Open Architecture Radar Interface Standard

FTF-1 for 2.0

OMG Document Number: dtc/22-06-04

Standard document URL: http://www.omg.org/spec/OARIS/2.0

Machine Consumable File(s):

```
https://www.omg.org/spec/OARIS/20220505/OARIS_Model_XMI.xml
https://www.omg.org/spec/OARIS/20220506/IDL/TimeBase.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Common_Types.idl
https://www.omg.org/spec/OARIS/20220506/IDL/System_Track.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Coordinates and Positions.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Shape Model.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Requests.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Encyclopaedic_Support.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Extended_Subsystem_Control.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Recording_and_Replay.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Simulation_Support.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Subsystem_Control.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Clutter_Reporting.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Media_Streaming.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Sensor_Assessment.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Supplementary_Measurement.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Search.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Plot_Reporting.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Sensor Control.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Sensor Performance.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Track Reporting.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Tracking_Control.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Air Engagement Support.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Engagement_Support.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Missile_Guidance.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Surface_Engagement_Support.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Receive_Encyclopaedic_Data.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Manage_Physical_Configuration.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Perform_Offline_Test.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Restart.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Shutdown.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Startup.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Control_Recording.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Control_Replay.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Define_Simulation_Scenario.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Control_Simulation.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Define_Fault_Scripts.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Control_Fault_Scripts.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Manage_Technical_State.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Provide_Subsystem_Identification.idl
```

```
https://www.omg.org/spec/OARIS/20220506/IDL/Provide_Health_State.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Manage Operational Mode.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Control Battle Override.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Manage Subsystem Parameters.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Provide Subsystem Services.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Manage_Mastership.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Register_Interest.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Provide_Area_with_Plot_Concentration.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Provide_Clutter_Assessment.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Allocate_Tracks_To_Stream.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Perform_Cued_Search.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Assess_Sensor_Track.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Manage_Frequency_Usage.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Manage Transmission Sectors.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Control Emissions.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Define Test Target Scenario.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Test_Target_Facility.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Provide_Interference_Reports.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Provide_NominalPerformance.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Provide_Performance_Assessment.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Provide_Jammer_Assessment.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Provide_Sensor_Tracks.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Delete_Sensor_Track.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Receive_Track_Information.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Initiate_Track.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Manage_Tracking_Zones.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Provide_Projectile_Positional_Information.idl
https://www.omq.org/spec/OARIS/20220506/IDL/Process Target Designation.idl
https://www.omq.org/spec/OARIS/20220506/IDL/Support Kill Assessment.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Support Surface Target Engagement.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Perform_Illumination.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Perform Missile Downlink.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Perform_Missile_Uplink.idl
https://www.omg.org/spec/OARIS/20220506/IDL/Perform_Splash_Spotting.idl
https://www.omg.org/spec/OARIS/20220507/GraphQL/graphqlschema.graphqls
```

Copyright © 2013 - 2020 BAE Systems

Copyright © 2013 - 2020 THALES Group

Copyright © 2013 Selex ES

Copyright © 2013 DSTO

Copyright © 2013 Atlas Elektronik

Copyright © 2013 EADS Deutschland GmbH

Copyright © 2013 - 2020 Object Management Group, Inc

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and notices set forth below. This document does not represent a commitment to implement any portion of this specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The company listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:

(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;

(2) the use of the specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and statutes. This document contains information, which is protected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered trademarks of the Object Management Group, Inc., and Object Management GroupTM, OMGTM, Unified Modeling LanguageTM, Model Driven Architecture LogoTM, Model Driven Architecture DiagramTM, CORBA logosTM, XMI LogoTM, CWMTM, CWM LogoTM, IIOPTM, MOFTM, OMG Interface Definition Language (IDL)TM, and OMG SysMLTM are trademarks of the Object Management Group. All other products or company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software developed only partially matching the applicable compliance points may claim only that the software was based on this specification, but may not claim compliance or conformance with this specification. In the event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report_issue).

Table of Contents

OMG's	s Issue Reporting Procedure	. 4
0 Issue	es To Be Discussed	17
0.1 Ur	nclassified Specification	17
0.2 In	npact on Existing Users	17
0.3 Ar	rchitectural Extensibility	17
0.4 Se	ensor Specific Aspects	17
0.5 In	formation from all Sensor Types	17
	dditional PSMs	
0.7 Co	ompatibility with OARIS v1.1	18
1 Scop	be 1	18
2 Conf	formance	19
	mative References	
	ms and Definitions	
	and bernations	
•		
	litional Information2	
	cknowledgements	
	n Architecture Radar Information Specification	
	troduction	
7.1.1	Document Structure	
	sage Overview	
7.3 Co	ommon_Types	
7.3.1	anonymous_blob_typeconfidence_type	
7.3.2	identity_type	
7.3.3	strength_type	
7.3. 4	subsystem_id_type	
7.3.6	system_track_id_type	
7.3.7	time_type	
7.3.8	frequency_band_type	
7.3.9	System_Track	
7.3.9	9.1 system_track_type	
7.3.10		44
7.3.1		
7.3.1	10.2 angle_of_climb_type	49
7.3.1	10.3 azimuth_coordinate_type	49
7.3.1	10.4 azimuth_interval_type	50
7.3.1	=1 $=31$	
7.3.1	= = 71	
7.3.1	= = 71	
7.3.1		
7.3.1	<u>-1</u> - 71	
7.3.1	10.10 cartesian_velocity_component_type	51

7.3.10.11	cartesian_velocity_type	52
7.3.10.12		
7.3.10.13	coordinate_orientation_type	52
7.3.10.14	coordinate_origin_type	54
7.3.10.15	coordinate_specification_type	54
7.3.10.16	course_type	55
7.3.10.17	covariance_matrix_type	55
7.3.10.18		
7.3.10.19	duration_type	56
7.3.10.20	elevation_coordinate_type	56
7.3.10.21	elevation_interval_type	56
7.3.10.22	elevation_qualification_type	56
7.3.10.23	elevation_rate_type	57
7.3.10.24	full_2d_covariance_matrix_type	57
7.3.10.25		
7.3.10.26	height_coordinate_type	58
7.3.10.27		
7.3.10.28	-	
7.3.10.29	latitude_interval_type	59
7.3.10.30	longitude_coordinate_type	60
7.3.10.31	longitude_interval_type	60
7.3.10.32	polar_position_type	60
7.3.10.33	polar_velocity_type	60
7.3.10.34	position_accuracy_coordinate_type	61
7.3.10.35		
7.3.10.36	range_coordinate_type	62
7.3.10.37	range_interval_type	62
7.3.10.38	range_qualification_type	62
7.3.10.39	range_rate_type	62
7.3.10.40	speed_interval_type	63
7.3.10.41	speed_type	63
7.3.10.42	velocity_accuracy_coordinate_type	63
7.3.10.43	velocity_coordinate_type	64
7.3.10.44	wgs84_position_type	64
7.3.10.45	wgs84_velocity_type	64
7.3.10.46	cartesian_position_accuracy_type	65
7.3.10.47		
7.3.10.48		
7.3.10.49	polar_velocity_accuracy_type	66
7.3.10.50		
7.3.10.51	C —	
7.3.11 Sh	ape_Model	
7.3.11.1	area_2d_type	
7.3.11.2	figure_ref_point_type	
7.3.11.3	general_polar_volume_type	
	polar volume type	

7.3.11.5	polygon_type	
7.3.11.6	rectangle_type	
7.3.11.7	sector_type	
7.3.11.8	truncated_polar_volume_type	
7.3.11.9	truncated_sector_type	
	equests	
7.3.12.1	denial_reason_type	
7.3.12.2	denial_type	
7.3.12.3	error_reason_type	
7.3.12.4	parameter_reference_type	
7.3.12.5	request_ack_type	
7.3.12.6	request_id_type	
7.3.12.7	common_use_case_interface	
·	tem_Domain	
	cyclopaedic_Support	
	data_descriptor_type	
	url_type	
	ended_Subsystem_Control	
	configuration_url_type	
	offline_test_result_details_type	
	offline_test_result_type	
	offline_test_type	
	ording_and_Replay	
	actual_time_type	
	change_threshold_type	
	parameter_type	
	rate_type	
	record_on_change_type	
	recorded_data_type	
	recorded_time_type	
	recording_descriptor_type	
	recording_id_type	
	recording_set_type	
7.4.3.11	recording_type	
7.4.3.12	replay_set_type	
7.4.3.13	replay_speed_type	
	nulation_Support	
	fault_script_id_type	
	fault_script_ids_type	
	fault_script_type	
	fault_scripts_type	
	sim_mode_status_type	
	start_stop_sim_mode_request_type	
	stop_freeze_session_request_type	
	system_Control	
7.4.5.1	function id type	86

7.4.5.2	function_type	. 86
7.4.5.3	service_name_type	. 86
7.4.5.4	battle_override_state_type	. 87
7.4.5.5	descriptor_type	
7.4.5.6	descriptor_sequence_type	. 88
7.4.5.7	device_identification_type	
7.4.5.8	device_name_type	. 88
7.4.5.9	event_type	. 89
7.4.5.10	fault_type	. 89
7.4.5.11	fault_list_type	. 89
7.4.5.12	health_state_reason_type	. 89
7.4.5.13	health_state_type	. 90
7.4.5.14	information_name_type	. 90
7.4.5.15	interest_type	
7.4.5.16	interest_list_type	. 91
7.4.5.17	mastership_state_type	
7.4.5.18	parameter_name_type	
7.4.5.19	name_error_pair_type	
7.4.5.20	name_error_sequence_type	
7.4.5.21	parameter_name_sequence_type	
7.4.5.22	name_value_pair_type	
7.4.5.23	name_value_sequence_type	
7.4.5.24	operational_mode_type	
7.4.5.25	parameter_value_response_type	
7.4.5.26	registration_type	
7.4.5.27	service_type	
7.4.5.28	service_health_type	
7.4.5.29	service_indication_list_type	
7.4.5.30	service_indication_type	
7.4.5.31	service_information_type	
7.4.5.32	service_list_type	
7.4.5.33	subsystem_health_type	
7.4.5.34	technical_state_type	
7.4.5.35	version_type	
7.4.5.36	Initial	
	^_Domain	
	utter_Reporting	
7.5.1.1	clutter_assessment_request_type	
7.5.1.1	clutter_indication_type	
7.5.1.2	clutter_map_cell_type	
7.5.1.3	clutter_report_type	
7.5.1.4	concentration_plot_cell_type	
7.5.1.6	intensity_units_type	
7.5.1.0	plot_concentration_report_type	
7.5.1.7	plot_concentration_report_typeplot_concentration_request_data_type	
	piot_concentration_request_data_typedia Streaming	
1 1 . 4 IVIC	AUG 170 CHIIIII	. / 7

