot and
Track services depicted
on this diagram in l ieu
of the Provide
interference report
container.

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.

Interface
Connection
Successful

Prov ide interference
report container

[Interest Registered]

[Interest Deregistered]

[Deregister interest]

[Continue to publish interference reports and tracks]
Open Architecture Radar Interface Standard (OARIS), v1.0 27

Figure 7.19 - Compliance Level 3E - Requested Interference Reports (Activity diagram)

These interfaces provide for reporting sensor specified and actual performance in addition to interference related
information.

7.3 Common_Types

Parent Package: Domain_Model

This package contains the types that are common to several areas of the model. Most of the content is in three sub-
packages: Coordinates_and_Positions, Shape_Model, and Requests. General types are captured at the top level.

 act Compliance Lev el 3E - Requested Interference Reports

Prov ide Jamming Effect
Assessment

Prov ide Nominal
Performance

Prov ide Performance
Assessment

Prov ide Area with Plot
Concentration

Prov ide Clutter
Assessment

ActivityFinal

Subsystem is
ONLINE

C
M

S

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service is not in
the Subsystem swimlane.
28 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.20 - Domain Model (Logical diagram)

 class Domain Model

TimeT

«idlTypedef»
time_type

octet

«idlSequence»
anonymous_blob_type

Shape_Model

+ figure_ref_point

+ general_polar_volume_type

+ polar_volume_type

+ sector_type

+ truncated_polar_volume_type

+ truncated_sector_type

Coordinates_and_Positions

+ absolute_duration_type

+ altitude_coordinate_type

+ angle_of_climb_type

+ azimuth_coordinate_type

+ azimuth_interval_type

+ azimuth_qualification_type

+ azimuth_rate_type

+ cartesian_coordinate_type

+ cartesian_interval_type

+ cartesian_position_type

+ cartesian_velocity_component_type

+ cartesian_velocity_type

+ coordinate_kind_type

+ coordinate_orientation_type

+ coordinate_origin_type

+ coordinate_specification_type

+ course_type

+ covariance_matrix_type

+ diagonal_covariance_matrix_type

+ duration_type

+ elevation_coordinate_type

+ elevation_interval_type

+ elevation_qualification_type

+ elevation_rate_type

+ full_covariance_matrix_type

+ height_interval_type

+ latitude_coordinate_type

+ latitude_interval_type

+ longitude_coordinate_type

+ longitude_interval_type

+ polar_position_type

+ polar_velocity_type

+ position_accuracy_coordinate_type

+ position_coordinate_type

+ range_coordinate_type

+ range_interval_type

+ range_qualification_type

+ range_rate_type

+ speed_interval_type

+ speed_type

+ velocity_accuracy_coordinate_type

+ velocity_coordinate_type

+ wgs84_position_type

+ wgs84_velocity_type

+ cartesian_position_accuracy_type

+ cartesian_velocity_accuracy_type

+ polar_position_accuracy_type

+ polar_velocity_accuracy_type

+ wgs84_position_accuracy_type

+ wgs84_velocity_accuracy_type

unsigned short

«idlTypedef»
subsystem_id_type

«idlEnum»
identity_type

+ PENDING
+ UNKNOWN
+ ASSUMED_FRIEND
+ FRIEND
+ NEUTRAL
+ SUSPECT
+ HOSTILE

unsigned long

«idlTypedef»
system_track_id_type

Requests

+ denial_reason_type

+ denial_type

+ error_reason_type

+ parameter_reference_type

+ request_ack_type

+ request_id_type

+ common_use_case_interface
Open Architecture Radar Interface Standard (OARIS), v1.0 29

7.3.1 anonymous_blob_type

Type: IDLSequence octet
Package: Common_Types

Representation for a general binary type
Length = 1024

7.3.2 identity_type

Type: IDLEnum
Package: Common_Types

Identity according to STANAG 5516.

7.3.3 subsystem_id_type

Type: IDLTypeDef unsigned short
Package: Common_Types

This type provides a unique id for different subsystems. Subsystem ids shall be allocated by the platform integrators.
Subsystem id equal to zero is reserved to imply applicability to all and any subsystem.

BaseType = unsigned short

7.3.4 system_track_id_type

Type: IDLTypeDef unsigned long
Package: Common_Types

System Track Identification

7.3.5 time_type

Type: IDLTypeDef TimeT
Package: Common_Types

based on start of Gregorian calendar (1582-10-15T 00:00UTC)
unit: 100 nano seconds
i.a.w CORBA Time Service Time T

Table 7.1 - Attributes of IDLEnum Identity_type

Attribute Notes

PENDING

UNKNOWN

ASSUMED_FRIEND

FRIEND

NEUTRAL

SUSPECT

HOSTILE
30 Open Architecture Radar Interface Standard (OARIS), v1.0

7.3.6 System_Track

Parent Package: Common_Types

Figure 7.21 - Domain Model (Logical diagram)

7.3.6.1 system_track_type

Type: IDLStruct
Package: System_Track

System track information is limited to information required by a subsystem for missile guidance.

Table 7.2 - Attributes of IDLStruct system_track_type

Attribute Notes

«key» system_track_number system_track_id_type

simulated boolean

time_of_information time_type

position_coordinate_system coordinate_specification_type

position position_coordinate_type

velocity_coordinate_system coordinate_specification_type

velocity velocity_coordinate_type

position_accuracy_coordinate_system coordinate_specification_type

position_accuracy position_accuracy_coordinate_type

velocity_accuracy_coordinate_system coordinate_specification_type [0..1]

 class Domain Model

«idlStruct»
system_track_type

+ simulated: boolean
+ time_of_information: time_type
+ position_coordinate_system: coordinate_specification_type
+ position: position_coordinate_type
+ velocity_coordinate_system: coordinate_specification_type
+ velocity: velocity_coordinate_type
+ position_accuracy_coordinate_system: coordinate_specification_type
+ position_accuracy: position_accuracy_coordinate_type
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ max_range_limit: range_coordinate_type [0..1]

«key»
+ system_track_number: system_track_id_type
Open Architecture Radar Interface Standard (OARIS), v1.0 31

7.3.7 Coordinates_and_Positions

Parent Package: Common_Types

Definitions of types to describe positions, in accordance with the ISO 19111 abstract model.

Figure 7.22 - Accuracies (Logical diagram)

velocity_accuracy velocity_accuracy_coordinate_type [0..1]

max_range_limit range_coordinate_type [0..1]

Table 7.2 - Attributes of IDLStruct system_track_type

 class Accuracies

«idlStruct»
wgs84_v elocity_accuracy_type

+ course_accuracy: course_type
+ angle_of_climb_accuracy: angle_of_climb_type [0..1]
+ speed_accuracy: speed_type

«idlStruct»
wgs84_position_accuracy_type

+ alti tude_accuracy: altitude_coordinate_type [0..1]
+ latitude_accuracy: latitude_coordinate_type
+ longitude_accuracy: longitude_coordinate_type

«idlStruct»
polar_v elocity_accuracy_type

+ azimuth_rate_accuracy: azimuth_rate_type
+ elevation_rate_accuracy: elevation_rate_type [0..1]
+ range_rate_accuracy: range_rate_type [0..1]

«idlStruct»
polar_position_accuracy_type

+ azimuth_accuracy: azimuth_coordinate_type
+ elevation_accuracy: elevation_coordinate_type [0..1]
+ range_accuracy: range_coordinate_type [0..1]

«idlStruct»
cartesian_position_accuracy_type

+ x_coordinate_accuracy: cartesian_coordinate_type
+ y_coordinate_accuracy: cartesian_coordinate_type
+ z_coordinate_accuracy: cartesian_coordinate_type [0..1]

«idlStruct»
cartesian_v elocity_accuracy_type

+ x_dot_accuracy: cartesian_velocity_component_type
+ y_dot_accuracy: cartesian_velocity_component_type
+ z_dot_accuracy: cartesian_velocity_component_type [0..1]

«idlUnion»
position_accuracy_coordinate_type

«idlCase»
+ cartesian_position_accuracy: cartesian_position_accuracy_type
+ polar_position_accuracy: polar_position_accuracy_type
+ wgs84_position_accuracy: wgs84_position_accuracy_type

notes
To offer flexibi lity, three variants of coordinate system
representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should
support one kind for each relevant interface as defined by the
coordinate_specification_type value, and it should only send data
of that variant and it should check that all data received is of that
variant. It should not implement conversion of data in an
unexpected variant. Receipt of such data constitutes an error in the
operation of the interface.

«idlUnion»
v elocity_accuracy_coordinate_type

«idlCase»
+ cartesian_velocity_accuracy: cartesian_velocity_accuracy_type
+ polar_velocity_accuracy: polar_velocity_accuracy_type
+ wgs84_velocity_accuracy: wgs84_velocity_accuracy_type

notes
To offer flexibi li ty, three variants of coordinate system
representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should
support one kind for each relevant interface as defined by the
coordinate_specification_type value, and it should only send data
of that variant and it should check that all data received is of that
variant. It should not implement conversion of data in an
unexpected variant. Receipt of such data constitutes an error in
the operation of the interface.
32 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.23 - Coordinates and Positions (Logical diagram)

 class Coordinates and Positions

«idlUnion»
position_coordinate_type

«idlCase»
+ cartesian_position: cartesian_position_type
+ polar_position: polar_position_type
+ wgs84_position: wgs84_position_type

notes
To offer flexibil ity, three variants of coordinate system representation are supported -
corresponding to the coordinate_kind_type enumerate. An implementation should support
one kind for each relevant interface as defined by the coordinate_specification_type
value, and it should only send data of that variant and it should check that all data
received is of that variant. It should not implement conversion of data in an unexpected
variant. Receipt of such data constitutes an error in the operation of the interface.

«idlStruct»
cartesian_position_type

+ x_coordinate: cartesian_coordinate_type
+ z_coordinate: cartesian_coordinate_type [0..1]
+ y_coordinate: cartesian_coordinate_type

«idlStruct»
polar_position_type

+ azimuth_coordinate: azimuth_coordinate_type
+ elevation_coordinate: elevation_coordinate_type [0..1]
+ range_coordinate: range_coordinate_type [0..1]

«idlStruct»
wgs84_position_type

+ altitude_coordinate: altitude_coordinate_type [0..1]
+ latitude_coordinate: latitude_coordinate_type
+ longitude_coordinate: longitude_coordinate_type

double

«idlTypedef»
range_coordinate_type

tags
Range = 0 .. 1 e7
Resolution = 1
Unit = m

double

«idlTypedef»
azimuth_coordinate_type

tags
Range = 0 .. 2 pi
Resolution = 0.0001
Unit = rad

double

«idlTypedef»
elev ation_coordinate_type

tags
Range = -pi / 2 .. pi / 2
Resolution = 0.0001
Unit = rad

double

«idlTypedef»
latitude_coordinate_type

tags
Range = -pi / 2 .. pi / 2
Resolution = 1 e-7
Unit = rad

double

«idlTypedef»
longitude_coordinate_type

tags
Range = -pi .. pi
Resolution = 1 e-7
Unit = rad

double

«idlTypedef»
altitude_coordinate_type

tags
Range = -1 e4 .. 1 e6
Resolution = 1
Unit = m

«idlEnum»
coordinate_origin_type

«enum»
+ PLATFORM_REFERENCE_POINT
+ SENSOR_REFERENCE_POINT
+ ABSOLUTE_REFERENCE_POINT
+ EARTH_REFERENCED

«idlEnum»
coordinate_orientation_type

«enum»
+ NORTH_HORIZONTAL
+ NORTH_DOWN
+ EAST_NORTH_UP
+ EAST_NORTH_DOWN
+ NORTH_EAST_UP
+ NORTH_EAST_DOWN
+ EARTH_CENTRED
+ LAT_LONG_HEIGHT
+ STERN_KEEL
+ STERN_DECK_LEVEL
+ STERN_STARBOARD_MAST
+ STERN_STARBOARD_KEEL

«idlEnum»
coordinate_kind_type

«enum»
+ CARTESIAN
+ POLAR
+ WGS84

double

«idlTypedef»
cartesian_coordinate_type

tags
Range = -1 e7 .. 1 e7
Resolution = 1
Unit = m

«idlStruct»
coordinate_specification_type

+ kind: coordinate_kind_type
+ orientation: coordinate_orientation_type
+ origin: coordinate_origin_type

notes
Specifies the interpretation of position_coordinate_type and velocity_coordinate_type.
Each attribute may be fixed by the standard to a particular value, or set to NEGOTIATED.
Negotiation means that the CMS and Subsystem are configured to use a particular value
on a platform instantiation basis. This is verified by both CMS and Subsystem software as
part of service availabil ity verification.

Choice of SI units and double base type reflects the use of
broadest international standard and a flexible representation
(it may represent very large and very small distances with
equal precision). It is noted that there are other military
international standards (e.g. STANAGs), which sometimes
make different choices. However, these often reflect pressures
to represent data in the most compact format - e.g. legacy
systems or secure wireless communication.
Open Architecture Radar Interface Standard (OARIS), v1.0 33

Figure 7.24 - Covariance and Qualification (Logical diagram)

 class Covariance and Qualification

«idlStruct»
azimuth_qualification_type

+ spread: azimuth_coordinate_type [0..1]
+ accuracy: azimuth_coordinate_type

«idlStruct»
elev ation_qualification_type

+ spread: elevation_coordinate_type [0..1]
+ accuracy: elevation_coordinate_type

«idlStruct»
range_qualification_type

+ spread: range_coordinate_type [0..1]
+ accuracy: range_coordinate_type

«idlUnion»
covariance_matrix_type

«idlCase»
+ diagonal_covariance_matrix: diagonal_covariance_matrix_type
+ full_covariance_matrix: full_covariance_matrix_type

«idlStruct»
full_covariance_matrix_type

+ xx_variance: float
+ xy_variance: float
+ xz_variance: float
+ xvx_variance: float
+ xvy_variance: float
+ xvz_variance: float
+ yy_variance: float
+ yz_variance: float
+ yvx_variance: float
+ yvy_variance: float
+ yvz_variance: float
+ zz_variance: float
+ zvx_variance: float
+ zvy_variance: float
+ zvz_variance: float
+ vxvx_variance: float
+ vxvy_variance: float
+ vxvz_variance: float
+ vyvy_variance: float
+ vyvz_variance: float
+ vzvz_variance: float

«idlStruct»
diagonal_covariance_matrix_type

+ xx_variance: float
+ yy_variance: float
+ zz_variance: float
+ vxvx_variance: float
+ vyvy_variance: float
+ vzvz_variance: float
34 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.25 - Intervals (Logical diagram)

 class Interv als

«idlStruct»
azimuth_interv al_type

+ start: azimuth_coordinate_type
+ stop: azimuth_coordinate_type

«idlStruct»
elev ation_interv al_type

+ start: elevation_coordinate_type
+ stop: elevation_coordinate_type

«idlStruct»
range_interv al_type

+ start: range_coordinate_type
+ stop: range_coordinate_type

«idlStruct»
latitude_interv al_type

+ start: latitude_coordinate_type
+ stop: latitude_coordinate_type

«idlStruct»
longitude_interv al_type

+ start: longitude_coordinate_type
+ stop: longitude_coordinate_type

«idlStruct»
height_interv al_type

+ start: altitude_coordinate_type
+ stop: altitude_coordinate_type

«idlStruct»
absolute_duration_type

+ start: time_type
+ stop: time_type

«idlStruct»
cartesian_interv al_type

+ start: cartesian_coordinate_type
+ stop: cartesian_coordinate_type

unsigned long long

«idlTypedef»
duration_type
Open Architecture Radar Interface Standard (OARIS), v1.0 35

Figure 7.26 - Time Derivatives (Logical diagram)

 class Time Deriv ativ es

double

«idlTypedef»
azimuth_rate_type

tags
Range = -100 .. 100
Resolution = 1 e-4
Unit = rad/s

double

«idlTypedef»
elev ation_rate_type

tags
Range = -100 .. 100
Resolution = 1 e-4
Unit = rad/s

double

«idlTypedef»
range_rate_type

tags
Range = 0.0 .. 1 e5
Resolution = 0.01
Unit = m/s

double

«idlTypedef»
course_type

tags
Range = 0 .. 2 pi
Resolution = 1 e-3
Unit = rad

double

«idlTypedef»
speed_type

tags
Range = 0.0 .. 1 e5
Resolution = 0.01
Unit = m/s

double

«idlTypedef»
angle_of_climb_type

tags
Range = -pi/2 .. pi/2
Resolution = 1 e-3
Unit = Rad

«idlUnion»
v elocity_coordinate_type

«idlCase»
+ cartesian_velocity: cartesian_velocity_type
+ polar_velocity: polar_velocity_type
+ wgs84_velocity: wgs84_velocity_type

notes
To offer flexibili ty, three variants of coordinate system representation are
supported - corresponding to the coordinate_kind_type enumerate. An
implementation should support one kind for each relevant service as defined by
the coordinate_specification_type value, and it should only send data of that
variant and it should check that all data received is of that variant. It should not
implement conversion of data in an unexpected variant. Receipt of such data
constitutes an error in the operation of the interface.

double

«idlTypedef»
cartesian_v elocity_component_type

tags
Range = -1 e5 .. 1 e5
Resolution = 0.01
Unit = m/s

«idlStruct»
cartesian_v elocity_type

+ x_dot: cartesian_velocity_component_type
+ y_dot: cartesian_velocity_component_type
+ z_dot: cartesian_velocity_component_type [0..1]

«idlStruct»
polar_v elocity_type

+ azimuth_rate: azimuth_rate_type
+ elevation_rate: elevation_rate_type [0..1]
+ range_rate: range_rate_type [0..1]

«idlStruct»
wgs84_v elocity_type

+ course: course_type
+ angle_of_climb: angle_of_climb_type [0..1]
+ speed: speed_type
36 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.27 - World Coordinates and Positions (Logical diagram)

7.3.7.1 absolute_duration_type

Type: IDLStruct
Package: Coordinates_and_Positions

This class represents a duration fixed to an absolute point in time.

7.3.7.2 altitude_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

For positive values, height above coordinate system ellipsoid, for negative values, depth below; measured in metres.
See diagram note on choice of SI units
Range = -1 e4 .. 1 e6
Resolution = 1
Unit = m

Table 7.3 - Attributes of IDLStruct absolute_duration_type

Attribute Notes

start time_type

stop time_type

 class World Coordinates and Positions

«idlStruct»
wgs84_position_type

+ alti tude_coordinate: altitude_coordinate_type [0..1]
+ latitude_coordinate: latitude_coordinate_type
+ longitude_coordinate: longitude_coordinate_type

double

«idlTypedef»
latitude_coordinate_type

tags
Range = -pi / 2 .. pi / 2
Resolution = 1 e-7
Unit = rad

double

«idlTypedef»
longitude_coordinate_type

tags
Range = -pi .. pi
Resolution = 1 e-7
Unit = rad

double

«idlTypedef»
altitude_coordinate_type
Open Architecture Radar Interface Standard (OARIS), v1.0 37

7.3.7.3 angle_of_climb_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

The angle representing the direction of travel relative to the horizontal. Up is positive.
Range = -pi/2 .. pi/2
Resolution = 1 e-3
Unit = Rad

7.3.7.4 azimuth_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

Axis in the azimuth direction, i.e. horizontal angle from the associated coordinate system reference. Radians, positive
clockwise from above.
See diagram note on choice of SI units
Range = 0 .. 2 pi
Resolution = 0.0001
Unit = rad

7.3.7.5 azimuth_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

7.3.7.6 azimuth_qualification_type

Type: IDLStruct
Package: Coordinates_and_Positions

Qualifies a measurement with attributes of accuracy and, if possible, variability.

7.3.7.7 azimuth_rate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

radians per second

Table 7.4 - Attributes of IDLStruct azimuth_interval_type

Attribute Notes

start azimuth_coordinate_type

stop azimuth_coordinate_type

Table 7.5 - Attributes of IDLStruct azimuth_qualification_type

Attribute Notes

spread azimuth_coordinate_type [0..1] The spread of the measurement. The combined measures of spread should
encompass the full extent of the plot. This attribute is optional. Not all
sensors are capable of measuring it.

accuracy azimuth_coordinate_type The accuracy of the measurement; equal to one standard deviation of
uncertainty.
38 Open Architecture Radar Interface Standard (OARIS), v1.0

Range = -100 .. 100
Resolution = 1 e-4
Unit = rad/s

7.3.7.8 cartesian_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

See diagram note on choice of SI units
Range = -1 e7 .. 1 e7
Resolution = 1
Unit = m

7.3.7.9 cartesian_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

7.3.7.10 cartesian_position_type

Type: IDLStruct
Package: Coordinates_and_Positions

Coordinates in a Cartesian reference frame as described by a coordinate specification object.

7.3.7.11 cartesian_velocity_component_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

Range = -1 e5 .. 1 e5
Resolution = 0.01
Unit = m/s

Table 7.6 - Attributes of IDLStruct cartesian_interval_type

Attribute Notes

start cartesian_coordinate_type

stop cartesian_coordinate_type

Table 7.7 - Attributes of IDLStruct cartesian_position_type

Attribute Notes

x_coordinate cartesian_coordinate_type

z_coordinate cartesian_coordinate_type [0..1] Optional as some sensors are 2D (horizontal plane or no
elevation information)

y_coordinate cartesian_coordinate_type
Open Architecture Radar Interface Standard (OARIS), v1.0 39

7.3.7.12 cartesian_velocity_type

Type: IDLStruct
Package: Coordinates_and_Positions

7.3.7.13 coordinate_kind_type

Type: IDLEnum
Package: Coordinates_and_Positions

7.3.7.14 coordinate_orientation_type

Type: IDLEnum
Package: Coordinates_and_Positions

This enumeration defines the set of coordinate systems, which compliant implementations may use. A compliant
implementation may not fully support all of these coordinate systems.

Table 7.8 - Attributes of IDLStruct cartesian_velocity_type

Attribute Notes

x_dot cartesian_velocity_component_type

y_dot cartesian_velocity_component_type

z_dot cartesian_velocity_component_type [0..1]

Table 7.9 - Attributes of IDLEnum coordinate_kind_type

Attribute Notes

«enum» CARTESIAN

«enum» POLAR

«enum» WGS84

Table 7.10 - Attributes of IDLEnum coordinate_orientation_type

Attribute Notes

«enum» NORTH_HORIZONTAL Valid for Polar Coordinate Kind
Azimuth has origin (0.0) at North, positive clockwise, measured in
the horizontal plane
Elevation has origin (0.0) at the Horizontal, positive up, measured
in the vertical plane.

«enum» NORTH_DOWN Valid for Polar Coordinate Kind
Azimuth has origin (0.0) at North, clockwise positive, measured in
the horizontal plane
Elevation has origin (0.0) when pointing directly down, and 180.0
degrees when pointing directly up, measured in the vertical plane.

«enum» EAST_NORTH_UP Valid for Cartesian coordinate type
x is positive to the East
y is positive to the North
z is positive up
40 Open Architecture Radar Interface Standard (OARIS), v1.0

«enum» EAST_NORTH_DOWN Valid for Cartesian coordinate type
x is positive to the East
y is positive to the North
z is positive down

«enum» NORTH_EAST_UP Valid for Cartesian coordinate type
x is positive to the North
y is positive to the East
z is positive up

«enum» NORTH_EAST_DOWN Valid for Cartesian coordinate type
x is positive to the North
y is positive to the East
z is positive down

«enum» EARTH_CENTRED Cartesian system with origin at centre of the Earth (absolute
reference point)
x positive through Greenwich meridian
y positive through 90 degrees east (of Greenwich meridian)
z positive through north pole
x & y are in the equatorial plane

«enum» LAT_LONG_HEIGHT WGS84 has unique well-defined orientation (NIMA Technical
Report TR8350.2)

«enum» STERN_KEEL Valid for Polar Coordinate Kind
This is a platform orientation relative frame
Azimuth has origin (0.0) in line with the ship's stern (heading),
measured anti-clockwise
Elevation has origin (0.0) when pointing directly down to the keel
(perpendicular to the current inclination of the deck-level, not
necessarily to the Earth's surface)

 «enum» STERN_DECK_LEVEL Valid for Polar Coordinate Kind
This is a platform orientation relative frame
Azimuth has origin (0.0) in line with the ship's stern (heading),
measured anti-clockwise
Elevation has origin (0.0) when pointing parallel to the deck-level
(not necessarily parallel to the Earth's surface)

 «enum» STERN_STARBOARD_MAST Valid for Cartesian coordinate type
This is a platform orientation relative frame
x is positive towards the stern (negative to bow)
y is positive to starboard (negative to port)
z is positive towards the mast (negative to keel)

 «enum» STERN_STARBOARD_KEEL Valid for Cartesian coordinate type
This is a platform orientation relative frame
x is positive towards the stern (negative to bow)
y is positive to starboard (negative to port)
z is positive towards the keel (negative to mast)

Table 7.10 - Attributes of IDLEnum coordinate_orientation_type
Open Architecture Radar Interface Standard (OARIS), v1.0 41

7.3.7.15 coordinate_origin_type

Type: IDLEnum
Package: Coordinates_and_Positions

7.3.7.16 coordinate_specification_type

Type: IDLStruct
Package: Coordinates_and_Positions

Specifies the interpretation of position_coordinate_type and velocity_coordinate_type. Each attribute may be fixed by the
standard to a particular value, or set to NEGOTIATED. Negotiation means that the CMS and Subsystem are configured to
use a particular value on a platform instantiation basis. This is verified by both CMS and Subsystem software as part of
service availability verification.

7.3.7.17 course_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

The angle representing the direction of travel relative to North in the horizontal plane. Clockwise (facing down) is positive.
Range = 0 .. 2 pi
Resolution = 1 e-3
Unit = rad

Table 7.11 - Attributes of IDLEnum coordinate_origin_type

Attribute Notes

«enum» PLATFORM_REFERENCE_POINT The origin of the coordinate system is ‘well known’ reference
point for the platform (on which the CMS and subsystem
reside).

«enum» SENSOR_REFERENCE_POINT The origin for the coordinate system is the ‘well known’
reference/datum point for the sensor, which is interacting
using the interface.

«enum» ABSOLUTE_REFERENCE_POINT The origin for the coordinate system is a fixed point in Earth
(WGS84) coordinates. This point is known to the CMS and
Subsystems using the interface by means beyond the scope of
the interface.

«enum» EARTH_REFERENCED This value signifies that the origin for the coordinate system
is well-defined with respect to the Earth by the coordinate
system. E.g. centre of the Earth for Earth-Centred Earth-Fixed
or the WGS84 spheroid for WGS84

Table 7.12 - Attributes of IDLStruct coordinate_specification_type

Attribute Notes

kind coordinate_kind_type

orientation coordinate_orientation_type

origin coordinate_origin_type
42 Open Architecture Radar Interface Standard (OARIS), v1.0

7.3.7.18 covariance_matrix_type

Type: IDLUnion
Package: Coordinates_and_Positions

7.3.7.19 diagonal_covariance_matrix_type

Type: IDLStruct
Package: Coordinates_and_Positions

7.3.7.20 duration_type

Type: IDLTypeDef unsigned long long
Package: Coordinates_and_Positions

The length of a time interval (not fixed to an absolute point in time).
unit: 100 nano seconds

7.3.7.21 elevation_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

Axis in the direction of elevation, i.e., vertical angle from the associated coordinate system datum, radians, positive up.
See diagram note on choice of SI units
Range = -pi / 2 .. pi / 2
Resolution = 0.0001
Unit = rad

Table 7.13 - Attributes of IDLUnion covariance_matrix_type

Attribute Notes

«idlCase» diagonal_covariance_matrix
diagonal_covariance_matrix_type

«idlCase» full_covariance_matrix
full_covariance_matrix_type

Table 7.14 - Attributes of IDLStruct diagonal_covariance_matrix_type

Attribute Notes

xx_variance float

yy_variance float

zz_variance float

vxvx_variance float

vyvy_variance float

vzvz_variance float
Open Architecture Radar Interface Standard (OARIS), v1.0 43

7.3.7.22 elevation_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

7.3.7.23 elevation_qualification_type

Type: IDLStruct
Package: Coordinates_and_Positions

Qualifies a measurement with attributes of accuracy and, if possible, variability.

7.3.7.24 elevation_rate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

radians per second
Range = -100 .. 100
Resolution = 1 e-4
Unit = rad/s

7.3.7.25 full_covariance_matrix_type

Type: IDLStruct
Package: Coordinates_and_Positions

Full covariance matrix

Table 7.15 - Attributes of IDLStruct elevation_internal_type

Attribute Notes

start elevation_coordinate_type

stop elevation_coordinate_type

Table 7.16 - Attributes of IDLStruct elevation_qualification_type

Attribute Notes

spread elevation_coordinate_type [0..1] The spread of the measurement. The combined measures of spread
should encompass the full extent of the plot.
This attribute is optional. Not all sensors are capable of measuring it.

accuracy elevation_coordinate_type The accuracy of the measurement; equal to one standard deviation of
uncertainty.

Table 7.17 - Attributes of IDLStruct full_covariance_matrix_type

Attribute Notes

xx_variance float

xy_variance float

xz_variance float

xvx_variance float

xvy_variance float

xvz_variance float
44 Open Architecture Radar Interface Standard (OARIS), v1.0

7.3.7.26 height_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

7.3.7.27 latitude_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

Degrees north (positive), south (negative) relative to coordinate system datum.
See diagram note on choice of SI units
Range = -pi / 2 .. pi / 2
Resolution = 1 e-7
Unit = rad

7.3.7.28 latitude_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

yy_variance float

yz_variance float

yvx_variance float

yvy_variance float

yvz_variance float

zz_variance float

zvx_variance float

zvy_variance float

zvz_variance float

vxvx_variance float

vxvy_variance float

vxvz_variance float

vyvy_variance float

vyvz_variance float

vzvz_variance float

Table 7.18 - Attributes of IDLStruct height_interval_type

Attributes Notes

start altitude_coordinate_type

stop altitude_coordinate_type

Table 7.17 - Attributes of IDLStruct full_covariance_matrix_type
Open Architecture Radar Interface Standard (OARIS), v1.0 45

7.3.7.29 longitude_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

Degrees east (positive), west (negative) relative to coordinate system datum.
See diagram note on choice of SI units
Range = -pi .. pi
Resolution = 1 e-7
Unit = rad

7.3.7.30 longitude_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

7.3.7.31 polar_position_type

Type: IDLStruct
Package: Coordinates_and_Positions

Coordinates in a polar reference frame as a described by a coordinate specification object.

7.3.7.32 polar_velocity_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.19 - Attributes of IDLStruct latitude_interval_type

Attribute Notes

start latitude_coordinate_type

stop latitude_coordinate_type

Table 7.20 - Attributes of IDLStruct longitude_interval_type

Attributes Notes

start longitude_coordinate_type

stop longitude_coordinate_type

Table 7.21 - Attributes of IDLStruct polar_position_type

Attribute Notes

azimuth_coordinate azimuth_coordinate_type

elevation_coordinate elevation_coordinate_type [0..1] Optional as some sensors provide no elevation information.

range_coordinate range_coordinate_type [0..1] Optional as some sensor provide no range information (e.g.,
most passive sensors).
46 Open Architecture Radar Interface Standard (OARIS), v1.0

Velocity defined in a polar reference frame as a described by a coordinate specification object.

7.3.7.33 position_accuracy_coordinate_type

Type: IDLUnion
Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined by
the coordinate_specification_type value, and it should only send data of that variant and it should check that all data
received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such data
constitutes an error in the operation of the interface.

7.3.7.34 position_coordinate_type

Type: IDLUnion
Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined by
the coordinate_specification_type value, and it should only send data of that variant and it should check that all data
received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such data
constitutes an error in the operation of the interface.

case type = coordinate_kind_type

7.3.7.35 range_coordinate_type

Type: IDLTypeDef double

Table 7.22 - Attributes of IDLStruct polar_velocity_type

Attribute Notes

azimuth_rate azimuth_rate_type

elevation_rate elevation_rate_type [0..1] Optional as some sensors provide no elevation information.

range_rate range_rate_type [0..1] Optional as some sensor provide no range information (e.g., most
passive sensors)

Table 7.23 - Attributes of IDLunion position_accuracy_coordinate_type

Attribute Notes

«idlCase» cartesian_position_accuracy cartesian_position_accuracy_type

«idlCase» polar_position_accuracy polar_position_accuracy_type

«idlCase» wgs84_position_accuracy wgs84_position_accuracy_type

Table 7.24 - Attributes of IDLUnion position_coordinate_type

Attribute Notes

«idlCase» cartesian_position cartesian_position_type

«idlCase» polar_position polar_position_type

«idlCase» wgs84_position wgs84_position_type
Open Architecture Radar Interface Standard (OARIS), v1.0 47

Package: Coordinates_and_Positions

Axis in range, i.e., linear distance from the coordinate system datum. Metres.
See diagram note on choice of SI units
Range = 0 .. 1 e7
Resolution = 1
Unit = m

7.3.7.36 range_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

7.3.7.37 range_qualification_type

Type: IDLStruct
Package: Coordinates_and_Positions

Qualifies a measurement with attributes of accuracy and, if possible, variability.

7.3.7.38 range_rate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

metres per second
Range = 0.0 .. 1 e5
Resolution = 0.01
Unit = m/s

7.3.7.39 speed_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.25 - Attributes of IDLStruct range_interval_type

Attribute Notes

start range_coordinate_type

stop range_coordinate_type

Table 7.26 - Attributes of IDLStruct range_qualification_type

Attribute Notes

spread range_coordinate_type [0..1] The spread of the measurement. The combined measures of spread
should encompass the full extent of the plot.
This attribute is optional. Not all sensors are capable of measuring it.

accuracy range_coordinate_type The accuracy of the measurement; equal to one standard deviation of
uncertainty.
48 Open Architecture Radar Interface Standard (OARIS), v1.0

This class represents a range of speeds.

7.3.7.40 speed_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

metres per second
Range = 0.0 .. 1 e5
Resolution = 0.01
Unit = m/s

7.3.7.41 velocity_accuracy_coordinate_type

Type: IDLUnion
Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined by
the coordinate_specification_type value, and it should only send data of that variant and it should check that all data
received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such data
constitutes an error in the operation of the interface.

7.3.7.42 velocity_coordinate_type

Type: IDLUnion
Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant service as defined by the
coordinate_specification_type value, and it should only send data of that variant and it should check that all data received
is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such data constitutes an
error in the operation of the interface.
case type = coordinate_kind_type

Table 7.27 - Attributes of IDLStruct speed_interval_type

Attribute Notes

min speed_type The minimum speed

max speed_type The maximum speed

Table 7.28 - Attributes of IDLUnion velocity_accuracy_coordinate_type

Attribute Notes

«idlCase» cartesian_velocity_accuracy cartesian_velocity_accuracy_type

«idlCase» polar_velocity_accuracy polar_velocity_accuracy_type

«idlCase» wgs84_velocity_accuracy wgs84_velocity_accuracy_type

Table 7.29 - Attributes of IDLUnion velocity_coordinate_type

Attribute Notes

«idlCase» cartesian_velocity cartesian_velocity_type
Open Architecture Radar Interface Standard (OARIS), v1.0 49

7.3.7.43 wgs84_position_type

Type: IDLStruct
Package: Coordinates_and_Positions

Coordinate in the WGS84 reference system.

7.3.7.44 wgs84_velocity_type

Type: IDLStruct
Package: Coordinates_and_Positions

Velocity defined in the WGS84 grid system.

7.3.7.45 cartesian_position_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions

The accuracy of the components of Cartesian position.

«idlCase» polar_velocity polar_velocity_type

«idlCase» wgs84_velocity wgs84_velocity_type

Table 7.30 - Attributes of IDLStruct wgs84_position_type

Attribute Notes

altitude_coordinate altitude_coordinate_type [0..1] Optional as some sensors as 2D (work in horizontal plane) and
some other functions do not supply or require this information
either.

latitude_coordinate latitude_coordinate_type

longitude_coordinate longitude_coordinate_type

Table 7.31 - Attributes of IDLStruct wgs84_velocity_type

Attribute Notes

course course_type

angle_of_climb angle_of_climb_type [0..1] Optional as some sensors as 2D (work in horizontal plane) and some
other functions do not supply or require this information either.

speed speed_type

Table 7.32 - Attributes of IDLStruct cartesian_position_accuracy_type

Attribute Notes

x_coordinate_accuracy cartesian_coordinate_type

y_coordinate_accuracy cartesian_coordinate_type

z_coordinate_accuracy cartesian_coordinate_type [0..1] Optional as some sensors are 2D (horizontal plane or no
elevation information)

Table 7.29 - Attributes of IDLUnion velocity_coordinate_type
50 Open Architecture Radar Interface Standard (OARIS), v1.0

7.3.7.46 cartesian_velocity_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions

The accuracy of the components of Cartesian velocity.

7.3.7.47 polar_position_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions

The accuracy of the components of polar position.

7.3.7.48 polar_velocity_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions

The accuracy of the components of polar velocity.

7.3.7.49 wgs84_position_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.33 - Attributes of IDLStruct cartesian_velocity_accuracy_type

Attribute Notes

x_dot_accuracy cartesian_velocity_component_type

y_dot_accuracy cartesian_velocity_component_type

z_dot_accuracy cartesian_velocity_component_type [0..1] Optional as some sensors are 2D (horizontal plane or no
elevation information).

Table 7.34 - Attributes of IDLStruct polar_position_accuracy_type

Attribute Notes

azimuth_accuracy azimuth_coordinate_type

elevation_accuracy elevation_coordinate_type [0..1] Optional as some sensors provide no elevation information.

range_accuracy range_coordinate_type [0..1] Optional as some sensor provide no range information (e.g.,
most passive sensors).

Table 7.35 - Attributes of IDLStruct polar_velocity_accuracy_type

Attribute Notes

azimuth_rate_accuracy azimuth_rate_type

elevation_rate_accuracy elevation_rate_type [0..1] Optional as some sensors provide no elevation information

range_rate_accuracy range_rate_type [0..1] Optional as some sensor provide no range information (e.g.,
most passive sensors).
Open Architecture Radar Interface Standard (OARIS), v1.0 51

The accuracy of the components of a WGS84 position.

7.3.7.50 wgs84_velocity_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions

The accuracy of the components of a WGS84 velocity.

Table 7.36 - Attributes of IDLStruct wgs84_position_accuracy_type

Attribute Notes

altitude_accuracy altitude_coordinate_type [0..1] Optional as some sensors as 2D (work in horizontal plane) and
some other functions do not supply or require this information
either.

latitude_accuracy latitude_coordinate_type

longitude_accuracy longitude_coordinate_type

Table 7.37 - Attributes of IDLStruct wgs_velocity_accuracy_type

Attribute Notes

course_accuracy course_type

angle_of_climb_accuracy angle_of_climb_type [0..1] Optional as some sensors as 2D (work in horizontal plane)
and some other functions do not supply or require this
information either.

speed_accuracy speed_type
52 Open Architecture Radar Interface Standard (OARIS), v1.0

7.3.8 Shape_Model

Parent Package: Common_Types

Figure 7.28 - Domain Model (Logical diagram)

7.3.8.1 figure_ref_point

Type: IDLStruct
Package: Shape_Model

A figure_ref_point specifies a reference point for a figure.

 class Domain Model

«idlStruct»
figure_ref_point

+ position: position_coordinate_type

«idlStruct»
truncated_polar_v olume_type

+ centre_bearing: azimuth_coordinate_type
+ delta_bearing: azimuth_coordinate_type
+ centre_elevation: elevation_coordinate_type
+ delta_elevation: elevation_coordinate_type
+ inner_range: range_coordinate_type
+ outer_range: range_coordinate_type

«idlStruct»
polar_v olume_type

+ centre_bearing: azimuth_coordinate_type
+ delta_bearing: azimuth_coordinate_type
+ centre_elevation: elevation_coordinate_type
+ delta_elevation: elevation_coordinate_type

«idlStruct»
sector_type

+ centre_bearing: azimuth_coordinate_type
+ delta_bearing: azimuth_coordinate_type

«idlStruct»
truncated_sector_type

+ centre_bearing: azimuth_coordinate_type
+ delta_bearing: azimuth_coordinate_type
+ inner_range: range_coordinate_type
+ outer_range: range_coordinate_type

«idlUnion»
general_polar_v olume_type

«idlCase»
+ sector: sector_type
+ polar_volume: polar_volume_type
+ truncated_sector: truncated_sector_type
+ truncated_polar_volume: truncated_polar_volume_type

+origin

0..1

+origin
0..1

+origin

0..1

+origin

0..1
Open Architecture Radar Interface Standard (OARIS), v1.0 53

This reference point is a mathematically meaningful point of the figure. For a circle it is the centre of the circle, for a
polygon it is the centre of gravity of the polygon, etc.

