An OMG® Open Architecture Radar Interface Standard Publication

OBJECT MANAGEMENT GROUP®

Open Architecture Radar Interface
Standard

Version 1.1 with change bars

OMG Document Number: formal/20-08-04

Release Date: September 2020

Standard document URL: http://www.omg.org/spec/OARIS/1.1

Machine Consumable File(s):

https://www.omg.org/spec/OARIS/20190301/OARIS_PSM_XMI.xml
https://www.omg.org/spec/OARIS/20190301/oaris.zip

http://www.omg.org/spec/OARIS/1.1
https://www.omg.org/spec/OARIS/20190301/oaris.zip
https://www.omg.org/spec/OARIS/20190301/OARIS_PSM_XMI.xml

Copyright © 2013-2019 BAE Systems

Copyright © 2013-2019 THALES Group

Copyright © 2013 Selex ES

Copyright © 2013 DSTO

Copyright © 2013 Atlas Elektronik

Copyright © 2013 EADS Deutschland GmbH

Copyright © 2013-2020 Object Management Group, Inc

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The company listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies
of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to
have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information, which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

ii Open Architecture Radar Interface Standard (OARIS), v1.1

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i1) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of
the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as
indicated above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham,
MA 02494, U.S.A.

TRADEMARKS

CORBA", CORBA logos®, FIBO®, Financial Industry Business Ontology®™, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®,
OMG Logo®, SoaML®, SOAML®, SysML", UAF®, Unified Modeling Language®, UML®, UML Cube Logo®,
VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

Open Architecture Radar Interface Standard (OARIS), v1.1 iii

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a
Bug/Issue (http://www.omg.org/report_issue).

iv Open Architecture Radar Interface Standard (OARIS), v1.1

Table of Contents

Preface...cceiiiciniinnnniiciniisnnnnnicssisssnnnnicsssssssssnecsssssssssnscssssssssssssssssssssssssssssssssssssses xi
1 SCOPC.cceeeertiicrircnnteiicssssnsnnncsssssssssnsssssssssssnessses 1
PN 1) 11 1) 9 11 E:)1 U PPN 1
3 NOrmative ReferenCes.....ueeiiccrsscsnnnriccsssssnnnrnccssssssnsnsessssssssssssssssssssssssssssssssses 4
4 Terms and DefinitionS........cccceisersnricccsssssnnriccsssssnnssscsssssssssssssssssssssssssssssssssses 4
SN % 11110 RN 6
6 Additional Information............ceceiiiiiiniiinisniicissniinssnnnecssssnneteeeccssssssnsssseees 6
6.1 ACKNOWICAZEMENLS...ccccueiiiinriiinniiinnissnecssnnicsssnecsssnessssnesssnesssssssssssesssssssssssassssssssssssssssnns 6
7 Open Architecture Radar Information Specification.........cccccceeeeeccccccccccnnes 8
Tl INEFOAUCTION...uccueeineiiniieictinneicsneiseisnecssessssesssnssssesssessssessssssssssssesssseessessssssssassssssssasssanss 8
7.1.1 DOCUMENE STIUCTUTE.......eeeuiiieiiiiiienieeiteeite ettt ettt et ettt et e e s e e 8
7.2 USAGE OVEIVIEW..errueiesrrrrcssarisssanssssaresssassssssssssssssssssssssssssssssssssassssssssssssssssssssssssssssasssssasssssss 9
7.3 ComMMON_TYPES.cuiueirrenrsrnnsrnssrnssrnnssansssnnssnscssnsssassssesssassassssssasse 23
7.3.1 anonymous bIOD LYPE.....ccccuiiiiiiiiiiie et e e 24
7.3.2 AAENEILY EYPC..utiiiiiiieieeiieeteete ettt ettt sttt et 25
7.3.3 SUDSYSEM 1A LYPC..eieiuriiiiiiieiiieeiiieeeieeeteeetee et e et e e st e e st e e sateeesteeesnsaeennseeennnaaeens 25
7.3.4 SyStemM traCk 10 fYPC..c.eeceieiiieiiieiieiie ettt ettt et et e e 25
7 B T 111 T 14 o 1< PP URUPPUPRN 25
7.3.6 SYStEM_TTACK....cc.eiiiiiiiiiiiiiieeee et et e 25
7.3.6.1 SYStEM traCK TYPC...uiiiiiiiieiiiieeiiie ettt e ettt e e e e e e e e e e nraaee s 26

7.3.7 Coordinates_ and POSIHIONS.cecuieruiiriieiiieiiieiie ettt 26
7.3.7.1 absolute dUration tyPe........cceceieeiiiieeiiieeeiieeeiteeriee ettt e e rreeerre e e 32
7.3.7.2 altitude cOOTdINALE LYPE....ccueeruiieiieriieeiieeiie ettt ettt ettt sieeeabeesseeereeaeeens 32
7.3.7.3 angle Of ClIMD tyPe..cccuiiieiiiieiieceeeee e e 32
7.3.7.4 azimuth COOTAINALE tYPC.....ccriiriieriieiiieiie ittt ettt ettt e seaeeeaeeens 33
7.3.7.5 azimuth INteTVAl LYPE.....cceiiiiiiiiieeiiieciieecee ettt e e e e e e e e e nraeae s 33
7.3.7.6 azimuth qUalifiCation LYPE.......cccuieriiieiiiiiieeieeie ettt 33
7.3.7.7 aZIMULh Tt LYPC..eeiuririiiieeiiieeiiie et e et e este e et e e e e e e steeesbeeessbeeensaeeenseeennseeennnes 33
7.3.7.8 cartesian _CoOTdINAE tYPC.....cccueruieruierieieriieeiieriieette st etee st e e tee e et eeeeateeeeneaeeans 33
7.3.7.9 cartesian_ INterval fYPE.....ccccuiieiiieeiiiiiiieeie e eetee ettt e e e e 34
7.3.7.10 cartesian POSIHION. EYPC...cueruriruiiriiriiniieieeienitente ettt sttt st seeenaae e 34
7.3.7.11 cartesian_velocity COMPONENL tYPC...cc.veeerurierrurieeiiiieeiieeeiieeeieeeeieeeseeeeeeenneenees 34
7.3.7.12 cartesian VEIOCILY tYPC...cc.ciouiriiriiriiniiiiiiierieete ettt sttt 34
7.3.7.13 coordinate Kind t¥Pe......cc.eeeriiieiiiiriiiieiiieeeite ettt et 34
7.3.7.14 coordinate OrieNtation tYPE......ccceerueeruierieeitieriieeiieniieeieesiteeteestteereenseeseeeaeeens 34
7.3.7.15 coOrdiNate OTIZIN_ LYPC...ccrurieerurieaiiieeiieeeiieeeteeesreeestreeesereeeareeeeenseraeeeeesnsnsaeeeeas 36
7.3.7.16 coordinate SpeCifiCation tYPE........ccceeruiriiierieeiieniieeieesee et e e eiree e eree e eiree e 36

T3 7. 17 COUTSE LYPC.eiieiiiiiieeiiiiieeeeiiieeeestieeeesitteeessttteeesasteeeessnaeeessanseeeeeeeeesesssssannnnnenes 37
7.3.7.18 COVAriaNCe MALTTIX LYPC..uvierueieiieniieetieniieetiesiteeteesaeeeteesseesnseesseesnseesnseeesanneeeanns 37
7.3.7.19 diagonal covariance MatriX TYPE......cccceeerrueerrueeriveeriiieeniieeesireeeesnrreeeesessnsseeeens 37
7.3.7.20 dUIALION. EYPC..ccuiiriiiiiiiieiieitetertt ettt ettt s st et 37

Open Architecture Radar Interface Standard (OARIS), ¥4-0v1.1 i

7.3.7.21 elevation coOrdiNAte tYPe......c.eerueeriuieriieiiieiieeieeite ettt ettt e et eeebeee e 37

7.3.7.22 elevation Interval LYPe......ccccieriieiiierieiiieiieeit et ete et e ereeteesae e saeeeeneaeenes 38
7.3.7.23 elevation _qualification tyPe.........cccuierieriiiiniieeiieiie ettt 38
7.3.7.24 leVAtiON TALE LYPC...ccueieciieriieeiieriieeteenieeteesieeereessaeeseessseesseessseesaeessssaeesnsaeens 38
7.3.7.25 full_covariance MAatriX fYPE......cccueerueerueriiierieeieeniieeieesiteeteeeesiteeessebeeesnreeeenee 38
7.3.7.26 height Interval tyPe......c.ccciieiiiiiiiiieiieeie ettt be e ens 39
7.3.7.27 latitude COOTAINALE LYPE....eireiiriiiiiieiieeieeiee ettt sttt ettt sttt e eiaeeeeaes 39
7.3.7.28 latitude INteTVAl LYPC.....ciiiuiiciieiieiiiieiieeie ettt ettt et s ens 39
7.3.7.29 longitude cOOrdinate tYPe.......ccecieriieiiieniieiieniie ettt ettt et 39
7.3.7.30 longitude INterval tYPe.......cceeviieiiieiiieiiieiiieitieeie ettt et e e e e e ereeeeeaeaeeaes 40
7.3.7.31 POlar POSILION. LYPC...eeuiiiiiiaiieeiiieiie ettt ettt ettt ettt ettt e seaeebee e e 40
7.3.7.32 POLAr VEIOCILY LYPC..viiruiieiieiiieeiieiieeieeriee et eteeeteeteeseteebeesereeseesnseesseessneensaeaans 40
7.3.7.33 position_accuracy coOrdinate tYPe.......ccccceervueerieenueriiienieeieenieeieenieeeieeniieeeenes 40
7.3.7.34 pOSItion COOTAINALE LYPC....ccuvieruieiiieiieeiieeiieiieeieeeireeteeseeeebeesseeesseessseeesnsseaeenes 41
7.3.7.35 range COOTAINALE LYPEC....ccueeruuieiiieiieeiieniieetie st eteeeite et esieeebeesieeenbeesnbeeesnaeeeanes 41
7.3.7.36 range INterVal LYPE.....ccceeciieiieeiiieiieiieerite ettt ettt st eraeeen 41
7.3.7.37 range qualification tYPe........ceecuieiieiiiiiiieiieeiee ettt 41
7.3.7.38 TANZE TALE LY PC.uurieeiureeeiieeiiieeeiieerteeeeiteeesiteeetteesateeensaeesseeesnsaeesnseeennsaeessnnnssnens 42
7.3.7.39 speed INETVAL TYPE...cueiiiiiiiiiiiieiie ettt ettt ettt et e e ee e 42
73740 SPEEA. LYPC..eeiieiieiieeiieiieete et ettt et et e et e et e s eaeebeesabeebeessaeebeeeabeenbeensaeebaeens 42
7.3.7.41 wvelocity _accuracy coOrdinate tyPe.......ccccceervieerieeriiieiiienienieeniieeieesieeeeeenieee e 42
7.3.7.42 velocity COOTAINALE LYPC....cccuieruierieeiiieeiieeiienieeteesieeeieeseeeeseesseeesseensseeesnsneaeenes 42
7.3.7.43 WES84 POSILION LYPC..ueiieiieiieiiiieiieeite ettt et ettt e et estee ettt e e enbaeesenbeeeennneeeaans 43
7.3.7.44 WES84 VEIOCILY LYPC...viiceiiiiiiiiiieiieeie ettt ettt ettt et e et e e eeebaeeessbaaeennnaaeenes 43
7.3.7.45 cartesian_pOSItION ACCUTACY LYPC..ccuveerueerrireriieaiianiieeieesiteeieeeesereeessnreeesnneeeenene 43
7.3.7.46 cartesian_VElOCItY ACCUTACY LYPC...ccuirriierireirierireeiieriieereenreeesnereeesnsneeesnneaennes 43
7.3.7.47 polar position_aCCUTACY LYPEC....ccuueeruieriiiriiieniieeiieniieeieesiteeieeeerireeesenreeeenaeeeenee 44
7.3.7.48 polar veloCity aCCUTACY LYPEC....ccvuieriieriieiiieiieeiienereeieesteeneeeenereeesereeeesreeeennns 44
7.3.7.49 Wgs84 POSItION_ACCUTACY LYPC...veeruriertieriiiaiieriieentieeiteenieesteenteeeseeeeenneeeeanneeeaans 44
7.3.7.50 wgs84 VeloCity aCCUTACY tYPC.....cccuierrieeiiierrieeiieriieeieeneeeeteesseeesreeeesreeeensaeens 44
7.3.8 Shape MOEL......eoiiiiiiiiiiee ettt ettt as 45
7.3.8.1 figUre ref POINL.....cccuiiiiiiiiiiiieiiecie ettt ettt ettt eib e e eebe e e ensbeeeenes 47
7.3.8.2 general polar VOIUME tyPe......ccoviiiiiiiiiiiiieiieeiee e 47
7.3.8.3 POlar VOIUME LYPEC...ccviiiiieiiieiiieiieeie ettt ettt et et et e steesteeenbbeesesbaaeenssaaeenns 47
T.3.8:4 SECLOT LYPC.nniiiiiiiiiiiieeette ettt ettt e ettt e et e st e s e e et e et e e e et eaees 48
7.3.8.5 truncated polar VOIUME LYPEC.....cccoviieriieiiieiiieniiieiiesiieeieesreeieeeeiaeeeeereeeeaaaeees 48
7.3.8.6 truncated SECIOT LYPC...viiieiiiieeiiiieeiieeeieeeette et e e st e e teeeareeeaaeesaaeesassaeeeeeennssneas 48
7.3, REQUESES. ..ceiutiieiiiieeiie ettt e et e ettt e ettt e st e e sst e e sabaeesba e e e teeeenbaeeenbeeennnbraeeeens 49
7.3.9.1 denial reasOn LYPE....cc.eeiiiiiiieiiieiie ettt ettt ettt et sttt e et eeenaeee e 49
7.3.9.2 deNIAl EYPC...eiiiiieiiieiieiie ettt e ebe et e b e ssaeerae e e 50
7.3.9.3 ©ITOT _TEASOM_ LYPC..ceruerieruiieiriiieeniiteenitteeeitee ettt e sttt e sttt e sbt e e sbteesabee e s st e e e eesaneaeeeeas 50
7.3.9.4 parameter referenNCe tYPC.......cccieriieiiierieeiiieriieeiierteeereesieeereesteesereesaesseeseessseens 50
7.3.9.5 TEQUEST_ACK LYPC..uuiiiiiiiiiiiieite ettt ettt ettt et ee e 50
7.3.9.6 T@QUESE I EYPC...uviiieiieiieeiiieiieete et e eite ettt e et e et e e bt estaeebeeseeseseensaesnseeseeennsaeeans 50
7.3.9.7 common_USE€ CaSE INLETTACE........ccuiriuieiiiiiiiieeieie e 50
7.4 Subsystem DoOmaiN.....cceicreveicssricssnicsssnicsssnssssansssssnsssssssssssssssasssssssssssassssssssssssssssssssssnses 51

Open Architecture Radar Interface Standard (OARIS), ¥4-0v1.1

7.4.1 Encyclopacdic SUPPOTL.........ooiuiiiiiiiiieiiieieece ettt ettt 51

7411 data deSCIIPLOT LYPC...cuieeeiieiieiieeitieetieeteeeeeeteestee et e s aeebeesseesnseesseeesseenseeennsaeenns 52
A B 3 7 o1 PSSP PUSRRRUPPRRN 52
7.4.2 Extended Subsystem Control...........cccoecieriiiiiieniieeiiieiieeie et 52
7.4.2.1 configuration Url tYPe.......ooiiiiiiiiiiiiii et 52
7.4.2.2 offline test result detailS tyPe.......cccievieeiiieriieiiieieeieeeeeee et 52
7.4.2.3 offline test TeSUIt tYPe....cccuiiiiiiiiieie e 53
TA2.4 OffliNE TEST LYPC.riicuiieiieiiieitieeieeiee et etee ettt e te et e eve e teesebeesseeessaeesessaaeensnaaeanns 53
7.4.3 Recording and Replay........ccccooiiiiiiiiiiiiieeee e s 53
74.3.1 aCtUal M LYPC.uveeieiieiieeiiiiiieeiieetieete et et e ettt e vt e s teeebeesseessseesseeenseenseeennsaeenns 54
7.4.3.2 change threshold fyPe.......ooioiiiiiiiiiiee e 54
T4.3.3 PATAMELIET LYPC..eeeuriieririeeriiieeiiieeeriteeetteeetteestteesaeeessseeessseeanssaeesesaassseeesssnsnssneeesns 54
T34 TAE LYPC.nniiieiiieieitie ettt ettt et ettt ettt e e ettt e e e e abtaeee e s 55
7.4.3.5 r1ecord 0N Chan@E tYPC......cceeviiriieiiieiiieeiieiieeieerieeeteesteeeaeeseesereeseesaseeesneaeenes 55
7.4.3.6 recorded data tYPe......cooiiiiiiiiiieie et 55
7.4.3.7 1€COrded tIME LYPC.....iisiiiiiiiiiieiieiieeieeeee et e eiteeteeseteeteesbeebeeeensbaeessnsaeessnsaeenns 55
7.4.3.8 1eCOTdiNg deSCIIPLOT TYPE..eetiiiurieiieeiieieeeteeite et et te ettt ee st e et e sibe e eebeeeenneeeenes 55
7.4.3.9 1COTAING 1A LYPC.uriiiiiiiiiieiiieiieiie ettt ettt ettt et e s e e steessaeenraeeennraeeens 55
74.3.10 1ECOTAING. ST LYPC..ueiiuiieiieiiieeiieeite ettt ettt et et e et e st e ebeesseeenbe e nbeeeennneeeenes 56
TA3. 11 1ECOTAING. EYPC..uriiiuiiiiieeiieitieeieette et estteeteestteeaeesteeeseesseeessseeeassaeesasssaesnsssaennns 56
TA3.12 1EPIAY S LY PC.cutieiuiieiieeiteite ettt ettt ettt ettt ettt et e et e e et e e nteeens 56
7A4.3.13 1eplay SPEEA LYPC...uvieieiiiiieiieeiieite ettt ettt ettt et e bbb e e raeaens 56
7.4.4 SIMUlAtion SUPPOTT.....eiiiiiiiiiiieiie ettt ettt sttt e st et eesae e e nteeeeneeeens 56
7.4.4.1 fault SCTIPt 1A LYPC.uriiiiiiiieiiieiieie ettt ettt et eesbe e eeaeeeensaeaeenes 57
7.4.4.2 fault SCTIPt 1AS EYPC...eieiiiiiieiieei ettt ettt ettt st 57
TA.4.3 fAUIL SCTIPE LYPC.riiieiieiieiiieiieeie ettt ettt et e te et e e e e eeesebeesteeessaaesessaaeenssaaeenes 57
TA4.4.4 £aUlt SCTIPLS LY PC..eiieiiieiieiiietie ettt ettt ettt et e st e e bt e saaeebeeeas 57
7.4.4.5 SIM_MOAE STATUS EYPC..uviierieriiieiieiiieeieeiiieeteeteeeaeesteesereeseessreeseessseeseessneensaeens 57
7.4.4.6 start stop SIM _MOdE TEQUESt TYPEC...cccuiiruieriiaiiieiiieiiesiteeiee sttt et eeeeeens 58
7.4.4.7 stop freeze SEeSSION TEQUESE LYPC...ccuiirieriiierieeiieriieeieenieeeieeseesaeenseesreeessnsaeenns 58
7.4.5 Subsystem COntrol.........c.ooiiiiiiiiiiiiiiieie e e 58
7A4.5.1 SEIVICE NAME LYPC..uviirerierierireeiriertieeieenreeseesseeeseesssesseessseaseeesnsseeesssseessnsseeennnns 61
7.4.5.2 battle OVerride State tYPe......ccceerieriiienieiiieiieeitertee ettt sttt 61
TA.5.3 A@SCIIPIOT . .ecueiieiiieiie ettt ettt et et e et e et e e bt e sateebeessbeesseessseensaesnssaeessseeessseeennes 61
7.4.5.4 deSCIIPLOT SEQUETICE. ...ccuueeeutietieeitietie ettt etee et eteeseteebeesateenbeesaeeebeesneeenneesnneeseeeens 62
7.4.5.5 device 1dentifiCation LYPE........cccierieriiieriieeiieiieeteeiee ettt sre et e e ereeseaeeraeeens 62
7A4.5.6 dEVICE NAME LYPEC..eiiiieiuiieiieitieeiieeiie et eette et e ette et e e stteebeesateebeeaenbbeeeenbeeeeanneeeeans 62
B T A 1 A 7 TSRS 62
O TR T 131 L USSR 62
TA.5.9 FAUIE TIST.uiiiiiiiiiiiii ettt et ettt e e enbe e e ennbeeeenes 63
7.4.5.10 health _state T€aSON tYPE.....ccccuieiiiiriiieiiieiiieitie ettt ettt ettt e e e e eaeee e 63
7A4.5.11 health State TYPEC.....c.ccccieeciieiiieeiieiieeieeriee ettt e ete et e sereebeesreeseesaseesseessnessaeeens 63
7.4.5.12 InfOrmation NAME LYPEC....cccveeerrrreriieeiiieeeirieeeieeeeetreeerteesreeesseeessssseeeeeesssssaeaeens 63
TAS5.13 IEETESE.c.euieiieteeiteet ettt ettt ettt ettt et sat e bt et e st e bt et sat et eeennee e 64
TAS5. 14 INTETEST LISt .iiiiiiiieiii ittt ettt et st e e e aeaeeens 64
7.4.5.15 MaStership StAte LYPEC.....ceeriiieriierieeiiieiieeieeriee et esteeeteeteeereebeeesbeessaeeeensneeeenes 64

Open Architecture Radar Interface Standard (OARIS), v1-0v

—

A iii

7.4.5.16 parameter NAME LYPE.......eerrureerririeiiieeeiiee et ee et e et e et e e st e e sibeeebbteeeeeenaieaeeeens 64
7.4.5.17 NAME ETTOT PAIL LYPEC..eirrierrreeiieruieereerieeereenseeeseensaesseesseessseesseesssessssseeesssseessnes 65
7.4.5.18 Name_Error SEQUENCE LYPC.....ueerruriirriiieiiiiieniiieeeiteesiteesiteesbteesbeeesbeeesabee e 65
7.4.5.19 parameter NAME SEQUENCE LYPC...ccrurierrurreriurrerireenieeerreeerieeessanrrreeeessnnneneeeenns 65
7.4.5.20 name value PaIl tYPC.....cocuiiriieiieiiieiieeie ettt ettt ettt e et e e 65
7.4.521 name value SEQUENCE LYPEC....c.cccvuierierieeiiienieeieenieeieesseeeseessresseesseesseessseeennes 65
7.4.5.22 operational MOAE LYPE.....c.eeruiiriiiiieiieeieeee ettt 65
7.4.5.23 parameter value TeSPONSE LYPC.....ccceerrrrrreeriieirienieeireenaeesseessreesseeessseeessssaeenns 65
TA4.5.24 1EZISIATION. LYPC..ueeiitieiiiieiieeiieetteette et e eite et et e e bt e bt e enbe e bt e sabeesseeenbeenseesaneeneeans 66
TA.5.25 SEIVICE LYPC..uurieiieieiieiieeiieeitieeteetteeteeteesseessteesseeseessseesseesssseesassaeesassseesnssseesnns 66
7.4.5.26 service health tyPe.......ccociiiiiiiiiiiie e 66
7.4.5.27 service INAication LISt tYPC......ccieriierrieriieiiieiieeieeete et esireereesiee e esreeeaeeaee e 66
7.4.5.28 service INAICAtION_ LYPC.....ccueriuieruieeiieniieeieeeieeteesite et esite et e e e sibeeesibeeessbeeeenene 66
7.4.5.29 Service INTOIMAtION.cciiiriieiieeiieeieerieeeteestteeteesteeereesteeesbaeesenbaeesessaeeensseaeenns 66
7.4.5.30 SEIVICE LISt LYPC..uueiitieiiiiiieeiie ettt ettt ettt ettt ettt e et e b e s ateeneeens 67
7.4.5.31 subsystem health TYPe........ccceeiiiiriiiiiiiiiiieiee et 67
7.4.5.32 techniCal State TYPEC.......cccieriiiiiieiiieiieeie ettt ettt e e e 67
TA.5.33 VETSION LYPC..cuerierieieiieiiieeiieerieenteesteeseeesseessteesseessseensaessseesseessseesseessseessssessssseeenns 68
S TG 7 S 11 U | TSR PSPRRPR 68
7.5 SenSOr DOMAIN...cciciniicisericssnisssnncssssrcsssrsssssssssssssssssessssosssssssssssssssssssssssssssssssssssssssasssssss 68
7.5.1 Clutter REPOTTING.iiiiiiiiieiieeieeiee ettt ettt et s e et e e et eeeenneeeeans 69
7.5.1.1 clutter_assesSmMent TeqUESE tYPE....ccvererrierrieeriiieeiieeeiieeeieeesieeeeireesieeeeeenneenees 69
7.5.1.2 clutter indiCation fYPe......cccueereieriierieeiieeie et te ettt ettt et et ee e enbeeeeenbeee e 69
7.5.1.3 clutter map CEIL TYPC..ccciiiiiiiiieiieeiieeieeeee ettt e en 70
7.5.1.4 CIULET TEPOTT LYPC..cuutieiieeiiieiie ettt ettt ettt ettt et e st e et e saaeeeaeeens 70
7.5.1.5 concentration plot Cell tYPe......c.eeviiriiiiriiiiiieiieeie et 70
7.5.1.6 INtENSILY UNIES TYP.cuuiiiurieriiiiiieitieeiteite et e riee et e eteesiteetee st e ebeesaeeeneesaeeesnneeeenns 70
7.5.1.7 plot_concentration re€POIt LYPE.......ccveereerrueereeeiierieeereesieeeeeesseesseesseesseeensseeennes 70
7.5.1.8 plot_concentration request data tyPe.......ccceceerouieriiiiiiienieeieese e 71
7.5.2 PlOt REPOTTING....cccuiieiieiiieiieeie ettt ettt ettt et e et e e taeebeesteeesseessesnseessaeessaeeennnes 71
T.5.2.1 PLOt 10 EYPC. ettt ettt ettt et ettt e e e e e eae 71
7.5.2.2 Plot SrENGth LYPE...ccciiieiiieiieiieeieeee ettt ettt et e e e eebeeeenneaeenes 71
7.5.2.3 SENSOT_PlOt ST LYPC..ueiiiiieiieiiieiie ittt ettt ettt ettt ettt e et sbee st eaeeens 72
7.5.2.4 SENSOT _PLOt LY PC..uuriiiiiiiiieeiiieieeeieetee ettt e ete e bt e e e ebeesteebeessseenseessseensaeesnsaeenns 72
7.5.2.5 SENSOT_OTIENtAtION LYPC...eietiiruiieiiieeiiietieeieesiee et eteesteebeesiteebeesateeseesaeeesnneaeeaes 72
7.5.3 SeNSOT CONIIOL....ccuiiiiiiiiiiiiieeiieiie ettt ettt et e et e esteesabeebeeesseessaeeessaaesansaaesnssaeas 73
7.5.3.1 selected frequency 1St tYPe......coorieiiiiiieiiiieeee e 75
7.5.3.2 transmission frequency State tyPe.......ccccciervieeriierieriiieniieeieeriiesieeieesreeeeneeeenes 75
7.5.3.3 all_frequencies State LYPE......c.cccierieriiieriieeiieiie ettt ettt 75
7.5.3.4 reported freqUENCY StAte tYPC......cccccveeriiierieriieiieeieeieeeie et seeere et eebeenaaee e 75
7.5.3.5 {requency Dand LYPe.......cocioieiiieiieeie et 75
7.5.3.6 transmission_frequency mode TYPe........cceevieriiiriieriieiiienieeiee e e eiree e 75
7.5.3.7 transmisSION_SECTOT ST LYPC....eiruieriieiieeiietie et eite et et e ete et e et e e enbeeeeenbeee e 76
7.5.3.8 tranSMISSION._ SECLOT LYPC....vierrreerieriierieeriieeteesteesteesteessseesseessseeseessseeseessnesnseeeans 76
7.5.3.9 transmission_sector pOwWer level tyPe.......coooiiiiiiiiiiiiiiiiieieseeee e 76
7.5.3.10 SECtOr TEfETENCE LYPC...uiiiiiiieiieiieiiieeiieeiie et eeiteeteeseteeteesreebeeeensbaeessnsaeensnsaeenns 76

Open Architecture Radar Interface Standard (OARIS), ¥4-0v1.1

7.5.3.11 control emisSiOn State tYPe......cceeecuierieriiieriieeiieiie ettt 77
7.5.3.12 test target SCENATIO LYPC.....eerrierrueerreerreeirienieeteenseeeseesseeaseesssessseesseessseesssseennes 77
7.5.3.13 test_target scenario_independent target type.........ccocceriieiieiiiiiiiieeniieeeiieenns 77
7.5.3.14 test target scenario_common_parameter target tyPe........coccoecvverveereveereeriueeenns 77
7.5.3.15 tEST ATZEE LYPC..nueiiiiiiiiiiie ettt et e e et 78
7.5.3.16 test_target pluS SCENATIO LYPEC....c.eeerrierieerieeriiieiiieeiieeiteesreereesereeseeesareeesssaeenns 78
7.5.3.17 test_target SCeNario 1d LYPE.....c.cecieroiiiriieiiieiie ittt ettt ettt 78
7.5.3.18 test_target SCENArio StAte LYPE.......ccceerciierieriiieriienieeiienieeieeeenereeeenereeeesreeeenens 78
7.5.4 Sensor PerfOrmance...........occuiiiuieiiiiiiieiie ettt ettt et e et 78
7.5.4.1 INtErference IEPOTT LYPC....ecciieruieeiieiiieiieeitieeieeteeereeteesseeeseesseeeseesseeeseessseeennes 79
7.5.4.2 Anterferer Kind.........oooooiiiiiiiiiee e 79
7.5.4.3 INEEIEETET LY PC.cuuiiieiieiieiieeiieeie ettt e et et e eteesteeeteesaeeesbeesseesabeensaeesseeseeenseensnanns 80
7.5.4.4 jamming magnitude tYPe.......cceeoieriiriiiiiiieiieniie ettt e 80
7.5.4.5 perfomance DIN tYPC.......cceerieriiieriiieiieiiie et esite et erteeeteesteeeerteeesebaeessssaaeensnaaeenes 80
7.5.4.6 performance asseSSMENt TEPOTT LYPC....ceruirruieriiariieiiieitieeieeiee st eieesieeeeeieeeeans 80
7.5.4.7 performance assesSMENt IEQUESE LYPEC....ccueerierrrierreerrieerireeieerieeseeesseesreeesnraeenns 81
7.5.4.8 performance bEam LYPE........ccoeeriieriieiiieiieeiiesie et site ettt e ettt et e see e ens 81
7.5.4.9 performance SECLOT LYPC......cccueeiuierieriieeriieeieetieeteesteeseeeseessseeseessseeseesssesnsaeeans 82
7.5.4.10 PErfOrMANCE LYPC....uveiecrieeiiieeeiiieeitieesteeesiteeeteeeeteeeereeesraeessseeessseeesseeessseeennns 82
7.5.5 Track REPOTTING.....cciiiiiiiiiiieiieiieeieesiie ettt ettt ete et e esbeestaeebeeseeesseensaesessaaesnsneeas 82
7.5.5.1 SeNSOT_traCK 10 fYPE..cuueieiieiiiiiieiie ettt ettt ettt et enaee e 83
7.5.5.2 ©NVITONMENE LYPC...vvierieeeiierieeiteertieeteettesseesseeeseesseessseenseesseesseesssseessssseesssseesnns 83
7.5.5.3 INItiatioN_ MOAE LYPE...ueiiiiiiiiiiiieiieete ettt ettt et te ettt e st e et eesibe e eebeeeenneaeeaes 83
7.5.5.4 TECOZNILION LYPEC..eeruriiiieiiieiieeiiieitieeteesteeeteesseeeseesteessseesseessseesseeassseessssseessssseenns 83
7.5.5.5 SENSOT _ITACK LYPC..uuiiitieiiiiiiieeiieeite ettt ettt ettt ettt sb ettt e e enbteeeenneeeeaes 84
7.5.5.6 SENSOT trACK SET LYPC...uiiiuiiiiiiieiieiieeiieeieeete et et e et esteeeteesaeesnseessaeenseesseeennsaeeens 85
7.5.5.7 traCk PRASE LYPC....ciiiiiiiiiiieiie ettt et et 85
7.5.6 Tracking CONLIOL........cccuieiuieiiiiiiieeieerte ettt ettt e e be et eebeessaeenbeessseennnee 85
7.5.6.1 traCK INT0...ciiiiiiiii ettt e e e 86
7.5.6.2 traCK PrIOTILY EYPC...evieciieeiieiiieeieeiieeteerteeeteestteeaeesseeeseesseesssaeessssaaesasssaesnsseaennns 87
7.5.6.3 traCKiNg ZOMNE SE@L......ccueeiiiiiiiiiiiiieiiieiieetie ettt ettt ettt e ste et eeabeeeeenbteeeenneeeeans 87
7.5.6.4 TACKING ZONC.....cciiieiieiiieeiieiieeieerieeeteesteeeteeteeseaeeteessseesseessseenseessseenseesssesnsaeenns 87
7.5.6.5 tracKing ZONE LYPC....cccueeriiiiiiiiuiieiieeiie ettt et et e et e st e et estee st e e bt e eabeesbeeeneeeeens 87
7.5.6.6 tracking ZoNe 1d tYPC.....cccuieruieeiiieiiieiiieriieeieeteeete et eeteetee e ebeeseaeebeessaeeraeeens 88
7.6 Radar DOMAIN.....ccceiiiiiiiiiinninsnncssnicsssensssseessssecssssnessssssssssesssssssssssssssssesssssssssssssssssssssses 88
7.6.1 Air Engagement SUPPOTL........cccieriiiiieriieriieeniieeieeieeeteesseessveeseesneesssseeesnsneesnssseens 88
7.6.1.1 expected hit data tyPe......coooiiiiiiiiiiiee e 88
7.6.1.2 miss_indication data LYPE.......ccceerieeiiierieriiieiieeieeree e eeeeeteeeeerre e e eeeeaaae e 89
7.6.1.3 projectile KINEmMAtICS TYPE....c.ueeruieriiiiieriiieiieiie ettt ettt ettt e e e 89
7.6.2 ENGagement SUPPOTL......cccveiruieiriieeiiieeiieeeiteeeiteeetteessieeesseeesseeesseeesnseeessseesssseeesns 89
7.6.2.1 available fire control channels type...........ccoooooiiiiiiiiiiiniiiiiinieeie e 90
7.6.2.2 fire _control channel 1d LYPe.......ccccieviiriierieiiieieeeie ettt e 90
7.6.2.3 kill assessment reSult tyPe.......cccoviiiiiiiriiiiiiieiieeiiee e 90
7.6.2.4 KINCMALICS LYPC..uvvieurieieieeiieniieetienieeeteerteeeteesseeeseessaessseeseessseenseesssessssseeesnsseesnnes 90
7.6.3 MIiSSIIE GUIAANCE.eeiiiiiiieiieeite ettt ettt ettt et s e et e e et eeeenneeeeans 90
7.6.3.1 dOWNIINK TEPOTL...c..eieiiieiieeiieiie ettt ettt et eeseesas e esbeessaeensaeenns 92

Open Architecture Radar Interface Standard (OARIS), v1-0v

—

A v

7.6.3.2 dOWNINK TEQUESL........iiitiiiiieiieeiee ettt et 92

7.6.3.3 frequency Channel LYPe........cccieiieriieiiiieiieiieiie et eete et ere e e sbeeeeeseee e 93
7.6.3.4 11lumination TeqUESE tYPC....eeiueiriieriieeiieeiieetee ettt ettt ettt e et e e ebteeeeneeeeaas 93
7.6.3.5 trACK 10 LY PC.cierieiieeiieiieeiteeee ettt ettt ettt e st e et e st e ebeeetbaeeenneaeenneaeenes 93
7.6.3.6 UPIINK TEPOTT EYPE..uutieiieiiieiieeiie ettt ettt sttt sttt st et e st ebeeseaeebeeeans 93
7.6.3.7 UPIINK TQUESE LYPC..uvieeiieiieiieeiieiieeieeriee et eteeeeteeteeseeeeseessseeseeseseesseessnessaeenns 93
764 SEATCH....coiiiiiiiie e ettt e et e e et e e e enneeeeaas 94
7.6.4.1 cued SEArCh CUE LYPC....ccciiiriiiiiiiriiieiieeie ettt et e ete e e sae et e seaeebeeeennbaeeennsaeenns 94
7.6.4.2 cued SEarch IePOTt LYPC....cccuiiiiiiiieeiieeiie ettt ettt ettt e e e eieee e 94
7.6.5 Surface Engagement SUPPOTIt........cccceeiiiriiiiiiieniieeiiienieeieenteeieeesireeeeereeeseveeeeeneeas 94
7.6.5.1 splash_spotting_area id fYPe......ccceerieiiieiiiiiieie et 95
7.6.5.2 splash_spotting_area POSItION LYPE.......cccueeruierveeirierieeriierreereesreeseennreesssneeeenes 95
7.6.5.3 splash_spotting_ area St tyPe......cceecueeriiriiieniieiierie ettt 95
7.6.5.4 splash SPOtting Area tYPC......ccceevvieiierieeiiieriieeiierieeeteesteeeeeeteesaeeeeesereeesneaeenes 95
7T SUDSYSEIN_SEIVICES...ueiiiiserirssrrissnressnicsssnecsssnesssseessssncssssssssssesssssssssssesssssesssssssssssssssssassss 96
7.7.1 EncyclopacdiC SUPPOTL......cccieriieiiierieeiienieeieeriteeieesteeteeseaeereessseeseesssaeessssaeesnsneas 96
7.7.1.1 Receive Encyclopaedic Data...........coocuiiiiiiiiiiiiiiiieiee et 96
7.7.1.1.1 Receive Encyclopaedic Data CMS..........cceeviieiiiiiiiiniieiieriie e 96
7.7.1.1.2 Receive Encyclopaedic Data Sub..........cccoociiiiiiiiiiiiiiieeee e, 97
7.7.2 Extended Subsystem Control...........cccoecierieeiiieniieeiiieieeieeie et 98
7.7.2.1 Manage Physical Configuration...........ccoceeriieiiiiiiiienieiieeie e 98
7.7.2.1.1 Manage Physical Configuration CMS..........ccccceiviiiiiiiniiiiniieeeiee e 99
7.7.2.1.2 Manage Physical Configuration Sub..........cccccoiiiiniiiiiiiniiniiieeeeeeee 99
7.7.2.2 Perform Offline TeSt.......cccuerieriiiiiiieieeieseeeeesee ettt e 101
7.7.2.2.1 Perform_Offline Test CIMS......ccccoiiiiiiieiee et 101
7.7.2.2.2 Perform_Offline Test Sub.......cccceeeiiriieiiiiniieiecieeeeee e 102
B T 1 ¥ o SRR 103
7.7.2.3.1 Restart CIMS. ..ottt et e et eeeaeestaee e e ennneees 103
7.7.2.3.2 RESIAIT SUD....oiiiiiiiiiiiceiie ettt ettt e et e e rra e e e e e e eanaeaeeeas 104
7.7.2.4 SHULAOWIL.....iiiiiiiiiieiiee ettt ettt st e st e st e s aeeeneees 105
7.7.2.4.1 Shutdown CMS........oooiiieieieeee ettt e e eaeesnneens 105
7.7.2.4.2 ShutdOWN_ SUD......ccuiiiiiiiiiiiieeee et 106
B TN - 4131 o TSR 107
7.7.2.5.1 Startup CIMS....oooiieeeee ettt sttt ettt st 107
7.7.2.5.2 StArtup SUD...c.oiiiieiee ettt e 108
7.7.3 Recording and RepIay........cccccieiiiiiieiiiiiiieieeie ettt 109
7.7.3.1 Control ReCOTAING.....cccueiiuiiiiiiiiiiiieie ettt 109
7.7.3.1.1 Control Recording CMS.........c.cccouieiiimiiiiienie ettt e eseveee e 109
7.7.3.1.2 Control Recording Sub..........cccoriiiiiiiiiiiiieiiieee e 110
7.7.3.2 Control RePIaAY.....ceccuiiiiiiiiiiieeieeee ettt 111
7.7.3.2.1 Control Replay CMS.......coouiiiiieie ettt 111
7.7.3.2.2 Control Replay Sub........ccccoeviiiiiiiiiiiiieieecie et 112
7.7.4 SiMUIAtioN SUPPOTT....eiiiiiiiieiie ettt ettt e et e s teete e et e e e eneeeeenneee 114
7.7.4.1 Define Simulation SCENATIO........c.cccvueeriiirieeiieiieeiieree ettt eieeseeebeeseaeeeeeeeas 114
7.7.4.1.1 Define Simulation _Scenario CMS...........ccooiiiiiiiiiiiieee e 114
7.7.4.1.2 Define Simulation Scenario Sub...........ccccceerieriiiiiieniiieiienie e 115

Vi Open Architecture Radar Interface Standard (OARIS), ¥4-0v1.

—

7.7.4.2 Control STmMUIAtION.coiuiiiiiiiieiie e 117

7.7.4.2.1 Control Simulation CMS..........cccoiiiiiiiiieiieieeee ettt evee e 117
7.7.4.2.2 Control _Simulation Sub..........ccoociiiiiiiiiiieiee e 118
7.7.4.3 Define Fault SCriPtS.......cccvieiiiiiiiiiiiiiieeiiecie ettt e e 120
7.7.4.3.1 Define Fault Scripts CMS.......cooiiiiiiiiie e 121
7.7.4.3.2 Define Fault Scripts Sub.......ccccoeiiiiiiiiiiieiiieiieeieeeeee et 121
7.7.4.4 Control Fault SCripts........ccoooieiiiiiiiiieiie et 122
7.7.4.4.1 Control Fault Scripts CMS........coiiiiiiiiieieeeecee et 123
7.7.4.4.2 Control Fault Scripts Sub.........ccociiiiiiiiiiiiiiee e 123
7.7.5 SubSyStemM CONLIOL.......cciciieiiiiiieiiiecie ettt ettt e sbe et e ssbeesaesabeeaeessnsaeeans 125
7.7.5.1 Manage Technical State..........cccooiiiiiiiiiiiiiie e 125
7.7.5.1.1 Manage Technical State CMS..........ccooiiiiiiiiiieiieieeeee e 125
7.7.5.1.2 Manage Technical State Sub..........cccccomiiiiiiiiiiiiiiiiee e 126
7.7.5.2 Heartbeat Signal.........ccccciieiiiiiiiiiiieiieeie ettt 129
7.7.5.2.1 Heartbeat Signal CMS........cccoiiiiiiiii e 130
7.7.5.2.2 Heartbeat Signal Sub..........cccoociiiiiiiiiiiiiiiceeeeee e 130
7.7.5.3 Provide Subsystem Identification.............cccceeriiieiiiiiiiniiiiiieeee e, 131
7.7.5.3.1 Provide Subsystem Identification CMS.........c..cccevviiiiiiriienienieeiee e 131
7.7.5.3.2 Provide Subsystem Identification Sub.........c..ccocciriiiiiiiiiiniiiiis 132
7.7.5.4 Provide Health State..........ccccocieiiiiiiiiiiiiiieiee e 134
7.7.5.4.1 Provide Health State CMS........coooiiiiiiiie e 134
7.7.5.4.2 Provide Health State Sub.........ccccoooiiimiiiiiiiiiiciicecee e 135
7.7.5.5 Manage Operational Mode...........cooouiiiiiiiiiiiiiiiiiiiieee e 138
7.7.5.5.1 Manage Operational Mode CMS..........cccoeriiriiienieeiieieeieeee e 138
7.7.5.5.2 Manage Operational Mode Sub..........cccoooiiiiiiiiiiiiiiiie e, 138
F7553 Manage—Operattonal-Moede—CMS ... 139
F7+554 Manage—Operattonal-Moede—Sub.......cccccoeviiiiiiic e, 139
7.7.5.6 Control Battle OVerTide.........cccceeriirieririieniiiiieieeiereeeeeeee e 140
7.7.5.6.1 Control Battle Override CMS..........cooiiiiiiiiiee e 140
7.7.5.6.2 Control Battle Override Sub.........cccooviiriiiiiiiiiiiiieeieeiee e 141
7.7.5.7 Manage Subsystem Parameters...........cceocueruieiieniiieiienieeieeeee e 142
7.7.5.7.1 Manage Subsystem Parameters CMS...........cccooiiiiiiiiiiiniieiiieeeiiee e 142
7.7.5.7.2 Manage Subsystem Parameters Sub............ccoccoiiiiiiiiiiiiiiiiiiie, 143
7.7.5.8 Provide SubSyStem SerVICES.........cccierviirriierieiiieniieeieenieereesieeereenseeessreesnsneeas 146
7.7.5.8.1 Provide Subsystem Services CMS.........cooiiiiiiiiniiiiieieeee e 146
7.7.5.8.2 Provide Subsystem Services Sub..........ccccooviiriiiiiiiniiieniienieeiiee e 147
7.7.5.9 Manage Mastership.......cccooieeiiiiiiiiiieie e e e 149
7.7.5.9.1 Manage Mastership CMS........cccooiiiiiiieriiieieeie et 149
7.7.5.9.2 Manage Mastership Sub.........ccccooiiiiiiiiiiiiiiiee e 150
7.7.5.10 REGISTEr INTEIEST....ccciiiitieiiieiiieeieeiie ettt ettt et eae e e sebe e e etreeeesreeeensneeas 154
7.7.5.10.1 Register Interest CIMS.........oooiiiiiiiiiiieiee et 154
7.7.5.10.2 Register Interest Sub.........cccccieviiiriiiiiieiiieiee e 155
7.8 SISO _SCIVICES...uueeirsserisssercssnrcsssnncsssnecsssnecssssessssnessssnessssssssssesssssesssssessssssssssssssssssssssssss 156
7.8.1 ClUtter REPOTTING....cccviiiiieiieiieeieeiiteeie et ettt et esreeteesaaeesbeessaeeesssaeeesneeeennnes 156
7.8.1.1 Provide Area with Plot Concentration..............ceccueevieeniieiiienieiieesie e 156
7.8.1.1.1 Provide Plot Concentration CMS..........cccceevriiriiiiiienieeieerie e 156

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 vii

7.8.1.1.2 Provide Plot Concentration Sub...........cccccoeriiiiiiiniiiiiiiieeeeeee e 156

7.8.1.2 Provide Clutter ASSESSINENL......cc.eeruiriiriiertieieriieieeitesteeeeeee st eteseeesieeeeeineenaeeas 158
7.8.1.2.1 Provide Clutter Assessment CMS.........c.coooiiiiiiiiiiiiinieeee e 158
7.8.1.2.2 Provide Clutter AssesSment Sub..........cccccceeviieriiiiiiieniieeieenieeieesieeeenneeens 159

7.8.2 PLOt REPOTTING. ..ccuuiieiiiiiiieiiieiie ettt ettt ettt ettt e et esaeeesneeeeeneee 160

7.8.2.1 Provide PlOtS.....c.cceciiiiiiieiieiieeieeeiie ettt ettt et s saae e e e enenes 160
7.8.2.1.1 Provide Plots CIMS.......ooiiiiiiiiieee ettt 160

7.8.2.2 Provide Sensor Orientation...........c..ccceereveeruieriiereenieeerieeeseesseesseesseesseessseesnnnns 162
7.8.2.2.1 Provide Sensor Orientation CMS.........ccccoiiiiiiiiiiiiiiiene e 162

7.8.3 SeNSOT CONIIOL....ccuiiiiiiiiieiieeit ettt ettt ettt e st e e beestaeeabeesaaeesbeeeensseaesnnseeeennns 163

7.8.3.1 Manage Frequency USAZE.......ccceoiiiiiiiiiiiiiiiiiiieeriieeeiee ettt 164
7.8.3.1.1 Manage Frequency Usage CMS........cccoooiiiiiiiiieiiie e eieeee e 164
7.8.3.1.2 Manage Frequency Usage Sub........ccccoooiiiiiiiiiiiiiiiiiiiiieeeeee e 165

7.8.3.2 Manage TransSmiSSION SECLOTS.........cccureruieruieeriienieeiienieesieeseeesseesseeeessneeeesnnes 168
7.8.3.2.1 Manage Transmission Sectors CMS.........ccccoiiiiiiiiiiiiinieeeeiee e 168
7.8.3.2.2 Manage Transmission Sectors Sub..........ccccoccieviiiiiiiiiiiniiieiiieeeiee e, 169

7.8.3.3 Control EMISSIONS.cciuiiitiiiiieiieeieeite ettt sttt ettt 171
7.8.3.3.1 Control Emissions CMS.........ccciiiiiiiieiiieiieeieeeie et eee et sne e 171
7.8.3.3.2 Control EmisSions Sub........cccceooiiiiiiiiiiiiieie ettt 171

7.8.3.4 Define Test Target SCENATIO.......ccceviierieriiieiieeiieriieereeiieeeeeieeereeeesereeeeeneeas 173
7.8.3.4.1 Define Test Target Scenario CMS..........ccociiiiiiiiiniiiiiee e 173
7.8.3.4.2 Define Test Target Scenario Sub.........ccccocceeviieriiiiiiiienieeiiie e 174

7.8.3.5 Test_Target FaCility......coocieiiiiiiiiiieiiee e 177
7.8.3.5.1 Test Target Facility CMS.......cccooiiiiiiiiiiiieeieecie e 177
7.8.3.5.2 Test Target Facility Sub.......cccoiiiiiiiiiiiiiieieeeeeee e 177

7.8.4 Sensor Performance...........ccocuieruieeiieniieeie ettt 179

7.8.4.1 Provide Interference RepOItS.........cccccioiiiiiiiiiiniiieiieiiieeeee et 179
7.8.4.1.1 Provide Interference Reports CMS.........cccooiiiiiiiniiieiiiinieeieeee e 179
7.8.4.1.2 Provide Interference Reports Sub..........cocoomiiiiiiiiiiiiiniiiiieeeeeeee s 180

7.8.4.2 Provide Nominal Performance............cccceevvieriiieniieniienieeiieeiieeeiiee e 182
7.8.4.2.1 Provide Nominal Performance CMS..........cccooiiiiiiiiiiiiiiiiieeceeieee s 182
7.8.4.2.2 Provide Nominal Performance Sub..........ccccocoovviiniiiniiiniiiiiieieeieeeeee, 183

7.8.4.3 Provide Performance ASSESSIMENLt..........cccuieriieiiieriieiiienieeiieeieesiee e iee e 184
7.8.4.3.1 Provide Performance Assessment CMS..........c.cccoeviiiiiiieniiieeniiee e, 184
7.8.4.3.2 Provide Performance Assessment Sub..........ccccoooieiiiiniiiinieniiienienieeieeenns 185

7.8.4.4 Provide Jammer ASSESSMENL.........ccccccueeriieriiieriienieeriienieesieeereeeesereeeessreeesnsneeas 186
7.8.4.4.1 Provide Jammer Assessment CIMS........ccccoiiiiiiiniiiiiinieeiee e 186
7.8.4.4.2 Provide Jammer Assessment Sub..........ccccccovviiiiiiiiiiiiiiieeniiieeiee e 187

7.8.5 Track REPOTTING....cc.eiiiiiiiiiiiieiie ettt ettt sttt e e e e e 189

7.8.5.1 Provide Sensor Tracks.........ccccoveeeiiiriieiiieiieeiieeie ettt 189

7.8.5.1.1 Provide Sensor Tracks CMS........cooiiiiiiiiiiiieeeee et 189
7.8.6 Tracking CONLIOL........cccuieiiiiiiiiiieiiieieeee ettt ettt et ete e aeeesbeessaeensaeeans 191

7.8.6.1 Delete Sensor Track.........cccoooiiiiiiiiiiiiieiee e 191
7.8.6.1.1 Delete_Sensor Track CMS.........cooiiiiiiiiiiieeeeeeeeee et 191
7.8.6.1.2 Delete_Sensor Track Sub.......c.ccoooiiiiiiiiiiiiiieeee e 191

7.8.6.2 Receive Track INformation............cccoecveviieriieniieniiienieeie et 193

—

viii Open Architecture Radar Interface Standard (OARIS), ¥4-0v1.