7.5.2.1	codec_type	10	00
7.5.2.2	media_allocation_type	10	00
7.5.2.3	media_kind_type	10	01
7.5.2.4	media_name_type	10	01
7.5.2.5	media_stream_id_type	10	01
7.5.2.6	media_stream_metadata_type	10	01
7.5.3 Sea	arch		
7.5.3.1	cued_search_cue_type	10	02
7.5.3.2	cued_search_report_type	10	03
7.5.3.3	search_pattern_type	10	03
7.5.3.4	search_repeat_type		
7.5.3.5	surveillance_area_type		
7.5.3.6	surveillance_search_type		
7.5.3.7	surveillance_task_type		
7.5.4 Ser	nsor_Assessment		
7.5.4.1	assessment_objective_id_type		
7.5.4.2	country_code_type		
7.5.4.3	descriptor_list_type		
7.5.4.4	descriptor_name_type		
7.5.4.5	descriptor_single_value_type		
7.5.4.6	descriptor_value_type		
7.5.4.7	equipment_match_type		
7.5.4.8	equipment_mode_match_type		
7.5.4.9	equipment_name_type		
7.5.4.10	equipment_parameter_match_type		
7.5.4.11	equipment_type		
7.5.4.12	function_name_type		
7.5.4.13	match_id_type		
7.5.4.14	match_link_type		
7.5.4.15	match_type		
7.5.4.16	measurement_element_match_type		
7.5.4.17	mode_name_type		
7.5.4.18	multipath_set_type		
7.5.4.19	observable_function_type		
7.5.4.20	parametric_mode_match_type		
7.5.4.21	platform_activity_name_type		
7.5.4.21	platform_activity_typeplatform_activity_type		
7.5.4.22	· · · · · · · · · · · · · · · · · · ·		
7.5.4.23	platform_class_typeplatform_equipment_match_type		
	· · · · · · · · · · · · · · · · · · ·		
7.5.4.25 7.5.4.26	platform_match_type		
	platform_mode_match_type		
7.5.4.27	platform_type		
7.5.4.28	platform_type		
7.5.4.29	reference_descriptor_type		
7.5.4.30	reference_id_type		
7.5.4.31	reference mode type	- 1	1 /

7.5.4.32	reference_parameter_match_type	117
7.5.4.33	reference_parameter_type	
7.5.4.34	reference_type	117
7.5.4.35	sensor_plot_equipement_assessment_type	118
7.5.4.36	sensor_plot_mode_assessment_type	118
7.5.4.37	sensor_plot_platform_assessment_type	118
7.5.4.38	sensor_track_equipment_assessment_type	118
7.5.4.39	sensor_track_mode_assessment_type	
7.5.4.40	sensor_track_platform_assessment_type	118
7.5.4.41	subplatform_match_type	118
7.5.5 Suj	pplementary_Measurement	119
7.5.5.1	continuous_measurement_type	124
7.5.5.2	discrete_measurement_type	124
7.5.5.3	discrete_order_type	124
7.5.5.4	discrete_set_measurement_type	125
7.5.5.5	distribution_mode_type	125
7.5.5.6	distribution_parameter_measurement_type	125
7.5.5.7	distribution_parameter_name_type	126
7.5.5.8	measurement_drift_type	126
7.5.5.9	measurement_element_type	126
7.5.5.10	measurement_interval_type	126
7.5.5.11	measurement_kind_id_type	127
7.5.5.12	measurement_name_type	127
7.5.5.13	measurement_parameter_kind_type	127
7.5.5.14	measurement_parameter_set_name_type	127
7.5.5.15	measurement_parameter_status_type	127
7.5.5.16	measurement_parameter_type	128
7.5.5.17	measurement_unit_type	
7.5.5.18	measurement_variation_kind_type	129
7.5.5.19	modulation_type	
7.5.5.20	multi_modal_measurement_type	130
7.5.5.21	normal_measurement_type	130
7.5.5.22	parameter_distribution_type	130
7.5.5.23	parameter_id_type	131
7.5.5.24	pdf_measurement_type	131
7.5.5.25	pdf_name_type	
7.5.5.26	plot_measurement_parameter_set_type	131
7.5.5.27	poisson_measurement_type	131
7.5.5.28	qualitative_measurement_type	131
7.5.5.29	sample_range_type	
7.5.5.30	scalar_measurement_type	
7.5.5.31	sensor_defined_pdf_measurement_type	
7.5.5.32	sequence_name_type	
7.5.5.33	single_measurement_type	
7.5.5.34	track_measurement_parameter_set_type	
7.5.5.35	track measurement parameter type	133

7.5.5.36	vector_measurement_type	133
	t_Reporting	
7.5.6.1	plot_id_type	134
7.5.6.2	sensor_plot_set_type	134
7.5.6.3	sensor_plot_type	
7.5.6.4	sensor_orientation_type	
7.5.7 Ser	nsor_Control	
7.5.7.1	selected_frequency_list_type	
7.5.7.2	transmission_frequency_state_type	
7.5.7.3	all_frequencies_state_type	
7.5.7.4	reported_frequency_state_type	
7.5.7.5	transmission_frequency_mode_type	
7.5.7.6	transmission_sector_set_type	
7.5.7.7	transmission_sector_type	
7.5.7.8	transmission_sector_power_level_type	
7.5.7.9	sector_reference_type	
7.5.7.10	control_emission_state_type	
7.5.7.11	test_target_scenario_type	
7.5.7.12	test_target_scenario_independent_target_type	
7.5.7.13	test_target_scenario_common_parameter_target_type	
7.5.7.14	test_target_type	
7.5.7.15	test_target_plus_scenario_type	
7.5.7.16	test_target_scenario_id_type	
7.5.7.17	test_target_scenario_state_type	
7.5.8 Ser	nsor_Performance	
7.5.8.1	interference_report_type	143
7.5.8.2	interferer_kind	
7.5.8.3	interferer_type	
7.5.8.4	jamming_magnitude_type	
7.5.8.5	perfomance_bin_type	
7.5.8.6	performance_assessment_report_type	
7.5.8.7	performance_assessment_request_type	
7.5.8.8	performance_band_type	
	performance_beam_type	
	performance_sector_type	
	performance_type	
	ck_Reporting	
7.5.9.1	sensor_track_id_type	
7.5.9.2	track_priority_type	
7.5.9.3	track_quality_type	
7.5.9.4	environment_type	
7.5.9.5	initiation_mode_type	
7.5.9.6	recognition_type	
7.5.9.7	sensor_track_type	
7.5.9.8	sensor_track_set_type	
	track_phase_type	

7.5.10 T	racking_Control	154
7.5.10.1	track_info_type	155
7.5.10.2	track_priority_type	156
7.5.10.3	tracking_zone_set_type	156
7.5.10.4	tracking_zone_type	156
7.5.10.5	tracking_zone_kind_type	156
7.5.10.6	tracking_zone_id_type	157
7.6 Radaı	Domain	157
7.6.1 Ai	r_Engagement_Support	157
7.6.1.1	expected_hit_data_type	158
7.6.1.2	miss_indication_data_type	158
7.6.1.3	projectile_kinematics_type	158
7.6.2 En	gagement_Support	
7.6.2.1	available_fire_control_channels_type	
7.6.2.2	fire_control_channel_id_type	
7.6.2.3	kill_assessment_result_type	
7.6.2.4	kinematics_type	
	ssile Guidance	
7.6.3.1	downlink_report_type	
7.6.3.2	downlink_request_type	
7.6.3.3	frequency_channel_type	
7.6.3.4	illumination_request_type	
7.6.3.5	track_id_type	
7.6.3.6	uplink_report_type	
7.6.3.7	uplink_request_type	
	rface_Engagement_Support	
7.6.4.1	splash_spotting_area_id_type	
7.6.4.2	splash_spotting_area_position_type	
7.6.4.3	splash_spotting_area_set_type	
7.6.4.4	splash_spotting_area_type	
	stem_Services	
·	cyclopaedic_Support	
	Receive_Encyclopaedic_Data	
	tended_Subsystem_Control	
7.7.2.1	Manage_Physical_Configuration	
7.7.2.1	Perform_Offline_Test	
7.7.2.2	Restart	
7.7.2.3	Shutdown	
7.7.2.4	Startup	
	cording_and_Replay	
7.7.3 Re	Control_Recording	
7.7.3.1	Control_Replay	
	nulation_Support	
7.7.4 SH 7.7.4.1	Define_Simulation_Scenario	
	Control_Simulation	
	Define Fault Scripts	
1.1.4.3	Define rault Scribts	100

7.7.4.4	Control_Fault_Scripts	190
	bsystem_Control	
7.7.5.1	Manage_Technical_State	192
7.7.5.2	Heartbeat_Signal	195
7.7.5.3	Provide_Subsystem_Identification	196
7.7.5.4	Provide_Health_State	
7.7.5.5	Manage_Operational_Mode	202
7.7.5.6	Control_Battle_Override	205
7.7.5.7	Manage_Subsystem_Parameters	207
7.7.5.8	Provide_Subsystem_Services	211
7.7.5.9	Manage_Mastership	214
7.7.5.10	Register_Interest	219
7.8 Senso	r_Services	220
7.8.1 Cl	utter_Reporting	221
7.8.1.1	Provide_Area_with_Plot_Concentration	221
7.8.1.2	Provide_Clutter_Assessment	223
7.8.2 Me	edia_Streaming	225
7.8.2.1	Allocate_Tracks_To_Stream	225
7.8.2.2	Configure_Media_Streams	228
7.8.3 Se	arch	229
	Perform_Cued_Search	
7.8.4 Se	nsor_Assessment	234
7.8.4.1	Assess_Sensor_Plot	234
7.8.4.2	Assess_Sensor_Track	236
7.8.5 Su	pplementary_Measurement	242
7.8.5.1	Configure_Measurement_Parameters	242
7.8.5.2	Provide_Sensor_Plot_Parameters	243
7.8.5.3	Provide_Sensor_Track_Parameters	244
7.8.6 Plo	ot_Reporting	246
7.8.6.1	Provide_Plots	246
7.8.6.2	Provide_Sensor_Orientation	247
7.8.7 Se	nsor_Control	249
7.8.7.1	Manage_Frequency_Usage	249
7.8.7.2	Manage_Transmission_Sectors	253
7.8.7.3	Control_Emissions	256
7.8.7.4	Define_Test_Target_Scenario	258
7.8.7.5	Test_Target_Facility	261
7.8.8 Se	nsor_Performance	264
7.8.8.1	Provide_Interference_Reports	264
7.8.8.2	Provide_Nominal_Performance	
7.8.8.3	Provide_Performance_Assessment	268
7.8.8.4	Provide_Jammer_Assessment	270
7.8.9 Tr	ack_Reporting	272
7.8.9.1	Provide_Sensor_Tracks	272
7.8.10 T	'racking_Control	276
7 8 10 1	Delete Sensor Track	277