When rotating the figure, the figure_ref_point acts as the rotation point.

When a figure is not slaved to a track its figure_ref_point shall be mapped on a (moving) geo point.
When the figure is slaved to an object (track, point) its figure_ref_point shall be mapped on an offset position which is
relative to the master object.

7.3.8.2 general_polar_volume_type

Type: IDLUnion
Package: Shape_Model

This class allows definition of a volume in space, bounded by standard polar coordinates (azimuth, elevation, and range).
The different options allow the dimension of either range, elevation, or both to be omitted.

7.3.8.3 polar_volume_type

Type: IDLStruct
Package: Shape_Model

A polar_volume specifies a 3D volume based on a horizontal plane by means of its origin, its centre bearing and centre
elevation, its bearing delta and elevation delta.
The origin is the figure reference point of the Polar Volume.

Table 7.38 - Attributes of IDLStruct figure_ref_point

Attribute Notes

position position_coordinate_type

Table 7.39 - Attributes of IDLUnion general_polar_volume_type

Attribute Notes

«idlCase» sector sector_type The general polar volume is a sector.

«idlCase» polar_volume polar_volume_type The general polar volume is a polar volume.

«idlCase» truncated_sector truncated_sector_type The general polar volume is a truncated sector.

«idlCase» truncated_polar_volume truncated_polar_volume_type The general polar volume is a truncated polar
volume.

Table 7.40 - Attributes of IDLStruct polar_volume_type

Attribute Notes

centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured clockwise
between the Y-axis of the relevant coordinate system (true north,
heading/course) and the centre bearing line of the volume.

delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of a specified
centre bearing line.

centre_elevation elevation_coordinate_type This attribute specifies the vertical angle measured counterclockwise
between the horizontal plane and the centre elevation line of the volume.

delta_elevation elevation_coordinate_type This attribute specifies the elevation delta on each side of a specified
centre elevation line.
54 Open Architecture Radar Interface Standard (OARIS), v1.0

7.3.8.4 sector_type

Type: IDLStruct
Package: Shape_Model

A sector specifies a 2D area in a horizontal plane by means of its origin, its centre bearing with its bearing delta, that
together define the sector.
The origin is the figure reference point of the sector.
In case the sector is north oriented, the centre bearing is specified with respect to true north; otherwise it is specified with
respect to the object’s (own ship/other track, point) heading/course.

7.3.8.5 truncated_polar_volume_type

Type: IDLStruct
Package: Shape_Model

A truncated_polar_volume specifies a 3D volume based on a horizontal plane by means of its origin, its centre bearing
and centre elevation, its bearing delta and elevation delta, its inner range and outer range.

7.3.8.6 truncated_sector_type

Type: IDLStruct sector_type
Package: Shape_Model

Table 7.41 - Attributes of IDLStruct sector_type

Attribute Notes

centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured clockwise
between the Y-axis of the relevant coordinate system (true north,
heading/course) and the centre bearing line of the sector.

delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of a specified
centre bearing line.

Table 7.42 - Attributes of IDLStruct truncated_polar_volume_type

Attribute Notes

centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured clockwise
between the Y-axis of the relevant coordinate system (true north,
heading/course) and the centre bearing line of the volume.

delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of a specified
centre bearing line.

centre_elevation elevation_coordinate_type This attribute specifies the vertical angle measured counterclockwise
between the horizontal plane and the centre elevation line of the
volume.

delta_elevation elevation_coordinate_type This attribute specifies the elevation delta on each side of a specified
centre elevation line.

inner_range range_coordinate_type This attribute specifies the range that limits a volume; i.e., the
minimum distance from the volume’s origin.

outer_range range_coordinate_type This attribute specifies the range that limits a volume; i.e., the
maximum distance from the volume’s origin.
Open Architecture Radar Interface Standard (OARIS), v1.0 55

A truncated_sector specifies a 2D area in a horizontal plane by means of its origin, its centre bearing with its bearing
delta, and its inner range and outer range that together define the truncated sector.
The origin is the figure reference point of the truncated sector.
In case the truncated sector is north oriented, the centre bearing is specified with respect to true north; otherwise (object
oriented) it is specified with respect to the object’s (own ship/other track, point) heading/course.

7.3.9 Requests

Parent Package: Common_Types

This package contains common operations and associated parameters which are used by multiple interfaces. This includes
the operation to acknowledge a CMS request as accepted or denied, as well as an operation to report errors while
processing an accepted CMS request.

Figure 7.29 - Domain Model (Logical diagram)

Table 7.43 - Attributes of IDLStruct truncated_sector_type

Attribute Notes

centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured clockwise
between the Y-axis of the relevant coordinate system (true north,
heading/course) and the centre bearing line of the truncated sector.

delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of a centre
bearing line.

inner_range range_coordinate_type This attribute specifies the range that limits a truncated sector; i.e., the
minimum distance from the truncated sector’s origin.

outer_range range_coordinate_type This attribute specifies the range that limits a truncated sector; i.e., the
maximum distance from the truncated sector’s origin.

 class Domain Model

unsigned long long

«idlTypedef»
request_id_type

«idlInterface»
common_use_case_interface

+ receive_acknowledgement(request_id_type, request_ack_type) : void
+ receive_error(request_id_type, error_reason_type) : void

string

«idlTypedef»
error_reason_type

tags
Length = 40

«idlStruct»
request_ack_type

+ accepted: boolean

string

«idlTypedef»
denial_reason_type

tags
Length = 40

«idlStruct»
denial_type

+ reason: denial_reason_type
+ related_parameter: parameter_reference_type [0..*]

string

«idlTypedef»
parameter_reference_type

tags
Length = 64

+rejection 0..1
56 Open Architecture Radar Interface Standard (OARIS), v1.0

7.3.9.1 denial_reason_type

Type: IDLTypeDef string
Package: Requests

String which indicates rationale for rejection of the request. Is not valid when the request has been accepted.

Length = 40

7.3.9.2 denial_type

Type: IDLStruct
Package: Requests

Struct used within the receive_acknowledgement operation to provide information on (one of the reasons) why a request
has been rejected.

7.3.9.3 error_reason_type

Type: IDLTypeDef string
Package: Requests

A string which gives an indication of the error associated with processing of the request.

Length = 40

7.3.9.4 parameter_reference_type

Type: IDLTypeDef string
Package: Requests

A string which refers to a parameter in a request using an implementation specific notation.

Length = 64

7.3.9.5 request_ack_type

Type: IDLStruct
Package: Requests

Struct used within the receive_acknowledgement operation to indicate acceptance or rejection (which includes rationale).

Table 7.44 - Attributes of IDLStruct denial_type

Attribute Notes

reason denial_reason_type textual explanation of (one of) the reasons for rejection

related_parameter parameter_reference_type [0..*] A reference to the parameter or parameters that relate to the
reason for rejection. If no related_parameters are supplied the
rejection relates to the whole request.

Table 7.45 - Attributes of IDLStruct request_ack_type

Attribute Notes

accepted boolean Attribute to indicate whether a request has been accepted (1) or rejected (0).
Open Architecture Radar Interface Standard (OARIS), v1.0 57

7.3.9.6 request_id_type

Type: IDLTypeDef unsigned long long
Package: Requests

The purpose of the request_id is to uniquely relate responses of the subsystem (server) to requests of the CMS (client).
The request_id is set by the client. It is the responsibility of the client to specify a system-wide unique request_id (e.g.,
based on a combination of client id and a sequence number / time of request).

7.3.9.7 common_use_case_interface

Type: IDLInterface
Package: Requests

Interface which includes operations common to all CMS interfaces.

7.4 Subsystem_Domain

Parent Package: Domain_Model

This package contains the Domain Models for the Encyclopaedic Support, Extended Subsystem Control, Subsystem
Control, Recording and Replay, and Simulation Support services.

Table 7.46 - Methods of IDL Interface common_use_case_interface

Method Notes Parameters

receive_acknowledgement() This operation is used by the subsystem to
indicate whether it has accepted or
rejected a request from the CMS.

request_id_type request_id
request_ack_type request_ack

receive_error() This operation is used by the subsystem to
indicate an error in processing a request.

request_id_type request_id
error_reason_type error_reason
58 Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.1 Encyclopaedic_Support

Parent Package: Subsystem_Domain

Figure 7.30 - Domain Model (Logical diagram)

7.4.1.1 data_descriptor_type

Type: IDLTypeDef string
Package: Encyclopaedic_Support

Standard description of the encyclopaedic data set.

Length = 60

7.4.1.2 url_type

Type: IDLTypeDef string
Package: Encyclopaedic_Support

Representation of a Uniform Resource Locator see www.w3.org.

Length = 255

 class Domain Model

string

«idlTypedef»
data_descriptor_type

tags
Length = 60

string

«idlTypedef»
url_type

tags
Length = 255
Open Architecture Radar Interface Standard (OARIS), v1.0 59

7.4.2 Extended_Subsystem_Control

Parent Package: Subsystem_Domain

Contains Structs used within the Extended Subsystem Control service.

Figure 7.31 - Domain Model (Logical diagram)

7.4.2.1 configuration_url_type

Type: IDLTypeDef string
Package: Extended_Subsystem_Control

String which provides a url location for configuration data.

Length = 255

7.4.2.2 offline_test_result_details_type

Type: IDLTypeDef string
Package: Extended_Subsystem_Control

Subsystem specific detailed test results

Length = 4096

7.4.2.3 offline_test_result_type

Type: IDLEnum
Package: Extended_Subsystem_Control

 class Domain Model

string

«idlTypedef»
configuration_url_type

tags
Length = 255

«idlEnum»
offline_test_result_type

+ FAILED
+ PARTIAL_PASS
+ PASSED

string

«idlTypedef»
offline_test_type

string

«idlTypedef»
offline_test_result_details_type
60 Open Architecture Radar Interface Standard (OARIS), v1.0

Used to return the test results: failed, partial_pass, or passed.

7.4.2.4 offline_test_type

Type: IDLTypeDef string
Package: Extended_Subsystem_Control

A subsystem specific string identifying the required test type.

Length = 255

7.4.3 Recording_and_Replay

Parent Package: Subsystem_Domain

Defines the domain model for the Recording and Replay interfaces.

Table 7.47 - Attributes of IDLEnum offline_test_result_type

Attribute Notes

FAILED A number of tests were not successful, such that the subsystem exceeded its failure
threshold. Detailed information is available upon request.

PARTIAL_PASS A number of tests were not successful, but the subsystem did not exceed its failure
threshold. Detailed information is available upon request.

PASSED All tests were successful.
Open Architecture Radar Interface Standard (OARIS), v1.0 61

Figure 7.32 - Domain Model (Logical diagram)

7.4.3.1 actual_time_type

Type: IDLTypeDef time_type
Package: Recording_and_Replay

The current time (time of day). Used to indicate when playback should start. This allows synchronization of playback
from different subsystems.

7.4.3.2 change_threshold_type

Type: IDLTypeDef float
Package: Recording_and_Replay

The amount by which a parameter shall change in order to be recorded, when recording on change.

 class Domain Model

long

«idlTypedef»
recording_id_type

«idlStruct»
recording_descriptor_type

+ change_threshold: change_threshold_type
+ rate: rate_type
+ record_on_change: record_on_change_type

«idlStruct»
recorded_data_type

+ recorded_value: string
+ time_stamp: time_type

«idlStruct»
recording_set_type

«idlStruct»
replay_set_type

«idlStruct»
recording_type

float

«idlTypedef»
replay_speed_type

time_type

«idlTypedef»
actual_time_type

time_type

«idlTypedef»
recorded_time_type

«idlStruct»
parameter_type

+ parameter: string

float

«idlTypedef»
change_threshold_type

float

«idlTypedef»
rate_type

boolean

«idlTypedef»
record_on_change_type

+recording_id
1

+recording_descriptor 1..*
+recorded_data 1..*

+parameter 1 +parameter1

{from the associated recording_set}

+parameter 1..*

{in an associated
recording_set}
62 Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.3.3 parameter_type

Type: IDLStruct
Package: Recording_and_Replay

Identified the parameter to be recorded.

7.4.3.4 rate_type

Type: IDLTypeDef float
Package: Recording_and_Replay

Defined the rate at which the parameter is to be recorded for periodic recording.

7.4.3.5 record_on_change_type

Type: IDLTypeDef boolean
Package: Recording_and_Replay

Boolean specifying record on change (true) or periodic (false).

7.4.3.6 recorded_data_type

Type: IDLStruct
Package: Recording_and_Replay

Data recorded against the specified parameter.

7.4.3.7 recorded_time_type

Type: IDLTypeDef time_type
Package: Recording_and_Replay

The time in a recording. This is used to indicate the position in the recording at which playback should start.

7.4.3.8 recording_descriptor_type

Type: IDLStruct
Package: Recording_and_Replay

Specifies the recording characteristics required for each parameter.

Table 7.48 - Attributes of IDLStruct parameter_type

Attribute Notes

parameter string

Table 7.49 - Attributes of IDLStruct recorded_data_type

Attribute Notes

recorded_value string This needs to reference allowable values defined by the possible recording
parameters - see ‘recording parameters.’

time_stamp time_type
Open Architecture Radar Interface Standard (OARIS), v1.0 63

7.4.3.9 recording_id_type

Type: IDLTypeDef long
Package: Recording_and_Replay

Used to identify a specific recording. The subsystem shall manage a number of recordings and associate recording ids
with them in a subsystem dependent way. Once associated, it passes that reference through the parameter recording_id to
the CMS so that the CMS may ask for a specific recording later on. Again, the CMS manages the relationship between
the recording_id and the recording it requested to be made in a system dependent way.

There is no intention to model the method either the subsystem or the CMS uses to manage the relationship between
recording_id and the recordings as this is transparent to the interface and would unnecessarily restrict the choices
available to the designers.

7.4.3.10 recording_set_type

Type: IDLStruct
Package: Recording_and_Replay

A set of recording descriptors specifying what is to be recorded.

7.4.3.11 recording_type

Type: IDLStruct
Package: Recording_and_Replay

A recording: a set of recorded data.

7.4.3.12 replay_set_type

Type: IDLStruct
Package: Recording_and_Replay

A set of parameters required to be replayed. These must exist in the associated recording set to be of any use.

7.4.3.13 replay_speed_type

Type: IDLTypeDef float
Package: Recording_and_Replay

Controls the replay speed. 1.0 represents real time.

Table 7.50 - Attributes of IDLStruct recording_descriptor_type

Attribute Notes

change_threshold change_threshold_type When record_on_change is true, any change greater than the
change_threshold from the last recorded value shall be recorded. This
only applies for numeric quantities i.e., not enumerated types, and is
ignored otherwise.

rate rate_type Specifies recording rate when record_on_change is false.

record_on_change record_on_change_type Indicates whether to record all changes greater than the change threshold
or record at the specified rate.
64 Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.4 Simulation_Support

Parent Package: Subsystem_Domain

Figure 7.33 - Domain Model (Logical diagram)

7.4.4.1 fault_script_id_type

Type: IDLTypeDef string
Package: Simulation_Support

Identifies a single fault script

Length = 6

7.4.4.2 fault_script_ids_type

Type: IDLStruct
Package: Simulation_Support

This class represents a set of references to fault scripts.

7.4.4.3 fault_script_type

Type: IDLStruct
Package: Simulation_Support

Definition of a fault script. The exact form of this is not yet defined, this class represents the essential attributes. It would
probably be some form of string, perhaps an XML document.

Table 7.51 - Attributes of IDLStruct fault_script_type

Attribute Notes

details_of_fault string A description of the fault, such as is interpretable during the simulation.

 class Domain Model

string

«idlTypedef»
fault_script_id_type

tags
Length = 6

«idlStruct»
fault_script_ids_type

«idlStruct»
fault_script_type

+ details_of_fault: string

«idlStruct»
fault_scripts_type

«idlStruct»
sim_mode_status_type

+ sim_mode_active: boolean

«idlStruct»
start_stop_sim_mode_request_type

+ start_simulation_mode: boolean

«idlStruct»
stop_freeze_session_request_type

+ reflect_values: boolean
+ run_internal_simulation_clock: boolean
+ update_attributes: boolean

+script

0..*

+script_id

1+script_id

0..*
Open Architecture Radar Interface Standard (OARIS), v1.0 65

7.4.4.4 fault_scripts_type

Type: IDLStruct
Package: Simulation_Support

This class represents a set of fault scripts.

7.4.4.5 sim_mode_status_type

Type: IDLStruct
Package: Simulation_Support

Whether simulated mode is in operation.

7.4.4.6 start_stop_sim_mode_request_type

Type: IDLStruct
Package: Simulation_Support

A request to change the simulation mode.

7.4.4.7 stop_freeze_session_request_type

Type: IDLStruct
Package: Simulation_Support

A Simulation Management (SIMAN) request, sent from a Simulation Manager to request that one or more entities either:

a) pause their simulation session, or
b) stop their simulation session

Table 7.52 - Attributes of IDLStruct sim_mode_states_type

Attribute Notes

sim_mode_active boolean Flag to indicate if the simulation mode is active.

Table 7.53 - Attributes of IDLStruct start_stop_sim_mode_request_type

Attribute Notes

start_simulation_mode boolean Flag to indicate if the simulation mode shall be started or stopped.

Table 7.54 - Attributes of IDLStruct stop_freeze_session_request_type

Attribute Notes

reflect_values boolean Whether the entity or entities being stopped/frozen should continue to
reflect values when stopped/frozen.

run_internal_simulation_clock boolean Whether the entity or entities being stopped/frozen should continue to run
their internal simulation clock when stopped/frozen.

update_attributes boolean Whether the entity or entities being stopped/frozen should continue to
update attributes when stopped/frozen.
66 Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.5 Subsystem_Control

Parent Package: Subsystem_Domain

Contains Structs used within the Subsystem Control service and a state diagram corresponding with the Manage Technical
State interface.

Figure 7.34 - Domain Model - 1 (Logical diagram)

 class Domain Model - 1

«idlEnum»
registration_type

«idlEnum»
+ REGISTER
+ DEREGISTER

«idlEnum»
information_name_type

«idlEnum»
+ AIR_PLOTS
+ SURFACE_PLOTS
+ LAND_PLOTS
+ SPACE_PLOTS
+ SENSOR_AIR_TRACKS
+ SENSOR_SURFACE_TRACKS
+ SENSOR_LAND_TRACKS
+ SENSOR_SPACE_TRACKS
+ JAMMER_STROBES
+ JAMMER_TRACKS
+ JAMMING_EFFECT_ASSESSMENTS
+ INTERFERENCE_REPORTS

«idlEnum»
technical_state_type

+ BIT
+ CALIBRATE
+ DORMANT
+ FAILED
+ OFFLINE
+ ONLINE
+ READY
+ STANDBY

«idlStruct»
health_state_reason_type

+ caused_by_fault: boolean
+ caused_by_technical_state: boolean
+ caused_by_simulation_mode: boolean
+ caused_by_operational_mode: boolean

«idlEnum»
health_state_type

«idlEnum»
+ AVAILABLE
+ DEGRADED
+ NOT_AVAILABLE
+ UNKNOWN

«idlEnum»
ev ent_type

«idlEnum»
+ OCCURRENCE
+ DISAPPEARANCE

«idlEnum»
mastership_state_type

«enum»
+ MASTERSHIP_FREE
+ MASTERSHIP_OTHER
+ MASTERSHIP_TO_CMS

«idlEnum»
serv ice_name_type

«idlEnum»
+ AIR_ENGAGEMENT_SUPPORT
+ CLUTTER_REPORTING
+ ENCYCLOPAEDIC_SUPPORT
+ ENGAGEMENT_SUPPORT
+ ENVIRONMENT_AND_STABILIZATION_LEVEL_3F
+ ENVIRONMENT_AND_STABILIZATION_LEVEL_3G
+ EXTENDED_SUBSYSTEM_CONTROL
+ JAMMER_REPORTING
+ MISSILE_GUIDANCE
+ PLOT_REPORTING_LEVEL_1
+ PLOT_REPORTING_LEVEL_3C
+ PLOT_REPORTING_LEVEL_3E
+ RECORDING_AND_REPLAY
+ SEARCH
+ SENSOR_CONTROL_LEVEL_2
+ SENSOR_PERFORMANCE
+ SIMULATION_SUPPORT
+ SUBSYSTEM_CONTROL_LEVEL_1
+ SUBSYSTEM_CONTROL_LEVEL_2
+ SURFACE_ENGAGEMENT_SUPPORT
+ TRACK_REPORTING_LEVEL_1
+ TRACK_REPORTING_LEVEL_3C
+ TRACK_REPORTING_LEVEL_3E
+ TRACKING_CONTROL_LEVEL_2
+ TRACKING_CONTROL_LEVEL_3C
+ SENSOR_CONTROL_LEVEL_3A

«idlStruct»
serv ice_indication_type

+ service_name: service_name_type
+ registration_indicator: boolean

«idlStruct»
serv ice_indication_list_type

«idlStruct»
serv ice_list_type

«idlStruct»
interest_list

«idlStruct»
interest

+ registration: registration_type
+ quality_of_service: string
+ recipient: string

«idlStruct»
serv ice_type

+ service_name: service_name_type

«idlStruct»
serv ice_information

+ information_name: information_name_type
+service_indication 0..*

+service_indication 0..*

0..* concerns

1..*0..*

concerns

1

+element 1..*
Open Architecture Radar Interface Standard (OARIS), v1.0 67

Figure 7.35 - Domain Model - 2 (Logical diagram)

 class Domain Model - 2

«idlStruct»
parameter_name_sequence_type

«idlStruct»
parameter_name_type

+ parameter_name: string

«idlStruct»
name_v alue_sequence_type

«idlStruct»
name_v alue_pair_type

+ parameter_name: string
+ value: string

«idlStruct»
name_error_sequence_type

«idlStruct»
name_error_pair_type

+ parameter_name: string
+ error_indication: string

«idlStruct»
battle_ov erride_state_type

+ battle_override_applied: boolean

unsigned short

«idlTypedef»
operational_mode_type

«idlStruct»
v ersion_type

+ major_version: unsigned short
+ minor_version: unsigned short

«idlStruct»
dev ice_identification_type

+ product: device_name_type
+ serial_number: device_name_type
+ equipment_type: device_name_type
+ version: version_type

string

«idlTypedef»
dev ice_name_type

«idlStruct»
subsystem_health_type

+ health_state: health_state_type
+ health_state_reason: health_state_reason_type
+ subsystem_identification: device_identification_type
+ time_of_information: time_type

«idlStruct»
serv ice_health_type

+ service_name: service_name_type
+ health_state: health_state_type
+ health_state_reason: health_state_reason_type
+ time_of_information: time_type

«idlStruct»
fault

+ fault_name: string
+ event: event_type
+ simulated: boolean
+ overridden: boolean
+ fault_isolation_data: string

«idlStruct»
fault_list

«idlStruct»
descriptor

+ parameter_name: string
+ parameter_type: string
+ parameter_unit: string
+ typical_value: string [0..1]
+ parameter_range: string [0..1]
+ technical_state: technical_state_type [1..*]
+ applicable_operational_mode: operational_mode_type [0..*]

«idlStruct»
descriptor_sequence

+influences

0..*

1..*

+element 0..*

+element 0..*

+influences

1..*
1

+element 0..*+element 0..*

+element 0..*

+related_parameter
0..*
68 Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.5.1 service_name_type

Type: IDLEnum
Package: Subsystem_Control

Enumeration of possible service names. Where a service may be offered at different compliance levels, multiple names
are introduced with _LEVEL_x postfix to indicate different parts.

7.4.5.2 battle_override_state_type

Type: IDLStruct
Package: Subsystem_Control

Table 7.55 - Attributes of IDLEnum service_name_type

Attribute Notes

«idlEnum» AIR_ENGAGEMENT_SUPPORT

«idlEnum» CLUTTER_REPORTING

«idlEnum» ENCYCLOPAEDIC_SUPPORT

«idlEnum» ENGAGEMENT_SUPPORT

«idlEnum» ENVIRONMENT_AND_STABILIZATION_LEVEL_3F

«idlEnum» ENVIRONMENT_AND_STABILIZATION_LEVEL_3G

«idlEnum» EXTENDED_SUBSYSTEM_CONTROL

«idlEnum» JAMMER_REPORTING

«idlEnum» MISSILE_GUIDANCE

«idlEnum» PLOT_REPORTING_LEVEL_1

«idlEnum» PLOT_REPORTING_LEVEL_3C

«idlEnum» PLOT_REPORTING_LEVEL_3E

«idlEnum» RECORDING_AND_REPLAY

«idlEnum» SEARCH

«idlEnum» SENSOR_CONTROL_LEVEL_2

«idlEnum» SENSOR_PERFORMANCE

«idlEnum» SIMULATION_SUPPORT

«idlEnum» SUBSYSTEM_CONTROL_LEVEL_1

«idlEnum» SUBSYSTEM_CONTROL_LEVEL_2

«idlEnum» SURFACE_ENGAGEMENT_SUPPORT

«idlEnum» TRACK_REPORTING_LEVEL_1

«idlEnum» TRACK_REPORTING_LEVEL_3C

«idlEnum» TRACK_REPORTING_LEVEL_3E

«idlEnum» TRACKING_CONTROL_LEVEL_2

«idlEnum» TRACKING_CONTROL_LEVEL_3C

«idlEnum» SENSOR_CONTROL_LEVEL_3A
Open Architecture Radar Interface Standard (OARIS), v1.0 69

If the boolean is true, the battle override is applied.

7.4.5.3 descriptor

Type: IDLStruct
Package: Subsystem_Control

Type for parameter descriptors

7.4.5.4 descriptor_sequence

Type: IDLStruct
Package: Subsystem_Control

Sequence of parameter descriptors, used in retrieving parameter descriptors.

7.4.5.5 device_identification_type

Type: IDLStruct
Package: Subsystem_Control

Identification data of the equipment

Table 7.56 - Attributes of IDLStruct battle_override_state_type

Attribute Notes

battle_override_applied boolean Indicates if the battle override is applied or not.

Table 7.57 - Attributes of IDLStruct descriptor

Attribute Notes

parameter_name string parameter_name values are unique within the scope of a
subsystem.

parameter_type string

parameter_unit string

typical_value string [0..1] *optional*

parameter_range string [0..1] *optional*

technical_state technical_state_type [1..*] Technical state(s) in which this parameter may be
modified.

applicable_operational_mode operational_mode_type [0..*]

Table 7.58 - Attributes of IDLStruct device_identification_type

Attribute Notes

product device_name_type Name of the product. Example: TRS3D

serial_number device_name_type Serial number identifying the individual device.

equipment_type device_name_type This describes the general type of the equipment. Example: Air Surveillance
Radar

version version_type Version of the device
70 Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.5.6 device_name_type

Type: IDLTypeDef string
Package: Subsystem_Control

Name of an entry in the device identification

Length = 64

7.4.5.7 event_type

Type: IDLEnum
Package: Subsystem_Control

Type of event

7.4.5.8 fault

Type: IDLStruct
Package: Subsystem_Control

Class to represent a subsystem fault

7.4.5.9 fault_list

Type: IDLStruct
Package: Subsystem_Control

A list of faults

7.4.5.10 health_state_reason_type

Type: IDLStruct
Package: Subsystem_Control

Reason for the health state

Table 7.59 - Attributes of IDLEnum event_type

Attribute Notes

«idlEnum» OCCURRENCE

«idlEnum» DISAPPEARANCE

Table 7.60 - Attributes of IDLStruct fault

Attribute Notes

fault_name string

event event_type

simulated boolean Indicates whether this fault is real or simulated/inserted.

overridden boolean Indicates whether this fault is overridden by Battle Override when
determining the health state.

fault_isolation_data string For instance cabinet id and rack id.
Open Architecture Radar Interface Standard (OARIS), v1.0 71

7.4.5.11 health_state_type

Type: IDLEnum
Package: Subsystem_Control

Encapsulation of health state

7.4.5.12 information_name_type

Type: IDLEnum
Package: Subsystem_Control

Name of information

Table 7.61 - Attributes of IDLStruct health_state_reason_type

Attribute Notes

caused_by_fault boolean

caused_by_technical_state boolean

caused_by_simulation_mode boolean

caused_by_operational_mode boolean

Table 7.62 - Attributes of IDLEnum health_state_type

Attribute Notes

«idlEnum» AVAILABLE Service: Indicates that the service is available with specified performance.
Subsystem: Indicates that all implemented services of the subsystem have
health state AVAILABLE.

«idlEnum» DEGRADED Service: Indicates that the service may perform its operational task, but
possibly with less than specified performance.
Subsystem: Indicates that at least one of the implemented services of the
subsystem have health state other than AVAILABLE.

«idlEnum» NOT_AVAILABLE Service: Indicates that the service is not available.
Subsystem: Indicates that all implemented services of the subsystem have
health state NOT_AVAILABLE.

«idlEnum» UNKNOWN Indicates that the subsystem may not determine the health state of the service
or subsystem (e.g., because BIT is not running).

Table 7.63 - Attributes of IDLEnum information_name_type

Attribute Notes

«idlEnum» AIR_PLOTS

«idlEnum» SURFACE_PLOTS

«idlEnum» LAND_PLOTS

«idlEnum» SPACE_PLOTS

«idlEnum» SENSOR_AIR_TRACKS

«idlEnum» SENSOR_SURFACE_TRACKS

«idlEnum» SENSOR_LAND_TRACKS
72 Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.5.13 interest

Type: IDLStruct
Package: Subsystem_Control

Encapsulation of interest in service

7.4.5.14 interest_list

Type: IDLStruct
Package: Subsystem_Control

A list of interest

7.4.5.15 mastership_state_type

Type: IDLEnum
Package: Subsystem_Control

This enumeration represents the state of the mastership.

The subsystem Mastership may be either “free,” that is assigned to none and then available to anybody asks for it, or
assigned to somebody: CMS or not.

7.4.5.16 parameter_name_type

Type: IDLStruct
Package: Subsystem_Control

«idlEnum» SENSOR_SPACE_TRACKS

«idlEnum» JAMMER_STROBES

«idlEnum» JAMMER_TRACKS

«idlEnum» JAMMING_EFFECT_ASSESSMENTS

«idlEnum» INTERFERENCE_REPORTS

Table 7.64 - Attributes of IDLStruct interest

Attribute Notes

registration registration_type

quality_of_service string * optional *

recipient string * optional *

Table 7.65 - Attributes of IDLEnum mastership_state_type

Attribute Notes

«enum» MASTERSHIP_FREE Mastership state is “free,” the first received Mastership request shall be
satisfied.

«enum» MASTERSHIP_OTHER The Mastership is assigned to somebody other than CMS.

«enum» MASTERSHIP_TO_CMS The Mastership is assigned to CMS.

Table 7.63 - Attributes of IDLEnum information_name_type
Open Architecture Radar Interface Standard (OARIS), v1.0 73

Typedef for strings representing names of parameters.

7.4.5.17 name_error_pair_type

Type: IDLStruct
Package: Subsystem_Control

Combination of name of parameter (for which a request could not be processed) and an indication of the error.

7.4.5.18 name_error_sequence_type

Type: IDLStruct
Package: Subsystem_Control

Sequence of error reports identifying the parameter names for which the request could not be processed, including an
indication of the error (e.g., unknown parameter, illegal value).

7.4.5.19 parameter_name_sequence_type

Type: IDLStruct
Package: Subsystem_Control

A sequence of strings (names) used in request for parameters and parameter descriptors. If the sequence is empty, the
request is for all parameters.

7.4.5.20 name_value_pair_type

Type: IDLStruct
Package: Subsystem_Control

A generic struct for (name, value) pairs used in multiple situations.

7.4.5.21 name_value_sequence_type

Type: IDLStruct
Package: Subsystem_Control

Sequence of (name, value) pairs used in retrieving and modifying parameters.

Table 7.66 - Attributes of IDLStruct parameter_name_type

Attribute Notes

parameter_name string parameter_name values are unique within the scope of a subsystem.

Table 7.67 - Attributes of IDLStruct name_error_pair_type

Attribute Notes

parameter_name string parameter_name values are unique within the scope of a subsystem.

error_indication string

Table 7.68 - Attributes of IDLStruct name_value_pair_type

Attribute Notes

parameter_name string parameter_name values are unique within the scope of a subsystem.

value string
74 Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.5.22 operational_mode_type

Type: IDLTypeDef unsigned short
Package: Subsystem_Control

The value should be mapped to the corresponding operational mode. This mapping is retrieved through the service
‘Manage Subsystem Parameters.’

7.4.5.23 parameter_value_response_type

Type: IDLStruct
Package: Subsystem_Control

Response type for retrieving and modifying sequences of parameters.

7.4.5.24 registration_type

Type: IDLEnum
Package: Subsystem_Control

Type of registration

7.4.5.25 service_type

Type: IDLStruct
Package: Subsystem_Control

Type of service

7.4.5.26 service_health_type

Type: IDLStruct
Package: Subsystem_Control

Health of service

Table 7.69 - Attributes of IDLStruct parameter_value_response_type

Attribute Notes

request_id long

Table 7.70 - Attributes of IDL Enum registration_type

Attribute Notes

«idlEnum» REGISTER

«idlEnum» DEREGISTER

Table 7.71 - Attributes of IDLStruct service_type

Attribute Notes

service_name service_name_type Only registrable services are allowed.

Table 7.72 - Attributes of IDLStruct service_health_type

Attribute Notes

service_name service_name_type
Open Architecture Radar Interface Standard (OARIS), v1.0 75

7.4.5.27 service_indication_list_type

Type: IDLStruct
Package: Subsystem_Control

A list of service indications as used by Provide_Subsystem_Services.

7.4.5.28 service_indication_type

Type: IDLStruct
Package: Subsystem_Control

Indication of a service provided by the subsystem.

7.4.5.29 service_information

Type: IDLStruct
Package: Subsystem_Control

Information about a service

7.4.5.30 service_list_type

Type: IDLStruct
Package: Subsystem_Control

A list of service names as used by Provide_Subsystem_Services.

7.4.5.31 subsystem_health_type

Type: IDLStruct
Package: Subsystem_Control

health_state health_state_type

health_state_reason health_state_reason_type

time_of_information time_type

Table 7.73 - Attributes of IDLStruct service_indication_type

Attribute Notes

service_name service_name_type Name of the service

registration_indicator boolean Indication whether the service is registered.

Table 7.74 - Attributes of IDLStruct service_information

Attribute Notes

information_name information_name_type

Table 7.72 - Attributes of IDLStruct service_health_type
76 Open Architecture Radar Interface Standard (OARIS), v1.0

Type describing the health state of a subsystem.

7.4.5.32 technical_state_type

Type: IDLEnum
Package: Subsystem_Control

Type which is used to indicate a technical state.

Table 7.75 - Attributes of IDLStruct subsystem_health_type

Attribute Notes

health_state health_state_type Current health state

health_state_reason health_state_reason_type Reason for last change of health state

subsystem_identification device_identification_type

time_of_information time_type

Table 7.76 - Attributes of IDLEnum technical_state_type

Attribute Notes

 BIT Subsystem is running Built-In-Test procedure. CMS may communicate with subsystem,
but subsystem shall only respond affirmatively to a limited set of commands. From this
state the subsystem may transition to READY, FAILED, CALIBRATE, STANDBY
(transition may be ordered before completion of BIT if Battle Override is enabled), or
OFFLINE.

 CALIBRATE Subsystem is running calibration procedure. Subsystem shall only respond to a limited set
of commands from CMS. From this state the subsystem may transition to READY,
FAILED, BIT, STANDBY (transition may be ordered before completion of calibration if
Battle Override is enabled), or OFFLINE.

DORMANT Interface between CMS and subsystem may or may not exist. Some power is applied to the
subsystem and temperature control (e.g., cooling) is active. From this state, the sub-system
may transition to FAILED, STANDBY, or OFFLINE.

FAILED Subsystem is non-operational due to a critical fault such as a primary power supply failure.
CMS is able to communicate with subsystem to perform diagnostics. In the FAILED state,
the health state of the sub-system and nearly all associated services is NOT AVAILABLE
or UNKNOWN (provided via Health State). If the health state of the sub-system or some
services is DEGRADED, the sub-system is not required to enter into this state. From this
state the sub-system may transition to BIT, STANDBY, READY, CALIBRATE,
DORMANT or OFFLINE.

OFFLINE No connection between CMS and Subsystem is open. Main power is usually not applied
to subsystem. From OFFLINE, subsystem transitions to FAILED, DORMANT, BIT, or
STANDBY.

ONLINE Subsystem is operational and may respond to all requests from CMS. Simulation and
diagnostics may be allowed in this state. Radiation is allowed in this state but must be
commanded on via Control Emissions. From this state the subsystem may transition to BIT,
CALIBRATE, READY, STANDBY, FAILED, or OFFLINE.
Open Architecture Radar Interface Standard (OARIS), v1.0 77

7.4.5.33 version_type

Type: IDLStruct
Package: Subsystem_Control

Version of the equipment

7.4.5.34 Initial

Type: Initial State
Package: Subsystem_Control

7.5 Sensor_Domain

Parent Package: Domain_Model

This package contains the Domain Models for the Clutter Reporting, Plot Reporting, Sensor Control, Sensor Performance,
Track Reporting, and Tracking Control services.

7.5.1 Clutter_Reporting

Parent Package: Sensor_Domain

Contains Structs used within the Clutter Reporting service.

 READY Subsystem is ready for CMS to command full operation. Simulation may be allowed in this
state. Ready to transition to ONLINE, self-tests and calibration has been performed as
necessary. Radiation is not allowed in the READY state. From this state the subsystem may
transition to STANDBY, ONLINE, FAILED, BIT, CALIBRATE, or OFFLINE.

 STANDBY Interface between CMS and subsystem is established. Subsystem may not operate fully.
Maintenance may be performed in this state. From this state the sub-system may transition
to READY, CALIBRATE, BIT, FAILED, DORMANT, or OFFLINE.

Table 7.77 - Attributes of IDLStruct version_type

Attribute Notes

major_version unsigned short Major version number

minor_version unsigned short Minor version number

Table 7.76 - Attributes of IDLEnum technical_state_type
78 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.36 - Domain Model (Logical diagram)

7.5.1.1 clutter_assessment_request_type

Type: IDLStruct
Package: Clutter_Reporting

CMS generated request for a clutter assessment.

7.5.1.2 clutter_indication_type

Type: IDLEnum
Package: Clutter_Reporting

Indicates if the clutter within the cell is of a specific type.

Table 7.78 - Attributes of IDLStruct clutter_assessment_request_type

Attribute Notes

requested_region general_polar_volume_type Region for which the CMS clutter request was generated.

Table 7.79 - Attributes of IDLEnum clutter_indication_type

Attribute Notes

LAND

SEA

WEATHER

NO_STATEMENT

 class Domain Model

«idlStruct»
clutter_map_cell_type

+ cell_boundaries: general_polar_volume_type
+ clutter_type: clutter_indication_type
+ clutter_intensity: double

«idlStruct»
clutter_report_type

+ intensity_type: intensity_units_type
+ time_of_report: time_type

«idlStruct»
clutter_assessment_request_type

+ requested_region: general_polar_volume_type

«idlEnum»
clutter_indication_type

+ LAND
+ SEA
+ WEATHER
+ NO_STATEMENT

«idlEnum»
intensity_units_type

+ POWER_RECEIVED_LINEAR
+ POWER_RECEIVED_LOG_LINEAR
+ RCS_LINEAR
+ RCS_LOG_LINEAR
+ SNR_LINEAR
+ SNR_LOG_LINEAR

«idlStruct»
plot_concentration_request_data_type

+ region_of_plot_concentration_request: general_polar_volume_type

«idlStruct»
plot_concentration_report_type

+ time_of_report: time_type

«idlStruct»
concentration_plot_cell_type

+ cell_boundaries: general_polar_volume_type
+ plot_count: unsigned long long

+concentration_plot_cell 1..*

+clutter_map_cell 1..*
Open Architecture Radar Interface Standard (OARIS), v1.0 79

7.5.1.3 clutter_map_cell_type

Type: IDLStruct
Package: Clutter_Reporting

Indicates the intensity and type of clutter for a defined geometric type.