7.8.6.2.1 Receive Track Information CMS..........ccociiiiiiiiiiiiieeeee e 193

7.8.6.2.2 Receive Track Information Sub..........cccccevviiiiiiiiiiieiiiniiciieieeeieeeeiee s 194
7.8.6.3 Initiate TracK.......cccoeiiiiiiiiiiiiieie e 195
7.8.6.3.1 Initiate Track CMS........cooiiiiiieiieieceeeee e 195
7.8.6.3.2 Initiate Track Sub........ccooiiiiiiiiiie e 196
7.8.6.4 Manage TracKiNg ZONES.........ccceeierueeiiierieeirienieeiteeseeesseesseesssaesssseeessseeesssseens 198
7.8.6.4.1 Manage Tracking Zones CMS.........cccooiiiiiiiiiiiiieeeee e 198
7.8.6.4.2 Manage Tracking Zones Sub.........cccociiiiiiiiieiiieniiiiiieiee e 199

7.9 RAAAr_SCIVICES...uuueiiiieiisiricssricsssnncsssnicsssnecsssnessssnssssssessns 200
7.9.1 Air Engagement SUPPOTT........cccuiiiierieeiiienieeiienieeteeieeereenseeeseeiraeesnseeesnseeesnnns 200
7.9.1.1 Provide Projectile Positional Information...........cccccevviiriiiiiiiiiniiiiniieeenee, 200
7.9.1.1.1 Provide Projectile Positional Information CMS...........cccooeviieniirerninnens 200
7.9.1.1.2 Provide Projectile Positional Information Sub...........cccccoeviiiiiiiniiininenns 201
7.9.2 \ENGagement SUPPOTTL.......ccueriuierieereerieeieerteeeteesseeeseeseesseesseessseesseessseesseesseesseenns 202
7.9.2.1 Process_Target Desi@nation...........cccecueeiiieriieniieniieriie ettt 202
7.9.2.1.1 Process Target Designation CMS...........ccoveviieiiieriieiiienieeieeeeieee e 202
7.9.2.1.2 Process_Target Designation Sub..........ccccceeoiieiiiiiiiieniiiiiiie e 203
F9213 SensotTrack REPOTHIE. ...cccveveeeeee et 204
FO214 SensorTrack RepoOrtiE. ..o iciieeee e 204
7.9.2.2 Support Kill ASSESSIMENL.......cceeriieiieriieeiieniieeteenireeteesteeereenseeeseesseessseenseeennas 207
7.9.2.2.1 Support Kill Assessment CMS..........cooiiiiiiiiiiiiieieeee e 207
7.9.2.2.2 Support Kill Assessment Sub..........cceccvrriieriiiniiiiiienieeieeeie e 208
7.9.2.3 Support_Surface Target Engagement...........ccocceeriiiiieiiiiinieniiienieniieeeee e 209
7.9.2.3.1 Support Surface Target Engagement CMS..........ccoeoviriieviencieenieeennnnn 209
7.9.2.3.2 Support Surface Target Engagement Sub..........cccocceniiiiiiniiiiniiiiniienenns 210
79233 Support—Surtface—TargetEngagement—CMS........cccoiiiiiiiiinee 211
79234 Support—Surface—TargetEngagement—Stb.......ccccceciiiiiiieriiieecee e, 211
F9235 SORSOTHACKTOPOTHRE . ..o v vovee e et eeeeeeee et eeste e s te e sate e sbaeesneee s e anees 211
7.9.3 MiSSIle GUIAANCE.eeiiiiiiiiiiieiie ettt sttt ettt e et e e et e e e 213
7.9.3.1 Perform_Illumlnation .. 213
7.9.3.1.1 Perform_Ilumination CMS.........cooiiiiiiiiie e 213
7.9.3.1.2 Perform_Iumination Sub..........cccecieriieiiieriieiienie ettt 214
7.9.3.2 Perform Missile DOWNINK.........cooiiiiiiiiiiiiii e 216
7.9.3.2.1 Perform_Missile Downlink CMS...........cccoeiiiiiiiiniieiieie et 216
7.9.3.2.2 Perform_Missile Downlink Sub.........cccccoiiiiiiiiiiiiiiieeeeen 217
7.9.3.3 Perform Missile UpPlnK..........ccccveviiiiiiiiiiiieiieeie et 219
7.9.3.3.1 Perform_Missile Uplink CMS........ccciiiiiiiiieeeee et 219
7.9.3.3.2 Perform_Missile Uplink Sub.........cccoeciiriiiiiiiniiiiiieiieiee e 220
7294 SEATCH....coiiiieie ettt e et e e e e e 221
7.9.4.1 Perform Cued Search...........ccccoecuieiiiiiiiiiieeiiecie et 221
7.9.4.1.1 Perform_Cued Search CMS..........c.oiiiiiiiiieee e 221
7.9.4.1.2 Perform_Cued Search Sub.........cccooiiiiiiiiiiiiiiicieceeeeeee e 222
7.9.5 Surface Engagement SUPPOTT........ccceoiiiiiiiiiieniieie ettt 226
7.9.5.1 Perform Splash Spotting.........ccccoecieriiiiiiieniiiiiieieeeee e 226
7.9.5.1.1 Perform_Splash_Spotting CMS........ccooiiiiiiiiieeee e 226
7.9.5.1.2 Perform_Splash Spotting Sub..........ccccceeriiiiiieriiiiieieeieeee e 227

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 ix

F95+4 Perform—Splash—Spoting—Sub.....cccooieviiiiieecer e 227
79515 ReportmeasuredSplashPostons. ..o 228

8 Platform-Specific MOdElS...cccccuueeeeerececereaeeeccsccecsssssescsscscccsssssssssscssssosssssssnee 233
8.1 DDS Data MOdel PSV....cceeeeeeeeeccsscssanneeeececcssssessssssessessssssssanssssesssssssssssasssssssssssssssssssssess 233
8.2 DS Services PSIM....ccceeeeeeeeeeereeeeereeereseeeeesesesesssansasssses 233

X Open Architecture Radar Interface Standard (OARIS), ¥4-0v1.1

Preface
OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®
(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.
OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:

http://’www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
CORBA/IIOP
Data Distribution Services
Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

UML, MOF, CWM, XMI
UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface
Specifications

CORBAServices
CORBAFacilities

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 Xi

OMG Domain Specifications
CORBA Embedded Intelligence Specifications
CORBA Security Specifications

Signal and Image Processing

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier/Courier New - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Xii Open Architecture Radar Interface Standard (OARIS), ¥4-0v1.1

1 Scope

This specification primarily defines the interface between the CMS and a Radar system within a modular combat system
architecture for naval platforms. However, it is structured to aligned with the objective of dividing the interface into
three categories, namely subsystem services (interfaces applicable to any module within a combat system), sensor
services (interfaces applicable to any sensor component within a combat system) and radar services (interfaces
applicable to any radar component within a combat system), as illustrated below. As such it has potential to provide

the basis for specifications for other combat system sensors and subsystems.

class OARIS Combat System Architecture /

Subsystem Combat
Management
System
Sensor Comms System Weapon
Radar Sonar Electro Optic Missile Torpedo Gun

Figure 1.1 - The OARIS specification exploits specialisation and generalisation to promote modularity and
extensibility

2 Conformance

In order to support utilization by a range of radars from simple navigation radars to complex multi-function radars

the RFP defines the following compliance levels:

e Levell

The simplest radar operation providing just plots and tracks

e Level2

Basic radar operation, but a complete interface supporting control and essential system configuration for a
combat system context

e Level 3A

In addition to basic operation (level 2), interfaces for training support

e Level 3B

In addition to basic operation (level 2), full system configuration interfaces

e Level 3C

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

In addition to basic operation (level 2), the full track and plot reporting interfaces

e Level 3D
In addition to basic operation (level 2), the engagement support interface

e Level 3E
In addition to basic operation (level 2), the advanced radar interfaces

e Level 3F
In addition to basic operation (level 2), compliance with NNSI (Not supported in this version of the
response.)

e Level 3G
In addition to basic operation (level 2), compliance with METOC (Not supported in this version of the
response.)

Radars conforming to this specification shall indicate which compliance levels are supported. The following options are
possible:

o Levell
o Level2
e Any combination of levels 3A to 3E (in addition to level 2)

In order to comply with the specification levels the following respective interfaces shall be supported in full, with the
exception of level 3C where at least one of the environment types (Space/Air/Land/Surface) shall be supported and
appropriately qualified, e.g. level 3C Air and Surface:

Compliance Required Interfaces
Level
1 Register Interest
Track Reporting
Plot Reporting
2 Control Interface Connection

Provide Subsystem Identification
Provide Subsystem Services
Manage Subsystem Parameters
Provide Health State

Manage Mastership

Manage Technical State
Exchange Heartbeat

Register Interest

Track Reporting

Plot Reporting

Manage Operational Mode
Manage Tracking Zones

Manage Frequency Usage

2 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Manage Transmission Sectors
Control Battle Override
Control Emissions
3A Define Test Target Scenario
Define Fault Scripts
Control Simulation
Control Fault Script
Control Test Target Facility
Control Recording
Control Replay
Provide Simulation Data
3B Shutdown
Restart
Startup
Manage Physical Configuration
Perform Offline Test
Receive Encyclopedic Data
3C Receive Track Information
Delete Sensor Track
Initiate Track
Perform Cued Search
Provide Space Plots
Provide Land Plots
Provide Surface Plots
Provide Air Plots
Provide Sensor Space Tracks
Provide Sensor Land Tracks
Provide Sensor Surface Tracks
Provide Sensor Air Tracks
3D Process Target Designation
Provide Projectile Positional Information
Perform Missile Downlink
Perform Missile Uplink
Kill Assessment
Support Surface Engagement
Perform Splash Plotting

3E Provide Interference Reports

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

3

Provide Jammer Strobes

Provide Jammer Tracks

Provide Area with Plot Concentration
Provide Clutter Assessment

Provide Jamming Effect Assessment
Provide Performance Assessment

Provide Nominal Performance

Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

ALMAS (formal/2009-11-01)
AMSM (formal/2010-11-02)
CORBA (formal/2011-11-01,02,03)
DDS (formal/2007-01-01)

DIS (IEEE 1278.1-1995, IEEE 1278.1A—1998 and Enumeration and Bit-encoded values for use with
IEEE 1278.1-1995)

EVOT (formal/2008-08-01)

HLA (IEEE 1516 2000-series and RPR-FOM 2.0)

ISO 19111 (www.iso.org/)

ISO 19115 (www.iso.org/)

METOC RFP (c4i/08-12-02)

NNSI RFP (c4i/07-12-01)

Network Time Protocol (www.ntp.org)

Precision Time Protocol (IEEE 1588 — http://www.ieee1588.com)

SoaML (www.omg.org/spec/SoaML)

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

AB (Architecture Board)
ALMAS (Alert Management Service)

AMSM (Application Management and Status Monitoring)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

o API

e ATC

e BC

e BCQ

e BoD

e CCM
e CMS

e CORBA
e C(CSIV2
e CWM
e DAIS
e DDS

e EDOC
e EJB

e EVOT
e FTF

e GE

e GIOP
e GLS

e IDL

e [FF

e IIOP

e [PR

e ISO

e LOI

e MDA
e METOC
e MOF
e MQS

e NNSI
e NS

e OARIS

(Application Programming Interface)

(Air Traffic Control)

(Business Committee)

(Business Committee Questionnaire)
(Board of Directors)

(CORBA Component Model)

(Combat Management System)

(Common Object Request Broker Architecture)
(Common Secure Interoperability Protocol Version 2)
(Common Warehouse Metamodel)

(Data Acquisition from Industrial Systems)
(Data Distribution Service)

(Enterprise Distributed Object Computing)
(Enterprise Java Bean)

(Enhanced View of Time)

(Finalization Task Force)

(Gene Expression)

(General Inter-Orb Protocol)

(General Ledger Specification)

(Interface Definition Language)
(Interrogation, Friend or Foe)

(Internet Inter-Orb Protocol)

(Intellectual Property Right)

(International Organization for Standardization)
(Letter of Intent)

(Model Driven Architecture)
(Meteorological and Oceanographic)
(Meta Object Facility)

(MQSeries)

(Naval Navigation System Interface)
(Naming Service)

(Open Architecture Radar Interface Standard)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

e OASIS (Organization for Advancement of Structured Information Standards)

e OCL (Object Constraint Language)

e ODF (Open Document Format)

e OMA (Object Management Architecture)
e OMG (Object Management Group)

e OTS (Object Transaction Service)

e PIDS (Personal Identification Service)

e PIM (Platform Independent Model)

e PSM (Platform Specific Model)

e P&P (Policies and Procedures of the OMG Technical Process)
e RFC (Request For Call)

e RFP (Request For Proposal)

e RM-ODP (Reference Model of Open Distributed Processing)

e RTF (Revision Task Force)

e SEC (Security Service)

e SOA (Service Oriented Architecture)

e SoaML (Service oriented architecture Modeling Language)

e SOLAS (Safety Of Life At Sea)

e SPEM (Software Process Engineering Metamodel)
e TC (Technology Committee)

e TF (Task Force)

e TOS (Trading Object Service)

e UML (Unified Modeling Language)

e XMI (XML Metadata Interchange)

e XML (eXtensible Markup Language)

5 Symbols

No special symbols are introduced in this specification.

6 Additional Information
6.1 Acknowledgements

The following companies submitted this specification:
e BAE Systems

6 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

e Thales

The following companies supported this specification:
e Atlas Elektronik

e Cassidian

e DSTO

e John Hopkins University APL

e SelexES

e US Navy

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

7 Open Architecture Radar Information
Specification

7.1 Introduction

The specification is captured as an Enterprise Architect (EA) UML version 2.1 model, with this document being
automatically generated as a report from the model.

7.1.1 Document Structure

doc Specification Master/

Overview _;|

+ Usage Overview: Package

Common _;|

+ Common_Types: Package

Domain _;|

+ Subsystem Domain: Package
+ Sensor_Domain: Package
+ Radar_Domain: Package

Service _;|

+ Subsystem_Services: Package
+ Sensor_Services. Package
+ Radar_Services: Package

Figure 7.1 -Specification Master (Documentation diagram)

8 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

7.2 Usage Overview

Parent Package: Analysis Model (PIM)
The RFP defines a number of compliance levels as follows:

Level 1: A simple radar which provides just plots and tracks

Level 2: Basic radar operation, but a complete interface supporting control and essential system
configuration for a combat system context

Level 3A: In addition to basic operation (level 2), interfaces for training support

Level 3B: In addition to basic operation (level 2), full system configuration interfaces

Level 3C: In addition to basic operation (level 2), the full track and plot reporting interfaces
Level 3D: In addition to basic operation (level 2), the engagement support interface

Level 3E: In addition to basic operation (level 2), the advanced radar interfaces

Level 3F (compliance with NNSI) and Level 3G (compliance with METOC). These are not covered by
this response.

Radars conforming to this specification shall indicate which compliance levels are supported. The
following options are possible:

Level 1
Level 2
Any combination of levels 3A to 3E (in addition to level 2)

The activity diagrams and the associated notes below show how the interfaces defined in 7.7 to 7.9
interact in order to support these compliance levels.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

act Compliance Level 1 /

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service]
initiated by the CMS may
include a response from
the subsystem even
though the service is not in|
the Subsystem swimlane.

SO

[Deregister Interest]

CMS detects that an
interface to the
Subsystem is present

Register Interest

[Interest Deregistered] C.

ActivityFinal

[Interest Registered]

[Continue to receive tracks and plots]

S

waysisgng.

Track Reporting Plot Reporting

Figure 7.2 Compliance Level 1 (Activity diagram)

For compliance level 1, the radar powers up and commences track and plot reporting
either without intervention or using an out of scope facility, such as a maintainer
interface. The CMS detects the presence of the interface, registers interest then
processes the incoming track and plot streams.

10

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

act C i Level 2 - Initializati /

Subsystem CMS

Power
Applied

Provide Subsystem
Identification

Provide Subsystem
Services

Exchange Heart Beat

Manage Subsystem
Parameters

Register Interest

Provide Health State gaanace Mastership

Manage Technical State

O)

ActivityFinal

Figure 7.3 Compliance Level 2 - Initialization (Activity diagram)
For compliance level 2 a more versatile startup sequence is supported, with the
subsystem and CMS going through a negotiation and configuration stage followed by
more detailed interface control and reporting, including management of reversionary
modes.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 11

act Compliance Level 2 - Operational Mode /

CMS

Manage Subsystem Parameters has completed
successfully and hasidentified the currently
available operational modes and CMS has
mastership

Manage Operational Mode

ActivityFinal

Figure 7.4 Compliance Level 2 - Operational Mode (Activity diagram)
Level 2 continues to manage the operational mode while the CMS has mastership.

act Compliance Level 2 - Subsystem $etup/

CMS

Provide Subsystem Services
has successfully executed and
CMS has mastership

[Subsystem is not ONLINE]

Manage Technical State

[Subsystem is ONLINE]

[Subsystem

is ONLINE]

[Vlanage Tracking Zonej ’Manage Frequency uSaﬂ [Ma"age Transmissio,.} [}ontrol Battle 0venidj ’ Control Emissions J
Sectors

ActivityFinal

12

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Figure 7.5 Compliance Level 2 - Subsystem Setup (Activity diagram)
Level 2 caters for continuous management of sensor configuration when the CMS has

mastership.

act Compliance Level 3A - Fault Scripts and Test Targets /

CMS decidesto define a test target scenario]

Define Test Target
Scenario

[CMS does not have mastership]

Control Fault Script

- Control Test Target Facility)
AdtivityFinal

Manage Mastership

Provide Subsystem
Services has
successfully
executed

[CMS decides to define a fault script]

Define Fault Scripts

[CMS has mastership]

[CMS has mastership]

[Subsystem isin a READY or
ONLINE state]

[Simulation mode is ON]

[CMS decides to activate
a fault script that has
been previously defined]

[CMS decidesto activate a
test target scenario that has
been previously defined]

CMS and Subsystem
partitionsindicate the
initiator of the service
only.For example a servic
initiated by the CMS may
include a response from
the subsystem even
though the service isnot in|
the Subsystem swimlane.

Manage Technical State

[Subsystem isnot in a
READY or ONLINE state]

Control Simulation

[Simulation mode is OFF]

Figure 7.6 Compliance Level 3A - Fault Scripts and Test Targets (Activity diagram)
Level 3 provide for the simulation of faults and targets for test and training purposes.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

13

act Compliance Level 3A - Recording/RepIay/

Subsystem is READY or
ONLINE, and CMS has
mastership

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service|
initiated by the CMS may
include a response from
the subsystem even
though the service isnot in|
the Subsystem swimlane.

Control Recording

Control Replay

[If recording is to be replayed]

SWO

ActivityFinal

Figure 7.7 Compliance Level 3A - Recording/Replay (Activity diagram)

Recording and replay facilities support recording and replay of subsystem parameters
for the purposes of training and/or post exercise review.

14 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

act Compliance Level 3A - Simulation /

Subsystem is READY or
ONLINE, and CMS has
mastership

Control Simulation

AN
CMS and Subsystem
partitionsindicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
[CMS ends simulation Scenario] the subsystem even
>@ though the service isnot in
the Subsystem swimlane.

SIS

ActivityFinal

[CMS starts or allows Simulation
Scenario to continue]

Provide Simulation Data

Figure 7.8 Compliance Level 3A - Simulation (Activity diagram)
The simulation interfaces are used to support training.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

act Compliance Level 3B - Macro State Management/

Provide Subsystem Services
Successful, CMS has mastership
CMS and Subsystem of subsystem

partitionsindicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service isnot in|
the Subsystem swimlane.

Startup

Restart

SWO

ActivityFinal

Figure 7.9 Compliance Level 3B - Macro State Management (Activity diagram)
These interfaces provide for more finely grained control of startup and shutdown.

16 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

act Compliance Level 3B - Manage Physical Configuration /

CMsS

Provide Subsystem
Services has successfully
executed

[Request Change to Configuration] (Manage Mastership

[CMS does not have mastership]

[CMS has mastership]

[CMS has mastership]

[Request Current Configuration]

(Manage Technical State

[Subsystem is not in STANDBY]

[Subsystem isin STANDBY]

[Subsystem isin STANDBY]

Manage Physical
Configuration

ActivityFinal

Figure 7.10 Compliance Level 3B - Manage Physical Configuration (Activity diagram)
These interfaces support more detailed control of the subsystem configuration.

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

17

act Compliance Level 3B - Perform Offline Test/

Provide Subsystem Services
Successful (Subsystem isable to
communicate with the CMS),
Subsystem isin any state except for
ONLINE, CMS has mastership of
subsystem

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service]
initiated by the CMS may
include a response from
the subsystem even
though the service is not in|
the Subsystem swimlane.

SWO

Perform Offline Test

[No critical failures detected]

@\ ActivityFinal

[Detection of critical failure requires subsystem to transition to FAILED]

The subsystem initiate:
this state change to
- ------1FAILED, and usesthis
service to report the
change to the CMS

Manage Technical State

walsfAsane.

Figure 7.11 Compliance Level 3B - Perform Offline Test (Activity diagram)

Offline test provides a mechanism for diagnosing subsystem failures, after which the
subsystem's technical state is adjusted accordingly.
act Compliance Level 3B - Receive Encyclopaedic Data

CMS

Provide Subsystem
Services has successfully
executed and CMS has
mastership

Receive Encyclopaedic
Data

ActivityFinal

18 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Figure 7.12 Compliance Level 3B - Receive Encyclopaedic Data (Activity diagram)

The subsystem is able to receive relevant encyclopaedic data from the CMS.

act Compliance Level 3C - Advanced Track Management/

has mastership

q Receive Track Information Delete Sensor Track Initiate Track

Subsystem is READY and
Simulation Mode is ON, or
Subsytem is ONLINE; CMS

Perform Cued Search

Track Reporting

ActivityFinal

-| Track Reporting is also

occurring asan
ongoing process

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a servict
initiated by the CMS may
include a response from
the subsystem even
though the service isnot i
the Subsystem swimlane.

n|

Figure 7.13 Compliance Level 3C - Advanced Track Management (Activity diagram)
The sensor supports detailed track management.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

19

act Compliance Level 3C - Advanced Track and Plot Reporting /

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service]
initiated by the CMS may
include a response from
the subsystem even
though the service isnot in|
the Subsystem swimlane.

Interface
Connection
Successful

Register Interest

S

[Deregister Interest]

>©

ActivityFinal

[Interest Deregistered]

[Interest Registered]

[Continue to receive tracks and plots]

‘ Provide plots/tracks

container

Provide Space Plots Provide Sensor Space Provide Sensor Surface

Track Track

N . -
\ '

Provide Land Plots

Thisdiagram is valid
for any of the Plot and
Track services depicted
on thisdiagram in lieu
of the Provide

Plots/Tracks container.

Provide Sensor Land
Tracks

Provide Surface Plots

Provide Air Plots
Provide Sensor Air Tracks

Figure 7.14 Compliance Level 3C - Advanced Track and Plot Reporting (Activity diagram)
The sensor supports reporting tracks and plots selectively based on the operational

environment (space/air/land/surface).

20

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

act Compliance Level 3D - Air Engagement Support /

Subsystem

Track Reporting

Process Target
Designation

CMS

CMS has determined an
engagement isrequired against an
air track, CMS has mastership,
Subsystem is ONLINE or READY (for
simulated engagements only)

Provide Projectile
Positional Information

[If service required]

[Missile communications required]

Perform Missile Dow nlink Perform Missile Uplink

Perform lllumination

Kill Assessment

[lllumination required]

ActivityFinal

CMS and Subsystem
partitionsindicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service isnot in|
the Subsystem swimlane.

Figure 7.15 Compliance Level 3D - Air Engagement Support (Activity diagram)

Level 3D provides additional information to support air engagements, including missile

links and kill assessment.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

21

act Compliance Level 3D - Surface Engagement Support - Fire Control Radar /

Subsystem CMS

CMS hasdefermined an engagement is CMS and Subsystem
required agdinst a surface track, CMS has
mastership, $ubsystem is ONLINE
(simulated engagements may be
performed i READY as well)

partitions indicate the
initiator of the service
only.For example a service]
initiated by the CMS may
include a response from
the subsystem even
though the service isnot in|
the Subsystem swimlane.

Process Target
Designation

Track Reporting

ActivityFinal

Figure 7.16 Compliance Level 3D - Surface Engagement Support - Fire Control Radar (Activity diagram)
This provides additional surface engagement support for fire control.

act Compliance Level 3D - Surface Support - i Radar/

Subsystem CMS

CMS has dgtermined an engagement is CMS and Subsystem
required aghinst a surface track, CMS has

mastership, [Subsystem is ONLINE
(smulated ¢gngagements may be
performed in READY as well)

partitionsindicate the
initiator of the service
only.For example a servic
initiated by the CMS may
include a response from
the subsystem even
though the service isnot in
the Subsystem swimlane.

Support Surface
Engagement

£

Track Reporting

Perform Splash Spotting

ActivityFinal

Figure 7.17 Compliance Level 3D - Surface Engagement Support - Surveillance Radar (Activity diagram)
This provides additional surface engagement support for surveillance purposes.

22 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

act C i Level 3E-A ic Interference Reponing/

Interface
Connection
Successful

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a service
initiated by the CMS may
include a response from
the subsystem even
though the service isnot in|
the Subsystem swimlane.

Register Interest

[Deregister interest]

SIND-

[Interest Deregistered]

ActivityFinal
[Interest Registered]

[Continue to publish interference reports and tracks]

[Provide interference

report container

Provide Interference
Reports

Provide Area with Plot
Concentration

.
,

Provide Clutter
Assessment

Provide Jammer Strobes This diagram is valid

for any of the Plot and
Track services depicted
on thisdiagram in lieu
of the Provide

. - | interference report
container.

Provide Jammer Tracks

Figure 7.18 Compliance Level 3E - Automatic Interference Reporting (Activity diagram)
Level 3E provides for detailed interference reporting, including jammers.

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

act C i Level 3E -R d Interference Reports /

Subsystem is
ONLINE

CMS and Subsystem
partitionsindicate the
initiator of the service
only.For example a servic
initiated by the CMS may
include a response from
the subsystem even
though the service isnot in|
the Subsystem swimlane.

Provide Clutter Provide Area with Plot Provide Jamming Effect Provide Performance Provide Nominal
Assessment Concentration Assessment Assessment Performance

ActivityFinal

Figure 7.19 Compliance Level 3E - Requested Interference Reports (Activity diagram)

These interfaces provide for reporting sensor specified and actual performance in
addition to interference related information.

7.3 Common_Types

Parent Package: Domain_Model

This package contains the types that are common to several areas of the model. Most of the content is in
three sub-packages: Coordinates_and_Positions, Shape_Model and Requests. General types are
captured at the top level.

24 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

class Domain Model /

octet unsigned short unsigned long TimeT «idIEnum»
«idISequence» «idITypedef» «idITypedef» «idITypedef» identity_type
anonymous_blob_type subsystem_id_type system_track_id_type time_type + PENDING
+ UNKNOWN
+ ASSUMED_FRIEND
+ FRIEND
+ NEUTRAL
+ SUSPECT
Shape_Model Coordinates_and_Positions + HOSTILE
+ figure_ref_point + absolute_duration_type
+ general_polar_volume_type + altitude_coordinate_type
+ polar_volume_type + angle_of_climb_type
+ sector_type + azimuth_coordinate_type Requests
= + truncated_polar_volume_type = + azimuth_interval_type
polar _typ : - —Yp + denial_reason_type
+ truncated_sector_type + azimuth_qualification_type E .
=i =) +denial_type
+ azimuth_rate_type =
+ ermor_reason_type

+ cartesian_coordinate_type
. - + parameter_reference_type
= + cartesian_interval_type < _kt =
=] +request_ack type
=3

+request_id_type

=+ cartesian_velocity_component_type i
g *+ conmon_use_case_interface

g tca rtesian_velocity_type

+ cartesian_position_type

B+ coordinate_kind_type

+ coordinate_orientation_type

+ coordinate_origin_type

+ coordinate_specification_type
+ course_type

= covariance_matrix_type

+ diagonal_covariance_matrix_type
+ duration_type

+ elevation_coordinate_type

+ elevation_interval_type

+ elevation_qualification_type
B+ elevation_rate_type

+ full_covariance_matrix_type

+ height_interval_type

+ latitude_coordinate_type

+ latitude_interval_type

+ longitude_coordinate_type

+ longitude_interval_type

+ polar_position_type

+ polar_velocity_type

+ position_accuracy_coordinate_type
+ position_coordinate_type

+ range_coordinate_type

+ range_interval_type

+ range_qualification_type

+ range_rate_type

+ speed_interval_type

+ speed_type

+ velocity_accuracy_coordinate_type
S velocity_coordinate_type

5+ wgs84_position_type

B+ wgs84_velocity_type

S cartesian_position_accuracy_type

B+ polar_position_accuracy_type
S polar_velocity_accuracy_type
5+ wgs84_position_accuracy_type

+ cartesian_velocity_accuracy_type

= +wg s84_velocity_accuracy_type

Figure 7.20 Domain Model (Logical diagram)

7.3.1 anonymous_blob_type

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

Type: IDLSequence octet
Package: Common_Types
Representation for a general binary type
Length = 1024

7.3.2 identity_type

Type: IDLEnum
Package: Common_Types
Identity according to STANAG 5516.

Table 7.1 - Attributes of IDLEnum identity_type
Attribute Notes
PENDING
UNKNOWN
ASSUMED FRIEND
FRIEND
NEUTRAL
SUSPECT
HOSTILE

7.3.3 subsystem_id_type

Type: IDLTypeDef unsigned short

Package: Common_Types

This type provides a unique id for different subsystems. Subsystem ids shall be allocated by the platform
integrator. Subsystem id equal to zero is reserved to imply applicability to all and any subsystem.
BaseType = unsigned short

7.3.4 system_track_id_type

Type: IDLTypeDef unsigned long
Package: Common_Types
System Track Identification

7.3.5 time_type

Type: IDLTypeDef TimeT

Package: Common_Types

based on start of Gregorian calendar (1582-10-15T 00:00UTC)
unit: 100 nano seconds

i.a.w CORBA Time Service Time T

7.3.6 System_Track
Parent Package: Common_Types

26 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

class Domain Model/

«idlStruct»
system_track_type

simulated: boolean

time_of information: time_type

position_coordinate_system: coordinate_specification_type

position: position_coordinate_type

velocity _coordinate_system: coordinate_specification_type

velocity: velocity coordinate_type
position_accuracy_coordinate_system: coordinate_specification_type
position_accuracy: position_accuracy_coordinate_type

velocity accuracy_coordinate system: coordinate_specification_type [0..1]
velocity _accuracy: velocity accuracy_coordinate_type [0..1]
max_range_limit: range_coordinate_type [0..1]

+ 4+ + + + + + 4+ o+ o+

«key»
+ system_track number: system_track id_type

Figure 7.21 Domain Model (Logical diagram)

7.3.6.1 system_track_type

Type: IDLStruct
Package: System_Track
System track information is limited to information required by a subsystem for missile guidance.

Table 7.2 - Attributes of IDLStruct system_track_type

Attribute Notes

«key» system_track_number system _track id_type

simulated boolean

time of information time type

position_coordinate system
coordinate specification type

position position _coordinate type

velocity coordinate system
coordinate specification type

velocity velocity coordinate type

position_accuracy coordinate system
coordinate specification type

position_accuracy position_accuracy coordinate type

velocity accuracy coordinate system
coordinate specification type [0..1]

velocity accuracy velocity accuracy coordinate type
[0..1]

max_range limit range coordinate type [0..1]

7.3.7 Coordinates_and_Positions

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Parent Package:

Common_Types

Definitions of types to describe positions, in accordance with the ISO 19111 abstract model.

class Accuracies

«idlUnion»
position_accuracy_coordinate_type

«idlUnion»
velocity_accuracy_coordinate_type

«idlCase»

+ cartesian_position_accuracy: cartesian_position_accuracy_type
+ polar_position_accuracy: polar_position_accuracy_type

+ wgs84_position_accuracy: wgs84_position_accuracy_type

«idICase»

+ cartesian_velocity_accuracy: cartesian_velocity_accuracy_type
+ polar_velocity _accuracy: polar_velocity_accuracy_type

+ wgs84_velocity accuracy: wgs84_velocity_accuracy_type

notes
To offer flexibility, three variants of coordinate system
representation are supported - corresponding to the
coordinate_kind_type enumerate. An inplementation should
support one kind for each relevant interface as defined by the
coordinate_specification_type value, and it should only send data
of that variant and it should check that all data received is of that
variant. It should not inplement conversion of data in an
unexpected variant. Receipt of such data constitutes an errorin the
operation of the interface.

notes
To offer flexibility, three variants of coordinate system
representation are supported - corresponding to the
coordinate_kind_type enumerate. An inplementation should
support one kind for each relevant interface as defined by the
coordinate_specification_type value, and it should only send data
of that variant and it should check that all data received is of that
variant. It should not inplement conversion of data in an
unexpected variant. Receipt of such data constitutes an error in
the operation of the interface.

«idIStruct»
cartesian_position_accuracy_type

+ x_coordinate_accuracy: cartesian_coordinate_type
y_coordinate_accuracy: cartesian_coordinate_type
+ z_coordinate_accuracy: cartesian_coordinate_type [0..1]

o

«idIStruct»
polar_position_accuracy_type

azimuth_accuracy: azimuth_coordinate_type
elevation_accuracy: elevation_coordinate_type [0..1]
range_accuracy: range_coordinate_type [0..1]
origin: wgs84_position_accuracy_type [0..1]

+ o+ + o+

«idIStruct»
wgs84_position_accuracy_type

+ altitude_accuracy: altitude_coordinate_type [0..1]
latitude_accuracy: latitude_coordinate_type
+ longitude_accuracy: longitude_coordinate_type

s

«idIStruct»
cartesian_velocity_accuracy_type

+ x_dot_accuracy: cartesian_velocity_component_type
y_dot_accuracy: cartesian_velocity_component_type
+ z_dot_accuracy: cartesian_velocity_component_type [0..1]

+

«idIStruct»
polar_velocity_accuracy_type

+ azimuth_rate_accuracy: azimuth_rate_type
elevation_rate_accuracy: elevation_rate_type [0..1]
+ range_rate_accuracy: range_rate_type [0..1]

E

«idIStruct»
wgs84_velocity_accuracy_type

+ course_accuracy: course_type
angle_of_climb_accuracy: angle_of_climb_type [0..1]
+ speed_accuracy: speed_type

+

28

Figure 7.22 Accuracies (Logical diagram)

Open Architecture Radar Interface Standard (OARIS), 6

vl.1

class Coordinates and Positions /

«idIEnum»
coordinate_orientation_type

«idIEnum»
coordinate_kind_type

«enum»
NORTH_HORIZONTAL
NORTH_DOWN
EAST_NORTH_UP
EAST_NORTH_DOWN
NORTH_EAST_UP
NORTH_EAST_DOWN
EARTH_CENTRED
LAT_LONG_HEIGHT
STERN_KEEL
STERN_DECK_LEVEL
STERN_STARBOARD_MAST
STERN_STARBOARD_KEEL

«enum»

+ CARTESIAN
+ POLAR

+ WGS84

+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+

«idIEnum»
coordinate_origin_type

«enum»

+ PLATFORM_REFERENCE_POINT
SENSOR_REFERENCE_POINT

ABSOLUTE_REFERENCE_POINT
EARTH_REFERENCED

+
i
+
+

EXPLICITLY_SPECIFIED

«idIStruct»
coordinate_specification_type

+ kind: coordinate_kind_type
+ orientation: coordinate_orientation_type
+ origin: coordinate_origin_type

«idIStruct»

cartesian_positi

ion_type

i

+ x_coordinate: cartesian_coordinate_type
z_coordinate: cartesian_coordinate_type [0..1]
+ y coordinate: cartesian_coordinate_type

notes
Specifies the interpretation of position_coordinate_type and velocity _coordinate_type.

«idlUnion»
position_coordinate_type

«idlCase»

+ cartesian_position: cartesian_position_type
+ polar_position: polar_position_type

+ wgsB84_position: wgs84_position_type

«idlIStruct»
wgs84_position_type

o
o

+ altitude_coordinate: altitude_coordinate_type [0..1]

latitude_coordinate: latitud
longitude_coordinate: long

e_coordinate_type
itude_coordinate_type

notes
To offer flexibility, three variants of coordinate system representation are supported -
comresponding to the coordinate_kind_type enumerate. An implementation should support
one kind for each relevant interface as defined by the coordinate_specification_type
value, and it should only send data of that variant and it should check that all data
received is of that variant. It should not implement conversion of data in an unexpected
variant. Receipt of such data constitutes an error in the operation of the interface.

«idlIStruct»

polar_positio

n_type

+ o+ o+ o+

azimuth_coordinate: azimuth_coordinate_type
elevation_coordinate: elevation_coordinate_type [0..1]
range_coordinate: range_coordinate_type [0..1]
origin: wgs84_position_type [0..1]

double double

«idITypedef»
azimuth_coordinate_type

«idITypedef»
cartesian_coordinate_type

«idITypedef»
elevation_coordinate_type

double

double

«idITypedef»
range_coordinate_type

tags
Range =0 .. 2 pi
Resolution = 0.0001

tags
Range =-1e7 ..1e7
Resolution = 1

tags
Range =-pi /2 ..pi/2
Resolution = 0.0001

tags
Range =0 .. 1e7
Resolution = 1

(it may represent very large and very small distances with
equal precision). It is noted that there are other military
intemational standards (e.g. STANAGS), which sometimes

«idITypedef»

latitude_coordinate_type

«idITypedef»
longitude_coordinate_type

Unit=m Unit = rad Unit = rad Unit=m
Choice of Sl units and double base type reflects the use of
broadest international standard and a flexible representation double Il T

«idITypedef»

altitude_coordinate_type

make different choices. However, these often reflect pressures

to represent data in the most compact format - e.g. legacy
systems or secure wireless communication. tags

Range =-90 .. 90
Resolution = 1 e-6

Unit = deg

tags
Range =-180 .. 180
Resolution = 1 e-6
Unit = deg

tags
Range =-1e4 ..1¢e6
Resolution = 1
Unit=m

Figure 7.23 Coordinates and Positions (Logical diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

29

class Covariance and Qualiﬁcation/

«idlUnion»

covariance_matrix_type

diagonal_covariance_matrix_type

«idIStruct»

«idIStruct»

full_covariance_matrix_type

«idlCase»

+ diagonal_covariance_matrix: diagonal_covariance_matrix_type
+ full_covariance_matrix: full_covariance_matrix_type

+oF o+ o+

xx_variance: float
yy_variance: float
zz_variance: float
vxvx_variance: float
vyvy_variance: float
vzvz_variance: float

xx_variance: float
xy_variance: float
xz_variance: float
xvx_variance: float
xvy_variance: float
xvz_variance: float

yy_variance: float

yz_variance: float

yvx_variance: float
yvy_variance: float
yvz_variance: float
zz_variance: float

zvx_variance: float
zvy_variance: float
zvz_variance: float
vxvx_variance: float
vxvy_variance: float
vxvz_variance: float
vyvy_variance: float
vyvz_variance: float
vzvz_variance: float

P T T Tk T T T T T S S S S S A

«idIStruct»
azimuth_qualification_type

«idIStruct»

elevation_qualification_type

«idIStruct»
range_qualification_type

+ spread: azimuth_coordinate_type [0..1]
+ accuracy: azimuth_coordinate_type

+ spread: elevation_coordinate_type [0..1]
+ accuracy: elevation_coordinate_type

+ spread: range_coordinate_type [0..1]
+ accuracy: range_coordinate_type

Figure 7.24 Covariance and Qualification (Logical diagram)

30

Open Architecture Radar Interface Standard (OARIS), 6

vl.1

class Intervals

«idIStruct» unsigned long long
absolute_duration_type

«idITypedef»
+ start: time_type duration_type
+ stop: time_type

«idIStruct»
cartesian_interval_type

+ start: cartesian_coordinate_type
+ stop: cartesian_coordinate_type

«idIStruct» «idIStruct» «idIStruct»
azimuth_interval_type elevation_interval_type range_interv al_type
+ start: azimuth_coordinate_type + start: elevation_coordinate_type + start: range_coordinate_type
+ stop: azimuth_coordinate_type + stop: elevation_coordinate_type + stop: range_coordinate_type
«idIStruct» «idIStruct» «idIStruct»
latitude_interval_type longitude_interv al_type height_interval_type
+ start: latitude_coordinate_type + start: longitude_coordinate_type + start: altitude_coordinate_type
+ stop: latitude_coordinate_type + stop: longitude_coordinate_type + stop: altitude_coordinate_type

Figure 7.25 Intervals (Logical diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

class Time Derivatives /

«idITypedef»
cartesian_velocity_component_type

double

«idIStruct»
cartesian_velocity_type

45

Resolution = 0.01
Unit = m/s

tags
Range =-1e5..1eb5

+ x_dot: cartesian_velocity_component_type
y_dot: cartesian_velocity_component_type
+ z dot: cartesian_velocity_component_type [0..1]

double

«idITypedef»
azimuth_rate_type

«idITypedef»

double

elevation_rate_type

double

«idITypedef»
range_rate_type

tags
Range =-100 .. 100
Resolution =1 e4
Unit = rad/s

tags

Resolution = 1 e-4
Unit = rad/s

Range =-100 .. 100

tags
Range =0.0 .. 1 e5
Resolution = 0.01
Unit = m/s

«idIStruct»
polar_velocity_type

+ azimuth_rate: azimuth_rate_type
elevation_rate: elevation_rate_type [0..1]
+ range_rate: range_rate_type [0..1]

Es

double

«idITypedef»
course_type

double

«idITypedef»
angle_of_climb_type

double

«idITypedef»
speed_type

«idlStruct»
wgs84_velocity_type

tags
Range =0 .. 2 pi
Resolution = 1 e-3

tags
Range = -pi/2 .. pi/2
Resolution = 1 e-3

tags
Range = 0.0 .. 1 e5
Resolution = 0.01

+ course: course_type
+ angle_of_climb: angle_of climb_type [0..1]
+ speed: speed_type

Unit = rad Unit = Rad Unit = m/s
«idlUnion»
velocity_coordinate_type
«idlCase»

+ cartesian_velocity: cartesian_velocity_type
+ polar_velocity: polar_velocity_type
+ wgs84_velocity: wgs84_velocity_type

notes

To offer flexibility, three variants of coordinate systemrepresentation are
supported - corresponding to the coordinate_kind_type enumerate. An

implementation should support one kind for each relevant service as defined by
the coordinate_specification_type value, and it should only send data of that
variant and it should check that all data received is of that variant. It should not
implement conversion of data in an unexpected variant. Receipt of such data
constitutes an eror in the operation of the interface. Three representations are

supported: time derivatives within a Cartesian coordinate systent time

derivatives of a polar coordinate system (range rate, bearing rate etc.); course

and speed relative to the WGS84 spheroid.

32

Figure 7.26 Time Derivatives (Logical diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

class World Coordinates and Positions /

double

«idITypedef»

longitude_coordinate_type conile

«idITypedef»
altitude_coordinate_type

tags
Range =-180 .. 180
Resolution = 1 e-6

Unit = deg
«idIStruct»
double wgs84_position_type
«idITypedef» + altitude_coordinate: altitude_coordinate_type [0..1]
latitude_coordinate_type + latitude_coordinate: latitude_coordinate_type
+ longitude_coordinate: longitude_coordinate_type
tags

Range =-90 .. 90

Resolution = 1 e-6

Unit = deg

Figure 7.27 World Coordinates and Positions (Logical diagram)

7.3.7.1 absolute_duration_type

Type: IDLStruct
Package: Coordinates_and_Positions
This class represents a duration fixed to an absolute point in time.

Table 7.3 - Attributes of IDLStruct absolute_duration_type

Attribute Notes

start time_type

stop time_type

7.3.7.2 altitude_coordinate_type

Type: IDLTypeDef double

Package: Coordinates_and_Positions

For positive values, height above coordinate system ellipsoid, for negative values, depth below; measured
in metres.

See diagram note on choice of Sl units

Range=-1e4..1¢e6

Resolution = 1

Unit=m

7.3.7.3 angle_of_climb_type
Type: IDLTypeDef double

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 33

Package: Coordinates_and_Positions

The angle representing the direction of travel relative to the horizontal. Up is positive.

Range = -pi/2 .. pi/2
Resolution =1 e-3
Unit = Rad

7.3.7.4 azimuth_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

Axis in the azimuth direction, i.e. horizontal angle from the associated coordinate system reference.

Radians, positive clockwise from above.
See diagram note on choice of Sl units

Range =0..2 pi
Resolution = 0.0001
Unit = rad

7.3.7.5 azimuth_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.4 - Attributes of IDLStruct azimuth_interval_type

Attribute

Notes

start azimuth coordinate type

stop azimuth coordinate type

7.3.7.6 azimuth_qualification_type

Type: IDLStruct
Package: Coordinates_and_Positions

Qualifies a measurement with attributes of accuracy and, if possible, variability.

Table 7.5 - Attributes of IDLStruct azimuth_qualification_type

Attribute

Notes

spread azimuth_coordinate type [0..1]

The spread of the measurement. The combined measures
of spread should encompass the full extent of the plot.
This attribute is optional. Not all sensors are capable of
measuring it.

accuracy azimuth_coordinate type

The accuracy of the measurement; equal to one
standard deviation of uncertainty.

7.3.7.7 azimuth_rate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
radians per second

Range =-100 .. 100

Resolution =1 e-4

Unit = rad/s

7.3.7.8 cartesian_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
See diagram note on choice of Sl units
Range =-1e7..1e7

34

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Resolution =1
Unit=m

7.3.7.9 cartesian_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.6 - Attributes of IDLStruct cartesian_interval_type

Attribute

Notes

start cartesian _coordinate type

stop cartesian_coordinate type

7.3.7.10 cartesian_position_type
Type: IDLStruct
Package: Coordinates_and_Positions

Coordinates in a Cartesian reference frame as described by a coordinate specification object

Table 7.7 - Attributes of IDLStruct cartesian_position_type

Attribute

Notes

x_coordinate cartesian_coordinate type

z_coordinate cartesian_coordinate type [0..1]

Optional as some sensors are 2D (horizontal plane
or no elevation information)

y_coordinate cartesian_coordinate type

7.3.7.11 cartesian_velocity_component_type
Type: IDLTypeDef double
Package: Coordinates_and_Positions

Range=-1e5..1e5
Resolution = 0.01

Unit = m/s
7.3.712 cartesian_velocity_type
Type: IDLStruct
Package: Coordinates_and_Positions
Table 7.8 - Attributes of IDLStruct cartesian_velocity_type
Attribute Notes

x_dot cartesian_velocity component type

y_dot cartesian_velocity component type

z_dot cartesian_velocity component type [0..1]

7.3.713 coordinate_kind_type
Type: IDLEnum
Package: Coordinates_and_Positions

Table 7.9 - Attributes of IDLEnum coordinate_kind_type

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

35

Attribute

Notes

«enum» CARTESIAN

«enum» POLAR

«enum» WGS84

7.3.7.14 coordinate_orientation_type
Type: IDLEnum
Package: Coordinates_and_Positions

This enumeration defines the set of coordinate systems, which compliant implementations may use. A
compliant implementation may not fully support all of these coordinate systems.

Table 7.10 - Attributes of IDLEnum coordinate_orientation_type

Attribute

Notes

«enum» NORTH HORIZONTAL

Valid for Polar Coordinate Kind

Azimuth has origin (0.0) at North, positive clockwise,
measured in the horizontal plane

Elevation has origin (0.0) at the Horizontal, positive up,
measured in the vertical plane.

«enum» NORTH _DOWN

Valid for Polar Coordinate Kind

Azimuth has origin (0.0) at North, clockwise positive,
measured in the horizontal plane

Elevation has origin (0.0) when pointing directly down,
and 180.0 degrees when pointing directly up, measured
in the vertical plane.

«enum» EAST NORTH_UP

Valid for Cartesian coordinate type
X is positive to the East

y is positive to the North

Z is positive up

«enum» EAST NORTH_DOWN

Valid for Cartesian coordinate type
X is positive to the East

y is positive to the North

Z is positive down

«enum» NORTH_EAST UP

Valid for Cartesian coordinate type
X is positive to the North

y is positive to the East

Z is positive up

«enum» NORTH _EAST DOWN

Valid for Cartesian coordinate type
X is positive to the North

y is positive to the East

z is positive down

«enum» EARTH_CENTRED

Cartesian system with origin at centre of the Earth
(absolute reference point)

x positive through Greenwich meridian

y positive through 90 degrees east (of Greenwich
meridian)

z positive through north pole

X & y are in the equatorial plane

«enum» LAT LONG HEIGHT

WGS84 has unique well-defined orientation (NIMA
Technical Report TR8350.2)

36

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute

Notes

«enum» STERN_KEEL

Valid for Polar Coordinate Kind

This is a platform orientation relative frame

Azimuth has origin (0.0) in line with the ship's stern
(heading), measured anti-clockwise

Elevation has origin (0.0) when pointing directly down
to the keel (perpendicular to the current inclination of
the deck-level, not necessarily to the Earth's surface)

«enum» STERN_DECK_LEVEL

Valid for Polar Coordinate Kind

This is a platform orientation relative frame

Azimuth has origin (0.0) in line with the ship's stern
(heading), measured anti-clockwise

Elevation has origin (0.0) when pointing parallel to the
deck-level (not necessarily parallel to the Earth's
surface)

«enum» STERN _STARBOARD MAST

Valid for Cartesian coordinate type

This is a platform orientation relative frame

X is positive towards the stern (negative to bow)
y is positive to starboard (negative to port)

Z is positive towards the mast (negative to keel)

«enum» STERN _STARBOARD KEEL

Valid for Cartesian coordinate type

This is a platform orientation relative frame

X is positive towards the stern (negative to bow)
y is positive to starboard (negative to port)

z is positive towards the keel (negative to mast)

7.3.7.15 coordinate_origin_type
Type: IDLEnum
Package: Coordinates_and_Positions

Table 7.11 - Attributes of IDLEnum coordinate_origin_type

Attribute

Notes

«enum» PLATFORM REFERENCE POINT

The origin of the coordinate system is 'well known'
reference point for the platform (on which the CMS
and subsystem reside)

«enum» SENSOR_REFERENCE POINT

The origin for the coordinate system is the 'well
known' reference/datum point for the sensor, which
is interacting using the interface.

«enum» ABSOLUTE REFERENCE POINT

The origin for the coordinate system is a fixed point
in Earth (WGS84) coordinates. This point is known
to the CMS and Subsystems using the interface by
means beyond the scope of the interface.

«enum» EARTH_REFERENCED

This value signifies that the origin for the
coordinate system is well-defined with respect to
the Earth by the coordinate system. E.g. centre of
the Earth for Earth-Centred Earth-Fixed or the
WGS84 spheroid for WGS84

A

enum» EXPLICITLY_ SPECIFIED

This value signifies that the origin is explicitly
specified within the data model by the producer
of the data.

7.3.7.16 coordinate_specification_type
Type: IDLStruct

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

37

Package: Coordinates_and_Positions
Specifies the interpretation of position_coordinate_type and velocity coordinate_type. Each-attribute-may-
he-fixed-byv-the ndard-to-apartietlar-valye—o J OTFIA _ iati

Noaoao on-me a N aVal \/l
d a v

Table 7.12 - Attributes of IDLStruct coordinate_specification_type

Attribute Notes
kind coordinate kind type

orientation coordinate orientation_type

origin coordinate origin type

7.3.717 course_type
Type: IDLTypeDef double
Package: Coordinates_and_Positions

The angle representing the direction of travel relative to North in the horizontal plane. Clockwise (facing
down) is positive.

Range =0 .. 2 pi

Resolution = 1 e-3

Unit = rad

7.3.7.18 covariance_matrix_type
Type: IDLUnion

Package: Coordinates_and_Positions

Table 7.13 - Attributes of IDLUnion covariance_matrix_type
Attribute Notes
«idICase» diagonal covariance matrix
diagonal covariance matrix_type

«idlCase» full_covariance matrix
full covariance matrix_type

7.3.7.19 diagonal_covariance_matrix_type
Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.14 - Attributes of IDLStruct diagonal_covariance_matrix_type
Attribute Notes
xx_variance float

yy_variance float

zz_variance float

vxvx_variance float

vyvy_variance float

vzvz_variance float

7.3.7.20 duration_type
Type: IDLTypeDef unsigned long long
Package: Coordinates_and_Positions

The length of a time interval (not fixed to an absolute point in time).

38 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

unit: 100 nano seconds

7.3.7.21 elevation_coordinate_type
Type: IDLTypeDef double
Package: Coordinates_and_Positions

Axis in the direction of elevation, i.e. vertical angle from the associated coordinate system datum, radians,
positive up.

See diagram note on choice of Sl units

Range =-pi/2..pi/2

Resolution = 0.0001

Unit = rad

7.3.7.22 elevation_interval_type
Type: IDLStruct

Package: Coordinates_and_Positions

Table 7.15 - Attributes of IDLStruct elevation_interval_type
Attribute Notes
start elevation_coordinate type

stop elevation coordinate type

7.3.7.23 elevation_qualification_type
Type: IDLStruct
Package: Coordinates_and_Positions

Qualifies a measurement with attributes of accuracy and, if possible, variability.

Table 7.16 - Attributes of IDLStruct elevation_qualification_type
Attribute Notes

spread elevation coordinate type [0..1] The spread of the measurement. The combined measures
of spread should encompass the full extent of the plot.
This attribute is optional. Not all sensors are capable of
measuring it.

accuracy elevation_coordinate type The accuracy of the measurement; equal to one
standard deviation of uncertainty.