7.8.10.2 Receive_Track_Information	278
7.8.10.3 Initiate_Track	280
7.8.10.4 Manage_Tracking_Zones	282
7.9 Radar_Services	
7.9.1 Air_Engagement_Support	285
7.9.1.1 Provide_Projectile_Positional_Information	285
7.9.2 Engagement_Support	
7.9.2.1 Process_Target_Designation	
7.9.2.2 Support_Kill_Assessment	291
7.9.2.3 Support_Surface_Target_Engagement	293
7.9.3 Missile_Guidance	297
7.9.3.1 Perform_Illumination	297
7.9.3.2 Perform_Missile_Downlink	300
7.9.3.3 Perform_Missile_Uplink	303
7.9.4 Surface_Engagement_Support	305
7.9.4.1 Perform_Splash_Spotting	305
8 Platform-Specific Models	312
8.1 DDS Data Model PSM	
8.2 DDS Services PSM	312
8.3 GraphQL Data Model and Services PSM	

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry standards consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple operating systems, programming languages, middleware and networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling LanguageTM); CORBA® (Common Object Request Broker Architecture); CWMTM (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are available from the OMG website at: http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

- · CORBA/IIOP
- Data Distribution Services
- Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

- · UML, MOF, CWM, XMI
- · UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

- CORBAServices
- CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters 109 Highland Avenue Needham, MA 02494 USA

Tel: +1-781-444-0404 Fax: +1-781-444-0320 Email: <u>pubs@omg.org</u>

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. However, these conventions are not used in tables or section headings where no distinction is necessary. Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier/Courier New - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

0 Issues To Be Discussed

0.1 Unclassified Specification

a) Proposals shall discuss how an unclassified specification enables the robust, efficient and unambiguous transfer of sensitive information.

This proposal for the extension of the OARIS specification for additional sensors provides a generic scheme for the modelling and transfer of sensitive parametric information. This is achieved by means of a separation of concerns: the labelling of the particular phenomena being observed is defined though configuration data, whilst the precise semantics of the measurement quantity is captured in a rich model that supports confidence levels, accuracies, probability distributions and time-dependent aspects. As sensitivity (in an Information Assurance sense) primarily relates to the phenomena by detected and these phenomena are well known to deployed system instances this is a robust, efficient and unambiguous strategy.

0.2 Impact on Existing Users

b) Proposals shall discuss how the impact on existing users of the specification is minimised. This proposal extends the UML model for the existing OARIS 1.1 specification. Most of the new requirements and the vast majority of new modelling elements are by means of additional packages: pairs of Media Streaming, Sensor Assessment and Supplementary Measurement in the Sensor Domain and Sensor Services packages. Also additional optional attributes have been added to class sensor track type. There are a small number of non-backwards compatible changes: primarily moving Search from the Radar to Sensor level and renaming altitude as height.

0.3 Architectural Extensibility

c) Proposals shall discuss how the architectural extensibility of the current specification is retained. This proposal retains the three-level architecture of subsystem, sensor and radar (and in future other sensor specialist services). The extensions in this proposal have been inserted into the sensor layer to apply generically to all sensor types. Consequently, future revisions and extensions may add specialist domain models and services for sensors such sonar in parallel to those for radar.

0.4 Sensor Specific Aspects

d) Proposals shall discuss how sensor type specific aspects of the interface have been minimised. This proposal has defined a general model for reporting the sensing of phenomena as additional sensor parameters as well as a general model for matching such sensed parameters to library data for sensor track assessment within a generalized classification scheme. Extensions for search and surveillance tasking have been defined for use of off-board sensors in general. These proposals have been derived from a broad experience of combat system sensor and without a particular sensor, sensor type or product line in mind.

0.5 Information from all Sensor Types

e) Proposals shall discuss how the services allow CMS users to manage, task and exploit information from all sensor types.

OARIS v1.1 already defines a wide set of sensor management, tasking and exploitation services. This proposal supplements these with media management, off-board tasking and measurement parameter exploitation services. There are also services to manage classification and identification processes as well as improved linkage between sensor sub-functions and track reporting.

0.6 Additional PSMs

e) Proposals shall discuss the security, reliability and timeliness characteristics of any additional PSMs defined.

This proposal adds a GraphQL PSM (www.graphql.org). GraphQL can be secured by using an underlying https connection, which also offers a reliable connection protocol. Whilst there are many open source software language library implementation for GraphQL (www.graphql.org/code), these are not necessarily assured for high-integrity applications. In the context of OARIS, GraphQL is particularly suited to analysis applications where information on the interface can be regularly queried in batches taking advantage of GraphQL's flexible graph-oriented query and filter features.

0.7 Compatibility with OARIS v1.1

e) Proposals shall discuss the approach to compatibility with OARIS v1.1.

As discussed above with regard to the impact on existing users this proposal is highly compatible with v1.1. To aid understanding of any potential compatibility impact, changes to the underlying UML model have been tagged with numbered issues linked to the RFP requirements. The generation of the specification from the model has been augmented to highlight these changes and the linked issues. This generated specification is presented in an additional change-bar convenience document (similar to the standard practice for an FTF or RTF). A clean version with the issues removed from the model is also in the submission.

1 Scope

This specification defines the interface between the CMS and a Sensor system (especially a Radar system) within a modular combat system architecture for naval platforms. It is structured to align with the objective of dividing the interface into three categories, namely subsystem services (interfaces applicable to any module within a combat system), sensor services (interfaces applicable to any sensor component within a combat system) and radar services (interfaces applicable to complex radar components within a combat system), as illustrated below. Version 2.0 of the specification expands the scope of the sensor services such that it provides the necessary interfaces for the integration of other combat system sensors and subsystems.

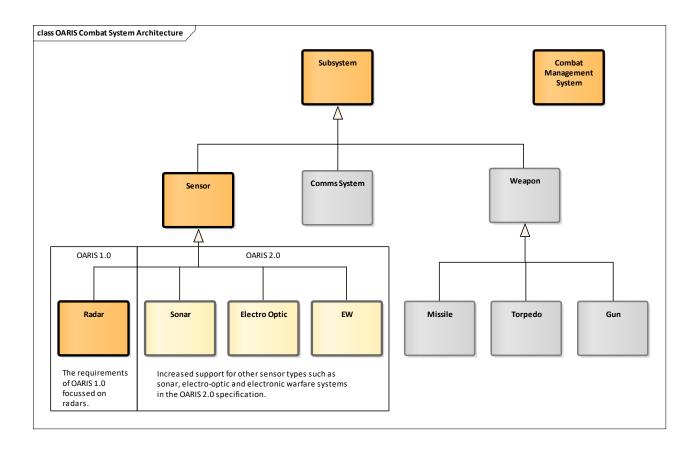


Figure 1.1 - The OARIS specification exploits specialisation and generalisation to promote modularity and extensibility

2 Conformance

In order to support utilization by a range of sensors from simple navigation radars and electro-optic systems to complex multi-function radars, sonars or electronic warfare systems the RFP defines the following compliance levels:

- Level 1
 The simplest sensor operation providing just plots and tracks
- Level 2
 Basic sensor operation, but a complete interface supporting control and essential system configuration for a combat system context
- Level 3A
 In addition to basic operation (level 2), interfaces for training support
- Level 3B In addition to basic operation (level 2), full system configuration interfaces
- Level 3C
 In addition to basic operation (level 2), the full track and plot reporting interfaces
- Level 3D In addition to basic operation (level 2), the engagement support interface
- Level 3E

In addition to basic operation (level 2), the advanced radar interfaces

- Level 3F In addition to basic operation (level 2), compliance with C2INav
- Level 3G
 In addition to basic operation (level 2), compliance with METOC (Not supported in this version of the response.)
- Level 3H
 In addition to basic operation (level 2), the full parameter measurement and identification assessment interfaces

•

Radars conforming to this specification shall indicate which compliance levels are supported. The following options are possible:

- Level 1
- Level 2
- Any combination of levels 3A to 3E (in addition to level 2)

In order to comply with the specification levels the following respective interfaces shall be supported in full, with the exception of level 3C where at least one of the environment types (Space/Air/Land/Surface) shall be supported and appropriately qualified, e.g. level 3C Air and Surface:

Compliance Level	Required Interfaces
1	Register Interest
	Track Reporting
	Plot Reporting
2	Control Interface Connection
	Provide Subsystem Identification
	Provide Subsystem Services
	Manage Subsystem Parameters
	Provide Health State
	Manage Mastership
	Manage Technical State
	Exchange Heartbeat
	Register Interest
	Track Reporting
	Plot Reporting
	Manage Operational Mode
	Manage Tracking Zones
	Manage Frequency Usage
	Manage Transmission Sectors

	Control Battle Override
	Control Emissions
3A	Define Test Target Scenario
	Define Fault Scripts
	Control Simulation
	Control Fault Script
	Control Test Target Facility
	Control Recording
	Control Replay
	Provide Simulation Data
3B	Shutdown
	Restart
	Startup
	Manage Physical Configuration
	Perform Offline Test
	Receive Encyclopedic Data
3C	Receive Track Information
	Delete Sensor Track
	Initiate Track
	Perform Cued Search
	Provide Space Plots
	Provide Land Plots
	Provide Surface Plots
	Provide Air Plots
	Provide Sensor Space Tracks
	Provide Sensor Land Tracks
	Provide Sensor Surface Tracks
	Provide Sensor Air Tracks
3D	Process Target Designation
	Provide Projectile Positional Information
	Perform Missile Downlink
	Perform Missile Uplink
	Kill Assessment
	Support Surface Engagement
	Perform Splash Plotting
3E	Provide Interference Reports

	Provide Jammer Strobes
	Provide Jammer Tracks
	Provide Area with Plot Concentration
	Provide Clutter Assessment
	Provide Jamming Effect Assessment
	Provide Performance Assessment
	Provide Nominal Performance
3Н	Allocate_Tracks_To_Stream
	Configure_Media_Streams
	Assess_Sensor_Plot
	Assess_Sensor_Track
	Configure_Measurement_Parameters
	Provide_Sensor_Plot_Parameters
	Provide_Sensor_Track_Parameters