7.5.1.4 clutter_report_type

Type: IDLStruct
Package: Clutter_Reporting

Clutter report generated by the subsystem.

7.5.1.5 concentration_plot_cell_type

Type: IDLStruct
Package: Clutter_Reporting

Indicates the plot concentration of a defined geometric type.

7.5.1.6 intensity_units_type

Type: IDLEnum
Package: Clutter_Reporting

Table 7.80 - Attributes of IDLStruct clutter_map_cell_type

Attribute Notes

cell_boundaries general_polar_volume_type Indicates the boundaries of the cell for which clutter is being
reported.

clutter_type clutter_indication_type Indicates whether the clutter is LAND, SEA, WEATHER, or
unspecified (NO_STATEMENT).

clutter_intensity double Intensity of the clutter for the specified cell. Units indicated by
the intensity type attribute.

Table 7.81 - Attributes of IDLStruct clutter_report_type

Attribute Notes

intensity_type intensity_units_type Indicates the units of the clutter intensity reported.

time_of_report time_type Time of the clutter report.

Table 7.82 - Attributes of IDLStruct concentration_plot_cell_type

Attribute Notes

cell_boundaries general_polar_volume_type Specifies the dimension of the cell for which plot concentration
is being reported.

plot_count unsigned long long The number of plots generated within the cell.
80 Open Architecture Radar Interface Standard (OARIS), v1.0

Units of the clutter intensity

7.5.1.7 plot_concentration_report_type

Type: IDLStruct
Package: Clutter_Reporting

Plot concentration report as generated by the subsystem.

7.5.1.8 plot_concentration_request_data_type

Type: IDLStruct
Package: Clutter_Reporting

CMS request for plot concentration of a specified region.

Table 7.83 - Attributes of IDLEnum intensity_units_type

Attribute Notes

POWER_RECEIVED_LINEAR

POWER_RECEIVED_LOG_LINEAR (e.g., dBm, dBW)

RCS_LINEAR square meters

RCS_LOG_LINEAR

SNR_LINEAR

SNR_LOG_LINEAR

Table 7.84 - Attributes of IDLStruct plot_concentration_report_type

Attribute Notes

time_of_report time_type Time of the plot concentration report.

Table 7.85 - Attributes of IDLStruct plot_concentration_request_data_type

Attribute Notes

region_of_plot_concentration_request general_polar_volume_type Region for which the plot concentration was
requested.
Open Architecture Radar Interface Standard (OARIS), v1.0 81

7.5.2 Plot_Reporting

Parent Package: Sensor_Domain

Figure 7.37 - Domain Model (Logical diagram)

7.5.2.1 plot_id_type

Type: IDLTypeDef unsigned long
Package: Plot_Reporting

Identifier for a plot, unique within a given sensor. Such plot ids, should not be reused between sensor subsystem restarts.

7.5.2.2 plot_strength_type

Type: IDLTypeDef unsigned short
Package: Plot_Reporting

Strength of the plot. The precise semantics of this type are sensor subsystem specific, but a typical interpretation is as a
signal to noise ratio in dB.

7.5.2.3 sensor_plot_set_type

Type: IDLStruct
Package: Plot_Reporting

Set of one or more sensor plots.

 class Domain Model

«idlStruct»
sensor_plot_set_type

«idlStruct»
sensor_plot_type

+ plot_id: plot_id_type [0..1]
+ position: position_coordinate_type
+ coordinate_specification: coordinate_specification_type
+ range_qualification: range_qualification_type [0..1]
+ azimuth_qualification: azimuth_qualification_type
+ elevation_qualification: elevation_qualification_type [0..1]
+ simulation_status: boolean
+ strength: plot_strength_type [0..1]
+ time_of_plot: time_type
+ additional_info: anonymous_blob_type
+ splash_spotting_area_id: splash_spotting_area_id_type [0..1]
+ jammer_indication: boolean

unsigned short

«idlTypedef»
plot_strength_type

unsigned long

«idlTypedef»
plot_id_type

«idlStruct»
sensor_orientation_type

+ azimuth: azimuth_coordinate_type
+ elevation: elevation_coordinate_type [0..1]
+ time_of_validity: time_type
+ sensor_coordinate_system: coordinate_orientation_type

+plots

0..* 1
82 Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.2.4 sensor_plot_type

Type: IDLStruct
Package: Plot_Reporting

One plot from a sensor.

The additional_info attribute is used for characteristics of the plot that are specific to certain sensors, and therefore not in
the general plot type, for example MTI or range rate.

7.5.2.5 sensor_orientation_type

Type: IDLStruct
Package: Plot_Reporting

Table 7.86 - Attributes of IDLStruct sensor_plot_type

Attribute Notes

plot_id plot_id_type [0..1] A unique identifier for the plot within the scope of the sensor.
This attribute is optional as not all sensors need to provide such
an identifier for each plot.

position position_coordinate_type The position of the plot. This is the mean, central position. Note
the qualification attributes, which give information on accuracy
and spread estimates.

coordinate_specification
coordinate_specification_type

This attribute defines the characteristics of the coordinate system
used.

range_qualification range_qualification_type [0..1] A measure of the spread and accuracy of the plot in range. This
is optional as not all sensors measure range.

azimuth_qualification azimuth_qualification_type A measure of the spread and accuracy of the plot in azimuth.

elevation_qualification elevation_qualification_type
[0..1]

A measure of the spread and accuracy of the plot in elevation.
This is optional as not all sensors measure elevation.

simulation_status boolean If true, the plot is simulated. See also simulation support services
within this standard.

strength plot_strength_type [0..1] The signal strength of the plot. This attribute is optional as not all
sensors measure a quantity that has equivalence to strength.

time_of_plot time_type The time at which the plot was measured.

additional_info anonymous_blob_type Potentially classified information about the plot, which may be
used in a system specific way to distribute information about a
plot to other subsystems. Further information about this attribute,
including layout semantics is outside of the scope of this
interface standard.

splash_spotting_area_id
splash_spotting_area_id_type [0..1]

Indicates which splash spotting area the plot refers to - if any -
hence it is optional.

jammer_indication boolean Indication whether or not a plot is from a source of jamming.
Open Architecture Radar Interface Standard (OARIS), v1.0 83

This class describes the orientation of the sensor at a particular moment in time. This is useful for plot processing
functionality such as track extraction as it allows instantaneous coverage of the sensor to be estimated.

7.5.3 Sensor_Control

Parent Package: Sensor_Domain

This package contains structs and type defs for managing frequency usage, transmission sectors, emission control, and
test target scenarios.

Table 7.87 - Attributes of IDLStruct sensor_orientation_type

Attribute Notes

azimuth azimuth_coordinate_type The (azimuth) direction of the head of the sensor (e.g.,
antenna, lens, or hydro-phone).

elevation elevation_coordinate_type [0..1] The (elevation) direction of the head of the sensor (e.g.,
antenna, lens, or hydro-phone). If not supplied either
horizontal is assumed or a constant angle is defined through
the Manage_Subsystem_Parameters use case.

time_of_validity time_type The time for which is sensor orientation is valid.

sensor_coordinate_system coordinate_orientation_type This attribute defines the interpretation of azimuth and
elevation. Valid enumerates are:
NORTH_HORIZONTAL
NORTH_DOWN
STERN_KEEL
STERN_DECK_LEVEL
84 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.38 - Domain Model (Logical diagram)

 class Domain Model

«idlStruct»
transmission_frequency_state_type

+ enabled: boolean
+ frequency_id: frequency_band_type

«idlEnum»
transmission_frequency_mode_type

+ AUTOMATIC_FREQUENCY_SELECTION
+ FIXED_FREQUENCY
+ FREQUENCY_DIVERSITY
+ RANDOM_AGILITY

«idlStruct»
selected_frequency_list_type

«idlStruct»
all_frequencies_state_type

«idlStruct»
reported_frequency_state_type

+ enable: boolean
+ frequency_id: frequency_band_type
+ available: boolean

unsigned short

«idlTypedef»
frequency_band_type

notes
An index indicating a particular
frequency channel or band. The
actual frequency is typically not
of concern to the command team.
A band refers to a discrete
frequency or a range of
frequencies; such bands may
overlap.

«idlEnum»
transmission_sector_power_lev el_type

+ FULL_RADIATE_POWER
+ INHIBIT
+ REDUCED_RADIATE_POWER

«idlStruct»
transmission_sector_type

+ power_level_transmission: transmission_sector_power_level_type
+ sector_enabled: boolean
+ sector_id: short
+ sector_reference: sector_reference_type
+ sector_shape: general_polar_volume_type
+ transmision_mode: transmission_frequency_mode_type

«idlStruct»
transmission_sector_set_type

«idlEnum»
sector_reference_type

+ NORTH_RELATED
+ SHIP_RELATED

«idlUnion»
Shape_Model::general_polar_v olume_type

«idlCase»
+ sector: sector_type
+ polar_volume: polar_volume_type
+ truncated_sector: truncated_sector_type
+ truncated_polar_volume: truncated_polar_volume_type

«idlStruct»
control_emission_state_type

+ emission_activated: boolean

«idlStruct»
test_target_plus_scenario_type

+ test_target_id: unsigned short
+ test_target_parameter: anonymous_blob_type

«idlStruct»
test_target_scenario_independent_target_type

+ number_of_test_target: unsigned short
+ test_target_scenario_activated: boolean
+ test_target_scenario_id: test_target_scenario_id_type

«idlStruct»
test_target_scenario_common_parameter_target_type

+ initial_time: time_type
+ number_of_test_target: unsigned short
+ test_target_scenario_activated: boolean
+ test_target_scenario_id: test_target_scenario_id_type
+ volume_boundaries: general_polar_volume_type

«idlUnion»
test_target_scenario_type

«idlCase»
+ scenario_common_parameter_target: test_target_scenario_common_parameter_target_type
+ scenario_independent_target: test_target_scenario_independent_target_type

«idlStruct»
test_target_type

+ initial_time: time_type
+ position: wgs84_position_type
+ test_target_id: unsigned short
+ test_target_parameter: anonymous_blob_type

long

«idlTypedef»
test_target_scenario_id_type

«idlStruct»
test_target_scenario_state_type

+ test_target_scenario_activated: boolean
+ test_target_scenario_id: test_target_scenario_id_type

+selected_frequencies

0..*

+targets_parameter

+targets 0..*

+reported_frequencies

0..*

+sector 0..*
Open Architecture Radar Interface Standard (OARIS), v1.0 85

7.5.3.1 selected_frequency_list_type

Type: IDLStruct
Package: Sensor_Control

This struct contains zero to many frequencies which may be enabled/disabled by the CMS.

7.5.3.2 transmission_frequency_state_type

Type: IDLStruct
Package: Sensor_Control

State of frequency transmission

7.5.3.3 all_frequencies_state_type

Type: IDLStruct
Package: Sensor_Control

This struct contains zero to many “available” or “not available” frequencies which may be enabled/disabled by the CMS.

7.5.3.4 reported_frequency_state_type

Type: IDLStruct
Package: Sensor_Control

reported frequency state

7.5.3.5 frequency_band_type

Type: IDLTypeDef unsigned short
Package: Sensor_Control

An index indicating a particular frequency channel or band. The actual frequency is typically not of concern to the
command team. A band refers to a discrete frequency or a range of frequencies; such bands may overlap.

Table 7.88 - Attributes of IDLStruct transmission_frequency_state_type

Attribute Notes

enabled boolean Indicates whether the CMS is enabling or disabling a transmission
frequency.

frequency_id frequency_band_type A unique identifier for the transmission frequency.

Table 7.89 - Attributes of IDLStruct reported_frequency_state_type

Attribute Notes

enable boolean Indicates whether the CMS is enabling or disabling a transmission
frequency.

frequency_id frequency_band_type A unique identifier for the transmission frequency.

available boolean Indicates whether a transmission frequency is available or not
available.
86 Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.3.6 transmission_frequency_mode_type

Type: IDLEnum
Package: Sensor_Control

The model

7.5.3.7 transmission_sector_set_type

Type: IDLStruct
Package: Sensor_Control

This struct contains zero to many transmission sectors which must be set/reset by the CMS.

7.5.3.8 transmission_sector_type

Type: IDLStruct
Package: Sensor_Control

Sector for transmission

7.5.3.9 transmission_sector_power_level_type

Type: IDLEnum

Table 7.90 - Attributes of IDLEnum transmission_frequency_mode_type

Attribute Notes

AUTOMATIC_FREQUENCY_SELECTION The sensor always uses the same pre-selected frequency.

FIXED_FREQUENCY At each transmission sensor selects the frequency to be used
inside a pre-selected subset of frequencies.

FREQUENCY_DIVERSITY At each transmission sensor selects the frequency to be used
among the least jammed frequencies.

RANDOM_AGILITY At each transmission sensor random selects the frequency to be
used.

Table 7.91 - Attributes of IDLStruct transmission_sector_type

Attribute Notes

power_level_transmission transmission_sector_power_level_type Indicates the transmission power level of the
sector.

sector_enabled boolean Indicates whether the CMS is enabling or
disabling a transmission sector.

sector_id short A unique identifier for the transmission sector.

sector_reference sector_reference_type This indicates the reference system of the
transmission sector.

sector_shape general_polar_volume_type Note that the azimuth dimension of the sector
shape (polar volume) applies to the horizon plane
(i.e., elevation=0).

transmision_mode transmission_frequency_mode_type Indicates the transmission mode used within the
sector.
Open Architecture Radar Interface Standard (OARIS), v1.0 87

Package: Sensor_Control

This enumeration allows specification of a CMS commanded power level for a sector.

7.5.3.10 sector_reference_type

Type: IDLEnum
Package: Sensor_Control

This enumeration specifies the sectors reference systems.

7.5.3.11 control_emission_state_type

Type: IDLStruct
Package: Sensor_Control

Emission state

7.5.3.12 test_target_scenario_type

Type: IDLUnion
Package: Sensor_Control

Scenario for test targets

Table 7.92 - Attributes of IDLEnum transmission_sector_power_level_type

Attribute Notes

FULL_RADIATE_POWER

INHIBIT

REDUCED_RADIATE_POWER

Table 7.93 - Attributes of IDLEnum sector_reference_type

Attribute Notes

NORTH_RELATED

SHIP_RELATED

Table 7.94 - Attributes of IDLStruct control_emission_state_type

Attribute Notes

emission_activated boolean Indicates whether the CMS is enabling or disabling the sensor emission state.

Table 7.95 - Attributes of IDLUnion test_target_scenario_type

Attribute Notes

«idlCase» scenario_common_parameter_target
test_target_scenario_common_parameter_target_type

This case is used when a test target scenario is constituted by a
number of targets distributed in a defined area/volume and
having the same common parameters.

«idlCase» scenario_independent_target
test_target_scenario_independent_target_type

This case is used when a test target scenario is constituted by a
number of independent targets.
88 Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.3.13 test_target_scenario_independent_target_type

Type: IDLStruct
Package: Sensor_Control

The scenario is defined by a number of independent targets, with each target having own characteristic parameters.

7.5.3.14 test_target_scenario_common_parameter_target_type

Type: IDLStruct
Package: Sensor_Control

The scenario is defined by a number of targets distributed in a defined area/volume and having the same common
parameters.

7.5.3.15 test_target_type

Type: IDLStruct
Package: Sensor_Control

Encapsulation of a test target (simulated target to enable technical testing of a sensor).

Table 7.96 - Attributes of IDLStruct test_target_scenario_independent_target_type

Attribute Notes

number_of_test_target unsigned short This is the number of the test targets composing the
scenario.

test_target_scenario_activated boolean Indicates whether the CMS is enabling or disabling the
generation of a test target scenario.

test_target_scenario_id test_target_scenario_id_type A unique identifier for the test target scenario.

Table 7.97 - Attributes of IDLStruct test_target_scenario_common_parameter_target_type

Attribute Notes

initial_time time_type This indicates the common initial time of the targets.

number_of_test_target unsigned short This is the number of the test targets composing the
scenario.

test_target_scenario_activated boolean Indicates whether the CMS is enabling or disabling the
generation of a test target scenario.

test_target_scenario_id test_target_scenario_id_type A unique identifier for the test target scenario.

volume_boundaries general_polar_volume_type This indicates the area/volume boundaries where the test
targets are distributed.

Table 7.98 - Attributes of IDLStruct test_target_type

Attribute Notes

initial_time time_type This attribute defines the relevant initial time.

position wgs84_position_type This attribute defines the initial target position.
Open Architecture Radar Interface Standard (OARIS), v1.0 89

7.5.3.16 test_target_plus_scenario_type

Type: IDLStruct
Package: Sensor_Control

Test target with its scenario

7.5.3.17 test_target_scenario_id_type

Type: IDLTypeDef long
Package: Sensor_Control

This typedef is used to identify a specific test target scenario.

7.5.3.18 test_target_scenario_state_type

Type: IDLStruct
Package: Sensor_Control

Scenario state

test_target_id unsigned short A identifier for the test targets.

test_target_parameter anonymous_blob_type This attribute defines:

• the target motion type, with the relevant motion parameters.

• the target generation parameters, such as injection type (internal
/ external), attenuation law (constant / variable-with-range),
doppler type (0 / PRF/2).

Table 7.99 - Attributes of IDLStruct test_target_plus_scenario_type

Attribute Notes

test_target_id unsigned short A identifier for the test targets.

test_target_parameter anonymous_blob_type This attribute defines:

• the target motion type, with the relevant motion
parameters.

• the target generation parameters, such as injection type
(internal / external), attenuation law (constant / variable-
with-range), doppler type (0 / PRF/2).

Table 7.100 - Attributes of IDLStruct test_target_scenario_state_type

Attribute Notes

test_target_scenario_activated boolean Indicates whether the CMS is enabling or disabling the
execution of the test target scenario.

test_target_scenario_id test_target_scenario_id_type A unique identifier for the test target scenario.

Table 7.98 - Attributes of IDLStruct test_target_type
90 Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.4 Sensor_Performance

Parent Package: Sensor_Domain

Figure 7.39 - Domain Model (Logical diagram)

7.5.4.1 interference_report_type

Type: IDLStruct
Package: Sensor_Performance

Set of interferer objects in a report

7.5.4.2 interferer_kind

Type: IDLEnum
Package: Sensor_Performance

Enumeration of the types of interferers that are known about.

 class Domain Model

float

«idlTypedef»
performance_type

«idlStruct»
interference_report_type

«idlEnum»
interferer_kind

+ ACTIVE_NOISE
+ CLUTTER
+ SELF_SCREENING_JAMMER
+ STANDOFF_JAMMER
+ STROBE
+ OTHER_TYPE
+ NO_STATEMENT

«idlStruct»
interferer_type

+ timestamp: time_type
+ magnitude: jamming_magnitude_type [0..1]
+ affected_bands: frequency_band_type [1..*]
+ position: position_coordinate_type [0..1]
+ kind: interferer_kind
+ affected_volume: general_polar_volume_type [0..1]
+ position_coordinate_specification: coordinate_specification_type

unsigned short

«idlTypedef»
jamming_magnitude_type

«idlStruct»
perfomance_bin_type

+ start_range: range_coordinate_type
+ end_range: range_coordinate_type
+ value: performance_type [0..1]

«idlStruct»
performance_assessment_report_type

+ time_of_report: time_type

«idlStruct»
performance_assessment_request_type

+ azimuth_bin_count: unsigned short
+ range_bin_count: unsigned short
+ elevation_bin_count: unsigned short
+ start_azimuth: azimuth_coordinate_type [0..1]
+ end_azimuth: azimuth_coordinate_type [0..1]
+ start_elevation: elevation_coordinate_type [0..1]
+ end_elevation: elevation_coordinate_type [0..1]
+ min_range: range_coordinate_type [0..1]
+ max_range: range_coordinate_type [0..1]
+ applicable_mode: operational_mode_type
+ coordinate_orientation: coordinate_orientation_type

«idlStruct»
performance_beam_type

+ start_elevation: elevation_coordinate_type
+ end_elevation: elevation_coordinate_type

«idlStruct»
performance_sector_type

+ start_azimuth: azimuth_coordinate_type
+ end_azimuth: azimuth_coordinate_type

+interferers

1..*

+sector 1..*

+bin

1..*

+beam

1..*

+assessment_dimensions

1

Open Architecture Radar Interface Standard (OARIS), v1.0 91

7.5.4.3 interferer_type

Type: IDLStruct
Package: Sensor_Performance

A single source of interference

7.5.4.4 jamming_magnitude_type

Type: IDLTypeDef unsigned short
Package: Sensor_Performance

Target strength (Effective Radiated Power - ERP) of a jammer. The precise semantics of this type are sensor subsystem
specific, but a typical interpretation is as a signal to noise ratio in dB.

Table 7.101 - Attributes of IDLEnum interferer_kind

Attribute Notes

ACTIVE_NOISE Interference from active noise

CLUTTER Interference from clutter

SELF_SCREENING_JAMMER Interference from a jammer, which is self screening.

STANDOFF_JAMMER Interference from a stand-off jammer

STROBE Interference from a strobe jammer

OTHER_TYPE The interference source is of a different type to the other declared
interference kinds.

NO_STATEMENT The interference source could not be classified by the sensor subsystem.

Table 7.102 - Attributes of IDLStruct interferer_type

Attribute Notes

timestamp time_type Time to which the performance report applies.

magnitude jamming_magnitude_type [0..1] The Effective Radiated Power (ERP) of the source
of interference. This is an optional attribute, which
not all sensors may be able to calculate.

affected_bands frequency_band_type [1..*] A list of frequency bands which are affected by the
source of interference.

position position_coordinate_type [0..1] The source position of the interference. This is an
optional attribute that not all sensors may be able to
calculate.

kind interferer_kind A classification of the interference source.

affected_volume general_polar_volume_type [0..1] The volume in space, which the interference
source is affecting. This is an optional attribute,
which may not all sensors may be able to calculate.

position_coordinate_specification coordinate_specification_type Specifies the coordinate system used to define the
interferer.
92 Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.4.5 perfomance_bin_type

Type: IDLStruct
Package: Sensor_Performance

Value of performance in a volume of space. This is given as a signal excess in dB above noise floor for a nominal 0dB
target strength. For a current performance report, this noise floor shall include clutter and jamming. These are not
included in a nominal performance report.

7.5.4.6 performance_assessment_report_type

Type: IDLStruct
Package: Sensor_Performance

Contains the results of a performance assessment.

7.5.4.7 performance_assessment_request_type

Type: IDLStruct
Package: Sensor_Performance

A performance assessment request consists of an overall volume of interest and a specification of a number of ‘bins’ into
which that volume is to be sub-divided. In response the sensor assess performance for each ‘bin.’

The coordinate origin for the request is the SENSOR_REFERENCE_POINT as defined in coordinate_origin_type.

Table 7.103 - Attributes of IDLStruct performance_bin_type

Attribute Notes

start_range range_coordinate_type The start of the bin in range.

end_range range_coordinate_type The end of the bin in range.

value performance_type [0..1] The assessed level of performance.
If no value present, there is no performance data available for this bin.

Table 7.104 - Attributes of IDLStruct performance_assessment_report_type

Attribute Notes

time_of_report time_type The time of validity of the performance assessment.

Table 7.105 - Attributes of IDLStruct performance_assessment_request_type

Attribute Notes

azimuth_bin_count unsigned short Number of azimuth bins that the CMS would like in the
performance report. The subsystem should try to honor this
request but does not have to.

range_bin_count unsigned short Number of range bins that the CMS would like in the report. The
subsystem should try to honor this request but does not have to.

elevation_bin_count unsigned short The number of elevation bins that the CMS would like in the
report. The subsystem should try to honor this request but does
not have to.

start_azimuth azimuth_coordinate_type [0..1] Defines the start of the arc of azimuth (positive orientation) of
the volume in which the sensor’s performance is to be assessed.
Open Architecture Radar Interface Standard (OARIS), v1.0 93

7.5.4.8 performance_beam_type

Type: IDLStruct
Package: Sensor_Performance

Set of performance values for a line of points in space. Each value applies to a volume whose boundaries may be inferred
from the numbers of bins and the min and max values in the report.

7.5.4.9 performance_sector_type

Type: IDLStruct
Package: Sensor_Performance

A set of performance values for a sector of azimuth [start_azimuth..end_azimuth].

7.5.4.10 performance_type

Type: IDLTypeDef float
Package: Sensor_Performance

Defined as a signal excess in dB above noise floor for a nominal 0dB target strength, when assessing nominal
performance or for the jammer when providing jammer assessment.

end_azimuth azimuth_coordinate_type [0..1] Defines the end of the arc of azimuth (positive orientation) of the
volume in which the sensor’s performance is to be assessed.

start_elevation elevation_coordinate_type [0..1] Defines the start of the arc of elevation (positive orientation) of
the volume in which the sensor’s performance is to be assessed.

end_elevation elevation_coordinate_type [0..1] Defines the end of the arc of elevation (positive orientation) of
the volume in which the sensor’s performance is to be assessed.

min_range range_coordinate_type [0..1] Defines the minimum range of the volume in which the sensor’s
performance is to be assessed.

max_range range_coordinate_type [0..1] Defines the maximum range of the volume in which the sensor’s
performance is to be assessed.

applicable_mode operational_mode_type The performance assessment is to be in the context of this
operational mode of the sensor subsystem.

coordinate_orientation coordinate_orientation_type The orientation of the polar coordinates used in this class. Note
that the origin is always the sensor reference point and that the
coordinate system is always polar.

Table 7.106 - Attributes of IDLStruct performance_beam_type

Attribute Notes

start_elevation elevation_coordinate_type The start of the beam in elevation (positive orientation).

end_elevation elevation_coordinate_type The end of the beam in elevation (positive orientation).

Table 7.107 - Attributes of IDLStruct performance_sector_type

Attribute Notes

start_azimuth azimuth_coordinate_type The start of the sector of azimuth (positive orientation).

end_azimuth azimuth_coordinate_type The end of the sector of azimuth (positive orientation).

Table 7.105 - Attributes of IDLStruct performance_assessment_request_type
94 Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.5 Track_Reporting

Parent Package: Sensor_Domain

This service provides facilities to report different types of sensor tracks.

Figure 7.40 - Track Reporting - Sensor Track (Logical diagram)

 class Track Reporting - Sensor Track

«idlStruct»
Plot_Reporting::sensor_plot_type

+ plot_id: plot_id_type [0..1]
+ position: position_coordinate_type
+ coordinate_specification: coordinate_specification_type
+ range_qualification: range_qualification_type [0..1]
+ azimuth_qualification: azimuth_qualification_type
+ elevation_qualification: elevation_qualification_type [0..1]
+ simulation_status: boolean
+ strength: plot_strength_type [0..1]
+ time_of_plot: time_type
+ additional_info: anonymous_blob_type
+ splash_spotting_area_id: splash_spotting_area_id_type [0..1]
+ jammer_indication: boolean

«idlStruct»
sensor_track_set_type

«idlStruct»
sensor_track_type

+ additional_information: anonymous_blob_type
+ covariance_matrix: covariance_matrix_type [0..1]
+ environment: environment_type [0..1]
+ initiation_mode: initiation_mode_type [0..1]
+ jammer_indication: boolean
+ max_range_limit: range_coordinate_type [0..1]
+ position: position_coordinate_type
+ position_accuracy: position_accuracy_coordinate_type [0..1]
+ position_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ position_coordinate_system: coordinate_specification_type
+ sensor_track_pre_identification: identity_type [0..1]
+ sensor_track_pre_recognition: recognition_type [0..1]
+ simulated: boolean
+ time_of_information: time_type
+ time_of_initiation: time_type
+ track_phase: track_phase_type
+ velocity: velocity_coordinate_type
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_coordinate_system: coordinate_specification_type

«key»
+ sensor_track_id: sensor_track_id_type

+based_on 1..*

1

+element

0..*
Open Architecture Radar Interface Standard (OARIS), v1.0 95

Figure 7.41 - Track Reporting - Type Definitions (Logical diagram)

7.5.5.1 sensor_track_id_type

Type: IDLTypeDef unsigned long
Package: Track_Reporting

Sensor Track Identification

7.5.5.2 environment_type

Type: IDLEnum
Package: Track_Reporting

The sensor tracking environment

Table 7.108 - Attributes of IDLEnum environment_type

Attribute Notes

«idlEnum» AIR

«idlEnum» LAND

«idlEnum» SURFACE

«idlEnum» SUBSURFACE

«idlEnum» SPACE

 class Track Reporting - Type Definitions

unsigned short

«idlTypedef»
recognition_type

«idlEnum»
env ironment_type

«idlEnum»
+ AIR
+ LAND
+ SURFACE
+ SUBSURFACE
+ SPACEunsigned long

«idlTypedef»
sensor_track_id_type

«idlEnum»
track_phase_type

«idlEnum»
+ DEAD_RECKONED
+ DELETED
+ LOST
+ TRACKED

«idlEnum»
initiation_mode_type

«idlEnum»
+ AUTOMATIC
+ EXTERNAL_REQUEST

«idlStruct»
Coordinates_and_Positions::
full_cov ariance_matrix_type

+ xx_variance: float
+ xy_variance: float
+ xz_variance: float
+ xvx_variance: float
+ xvy_variance: float
+ xvz_variance: float
+ yy_variance: float
+ yz_variance: float
+ yvx_variance: float
+ yvy_variance: float
+ yvz_variance: float
+ zz_variance: float
+ zvx_variance: float
+ zvy_variance: float
+ zvz_variance: float
+ vxvx_variance: float
+ vxvy_variance: float
+ vxvz_variance: float
+ vyvy_variance: float
+ vyvz_variance: float
+ vzvz_variance: float

«idlStruct»
Coordinates_and_Positions::

diagonal_cov ariance_matrix_type

+ xx_variance: float
+ yy_variance: float
+ zz_variance: float
+ vxvx_variance: float
+ vyvy_variance: float
+ vzvz_variance: float

«idlUnion»
Coordinates_and_Positions::cov ariance_matrix_type

«idlCase»
+ diagonal_covariance_matrix: diagonal_covariance_matrix_type
+ ful l_covariance_matrix: ful l_covariance_matrix_type
96 Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.5.3 initiation_mode_type

Type: IDLEnum
Package: Track_Reporting

Type of track initiation

7.5.5.4 recognition_type

Type: IDLTypeDef unsigned short
Package: Track_Reporting

The recognition_type indicates the type of the tracked object.

The type of the recognition_type is ‘short.’ This short number is mapped to a recognition_type.

7.5.5.5 sensor_track_type

Type: IDLStruct
Package: Track_Reporting

Encapsulation of a sensor track

Table 7.109 - Attributes of IDLEnum initiation_mode_type

Attribute Notes

«idlEnum» AUTOMATIC Automatic track initiation mode

«idlEnum» EXTERNAL_REQUEST Track initation on external request (e.g., from CMS).

Table 7.110 - Attributes of IDLStruct sensor_track_type

Attribute Notes

additional_information anonymous_blob_type Additional, vendor-specific information

covariance_matrix covariance_matrix_type [0..1] * optional *
The number of elements in the covariance matrix is
dependent on the sensor.

environment environment_type [0..1] Environment of the track (air, surface etc.)

initiation_mode initiation_mode_type [0..1] Initiation mode of track (automatic or externally
initiatied).

jammer_indication boolean Indication whether or not a track is jamming.

max_range_limit range_coordinate_type [0..1] Maximal range for a bearing track.

position position_coordinate_type

position_accuracy position_accuracy_coordinate_type [0..1] * optional *

position_accuracy_coordinate_system
coordinate_specification_type [0..1]

* optional *

position_coordinate_system coordinate_specification_type

«key» sensor_track_id sensor_track_id_type

sensor_track_pre_identification identity_type [0..1] Identification information for the sensor track (if
available).
Open Architecture Radar Interface Standard (OARIS), v1.0 97

7.5.5.6 sensor_track_set_type

Type: IDLStruct
Package: Track_Reporting

A set of sensor tracks (to enable batch reporting).

7.5.5.7 track_phase_type

Type: IDLEnum
Package: Track_Reporting

The detection lifecycle phase of the track.

7.5.6 Tracking_Control

Parent Package: Sensor_Domain

This package contains structs and type defs for managing tracking zones and sensor track information.

sensor_track_pre_recognition recognition_type [0..1] Recognition information for the sensor track (if
available).

simulated boolean

time_of_information time_type

time_of_initiation time_type

track_phase track_phase_type Track phase (e.g., TRACKED, DELETED, LOST)

velocity velocity_coordinate_type

velocity_accuracy velocity_accuracy_coordinate_type [0..1] * optional *

velocity_accuracy_coordinate_system
coordinate_specification_type [0..1]

* optional *

velocity_coordinate_system coordinate_specification_type

Table 7.111 - Attributes of IDLEnum track_phase_type

Attribute Notes

«idlEnum» DEAD_RECKONED Track provided based on extrapolated position (dead-reckoned).

«idlEnum» DELETED Track has been deleted.

«idlEnum» LOST Track has been lost

«idlEnum» TRACKED Regular update of new and existing track.

Table 7.110 - Attributes of IDLStruct sensor_track_type
98 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.42 - Domain Model (Logical diagram)

7.5.6.1 track_info

Type: IDLStruct
Package: Tracking_Control

This struct identifies track information.

Table 7.112 - Attributes of IDLStruct track_info

Attribute Notes

additional_information anonymous_blob_type This is additional information that is not specified as part of the
interface. Candidate information includes:

• Track type

• Track priority

• Track Identification Category Assigned (Pending, Friend,
Assumed Friend, Neutral, Unknown, Suspect, Hostile).

system_track_id system_track_id_type

 class Domain Model

unsigned long

«idlTypedef»
Track_Reporting::sensor_track_id_type

«idlStruct»
track_info

+ additional_information: anonymous_blob_type
+ system_track_id: system_track_id_type
+ track_priority: track_priority_type
+ identification_assigned_type: identity_type

short

«idlTypedef»
track_priority_type

«idlEnum»
Common_Types::identity_type

+ PENDING
+ UNKNOWN
+ ASSUMED_FRIEND
+ FRIEND
+ NEUTRAL
+ SUSPECT
+ HOSTILE

«idlStruct»
System_Track::system_track_type

+ simulated: boolean
+ time_of_information: time_type
+ position_coordinate_system: coordinate_specification_type
+ position: position_coordinate_type
+ velocity_coordinate_system: coordinate_specification_type
+ velocity: velocity_coordinate_type
+ position_accuracy_coordinate_system: coordinate_specification_type
+ position_accuracy: position_accuracy_coordinate_type
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ max_range_limit: range_coordinate_type [0..1]

«key»
+ system_track_number: system_track_id_type

«idlStruct»
tracking_zone

+ enable: boolean
+ shape: general_polar_volume_type
+ tracking_type: tracking_zone_type
+ tracking_zone_id: tracking_zone_id_type

«idlEnum»
tracking_zone_type

+ AUTOMATIC_TRACK_INITIATION
+ MULTIPATH_DEVOTED_TRACKING
+ TRACK_ON_JAMMER

«idlStruct»
tracking_zone_set

«idlUnion»
Shape_Model::general_polar_v olume_type

«idlCase»
+ sector: sector_type
+ polar_volume: polar_volume_type
+ truncated_sector: truncated_sector_type
+ truncated_polar_volume: truncated_polar_volume_type

short

«idlTypedef»
tracking_zone_id_type

A

+zone

0..*
Open Architecture Radar Interface Standard (OARIS), v1.0 99

7.5.6.2 track_priority_type

Type: IDLTypeDef short
Package: Tracking_Control

The meaning of track_priority_type is to assign a priority among a set of tracks based on some criteria (i.e., subsystem’s
time dedicated to a track analysis).

Example of values:

1. Track While Scan (TWS)

2. Low Priority Target (LPT)

3. High Priority Target (HPT)

7.5.6.3 tracking_zone_set

Type: IDLStruct
Package: Tracking_Control

This struct contains zero to many tracking zones which must be set/reset by the CMS.

7.5.6.4 tracking_zone

Type: IDLStruct
Package: Tracking_Control

This struct identifies a tracking zone.

7.5.6.5 tracking_zone_type

Type: IDLEnum
Package: Tracking_Control

Identifies the type of a tracking zone.

track_priority track_priority_type

identification_assigned_type identity_type

Table 7.113 - Attributes of IDLStruct tracking_zone

Attribute Notes

enable boolean Indicates whether the CMS is enabling or disabling a tracking zone.

shape general_polar_volume_type This is the polar volume of the zone.

tracking_type tracking_zone_type This indicates the tracking zone type.

tracking_zone_id tracking_zone_id_type A unique identifier for the tracking zone.

Table 7.112 - Attributes of IDLStruct track_info
100 Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.6.6 tracking_zone_id_type

Type: IDLTypeDef short
Package: Tracking_Control

This typedef is used to identify a specific tracking zone.

7.6 Radar_Domain

Parent Package: Domain_Model

This package contains the Domain Models for the Air Engagement Support, Engagement Support, Missile Guidance,
Search, and Surface Engagement Support services.

7.6.1 Air_Engagement_Support

Parent Package: Radar_Domain

Figure 7.43 - Domain Model (Logical diagram)

Table 7.114 - Attributes of IDLEnum tracking_zone_type

Attribute Notes

AUTOMATIC_TRACK_INITIATION Zones where the sensor is allowed to auto initiate new tracks. Depending
on the sensor type and its capabilities, such a type of zones may be
delimited in azimuth only, or both in azimuth and elevation, or may have
further range bounds, and in some cases also additional constraints (such
as target type, velocity bounds, etc.).

MULTIPATH_DEVOTED_TRACKING Sectors where the sensor is required to use, for tracking activities,
devoted waveforms to reduce the multipath effects. This capability is
usually provided by multifunctional radars. Such a type of sectors is
usually limited in azimuth only, below a defined elevation.

TRACK_ON_JAMMER Sectors where the sensor is allowed to manage Track-On-Jammer.
Depending on the sensor type and its capabilities, such a type of sectors
may be delimited either in azimuth only or both in azimuth and elevation.

 class Domain Model

«idlStruct»
expected_hit_data_type

+ expected_hit_time: time_type
+ track_id_descriptor: sensor_track_id_type

«idlStruct»
projectile_kinematics_type

+ time_stamp: time_type
+ position_descriptor: position_coordinate_type
+ velocity_descriptor: velocity_coordinate_type

«idlStruct»
miss_indication_data_type

+ miss_distance: polar_position_type
+ time_stamp: time_type

+kinematics_descriptor

1

Open Architecture Radar Interface Standard (OARIS), v1.0 101

7.6.1.1 expected_hit_data_type

Type: IDLStruct
Package: Air_Engagement_Support

Expected hit identifies the target and the time a hit is expected. This data is used to initiate the evaluation of a miss
indication within the radar.

7.6.1.2 miss_indication_data_type

Type: IDLStruct
Package: Air_Engagement_Support

Is sent once a hit or miss is noted.

7.6.1.3 projectile_kinematics_type

Type: IDLStruct
Package: Air_Engagement_Support

Identifies the kinematics of the projectile that is expected to hit the target.

Table 7.115 - Attributes of IDLStruct expected_hit_data_type

Attribute Notes

expected_hit_time time_type Time when projectile is expected to hit the target.

track_id_descriptor sensor_track_id_type The target track id.

Table 7.116 - Attributes of IDLStruct miss_indication_data_type

Attribute Notes

miss_distance polar_position_type Closest distance of the projectile to the target expressed in polar
coordinates.

time_stamp time_type Closest time of approach of the projectile to the target.

Table 7.117 - Attributes of IDLStruct projectile_kinematics_type

Attribute Notes

time_stamp time_type The timestamp when the kinematics was valid/measured.

position_descriptor position_coordinate_type The projectile’s position.

velocity_descriptor velocity_coordinate_type The projectile’s velocity.
102 Open Architecture Radar Interface Standard (OARIS), v1.0

7.6.2 Engagement_Support

Parent Package: Radar_Domain

Figure 7.44 - Domain Model (Logical diagram)

7.6.2.1 available_fire_control_channels_type

Type: IDLTypeDef unsigned short
Package: Engagement_Support

The number/amount of available fire control channels.