7.3.7.24 elevation_rate_type
Type: IDLTypeDef double
Package: Coordinates_and_Positions

radians per second
Range =-100 .. 100

Resolution=1e-4

Unit = rad/s

7.3.7.25 full_covariance_matrix_type
Type: IDLStruct

Package: Coordinates_and_Positions

Full covariance matrix

Table 7.17 - Attributes of IDLStruct full_covariance_matrix_type
Attribute Notes
xx_variance float

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 39

Attribute Notes
xy_variance float

xz_variance float

xvx_variance float

xvy variance float

xvz_variance float

yy_variance float

yz_variance float

yvx_variance float

yvy variance float

yvz_variance float

zz_variance float

zvx_variance float

zvy variance float

zvz_variance float

vxvx_variance float

vxvy variance float

vxvz_variance float

vyvy variance float

vyvz_variance float

vzvz_variance float

7.3.7.26 height_interval_type
Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.18 - Attributes of IDLStruct height_interval_type
Attribute Notes
start altitude coordinate type

stop altitude coordinate type

7.3.7.27 latitude_coordinate_type
Type: IDLTypeDef double
Package: Coordinates_and_Positions

Degrees north (positive), south (negative) relative to coordinate system datum.
See diagram note on choice of Sl units

Resolution=4-e-7

YUnit=—rad

Range =-90 .. 90

Resolution = 1 e-6

Unit = deg

7.3.7.28 latitude_interval_type
Type: IDLStruct

Package: Coordinates_and_Positions

Table 7.19 - Attributes of IDLStruct latitude_interval_type

40 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute Notes

start latitude coordinate type

stop latitude coordinate type

7.3.7.29 longitude_coordinate_type
Type: IDLTypeDef double
Package: Coordinates_and_Positions

Degrees east (positive), west (negative) relative to coordinate system datum.
See diagram note on choice of Sl units

Resolution=4-e-+

Unit=—rad

Range =-180 .. 180

Resolution = 1 e-6

Unit = deg

7.3.7.30 longitude_interval_type
Type: IDLStruct

Package: Coordinates_and_Positions

Table 7.20 - Attributes of IDLStruct longitude_interval_type

Attribute Notes

start longitude coordinate type

stop longitude coordinate type

7.3.7.31 polar_position_type
Type: IDLStruct
Package: Coordinates_and_Positions

Coordinates in a polar reference frame as a described by a coordinate specification object

Table 7.21 - Attributes of IDLStruct polar_position_type

Attribute Notes

azimuth coordinate azimuth coordinate type

elevation_coordinate elevation_coordinate type [0..1] | Optional as some sensors provide no elevation

information

range coordinate range coordinate type [0..1] Optional as some sensor provide no range
information (e.g. most passive sensors)

rigin wgs84 _position_type [0..1] Specifies the origin from which to interpret the polar

position. This attribute is optional as the origin
can be implicitly specified according to the value
of the applicable coordinate specification

enumeration.
7.3.7.32 polar_velocity_type
Type: IDLStruct
Package: Coordinates_and_Positions

Velocity defined in a polar reference frame as a described by a coordinate specification object

Table 7.22 - Attributes of IDLStruct polar_velocity_type

Attribute Notes

azimuth rate azimuth rate type

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 41

Attribute Notes

elevation_rate elevation_rate type [0..1] Optional as some sensors provide no elevation
information
range rate range rate type [0..1] Optional as some sensor provide no range

information (e.g. most passive sensors)

7.3.7.33 position_accuracy_coordinate_type
Type: IDLUnion
Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface
as defined by the coordinate_specification_type value, and it should only send data of that variant and it
should check that all data received is of that variant. It should not implement conversion of data in an
unexpected variant. Receipt of such data constitutes an error in the operation of the interface.

Table 7.23 - Attributes of IDLUnion position_accuracy_coordinate_type
Attribute Notes
«idlCase» cartesian_position_accuracy
cartesian_position accuracy type
«idICase» polar position accuracy
polar position_accuracy type

«idlCase» wgs84 position_accuracy
wgs84 position accuracy type

7.3.7.34 position_coordinate_type
Type: IDLUnion
Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface
as defined by the coordinate_specification_type value, and it should only send data of that variant and it
should check that all data received is of that variant. It should not implement conversion of data in an
unexpected variant. Receipt of such data constitutes an error in the operation of the interface.

case type = coordinate_kind_type

Table 7.24 - Attributes of IDLUnion position_coordinate_type
Attribute Notes
«idICase» cartesian_position cartesian_position_type

«idlCase» polar position polar position_type

«idlCase» wgs84 position wgs84 position_type

7.3.7.35 range_coordinate_type
Type: IDLTypeDef double
Package: Coordinates_and_Positions

Axis in range, i.e. linear distance from the coordinate system datum. Metres.
See diagram note on choice of Sl units
Range=0..1e7

Resolution =1

Unit=m
7.3.7.36 range_interval_type
Type: IDLStruct

42 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Package: Coordinates_and_Positions

Table 7.25 - Attributes of IDLStruct range_interval_type

Attribute

Notes

start range coordinate type

stop range coordinate type

7.3.7.37 range_qualification_type
Type: IDLStruct
Package: Coordinates_and_Positions

Qualifies a measurement with attributes of accuracy and, if possible, variability.

Table 7.26 - Attributes of IDLStruct range_qualification_type

Attribute

Notes

spread range coordinate_type [0..1]

The spread of the measurement. The combined measures
of spread should encompass the full extent of the plot.
This attribute is optional. Not all sensors are capable of
measuring it.

accuracy range coordinate type

The accuracy of the measurement; equal to one
standard deviation of uncertainty.

7.3.7.38 range_rate_type
Type: IDLTypeDef double
Package: Coordinates_and_Positions

metres per second
Range =0.0..1e5

Resolution = 0.01

Unit = m/s

7.3.7.39 speed_interval_type
Type: IDLStruct

Package: Coordinates_and_Positions

This class represents a range of speeds.

Table 7.27 - Attributes of IDLStruct speed_interval_type

Attribute Notes
min speed_type The minimum speed.
max speed_type The maximum speed.
7.3.7.40 speed_type
Type: IDLTypeDef double
Package: Coordinates_and_Positions

metres per second
Range=0.0..1¢€5

Resolution = 0.01

Unit = m/s

7.3.7.41 velocity_accuracy_coordinate_type
Type: IDLUnion

Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

43

Table 7.28 - Attributes of IDLUnion velocity_accuracy_coordinate_type
Attribute Notes
«idlCase» cartesian_velocity accuracy
cartesian_velocity accuracy type
«idICase» polar velocity accuracy
polar velocity accuracy type

«idlCase» wgs84 velocity accuracy
wgs84 velocity accuracy type

7.3.7.42 velocity_coordinate_type
Type: IDLUnion
Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant service as
defined by the coordinate_specification_type value, and it should only send data of that variant and it
should check that all data received is of that variant. It should not implement conversion of data in an
unexpected variant. Receipt of such data constitutes an error in the operation of the interface. Three
representations are supported: time derivatives within a Cartesian coordinate system; time derivatives of
a polar coordinate system (range rate, bearing rate etc.); course and speed relative to the WGS84

spheroid.
case type = coordinate_kind_type

Table 7.29 - Attributes of IDLUnion velocity_coordinate_type
Attribute Notes
«idlCase» cartesian_velocity cartesian_velocity type

«idlCase» polar velocity polar velocity type
«idlCase» wgs84 velocity wgs84 velocity type

7.3.743 wgs84_position_type
Type: IDLStruct
Package: Coordinates_and_Positions

Coordinate in the WGS84 reference system.

Table 7.30 - Attributes of IDLStruct wgs84_position_type
Attribute Notes

altitude coordinate altitude coordinate type [0..1] Optional as some sensors as 2D (work in
horizontal plane) and some other functions do not

supply or require this information either.

latitude coordinate latitude coordinate type

longitude coordinate longitude coordinate type

7.3.7.44 wgs84_velocity type
Type: IDLStruct
Package: Coordinates_and_Positions

Velocity defined in the WGS84 grid system from the viewpoint of the object in terms of course and speed
with optional angle of climb for changes in height.

44 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Table 7.31 - Attributes of IDLStruct wgs84_velocity_type

Attribute \ Notes
course course_type Relative to North in the WGS84 spheroid.
angle_of_climb angle_of climb_type [0..1] Optional as some sensors as 2D (work in

horizontal plane) and some other functions do not
supply or require this information either.

speed speed_type The total speed within the WGS84 spheroid (not
speed over ground) in the direction of travel
including angle of climb when present.

7.3.7.45 cartesian_position_accuracy_type
Type: IDLStruct
Package: Coordinates_and_Positions

The accuracy of the components of Cartesian position

Table 7.32 - Attributes of IDLStruct cartesian_position_accuracy_type
Attribute Notes
x_coordinate accuracy cartesian_coordinate type

y_coordinate accuracy cartesian_coordinate type

z coordinate accuracy cartesian_coordinate type Optional as some sensors are 2D (horizontal plane
[0.1] or no elevation information)
7.3.7.46 cartesian_velocity_accuracy_type
Type: IDLStruct
Package: Coordinates_and_Positions

The accuracy of the components of Cartesian velocity

Table 7.33 - Attributes of IDLStruct cartesian_velocity_accuracy_type
Attribute Notes
x_dot accuracy cartesian_velocity component type

y dot accuracy cartesian_velocity component type

z_dot_accuracy cartesian_velocity component_type Optional as some sensors are 2D (horizontal plane
[0..1] or no elevation information)
7.3.7.47 polar_position_accuracy_type
Type: IDLStruct
Package: Coordinates_and_Positions

The accuracy of the components of polar position

Table 7.34 - Attributes of IDLStruct polar_position_accuracy_type
Attribute Notes
azimuth accuracy azimuth coordinate type
elevation_accuracy elevation_coordinate type [0..1] Optional as some sensors provide no elevation

information

range accuracy range coordinate type [0..1] Optional as some sensor provide no range
information (e.g. most passive sensors)

rigin wgs84 position_accuracy type [0..1] Specifies the accuracy of the origin from which to

interpret the polar position. This attribute is
optional as the origin can be implicitly specified
according to the value of the applicable
coordinate specification enumeration.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 45

7.3.7.48 polar_velocity_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions
The accuracy of the components of polar velocity

Table 7.35 - Attributes of IDLStruct polar_velocity_accuracy_type

Attribute Notes

azimuth rate accuracy azimuth rate type

elevation rate accuracy elevation rate type [0..1] Optional as some sensors provide no elevation
information

range rate_accuracy range rate type [0..1] thiona|_ as some sensor p".OVide no range
information (e.g. most passive sensors)

7.3.7.49 wgs84_position_accuracy_type
Type: IDLStruct
Package: Coordinates_and_Positions

The accuracy of the components of a WGS84 position

Table 7.36 - Attributes of IDLStruct wgs84_position_accuracy_type
Attribute Notes

altitude accuracy altitude coordinate type [0..1] Optional as some sensors as 2D (work in
horizontal plane) and some other functions do not
supply or require this information either.

latitude accuracy latitude coordinate type

longitude accuracy longitude coordinate type

7.3.7.50 wgs84_velocity_accuracy_type
Type: IDLStruct
Package: Coordinates_and_Positions

The accuracy of the components of a WGS84 velocity

Table 7.37 - Attributes of IDLStruct wgs84_velocity_accuracy_type
Attribute Notes
course_accuracy course_type

angle of climb_accuracy angle of climb type [0..1] |Optional as some sensors as 2D (work in
horizontal plane) and some other functions do not
supply or require this information either.

speed accuracy speed_type

7.3.8 Shape_Model

Parent Package: Common_Types

46 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

class Domain Model /

+origin

0.1

«idIStruct»

+ position: position_coordinate_type

+origin

figure_ref_point 0..

0..

+origin

1

+origin

1

A

«idIStruct»
truncated_polar_volume_type

+ + + + + +

centre_bearing: azimuth_coordinate_type
delta_bearing: azimuth_coordinate_type
centre_elevation: elevation_coordinate_type
delta_elevation: elevation_coordinate_type
inner_range: range_coordinate_type
outer_range: range_coordinate_type

«idlUnion»
general_polar_volume_type

«idlCase»

+ sector: sector_type

polar_volume: polar_volume_type
truncated_sector: truncated_sector_type

+ + +

truncated_polar_volume: truncated_polar_volume_type

«idIStruct»
polar_v olume_type

+ centre_bearing: azimuth_coordinate_type
+ delta_bearing: azimuth_coordinate_type
+ centre_elevation: elevation_coordinate_type
+ delta_elevation: elevation_coordinate_type
«idIStruct»
sector_type
+ centre_bearing: azimuth_coordinate_type
delta_bearing: azimuth_coordinate_type

«idIStruct»
truncated_sector_type

centre_bearing: azimuth_coordinate_type
delta_bearing: azimuth_coordinate_type
inner_range: range_coordinate_type
outer_range: range_coordinate_type

+ + + +

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

47

Figure 7.28 Domain Model (Logical diagram)

7.3.8.1 figure_ref_point

Type: IDLStruct

Package: Shape_Model

A figure_ref_point specifies a reference point for a figure.

This reference point is a mathematically meaningful point of the figure. For a circle it is the centre of the
circle, for a polygon it is the centre of gravity of the polygon, etc.

When rotating the figure, the figure_ref _point acts as the rotation point.

When a figure is not slaved to a track its figure_ref point shall be mapped on a (moving) geo point.
When the figure is slaved to an object (track, point) its figure_ref point shall be mapped on an offset
position which is relative to the master object.

Table 7.38 - Attributes of IDLStruct figure_ref_point
Attribute Notes
position position_coordinate type

7.3.8.2 general_polar_volume_type

Type: IDLUnion

Package: Shape_Model

This class allow definition of a volume in space, bounded by standard polar coordinates (azimuth,
elevation and range). The different options allow the dimension of either range, elevation or both to be
omitted.

Table 7.39 - Attributes of IDLUnion general_polar_volume_type

Attribute Notes

«idICase» sector sector type The general polar volume is a sector
«idICase» polar volume polar volume type The general polar volume is a polar volume
«idlCase» truncated_sector truncated_sector_type | The general polar volume is a truncated sector
«idlCase» truncated polar_volume The general polar volume is a truncated polar
truncated_polar_volume type volume.

7.3.8.3 polar_volume_type

Type: IDLStruct

Package: Shape_Model

A polar_volume specifies a 3D volume based on a horizontal plane by means of its origin, its centre
bearing and centre elevation, its bearing delta and elevation delta.

The origin is the figure reference point of the Polar Volume.

Table 7.40 - Attributes of IDLStruct polar_volume_type

Attribute Notes

centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle
measured clockwise between the Y-axis of the
relevant coordinate system (true north,
heading/course) and the centre bearing line of the
volume.

delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each
side of a specified centre bearing line.

48 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute

Notes

centre_elevation elevation_coordinate type

This attribute specifies the vertical angle measured
counterclockwise between the horizontal plane and
the centre elevation line of the volume.

delta_elevation elevation coordinate type

This attribute specifies the elevation delta on each
side of a specified centre elevation line.

7.3.8.4 sector_type

Type: IDLStruct
Package: Shape_Model

A sector specifies a 2D area in a horizontal plane by means of its origin, its centre bearing with its bearing

delta, that together define the sector.

The origin is the figure reference point of the sector.

In case the sector is north oriented, the centre bearing is specified with respect to true north; otherwise it
is specified with respect to the object's (own ship/other track, point) heading/course.

Table 7.41 - Attributes of IDLStruct sector_type

Attribute

Notes

centre_bearing azimuth coordinate type

This attribute specifies the horizontal angle
measured clockwise between the Y-axis of the
relevant coordinate system (true north,
heading/course) and the centre bearing line of the
sector.

delta_bearing azimuth _coordinate type

This attribute specifies the bearing delta on each
side of a specified centre bearing line.

7.3.8.5 truncated_polar_volume_type

Type: IDLStruct
Package: Shape_Model

A truncated_polar_volume specifies a 3D volume based on a horizontal plane by means of its origin, its
centre bearing and centre elevation, its bearing delta and elevation delta, its inner range and outer range

Table 7.42 - Attributes of IDLStruct truncated_polar_volume_type

Attribute

Notes

centre_bearing azimuth_coordinate type

This attribute specifies the horizontal angle
measured clockwise between the Y-axis of the
relevant coordinate system (true north,
heading/course) and the centre bearing line of the
volume.

delta_bearing azimuth coordinate type

This attribute specifies the bearing delta on each
side of a specified centre bearing line.

centre_elevation elevation_coordinate type

This attribute specifies the vertical angle measured
counterclockwise between the horizontal plane and
the centre elevation line of the volume.

delta_elevation elevation coordinate type

This attribute specifies the elevation delta on each
side of a specified centre elevation line.

inner range range coordinate type

This attribute specifies the range that limits a
volume; i.e. the minimum distance from the
volume's origin.

outer range range coordinate type

This attribute specifies the range that limits a
volume; i.e. the maximum distance from the
volume's origin.

7.3.8.6 truncated_sector_type

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 49

Type: IDLStruct sector_type

Package: Shape_Model

A truncated_sector specifies a 2D area in a horizontal plane by means of its origin, its centre bearing with
its bearing delta, and its inner range and outer range, that together define the truncated sector.

The origin is the figure reference point of the truncated sector.

In case the truncated sector is north oriented, the centre bearing is specified with respect to true north;
otherwise (object oriented) it is specified with respect to the object's (own ship/other track, point) heading/
course.

Table 7.43 - Attributes of IDLStruct truncated_sector_type

Attribute Notes

centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle
measured clockwise between the Y-axis of the
relevant coordinate system (true north,
heading/course) and the centre bearing line of the
truncated sector.

delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each
B B - side of a centre bearing line.
inner range range coordinate type This attribute specifies the range that limits a

truncated sector; i.e. the minimum distance from
the truncated sector's origin.

outer_range range coordinate type This attribute specifies the range that limits a
truncated sector; i.e. the maximum distance from
the truncated sector's origin.

7.3.9 Requests

Parent Package: Common_Types

This package contains common operations and associated parameters which are used by multiple
interfaces. This includes the operation to acknowledge a CMS request as accepted or denied, as well as
an operation to report errors while processing an accepted CMS request.

50 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

class Domain Model/

«idlInterface»
common_use_case_interface

+ receive_acknowledgement(request_id_type, request_ack type): void
+ receive_error(request_id_type, error_reason_type) : void

unsigned long long «idIStruct» string string
b i pedet request_ack_type err:;lrdll);;;iief;;pe «tidITypfedef»
request_id_type + accepted: boolean - _ parameter_reference_type
tags tags
e s 10 Length = 64

+rejection [/ 0..1

«idIStruct» string

denial_type «idITypedef»
denial_reason_type

+ reason: denial_reason_type
+ related_parameter: parameter_reference_type [0..*]

tags
Length =40

Figure 7.29 Domain Model (Logical diagram)

7.3.9.1 denial_reason_type

Type: IDLTypeDef string

Package: Requests

String which indicates rationale for rejection of the request. Is not valid when the request has been
accepted.

Length = 40

7.3.9.2 denial_type
Type: IDLStruct
Package: Requests

Struct used within the receive_acknowledgement operation to provide information on (one of the reasons)
why a request has been rejected.

Table 7.44 - Attributes of IDLStruct denial_type

Attribute Notes

reason denial reason_type textual explanation of (one of) the reasons for
rejection

related_parameter parameter_reference type [0..*] A reference to the parameter or parameters that

relate to the reason for rejection. If no
related_parameters are supplied the rejection
relates to the whole request.

7.3.9.3 error_reason_type
Type: IDLTypeDef string

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 51

Package: Requests
A string which gives an indication of the error associated with processing of the request.
Length = 40

7.3.9.4 parameter_reference_type

Type: IDLTypeDef string

Package: Requests

A string which refers to a parameter in a request using an implementation specific notation.
Length = 64

7.3.9.5 request_ack_type

Type: IDLStruct

Package: Requests

Struct used within the receive_acknowledgement operation to indicate acceptance or rejection (which
includes rationale).

Table 7.45 - Attributes of IDLStruct request_ack_type

Attribute Notes
accepted boolean Attribute to indicate whether a request has been
accepted (1) or rejected (0).

7.3.9.6 request_id_type

Type: IDLTypeDef unsigned long long

Package: Requests

The purpose of the request_id is to uniquely relate responses of the subsystem (server) to requests of the
CMS (client). The request_id is set by the client. It is the responsibility of the client to specify a system-
wide unique request_id (e.g. based on a combination of client id and a sequence number / time of
request).

7.3.9.7 common_use_case_interface

Type: IDLInterface
Package: Requests
Interface which includes operations common to all CMS interfaces.

Table 7.220 - Methods of IDLInterface common_use_case_interface
Method Notes Parameters

receive_acknowledgement() | This operation is used by the request_id_type request id
subsystem to indicate whether it | request ack type request_ack
has accepted or rejected a
request from the CMS.
receive_error() This operation is used by the request_id_type request id
subsystem to indicate an error in | error reason_type error_reason
processing a request. B B B

7.4 Subsystem_Domain

Parent Package: Domain_Model
This package contains the Domain Models for the Encyclopaedic Support, Extended Subsystem Control,
Subsystem Control, Recording and Replay, and Simulation Support services.

7.4.1 Encyclopaedic_Support

52 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Parent Package: Subsystem_Domain

class Domain Model /

string

«idITypedef»
data_descriptor_type

tags
Length = 60

string

«idITypedef»
url_type

tags
Length = 255

Figure 7.30 Domain Model (Logical diagram)

7.4.1.1 data_descriptor_type

Type: IDLTypeDef string

Package: Encyclopaedic_Support

Standard description of the encyclopaedic data set
Length = 60

7.4.1.2 url_type

Type: IDLTypeDef string

Package: Encyclopaedic_Support

Representation of a Uniform Resource Locator see www.w3.0rg
Length = 255

7.4.2 Extended_Subsystem_Control

Parent Package: Subsystem_Domain
Contains Structs used within the Extended Subsystem Control service.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

53

class Domain Model/

string

«idITypedef»
configuration_url_type

tags
Length = 255
string
«idIEnum» «idITypedef»

offline_test_result_type offline_test_type

+ FAILED

«idITypedef»

string

offline_test_result_details_type

+ PARTIAL_PASS
+ PASSED

Figure 7.31 Domain Model (Logical diagram)

7.4.2.1 configuration_url_type

Type: IDLTypeDef string

Package: Extended_Subsystem_Control

String which provides a url location for configuration data.
Length = 255

7.4.2.2 offline_test_result_details_type

Type: IDLTypeDef string

Package: Extended_Subsystem_Control

Subsystem specific detailed test results
Length = 4096

7.4.2.3 offline_test_result_type

Type: IDLEnum
Package: Extended_Subsystem_Control
Used to return the test results: failed, partial_pass or failed

Table 7.46 - Attributes of IDLEnum offline_test_result_type

Attribute Notes

FAILED A number of tests were not successful, such that

the subsystem exceeded its failure threshold.
Detailed information is available upon request.

PARTIAL PASS A number of tests were not successful, but the

subsystem did not exceed its failure threshold.
Detailed information is available upon request.

PASSED All tests were successful.

54 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

7.4.2.4 offline_test_type

IDLTypeDef string
Extended_Subsystem_Control
A subsystem specific string identifying the required test type.

Type:
Package:

Length = 255

7.4.3 Recording_and_Replay

Parent Package:

Subsystem_Domain

Defines the domain model for the Recording and Replay interfaces.

class Domain Model /

«idITypedef»

change_threshold_type

float

«idITypedef»
rate_type

float

time_type

«idITypedef»
actual_time_type

«idIStruct»
recording_set_type

+recording_descriptor 1.%

«idIStruct»

recording_descriptor_type

+

+ change_threshold: change_threshold_type
+ rate: rate_type
record_on_change: record_on_change_type

+parameter 1

time_type

«idITypedef»
recorded_time_type

boolean

«idITypedef»
record_on_change_type

replay_speed_type

float
«idITypedef»

«idIStruct»
replay_set_type

[

+parameter

N

*

«idIStruct»
parameter_type

+ parameter: string

{in an associated
recording_set}

+parameter

+recording_id

«idIStruct»
recording_type

+recorded_data 1.%

«idIStruct»
recorded_data_type

+ recorded_value: string
+ time_stamp: time_type

{from the associated recording_set}

long

«idITypedef»
recording_id_type

1

Figure 7.32 Domain Model (Logical diagram)

7.4.3.1 actual_time_type

IDLTypeDef time_type

Recording_and_Replay
The current time (time of day). Used to indicate when playback should start. This allows synchronisation
of playback from different subsystems.

Type:
Package:

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

55

7.4.3.2 change_threshold_type

Type: IDLTypeDef float
Package: Recording_and_Replay
The amount by which a parameter shall change in order to be recorded, when recording on change

7.4.3.3 parameter_type

Type: IDLStruct
Package: Recording_and_Replay
Identified the parameter to be recorded

Table 7.47 - Attributes of IDLStruct parameter_type
Attribute Notes
parameter string

7.4.3.4 rate_type

Type: IDLTypeDef float

Package: Recording_and_Replay

Defined the rate at which the parameter is to be recorded for periodic recording

7.4.3.5 record_on_change_type

Type: IDLTypeDef boolean
Package: Recording_and_Replay
Boolean specifying record on change (true) or periodic (false)

7.4.3.6 recorded_data_type

Type: IDLStruct
Package: Recording_and_Replay
Data recorded against the specified parameter

Table 7.48 - Attributes of IDLStruct recorded_data_type

Attribute Notes

recorded_value string This needs to reference allowable values defined
by the possible recording parameters - see
'recording parameters'.

time stamp time type

7.4.3.7 recorded_time_type

Type: IDLTypeDef time_type

Package: Recording_and_Replay

The time in a recording. This is used to indicate the position in the recording at which playback should
start.

7.4.3.8 recording_descriptor_type

Type: IDLStruct
Package: Recording_and_Replay
Specifies the recording characteristics required for each parameter

Table 7.49 - Attributes of IDLStruct recording_descriptor_type

56 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute

Notes

change threshold change threshold type

When record_on_change is true, any change
greater than the change_threshold from the last
recorded value shall be recorded. This only applies
for numeric quantities i.e. not enumerated types,
and is ignored otherwise.

rate rate_type

Specifies recording rate when record_on_change is
false.

record _on_change record on_change type

Indicates whether to record all changes greater
than the change threshold or record at the
specified rate.

7.4.3.9 recording_id_type

Type: IDLTypeDef long
Package: Recording_and_Replay

Used to identify a specific recording. The subsystem shall manage a number of recordings and associate
recording ids with them in a subsystem dependent way. Once associated, it passes that reference
through the parameter recording_id to the CMS so that the CMS may ask for a specific recording later on.
Again, the CMS manages the relationship between the recording_id and the recording it requested to be

made in a system dependent way.

There is no intention to model the method either the subsystem or the CMS uses to manage the
relationship between recording_id and the recordings as this is transparent to the interface and would
unnecessarily restrict the choices available to the designers.

A set of parameters required to be replayed. These must exist in the associated recording set to be of any

7.4.3.10 recording_set_type
Type: IDLStruct

Package: Recording_and_Replay
A set of recording descriptors specifying what is to be recorded
7.4.3.11 recording_type

Type: IDLStruct

Package: Recording_and_Replay
A recording: a set of recorded data
7.4.3.12 replay_set_type
Type: IDLStruct

Package: Recording_and_Replay
use.

7.4.3.13 replay_speed_type
Type: IDLTypeDef float
Package: Recording_and_Replay

Controls the replay speed. 1.0 represents real time.

7.4.4 Simulation_Support

Parent Package: Subsystem_Domain

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 57

class Domain Model

«idIStruct» «idIStruct»
fault_scripts_type +script fault_script_type

0..*| + details_of_fault: string

string
sgrint |
seript_id IN\idiTypedets
+script_id fault_script_id_type

«idIStruct» '%
fault_script_ids_type tags

Length =6
«idIStruct» «idIStruct» «idIStruct»
stop_freeze_session_request_type sim_mode_status_type start_stop_sim_mode_request_type
+ reflect_values: boolean + sim_mode_active: boolean + start_simulation_mode: boolean
+ run_internal_simulation_clock boolean

+ update_attributes: boolean

Figure 7.33 Domain Model (Logical diagram)

7.4.4.1 fault_script_id_type

Type: IDLTypeDef string
Package: Simulation_Support
Identifies a single fault script.
Length =6

7.4.4.2 fault_script_ids_type
Type: IDLStruct
Package: Simulation_Support

This class represents a set of references to fault scripts

7.4.4.3 fault_script_type

Type: IDLStruct

Package: Simulation_Support

Definition of a fault script. The exact form of this is not yet defined, this class represents the essential
attributes. It would probably be some form of string, perhaps an XML document.

Table 7.50 - Attributes of IDLStruct fault_script_type

Attribute Notes
details of fault string A description of the fault, such as is interpretable
- during the simulation

7.4.4.4 fault_scripts_type

Type: IDLStruct
Package: Simulation_Support
This class represents a set of fault scripts

7.4.4.5 sim_mode_status_type

58 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Type: IDLStruct
Package: Simulation_Support
Whether simulated mode is in operation

Table 7.51 - Attributes of IDLStruct sim_mode_status_type

Attribute Notes

sim_mode_active boolean Flag to indicate if the simulation mode is active.

7.4.4.6 start_stop_sim_mode_request_type

Type: IDLStruct
Package: Simulation_Support
A request to change the simulation mode

Table 7.52 - Attributes of IDLStruct start_stop_sim_mode_request_type

Attribute Notes

start simulation mode boolean Flag to indicate if the simulation mode shall be
B B started or stopped.

7.4.4.7 stop_freeze_session_request_type

Type: IDLStruct

Package: Simulation_Support

A Simulation Management (SIMAN) request, sent from a Simulation Manager to request that one or more
entities either

a) pause their simulation session

or

b) stop their simulation session.

Table 7.53 - Attributes of IDLStruct stop_freeze_session_request_type

Attribute Notes
reflect values boolean Whether the entity or entities being stopped/frozen
B should continue to reflect values when
stopped/frozen.
run internal simulation clock boolean Whether the entity or entities being stopped/frozen

should continue to run their internal simulation
clock when stopped/frozen.

update_attributes boolean Whether the entity or entities being stopped/frozen
should continue to update attributes when stopped/
frozen.

7.4.5 Subsystem_Control

Parent Package: Subsystem_Domain
Contains Structs used within the Subsystem Control service and a state diagram corresponding with the
Manage Technical State interface.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 59

class Domain Model -1

o

+ registration: registration_type
quality_of_service: string
+ recipient: string

«idIStruct» «idIEnum» «idIEnum» «idlEnum»
interest_list registration_type technical_state_type mastership_state_type
«idIEnum» + BIT «enum»
+ REGISTER + CALIBRATE + MASTERSHIP_FREE
+ DEREGISTER + DORMANT + MASTERSHIP_OTHER
+ FAILED + MASTERSHIP_TO_CMS
+ OFFLINE
+ ONLINE
+ READY
+element 1.7 + STANDBY
«idIStruct» «idIStruct»
interest service_list_type

concerns

+service_indication |0..*

service_type

0..* 1.*
concerns _<<|d|§truct>> _
service_information
+ information_name: information_name_type
1
«idIStruct»

+ service_name: service_name_type

«idlStruct»
service_indication_list_type

«idIEnum»
information_name_type

+service_indication

0..*

«idIStruct»
service_indication_type

+ service_name: service_name_type
+ registration_indicator: boolean

«idIEnum»
event_type

«idlEnum»
+ OCCURRENCE

+ DISAPPEARANCE

«

o
i
+
+
+
+
+
+
+
+
+
+

idIEnum»
AIR_PLOTS
SURFACE_PLOTS
LAND_PLOTS
SPACE_PLOTS
SENSOR_AIR_TRACKS
SENSOR_SURFACE_TRACKS
SENSOR_LAND_TRACKS
SENSOR_SPACE_TRACKS
JAMMER_STROBES
JAMMER_TRACKS
JAMMING_EFFECT_ASSESSMENTS
INTERFERENCE_REPORTS

health_state_type

«idlEnum»
service_name_type

«idIEnum»

AIR_ENGAGEMENT_SUPPORT
CLUTTER_REPORTING
ENCYCLOPAEDIC_SUPPORT
ENGAGEMENT_SUPPORT
ENVIRONMENT_AND_STABILIZATION_LEVEL_3F
ENVIRONMENT_AND_STABILIZATION_LEVEL_3dg
EXTENDED_SUBSYSTEM_CONTROL
JAMMER_REPORTING
MISSILE_GUIDANCE
PLOT_REPORTING_LEVEL_1
PLOT_REPORTING_LEVEL_3C
PLOT_REPORTING_LEVEL_3E
RECORDING_AND_REPLAY

SEARCH
SENSOR_CONTROL_LEVEL_2
SENSOR_PERFORMANCE
SIMULATION_SUPPORT
SUBSYSTEM_CONTROL_LEVEL_1
SUBSYSTEM_CONTROL_LEVEL_2
SURFACE_ENGAGEMENT_SUPPORT
TRACK_REPORTING_LEVEL_1
TRACK_REPORTING_LEVEL_3C
TRACK_REPORTING_LEVEL_3E
TRACKING_CONTROL_LEVEL_2
TRACKING_CONTROL_LEVEL_3C
SENSOR_CONTROL_LEVEL_3A

P T T S S A S A I I A A T I A

«idIEnum»

+

o
+
+

«idIEnum»

«idIStruct»
health_state_reason_type

AVAILABLE
DEGRADED
NOT_AVAILABLE

+ 4+ o+ o+

caused_by_fault: boolean
caused_by_technical_state: boolean
caused_by_simulation_mode: boolean
caused_by_operational_mode: boolear|

UNKNOWN

60

Figure 7.34 Domain Model - 1 (Logical diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

class Domain Model -2

«idIStruct»
fault_list
+element 0.*

«idIStruct»
fault

+ fault_name: string

+ event: event_type

+ simulated: boolean

+ overidden: boolean

+ fault_isolation_data: string

0..*
+influences
1%
«idIStruct» «idlStruct»
service_health_type subsystem_health_type

+influences

+ service_name: service_name_type + health_state: health_state_type
+ health_state: health_state_type - 1]+ health_state_reason: health_state_reason_type
+ health_state_reason: health_state_reason_type - + subsystem_identification: device_identification_type
+ time_of_information: time_type + time_of_information: time_type
«idIStruct» «idIStruct» «idIStruct»
name_value_sequence_type parameter_name_sequence_type name_error_sequence_type
+element 0. +element | 0. +element 0.*
«idIStruct» «idIStruct» «idIStruct»
name_value_pair_type parameter_name_type name_error_pair_type
+ parameter_name: string + parameter_name: string + parameter_name: string
+ value: string + emor_indication: string
«idIStruct» unsigned short «idlIStruct»
battle_override_state_type «idITypedef» descriptor_sequence

+ battle_override_applied: boolean s ational modeRtype

+related_parameter
0.+

«idIStruct»
version_type

+element, [, 0"

+ major_version: unsigned short

+ minor_version: unsigned short

«idIStruct»

descriptor
. ti parameter_name: string
) <.<|dIS§ruct»_ St parameter_type: string
device_identification_type «idITypedef» parameter_unit: string

typical_value: string [0..1]

parameter_range: string [0..1]

technical_state: technical_state_type [1.."]
applicable_operational_mode: operational_mode_type [0..*]

product: device_name_type EeicernameRtype

serial_number: device_name_type
equipment_type: device_name_type
version: version_type

+ o+ o+ o+ o+ o+

+ + + +

Figure 7.35 Domain Model - 2 (Logical diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

7.4.5.1 service_name_type

Type: IDLEnum

Package: Subsystem_Control

Enumeration of possible service names. Where a service may be offered at different compliance levels,
multiple names are introduced with LEVEL_x postfix to indicate different parts.

Table 7.54 - Attributes of IDLEnum service_name_type
Attribute Notes
«idIEnum» AIR. ENGAGEMENT SUPPORT
«idIEnum» CLUTTER_REPORTING
«idIEnum» ENCYCLOPAEDIC SUPPORT
«idIEnum» ENGAGEMENT SUPPORT

«idIEnum»
ENVIRONMENT AND STABILIZATION LEVEL 3
F

«idIEnum»
ENVIRONMENT AND_ STABILIZATION LEVEL 3
G

«idIEnum»
EXTENDED SUBSYSTEM CONTROL

«idIEnum» JAMMER REPORTING
«idIEnum» MISSILE GUIDANCE

«idIEnum» PLOT REPORTING LEVEL 1
«idIEnum» PLOT REPORTING LEVEL 3C
«idIEnum» PLOT REPORTING LEVEL 3E
«idIEnum» RECORDING AND REPLAY
«idIEnum» SEARCH

«idIEnum» SENSOR_CONTROL LEVEL 2
«idIEnum» SENSOR_PERFORMANCE
«idIEnum» SIMULATION SUPPORT
«idIEnum» SUBSYSTEM CONTROL LEVEL 1
«idIEnum» SUBSYSTEM CONTROL LEVEL 2
«idIEnum» SURFACE_ENGAGEMENT SUPPORT

«idIEnum» TRACK _REPORTING LEVEL 1
«idIEnum» TRACK _REPORTING LEVEL 3C
«idIEnum» TRACK REPORTING LEVEL 3E
«idIEnum» TRACKING CONTROL LEVEL 2
«idIEnum» TRACKING CONTROL LEVEL 3C
«idIEnum» SENSOR_CONTROL LEVEL 3A

7.4.5.2 battle_override_state_type

Type: IDLStruct
Package: Subsystem_Control
If the boolean is true the battle override is applied.

Table 7.55 - Attributes of IDLStruct battle_override_state_type

62 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute Notes

battle override applied boolean Indicates if the battle override is applied or not.

7.4.5.3 descriptor

Type: IDLStruct
Package: Subsystem_Control
Type for parameter descriptors.

Table 7.56 - Attributes of IDLStruct descriptor

Attribute Notes

parameter_name string parameter_name values are unique within the
scope of a subsystem.

parameter_type string

parameter _unit string

typical value string [0..1] *optional*

parameter_range string [0..1] *optional*

technical_state technical state type [1..*] Technical state(s) in which this parameter may be
- - modified.

applicable operational mode operational mode_type
[0..%]

7.4.5.4 descriptor_sequence

Type: IDLStruct
Package: Subsystem_Control
Sequence of parameter descriptors, used in retrieving parameter descriptors.

7.4.5.5 device_identification_type

Type: IDLStruct
Package: Subsystem_Control
Identification data of the equipment.

Table 7.57 - Attributes of IDLStruct device_identification_type

Attribute Notes

product device name_type Name of the product. Example TRS3D

serial number device name_type Serial number identifying the individual device.

equipment_type device name_type This describes the general type of the equipment.
Example: Air Surveillance Radar

version version_type Version of the device.

7.4.5.6 device_name_type

Type: IDLTypeDef string
Package: Subsystem_Control

Name of an entry in the device identification.
Length = 64

7.4.5.7 event_type

Type: IDLEnum

Package: Subsystem_Control

Type of event

Table 7.58 - Attributes of IDLEnum event_type

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

63

Attribute Notes

«idIEnum» OCCURRENCE

«idIEnum» DISAPPEARANCE

7.4.5.8 fault
Type: IDLStruct
Package: Subsystem_Control

Class to represent a subsystem fault

Table 7.59 - Attributes of IDLStruct fault

Attribute Notes
fault name string

event event type

simulated boolean Indicates whether this fault is real or
simulated/inserted.

overridden boolean Indicates whether this fault is overridden by Battle
Override when determining the health state.

fault_isolation data string For instance cabinet id and rack id.

7.4.5.9 fault_list

Type: IDLStruct
Package: Subsystem_Control
A list of faults

7.4.5.10 health_state_reason_type
Type: IDLStruct
Package: Subsystem_Control

Reason for the health state

Table 7.60 - Attributes of IDLStruct health_state_reason_type
Attribute Notes
caused by fault boolean

caused by technical state boolean

caused by simulation _mode boolean

caused by operational mode boolean

7.4.511 health_state_type
Type: IDLEnum
Package: Subsystem_Control

Encapsulation of health state

Table 7.61 - Attributes of IDLEnum health_state_type
Attribute Notes
«idIEnum» AVAILABLE Service: Indicates that the service is available with
specified performance.

Subsystem: Indicates that all implemented services of
the subsystem have health state AVAILABLE.

64 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute

Notes

«idIEnum» DEGRADED

Service: Indicates that the service may perform its
operational task, but possibly with less than specified
performance.

Subsystem: Indicates that at least one of the
implemented services of the subsystem have health state
other than AVAILABLE.

«idIEnum» NOT_AVAILABLE

Service: Indicates that the service is not available.
Subsystem: Indicates that all implemented services of
the subsystem have health state NOT AVAILABLE.

«idIEnum» UNKNOWN

Indicates that the subsystem may not determine
the health state of the service or subsystem (e.g.
because BIT is not running).

7.4.512 information_name_type
Type: IDLEnum
Package: Subsystem_Control

Name of information

Table 7.62 - Attributes of IDLEnum information_name_type

Attribute

Notes

«idIEnum» AIR PLOTS

«idIEnum» SURFACE PLOTS

«idIEnum» LAND PLOTS

«idIEnum» SPACE PLOTS

«idIEnum» SENSOR_AIR TRACKS

«idIEnum» SENSOR _SURFACE TRACKS

«idIEnum» SENSOR LAND TRACKS

«idIEnum» SENSOR SPACE TRACKS

«idIEnum» JAMMER STROBES

«idIEnum» JAMMER TRACKS

«idIEnum» JAMMING EFFECT ASSESSMENTS

«idIEnum» INTERFERENCE REPORTS

7.4.513 interest
Type: IDLStruct
Package: Subsystem_Control

Encapsulation of interest in service

Table 7.63 - Attributes of IDLStruct interest

Attribute Notes
registration registration_type
quality of service string * optional *
recipient string * optional *

7.4.5.14 interest_list

Type: IDLStruct

Package: Subsystem_Control

A list of interest

7.4.5.15 mastership_state_type

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 65

Type: IDLEnum

Package: Subsystem_Control

This enumeration represents the state of the mastership.

The subsystem Mastership may be either “free”, that is assigned to none and then available to anybody
asks for it, or assigned to somebody: CMS or not.

Table 7.64 - Attributes of IDLEnum mastership_state_type

Attribute Notes
«enum» MASTERSHIP FREE Mastership state is “free”, the first received Mastership
request shall be satisfied.
«enumy» MASTERSHIP OTHER The Mastership is assigned to somebody other
B than CMS.

«enum» MASTERSHIP TO CMS The Mastership is assigned to CMS.

7.4.5.16 parameter_name_type
Type: IDLStruct

Package: Subsystem_Control

Typedef for strings representing names of parameters.

Table 7.65 - Attributes of IDLStruct parameter_name_type

Attribute Notes
parameter name string parameter_name values are unique within the
B scope of a subsystem.

7.4.5.17 name_error_pair_type
Type: IDLStruct
Package: Subsystem_Control

Combination of name of parameter (for which a request could not be processed) and an indication of the
error.

Table 7.66 - Attributes of IDLStruct name_error_pair_type

Attribute Notes
parameter name string parameter_name values are unique within the
scope of a subsystem.

error_indication string

7.4.5.18 name_error_sequence_type
Type: IDLStruct
Package: Subsystem_Control

sequence of error reports identifying the parameter names for which the request could not be processed,
including an indication of the error (e.g. unknown parameter, illegal value).

7.4.5.19 parameter_name_sequence_type
Type: IDLStruct
Package: Subsystem_Control

A sequence of strings (names). Used in request for parameters and parameter descriptors. If the
sequence is empty, the request is for all parameters.

7.4.5.20 name_value_pair_type
Type: IDLStruct
Package: Subsystem_Control

A generic struct for (name, value) pairs. Used in multiple situations.

66 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Table 7.67 - Attributes of IDLStruct name_value_pair_type

Attribute Notes
parameter_name string parameter_name values are unique within the
scope of a subsystem.

value string

7.4.5.21 name_value_sequence_type
Type: IDLStruct
Package: Subsystem_Control

Sequence of (name, value) pairs used in retrieving and modifying parameters.

7.4.5.22 operational_mode_type
Type: IDLTypeDef unsigned short
Package: Subsystem_Control

The value should be mapped to the corresponding operational mode. This mapping is retrieved through
the service 'Manage Subsystem Parameters'.

7.4.5.23 parameter_value_response_type
Type: IDLStruct
Package: Subsystem_Control

Response type for retrieving and modifying sequences of parameters.

Table 7.68 - Attributes of IDLStruct parameter_value_response_type
Attribute Notes
request_id long

7.4.5.24 registration_type
Type: IDLEnum
Package: Subsystem_Control

Type of registration

Table 7.69 - Attributes of IDLEnum registration_type
Attribute Notes
«idIEnum» REGISTER
«idIEnum» DEREGISTER

7.4.5.25 service_type
Type: IDLStruct
Package: Subsystem_Control

Type of service

Table 7.70 - Attributes of IDLStruct service_type

Attribute Notes
service_name service name_type Only registrable services are allowed
7.4.5.26 service_health_type
Type: IDLStruct
Package: Subsystem_Control

Health of service

Table 7.71 - Attributes of IDLStruct service_health_type

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 67

Attribute Notes
service_name service_name_type

health state health state type

health state reason health state reason_type

time of information time type

7.4.5.27 service_indication_list_type
Type: IDLStruct
Package: Subsystem_Control

A list of service indications as used by Provide Subsystem_Services.

7.4.5.28 service_indication_type
Type: IDLStruct
Package: Subsystem_Control

Indication of a service provided by the subsystem.

Table 7.72 - Attributes of IDLStruct service_indication_type

Attribute Notes
service name service name _type Name of the service.
registration_indicator boolean Indication whether the service is registered.
7.4.5.29 service_information
Type: IDLStruct
Package: Subsystem_Control

Information about a service

Table 7.73 - Attributes of IDLStruct service_information
Attribute Notes
information_name information_name_type

7.4.5.30 service_list_type
Type: IDLStruct
Package: Subsystem_Control

A list of service names as used by Provide Subsystem_Services.

7.4.5.31 subsystem_health_type
Type: IDLStruct
Package: Subsystem_Control

Type describing the health state of a subsystem

Table 7.74 - Attributes of IDLStruct subsystem_health_type

Attribute Notes
health_state health_state_type Current health state
health state reason health state reason type Reason for last change of health state

subsystem_identification device identification type

time of information time type

7.4.5.32 technical_state_type
Type: IDLEnum
Package: Subsystem_Control

Type which is used to indicate a technical state.

68 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Table 7.75 - Attributes of IDLEnum technical_state_type

Attribute

Notes

BIT

Subsystem is running Built-In-Test procedure. CMS
may communicate with subsystem, but subsystem shall
only respond affirmatively to a limited set of commands.
From this state the subsystem may transition to READY,
FAILED, CALIBRATE, STANDBY (transition may be
ordered before completion of BIT if Battle Override is
enabled), or OFFLINE.

CALIBRATE

Subsystem is running calibration procedure. Subsystem
shall only respond to a limited set of commands from
CMS. From this state the subsystem may transition to
READY, FAILED, BIT, STANDBY (transition may be
ordered before completion of calibration if Battle
Override is enabled), or OFFLINE.

DORMANT

Interface between CMS and subsystem may or may not
exist. Some power is applied to the subsystem and
temperature control (e.g. cooling) is active. From this
state, the sub-system may transition to FAILED,
STANDBY, or OFFLINE.

FAILED

Subsystem is non-operational due to a critical fault such
as a primary power supply failure. CMS is able to
communicate with subsystem to perform diagnostics. In
the FAILED state, the health state of the sub-system and
nearly all associated services is NOT AVAILABLE or
UNKNOWN (provided via Health State). If the health
state of the sub-system or some services is
DEGRADED, the sub-system is not required to enter
into this state. From this state the sub-system may
transition to BIT, STANDBY, READY, CALIBRATE,
DORMANT or OFFLINE.

OFFLINE

No connection between CMS and Subsystem is open.
Main power is usually not applied to subsystem. From
OFFLINE, subsystem transitions to FAILED,
DORMANT, BIT, or STANDBY.

ONLINE

Subsystem is operational and may respond to all
requests from CMS. Simulation and diagnostics may be
allowed in this state. Radiation is allowed in this state
but must be commanded on via Control Emissions.
From this state the subsystem may transition to BI7,
CALIBRATE, READY, STANDBY, FAILED, or
OFFLINE.

READY

Subsystem is ready for CMS to command full operation.
Simulation may be allowed in this state. Ready to
transition to ONLINE, self-tests and calibration has been
performed as necessary. Radiation is not allowed in the
READY state. From this state the subsystem may
transition to STANDBY, ONLINE, FAILED, BIT,
CALIBRATE, or OFFLINE.

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 69

Attribute

Notes

STANDBY Interface between CMS and subsystem is

established. Subsystem may not operate fully.
Maintenance may be performed in this state. From
this state the sub-system may transition to READY,
CALIBRATE, BIT, FAILED, DORMANT, or
OFFLINE.

7.4.5.33 version_type

Type: IDLStruct

Package: Subsystem_Control

Version of the equipment

Table 7.76 - Attributes of IDLStruct version_type

Attribute

Notes

major_version unsigned short

Major version number

minor_version unsigned short

Minor version number

7.4.5.34 Initial
Type: Initial State
Package: Subsystem_Control

7.5 Sensor_Domain

Parent Package:

Domain_Model

This package contains the Domain Models for the Clutter Reporting, Plot Reporting, Sensor Control,
Sensor Performance, Track Reporting, and Tracking Control services.

7.5.1 Clutter_Reporting

Parent Package:

Sensor_Domain

Contains Structs used within the Clutter Reporting service.

class Domain Model ~

«idIStruct»
clutter_assessment_request_type

+ requested_region: general_polar_volume_type

«idIStruct»
clutter_report_type

+ intensity_type: intensity_units_type
+ time_of report: time_type

+clutter_map_cell TL.*

«idIStruct»

plot_concentration_request_data_type

+ region_of_plot_concentration_request: general_polar_volume_type

«idIStruct»
clutter_map_cell_type

«idIStruct»
plot_concentration_report_type

+ time_of_report: time_type

+concentration_plot_cell [1..*

«idIEnum»
intensity_units_type

+ o+ + + o+ o+

POWER_RECEIVED_LINEAR
POWER_RECEIVED_LOG_LINEAR
RCS_LINEAR

RCS_LOG_LINEAR

SNR_LINEAR

SNR_LOG_LINEAR

+ cell_boundaries: general_polar_volume_type
+ clutter_type: clutter_indication_type
+ clutter_intensity: double

«idIStruct»
concentration_plot_cell_type

+ cell_boundaries: general_polar_volume_type
+ plot_count: unsigned long long

«idlIEnum»
clutter_indication_type

LAND

SEA

WEATHER
NO_STATEMENT

+ o+ 4+

70

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Figure 7.36 Domain Model (Logical diagram)

7.5.1.1 clutter_assessment_request_type

Type:
Package:

IDLStruct
Clutter_Reporting

CMS generated request for a clutter assessment.

Table 7.77 - Attributes of IDLStruct clutter_assessment_request_type

Attribute Notes
requested_region general polar_volume_type Region for which the CMS clutter request was
generated.

7.5.1.2 clutter_indication_type

Type:
Package:

IDLEnum
Clutter_Reporting

Indicates if the clutter within the cell is of a specific type.

Table 7.78 - Attributes of IDLEnum clutter_indication_type

Attribute

Notes

LAND

SEA

WEATHER

NO_STATEMENT

7.5.1.3 clutter_map_cell_type

Type:
Package:

IDLStruct
Clutter_Reporting

Indicates the intensity and type of clutter for a defined geometric type.

Table 7.79 - Attributes of IDLStruct clutter_map_cell_type

Attribute Notes

cell_boundaries general polar volume type Indicates the boundaries of the cell for which clutter
is being reported.

clutter_type clutter_indication_type Indicates whether the clutter is LAND, SEA,
WEATHER, or unspecified (NO_STATEMENT).

clutter_intensity double Intensity of the clutter for the specified cell. Units
indicated by the intensity type attribute.

7.5.1.4 clutter_report_type

Type:
Package:

IDLStruct
Clutter_Reporting

Clutter report generated by the subsystem.

Table 7.80 - Attributes of IDLStruct clutter_report_type

Attribute Notes
intensity type intensity units_type Indicates the units of the clutter intensity reported.
time of report time type Time of the clutter report.

7.5.1.5 concentration_plot_cell_type

Type:
Package:

IDLStruct
Clutter_Reporting

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 71

Indicates the plot concentration of a defined geometric type.

Table 7.81 - Attributes of IDLStruct concentration_plot_cell_type

Attribute Notes

cell_boundaries general polar volume_type Specifies the dimension of the cell for which plot
concentration is being reported.

plot_count unsigned long long The number of plots generated within the cell.

7.5.1.6 intensity_units_type

Type: IDLEnum
Package: Clutter_Reporting
Units of the clutter intensity

Table 7.82 - Attributes of IDLEnum intensity_units_type
Attribute Notes
POWER RECEIVED LINEAR
POWER RECEIVED LOG LINEAR (e.g. dBm, dBW)
RCS LINEAR square meters
RCS LOG _LINEAR
SNR_LINEAR
SNR _LOG LINEAR

7.5.1.7 plot_concentration_report_type

Type: IDLStruct
Package: Clutter_Reporting
Plot concentration report as generated by the subsystem.

Table 7.83 - Attributes of IDLStruct plot_concentration_report_type
Attribute Notes
time of report time_type Time of the plot concentration report.