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

- ALMAS (formal/2009-11-01)
- AMSM (formal/2010-11-02)
- CORBA (formal/2011-11-01,02,03)
- DDS (formal/2007-01-01)
- DIS (IEEE 1278.1–1995, IEEE 1278.1A–1998 and Enumeration and Bit-encoded values for use with IEEE 1278.1-1995)
- EVOT (formal/2008-08-01)
- HLA (IEEE 1516 2000-series and RPR-FOM 2.0)
- ISO 19111 (www.iso.org/)
- ISO 19115 (www.iso.org/)
- METOC RFP (c4i/08-12-02)
- C2INav (dtc/19-07-03)
- Network Time Protocol (www.ntp.org)
- Precision Time Protocol (IEEE 1588 http://www.ieee1588.com)
- SoaML (www.omg.org/spec/SoaML)

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

- AB (Architecture Board)
- ALMAS (Alert Management Service)
- AMSM (Application Management and Status Monitoring)
- API (Application Programming Interface)
- ATC (Air Traffic Control)
- BC (Business Committee)
- BCQ (Business Committee Questionnaire)
- BoD (Board of Directors)
- CCM (CORBA Component Model)
- CMS (Combat Management System)
- CORBA (Common Object Request Broker Architecture)
- CSIV2 (Common Secure Interoperability Protocol Version 2)
- CWM (Common Warehouse Metamodel)
- DAIS (Data Acquisition from Industrial Systems)
- DDS (Data Distribution Service)
- EDOC (Enterprise Distributed Object Computing)
- EJB (Enterprise Java Bean)
- EVOT (Enhanced View of Time)
- FTF (Finalization Task Force)
- GE (Gene Expression)
- GIOP (General Inter-Orb Protocol)
- GLS (General Ledger Specification)
- IDL (Interface Definition Language)
- IFF (Interrogation, Friend or Foe)
- IIOP (Internet Inter-Orb Protocol)
- IPR (Intellectual Property Right)
- ISO (International Organization for Standardization)
- LOI (Letter of Intent)
- MDA (Model Driven Architecture)
- METOC (Meteorological and Oceanographic)

• MOF (Meta Object Facility)

• MQS (MQSeries)

• NNSI (Naval Navigation System Interface)

• NS (Naming Service)

• OARIS (Open Architecture Radar Interface Standard)

• OASIS (Organization for Advancement of Structured Information Standards)

• OCL (Object Constraint Language)

• ODF (Open Document Format)

• OMA (Object Management Architecture)

• OMG (Object Management Group)

• OTS (Object Transaction Service)

• PIDS (Personal Identification Service)

• PIM (Platform Independent Model)

• PSM (Platform Specific Model)

• P&P (Policies and Procedures of the OMG Technical Process)

• RFC (Request For Call)

• RFP (Request For Proposal)

• RM-ODP (Reference Model of Open Distributed Processing)

• RTF (Revision Task Force)

• SEC (Security Service)

• SOA (Service Oriented Architecture)

• SoaML (Service oriented architecture Modeling Language)

• SOLAS (Safety Of Life At Sea)

• SPEM (Software Process Engineering Metamodel)

• TC (Technology Committee)

• TF (Task Force)

• TOS (Trading Object Service)

• UML (Unified Modeling Language)

• XMI (XML Metadata Interchange)

• XML (eXtensible Markup Language)

5 Symbols

No special symbols are introduced in this specification.

6 Additional Information

6.1 Acknowledgements

The following companies submitted this specification:

- BAE Systems
- THALES Group

7 Open Architecture Radar Information Specification

7.1 Introduction

The specification is captured as an Enterprise Architect (EA) UML version 2.1 model, with this document being automatically generated as a report from the model.

7.1.1 Document Structure

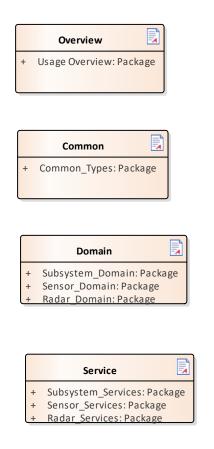


Figure 7.1 -Specification Master (Documentation diagram)

7.2 Usage Overview

Parent Package: Analysis Model (PIM) OARIS defines compliance levels as follows:

- Level 1: A simple radar which provides just plots and tracks
- Level 2: Basic radar operation, but a complete interface supporting control and essential system configuration for a combat system context
- Level 3A: In addition to basic operation (level 2), interfaces for training support
- Level 3B: In addition to basic operation (level 2), full system configuration interfaces
- Level 3C: In addition to basic operation (level 2), the full track and plot reporting interfaces

- Level 3D: In addition to basic operation (level 2), the engagement support interface
- Level 3E: In addition to basic operation (level 2), the advanced radar interfaces
- Level 3F (compliance with C2INav) and Level 3G (compliance with METOC). are outside the scope of this response
- Level 3H In addition to basic operation (level 2), the full parameter measurement and identification assessment interfaces.

Sensors conforming to this specification shall indicate which compliance levels are supported. The following options are possible:

- Level 1
- Level 2
- Any combination of levels 3A to 3E or 3H (in addition to level 2)

The activity diagrams and the associated notes below show how the interfaces defined in 7.7 to 7.9 interact in order to support these compliance levels.

CMS and Subsystem partitions indicate the initiator of the service only. For example a service initiated by the CMS may include a response from the subsystem even though the service is not in the Subsystem swimlane.

Figure 7.2 Compliance Level 1 (Activity diagram)

For compliance level 1, the radar powers up and commences track and plot reporting either without intervention or using an out of scope facility, such as a maintainer interface. The CMS detects the presence of the interface, registers interest then processes the incoming track and plot streams.

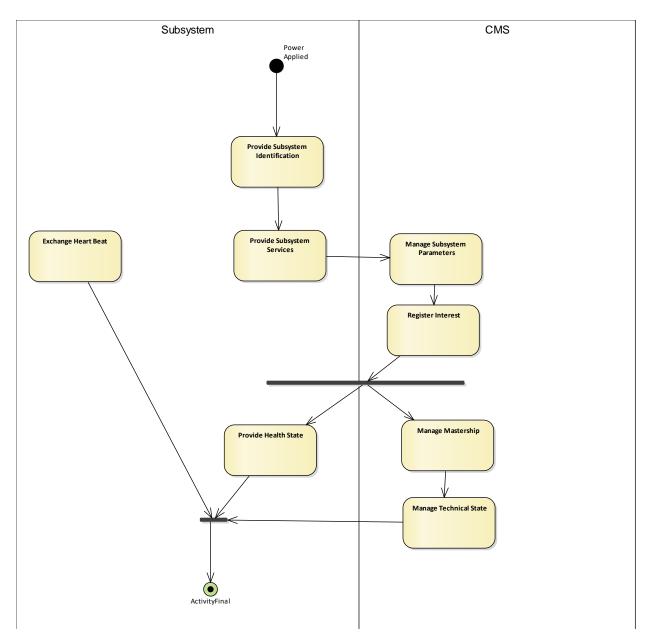


Figure 7.3 Compliance Level 2 - Initialization (Activity diagram)

For compliance level 2 a more versatile startup sequence is supported, with the subsystem and CMS going through a negotiation and configuration stage followed by more detailed interface control and reporting, including management of reversionary modes.

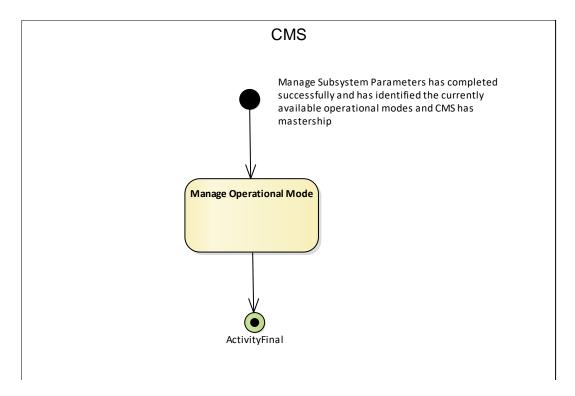


Figure 7.4 Compliance Level 2 - Operational Mode (Activity diagram)

Level 2 continues to manage the operational mode while the CMS has mastership.

CMS

Provide Subsystem Services
has successfully executed and
CMS has mastership

Manage Tracking Zones

Manage Frequency Usage

Manage Transmission
Sectors

Control Battle Override

Control Emissions

ActivityFinal

Figure 7.5 Compliance Level 2 - Subsystem Setup (Activity diagram)

Level 2 caters for continuous management of sensor configuration when the CMS has mastership.

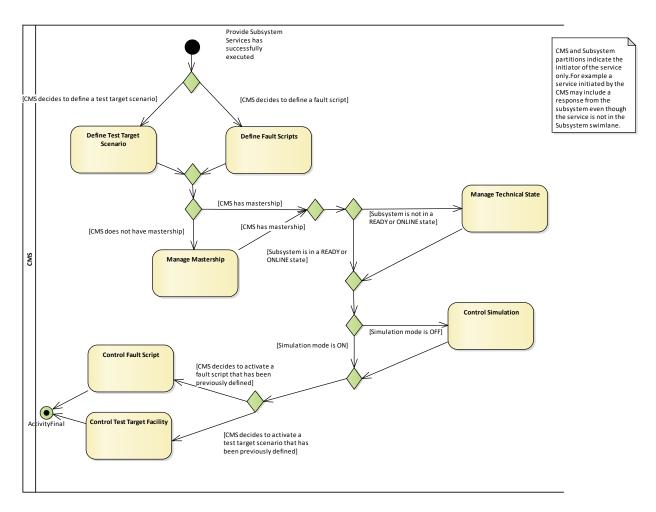


Figure 7.6 Compliance Level 3A - Fault Scripts and Test Targets (Activity diagram) Level 3 provide for the simulation of faults and targets for test and training purposes.