7.6.2.2 fire_control_channel_id_type

Type: IDLTypeDef unsigned short
Package: Engagement_Support

The fire control channel ID as assigned by the subsystem.

7.6.2.3 kill_assessment_result_type

Type: IDLEnum
Package: Engagement_Support

The possible outcomes of a kill assessment.

Table 7.118 - Attributes of IDLEnum kill_assessment_result_type

Attribute Notes

PROBABLE_KILL Kill Probability > 50%

 class Domain Model

unsigned short

«idlTypedef»
available_fire_control_channels_type

unsigned short

«idlTypedef»
fire_control_channel_id_type

«idlStruct»
kinematics_type

+ orientation: coordinate_orientation_type
+ position: cartesian_position_type
+ reference_position: coordinate_origin_type
+ time_stamp: time_type
+ velocity: cartesian_velocity_type
+ coordinate_kind: coordinate_kind_type

«idlEnum»
kill_assessment_result_type

+ PROBABLE_KILL
+ PROBABLE_MISS
+ NO_RESULT

«idlUnion»
Coordinates_and_Positions::v elocity_coordinate_type

«idlCase»
+ cartesian_velocity: cartesian_velocity_type
+ polar_velocity: polar_velocity_type
+ wgs84_velocity: wgs84_velocity_type

notes
To offer flexibil ity, three variants of coordinate system representation are supported
- corresponding to the coordinate_kind_type enumerate. An implementation should
support one kind for each relevant service as defined by the
coordinate_specification_type value, and it should only send data of that variant
and it should check that all data received is of that variant. It should not implement
conversion of data in an unexpected variant. Receipt of such data constitutes an
error in the operation of the interface.
Open Architecture Radar Interface Standard (OARIS), v1.0 103

7.6.2.4 kinematics_type

Type: IDLStruct
Package: Engagement_Support

Target position/kinematics for which a fire control channel is requested to designate.

PROBABLE_MISS Kill Probability < 50%

NO_RESULT Assessment indeterminate

Table 7.119 - Attributes of IDLStruct kinematics_type

Attribute Notes

orientation coordinate_orientation_type

position cartesian_position_type

reference_position coordinate_origin_type

time_stamp time_type

velocity cartesian_velocity_type

coordinate_kind coordinate_kind_type

Table 7.118 - Attributes of IDLEnum kill_assessment_result_type
104 Open Architecture Radar Interface Standard (OARIS), v1.0

7.6.3 Missile_Guidance

Parent Package: Radar_Domain

Figure 7.45 - Missile Guidance - Track (Logical diagram)

Figure 7.46 - Illumination (Logical diagram)

 class Missile Guidance - Track

«idlStruct»
System_Track::system_track_type

+ simulated: boolean
+ time_of_information: time_type
+ position_coordinate_system: coordinate_specification_type
+ position: position_coordinate_type
+ velocity_coordinate_system: coordinate_specification_type
+ velocity: velocity_coordinate_type
+ position_accuracy_coordinate_system: coordinate_specification_type
+ position_accuracy: position_accuracy_coordinate_type
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ max_range_limit: range_coordinate_type [0..1]

«key»
+ system_track_number: system_track_id_type

A system track may be based on a sensor track
(produced by a sensor on the same platform), but
may also be based on a link received track (not
modelled).

unsigned long

«idlTypedef»
Common_Types::

system_track_id_type

«idlUnion»
track_id_type

«idlCase»
+ sensor_track_id: sensor_track_id_type
+ system_track_id: system_track_id_type

notes
The track referred to by a missile guidance
command may either be a system track (provided
by the CMS) or a sensor track (if the object is
already tracked by the sensor). Therefore, the
track_id(s) in the missile guidance command may
be a sensor_track_id or a missile_track_id.

On the same platform, different objects (targets
and own missiles) may be tracked by different
sensor types (e.g 3D radar, or ESM).
Therefore, for the same interface with a sensor, in
successive missile_guidance commands, the
referred system tracks may be a cartesian
point_track at one time and polar bearing_track at
the next time.

 class Illumination

«idlStruct»
illumination_request_type

+ target_track_id: track_id_type
+ own_missile_track_id: track_id_type [0..*]
+ i l lumination_period: absolute_duration_type
+ frequency_channel: frequency_channel_type [0..1]
+ additional_parameters: anonymous_blob_type

unsigned short

«idlTypedef»
frequency_channel_type
Open Architecture Radar Interface Standard (OARIS), v1.0 105

Figure 7.47 - Missile Uplink (Logical diagram)

Figure 7.48 - Missile Downlink (Logical diagram)

7.6.3.1 downlink_report

Type: IDLStruct
Package: Missile_Guidance

Information downlinked by the missile to the radar.

Table 7.120 - Attributes of IDLStruct downlink_report

Attribute Notes

own_missile_track_id track_id_type

time_of_receipt time_type

downlink_content anonymous_blob_type

 class Missile Uplink

«idlStruct»
uplink_request_type

+ own_missile_track_id: track_id_type
+ frequency_channel: frequency_channel_type [0..1]
+ request_info: anonymous_blob_type

«idlStruct»
uplink_report_type

+ own_missile_track_id: track_id_type
+ uplink_info: anonymous_blob_type [0..1]

unsigned short

«idlTypedef»
frequency_channel_type

 class Missile Downlink

«idlStruct»
downlink_report

+ own_missile_track_id: track_id_type
+ time_of_receipt: time_type
+ downlink_content: anonymous_blob_type

«idlStruct»
downlink_request

+ own_missile_track_id: track_id_type
+ listening_period: absolute_duration_type
+ frequency_channel: frequency_channel_type [0..1]
+ additional_parameters: anonymous_blob_type

unsigned short

«idlTypedef»
frequency_channel_type
106 Open Architecture Radar Interface Standard (OARIS), v1.0

7.6.3.2 downlink_request

Type: IDLStruct
Package: Missile_Guidance

Request to downlink

7.6.3.3 frequency_channel_type

Type: IDLTypeDef unsigned short
Package: Missile_Guidance

A frequency channel identifies a specific radar frequency.

7.6.3.4 illumination_request_type

Type: IDLStruct
Package: Missile_Guidance

Semantics of selects association is implementation specific.

7.6.3.5 track_id_type

Type: IDLUnion
Package: Missile_Guidance

The track referred to by a missile guidance command may either be a system track (provided by the CMS) or a sensor
track (if the object is already tracked by the sensor). Therefore, the track_id(s) in the missile guidance command may be
a sensor_track_id or a missile_track_id.

Table 7.121 - Attributes of IDLStruct downlink_request

Attribute Notes

own_missile_track_id track_id_type

listening_period absolute_duration_type Start of period during which downlinks shall be received.

frequency_channel frequency_channel_type [0..1]

additional_parameters anonymous_blob_type

Table 7.122 - Attributes of IDLStruct illumination_request_type

Attribute Notes

target_track_id track_id_type

own_missile_track_id track_id_type [0..*]

illumination_period absolute_duration_type

frequency_channel frequency_channel_type [0..1]

additional_parameters anonymous_blob_type

Table 7.123 - Attributes of IDLUnion track_id_type

Attribute Notes

«idlCase» sensor_track_id sensor_track_id_type

«idlCase» system_track_id system_track_id_type
Open Architecture Radar Interface Standard (OARIS), v1.0 107

7.6.3.6 uplink_report_type

Type: IDLStruct
Package: Missile_Guidance

A report from uplink

7.6.3.7 uplink_request_type

Type: IDLStruct
Package: Missile_Guidance

A request to downlink

7.6.4 Search

Parent Package: Radar_Domain

Figure 7.49 - Domain Model (Logical diagram)

7.6.4.1 cued_search_cue_type

Type: IDLStruct
Package: Search

Table 7.124 - Attributes of IDLStruct uplink_report_type

Attribute Notes

own_missile_track_id track_id_type

uplink_info anonymous_blob_type [0..1] * optional *

Table 7.125 - Attributes of IDLStruct uplink_request_type

Attribute Notes

own_missile_track_id track_id_type

frequency_channel frequency_channel_type [0..1] * optional *

request_info anonymous_blob_type

 class Domain Model

«idlStruct»
cued_search_cue_type

+ speed_interval: speed_interval_type [0..1]
+ volume: general_polar_volume_type
+ coordinate_orientation: coordinate_orientation_type

«idlStruct»
cued_search_report_type

+ found_track_id: sensor_track_id_type [0..1]

+original_cue
108 Open Architecture Radar Interface Standard (OARIS), v1.0

Type used for specifying the constraints on a cued search.

7.6.4.2 cued_search_report_type

Type: IDLStruct
Package: Search

Data returned to the CMS to indicate the results of a cued search.

7.6.5 Surface_Engagement_Support

Parent Package: Radar_Domain

Figure 7.50 - Domain Model (Logical diagram)

Table 7.126 - Attributes of IDLStruct cued_search_cue_type

Attribute Notes

speed_interval speed_interval_type [0..1] The range of track-speed to search for from the cue.

volume general_polar_volume_type The region in the environment, in which the cue to search for
tracks is to be performed.

coordinate_orientation coordinate_orientation_type The orientation of the polar coordinates used in this class. Note
that the origin is always the sensor reference point and that the
coordinate system is always polar.

Table 7.127 - Attributes of IDLStruct cued_search_report_type

Attribute Notes

found_track_id sensor_track_id_type [0..1]

 class Domain Model

unsigned short

«idlTypedef»
splash_spotting_area_id_type

«idlStruct»
splash_spotting_area_type

+ shape: truncated_sector_type
+ area_id: splash_spotting_area_id_type

«idlStruct»
splash_spotting_area_position_type

+ azimuth_max: azimuth_coordinate_type
+ azimuth_min: azimuth_coordinate_type
+ range_max: range_coordinate_type
+ range_min: range_coordinate_type

«idlStruct»
splash_spotting_area_set_type

unsigned long

«idlTypedef»
Track_Reporting::sensor_track_id_type

+splash_spotting_area_descriptor 0..*
Open Architecture Radar Interface Standard (OARIS), v1.0 109

7.6.5.1 splash_spotting_area_id_type

Type: IDLTypeDef unsigned short
Package: Surface_Engagement_Support

The area ID assigned by the sensor.

7.6.5.2 splash_spotting_area_position_type

Type: IDLStruct
Package: Surface_Engagement_Support

The area definition from the User (CMS) when Splash Spotting is defined using the service “activate splash spotting area
by position.” The minimum and maximum available sizes are defined in “Manage Subsystem Parameters.”

7.6.5.3 splash_spotting_area_set_type

Type: IDLStruct
Package: Surface_Engagement_Support

A set consisting of splash spotting areas.

7.6.5.4 splash_spotting_area_type

Type: IDLStruct
Package: Surface_Engagement_Support

Definition of a single splash spotting area.

7.7 Subsystem_Services

Parent Package: Service_Interfaces

Contains services associated with the Subsystem Domain.

Table 7.128 - Attributes of IDLStruct splash_spotting_area_position_type

Attribute Notes

azimuth_max azimuth_coordinate_type when max is less than min, areas covers the north azimuth

azimuth_min azimuth_coordinate_type when min is less than max, areas covers the north azimuth

range_max range_coordinate_type limited to less than or equal to instrumented range

range_min range_coordinate_type limited to greater than or equal to minimum visible range

Table 7.129 - Attributes of IDLStruct splash_spotting_area_type

Attribute Notes

shape truncated_sector_type Shape and size of the splash spotting area

area_id splash_spotting_area_id_type Area ID of the splash spotting area.
110 Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.1 Encyclopaedic_Support

Parent Package: Subsystem_Services

7.7.1.1 Receive_Encyclopaedic_Data

Parent Package: Encyclopaedic_Support

7.7.1.1.1 Receive_Encyclopaedic_Data_CMS

Type: IDLInterface common_use_case_interface
Package: Receive_Encyclopaedic_Data

This interface describes the process whereby the subsystem receives encyclopedic data. Such data is used by the
subsystem to perform self-adaptation to the prevailing environmental conditions.

This interface is modeled as a control interaction between the CMS and the subsystem rather than a data flow interaction.

The CMS controls the loading of subsystem encyclopaedic data by sending the location of the data, rather than sending
the data itself. Of course an implementation may move the encyclopaedic data around a file system beforehand, but that
is outside the scope of this standard.

The subsystem is aware of its real-time geographic position and orientation.

It is expected that the transfer of this data would be initiated at the start of the ‘mission of the day.’ Updates would only
be envisaged when the current data set became inapplicable to the current mission.

Specific encyclopedic data might be requested by the subsystem. Alternatively, a default set of summary data is sent.
Such data, which is an example of ‘reference’ data, would generally be non-sensor in origin and static i.e., not changing
in real-time. In the simplest case this data might simply define clutter areas and known jammer locations to assist the
subsystem in effecting suitable mitigation for these effects. For a subsystem such as a more complex multi-function radar
this might include relevant extracts from a commercial shipping database (Lloyd’s, etc.), giving shipping lanes or ship
movements or civil airline flight plan data (Civil Aviation Authority, etc.), locations of wind-farms, major highways,
significant structures and potential sources of interference, such as other radars, including consorts, cellular phone masts.
etc. This data would be used by the subsystem to contribute to the tactical picture. Alternatively, it could be used within
the automatic tracking function to enable the identification/elimination from the track picture of non-hostile tracks. Such
data could also include, for example, the reference data types communicated via Link 16 such as hazard areas and other
fixed point type data. Navigational charts might also be a part of such data. The subsystem VOI (volume of interest) or
other filter mechanisms might be supplied in a request from the actor.

Pre-condition: Technical State - The subsystem is in technical state STANDBY, READY, or ONLINE.

Pre-condition: Mastership Required - The CMS has mastership.

Pre-condition: Subsystem Services Provide - Subsystem Services has completed successfully, in particular this
service is available.

Post-condition: Success - The subsystem has received updated Encyclopedic Data.

Post-condition: No Success - The subsystem has not received updated Encyclopedic Data.
Open Architecture Radar Interface Standard (OARIS), v1.0 111

7.7.1.1.2 Receive_Encyclopaedic_Data_Sub

Type: IDLInterface
Package: Receive_Encyclopaedic_Data

Table 7.130 - Methods of IDLInterfaceReceive_Encyclopaedic_Data_CMS

Method Notes Parameters

encyclopaedic_data_loaded () The subsystem responds to the CMS
that the encyclopaedic data
previously requested has been
loaded.

request_id_type request_id
The unique id for this request - corresponds to
the parameter in the load_encyclopaedic_data
request.

Table 7.131 - Methods of IDLInterfaceReceive_Encyclopaedic_Data_Sub

Method Notes Parameters

load_encyclopaedic_data () The CMS requests the subsystem to
load encyclopaedic data of a
particular type from a particular
location.

request_id_type request_id
The unique identifier for this request.

url_type url
The location of the file containing the
encyclopaedic data.

data_descriptor_type data_descriptor
A description of the type of encyclopaedic data
(e.g., name of the data set). It is expected that
implementations will specify a list of descriptors
known to particular subsystems. Such a list may be
accessible at run-time through the Manage
Subsystem Parameters interface.
112 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.51 - Alternate Flow - Receive Encyclopaedic Data (Sequence diagram)

Figure 7.52 - Basic Flow - Receive Encyclopaedic Data (Sequence diagram)

7.7.2 Extended_Subsystem_Control

Parent Package: Subsystem_Services

Contains interfaces for the Extended Subsystem Control service.

 sd Alternate Flow - Receive Encyclopaedic Data

«idlInterface»

Receive_Encyclopaedic_Data_CMS

«idlInterface»

Receive_Encyclopaedic_Data_Sub

Negative
Acknowledgement

Positive
Acknowledgement

load_encyclopaedic_data(request_id_type, url_type, data_descriptor_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)

 sd Basic Flow - Receiv e Encyclopaedic Data

«idlInterface»

Receive_Encyclopaedic_Data_CMS

«idlInterface»

Receive_Encyclopaedic_Data_Sub

load_encyclopaedic_data(request_id_type, url_type, data_descriptor_type)

receive_acknowledgement(request_id_type,
request_ack_type)

encyclopaedic_data_loaded(request_id_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 113

7.7.2.1 Manage Physical Configuration

Parent Package: Extended_Subsystem_Control

Contains operations and sequence diagrams for the Manage Physical Configuration interface.

7.7.2.1.1 Manage_Physical_Configuration_CMS

Type: IDLInterface common_use_case_interface
Package: Manage Physical Configuration

The purpose of this interface is to provide a mechanism to exchange a physical configuration data file between a
subsystem and the CMS (potentially xml format). The exact format of the file is subsystem specific. The purpose of the
file is to support the maintainer with facilities to configure the internal parts of the subsystem; also to be used as
integration support.

Additional Information

There are at least two cases where the CMS would provide a sub-system’s physical configuration. Case 1 is when the sub-
system was able to detect a configuration change and the data must be manually entered in sub-system configuration data
(e.g., a servo type and serial number). Case 2 is when the sub-system is being developed and changes to the configuration
which cause changes in system behavior are being tested.

Pre-condition: Subsystem must be in a STANDBY state in order for the CMS to request changes to Physical
Configuration Data. This precondition does not apply if the CMS is only requesting current Physical Configuration Data
to be provided by the subsystem.

Pre-condition: CMS must have mastership in order for the CMS to request changes to Physical Configuration Data. This
precondition does not apply if the CMS is only requesting current Physical Configuration Data to be provided by the
subsystem.

Post-condition: For a change in Physical Configuration Data Request, configuration data is properly updated.

7.7.2.1.2 Manage_Physical_Configuration_Sub

Type: IDLInterface
Package: Manage Physical Configuration

Table 7.132 - Methods of IDLInterface Manage_physical_Configuration_CMS

Method Notes Parameters

receive_physical_configuration () Interface used by CMS to receive a url
to access physical configuration data
from the subsystem.

configuration_url_type
configuration_url

request_id_type request_id

receive_physical_configuration_success () Interface used by CMS to receive an
indication from the subsystem that it
has successfully changed its physical
configuration data.

request_id_type request_id
114 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.53 - Manage Physical Configuration - Change (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem changing its physical configuration data (also depicts
alternate rejection and error paths).

Table 7.133 - Methods of IDLInterface Manage_Physical_Configuration_Sub

Method Notes Parameters

change_physical_configuration () Interface used by the subsystem to receive
requests from the CMS to change its physical
configuration data to align with data located at
the url specified in the request.

request_id_type request_id

configuration_url_type
configuration_url

provide_physical_configuration () Interface used by the subsystem to receive
requests from the CMS to provide its current
physical configuration data.

request_id_type request_id

 sd Manage Physical Configuration - Change

«idlInterface»

Manage_Physical_Configuration_CMS

«idlInterface»

Manage_Physical_Configuration_Sub

alt

[Basic Flow]

[Request Rejected]

[Error Encountered]

change_physical_configuration(request_id_type,
configuration_url_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_physical_configuration_success(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 115

Figure 7.54 - Manage Physical Configuration - Request (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem report on its current physical configuration data
(also depicts alternate rejection and error paths).

7.7.2.2 Perform Offline Test

Parent Package: Extended_Subsystem_Control

Contains the interface for offline testing.

7.7.2.2.1 Perform_Offline_Test_CMS

Type: IDLInterface common_use_case_interface
Package: Perform Offline Test

This is used to instruct the subsystem to perform offline test and return the results to the CMS. The nature of the offline
tests is subsystem specific.

Pre-condition: Provide Subsystem Services must have executed successfully.

Pre-condition: The CMS must have Mastership.

 sd Manage Physical Configuration - Request

«idlInterface»

Manage_Physical_Configuration_CMS

«idlInterface»

Manage_Physical_Configuration_Sub

alt

[Basic Flow]

[Request Rejected]

[Error Encountered]

provide_physical_configuration(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_physical_configuration(configuration_url_type,
request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
116 Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: The subsystem may be in any Technical State except for ONLINE.

Post-condition: For the response FAILED, the subsystem transitions to Technical State FAILED, but otherwise remains
in the previous Technical State.

7.7.2.2.2 Perform_Offline_Test_Sub

Type: IDLInterface
Package: Perform Offline Test

Table 7.134 - Methods of IDLInterfacePerform_Offline_Test_CMS

Method Notes Parameters

receive_detailed_test_results () Provides the CMS with subsystem specific
information concerning offline test
failures.

request_id_type request_id
offline_test_result_details_type
offline_test_detailed_results

receive_test_results () Informs the CMS whether the offline tests
passed, passed partially, or failed.

request_id_type request_id

offline_test_result_type test_results

Table 7.135 - Methods of IDLInterfacePerform_Offline_Test_Sub

Method Notes Parameters

perform_tests () Instructs the subsystem to perform the
offline tests.

request_id_type request_id

offline_test_type test_name
Allows a particular test to be selected. If
null, all tests are performed.

request_detailed_test_results () Asks the subsystem to provide detailed
information on the failures.

request_id_type request_id
Open Architecture Radar Interface Standard (OARIS), v1.0 117

Figure 7.55 - Perform Offline Test (Sequence diagram)

This shows the required sequential behavior for Perform_Offline_Test. See diagram embedded notes for further
explanation.

7.7.2.3 Restart

Parent Package: Extended_Subsystem_Control

Contains operations and sequence diagrams for the Restart interface.

7.7.2.3.1 Restart_CMS

Type: IDLInterface common_use_case_interface
Package: Restart

The purpose of this interface is to cause a normal transition to STANDBY and then to READY states as defined by
Manage Technical State.

Pre-condition: Sub-system is in ONLINE, READY, FAILED, BIT, or CALIBRATION.

 sd Perform Offline Test

«idlInterface»

Perform_Offline_Test_CMS

«idlInterface»

Perform_Offline_Test_Sub

The subsystem
executes the offl ine
tests

opt Detailed results required

In the event of a partial
pass or fai lure, detai led
results from the last test
may be requested.

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The test request is
rejected for some
reason

Testing starts but fails
to complete for some
reason

perform_tests(request_id_type, offl ine_test_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_test_results(request_id_type, offl ine_test_result_type)

request_detailed_test_results(request_id_type)

receive_detailed_test_results(request_id_type, offl ine_test_result_details_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
118 Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: CMS has mastership of sub-system.

Post-condition: Sub-system is in READY state if successful, otherwise current state is reported by subsystem.

7.7.2.3.2 Restart_Sub

Type: IDLInterface
Package: Restart

Figure 7.56 - Basic Flow - Restart (Sequence diagram)

Basic flow for CMS requesting the subsystem to transition to STANDBY followed by a transition to READY.

Table 7.136 - Methods of IDLInterface Restart_CMS

Method Notes Parameters

receive_restart_state () Interface used by CMS to receive an
indication from the subsystem that it has
successfully performed restart.

request_id_type request_id

technical_state_type technical_state

Table 7.137 - Methods of IDLInterface Restart_Sub

Method Notes Parameters

perform_restart () Interface used by the subsystem to receive
a request from the CMS to execute a
restart.

request_id_type request_id

 sd Basic Flow - Restart

«idlInterface»

Restart_CMS

«idlInterface»

Restart_Sub

perform_restart(request_id_type)

receive_acknowledgement(request_id,
request_ack)

receive_restart_state(request_id_type,
technical_state_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 119

Figure 7.57 - Alternative Flow - Restart (Sequence diagram)

Alternate flow for CMS requesting the subsystem to transition to STANDBY followed by a transition to READY (depicts
rejection and error paths).

7.7.2.4 Shutdown

Parent Package: Extended_Subsystem_Control

Contains operations and sequence diagrams for the Shutdown interface.

7.7.2.4.1 Shutdown_CMS

Type: IDLInterface common_use_case_interface
Package: Shutdown

The purpose of this interface is to transition the sub-system to the STANDBY state from any other state as defined by
Manage Technical State. Note: this shall cause the Subsystem to cease radiating if it is in an ONLINE state with
emissions enabled.

Pre-condition: Subsystem is in ONLINE, READY, FAILED, BIT, or CALIBRATION.

Pre-condition: CMS has mastership of subsystem.

 sd Alternativ e Flow - Restart

«idlInterface»

Restart_CMS

«idlInterface»

Restart_Sub

alt Alternativ e Flows

[Subsystem rejects request to restart]

[Subsystem fails to restart]

command is
successfully
acknowledged but fails
before completion

perform_restart(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id,
error_reason)

receive_restart_state(request_id_type,
technical_state_type)
120 Open Architecture Radar Interface Standard (OARIS), v1.0

Post-condition: Sub-system is in STANDBY state if successful, otherwise the current state is reported by the subsystem.

7.7.2.4.2 Shutdown_Sub

Type: IDLInterface
Package: Shutdown

Figure 7.58 - Basic Flow - Shutdown (Sequence diagram)

Basic flow for CMS requesting the subsystem to transition to STANDBY.

Table 7.138 - Methods of IDL Interface Shutdown_CMS

Method Notes Parameters

receive_shutdown_state () Interface used by CMS to receive an
indication from the subsystem that it has
successfully performed shutdown.

request_id_type request_id

technical_state_type technical_state

Table 7.139 - Methods of IDL Interface Shutdown_Sub

Method Notes Parameters

perform_shutdown () Interface used by the subsystem to
receive a request from the CMS to
execute a shutdown.

request_id_type request_id

 sd Basic Flow - Shutdown

«idlInterface»

Shutdown_CMS

«idlInterface»

Shutdown_Sub

perform_shutdown(request_id_type)

receive_acknowledgement(request_id,
request_ack)

receive_shutdown_state(request_id_type,
technical_state_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 121

Figure 7.59 - Alternative Flow - Shutdown (Sequence diagram)

Alternate flow for CMS requesting the subsystem to transition to STANDBY (depicts rejection and error paths).

7.7.2.5 Startup

Parent Package: Extended_Subsystem_Control

Contains operations and sequence diagrams for the Startup interface.

7.7.2.5.1 Startup_CMS

Type: IDLInterface common_use_case_interface
Package: Startup

The purpose of this interface is to cause a normal transition from the STANDBY state to the READY state using the
transitions defined in the Manage Technical State service.

Pre-condition: Subsystem is in STANDBY State.

 sd Alternativ e Flow - Shutdown

«idlInterface»

Shutdown_CMS

«idlInterface»

Shutdown_Sub

alt Alternativ e Flows

[Subsystem rejects request to shutdown]

[Subsystem reports shutdown fai lure]

command is
successfully
acknowledged but fails
before completion

perform_shutdown(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id,
error_reason)

receive_shutdown_state(request_id_type,
technical_state_type)
122 Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: CMS has mastership of subsystem.

Post-condition: Subsystem is in READY state if successful. If not execute successful, current state shall be reported by
subsystem.

7.7.2.5.2 Startup_Sub

Type: IDLInterface
Package: Startup

Figure 7.60 - Basic Flow -Startup (Sequence diagram)

Basic flow for CMS requesting the subsystem to transition from STANDBY to READY.

Table 7.140 - Methods of IDLInterfaceStartup_CMS

Method Notes Parameters

receive_startup_state () Interface used by CMS to receive an
indication from the subsystem that it has
successfully performed startup.

request_id_type request_id

technical_state_type technical_state

Table 7.141 - Methods of IDLInterfaceStartup_Sub

Method Notes Parameters

perform_startup () Interface used by the subsystem to receive
a request from the CMS to execute startup.

request_id_type request_id

 sd Basic Flow -Startup

«idlInterface»

Startup_CMS

«idlInterface»

Startup_Sub

perform_startup(request_id_type)

receive_acknowledgement(request_id,
request_ack)

receive_startup_state(request_id_type,
technical_state_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 123

Figure 7.61 - Alternative Flow - Startup (Sequence diagram)

Alternate flow for CMS requesting the subsystem to transition from STANDBY to READY (depicts rejection and error
paths).

7.7.3 Recording_and_Replay

Parent Package: Subsystem_Services

Contains the interfaces controlling recording and replay.

7.7.3.1 Control_Recording

Parent Package: Recording_and_Replay

 sd Alternativ e Flow - Startup

«idlInterface»

Startup_CMS

«idlInterface»

Startup_Sub

alt Alternativ e Flows

[Subsystem rejects request to startup]

[Subsystem fails to startup]

command is
successfully
acknowledged but fails
before completion

perform_startup(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id,
error_reason)

receive_startup_state(request_id_type,
technical_state_type)
124 Open Architecture Radar Interface Standard (OARIS), v1.0

Contains the interface controlling the recording of information.

7.7.3.1.1 Control_Recording_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Recording

The interface describes how the CMS controls the recording of information. Such information may be used to support:

• Setting-to Work/Commissioning

• Equipment monitoring

• Performance monitoring and evaluation

• ‘Black Box’ recording

• Safety of Life at Sea (SOLAS) recording

• De-briefing

• Training

• Post exercise analysis

For the purposes of this interface, ‘recording’ is defined as the synchronous capture of real-time information at a defined
rate. Provision of additional ‘live’ real-time data for instrumentation purposes, i.e., for display rather than recording, is
outside the scope.

Each record within the recording must be identified and time-stamped.
The operation of the recording function must not affect normal operation of the subsystem.
For simplicity, concurrent recording and replay is not supported.

Pre-condition: Provide Subsystem Services must have executed successfully.

Pre-condition: The subsystem must be in Technical State READY or ONLINE

Pre-condition: The CMS must have Mastership.

Post-condition: After successful termination, the recording is available for replay via Control_Replay, using the identifier
specified.

Post-condition: In the case of abnormal termination, there is a possible fault in the recording subsystem.

7.7.3.1.2 Control_Recording_Sub

Type: IDLInterface
Package: Control_Recording

Table 7.142 - Methods of IDLInterfaceControl_Recording_Sub

Method Notes Parameters

define_recording_set () Specifies what is to be recorded. request_id_type request_id

recording_set_type
recording_parameters_list
Open Architecture Radar Interface Standard (OARIS), v1.0 125

Figure 7.62 - Control Recording (Sequence diagram)

This shows the required sequential behavior for Control_Recording. See diagram embedded notes for further explanation.

7.7.3.2 Control_Replay

Parent Package: Recording_and_Replay

Contains the interfaces controlling the replay of information; either using the original interfaces or as a data dump for
offline processing.

start_recording () Starts the recording as specified. Note that
only one recording may be running at a time.

request_id_type request_id

recording_id_type id

stop_recording () Stops the recording. request_id_type request_id

Table 7.142 - Methods of IDLInterfaceControl_Recording_Sub

 sd Control Recording

«idlInterface»

Control_Recording_CMS

«idlInterface»

Control_Recording_Sub

The subsystem records
the data as requested.

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The recording request
is rejected for some
reason

Recording starts but
fails to complete for
some reason

define_recording_set(request_id_type, recording_set_type)

receive_acknowledgement(request_id_type,
request_ack_type)

start_recording(request_id_type, recording_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

stop_recording(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
126 Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.3.2.1 Control_Replay_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Replay

This interface defines how the CMS controls the replay of information previously recorded using Control_Recording.

Replay is supported in two modes: REAL-TIME and RAW. REAL-TIME mode is used to replay in real time, or at a
multiple of real-time, data that was visible on other OARIS interfaces via the interfaces used during recording. RAW
mode is used to replay data that was visible on other OARIS interfaces and/or internal subsystem data that was not
available on other OARIS interfaces. In this case the data is merely transferred to the CMS as a set of time-tagged values
with no attempt made to reconstruct real-time behavior.

One or more recordings must have been made using Control_Recording.
For simplicity, concurrent recording and replay is not supported.

Pre-condition: Provide Subsystem Services must have executed successfully.

Pre-condition: The subsystem must be in Technical State READY or ONLINE.

Pre-condition: The CMS must have Mastership.

Pre-condition: In the case of abnormal termination, there is a possible fault in the replay subsystem.

7.7.3.2.2 Control_Replay_Sub

Type: IDLInterface
Package: Control_Replay

Table 7.143 - Methods of IDLInterfaceControl_Replay_CMS

Method Notes Parameters

end_of_recording () The subsystem has reached the end of the
recording before a stop command was
received.

request_id_type request_id

receive_recording () Used to transfer a raw recording to the
CMS.

request_id_type request_id

recording_type requested_recording
The raw recording data.

Table 7.144 - Methods of IDLInterfaceControl_Replay_Sub

Method Notes Parameters

resume_replay () Resumes replay following a stop command. request_id_type request_id

actual_time_type actual_time
The current time (time of day) at which
playback should start. This allows
synchronization of playback from different
subsystems.

replay_speed_type replay_speed
Controls the replay speed. 1.0 represents real
time.
Open Architecture Radar Interface Standard (OARIS), v1.0 127

start_replay () Starts replay as specified request_id_type request_id

replay_set_type
replay_parameters_list

recording_id_type id

actual_time_type actual_time
The current time (time of day) at which
playback should start. This allows
synchronization of playback from different
subsystems.

recorded_time_type recorded_time
The time in the recording at which playback
should start.

replay_speed_type replay_speed
Controls the replay speed. 1.0 represents real
time.

stop_replay () Stops replay request_id_type request_id

upload_recording () Requests transfer of a raw recording request_id_type request_id

recording_id_type id

Table 7.144 - Methods of IDLInterfaceControl_Replay_Sub
128 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.63 - Control Replay (Sequence diagram)

This shows the required sequential behavior for Control_Replay using real_time mode. See diagram embedded notes for
further explanation.

 sd Control Replay

«idlInterface»

Control_Replay_CMS

«idlInterface»

Control_Replay_Sub

opt resume

[replay resumed]

opt stop

[stop command issued before end]

loop optional stop/resume loop

The subsystem waits
until the specified time
then replays the data
on the interfaces where
the data was originally
recorded.

The subsystem resumes
replay of the data on
the interfaces where
the data was originally
recorded.

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The replay request is
rejected for some
reason

Processing proceeds as in case 1 (requested accepted,
processing succeeds), but a failure occurs before
completion

start_replay(request_id_type, replay_set_type,
recording_id_type, actual_time_type, recorded_time_type,
replay_speed_type)

receive_acknowledgement(request_id_type,
request_ack_type)

stop_replay(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

resume_replay(request_id_type, actual_time_type, replay_speed_type)

receive_acknowledgement(request_id_type,
request_ack_type)

end_of_recording(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 129

Figure 7.64 - Control Replay (RAW) (Sequence diagram)

This shows the required sequential behavior for Control_Replay using raw mode. See diagram embedded notes for further
explanation.

7.7.4 Simulation_Support

Parent Package: Subsystem_Services

7.7.4.1 Define_Simulation_Scenario

Parent Package: Simulation_Support

7.7.4.1.1 Define_Simulation_Scenario_CMS

Type: IDLInterface
Package: Define_Simulation_Scenario

 sd Control Replay (RAW)

«idlInterface»

Control_Replay_CMS

«idlInterface»

Control_Replay_Sub

opt stop

[stop command issued before end]

The subsystem transfers
the data to the CMS

Replay terminates

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The replay request is
rejected for some
reason

Processing proceeds as in case 1 (requested accepted, processing
succeeds), but a failure occurs before completion

upload_recording(request_id_type, recording_id_type)

receive_recording(request_id_type,
recording_type)

stop_replay(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

end_of_recording(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
130 Open Architecture Radar Interface Standard (OARIS), v1.0

This describes how the contents of a simulation scenario are communicated between the CMS and the subsystem.

The CMS provides the subsystem with a simulated environment which consists of simulated objects of different kinds.

A subsystem with built-in simulation capability may participate in this simulation not only by being a consumer of the
simulated environment but by contributing actively to it.

Radar type subsystems shall typically build simulated plots or tracks from the simulated environment, while contributing
simulated electromagnetic emissions to it. These simulated emissions may in turn be used and detected by other (ESM
type) simulations.

Weapon type subsystems when in simulation mode shall typically contribute simulated objects to the simulation that
represent the launch/firing and movement of own missiles, bullets or torpedoes and their effect on other simulated objects.
Thus CMS and subsystem both contribute to the simulated environment. Together they form a simulation federation.

The actor is the Combat Management System.

Relationship to ‘control simulation’

The definition of simulation mode and flow of commands to start/stop/freeze/resume a simulation scenario are defined in
‘control simulation.’

Relationship to provision of tracks

A radar type subsystem shall provide tracks based on information from the simulated environment, as described above.
The interfaces that deal with the provision of tracks indicate whether tracks are simulated or not under amplifying
information. This indication should be set for all tracks that are reported in the context of this interface.

Relationship to Receive geographic information

Geographic information is received by using ‘Receive geographic information.’

Pre-condition: Subsystem health state. The subsystem and the relevant subsystem services need to be in the health state
AVAILABLE or DEGRADED.

Pre-condition: CMS has mastership.

Pre-condition: Subsystem simulation mode. The subsystem must be in subsystem simulation mode ON to
participate in the simulation federation.

Pre-condition: Simulation scenario started. The actor must have started or resumed a simulation scenario.

Pre-condition: Geographic information. The subsystem may need geographic information about its simulated
surroundings available locally or by means of other interfaces in order to calculate the detectability or reachability of
simulated objects due to obstacles in the surroundings.

Table 7.145 - Methods of IDLInterface Define_Simulation_Scenario_CMS

Method Notes Parameters

write_emitter_system_data_CMS () Write emitter system data anonymous_blob_type
emitter_system_data

write_radar_beam_data () Write radar beam data anonymous_blob_type
radar_beam_data
Open Architecture Radar Interface Standard (OARIS), v1.0 131

7.7.4.1.2 Define_Simulation_Scenario_Sub

Type: IDLInterface
Package: Define_Simulation_Scenario

Figure 7.65 - Basic Flow - Define Simulation Scenario Data (Sequence diagram)

Table 7.146 - Methods of IDLInterface Define_SImulation_Scenario_Sub

Method Notes Parameters

write_emitter_system_data_Sub () Write emitter system data anonymous_blob_type emitter_system_data

write_environment_data () Write environment data anonymous_blob_type
environmental_entity_data

write_jammer_beam_data () Write jammer beam data anonymous_blob_type jammer_beam_data

write_platform_data () Write platform data anonymous_blob_type platform_data

 sd Basic Flow - Define Simulation Scenario Data

«idlInterface»

Define_Simulation_Scenario_CMS

«idlInterface»

Define_Simulation_Scenario_Sub

All information is
exchanged upon
event or change
in no specific
order.

opt

write_platform_data(anonymous_blob_type)

write_emitter_system_data(anonymous_blob_type)

write_jammer_beam_data(anonymous_blob_type)

write_environment_data(anonymous_blob_type)
132 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.66 - Basic Flow - Define Subsystem Scenario Data (Sequence diagram)

7.7.4.2 Control_Simulation

Parent Package: Simulation_Support

7.7.4.2.1 Control_Simulation_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Simulation

This service controls the simulation mode of a subsystem. This simulation mode is independent of the operational mode
of the subsystem. Simulation mode is either ON or OFF. “ON” has different meanings for different kinds of subsystems.
Effector type subsystems shall not engage real targets but shall simulate the engagement instead. Sensor type subsystems
may be fed with simulated targets which shall be reported as plots or tracks. In each case while in simulation mode “ON”
the subsystem shall strictly avoid any impact on the environment that could be the result if simulation mode was “OFF.”

The actor is the Combat Management System.

Basic Flow – Control simulation mode

Start event – command of simulation-mode

The service is triggered by the actor. The actor commands the simulation mode which may be one of the following:

• ON: This indicates that the subsystem shall operate in simulation mode.

• OFF: This indicates that the subsystem shall stop operating in simulation mode and that any current simulation shall be
terminated.

On occurrence of the trigger provision of subsystem-simulation-mode is executed.

Provision of subsystem-simulation-mode

After receipt of the simulation mode from the actor the subsystem responds with its subsystem simulation mode.

 sd Basic Flow - Define Subsystem Scenario Data

«idlInterface»

Define_Simulation_Scenario_CMS

«idlInterface»

Define_Simulation_Scenario_Sub

All information is
exchanged upon
event or change
in no specific
order.

write_emitter_system_data(anonymous_blob_type)

write_radar_beam_data(anonymous_blob_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 133

The subsystem simulation mode may be one of the two:

• ON: This indicates that the subsystem is operating in simulation mode.

• OFF: This indicates that the subsystem is not operating in simulation mode.

Basic Flow – Control Simulation (Start/Resume, Stop/Freeze)

START/RESUME simulation scenario
Only when in simulation mode ON:
Upon provision of the START/RESUME command by the actor the simulation scenario starts or is resumed after a
previously issued FREEZE.