7.5.1.8 plot_concentration_request_data_type

Type: IDLStruct
Package: Clutter_Reporting
CMS request for plot concentration of a specified region.

Table 7.84 - Attributes of IDLStruct plot_concentration_request_data_type

Attribute Notes
region_of plot_concentration_request Region for which the plot concentration was
general polar_volume_type requested.

7.5.2 Plot_Reporting
Parent Package: Sensor_Domain

72 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

class Domain Model/

«idIStruct»
sensor_plot_type

+ plot_id: plot_id_type [0..1]
+ position: position_coordinate_type
+ coordinate_specification: coordinate_specification_type -
+ range_qualification: range_qualification_type [0..1] «idIStruct»
+ azimuth_qualification: azimuth_qualification_type +plots sensor_plot_set_type
+ elevation_qualification: elevation_qualification_type [0..1] o 1
+ simulation_status: boolean
+ strength: plot_strength_type [0..1]
+ time_of plot: time_type
+ additional_information: anonymous_blob_type
+ splash_spotting_area_id: splash_spotting_area_id_type [0..1]
+ jammer_indication: boolean
unsigned short «idIStruct» unsigned long
«idITypedef» sensor_orientation_type «idITypedef»

plot_strength_type plot_id_type

azimuth: azimuth_coordinate_type

elevation: elevation_coordinate_type [0..1]
time_of_validity: time_type

sensor_coordinate_system: coordinate_orientation_type

+ o+ o+ o+

Figure 7.37 Domain Model (Logical diagram)

7.5.2.1 plot_id_type

Type: IDLTypeDef unsigned long

Package: Plot_Reporting

Identifier for a plot, unique within a given sensor. Such plot ids, should not be reused between sensor
subsystem restarts.

7.5.2.2 plot_strength_type

Type: IDLTypeDef unsigned short

Package: Plot_Reporting

Strength of the plot. The precise semantics of this type are sensor subsystem specific, but a typical
interpretation is as a signal to noise ratio in dB.

7.5.2.3 sensor_plot_set_type
Type: IDLStruct
Package: Plot_Reporting
Set of one or more sensor plots.

7.5.2.4 sensor_plot_type
Type: IDLStruct
Package: Plot_Reporting
One plot from a sensor.

The additioral—infeadditional_information attribute is used for characteristics of the plot that are specific to
certain sensors, and therefore not in the general plot type, for example MTI or range rate.

Table 7.85 - Attributes of IDLStruct sensor_plot_type

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 73

Attribute

Notes

plot id plot id type [0..1]

A unique identifier for the plot within the scope of
the sensor. This attribute is optional as not all
sensors need to provide such an identifier for each
plot.

position position_coordinate type

The position of the plot. This is the mean, central
position. Note the qualification attributes, which
give information on accuracy and spread
estimates.

coordinate_specification coordinate specification_type

This attribute defines the characteristics of the
coordinate system used

range qualification range qualification type [0..1]

A measure of the spread and accuracy of the plot
in range. This is optional as not all sensors
measure range.

azimuth_qualification azimuth_qualification_type

A measure of the spread and accuracy of the plot
in azimuth.

elevation_qualification elevation qualification_type
[0..1]

A measure of the spread and accuracy of the plot
in elevation. This is optional as not all sensors
measure elevation.

simulation_status boolean

If true, the plot is simulated. See also simulation
support services within this standard.

strength plot_strength type [0..1]

The signal strength of the plot. This attribute is optional
as not all sensors measure a quantity which has
equivalence to strength.

time of plot time type

The time at which the plot was measured.

addittonal—nfeadditional information
anonymous_blob_type

Potentially classified information about the plot,
which may be used in a system specific way to
distribute information about a plot to other
subsystems. Further information about this
attribute, including layout semantics is outside of
the scope of this interface standard.

splash_spotting_area id splash_spotting_area id type
[0..1]

Indicates which splash spotting area the plot refers to - if
any - hence it is optional.

jammer_indication boolean

Indication whether or not a plot is from a source of
jamming.

7.5.2.5 sensor_orientation_type

Type: IDLStruct
Package: Plot_Reporting

This class describes the orientation of the sensor at a particular moment in time. This is useful for plot
processing functionality such as track extraction as it allows instantaneous coverage of the sensor to be

estimated.

Table 7.86 - Attributes of IDLStruct sensor_orientation_type

Attribute

Notes

azimuth azimuth_coordinate type

The (azimuth) direction of the head of the sensor
(e.g. antenna, lens or hydro-phone)

elevation elevation_coordinate type [0..1]

The (elevation) direction of the head of the sensor
(e.g. antenna, lens or hydro-phone). If not supplied
either horizontal is assumed or a constant angle is
defined through the

Manage Subsystem Parameters use case.

time of validity time type

The time for which is sensor orientation is valid

74 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute

Notes

sensor_coordinate_system coordinate_orientation_type

This attribute defines the interpretation of azimuth and
elevation.

Valid enumerates are:

NORTH _HORIZONTAL,

NORTH_DOWN,

STERN_ KEEL,

STERN DECK LEVEL

7.5.3 Sensor_Control
Parent Package: Sensor_Domain

This package contains structs and type defs for managing frequency usage, transmission sectors,

emission control, and test target scenarios.

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

75

class Domain Model
«idIEnum»

transmission_frequency_mode_type test_target _scenario_state_type «idITypedef»
frequency_band_type

«idIStruct» unsigned short

+ AUTOMATIC_FREQUENCY_SELECTION + test_target scenario_activated: boolean

+ FIXED_FREQUENCY + test_target scenario_id: test target scenario_id_type

+ FREQUENCY_DIVERSITY notes

+ RANDOM_AGILITY An index indicating a particular

frequency channel or band. The
actual frequency is typically not
of concemn to the command team.
A band refers to a discrete
frequency or a range of
frequencies; such bands may
overlap

«idIStruct»

«idIStruct» reported_frequency_state_type

all_frequencies_state_type +reported_frequencies

+ enable: boolean

0..*
+ frequency_id: frequency_band_type
+ available: boolean
«idIStruct» «idIStruct»

«idIStruct»

selected_frequency._list_type +selected_frequencies| transmission_frequency_state_type
control_emission_state_type

0.*| + enabled: boolean

+ frequency_id: frequency_band_type + emission_activated: boolean

«idlEnum» «idIStruct» «idIEnum»
transmission_sector_power_level_type transmission_sector_set_type sector_reference_type
+ FULL_RADIATE_POWER + NORTH_RELATED
+ INHIBIT + SHIP_RELATED

+ REDUCED_RADIATE_POWER

+ 0.
«idlUnion» sector
Shape_Model::general_polar_volume_type «idIStruct»
transmission_sector_type
«idlCase»
+ sector: sector_type + power_level_transmission: transmission_sector_power_level_type
+ polar_volume: polar_volume_type + sector_enabled: boolean
+ truncated_sector: truncated_sector_type + sector_id: short
+ truncated_polar_volume: truncated_polar_volume_type + sector_reference: sector_reference_type
+ sector_shape: general_polar_volume_type
+ transmision_mode: transmission_frequency_mode_type
Sdeimcty «idIStruct»
test_target_scenario_common_parameter_target_type test_target_scenario_independent_target_type
+ initial_time: time_type Py .
= " . number_of_test_target: unsigned short
: ?usrtnlt)eriotfitesiita.rget. t_un?gdrTeg shlort + test_target_scenario_activated: boolean
es._large 7scenar!07lacwae - boofean - + test_target scenario_id: test target_scenario_id_type
+ test_target_scenario_id: test_target_scenario_id_type
+ volume_boundaries: general_polar_volume_type
+targets| 0..*
+targets parameter
«idIStruct»
test_target e
«idIStruct» _target_typ
test_target plus_scenario_type + initial_time: time_type
.] + position: wgs84_position_type
+ test_target_id: unsigned short + test target id: unsigned short
+ test_target_parameter. anonymous_blob_type o test:target:parameter: anonymous blob_type
«idlUnion»
long test_target_scenario_type
«idITypedef» «idICase»
test_target_scenario_id_type + scenario_common_parameter_target: test_target_scenario_common_parameter_target_type
+ scenario_independent_target: test_target_scenario_independent_target_type

76 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Figure 7.38 Domain Model (Logical diagram)

7.5.3.1 selected_frequency_list_type

Type: IDLStruct
Package: Sensor_Control
This struct contains zero to many frequencies which may be enabled/disabled by the CMS

7.5.3.2 transmission_frequency_state_type

Type: IDLStruct
Package: Sensor_Control
State of frequency transmission

Table 7.87 - Attributes of IDLStruct transmission_frequency_state_type

Attribute Notes

enabled boolean Indicates whether the CMS is enabling or disabling
a transmission frequency.

frequency id frequency band type A unique identifier for the transmission frequency.

7.5.3.3 all_frequencies_state_type

Type: IDLStruct

Package: Sensor_Control

This struct contains zero to many "available" or "not available" frequencies which may be
enabled/disabled by the CMS

7.5.3.4 reported_frequency_state_type

Type: IDLStruct
Package: Sensor_Control
reported frequency state

Table 7.88 - Attributes of IDLStruct reported_frequency_state_type

Attribute Notes

enable boolean Indicates whether the CMS is enabling or disabling
a transmission frequency.

frequency id frequency band type A unique identifier for the transmission frequency.

available boolean Indicates whether a transmission frequency is
available or not available.

7.5.3.5 frequency_band_type

Type: IDLTypeDef unsigned short

Package: Sensor_Control

An index indicating a particular frequency channel or band. The actual frequency is typically not of
concern to the command team. A band refers to a discrete frequency or a range of frequencies; such
bands may overlap.

7.5.3.6 transmission_frequency_mode_type

Type: IDLEnum
Package: Sensor_Control
The mode

Table 7.89 - Attributes of IDLEnum transmission_frequency_mode_type

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 77

Attribute Notes

AUTOMATIC FREQUENCY SELECTION The sensor always uses the same pre-selected
- B frequency
FIXED FREQUENCY At each transmission sensor selects the frequency

to be used inside a pre-selected subset of
frequencies

FREQUENCY_ DIVERSITY At each transmission sensor selects the frequency
B to be used among the least jammed frequencies
RANDOM_AGILITY At each transmission sensor random selects the

frequency to be used.

7.5.3.7 transmission_sector_set_type

Type: IDLStruct
Package: Sensor_Control
This struct contains zero to many transmission sectors which must be set/reset by the CMS.

7.5.3.8 transmission_sector_type

Type: IDLStruct
Package: Sensor_Control
Sector for transmission

Table 7.90 - Attributes of IDLStruct transmission_sector_type

Attribute Notes

power _level transmission Indicates the transmission power level of the

transmission_sector_power _level type sector.

sector enabled boolean Indicates whether the CMS is enabling or disabling

B a transmission sector.

sector id short A unique identifier for the transmission sector.

sector_reference sector reference_type This indicates the reference system of the
transmission sector.

sector_shape general polar volume type Note that the azimuth dimension of the sector
shape (polar volume) applies to the horizon plane
(i.e. elevation=0)

transmision_mode transmission_frequency mode_type Inditcates the transmission mode used within the
sector

7.5.3.9 transmission_sector_power_level_type

Type: IDLEnum
Package: Sensor_Control
This enumeration allows specification of a CMS commanded power level for a sector.

Table 7.91 - Attributes of IDLEnum transmission_sector_power_level_type
Attribute Notes
FULL RADIATE POWER
INHIBIT
REDUCED RADIATE POWER

7.5.3.10 sector_reference_type
Type: IDLEnum
Package: Sensor_Control

This enumeration specifies the sectors reference systems.

Table 7.92 - Attributes of IDLEnum sector_reference_type

78 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute Notes

NORTH RELATED

SHIP RELATED

7.5.3.11 control_emission_state_type
Type: IDLStruct
Package: Sensor_Control

Emission state

Table 7.93 - Attributes of IDLStruct control_emission_state_type

Attribute Notes
emission activated boolean Indicates whether the CMS is enabling or disabling
B the sensor emission state.

7.5.3.12 test_target_scenario_type
Type: IDLUnion
Package: Sensor_Control

Scenario for test targets

Table 7.94 - Attributes of IDLUnion test_target_scenario_type
Attribute Notes

«idICase» scenario common parameter_target This case is used when a test target scenario is

test_target scenario_common_parameter target_type constituted by a number of targets distributed in a
defined area/volume and having the same common

parameters.
«idlCase» scenario_independent_target This case is used when a test target scenario is
teStﬁtargetﬁscenariOiindependentﬁtargetﬁtype ConStituted by a number Of independent targets.
7.5.3.13 test_target_scenario_independent_target_type
Type: IDLStruct
Package: Sensor_Control

The scenario is defined by a number of independent targets, with each target having own characteristic
parameters.

Table 7.95 - Attributes of IDLStruct test_target_scenario_independent_target_type

Attribute Notes

number_of test target unsigned short This is the number of the test targets composing
the scenario.

test target scenario activated boolean Indicates whether the CMS is enabling or disabling
the generation of a test target scenario.

test target scenario_id test target scenario id_type A unique identifier for the test target scenario.

7.5.3.14 test_target_scenario_common_parameter_target_type
Type: IDLStruct
Package: Sensor_Control

The scenario is defined by a number of targets distributed in a defined area/volume and having the same
common parameters.

Table 7.96 - Attributes of IDLStruct test_target_scenario_common_parameter_target_type

Attribute Notes
initial time time type This indicates the common initial time of the
targets.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 79

Attribute Notes

number of test target unsigned short This is the number of the test targets composing
- the scenario.
test_target_scenario_activated boolean Indicates Whether the CMS iS enabling or dlsab“ng

the generation of a test target scenario.
test target scenario id test target scenario id type A unique identifier for the test target scenario.

volume_boundaries general polar volume_type This indicates the area/volume boundaries where
B B B the test targets are distributed.

7.5.3.15 test_target_type
Type: IDLStruct
Package: Sensor_Control

Encapsulation of a test target (simulated target to enable technical testing of a sensor)

Table 7.97 - Attributes of IDLStruct test_target_type

Attribute Notes

initial time time type This attribute defines the relevant initial time.

position wgs84 position_type This attribute defines the initial target position.

test target id unsigned short A identifier for the test targets.

test target parameter anonymous_blob_type This attribute defines:
- the target motion type, with the relevant motion
parameters
- the target generation parameters, such as injection type
(internal / external), attenuation law (constant / variable-
with-range), doppler type (0 / PRF/2).

7.5.3.16 test_target_plus_scenario_type
Type: IDLStruct
Package: Sensor_Control

Test target with its scenario

Table 7.98 - Attributes of IDLStruct test_target_plus_scenario_type

Attribute Notes
test_target_ld unsigned short A |dent|f|er fOI’ the teSt targetS

test_target parameter anonymous_blob_type This attribute defines:

- the target motion type, with the relevant motion
parameters

- the target generation parameters, such as injection type
(internal / external), attenuation law (constant / variable-
with-range), doppler type (0 / PRF/2).

7.5.3.17 test_target_scenario_id_type
Type: IDLTypeDef long
Package: Sensor_Control

This typedef is used to identify a specific test target scenario.

7.5.3.18 test_target_scenario_state_type
Type: IDLStruct
Package: Sensor_Control

scenario state

Table 7.99 - Attributes of IDLStruct test_target_scenario_state_type

80 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute Notes

test target scenario_activated boolean

Indicates whether the CMS is enabling or disabling
the execution of the test target scenario.

test target scenario id test target scenario id type A unique identifier for the test target scenario.

7.5.4 Sensor_Performance
Parent Package: Sensor_Domain

class Domain Model
«idIStruct»

performance_assessment_request_type

azimuth_bin_count: unsigned short
range_bin_count: unsigned short

elevation_bin_count: unsigned short . .
start_azimuth: azimuth_coordinate_type [0..1] +assessment_dimensions

«idIStruct»
performance_assessment_report_type

end_azimuth: azimuth_coordinate_type [0..1] 1
start_elevation: elevation_coordinate_type [0..1]
end_elevation: elevation_coordinate_type [0..1]
min_range: range_coordinate_type [0..1]
max_range: range_coordinate_type [0..1]
applicable_mode: operational_mode_type
coordinate_orientation: coordinate_orientation_type

+ o+ o+ o+ o+ o+ o+ o+ o+ o+

performance_beam_type 1.*

+ start_elevation: elevation_coordinate_type

+ time_of_report: time_type

+sector|1..*
float unsigned short «idIStruct»
«idITypedef» «idITypedef» performance_sector_type
performance_type jamming_magnitude_type ———————@ + start_azimuth: azimuth_coordinate_type
+ end_azimuth: azimuth_coordinate_type
+beam «idIStruct»
«idIStruct» perfomance_bin_type

+ start_range: range_coordinate_type
+bin| + end_range: range_coordinate_type

+ end_elevation: elevation_coordinate_type g

«idIStruct»
interferer_type

+ value: performance_type [0..1]

«idIEnum»

timestamp: time_type

magnitude: jamming_magnitude_type [0..1] +interferers | interference_report_type

interferer_kind

«idlStruct»
ACTIVE_NOISE

CLUTTER

affected_bands: frequency_band_type [1..*]
position: position_coordinate_type [0..1]
kind: interferer_kind

1.%

SELF_SCREENING_JAMMER
STANDOFF_JAMMER

affected_volume: general_polar_volume_type [0..1]
position_coordinate_specification: coordinate_specification_type

+ o+ o+ o+ o+

STROBE
OTHER_TYPE
NO_STATEMENT

+ o+ o+ o+ o+ o+

Figure 7.39 Domain Model (Logical diagram)

7.5.4.1 interference_report_type

Type: IDLStruct
Package: Sensor_Performance
Set of interferer objects in a report.

7.5.4.2 interferer_kind

Type: IDLEnum
Package: Sensor_Performance

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

81

Enumeration of the types of interferers that are known about.

Table 7.100 - Attributes of IDLEnum interferer_kind

Attribute Notes
ACTIVE NOISE Interference from active noise.
CLUTTER Interference from clutter.
SELF SCREENING JAMMER Interference from a jammer, which is self
B - screening.
STANDOFF_JAMMER Interference from a stand-off jammer
STROBE Interference from a strobe jammer.
OTHER TYPE The interference source is of a different type to the
- other declared interference kinds
NO STATEMENT The interference source could not be classified by
B the sensor subsystem.

7.5.4.3 interferer_type

Type: IDLStruct
Package: Sensor_Performance
A single source of interference.

Table 7.101 - Attributes of IDLStruct interferer_type

Attribute Notes
timestamp time type Time to which the performance report applies.
magnitude jamming_magnitude type [0..1] The Effective Radiated Power (ERP) of the source

of interference. This is an optional attribute, which
may not all sensors may be able to calculate.

affected_bands frequency band type [1..¥] A list of frequency bands which are effected by the
source of interference.

position position_coordinate type [0..1] The source position of the interference. This is an
optional attribute that not all sensors may be able
to calculate.

kind interferer kind A classification of the interference source.

affected volume general polar volume type [0..1] The volume in space, which the interference

source is affecting. This is an optional attribute,
which may not all sensors may be able to calculate.
position_coordinate_specification Specifies the coordinate system used to define the

coordinate_specification_type interferer.

7.5.4.4 jamming_magnitude_type

Type: IDLTypeDef unsigned short

Package: Sensor_Performance

Target strength (Effective Radiated Power - ERP) of a jammer. The precise semantics of this type are
sensor subsystem specific, but a typical interpretation is as a signal to noise ratio in dB.

7.5.4.5 perfomance_bin_type

Type: IDLStruct

Package: Sensor_Performance

Value of performance in a volume of space. This is given as a signal excess in dB above noise floor for a
nominal 0dB target strength. For a current performance report, this noise floor shall include clutter and
jamming. These are not included in a nominal performance report.

Table 7.102 - Attributes of IDLStruct perfomance_bin_type

82 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute Notes

start_range range_coordinate_type The start of the bin in range.
end range range coordinate type The end of the bin in range.
value performance type [0..1] The assessed level of performance.

If no value present, there is no performance data
available for this bin.

7.5.4.6 performance_assessment_report_type

Type: IDLStruct
Package: Sensor_Performance
Contains the results of a performance assessment.

Table 7.103 - Attributes of IDLStruct performance_assessment_report_type

Attribute Notes
time of report time type The time of validity of the performance
assessment.

7.5.4.7 performance_assessment_request_type

Type: IDLStruct

Package: Sensor_Performance

A performance assessment request consists of an overall volume of interest and a specification of a
number of 'bins' into which that volume is to be sub-divided. In response the sensor assess performance
for each 'bin'.

The coordinate origin for the request is the SENSOR_REFERENCE_POINT as defined in
coordinate_origin_type.

Table 7.104 - Attributes of IDLStruct performance_assessment_request_type

Attribute Notes

azimuth_bin_count unsigned short Number of azimuth bins that the CMS would like in
o the performance report. The subsystem should try
to honour this request but does not have to.

range_bin_count unsigned short Number of range bins that the CMS would like in
o the report. The subsystem should try to honour this
request but does not have to.

elevation bin_count unsigned short The number of elevation bins that the CMS would like
in the report. The subsystem should try to honour this
request but does not have to.

start_azimuth azimuth_coordinate type [0..1] Defines the start of the arc of azimuth (positive
orientation) of the volume in which the sensor's
performance is to be assessed.

end_azimuth azimuth_coordinate_type [0..1] Defines the end of the arc of azimuth (positive
orientation) of the volume in which the sensor's
performance is to be assessed.

start_elevation elevation_coordinate_type [0..1] Defines the start of the arc of elevation (positive
orientation) of the volume in which the sensor's
performance is to be assessed.

end_elevation elevation_coordinate type [0..1] Defines the end of the arc of elevation (positive
orientation) of the volume in which the sensor's
performance is to be assessed.

min_range range coordinate type [0..1] Defines the minimum range of the volume in which
the sensor's performance is to be assessed.
max_range range_coordinate type [0..1] Defines the maximum range of the volume in which

the sensor's performance is to be assessed.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 83

Attribute Notes

applicable mode operational mode type The performance assessment is to be in the context of
this
operational mode of the sensor subsystem.

coordinate orientation coordinate orientation_type The orientation of the polar coordinates used in this

class. Note that the origin is always the sensor
reference point and that the coordinate system is
always polar.

7.5.4.8 performance_beam_type

Type: IDLStruct

Package: Sensor_Performance

Set of performance values for a line of points in space. Each value applies to a volume whose boundaries
may be inferred from the numbers of bins and the min and max values in the report.

Table 7.105 - Attributes of IDLStruct performance_beam_type

Attribute Notes

start_elevation elevation_coordinate_type The start of the beam in elevation (positive
orientation).

end_elevation elevation_coordinate_type The end of the beam in elevation (positive
orientation).

7.5.4.9 performance_sector_type

Type: IDLStruct
Package: Sensor_Performance
A set of performance values for a sector of azimuth [start_azimuth..end_azimuth].

Table 7.106 - Attributes of IDLStruct performance_sector_type

Attribute Notes
start_azimuth azimuth_coordinate_type The start of the sector of azimuth (positive
B B B orientation).
end_azimuth azimuth_coordinate_type The end of the sector of azimuth (positive
B B B orientation).
7.5.4.10 performance_type
Type: IDLTypeDef float
Package: Sensor_Performance

Defined as a signal excess in dB above noise floor for a nominal 0dB target strength, when assessing
nominal performance or for the jammer when providing jammer assessment..

7.5.5 Track_Reporting

Parent Package: Sensor_Domain
This service provides facilities to report different types of sensor tracks.

84 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

class Track Reporting - Sensor Track /

sensor_track_set_type

«idIStruct»

+element

«idlStruct»
sensor_track_type

*

+based_on\|/ 0..

«idIStruct»
Plot_Reporting::sensor_plot_type

o F o+ o+ o+ o+

plot_id: plot_id_type [0..1]

position: position_coordinate_type
coordinate_specification: coordinate_specification_type
range_qualification: range_qualification_type [0..1]
azimuth_qualification: azimuth_qualification_type
elevation_qualification: elevation_qualification_type [0..1]
simulation_status: boolean

strength: plot_strength_type [0..1]

time_of_plot: time_type

additional_information: anonymous _blob_type
splash_spotting_area_id: splash_spotting_area_id_type [0..1]
jammer_indication: boolean

additional_information: anonymous_blob_type

covariance_matrix: covariance_matrix_type [0..1]

environment: environment_type [0..1]

initiation_mode: initiation_mode_type [0..1]

jammer_indication: boolean

max_range_limit: range_coordinate_type [0..1]

position: position_coordinate_type

position_accuracy: position_accuracy_coordinate_type [0..1]
position_accuracy_coordinate_system: coordinate_specification_type [0..1]
position_coordinate_system: coordinate_specification_type

sensor_track pre_identification: identity_type [0..1]

sensor_track pre_recognition: recognition_type [0..1]

simulated: boolean

time_of_information: time_type

time_of_initiation: time_type

track_phase: track phase_type

velocity: velocity_coordinate_type

velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
velocity_coordinate_system: coordinate_specification_type

P T T T T T T T T S S S S S S S

«key»
+ sensor_track id: sensor_track id_type

Figure 7.40 Track Reporting - Sensor Track (Logical diagram)

class Track Reporting - Type Definitions /

unsigned short «idIEnum» «idIEnum» «idIEnum» «idIStruct»
«idITypedef» environment_type track_phase_type initiation_mode_type Coordinates_and_Positions::
recognition_type full_covariance_matrix_type
«idIEnum» «idIEnum» «idIEnum»
+ AR + DEAD_RECKONED + AUTOMATIC + xx_variance: float
+ LAND + DELETED + EXTERNAL_REQUEST + xy_variance: float
+ SURFACE + LOST + xz_variance: float
+ SUBSURFACE + TRACKED + xvx_variance: float
TSI I + SPACE + xvy_var?ancei float
+ xvz_variance: float
«idITypedef» + yy_variance: float
sensor_track_id_type + yz_variance: float
+ yvx_variance: float
+ yvy_variance: float
+ yvz_variance: float
«idIStruct» + zz_variance: float
Coordinates_and_Positions:: *+ 2zvx_variance: float
diagonal_cov ariance_matrix_type + 2zvy_variance: float
+ zvz_variance: float
«idlUnion» + xx_variance: float + vxvx_variance: float
Coordinates_and_Positions::covariance_matrix_type + yy_variance: float + vxvy_variance: float
+ zz_variance: float + vxvz_variance: float
«idlCase» + vxvx_variance: float + vyvy_variance: float
+ diagonal_covariance_matrix: diagonal_covariance_matrix_type + vyvy_variance: float + vyvz_variance: float
+ full_covariance_matrix: full_covariance_matrix_type + vzvz_variance: float + vzvz_variance: float

Figure 7.41 Track Reporting - Type Definitions (Logical diagram)

7.5.5.1 sensor_track_id_type

Type:
Package:

IDLTypeDef unsigned long
Track_Reporting

Sensor Track Identification

7.5.5.2 environment_type

Type:
Package:

IDLEnum
Track_Reporting

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

85

The sensor tracking environment

Table 7.107 - Attributes of IDLEnum environment_type
Attribute Notes
«idIEnum» AIR
«idIEnum» LAND
«idIEnum» SURFACE
«idIEnum» SUBSURFACE
«idIEnum» SPACE

7.5.5.3 initiation_mode_type

Type: IDLEnum
Package: Track_Reporting
Type of track initiation

Table 7.108 - Attributes of IDLEnum initiation_mode_type

Attribute Notes
«idIEnum» AUTOMATIC Automatic track initiation mode
«idIEnum» EXTERNAL REQUEST Track initation on external request (e.g. from CMS)

7.5.5.4 recognition_type

Type: IDLTypeDef unsigned short
Package: Track_Reporting
T ition— i I " ! obieet.

The recognition type indicates the type of the real-world physical object being tracked.
The numeric value is used to map to a system or implementation specific taxonomy of real-world physical
objects that are of tactical interest.

7.5.5.5 sensor_track_type

Type: IDLStruct
Package: Track_Reporting
Encapsulation of a sensor track

Table 7.109 - Attributes of IDLStruct sensor_track_type
Attribute Notes
additional information anonymous blob type Additional, vendor-specific information

covariance matrix covariance matrix_type [0..1]

The number of elements in the covariance matrix is
dependent on the sensor. When present, the

position accuracy and velocity accuracy attributes
should not be present.

environment environment_type [0..1] Environment of the track (air, surface etc)

initiation_mode initiation_mode_type [0..1] Initiation mode of track (automatic or externally
initiatied)

jammer indication boolean Indication whether or not a track is jamming.

max_range_limit range_coordinate_type [0..1] Maximal range for a bearing track

position position_coordinate_type The location of the track as calculated in the sensor's

chosen coordinate system at the stated time.

86 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute

\ Notes

position_accuracy position_accuracy coordinate type
[0..1]

The sensor's stated accuracy for its calculated position.

hen present, the covariance matrix attribute should not
be present.

|l

position_accuracy coordinate system
coordinate_specification type [0..1]

froptional*
The coordinate system chosen by the sensor for
reporting accuracy.

position_coordinate system
coordinate specification type

The coordinate system chosen by the sensor.

«key» sensor _track id sensor_track id type

The sensor's unique identifying reference for the
track. Sensors may reuse identifiers after they
have deleted the corresponding track. The
scheme used for identifier reallocation is system
dependent.

sensor_track pre identification identity type [0..1]

Identification information for the sensor track (if
available)

sensor_track pre recognition recognition type [0..1]

Recognition information for the sensor track (if
available)

simulated boolean

Whether the CMS should process the track as
having been synthetically generated as opposed
to corresponding to an actual detection in the
real world.

time of information time type

The time at which the information in this object is
\ valid, in particular its position.

time of initiation time_type

The time at which the sensor first determined the
existence of this track.

track phase track phase type

Track phase (e.g. TRACKED, DELETED, LOST)

velocity velocity coordinate type

The velocity of the track as calculated in the sensor's

velocity accuracy velocity accuracy coordinate type
[0..1]

chosen coordinate system at the stated time.
optional*
The sensor's stated accuracy for its calculated velocity.
Yy

Vhen present, the covariance matrix attribute should not
be present.

velocity accuracy coordinate system
coordinate specification type [0..1]

B

The coordinate system chosen by the sensor for
reporting accuracy.

velocity coordinate system
coordinate specification type

The coordinate system chosen by the sensor.

7.5.5.6 sensor_track_set_type

Type: IDLStruct

Package: Track_Reporting

A set of sensor tracks (to enable batch reporting)

7.5.5.7 track_phase_type

Type: IDLEnum
Package: Track_Reporting
The detection lifecycle phase of the track

Table 7.110 - Attributes of IDLEnum track_phase_type

Attribute

Notes

«idIEnum» DEAD RECKONED

Track provided based on extrapolated position
(dead-reckoned)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

87

Attribute Notes

«idlIEnum» DELETED

Track has been deleted.

«idIEnum» LOST

Track has been lost

«idIEnum» TRACKED

Regular update of new and existing track

7.5.6 Tracking_Control

Parent Package: Sensor_Domain
This package contains structs and type defs for managing tracking zones and sensor track information.

class Domain Model /

unsigned long

«idITypedef»
Track_Reporting::sensor_track_id_type

«idIStruct»
System_Track::system_track_type

+ o+ + + o+ + o+ o+

s

simulated: boolean

time_of_information: time_type

position_coordinate_system: coordinate_specification_type

position: position_coordinate_type

velocity_coordinate_system: coordinate_specification_type

velocity: velocity_coordinate_type
position_accuracy_coordinate_system: coordinate_specification_type
position_accuracy: position_accuracy_coordinate_type
velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
velocity_accuracy: velocity accuracy_coordinate_type [0..1]
max_range_limit: range_coordinate_type [0..1]

«key»

system_track_number: system_track id_type

«idIStruct»
track_info

+ o+ 4+ o+

additional_information: anonymous_blob_type
system_track id: system_track id_type
track_priority: track priority_type
identification_assigned_type: identity_type

«idIStruct»

tracking_zone «idIStruct»

+ o+ o+ o+

+zone tracking_zone_set

enable: boolean
shape: general_polar_volume_type
tracking_type: tracking_zone_type

tracking_zone_id: tracking_zone_id_type

«idlUnion»
Shape_Model::general_polar_volume_type

o

4
o
a5

«idlCase»

«idITypedef»
tracking_zone_id_type

short

sector: sector_type

A

polar_volume: polar_volume_type
truncated_sector: truncated_sector_type
truncated_polar_volume: truncated_polar_volume_type

short

«idITypedef»
track_priority_type

«idIEnum»
Common_Types::identity_type

PENDING
UNKNOWN
ASSUMED_FRIEND
FRIEND

NEUTRAL
SUSPECT
HOSTILE

+ o+ o+ o+ o+ o+ o+

«idIEnum»
tracking_zone_type

s

AUTOMATIC_TRACK_INITIATION
MULTIPATH_DEVOTED_TRACKING
TRACK_ON_JAMMER

+ +

Figure 7.42 Domain Model (Logical diagram)

7.5.6.1 track_info

Type: IDLStruct
Package: Tracking_Control
88

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

This struct identifies track information.

Table 7.111 - Attributes of IDLStruct track_info

Attribute Notes

additional _information anonymous_blob_type This is additional information that is not specified as
part of the interface. Candidate information includes:
- Track type,
- Track priority,

- Track Identification Category Assigned (Pending,
Friend, Assumed Friend, Neutral, Unknown, Suspect,
Hostile).

system_track id system track id type

track priority track priority type

identification assigned type identity type

7.5.6.2 track_priority_type

Type: IDLTypeDef short

Package: Tracking_Control

The meaning of track_priority type is to assign a priority among a set of tracks based on some criteria
(i.e. subsystem's time dedicated to a track analysis).

Example of values:

1 Track While Scan (TWS)
2 Low Priority Target (LPT)
3 High Priority Target (HPT)

7.5.6.3 tracking_zone_set

Type: IDLStruct
Package: Tracking_Control
This struct contains zero to many tracking zones which must be set/reset by the CMS.

7.5.6.4 tracking_zone

Type: IDLStruct
Package: Tracking_Control
This struct identifies a tracking zone.

Table 7.112 - Attributes of IDLStruct tracking_zone

Attribute Notes

enable boolean Indicates whether the CMS is enabling or disabling
a tracking zone.

shape general polar volume type This is the polar volume of the zone.

tracking_type tracking zone type This indicates the tracking zone type.

tracking zone_id tracking zone id_type A unique identifier for the tracking zone.

7.5.6.5 tracking_zone_type

Type: IDLEnum
Package: Tracking_Control
Identifies the type of a tracking zone.

Table 7.113 - Attributes of IDLEnum tracking_zone_type

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 89

Attribute

Notes

AUTOMATIC TRACK INITIATION

Zones where the sensor is allowed to auto initiate
new tracks. Depending on the sensor type and its
capabilities, such a type of zones may be delimited
in azimuth only, or both in azimuth and elevation,
or may have further range bounds, and in some
cases also additional constraints (such as target
type, velocity bounds, etc.).

MULTIPATH _DEVOTED TRACKING

Sectors where the sensor is required to use, for
tracking activities, devoted waveforms to reduce
the multipath effects. This capability is usually
provided by multifunctional radars. Such a type of
sectors is usually limited in azimuth only, below a
defined elevation.

TRACK ON JAMMER

Sectors where the sensor is allowed to manage
Track-On-Jammer. Depending on the sensor type
and its capabilities, such a type of sectors may be
delimited either in azimuth only or both in azimuth
and elevation.

7.5.6.6 tracking_zone_id_type

Type: IDLTypeDef short
Package: Tracking_Control

This typedef is used to identify a specific tracking zone.

7.6 Radar_Domain

Parent Package: Domain_Model

This package contains the Domain Models for the Air Engagement Support, Engagement Support, Missile
Guidance, Search, and Surface Engagement Support services.

7.6.1 Air_Engagement_Support
Parent Package: Radar_Domain

class Domain Model /

«idIStruct»
miss_indication_data_type

+ miss_distance: polar_position_type
+ time_stamp: time_type

«idIStruct»
expected_hit_data_type

«idlIStruct»

rojectile_kinematics e
+kinematics_descriptor proj i -typ

+ expected_hit_time: time_type
+ track id_descriptor: sensor_track id_type

+ time_stamp: time_type
+ position_descriptor: position_coordinate_type
+ velocity_descriptor: velocity_coordinate_type

-

Figure 7.43 Domain Model (Logical diagram)

90

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

7.6.1.1 expected_hit_data_type

Type: IDLStruct
Package: Air_Engagement_Support

Expected hit identifies the target and the time a hit is expected. This data is used to initiate the evaluation

of a miss indication within the radar.

Table 7.114 - Attributes of IDLStruct expected_hit_data_type

Attribute

Notes

expected hit time time type

Time when projectile is expected to hit the target.

track id descriptor sensor track id type

The target track id.

7.6.1.2 miss_indication_data_type
Type: IDLStruct

Package: Air_Engagement_Support
Is sent once a hit or miss is noted.

Table 7.115 - Attributes of IDLStruct miss_indication_data_type

Attribute

Notes

miss_distance polar_position_type

Closest distance of the projectile to the target
expressed in polar coordinates.

time_stamp time_type

Closest time of approach of the projectile to the
target.

7.6.1.3 projectile_kinematics_type

Type: IDLStruct
Package: Air_Engagement_Support

Identifies the kinematics of the projectile that is expected to hit the target.

Table 7.116 - Attributes of IDLStruct projectile_kinematics_type

Attribute

Notes

time_stamp time_type

The timestamp when the kinematics was
valid/measured.

position_descriptor position coordinate type

The projectile's position.

velocity descriptor velocity coordinate type

The projectile's velocity.

7.6.2 Engagement_Support
Parent Package: Radar_Domain

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

91

class Domain Model /

«idIEnum»
kill_assessment_result_type

«idlUnion»
Coordinates_and_Positions::velocity_coordinate_type

+ PROBABLE_KILL
PROBABLE_MISS «idICase»

+ NO_RESULT + cartesian_velocity: cartesian_velocity_type
+ polar_velocity: polar_velocity_type

+ wgs84_velocity: wgs84_velocity_type

o

«idIStruct» ofos

kinematics_type To offer flexibility, three variants of coordinate systemrepresentation are supportea
+ orientation: coordinate_orientation_type - corresponding to the coordinate_kind_type enumerate. An inmplementation should
+ position: cartesian_position_type support one kind for each relevant service as defined by the
+ reference_position: coordinate_origin_type coordinate_specification_type value, and it should only send data of that variant
+ time_stamp: time_type and it should check that all data received is of that variant. It should not implement
+ velocity: cartesian_velocity_type conversion of data in an unexpected variant. Receipt of such data constitutes an
+ coordinate_kind: coordinate_kind_type error in the operation of the interface. Three representations are supported: time

derivatives within a Cartesian coordinate system; time derivatives of a polar

coordinate system (range rate, bearing rate etc.); course and speed relative to the
WGS84 spheroid.

unsigned short unsigned short

«idITypedef» «idITypedef»
available_fire_control_channels_type fire_control_channel_id_type

Figure 7.44 Domain Model (Logical diagram)

7.6.2.1 available_fire_control_channels_type

Type: IDLTypeDef unsigned short
Package: Engagement_Support
The number/amount of available fire control channels.

7.6.2.2 fire_control_channel_id_type

Type: IDLTypeDef unsigned short
Package: Engagement_Support
The fire control channel ID as assigned by the subsystem.

7.6.2.3 kill_assessment_result_type

Type: IDLEnum
Package: Engagement_Support
The possible outcomes of a kill assessment.

Table 7.117 - Attributes of IDLEnum kill_assessment_result_type

Attribute Notes

PROBABLE KILL Kill Probability > 50%
PROBABLE MISS Kill Probability &lIt; 50%
NO_RESUL% Assessment indeterminate

7.6.2.4 kinematics_type

Type: IDLStruct
Package: Engagement_Support
Target position/kinematics for which a fire control channel is requested to designate.

Table 7.118 - Attributes of IDLStruct kinematics_type

92 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute Notes

orientation coordinate_orientation_type

position cartesian_position_type

reference position coordinate origin_type

time stamp time type

velocity cartesian_velocity type

coordinate kind coordinate kind type

7.6.3 Missile_Guidance

Parent Package: Radar_Domain

class Missile Guidance - Track /

«idlUnion» unsigned long

track_id_type «idITypedef»

Common_Types::
system_track_id_type

«idlCase»
+ sensor_track id: sensor_track id_type

+ system_track id: system_track id_type

notes
The track referred to by a missile guidance
command may either be a systemtrack (provided
by the CMS) or a sensor track (if the object is
already tracked by the sensor). Therefore, the
track_id(s) in the missile guidance command may
be a sensor _track_id or a missile_track_id.

«idIStruct»
System_Track::system_track_type

simulated: boolean

time_of_information: time_type

position_coordinate_system: coordinate_specification_type

position: position_coordinate_type

velocity_coordinate_system: coordinate_specification_type

velocity: velocity_coordinate_type
position_accuracy_coordinate_system: coordinate_specification_type
position_accuracy: position_accuracy_coordinate_type
velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
max_range_limit: range_coordinate_type [0..1]

EE A T S T S

«key»
+ system_track_number: system_track id_type

AN
A system track may be based on a sensor track
(produced by a sensor on the same platform), but
may also be based on a link received track (not
modelled).

AN
On the same platform, different objects (targets
and own missiles) may be tracked by different
sensor types (e.g 3D radar, or ESM).

Therefore, for the same interface with a sensor, in
successive missile_guidance commands, the
referred system tracks may be a cartesian
point_track at one time and polar bearing_track at
the next time.

Figure 7.45 Missile Guidance - Track (Logical diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

93

class IIIumination/

«idIStruct»

. o unsigned short
illumination_request_type

«idITypedef»
target_track_id: track_id_type frequency_channe|_type
own_missile_track id: track_id_type [0..*]
illumination_period: absolute_duration_type
frequency_channel: frequency_channel_type [0..1]
additional_parameters: anonymous_blob_type

+ + + + 4+

Figure 7.46 lllumination (Logical diagram)

class Missile Uplink/

«idIStruct» «idIStruct»
uplink_request_type uplink_report_type
+ own_missile_track id: track_id_type + own_missile_track id: track id_type
+ frequency_channel: frequency_channel_type [0..1] + uplink_info: anonymous_blob_type [0..1]
+ request_info: anonymous blob_type

unsigned short

«idITypedef»
frequency_channel_type

Figure 7.47 Missile Uplink (Logical diagram)

class Missile Downlink/

«idIStruct» «idIStruct»
dow nlink_request downlink_report
+ own_missile_track_id: track_id_type + own_missile_track id: track id_type
+ listening_period: absolute_duration_type + time_of receipt: time_type
+ frequency_channel: frequency_channel_type [0..1] + downlink_content: anonymous_blob_type
+

additional_parameters: anonymous_blob_type

unsigned short

«idITypedef»
frequency_channel_type

Figure 7.48 Missile Downlink (Logical diagram)

7.6.3.1 downlink_report

Type: IDLStruct
Package: Missile _Guidance
Information downlinked by the missile to the radar.

Table 7.119 - Attributes of IDLStruct downlink_report

94 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Attribute Notes

own_missile track id track id type

time of receipt time type

downlink content anonymous_blob_type

7.6.3.2 downlink_request

Type: IDLStruct
Package: Missile_Guidance
request to downlink

Table 7.120 - Attributes of IDLStruct downlink_request

Attribute Notes

own missile track id track id type

listening_period absolute_duration_type Start of period during which downlinks shall be
- B received

frequency channel frequency channel type [0..1]

additional parameters anonymous_blob_type

7.6.3.3 frequency_channel_type

Type: IDLTypeDef unsigned short
Package: Missile_Guidance
A frequency channel identifies a specific radar frequency.

7.6.3.4 illumination_request_type

Type: IDLStruct
Package: Missile_Guidance
semantics of selects association is implementation specific.

Table 7.121 - Attributes of IDLStruct illumination_request_type

Attribute Notes

target track id track id type

own_missile track id track id type [0..*]

illumination_period absolute duration type

frequency channel frequency channel type [0..1]

additional parameters anonymous_blob_type

7.6.3.5 track_id_type

Type: IDLUnion

Package: Missile_Guidance

The track referred to by a missile guidance command may either be a system track (provided by the
CMS) or a sensor track (if the object is already tracked by the sensor). Therefore, the track_id(s) in the
missile guidance command may be a sensor_track_id or a missile_track_id.

Table 7.122 - Attributes of IDLUnion track_id_type

Attribute Notes

«idlCase» sensor track id sensor track id type

«idlCase» system track id system track id type

7.6.3.6 uplink_report_type

Type: IDLStruct
Package: Missile_Guidance

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

a report from uplink

Table 7.123 - Attributes of IDLStruct uplink_report_type

Attribute Notes

own missile track id track id type

uplink_info anonymous_blob_type [0..1] * optional *

7.6.3.7 uplink_request_type

Type: IDLStruct
Package: Missile_Guidance
a request to downlink

Table 7.124 - Attributes of IDLStruct uplink_request_type

Attribute Notes

own missile track id track id type

frequency channel frequency channel type [0..1] * optional *

request_info anonymous_blob_type

7.6.4 Search

Parent Package: Radar_Domain

class Domain Model /

«idIStruct»
cued_search_cue_type
«idIStruct» o + speed_interval: speed_interval_type [0..1]
cued_search_report_type +original_cue | . yojume: general_polar volume._type

) ; + coordinate_orientation: coordinate_orientation_type
+ found_track_id: sensor_track id_type [0..1] 5 - -yp

Figure 7.49 Domain Model (Logical diagram)

7.6.4.1 cued_search_cue_type

Type: IDLStruct

Package: Search

Type used for specifying the constraints on a cued search.

Table 7.125 - Attributes of IDLStruct cued_search_cue_type
Attribute Notes
speed_interval speed_interval type [0..1] The range of track-speed to search for from the
cue.
volume general polar volume type The region in the environment, in which the cue to
search for tracks is to be performed.
coordinate orientation coordinate orientation_type The orientation of the polar coordinates used in this
class. Note that the origin is always the sensor
reference point and that the coordinate system is
always polar.

96 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

7.6.4.2 cued_search_report_type

Type: IDLStruct
Package: Search
Data returned to the CMS to indicate the results of a cued search.

Table 7.126 - Attributes of IDLStruct cued_search_report_type

Attribute Notes

found track id sensor track id type [0..1]

7.6.5 Surface_Engagement_Support

Parent Package: Radar_Domain

class Domain Model

unsigned short unsigned long

«idITypedef»

«idITypedef» ¥ .
Track_Reporting::sensor_track_id_type

splash_spotting_area_id_type

«idIStruct» «idIStruct»
splash_spotting_area_set_type splash_spotting_area_position_type

azimuth_max: azimuth_coordinate_type
azimuth_min: azimuth_coordinate_type
range_max: range_coordinate_type
range_min: range_coordinate_type

+ o+ o+ o+

+splash_spotting_area_descriptor|0..*

«idIStruct»
splash_spotting_area_type

+ shape: truncated_sector_type
+ area_id: splash_spotting_area_id_type

Figure 7.50 Domain Model (Logical diagram)

7.6.5.1 splash_spotting_area_id_type

Type: IDLTypeDef unsigned short
Package: Surface_Engagement_Support
the area ID assigned by the sensor.

7.6.5.2 splash_spotting_area_position_type

Type: IDLStruct

Package: Surface_Engagement_Support

The area definition from the User (CMS) when Splash Spotting is defined using the service "activate
splash spotting area by position". The minimum and maximum available sizes are defined in "Manage
Subsystem Parameters".

Table 7.127 - Attributes of IDLStruct splash_spotting_area_position_type

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 97

Attribute Notes

azimuth_max azimuth_coordinate type when max is less than min, areas covers the north
azimuth

azimuth min azimuth_coordinate_type when min is less than max, areas covers the north
azimuth

range max range coordinate type limited to less than or equal to instrumented range

range_min range_coordinate_type limited to greater than or equal to minimum visible
range

7.6.5.3 splash_spotting_area_set_type

Type: IDLStruct
Package: Surface_Engagement_Support
A set consisting of splash spotting areas.

7.6.5.4 splash_spotting_area_type

Type: IDLStruct
Package: Surface_Engagement_Support
Definition of a single splash spotting area.

Table 7.128 - Attributes of IDLStruct splash_spotting_area_type

Attribute Notes
shape truncated sector type Shape and size of the splash spotting area
area_id splash_spotting_area_id_type Area ID of the splash spotting area.

7.7 Subsystem_Services

Parent Package: Service_Interfaces
Contains services associated with the Subsystem Domain.

7.7.1 Encyclopaedic_Support
Parent Package: Subsystem_Services

7.7.1.1 Receive_Encyclopaedic_Data

Parent Package: Encyclopaedic_Support

771141 Receive_Encyclopaedic_Data_CMS
Type: IDLInterface common_use_case_interface
Package: Receive_Encyclopaedic_Data

This interface describes the process whereby the subsystem receives encyclopedic data.Such data is
used by the subsystem to perform self-adaptation to the prevailing environmental conditions.

This interface is modelled as a control interaction between the CMS and the subsystem rather than a data
flow interaction. The CMS controls the loading of subsystem encyclopaedic data by sending the location
of the data, rather than sending the data itself. Of course an implementation may move the encyclopaedic
data around a file system beforehand, but that is outside the scope of this standard.

The subsystem is aware of its real-time geographic position and orientation.

It is expected that the transfer of this data would be initiated at the start of the ‘mission of the day’.
Updates would only be envisaged when the current data set became inapplicable to the current mission.
Specific encyclopedic data might be requested by the subsystem. Alternatively, a default set of summary
data is sent. Such data, which is an example of ‘reference’ data, would generally be non-sensor in origin
and static i.e. not changing in real-time. In the simplest case this data might simply define clutter areas

98 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

and known jammer locations to assist the subsystem in effecting suitable mitigation for these effects. For
a subsystem such as a more complex multi-function radar this might include relevant extracts from a
commercial shipping database (Lloyd’s etc.), giving shipping lanes or ship movements or civil airline flight
plan data (Civil Aviation Authority etc), locations of wind-farms, major highways, significant structures and
potential sources of interference, such as other radars, including consorts, cellular phone masts etc. This
data would be used by the subsystem to contribute to the tactical picture. Alternatively, it could be used
within the automatic tracking function to enable the identification/elimination from the track picture of non-
hostile tracks. Such data could also include, for example, the reference data types communicated via Link
16 such as hazard areas and other fixed point type data. Navigational charts might also be a part of such
data. The subsystem VOI (volume of interest) or other filter mechanisms might be supplied in a request
from the actor.

Pre-condition: Technical State The subsystem is in technical state STANDBY, READY or ONLINE
Pre-condition: Mastership Required The CMS has mastership

Pre-condition: Subsystem Services Provide Subsystem Services has completed successfully, in
particular this service is available.

Post-condition: Success The subsystem has received updated Encyclopedic Data.

Post-condition: No Success The subsystem has not received updated Encyclopedic Data

Table 7.129 - Methods of IDLInterface Receive_Encyclopaedic_Data_CMS

Method Notes Parameters
encyclopaedic_data_loaded | The subsystem responds to the | request_id_type request_id The
0 CMS_ that the encyclopaedic data | ynjque id for this request -
previously requested has been corresponds to the parameter in the
loaded. load_encyclopaedic data request
7.71.1.2 Receive_Encyclopaedic_Data_Sub
Type: IDLInterface
Package: Receive_Encyclopaedic_Data

Table 7.130 - Methods of IDLInterface Receive_Encyclopaedic_Data_Sub

Method Notes Parameters

load_encyclopaedic_data() | The CMS requests the request_id_type request id The
subsystem to load encyclopaedic | unique identifier for this request
data of a particular type from a url_type url The location of the file
particular location. containing the encyclopaedic data
data_descriptor type data_descriptor
A description of the type of
encyclopaedic data (e.g. name of the
data set). It is expected that
implementations will specify a list of
descriptors known to particular
subsystems. Such a list may be
accessible at run-time through the
Manage Subsystem Parameters
interface.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 99

sd Alternate Flow - Receive Encyclopaedic Data /

«idlInterface»

Receive_Encyclopaedic_Data_CMS

load_encyclopaedic_data(request_id_type, url_type,

«idlInterface»
Receive_Encyclopaedic_Data_Sub

[
|
data_descriptor_type) |

e

receive_acknowledgement(request_id_type,

D

Negative
Acknowledgement

request_ack_type)

receive_acknowledgement(request_id_type,

Positive
Acknowledgement

request_ack_type)

receive_error(request_id_type, error_reason_type)

Figure 7.51 Alternate Flow - Receive Encyclopaedic Data (Sequence diagram)

sd Basic Flow - Receive Encyclopaed

ic Data /

«idlInterface»

Receive_Encyclopaedic_Data_CMS

«idlInterface»
Receive_Encyclopaedic_Data_Sub

load_encyclopaedic_data(request_id_type, url_type, data_descriptor_type)

receive_acknowledgement(request_id_type,

request_ack_type)

encyclopaedic_data_loaded(request_id_type)

Figure 7.52 Basic Flow - Receive Encyclopaedic Data (Sequence diagram)

7.7.2 Extended_Subsystem_Control

Parent Package:

Subsystem_Services

Contains interfaces for the Extended Subsystem Control service.