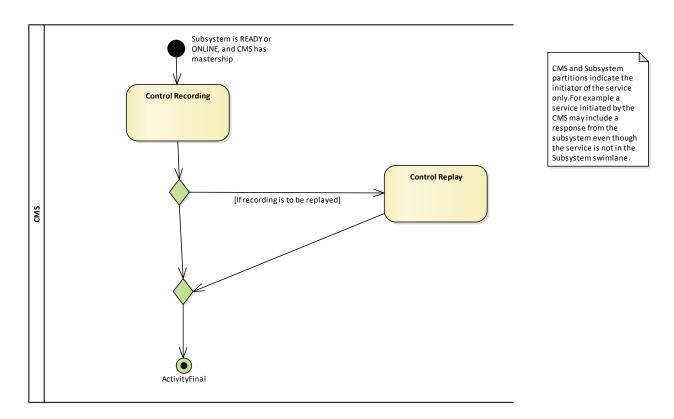


Figure 7.7 Compliance Level 3A - Recording/Replay (Activity diagram)

Recording and replay facilities support recording and replay of subsystem parameters for the purposes of training and/or post exercise review.

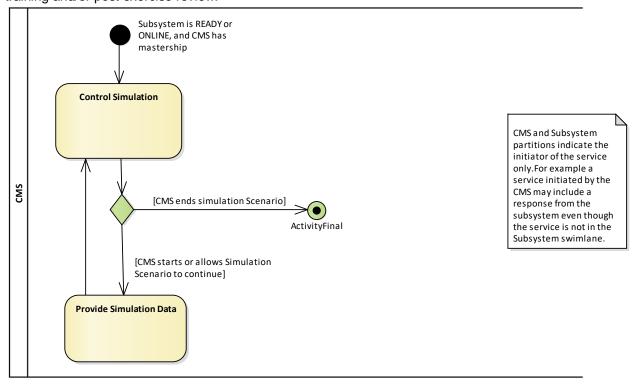


Figure 7.8 Compliance Level 3A - Simulation (Activity diagram)

The simulation interfaces are used to support training.

only.For example a

CMS may include a

Provide Subsystem Services Successful, CMS has mastership CMS and Subsystem partitions indicate the initiator of the service ofsubsystem service initiated by the response from the subsystem even though the service is not in the Subsystem swimlane. Startup Shutdown Restart ActivityFinal

Figure 7.9 Compliance Level 3B - Macro State Management (Activity diagram)

These interfaces provide for more finely grained control of startup and shutdown.

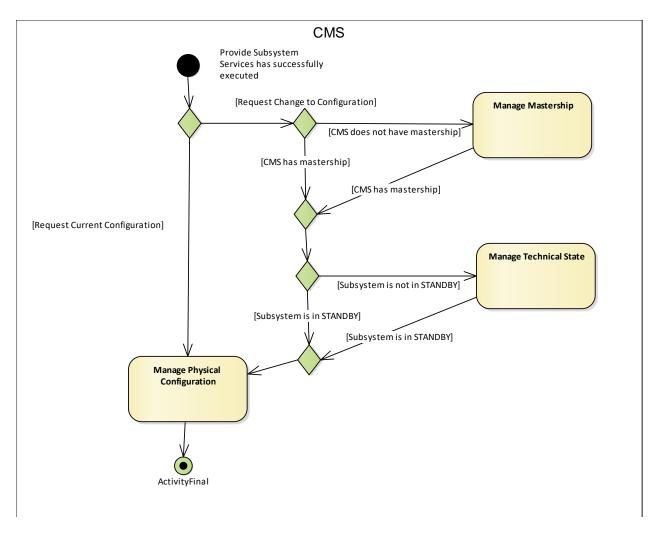


Figure 7.10 Compliance Level 3B - Manage Physical Configuration (Activity diagram)

These interfaces support more detailed control of the subsystem configuration.

CMS and Subsystem partitions indicate the initiator of the service only. For example a service initiated by the CMS may include a response from the subsystem even though the service is not in the Subsystem swimlane.

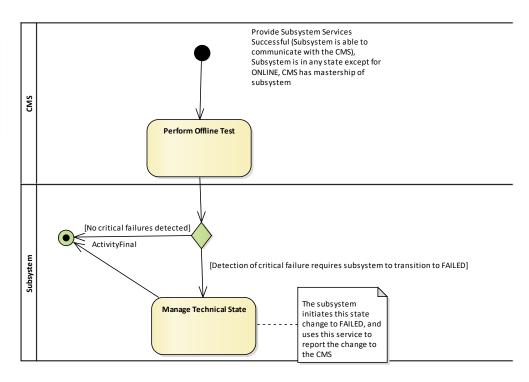


Figure 7.11 Compliance Level 3B - Perform Offline Test (Activity diagram)

Offline test provides a mechanism for diagnosing subsystem failures, after which the subsystem's

technical state is adjusted accordingly.

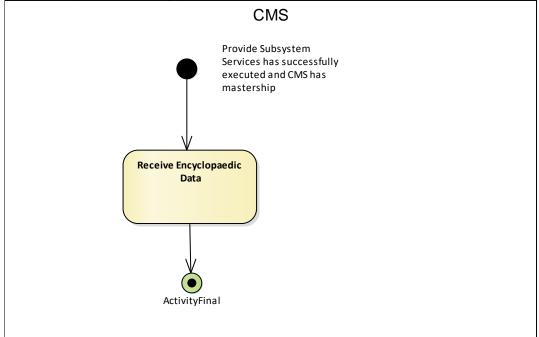


Figure 7.12 Compliance Level 3B - Receive Encyclopaedic Data (Activity diagram)

The subsystem is able to receive relevant encyclopaedic data from the CMS.

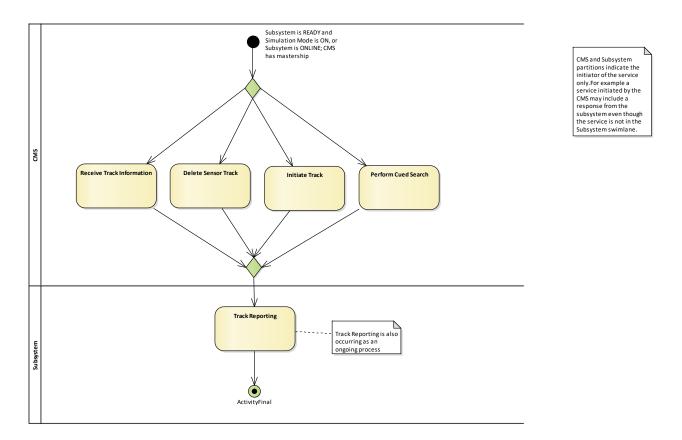


Figure 7.13 Compliance Level 3C - Advanced Track Management (Activity diagram)

The sensor supports detailed track management.

CMS and Subsystem partitions indicate the initiator of the service only. For example a service initiated by the CMS may include a response from the subsystem even though the service is not in the Subsystem swimlane.

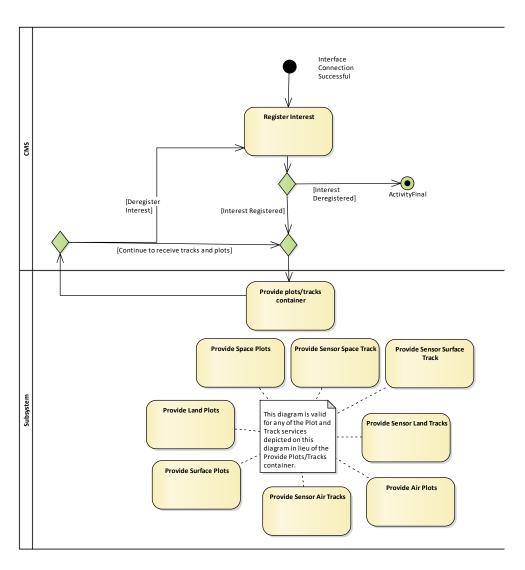


Figure 7.14 Compliance Level 3C - Advanced Track and Plot Reporting (Activity diagram)

The sensor supports reporting tracks and plots selectively based on the operational environment (space/air/land/surface).

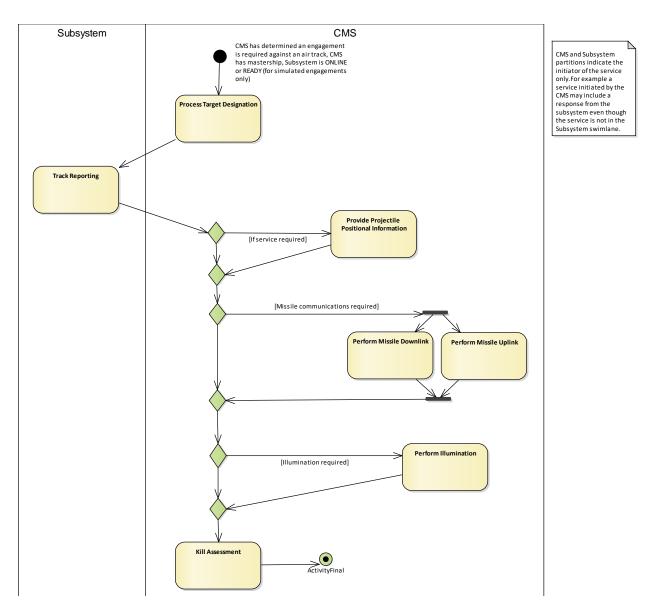


Figure 7.15 Compliance Level 3D - Air Engagement Support (Activity diagram)

Level 3D provides additional information to support air engagements, including missile links and kill assessment.

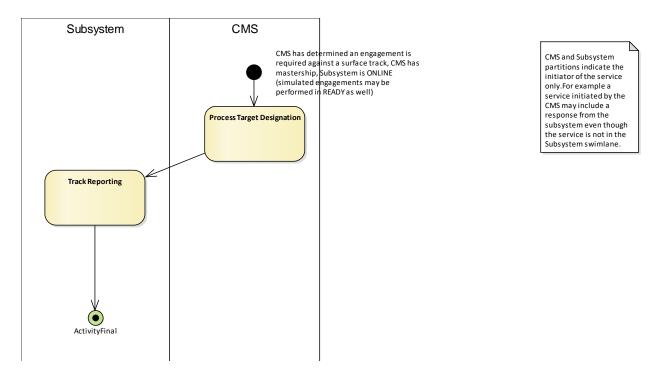


Figure 7.16 Compliance Level 3D - Surface Engagement Support - Fire Control Radar (Activity diagram)

This provides additional surface engagement support for fire control.