STOP/FREEZE simulation scenario
Only when in simulation mode ON:
Upon provision of the STOP/FREEZE command by the actor the simulation scenario stops or stays frozen.
The service ends.

Provision on initialization
The simulation mode shall be provided by the actor after initialization of the CMS.

The flow of information relevant to subsystem simulation are the subject of another service: Define simulation scenario.
If simulation is stopped or frozen, simulation time of the subsystem and the actor shall be also stopped.
The synchronization of simulation time may be performed using START/RESUME command.

Pre-condition: CMS has mastership.

7.7.4.2.2 Control_Simulation_Sub

Type: IDLInterface common_use_case_interface
Package: Control_Simulation

Table 7.147 - Methods of IDLInterface Control_Simulation_CMS

Method Notes Parameters

sim_mode_status () Receive the status and mode of
simulation.

request_id_type request_id

sim_mode_status_type the_status

Table 7.148 - Methods of IDLInterface Control_Simulation_Sub

Method Notes Parameters

start_resume_session () This request shall be initiated on demand of the CMS.
If the subsystem is in simulation mode, it shall start/
resume its simulation session and acknowledges the
request.

request_id_type request_id

start_stop_sim_mode () This request shall be initiated on demand of the CMS
to activate/deactivate the simulation mode of the
subsystem. The subsystem needs to acknowledge the
request.

request_id_type request_id

start_stop_sim_mode_request_type
the_request

stop_freeze_session () This request shall be initiated on demand of the CMS.
If the subsystem is in simulation mode and the session
state is running, the subsystem needs to stop/freeze its
session and acknowledges the request.

request_id_type request_id
stop_freeze_session_request_type
the_request
134 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.67 - Basic Flow - Control Simulation Start/Resume (Sequence diagram)

Figure 7.68 - Basic Flow - Control Simulation Stop/Freeze (Sequence diagram)

 sd Basic Flow - Control Simulation Start/Resume

«idlInterface»

Control_Simulation_CMS

«idlInterface»

Control_Simulation_Sub

alt

[Accepted by Subsystem]

[Rejected by Subsystem]

request_ack.success == false

request_ack.success == true

start_resume_session(request_id_type)

receive_acknowledgement(request_id_type, request_ack)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)

 sd Basic Flow - Control Simulation Stop/Freeze

«idlInterface»

Control_Simulation_CMS

«idlInterface»

Control_Simulation_Sub

alt

[Accepted by Subsystem]

[Rejected by Subsystem]

request_ack.success == false

request_ack.success == true

stop_freeze_session(request_id_type,
stop_freeze_session_request_type)

receive_acknowledgement(request_id_type, request_ack)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 135

Figure 7.69 - Basic Flow - Control Simulation Mode (Sequence diagram)

7.7.4.3 Define_Fault_Scripts

Parent Package: Simulation_Support

7.7.4.3.1 Define_Fault_Scripts_CMS

Type: IDLInterface common_use_case_interface
Package: Define_Fault_Scripts

This enables a maintainer trainer to script a set of subsystem faults, the effects of which would be simulated for training
purposes. The faults may be scripted in relation to a specific simulation scenario. Each fault script shall include a unique
identifier.

Pre-condition: Subsystem Services Provide subsystem services has been completed successfully, in particular this service
is available.

Table 7.149 - Methods of IDLInterface Define_Fault_Scripts_CMS

Method Notes Parameters

fault_script_summary () This provides a list of all fault scripts for
a subsystem to the CMS for confirmation.

request_id_type request_id

fault_scripts_type faults
The list of fault scripts

 sd Basic Flow - Control Simulation Mode

«idlInterface»

Control_Simulation_CMS

«idlInterface»

Control_Simulation_Sub

alt

[Rejected by Subsystem]

[Accepted by Subsystem]

[Accepted by CMS]

[Rejected by CMS]

request_ack.success == false

request_ack.success == false

request_ack.success == true

request_ack.success == true

start_stop_sim_mode(request_id_type,
start_stop_sim_mode_request_type)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack)

sim_mode_status(request_id_type,
sim_mode_status_type)

receive_acknowledgement(request_id_type, request_ack)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)
136 Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.4.3.2 Define_Fault_Scripts_Sub

Type: IDLInterface
Package: Define_Fault_Scripts

Figure 7.70 - Alternative Flow - Define Fault Scripts (Sequence diagram)

Table 7.150 - Methods of IDLInterface Define_Fault_Scripts_Sub

Method Notes Parameters

add_fault_scripts () Adds the given fault scripts to the
subsystem’s simulation.

request_id_type request_id

fault_scripts_type scripts
The fault scripts to be added

remove_fault_scripts () Removes the given fault scripts from the
subsystem’s simulation.

request_id_type request_id

fault_script_ids_type fault_scripts
The ids of the fault scripts to be removed

 sd Alternativ e Flow - Define Fault Scripts

«idlInterface»

Define_Fault_Scripts_CMS

«idlInterface»

Define_Fault_Scripts_Sub

alt Unsuccessful Request

[Subsystem is unable to process request - e.g. script is not interpretable]

[Subsystem is unable to process request - e.g. a script id is not valid]

Negative
Acknowledgement

Positive
Acknowledgement

Applies to
remove_fault_scripts as well

add_fault_scripts(request_id_type,
fault_scripts_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 137

Figure 7.71 - Basic Flow - Define Fault Scripts (Sequence diagram)

7.7.4.4 Control_Fault_Scripts

Parent Package: Simulation_Support

7.7.4.4.1 Control_Fault_Scripts_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Fault_Scripts

This enables a trainee, at a CMS Console to cause the generation of predefined fault messages for training purposes (see
also Define Fault Scripts). The subsystem shall output Fault Reports to the CMS which a trainee may respond to via the
CMS Console. Fault clearance messages shall also be sent to the CMS in response to the trainee taking the appropriate
action.

Pre-condition: Technical State Subsystem is in technical state READY or ONLINE.

Pre-condition: Fault Script Subsystem has a fault scripts which has been defined previously.

Pre-condition: Mastership Required The CMS has Mastership.

Pre-condition: Subsystem Services Provide Subsystem Services has successfully completed; in particular this service is
available.

Pre-condition: Simulation Mode Simulation Mode is ON.

Post-condition: Success Subsystem has provided simulated fault and response to clearance action.

Post-condition: Failure Subsystem has not provided simulated fault and response to clearance action.

 sd Basic Flow - Define Fault Scripts

«idlInterface»

Define_Fault_Scripts_Sub

«idlInterface»

Define_Fault_Scripts_CMS

add_fault_scripts(request_id_type,
fault_scripts_type)

receive_acknowledgement(request_id, request_ack)

fault_script_summary(request_id_type,
fault_scripts_type)

remove_fault_scripts(request_id_type,
fault_script_ids_type)

receive_acknowledgement(request_id_type,
request_ack_type)

fault_script_summary(request_id_type,
fault_scripts_type)
138 Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.4.4.2 Control_Fault_Scripts_Sub

Type: IDLInterface
Package: Control_Fault_Scripts

Figure 7.72 - Alternative Flow - Control Fault Scripts (Sequence diagram)

Table 7.151 - Methods of IDLInterface Control_Fault_Scripts_Sub

Method Notes Parameters

enable_fault_script () Causes the subsystem to indicate the faults
specified by the given fault scripts when
appropriately stimulated. The faults remain in
place until they are cleared either by a call to
clear_fault or by an action on another interface
that would clear the equivalent non-simulated
fault.

request_id_type request_id

fault_script_ids_type scripts
The script ids to be enabled

clear_faults () Clears the faults defined by the given fault
scripts.

request_id_type request_id

fault_script_ids_type fault_scripts
The script ids to be cleared

 sd Alternativ e Flow - Control Fault Scripts

«idlInterface»

Control_Fault_Scripts_CMS

«idlInterface»

Control_Fault_Scripts_Sub

alt Negativ e Acknowledgement

[Subsystem is unable to enact fault condition or fault id is not recognised]

alt Negativ e Acknowledgement

[Subsystem does not recognise fault id]

enable_fault_script(request_id_type,
fault_script_ids_type)

receive_acknowledgement(request_id_type,
request_ack_type)

clear_faults(request_id_type,
fault_script_ids_type)

receive_acknowledgement(request_id_type,
request_ack_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 139

Figure 7.73 - Basic Flow - Control Fault Scripts (Sequence diagram)

7.7.5 Subsystem_Control

Parent Package: Subsystem_Services

Contains interfaces for the Subsystem Control service.

7.7.5.1 Manage Technical State

Parent Package: Subsystem_Control

Contains operations and sequence diagrams for the Manage Technical State interface.

7.7.5.1.1 Manage_Technical_State_CMS

Type: IDLInterface common_use_case_interface
Package: Manage Technical State

Manage Technical State causes the subsystem to provide or change its technical state.

 sd Basic Flow - Control Fault Scripts

«idlInterface»

Control_Fault_Scripts_Sub

«idlInterface»

Control_Fault_Scripts_CMS

enable_fault_script(request_id_type,
fault_script_ids_type)

receive_acknowledgement(request_id_type,
request_ack_type)

clear_faults(request_id_type,
fault_script_ids_type)

receive_acknowledgement(request_id_type,
request_ack_type)
140 Open Architecture Radar Interface Standard (OARIS), v1.0

Special Requirements:

Initialization: Upon initialization, reset, or power-on the sub-system shall transition to a pre-defined state and report the
current state to the CMS.

Additional Information

If a critical component of the subsystem becomes NOT AVAILABLE, the technical state shall transition to FAILED.

All states may transition to OFFLINE, but the subsystem shall only do so in emergency situations or catastrophic damage,
to indicate an uncontrolled shutdown.

Startup, Shutdown, and Restart explain the sequence of actions for nominal progression through the technical states.

Pre-condition: If the CMS requests a Technical State to change, mastership of the subsystem is required.

Pre-condition: CMS is aware of the current subsystem state.

Pre-condition: CMS is aware of the possible technical states supported by the subsystem.

Post-condition: None.

7.7.5.1.2 Manage_Technical_State_Sub

Type: IDLInterface
Package: Manage Technical State

Table 7.152 - Methods of IDLInterface Manage_Technical_State_CMS

Method Notes Parameters

receive_periodic_technical_state () Interface used by CMS to receive
periodic technical state reports from the
subsystem.

technical_state_type technical_state

receive_technical_state () Interface used by CMS to receive
technical state reports from the
subsystem which were the result of a
transition request from the CMS.

request_id_type request_id

technical_state_type technical_state

Table 7.153 - Methods of IDLInterface Manage_Technical_State_Sub

Method Notes Parameters

change_technical_state () Interface used by the subsystem to receive
requests from the CMS to change its
technical state.

request_id_type request_id

technical_state_type technical_state

provide_technical_state () Interface used by the subsystem to receive
requests from the CMS to provide its current
technical state.

request_id_type request_id

Open Architecture Radar Interface Standard (OARIS), v1.0 141

Figure 7.74 - Basic Flow - Manage Technical State - Change (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem changing its current technical state.

 sd Basic Flow - Manage Technical State - Change

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

change_technical_state(request_id_type,
technical_state_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_technical_state(request_id_type,
technical_state_type)
142 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.75 - Alternative Flow - Manage Technical State - Change (Sequence diagram)

Alternate flow depicting rejection and error cases for a CMS requesting the subsystem to change its Technical State.

 sd Alternativ e Flow - Manage Technical State - Change

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

alt Alternativ e Flows

[Invalid State Condition Requested]

[Subsystem Rejects State Change Request]

[State Change Unsuccessful]

command is
successfully
acknowledged but fails
before completion

change_technical_state(request_id_type,
technical_state_type)

receive_acknowledgement(request_id,
request_ack)

receive_acknowledgement(request_id,
request_ack)

receive_acknowledgement(request_id,
request_ack)

receive_error(request_id_type, error_reason_type)

receive_technical_state(request_id_type,
technical_state_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 143

Figure 7.76 - Basic Flow - Manage Technical State - Periodic Reporting (Sequence diagram)

Flow of events which depicts a subsystem that periodically reports its technical state (without the need for a CMS
request).

Figure 7.77 - Basic Flow - Manage Technical State - Request (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem report on its current technical state.

 sd Basic Flow - Manage Technical State - Periodic Reporting

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

loop

[Periodic or Upon Change]

receive_periodic_technical_state(technical_state_type)

 sd Basic Flow - Manage Technical State - Request

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

provide_technical_state(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_technical_state(request_id_type,
technical_state_type)
144 Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.5.2 Heartbeat_Signal

Parent Package: Subsystem_Control

7.7.5.2.1 Heartbeat_Signal_CMS

Type: IDLInterface
Package: Heartbeat_Signal

The service describes how the availability of an established communication between CMS and the subsystem as well as
the subsystem itself shall be monitored. The heartbeat signal is triggered by Control Interface Connection. The basic flow
is asynchronous.

The actor is the Combat Management System.

Pre-condition: Connection established - Provide Subsystem Services has successfully established communication
between CMS and the subsystem.

Post-condition: Interface is alive - The heartbeat has been received successful.

Post-condition: Interface is not alive - The heartbeat has not been received.

7.7.5.2.2 Heartbeat_Signal_Sub

Type: IDLInterface
Package: Heartbeat_Signal

Table 7.154 - Methods of IDLInterface Heartbeat_Signal_CMS

Method Notes Parameters

receive_subsystem_heartbeat_signal () Receive the periodic heartbeat
signal to verify, that the connection
is still alive.

unsigned long count
This parameter is used with
implementation specific semantics for
monitoring interface participant
liveliness.

Table 7.155 - Methods of IDLInterface Heartbeat_Signal_Sub

Method Notes Parameters

receive_cms_heartbeat_signal () Receive the periodic heartbeat
signal to verify, that the connection
is still alive.

unsigned long count
This parameter is used with implementation
specific semantics for monitoring interface
participant liveliness.
Open Architecture Radar Interface Standard (OARIS), v1.0 145

Figure 7.78 - Basic Flow - Heartbeat Signal (Sequence diagram)

7.7.5.3 Provide_Subsystem_Identification

Parent Package: Subsystem_Control

7.7.5.3.1 Provide_Subsystem_Identification_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Subsystem_Identification

In order to enable two interface partners to connect to each other and to open mutual communication, one partner shall
initiate and the other to answer. The intention is to let the subsystem initiate the communication.

Consequently, the subsystem introduces itself to the CMS identifying e.g., the type of subsystem, the product and its
version. That allows the CMS to decide whether it may work with that subsystem.

The actor is the Combat Management System.

The possibility that CMS and subsystem are connected without being capable to work with each other is a consequence
of a plug-&-play concept.

Although the interface is standardized the CMS may need a setup process to prepare it for a subsystem. This process shall
introduce the information necessary to configure functions of that particular CMS with respect to the subsystem.
This may also be necessary on side of the subsystem.

The preparation for a subsystem may be done by means of system configuration data which are implemented on
installation of the combat system. It does not address security information.

 sd Basic Flow - Heartbeat Signal

«idlInterface»

Heartbeat_Signal_CMS

«idlInterface»

Heartbeat_Signal_Sub

loop periodic

loop periodic

par

[Both run independently]

receive_cms_heartbeat_signal(unsigned
long)

receive_subsystem_heartbeat_signal(unsigned
long)
146 Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: CMS and Subsystem can communicate with each other.

Post-condition: CMS and subsystem may work together. CMS and subsystem have verified that they may work with each
other.

They shall do some organization regarding the communication (out of scope).

Post-condition: CMS and subsystem may not work together. The interface between CMS and subsystem is closed.

7.7.5.3.2 Provide_Subsystem_Identification_Sub

Type: IDLInterface common_use_case_interface
Package: Provide_Subsystem_Identification

Table 7.156 - Methods of IDLInterface Provide_Subsystem_Identification_CMS

Method Notes Parameters

receive_sub_identification_data () Receive the identification data
from the subsystem.

device_identification_type identification

request_id_type the_request_id

Table 7.157 - Methods of IDLInterface Provide_Subsystem_Identification_Sub

Method Notes Parameters

receive_cms_identification_data () Receive the identification data
from the CMS.

device_identification_type identification

request_id_type the_request_id
Open Architecture Radar Interface Standard (OARIS), v1.0 147

Figure 7.79 - Alternative Flow - Introduction of subsystems (Sequence diagram)

Figure 7.80 - Basic Flow - Introduction of the subsystem (Sequence diagram)

 sd Alternative Flow - Introduction of subsystems

«idlInterface»

Provide_Subsystem_Identification_CMS

«idlInterface»

Provide_Subsystem_Identification_Sub

alt Alternativ e Flows

[CMS may not work with subsystem]

[CMS may work with subsystem, but Subsystem may not work with CMS]

accepted = false

accepted = true

accepted = false

receive_sub_identification_data(device_identification_type,
request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_cms_identification_data(device_identification_type,
request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

 sd Basic Flow - Introduction of the subsystem

«idlInterface»

Provide_Subsystem_Identification_CMS

«idlInterface»

Provide_Subsystem_Identification_Sub

accepted = true

accepted = true

receive_sub_identification_data(device_identification_type,
request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_cms_identification_data(device_identification_type,
request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)
148 Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.5.4 Provide_Health_State

Parent Package: Subsystem_Control

7.7.5.4.1 Provide_Health_State_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Health_State

The service allows the CMS to monitor and evaluate the health state of the subsystem. The health state information
describes functional availability of the subsystem and the services it provides.

The service may be triggered by several possible situations:

• Periodic event, for example by internal clock

• Actor (CMS) request

• Health state change

• Initialization (start-up)

• Recovery of the subsystem after a failure

In addition to the health state being provided, additional information may be provided to the CMS. In case of a service,
the information may include a list of detected faults. In case of a subsystem, the information may include the list of
services together with their health state, and for every service which has health state other than AVAILABLE, a list of
detected faults. This two dimensional structure is called the service availability matrix.

The state NOT AVAILABLE may also describe the situation in which the service is not implemented. In this case the list
of faults shall be empty. In the state UNKNOWN, the subsystem may provide the reason for not being able to evaluate
health state (e.g., BIT process not running).

The service ends with success when the health state (possibly accompanied by additional information) is provided to the
actor.

Relationship to technical state

The reported health state of the services is dependent on the technical state.

In the technical state ONLINE, the health state of the services is determined based on the detected faults (if any).

In all technical states other than ONLINE (except OFFLINE), the health state of all services, except the service
Subsystem_Control, is NOT AVAILABLE.

The health state of the service Subsystem_Control shall then be DEGRADED, since some functions (e.g., Control Battle
Override) are not available in those technical states, and some functions are (e.g., Manage Technical State).

In the technical state OFFLINE no communication at all is possible with the CMS so the health state is not reported.

Relationship to battle override

When Battle Override is set (see service Control Battle Override), certain faults are not taken into account when
determining the health state. These overridable faults generally refer to circumstances that may cause damage to own
equipments, but do not prohibit executing the requested task.
Open Architecture Radar Interface Standard (OARIS), v1.0 149

Relationship to simulation mode

If the subsystem is in Simulation mode (technical state is ONLINE), only the faults for parts needed for the simulated
execution of the service are taken into account when determining the health state of a service.

For instance, if the transmitter is defective, the service Track_Reporting is reported AVAILABLE when in Simulation
mode, but is reported NOT AVAILABLE when not in Simulation mode.

Faults may also be simulated for training purposes (see service Define Fault Script). Therefore, irrespective of the
Simulation mode, all faults (real and simulated) are included in the reported list of detected faults, each with an indication
whether the fault is real or simulated.

If a real system part is simulated, faults of the simulated part should have a different identification.

For instance (see previous example) in Simulation mode, a simulated transmitter could be used, for which the trainer has
inserted a simulated fault.

Any faults in the real transmitter would be reported (real fault) as well as the injected fault in the simulated transmitter
(simulated fault). However, the health state of the service Track_Reporting would be based only on the status of the
simulated transmitter.

Reason for health state

Each reported health state other than AVAILABLE is accompanied by the reason(s) for that health. In this way the CMS
may for instance derive that although the technical state of the subsystem is STANDBY (and NOT AVAILABLE for that
reason), there are also faults that would prevent the service to become AVAILABLE when the technical state would be
switched to ONLINE.

Pre-condition: Subsystem technical state - The subsystem is in technical state ONLINE or READY.

Post-condition: CMS awareness - CMS is aware of the health state of the subsystem and/or its services.

7.7.5.4.2 Provide_Health_State_Sub

Type: IDLInterface
Package: Provide_Health_State

Table 7.158 - Methods of IDLInterface Provide_Health_State_CMS

Method Notes Parameters

report_fault () Report a fault to CMS fault the_fault

report_service_health () Report health of service request_id_type request_id

service_health_type health

fault_list the_fault_list

report_subsystem_health () Report health of subsystem request_id_type request_id

subsystem_health_type health
150 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.81 - Basic Flow - Fault Reporting (Sequence diagram)

Table 7.159 - Methods of IDLInterface Provide_Health_State_Sub

Method Notes Parameters

request_service_health () Request service health request_id_type request_id

service_name_type service_name

request_subsystem_health () Request subsystem health request_id_type request_id

 sd Basic Flow - Fault Reporting

«idlInterface»

Provide_Health_State_CMS

«idlInterface»

Provide_Health_State_Sub

Fault reporting on
event (occurrence
and disappearance)

report_fault(fault)
Open Architecture Radar Interface Standard (OARIS), v1.0 151

Figure 7.82 - Basic Flow - Service Health Reporting (Sequence diagram)

 sd Basic Flow - Serv ice Health Reporting

«idlInterface»

Provide_Health_State_CMS

«idlInterface»

Provide_Health_State_Sub

Service health provision
on subsystem initiative
due to:
- Initialization (start-up)
- Recovery after failure
- Health state change
- Periodic (timed)

Service health provision
on CMS request

alt

[on subsystem initiative]

[on request]

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

report_service_health(request_id_type, service_health_type,
fault_list)

request_service_health(request_id_type, service_name_type)

receive_acknowledgement(request_id_type,
request_ack_type)

report_service_health(request_id_type, service_health_type,
fault_list)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
152 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.83 - Basic Flow - Subsystem Health Reporting (Sequence diagram)

 sd Basic Flow - Subsystem Health Reporting

«idlInterface»

Provide_Health_State_CMS

«idlInterface»

Provide_Health_State_Sub

Subsystem health
provision on CMS
request

Subsystem health provision on
subsystem initiative due to:
- Initialization (start-up)
- Recovery after failure
- Health state change
- Periodic (timed)

alt

[on subsystem initiative]

[on request]

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.acccepted =
true

loop

[For all services provided by this subsystem]

Service health and corresponding fault l ists shall accompany subsystem health report only when
subsystem health is reported on request. For subsystem health provision on subsystem initiative,
the service health and corresponding fault l ists shall be reported on subsystem initiative
separately (see sequence diagram Service Health Reporting).

report_subsystem_health(subsystem_health)

request_subsystem_health(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

report_subsystem_health(request_id_type,
subsystem_health_type)

report_service_health(request_id_type, service_health_type,
fault_list)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 153

7.7.5.5 Manage_Operational_Mode

Parent Package: Subsystem_Control

7.7.5.5.1 Manage_Operational_Mode_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Operational_Mode

Subsystems provide several operational modes like long-range-detection, missile-detection, surface surveillance, etc. in
case of surveillance radar, normal tracking, slaved, joystick controlled in case of fire control radar, etc.

Operational modes summarize a set of subsystem parameters optimizing the subsystem with respect to an operational
purpose.

The names of modes of a specific type of subsystem (e.g., or a radar) differ from supplier to supplier. Consequently, they
shall be handled as configuration parameters. They shall be offered to the operator to enable him for a selection and shall
be transferred to the subsystem to achieve the intended reaction.

The definition of names of operational modes is not within the scope of this standard.

It is the CMS’s responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

In the case where the CMS does not have mastership of the subsystem, a change of the operational mode shall be
indicated by informing the CMS about the new operational mode (see service “Provide health state”).

Configuration data like the set of available operational modes may be received at runtime but may also be inserted by
means of an automatic or manual setup process. Although automatic runtime transfer of such information may be
achieved through ‘Manage Subsystem Parameters’ it is not a mandatory requirement of this standard for that mechanism
to be used.

Pre-condition: Technical state READY or ONLINE.

Pre-condition: “Manage Subsystem Parameters” executed successfully.

Pre-condition: CMS must have Mastership.

Post-condition: Service ends with success - the subsystem is in the commanded operational state, the CMS is informed
that this is the case.

Post-condition: Service ends with fail - the subsystem is still in the original operational state, the CMS has the correct
information regarding that state.

7.7.5.5.2 Manage_Operational_Mode_Sub

Type: IDLInterface
Package: Manage_Operational_Mode

Table 7.160 - Methods of IDLInterface Manage_Operational_Mode_CMS

Method Notes Parameters

report_operational_mode () The current operational mode is
reported via this interface method.

request_id_type request_id

operational_mode_type current_mode
154 Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.5.5.3 Manage_Operational_Mode_CMS

Type: ActivityPartition
Package: Manage_Operational_Mode

7.7.5.5.4 Manage_Operational_Mode_Sub

Type: ActivityPartition
Package: Manage_Operational_Mode

Figure 7.84 - Manage Operational Mode - get current operational mode (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “get current
operational mode” of the service “Manage Operational Mode.”

Table 7.161 - Methods of IDLInterface Manage_Operational_Mode_Sub

Method Notes Parameters

request_get_operational_mode () The subsystem is requested to report the
current operational mode.

request_id_type request_id

request_set_operational_mode () The subsystem is requested to change the
operational mode to the given new
operational mode.

request_id_type request_id

operational_mode_type
new_operational_mode

 sd Manage Operational Mode - get current operational mode

«idlInterface»

Manage_Operational_Mode_CMS

«idlInterface»

Manage_Operational_Mode_Sub

request_ack.success =
SUCCESS

request_ack.success =
ERROR_CODE

alt get current operational mode

[basic flow]

[alternate flow - request rejection]

[alternate flow - error]

'error_reason' is the
current operation mode
that differs from the
requested mode.

request_get_operational_mode(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_operational_mode(request_id_type, operational_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 155

Figure 7.85 - Manage Operational Mode - set operational mode (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “set
operational mode” of the service “Manage Operational Mode.”

7.7.5.6 Control_Battle_Override

Parent Package: Subsystem_Control

This package contains interfaces for the Control Battle Override service.

7.7.5.6.1 Control_Battle_Override_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Battle_Override

The subsystem is requested to set/reset the Battle Override. When Battle Override is set the subsystem disregards
warnings on circumstances which may cause damage to own equipment, typically the overtemperature protections.

It is the CMS’s responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

 sd Manage Operational Mode - set operational mode

«idlInterface»

Manage_Operational_Mode_CMS

«idlInterface»

Manage_Operational_Mode_Sub

alt set operational mode

[basic flow]

[alternate flow - request rejection]

[alternate flow - differing operational modes]

request_ack.success =
SUCCESS

request_ack.success =
ERROR_CODE

'error_reason' is the
current operation mode
that differs from the
requested mode.

alt operational mode change

[command: set operational mode]

[spontaneous operational mode change]

For spontaneous operational
mode change, request_id == 0.

request_set_operational_mode(request_id_type, operational_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_operational_mode(request_id_type, operational_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

report_operational_mode(request_id_type, operational_mode_type)

report_operational_mode(request_id_type, operational_mode_type)
156 Open Architecture Radar Interface Standard (OARIS), v1.0

Provision of the Battle Override state
Subsystem shall keep CMS informed about the current Battle Override state and its changes (if any).

Lack of mastership
In the case where CMS does not have mastership of the subsystem, CMS shall be informed about the current Battle
Override state and its changes (if any).

Relationship to the subsystem health state
As long as the Battle Override is set, the subsystem internal overtemperature indications shall not result in any heath state
set to “NOT AVAILABLE” (see Provide health state).

Pre-condition: Mastership Required - CMS has mastership of the subsystem.

Pre-condition: Subsystem Services - Provide subsystem services has been completed successfully.

Post-condition: Success - The subsystem Battle Override is set/reset as requested and CMS is informed that this is the
case.

Post-condition: No Success - The subsystem Battle Override is still equal to the original one and CMS has the correct
information regarding that state.

7.7.5.6.2 Control_Battle_Override_Sub

Type: IDLInterface
Package: Control_Battle_Override

Table 7.162 - Methods of IDLInterface Control_Battle_Override_CMS

Method Notes Parameters

battle_override_setting () This method is used by the subsystem to
return the current Battle Override state.

request_id_type request_id

battle_override_state_type
battle_override_state

Table 7.163 - Methods of IDLInterface Control_Battle_Override_Sub

Method Notes Parameters

set_battle_override () This method is used by the CMS to send
a Battle Override set/reset request to the
subsystem.

request_id_type request_id

battle_override_state_type
battle_override_state
Open Architecture Radar Interface Standard (OARIS), v1.0 157

Figure 7.86 - Basic Flow - Control Battle Override - Set/Reset (Sequence diagram)

Figure 7.87 - Alternative Flow - Control Battle Override - Set/Reset - loss of mastership (Sequence diagram)

 sd Basic Flow - Control Battle Ov erride - Set/Reset

«idlInterface»

Control_Battle_Override_Sub

«idlInterface»

Control_Battle_Override_CMS

set_battle_override(request_id_type, battle_override_state_type)

receive_acknowledgement(request_id_type, request_ack_type)

battle_override_setting(request_id_type, battle_override_state_type)

 sd Alternativ e Flow - Control Battle Ov erride - Set/Reset - loss of mastership

«idlInterface»

Control_Battle_Override_CMS

«idlInterface»

Control_Battle_Override_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fails
before completion

set_battle_override(request_id_type,
battle_override_state_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

battle_override_setting(request_id_type,
battle_override_state_type)
158 Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.5.7 Manage_Subsystem_Parameters

Parent Package: Subsystem_Control

7.7.5.7.1 Manage_Subsystem_Parameters_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Subsystem_Parameters

The service allows the actor to obtain and modify the values of parameters of the subsystem. It also provides the facilities
to retrieve the descriptions of parameters available in a certain subsystem.

The actor of the service is the Combat Management System.

The service starts when the CMS requests one of the following:

• Parameter value retrieval

• Parameter value modification

• Retrieval of parameter descriptor,

with a list of parameter names (and values in case of modification).

A parameter value may be structured (e.g., a vector or a table).

The service ends when the subsystem has provided the requested information or modified the parameter value.

It is the CMS’s responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

Parameter names used by a subsystem are to be unique within the scope of that subsystem. Requests for parameter
descriptions and to get and set current values are consequently well-defined. Parameter names may be structured using a
namespace scheme to promote uniqueness.

Unknown parameter

On receipt of a request for parameter value retrieval, parameter value modification or parameter descriptor retrieval for an
unknown parameter name, the subsystem responds with an indication “unknown parameter.” Other (correctly identified)
parameters in the same request are processed as requested.

Illegal parameter value

On receipt of a request for parameter value modification with a parameter value that is outside the allowable range of the
specified parameter, the subsystem responds with an indication “illegal parameter value” and does not change the
parameter value.

This includes inconsistencies of parameter type (e.g., real where integer is expected) and structure (e.g., vector of 2
elements, where a vector of 3 is expected).

Other parameters with legal values in the same request are modified as requested.

In case of an illegal value for an element of a structured parameter, the entire parameter remains unchanged.

Modification of parameter value

A parameter value may only be modified in the technical state(s) as specified in the descriptor of that parameter.
Open Architecture Radar Interface Standard (OARIS), v1.0 159

Security
Access to the service may be restricted to certain parts of the CMS because of security restrictions.

Pre-condition: Subsystem technical state - The subsystem is in a technical state other than OFFLINE.

Pre-condition: Mastership - The CMS has mastership of the subsystem in case of parameter value modification.

7.7.5.7.2 Manage_Subsystem_Parameters_Sub

Type: IDLInterface
Package: Manage_Subsystem_Parameters

Table 7.164 - Methods of IDLInterface Manage_Subsystem_Parameters_CMS

Method Notes Parameters

report_parameter_values () request_id_type request_id

name_value_sequence_type the_name_value_set

name_error_sequence_type the_name_error_set

report_parameter_descriptors () request_id_type request_id

descriptor_sequence the_descriptor_sequence

name_error_sequence_type the_name_error_set

Table 7.165 - Methods of IDLInterface Manage_Subsystem_Parameters_Sub

Method Notes Parameters

retrieve_parameter_values () request_id_type request_id

parameter_name_sequence_type the_name_set

modify_parameter_values () request_id_type request_id

name_value_sequence_type the_name_value_set

retrieve_parameter_descriptors () request_id_type request_id

parameter_name_sequence_type the_name_set
160 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.88 - Basic Flow - Parameter Retrieval (Sequence diagram)

 sd Basic Flow - Parameter Retriev al

«idlInterface»

Manage_Subsystem_Parameters_CMS

«idlInterface»

Manage_Subsystem_Parameters_Sub

If name_sequence is
empty, all shall be
retrieved

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

retrieve_parameter_values(request_id_type,
parameter_name_sequence_type)

receive_acknowledgement(request_id_type,
request_ack_type)

report_parameter_values(request_id_type,
name_value_sequence_type,
name_error_sequence_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 161

Figure 7.89 - Basic Flow - Parameter Value Modification (Sequence diagram)

 sd Basic Flow - Parameter Retriev al

«idlInterface»

Manage_Subsystem_Parameters_CMS

«idlInterface»

Manage_Subsystem_Parameters_Sub

If name_sequence is
empty, all shall be
retrieved

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

retrieve_parameter_values(request_id_type,
parameter_name_sequence_type)

receive_acknowledgement(request_id_type,
request_ack_type)

report_parameter_values(request_id_type,
name_value_sequence_type,
name_error_sequence_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
162 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.90 - Basic Flow - Parameter Descriptor Retrieval (Sequence diagram)

7.7.5.8 Provide_Subsystem_Services

Parent Package: Subsystem_Control

7.7.5.8.1 Provide_Subsystem_Services_CMS

Type: Interface common_use_case_interface
Package: Provide_Subsystem_Services

Subsystems offer a number of services to a CMS. Some of the services are mandatory for the type of subsystem, others
are optional. New services may be known to the CMS or may not be known.

Consequently, the CMS needs to know which services are provided by a subsystem and the subsystem needs to know
which services the CMS is able to interact with.

The services considered here are the final versions of those that are specified and defined by the rest of this standard.
Some of them are not necessarily implemented by each product of the type of subsystem but also not necessarily
supported by each CMS.

The service-related information provided by the subsystem to the CMS deals with both, the interfaces offered by the
subsystem and the interfaces expected on CMS side which are necessary to use the service.

 sd Basic Flow - Parameter Descriptor Retriev al

«idlInterface»

Manage_Subsystem_Parameters_CMS

«idlInterface»

Manage_Subsystem_Parameters_Sub

If the name_sequence
is empty, al l shall be
retrieved

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing fai led]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

retrieve_parameter_descriptors(request_id_type,
parameter_name_sequence_type)

receive_acknowledgement(request_id_type,
request_ack_type)

report_parameter_descriptors(request_id_type,
descriptor_sequence,

name_error_sequence_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 163

Lack of mastership
Mastership of the subsystem must not have an impact upon this interface.

Plug-&-Play aspect
Both sides, subsystem and CMS, shall follow a technical evolution process which is not necessarily coordinated.
Therefore, the latest subsystem version may provide a service which is not yet supported by the CMS or the CMS may be
prepared to use a service which is not provided by the subsystem.

This may also cause inconsistencies regarding the interfaces to be made available on both sides. As the subsystem may
not have an own operator display, it is intended to use the health state of the subsystem if an indication at CMS is to be
achieved saying that the interface to the CMS is not implemented properly.

Configuration data of services
The information to be provided to the CMS as information about the implemented services may include related
configuration data and may include the information which parts of the service interfaces are supported.

System integration test
After installation of a subsystem on-board, connecting the hardware interfaces with the related CMS hardware interfaces
and performing a setup process if applicable it is expected that an interface verification procedure shall be performed.
This procedure shall apply all negotiated interfaces so that an improper implementation shall turn-up at that occasion,
already. Insofar, the alternative flows should be considered as an integration aid only.

Spontaneous reporting
Interfaces for which registration/de-registration is considered as an optional facility are written accordingly.
Registration/de-registration of recipients is done using standard registration mechanism (register interest).

Pre-condition: Subsystem identification. Provide subsystem identification has been passed successfully.

Post-condition: The CMS is aware of the services and related interfaces supported by the subsystem.

Post-condition: The subsystem is aware of the service-related interfaces the CMS may interact with.

Post-condition: The Services do not match. Each of the alternative flows indicates a fatal error which means that the
interface is not implemented properly. The CMS does not take any further action but alerts the operator, accordingly.

7.7.5.8.2 Provide_Subsystem_Services_Sub

Type: Interface common_use_case_interface
Package: Provide_Subsystem_Services

Table 7.166 - Methods of Interface Provide_Subsystem_Services_CMS

Method Notes Parameters

receive_implemented_services () Receive services which are
implemented by a subsystem.

request_id_type the_request_id

service_indication_list_type
service_indication_list

Table 7.167 - Methods of Interface Provide_Subsystem_Services_Sub

Method Notes Parameters

receive_supported_services () Receive services which are
supported by the CMS.

request_id_type the_request_id

service_list_type supported_service_list
164 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.91 - Alternative Flow - Service negotiation (Sequence diagram)

 sd Alternativ e Flow - Serv ice negotiation

«interface»

Provide_Subsystem_Services_CMS

«interface»

Provide_Subsystem_Services_Sub

alt Altenativ e Flows

[Subsystem interface not found]

[CMS does not accept request]

[CMS interface not found]

[Subsystem does not accept request]

accepted == False
denial_reason == Interface xy not implemented

accepted == False
denial_reason == Request not accepted

accepted == True

accepted == False
denial_reason == Interface xy not implemented

accepted == False
denial_reason == Request not accepted

receive_implemented_services(request_id_type, service_indication_list_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_supported_services(request_id_type, service_list_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 165

Figure 7.92 - Basic Flow - Service negotiation (Sequence diagram)

7.7.5.9 Manage_Mastership

Parent Package: Subsystem_Control

This package contains interfaces for the Manage Mastership service.

7.7.5.9.1 Manage_Mastership_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Mastership

Besides the CMS, the subsystem may be controlled via other control points, e.g., the subsystem local control unit. This
interface describes how the CMS, as any other actor, shall handle the exclusive control of the subsystem (mastership). In
fact, every subsystem may be controlled by only one actor at the same time. Only the actor who has the mastership of a
subsystem may have exclusive control of the subsystem. Exclusive control means that the subsystem may accept only
commands sent by the actor who has its mastership.

The subsystem Mastership may be acquired in two ways:

1. PERIODIC MASTERSHIP REQUEST: The actor who wants to acquire the mastership of a subsystem send to it a
periodic Mastership request; the subsystem may accept or deny. Once acquired, the subsystem Mastership is released
giving up the periodic Mastership requests sending. This happens both in case of intentional decision and critical
event as CMS unavailability or connection loss. As long as CMS wants to maintain the Mastership of the subsystem,
it shall continue the periodic Mastership requests sending. The CMS is informed about the Mastership control state
by receiving a periodic message sent by the subsystem.

2. ASYNCHRONOUS MASTERSHIP REQUEST: The actor who wants to acquire the mastership of a subsystem send
to it an asynchronous request; the subsystem may accept or deny. Once acquired, the mastership is until the
mastership owner decides to intentionally release it or until a critical event, which is mastership owner unavailability
or connection failure, occurs. In case of intentional mastership release, the CMS shall send an asynchronous
mastership release request. In case of critical event, the mastership of the subsystem is automatically released. This
happens when the subsystem no longer receives the CMS heartbeat. The CMS is informed about the Mastership
control state by receiving an asynchronous message sent on change by the subsystem.

 sd Basic Flow - Serv ice negotiation

«interface»

Provide_Subsystem_Services_CMS

«interface»

Provide_Subsystem_Services_Sub

receive_implemented_services(request_id_type, service_indication_list_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_supported_services(request_id_type, service_list_type)

receive_acknowledgement(request_id_type,
request_ack_type)
166 Open Architecture Radar Interface Standard (OARIS), v1.0

Mastership management rules

The subsystem Mastership assignment is controlled by the subsystem itself according to the following rules:

• No more than one Master at any time, so the subsystem may not be commanded by more than one control point.