100

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

7.7.2.1 Manage Physical Configuration

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Manage Physical Configuration interface.

7.7.211 Manage_Physical_Configuration_CMS
Type: IDLInterface common_use_case_interface
Package: Manage Physical Configuration

The purpose of this interface is to provide a mechanism to exchange a physical configuration data file
between a subsystem and the CMS (potentially xml format). The exact format of the file is subsystem
specific. The purpose of the file is to support the maintainer with facilities to configure the internal parts of
the subsystem; also to be used as integration support.

Additional Information:

There are at least two cases where the CMS would provide a sub-system’s physical configuration. Case
1 is when the sub-system was able to detect a configuration change and the data must be manually
entered in sub-system configuration data (e.g. a servo type and serial number). Case 2 is when the sub-
system is being developed and changes to the configuration which cause changes in system behavior are

being tested.

Pre-condition:

Subsystem must be in a STANDBY state in order for the CMS to request changes to

Physical Configuration Data. This precondition does not apply if the CMS is only requesting current
Physical Configuration Data to be provided by the subsystem.

Pre-condition:

CMS must have mastership in order for the CMS to request changes to Physical

Configuration Data. This precondition does not apply if the CMS is only requesting current Physical
Configuration Data to be provided by the subsystem.
Post-condition: For a change in Physical Configuration Data Request, configuration data is properly

updated.

Table 7.131 - Methods of IDLInterface Manage_Physical_Configuration_CMS

Method

Notes

Parameters

receive_physical_configurat
ion(

Interface used by CMS to receive
a url to access physical
configuration data from the
subsystem.

configuration_url_type
configuration_url
request_id_type request_id

receive_physical_configurat
ion_success()

Interface used by CMS to receive
an indication from the subsystem
that it has successfully changed
its physical configuration data.

request_id_type request id

7.7.21.2 Manage_Physical_Configuration_Sub
Type: IDLInterface
Package: Manage Physical Configuration
Table 7.132 - Methods of IDLInterface Manage_Physical_Configuration_Sub
Method Notes Parameters

change_physical_configurat
ion(

Interface used by the subsystem
to receive requests from the CMS
to change its physical
configuration data to align with
data located at the url specified in
the request.

request_id_type request id
configuration url_type
configuraiton_url

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

101

provide physical configurat | Interface used by the subsystem | request_id_type request id
ionQ to receive requests from the CMS

to provide its current physical
configuration data.

sd Manage Physical Configuration - Change /

«idlInterface»
Manage_Physical_Configuration_Sub

«idlInterface»
Manage_Physical_Configuration_CMS

T
change_physical_configuration(request_id_type, |
configuration_url_type) |

t

alt
receive_acknowledgement(request_id_type,

|

1

|

: |
[Basic Flpw]
request_ack_type)

receive_physical_configuration_success(request_id_type)

2 J——==-0--

| receive_acknowledgement(request_id_type,

< request_ack_type)

[Error Enpountered]
|
[receive_acknowledgement(request_id_type,

< request_ack_type)

! receive_error(request_id_type, error_reason_type)
|
1
|
|
|
1

Figure 7.53 Manage Physical Configuration - Change (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem changing its
physical configuration data (also depicts alternate rejection and error paths).

102 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Manage Physical Configuration - Request/

«idlInterface» «idlInterface»
Manage_Physical_Configuration_CMS Manage_Physical_Configuration_Sub

I
|
|
provide_physical_configuration(request_id_type) |

alt

[Basic Flo

|
|
|
|
O
|
|
|
]
|
v{/]

receive_acknowledgement(request_id_type,
< request_ack_type)

receive_physical_configuration(configuration_url_type,
request_id_type)

[Request R;'-:jected]

|

|

| receive_acknowledgement(request_id_type,
request_ack_type)

I
|
________ I U U UM U U NN U U R |
[ErrorEncqruntered]
|
|
|

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)

|
|
|
]
L1
|
|

Figure 7.54 Manage Physical Configuration - Request (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem report on its
current physical configuration data (also depicts alternate rejection and error paths).

7.7.2.2 Perform Offline Test

Parent Package: Extended_Subsystem_Control
Contains the interface for offline testing.

7.7.2.21 Perform_Offline_Test_CMS
Type: IDLInterface common_use_case_interface
Package: Perform Offline Test

This is used to instruct the subsystem to perform offline test and return the results to the CMS. The nature
of the offline tests is subsystem specific

Pre-condition: Provide Subsystem Services must have executed successfully.

Pre-condition: The CMS must have Mastership
Pre-condition: The subsystem may be in any Technical State except for ONLINE

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 103

Post-condition: For the response FAILED, the subsystem transitions to Technical State FAILED, but
otherwise remains in the previous Technical State.

Table 7.133 - Methods of IDLInterface Perform_Offline_Test_CMS

Method Notes Parameters

receive_detailed_test_result | Provides the CMS with request_id_type request id

) subsystem specific information offline test_result details_type
concerning offline test failures offline_test_detailed results

receive_test results(Informs the CMS whether the request_id_type request id
offline tests passed, passed offline test result type test results
partially, or failed.

7.7.2.2.2 Perform_Offline_Test_Sub
Type: IDLInterface
Package: Perform Offline Test

Table 7.134 - Methods of IDLInterface Perform_Offline_Test_Sub

Method Notes Parameters
perform_tests() Instructs the subsystem to request_id_type request id
perform the offline tests. offline test type test name Allows a

particular test to be selected. If null,
all tests are performed.

request_detailed_test resul |Asks the subsystem to provide | request_id_type request id
ts(detailed information on the
failures.

104 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Perform Offline Test /

«idlInterface» «idlInterface»
Perform_Offline_Test_CMS Perform_Offline_Test_Sub

perform_tests(request_id_type, offline_test_type) |

T

I

I
m}

I

1

I

=l receive_acknowledgement(request_id_type,
[request accepted, processing succeeds] < request_ack_type)
The subsystem

|
! executes the offline
|
|

tests

receive_test_results(request_id_type, offline_test_result_type)

opt Detailed results required /

N

request_detailed_test_results(request_id_type)

In the event of a partial
pass or failure, detailed
results from the last test
may be requested.

receive_detailed_test_results(request_id_type, offline_test_result_details_type)

o -1

—_—— e e — —

receive_acknowledgement(request_id_type,

< request_ack_type) LJ The test request is

rejected for some

: reason
|
|
............................. e
[request accepted, processing fails] | |
| receive_acknowledgement(request_id_type, |
request_ack_type) Testing starts but fails
| to complete for some
|) ; reason
| receive_error(request_id_type, error_reason_type)
]
|

Figure 7.55 Perform Offline Test (Sequence diagram)

This shows the required sequential behaviour for Perform_Offline_Test, See diagram
embedded notes for further explanation

7.7.2.3 Restart

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Restart interface.

7.7.2.31 Restart_CMS
Type: IDLInterface common_use_case_interface
Package: Restart

The purpose of this interface is to cause a normal transition to STANDBY and then to READY states as
defined by Manage Technical State.

Pre-condition: Sub-system is in ONLINE, READY, FAILED, BIT, or CALIBRATION
Pre-condition: CMS has mastership of sub-system

Post-condition: Sub-system is in READY state if successful, otherwise current state is reported by
subsystem.

Table 7.135 - Methods of IDLInterface Restart_ CMS
Method ‘ Notes Parameters

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 105

receive_restart_state() Interface used by CMS to receive | request_id_type request id

an indication from the subsystem | technical_state_type technical_state
that it has successfully performed

restart.
7.7.2.3.2 Restart_Sub
Type: IDLInterface
Package: Restart

Table 7.136 - Methods of IDLInterface Restart_Sub

Method Notes Parameters

perform_restart() Interface used by the subsystem | request_id_type request id
to receive a request from the

CMS to execute a restart.

sd Basic Flow - Restart/

«idlInterface» «idlInterface»
Restart_ CMS Restart_Sub

perform_restart(request_id_type) |

receive_acknowledgement(request_id,
request_ack)

receive_restart_state(request_id_type,
technical_state_type)

i
i
;

Figure 7.56 Basic Flow - Restart (Sequence diagram)

Basic flow for CMS requesting the subsystem to transition to STANDBY followed by a
transition to READY.

106 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow - Restart/

«idlInterface» «idlInterface»
Restart_ CMS Restart_Sub

perform_restart(request_id_type)

I

|

|

|

|

|
T

alt Alternative FIows/

[Subsystem HFjects request to restart]
receive_acknowledgement(request_id_type,

request_ack_type)

— 1 —--

[Subsystem fails to restart]

—

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, command is
error_reason) successfully
acknowledged but fails
before completion

receive_restart_state(request_id_type,
technical_state_type)

-t ---g----g-----

Figure 7.57 Alternative Flow - Restart (Sequence diagram)

Alternate flow for CMS requesting the subsystem to transition to STANDBY followed by
a transition to READY (depicts rejection and error paths).

7.7.2.4 Shutdown

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Shutdown interface.

7.7.241 Shutdown_CMS
Type: IDLInterface common_use_case_interface
Package: Shutdown

The purpose of this interface is to transition the sub-system to the STANDBY state from any other state
as defined by Manage Technical State. Note: this shall cause the Subsystem to cease radiating if it is in
an ONLINE state with emissions enabled.

Pre-condition: Subsystem is in ONLINE, READY, FAILED, BIT, or CALIBRATION
Pre-condition: CMS has mastership of subsystem.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 107

Post-condition: Sub-system is in STANDBY state if successful, otherwise the current state is reported by
the subsystem.

Table 7.137 - Methods of IDLInterface Shutdown_CMS
Method Notes Parameters

receive_shutdown_state() | Interface used by CMS to receive |request_id_type request id

an indication from the subsystem | technical state type technical state
that it has successfully performed

shutdown.
7.7.2.4.2 Shutdown_Sub
Type: IDLInterface
Package: Shutdown

Table 7.138 - Methods of IDLInterface Shutdown_Sub
Method Notes Parameters

perform_shutdown() Interface used by the subsystem | request_id_type request id
to receive a request from the

CMS to execute a shutdown.

sd Basic Flow -Shutdown/

«idlInterface» «idlInterface»
Shutdown_CMS Shutdown_Sub

perform_shutdown(request_id_type) |

receive_acknowledgement(request_id,
request_ack)

receive_shutdown_state(request_id_type,
technical_state_type)

i
;
:

Figure 7.58 Basic Flow - Shutdown (Sequence diagram)

Basic flow for CMS requesting the subsystem to transition to STANDBY.

108 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow - Shutdown/

«idlInterface» «idlInterface»
Shutdown_CMS Shutdown_Sub

perform_shutdown(request_id_type)

alt Alternative FIows/

[Subsystem rquects request to shutdown]

receive_acknowledgement(request_id_type,
request_ack_type)

[Subsystem rgports shutdown failure]
|
|
|
| receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id,
error_reason) command is
acknowledged but fails
before completion
receive_shutdown_state(request_id_type,
technical_state_type)

|
|
|
|
|
|
)
I successfully
|
|
|
|
|
|
|
L]
|
1
|
|

—— 4

Figure 7.59 Alternative Flow - Shutdown (Sequence diagram)

Alternate flow for CMS requesting the subsystem to transition to STANDBY (depicts
rejection and error paths).

7.7.2.5 Startup

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Startup interface.

7.7.2.51 Startup_CMS
Type: IDLInterface common_use_case_interface

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 109

Package: Startup
The purpose of this interface is to cause a normal transition from the STANDBY state to the READY state

using the transitions defined in the Manage Technical State service.

Pre-condition: Subsystem is in STANDBY State.
Pre-condition: CMS has mastership of subsystem.
Post-condition: Subsystem is in READY state if successful. If not execute successful, current state shall

be reported by subsystem.

Table 7.139 - Methods of IDLInterface Startup_CMS
Method Notes Parameters

receive_startup_state() Interface used by CMS to receive | request_id_type request_id
an indication from the subsystem | technical_state_type technical_state
that it has successfully performed

startup.
7.7.2.5.2 Startup_Sub
Type: IDLInterface
Package: Startup

Table 7.140 - Methods of IDLInterface Startup_Sub
Method Notes Parameters

perform_startup() Interface used by the subsystem | request_id_type request id
to receive a request from the

CMS to execute startup.

sd Basic Flow -Startup/

«idlInterface» «idlinterface»
Startup_ CMS Startup_Sub

perform_startup(request_id_type) |

receive_acknowledgement(request_id,
request_ack)

receive_startup_state(request_id_type,
technical_state_type)

i
;
i

Figure 7.60 Basic Flow -Startup (Sequence diagram)
Basic flow for CMS requesting the subsystem to transition from STANDBY to READY.

110 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow -Startup/

«idlinterface»
Startup_CMS

«idlinterface»
Startup_Sub

perform_startup(request_id_type)

i

alt Alternative Flows /

[Subsystem rejects :request to startup]

receive_acknowledgement(request_id_type,
request_ack_type)

|

:

|
L

[Subsystem fails to :startup]

|
| receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id,
error_reason)

receive_startup_state(request_id_type,
technical_state_type)

--O-----0----14

command is
successfully
acknowledged but fails
before completion

Figure 7.61 Alternative Flow - Startup (Sequence diagram)

Alternate flow for CMS requesting the subsystem to transition from STANDBY to

READY (depicts rejection and error paths).

7.7.3 Recording_and_Replay

Parent Package: Subsystem_Services
Contains the interfaces controlling recording and replay.

7.7.3.1 Control_Recording

Parent Package: Recording_and_Replay
Contains the interface controlling the recording of information.

7.7.311 Control_Recording_CMS
Type: IDLInterface common_use_case_interface
Package: Control_Recording

The interface describes how the CMS controls the recording of information. Such information may be

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

111

used to support:
Setting-to Work/Commissioning
Equipment monitoring

‘Black Box’ recording
De-briefing

Training
Post exercise analysis

Performance monitoring and evaluation

Safety of Life at Sea (SOLAS) recording

For the purposes of this interface, ‘recording’ is defined as the synchronous capture of real-time
information at a defined rate. Provision of additional ‘live’ real-time data for instrumentation purposes, i.e.
for display rather than recording, is outside the scope.

Each record within the recording must be identified and time-stamped.

The operation of the recording function must not affect normal operation of the subsystem.

For simplicity, concurrent recording

and replay is not supported.

Pre-condition: Provide Subsystem Services must have executed successfully.
Pre-condition: The subsystem must be in Technical State READY or ONLINE
Pre-condition: The CMS must have Mastership.
Post-condition: After successful termination, the recording is available for replay via Control_Replay,

using the identifier specified.

Post-condition: In the case of abnormal termination, there is a possible fault in the recording subsystem.

7.7.31.2 Control_Recording_Sub
Type: IDLInterface
Package: Control_Recording

Table 7.141 - Methods of IDLInterface Control_Recording_Sub

Method

Notes

Parameters

define_recording_set(

Specifies what is to be recorded

request_id_type request id
recording_set type
recording_parameters_list

start_recording(

Starts the recording as specified.
Note that only one recording may
be running at a time.

request_id_type request id
recording_id type id

stop_recording()

Stops the recording

request_id_type request id

112

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Control Recording

«idlInterface» «idlInterface»
Control_Recording_CMS Control_Recording_Sub
T
|
define_recording_set(request_id_type, recording_set_type) |

T

|

|

| receive_acknowledgement(request_id_type,
|: < request_ack_type)

start_recording(request_id_type, recording_id_type)

alt

|
|
[request accepted, processing succeeds] |
|
|

receive_acknowledgement(request_id_type,

< request_ack_type)

The subsystem records
the data asrequested.

stop_recording(request_id_type)

receive_acknowledgement(request_id_type,
< request_ack_type)

|

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
—_——— -
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
[

The recording request
isrejected for some
reason

O4--———--

receive_acknowledgement(request_id_type,
< request_ack_type)

[request accepted, processing fails]

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
—_——
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
—_—

receive_acknowledgement(request_id_type,

< request_ack_type)

: Recording starts but

| receive_error(request_id_type, eror_reason_type) fails to complete for
[H} some reason

|

1

|

|

|

Figure 7.62 Control Recording (Sequence diagram)

This shows the required sequential behaviour for Control_Recording, See diagram
embedded notes for further explanation.

7.7.3.2 Control_Replay

Parent Package: Recording_and_Replay
Contains the interfaces controlling the replay of information; either using the original interfaces or as a
data dump for offline processing.

7.7.3.21 Control_Replay_CMS
Type: IDLInterface common_use_case_interface
Package: Control_Replay

This interface defines how the CMS controls the replay of information previously recorded using
Control_Recording

Replay is supported in two modes: REAL-TIME and RAW. REAL-TIME mode is used to replay in real
time, or at a multiple of real-time, data that was visible on other OARIS interfaces via the interfaces used
during recording. RAW mode is used to replay data that was visible on other OARIS interfaces and/or
internal subsystem data that was not available on other OARIS interfaces. In this case the data is merely

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 113

transferred to the CMS as a set of time-tagged values with no attempt made to reconstruct real-time
behaviour.

One or more recordings must have been made using Control_Recording.

For simplicity, concurrent recording and replay is not supported.

Pre-condition: Provide Subsystem Services must have executed successfully.

Pre-condition: The subsystem must be in Technical State READY or ONLINE

Pre-condition: The CMS must have Mastership..

Pre-condition: In the case of abnormal termination, there is a possible fault in the replay subsystem.

Table 7.142 - Methods of IDLInterface Control_Replay_CMS
Method Notes Parameters

end_of _recording() The subsystem has reached the | request_id_type request id
end of the recording before a

stop command was received.
receive_recording() Used to transfer a raw recording | request_id_type request id

to the CMS recording_type requested recording
The raw recording data.

7.7.3.2.2 Control_Replay_Sub
Type: IDLInterface
Package: Control_Replay

Table 7.143 - Methods of IDLInterface Control_Replay_Sub

Method Notes Parameters
resume_replay() Resumes replay following a stop | request_id_type request id
command actual_time_type actual time The

current time (time of day) at which
playback should start. This allows
synchronisation of playback from
different subsystems.

replay speed_type replay speed
Controls the replay speed. 1.0
represents real time.

start_replay(Starts replay as specified request_id_type request id
replay_set type

replay parameters_list
recording_id type id

actual time type actual time The
current time (time of day) at which
playback should start. This allows
synchronisation of playback from
different subsystems.
recorded_time_type recorded time
The time in the recording at which
playback should start.

replay speed_type replay_speed
Controls the replay speed. 1.0
represents real time.

114 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

stop_replay(Stops replay

request_id_type request id

upload_recording(Requests transfer of a raw
recording

request_id_type request id
recording_id type id

sd Control Replay /

«idlInterface»
Control_Replay_CMS

«idlInterface»
Control_Replay_Sub

start_replay(request_id_type, replay_set_type,
recording_id_type, actual_time_type, recorded_time_type,
replay_speed_type)

T
|
|
|
1
0J
|
1
alt |
[request accepted, processing succeeds] :

! receive_acknowledgement(request_id_type,

The subsystem waits
until the specified time

request_ack_type)

then replays the data
on the interfaces where
the data was originally
recorded.

loop optional stop/resume Ioop/

i

[request rejected]

opt stop /
[stop command issued before end] stop_replay(request_id_type)
receive_acknowledgement(request_id_type,
< request_ack_type)
| T
opt resume / ; ;
[replay resumed] ! resume_replay(request_id_type, actual_time_type, replay_speed_type) !
|T| The subsystem resume:
| replay of the data on
| receive_acknowledgement(request_id_type, the interfaces where
< request_ack_type) the data was originally
| recorded.
|
|
|
I
|
|
| end_of_recording(request_id_type)
O
-
L

[request accepted, processing fails]
receive_acknowledgement(request_id_type,

rejected for some
reason

|
|
LIJ The replay request is
|
|
|
|

request_ack_type)

Processing proceeds asin case 1 (requested accepted,
processing succeeds), but a failure occurs before
completion

receive_emor(request_id_type, error_reason_type)

Figure 7.63 Control Replay (Sequence diagram)
This shows the required sequential behaviour for Control _Replay using real_time mode,

See diagram embedded notes for further explanation.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

115

sd Control Replay (RAW)

«idlInterface» «idlInterface»
Control_Replay_CMS Control_Replay_Sub

I
|
upload_recording(request_id_type, recording_id_type) |

alt

1

receive_recording(request_id_type,
recording_type)

[request accepted, processing succeeds]

The subsystem transfe|
the data to the CMS

optstop /

[stop command issued before end]

stop_replay(request_id_type) =] Replay terminates
receive_acknowledgement(request_id_type,
< request_ack_type)
end_of_recording(request_id_type)
| |
...............................)
[request rejected] : :
receive_acknowledgement(request_id_type, |
request_ack_type) [The replay request is
: : rejected for some
| | reason
| |
| |
............................... = = = m e e e e e e e e e e e b e e eeeeaoon
| |
1

[request accepted, processing fails] receive_acknowledgement(request_id_type,

request_ack_type)

Processing proceeds asin case 1 (requested accepted, processing
succeeds), but a failure occurs before completion

receive_error(request_id_type, error_reason_type)

Figure 7.64 Control Replay (RAW) (Sequence diagram)

This shows the required sequential behaviour for Control_Replay using raw mode, See
diagram embedded notes for further explanation.

7.7.4 Simulation_Support

Parent Package: Subsystem_Services

7.7.4.1 Define_Simulation_Scenario

Parent Package: Simulation_Support

7.7.41.1 Define_Simulation_Scenario_CMS

Type: IDLInterface

Package: Define_Simulation_Scenario

This describes how the contents of a simulation scenario are communicated between the CMS and the
subsystem.

The CMS provides the subsystem with a simulated environment which consists of simulated objects of

116 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

different kinds.

A subsystem with built-in simulation capability may participate in this simulation not only by being a
consumer of the simulated environment but by contributing actively to it.

Radar type subsystems shall typically build simulated plots or tracks from the simulated environment,
while contributing simulated electromagnetic emissions to it. These simulated emissions may in turn be
used and detected by other (ESM type) simulations.

Weapon type subsystems when in simulation mode shall typically contribute simulated objects to the
simulation that represent the launch/firing and movement of own missiles, bullets or torpedoes and their
effect on other simulated objects.

Thus CMS and subsystem both contribute to the simulated environment. Together they form a simulation
federation.

The actor is the Combat Management System.

Relationship to ‘control simulation’
The definition of simulation mode and flow of commands to start/stop/freeze/resume a simulation scenario
are defined in ‘control simulation’.

Relationship to provision of tracks

A radar type subsystem shall provide tracks based on information from the simulated environment, as
described above. The interfaces that deal with the provision of tracks indicate whether tracks are
simulated or not under amplifying information. This indication should be set for all tracks that are reported
in the context of this interface.

Relationship to Receive geographic information
Geographic information is received by using ‘Receive geographic information’.

Pre-condition: Subsystem health state. The subsystem and the relevant subsystem services need to be
in the health state AVAILABLE or DEGRADED.

Pre-condition: CMS has mastership.

Pre-condition: Subsystem simulation mode. The subsystem must be in subsystem simulation mode ON
to participate in the simulation federation.

Pre-condition: Simulation scenario started. The actor must have started or resumed a simulation
scenario.

Pre-condition: Geographic information. The subsystem may need geographic information about its
simulated surroundings available locally or by means of other interfaces in order to calculate the
detectability or reachability of simulated objects due to obstacles in the surroundings.

Table 7.144 - Methods of IDLInterface Define_Simulation_Scenario_CMS

Method Notes Parameters

write_emitter_system_data | Write emitter system data anonymous_blob_type

_CMSo emitter system_data

write_radar_beam_data() Write radar beam data anonymous_blob_type
radar beam_data

7.7.4.1.2 Define_Simulation_Scenario_Sub
Type: IDLInterface
Package: Define_Simulation_Scenario

Table 7.145 - Methods of IDLInterface Define_Simulation_Scenario_Sub

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 117

Method Notes Parameters

write_emitter_system_data | Write emitter system data anonymous_blob_type
_Suby emitter_system_data
write_environment_data(| Write environment data anonymous_blob_type

environmental entity data

write_jammer_beam_data() | Write jammer beam data anonymous_blob_type
jammer beam data

write_platform_data(Write platform data anonymous_blob_type
platform data

sd Basic Flow - Define Simulation Scenario Data /

«idlInterface» «idlInterface»
Define_Simulation_Scenario_CMS Define_Simulation_Scenario_Sub

opt

write_platform_data(anonymous_blob_type)

write_emitter_system_data(anonymous_blob_type)

write_jammer_beam_data(anonymous_blob_type)

write_environment_data(anonymous_blob_type)

All information is
exchanged upon
event or change
in no specific
order.

S R, SR, SRR S S

Figure 7.65 Basic Flow - Define Simulation Scenario Data (Sequence diagram)

118 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Define Subsystem Scenario Data /

«idlInterface» «idlInterface»
Define_Simulation_Scenario_CMS Define_Simulation_Scenario_Sub

write_emitter_system_data(anonymous_blob_type)

write_radar_beam_data(anonymous_blob_type)

!
:

All information is
exchanged upon
event or change
in no specific
order.

Figure 7.66 Basic Flow - Define Subsystem Scenario Data (Sequence diagram)

7.7.4.2 Control_Simulation

Parent Package: Simulation_Support

7.74.2A1 Control_Simulation_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Simulation

This service controls the simulation mode of a subsystem. This simulation mode is independent of the
operational mode of the subsystem. Simulation mode is either ON or OFF. “ON” has different meanings
for different kinds of subsystems. Effector type subsystems shall not engage real targets but shall
simulate the engagement instead. Sensor type subsystems may be fed with simulated targets which shall
be reported as plots or tracks. In each case while in simulation mode “ON” the subsystem shall strictly
avoid any impact on the environment that could be the result if simulation mode was “OFF”.

The actor is the Combat Management System.
Basic Flow — Control simulation mode
Start event — command of simulation-mode

The service is triggered by the actor. The actor commands the simulation mode which may be one of the
following:

e ON: This indicates that the subsystem shall operate in simulation mode

e OFF: This indicates that the subsystem shall stop operating in simulation mode and that any current
simulation shall be terminated
On occurrence of the trigger provision of subsystem-simulation-mode is executed.

Provision of subsystem-simulation-mode

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 119

After receipt of the simulation mode from the actor the subsystem responds with its subsystem simulation
mode.

The subsystem simulation mode may be one of the two:

e ON: This indicates that the subsystem is operating in simulation mode

e OFF: This indicates that the subsystem is not operating in simulation mode

Basic Flow — Control Simulation (Start/Resume, Stop/Freeze)

START/RESUME simulation scenario

Only when in simulation mode ON:

Upon provision of the START/RESUME command by the actor the simulation scenario starts or is
resumed after a previously issued FREEZE.

STOP/FREEZE simulation scenario

Only when in simulation mode ON:

Upon provision of the STOP/FREEZE command by the actor the simulation scenario stops or stays
frozen.

The service ends.

Provision on initialization
The simulation mode shall be provided by the actor after initialization of the CMS.

The flow of information relevant to subsystem simulation are the subject of another service: Define
simulation scenario.

If simulation is stopped or frozen simulation time of the subsystem and the actor shall be also stopped.
The synchronization of simulation time may be performed using START/RESUME command.
Pre-condition: CMS has mastership.

Table 7.146 - Methods of IDLInterface Control_Simulation_CMS

Method Notes Parameters

sim_mode_status() Receive the status and mode of | request_id_type request id
simulation. sim_mode_status_type the status

7.7.4.2.2 Control_Simulation_Sub

Type: IDLInterface common_use_case_interface

Package: Control_Simulation

Table 7.147 - Methods of IDLInterface Control_Simulation_Sub
Method Notes Parameters

start_resume_session() This request shall be initiated on request_id_type request id
demand of the CMS. If the
subsystem is in simulation mode it
shall start/resume its simulation
session and acknowledges the

request.

start_stop_sim_mode() This request shall be initiated on request_id_type request id
demand of the CMS to start_stop_sim_mode request_type
activate/deactivate the simulation the request

mode of the subsystem. The
subsystem needs to acknowledge the

120 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

request.

stop_freeze session() This request shall be initiated on request_id_type request id
demand of the CMS. If the stop_freeze session request_type
subsystem is in simulation mode and | the request

the session state is running the
subsystem needs to stop/freeze its
session and acknowledges the
request.

sd Basic Flow - Control Simulation Start/Resume /

«idlInterface» «idlIinterface»
Control_Simulation_CMS Control_Simulation_Sub

0

start_resume_session(request_id_type)

alt

|
1
|
|
[Accepted by $ubsystem]
| receive_acknowledgement(request_id_type, request_ack)
O request_acksuccess == true
|
|

[Rejected by qubwstem]

| receive_acknowledgement(request_id_type, request_ack)

LI'I request_acksuccess == fal%

| receive_error(request_id_type, error_reason_type)

LI
|
1
|
[
[
|
|
|

el

Figure 7.67 Basic Flow - Control Simulation Start/Resume (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 121

sd Basic Flow - Control Simulation Stop/Freeze /

«idlInterface» «idlInterface»

Control_Simulation_CMS Control_Simulation_Sub

I I
| |
| stop_freeze_session(request_id_type, |

stop_freeze_session_request_type)

|
alt :
[Accepted by Subsysterh]

[Rejected by Subsyste

request_acksuccess == falsﬁ

|

| receive_acknowledgement(request_id_type, request_ack) request_acksuccess == trula
I

|

|

___________ e T LR & TETP

m]

|

| receive_acknowledgement(request_id_type, request_ack)
7

! receive_error(request_id_type, emor_reason_type)

|

]

|

Figure 7.68 Basic Flow - Control Simulation Stop/Freeze (Sequence diagram)

sd Basic Flow - Control Simulation Mode /

Control_Simulation_CMS Control_Simulation_Sub

«idlInterface» «idlInterface»

T T
| |
| start_stop_sim_mode(request_id_type, |

LT_I start_stop_sim_mode_request_type)
I
alt ! receive_acknowledgement(request_id_type, request_ack) request_ack.success == false Iﬁ
[Rejected by Sud#stem]
! receive_error(request_id_type, error_reason_type)
|
!
.............) A A
[Accepted by 3ub§y§gm] receive_acknowledgement(request_id_type, request_ack) request_ack success == true
| sim_mode_status(request_id_type,
sim_mode_status_type)
|
............ .._‘.......
A M|
[Accepted by CMS receive_acknowledgement(request_id_type, request_ack) :
] request_acksuccess == true
|
|
............ ...I.......
- !
[Rejected by CM3] receive_acknowledgement(request_id_type, request_ack) |
7
receive_error(request_id_type, error_reason_type) |
) request_ack success == false
|
|
1
|
|
|
!

-

122

Figure 7.69 Basic Flow - Control Simulation Mode (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), 6

vl.1

7.7.4.3 Define_Fault_Scripts
Simulation_Support

Parent Package:

7.7.4.31

Type:
Package:

Define_Fault_Scripts_CMS

IDLInterface common_use_case_interface
Define_Fault_Scripts

This enables a maintainer trainer to script a set of subsystem faults, the effects of which would be
simulated for training purposes. The faults may be scripted in relation to a specific simulation scenario.
Each fault script shall include a unique identifier.

Pre-condition:

Subsystem Services Provide subsystem services has been completed successfully, in
particular this service is available.

Table 7.148 - Methods of IDLInterface Define_Fault_Scripts_CMS

Method

Notes

Parameters

fault_script_summary(

This provides a list of all fault
scripts for a subsystem to the
CMS for confirmation.

request_id_type request id
fault_scripts_type faults The list of
fault scripts

7.7.4.3.2 Define_Fault_Scripts_Sub
Type: IDLInterface
Package: Define_Fault_Scripts
Table 7.149 - Methods of IDLInterface Define_Fault_Scripts_Sub
Method Notes Parameters

add_fault_scripts(

Adds the given fault scripts to the
subsystem's simulation.

request_id_type request id
fault scripts_type scripts The fault
scripts to be added

remove_fault_scripts()

Removes the given fault scripts
from the subsystem's simulation.

request_id_type request id
fault script_ids_type fault_scripts
The ids of the fault scripts to be
removed

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

123

sd Alternative Flow - Define Fault Scripts /

«idlInterface»
Define_Fault_Scripts_Sub

«idlInterface»
Define_Fault_Scripts CMS

T T
| |
| add_fault_scripts(request_id_type, | ﬁ

Applies to

$—1ault_scri pts_typey
remove_fault_scripts as well

1
alt Unsuccessful Request/

[Subwsterﬁ isunable to process request - e.g. script is not interpretable]
| Negative

receive_acknowledgement(request_id_type, Acknowledgement

|
< request_ack_type)

[Subsystern is unable to process request - e.g. a script id is not valid]
|

I receive_acknowledgement(request_id_type, Positive
< request_ack_type) Acknowledgement

receive_error(request_id_type, error_reason_type)

|
|
]
|
|
|
|
|

Figure 7.70 Alternative Flow - Define Fault Scripts (Sequence diagram)

sd Basic Flow - Define Fault Scripts /

«idlInterface» «idlInterface»

Define_Fault_Scripts CMS Define_Fault_Scripts_Sub

I

|

I add_fault_scripts(request_id_type,
I::] fault_scripts_type)

|

|

|

|
L]

|

|

receive_acknowledgement(request_id, request_ack)

fault_script_summary(request_id_type,
< fault_scripts_type)

|

|

|

I remove_fault_scripts(request_id_type
I:I| fault_script_ids_type)
|
|
|

receive_acknowledgement(request_id_type,
Derequest_ack_type Y
I

I fault_script_summary(request_id_type,
fault_scripts_type)

Figure 7.71 Basic Flow - Define Fault Scripts (Sequence diagram)

7.7.4.4 Control_Fault_Scripts

124 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Parent Package:

Simulation_Support

7.74.4A1 Control_Fault_Scripts_CMS
Type: IDLInterface common_use_case_interface
Package: Control_Fault_Scripts

This enables a trainee, at a CMS Console to cause the generation of predefined fault messages for
training purposes(see also Define Fault Scripts). The subsystem shall output Fault Reports to the CMS
which a trainee may respond to via the CMS Console. Fault clearance messages shall also be sent to the
CMS in response to the trainee taking the appropriate action.

Pre-condition: Technical State Subsystem is in technical state READY or ONLINE

Pre-condition:
Pre-condition:
Pre-condition:

Pre-condition: Simulation Mode Simulation Mode is ON
Post-condition: Success Subsystem has provided simulated fault and response to clearance action
Post-condition: Failure Subsystem has not provided simulated fault and response to clearance action

7.7.4.4.2

Control_Fault_Scripts_Sub
Type: IDLInterface

Fault Script Subsystem has a fault scripts which has been defined previously
Mastership Required The CMS has Mastership
Subsystem Services Provide Subsystem Services has successfully completed; in
particular this service is available

Package: Control_Fault_Scripts
Table 7.150 - Methods of IDLInterface Control_Fault_Scripts_Sub
Method Notes Parameters

enable_fault_script(

Causes the subsystem to indicate
the faults specified by the given
fault scripts when appropriately
stimulated. The faults remain in
place until they are cleared either
by a call to clear_fault or by an
action on another interface that
would clear the equivalent non-
simulated fault.

request_id_type request id
fault script_ids_type scripts The
script ids to be enabled

clear_faults(

Clears the faults defined by the
given fault scripts.

request_id_type request id
fault script_ids_type fault_scripts
The script ids to be cleared

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

125

sd Alternative Flow - Control Fault Scripts /

«idlInterface»
Control_Fault_Scripts CMS

enable_fault_script(request_id_type,

«idlInterface»
Control_Fault_Scripts Sub

|
|
[
[I“_| —fault_script_ids type)
|
[
|

alt Negative Acknowledgement/

T
[Subsystem is unable tq enact fault condition or fault id is not recognised]
|

receive_acknowledgement(request_id_type,
< request_ack_type)

clear_faults(request_id_type,

|
|
|
|
T
|
|
|
|
O fault_script_ids_type)
|
|
|
|
|
|

alt Negative Acknowledgement/

T
[Subsystem does not recognise fault id]
|
I receive_acknowledgement(request_id_type,

< request_ack_type)

126

Figure 7.72 Alternative Flow - Control Fault Scripts (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Control Fault Scripts /

«idlInterface» «idlInterface»
Control_Fault_Scripts CMS Control_Fault_Scripts_Sub

enable_fault_script(request_id_type,
1™ fault_script_ids_type)

receive_acknowledgement(request_id_type,

—

[Jrequest_ack type)

clear_faults(request_id_type,
fault_script_ids_type)

]

receive_acknowledgement(request_id_type,

—

|
I
I
|
I
|
I
I
|
I
I
|
I
I
|
|
|
I
I
[Jrequest_ack type)

|

I

Figure 7.73 Basic Flow - Control Fault Scripts (Sequence diagram)

7.7.5 Subsystem_Control

Parent Package: Subsystem_Services
Contains interfaces for the Subsystem Control service.

7.7.5.1 Manage Technical State

Parent Package: Subsystem_Control
Contains operations and sequence diagrams for the Manage Technical State interface.

7.7.511 Manage_Technical_State_ CMS
Type: IDLInterface common_use_case_interface
Package: Manage Technical State

Manage Technical State causes the subsystem to provide or change its technical state.
Special Requirements:

Initialization: Upon initialization, reset or power-on, the sub-system shall transition to a pre-defined state
and report the current state to the CMS.

Additional Information:

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 127

If a critical component of the subsystem becomes NOT AVAILABLE, the technical state shall transition to

FAILED.

All states may transition to OFFLINE, but the subsystem shall only do so in emergency situations or
catastrophic damage, to indicate an uncontrolled shutdown

Startup, Shutdown, and Restart explain the sequence of actions for nominal progression through the

technical states.

Pre-condition:
required.

Pre-condition:
Pre-condition:

Post-condition: None.

CMS is aware of the current subsystem state.
CMS is aware of the possible technical states supported by the subsystem.

If the CMS requests a Technical State to change, mastership of the subsystem is

Table 7.151 - Methods of IDLInterface Manage_Technical_State_CMS

Method

Notes

Parameters

receive_periodic_technical_
state()

Interface used by CMS to receive
periodic technical state reports
from the subsystem.

technical_state type
technical state

receive_technical_state(

Interface used by CMS to receive
technical state reports from the
subsystem which were the result
of a transition request from the
CMS.

request_id_type request id
technical_state type technical state

7.7.5.1.2 Manage_Technical_State_Sub
Type: IDLInterface
Package: Manage Technical State
Table 7.152 - Methods of IDLInterface Manage_Technical_State_Sub
Method Notes Parameters

change_technical_state()

Interface used by the subsystem
to receive requests from the CMS
to change its technical state.

request_id_type request id
technical state type technical state

provide technical_state(

Interface used by the subsystem
to receive requests from the CMS
to provide its current technical
state.

request_id_type request id

128

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Manage Technical State

- Change /

«idlInterface»
Manage_Technical_State_CMS

«idlInterface»
Manage_Technical_State_Sub

change_technical_state(request_id_type,

technical_state_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_technical_state(request_id_type,
technical_state_type)

!
7
i

Figure 7.74 Basic Flow - Manage Technical State - Change (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem changing its

current technical state.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

129

sd Alternative Flow - Manage Technical State - Change /

«idlInterface» «idlInterface»
Manage_Technical_State_CMS Manage_Technical_State_Sub

change_technical_state(request_id_type,
technical_state_type)

I
|
|
|
|
O
|
|
|

alt Alternative Flows

[Invalid State Condition I*equested]

receive_acknowledgement(request_id,
request_ack)

receive_acknowledgement(request_id,
request_ack)

State Ch U |
[State Change nwccest;i’u] receive_acknowledgement(request_id,

request_ack)

|
|
|
: receive_error(request_id_type, error_reason_type)
0l
: recei\{e_technical_state(request_id_type, command is
| technical_state_type) successfully
O acknowledged but fails
|
|

T before completion
|

Figure 7.75 Alternative Flow - Manage Technical State - Change (Sequence diagram)

Alternate flow depicting rejection and error cases for a CMS requesting the subsystem
to change its Technical State.

130 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Manage Technical State - Periodic Reporting /

«idlInterface» «idlInterface»
Manage_Technical_State_CMS Manage_Technical_State_Sub

loop /

I
|
|
|
i
|
[Periodic or Up+n Change]

receive_periodic_technical_state(technical_state_type)

T
|
|
|
i
|

| |

L L

| |
| |

Figure 7.76 Basic Flow - Manage Technical State - Periodic Reporting (Sequence diagram)

Flow of events which depicts a subsystem that periodically reports its technical state
(without the need for a CMS request).

sd Basic Flow - Manage Technical State - Request/

«idlInterface» «idlInterface»
Manage_Technical_State_CMS Manage_Technical_State_Sub

provide_technical_state(request_id_type) |

receive_acknowledgement(request_id_type,
request_ack_type)

receive_technical_state(request_id_type,
technical_state_type)

!
;
;

-
I
I
I

Figure 7.77 Basic Flow - Manage Technical State - Request (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem report on its
current technical state.

7.7.5.2 Heartbeat_Signal
Parent Package: Subsystem_Control

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 131

7.7.5.21

Type:
Package:

IDLInterface
Heartbeat_Signal

Heartbeat_Signal_CMS

The service describes how the availability of an established communication between CMS and the
subsystem as well as the subsystem itself shall be monitored. The heartbeat signal is triggered by Control
Interface Connection. The basic flow is asynchronous.

The actor is the Combat Management System.

Pre-condition:

communication between CMS and the subsystem.

Post-condition:
Post-condition:

Connection established Provide Subsystem Services has successfully established

Interface is alive The heartbeat has been received successful.
Interface is not alive The heartbeat has not been received.

Table 7.153 - Methods of IDLInterface Heartbeat_Signal_CMS

Method

Notes

Parameters

receive_subsystem_heartb
eat_signal(

Receive the periodic heartbeat
signal to verify, that the
connection is still alive.

unsigned long count This
parameter is used with
implementation specific semantics
for monitoring interface participant
liveliness.

7.7.5.2.2 Heartbeat_Signal_Sub
Type: IDLInterface
Package: Heartbeat_Signal
Table 7.154 - Methods of IDLInterface Heartbeat_Signal_Sub
Method Notes Parameters

receive_cms_heartbeat_sig
nal(

Receive the periodic heartbeat
signal to verify, that the
connection is still alive.

unsigned long count This
parameter is used with
implementation specific semantics
for monitoring interface participant
liveliness.

132

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Heartbeat Signal /

«idlInterface» «idlInterface»
Heartbeat_Signal_CMS Heartbeat_Signal_Sub

par

[Both run independently]

loop periodic /

receive_cms_heartbeat_signal(unsigned

long) -]

loop periodic /

I
I
I
receive_subsystem_heartbeat_signal(unsigned |
long) LI]

I

]

|

I

Figure 7.78 Basic Flow - Heartbeat Signal (Sequence diagram)

7.7.5.3 Provide_Subsystem_ldentification

Parent Package: Subsystem_Control

7.7.5.31 Provide_Subsystem_ldentification_CMS
Type: IDLInterface common_use_case_interface
Package: Provide_Subsystem_Identification

In order to enable two interface partners to connect to each other and to open mutual communication, one
partner shall initiate and the other to answer. The intention is to let the subsystem initiate the
communication.

Consequently, the subsystem introduces itself to the CMS identifying e.g. the type of subsystem, the
product and its version. That allows the CMS to decide whether it may work with that subsystem.

The actor is the Combat Management System.

The possibility that CMS and subsystem are connected without being capable to work with each otheris a
consequence of a plug-&-play concept.

Although the interface is standardized the CMS may need a setup process to prepare it for a subsystem.
This process shall introduce the information necessary to configure functions of that particular CMS with
respect to the subsystem.

This may also be necessary on side of the subsystem.

The preparation for a subsystem may be done by means of system configuration data which are
implemented on installation of the combat system. It does not address security information.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 133

Pre-condition: CMS and Subsystem can communicate with each other.

Post-condition: CMS and subsystem may work together. CMS and subsystem have verified that they
may work with each other.

They shall do some organization regarding the communication (out of scope).

Post-condition: CMS and subsystem may not work together. The interface between CMS and subsystem
is closed.

Table 7.155 - Methods of IDLInterface Provide_Subsystem_ldentification_CMS

Method Notes Parameters
receive_sub_identification_ | Receive the identification data device_identification_type
request_id_type the request id

7.7.5.3.2 Provide_Subsystem_ldentification_Sub
Type: IDLInterface common_use_case_interface
Package: Provide_Subsystem_Identification

Table 7.156 - Methods of IDLInterface Provide_Subsystem_ldentification_Sub

Method Notes Parameters
receive_cms_identification_ | Receive the identification data device_identification_type
data(from the CMS. identification

request_id_type the request id

134 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow - Introduction

of subsystems /

Provide_Subsystem_Id

«idlInterface»

«idlInterface»

entification_CMS Provide_Subsystem_Identification_Sub

receive_sub_identification_data(device_identification_type,

request_id_type)

alt Alternative FIows/

I
I
I
O
I
I
I
I
I
I

[CMS[may not work with subsystem]

receive_acknowledgement(request_id_type,

request_ack_type)

[CMS[may work with subsystem, but Subsystem may not work with CMS]

receive_acknowledgement(request_id_type,

S ISR I B

request_ack_type)

receive_cms_identification_data(device_identification_type,

request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

accepted = false ﬁ

accepted = true

accepted = false

|

Figure 7.79 Alternative Flow - Introduction of subsystems (Sequence diagram)

sd Basic Flow - Introduction of

the subsystem /

«idllnterface»
Provide_Subsystem_ldentification_CMS

«idlInterface»

Provide_Subsystem_Identification_Sub

;

< request_ack_type)
|

receive_sub_identification_data(device_identification_type,

request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_cms_identification_data(device_identification_type,

T
|
L
L]
I
I
i
I
|

| request_id_type)

receive_acknowledgement(request_id_type,

accepted = true

]

accepted = true

]

Figure 7.80 Basic Flow - Introduction of the subsystem (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

135

7.7.5.4 Provide_Health_State

Parent Package: Subsystem_Control

7.7.5.41 Provide_Health_State_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Health_State

The service allows the CMS to monitor and evaluate the health state of the subsystem. The health state
information describes functional availability of the subsystem and the services it provides.

The service may be triggered by several possible situations:
e Periodic event, for example by internal clock,

Actor (CMS) request,

Health state change,

Initialization (start-up),

Recovery of the subsystem after a failure.

In addition to the health state being provided, additional information may be provided to the CMS. In case
of a service, the information may include a list of detected faults. In case of a subsystem, the information
may include the list of services together with their health state, and for every service which has health
state other than AVAILABLE, a list of detected faults. This two dimensional structure is called the service
availability matrix.

The state NOT AVAILABLE may also describe the situation in which the service is not implemented. In
this case the list of faults shall be empty. In the state UNKNOWN, the subsystem may provide the reason
for not being able to evaluate health state (e.g. BIT process not running).

The service ends with success when the health state (possibly accompanied by additional information) is
provided to the actor.

Relationship to technical state.

The reported health state of the services is dependent on the technical state.

In the technical state ONLINE, the health state of the services is determined based on the detected faults
(if any).

In all technical states other than ONLINE (except OFFLINE), the health state of all services, except the
service Subsystem_Control, is NOT AVAILABLE.

The health state of the service Subsystem_Control shall then be DEGRADED, since some functions (e.g.
Control Battle Override) are not available in those technical states, and some functions are (e.g. Manage
Technical State).

In the technical state OFFLINE no communication at all is possible with the CMS so the health state is not
reported.

Relationship to battle override.

When Battle Override is set (see service Control Battle Override), certain faults are not taken into account
when determining the health state. These overridable faults generally refer to circumstances that may
cause damage to own equipments, but do not prohibit executing the requested task.

Relationship to simulation mode.

If the subsystem is in Simulation mode (technical state is ONLINE), only the faults for parts needed for the
simulated execution of the service are taken into account when determining the health state of a service.
For instance, if the transmitter is defective, the service Track_Reporting is reported AVAILABLE when in
Simulation mode, but is reported NOT AVAILABLE when not in Simulation mode.

Faults may also be simulated for training purposes (see service Define Fault Script). Therefore,
irrespective of the Simulation mode, all faults (real and simulated) are included in the reported list of

136 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

detected faults, each with an indication whether the fault is real or simulated.

If a real system part is simulated, faults of the simulated part should have a different identification.

For instance (see previous example) in Simulation mode, a simulated transmitter could be used, for which
the trainer has inserted a simulated fault.

Any faults in the real transmitter would be reported (real fault) as well as the injected fault in the simulated
transmitter (simulated fault). However, the health state of the service Track_Reporting would be based
only on the status of the simulated transmitter.

Reason for health state

Each reported health state other than AVAILABLE is accompanied by the reason(s) for that health. In this
way the CMS may for instance derive that although the technical state of the subsystem is STANDBY
(and NOT AVAILABLE for that reason), there are also faults that would prevent the service to become
AVAILABLE when the technical state would be switched to ONLINE.

Pre-condition: Subsystem technical state The subsystem is in technical state ONLINE or READY.
Post-condition: CMS awareness CMS is aware of the health state of the subsystem and/or its services.

Table 7.157 - Methods of IDLInterface Provide_Health_State_ CMS

Method Notes Parameters
report_fault) Report a fault to CMS fault the fault
report_service_health(Report health of service request_id_type request id

service health type health
fault list the fault list

report_subsystem_health() |Report health of subsystem request_id_type request id
subsystem_health_type health

7.7.54.2 Provide_Health_State_Sub
Type: IDLInterface
Package: Provide_Health_State

Table 7.158 - Methods of IDLInterface Provide_Health_State_Sub

Method Notes Parameters
request_service health() Request service health request_id_type request id

service_name_type service_name
request_subsystem_health(| Request subsystem health request_id_type request id
)

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 137

sd Basic Flow - Fault Reporting/

«idlInterface» «idlInterface»
Provide_Health_State_CMS Provide_Health_State_Sub

report_fault(fault) Fault reporting on

event (occurrence
and disappearance)

| |
| |
| |
| |
0]
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Figure 7.81 Basic Flow - Fault Reporting (Sequence diagram)

138 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Service Health Reporting/

«idlInterface»
Provide_Health_State_ CMS

«idlInterface»
Provide_Health_State_Sub

T

I
alt !
|

[on subsystem initiative]
|

report_service_health(request_id_type, service_health_type,

Service health provision
on subsystem initiative
due to:

|T| fault_list)

- Recovery after failure
- Health state change
- Periodic (timed)

|
|
[
[
[
[
[
|
[- Initialization (start-up)
[
[
|
[
|

[alternative flodll: processing failed]

| receive_acknowledgement(request_id_type,

... o ol..
[on request] : :
| |
! request_service_health(request_id_type, service_name_type) ! Service health provision
I-r' /Lr| on CMS request
| |
| |
| |
| |
alt [[
| |
[basic flow] | |
! receive_acknowledgement(request_id_type, : request_ackaccepted =
< request_ack_type) . -
|
|
| report_service_health(request_id_type, service_health_type,
(Il fault_list)
|
___________ S
[alternative flov:;: request rejected] :
| |
! receive_acknowledgement(request_id_type, : request_ackaccepted =
< request_ack_type) | false
|
|

request_ack_type)

receive_error(request_id_type, error_reason_type)

request_ackaccepted =
true

Figure 7.82 Basic Flow - Service Health Reporting (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

139

sd Basic Flow - Subsystem Health Reporting /

«idlInterface»
Provide_Health_State_ CMS

«idlInterface»
Provide_Health_State_Sub

T
I
I
I
T

It

2 I

[on subsystem initiative]
| report_subsystem_health(subsystem_health)

Subsystem health provision on
subsystem initiative due to:

[on request]

request_subsystem_health(request_id_type)

- Recovery after failure
- Health state change
- Periodic (timed)

I
|
|
|
]
|
|
|
LIJ - Initialization (start-up)
|
|
|
|
|
|
|
|

Subsystem health
provision on CMS

alt

[basic flow] . .
receive_acknowledgement(request_id_type,

[
|
|
|
LIJ request
|
|
|
|
I
|
|
|

[alternative flow: processing failed]
|
| receive_acknowledgement(request_id_type,

< request_ack_type) request_ackaccepted =
| true
|
| report_subsystem_health(request_id_type,
hsubsystem_health_type,
|
loop / :
[For all senlhces provided by this subsystem]
|
|
| report_service_health(request_id_type, service_health_type,
I fault_list)
| T
T T
| |
___________ N F
) I X 1
[alternative rovy. request rejected] |
| receive_acknowledgement(request_id_type, |
< request_ack_type) |l request_ackaccepted =
| ! false
| |
| |
........... o mm mm o m e e e m e e e e e fmmmemmme—eee—aaoo-

[:] < request_ack_type)

receive_ermor(request_id_type, error_reason_type)

request_ackacccepted =
true

|
|
(]
[
|

Service health and corresponding fault lists shall accompany subsystem health report only when
subsystem health is reported on request. For subsystem health provision on subsystem initiative,
the service health and corresponding fault lists shall be reported on subsystem initiative
separately (see sequence diagram Service Health Reporting).