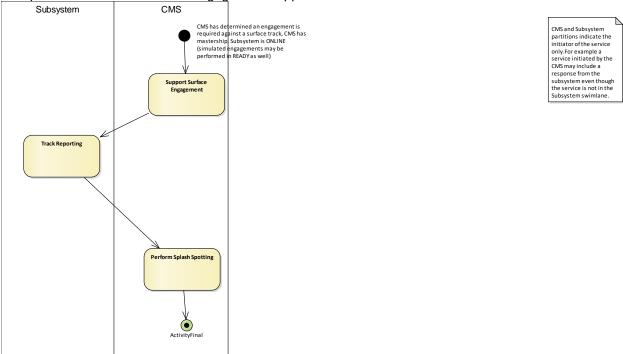


Figure 7.17 Compliance Level 3D - Surface Engagement Support - Surveillance Radar (Activity diagram) This provides additional surface engagement support for surveillance purposes.

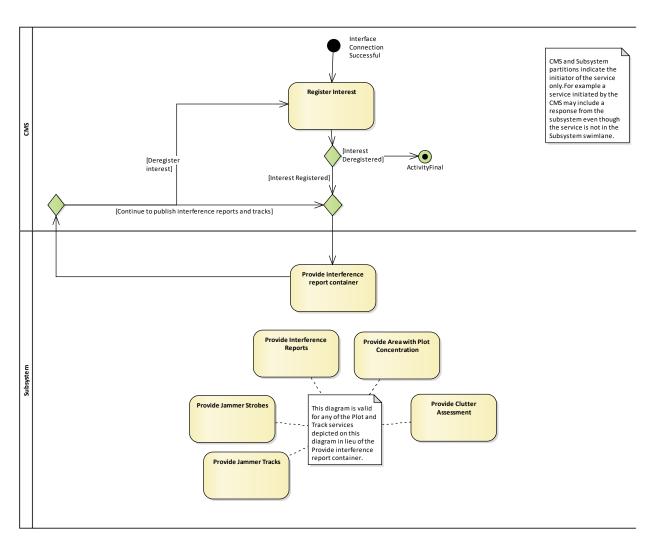


Figure 7.18 Compliance Level 3E - Automatic Interference Reporting (Activity diagram)

Level 3E provides for detailed interference reporting, including jammers.

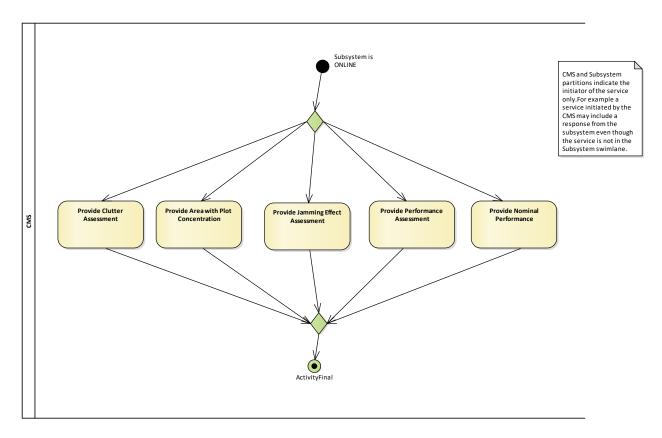


Figure 7.19 Compliance Level 3E - Requested Interference Reports (Activity diagram)

These interfaces provide for reporting sensor specified and actual performance in addition to interference related information.

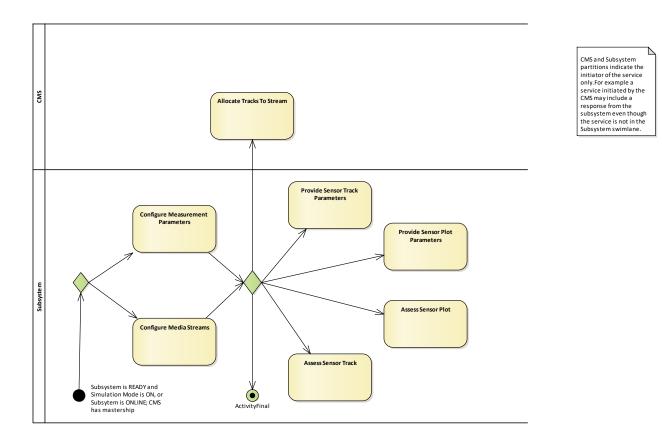


Figure 7.20 Compliance Level 3H - Measurement and Identification Assessment (Activity diagram)

These interfaces support the processing and assessment of information derived from the sensor's processing chain (especially detailed parametric data) to aid the identification and classification processes within the CMS.

7.3 Common_Types

Parent Package: Domain_Model

This package contains the types that are common to several areas of the model. Most of the content is in three sub-packages: Coordinates_and_Positions, Shape_Model and Requests. General types are captured at the top level.

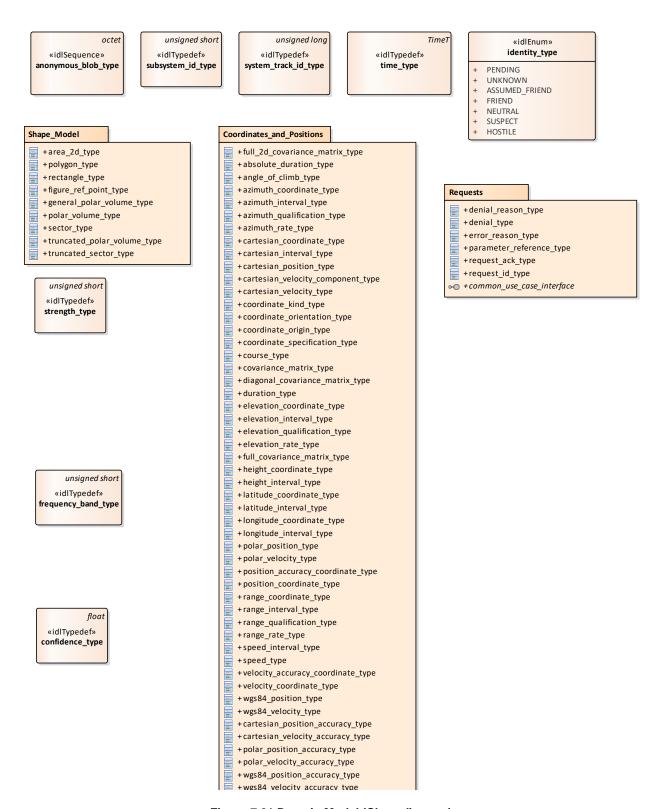


Figure 7.21 Domain Model (Class diagram)

7.3.1 anonymous_blob_type

Type: Class octet Common_Types

Representation for a general binary type

ElementTag: Length = 1024

7.3.2 confidence_type

Type: Class float Package: Common_Types

The confidence in the measurement or assessment expressed as a probability. This is the result of a hypothesis test that the data is a measurement of real-world phenomenon corresponding to its label. For an assessment it is the hypothesis that the assessment describes the real-world.

ElementTag: Range = 0 .. 1

7.3.3 identity_type

Type: IDLEnum

Package: Common_Types Identity according to STANAG 5516.

Table 7.1 - Attributes of IDLEnum identity_type

Attribute	Notes
PENDING	
UNKNOWN	
ASSUMED_FRIEND	
FRIEND	
NEUTRAL	
SUSPECT	
HOSTILE	

7.3.4 strength_type

Type: Class unsigned short **Package:** Common_Types

Strength of the measurement (for a track or plot). The precise semantics of this type are sensor subsystem specific, but a typical interpretation is as a signal to noise ratio in dB.

ElementTag: Issue =

7.3.5 subsystem_id_type

Type: IDLTypeDef unsigned short

Package: Common_Types

This type provides a unique id for different subsystems. Subsystem ids shall be allocated by the platform integrator. Subsystem id equal to zero is reserved to imply applicability to all and any subsystem. ElementTag: BaseType = unsigned short

7.3.6 system_track_id_type

Type: Class unsigned long Package: Common_Types
System Track Identification

7.3.7 time_type

Type: Class TimeT Common_Types

based on start of Gregorian calendar (1582-10-15T 00:00UTC)

unit: 100 nano seconds

i.a.w CORBA Time Service Time T

7.3.8 frequency_band_type

Type: Class unsigned short **Package:** Common_Types

An index indicating a particular frequency channel or band. The actual frequency is typically not of concern to the command team. A band refers to a discrete frequency or a range of frequencies; such bands may overlap.

7.3.9 System_Track

Parent Package: Common_Types

	«idlStruct» system_track_type	
+	simulated: boolean	
+	time_of_information: time_type	
+	position_coordinate_system: coordinate_specification_type	
+	position: position_coordinate_type	
+	velocity_coordinate_system: coordinate_specification_type	
+	velocity: velocity_coordinate_type	
+	position_accuracy_coordinate_system: coordinate_specification_type	
+	position_accuracy: position_accuracy_coordinate_type	
+	velocity_accuracy_coordinate_system: coordinate_specification_type [01]	
+	velocity_accuracy: velocity_accuracy_coordinate_type [01]	
+	max_range_limit: range_coordinate_type [01]	
(4	«key»	
+	system_track_number: system_track_id_type	

Figure 7.22 Domain Model (Class diagram)

7.3.9.1 system_track_type

Type: IDLStruct Package: System_Track

System track information is limited to information required by a subsystem for missile guidance.

Table 7.2 - Attributes of IDLStruct system_track_type

Attribute	Notes
<pre>«key» system_track_number system_track_id_type</pre>	
simulated boolean	
time_of_information time_type	
position_coordinate_system	
coordinate_specification_type	

Attribute	Notes
position position_coordinate_type	
velocity_coordinate_system	
coordinate_specification_type	
<pre>velocity velocity_coordinate_type</pre>	
position_accuracy_coordinate_system	
coordinate_specification_type	
<pre>position_accuracy position_accuracy_coordinate_type</pre>	
velocity_accuracy_coordinate_system	
coordinate_specification_type [01]	
<pre>velocity_accuracy velocity_accuracy_coordinate_type</pre>	
[01]	
max_range_limit range_coordinate_type [01]	

7.3.10 Coordinates_and_Positions

Parent Package: Common_Types

Definitions of types to describe positions, in accordance with the ISO 19111 abstract model.

«idlUnion» position_accuracy_coordinate_type

«idlCase»

- + cartesian_position_accuracy: cartesian_position_accuracy_type
- + polar_position_accuracy: polar_position_accuracy_type
- + wgs84_position_accuracy: wgs84_position_accuracy_type

notes

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined by the coordinate_specification_type value, and it should only send data of that variant and it should check that all data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such data constitutes an error in the operation of the interface.