• The actor which wants to acquire the subsystem Mastership shall ask the subsystem for it, so no request no assignment.

• Subsystem assigns the Mastership to any actor asking for it without any priority policy, no actor is “more important”
than any other.

• On each request, the mastership may be assigned only if it’s free, that is not already assigned (unless a Mastership
override request is received).

The Mastership management protocol is managed as follows:

• Actor which wants to acquire the subsystem Mastership shall ask for it sending to the subsystem the Mastership
requests which could be asynchronous or periodic.

• In case of periodic request for Mastership assignment, as long as the actual Master wants to maintain the Mastership, it
shall continue the periodic Mastership requests sending.

• If the actual Master wants to release the Mastership in case of periodic request for Mastership management, it shall give
up the periodic Mastership requests sending, otherwise, in case of asynchronous request, it shall send an asynchronous
request for mastership release.

• Subsystem keeps informed about the actual Mastership state and its changes (if any).

At any time the subsystem Mastership may be either “free,” that is assigned to none and then available to anybody asks
for it, or assigned to somebody, where this somebody may be CMS or not. At the subsystem power-on the Mastership is
“free,” then:

• as long as the Mastership state is “free,” the first received Mastership request shall be satisfied (whether the requestor is
CMS or not).

• as long as the Mastership is assigned (to CMS or to somebody other than CMS), the current Master shall maintain the
Mastership possession until the Mastership owner is no longer available or decides to release it.

• as long as the Mastership is assigned (to CMS or to somebody other than CMS), Mastership requests received from
other than the current Master shall be no satisfied, unless a Mastership Override is received, which shall force a
Mastership switch to another Master.

Note that the Mastership possession is required to control the subsystem (e.g., execute write commands to it), but it is not
required to communicate with subsystem and receive information from it.

Mastership Override
The Mastership management protocol could include a Mastership Override to force a Mastership switch from a Master to
another one.

Pre-condition: Subsystem Services - Provide subsystem services is successfully passed.

Post-condition: Success - The subsystem Mastership state is assigned to CMS or not assigned to CMS, according to the
CMS requests, and CMS is informed about.

Post-condition: No Success - The subsystem Mastership state is not according to the CMS requests and CMS has the
correct information regarding that state (except in the case of connection loss).
Open Architecture Radar Interface Standard (OARIS), v1.0 167

7.7.5.9.2 Manage_Mastership_Sub

Type: IDLInterface
Package: Manage_Mastership

Table 7.168 - Methods of IDLInterface Manage_Mastership_CMS

Method Notes Parameters

report_mastership_setting () This method is used by the subsystem to
return the mastership state.

mastership_state_type
control_state

Table 7.169 - Methods of IDLInterface Manage_Mastership_Sub

Method Notes Parameters

acquire_mastership () This method is used by the CMS to
acquire the mastership.

unsigned long count
This parameter is used with implementation
specific semantics to manage subsystem
mastership.

release_mastership () This method is used by the CMS to
release the mastership.

unsigned long count
This parameter is used with implementation
specific semantics to manage subsystem
mastership.
168 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.93 - Basic Flow - Mastership Acquisition - asynchronous request (Sequence diagram)

 sd Basic Flow - Mastership Acquisition - asynchronous request

«idlInterface»

Manage_Mastership_CMS

«idlInterface»

Manage_Mastership_Sub

alt

[basic flow]

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fai ls
before completion

request_ack.success = true

request_ack.success = false

The subsystem does no
longer receive
Heartbeat from CMS
(CMS unavailability or
connection loss)

The subsystem returns
the current Mastership
state as not assigned to
CMS, at timeout
expiration.

acquire_mastership()

receive_acknowledgement(request_id_type, request_ack_type)

report_mastership_setting(mastership_state_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 169

Figure 7.94 - Basic Flow - Mastership Acquisition - periodic request (Sequence diagram)

 sd Basic Flow - Mastership Acquisition - periodic request

«idlInterface»

Manage_Mastership_Sub

«idlInterface»

Manage_Mastership_CMS

loop periodic

alt

[basic flow]

[Subsystem rejects request]

[Subsystem fails]

request_ack.success =
true

request_ack.success =
false

command is
successfully
acknowledged but fai ls
before completion

The subsystem does no
longer receive
Heartbeat from CMS
(CMS unavailabil ity or
connection loss)

The subsystem returns
the current Mastership
state as not assigned to
CMS, at timeout
expiration.

acquire_mastership()

receive_acknowledgement(request_id_type, request_ack_type)

report_mastership_setting(mastership_state_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
170 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.95 - Basic Flow - Mastership Release - asynchronous request (Sequence diagram)

 sd Basic Flow - Mastership Release - asynchronous request

«idlInterface»

Manage_Mastership_CMS

«idlInterface»

Manage_Mastership_Sub

alt

[basic flow]

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

request_ack.success = false

request_ack.success = true

release_mastership(unsigned
long)

receive_acknowledgement(request_id_type, request_ack_type)

report_mastership_setting(mastership_state_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 171

Figure 7.96 - Basic Flow - Mastership Release - periodic request (Sequence diagram)

7.7.5.10 Register_Interest

Parent Package: Subsystem_Control

7.7.5.10.1 Register_Interest_CMS

Type: IDLInterface common_use_case_interface
Package: Register_Interest

This service allows the CMS to register (and deregister) interest in other services. It is explicitly meant to address the
possibility of CMS “subscribing” to information supplied by the subsystem, with the understanding that the information
shall be provided by the subsystem, without the need for further request. Such mode of operation may be applicable for
those services, which have been reported as such in Provide subsystem services. This includes typically track and plot
reporting services, but may involve other services as well.

The service starts when the actor registers interest in information provided by a service. The registration shall include
information on:

• The service for which the actor wants to register / deregister his interest.

• The information within the service for which the actor wants to register / deregister his interest.

• The intended (direct or indirect) recipient(s) of the information provided by the subsystem.

• Any parameters of the provision needed such as Quality of Service parameters.

 sd Basic Flow - Mastership Release - periodic request

«idlInterface»

Manage_Mastership_Sub

«idlInterface»

Manage_Mastership_CMS

loop periodic

CMS release the
mastership, avoiding
sending of acquire
message.

The subsystem returns
the current Mastership
state as not assigned to
CMS, at timeout
expiration.

report_mastership_setting(mastership_state_type)
172 Open Architecture Radar Interface Standard (OARIS), v1.0

The service ends when the subsystem confirms registration / deregistration of interest.

Pre-condition: Sensor health state - The sensor and the service need to be in the health state AVAILABLE or
DEGRADED.

7.7.5.10.2 Register_Interest_Sub

Type: IDLInterface
Package: Register_Interest

Figure 7.97 - Basic Flow - Interest Registration (Sequence diagram)

Table 7.170 - Methods of IDLInterface Register_Interest_CMS

Method Notes Parameters

confirm_registration () Confirm registration of interest request_id_type request_id

Table 7.171 - Methods of IDLInterface Register_Interest_Sub

Method Notes Parameters

register_interest () Register interest in the service request_id_type request_id

interest_list the_interest_list

 sd Basic Flow - Interest Registration

«idlInterface»

Register_Interest_CMS

«idlInterface»

Register_Interest_Sub

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

register_interest(request_id_type, interest_list)

receive_acknowledgement(request_id_type,
request_ack_type)

confirm_registration(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 173

7.8 Sensor_Services

Parent Package: Service_Interfaces

Contains services associated with the Sensor Domain.

7.8.1 Clutter_Reporting

Parent Package: Sensor_Services

Contains interfaces for the Clutter Reporting service.

7.8.1.1 Provide Area with Plot Concentration

Parent Package: Clutter_Reporting

Contains operations and sequence diagrams for the Provide Area with Plot Concentration interface.

7.8.1.1.1 Provide_Plot_Concentration_CMS

Type: IDLInterface common_use_case_interface
Package: Provide Area with Plot Concentration

The Radar provides the combat management system with the number of plots in a specific sector. The sector information
consists of range, azimuth, and elevation. The number of plots observed in the region may provide an indication of high
clutter.

Additional Information

The information may be developed when requested or based on scan histories. The choice of methods depends upon radar
design. The timestamp should indicate the oldest data used to create the report to allow the CMS or an operator to
determine the validity of the report (i.e., day old data mixed with recent is still only as good as day old data).

Sector Information must consist of a measurement time stamp, range extents, azimuth extents, and elevation extents in
platform coordinates.

For radars which report plot concentration without a CMS request, the CMS shall begin to receive reports upon
registration of the Provide Plot Concentration interface.

Pre-condition: Radar in ONLINE State

Post-condition: None

Table 7.172 - Methods of IDLInterface Provide_Plot_Concentration_CMS

Method Notes Parameters

receive_periodic_plot_concentration () Interface used by CMS to receive
periodic plot concentration reports
from the subsystem.

plot_concentration_report_type
plot_concentration_report

receive_plot_concentration () Interface used by the CMS to receive a
requested plot concentration report
from the subsystem.

request_id_type request_id

plot_concentration_report_type
plot_concentration
174 Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.1.1.2 Provide_Plot_Concentration_Sub

Type: IDLInterface
Package: Provide Area with Plot Concentration

Figure 7.98 - Provide Plot Concentration - Report Requested by CMS (Sequence diagram)

Flow of events which depicts a subsystem that reports plot concentration following an explicit request from the CMS
(also depicts alternate rejection and error paths).

Table 7.173 - Methods of IDLInterface Provide_Plot_Concentration_Sub

Method Notes Parameters

provide_plot_concentration () Interface used by the subsystem to
receive a plot concentration request
from the CMS.

request_id_type request_id
plot_concentration_request_data_type
plot_request

 sd Prov ide Plot Concentration - Report Requested by CMS

«idlInterface»

Provide_Plot_Concentration_CMS

«idlInterface»

Provide_Plot_Concentration_Sub

alt

[Basic Flow]

[Unable to comply with request]

[Error encountered following an accepted request]

provide_plot_concentration(request_id_type,
plot_concentration_request_data_type)

receive_acknowledgement(request_id,
request_ack)

receive_plot_concentration(request_id_type,
plot_concentration_report_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 175

Figure 7.99 - Provide Plot Concentration - Periodic (Sequence diagram)

Flow of events which depicts a subsystem that periodically reports plot concentration reports (without the need for a CMS
request).

7.8.1.2 Provide Clutter Assessment

Parent Package: Clutter_Reporting

Contains operations and sequence diagrams for the Provide Clutter Assessment interface.

7.8.1.2.1 Provide_Clutter_Assessment_CMS

Type: IDLInterface common_use_case_interface
Package: Provide Clutter Assessment

The radar reports visible clutter to the combat management system. The report shall include a map (collection of cells)
with information on range, azimuth, elevation, and intensity in platform relative coordinates. Clutter may be classified by
type, Land, Sea, Weather (optional), etc. Intensity may be indicated by linear signal-to-noise ratio (SNR), log-linear SNR,
linear power received, log-linear power received (e.g., dBm, dBW), linear Radar Cross Section (square meters), or log-
linear RCS (dbsm).

For radars which report clutter assessment without a CMS request, the CMS shall begin to receive reports upon
registration of the Provide Clutter Assessment interface.

Pre-condition: Radar is in ONLINE State.

Pre-condition: The Radar is capable of distinguishing clutter from targets.

Post-condition: None.

 sd Prov ide Plot Concentration - Periodic

«idlInterface»

Provide_Plot_Concentration_CMS

«idlInterface»

Provide_Plot_Concentration_Sub

loop

[Periodic at interval specified in subsystem parameters]

receive_periodic_plot_concentration(plot_concentration_report_type)
176 Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.1.2.2 Provide_Clutter_Assessment_Sub

Type: IDLInterface
Package: Provide Clutter Assessment

Table 7.174 - Methods of IDLInterface Provide_Clutter_Assessment_CMS

Method Notes Parameters

receive_clutter_assessment () Interface used by the CMS to receive
a requested clutter assessment report
from the subsystem.

request_id_type request_id

clutter_report_type clutter_report

receive_periodic_clutter_assessment () Interface used by CMS to receive
periodic clutter assessment reports
from the subystem.

clutter_report_type clutter_report

Table 7.175 - Methods of IDLInterface Provide_Clutter_Assessment_Sub

Method Notes Parameters

provide_clutter_assessment () Interface used by the subsystem to receive a
clutter assessment request from the CMS.

request_id_type request_id

clutter_assessment_request_type
clutter_request
Open Architecture Radar Interface Standard (OARIS), v1.0 177

Figure 7.100 - Provide Clutter Assessment (Sequence diagram)

Flow of events which depicts a subsystem that reports a clutter assessment following an explicit request from the CMS (also
depicts alternate rejection and error paths).

 sd Prov ide Clutter Assessment

«idlInterface»

Provide_Clutter_Assessment_CMS

«idlInterface»

Provide_Clutter_Assessment_Sub

alt

[Basic Flow]

[Unable to comply with request]

[Error encountered following an accepted request]

provide_clutter_assessment(request_id_type,
clutter_assessment_request_type)

receive_acknowledgement(request_id,
request_ack)

receive_clutter_assessment(request_id_type,
clutter_report_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
178 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.101 - Periodic Clutter Reporting (Sequence diagram)

Flow of events which depicts a subsystem that periodically reports a clutter assessment (without the need for a CMS
request).

7.8.2 Plot_Reporting

Parent Package: Sensor_Services

7.8.2.1 Provide_Plots

Parent Package: Plot_Reporting

7.8.2.1.1 Provide_Plots_CMS

Type: IDLInterface
Package: Provide_Plots

Interface to the CMS for receiving plot updates.

This interface provides sensor plots to the CMS (filterable to air, surface, land, and space environments). The transfer of
data is expected to take place asynchronously, although for certain classes of sensor it may appear periodic.

Pre-condition: Subsystem Services Provide Subsystem Services has successfully executed.

Pre-condition: Register Interest - The CMS has successfully registered interest in this service.

Post-condition: Success - CMS has received plot datastream.

 sd Periodic Clutter Reporting

«idlInterface»

Provide_Clutter_Assessment_CMS

«idlInterface»

Provide_Clutter_Assessment_Sub

loop Periodic

[Interval specified in subsystem parameters]

receive_periodic_clutter_assessment(clutter_report_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 179

Figure 7.102 - Basic Flow - Provide Plots (Individual) (Sequence diagram)

Table 7.176 - Methods of IDLInterface Provide_Plots_CMS

Method Notes Parameters

write_sensor_plot () This method receives a individual plot update
from the sensor. It is expected to be called
periodically from the sensor.

sensor_plot_type plots
The set of plots

write_sensor_plot_set () This method receives a set of one or more plot
updates from the sensor. It is expected to be
called periodically from the sensor.

sensor_plot_set_type plots
The set of plots

 sd Basic Flow - Prov ide Plots (Indiv idual)

«idlInterface»

Provide_Plots_CMS

«idlInterface»

plot_reporting_sub

loop

[periodic]

loop

[for each return]

This sequence diagram shows the
style of transferring plots individually

write_sensor_plot(sensor_plot_type)
180 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.103 - Basic Flow - Provide Plots (Sets) (Sequence diagram)

7.8.2.2 Provide_Sensor_Orientation

Parent Package: Plot_Reporting

7.8.2.2.1 Provide_Sensor_Orientation_CMS

Type: IDLInterface
Package: Provide_Sensor_Orientation

The interface to the CMS for receiving sensor orientation updates.

The sensor provides its orientation in the case that it has movement that is independent of that for the overall platform. It
is provided periodically with a frequency defined using the manage subsystem parameters use case.

Pre-condition: Subsystem Services Provide Subsystem Services has successfully executed.

Pre-condition: Register Interest - The CMS has successfully registered interest in this service.

Post-condition: Success - CMS has received sensor orientation datastream.

Table 7.177 - Methods of IDLInterface Provide_Sensor_Orientation_CMS

Method Notes Parameters

write_sensor_orientation () Informs the CMS of the orientation
of the sensor.

sensor_orientation_type orientation
The orientation of the sensor

 sd Basic Flow - Prov ide Plots (Sets)

«idlInterface»

plot_reporting_sub

«idlInterface»

Provide_Plots_CMS

loop

[periodic]

This sequence diagram shows the
batched style of updating plots, with
whole sets being transformed
atomically.

write_sensor_plot_set(sensor_plot_set_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 181

Figure 7.104 - Basic Flow - Provide Sensor Orientation (Sequence diagram)

 sd Basic Flow - Prov ide Sensor Orientation

«idlInterface»

Provide_Sensor_Orientation_CMS

«idlInterface»

plot_reporting_sub

loop

[periodic]

Sensor's with independent movement
(e.g. surveillance and navigation radars
that rotate) provide regular updates on
its orientation. The frequency of updates
is defined using the manage subsystem
parameters use case.

write_sensor_orientation(sensor_orientation_type)
182 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.105 - Provide_Sensor_Orientation (Logical diagram)

 class Prov ide_Sensor_Orientation

«idlInterface»
Prov ide_Sensor_Orientation_CMS

+ write_sensor_orientation(sensor_orientation_type) : void

Provide_Plots_CMS

«idlInterface»
Serv ice Lev el Interfaces & Actors Templates::plot_reporting_cms

::Provide_Sensor_Orientation_CMS
+ write_sensor_orientation(sensor_orientation_type) : void
::Provide_Plots_CMS
+ write_sensor_plot(sensor_plot_type) : void
+ write_sensor_plot_set(sensor_plot_set_type) : void
Open Architecture Radar Interface Standard (OARIS), v1.0 183

7.8.3 Sensor_Control

Parent Package: Sensor_Services

This package contains interfaces for the Sensor Control service.

7.8.3.1 Manage_Frequency_Usage

Parent Package: Sensor_Control

This package contains interfaces for the Manage Frequency Usage service.

7.8.3.1.1 Manage_Frequency_Usage_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Frequency_Usage

This controls the sensor behavior with respect to the transmission frequency management. Basing on a discrete set of
transmission frequencies offered by the sensor, CMS may disable/enable the use of a subset of them. As well CMS may
select the sensor transmission mode, i.e., how the sensor shall select the transmission frequencies, among the set of
transmission modes supported by the sensor.

The transmission mode defines how the sensor selects the transmission frequencies, which may be:

• Fixed Frequency: sensor always uses the same pre-selected frequency.

• Frequency Diversity: at each transmission sensor selects the frequency to be used inside a pre-selected subset of
frequencies.

• Automatic Frequency Selection: at each transmission sensor selects the frequency to be used among the least jammed
frequencies.

• Random Agility: at each transmission sensor random selects the frequency to be used.

The availability of each of the above listed transmission modes depends on the sensor type and its capabilities (not all the
sensor types support all them). Besides a transmission mode supported by the sensor may be “selectable” or “not
selectable” according to the specific sensor rules and the state of transmission frequencies.

Both the set of transmission frequencies offered by the sensor and the supported transmission modes (names and
characteristics) differ from sensor to sensor, so they shall be handled as configuration parameters. The sensor reports all
supported frequencies whether or not currently available or enabled.

Sensors cannot enable/disable the setting of the frequency usage at its own initiative, but at any time a transmission
frequency could become not available because of a fault (e.g., fault of the relevant oscillator), and this could affect the
effective availability of one or more sensor supported transmission modes.

Provision of the frequency usage state
Sensor shall keep CMS informed about the current availability of the frequency usage and its changes (if any).

Provision of the transmission mode
Sensor shall keep CMS informed about the currently selected transmission mode, with the relevant parameters, and its
changes (if any).

It is the CMS’s responsibility to initiate the determination of initial state by making a request for information to the
subsystem.
184 Open Architecture Radar Interface Standard (OARIS), v1.0

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about both the actual setting of
the frequency usage and the actual transmission mode, with its changes (if any).

State of transmission frequencies
With respect to its operational use each sensor transmission frequency may be “enabled” or “disabled,” according to the
relevant setting. On the other hand, with respect to its health status, each transmission frequency may be “available” or
“not available” according to the presence of faults.

Note that a transmission frequency may be effectively selectable for the sensor transmission if it is both “enabled” and not
in fault.

Relationship to Manage Transmission Sectors
As well as the overall transmission mode, here specified, CMS may define sectors where a devoted transmission mode is
to be applied (see Manage Transmission Sectors).

Pre-condition: Mastership Required CMS has mastership of the sensor.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed.

Pre-condition: Transmission Frequencies CMS knows the transmission frequencies offered by the sensor and their actual
availability.

Pre-condition: Selectable Transmission modes and frequencies CMS is aware of the currently selectable transmission
modes and transmission frequencies.

Post-condition: Success Both the setting of the frequency usage and the sensor transmission mode are according to the
request and CMS is informed that this is the case.

Post-condition: No Success Both the setting of the frequency usage and the sensor transmission mode are unchanged with
respect to the original one and CMS is informed that this is the case.

7.8.3.1.2 Manage_Frequency_Usage_Sub

Type: IDLInterface
Package: Manage_Frequency_Usage

Table 7.178 - Methods of IDLInterface Manage_Frequency_Usage_CMS

Method Notes Parameters

report_frequencies_state () Method used by the sensor to return
the current availability of the
frequency usage and its changes (if
any).

all_frequencies_state_type
frequencies_state

report_transmission_mode_state () Method used by the sensor to return
the selected transmission mode,
with the relevant parameters, and its
changes (if any).

request_id_type request_id

transmission_frequency_mode_
type transmissionModeSetting

transmission_frequency_state_response () Method used by the sensor to return
the actual setting of the frequency
usage modified according to the
request.

request_id_type request_id

selected_frequency_list_type
setting_message
Open Architecture Radar Interface Standard (OARIS), v1.0 185

This is the Subsystem interface for managing frequency usage.

Figure 7.106 - Basic Flow - Frequency Availability Change Notification (Sequence diagram)

Figure 7.107 - Basic Flow - Enable/Disable Frequency Usage (Sequence diagram)

Table 7.179 - Methods of IDLInterface Manage_Frequency_Usage_Sub

Method Notes Parameters

set_frequencies () Method used by the CMS to enable or
disable frequency bands or discrete
frequencies.

request_id_type request_id

selected_frequency_list_type request

set_transmission_mode () Method used by the CMS to select the
available sensor transmission mode.

request_id_type request_id

transmission_frequency_mode_type
trasmissionmode

 sd Basic Flow - Frequency Av ailability Change Notification

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

loop periodic

Notification may be
periodic or upon
change

The sensor reports all supported
frequencies whether or not currently
available or enabled

report_frequencies_state(all_frequencies_state_type)

 sd Basic Flow - Enable/Disable Frequency Usage

«idlInterface»

Manage_Frequency_Usage_Sub

«idlInterface»

Manage_Frequency_Usage_CMS

set_frequencies(request_id, frequencies_set_request)

receive_acknowledgement(request_id_type, request_ack_type)

tracking_zone_setting(request_id_type, tracking_zone_set)
186 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.108 - Alternative Flow - Enable/Disable Frequency Usage - loss of mastership (Sequence diagram)

Figure 7.109 - Basic Flow - Transmission Mode Selection (Sequence diagram)

 sd Alternativ e Flow - Enable/Disable Frequency Usage - loss of mastership

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fails
before completion

set_frequencies(request_id_type, frequencies_set_request)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

tracking_zone_setting(request_id_type, tracking_zone_set)

 sd Basic Flow - Transmission Mode Selection

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

set_transmission_mode(request_id_type, transmission_frequency_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_transmission_mode_state(request_id_type, transmission_frequency_mode_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 187

Figure 7.110 - Alternative Flow - Transmission Mode Selection - loss of mastership (Sequence diagram)

7.8.3.2 Manage_Transmission_Sectors

Parent Package: Sensor_Control

This package contains interfaces for the Manage Transmission Sectors service.

7.8.3.2.1 Manage_Transmission_Sectors_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Transmission_Sectors

This determines the sectors where the sensor is allowed to radiate together with the relevant transmission modes and
parameters. Sectors may be delimited in azimuth only, or both in azimuth and elevation; for each sector the sensor may
be requested either to not transmit at all or to apply a proper transmission mode.

Typical transmission sectors types are:

• Transmit Inhibit Sectors - sectors where the sensor is not allowed to radiate. Depending on the sensor type and its
capabilities, such a type of sectors may be delimited in azimuth only, or both in azimuth and elevation.

• Reduced Radiate Power Sectors - sectors where the sensor shall radiate at reduced power. Depending on the sensor type
and its capabilities, such a type of sectors may be delimited either in azimuth only or both in azimuth and elevation.

 sd Alternativ e Flow - Transmission Mode Selection - loss of mastership

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fails
before completion

set_transmission_mode(request_id_type, transmission_frequency_mode_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

report_transmission_mode_state(request_id_type, transmission_frequency_mode_type)
188 Open Architecture Radar Interface Standard (OARIS), v1.0

• Transmission Mode Sectors - sectors where the sensor is required to apply a devoted transmission mode (see Manage
Frequency Usage). Depending on the sensor type and its capabilities, such a type of sectors may be delimited either in
azimuth only or both in azimuth and elevation, but they may not overlap each other.

• Blind Arc Sectors - sectors where the sensor is not allowed to radiate. Such a type of sectors may be delimited in
azimuth only, or both in azimuth and elevation, depending on the sensor type and its capabilities. (Note: the same as
“Transmit Inhibit Sectors” with the difference that sectors are defined in Ship’s Reference System.)

Provision of the sensor transmission sectors setting
Sensor shall keep CMS informed about the actual setting of the transmission sectors and its changes (if any).
It is the CMS’s responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual setting of the
transmission sectors and its changes (if any).

Pre-condition: Mastership Required CMS has mastership of the sensor.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed.

Pre-condition: Transmission Sectors CMS is aware of which types of transmission sectors the sensor may manage and of
their current setting.

Post-condition: Success - The setting of the transmission sectors has been modified according to the request and CMS is
informed that this is the case.

Post-condition: No Success - The setting of the transmission sectors is unchanged with respect to the original one and
CMS is informed that this is the case.

7.8.3.2.2 Manage_Transmission_Sectors_Sub

Type: IDLInterface
Package: Manage_Transmission_Sectors

This is the Subsystem interface for managing transmission sectors.

Table 7.180 - Methods of IDLInterface Manage_Transmission_Sectors_CMS

Method Notes Parameters

transmission_sector_setting () Method used by the sensor to return the actual
setting of the transmission sectors and its
changes (if any).

request_id_type request_id

transmission_sector_set_type
setting_message

Table 7.181 - Methods of IDLInterface Manage_Transmission_Sectors_Sub

Method Notes Parameters

set_transmission_sector () Method used by the CMS to send a set/
reset transmission sector request to the
sensor.

request_id_type request_id

transmission_sector_set_type sector
Open Architecture Radar Interface Standard (OARIS), v1.0 189

Figure 7.111 - Basic Flow - Manage Transmission Sectors - Enable/Disable (Sequence diagram)

 sd Basic Flow - Manage Transmission Sectors - Enable/Disable

«idlInterface»

Manage_Transmission_Sectors_Sub

«idlInterface»

Manage_Transmission_Sectors_CMS

if
transmission_sector_set
dimension is null , the
operation
set_transmission_sector
get all the current
transmission sector

set_transmission_sector(request_id_type, transmission_sector_set_type)

receive_acknowledgement(request_id_type, request_ack_type)

transmission_sector_setting(request_id, transmission_sector_set)
190 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.112 - Alternative Flow - Manage Transmission Sectors - Enable/Disable - loss of masterhip
 (Sequence diagram)

7.8.3.3 Control_Emissions

Parent Package: Sensor_Control

This package contains interfaces for the Control Emissions service.

7.8.3.3.1 Control_Emissions_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Emissions

The sensor is requested to inhibit/enable own emissions. In the case where the sensor is a radar, this shall result in the
Radiation on/off command.

Note that this interface just covers the software managed control of the emission state. For safety reasons many sensors
are supplied with an additional hardware control of own emission state, such as a pushbutton directly connected to the
transmitter.

Provision of the Emission state
Sensor shall keep CMS informed about the current state of emissions and its changes (if any).

It is the CMS’s responsibility to initiate the determination of initial state by making a request for information to the subsystem.

 sd Alternativ e Flow - Manage Transmission Sectors - Enable/Disable - loss of masterhip

«idlInterface»

Manage_Transmission_Sectors_CMS

«idlInterface»

Manage_Transmission_Sectors_Sub

The
transmission_sector_set
parameter must be not
null

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fai ls
before completion

set_transmission_sector(request_id_type, transmission_sector_set_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

transmission_sector_setting(request_id_type, transmission_sector_set)
Open Architecture Radar Interface Standard (OARIS), v1.0 191

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the current emissions state
and its changes (if any).

Relationship to the Transmission Sectors management
As long as emissions are on, the sensor shall transmit in the sectors where transmission is allowed and according to the
relevant transmission modes and parameters, as determined through Manage Transmission Sectors.

Pre-condition: Mastership Required CMS has mastership of the sensor.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed.

Pre-condition: Emissions State CMS is aware that actually the sensor may switch its emissions state, e.g., both the
technical state and the health state allow the sensor to switch to Radiation on, no engagement in execution to switch to
Radiation off, and so on.

Post-condition: Success - The sensor emissions state is on/off as requested and CMS is informed that this is the case.

Post-condition: No Success - The sensor emissions state is still equal to the original one and CMS has the correct
information regarding that state.

7.8.3.3.2 Control_Emissions_Sub

Type: IDLInterface
Package: Control_Emissions

This is the Subsystem interface for controlling emissions.

Table 7.182 - Methods of IDLInterface Control_Emissions_CMS

Method Notes Parameters

control_emission_setting () Method used by the sensor to return the current
state of emissions and its changes (if any).

request_id_type request_id

control_emission_state_type
emission_state

Table 7.183 - Methods of IDLInterface Control_Emissions_Sub

Method Notes Parameters

set_control_emission () Method used by the CMS to send an Emissions
on/off request to the sensor.

request_id_type request_id

control_emission_state_type
control_emission_state
192 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.113 - Basic Flow - Control Emissions - On/Off (Sequence diagram)

Figure 7.114 - Alternative Flow - Control Emissions - On/Off - loss of mastership (Sequence diagram)

 sd Basic Flow - Control Emissions - On/Off

«idlInterface»

Control_Emissions_Sub

«idlInterface»

Control_Emissions_CMS

set_control_emission(request_id, control_emission_state)

receive_acknowledgement(request_id_type,
request_ack_type)

control_emission_setting(request_id_type,
control_emission_state_type)

 sd Alternativ e Flow - Control Emissions - On/Off - loss of masterhip

«idlInterface»

Control_Emissions_CMS

«idlInterface»

Control_Emissions_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fails
before completion

set_control_emission(request_id_type, control_emission_state)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)

control_emission_setting(request_id_type,
control_emission_state_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 193

7.8.3.4 Define_Test_Target_Scenario

Parent Package: Sensor_Control

This package contains interfaces for the Define Test Target Scenario service.

7.8.3.4.1 Define_Test_Target_Scenario_CMS

Type: IDLInterface common_use_case_interface
Package: Define_Test_Target_Scenario

This specifies the interactions for defining and modifying a test target scenario. A Test Target scenario consists of a
number of Test Targets to be generated according to their characteristics (positions, motion law, generation parameters)
with the purpose of producing stimuli devoted to the execution of an internal functional test of the sensor.

A number of Test Target scenarios may be maintained in a sensor internal Test Targets scenarios database, where each
scenario is identified by a unique identification number. Write accesses to this database shall be rejected if the sensor
Mastership is not actually assigned to CMS, but the possession of the sensor Mastership is not required for executing read
accesses.

The generation of the so defined Test Target scenarios may be activated as specified in Control Test Target Facility. For
the generation mechanism see the interface Control Test Target Facility

One or more Test Target scenarios may be maintained in a sensor internal Test Targets scenarios database, where each
scenario is identified by a unique identification number. The number of available Test Target scenarios is accessed by
Manage subsystem parameters.

Depending on the sensor type and its capabilities, a Test Target scenario may be constituted by:

a) a number of independent targets, with each target having own characteristic parameters; so the scenario is defined by:

• number of targets

and for each target

• the initial target position with the relevant initial time

• target parameters

b) a number of targets distributed in a defined area/volume and having the same common parameters, so the scenario is
 defined by:

• number of targets

• area/volume boundaries

• common initial time

• common targets parameters

Target parameters define:

a. the target motion type, with the relevant motion parameters

b. the target generation parameters, such as injection type (internal / external), attenuation law (constant /
 variable-with-range), doppler type (0 / PRF/2).

Pre-condition: Mastership Required CMS has mastership of the sensor.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed.
194 Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: Test Target Facility Test Target facility is supported by the sensor and CMS is aware of which types of
Test Target the sensor may manage.

Post-condition: Success

Write access:
The specified Test Target scenario is modified according to the request and CMS is informed that this is the case.

Read access:
The requested Test Target scenario is reported to CMS.

Post-condition: No Success Write access:

The specified Test Target scenario is unchanged and CMS is informed about the denial reason.

Read access:
The requested Test Target scenario is not reported to CMS and CMS is informed about the denial reason.

7.8.3.4.2 Define_Test_Target_Scenario_Sub

Type: IDLInterface
Package: Define_Test_Target_Scenario

This is the Subsystem interface for defining test target scenarios.

Table 7.184 - Methods of IDLInterface Define_Test_Target_Scenario_CMS

Method Notes Parameters

test_target_scenario_setting () Method used by the sensor to return the
identification number of the modified or
created test target scenario.

request_id_type request_id

test_target_scenario_id_type
test_target_scenario_id

test_target_scenario_setting_all_
feature ()

Method used by the sensor to return the
required test target scenario with its
parameters.

request_id_type request_id

test_target_scenario_type
test_target_features

Table 7.185 - Methods of IDLInterface Define_Test_Target_Scenario_Sub

Method Notes Parameters

read_test_target_scenario () Method used by the CMS to send to the
sensor a read request of a specified Test
Target scenario.

request_id_type request_id

test_target_scenario_id_type
test_target_scenario_id

write_test_target_scenario () Method used by the CMS to send to the
sensor a write request of a specified Test
Target scenario.

request_id_type request_id

test_target_scenario_type
test_target_scenario
Open Architecture Radar Interface Standard (OARIS), v1.0 195

Figure 7.115 - Basic Flow - Write a Target Test Target Scenario (Sequence diagram)

Figure 7.116 - Alternative Flow - Write a Target Test Target Scenario - loss of mastership
 (Sequence diagram)

 sd Basic Flow - Write a Target Test Target Scenario

«idlInterface»

Define_Test_Target_Scenario_CMS

«idlInterface»

Define_Test_Target_Scenario_Sub

write_test_target_scenario(request_id_type,
test_target_scenario_type)

receive_acknowledgement(request_id_type, request_ack_type)

test_target_scenario_setting(request_id_type,
test_target_scenario_id_type)

 sd Alternativ e Flow - Write a Target Test Target Scenario - loss of mastership

«idlInterface»

Define_Test_Target_Scenario_CMS

«idlInterface»

Define_Test_Target_Scenario_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fails
before completion

write_test_target_scenario(request_id_type,
test_target_scenario_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)
196 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.117 - Basic Flow - Inspect a Test Target Scenario (Sequence diagram)

7.8.3.5 Test_Target_Facility

Parent Package: Sensor_Control

This package contains interfaces for the Test Target Facility service.

7.8.3.5.1 Test_Target_Facility_CMS

Type: IDLInterface common_use_case_interface
Package: Test_Target_Facility

The sensor is requested to activate/deactivate the execution of its internal functional test and stimulation realized by
means of test targets generation. A number of Test Target scenarios may be defined and modified as specified in Define
Test Target Scenario, each scenario is identified by a proper identification. At any time no more than one Test Target
scenario may be active.

Test Target generation mechanism (applicable to some sensors)

The Test Target generation consists of the injection of proper signals at different points of the receiver chain in order to
produce the relevant detections in input to the RMC (Radar Management Computer); these Test Target detections are
processed by the RMC as the real ones, so they shall generate one o more plots (“Test Target” plots) and tracks (“Test
Target” tracks).

Such a generation mechanism is controlled by the RMC driving a devoted hardware, its purpose is to execute an on-line
BITE of the complete receiver chain.

Test Target generation is executed while the radar is working in operational mode, so Test Target detections and real
detections live together, forming “Test Target” plots and tracks at the same time as real plots and tracks. This implies that
CMS shall receive “Test Target” plots and tracks together with real plots and tracks.

 sd Basic Flow - Inspect a Test Target Scenario

«idlInterface»

Define_Test_Target_Scenario_Sub

«idlInterface»

Define_Test_Target_Scenario_CMS

read_test_target_scenario(request_id_type,
test_target_scenario_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

test_target_scenario_setting_all_feature(request_id_type,
test_target_scenario_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 197

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual state of the Test
Target generation and its changes (if any).

Provision of the Test Target generation state
Sensor shall keep CMS informed about the actual state of the Test Target generation and its changes (if any).

Relationship to the subsystem health state
As long as a Test Target scenario is in generation sensor checks the relevant returns at different points of the receiver
chain, up to form plots in the same positions where Test Targets have been generated. The relevant results contribute to
the sensor health state.

Pre-condition: Mastership Required CMS has mastership of the sensor.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed.

Pre-condition: Test Target facility Test Target facility is supported by the sensor and CMS is aware of the current
availability of the Test Target generation.

Post-condition: Success - The state of the Test Target generation is modified according to the request and CMS is
informed that this is the case.

Post-condition: No Success - The state of the Test Target generation is unchanged with respect the original one and CMS
is informed about the denial reason.

7.8.3.5.2 Test_Target_Facility_Sub

Type: IDLInterface
Package: Test_Target_Facility

This is the Subsystem interface for testing target facilities.

Table 7.186 - Methods of IDLInterface Test_Target_Facility_CMS

Method Notes Parameters

notify_test_target () Method used by the sensor to return the actual state
of the Test Target generation consistent with the
request.

request_id_type request_id

test_target_scenario_state_type
test_target_scenario_state

Table 7.187 - Methods of IDLInterface Test_Target_Facility_Sub

Method Notes Parameters

set_test_target_facility_state () Method used by the CMS to send an
activation request of a specified Test Target
scenario.

request_id_type request_id

test_target_scenario_state_type
scenario_state
198 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.118 - Basic Flow - Activate/Deactivate Test Target Facility (Sequence diagram)

Figure 7.119 - Alternative Flow - Activate/Deactivate Test Target Facility - loss of mastership (Sequence diagram)

 sd Basic Flow - Activ ate/Deactiv ate Test Target Facility

«idlInterface»

Test_Target_Facility_Sub

«idlInterface»

Test_Target_Facility_CMS

set_test_target_facil ity_state(request_id, test_target_scenario_state)

receive_acknowledgement(request_id_type,
request_ack_type)

notify_test_target(request_id_type,
test_target_scenario_state_type)

 sd Alternativ e Flow - Activate/Deactiv ate Test Target Facility - loss of mastership

«idlInterface»

Test_Target_Facility_CMS

«idlInterface»

Test_Target_Facility_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fails
before completion

set_test_target_facil ity_state(request_id_type, test_target_scenario_state)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

notify_test_target(request_id_type,
test_target_scenario_state_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 199

7.8.4 Sensor_Performance

Parent Package: Sensor_Services

7.8.4.1 Provide_Interference_Reports

Parent Package: Sensor_Performance

7.8.4.1.1 Provide_Interference_Reports_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Interference_Reports

This describes the process whereby the subsystem provides a set of reports on sources of interference, including jammers.
The data shall, therefore, in general, be non-real-time but should, where appropriate, be time-tagged and shall be updated
when any observed data changes.

The sensor need not be radiating but shall at least be receiving. The subsystem VOI (volume of interest) or other filter
mechanisms might be supplied in a request to the subsystem.

For a nominal effect assessment, the request might contain data on number, strength/Effective Radiated Power (ERP),
type and deployment of jammers and other interferers affecting radar operations.

For example, for each interferer:

• Sensor time-tag

• Interference type - active noise, self-screening jammer, standoff jammer, etc.

• Strength/Effective Radiated Power

• Locations - strobes, etc.

• Affected sectors

• Frequency bands affected

Pre-condition: Technical State - The subsystem is in technical state ONLINE.

Pre-condition: Subsystem Services - The Provide Subsystem Services Service has been completed successfully.