140

Figure 7.83 Basic Flow - Subsystem Health Reporting (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), 6

vl.1

7.7.5.5 Manage_Operational_Mode

Parent Package: Subsystem_Control

7.7.5.51 Manage_Operational_Mode_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Operational_Mode

Subsystems provide several operational modes like long-range-detection, missile-detection, surface
surveillance etc. in case of surveillance radar, normal tracking, slaved, joystick controlled in case of fire
control radar etc.

Operational modes summarise a set of subsystem parameters optimising the subsystem with respect to
an operational purpose.

The names of modes of a specific type of subsystem (e.g. or a radar) differ from supplier to supplier.
Consequently, they shall be handled as configuration parameters. They shall be offered to the operator to
enable him for a selection and shall be transferred to the subsystem to achieve the intended reaction.

The definition of names of operational modes is not within the scope of this standard.

It is the CMS's responsibility to initiate the determination of initial state by making a request for
information to the subsystem.

In the case where the CMS does not have mastership of the subsystem, a change of the operational
mode shall be indicated by informing the CMS about the new operational mode (see service "Provide
health state").

Configuration data like the set of available operational modes may be received at runtime but may also be
inserted by means of an automatic or manual setup process. Although automatic runtime transfer of such
information may be achieved through ‘Manage Subsystem Parameters’ it is not a mandatory requirement
of this standard for that mechanism to be used.

Pre-condition: Technical state READY or ONLINE.

Pre-condition: "Manage Subsystem Parameters" executed successfully

Pre-condition: CMS must have Mastership

Post-condition: Service ends with success - the subsystem is in the commanded operational state, the
CMS is informed that this is the case

Post-condition: Service ends with fail - the subsystem is still in the original operational state, the CMS
has the correct information regarding that state.

Table 7.159 - Methods of IDLInterface Manage_Operational_Mode_CMS

Method Notes Parameters

report_operational_mode() | The current operational mode is | request_id_type request id
reported via this interface operational mode_type
method. current_mode

7.7.5.5.2 Manage_Operational_Mode_Sub

Type: IDLInterface

Package: Manage_Operational_Mode

Table 7.160 - Methods of IDLInterface Manage_Operational_Mode_Sub

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 141

Method Notes Parameters

request_get _operational_m | The subsystem is requested to | request_id_type request id

ode(report the current operational

mode.
request_set_operational_m | The subsystem is requestedto | request_id_type request_id
ode() change the operational mode to | gperational mode_type

the given new operational mode. | new operational mode

7-7-5:5:3———Manage_Operational_Mode_CMS

Tvpe: \etivitvPariti

7-7-5:54—Manage_Operational_Mode_Sub

Tvoe: AetivitvPartiti

sd Manage Operational Mode - get current operational mode /

«idlInterface» «idlInterface»
Manage_Operational_Mode_CMS Manage_Operational_Mode_Sub

request_get_operational_mode(request_id_type)

|
|
:

.
alt get current operational mode /
T

[basic flow]

receive_acknowledgement(request_id_type, request_ack_type)

report_operational_mode(request_id_type, operational_mode_type) SUCCESS

I
|
|
|
|
|
|
|
J request_ack.success =

jection]

[alternate flow - request

receive_acknowledgement(request_id_type, request_ack_type)

request_acksuccess =

--O--z
m

I ERROR_CODE
... I..........................
1 [
[alternate flow - error] | |
| receive_acknowledgement(request_id_type, request_ack_type) |
O
| 'error_reason' is the
| receive_error(request_id_type, error_reason_type) current operation mode
|_|| that differs from the
|
'

| requested mode.

Figure 7.84 Manage Operational Mode - get current operational mode (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each

other during the operation "get current operational mode" of the service "Manage
Operational Mode".

142 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Manage Operational Mode - set operational mode /

«idlIinterface» «idlInterface»
Manage_Operational_Mode_CMS Manage_Operational_Mode_Sub

alt operational mode change /

[

|

|

|

|

|

[command: set operational molde] |
: request_set_operational_mode(request_id_type, operationalimodeitypeL :

0 T
i
|

|
alt set operational mode/

receive_acknowledgement(request_id_type, request_ack_type)

[basic flow] | —|
] =
1 request_acksuccess =
| SUCCESS
| report_operational_mode(request_id_type, operational_mode_type)
]
|
| |
................... R R CEEE L EEEE TR
[altemate flow - request rejgction] —B
: receive_acknowledgement(request_id_type, request_ack_type) request_acksuccess =
O
|
|

|

|

|

O ERROR_CODE

|

|

T

[altemate flow - differing operational modes] |
|
|
1

receive_acknowledgement(request_id_type, request_ack_type)

|

1
L'J D v

| error_reason' is the

| receive_eror(request_id_type, eror_reason_type) current operation mode
L;_l that differs from the

| requested mode.

| report_operational_mode(request_id_type, operational_mode_type)

| |

[I

.. .'............................

[spontaneous operational mode change]
| report_operational_mode(request_id_type, operational_mode_type)

|
|
. L For spontaneous operational
L|-| LrI mode change, request_id == 0.
|

Figure 7.85 Manage Operational Mode - set operational mode (Sequence diagram)
This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "set operational mode" of the service "Manage Operational
Mode".

7.7.5.6 Control_Battle_Override

Parent Package: Subsystem_Control
This package contains interfaces for the Control Battle Override service.

7.7.5.6.1 Control_Battle_Override_CMS
Type: IDLInterface common_use_case_interface
Package: Control_Battle_Override

The subsystem is requested to set/reset the Battle Override. When Battle Override is set the subsystem
disregards warnings on circumstances which may cause damage to own equipment, typically the
overtemperature protections.

It is the CMS's responsibility to initiate the determination of initial state by making a request for
information to the subsystem.

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 143

Provision of the Battle Override state
Subsystem shall keep CMS informed about the current Battle Override state and its changes (if any).

Lack of mastership
In the case where CMS does not have mastership of the subsystem, CMS shall be informed about the
current Battle Override state and its changes (if any).

Relationship to the subsystem health state
As long as the Battle Override is set, the subsystem internal overtemperature indications shall not result
in any heath state set to “NOT AVAILABLE” (see Provide health state).

Pre-condition: Mastership Required CMS has mastership of the subsystem

Pre-condition: Subsystem Services Provide subsystem services has been completed successfully.
Post-condition: Success The subsystem Battle Override is set/reset as requested and CMS is informed
that this is the case.

Post-condition: No Success The subsystem Battle Override is still equal to the original one and CMS has
the correct information regarding that state.

Table 7.161 - Methods of IDLInterface Control_Battle_Override_CMS

Method Notes Parameters

battle_override_setting() This metod is used by the request_id_type request id
subsystem to return the current | pattle override state_type
Battle OVerr'de State battle:overrlde:state_

7.7.5.6.2 Control_Battle_Override_Sub

Type: IDLInterface

Package: Control_Battle_Override

Table 7.162 - Methods of IDLInterface Control_Battle_Override_Sub

Method Notes Parameters

set_battle_override(This method is used by the CMS | request_id_type request_id
to send a Battle Override battle override state_type
set/reset request to the battle override state
subsystem, B -

144 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Control Battle Override -SetIReset/

«idlInterface» «idlInterface»
Control_Battle_Override_CMS Control_Battle_Override_Sub

T
|
set_battle_override(request_id_type, battle_override_state_type) |

receive_acknowledgement(request_id_type, request_ack_type)

battle_override_setting(request_id_type, battle_override_state_type)

|
LIJ
|
|
|
g
|
|
|
|
]
:

Figure 7.86 Basic Flow - Control Battle Override - Set/Reset (Sequence diagram)

sd Alternative Flow - Control Battle Override - Set/Reset - loss of mastership /

«idlInterface» «idlInterface»
Control_Battle_Override_CMS Control_Battle_Override_Sub

I I
| |
| set_battle_override(request_id_type, |
Ll_l battle_overide_state_type)

|
|
|

T
alt / |
[Subsyéllem rejects request]

| receive_acknowledgement(request_id_type,
] request_ack_type)

[Subsystem fails]

receive_acknowledgement(request_id_type,

request_ack_type) command is
successfully
receive_ermor(request_id, error_reason) acknowledged but fails
before completion

battle_override_setting(request_id_type,

|
< battle_overide_state_type)

i———

Figure 7.87 Alternative Flow - Control Battle Override - Set/Reset - loss of mastership (Sequence diagram)

7.7.5.7 Manage_Subsystem_Parameters
Parent Package: Subsystem_Control

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 145

7.7.5.71 Manage_Subsystem_Parameters_CMS

Type: IDLInterface common_use_case_interface

Package: Manage Subsystem_ Parameters

The service allows the actor to obtain and modify the values of parameters of the subsystem. It also
provides the facilities to retrieve the descriptions of parameters available in a certain subsystem.

The actor of the service is the Combat Management System.

The service starts when the CMS requests one of the following:
e Parameter value retrieval
e Parameter value modification

e Retrieval of parameter descriptor,

with a list of parameter names (and values in case of maodification).

A parameter value may be structured (e.g. a vector or a table).

The service ends when the subsystem has provided the requested information or modified the parameter
value.

It is the CMS's responsibility to initiate the determination of initial state by making a request for
information to the subsystem.

Parameter names used by a subsystem are to be unique within the scope of that subsystem. Requests
for parameter descriptions and to get and set current values are consequently well-defined. Parameter
names may be structured using a namespace scheme to promote uniqueness.

Unknown parameter

On receipt of a request for parameter value retrieval, parameter value modification or parameter
descriptor retrieval for an unknown parameter name, the subsystem responds with an indication
“unknown parameter”. Other (correctly identified) parameters in the same request are processed as
requested.

lllegal parameter value

On receipt of a request for parameter value modification with a parameter value that is outside the
allowable range of the specified parameter, the subsystem responds with an indication “illegal parameter
value” and does not change the parameter value.

This includes inconsistencies of parameter type (e.g. real where integer is expected) and structure (e.g.
vector of 2 elements, where a vector of 3 is expected).

Other parameters with legal values in the same request are modified as requested.

In case of an illegal value for an element of a structured parameter, the entire parameter remains
unchanged.

Modification of parameter value
A parameter value may only be modified in the technical state(s) as specified in the descriptor of that
parameter.

Security
Access to the service may be restricted to certain parts of the CMS because of security restrictions.

Pre-condition: Subsystem technical state The subsystem is in a technical state other than OFFLINE.
Pre-condition: Mastership The CMS has mastership of the subsystem in case of parameter value
modification.

Table 7.163 - Methods of IDLInterface Manage_Subsystem_Parameters_CMS
Method Notes Parameters
report_parameter values() request _id_type request id

146 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

name value sequence type
the name value set
name_error_sequence_type
the name_error set

report_parameter_descripto
rsQ

request_id_type request id
descriptor_sequence

the descriptor sequence
name_error_sequence_type

the name_error_set

7.7.5.7.2 Manage_Subsystem_Parameters_Sub
Type: IDLInterface
Package: Manage Subsystem_ Parameters

Table 7.164 - Methods of IDLInterface Manage_Subsystem_Parameters_Sub

Method

Notes

Parameters

retrieve_parameter_values()

request_id_type request id
parameter_name_sequence_type
the name_set

modify _parameter_values()

request_id_type request id
name_value sequence type
the name value set

retrieve_parameter_descrip
torsQ

request_id_type request id
parameter name sequence type
the name set

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

147

sd Basic Flow - Parameter Retrieval /

«idlInterface»
Manage_Subsystem_Parameters CMS

«idlInterface»
Manage_Subsystem_Parameters_Sub

retrieve_parameter_values(request_id_type,

If name_sequence is

[alternative flow: processinglfailed]
|

< request_ack_type)

receive_acknowledgement(request_id_type,

receive_error(request_id_type, error_reason_type)

[
!
]
[
!

T
|
|
|
| |
parameter_name_sequence_type) —1 empty, all shall be
: retrieved
|
T
alt |
[basic flow] receive_acknowledgement(request_id_type, :
hrequest_ack_type} request_ackaccepted =
| true
| report_parameter_values(request_id_type,
: name_value_sequence_type,
(] name_error_sequence_type)
| |
| |
................... .‘..’........................
[alternative flow: request rejected] |
receive_acknowledgement(request_id_type, : request_ackacceptedb=
request_ack_type) L] false
| |
| |
| |
................... 1

request_ackaccepted =
true

148

Figure 7.88 Basic Flow - Parameter Retrieval (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), 6

vl.1

sd Basic Flow - Parameter Value Modiﬁcation/

«idlInterface» «idlInterface»
Manage_Subsystem_Parameters CMS Manage_Subsystem_Parameters_Sub

T
|
modify_parameter_values(request_id_type, |
name_value_sequence_type) /LlJ

|

|

|

|

|

|

Mastership is required for modification of parameters.
Not satisfying this precondition shall lead to rejection of the request.

——— -] - —

receive_acknowledgement(request_id_type,
request_ack_type)

alt

[basic flow]
For each of the parametersin the name_value_sequence the subsystem shall check
whether: request_ackaccepted =
- the parameter has a known parameter name, true

- the new parameter value isvalid,

- the parameter may be modified in the subsystems actual technical state,

- the parameter may be modified in the subsystems actual operational mode.

Each parameter not satisfying all conditions shall not be modified (for structured
parameters all elements need to satisfy these conditions), and a corresponding
name_error_pair shall be retumed in the name_error_sequence.

Parameters satisfying the conditions shall be modified directly (during the processing
of the request), taking into account that for structured parameters all elements shall be
modified at the same moment, and a corresponding name_value_pair shall be
retumned in the name_value_sequence.

report_parameter_values(request_id_type,
name_value_sequence_type,
name_error_sequence_type)

-_——{g-—-——-——_——-————— e —— — |-

receive_acknowledgement(request_id_type,

|

|

|
< request_ack_type) ITI

.'
[alternative flow: processing failed]
|

request_ackaccepted =
receive_acknowledgement(request_id_type,

|

|

|

1 false
< request_ack_type)]

|

|

---------------- R e e T R R P —B-----

[alternative flow: requeélt rejected] request_ackaccepted =
true

| receive_error(request_id_type, error_reason_type)

Figure 7.89 Basic Flow - Parameter Value Modification (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 149

sd Basic Flow - Parameter Descriptor Retrieval /

«idllnterface» «idlInterface»
Manage_Subsystem_Parameters CMS Manage_Subsystem_Parameters_Sub

I T

! I

I I
: retrieve_parameter_descriptors(request_id_type, : !f the name_sequence
[0~ parameter_name_sequence_type) =10 isempty, all shall be
! I
! I
! I
! |
! T
! I
I I
L

retrieved

alt

[basic flow] receive_acknowledgement(request_id_type,

Kk
[:] request_ack_type) request_ackaccepted =

true

|

| report_parameter_descriptors(request_id_type,

: descriptor_sequence,
] name_error_sequence_type)
|
|
1

|
.. I.......................
[altemative flow: request rejected]]
| |
| . . |
| receive_acknowledgement(request_id_type, | request_ackaccepted =
< request_ack_type) |} false
| |
| |
...................... 4'...‘.......................
[alternative flow: processing failéd] |
|
| receive_acknowledgement(request_id_type, |
ﬁrequest_ack_type) request_ackaccepted =
true
receive_error(request_id_type, error_reason_type)

|

!
W)

!

Figure 7.90 Basic Flow - Parameter Descriptor Retrieval (Sequence diagram)

7.7.5.8 Provide_Subsystem_Services

Parent Package: Subsystem_Control

7.7.5.8.1 Provide_Subsystem_Services_CMS
Type: Interface common_use_case_interface
Package: Provide_Subsystem_Services

Subsystems offer a number of services to a CMS. Some of the services are mandatory for the type of
subsystem, others are optional. New services may be known to the CMS or may not be known.
Consequently, the CMS needs to know which services are provided by a subsystem and the subsystem
needs to know which services the CMS is able to interact with.

The services considered here are the final versions of those that are specified and defined by the rest of
this standard. Some of them are not necessarily implemented by each product of the type of subsystem
but also not necessarily supported by each CMS.

The service-related information provided by the subsystem to the CMS deals with both, the interfaces
offered by the subsystem and the interfaces expected on CMS side which are necessary to use the
service.

Lack of mastership
Mastership of the subsystem must not have an impact upon this interface.

150 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Plug-&-Play aspect

Both sides, subsystem and CMS, shall follow a technical evolution process which is not necessarily
coordinated. Therefore, the latest subsystem version may provide a service which is not yet supported by
the CMS or the CMS may be prepared to use a service which is not provided by the subsystem.

This may also cause inconsistencies regarding the interfaces to be made available on both sides. As the
subsystem may not have an own operator display, it is intended to use the health state of the subsystem
if an indication at CMS is to be achieved saying that the interface to the CMS is not implemented properly.

Configuration data of services

The information to be provided to the CMS as information about the implemented services may include
related configuration data and may include the information which parts of the service interfaces are
supported.

System integration test

After installation of a subsystem on-board, connecting the hardware interfaces with the related CMS
hardware interfaces and performing a setup process if applicable it is expected that an interface
verification procedure shall be performed. This procedure shall apply all negotiated interfaces so that an
improper implementation shall turn-up at that occasion, already. Insofar, the alternative flows should be
considered as an integration aid, only.

Spontaneous reporting

Interfaces for which registration/de-registration is considered as an optional facility are written,
accordingly.

Registration/de-registration of recipients is done using standard registration mechanism (register interest)

Pre-condition: Subsystem identification. Provide subsystem identification has been passed successfully.
Post-condition: The CMS is aware of the services and related interfaces supported by the subsystem.
Post-condition: The subsystem is aware of the service-related interfaces the CMS may interact with.
Post-condition: The Services do not match. Each of the alternative flows indicates a fatal error which
means that the interface is not implemented properly. The CMS does not take any further action but alerts
the operator, accordingly.

Table 7.165 - Methods of Interface Provide_Subsystem_Services_CMS

Method Notes Parameters

receive_implemented_servi |Receive services which are request_id_type the request id

ces() implemented by a subsystem service_indication_list_type
service_indication_list

7.7.5.8.2 Provide_Subsystem_Services_Sub
Type: Interface common_use_case_interface
Package: Provide_Subsystem_Services

Table 7.166 - Methods of Interface Provide_Subsystem_Services_Sub

Method Notes Parameters
receive_supported_services | Receive services which are request_id_type the request id
0 supported by the CMS service list type

supported_service_list

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 151

sd Alternative Flow - Service negotiation /

«interface»

«interface»

Provide_Subsystem_Services CMS Provide_Subsystem_Services_Sub

Ireceive_implemented_services(request_id_type, service_indication_list_type

alt Altenative Flows /

[Subsystem interfage not found]
receive_acknowledgement(request_id_type,

request_ack_type)
[CMS does not apdept request]

receive_acknowledgement(request_id_type,

accepted == False
denial_reason == Interface xy not implemented

request_ack_type)

[CMS interface njof found]
receive_acknowledgement(request_id_type,

request_ack_type)

receive_supported_services(request_id_type, service_list_type)

receive_acknowledgement(request_id_type,

request_ack_type)

[Subsystem does +ot accept request]

receive_acknowledgement(request_id_type,

request_ack_type)

accepted == False
denial_reason == Request not accepted

accepted == True Iﬁ

accepted == False

denial_reason == Interface xy not implemented

accepted == False
denial_reason == Request not accepted

Figure 7.91 Alternative Flow - Service negotiation (Sequence diagram)

sd Basic Flow - Service negotiation /

«interface»
Provide_Subsystem_Services CMS

| receive_implemented_services(request_id_type, service_indication_list_type)

«interface»
Provide_Subsystem_Services Sub

receive_acknowledgement(request_id_type,

request_ack_type)

receive_supported_services(request_id_type, service_list_type)

receive_acknowledgement(request_id_type,

request_ack_type)

T

152 Open Architecture Radar Interface Standard (OARIS), 6

vl.1

Figure 7.92 Basic Flow - Service negotiation (Sequence diagram)

7.7.5.9 Manage_Mastership

Parent Package: Subsystem_Control
This package contains interfaces for the Manage Mastership service.

7.7.5.9.1 Manage_Mastership_CMS
Type: IDLInterface common_use_case_interface
Package: Manage Mastership

Besides the CMS, the subsystem may be controlled via other control points, e.g. the subsystem local
control unit. This interface describes how the CMS, as any other actor, shall handle the exclusive control
of the subsystem (mastership). In fact, every subsystem may be controlled by only one actor at the same
time. Only the actor who has the mastership of a subsystem may have exclusive control of the
subsystem. Exclusive control means that the subsystem may accept only commands sent by the actor
who has its mastership.

The subsystem Mastership may be acquired in two ways:

1. PERIODIC MASTERSHIP REQUEST: The actor who wants to acquire the mastership of a
subsystem send to it a periodic Mastership request; the subsystem may accept or deny. Once
acquired, the subsystem Mastership is released giving up the periodic Mastership requests sending.
This happens both in case of intentional decision and critical event as CMS unavailability or
connection loss. As long as CMS wants to maintain the Mastership of the subsystem, it shall
continue the periodic Mastership requests sending. The CMS is informed about the Mastership
control state by receiving a periodic message sent by the subsystem.

1. ASYNCHRONOUS MASTERSHIP REQUEST: The actor who wants to acquire the mastership of a
subsystem send to it an asynchronous request. the subsystem may accept or deny. Once acquired,
the mastership is until the mastership owner decides to intentionally release it or until a critical event,
which is mastership owner unavailability or connection failure, occurs. In case of intentional
mastership release, the CMS shall send an asynchronous mastership release request. In case of
critical event, the mastership of the subsystem is automatically released. This happens when the
subsystem does no longer receive the CMS heartbeat. The CMS is informed about the Mastership
control state by receiving an asynchronous message sent on change by the subsystem.

Mastership management rules

The subsystem Mastership assignment is controlled by the subsystem itself according to the following

rules:

e no more than one Master at any time, so the subsystem may not be commanded by more than one
control point

e the actor which wants to acquire the subsystem Mastership shall ask the subsystem for it, so no
request no assignment

e subsystem assigns the Mastership to any actor asking for it without any priority policy, no actor is
"more important" than any other.

e On each request, the mastership may be assigned only if it’s free, that is not already assigned (unless
a Mastership override request is received)

The Mastership management protocol is managed as follows:

e actor which wants to acquire the subsystem Mastership shall ask for it sending to the subsystem the
Mastership requests which could be asynchronous or periodic

e in case of periodic request for Mastership assignment, as long as the actual Master wants to maintain
the Mastership, it shall continue the periodic Mastership requests sending

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 153

e if the actual Master wants to release the Mastership in case of periodic request for Mastership
management, it shall give up the periodic Mastership requests sending, otherwise, in case of
asynchronous request, it shall send an asynchronous request for mastership release

e subsystem keeps informed about the actual Mastership state and its changes (if any).

At any time the subsystem Mastership may be either “free”, that is assigned to none and then available to

anybody asks for it, or assigned to somebody, where this somebody may be CMS or not. At the

subsystem power-on the Mastership is “free”, then:

e as long as the Mastership state is “free”, the first received Mastership request shall be satisfied
(whether the requestor is CMS or not)

e as long as the Mastership is assigned (to CMS or to somebody other than CMS), the current Master
shall maintain the Mastership possession until the Mastership owner is no longer available or decides
to release it

e aslong as the Mastership is assigned (to CMS or to somebody other than CMS), Mastership requests
received from other than the current Master shall be no satisfied, unless a Mastership Override is
received, which shall force a Mastership switch to another Master

Note that the Mastership possession is required to control the subsystem (e.g. execute write commands
to it), but it is not required to communicate with subsystem and receive information from it.

Mastership Override
The Mastership management protocol could include a Mastership Override to force a Mastership switch
from a Master to another one.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Post-condition: Success The subsystem Mastership state is assigned to CMS or not assigned to CMS,
according to the CMS requests, and CMS is informed about.

Post-condition: No Success The subsystem Mastership state is not according to the CMS requests and
CMS has the correct information regarding that state (except in the case of connection loss).

Table 7.167 - Methods of IDLInterface Manage_Mastership_CMS

Method Notes Parameters
report_mastership_setting() | This method is used by the mastership_state_type
subsystem to return the control state
mastership state. B

7.7.5.9.2 Manage_Mastership_Sub
Type: IDLInterface
Package: Manage_Mastership

Table 7.168 - Methods of IDLInterface Manage_Mastership_Sub

Method Notes Parameters
acquire_mastership(This method is used by the CMS | unsigned long count This

implementation specific semantics to
manage subsystem mastership.

release_mastership() This method is used by the CMS | unsigned long count This
to release the mastership. parameter is used with

154 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Mastership Acquisition - asynchronous request/

«idlInterface»

«idlInterface»

receive_acknowledgement(request_id_type, request_ack type)

receive_error(request_id, error_reason)

Manage_Mastership_CMS Manage_Mastership_Sub
I I
| acquire_mastership() |
O
|
|
|
|
alt |
|
[basic flow] |
|
| receive_acknowledgement(request_id_type, request_ack_type)
I% request_ack.success = true
: report_mastership_setting(mastership_state_type)
[
|
|
_________ S ! P
[Subsystem rejects request]

request_ack.success = false

command is successfully
acknowledged but fails
before completion

The subsystem doesno The subsystem retums
longer receive the current Mastership
Heartbeat from CMS state as not assigned to
(CMS unavailability or CMS, at timeout
connection loss) expiration.

RPN S

Figure 7.93 Basic Flow - Mastership Acquisition - asynchronous request (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

155

sd Basic Flow - Mastership Acquisition - periodic request/

«idlInterface»
Manage_Mastership_CMS

«idlInterface»
Manage_Mastership_Sub

loop periodic / acquire_mastership()

alt
[basic flow]
| receive_acknowledgement(request_id_type, request_ack_type)
: report_mastership_setting(mastership_state_type)
L1
|
|
|
________ R

[Subsystemfails]

receive_acknowledgement(request_id_type, request_ack_type)

I
I

receive_error(request_id, error_reason)

request_acksuccess =
true

request_acksuccess =
false

command is
successfully
acknowledged but fails

before completion

The subsystem does no
longer receive
Heartbeat from CMS
(CMS unavailability or
connection loss)

The subsystem retumns
the current Mastership
state as not assigned to
CMS, at timeout
expiration.

|
Ll.l
|
|
|
|
|
|
|
|
|
|

156

Figure 7.94 Basic Flow - Mastership Acquisition - periodic request (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Mastership Release - asynchronous request/

«idlInterface»
Manage_Mastership_ CMS

«idlInterface»
Manage_Mastership_Sub

release_mastership(unsigned

long)

receive_acknowledgement(request_id_type, request_ack_type)

report_mastership_setting(mastership_state_type)

request_acksuccess = true

request_ack.success = false

[Subsyste:m fails]

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

command is successfully
acknowledged but fails

before completion

L!-I
:
|
(]
|
|
i
|
|

R

Figure 7.95 Basic Flow - Mastership Release - asynchronous request (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

157

sd Basic Flow - Mastership Release - periodic request/

«idlInterface» «idlInterface»
Manage_Mastership_CMS Manage_Mastership_Sub

I

|

|

|
"""""""" I CMS release the
mastership, avoiding
sending of acquire
message.

loop periodic /
|

report_mastership_setting(mastership_state_type)

The subsystem returns
the current Mastership
state as not assigned to
CMS, at timeout
expiration.

|
|
|
|
|
|
LI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 7.96 Basic Flow - Mastership Release - periodic request (Sequence diagram)

7.7.5.10 Register_Interest

Parent Package: Subsystem_Control

7.7.5.10.1 Register_Interest_CMS

Type: IDLInterface common_use_case_interface
Package: Register_Interest

This service allows the CMS to register (and deregister) interest in other services. It is explicitly meant to
address the possibility of CMS “subscribing” to information supplied by the subsystem, with the
understanding that the information shall be provided by the subsystem, without the need for further
request. Such mode of operation may be applicable for those services, which have been reported as such
in Provide subsystem services. This includes typically track and plot reporting services, but may involve
other services as well.

The service starts when the actor registers interest in information provided by a service. The registration
shall include information on:

e The service for which the actor wants to register / deregister his interest

e The information within the service for which the actor wants to register / deregister his interest
e The intended (direct or indirect) recipient(s) of the information provided by the subsystem.

e Any parameters of the provision needed such as Quality of Service parameters.

The service ends when the subsystem confirms registration / deregistration of interest.

158 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Pre-condition: Sensor health state The sensor and the service need to be in the health state
AVAILABLE or DEGRADED.

Table 7.169 - Methods of IDLInterface Register_Interest_CMS

Method Notes Parameters

confirm_registration() Confirm registration of interest | request_id_type request id

7.7.5.10.2 Register_Interest_Sub

Type: IDLInterface
Package: Register_Interest

Table 7.170 - Methods of IDLInterface Register_Interest_Sub

Method Notes Parameters

register_interest(Register interest in the service | request_id_type request id
interest_list the interest list

sd Basic Flow - Interest Registration /

«idlInterface» «idlInterface»
Register_Interest. CMS Register_Interest_Sub

register_interest(request_id_type, interest_list)

alt

[basic flow]
receive_acknowledgement(request_id_type, request_ack.accepted =
< request_ack_type) true

confirm_registration(request_id_type)

[
|
|
|
|
5
|
|
|
|
|
|
|
|

receive_error(request_id_type, error_reason_type)

I
I
I

(]
I
I

|
___________________ | S
[alternative flow: request reﬁected] I
| | B
| receive_acknowledgement(request_id_type, | request_ackaccepted =
request_ack_type) |_|_| false
| |
| |
PSS | I
[alternative flow: processing failed] |
| receive_acknowledgement(request_id_type, ! B
ﬁrequest ack_type) request_ackaccepted =
- true

Figure 7.97 Basic Flow - Interest Registration (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

159

7.8 Sensor_Services

Parent Package: Service_Interfaces
Contains services associated with the Sensor Domain.

7.8.1 Clutter_Reporting

Parent Package: Sensor_Services
Contains interfaces for the Clutter Reporting service.

7.8.1.1 Provide Area with Plot Concentration

Parent Package: Clutter_Reporting
Contains operations and sequence diagrams for the Provide Area with Plot Concentration interface.

78111 Provide_Plot_Concentration_CMS
Type: IDLInterface common_use_case_interface
Package: Provide Area with Plot Concentration

The Radar provides the combat management system with the number of plots in a specific sector. The
sector information consists of range, azimuth, and elevation. The number of plots observed in the region
may provide an indication of high clutter.

Additional Information:

The information may be developed when requested or based on scan histories. The choice of methods
depends upon radar design. The timestamp should indicate the oldest data used to create the report to
allow the CMS or an operator to determine the validity of the report (i.e. day old data mixed with recent is
still only as good as day old data).

Sector Information must consist of a measurement time stamp, range extents, azimuth extents, and
elevation extents in platform coordinates.

For radars which report plot concentration without a CMS request, the CMS shall begin to receive reports
upon registration of the Provide Plot Concentration interface.

Pre-condition: Radar in ONLINE State
Post-condition: None

Table 7.171 - Methods of IDLInterface Provide_Plot_Concentration_CMS

Method Notes Parameters
receive_periodic_plot_conc |Interface used by CMS to receive | plot_concentration_report_t
entration() periodic plot concentration ype plot_concentration_report

reports from the subsystem.

receive_plot_concentration(| Interface used by the CMS to request_id_type request id

) receive a requested plot plot_concentration_report_type
concentration report from the plot_concentratrion
subsystem. B

7.8.1.1.2 Provide_Plot_Concentration_Sub

Type: IDLInterface

Package: Provide Area with Plot Concentration

Table 7.172 - Methods of IDLInterface Provide_Plot_Concentration_Sub

160 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Method

Notes

Parameters

provide plot_concentration(
)

Interface used by the subsystem
to receive a plot concentration
request from the CMS.

request_id_type request id
plot_concentration request data typ
e plot_request

sd Provide Plot Concentration - Report Requested by CMS /

«idlInterface»
Provide_Plot_Concentration_CMS

«idlInterface»
Provide_Plot_Concentration_Sub

provide_plot_concentration(request_id_type,
plot_concentration_request_data_type)

receive_acknowledgement(request_id,
request_ack)

receive_plot_concentration(request_id_type,

|
|
|
|
|
|
|
|
|
| plot_concentration_report_type)
|

< request_ack_type)

_______ s
[Unablet%) comply with request]

receive_acknowledgement(request_id_type,

[Error enqountered following an accepted request]

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

i
!
)
|
I
|
|

Figure 7.98 Provide Plot Concentration - Report Requested by CMS (Sequence diagram)

Flow of events which depicts a subsystem that reports plot concentration following an
explicit request from the CMS (also depicts alternate rejection and error paths).

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

161

sd Provide Plot Concentration - Periodic /

«idlInterface» «idlInterface»
Provide_Plot_Concentration_CMS Provide_Plot_Concentration_Sub

loop /

[Periodiq at interval specified in subsystem parameters]
|

receive_periodic_plot_concentration(plot_concentration_report_type)

I
|
|
|
|
|
!
|
|
|
|
| |
| |
[[
T T
| |
| |
| |
| |
| |
| |
| |
| |

Figure 7.99 Provide Plot Concentration - Periodic (Sequence diagram)

Flow of events which depicts a subsystem that periodically reports plot concentration
reports (without the need for a CMS request).

7.8.1.2 Provide Clutter Assessment

Parent Package: Clutter_Reporting
Contains operations and sequence diagrams for the Provide Clutter Assessment interface.

7.8.1.21 Provide_Clutter_Assessment_CMS
Type: IDLInterface common_use_case_interface
Package: Provide Clutter Assessment

The radar reports visible clutter to the combat management system. The report shall include a map
(collection of cells) with information on range, azimuth, elevation and intensity in platform relative
coordinates. Clutter may be classified by type, Land, Sea, Weather (optional), etc.. Intensity may be
indicated by linear signal-to-noise ratio (SNR), log-linear SNR, linear power received, log-linear power
received (e.g. dBm, dBW), linear Radar Cross Section (square meters), or log-linear RCS (dbsm).

For radars which report clutter assessment without a CMS request, the CMS shall begin to receive
reports upon registration of the Provide Clutter Assessment interface.

Pre-condition: Radar is in ONLINE State
Pre-condition: The Radar is capable of distinguishing clutter from targets.
Post-condition: None

Table 7.173 - Methods of IDLInterface Provide_Clutter_Assessment_CMS

Method Notes Parameters
receive_clutter_assessment | Interface used by the CMS to request_id_type request id
0 receive a requested clutter clutter_report_type clutter report
assessment report from the
subsystem.
receive_periodic_clutter _as | Interface used by CMS to receive | clutter report type

162 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sessment()

clutter report

7.8.1.2.2 Provide_Clutter_Assessment_Sub
Type: IDLInterface
Package: Provide Clutter Assessment
Table 7.174 - Methods of IDLInterface Provide_Clutter_Assessment_Sub
Method

Notes

Parameters

0

provide clutter_assessment | Interface used by the subsystem

to receive a clutter assessment
request from the CMS.

request_id_type request id
clutter assessment request type
clutter_request

sd Provide Clutter Assessment/

«idlln

Provide_Clutter_Assessment_CMS

terface»

«idlInterface»
Provide_Clutter_Assessment_Sub

provide_clutter_assessment(request_id_type,

I
|
|
|
| clutter_assessment_request_type)
|
1
|
|

O

alt

[Basic Floy]
| receive_acknowledgement(request_id,
! request_ack)
|
|
| receive_clutter_assessment(request_id_type,
| clutter_report_type)
1
|
|

________ DD URD U IRUD) R

comply with request]

[Unable tdl
|
|
|

[Error encd

< request_ack_type)

receive_acknowledgement(request_id_type,

untered following an accepted request]

receive_acknowledgement(request_id_type,
< request_ack_type)

receive_error(request_id_type, error_reason_type)

|

|

1
O

|

1

Figure 7.100 Provide Clutter Assessment (Sequence diagram)

Flow of events which depicts a subsystem that reports a clutter assessment following an
explicit request from the CMS (also depicts alternate rejection and error paths).

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

163

sd Periodic Clutter Reporting/

«idlInterface» «idlInterface»
Provide_Clutter_Assessment_CMS Provide_Clutter_Assessment_Sub

loop Periodic

[Interval specified in subsystem parameters]
|

receive_periodic_clutter_assessment(clutter_report_type)

I
|
|
|
|
|
|
|
|
|
| |
| |
| |
| |
U L
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Figure 7.101 Periodic Clutter Reporting (Sequence diagram)

Flow of events which depicts a subsystem that periodically reports a clutter assessment
(without the need for a CMS request).

7.8.2 Plot_Reporting

Parent Package: Sensor_Services

7.8.2.1 Provide_Plots

Parent Package: Plot_Reporting
7.8.21.1 Provide_Plots_CMS
Type: IDLInterface

Package: Provide_Plots

Interface to the CMS for receiving plot updates.

This interface provides sensor plots to the CMS (filterable to air, surface, land and space environments).
The transfer of data is expected to take place asynchronously, although for certain classes of sensor it
may appear periodic

Pre-condition: Subsystem Services Provide Subsystem Services has successfully executed
Pre-condition: Register Interest The CMS has successfully registered interest in this service
Post-condition: Success CMS has received plot datastream

Table 7.175 - Methods of IDLInterface Provide_Plots_CMS
Method Notes Parameters

write_sensor_plot(This method receives a individual | sensor_plot_type plots The set
plot update from the sensor. Itis | of plots

expected to be called periodically
from the sensor.

164 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

write_sensor_plot_set() This method receives a set of sensor_plot_set_type plots

one or more plot updates from The set of plots

the sensor. It is expected to be
called periodically from the
sensor.

sd Basic Flow - Provide Plots (Individual)/

«idlInterface»
plot_reporting_sub

«idlInterface»
Provide_Plots CMS

loop /

[periodic]

loop /

[for each retum] write_sensor_plot(sensor_plot_type)

This sequence diagram shows the
style of transferring plotsindividually

I
|
|
|
|
|
|
|
|
|
|
[
T
|
|
5
|
1
|
|
|
|
I
|

Figure 7.102 Basic Flow - Provide Plots (Individual) (Sequence diagram)

sd Basic Flow - Provide Plots (Sets)/

«idlInterface»
plot_reporting_sub

«idlInterface»
Provide_Plots CMS

loop /

[periodic]

write_sensor_plot_set(sensor_plot_set_type)

I
|
|
|
|
|
|
O
|
|
|
|

This sequence diagram shows the
batched style of updating plots, with
whole sets being transformed
atomically.

|
|
i
|
|
|
|

-
I
|
|
|

Figure 7.103 Basic Flow - Provide Plots (Sets) (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

165

7.8.2.2 Provide_Sensor_Orientation

Parent Package: Plot_Reporting

7.8.2.21 Provide_Sensor_Orientation_CMS
Type: IDLInterface

Package: Provide_Sensor_Orientation

The interface to the CMS for receiving sensor orientation updates.

The sensor provides its orientation in the case that it has movement that is independent of that for the
overall platform. It is provided periodically with a frequency defined using the manage subsystem
parameters use case.

Pre-condition: Subsystem Services Provide Subsystem Services has successfully executed
Pre-condition: Register Interest The CMS has successfully registered interest in this service
Post-condition: Success CMS has received sensor orientation datastream

Table 7.176 - Methods of IDLInterface Provide_Sensor_Orientation_CMS

Method Notes Parameters
write_sensor_orientation() | Informs the CMS of the sensor_orientation_type
orientation of the sensor orientation The orientation of the
sensor

sd Basic Flow - Provide Sensor Orientation /

«idlInterface» «idlInterface»
plot_reporting_sub Provide_Sensor_Orientation_CMS

loop /

[periodic]
write_sensor_orientation(sensor_orientation_type)

I
|
|
|
|
|
|
|
|
i
7 T
|
|
|
|
|
|
|
|
|
|
|

Sensor's with independent movement
(e.g. surveillance and navigation radars
that rotate) provide regular updates on
its orientation. The frequency of updates
isdefined using the manage subsystem
parameters use case.

Figure 7.104 Basic Flow - Provide Sensor Orientation (Sequence diagram)

166 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

class Provide_Sensor_Orientation /

«idlInterface»
Provide_ Sensor_Orientation_CMS

+ write_sensor_orientation(sensor_orientation_type) : void

A

Provide_Plots CMS

«idlInterface»
Service Level Interfaces & Actors Templates::plot_reporting_cms

::Provide_Sensor_Orientation_ CMS

+ write_sensor_orientation(sensor_orientation_type) : void
::Provide_Plots CMS

+ write_sensor_plot(sensor_plot_type) : void

+ write_sensor_plot_set(sensor_plot_set type): void

Figure 7.105 Provide_Sensor_Orientation (Logical diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 167

7.8.3 Sensor_Control

Parent Package: Sensor_Services
This package contains interfaces for the Sensor Control service.

7.8.3.1 Manage_Frequency_Usage

Parent Package: Sensor_Control
This package contains interfaces for the Manage Frequency Usage service.

7.8.31.1 Manage_Frequency_Usage_CMS
Type: IDLInterface common_use_case_interface
Package: Manage Frequency_Usage

This controls the sensor behaviour with respect to the transmission frequency management. Basing on a
discrete set of transmission frequencies offered by the sensor, CMS may disable/enable the use of a
subset of them. As well CMS may select the sensor transmission mode, i.e. how the sensor shall select
the transmission frequencies, among the set of transmission modes supported by the sensor.

The transmission mode defines how the sensor selects the transmission frequencies, which may be:

e Fixed Frequency: sensor always uses the same pre-selected frequency

e Frequency Diversity: at each transmission sensor selects the frequency to be used inside a pre-
selected subset of frequencies

e Automatic Frequency Selection: at each transmission sensor selects the frequency to be used among
the least jammed frequencies

e Random Agility: at each transmission sensor random selects the frequency to be used.

The availability of each of the above listed transmission modes depends on the sensor type and its
capabilities (not all the sensor types support all them). Besides a transmission mode supported by the
sensor may be “selectable” or “not selectable” according to the specific sensor rules and the state of
transmission frequencies.

Both the set of transmission frequencies offered by the sensor and the supported transmission modes
(names and characteristics) differ from sensor to sensor, so they shall be handled as configuration
parameters. The sensor reports all supported frequencies whether or not currently available or enabled.
Sensors cannot enable/disable the setting of the frequency usage at its own initiative, but at any time a
transmission frequency could become not available because of a fault (e.g. fault of the relevant oscillator),
and this could affect the effective availability of one or more sensor supported transmission modes.

Provision of the frequency usage state
Sensor shall keep CMS informed about the current availability of the frequency usage and its changes (if

any).

Provision of the transmission mode
Sensor shall keep CMS informed about the currently selected transmission mode, with the relevant
parameters, and its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for
information to the subsystem.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about both the
actual setting of the frequency usage and the actual transmission mode, with its changes (if any).

State of transmission frequencies
With respect to its operational use each sensor transmission frequency may be “enabled” or “disabled”,
according to the relevant setting. On the other hand, with respect to its health status, each transmission

168 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

frequency may be “available” or “not available” according to the presence of faults.
Note that a transmission frequency may be effectively selectable for the sensor transmission if it is both

“enabled” and not in fault.

Relationship to Manage Transmission Sectors
As well as the overall transmission mode, here specified, CMS may define sectors where a devoted
transmission mode is to be applied (see Manage Transmission Sectors).

Pre-condition:
Pre-condition:
Pre-condition:
sensor and their actual availability.
Pre-condition:

selectable transmission modes and transmission frequencies.
Post-condition: Success Both the setting of the frequency usage and the sensor transmission mode are
according to the request and CMS is informed that this is the case.
Post-condition: No Success Both the setting of the frequency usage and the sensor transmission mode
are unchanged with respect to the original one and CMS is informed that this is the case.

Mastership Required CMS has mastership of the sensor.
Subsystem Services Provide subsystem services is successfully passed.
Transmission Frequencies CMS knows the transmission frequencies offered by the

Selectable Transmission modes and frequencies CMS is aware of the currently

Table 7.177 - Methods of IDLInterface Manage_Frequency_Usage_CMS

Method

Notes

Parameters

report_frequencies_state()

Method used by the sensor to
return the current availability of
the frequency usage and its
changes (if any).

all_frequencies_state_type
frequencies_state

report_transmission_mode__
state(

Method used by the sensor to
return the selected transmission
mode, with the relevant
parameters, and its changes (if

any).

request_id_type request id
transmission_frequency mode_type
transmissionModeSetting

transmission_frequency_sta
te_response()

Method used by the sensor to
return the actual setting of the
frequency usage modified
according to the request.

request_id_type request id
selected frequency list type
setting_message

7.8.3.1.2 Manage_Frequency_Usage_Sub
Type: IDLInterface
Package: Manage_Frequency_ Usage

This is the Subsystem interface for managing frequency usage.

Table 7.178 - Methods of IDLInterface Manage_Frequency_Usage_Sub

Method

Notes

Parameters

set_frequencies()

Method used by the CMS to
enable or disable frequency
bands or discrete frequencies.

request_id_type request id
selected frequency list type request

set_transmission_mode()

Method used by the CMS to
select the available sensor
transmission mode.

request_id_type request id
transmission_frequency mode_type
trasmissionmode

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

169

sd Basic Flow - Frequency Availability Change Notification /

«idlInterface» «idlInterface»
Manage_Frequency_Usage_CMS Manage_Frequency_Usage_Sub

loop periodic / The sensor reports all supported

frequencies whether or not currently
available or enabled

|
|
|
! report_frequencies_state(all_frequencies_state_type) T

. -
|

Notification may be
periodic or upon
change

Figure 7.106 Basic Flow - Frequency Availability Change Notification (Sequence diagram)

sd Basic Flow - Enable/Disable Frequency Usage /

«idlInterface» «idlInterface»
Manage_Frequency_Usage_CMS Manage_Frequency_Usage_Sub

set_frequencies(request_id, frequencies_set_request)

receive_acknowledgement(request_id_type, request_ack_type)

tracking_zone_setting(request_id_type, tracking_zone_set)

-

[

|

|

[
0

|

|

|

[

|
o

|

|

[

[

[

|

|
)

[

[

|

|

Figure 7.107 Basic Flow - Enable/Disable Frequency Usage (Sequence diagram)

170 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow - Enable/Disable Frequency Usage - loss of mastership /

«idlInterface»

Manage_Frequency_Usage_ CMS

«idlInterface»

Manage_Frequency_Usage_Sub

set_frequencies(request_id_type, frequencies_set_request)

T

alt |
[Subsystem re;ects request]

receive_acknowledgement(request_id_type, request_ack_type)

[Subsystem fails]
|

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

command is
successfully

before completion

acknowledged but fails

tracking_zone_setting(request_id_type, tracking_zone_set)

Lrl
|
i
|
H

Figure 7.108 Alternative Flow - Enable/Disable Frequency Usage - loss of mastership (Sequence diagram)

sd Basic Flow - Transmission Mode Selection /

«idlInterface»
Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

set_transmission_mode(request_id_type, transmission_frequency_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_transmission_mode_state(request_id_type, transmission_frequency_mode_type)

T
7
1

E—

Figure 7.109 Basic Flow - Transmission Mode Selection (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

171

sd Alternative Flow - Transmission Mode Selection - loss of mastership /

«idlInterface» «idlInterface»
Manage_Frequency_Usage_CMS Manage_Frequency_Usage_Sub

T
set_transmission_mode(request_id_type, transmission_frequency_mode_type) |
|

T
|
|
|
|
L
alt |
|
[Subsystem rgjects request]
|
|
| receive_acknowledgement(request_id_type,
< request_ack_type)
|
|
|
......... e) IR
[Subsystem flhils]
|
I receive_acknowledgement(request_id_type, command is
< request_ack_type) el
: acknowledged but fails
| receive_error(request_id, emor_reason) before completion
O
|
|
1
|
|
! report_transmission_mode_state(request_id_type, transmission_frequency_mode_type)
|
|
1

Figure 7.110 Alternative Flow - Transmission Mode Selection - loss of mastership (Sequence diagram)

7.8.3.2 Manage_Transmission_Sectors

Parent Package: Sensor_Control
This package contains interfaces for the Manage Transmission Sectors service.

7.8.3.21 Manage_Transmission_Sectors_CMS
Type: IDLInterface common_use_case_interface
Package: Manage_Transmission_Sectors

This determines the sectors where the sensor is allowed to radiate together with the relevant transmission
modes and parameters. Sectors may be delimited in azimuth only, or both in azimuth and elevation; for
each sector the sensor may be requested either to no transmit at all or to apply a proper transmission
mode. Typical transmission sectors types are:

e Transmit Inhibit Sectors
sectors where the sensor is not allowed to radiate. Depending on the sensor type and its capabilities,
such a type of sectors may be delimited in azimuth only, or both in azimuth and elevation.

e Reduced Radiate Power Sectors

sectors where the sensor shall radiate at reduced power. Depending on the sensor type and its
capabilities, such a type of sectors may be delimited either in azimuth only or both in azimuth and
elevation.

e Transmission Mode Sectors

172 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sectors where the sensor is required to apply a devoted transmission mode (see Manage Frequency
Usage). Depending on the sensor type and its capabilities, such a type of sectors may be delimited either
in azimuth only or both in azimuth and elevation, but they may not overlap each other.

* Blind Arc Sectors

sectors where the sensor is not allowed to radiate. Such a type of sectors may be delimited in azimuth
only, or both in azimuth and elevation, depending on the sensor type and its capabilities. (Note: the same
as "Transmit Inhibit Sectors”, with the difference that sectors are defined in Ship’s Reference System.)

Provision of the sensor transmission sectors setting
Sensor shall keep CMS informed about the actual setting of the transmission sectors and its changes (if
any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for
information to the subsystem.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual
setting of the transmission sectors and its changes (if any).

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Pre-condition: Transmission Sectors CMS is aware of which types of transmission sectors the sensor
may manage and of their current setting.

Post-condition: Success The setting of the transmission sectors has been modified according to the
request and CMS is informed that this is the case.

Post-condition: No Success The setting of the transmission sectors is unchanged with respect to the
original one and CMS is informed that this is the case.

Table 7.179 - Methods of IDLInterface Manage_Transmission_Sectors_CMS

Method Notes Parameters
transmission_sector_setting | Method used by the sensor to request_id_type request id
0 return the actual setting of the transmission_sector set_type
transmission sectors and its setting_message
changes (if any).

7.8.3.2.2 Manage_Transmission_Sectors_Sub
Type: IDLInterface
Package: Manage_Transmission_Sectors

This is the Subsystem interface for managing transmission sectors.

Table 7.180 - Methods of IDLInterface Manage_Transmission_Sectors_Sub

Method Notes Parameters

set_transmission_sector() | Method used by the CMS to send | request_id_type request_id
a set/reset transmission sector transmission_sector set type sector
request to the sensor.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 173

sd Basic Flow - Manage Transmission Sectors - Enable/Disable /

«idlInterface» «idlInterface»
Manage_Transmission_Sectors CMS Manage_Transmission_Sectors_Sub

T
|
L . o |
set_transmission_sector(request_id_type, transmission_sector_set_type) |

if
receive_acknowledgement(request_id_type, request_ack_type) transmission sector sef|

operation
set_transmission_sectol
get all the current
transmission sector

transmission_sector_setting(request_id, transmission_sector_set)

T
|
|
|
|
|
|
|
1
Lv-l dimension is null, the
|
|
|
|
|
|
|
|
|

-

Figure 7.111 Basic Flow - Manage Transmission Sectors - Enable/Disable (Sequence diagram)

sd Alternative Flow - Manage Transmission Sectors - Enable/Disable - loss of masterhip /

«idlInterface» «idlInterface»
Manage_Transmission_Sectors CMS Manage_Transmission_Sectors_Sub

set_transmission_sector(request_id_type, transmission_sector_set_type) |

I
|
|
|
| The
| transmission_sector_set
| parameter must be not
| null
|
|
1
alt |
|
[Subsystem|rejects request]
|
: receive_acknowledgement(request_id_type, request_ack_type)
|
|
|
........ 4'..-.-.-.-...-..-.-.-........-...-...-.-......-.-.-.-...-. - -
[Subsystemifails]
|
| receive_acknowledgement(request_id_type, request_ack_type)
L|—| command is
| . . successfully
X receive_error(request_id_type, error_reason_type) acknowledged but fails
L before completion
|
|
|
i
|
: transmission_sector_setting(request_id_type, transmission_sector_set)
|
|
|
|
1

Figure 7.112 Alternative Flow - Manage Transmission Sectors - Enable/Disable - loss of masterhip (Sequence

174 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

diagram)

7.8.3.3 Control_Emissions

Parent Package: Sensor_Control
This package contains interfaces for the Control Emissions service.

7.8.3.3.1 Control_Emissions_CMS
Type: IDLInterface common_use_case_interface
Package: Control_Emissions

The sensor is requested to inhibit/enable own emissions. In the case where the sensor is a radar, this
shall result in the Radiation on/off command.

Note that this interface just covers the software managed control of the emission state. For safety reasons
many sensors are supplied with an additional hardware control of own emission state, such as a
pushbutton directly connected to the transmitter.

Provision of the Emission state
Sensor shall keep CMS informed about the current state of emissions and its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for
information to the subsystem.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the current
emissions state and its changes (if any).

Relationship to the Transmission Sectors management

As long as emissions are on, the sensor shall transmit in the sectors where transmission is allowed and
according to the relevant transmission modes and parameters, as determined through Manage
Transmission Sectors.