- + x_coordinate_accuracy: cartesian_coordinate_type
- + y_coordinate_accuracy: cartesian_coordinate_type
- + z_coordinate_accuracy: cartesian_coordinate_type [0..1]

«idlStruct» polar_position_accuracy_type

- + azimuth_accuracy: azimuth_coordinate_type
- + elevation_accuracy: elevation_coordinate_type [0..1]
- + range_accuracy: range_coordinate_type [0..1]
- + origin: wgs84_position_accuracy_type [0..1]

- + height_accuracy: height_coordinate_type [0..1]
- + latitude_accuracy: latitude_coordinate_type
- + longitude_accuracy: longitude_coordinate_type

«idlUnion» velocity_accuracy_coordinate_type

«idlCase»

- cartesian_velocity_accuracy: cartesian_velocity_accuracy_type
- + polar_velocity_accuracy: polar_velocity_accuracy_type
- + wgs84_velocity_accuracy: wgs84_velocity_accuracy_type

notes

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined by the coordinate_specification_type value, and it should only send data of that variant and it should check that all data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such data constitutes an error in the operation of the interface.

«idlStruct» cartesian_velocity_accuracy_type

- + x_dot_accuracy: cartesian_velocity_component_type
- y_dot_accuracy: cartesian_velocity_component_type
- + z_dot_accuracy: cartesian_velocity_component_type [0..1]

«idlStruct» polar_velocity_accuracy_type

- + azimuth_rate_accuracy: azimuth_rate_type
- elevation_rate_accuracy: elevation_rate_type [0..1]
- + range_rate_accuracy: range_rate_type [0..1]

«idlStruct» wgs84_velocity_accuracy_type

- + course_accuracy: course_type
- + angle_of_climb_accuracy: angle_of_climb_type [0..1]
- + speed_accuracy: speed_type

Figure 7.23 Accuracies (Class diagram)

«idlEnum» coordinate kind type «enum» CARTESIAN

POLAR

WGS84

«idlEnum» coordinate orientation type

«enum»

- NORTH HORIZONTAL
- NORTH_DOWN
- EAST_NORTH_UP
- EAST_NORTH_DOWN
- NORTH_EAST_UP
- NORTH_EAST_DOWN
- EARTH_CENTRED
- LAT_LONG_HEIGHT
- STERN_KEEL
- STERN DECK LEVEL
- STERN_STARBOARD_MAST
- STERN STARBOARD KEEL

«idlStruct» coordinate specification type

- kind: coordinate kind type
- orientation: coordinate_orientation_type
- origin: coordinate_origin_type

Specifies the interpretation of position_coordinate_type and velocity_coordinate_type.

position_coordinate_type

- cartesian_position: cartesian_position_type
- polar_position: polar_position_type
- wgs84_position: wgs84_position_type

notes

To offer flexibility, three variants of coordinate system representation are supported corresponding to the coordinate_kind_type enumerate. An implementation should support of kind for each relevant interface as defined by the coordinate_specification_type value, and it should only send data of that variant and it should check that all data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of sucl data constitutes an error in the operation of the interface.

double «idlTypedef» cartesian_coordinate_type

Range = -1 e7 .. 1 e7 Resolution = 1 e-3 Unit = m

Issue =

double «idlTypedef» azimuth_coordinate_type

Range = 0 .. 2 pi Resolution = 1 e-4 Unit = rad

Range = -pi / 2 .. pi / 2 Resolution = 1 e-4 Unit = rad

«idlTypedef»

elevation_coordinate_type

«idlEnum» coordinate_origin_type

- PLATFORM_REFERENCE_POINT
- SENSOR_REFERENCE_POINT
- ABSOLUTE_REFERENCE_POINT
- EARTH_REFERENCED
- EXPLICITLY_SPECIFIED

«idlStruct» cartesian_position_type

- x_coordinate: cartesian_coordinate_type
- z_coordinate: cartesian_coordinate_type [0..1]
- v coordinate: cartesian coordinate type

«idlStruct» wgs84 position type

- height_coordinate: height_coordinate_type [0..1]
- latitude coordinate: latitude coordinate type
- longitude_coordinate:longitude_coordinate_type

«idlStruct» polar_position_type

- azimuth_coordinate:azimuth_coordinate_type
- elevation_coordinate: elevation_coordinate_type [0..1]
- range_coordinate:range_coordinate_type [0..1]
- origin: wgs84_position_type [0..1]

double

double «idlTypedef» range_coordinate_type

Issue = Range = 0 .. 1 e7 Resolution = 1 e-3 Unit = m

Choice of SI units and double base type reflects the use of broadest international standard and a flexible representation (it may represent very large and very small distances with equal precision). It is noted that there are other military international standards (e.g. STANAGs), which sometimes make different choices. However, these often reflect pressures to represent data in the most compact format - e.g. legacy systems or secure wireless communication.

double «idlTypedef» latitude_coordinate_type

tags Range = -90 .. 90 Resolution = 1 e-6 Unit = deg

«idlTypedef» longitude_coordinate_type

tags Range = -180 .. 180 Resolution = 1 e-6 Unit = deg

double «idlTypedef» height_coordinate_type

Issue =

Range = -1 e4 .. 1 e6 Resolution = 1 e-3 Unit = m

Figure 7.24 Coordinates and Positions (Class diagram)

«idlUnion» covariance_matrix_type

«idlCase»

- diagonal_covariance_matrix: diagonal_covariance_matrix_type
- full_covariance_matrix: full_covariance_matrix_type
- full_2d_covariance_matrix: full_2d_covariance_matrix_type

«idlStruct» diagonal_covariance_matrix_type

- xx variance: float
- yy_variance: float zz_variance: float
- vxvx_variance: float
- vyvy_variance: float
- vzvz_variance: float

«idlStruct» full_2d_covariance_matrix_type

- xx_variance: float
- xv variance: float
- xvx_variance: float
- xvy_variance: float
- yy_variance: float
- yvx_variance: float
- yvy_variance: float
- vxvx_variance: float
- vxvy_variance: float
- vyvy_variance: float

«idlStruct» full_covariance_matrix_type

- xx_variance: float
- xy_variance: float
- xz_variance: float
- xvx_variance: float
- xvy_variance: float
- xvz_variance: float
- yy_variance: float
- yz_variance: float
- yvx_variance: float
- yvy_variance: float yvz_variance: float
- zz_variance: float
- zvx variance: float
- zvy_variance: float
- zvz_variance: float
- vxvx variance: float
- vxvy_variance: float
- vxvz variance: float
- vyvy_variance: float
- vyvz variance: float
- vzvz_variance: float

«idlStruct» azimuth_qualification_type

- + spread: azimuth_coordinate_type [0..1]
- accuracy: azimuth_coordinate_type

«idlStruct» elevation_qualification_type

- spread: elevation_coordinate_type [0..1]
- accuracy: elevation_coordinate_type

«idlStruct» range_qualification_type

- spread: range_coordinate_type [0..1]
- accuracy: range_coordinate_type

Figure 7.25 Covariance and Qualification (Class diagram)

«idlStruct» absolute_duration_type

- start: time_type
- stop: time_type

unsigned long long «idlTypedef» duration_type

«idlStruct» cartesian_interval_type

- start: cartesian_coordinate_type
- stop: cartesian_coordinate_type

«idlStruct» azimuth_interval_type

- + start: azimuth_coordinate_type
- stop: azimuth_coordinate_type

«idlStruct» elevation_interval_type

- start: elevation_coordinate_type
- stop: elevation_coordinate_type

«idlStruct» range_interval_type

- + start:range_coordinate_type
- stop:range_coordinate_type

«idlStruct» latitude_interval_type

- start: latitude_coordinate_type
- stop:latitude_coordinate_type

«idlStruct» longitude_interval_type

start:longitude_coordinate_type stop:longitude_coordinate_type

«idlStruct» height_interval_type

start: height_coordinate_type stop: height_coordinate_type

Open Architecture Radar Interface Standard (OARIS), Draft for v2.0

Figure 7.26 Intervals (Class diagram) double «idlStruct» «idlTypedef» cartesian_velocity_type cartesian_velocity_component_type x_dot: cartesian_velocity_component_type y_dot: cartesian_velocity_component_type z_dot: cartesian_velocity_component_type [0..1] Range = -1 e5 .. 1 e5 Resolution = 0.01 Unit = m/s double double double «idlStruct» polar_velocity_type «idlTypedef» «idlTypedef» «idlTypedef» azimuth_rate_type elevation_rate_type range_rate_type azimuth_rate: azimuth_rate_type elevation_rate: elevation_rate_type [0..1] taas taas taas range_rate: range_rate_type [0..1] Range = -100 .. 100 Range = -100 .. 100 Range = 0.0 .. 1 e5 Resolution = 1 e-4 Resolution = 1 e-4 Resolution = 0.01 Unit = rad/s Unit = rad/s Unit = m/s double double double «idlStruct» wgs84_velocity_type «idlTypedef» «idlTypedef» «idlTypedef» angle_of_climb_type speed_type course_type course: course_type angle_of_climb: angle_of_climb_type [0..1] tags tags tags speed: speed type Range = 0 .. 2 pi Range = -pi/2 .. pi/2 Range = 0.0 .. 1 e5 Resolution = 1 e-3 Resolution = 0.01 Resolution = 1 e-3 Unit = rad Unit = Rad Unit = m/s

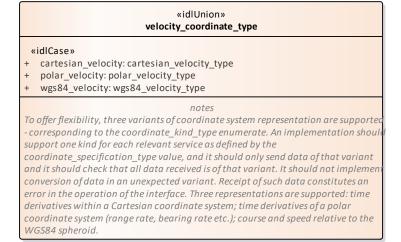


Figure 7.27 Time Derivatives (Class diagram)

double

«idlTypedef»

longitude_coordinate_type

tags

Range = -180 .. 180

Resolution = 1 e-6

Unit = deg

double

«idlTypedef»
height_coordinate_type

tags
Issue =
Range = -1 e4 .. 1 e6
Resolution = 1 e-3
Unit = m

double

«idlTypedef»
latitude_coordinate_type

tags
Range = -90 .. 90
Resolution = 1 e-6
Unit = deg

longitude coordinate: longitude coordinate type

Figure 7.28 World Coordinates and Positions (Class diagram)

7.3.10.1 absolute_duration_type

Type: Class

Package: Coordinates_and_Positions

This class represents a duration fixed to an absolute point in time.

Table 7.3 - Attributes of Class absolute_duration_type

Attribute	Notes
start time_type	
stop time_type	

7.3.10.2 angle_of_climb_type

Type: Class double

Package: Coordinates_and_Positions

The angle representing the direction of travel relative to the horizontal. Up is positive.