Pre-condition: Register Interest - The Register Interest Service has been executed successfully to register interest in
Interference Reports.

Post-condition: Success - The CMS has received Interference Reports.

Post-condition: Failure - The CMS receives no Interference Reports.
200 Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.4.1.2 Provide_Interference_Reports_Sub

Type: IDLInterface
Package: Provide_Interference_Reports

Table 7.188 - Methods of IDLInterface Provide_Interference_Reports_CMS

Method Notes Parameters

interference_report_response () Provides an updated set of interference
reports to the CMS.

request_id_type request_id

interference_report_type
interference_report
The report on interference

interference_report_periodic () Provides an updated set of interference
reports to the CMS.

interference_report_type
interference_report
The report on interference

Table 7.189 - Methods of IDLInterface Provide_Interference_Reports_Sub

Method Notes Parameters

volume_for_interference_reports () This allows definition of the
volume in space which is of
interest with regard to the
provision of interference reports.

request_id_type request_id
The unique identifier for this request. This is
referenced in acknowledgement and any
error reporting regarding this definition of
the volume of interest.

polar_volume_type volume
The volume in space

coordinate_orientation_type
coordinate_orientation
Specifies the orientation of the polar volume.
Open Architecture Radar Interface Standard (OARIS), v1.0 201

Figure 7.120 - Alternative Flow - Provide Interference Reports (Sequence diagram)

 sd Alternativ e Flow - Prov ide Interference Reports

«idlInterface»

Provide_Interference_Reports_CMS

«idlInterface»

Provide_Interference_Reports_Sub

opt Volume of Interest Supplied

[CMS supplies Volume of Interest]

alt Unsuccessful Request

[Subsystem unable to fi l ter interference reports to the requested volume of interest]

[Subsystem error occurs whilst preparing interference reports as requested]

positive
acknowledgement

negative
acknowledgement

volume_for_interference_reports(request_id_type, polar_volume_type,
coordinate_orientation_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
202 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.121 - Basic Flow - Provide Interference Reports (Sequence diagram)

7.8.4.2 Provide_Nominal_Performance

Parent Package: Sensor_Performance

7.8.4.2.1 Provide_Nominal_Performance_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Nominal_Performance

This is incremental to Register Interest, which deals with the subscription to subsystem functions. It provides an
indication of the expected performance of the available subsystem services such as those presented in Provide Subsystem
Services, based upon the current environmental conditions (See Receive Meteorological Data - METOC).

The subsystem need not be radiating to provide this assessment. This interface is more targeted towards a subsystem such
as the complex MFR than the 2D surveillance radar. The most basic example of performance would be reporting of the
nominal coverage, in elevation, azimuth and range, given an assumed operating regime with no jamming and with default
clutter conditions. Other examples might be that the actor requests the probability of detection for a specified target type
or perhaps the probability of correct automatic classification of such a target within a specified sector of coverage under
current environmental conditions.

Pre-condition: Technical State - The Subsystem is in the Technical State ONLINE.

Pre-condition: Subsystem Services - The Provide Subsystem Services Service has been executed successfully.

 sd Basic Flow - Prov ide Interference Reports

«idlInterface»

Provide_Interference_Reports_CMS

«idlInterface»

Provide_Interference_Reports_Sub

loop periodic

opt Volume of Interest Supplied

[CMS supplies Volume of Interest]

volume_for_interference_reports(request_id_type, polar_volume_type,
coordinate_orientation_type)

receive_acknowledgement(request_id_type,
request_ack_type)

interference_report_response(request_id_type, interference_report_type)

interference_report_periodic(interference_report_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 203

Post-condition: Success - The CMS is aware of the Nominal Performance of the Subsystem.

Post-condition: Failure - The CMS is not aware of the Nominal Performance of the Subsystem

7.8.4.2.2 Provide_Nominal_Performance_Sub

Type: IDLInterface
Package: Provide_Nominal_Performance

Subsystem interface for provision of nominal performance assessment.

Table 7.190 - Methods of IDLInterface Provide_Nominal_Performance_CMS

Method Notes Parameters

nominal_performance_response () The subsystem responds to the
previous nominal performance
request with its determination of
the requested aspect of nominal
performance.

request_id_type request_id
The unique id from the request

performance_assessment_report_type
report
The report on nominal performance

Table 7.191 - Methods of IDLInterface Provide_Nominal_Performance_Sub

Method Notes Parameters

nominal_performance_request () The CMS requests nominal
performance of the subsystem
in the current environmental
conditions. The aspect of
performance requested is a
parameter of the request.

request_id_type request_id
The unique id which identifies this request. It is
used to mark replies from the sensor relating to this
request.

performance_assessment_request_type request
The details of the performance request
204 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.122 - Alternative Flow - Provide Nominal Performance (Sequence diagram)

Figure 7.123 - Basic Flow - Provide Nominal Performance (Sequence diagram)

 sd Alternative Flow - Prov ide Nominal Performance

«idlInterface»

Provide_Nominal_Performance_CMS

«idlInterface»

Provide_Nominal_Performance_Sub

alt Unsuccessful Request

[Susbystem unable to calculate requested nominal performance]

[Subsystem encounters an irrecoverable condition in determining nominal performance]

negative
acknowledgement

positive
acknowledgement

nominal_performance_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

 sd Basic Flow - Prov ide Nominal Performance

«idlInterface»

Provide_Nominal_Performance_Sub

«idlInterface»

Provide_Nominal_Performance_CMS

nominal_performance_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,
request_ack_type)

nominal_performance_response(request_id_type, performance_assessment_report_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 205

7.8.4.3 Provide_Performance_Assessment

Parent Package: Sensor_Performance

7.8.4.3.1 Provide_Performance_Assessment_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Performance_Assessment

This is incremental to Register Interest, which deals with the subscription to subsystem functions and Provide Nominal
Performance which provides the subsystem nominal performance. This interface reports the real-time performance of the
available subsystem functions against the goals of the mission. The reported performance is that currently being attained
by the subsystem subject to the current operating regime and environmental conditions, including any clutter and
jamming and taking account of any mitigation/cancellation of such effects by the subsystem.

This interface is aimed at a subsystem such as an MFR radar. Information is provided to the Command function allowing
decisions to be made on the achieved performance, which is often considerably different to the anticipated performance
level as reported through the Provide Nominal Performance Service.

The most basic example of performance would be reporting of the radar coverage, in elevation, azimuth and range, for the
current operating regime and environmental conditions. This would take account of any clutter and jamming present.
Other examples might be that the actor requests the probability of detection for a specified target type or perhaps the
probability of correct automatic classification of such a target within a specified range under current environmental
conditions. N.B. if the radar is operating in an appropriate mode, then real-time clutter and/or jamming data might be
available to the radar subsystem. Otherwise the actor would have to supply any known data to the subsystem for
performance assessment (see Receive Encyclopaedic Data and Receive Geographic Information). If no environmental
data is specified, then the design performance would be reported.

Pre-condition: Technical State - The Subsystem is in the technical state ONLINE.

Pre-condition: Subsystem Services - The Provide Subsystem Services Service has completed successfully.

Post-condition: Success - The CMS is aware of the assessed performance of the subsystem.

Post-condition: Failure - The CMS is not aware of the assessed performance of the subsystem.

coord kind = POLAR

orientation = NEGOTIATED

origin = SENSOR_REFERENCE_POINT

Table 7.192 - Methods of IDLInterface Provide_Performance_Assessment_CMS

Method Notes Parameters

performance_assessment_response () The subsystem responds to the
previous performance
assessment request with its
assessment of the requested
aspect of actual performance.

request_id_type request_id
The unique identifier for this assessment.
This identifier is supplied by the CMS
when the assessment is requested.

performance_assessment_report_type
performance_assessment
The details of the assessment
206 Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.4.3.2 Provide_Performance_Assessment_Sub

Type: IDLInterface
Package: Provide_Performance_Assessment

Subsystem interface for provision of current performance assessment.

Note that the coordinates are always polar for this service and that the origin is always the sensor reference point as per
the coordinates and positions package.

Figure 7.124 - Alternate Flow - Provide_Performance_Assessment (Sequence diagram)

Table 7.193 - Methods of IDLInterface Provide_Performance_Assessment_Sub

Method Notes Parameters

performance_assessment_request () The CMS requests assessment of
actual performance of the subsystem.
The aspect of performance requested
is a parameter of the request.

request_id_type request_id
The unique identifier for this
assessment. This identifier is contained
in all related replies from the sensor.

performance_assessment_request_type
request
Details of the assessment

 sd Alternate Flow - Prov ide_Performance_Assessment

«idlInterface»

Provide_Performance_Assessment_CMS

«idlInterface»

Provide_Performance_Assessment_Sub

alt Unsuccessful Request

[Subsystem is in an incorrect internal mode for making the assessment]

[Subsystem encouters an irrecoverable error condition in performing the performance assessment]

positive
acknowledgement

negative
acknowledgement

performance_assessment_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 207

Figure 7.125 - Basic Flow - Provide Performance Assessment (Sequence diagram)

7.8.4.4 Provide_Jammer_Assessment

Parent Package: Sensor_Performance

7.8.4.4.1 Provide_Jammer_Assessment_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Jammer_Assessment

This interface describes the process whereby the subsystem provides a periodic assessment of the effects of actual
jamming on the detection and tracking performance of the subsystem. The actual subsystem performance vs. the nominal
(see Provide Nominal Performance) shall be reported so that this data is current and real-time. This should include the
effects on (spatial) coverage caused by any jamming. The impact on frequencies used e.g., operating band limitations is
dealt with in Provide Interference Reports.

Mastership is not required.

The radar need not be radiating in the ONLINE state but shall at least be receiving. The subsystem VOI (volume of
interest) or other filter mechanisms might be supplied in a request to the subsystem.

The kind of information which could be provided in the returned assessment, depending on any jamming mitigation
strategy (frequency agility, moving target indication, low side-lobe levels, main beam or side-lobe cancellation, side-lobe
blanking, etc.) might then include:

• Noise floor pre-/post-jammer cancellation, as applicable

• Degradation in detectability (compared with the nominal)

Pre-condition: Technical State - The subsystem is in the technical state ONLINE.

Pre-condition: Subsystem Services - The Provide Subsystem Services Service has been successfully executed.

Pre-condition: Register Interest - The Register Interest Service has completed successfully.

 sd Basic Flow - Prov ide Performance Assessment

«idlInterface»

Provide_Performance_Assessment_Sub

«idlInterface»

Provide_Performance_Assessment_CMS

performance_assessment_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,
request_ack_type)

performance_assessment_response(request_id_type, performance_assessment_report_type)
208 Open Architecture Radar Interface Standard (OARIS), v1.0

Post-condition: Success - CMS has received Jamming Effect Assessments.

Post-condition: No Success - The CMS has not received Jamming Effect Assessments.

7.8.4.4.2 Provide_Jammer_Assessment_Sub

Type: IDLInterface
Package: Provide_Jammer_Assessment

Table 7.194 - Methods of IDLInterface Provide_Jammer_Assessment_CMS

Method Notes Parameters

jammer_assessment_response () request_id_type request_id

performance_assessment_report_type
report

Table 7.195 - Methods of IDLInterface Provide_Jammer_Assessment_Sub

Method Notes Parameters

jammer_assessment_request () request_id_type request_id
performance_assessment_request_type
jammer_assessment_request
Open Architecture Radar Interface Standard (OARIS), v1.0 209

Figure 7.126 - Alternate Flow - Provide Jammer Assessment (Sequence diagram)

Figure 7.127 - Basic Flow - Provide Jammer Assessment (Sequence diagram)

 sd Alternate Flow - Prov ide Jammer Assessment

«idlInterface»

Provide_Jammer_Assessment_CMS

«idlInterface»

Provide_Jammer_Assessment_Sub

alt Negativ e Acknowledgement

[Subsystem has incorrect internal mode for request]

[Subsystem processing produces irrecoverable error after initial positive Ackowledgement]

negative
acknowledgement

positive
acknowledgement

jammer_assessment_request(request_id_type,
performance_assessment_request_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)

 sd Basic Flow - Prov ide Jammer Assessment

«idlInterface»

Provide_Jammer_Assessment_CMS

«idlInterface»

Provide_Jammer_Assessment_Sub

jammer_assessment_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,
request_ack_type)

jammer_assessment_response(request_id_type,
performance_assessment_report_type)
210 Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.5 Track_Reporting

Parent Package: Sensor_Services

7.8.5.1 Provide_Sensor_Tracks

Parent Package: Track_Reporting

7.8.5.1.1 Provide_Sensor_Tracks_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Sensor_Tracks

This service allows the CMS to obtain an overview of (real and/or simulated) air / land / space / surface objects observed
or simulated. Information may cover all aspects of a track such as kinematic and amplifying information.

The service does not cover:

• additional track information provision dedicated for engagement support.

• special search functions such as cued search, volume search, and horizon search (however, if such a search function is
initiated by means of another service, the tracks shall be provided by this service).

Although the service focuses on radar as an example of a sensor, the service also applies to other sensors, like IR/EO
sensors and ECM/ESM sensors.

The actor is the Combat Management System.

The service starts when:

• if the service does provide registration capabilities, the service “Register interest” has completed successfully, or

• if the service does not provide registration capabilities, the service “Provide subsystem services” has completed
successfully for this service.

The sensor provides, periodically or on event, a set of sensor tracks observed by the sensor. These may be sensor point or
bearing tracks. The set of sensor tracks includes:

• Track updates of existing and new sensor tracks - These are provided when there are sufficient measurements (e.g.,
plots) in the last observation cycle, which may be associated with the sensor track.

• Dead-reckoned tracks - These are sensor track updates for which in the last observation cycle there are no
measurements that may be associated with the sensor track. For dead-reckoned tracks, the sensor track information
(e.g., kinematics) is extrapolated. The dead-reckoned tracks may become “normal” tracks again if, in the next scan,
there are measurement(s) that may be associated with the track. Alternatively, dead-reckoned tracks (after n
unsuccessful scans) may become lost tracks.

• Lost tracks - These are sensor track updates that are reported once, if in the last n scans, there are no measurements that
may be associated with the sensor track. The value of n is typically a sensor parameter that is managed by the service
“Manage subsystem parameters.”

Some sensors are not capable of reporting lost and/or dead-reckoned tracks. The sensor may also provide single sensor
tracks periodically or on event.
Open Architecture Radar Interface Standard (OARIS), v1.0 211

The service ends with success when:

• if the service does provide registration capabilities, the service “Register interest” has completed successfully for a
deregistration request, or

• if the service does not provide registration capabilities, the sensor is shutdown using service “Shut down.”

Pre-condition: Sensor health state - The sensor and the service need to be in the health state AVAILABLE or
DEGRADED.

Pre-condition: Sensor parameters - The relevant sensor parameters (e.g., allowed frequencies, transmission sectors) need
to be set1.

Table 7.196 - Methods of IDLInterface Provide_Sensor_Tracks_CMS

Method Notes Parameters

write_sensor_track () The method represents a write of a single sensor track
(air, land, space, or surface) to the CMS. The write may
be periodic or not.

sensor_track_type
the_sensor_track

write_sensor_track_set () The method represents a single write of a set of sensor
tracks to the CMS. The write may be:

• periodic or not

• include all tracks observed during a sensor scan

• be an update of just one track (a set of 1) if this
is how the sensor works

sensor_track_set_type
the_track_set

1. The manner in which this is done is described in other services of the OARIS (“Manage frequency usage,”
“Manage transmission sectors,” “Control emissions,” and “Manage subsystem parameters”).
212 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.128 - Basic Flow - Sensor Track Reporting (Individual) (Sequence diagram)

Figure 7.129 - Basic Flow - Sensor Track Reporting (Sets) (Sequence diagram)

 sd Basic Flow - Sensor Track Reporting (Indiv idual)

«idlInterface»

track_reporting_sub

«idlInterface»

Provide_Sensor_Tracks_CMS

This sequence diagram shows the style of reporting tracks individually.
Depending on the requested services, all tracks are reported or for instance
only tracks with a certain environment or jamming indication.
The messages may be sent periodically or on event (when a new track
update is available)

loop

[periodic]

write_sensor_track(sensor_track_type)

 sd Basic Flow - Sensor Track Reporting (Sets)

«idlInterface»

track_reporting_sub

«idlInterface»

Provide_Sensor_Tracks_CMS

loop

[periodic]

This sequence diagram shows the style of reporting tracks in batches; sets
containing one or more tracks are reported atomically.
Depending on the requested services, all tracks are reported or for instance only
tracks with a certain environment or jamming indication.
The messages may be sent periodically or on event (when a new track update is
available)

write_sensor_track_set(sensor_track_set_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 213

7.8.6 Tracking_Control

Parent Package: Sensor_Services

This package contains interfaces for the Tracking Control service.

7.8.6.1 Delete_Sensor_Track

Parent Package: Tracking_Control

This package contains interfaces for the Delete Sensor Track service.

7.8.6.1.1 Delete_Sensor_Track_CMS

Type: IDLInterface common_use_case_interface
Package: Delete_Sensor_Track

The sensor is requested to remove a specified track from its internal Track Data Base; obviously the deleted track may
come back (with another track identification number) within a few seconds if it was a living track.

Pre-condition: Mastership Required CMS has mastership of the sensor.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed.

Pre-condition: Tracking capability - Tracking capability is supported by the sensor, and CMS is aware that actually the
sensor may delete that track.

Post-condition: Success - CMS is informed of the successful deletion of the required track, and the next track reporting
shall not contain the deleted track. Obviously the deleted track may come back within a few seconds if it was a living
target, but with another identification number.

Post-condition: No Success - CMS is informed of the request rejection and of the denial reason. No impact on the sensor
track management evolution.

7.8.6.1.2 Delete_Sensor_Track_Sub

Type: IDLInterface
Package: Delete_Sensor_Track

This is the Subsystem interface for deleting sensor tracks.

Table 7.197 - Methods of IDLInterface Delete_Sensor_Track_Sub

Method Notes Parameters

delete_track () Method used by the CMS to send a track
deletion request, specifying the identification
number of the track to be deleted.

sensor_track_id_type trackId

request_id_type request_id
214 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.130 - Basic Flow - Delete Sensor Track (Sequence diagram)

Figure 7.131 - Alternative Flow - Delete Sensor Track (Sequence diagram)

 sd Basic Flow - Delete Sensor Track

«idlInterface»

Delete_Sensor_Track_Sub

«idlInterface»

Delete_Sensor_Track_CMS

The deleted track is not included
in the next track reporting returned
by the sensor.

delete_track(sensor_track_id_type, request_id)

receive_acknowledgement(request_id_type,
request_ack_type)

 sd Alternativ e Flow - Delete Sensor Track

«idlInterface»

Delete_Sensor_Track_CMS

«idlInterface»

Delete_Sensor_Track_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fails
before completion

delete_track(sensor_track_id_type, request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 215

7.8.6.2 Receive_Track_Information

Parent Package: Tracking_Control

This package contains interfaces for the Receive Track Information service.

7.8.6.2.1 Receive_Track_Information_CMS

Type: IDLInterface common_use_case_interface
Package: Receive_Track_Information

CMS may provide information belonging to a sensor track in order to enable for a coordinated presentation of the sensor
track both on CMS consoles and a dedicated radar console. The track information which may be supplied is:

1. External track identification number

2. Additional Information – this is not specified as part of the interface, candidate information includes:

• Track type

• Track priority

• Track Identification Category Assigned (Pending, Friend, Assumed Friend, Neutral, Unknown, Suspect, Hostile)

Track identities management

Each sensor track shall have an “Internal Track Identification Number” and may have one or more additional “External
Track Identification Numbers.” The former shall be assigned by the sensor when the track is formed and, as long as the
track is alive, it cannot be changed for any reason. The latter shall be set to “none” when the track is formed and then
overwritten, during the track life, to report the track identity/ies externally assigned to the track.

All track identification numbers shall be reported together with the track data, but the track identification shall be made
through the “Internal Track Identification Number.”

Pre-condition: Mastership Required CMS has mastership of the sensor.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed.

Pre-condition: Tracking capability - Tracking capability is supported by the sensor, and CMS is aware that actually the
sensor may manage that track.

Pre-condition: Technical State Sensor is working in Operational.

Post-condition: Success - CMS is informed of the successful execution of the request, and the next track reporting shall
contain the identified track with the provided information.

Post-condition: No Success - CMS is informed of the request rejection and of the denial reason. No impact on the sensor
track management evolution.

7.8.6.2.2 Receive_Track_Information_Sub

Type: IDLInterface
Package: Receive_Track_Information

This is the Subsystem interface for receiving track information.
216 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.132 - Basic Flow - Receive Track Information (Sequence diagram)

Table 7.198 - Methods of IDLInterface Receive_Track_Information_Sub

Method Notes Parameters

insert_info_track () Method used by the CMS to send a receive track
information request, specifying the track
identification number and related track
information.

request_id_type request_id

sensor_track_id_type trackId

track_info trackInfo

 sd Basic Flow - Receiv e Track Information

«idlInterface»

Receive_Track_Information_Sub

«idlInterface»

Receive_Track_Information_CMS

The sensor shall
provide the track
updates as per
"Provide Sensor
Tracks".

insert_info_track(request_id_type, sensor_track_id_type, track_info)

receive_acknowledgement(request_id_type,
request_ack_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 217

Figure 7.133 - Alternative Flow - Receive Track Information (Sequence diagram)

7.8.6.3 Initiate_Track

Parent Package: Tracking_Control

This package contains interfaces for the Initiate Track service.

7.8.6.3.1 Initiate_Track_CMS

Type: IDLInterface common_use_case_interface
Package: Initiate_Track

The sensor is requested to start tracking on a new target based on given information, such as positional data and
additionally also kinematic data. Sensor replies indicating the request acceptance or rejection. If accepted, the initiation of
a new track shall be attempted as required, and the relevant result shall be reported later through an “externally designated
track initiation report” containing the identification number of the resulting track (if any).

Additional Information

Data reported in the “externally designated track initiation request”

The provided information depends on the sensor type and its capabilities, typically they are:

• Identification number of the designation (mandatory)

 sd Alternativ e Flow - Receiv e Track Information

«idlInterface»

Receive_Track_Information_CMS

«idlInterface»

Receive_Track_Information_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fails
before completion

The sensor shall not
provide the track
updates as per
"Provide Sensor
Tracks".

insert_info_track(request_id_type, sensor_track_id_type, track_info)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)
218 Open Architecture Radar Interface Standard (OARIS), v1.0

• Position and time (mandatory)

• Accuracy of the provided positional data (optional)

• Velocity and relevant accuracy (optional)

• Track characteristics (optional)

Data reported in the “externally designated track initiation report”

The purpose is this report is to inform CMS about the final result of the track initiation request, i.e., it reports to CMS if
the track has been successfully initiated or not, and (in case of success) the identification number of the new formed track.

The provided information depends on the sensor type and its capabilities, typically they are:

• Identification number of the designation (mandatory)

• Initiation result (mandatory)

• Identification number of the initiated track, if any (mandatory)

• other info (optional)

Pre-condition: Mastership Required CMS has mastership of the sensor.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed.

Post-condition: Success - The setting of the tracking zones has been modified according to the request and CMS is
informed that this is the case.

Post-condition: No Success - The setting of the tracking zones is unchanged with respect to the original one and CMS is
informed that this is the case.

7.8.6.3.2 Initiate_Track_Sub

Type: IDLInterface
Package: Initiate_Track

This is the Subsystem interface for initiating tracks.

Table 7.199 - Methods of IDLInterface Initiate_Track_CMS

Method Notes Parameters

report_track () Method used by the sensor to issue an “externally
designated track initiation report” containing data of the
successfully initiated track.

request_id_type request_id

sensor_track_id_type id_report

Table 7.200 - Methods of IDLInterface Initiate_Track_Sub

Method Notes Parameters

initiate_track () Method used by the CMS to send an “externally
designated track initiation request” specifying a timed
position and kinematic.

request_id_type request_id

system_track_type track_info
Open Architecture Radar Interface Standard (OARIS), v1.0 219

Figure 7.134 - Basic Flow Initiate Track (Sequence diagram)

Figure 7.135 - Alternative Flow - Initiate Track - loss of mastership (Sequence diagram)

 sd Basic Flow Initiate Track

«idlInterface»

Initiate_Track_Sub

«idlInterface»

Initiate_Track_CMS

The sensor shall provide the
track updates as per "Provide
Sensor Tracks".

initiate_track(request_id_type, system_track)

receive_acknowledgement(request_id_type,
request_ack_type)

report_track(request_id_type, sensor_track_id_type)

 sd Alternativ e Flow - Initiate Track - loss of mastership

«idlInterface»

Initiate_Track_CMS

«idlInterface»

Initiate_Track_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fails
before completion

initiate_track(request_id_type, system_track)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)
220 Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.6.4 Manage_Tracking_Zones

Parent Package: Tracking_Control

This package contains interfaces for the Manage Tracking Zones service.

7.8.6.4.1 Manage_Tracking_Zones_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Tracking_Zones

This controls the sensor tracking behavior in selected zones, which may be 1D (delimited in azimuth only), 2D (have
additional elevation bounds), or 3D (have further range bounds). Depending on the zone type the sensor may be requested
to modify its normal tracking behavior, such as enable/disable the capability to auto initiate new tracks, or the capability
of managing Track-On-Jammer.

A list of typical tracking zones is:

• Automatic Track Initiation Zones - zones where the sensor is allowed to auto initiate new tracks. Depending on the
sensor type and its capabilities, such a type of zones may be delimited in azimuth only, or both in azimuth and
elevation, or may have further range bounds, and in some cases also additional constraints (such as target type, velocity
bounds, etc.).

• Track-On-Jammer Sectors - sectors where the sensor is allowed to manage Track-On-Jammer. Depending on the sensor
type and its capabilities, such a type of sectors may be delimited either in azimuth only or both in azimuth and
elevation.

• Multipath Devoted Tracking Sectors - sectors where the sensor is required to use, for tracking activities, devoted
waveforms to reduce the multipath effects. This capability is usually provided by multifunctional radars. Such a type of
sectors is usually limited in azimuth only, below a defined elevation.

The supported tracking zone types (names and characteristics) differ from sensor to sensor, so they shall be handled as
configuration parameters. They shall be offered to the operator to enable him for a selection and then transferred to the
sensor to achieve the intended response.

Special Requirements

Provision of the sensor tracking zones setting

Sensor shall keep CMS informed about the actual setting of the tracking zones and its changes (if any).
It is the CMS’s responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

Additional Information

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual setting of the
tracking zones and its changes (if any).

Pre-condition: Mastership Required CMS has mastership of the sensor.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed.

Pre-condition: Tracking zones setting CMS is aware of which types of tracking zones the sensor may manage and of their
current setting.
Open Architecture Radar Interface Standard (OARIS), v1.0 221

Post-condition: Success - The setting of the tracking zones has been modified according to the request and CMS is
informed that this is the case.

Post-condition: No Success - The setting of the tracking zones is unchanged with respect to the original one and CMS is
informed that this is the case.

7.8.6.4.2 Manage_Tracking_Zones_Sub

Type: IDLInterface
Package: Manage_Tracking_Zones

This is the Subsystem interface for managing tracking zones.

Figure 7.136 - Basic Flow - Manage Tracking Zone - Enable/Disable (Sequence diagram)

Table 7.201 - Methods of IDLInterface Manage_Tracking_Zones_CMS

Method Notes Parameters

tracking_zone_setting () Method used by the CMS to send an enable/
disable tracking zone request to the sensor.

request_id_type request_id

tracking_zone_set setting_message

Table 7.202 - Methods of IDLInterface Manage_Tracking_Zones_Sub

Method Notes Parameters

set_tracking_zone () Method used by the sensor to return the actual
setting of the tracking zones modified according
to the request.

request_id_type request_id

tracking_zone_set zone

 sd Basic Flow - Manage Tracking Zone - Enable/Disable

«idlInterface»

Manage_Tracking_Zones_Sub

«idlInterface»

Manage_Tracking_Zones_CMS

If tracking_zone_set
dimension is null, the
operation
set_tracking_zone get
all the current tracking
zones.

set_tracking_zone(request_id_type, tracking_zone_set)

receive_acknowledgement(request_id_type,
request_ack_type)

tracking_zone_setting(request_id, tracking_zone_set)
222 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.137 - Alternative Flow - Manage Tracking Zone - Enable/Disable - loss of Mastership (Sequence diagram)

7.9 Radar_Services

Parent Package: Service_Interfaces

Contains services associated with the Radar Domain.

7.9.1 Air_Engagement_Support

Parent Package: Radar_Services

7.9.1.1 Provide_Projectile_Positional_Information

Parent Package: Air_Engagement_Support

7.9.1.1.1 Provide_Projectile_Positional_Information_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Projectile_Positional_Information

Fire control radars suitable for Close-In-Weapon-Systems need the capability to observe the projectiles in flight, to
measure at which distance they pass the target so that related shot corrections for the gun may be calculated automatically.
The measured distance in azimuth and elevation is called miss indication in the following.

 sd Alternativ e Flow - Manage Tracking Zone - Enable/Disable - loss of Mastership

«idlInterface»

Manage_Tracking_Zones_CMS

«idlInterface»

Manage_Tracking_Zones_Sub

In the operation
set_tracking_zone, the
tracking_zone_set
parameter must be not
null

alt

[Subsystem rejects request]

[Subsystem fails]

command is
successfully
acknowledged but fails
before completion

set_tracking_zone(request_id_type, tracking_zone_set)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

tracking_zone_setting(request_id_type, tracking_zone_set)
Open Architecture Radar Interface Standard (OARIS), v1.0 223

This capability may be available in a non-close-in-weapon-system environment, too. It may also be available for phased-
array radars.

Mastership of the subsystem must not have any impact upon the miss indication capability.

See also service ‘Process Target Designation’

Pre-condition: “Process Target Designation” was successfully carried out and a target is being tracked.

Pre-condition: CMS must have mastership.

7.9.1.1.2 Provide_Projectile_Positional_Information_Sub

Type: IDLInterface
Package: Provide_Projectile_Positional_Information

Table 7.203 - Methods of IDLInterface Provide_Projectile_Positional_Information_CMS

Method Notes Parameters

report_miss_indication () Via this message, the subsystem
reports to the CMS the miss
indication.

miss_indication_data_type
MissIndicationData

request_id_type RequestID

Table 7.204 - Methods of IDLInterface Provide_Projectile_Positional_Information_Sub

Method Notes Parameters

request_miss_indication () Request the subsystem to report a
miss indication.

request_id_type RequestID

expected_hit_data_type ExpectedHitData
224 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.138 - Provide projectile positional information - Request reporting of miss indications
 (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “request
reporting of miss indications” of the service ‘Provide projectile position information.’

7.9.2 \Engagement_Support

Parent Package: Radar_Services

7.9.2.1 Process_Target_Designation

Parent Package: Engagement_Support

7.9.2.1.1 Process_Target_Designation_CMS

Type: IDLInterface common_use_case_interface
Package: Process_Target_Designation

Fire control radars are designed to perform one target engagement at a time with respect to an air, surface, or land target
and provide the necessary information for a fire control solution regarding that target.

The CMS selects a track and requests the fire control radar to acquire and track the target behind that track. If the
acquisition is successful the radar starts tracking the target and reporting fire control information.

 sd Prov ide projectile positional information - Request reporting of miss indications

«idlInterface»

Provide_Projecti le_Positional_Information_CMS

«idlInterface»

Provide_Projecti le_Positional_Information_Sub

alt request reporting of miss indication

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

loop CMS updates target position and v elocity

[unti l subsystem reports miss indication.]

request_miss_indication(request_id_type, expected_hit_data_type)

receive_acknowledgement(request_id_type, request_ack_type)

request_miss_indication(request_id_type, expected_hit_data_type)

report_miss_indication(miss_indication_data_type, request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 225

Some fire control radars provide information about one or more other targets appearing in its field of view and may even
provide associated sensor tracks. This is, however, not within the scope of this service interface but covered by “Provide
sensor tracks.”

The fire control information may be plots and/or tracks, depending on the product.

On receiving the de-designation request the fire control radar stops following the target and stops providing fire control
information.

Phased array radars may include fire control capabilities as well. If they do, they provide a number of ‘virtual fire control
radars.’ To the extent that these virtual fire control radars are comparable in function and performance, there may be no
need for the CMS to select a specific fire control channel to be used for a particular engagement.

In the case where the CMS looses or releases mastership of the subsystem, the subsystems ceases all fire control
activities.

A target designation to a weapon with its own fire control capabilities may be done in an analogous way. In that sense,
the service (interface) may also be employed by weapon systems.

Pre-condition: Technical state READY or ONLINE.

Pre-condition: CMS must have Mastership.

7.9.2.1.2 Process_Target_Designation_Sub

Type: IDLInterface
Package: Process_Target_Designation

Table 7.205 - Methods of IDLInterface Process_Target_Designation_CMS

Method Notes Parameters

receive_fire_control_channel_released () Via this message, the subsystem
confirms the release of a target
acquisition.

request_id_type RequestID

fire_control_channel_id_type
FireControlChannelID

receive_target_acquired () Via this message, the subsystem
confirms the target acquisition.

request_id_type RequestID

sensor_track_id_type TrackID

fire_control_channel_id_type
FireControlChannel

receive_target_dedesignation () Via this message, the subsystem
reports the de-designation of a target.

request_id_type RequestID

sensor_track_id_type TrackID

receive_target_designation_error () Via this message, the subsystem
reports an error during target
acquisition.

request_id_type RequestID

error_reason_type Error
226 Open Architecture Radar Interface Standard (OARIS), v1.0

7.9.2.1.3 Sensor Track Reporting

Type: InteractionOccurrence
Package: Process_Target_Designation

The sensor track reporting itself is not covered in this service interface. See the corresponding service interface ‘Sensor
Track Reporting.’

7.9.2.1.4 Sensor Track Reporting

Type: InteractionOccurrence
Package: Process_Target_Designation

The sensor track reporting itself is not covered in this service interface. See the corresponding service interface ‘Sensor
Track Reporting.’

Table 7.206 - Methods of IDLInterface Process_Target_Designation_Sub

Method Notes Parameters

dedesignate_target () The subsystem is requested to de-designate
a fire control channel.

request_id_type RequestID

fire_control_channel_id_type
TrackID

designate_target_by_position () The subsystem is requested to designate a
fire control channel based on a position/
kinematics.

request_id_type RequestID

kinematics_type PositionVelocity

designate_target_by_track () The subsystem is requested to designate a
fire control channel based on a track.

request_id_type RequestID

sensor_track_id_type TrackID
Open Architecture Radar Interface Standard (OARIS), v1.0 227

Figure 7.139 - Process Target Designation - Designation by track (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “designate
(target) by track” of the service “Process Target Designation.”

 sd Process Target Designation - Designation by track

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

loop target loss

[while target may be tracked and/or acquired]

alt designation by track

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

loop target reporting

[while target is acquired]

ref

Sensor Track Reporting

alt de-designate not received before timeout condition

designate_target_by_track(request_id_type, sensor_track_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_target_acquired(request_id_type, sensor_track_id_type,
fire_control_channel_id_type)

receive_fire_control_channel_released(request_id_type,
fire_control_channel_id_type)

receive_target_designation_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
228 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.140 - Process Target Designation - Designation by position (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “designate
(target) by position” of the service “Process Target Designation.”

 sd Process Target Designation - Designation by position

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

loop target loss

[while target may be tracked and/or acquired]

alt designation by position

[basic flow]

[request rejection]

[processing error]

loop target acquisition

[attempt acquisition]

request_ack.success = false

request_ack.success = true

request_ack.success = true

loop target reporting

[while target is acquired]

opt target succesfull acquired

[once target is acquired]

ref
Sensor Track Reporting

alt de-designate not receiv ed before timeout condition

designate_target_by_position(request_id_type, kinematics_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_target_acquired(request_id_type, sensor_track_id_type,
fire_control_channel_id_type)

receive_fire_control_channel_released(request_id_type,
fire_control_channel_id_type)

receive_target_designation_error(request_id_type, error_reason_type)

designate_target_by_position(request_id_type, kinematics_type)

receive_acknowledgement(request_id_type, request_ack_type)

designate_target_by_position(request_id_type, kinematics_type)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 229

Figure 7.141 - Process Target Designation - De-designation (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “de-
designate (target)” of the service “Process Target Designation.” It applies to a fire control channel that has been
designated by position or by track.

7.9.2.2 Support_Kill_Assessment

Parent Package: Engagement_Support

7.9.2.2.1 Support_Kill_Assessment_CMS

Type: IDLInterface common_use_case_interface
Package: Support_Kill_Assessment

With this service the subsystem provides of kill assessment information to the CMS. The information relates to an above
water engagement primarily against an air target.

The kill assessment report of the subsystem may be one of the three:

• PROBABLE-KILL - This indicates that the subsystem assumes the target to be killed.

• PROBABLE-MISS - This indicates that the subsystem assumes the target to be missed by the used weapon system.

• NO-RESULT - This indicates that the subsystem was not able to determine a valid result for this request.

 sd Process Target Designation - De-designation

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

alt dedesignation

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

This sequence diagram
applies to a fire control
channel that has been
designated by position or by
track.

dedesignate_target(request_id_type, fire_control_channel_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_target_dedesignation(request_id_type, sensor_track_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
230 Open Architecture Radar Interface Standard (OARIS), v1.0

See also service (interface) “Process Target Designation.”

Pre-condition: Service “Process Target Designation” successfully carried out.

Pre-condition: CMS must have Mastership.

7.9.2.2.2 Support_Kill_Assessment_Sub

Type: IDLInterface
Package: Support_Kill_Assessment

Table 7.207 - Methods of IDLInterface Support_Kill_Assessment_CMS

Method Notes Parameters

report_kill_assessment_result () Via this message, the subsystem reports
the kill assessment to the CMS.

request_id_type RequestID

kill_assessment_result_type
KillAssessmentReport

Table 7.208 - Methods of IDLInterface Support_Kill_Assessment_Sub

Method Notes Parameters

request_kill_assessment () The subsystem is requested to evaluate
and report a kill assessment.

request_id_type RequestID

expected_hit_data_type
KillAssessmentData
Open Architecture Radar Interface Standard (OARIS), v1.0 231

Figure 7.142 - Basic Flow - Support Kill Assessment - Request Kill Assessment Support (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “request kill
assessment support” of the service “Support Kill Assessment.”

7.9.2.3 Support_Surface_Target_Engagement

Parent Package: Engagement_Support

7.9.2.3.1 Support_Surface_Target_Engagement_CMS

Type: IDLInterface common_use_case_interface
Package: Support_Surface_Target_Engagement

This service is intended for fire control radars, as well as surveillance radar systems that have facilities to perform surface
target engagements by means of dedicated fire control channels. These fire control channels may need a differently
parameterized or more elaborate track algorithm, and they may be combined with related splash spotting video.

The CMS requests the surface track to be engaged. The maximum number of tracks that may be engaged simultaneously
is determined by the radar.

The functionality may also be available for land targets, provided they may be tracked by the radar.

In the case where the CMS looses or releases mastership of the subsystem, a change of the availability of fire control
channels shall be indicated to the CMS. Fire control radars shall cease all fire control activities.

 sd Basic Flow - Support Kill Assessment - Request Kill Assessment Support

«idlInterface»

Support_Kill_Assessment_CMS

«idlInterface»

Support_Kill_Assessment_Sub

loop kill assessment update

[until kil l assessment report received]

alt request kill assessment support

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

request_kill_assessment(request_id_type,
expected_hit_data_type)

receive_acknowledgement(request_id_type,
request_ack_type)

request_kill_assessment(request_id_type,
expected_hit_data_type)

report_kill_assessment_result(request_id_type,
ki ll_assessment_result_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)
232 Open Architecture Radar Interface Standard (OARIS), v1.0

The set of operational modes that make fire control channels available, as well as the number of available channels shall
be provided by means of service “Manage Subsystem Parameters.”

Pre-condition: Technical state ONLINE.

Pre-condition: CMS must have Mastership.

Post-condition: Service ends with success - check availability - the CMS is informed about the availability of fire control
channels.

Post-condition: Service ends with success - target designation - the radar provides a fire control track for the selected
sensor track.

Post-condition: Service ends with success - reporting - the CMS receives regular updates of the fire control track.