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Emissions State CMS is aware that actually the sensor may switch its emissions state,
e.g. both the technical state and the health state allow the sensor to switch to Radiation on, no
engagement in execution to switch to Radiation off, and so on.

Post-condition: Success The sensor emissions state is on/off as requested and CMS is informed that this
is the case.

Post-condition: No Success The sensor emissions state is still equal to the original one and CMS has the
correct information regarding that state

Table 7.181 - Methods of IDLInterface Control_Emissions_CMS

Method Notes Parameters

control_emission_setting()

Method used by the sensor to
return the current state of
emissions and its changes (if

any).

request_id_type request id
control_emission_state type
emission_state

7.8.3.3.2 Control_Emissions_Sub
Type: IDLInterface
Package: Control_Emissions

This is the Subsystem interface for controlling emissions.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

175

Table 7.182 - Methods of IDLInterface Control_Emissions_Sub

Method

Notes

Parameters

set_control_emission()

the sensor.

Method used by the CMS to send request_id_type request id
an Emissions on/off request to control_emission_state_type

control_emission_state

sd Basic Flow - Control Emissions - OnlOff/

«idlInterface»
Control_Emissions_ CMS

set_control_emission(request_id, control_emission_state) |

«idlInterface»
Control_Emissions_Sub

T
:

receive_acknowledgement(request_id_type,

request_ack_type)

control_emission_setting(request_id_type,

< control_emission_state_type)

Figure 7.113 Basic Flow - Control Emissions - On/Off (Sequence diagram)

176

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow - Control Emissions - On/Off - loss of masterhip/

«idlInterface» «idlInterface»
Control_Emissions CMS Control_Emissions_Sub

I
|
|
set_control_emission(request_id_type, control_emission_state) |

T

alt
|

[Subsystem rejects request]
|

receive_acknowledgement(request_id_type,

< request_ack_type)

[Subsystem fdlils]

|
|
| receive_acknowledgement(request_id_type,

command is
< request_ack_type) successiully

acknowledged but fails
receive_error(request_id_type, error_reason_type) before completion

|
|
LI
|
|
|
|
|

control_emission_setting(request_id_type,

< control_emission_state_type)

Figure 7.114 Alternative Flow - Control Emissions - On/Off - loss of masterhip (Sequence diagram)

7.8.3.4 Define_Test_Target_Scenario

Parent Package: Sensor_Control
This package contains interfaces for the Define Test Target Scenario service.

7.8.3.41 Define_Test_Target_Scenario_CMS
Type: IDLInterface common_use_case_interface
Package: Define_Test_Target Scenario

This specifies the interactions for defining and modifying a test target scenario. A Test Target scenario
consists of a number of Test Targets to be generated according to their characteristics (positions, motion
law, generation parameters) with the purpose of producing stimuli devoted to the execution of an internal
functional test of the sensor.

A number of Test Target scenarios may be maintained in a sensor internal Test Targets scenarios
database, where each scenario is identified by a unique identification number. Write accesses to this
database shall rejected if the sensor Mastership is not actually assigned to CMS, but the possession of
the sensor Mastership is not required for executing read accesses.

The generation of the so defined Test Target scenarios may be activated as specified in Control Test
Target Facility. For the generation mechanism see the interface Control Test Target Facility

One or more Test Target scenarios may be maintained in a sensor internal Test Targets scenarios

database, where each scenario is identified by an unique identification number. The number of available
Test Target scenarios is accessed by Manage subsystem parameters.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 177

Depending on the sensor type and its capabilities, a Test Target scenario may be constituted by:

a) anumber of independent targets, with each target having own characteristic parameters; so the
scenario is defined by:
e number of targets

and for each target

e the initial target position with the relevant initial time
e target parameters

b) a number of targets distributed in a defined area/volume and having the same common parameters,
so the scenario is defined by:

e number of targets

e area/volume boundaries

e common initial time

e common targets parameters

Target parameters define:

a. the target motion type, with the relevant motion parameters

b. the target generation parameters, such as injection type (internal / external), attenuation law
(constant / variable-with-range), doppler type (0 / PRF/2).

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Test Target Facility Test Target facility is supported by the sensor and CMS is aware of
which types of Test Target the sensor may manage

Post-condition: Success Write access:

The specified Test Target scenario is modified according to the request and CMS is informed that this is
the case.

Read access:

The requested Test Target scenario is reported to CMS.

Post-condition: No Success Write access:

The specified Test Target scenario is unchanged and CMS is informed about the denial reason.

Read access:
The requested Test Target scenario is not reported to CMS and CMS is informed about the denial reason.

Table 7.183 - Methods of IDLInterface Define_Test_Target_Scenario_CMS

Method Notes Parameters

test_target scenario_settin | Method used by the sensor to request_id_type request id

g0 return the identification number of | test target scenario_id_type
the modified or created test target | test target scenario_id
scenario. B B -

test_target_scenario_settin | Method used by the sensor to request_id_type request id

g_all_featureq return ’Fhe r_eqL_ured test target test_target scenario_type
scenario with its parameters. test target features

7.8.3.4.2 Define_Test_Target_Scenario_Sub

Type: IDLInterface

Package: Define_Test_Target Scenario

178 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

This is the Subsystem interface for defining test target scenarios.

Table 7.184 - Methods of IDLInterface Define_Test_Target_Scenario_Sub

Method

Notes

Parameters

read_test_target_scenario()

Method used by the CMS to send
to the sensor a read request of a
specified Test Target scenario.

request_id_type request id
test_target scenario_id_type
test target scenario id

write_test _target scenario(

Method used by the CMS to send
to the sensor a write request of a
specified Test Target scenario.

request_id_type request id
test target scenario_type
test_target scenario

sd Basic Flow - Write a Target Test Target Scenario/

«idlInterface»
Define_Test_Target_Scenario_CMS

write_test_target_scenario(request_id_type,

«idlInterface»
Define_Test_Target_Scenario_Sub

test_target_scenario_type)

receive_acknowledgement(request_id_type, request_ack_type)

'?'
+

test_target_scenario_id_type)

test_target_scenario_setting(request_id_type,

Figure 7.115 Basic Flow - Write a Target Test Target Scenario (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

179

sd Alternative Flow - Write a Target Test Target Scenario - loss of mastership /

«idlInterface» «idlInterface»
Define_Test_Target_Scenario_CMS Define_Test_Target_Scenario_Sub

|

|

I write_test_target_scenario(request_id_type, I
I:;]_test_targ et_scenario_type)
|
|
T

alt I
[Subsyst{em rejects request]

| receive_acknowledgement(request_id_type, request_ack_type)

______ O P
[Subsyst:em failg]
receive_acknowledgement(request_id_type, request_ack_type)
command is
successfully
acknowledged but fails
receive_error(request_id_type, error_reason_type) before completion

I
I
L
]
I
i
T
I
I
I
I
I

Figure 7.116 Alternative Flow - Write a Target Test Target Scenario - loss of mastership (Sequence diagram)

sd Basic Flow - Inspect a Test Target Scenario/

«idlInterface» «idlInterface»
Define_Test_Target_Scenario_CMS Define_Test_Target_Scenario_Sub

I I
| |
| read_test_target_scenario(request_id_type, |
Elj—test_target_scenario_id_type,
|
|
|
|
|
|

receive_acknowledgement(request_id_type,

< request_ack_type)

|
|
|
|
|
|
| test_target_scenario_setting_all_feature(request_id_type,
I:;]Eestta rget_scenario_type)
| |
| |
| |

Figure 7.117 Basic Flow - Inspect a Test Target Scenario (Sequence diagram)

180 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

7.8.3.5 Test_Target_Facility

Parent Package: Sensor_Control
This package contains interfaces for the Test Target Facility service.

7.8.3.5.1 Test_Target_Facility_CMS
Type: IDLInterface common_use_case_interface
Package: Test_Target_Facility

The sensor is requested to activate/deactivate the execution of its internal functional test and stimulation
realized by means of test targets generation. A number of Test Target scenarios may be defined and
modified as specified in Define Test Target Scenario, each scenario is identified by a proper identification.
At any time no more than one Test Target scenario may be active.

Test Target generation mechanism (applicable to some sensors)

The Test Target generation consists of the injection of proper signals at different points of the receiver
chain in order to produce the relevant detections in input to the RMC (Radar Management Computer);
these Test Target detections are processed by the RMC as the real ones, so they shall generate one o
more plots (“Test Target” plots) and tracks (“Test Target” tracks).

Such a generation mechanism is controlled by the RMC driving a devoted hardware, its purpose is to
execute an on-line BITE of the complete receiver chain.

Test Target generation is executed while the radar is working in operational mode, so Test Target
detections and real detections live together, forming “Test Target” plots and tracks at the same time as
real plots and tracks. This implies that CMS shall receive “Test Target” plots and tracks together with real
plots and tracks.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual
state of the Test Target generation and its changes (if any).

Provision of the Test Target generation state
Sensor shall keep CMS informed about the actual state of the Test Target generation and its changes (if

any).

Relationship to the subsystem health state

As long as a Test Target scenario is in generation sensor checks the relevant returns at different points of
the receiver chain, up to form plots in the same positions where Test Targets have been generated. The
relevant results contribute to the sensor health state.

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Test Target facility Test Target facility is supported by the sensor and CMS is aware of
the current availability of the Test Target generation.

Post-condition: Success The state of the Test Target generation is modified according to the request and
CMS is informed that this is the case.

Post-condition: No Success The state of the Test Target generation is unchanged with respect the
original one and CMS is informed about the denial reason.

Table 7.185 - Methods of IDLInterface Test_Target_Facility CMS

Method Notes Parameters

notify_test_target(Method used by the sensor to request_id_type request id

Target generation consistent with | et target scenario_state
the request. B B -

7.8.3.5.2 Test_Target_Facility_Sub

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 181

Type: IDLInterface

Package:

Test_Target_Facility

This is the Subsystem interface for testing target facilities.

Table 7.186 - Methods of IDLInterface Test_Target_Facility_Sub

Method

Notes

Parameters

set_test target facility_stat
e(

Method used by the CMS to send
an activation request of a
specified Test Target scenario.

request_id_type request id
test target scenario_state type
scenario_state

sd Basic Flow - Activate/Deactivate Test Target Facility/

«idlInterface»
Test_Target_Facility CMS

«idlInterface»
Test_Target_Facility_Sub

set_test_target_facility_state(request_id, test_target_scenario_state) [

Ll_l
|
|

0

notify_test_target(request_id_type,
< test_target_scenario_state_type)

receive_acknowledgement(request_id_type,

request_ack_type)

Figure 7.118 Basic Flow - Activate/Deactivate Test Target Facility (Sequence diagram)

182

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow - Activate/Deactivate Test Target Facility - loss of mastership /

Test_Target_Facility_ CMS

«idlInterface»

«idlInterface»
Test_Target_Facility_Sub

set_test_target_facility_state(request_id_type, test_target_scenario_state) |

1
[/]

[Subsysdtem rejects request]
| receive_acknowledgement(request_id_type,

request_ack_type)

[Subsystem fails]
| receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, emor_reason)

command is
successfully

before completion

acknowledged but fails

|
|
|
]
|
|
|
|
|
|

notify_test_target(request_id_type,
< test_target_scenario_state_type)
|

Figure 7.119 Alternative Flow - Activate/Deactivate Test Target Facility - loss of mastership (Sequence

diagram)

7.8.4 Sensor_Performance
Parent Package: Sensor_Services

7.8.4.1 Provide_Interference_Reports

Parent Package: Sensor_Performance

7.8.4.1.1 Provide_Interference_Reports_CMS
Type: IDLInterface common_use_case_interface
Package: Provide_Interference_Reports

This describes the process whereby the subsystem provides a set of reports on sources of interference,
including jammers. The data shall, therefore, in general, be non-real-time but should, where appropriate,

be time-tagged and shall be updated when any observed data changes.

The sensor need not be radiating but shall at least be receiving. The subsystem VOI (volume of interest)
or other filter mechanisms might be supplied in a request to the subsystem
For a nominal effect assessment, the request might contain data on number, strength/Effective Radiated
Power (ERP), type and deployment of jammers and other interferers affecting radar operations. For
example, for each interferer
e Sensor time-tag

e Interference type - active noise, self-screening jammer, standoff jammer etc

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

183

Locations - strobes etc.
Affected sectors
Frequency bands affected

Pre-condition:
Pre-condition:
successfully

Pre-condition:

Strength/Effective Radiated Power

register interest in Interference Reports.

Post-condition: Success The CMS has received Interference Reports

Post-condition: Failure The CMS receives no Interference Reports

Technical State The subsystem is in technical state ONLINE.
Subsystem Services The Provide Subsystem Services Service has been completed

Register Interest The Register Interest Service has been executed successfully to

Table 7.187 - Methods of IDLInterface Provide_Interference_Reports_CMS

Method

Notes

Parameters

interference_report_respon
se(

Provides an updated set of
interference reports to the CMS.

request_id_type request id
interference report_type
interference report The report on
interference

interference_report_periodi
co

Provides an updated set of
interference reports to the CMS.

interference_report_type
interference report The report on
interference

7.8.4.1.2 Provide_Interference_Reports_Sub
Type: IDLInterface
Package: Provide_Interference_Reports
Table 7.188 - Methods of IDLInterface Provide_Interference_Reports_Sub
Method Notes Parameters

volume_for_interference_re
ports(

This allows definition of the
volume in space which is of
interest with regard to the
provision of interference reports.

request_id_type request id The
unique identifier for this request.
This is referenced in
acknowledgement and any error
reporting regarding this definition of
the volume of interest.
polar_volume type volume The
volume in space

coordinate orientation_type
coordinate_orientation specifies the
orientation of the polar volume

184

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow - Provide Interference Reports /

«idlInterface» «idlInterface»
Provide_Interference_Reports_ CMS Provide_Interference_Reports_Sub

opt Volume of Interest Supplied/

[CMS supplies Volu;ne of Interest]

'
volume_for_interference_reports(request_id_type, polar_volume_type,
coordinate_orientation_type)

alt Unsuccessful Request/

[Subsydtem unable to filter interference reports to the requested volume of interest]
|

negative

| receive_acknowledgement(request_id_type, acknowledgement

request_ack_type)

..... R T PP PEETEEEY ¥ EEEE
[Subsystem error occurs whilst preparing interference reports as requested]

|

|

| receive_acknowledgement(request_id_type,
request_ack_type)

positive
acknowledgement

receive_error(request_id_type, eror_reason_type)

|

|

!
.

i

|

i

Figure 7.120 Alternative Flow - Provide Interference Reports (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 185

sd Basic Flow - Provide Interference Reports /

«idlInterface» «idlInterface»
Provide_Interference_Reports CMS Provide_Interference_Reports_Sub

I I
| |
| |
| |
opt Volume of Interest Supplied / |
T |

|

|

|

1

[CMS supplies Volume of Interest]
|

vol ume_for_interference_reports(request_id_type, polar_volume_type,
g?_ordinate_orientation_type)

|
|
|
| receive_acknowledgement(request_id_type,

< request_ack_type)

interference_report_response(request_id_type, interference_report_type)

|
|
|
LI
|
[
|
|

loop periodic /

I
I
L1
I
I
I

interference_report_periodic(interference_report_type)

Figure 7.121 Basic Flow - Provide Interference Reports (Sequence diagram)

7.8.4.2 Provide_Nominal_Performance

Parent Package: Sensor_Performance

7.8.4.21 Provide_Nominal_Performance_CMS
Type: IDLInterface common_use_case_interface
Package: Provide_Nominal_Performance

This is incremental to Register Interest, which deals with the subscription to subsystem functions. It
provides an indication of the expected performance of the available subsystem services such as those
presented in Provide Subsystem Services, based upon the current environmental conditions (See
Receive Meteorological Data - METOC).

The subsystem need not be radiating to provide this assessment. This interface is more targeted towards
a subsystem such as the complex MFR than the 2D surveillance radar. The most basic example of
performance would be reporting of the nominal coverage, in elevation, azimuth and range, given an
assumed operating regime with no jamming and with default clutter conditions. Other examples might be
that the actor requests the probability of detection for a specified target type or perhaps the probability of
correct automatic classification of such a target within a specified sector of coverage under current
environmental conditions.

Pre-condition: Technical State The Subsystem is in the Technical State ONLINE.
Pre-condition: Subsystem Services The Provide Subsystem Services Service has been executed
successfully.

186 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Post-condition: Success The CMS is aware of the Nominal Performance of the Subsystem
Post-condition: Failure The CMS is not aware of the Nominal Performance of the Subsystem

Table 7.189 - Methods of IDLInterface Provide_Nominal_Performance_CMS

Method

Notes

Parameters

nominal_performance_resp
onse()

The subsystem responds to the
previous nominal performance
request with its determination of
the requested aspect of nominal
performance.

request_id_type request id The
unique id from the request
performance assessment_report typ
e report The report on nominal
performance

7.8.4.2.2

Type:
Package:

IDLInterface

Provide_Nominal_Performance_Sub

Provide_Nominal_Performance
Subsystem interface for provision of nominal performance assessment.

Table 7.190 - Methods of IDLInterface Provide_Nominal_Performance_Sub

Method

Notes

Parameters

nominal_performance_requ
est(

The CMS requests nominal
performance of the subsystem in
the current environmental
conditions. The aspect of
performance requested is a
parameter of the request.

request_id_type request id The
unique id which identifies this
request. It is used to mark replies
from the sensor relating to this
request.

performance assessment request_ty
pe request The details of the
performance request

sd Alternative Flow - Provide Nominal Performance /

«idlInterface»
Provide_Nominal_Performance_CMS

«idllnterface»
Provide_Nominal_Performance_Sub

nominal_performance_request(request_id_type, performance_assessment_request_type)

T
|
|
|
|
|
|
]
|
|

|

alt Unsuccessful Request/

[Susbystem undble to calculate requested nominal performance]
|
| receive_acknowledgement(request_id_type,

< request_ack_type) B
| negative
| acknowledgement
|
...........)) S

[Subsystem endloumers an irrecoverable condition in determining nominal performance]
|
[AN
! receive_acknowledgement(request_id_type, positive

< request_ack_type) acknowledgement
|
: receive_error(request_id, error_reason)
I 0
| |
[[
Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 187

Figure 7.122 Alternative Flow - Provide Nominal Performance (Sequence diagram)

sd Basic Flow - Provide Nominal Performance /

«idlInterface» «idlInterface»
Provide_Nominal_Performance_CMS Provide_Nominal_Performance_Sub

nominal_performance_request(request_id_type, perfformance_assessment_request_type) |

T

|

|

|

|

|

| receive_acknowledgement(request_id_type,
(M| request_ack_type)

|

|

|

|

1

|

nominal_performance_response(request_id_type, perfformance_assessment_report_type)

Figure 7.123 Basic Flow - Provide Nominal Performance (Sequence diagram)

7.8.4.3 Provide_Performance_Assessment

Parent Package: Sensor_Performance

7.8.4.3.1 Provide_Performance_Assessment_CMS
Type: IDLInterface common_use_case_interface
Package: Provide_Performance_Assessment

This is incremental to Register Interest, which deals with the subscription to subsystem functions and
Provide Nominal Performance which provides the subsystem nominal performance. This interface reports
the real-time performance of the available subsystem functions against the goals of the mission. The
reported performance is that currently being attained by the subsystem subject to the current operating
regime and environmental conditions, including any clutter and jamming and taking account of any
mitigation/cancellation of such effects by the subsystem.

This interface is aimed at a subsystem such as an MFR radar. Information is provided to the Command
function allowing decisions to be made on the achieved performance, which is often considerably different
to the anticipated performance level as reported through the Provide Nominal Performance Service.

The most basic example of performance would be reporting of the radar coverage, in elevation, azimuth
and range, for the current operating regime and environmental conditions. This would take account of any
clutter and jamming present. Other examples might be that the actor requests the probability of detection
for a specified target type or perhaps the probability of correct automatic classification of such a target
within a specified range under current environmental conditions N.B. if the radar is operating in an
appropriate mode then real-time clutter and/or jamming data might be available to the radar subsystem.
Otherwise the actor would have to supply any known data to the subsystem for performance assessment
(see Receive Encyclopaedic Data and Receive Geographic Information). If no environmental data is
specified then the design performance would be reported.

Pre-condition: Technical State The Subsystem is in the technical state ONLINE.
Pre-condition: Subsystem Services The Provide Subsystem Services Service has completed
successfully.

Post-condition: Success The CMS is aware of the assessed performance of the subsystem
Post-condition: Failure The CMS is not aware of the assessed performance of the subsystem
coord-kind=POLAR

efientation=—NEGOHATED

ofigin=—SENSOR-_REFERENCEPOINT

188 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Table 7.191 - Methods of IDLInterface Provide_Performance_Assessment_CMS

Method

Notes

Parameters

performance_assessment_r
esponse()

The subsystem responds to the
previous performance
assessment request with its
assessment of the requested
aspect of actual performance.

request_id_type request id The
unique identifier for this assessment.
This identifier is supplied by the
CMS when the assessment is
requested.

performance assessment_report_typ
e performance_assessment The
details of the assessment

7.8.4.3.2

Type:
Package:

IDLInterface

Provide_Performance_Assessment_Sub

Provide_Performance_Assessment
Subsystem interface for provision of current performance assessment.

Note that the coordinates are always polar for this service and that the origin is always the sensor
reference point as per the coordinates and positions package.

Table 7.192 - Methods of IDLInterface Provide_Performance_Assessment_Sub

Method

Notes

Parameters

performance_assessment_r
equest(

The CMS requests assessment
of actual performance of the
subsystem. The aspect of
performance requested is a
parameter of the request.

request_id_type request id The
unique identifier for this assessment.
This identifier is contained in all
related replies from the sensor.
performance assessment_request_ty
pe request Details of the assessment

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

189

sd Alternate Flow - Provide_Performance_Assessment/

«idlInterface» «idlInterface»
Provide_Performance_Assessment_CMS Provide_Performance_Assessment_Sub

[
|
|
|
|
|
performance_assessment_request(request_id_type, performance_assessment_request_type) !

m
|

alt Unsuccessful Request/

[Subsystem isi|1 an incorrect interal mode for making the assessment]

| .
receive_acknowledgement(request_id_type, negative

|
< request_ack_type) acknowledgement

[Subsystem engouters an irrecoverable error condition in performing the performance assessment]
|

| -
receive_acknowledgement(request_id_type, positive

|
O S request_ack_type) acknowledgement

receive_error(request_id, error_reason)

T

Figure 7.124 Alternate Flow - Provide_Performance_Assessment (Sequence diagram)

sd Basic Flow - Provide Performance Assessment/

«idllnterface» «idlInterface»
Provide_Performance_Assessment_CMS Provide_Performance_Assessment_Sub

performance_assessment_request(request_id_type, performance_assessment_request_type).

receive_acknowledgement(request_id_type,

|
< request_ack_type)

performance_assessment_response(request_id_type, performance_assessment_report_type)

Figure 7.125 Basic Flow - Provide Performance Assessment (Sequence diagram)

7.8.4.4 Provide_Jammer_Assessment

Parent Package: Sensor_Performance
7.8.4.41 Provide_Jammer_Assessment_CMS
Type: IDLInterface common_use_case_interface

190 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Package: Provide_Jammer_Assessment

This interface describes the process whereby the subsystem provides a periodic assessment of the
effects of actual jamming on the detection and tracking performance of the subsystem. The actual
subsystem performance vs the nominal (see Provide Nominal Performance) shall be reported so that this
data is current and real-time. This should include the effects on (spatial) coverage caused by any
jamming. The impact on frequencies used e.g. operating band limitations is dealt with in Provide
Interference Reports

Mastership is not required.

The radar need not be radiating in the ONLINE state but shall at least be receiving. The subsystem VOI
(volume of interest) or other filter mechanisms might be supplied in a request to the subsystem.

The kind of information which could be provided in the returned assessment, depending on any jamming
mitigation strategy (frequency agility, moving target indication, low side-lobe levels, main beam or side-
lobe cancellation, side-lobe blanking etc.) might then include:

¢ Noise floor pre-/post-jammer cancellation, as applicable

e Degradation in detectability (compared with the nominal)

Pre-condition: Technical State The subsystem is in the technical state ONLINE

Pre-condition: Subsystem Services The Provide Subsystem Services Service has been successfully
executed

Pre-condition: Register Interest The Register Interest Service has completed successfully.
Post-condition: Success CMS has received Jamming Effect Assessments

Post-condition: No Success The CMS has not received Jamming Effect Assessments.

Table 7.193 - Methods of IDLInterface Provide_Jammer_Assessment_CMS

Method Notes Parameters

jammer_assessment_respo request_id_type request id

nse() performance assessment_report_typ
e report

7.8.44.2 Provide_Jammer_Assessment_Sub

Type: IDLInterface

Package: Provide_Jammer_Assessment

Table 7.194 - Methods of IDLInterface Provide_Jammer_Assessment_Sub

Method Notes Parameters

jammer_assessment_reque request_id_type request id

sto performance assessment request ty
pe jammer_assessment_request

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 191

sd Alternate Flow - Provide Jammer Assessment/

«idlInterface»

Provide_Jammer_Assessment_CMS

T
I
I
I
I
I

O
I
I
I
I
I

«idlInterface»
Provide_Jammer_Assessment_Sub

jammer_assessment_request(request_id_type,
performance_assessment_request_type)

alt Negative Acknowledgement/

[Subs;{stem hasincorrect intemal mode for request]

receive_acknowledgement(request_id_type,

negative
acknowledgement

request_ack_type)

[Subs;irstem processing produces irrecoverable error after initial positive Ackowledgement]

receive_acknowledgement(request_id_type,
< request_ack_type)

receive_error(request_id_type, error_reason_type)

positive
acknowledgement

|
|
|
|
|
]
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

R N

Figure 7.126 Alternate Flow - Provide Jammer Assessment (Sequence diagram)

sd Basic Flow - Provide Jammer Assessment/

«idlInterface»

Provide_Jammer_Assessment_ CMS

«idlInterface»

Provide_Jammer_Assessment_Sub

jammer_assessment_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,

[

i
0

|

l

l

|
m

|

l

|

|

|

< performance_assessment_report_type)

request_ack_type)

jammer_assessment_response(request_id_type,

192

Open Architecture Radar Interface Standard (OARIS), 6

vl.1

Figure 7.127 Basic Flow - Provide Jammer Assessment (Sequence diagram)

7.8.5 Track_Reporting
Parent Package: Sensor_Services

7.8.5.1 Provide_Sensor_Tracks

Parent Package: Track_Reporting

7.8.5.1.1 Provide_Sensor_Tracks_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Sensor_Tracks

This service allows the CMS to obtain an overview of (real and/or simulated) air / land / space / surface

objects observed or simulated. Information may cover all aspects of a track such as kinematic and

amplifying information.

The service does not cover:

e additional track information provision dedicated for engagement support,

e special search functions such as cued search, volume search and horizon search (however, if such a
search function is initiated by means of another service, the tracks shall be provided by this service),

Although the service focuses on radar as an example of a sensor, the service also applies to other

sensors, like IR/EO sensors and ECM/ESM sensors.

The actor is the Combat Management System.

The service starts when:

e if the service does provide registration capabilities: the service "Register interest" has completed
successfully, or

e if the service does not provide registration capabilities: the service "Provide subsystem services" has
completed successfully for this service.

The sensor provides, periodically or on event, a set of sensor tracks observed by the sensor. These may

be sensor point or bearing tracks. The set of sensor tracks includes:

e Track updates of existing and new sensor tracks. These are provided when there are sufficient
measurements (e.g. plots) in the last observation cycle, which may be associated with the sensor
track.

e Dead-reckoned tracks. These are sensor track updates for which in the last observation cycle there
are no measurements that may be associated with the sensor track. For dead-reckoned tracks, the
sensor track information (e.g. kinematics) is extrapolated. The dead-reckoned tracks may
become"normal” tracks again if, in the next scan, there are measurement(s) that may be associated
with the track. Alternatively, dead-reckoned tracks (after n unsuccessful scans) may become lost
tracks.

e Lost tracks. These are sensor track updates that are reported once, if in the last n scans, there are no
measurements that may be associated with the sensor track. The value of n is typically a sensor
parameter that is managed by the service "Manage subsystem parameters".

Some sensors are not capable of reporting lost and/or dead-reckoned tracks.

The sensor may also provide single sensor tracks periodically or on event.

The service ends with success when:

e if the service does provide registration capabilities: the service "Register interest" has completed
successfully for a deregistration request, or

e if the service does not provide registration capabilities: the sensor is shutdown using service "Shut

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 193

down".

Pre-condition: Sensor health state The sensor and the service need to be in the health state
AVAILABLE or DEGRADED

Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies,
transmission sectors) need to be set".

' The manner in which this is done is described in other services of the OARIS (“Manage frequency

usage”, “Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).

Table 7.195 - Methods of IDLInterface Provide_Sensor_Tracks_CMS
Method Notes Parameters

write_sensor_track(The method represents a write ofa | Sensor_track _type
single sensor track (air, land, space | the sensor_track

or surface) to the CMS.

The write may be periodic or not.

write_sensor_track_set(The method represents a single write | Sensor_track _set_type
of a set of sensor tracks to the CMS. |the track set

The write may be:

- periodic or not

- include all tracks observed during a
sensor scan

- be an update of just one track (a set
of 1) if this is how the sensor works

sd Basic Flow - Sensor Track Reporting (Individual)/

«idlInterface» «idlInterface»
Provide_Sensor_Tracks CMS track_reporting_sub

loop /

[periodic]
write_sensor_track(sensor_track_type)

I I
| |
| |
| |
| |
| |
: :
n u
| |
| |
[[

This sequence diagram shows the style of reporting tracks individually.
Depending on the requested services, all tracks are reported or for instance
only tracks with a certain environment or jamming indication.

The messages may be sent periodically or on event (when a new track
update isavailable)

Figure 7.128 Basic Flow - Sensor Track Reporting (Individual) (Sequence diagram)

194 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Sensor Track Reporting (Sets)/

«idlInterface» «idlInterface»
Provide_Sensor_Tracks_CMS track_reporting_sub

loop /

[periodic]

write_sensor_track_set(sensor_track set_type)

I I
| |
| |
| |
| |
| |
| |
| |
| |
| |
T T
| |
| |
| |
I I

This sequence diagram shows the style of reporting tracks in batches; sets
containing one or more tracks are reported atomically.

Depending on the requested services, all tracks are reported or for instance only
tracks with a certain environment or jamming indication.

The messages may be sent periodically or on event (when a new track update is
available)

Figure 7.129 Basic Flow - Sensor Track Reporting (Sets) (Sequence diagram)

7.8.6 Tracking_Control

Parent Package: Sensor_Services
This package contains interfaces for the Tracking Control service.

7.8.6.1 Delete_Sensor_Track

Parent Package: Tracking_Control
This package contains interfaces for the Delete Sensor Track service.

7.8.6.1.1 Delete_Sensor_Track_CMS
Type: IDLInterface common_use_case_interface
Package: Delete_Sensor_Track

The sensor is requested to remove a specified track from its internal Track Data Base; obviously the
deleted track may come back (with another track identification number) within a few seconds if it was a
living track.

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Tracking capability Tracking capability is supported by the sensor, and CMS is aware that
actually the sensor may delete that track

Post-condition: Success CMS is informed of the successful deletion of the required track, and the next
track reporting shall no contain the deleted track. Obviously the deleted track may come back within a few
seconds if it was a living target, but with another identification number.

Post-condition: No Success CMS is informed of the request rejection and of the denial reason. No impact
on the sensor track management evolution.

7.8.6.1.2 Delete_Sensor_Track_Sub

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 195

Type: IDLInterface
Package: Delete_Sensor_Track
This is the Subsystem interface for deleting sensor tracks.

Table 7.196 - Methods of IDLInterface Delete_Sensor_Track_Sub

Method Notes Parameters
delete track(Method used by the CMS to send | sensor_track_id_type trackld
a track deletion request, request_id_type request_id

specifying the identification
number of the track to be deleted.

sd Basic Flow - Delete Sensor Track/

«idlInterface» «idlInterface»
Delete_Sensor_Track_CMS Delete_Sensor_Track_Sub

, T
' |
delete_track(sensor_track id_type, request_id) |

L:_I ;

receive_acknowledgement(request_id_type, !

< request_ack_type) "'

| ' |
,

|) |

| ' |

The deleted trackis not included
in the next track reporting returned
by the sensor.

Figure 7.130 Basic Flow - Delete Sensor Track (Sequence diagram)

196 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow - Delete Sensor Track /

«idlInterface» «idlInterface»
Delete_Sensor_Track_CMS Delete_Sensor_Track_Sub
I I
| |
| delete_track(sensor_track_id_type, request_id_type) |

|
|
|
1
alt |
|
C]

|

| receive_acknowledgement(request_id_type,
[l request_ack_type)
|
|
|
|
|

[Subsyst%m fails]

receive_acknowledgement(request_id_type, .
request_ack_type) CRIIEG 13
- = successfully
acknowledged but fails
receive_error(request_id, error_reason) before completion

|

|

!
m

|

I
)

|

l

|

I

Figure 7.131 Alternative Flow - Delete Sensor Track (Sequence diagram)

7.8.6.2 Receive_Track_Information

Parent Package: Tracking_Control
This package contains interfaces for the Receive Track Information service.

7.8.6.2.1 Receive_Track_Information_CMS
Type: IDLInterface common_use_case_interface
Package: Receive Track_Information

CMS may provide information belonging to a sensor track in order to enable for a coordinated
presentation of the sensor track both on CMS consoles and a dedicated radar console. The track
information which may be supplied are:

1. External track identification number

2. Additional Information — this is not specified as part of the interface, candidate information includes:
e Track type

e Track priority

e Track Identification Category Assigned (Pending, Friend, Assumed Friend, Neutral, Unknown,

Suspect, Hostile)

Track identities management

Each sensor track shall have an “Internal Track Identification Number” and may one or more additional
“External Track Identification Numbers”. The former shall be assigned by the sensor when the track is
formed and, as long as the track is alive, it cannot changed for any reason. The latter shall be set to
“none” when the track is formed and then overwritten, during the track life, to report the track identity/ies
externally assigned to the track.

All track identification numbers shall be reported together with the track data, but the track identification
shall be made through the “Internal Track Identification Number”.

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 197

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Tracking capability Tracking capability is supported by the sensor, and CMS is aware that
actually the sensor may manage that track

Pre-condition: Technical State Sensor is working in Operational

Post-condition: Success CMS is informed of the successful execution of the request, and the next track
reporting shall contain the identified track with the provided information.

Post-condition: No Success CMS is informed of the request rejection and of the denial reason. No impact
on the sensor track management evolution.

7.8.6.2.2 Receive_Track_Information_Sub
Type: IDLInterface
Package: Receive Track_Information

This is the Subsystem interface for receiving track information.

Table 7.197 - Methods of IDLInterface Receive_Track_Information_Sub

Method Notes Parameters
insert_info_track(Method used by the CMS to send | request_id_type request id
a receive track information sensor_track id_type trackld
request, specifying the track track_info trackInfo
identification number and related
track information.

sd Basic Flow - Receive Track Information /

«idlInterface» «idlInterface»
Receive_Track_Information_CMS Receive_Track_Information_Sub

T
|
insert_info_track(request_id_type, sensor_track_id_type, track_info) |

T

receive_acknowledgement(request_id_type,
< request_ack_type)
|

The sensor shall
provide the track
updates as per

"Provide Sensor

T eall
TTaCKS ™

Figure 7.132 Basic Flow - Receive Track Information (Sequence diagram)

198 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow - Receive Track Informa!ion/

«idlInterface» «idlInterface»
Receive_Track_Information_CMS Receive_Track_Information_Sub

I I
| |
| insert_info_track(request_id_type, sensor_track_id_type, track_info) |

alt
[Subsystem fejects request]

|
| receive_acknowledgement(request_id_type,

< request_ack_type)

[Subsystem {ails]

|
|
| receive_acknowledgement(request_id_type,

< request_ack_type) command is

successfully
acknowledged but fails
before completion

receive_error(request_id, error_reason)

JR A

The sensor shall not
provide the track
updates as per
"Provide Sensor
Tracks".

Figure 7.133 Alternative Flow - Receive Track Information (Sequence diagram)

7.8.6.3 Initiate_Track

Parent Package: Tracking_Control
This package contains interfaces for the Initiate Track service.

7.8.6.3.1 Initiate_Track_CMS
Type: IDLInterface common_use_case_interface
Package: Initiate_Track

The sensor is requested to start tracking on a new target based on given information, such as positional
data and additionally also kinematic data. Sensor replies indicating the request acceptance or rejection. If
accepted, the initiation of a new track shall be attempted as required, and the relevant result shall be
reported later through an “externally designated track initiation report” containing the identification number
of the resulting track (if any).

Additional Information

Data reported in the “externally designated track initiation request”

The provided information depends on the sensor type and its capabilities, typically they are:
» Identification number of the designation (mandatory)

* Position and time (mandatory)

» Accuracy of the provided positional data (optional)

» Velocity and relevant accuracy (optional)

» Track characteristics (optional)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 199

Data reported in the “externally designated track initiation report”

The purpose is this report is to inform CMS about the final result of the track initiation request, i.e. it
reports to CMS if the track has been successfully initiated or not, and (in case of success) the
identification number of the new formed track.

The provided information depends on the sensor type and its capabilities, typically they are:

» Identification number of the designation (mandatory)

* Initiation result (mandatory)

» Identification number of the initiated track, if any (mandatory)

 other info (optional).

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Post-condition: Success The setting of the tracking zones has been modified according to the request
and CMS is informed that this is the case.

Post-condition: No Success The setting of the tracking zones is unchanged with respect to the original
one and CMS is informed that this is the case.

Table 7.198 - Methods of IDLInterface Initiate_Track_CMS

Method Notes Parameters
report_track(Method used by the sensor to issue | request_id_type request id
an "externally designated track sensor_track id type id_report

initiation report” containing data of
the successfully initiated track.

7.8.6.3.2 Initiate_Track_Sub
Type: IDLInterface
Package: Initiate_Track

This is the Subsystem interface for initiating tracks.

Table 7.199 - Methods of IDLInterface Initiate_Track_Sub

Method Notes Parameters
initiate_track(Method used by the CMS to send an | request_id_type request id
"externally designated track system_track type track info

initiation request”, specifying a
timed position and kinematic.

200 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow Initiate Track /

«idlinterface»
Initiate_Track_ CMS

«idlInterface»

Initiate_Tra

ck_Sub

initiate_track(request_id_type, system_track)

T

[h%request_ack_type,

receive_acknowledgement(request_id_type,

report_track(request_id_type, sensor_track_id_type)

The sensor shall provide the
track updates as per "Provide
Sensor Tracks".

Figure 7.134 Basic Flow Initiate Track (Sequence diagram)

sd Alternative Flow - Initiate Track - loss of mastership /

«idlInterface»
Initiate_Track CMS

«idlInterface»
Initiate_Track_Sub

initiate_track(request_id_type, system_track)

7
I

I

I

I

I

I

L]

i

alt I

|
[Subsystem rgjects request]

receive_acknowledgement(request_id_type,

[Subsystem faiils]

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

command is
successfully

acknowledged but fails

before completion

|
I
|
)
l
|
l
1
)
!
|
|
|

Figure 7.135 Alternative Flow - Initiate Track - loss of mastership (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

201

7.8.6.4 Manage_Tracking_Zones

Parent Package: Tracking_Control
This package contains interfaces for the Manage Tracking Zones service.

7.8.6.4.1 Manage_Tracking_Zones_CMS
Type: IDLInterface common_use_case_interface
Package: Manage_Tracking_Zones

This controls the sensor tracking behaviour in selected zones, which may be 1D (delimited in azimuth
only), 2D (have additional elevation bounds) or 3D (have further range bounds). Depending on the zone
type the sensor may be requested to modify its normal tracking behaviour, such as enable/disable the
capability to auto initiate new tracks, or the capability of managing Track-On-Jammer. A list of typical
tracking zones is

e Automatic Track Initiation Zones

zones where the sensor is allowed to auto initiate new tracks. Depending on the sensor type and its
capabilities, such a type of zones may be delimited in azimuth only, or both in azimuth and elevation, or
may have further range bounds, and in some cases also additional constraints (such as target type,
velocity bounds, etc.).

» Track-On-Jammer Sectors

sectors where the sensor is allowed to manage Track-On-Jammer. Depending on the sensor type and its
capabilities, such a type of sectors may be delimited either in azimuth only or both in azimuth and
elevation.

» Multipath Devoted Tracking Sectors

sectors where the sensor is required to use, for tracking activities, devoted waveforms to reduce the
multipath effects. This capability is usually provided by multifunctional radars. Such a type of sectors is
usually limited in azimuth only, below a defined elevation.

The supported tracking zone types (names and characteristics) differ from sensor to sensor, so they shall
be handled as configuration parameters. They shall be offered to the operator to enable him for a
selection and then transferred to the sensor to achieve the intended response.

Special Requirements
Provision of the sensor tracking zones setting
Sensor shall keep CMS informed about the actual setting of the tracking zones and its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for
information to the subsystem.

Additional Information

Lack of mastership

In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual
setting of the tracking zones and its changes (if any).

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Pre-condition: Tracking zones setting CMS is aware of which types of tracking zones the sensor may
manage and of their current setting.

Post-condition: Success The setting of the tracking zones has been modified according to the request
and CMS is informed that this is the case.

Post-condition: No Success The setting of the tracking zones is unchanged with respect to the original
one and CMS is informed that this is the case.

Table 7.200 - Methods of IDLInterface Manage_Tracking_Zones_CMS
Method Notes Parameters

202 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

tracking_zone_setting(
an enable/disable tracking zone

request to the sensor.

Method used by the CMS to send | request_id_type request id

tracking zone set setting message

7.8.6.4.2 Manage_Tracking_Zones_Sub
Type: IDLInterface
Package: Manage_Tracking_Zones

This is the Subsystem interface for managing tracking zones.

Table 7.201 - Methods of IDLInterface Manage_Tracking_Zones_Sub

Method Notes

Parameters

Method used by the sensor to
return the actual setting of the
tracking zones modified
according to the request.

set_tracking_zone()

request_id_type request id
tracking zone set zone

sd Basic Flow - Manage Tracking Zone - Enable/Disable /

«idlInterface»
Manage_Tracking_Zones CMS

«idlInterface»

Manage_Tracking_Zones _Sub

set_tracking_zone(request_id_type, tracking_zone_set)

T

receive_acknowledgement(request_id_type,

< request_ack_type)

tracking_zone_setting(request_id, tracking_zone_set)

If tracking_zone_set
dimension is null, the
operation
set_tracking_zone get
all the current tracking
zones.

Figure 7.136 Basic Flow - Manage Tracking Zone - Enable/Disable (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

203

sd Alternative Flow - Manage Tracking Zone - Enable/Disable - loss of Mastership/

«idlInterface» «idlInterface»
Manage_Tracking_Zones CMS Manage_Tracking_Zones_Sub

In the operation
set_tracking_zone(request_id_type, tracking_zone_set) set_tracking_zone, the

[[

| |

| |

| |

| |
|_|, ! tracking_zone_set

|

|

|

parameter must be not
null

alt

[Subsystenli rejects request]
|
|
| receive_acknowledgement(request_id_type,
request_ack_type)

[Subsystenf fails]
|
|
|
|

receive_acknowledgement(request_id_type, command is

I?erequest_ack_type, successfully

acknowledged but fails
before completion

receive_error(request_id, error_reason)

tracking_zone_setting(request_id_type, tracking_zone_set)

|
|
|
(]
T
I
|
|
|
I
[
I
I

Figure 7.137 Alternative Flow - Manage Tracking Zone - Enable/Disable - loss of Mastership (Sequence
diagram)

7.9 Radar_Services

Parent Package: Service_Interfaces
Contains services associated with the Radar Domain.

7.9.1 Air_Engagement_Support
Parent Package: Radar_Services

7.9.1.1 Provide_Projectile_Positional_Information

Parent Package: Air_Engagement_Support

79.1.11 Provide_Projectile_Positional_Information_CMS
Type: IDLInterface common_use_case_interface
Package: Provide_Projectile_Positional_Information

Fire control radars suitable for Close-In-Weapon-Systems need the capability to observe the projectiles in
flight, to measure at which distance they pass the target so that related shot corrections for the gun may
be calculated, automatically. The measured distance in azimuth and elevation is called miss indication in
the following.

204 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

This capability may be available in a non-close-in-weapon-system environment, too. It may also be

available for phased-array radars.

Mastership of the subsystem must not have any impact upon the miss indication capability.

See also service 'Process Target Designation'.

Pre-condition:
Pre-condition:

"Process Target Designation" was successfully carried out and a target is being tracked.
CMS must have mastership.

Table 7.202 - Methods of IDLInterface Provide_Projectile_Positional_Information_CMS

indication.

Method Notes Parameters
report_miss_indication() Via this message, the subsystem | miss_indication_data_type
reports to the CMS the miss MissIndicationData

request_id_type RequestID

7.9.1.1.2 Provide_Projectile_Positional_Information_Sub
Type: IDLInterface
Package: Provide_Projectile_Positional_Information
Table 7.203 - Methods of IDLInterface Provide_Projectile_Positional_Information_Sub
Method Notes Parameters

request_miss_indication(

Request the subsystem to report
a miss indication.

request_id_type RequestID
expected hit_data_type
ExpectedHitData

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

205

sd Provide projectile positional information - Request reporting of miss indications /

«idlInterface» «idllnterface»
Provide_Projectile_Positional_Information_CMS Provide_Projectile_Positional_Information_Sub

request_miss_indication(request_id_type, expected_hit_data_type)

T
I
|
|
0
]

T
|
|
|
/‘_I'
alt request reporting of miss indication / ;
[basic flow] ! '
! receive_acknowledgement(request_id_type, request_ack_type) ! request_ack success = tmell‘
| |
loop CMS updates target position and velocity/ :
[until subsystem reports missindication.] |
: request_miss_indication(request_id_type, expected_hit_data_type) :
0 —4
| |
T |
: report_miss_indication(miss_indication_data_type, request_id_type) :
T L ooo.
[request rejection] I . . I
| receive_acknowledgement(request_id_type, request_ack_type) | L e o B‘
ITl LIJ request_acksuccess = false
L LTS o--
: | |
[processing error] | receive_acknowledgement(request_id_type, request_ack_type) |
7
| receive_error(request_id, error_reason) request_acksuccess = lfuell‘
| |

Figure 7.138 Provide projectile positional information - Request reporting of miss indications (Sequence
diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "request reporting of miss indications" of the service 'Provide
projectile position information'.

7.9.2 ‘Engagement_Support
Parent Package: Radar_Services

7.9.2.1 Process_Target_Designation

Parent Package: Engagement_Support

7.9.21.1 Process_Target_Designation_CMS
Type: IDLInterface common_use_case_interface
Package: Process_Target_Designation

Fire control radars are designed to perform one target engagement at a time with respect to an air,
surface or land target and provide the necessary information for a fire control solution regarding that
target.

The CMS selects a track and requests the fire control radar to acquire and track the target behind that
track. If the acquisition is successful the radar starts tracking the target and reporting fire control
information.

Some fire control radars provide information about one or more other targets appearing in its field of view
and may even provide associated sensor tracks. This is, however, not within the scope of this service

206 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

interface but covered by "Provide sensor tracks".

The fire control information may be plots and/or tracks, depending on the product.

On receiving the de-designation request the fire control radar stops following the target and stops

providing fire control information.

Phased array radars may include fire control capabilities as well. If they do, they provide a number of
‘virtual fire control radars’. To the extent that these virtual fire control radars are comparable in function
and performance, there may be no need for the CMS to select a specific fire control channel to be used

for a particular engagement.

In the case where the CMS looses or releases mastership of the subsystem, the subsystems ceases all

fire control activities.

A target designation to a weapon with its own fire control capabilities may be done in an analogous way.
In that sense, the service (interface) may also be employed by weapon systems.

Pre-condition:
Pre-condition:

CMS must have Mastership.
Technical state READY or ONLINE.

Table 7.204 - Methods of IDLInterface Process_Target_Designation_CMS

Method

Notes

Parameters

receive_fire_control_chann
el_released()

Via this message, the subsystem
confirms the release of a target
acquisition.

request_id_type RequestID
fire control channel id type
FireControlChannelID

receive_target_acquired(

Via this message, the subsystem
confirms the target acquisition.

request_id_type RequestID
sensor_track id type TrackID

fire_control channel id_type

FireControlChannellD

receive_target_dedesignati
onQ

Via this message, the subsystem
reports the de-designation of a
target.

request_id_type RequestID
sensor_track id type TrackID

receive—target—designation | Via this message, the subsystem | request—id—typeReguestb-
—eFFeF(-)_ o reports an error during target error—reason—type Brror-
- acquisition. - B
7.9.2.1.2 Process_Target_Designation_Sub
Type: IDLInterface
Package: Process_Target_Designation
Table 7.205 - Methods of IDLInterface Process_Target_Designation_Sub
Method Notes Parameters

dedesignate_target(

The subsystem is requested to
de-designate a fire control
channel.

request_id_type RequestID
re_control channel id type
FraeldDFireControlChannellD

designate_target by positi
onQ

The subsystem is requested to
designate a fire control channel
based on a position/kinematics.

request_id_type RequestID
kinematics_type PositionVelocity

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

207

designate_target_by track(| The subsystem is requested to | request_id_type RequestID
designate a fire control channel | gensor track id type TrackID
based on a track. T

7-9:24-3—Sensor Track Reporting

The sensor track reportin_g itself is not covered in this service interface. See the corresponding service
interface 'Sensor Track Reporting'.

7:9:244—Sensor Track Reporting

The sensor track reportin_g itself is not covered in this service interface. See the corresponding service
interface 'Sensor Track Reporting'.

208 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Process Target Designation - Designation by track /
«idlInterface» «idlInterface»
Process Target_Designation_CMS Process Target_Designation_Sub
T [
| |
: designate_target_by_track(request_id_type, sensor_track _id_type) :
0 —
| |
alt designation by track /| ;
[basic flow] [receive_acknowledgement(request_id_type, request_ack_type) [
L;J L;J request_acksuccess = true
| |
! !
loop target Ioss/ | |
| |
[while target may be tragked and/or acquired] |
| |
| receive_target_acquired(request_id_type, sensor_track id_type, :
fire_control_channel_id_type) |_'_|
| |
loop target reporting J :
[while target id acquired] |
| |
ref
Sensor Track Reporting
| |
T T
! receive_fire_control_channel_released(request_id_type, :
fire_control_channel_id_type) |_'_|
1 1
L L
alt de-designate not receiv ed before timeout condition / |
T |
| |
| receive_error(request_id, error_reason) |
O [
1 1
| |
| |
................... R R T e T
[request rejection] | |
| receive_acknowledgement(request_id_type, request_ack type) |
O O request_ack.success = false
| |
................... L JA I
[processing error] : :
| receive_acknowledgement(request_id_type, request_ack_type) |
O
|
| request_ack.success = true
| receive_error(request_id, error_reason)
| |

Figure 7.139 Process Target Designation - Designation by track (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "designate (target) by track" of the service "Process Target
Designation".

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 209

sd Process Target Designation - Designation by position /
«idlInterface» «idlInterface»
Process_Target_Designation_CMS Process _Target_Designation_Sub
T T
alt designation by position / i
[basic flow] : : request_acksuccess = true Iﬁ
loop targetloss / : :
[while target may be tracked and/or acquired] |
| |
- I
loop target acquisition / |
[attempt alkquisition] :
| |
| designate_target_by_position(request_id_type, kinematics_type) |
] [N
| |
! receive_acknowledgement(request_id_type, request_ack_type) '
| |
1 1
| |
! !
opt target succesfull acquired/ |
|
[once targ;at isacquired] |
| receive_target_acquired(request_id_type, sensor_track_id_type, !
fire_control_channel_id_type) Ll'l
1 1
loop target reporting |
|
[whilq target is acquired] |
1 1
ref .
Sensor Track Reporting
| |
[l [l
! receive_fire_control_channel_released(request_id_type, !
Lrl fire_control_channel_id_type) L|J
| |
. .
| |
alt de-designate not received before timeout condition / :
| |
! receive_error(request_id, error_reason) !
| |
"""" e e
[request rejection] | |
| designate_target_by position(request_id_type, kinematics_type) |
]
| -
| receive_acknowledgement(request_id_type, request_ack_type) REEUEEL EEEIEEEES = falsle}‘
| |
.................... g
[processing error] | |
: designate_target_by_position(request_id_type, kinematics_type) :
: receive_error(request_id, error_reason) request_ack success = truelﬁ
[J
| |

Figure 7.140 Process Target Designation - Designation by position (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "designate (target) by position" of the service "Process Target
Designation”.

210 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Process Target Designation - De-designation /

«idlInterface» «idlInterface»
Process Target_Designation_CMS Process Target_Designation_Sub

This sequence diagram
appliesto a fire control

T

|

|

|

dedesignate_target(request_id_type, fire_control_channel_id_type) :
g channel that has been

|

|

|

|

|

|

1

designated by position or by
track

alt dedesignation /

T
|
|
|
|
1
[
|
|
|
|
|
| .)
[basic flow] Ll_| receive_acknowledgement(request_id_type, request_ack_type)
|
|
|
|
1
|
|

request_acksuccess = true Iﬁ

receive_target_dedesignation(request_id_type, sensor_track id_type)

receive_acknowledgement(request_id_type, request_ack type)

. . request_acksuccess = true
receive_error(request_id, error_reason) -

Figure 7.141 Process Target Designation - De-designation (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "de-designate (target)" of the service "Process Target Designation". It applies to a fire control
channel that has been designated by position or by track.

7.9.2.2 Support_Kill_Assessment

Parent Package: Engagement_Support

7.9.2.21 Support_Kill_Assessment_CMS

Type: IDLInterface common_use_case_interface
Package: Support_Kill_Assessment

With this service the subsystem provides of kill assessment information to the CMS. The information
relates to an above water engagement primarily against an air target.

The kill assessment report of the subsystem may be one of the three:
e PROBABLE-KILL. This indicates that the subsystem assumes the target to be killed.

e PROBABLE-MISS. This indicates that the subsystem assumes the target to be missed by the used
weapon system.

e NO-RESULT. This indicates that the subsystem was not able to determine a valid result for this
request.

See also service (interface) "Process Target Designation".

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 211

Pre-condition: Service "Process Target Designation" successfully carried out.
Pre-condition: CMS must have Mastership.

Table 7.206 - Methods of IDLInterface Support_Kill_Assessment_CMS

Method Notes Parameters

report_kill_assessment_res | Via this message, the subsystem | request_id_type RequestID

ulto reports the kill assessment to the | kil assessment result_type
CMS. KillAssessmentReport

7.9.2.2.2 Support_Kill_Assessment_Sub

Type: IDLInterface

Package: Support_Kill_Assessment

Table 7.207 - Methods of IDLInterface Support_Kill_Assessment_Sub

Method Notes Parameters

request_Kkill_assessment() |The subsystemisrequestedto | request_id_type RequestID
evaluate and report a kill expected_hit data_type
assessment. KillAssessmentData

212 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Support Kill Assessment - Request Kill Assessment Support/

«idlInterface» «idlInterface»
Support_Kill_Assessment_CMS Support_Kill_Assessment_Sub

I
|
| request_kill_assessment(request_id_type,

I
|
|
Ll'l expected_hit_data_type) /LIJ
| |
alt request kill assessment support/ :
[basic flow] | . . |
| receive_acknowledgement(request_id_type, | request_ack.success = true
request_ack_type) L]
| |
loop kill assessment update/ i
[until kill asseqlsment report received] :
I request_kill_assessment(request_id_type, :
Ij] expected_hit_data_type) /LJ
| |
. .
| |
! report_kill_assessment_result(request_id_type, l
LIJ kill_assessment_result_type) L|_|
| |
"""" e e
[request rejection] | |
| receive_acknowledgement(request_id_type, |
O request_ack_type) O request_ack.success = false
| - |
| |
................. R T S T

[processing error]

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason) request_acksuccess = truﬁ

Figure 7.142 Basic Flow - Support Kill Assessment - Request Kill Assessment Support (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "request kill assessment support " of the service "Support Kill
Assessment".

7.9.2.3 Support_Surface_Target_Engagement

Parent Package: Engagement_Support

7.9.2.31 Support_Surface_Target_Engagement_CMS
Type: IDLInterface common_use_case_interface
Package: Support_Surface_Target Engagement

This service is intended for fire control radars, as well as surveillance radar systems that have facilities to
perform surface target engagements by means of dedicated fire control channels. These fire control
channels may need a differently parameterized or more elaborate track algorithm, and they may be
combined with related splash spotting video.

The CMS requests the surface track to be engaged. The maximum number of tracks that may be

engaged simultaneously is determined by the radar.
The functionality may also be available for land targets, provided they may be tracked by the radar.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 213

In the case where the CMS looses or releases mastership of the subsystem, a change of the availability
of fire control channels shall be indicated to the CMS. Fire control radars shall cease all fire control

activities.

The set of operational modes that make fire control channels available, as well as the number of available
channels shall be provided by means of service "Manage Subsystem Parameters".

Pre-condition:
Pre-condition:

Technical state ONLINE.
CMS must have Mastership.

Post-condition: Service ends with success - check availability - the CMS is informed about the availability

of fire control channels.

Post-condition: Service ends with success - target designation - the radar provides a fire control track for

the selected sensor track.

Post-condition: Service ends with success - reporting - the CMS receives regular updates of the fire

control track.

Post-condition: Service ends with success - de-designation - the fire control channel is de-assigned and

has become available.

Post-condition: Service ends with fail - target designation - the fire control channel is not assigned; no fire

control track.

Post-condition: Service ends with fail - surface track is lost - the fire control channel is not assigned; the
fire control track is terminated. The CMS is informed about the availability of fire control channel.
Post-condition: Service ends with Fail - de-designation - the fire control channel is not assigned.

Table 7.208 - Methods of IDLInterface Support_Surface_Target_ Engagement_CMS

Method

Notes

Parameters

report_availability _state of
fire_control_channels(

Via this interface method, the
number of available fire control
channels are returned from the
subsystem to the CMS. If no
channel is available, the value '0'
is returned.

request_id_type RequestID
available fire control channels_typ
¢ AvailableFireControlChannels

report_available fire contro
|_channel(

Via this interface method, the
number of available fire control
channels are returned from the
subsystem to the CMS.

request_id_type RequestID
fire_control channel id type
FireControlChannellD

report_selected_fire _control
_channel(

Via this interface method, the
selected fire control channel is
returned from the subsystem to
the CMS.

request_id_type RequestID
fire_control channel id type
FireControlChannelID
sensor_track id type SensorTrackld

7.9.2.3.2 Support_Surface_Target_Engagement_Sub
Type: IDLInterface
Package: Support_Surface_Target Engagement
Table 7.209 - Methods of IDLInterface Support_Surface_Target_Engagement_Sub
Method Notes Parameters

dedesignate fire_control_c
hannel(

Request to the subsystem to de-
designate a fire control channel.

request_id_type RequestID
fire_control channel id type
FireControlChannellD

designate fire _control _cha

Request to the subsystem to

request id_type request id

214

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

nnel(

sensor_track id type track id

request_availability_of_fire_ | Request to the subsystem to

control_channels(

report the available fire control
channels.

request_id_type RequestID

79:2.3:3—Support_Surface_Target_Engagement_CMS

7-9-2.3:4—Support_Surface_Target_Engagement_Sub

Tvoe: AetivitvPartiti
Package—Suppert—Surface—TFargetEngagement

7-9-2.3-5———sensor track reporting
Package:r—Suppert—Surface—Target_Engagement

sd Support surface target engagement - Check availability/

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»
Support_Surface_Target_Engagement_Sub

request_availability_of_fire_control_channels(request_id_type)

Returns the number of
available fire control
channels. If no channel is

receive_acknowledgement(request_id_type,

available, the value '0' is
retumned.

T
I
I
I
I
I
I

0
I
I
I
I
I
1

L
I
I
I
I
I
I

request_ack_type)

report_availability_state_of_fire_control_channels(request_id_type,

available_fire_control_channels_type)

Figure 7.143 Support surface target engagement - Check availability (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "check availability" of the service "Support surface target

engagement"”.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1

215

sd Support surface target engagement - Designate fire control channel /

«idlInterface» «idlInterface»
Support_Surface_Target_Engagement_CMS Support_Surface_Target_Engagement_Sub

T
|
|
designate_fire_control_channel(request_id_type, sensor_track_id_type) |

T
|
|
|
T 5

|
alt designate fire control channel / I
T |
|
|
1

[basic flow] |

! receive_acknowledgement(request_id_type,

< request_ack_type)

|
|
| This message corresponds with

the COMPLETE message.

request_acksuccess = true B‘

r.eport_selected_fire_control_channel(request_id_type,
[fire_control_channel_id_type,

éensor_track_id_type) Internglly, the asynchronous
i reporting of the fire control
channel has been triggered.

loop report fire control track (asynchronous)/

[while fire control chann%l is assigned] The reporting of fire control
| tracks is part of sensor track

ref reporting.
sensor track reporting

When the reporting ends, the
number of available fire
control channelsisreported.

I
|
|
|
report_available_fire_control_channel(request_id_type, |
fire_control_channel_id_type) |_I_|
|

|

|
: receive_acknowledgement(request_id_type, :

] request_ack_type)]
| |

[alternate flow: processing qrror] |

| |
receive_acknowledgement(request_id_type, |
request_ack_type)

request_ack.success = true Iﬁ

receive_error(request_id, error_reason)

T
!
H

Figure 7.144 Support surface target engagement - Designate fire control channel (Sequence diagram)
This sequence diagram shows how the CMS and the subsystem operate with each

other during the operation "designate fire control channel" of the service "Support
surface target engagement".

216 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Support surface target engagement - Dedesignate fire control channel /

«idlInterface» «idlInterface»
Support_Surface_Target_ Engagement_CMS Support_Surface_Target_ Engagement_Sub

T T
| |
| |

| dedesignate_fire_control_channel(request_id_type, |
I_II fire_control_channel_id_type) /|T|

1

|

|

|

alt dedesignate fire control channel/
I

receive_acknowledgement(request_id_type,
< request_ack_type)

[basic flow]

request_ack.success = true Iﬁ

|

|

|

| report_available_fire_control_channel(request_id_type,
] fire_control_channel_id_type)
|

- —

..................... Fmmmm e e e e oo e e e e e e e e e e e e e e m e mmmmooo -
[alternate flow: invalid fire corltrol channel id]
|

| receive_acknowledgement(request_id_type,
request_ack_type)

o---

@

Ke)

c

(0]

Isa

j)

[e]

3

1

(]

o

7]

"

=
7

|
|
..................... R e
[altemate flow: processing erroy]
|

—_————

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, emor_reason) request_ack success = tmeb‘

| I

|
1

0
|
|

Figure 7.145 Support surface target engagement - Dedesignate fire control channel (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "De-designate fire control channel" of the service "Support
surface target engagement”.

7.9.3 Missile_Guidance
Parent Package: Radar_Services

7.9.3.1 Perform_lllumination

Parent Package: Missile_Guidance

7.9.3.1.1 Perform_Illlumination_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_lllumination

This service covers the control of target illumination to support a semi-active homing missile engagement.
The actor is the Combat Management System.

The service is triggered by the illumination request of the actor. Typically, illumination takes place during a
specific period within the engagement sequence.

The actor sends an illumination request to the radar.

On the requested start time, the radar starts illuminating the target with specified parameters.

During the illumination, the actor may provide updates of illumination parameters, e.g. to change the stop
time.

The service ends at stop time of the illumination.

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 217

If the radar may not fulfil the illumination request, this is reported to the actor and the service stops.

If during the illumination a radar fault takes place that prevents execution of illumination (e.g. illumination
frequency not more available), the health state of the Missile Guidance service (of which this service is

part) becomes DEGRADED (if the Missile Guidance service is still capable of performing uplinks and/or
downlinks) or NOT AVAILABLE, and the service stops.

If the target track becomes lost during the illumination, the service stops.

Pre-condition: Sensor health state The sensor and the Missile Guidance service are in the health state
AVAILABLE or DEGRADED.

Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies,
transmission sectors) are set’.

' The manner in which this is done is described in other services of the OARIS (“Manage frequency

usage”, “Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).

Table 7.210 - Methods of IDLInterface Perform_lllumination_CMS

Method Notes Parameters

complete(request_id_type request id
7.9.3.1.2 Perform_lllumination_Sub

Type: IDLInterface

Package: Perform_lllumination

Table 7.211 - Methods of IDLInterface Perform_lllumination_Sub
Method Notes Parameters

request_illumination() request_id_type request id
illumination_request_type request

provide_track(system_track_type track

218 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - lllumination /

«idlInterface» «idlInterface»
Perform_lllumination_CMS Perform_lllumination_Sub

opt target track /

[subsystem is notltracking the target]
|

0
|
I
|

Target to be
illuminated

provide_track(system_track _type)

opt missile track /

[missile(s) need tb be illuminated aswell and subsystem is not tracking the missile(s)] For all missilesin
! engagement (if

provide_track(system_track_type) >
required)

|
]
|
T
|
|
|

request_illumination(request_id_type,

illumination_request_type)

T
|
I
|
|
T
|
:
I
|
i
|
O
|
|
|
O
!

Same method is used when requesting illumination for
the first time, as well as modifying the request later. In the|
latter case, a new request (with new request_id) shall be
issued for the same target.

alt

request_ack.accepted =

request_ack_type) true

|
|
|
|
|
|
|
|
|
|
|
!
|
|
[basic flow] | receive_acknowledgement(request_id_type,
]
|
|
|
|

loop illumination period /

[durin{; illumination period]
|

opt target track /

|

|

1

I

I

]
[}

|

|

|

|

T

|

|

I

I

t

I

[s{msystem is not tracking the target] :

L provide_track(system_track_type) L
) [}

|

I

|

t

I

I

I

I

,

1

|

|

|
)

opt missile track

[rqisile(s) need to be illuminated as well and subsystem is not tracking the missile(s)]

provide_track(system_track)

complete(request_id_type)

Rt E B S

[alternative flow:Irequest rejected]

request_ack.accepted =

receive_acknowledgement(request_id_type, request_ack) false

[altemnative flow::proceas' ng failed]

|
| receive_acknowledgement(request_id_type, request_ack)
request_ackaccepted =
ITI true
| receive_error(request_id_type, error_reason_type)

oI
|
l
|
|

Although not shown in this sequence diagram, processing may also fail after one
of more successful illuminations but before the end of the illumination period.

It is assumed that, at the moment of the illumination request, the kinematics of the sensor tracks for target and
own_missile(s) as referred to by the illumination_request are available to the subsystem.

This may be achieved in two ways:

1. The CMS provides the kinematics periodically to the subsystem, or

2. the subsystem itself is tracking the target and own_missile(s).

If this pre-condition is not satisfied, the receive_acknowledgement shall indicate that the request is not accepted.

When after some time the target and/or missile tracks are no longer available, the subsystem shall send receive _error
message with an appropriate error_reason.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 219

Figure 7.146 Basic Flow - lllumination (Sequence diagram)

7.9.3.2 Perform_Missile_Downlink

Parent Package: Missile_Guidance

7.9.3.21 Perform_Missile_Downlink_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Missile_Downlink

The service describes the reception and provision of missile downlink information to the CMS.

Downlink consists of transmission of energy by the missile. The radar subsystem may track a missile
based on these downlink transmissions (beacon track). Provision of the beacon track of the missile to the
CMS is covered by service Provide sensor tracks.

This service handles the situation where the downlink also has content.

Generally, a sequence of downlinks is transmitted by the missile, on periodic basis or triggered by an
uplink. However, the CMS (or a dedicated missile subsystem) is responsible for evaluating the downlinks
in this sequence. The radar subsystem only receives downlinks and provides them to the CMS, and does
not keep track of the sequence. In the special case where the downlink contains own missile kinematics,
this data may also be used internally by the radar subsystem.

The actor is the Combat Management System.

Although the downlink may be evaluated by a missile subsystem (which is not part of the CMS), the
downlink is assumed to be passed to that missile subsystem via the CMS.

The service is triggered by the downlink request of the actor.

The actor sends a downlink request to the radar.

During the request listening period, the radar listens to transmissions that are in accordance with the
provided downlink parameters.

The radar reports to the actor the occurrence of the downlink, including the (decoded) content of the
downlink.

The information provided by the missile may vary depending on the applied missile fire control principle,
and lies outside the scope of the OARIS standard.

The information within the downlink may be used internally by the radar.

The service ends at the end of the listening period.

If the downlink transmission is interrupted, this is reported to the actor, and the service stops.

If during the downlink a radar fault takes place that prevents execution of the downlink, the health state of
the Missile Guidance service (of which this service is part) becomes DEGRADED (if the Missile Guidance
service is still capable of performing uplinks and/or illumination) or NOT AVAILABLE, and the service
stops.

Relationship to missile uplink

For some missile types a downlink may be transmitted as a response to a received uplink (e.g. an
acknowledge of receipt). This relationship (including the inherent timing relationship) depends heavily on
the missile type and lies outside the scope of the OARIS standard.

Relationship to provide sensor tracks

If the downlink contains kinematic information about the missile, the radar subsystem may use this
information internally to improve the own missile track (provided service Provide sensor tracks or service
Process target designation).

It is also possible that the missile is tracked based on the fact that it transmits energy and not based on
the contents of the downlink. This so-called beacon tracking is covered by service Provide sensor tracks.

220 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

Pre-condition: Sensor health state The sensor and the Missile Guidance service are in the health state
AVAILABLE or DEGRADED.

Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies,
transmission sectors) are set'.

' The manner in which this is done is described in other services of the OARIS (“Manage frequency
usage”, “Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).
Pre-condition: Engagement phase An engagement must be taking place.

Pre-condition: Missile downlink parameters The parameters of the missile downlink transmission must
be known to the radar. Note that this does not concern the content of the transmission, but rather the

transmission characteristics (e.g. frequency).

Table 7.212 - Methods of IDLInterface Perform_Missile_Downlink_CMS

Method Notes Parameters

report_downlink(request_id_type request id
downlink report the downlink info

complete(request_id_type request id

7.9.3.2.2 Perform_Missile_Downlink_Sub

Type: IDLInterface

Package: Perform_Missile_Downlink

Table 7.213 - Methods of IDLInterface Perform_Missile_Downlink_Sub
Method Notes Parameters

request_downlink() request_id_type request id
downlink request request

provide_track() system_track_type track

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 221

222

sd Basic Flow - Downlink/

«idlInterface»

Perform_Missile_Downlink_ CMS

«idlInterface»
Perform_Missile_Downlink_Sub

opt missile track /

[missile track is required and subsystem is not tracking the missile]

provide_track(system_track_type)

Missile from which a
downlink shall be

[altemative flow: ;#roceeﬁing failed]
!

7

receive_acknowledgement(request_id_type,

request_ack_type)

Although not shown in this sequence diagram, processing may also fail after one of
more successful downlink reports but before the end of the listening period. (In this
case there is a positive acknowledgement followed by some downlinks and then an
error isreceived).

receive_error(request_id_type, error_reason_type)

T
|
|
|
|
!
|
|
| |
1 1
L:J L;'I received
| |
| |
| |
! request_downlink(request_id_type, :
Iﬂ] downlink_request)]
| |
! !
| |
+ +
alt | |
. | |
[basic flow] | receive_acknowledgement(request_id_type, | request_ackaccepted =
request_ack_type) |T| true
| |
| |
L +
loop downlink period |
[during listenipg period] :
| |
opt missile track :
[mi:m'le trackis required and subsystem is not tracking the missile] :
|
provide_track(system_track) |
]
|
I
|
!
report_downlink(request_id_type, downlink_report) : Downlink report may b
|} periodic or aperiodic.
|
!
|
[l
|
complete(request_id_type) :
]
|
|
... R R LR
[altemative flow: fequest rejected] —B
| -
| receive_acknowledgement(request_id_type, request_ackaccepted =
< request_ack_type) false

request_ackaccepted =
true

The request_downlink operation has not been identified in the service Description.
The reasons for introducing it here are:
1. There are no provisions (e.g. services) to satisfy the missile downlink parameters precondition.
2. The CMS isonly interested in downlinkinformation from own missilesin flight belonging to an active engagement.
3. Generally, the missile downlink parameters (e.g. frequency) are engagement dependent.

Open Architecture Radar Interface Standard (OARIS), 6

vl.1

Figure 7.147 Basic Flow - Downlink (Sequence diagram)

7.9.3.3 Perform_Missile_Uplink

Parent Package: Missile_Guidance

7.9.3.3.1 Perform_Missile_Uplink_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Missile_Uplink

The service describes the execution of uplink of relevant information from the radar to the missile in flight
during an engagement.

Generally, a sequence of uplinks (of various types) must be transmitted to a missile during an
engagement. However, the CMS (or a dedicated missile subsystem) is responsible for planning and
requesting the correct sequence of uplinks. The radar subsystem only transmits an uplink on request of
the CMS. Therefore, this service starts with the request of a single uplink and ends when the radar
subsystem has transmitted the uplink.

The actor is the Combat Management System. Although the uplink may be initiated by a missile
subsystem (which is not part of the CMS), the uplink is assumed to be passed through the CMS to the
radar subsystem.

The service is triggered by the uplink request of the actor.

The actor sends an uplink request to the radar.

At the requested time, the radar sends the uplink to the missile in accordance with the provided uplink
parameters.

The information provided to the missile may vary depending on the applied missile fire control principle,
and lies outside the scope of the OARIS standard.

The service ends when the radar has confirmed the transmission of the uplink.

If the radar may not fulfil the uplink request, this is reported to the actor and the service stops.

If during the uplink a radar fault takes place that prevents execution of the uplink (e.g. uplink frequency
not more available), the health state of the Missile Guidance service (of which this service is part)
becomes DEGRADED (if the Missile Guidance service is still capable of performing illumination and/or
downlinks) or NOT AVAILABLE, and the service stops.

If the missile track becomes lost during the uplink, the service stops.

Network Centric engagements

In Network-Centric or Network-Enabled systems, guidance of the missile may be transferred during the
flight of the missile to another surface platform. As the related technologies are still being developed, it
shall be too early to include specific NEC requirements here. However, care should be taken in the design
of OARIS that such capabilities could be included at a later date. This means that there should be no
built-in restrictions in the standard, which would prevent addition of such facilities in the future.

Relationship to missile downlink

For some missile types an uplink transmission may trigger the transmission of a downlink by the missile
(e.g. an acknowledge of receipt). This relation depends heavily on the missile type and lies outside the
scope of the OARIS standard.

Pre-condition: Sensor health state The sensor and the Missile Guidance service are in the health state
AVAILABLE or DEGRADED.

Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies,
transmission sectors) are set'.

Open Architecture Radar Interface Standard (OARIS), ¥+0v1.1 223

' The manner in which this is done is described in other services of the OARIS (“Manage frequency
usage”, “Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).
Pre-condition: Engagement phase An engagement must be taking place.

Pre-condition: Known position of missile The position of the missile must be known, i.e. own missile

track must exist. The missile track may be provided by the CMS or by the radar subsystem itself.

Table 7.214 - Methods of IDLInterface Perform_Missile_Uplink_CMS

Method Notes Parameters

report_uplink_completed() request_id_type request id
uplink report_type report

7.9.3.3.2 Perform_Missile_Uplink_Sub
Type: IDLInterface
Package: Perform_Missile_Uplink

Table 7.215 - Methods of IDLInterface Perform_Missile_Uplink_Sub

Method Notes Parameters

request_uplink(request_id_type request id
uplink request_type request

provide track(system_track_type track

224 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Basic Flow - Uplink/

«idlInterface» «idlInterface»
Perform_Missile_Uplink_ CMS Perform_Missile_Uplink_Sub

opt missile track

Missile to which the

[subsystem is not tracking the missile]

T
|
|
|
1
|
|
) |
| provide_track(system_track_type) | uplink shall be
Lll /‘—I' transmitted
| |
| |
| |
| |
| request_uplink(request_id_type, |
] uplink_request_type) =11
]]
| |
| |
I I
alt | |
[basic flow] : : request_ackaccepted =
receive_acknowledgement(request_id_type, | true
< request_ack_type)
|
| report_uplink_completed(request_id_type,
ﬁuplink_repon_type)
| |
............. e e
[altemative flow: rgquest rejected] |
| | N\
. |)
receive_acknowledgement(request_id_type, | MR EasEed
request_ack_type)]
! false
|
|

[altemative flow: processing failed]
|

| receive_acknowledgement(request_id_type,

request_ack.accepted =
request_ack_type)

true

receive_error(request_id_type, error_reason_type)

I

!
C1

[

!

Figure 7.148 Basic Flow - Uplink (Sequence diagram)

7.9.4 Search

Parent Package: Radar_Services

7.9.4.1 Perform_Cued_Search

Parent Package: Search

79.4.11 Perform_Cued_Search_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Cued_Search

The CMS Search Interface.
The subsystem is requested to undertake a cued search in the requested cue volume or to the requested
track. The cue may be 1D (azimuth only), 2D (has an additional elevation constraint), 3D (has a further

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 225

range constraint) or 4D (has a further target velocity constraint). The response of the subsystem is either
to reject the cued search request if it is invalid within the current mode/configuration or to provide a cue
request reply containing data relating to any resulting tracks.

Depending upon the individual radar it may be possible to predefine a cued search waveform

The cued search request may contain azimuth, elevation and range data along with time of the positional
data.

Pre-condition: Technical State The Subsystem is in Technical State ONLINE.

Pre-condition: Mastership The CMS has Mastership

Pre-condition: Subsystem Services The Provide Subsystem Services Service has been executed
successfully.

Post-condition: Success The CMS has received a 'Cued Search Report'

Post-condition: Failure The CMS has not received a 'Cued Search Report'

Table 7.216 - Methods of IDLInterface Perform_Cued_Search_CMS

Method Notes Parameters

report_cued_search_result(| Send a report to the CMS cued_search_report_type
Cont_am'ng the results of a result_report The result of the search.
previously cued search. request_id_type request_id The

unique id relating to this cued search
request as supplied by the CMS.

7.9.4.1.2 Perform_Cued_Search_Sub
Type: IDLInterface
Package: Perform_Cued_Search

The Subsystem Search Interface.

Table 7.217 - Methods of IDLInterface Perform_Cued_Search_Sub

Method Notes Parameters
perform_cued_search() Request to subsystem to perform | cued_search_cue_type

a cued search in accordance with | constraint The details of the

the given set of constraints. constraints on where the radar is to

look for tracks.

request_id_type request_id The
unique id for this request. The radar
includes this in all replies relating to
this request.

perform_cue_to_track(Request to subsystem to perform asensor_track_id_type
cue to the position of a track sensor_track id The identifier of
produced by a different the track to cue to.
subsystem. string subsystem_name The name of

the subsystem that produced the
track to cue to.

request _id type request id The unique
id for this request. The radar
includes this in all replies relating
to this request.

—

226 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Alternative Flow - Sensor does not Perform Cued Search /

«idlInterface» «idlInterface»
Perform_Cued_Search_CMS Perform_Cued_Search_Sub

I I
| |
| perform_cued_search(cued_search_cue_type, |

E‘I]irequest_id_type;

opt Negative Acknowledgement/

T
[Subsystem has incorrect infernal mode for a cued search]
|

|
LI
|
|
|
i
|
|
|

receive_acknowledgement(request_id, request_ack)

opt Subsystem search failure/

[Subsystem encounter§I an error condition in performing a cued search]
receive_error(request_id, error_reason)

|
]

|

|

Failure to form a track from a cued search is not
an error condition.Thisresultsin a report without
a track identifier being retumed.

Figure 7.149 Alternative Flow - Sensor does not Perform Cued Search (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1 227

sd Basic Flow - Perform Cued Search /

Perform_Cued_Search_CMS

«idlInterface»

The cued search
report may not
contain a track
identifier resulting
from the search.

«idlInterface»

Perform_Cued_Search_Sub

perform_cued_search(cued_search_cue_type, request_id_type)

T

|

|

|

|

|

| receive_acknowledgement(request_id_type,
|_|| request_ack_type)

|

|

: report_cued_search_result(cued_search_report_type, request_id_type)
]

1

loop

[Morne than one track found]

report_cued_search_result(cued_search_report_type, request_id_type)

e ——

228

Figure 7.150 Basic Flow - Perform Cued Search (Sequence diagram)

Open Architecture Radar Interface Standard (OARIS), 6

vl.1

sd Alternative Flow - Sensor does not Perform Cued To Track /

«idlInterface»

Perform_Cued_Search_CMS Perform_Cued_Search_Sub

«idlInterface»

perform_cue_to_track(sensor_track id_type, string, request_id_type)

|
T

opt Negative Acknowledgement/

T
[Subsystem has incorrect infernal mode for a cued search]

! receive_acknowledgement(request_id, request_ack)

|
LI
|
|
|
i
|
|
|

opt Subsystem search failure/

[Subsystem encounterﬁI an error condition in performing a cued search]
receive_error(request_id, error_reason)

|
]

|

|

Failure to form a track from a cue to trackis not
an error condition. Thisresultsin a report without
a track identifier being retumed.

Figure 7.151 Alternative Flow - Sensor does not Perform Cued To Track

(Sequence diagram)

sd Basic Flow - Perform Cued To Track /

«idlInterface»
Perform_Cued_Search_CMS

perform_cue_to_track(sensor_track id_type, string, request_id_type)

«idlInterface»
Perform_Cued_Search_Sub

T

|

|

|

|

|

| receive_acknowledgement(request_id_type,

[} request_ack_type)

|

|
The cued search report |
may not contain a track | .
identifier resulting from | report_cued_search_result(cued_search_report_type, request_id_type)
the search. LIJ

|

1

loop

[More| than one track found]
: report_cued_search_result(cued_search_report_type, request_id_type)

m

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

229

Figure 7.152 Basic Flow - Perform Cued To Track (Sequence diagram)

7.9.5 Surface_Engagement_Support
Parent Package: Radar_Services

7.9.5.1 Perform_Splash_Spotting

Parent Package: Surface_Engagement_Support
7.9.51.1 Perform_Splash_Spotting_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Splash_Spotting

Surveillance radar systems may support engagements against surface targets by means of a splash
spotting video or measured splash positions. In the vicinity of the target a signal processing is applied
which is optimized to observe splashes of the shells hitting the sea surface.

The splash spotting information may be used to achieve shot corrections for a running engagement. The
engagement may use a fire control channel of the radar but also of another device like fire control radar.
The CMS requests the radar to localize a splash spotting area at a defined position derived from the
target kinematics.

The use of splash spotting areas may be limited to fire control channels of the radar. Then, only the
localization of a splash spotting area may be done in accordance with this service. Normally, it shall be
localized at the predicted hitting point.

These splash spotting areas shall not differ in terms of function and performance so that the selection of
the area to be applied to an engagement may be done by the radar, automatically. The CMS just
indicates where to localize it.

If mastership is lost during execution in any of the flows the services are terminated.

Pre-condition: Technical state ONLINE.

Pre-condition: Assigned fire control channel. - a fire control channel has been assigned using "Support
Surface Target Engagement”

Pre-condition: CMS must have Mastership

Post-condition: Success: The subsystem provides splash spotting videos as long as the splash spotting
areas are active.

Post-condition: No success: The subsystem does not perform as requested.

Table 7.218 - Methods of IDLInterface Perform_Splash_Spotting_CMS

Method Notes Parameters
confirm_reposition_splash_ | Via this method, the request for | request_id_type RequestID
splotting_area(the repositioning of a splash splash_spotting_area id_type
- spotting area is confirmed by the SplashSpottingArealD
subsystem.
confirm_splash_spotting_ar | Via this method, the request for | request_id_type RequestID
ea_deactivation(the deactivation of a splash splash_spotting area _id_type
- spotting area is confirmed by the | gplashSpottingAreald
subsystem.
receive_splash_splotting_ar | Via this method, the request for a | request_id_type RequestID

230 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

SplashSpottingArealD

receive_splash_splotting_ar
ea_track(

Via this method, the request for a
new splash spotting area based
on a track is confirmed by the
subsystem.

request_id_type RequestID
splash_spotting area id type
SplashSpottingArealD

report_splash_spotting_are
a_activation_state(

Via this interface, the splash
spotting areas are reported to the
CMS.

request_id_type RequestID
splash_spotting area set type
SplashSpottingAreaSet

7.9.5.1.2 Perform_Splash_Spotting_Sub
Type: IDLInterface
Package: Perform_Splash_Spotting
Table 7.219 - Methods of IDLInterface Perform_Splash_Spotting_Sub
Method Notes Parameters

activate_splash_spotting_ar
ea_by_ position()

Requests the subsystem to
activate a new splash spotting
area based on a area/position.

request_id_type RequestID
splash_spotting_area position_type
SplashSpottingAreaPosition

activate_splash_spotting_ar
ea_by_track(

Requests the subsystem to
activate a new splash spotting
area based on a sensor track.

request_id_type RequestID
sensor_track id type TrackID

deactivate_splash_spotting
_area(

Requests the subsystem to de-
activate a splash spotting area.

request_id_type RequestID
splash_spotting area id type
SplashSpottingArealD

report_splash_spotting_info
rmation()

Requests the subsystem to report
splash spotting
information/splash positions for
an existing splash spotting area.

request_id_type RequestID
splash_spotting_area id type
SplashSpottingArealD

reposition_splash_spotting_
area()

Requests the subsystem to
reposition a existing splash
spotting area.

request_id_type RequestID
splash_spotting_area id type
SplashSpottingArealD
splash_spotting area position_type
SplashSpottingAreaPosition

request_splash_spotting_ar
eas()

Request the subsystem to report
the splash spotting areas to the
CMS.

request_id_type RequestID

7-9-5:4-3—Perform_Splash_Spotting_ CMS

7-9-5:-4—Perform_Splash_Spotting_Sub

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

231

sd Perform Splash Spotting - Check Activation /

«idlInterface» «idlInterface»
Perform_Splash_Spotting_ CMS Perform_Splash_Spotting_Sub

I
|
|
request_splash_spotting_areas(request_id_type) :

receive_acknowledgement(request_id_type, request_ack_type)

report_splash_spotting_area_activation_state(request_id_type,
splash_spotting_area_set_type)

;
:
!

Figure 7.153 Perform Splash Spotting - Check Activation (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "check activation" of the service "Perform splash spotting".

232 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Perform Splash Spotting - Activate Splash Spotting Area by Position/

«idlInterface»
Perform_Splash_Spotting_CMS

activate_splash_spotting_area_by_position(request_id_type,

«idlInterface»
Perform_Splash_Spotting_Sub

T
|
|
|
|
[} splash_spotting_area_position_type)
|
|
|

[alternate flow: no inr{ctive splash spotting area]

receive_acknowledgement(request_id_type, request_ack_type)

T
|
|
|
|
g
|
|
|
alt activate splash spotting area by position / i
[basic flow] ! |
! receive_acknowledgement(request_id_type, request_ack_type) '
| request_acksuccess = truelﬁ
receive_splash_splotting_area_position(request_id_type,
splash_spotting_area_id_type)
|
............... o

request_acksuccess = true Iﬁ

Figure 7.154 Perform Splash Spotting - Activate Splash Spotting Area by Position (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "activate splash spotting area by position" of the service

"Perform Splash Spotting".

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

233

sd Perform Splash Spotting - Re-position Splash Spotting Area /

«idlInterface» «idlInterface»
Perform_Splash_Spotting_CMS Perform_Splash_Spotting_Sub

reposition_splash_spotting_area(request_id_type,
splash_spotting_area_id_type, splash_spotting_area_position_type) =
|

alt re-position splash spotting area /

|
|
[basic flow] :
|

receive_acknowledgement(request_id_type, request_ack_type)

request_acksuccess = truell‘

confirm_reposition_splash_splotting_area(request_id_type,
splash_spotting_area_id_type)

[alternate flow: invalid sp{ash spotting area parameters]

|
|
| . . |
|_I| receive_acknowledgement(request_id_type, request_ack type) |l| request_acksuccess = false
| |
__________________ O
[alternate flow: error] : :
| receive_acknowledgement(request_id_type, request_ack type) |
]
| request_acksuccess = true
| receive_eror(request_id, error_reason)
O
|
|

Figure 7.155 Perform Splash Spotting - Re-position Splash Spotting Area (Sequence diagram)
This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "reposition splash spotting area" of the service "Perform
splash spotting".

234 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Perform Splash Spotting - Activate Splash Spotting Area by Fire Control Track /

«idlInterface»

«idlInterface»

Perform_Splash_Spotting_CMS Perform_Splash_Spotting_Sub

T
|
|
| activate_splash_spotting_area_by_track(request_id_type,

sensor_track_id_type)
|
|

alt activate splash spotting area by track/

[basic flow] |
receive_acknowledgement(request_id_type, request_ack_type)

I IS

!
0
|
|

receive_splash_splotting_area_track(request_id_type,

request_acksuccess = truli

splash_spotting_area_id_type)

[altemate flow: request tejected]

|
| receive_acknowledgement(request_id_type, request_ack_type)

[altemate flow: error] receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

request_acksuccess = trule}‘

Figure 7.156 Perform Splash Spotting - Activate Splash Spotting Area by Fire Control Track (Sequence

diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "activate splash spotting area by fire control track" of the

service "Perform splash spotting".

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

235

sd Perform Splash Spotting - Report On Splash Splotting Information /
«idlInterface» «idlInterface»
Perform_Splash_Spotting_ CMS Perform_Splash_Spotting_Sub
[[
| |
| |
| report_splash_spotting_information(request_id_type, splash_spotting_area_id_type) |
7 -
| |
alt report on splash spotting information / |
[basic flow] | |
| receive_acknowledgement(request_id_type, request_ack type) | request_acksuccess = true
]]
| |
| |
ref
Report measured splash positions
|]
| |
"""""" P
[alternate flow: fejection] |
| |
[receive_acknowledgement(request_id_type, request_ack_type) [
L;J Lrl request_ack.success = false
| |
____________ It JE
[alternate flow: %arror] :
: receive_acknowledgement(request_id_type, request_ack_type) :
[}
: receive_error(request_id, error_reason) request_acksuccess = true Iﬁ
O
|
| |

Figure 7.157 Perform Splash Spotting - Report On Splash Splotting Information (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "report on splash spotting information" of the service
"Perform splash spotting".

236 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

sd Perform Splash Spotting - Deactivate Splash Spotting Area /

«idlInterface»
Perform_Splash_Spotting_CMS

Perform_Splash_Spotting_Sub

«idlInterface»

deactivate_splash_spotting_area(request_id_type,

|
|
|
|
|_|| splash_spotting_area_id_type)
|

alt deactivate splash spotting area/

[basic flow] |
receive_acknowledgement(request_id_type, request_ack_type)

|
|
|
|
5
|
|
|
|
|

T

confirm_splash_spotting_area_deactivation(request_id_type,

request_acksuccess = truelﬁ

splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

request_acksuccess = tmelﬁ

|

|

|
|

|

| .)

| receive_error(request_id, error_reason)
I

|

|

Figure 7.158 Perform Splash Spotting - Deactivate Splash Spotting Area (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each
other during the operation "deactivate splash spotting area" of the service "Perform

splash spotting".

Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

237

8 Platform-Specific Models

8.1 DDS Data Model PSM

The DDS Data Model PSM defines a set of IDL files for the Data Model packages defined by the PIM.
Comments are added to the IDL files to reflect the mapping rules below.

The detailed rules for the MDA code generation from the Data Model PIM to the DDS PSM IDL are as
follows:

e The PIM attributes are mapped to IDL attributes;

e Optional attributes are mapped to a union type with a single member present when the exists case
attribute is true;

e Collections in the PIM are mapped to IDL sequences;

e Specialization / Generalization PIM relationships are mapped to IDL unions. Additional data classes
are introduced for generalization classes that have attributes

8.2 DDS Services PSM

The DDS Services PSM defines IDL files for each package defined in the Services PIM. For each method
on each interface class an IDL struct for a DDS topic named for the method is generated; each parameter
is mapped to an attribute of the IDL struct. Note that the PIM only defines parameters with an 'in' mode,
there are no 'return' parameters defined and all methods have at least one parameter. Comments are
generated to match the PIM notes and to include the version number of this standard in each file.
Additionally the struct contains a subsystem_id key attribute of type subsystem_id_type. This indicates
which subsystem published the data or is intended to read it as a subscriber.

To robustly and efficiently ensure that the data exchanged between a particular subsystem and a CMS is

recognised correctly, topic samples pertaining to a particular subsystem are published on the partition
corresponding to the name used in the Subsystem Identification use case. Also, the CMS uses the
receive_cms_identification_data topic to allocate a subsystem_id to a subsystem; the subsystem sets the
subsystem_id to zero for the receive_subsystem_identification_data topic, for which the CMS subscribes
on the wildcard partition "*". Subsequently, for data intended for all subsystems, the CMS publishes

nin

samples on partition with a subsystem id of zero.

However, the Register Interest use case is mapped to the DDS DCPS Reader Listener interface and the
Provide Subsystem Services use case is mapped to the DDS DCPS Data Reader and Data Writer
interfaces, so there are no IDL files for these use cases.

238 Open Architecture Radar Interface Standard (OARIS), ¥+6v1.1

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgements

	7 Open Architecture Radar Information Specification
	7.1 Introduction
	7.1.1 Document Structure

	7.2 Usage Overview
	7.3 Common_Types
	7.3.1 anonymous_blob_type
	7.3.2 identity_type
	7.3.3 subsystem_id_type
	7.3.4 system_track_id_type
	7.3.5 time_type
	7.3.6 System_Track
	7.3.6.1 system_track_type

	7.3.7 Coordinates_and_Positions
	7.3.7.1 absolute_duration_type
	7.3.7.2 altitude_coordinate_type
	7.3.7.3 angle_of_climb_type
	7.3.7.4 azimuth_coordinate_type
	7.3.7.5 azimuth_interval_type
	7.3.7.6 azimuth_qualification_type
	7.3.7.7 azimuth_rate_type
	7.3.7.8 cartesian_coordinate_type
	7.3.7.9 cartesian_interval_type
	7.3.7.10 cartesian_position_type
	7.3.7.11 cartesian_velocity_component_type
	7.3.7.12 cartesian_velocity_type
	7.3.7.13 coordinate_kind_type
	7.3.7.14 coordinate_orientation_type
	7.3.7.15 coordinate_origin_type
	7.3.7.16 coordinate_specification_type
	7.3.7.17 course_type
	7.3.7.18 covariance_matrix_type
	7.3.7.19 diagonal_covariance_matrix_type
	7.3.7.20 duration_type
	7.3.7.21 elevation_coordinate_type
	7.3.7.22 elevation_interval_type
	7.3.7.23 elevation_qualification_type
	7.3.7.24 elevation_rate_type
	7.3.7.25 full_covariance_matrix_type
	7.3.7.26 height_interval_type
	7.3.7.27 latitude_coordinate_type
	7.3.7.28 latitude_interval_type
	7.3.7.29 longitude_coordinate_type
	7.3.7.30 longitude_interval_type
	7.3.7.31 polar_position_type
	7.3.7.32 polar_velocity_type
	7.3.7.33 position_accuracy_coordinate_type
	7.3.7.34 position_coordinate_type
	7.3.7.35 range_coordinate_type
	7.3.7.36 range_interval_type
	7.3.7.37 range_qualification_type
	7.3.7.38 range_rate_type
	7.3.7.39 speed_interval_type
	7.3.7.40 speed_type
	7.3.7.41 velocity_accuracy_coordinate_type
	7.3.7.42 velocity_coordinate_type
	7.3.7.43 wgs84_position_type
	7.3.7.44 wgs84_velocity_type
	7.3.7.45 cartesian_position_accuracy_type
	7.3.7.46 cartesian_velocity_accuracy_type
	7.3.7.47 polar_position_accuracy_type
	7.3.7.48 polar_velocity_accuracy_type
	7.3.7.49 wgs84_position_accuracy_type
	7.3.7.50 wgs84_velocity_accuracy_type

	7.3.8 Shape_Model
	7.3.8.1 figure_ref_point
	7.3.8.2 general_polar_volume_type
	7.3.8.3 polar_volume_type
	7.3.8.4 sector_type
	7.3.8.5 truncated_polar_volume_type
	7.3.8.6 truncated_sector_type

	7.3.9 Requests
	7.3.9.1 denial_reason_type
	7.3.9.2 denial_type
	7.3.9.3 error_reason_type
	7.3.9.4 parameter_reference_type
	7.3.9.5 request_ack_type
	7.3.9.6 request_id_type
	7.3.9.7 common_use_case_interface

	7.4 Subsystem_Domain
	7.4.1 Encyclopaedic_Support
	7.4.1.1 data_descriptor_type
	7.4.1.2 url_type

	7.4.2 Extended_Subsystem_Control
	7.4.2.1 configuration_url_type
	7.4.2.2 offline_test_result_details_type
	7.4.2.3 offline_test_result_type
	7.4.2.4 offline_test_type

	7.4.3 Recording_and_Replay
	7.4.3.1 actual_time_type
	7.4.3.2 change_threshold_type
	7.4.3.3 parameter_type
	7.4.3.4 rate_type
	7.4.3.5 record_on_change_type
	7.4.3.6 recorded_data_type
	7.4.3.7 recorded_time_type
	7.4.3.8 recording_descriptor_type
	7.4.3.9 recording_id_type
	7.4.3.10 recording_set_type
	7.4.3.11 recording_type
	7.4.3.12 replay_set_type
	7.4.3.13 replay_speed_type

	7.4.4 Simulation_Support
	7.4.4.1 fault_script_id_type
	7.4.4.2 fault_script_ids_type
	7.4.4.3 fault_script_type
	7.4.4.4 fault_scripts_type
	7.4.4.5 sim_mode_status_type
	7.4.4.6 start_stop_sim_mode_request_type
	7.4.4.7 stop_freeze_session_request_type

	7.4.5 Subsystem_Control
	7.4.5.1 service_name_type
	7.4.5.2 battle_override_state_type
	7.4.5.3 descriptor
	7.4.5.4 descriptor_sequence
	7.4.5.5 device_identification_type
	7.4.5.6 device_name_type
	7.4.5.7 event_type
	7.4.5.8 fault
	7.4.5.9 fault_list
	7.4.5.10 health_state_reason_type
	7.4.5.11 health_state_type
	7.4.5.12 information_name_type
	7.4.5.13 interest
	7.4.5.14 interest_list
	7.4.5.15 mastership_state_type
	7.4.5.16 parameter_name_type
	7.4.5.17 name_error_pair_type
	7.4.5.18 name_error_sequence_type
	7.4.5.19 parameter_name_sequence_type
	7.4.5.20 name_value_pair_type
	7.4.5.21 name_value_sequence_type
	7.4.5.22 operational_mode_type
	7.4.5.23 parameter_value_response_type
	7.4.5.24 registration_type
	7.4.5.25 service_type
	7.4.5.26 service_health_type
	7.4.5.27 service_indication_list_type
	7.4.5.28 service_indication_type
	7.4.5.29 service_information
	7.4.5.30 service_list_type
	7.4.5.31 subsystem_health_type
	7.4.5.32 technical_state_type
	7.4.5.33 version_type
	7.4.5.34 Initial

	7.5 Sensor_Domain
	7.5.1 Clutter_Reporting
	7.5.1.1 clutter_assessment_request_type
	7.5.1.2 clutter_indication_type
	7.5.1.3 clutter_map_cell_type
	7.5.1.4 clutter_report_type
	7.5.1.5 concentration_plot_cell_type
	7.5.1.6 intensity_units_type
	7.5.1.7 plot_concentration_report_type
	7.5.1.8 plot_concentration_request_data_type

	7.5.2 Plot_Reporting
	7.5.2.1 plot_id_type
	7.5.2.2 plot_strength_type
	7.5.2.3 sensor_plot_set_type
	7.5.2.4 sensor_plot_type
	7.5.2.5 sensor_orientation_type

	7.5.3 Sensor_Control
	7.5.3.1 selected_frequency_list_type
	7.5.3.2 transmission_frequency_state_type
	7.5.3.3 all_frequencies_state_type
	7.5.3.4 reported_frequency_state_type
	7.5.3.5 frequency_band_type
	7.5.3.6 transmission_frequency_mode_type
	7.5.3.7 transmission_sector_set_type
	7.5.3.8 transmission_sector_type
	7.5.3.9 transmission_sector_power_level_type
	7.5.3.10 sector_reference_type
	7.5.3.11 control_emission_state_type
	7.5.3.12 test_target_scenario_type
	7.5.3.13 test_target_scenario_independent_target_type
	7.5.3.14 test_target_scenario_common_parameter_target_type
	7.5.3.15 test_target_type
	7.5.3.16 test_target_plus_scenario_type
	7.5.3.17 test_target_scenario_id_type
	7.5.3.18 test_target_scenario_state_type

	7.5.4 Sensor_Performance
	7.5.4.1 interference_report_type
	7.5.4.2 interferer_kind
	7.5.4.3 interferer_type
	7.5.4.4 jamming_magnitude_type
	7.5.4.5 perfomance_bin_type
	7.5.4.6 performance_assessment_report_type
	7.5.4.7 performance_assessment_request_type
	7.5.4.8 performance_beam_type
	7.5.4.9 performance_sector_type
	7.5.4.10 performance_type

	7.5.5 Track_Reporting
	7.5.5.1 sensor_track_id_type
	7.5.5.2 environment_type
	7.5.5.3 initiation_mode_type
	7.5.5.4 recognition_type
	7.5.5.5 sensor_track_type
	7.5.5.6 sensor_track_set_type
	7.5.5.7 track_phase_type

	7.5.6 Tracking_Control
	7.5.6.1 track_info
	7.5.6.2 track_priority_type
	7.5.6.3 tracking_zone_set
	7.5.6.4 tracking_zone
	7.5.6.5 tracking_zone_type
	7.5.6.6 tracking_zone_id_type

	7.6 Radar_Domain
	7.6.1 Air_Engagement_Support
	7.6.1.1 expected_hit_data_type
	7.6.1.2 miss_indication_data_type
	7.6.1.3 projectile_kinematics_type

	7.6.2 Engagement_Support
	7.6.2.1 available_fire_control_channels_type
	7.6.2.2 fire_control_channel_id_type
	7.6.2.3 kill_assessment_result_type
	7.6.2.4 kinematics_type

	7.6.3 Missile_Guidance
	7.6.3.1 downlink_report
	7.6.3.2 downlink_request
	7.6.3.3 frequency_channel_type
	7.6.3.4 illumination_request_type
	7.6.3.5 track_id_type
	7.6.3.6 uplink_report_type
	7.6.3.7 uplink_request_type

	7.6.4 Search
	7.6.4.1 cued_search_cue_type
	7.6.4.2 cued_search_report_type

	7.6.5 Surface_Engagement_Support
	7.6.5.1 splash_spotting_area_id_type
	7.6.5.2 splash_spotting_area_position_type
	7.6.5.3 splash_spotting_area_set_type
	7.6.5.4 splash_spotting_area_type

	7.7 Subsystem_Services
	7.7.1 Encyclopaedic_Support
	7.7.1.1 Receive_Encyclopaedic_Data

	7.7.2 Extended_Subsystem_Control
	7.7.2.1 Manage Physical Configuration
	7.7.2.2 Perform Offline Test
	7.7.2.3 Restart
	7.7.2.4 Shutdown
	7.7.2.5 Startup

	7.7.3 Recording_and_Replay
	7.7.3.1 Control_Recording
	7.7.3.2 Control_Replay

	7.7.4 Simulation_Support
	7.7.4.1 Define_Simulation_Scenario
	7.7.4.2 Control_Simulation
	7.7.4.3 Define_Fault_Scripts
	7.7.4.4 Control_Fault_Scripts

	7.7.5 Subsystem_Control
	7.7.5.1 Manage Technical State
	7.7.5.2 Heartbeat_Signal
	7.7.5.3 Provide_Subsystem_Identification
	7.7.5.4 Provide_Health_State
	7.7.5.5 Manage_Operational_Mode
	7.7.5.6 Control_Battle_Override
	7.7.5.7 Manage_Subsystem_Parameters
	7.7.5.8 Provide_Subsystem_Services
	7.7.5.9 Manage_Mastership
	7.7.5.10 Register_Interest

	7.8 Sensor_Services
	7.8.1 Clutter_Reporting
	7.8.1.1 Provide Area with Plot Concentration
	7.8.1.2 Provide Clutter Assessment

	7.8.2 Plot_Reporting
	7.8.2.1 Provide_Plots
	7.8.2.2 Provide_Sensor_Orientation

	7.8.3 Sensor_Control
	7.8.3.1 Manage_Frequency_Usage
	7.8.3.2 Manage_Transmission_Sectors
	7.8.3.3 Control_Emissions
	7.8.3.4 Define_Test_Target_Scenario
	7.8.3.5 Test_Target_Facility

	7.8.4 Sensor_Performance
	7.8.4.1 Provide_Interference_Reports
	7.8.4.2 Provide_Nominal_Performance
	7.8.4.3 Provide_Performance_Assessment
	7.8.4.4 Provide_Jammer_Assessment

	7.8.5 Track_Reporting
	7.8.5.1 Provide_Sensor_Tracks

	7.8.6 Tracking_Control
	7.8.6.1 Delete_Sensor_Track
	7.8.6.2 Receive_Track_Information
	7.8.6.3 Initiate_Track
	7.8.6.4 Manage_Tracking_Zones

	7.9 Radar_Services
	7.9.1 Air_Engagement_Support
	7.9.1.1 Provide_Projectile_Positional_Information

	7.9.2 Engagement_Support
	7.9.2.1 Process_Target_Designation
	7.9.2.2 Support_Kill_Assessment
	7.9.2.3 Support_Surface_Target_Engagement

	7.9.3 Missile_Guidance
	7.9.3.1 Perform_Illumination
	7.9.3.2 Perform_Missile_Downlink
	7.9.3.3 Perform_Missile_Uplink

	7.9.4 Search
	7.9.4.1 Perform_Cued_Search

	7.9.5 Surface_Engagement_Support
	7.9.5.1 Perform_Splash_Spotting

	8 Platform-Specific Models
	8.1 DDS Data Model PSM
	8.2 DDS Services PSM