Post-condition: Service ends with success - de-designation - the fire control channel is de-assigned and has become
available.

Post-condition: Service ends with fail - target designation - the fire control channel is not assigned; no fire control track.

Post-condition: Service ends with fail - surface track is lost - the fire control channel is not assigned; the fire control
track is terminated. The CMS is informed about the availability of fire control channel.

Post-condition: Service ends with Fail - de-designation - the fire control channel is not assigned.

Table 7.209 - Methods of IDLInterface Support_Surface_Target_Engagement_CMS

Method Notes Parameters

report_availability_state_of_fire_control_
channels ()

Via this interface method, the
number of available fire
control channels are returned
from the subsystem to the
CMS. If no channel is
available, the value '0' is
returned.

request_id_type RequestID

available_fire_control_channels_type
AvailableFireControlChannels

report_available_fire_control_channel () Via this interface method, the
number of available fire
control channels are returned
from the subsystem to the
CMS.

request_id_type RequestID

fire_control_channel_id_type
FireControlChannelID

report_selected_fire_control_channel () Via this interface method, the
selected fire control channel is
returned from the subsystem
to the CMS.

request_id_type RequestID

fire_control_channel_id_type
FireControlChannelID

sensor_track_id_type
SensorTrackId
Open Architecture Radar Interface Standard (OARIS), v1.0 233

7.9.2.3.2 Support_Surface_Target_Engagement_Sub

Type: IDLInterface
Package: Support_Surface_Target_Engagement

7.9.2.3.3 Support_Surface_Target_Engagement_CMS

Type: ActivityPartition
Package: Support_Surface_Target_Engagement

7.9.2.3.4 Support_Surface_Target_Engagement_Sub

Type: ActivityPartition
Package: Support_Surface_Target_Engagement

7.9.2.3.5 sensor track reporting

Type: InteractionOccurrence
Package: Support_Surface_Target_Engagement

Table 7.210 - Methods of IDLInterface Support_Surface_Target_Engagement_Sub

Method Notes Parameters

dedesignate_fire_control_channel () Request to the subsystem to de-
designate a fire control channel.

request_id_type RequestID

fire_control_channel_id_type
FireControlChannelID

designate_fire_control_channel () Request to the subsystem to
designate a fire control channel.

request_id_type request_id

sensor_track_id_type track_id

request_availability_of_fire_control_
channels ()

Request to the subsystem to report
the available fire control channels.

request_id_type RequestID
234 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.143 - Support surface target engagement - Check availability (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “check
availability” of the service “Support surface target engagement.”

 sd Support surface target engagement - Check av ailability

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»

Support_Surface_Target_Engagement_Sub

Returns the number of
available fire control
channels. If no channel is
available, the value '0' is
returned.

request_availabil i ty_of_fire_control_channels(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

report_availabili ty_state_of_fire_control_channels(request_id_type,
available_fire_control_channels_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 235

Figure 7.144 - Support surface target engagement - Designate fire control channel (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “designate
fire control channel” of the service “Support surface target engagement.”

 sd Support surface target engagement - Designate fire control channel

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»

Support_Surface_Target_Engagement_Sub

alt designate fire control channel

[basic flow]

[alternate flow: invalid track id]

[alternate flow: processing error]

loop report fire control track (asynchronous)

[while fire control channel is assigned]

This message corresponds with
the COMPLETE message.

Internally, the asynchronous
reporting of the fire control
channel has been triggered.

The reporting of fire control
tracks is part of sensor track
reporting.

When the reporting ends, the
number of available fire
control channels is reported.

request_ack.success = false

request_ack.success = true

request_ack.success = true

ref
sensor track reporting

designate_fire_control_channel(request_id_type, sensor_track_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

report_selected_fire_control_channel(request_id_type,
fire_control_channel_id_type,
sensor_track_id_type)

report_available_fire_control_channel(request_id_type,
fire_control_channel_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)
236 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.145 - Support surface target engagement - De-designate fire control channel (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “De-
designate fire control channel” of the service “Support surface target engagement.”

7.9.3 Missile_Guidance

Parent Package: Radar_Services

7.9.3.1 Perform_Illumination

Parent Package: Missile_Guidance

7.9.3.1.1 Perform_Illumination_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Illumination

This service covers the control of target illumination to support a semi-active homing missile engagement.

The actor is the Combat Management System.

The service is triggered by the illumination request of the actor. Typically, illumination takes place during a specific
period within the engagement sequence.

The actor sends an illumination request to the radar.

On the requested start time, the radar starts illuminating the target with specified parameters.

 sd Support surface target engagement - Dedesignate fire control channel

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»

Support_Surface_Target_Engagement_Sub

alt dedesignate fire control channel

[basic flow]

[alternate flow: invalid fire control channel id]

[alternate flow: processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

dedesignate_fire_control_channel(request_id_type,
fire_control_channel_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

report_available_fire_control_channel(request_id_type,
fire_control_channel_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 237

During the illumination, the actor may provide updates of illumination parameters, e.g., to change the stop time.
The service ends at stop time of the illumination.

If the radar may not fulfill the illumination request, this is reported to the actor and the service stops.

If during the illumination a radar fault takes place that prevents execution of illumination (e.g., illumination frequency not
more available), the health state of the Missile Guidance service (of which this service is part) becomes DEGRADED (if
the Missile Guidance service is still capable of performing uplinks and/or downlinks) or NOT AVAILABLE, and the
service stops.

If the target track becomes lost during the illumination, the service stops.

Pre-condition: Sensor health state - The sensor and the Missile Guidance service are in the health state AVAILABLE or
DEGRADED.

Pre-condition: Sensor parameters - The relevant sensor parameters (e.g., allowed frequencies, transmission sectors) are
set2.

7.9.3.1.2 Perform_Illumination_Sub

Type: IDLInterface
Package: Perform_Illumination

Table 7.211 - Methods of IDLInterface Perform_Illumination_CMS

Method Notes Parameters

complete () request_id_type request_id

2. The manner in which this is done is described in other services of the OARIS (“Manage frequency usage,” “Manage transmis-
sion sectors,” “Control emissions,” and “Manage subsystem parameters”).

Table 7.212 - Methods of IDLInterface Perform_Illumination_Sub

Method Notes Parameters

request_illumination () request_id_type request_id

illumination_request_type request

provide_track () system_track_type track
238 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.146 - Basic Flow - Illumination (Sequence diagram)

 sd Basic Flow - Illumination

«idlInterface»

Perform_Il lumination_CMS

«idlInterface»

Perform_Illumination_Sub

Same method is used when requesting i llumination for
the first time, as well as modifying the request later. In the
latter case, a new request (with new request_id) shall be
issued for the same target.

It is assumed that, at the moment of the il lumination request, the kinematics of the sensor tracks for target and
own_missile(s) as referred to by the i llumination_request are available to the subsystem.
This may be achieved in two ways:
1. The CMS provides the kinematics periodically to the subsystem, or
2. the subsystem itself is tracking the target and own_missile(s).
If this pre-condition is not satisfied, the receive_acknowledgement shall indicate that the request is not accepted.

When after some time the target and/or missile tracks are no longer available, the subsystem shall send receive _error
message with an appropriate error_reason.

opt target track

[subsystem is not tracking the target]

opt missile track

[missile(s) need to be i lluminated as well and subsystem is not tracking the missile(s)]

Target to be
il luminated

For al l missiles in
engagement (if
required)

opt target track

[subsystem is not tracking the target]

opt missile track

[missile(s) need to be i lluminated as well and subsystem is not tracking the missile(s)]

loop illumination period

[during i llumination period]

request_ack.accepted =
true

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
false

request_ack.accepted =
true

Although not shown in this sequence diagram, processing may also fail after one
of more successful i l luminations but before the end of the il lumination period.

provide_track(system_track_type)

provide_track(system_track_type)

request_il lumination(request_id_type,
i llumination_request_type)

receive_acknowledgement(request_id_type,
request_ack_type)

provide_track(system_track_type)

provide_track(system_track)

complete(request_id_type)

receive_acknowledgement(request_id_type, request_ack)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 239

7.9.3.2 Perform_Missile_Downlink

Parent Package: Missile_Guidance

7.9.3.2.1 Perform_Missile_Downlink_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Missile_Downlink

The service describes the reception and provision of missile downlink information to the CMS.

Downlink consists of transmission of energy by the missile. The radar subsystem may track a missile based on these
downlink transmissions (beacon track). Provision of the beacon track of the missile to the CMS is covered by service
Provide sensor tracks.

This service handles the situation where the downlink also has content.

Generally, a sequence of downlinks is transmitted by the missile, on periodic basis or triggered by an uplink. However,
the CMS (or a dedicated missile subsystem) is responsible for evaluating the downlinks in this sequence. The radar
subsystem only receives downlinks and provides them to the CMS, and does not keep track of the sequence. In the special
case where the downlink contains own missile kinematics, this data may also be used internally by the radar subsystem.

The actor is the Combat Management System. Although the downlink may be evaluated by a missile subsystem (which is
not part of the CMS), the downlink is assumed to be passed to that missile subsystem via the CMS.

The service is triggered by the downlink request of the actor.

The actor sends a downlink request to the radar.

During the request listening period, the radar listens to transmissions that are in accordance with the provided downlink
parameters.

The radar reports to the actor the occurrence of the downlink, including the (decoded) content of the downlink.

The information provided by the missile may vary depending on the applied missile fire control principle, and lies outside
the scope of the OARIS standard.

The information within the downlink may be used internally by the radar.

The service ends at the end of the listening period.

If the downlink transmission is interrupted, this is reported to the actor, and the service stops.

If during the downlink a radar fault takes place that prevents execution of the downlink, the health state of the Missile
Guidance service (of which this service is part) becomes DEGRADED (if the Missile Guidance service is still capable of
performing uplinks and/or illumination) or NOT AVAILABLE, and the service stops.

Relationship to missile uplink

For some missile types a downlink may be transmitted as a response to a received uplink (e.g., an acknowledge of
receipt). This relationship (including the inherent timing relationship) depends heavily on the missile type and lies outside
the scope of the OARIS standard.
240 Open Architecture Radar Interface Standard (OARIS), v1.0

Relationship to provide sensor tracks

If the downlink contains kinematic information about the missile, the radar subsystem may use this information internally
to improve the own missile track (provided service Provide sensor tracks or service Process target designation).

It is also possible that the missile is tracked based on the fact that it transmits energy and not based on the contents of the
downlink. This so-called beacon tracking is covered by service Provide sensor tracks.

Pre-condition: Sensor health state - The sensor and the Missile Guidance service are in the health state AVAILABLE or
DEGRADED.

Pre-condition: Sensor parameters - The relevant sensor parameters (e.g., allowed frequencies, transmission sectors) are
set3.

Pre-condition: Engagement phase - An engagement must be taking place.

Pre-condition: Missile downlink parameters - The parameters of the missile downlink transmission must be known to the
radar. Note that this does not concern the content of the transmission, but rather the transmission characteristics (e.g.,
frequency).

7.9.3.2.2 Perform_Missile_Downlink_Sub

Type: IDLInterface
Package: Perform_Missile_Downlink

3. The manner in which this is done is described in other services of the OARIS (“Manage frequency usage,” “Manage transmis-
sion sectors,” “Control emissions,” and “Manage subsystem parameters”).

Table 7.213 - Methods of IDLInterface Perform_Missile_Downlink_CMS

Method Notes Parameters

report_downlink () request_id_type request_id

downlink_report
the_downlink_info

complete () request_id_type request_id

Table 7.214 - Methods of IDLInterface Perform_Missile_Downlink_Sub

Method Notes Parameters

request_downlink () request_id_type request_id

downlink_request request

provide_track () system_track_type track
Open Architecture Radar Interface Standard (OARIS), v1.0 241

Figure 7.147 - Basic Flow - Downlink (Sequence diagram)

 sd Basic Flow - Downlink

«idlInterface»

Perform_Missile_Downlink_CMS

«idlInterface»

Perform_Missile_Downlink_Sub

Downlink report may be
periodic or aperiodic.

loop downlink period

[during listening period]

The request_downlink operation has not been identified in the service Description.
The reasons for introducing it here are:
1. There are no provisions (e.g. services) to satisfy the missile downlink parameters precondition.
2. The CMS is only interested in downlink information from own missiles in fl ight belonging to an active engagement.
3. Generally, the missile downlink parameters (e.g. frequency) are engagement dependent.

opt missile track

[missile track is required and subsystem is not tracking the missile]

opt missile track

[missile track is required and subsystem is not tracking the missile]

Missile from which a
downlink shall be
received

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

Although not shown in this sequence diagram, processing may also fail after one of
more successful downlink reports but before the end of the listening period. (In this
case there is a positive acknowledgement followed by some downlinks and then an
error is received).

provide_track(system_track_type)

request_downlink(request_id_type,
downlink_request)

receive_acknowledgement(request_id_type,
request_ack_type)

provide_track(system_track)

report_downlink(request_id_type, downlink_report)

complete(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
242 Open Architecture Radar Interface Standard (OARIS), v1.0

7.9.3.3 Perform_Missile_Uplink

Parent Package: Missile_Guidance

7.9.3.3.1 Perform_Missile_Uplink_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Missile_Uplink

The service describes the execution of uplink of relevant information from the radar to the missile in flight during an
engagement.

Generally, a sequence of uplinks (of various types) must be transmitted to a missile during an engagement. However, the
CMS (or a dedicated missile subsystem) is responsible for planning and requesting the correct sequence of uplinks. The
radar subsystem only transmits an uplink on request of the CMS. Therefore, this service starts with the request of a single
uplink and ends when the radar subsystem has transmitted the uplink.

The actor is the Combat Management System. Although the uplink may be initiated by a missile subsystem (which is not
part of the CMS), the uplink is assumed to be passed through the CMS to the radar subsystem.

The service is triggered by the uplink request of the actor.

The actor sends an uplink request to the radar.

At the requested time, the radar sends the uplink to the missile in accordance with the provided uplink parameters.

The information provided to the missile may vary depending on the applied missile fire control principle, and lies outside
the scope of the OARIS standard.

The service ends when the radar has confirmed the transmission of the uplink.

If the radar may not fulfill the uplink request, this is reported to the actor and the service stops.

If during the uplink a radar fault takes place that prevents execution of the uplink (e.g., uplink frequency not more
available), the health state of the Missile Guidance service (of which this service is part) becomes DEGRADED (if the
Missile Guidance service is still capable of performing illumination and/or downlinks) or NOT AVAILABLE, and the
service stops.

If the missile track becomes lost during the uplink, the service stops.

Network Centric engagements

In Network-Centric or Network-Enabled systems, guidance of the missile may be transferred during the flight of the
missile to another surface platform. As the related technologies are still being developed, it shall be too early to include
specific NEC requirements here. However, care should be taken in the design of OARIS that such capabilities could be
included at a later date. This means that there should be no built-in restrictions in the standard, which would prevent
addition of such facilities in the future.

Relationship to missile downlink

For some missile types an uplink transmission may trigger the transmission of a downlink by the missile (e.g., an
acknowledge of receipt). This relation depends heavily on the missile type and lies outside the scope of the OARIS
standard.

Pre-condition: Sensor health state - The sensor and the Missile Guidance service are in the health state AVAILABLE or
DEGRADED.
Open Architecture Radar Interface Standard (OARIS), v1.0 243

Pre-condition: Sensor parameters - The relevant sensor parameters (e.g., allowed frequencies, transmission sectors) are
set.4

Pre-condition: Engagement phase - An engagement must be taking place.

Pre-condition: Known position of missile - The position of the missile must be known, i.e., own missile track must exist.
The missile track may be provided by the CMS or by the radar subsystem itself.

7.9.3.3.2 Perform_Missile_Uplink_Sub

Type: IDLInterface
Package: Perform_Missile_Uplink

4. The manner in which this is done is described in other services of the OARIS (“Manage frequency usage,” “Manage transmis-
sion sectors,” “Control emissions,” and “Manage subsystem parameters”).

Table 7.215 - Methods of IDLInterface Perform_Missile_Uplink_CMS

Method Notes Parameters

report_uplink_completed () request_id_type request_id

uplink_report_type report

Table 7.216 - Methods of IDLInterface Perform_Missile_Uplink_Sub

Method Notes Parameters

request_uplink () request_id_type request_id

uplink_request_type request

provide_track () system_track_type track
244 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.148 - Basic Flow - Uplink (Sequence diagram)

7.9.4 Search

Parent Package: Radar_Services

7.9.4.1 Perform_Cued_Search

Parent Package: Search

7.9.4.1.1 Perform_Cued_Search_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Cued_Search

 sd Basic Flow - Uplink

«idlInterface»

Perform_Missile_Uplink_CMS

«idlInterface»

Perform_Missile_Uplink_Sub

opt missile track

[subsystem is not tracking the missi le]

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing fai led]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

Missile to which the
uplink shall be
transmitted

provide_track(system_track_type)

request_uplink(request_id_type,
uplink_request_type)

receive_acknowledgement(request_id_type,
request_ack_type)

report_uplink_completed(request_id_type,
uplink_report_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)
Open Architecture Radar Interface Standard (OARIS), v1.0 245

The CMS Search Interface

The subsystem is requested to undertake a cued search in the requested cue volume. The cue may be 1D (azimuth only),
2D (has an additional elevation constraint), 3D (has a further range constraint), or 4D (has a further target velocity
constraint). The response of the subsystem is either to reject the cued search request if it is invalid within the current
mode/configuration or to provide a cue request reply containing data relating to any resulting tracks.

Depending upon the individual radar it may be possible to predefine a cued search waveform.

The cued search request may contain azimuth, elevation and range data along with time of the positional data.

Pre-condition: Technical State - The Subsystem is in Technical State ONLINE.

Pre-condition: Mastership - The CMS has Mastership.

Pre-condition: Subsystem Services - The Provide Subsystem Services Service has been executed successfully.

Post-condition: Success - The CMS has received a ‘Cued Search Report.’

Post-condition: Failure - The CMS has not received a ‘Cued Search Report.

7.9.4.1.2 Perform_Cued_Search_Sub

Type: IDLInterface
Package: Perform_Cued_Search

The Subsystem Search Interface

Table 7.217 - Methods of IDLInterface Perform_Cued_Search_CMS

Method Notes Parameters

report_cued_search_result () Send a report to the CMS containing
the results of a previously cued
search.

cued_search_report_type result_report
The result of the search.

request_id_type request_id
The unique id relating to this cued search
request as supplied by the CMS.

Table 7.218 - Methods of IDLInterface Perform_Cued_Search_Sub

Method Notes Parameters

perform_cued_search () Request to subsystem to perform a
cued search in accordance with the
given set of constraints.

cued_search_cue_type constraint
The details of the constraints on where the
radar is to look for tracks.

request_id_type request_id
The unique id for this request. The radar
includes this in all replies relating to this
request.
246 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.149 - Alternative Flow - Sensor does not Perform Cued Search (Sequence diagram)

 sd Alternativ e Flow - Sensor does not Perform Cued Search

«idlInterface»

Perform_Cued_Search_CMS

«idlInterface»

Perform_Cued_Search_Sub

opt Negativ e Acknowledgement

[Subsystem has incorrect internal mode for a cued search]

opt Subsystem search failure

[Subsystem encounters an error condition in performing a cued search]

Failure to form a track from a cued search is not
an error condition. This results in zero track ids
being returned in the report

perform_cued_search(cued_search_cue_type,
request_id_type)

receive_acknowledgement(request_id, request_ack)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 247

Figure 7.150 - Basic Flow - Perform Cued Search (Sequence diagram)

7.9.5 Surface_Engagement_Support

Parent Package: Radar_Services

7.9.5.1 Perform_Splash_Spotting

Parent Package: Surface_Engagement_Support

7.9.5.1.1 Perform_Splash_Spotting_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Splash_Spotting

Surveillance radar systems may support engagements against surface targets by means of a splash spotting video or
measured splash positions. In the vicinity of the target a signal processing is applied which is optimized to observe
splashes of the shells hitting the sea surface.

The splash spotting information may be used to achieve shot corrections for a running engagement. The engagement may
use a fire control channel of the radar but also of another device like fire control radar. The CMS requests the radar to
localize a splash spotting area at a defined position derived from the target kinematics.

The use of splash spotting areas may be limited to fire control channels of the radar. Then, only the localization of a
splash spotting area may be done in accordance with this service. Normally, it shall be localized at the predicted hitting
point.

These splash spotting areas shall not differ in terms of function and performance so that the selection of the area to be
applied to an engagement may be done by the radar, automatically. The CMS just indicates where to localize it.

If mastership is lost during execution in any of the flows, the services are terminated.

 sd Basic Flow - Perform Cued Search

«idlInterface»

Perform_Cued_Search_CMS

«idlInterface»

Perform_Cued_Search_Sub

The cued search report may contain an
empty list of track identifiers resulting from
the search.

perform_cued_search(cued_search_cue_type, request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

report_cued_search_result(cued_search_report_type, request_id_type)
248 Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: Technical state ONLINE.

Pre-condition: Assigned fire control channel - a fire control channel has been assigned using “Support Surface Target
Engagement.”

Pre-condition: CMS must have Mastership.

Post-condition: Success - The subsystem provides splash spotting videos as long as the splash spotting areas are active.

Post-condition: No success - The subsystem does not perform as requested.

7.9.5.1.2 Perform_Splash_Spotting_Sub

Type: IDLInterface
Package: Perform_Splash_Spotting

Table 7.219 - Methods of IDLInterface Perform_Splash_Spotting_CMS

Method Notes Parameters

confirm_reposition_splash_splotting_area () Via this method, the request for the
repositioning of a splash spotting
area is confirmed by the subsystem.

request_id_type RequestID

splash_spotting_area_id_type
SplashSpottingAreaID

confirm_splash_spotting_area_
deactivation ()

Via this method, the request for the
deactivation of a splash spotting
area is confirmed by the subsystem.

request_id_type RequestID

splash_spotting_area_id_type
SplashSpottingAreaId

receive_splash_splotting_area_position () Via this method, the request for a
new splash spotting area based on a
position is confirmed by the
subsystem.

request_id_type RequestID

splash_spotting_area_id_type
SplashSpottingAreaID

receive_splash_splotting_area_track () Via this method, the request for a
new splash spotting area based on a
track is confirmed by the subsystem.

request_id_type RequestID

splash_spotting_area_id_type
SplashSpottingAreaID

report_splash_spotting_area_activation_
state ()

Via this interface, the splash
spotting areas are reported to the
CMS.

request_id_type RequestID

splash_spotting_area_set_type
SplashSpottingAreaSet

Table 7.220 - Methods of IDLInterface Perform_Splash_Spotting_Sub

Method Notes Parameters

activate_splash_spotting_area_by_position () Requests the subsystem to
activate a new splash spotting
area based on a area/position.

request_id_type RequestID

splash_spotting_area_position_type
SplashSpottingAreaPosition

activate_splash_spotting_area_by_track () Requests the subsystem to
activate a new splash spotting
area based on a sensor track.

request_id_type RequestID

sensor_track_id_type TrackID
Open Architecture Radar Interface Standard (OARIS), v1.0 249

7.9.5.1.3 Perform_Splash_Spotting_CMS

Type: ActivityPartition
Package: Perform_Splash_Spotting

7.9.5.1.4 Perform_Splash_Spotting_Sub

Type: ActivityPartition
Package: Perform_Splash_Spotting

7.9.5.1.5 Report measured splash positions

Type: InteractionOccurrence
Package: Perform_Splash_Spotting

deactivate_splash_spotting_area () Requests the subsystem to de-
activate a splash spotting area.

request_id_type RequestID

splash_spotting_area_id_type
SplashSpottingAreaID

report_splash_spotting_information () Requests the subsystem to
report splash spotting
information/splash positions
for an existing splash spotting
area.

request_id_type RequestID

splash_spotting_area_id_type
SplashSpottingAreaID

reposition_splash_spotting_area () Requests the subsystem to
reposition a existing splash
spotting area.

request_id_type RequestID

splash_spotting_area_id_type
SplashSpottingAreaID

splash_spotting_area_position_type
SplashSpottingAreaPosition

request_splash_spotting_areas () Request the subsystem to report
the splash spotting areas to the
CMS.

request_id_type RequestID

Table 7.220 - Methods of IDLInterface Perform_Splash_Spotting_Sub
250 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.151 - Perform Splash Spotting - Check Activation (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “check
activation” of the service “Perform splash spotting.”

Figure 7.152 - Perform Splash Spotting - Activate Splash Spotting Area by Position (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “activate
splash spotting area by position” of the service “Perform Splash Spotting.”

 sd Perform Splash Spotting - Check Activ ation

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

request_splash_spotting_areas(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_splash_spotting_area_activation_state(request_id_type,
splash_spotting_area_set_type)

 sd Perform Splash Spotting - Activ ate Splash Spotting Area by Position

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

alt activ ate splash spotting area by position

[basic flow]

[alternate flow: no inactive splash spotting area]

[alternate flow: error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

activate_splash_spotting_area_by_position(request_id_type,
splash_spotting_area_position_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_splash_splotting_area_position(request_id_type,
splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 251

Figure 7.153 - Perform Splash Spotting - Re-position Splash Spotting Area (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “reposition
splash spotting area” of the service “Perform splash spotting.”

 sd Perform Splash Spotting - Re-position Splash Spotting Area

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

alt re-position splash spotting area

[basic flow]

[alternate flow: invalid splash spotting area parameters]

[alternate flow: error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

reposition_splash_spotting_area(request_id_type,
splash_spotting_area_id_type, splash_spotting_area_position_type)

receive_acknowledgement(request_id_type, request_ack_type)

confirm_reposition_splash_splotting_area(request_id_type,
splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
252 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.154 - Perform Splash Spotting - Activate Splash Spotting Area by Fire Control Track (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “activate
splash spotting area by fire control track” of the service “Perform splash spotting.”

 sd Perform Splash Spotting - Activ ate Splash Spotting Area by Fire Control Track

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

request_ack.success = false

request_ack.success = true

request_ack.success = true

alt activ ate splash spotting area by track

[basic flow]

[alternate flow: request rejected]

[alternate flow: error]

activate_splash_spotting_area_by_track(request_id_type,
sensor_track_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_splash_splotting_area_track(request_id_type,
splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 253

Figure 7.155 - Perform Splash Spotting - Report On Splash Spotting Information (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “report on
splash spotting information” of the service “Perform splash spotting.”

 sd Perform Splash Spotting - Report On Splash Splotting Information

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

alt report on splash spotting information

[basic flow]

[alternate flow: rejection]

[alternate flow: error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

ref

Report measured splash positions

report_splash_spotting_information(request_id_type, splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
254 Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.156 - Perform Splash Spotting - Deactivate Splash Spotting Area (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation “deactivate
splash spotting area” of the service “Perform splash spotting.”

 sd Perform Splash Spotting - Deactiv ate Splash Spotting Area

«idlInterface»

Perform_Splash_Spotting_Sub

«idlInterface»

Perform_Splash_Spotting_CMS

alt deactiv ate splash spotting area

[basic flow]

[alternate flow: rejection]

[alternate flow: error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

deactivate_splash_spotting_area(request_id_type,
splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

confirm_splash_spotting_area_deactivation(request_id_type,
splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)
Open Architecture Radar Interface Standard (OARIS), v1.0 255

256 Open Architecture Radar Interface Standard (OARIS), v1.0

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols and Abbreviated Terms
	6 Additional Information
	6.1 Acknowledgements

	7 Open Architecture Radar Information Specification
	7.1 Introduction
	7.1.1 Document Structure

	7.2 Usage Overview
	7.3 Common_Types
	7.3.1 anonymous_blob_type
	7.3.2 identity_type
	7.3.3 subsystem_id_type
	7.3.4 system_track_id_type
	7.3.5 time_type
	7.3.6 System_Track
	7.3.6.1 system_track_type

	7.3.7 Coordinates_and_Positions
	7.3.7.1 absolute_duration_type
	7.3.7.2 altitude_coordinate_type
	7.3.7.3 angle_of_climb_type
	7.3.7.4 azimuth_coordinate_type
	7.3.7.5 azimuth_interval_type
	7.3.7.6 azimuth_qualification_type
	7.3.7.7 azimuth_rate_type
	7.3.7.8 cartesian_coordinate_type
	7.3.7.9 cartesian_interval_type
	7.3.7.10 cartesian_position_type
	7.3.7.11 cartesian_velocity_component_type
	7.3.7.12 cartesian_velocity_type
	7.3.7.13 coordinate_kind_type
	7.3.7.14 coordinate_orientation_type
	7.3.7.15 coordinate_origin_type
	7.3.7.16 coordinate_specification_type
	7.3.7.17 course_type
	7.3.7.18 covariance_matrix_type
	7.3.7.19 diagonal_covariance_matrix_type
	7.3.7.20 duration_type
	7.3.7.21 elevation_coordinate_type
	7.3.7.22 elevation_interval_type
	7.3.7.23 elevation_qualification_type
	7.3.7.24 elevation_rate_type
	7.3.7.25 full_covariance_matrix_type
	7.3.7.26 height_interval_type
	7.3.7.27 latitude_coordinate_type
	7.3.7.28 latitude_interval_type
	7.3.7.29 longitude_coordinate_type
	7.3.7.30 longitude_interval_type
	7.3.7.31 polar_position_type
	7.3.7.32 polar_velocity_type
	7.3.7.33 position_accuracy_coordinate_type
	7.3.7.34 position_coordinate_type
	7.3.7.35 range_coordinate_type
	7.3.7.36 range_interval_type
	7.3.7.37 range_qualification_type
	7.3.7.38 range_rate_type
	7.3.7.39 speed_interval_type
	7.3.7.40 speed_type
	7.3.7.41 velocity_accuracy_coordinate_type
	7.3.7.42 velocity_coordinate_type
	7.3.7.43 wgs84_position_type
	7.3.7.44 wgs84_velocity_type
	7.3.7.45 cartesian_position_accuracy_type
	7.3.7.46 cartesian_velocity_accuracy_type
	7.3.7.47 polar_position_accuracy_type
	7.3.7.48 polar_velocity_accuracy_type
	7.3.7.49 wgs84_position_accuracy_type
	7.3.7.50 wgs84_velocity_accuracy_type

	7.3.8 Shape_Model
	7.3.8.1 figure_ref_point
	7.3.8.2 general_polar_volume_type
	7.3.8.3 polar_volume_type
	7.3.8.4 sector_type
	7.3.8.5 truncated_polar_volume_type
	7.3.8.6 truncated_sector_type

	7.3.9 Requests
	7.3.9.1 denial_reason_type
	7.3.9.2 denial_type
	7.3.9.3 error_reason_type
	7.3.9.4 parameter_reference_type
	7.3.9.5 request_ack_type
	7.3.9.6 request_id_type
	7.3.9.7 common_use_case_interface

	7.4 Subsystem_Domain
	7.4.1 Encyclopaedic_Support
	7.4.1.1 data_descriptor_type
	7.4.1.2 url_type

	7.4.2 Extended_Subsystem_Control
	7.4.2.1 configuration_url_type
	7.4.2.2 offline_test_result_details_type
	7.4.2.3 offline_test_result_type
	7.4.2.4 offline_test_type

	7.4.3 Recording_and_Replay
	7.4.3.1 actual_time_type
	7.4.3.2 change_threshold_type
	7.4.3.3 parameter_type
	7.4.3.4 rate_type
	7.4.3.5 record_on_change_type
	7.4.3.6 recorded_data_type
	7.4.3.7 recorded_time_type
	7.4.3.8 recording_descriptor_type
	7.4.3.9 recording_id_type
	7.4.3.10 recording_set_type
	7.4.3.11 recording_type
	7.4.3.12 replay_set_type
	7.4.3.13 replay_speed_type

	7.4.4 Simulation_Support
	7.4.4.1 fault_script_id_type
	7.4.4.2 fault_script_ids_type
	7.4.4.3 fault_script_type
	7.4.4.4 fault_scripts_type
	7.4.4.5 sim_mode_status_type
	7.4.4.6 start_stop_sim_mode_request_type
	7.4.4.7 stop_freeze_session_request_type

	7.4.5 Subsystem_Control
	7.4.5.1 service_name_type
	7.4.5.2 battle_override_state_type
	7.4.5.3 descriptor
	7.4.5.4 descriptor_sequence
	7.4.5.5 device_identification_type
	7.4.5.6 device_name_type
	7.4.5.7 event_type
	7.4.5.8 fault
	7.4.5.9 fault_list
	7.4.5.10 health_state_reason_type
	7.4.5.11 health_state_type
	7.4.5.12 information_name_type
	7.4.5.13 interest
	7.4.5.14 interest_list
	7.4.5.15 mastership_state_type
	7.4.5.16 parameter_name_type
	7.4.5.17 name_error_pair_type
	7.4.5.18 name_error_sequence_type
	7.4.5.19 parameter_name_sequence_type
	7.4.5.20 name_value_pair_type
	7.4.5.21 name_value_sequence_type
	7.4.5.22 operational_mode_type
	7.4.5.23 parameter_value_response_type
	7.4.5.24 registration_type
	7.4.5.25 service_type
	7.4.5.26 service_health_type
	7.4.5.27 service_indication_list_type
	7.4.5.28 service_indication_type
	7.4.5.29 service_information
	7.4.5.30 service_list_type
	7.4.5.31 subsystem_health_type
	7.4.5.32 technical_state_type
	7.4.5.33 version_type
	7.4.5.34 Initial

	7.5 Sensor_Domain
	7.5.1 Clutter_Reporting
	7.5.1.1 clutter_assessment_request_type
	7.5.1.2 clutter_indication_type
	7.5.1.3 clutter_map_cell_type
	7.5.1.4 clutter_report_type
	7.5.1.5 concentration_plot_cell_type
	7.5.1.6 intensity_units_type
	7.5.1.7 plot_concentration_report_type
	7.5.1.8 plot_concentration_request_data_type

	7.5.2 Plot_Reporting
	7.5.2.1 plot_id_type
	7.5.2.2 plot_strength_type
	7.5.2.3 sensor_plot_set_type
	7.5.2.4 sensor_plot_type
	7.5.2.5 sensor_orientation_type

	7.5.3 Sensor_Control
	7.5.3.1 selected_frequency_list_type
	7.5.3.2 transmission_frequency_state_type
	7.5.3.3 all_frequencies_state_type
	7.5.3.4 reported_frequency_state_type
	7.5.3.5 frequency_band_type
	7.5.3.6 transmission_frequency_mode_type
	7.5.3.7 transmission_sector_set_type
	7.5.3.8 transmission_sector_type
	7.5.3.9 transmission_sector_power_level_type
	7.5.3.10 sector_reference_type
	7.5.3.11 control_emission_state_type
	7.5.3.12 test_target_scenario_type
	7.5.3.13 test_target_scenario_independent_target_type
	7.5.3.14 test_target_scenario_common_parameter_target_type
	7.5.3.15 test_target_type
	7.5.3.16 test_target_plus_scenario_type
	7.5.3.17 test_target_scenario_id_type
	7.5.3.18 test_target_scenario_state_type

	7.5.4 Sensor_Performance
	7.5.4.1 interference_report_type
	7.5.4.2 interferer_kind
	7.5.4.3 interferer_type
	7.5.4.4 jamming_magnitude_type
	7.5.4.5 perfomance_bin_type
	7.5.4.6 performance_assessment_report_type
	7.5.4.7 performance_assessment_request_type
	7.5.4.8 performance_beam_type
	7.5.4.9 performance_sector_type
	7.5.4.10 performance_type

	7.5.5 Track_Reporting
	7.5.5.1 sensor_track_id_type
	7.5.5.2 environment_type
	7.5.5.3 initiation_mode_type
	7.5.5.4 recognition_type
	7.5.5.5 sensor_track_type
	7.5.5.6 sensor_track_set_type
	7.5.5.7 track_phase_type

	7.5.6 Tracking_Control
	7.5.6.1 track_info
	7.5.6.2 track_priority_type
	7.5.6.3 tracking_zone_set
	7.5.6.4 tracking_zone
	7.5.6.5 tracking_zone_type
	7.5.6.6 tracking_zone_id_type

	7.6 Radar_Domain
	7.6.1 Air_Engagement_Support
	7.6.1.1 expected_hit_data_type
	7.6.1.2 miss_indication_data_type
	7.6.1.3 projectile_kinematics_type

	7.6.2 Engagement_Support
	7.6.2.1 available_fire_control_channels_type
	7.6.2.2 fire_control_channel_id_type
	7.6.2.3 kill_assessment_result_type
	7.6.2.4 kinematics_type

	7.6.3 Missile_Guidance
	7.6.3.1 downlink_report
	7.6.3.2 downlink_request
	7.6.3.3 frequency_channel_type
	7.6.3.4 illumination_request_type
	7.6.3.5 track_id_type
	7.6.3.6 uplink_report_type
	7.6.3.7 uplink_request_type

	7.6.4 Search
	7.6.4.1 cued_search_cue_type
	7.6.4.2 cued_search_report_type

	7.6.5 Surface_Engagement_Support
	7.6.5.1 splash_spotting_area_id_type
	7.6.5.2 splash_spotting_area_position_type
	7.6.5.3 splash_spotting_area_set_type
	7.6.5.4 splash_spotting_area_type

	7.7 Subsystem_Services
	7.7.1 Encyclopaedic_Support
	7.7.1.1 Receive_Encyclopaedic_Data

	7.7.2 Extended_Subsystem_Control
	7.7.2.1 Manage Physical Configuration
	7.7.2.2 Perform Offline Test
	7.7.2.3 Restart
	7.7.2.4 Shutdown
	7.7.2.5 Startup

	7.7.3 Recording_and_Replay
	7.7.3.1 Control_Recording
	7.7.3.2 Control_Replay

	7.7.4 Simulation_Support
	7.7.4.1 Define_Simulation_Scenario
	7.7.4.2 Control_Simulation
	7.7.4.3 Define_Fault_Scripts
	7.7.4.4 Control_Fault_Scripts

	7.7.5 Subsystem_Control
	7.7.5.1 Manage Technical State
	7.7.5.2 Heartbeat_Signal
	7.7.5.3 Provide_Subsystem_Identification
	7.7.5.4 Provide_Health_State
	7.7.5.5 Manage_Operational_Mode
	7.7.5.6 Control_Battle_Override
	7.7.5.7 Manage_Subsystem_Parameters
	7.7.5.8 Provide_Subsystem_Services
	7.7.5.9 Manage_Mastership
	7.7.5.10 Register_Interest

	7.8 Sensor_Services
	7.8.1 Clutter_Reporting
	7.8.1.1 Provide Area with Plot Concentration
	7.8.1.2 Provide Clutter Assessment

	7.8.2 Plot_Reporting
	7.8.2.1 Provide_Plots
	7.8.2.2 Provide_Sensor_Orientation

	7.8.3 Sensor_Control
	7.8.3.1 Manage_Frequency_Usage
	7.8.3.2 Manage_Transmission_Sectors
	7.8.3.3 Control_Emissions
	7.8.3.4 Define_Test_Target_Scenario
	7.8.3.5 Test_Target_Facility

	7.8.4 Sensor_Performance
	7.8.4.1 Provide_Interference_Reports
	7.8.4.2 Provide_Nominal_Performance
	7.8.4.3 Provide_Performance_Assessment
	7.8.4.4 Provide_Jammer_Assessment

	7.8.5 Track_Reporting
	7.8.5.1 Provide_Sensor_Tracks

	7.8.6 Tracking_Control
	7.8.6.1 Delete_Sensor_Track
	7.8.6.2 Receive_Track_Information
	7.8.6.3 Initiate_Track
	7.8.6.4 Manage_Tracking_Zones

	7.9 Radar_Services
	7.9.1 Air_Engagement_Support
	7.9.1.1 Provide_Projectile_Positional_Information

	7.9.2 \Engagement_Support
	7.9.2.1 Process_Target_Designation
	7.9.2.2 Support_Kill_Assessment
	7.9.2.3 Support_Surface_Target_Engagement

	7.9.3 Missile_Guidance
	7.9.3.1 Perform_Illumination
	7.9.3.2 Perform_Missile_Downlink
	7.9.3.3 Perform_Missile_Uplink

	7.9.4 Search
	7.9.4.1 Perform_Cued_Search

	7.9.5 Surface_Engagement_Support
	7.9.5.1 Perform_Splash_Spotting