ElementTag: Range = -pi/2 .. pi/2 ElementTag: Resolution = 1 e-3

ElementTag: Unit = Rad

7.3.10.3 azimuth_coordinate_type

Type: Class double

Package: Coordinates_and_Positions

Axis in the azimuth direction, i.e. horizontal angle from the associated coordinate system reference.

Radians, positive clockwise from above. See diagram note on choice of SI units

ElementTag: Range = 0 .. 2 pi ElementTag: Resolution = 1 e-4

ElementTag: Unit = rad

7.3.10.4 azimuth_interval_type

Type: Class

Package: Coordinates_and_Positions

Table 7.4 - Attributes of Class azimuth_interval_type

Attribute	Notes
start azimuth_coordinate_type	
stop azimuth_coordinate_type	

7.3.10.5 azimuth_qualification_type

Type: IDLStruct

Package: Coordinates_and_Positions

Qualifies a measurement with attributes of accuracy and, if possible, variability.

Table 7.5 - Attributes of IDLStruct azimuth_qualification_type

Attribute	Notes
spread azimuth_coordinate_type [01]	The spread of the measurement. The combined measures of spread should encompass the full extent of the plot. This attribute is optional. Not all sensors are capable of measuring it.
accuracy azimuth_coordinate_type	The accuracy of the measurement; equal to one standard deviation of uncertainty.

7.3.10.6 azimuth_rate_type

Type: Class double

Package: Coordinates_and_Positions

radians per second

ElementTag: Range = -100 .. 100 ElementTag: Resolution = 1 e-4

ElementTag: Unit = rad/s

7.3.10.7 cartesian_coordinate_type

Type: Class double

Package: Coordinates_and_Positions See diagram note on choice of SI units ElementTag: Range = -1 e7 .. 1 e7 ElementTag: Resolution = 1 e-3

ElementTag: Unit = m

7.3.10.8 cartesian_interval_type

Type: IDLStruct

Package: Coordinates_and_Positions

Table 7.6 - Attributes of IDLStruct cartesian_interval_type

Attribute	Notes
start cartesian_coordinate_type	

Attribute	Notes
stop cartesian_coordinate_type	

7.3.10.9 cartesian_position_type

Type: IDLStruct

Package: Coordinates_and_Positions

Coordinates in a Cartesian reference frame as described by a coordinate specification object

Table 7.7 - Attributes of IDLStruct cartesian_position_type

Attribute	Notes
x_coordinate cartesian_coordinate_type	
z_coordinate cartesian_coordinate_type [01]	Optional as some sensors are 2D (horizontal plane or no elevation information)
y_coordinate cartesian_coordinate_type	

7.3.10.10 cartesian_velocity_component_type

Type: IDLTypeDef double

Package: Coordinates_and_Positions

ElementTag: Range = -1 e5 .. 1 e5 ElementTag: Resolution = 0.01 ElementTag: Unit = m/s

7.3.10.11 cartesian_velocity_type

Type: IDLStruct

Package: Coordinates_and_Positions

Table 7.8 - Attributes of IDLStruct cartesian_velocity_type

Attribute	Notes
x_dot cartesian_velocity_component_type	
<pre>y_dot cartesian_velocity_component_type</pre>	
z_dot cartesian_velocity_component_type [01]	

7.3.10.12 coordinate_kind_type

Type: IDLEnum

Package: Coordinates_and_Positions

Table 7.9 - Attributes of IDLEnum coordinate_kind_type

	,
Attribute	Notes
«enum» CARTESIAN	
«enum» POLAR	
«enum» WGS84	

7.3.10.13 coordinate_orientation_type

Type: IDLEnum

Package: Coordinates_and_Positions

This enumeration defines the set of coordinate systems, which compliant implementations may use. A compliant implementation may not fully support all of these coordinate systems.

Table 7.10 - Attributes of IDLEnum coordinate_orientation_type

Attribute	Notes
«enum» NORTH_HORIZONTAL	Valid for Polar Coordinate Kind Azimuth has origin (0.0) at North, positive clockwise, measured in the horizontal plane Elevation has origin (0.0) at the Horizontal, positive up, measured in the vertical plane.
«enum» NORTH_DOWN	Valid for Polar Coordinate Kind Azimuth has origin (0.0) at North, clockwise positive, measured in the horizontal plane Elevation has origin (0.0) when pointing directly down, and 180.0 degrees when pointing directly up, measured in the vertical plane.
«enum» EAST_NORTH_UP	Valid for Cartesian coordinate type x is positive to the East y is positive to the North z is positive up
«enum» EAST_NORTH_DOWN	Valid for Cartesian coordinate type x is positive to the East y is positive to the North z is positive down
«enum» NORTH_EAST_UP	Valid for Cartesian coordinate type x is positive to the North y is positive to the East z is positive up
«enum» NORTH_EAST_DOWN	Valid for Cartesian coordinate type x is positive to the North y is positive to the East z is positive down
«enum» EARTH_CENTRED	Cartesian system with origin at centre of the Earth (absolute reference point) x positive through Greenwich meridian y positive through 90 degrees east (of Greenwich meridian) z positive through north pole x & y are in the equatorial plane
«enum» LAT_LONG_HEIGHT	WGS84 has unique well-defined orientation (NIMA Technical Report TR8350.2)

Attribute	Notes
«enum» STERN_KEEL	Valid for Polar Coordinate Kind
	This is a platform orientation relative frame
	Azimuth has origin (0.0) in line with the ship's stern
	(heading), measured anti-clockwise
	Elevation has origin (0.0) when pointing directly down
	to the keel (perpendicular to the current inclination of
	the deck-level, not necessarily to the Earth's surface)
«enum» STERN_DECK_LEVEL	Valid for Polar Coordinate Kind
	This is a platform orientation relative frame
	Azimuth has origin (0.0) in line with the ship's stern
	(heading), measured anti-clockwise
	Elevation has origin (0.0) when pointing parallel to the
	deck-level (not necessarily parallel to the Earth's
	surface)
«enum» STERN_STARBOARD_MAST	Valid for Cartesian coordinate type
	This is a platform orientation relative frame
	x is positive towards the stern (negative to bow)
	y is positive to starboard (negative to port)
	z is positive towards the mast (negative to keel)
«enum» STERN_STARBOARD_KEEL	Valid for Cartesian coordinate type
	This is a platform orientation relative frame
	x is positive towards the stern (negative to bow)
	y is positive to starboard (negative to port)
	z is positive towards the keel (negative to mast)

7.3.10.14 coordinate_origin_type

IDLEnum

Type: Package: Coordinates_and_Positions

Table 7.11 - Attributes of IDLEnum coordinate_origin_type

Attribute	Notes
«enum» PLATFORM_REFERENCE_POINT	The origin of the coordinate system is 'well known' reference point for the platform (on which the CMS and subsystem reside)
«enum» SENSOR_REFERENCE_POINT	The origin for the coordinate system is the 'well known' reference/datum point for the sensor, which is interacting using the interface.
«enum» ABSOLUTE_REFERENCE_POINT	The origin for the coordinate system is a fixed point in Earth (WGS84) coordinates. This point is known to the CMS and Subsystems using the interface by means beyond the scope of the interface.

Attribute	Notes
«enum» EARTH_REFERENCED	This value signifies that the origin for the coordinate system is well-defined with respect to the Earth by the coordinate system. E.g. centre of the Earth for Earth-Centred Earth-Fixed or the WGS84 spheroid for WGS84
«enum» EXPLICITLY_SPECIFIED	This value signifies that the origin is explicitly specified within the data model by the producer of the data.

7.3.10.15 coordinate_specification_type

Type: IDLStruct

Package: Coordinates_and_Positions

Specifies the interpretation of position_coordinate_type and velocity_coordinate_type.

Table 7.12 - Attributes of IDLStruct coordinate_specification_type

Attribute	Notes
kind coordinate_kind_type	
orientation coordinate_orientation_type	
origin coordinate_origin_type	

Package: Coordinates_and_Positions

The angle representing the direction of travel relative to North in the horizontal plane. Clockwise (facing

down) is positive.

ElementTag: Range = 0 .. 2 pi ElementTag: Resolution = 1 e-3

ElementTag: Unit = rad

7.3.10.17 covariance_matrix_type

Type: Class

Package: Coordinates_and_Positions

This class represents a covariance matrix for coordinate estimates and their time derivatives through a choice of formats.

Table 7.13 - Attributes of Class covariance_matrix_type

Attribute	Notes
«idlCase» diagonal_covariance_matrix	
diagonal_covariance_matrix_type	
«idlCase» full_covariance_matrix	
full_covariance_matrix_type	
<pre>«idlCase» full_2d_covariance_matrix</pre>	
full_2d_covariance_matrix_type	

7.3.10.18 diagonal_covariance_matrix_type

Type: Class

Package: Coordinates_and_Positions

Covariance of just the diagonal elements (i.e. the variance of the coordinate estimates).

Table 7.14 - Attributes of Class diagonal_covariance_matrix_type

Attribute	Notes
xx_variance float	
yy_variance float	
zz_variance float	
vxvx_variance float	
vyvy_variance float	
vzvz_variance float	

7.3.10.19 duration_type

Type: Class unsigned long long Package: Coordinates_and_Positions

The length of a time interval (not fixed to an absolute point in time).

unit: 100 nano seconds

7.3.10.20 elevation_coordinate_type

Type: Class double

Package: Coordinates and Positions

Axis in the direction of elevation, i.e. vertical angle from the associated coordinate system datum, radians, positive up.

See diagram note on choice of SI units ElementTag: Range = -pi / 2 .. pi / 2 ElementTag: Resolution = 1 e-4

ElementTag: Unit = rad

7.3.10.21 elevation_interval_type

Type: Class

Package: Coordinates_and_Positions

Table 7.15 - Attributes of Class elevation_interval_type

Attribute	Notes
start elevation_coordinate_type	
stop elevation_coordinate_type	

7.3.10.22 elevation_qualification_type

Type: IDLStruct

Package: Coordinates_and_Positions

Qualifies a measurement with attributes of accuracy and, if possible, variability.

Attribute	Notes
spread elevation_coordinate_type [01]	The spread of the measurement. The combined measures of spread should encompass the full extent of the plot. This attribute is optional. Not all sensors are capable of measuring it.
accuracy elevation_coordinate_type	The accuracy of the measurement; equal to one standard deviation of uncertainty.

7.3.10.23 elevation_rate_type

Type: Class double

Package: Coordinates_and_Positions

radians per second

ElementTag: Range = -100 .. 100 ElementTag: Resolution = 1 e-4

ElementTag: Unit = rad/s

7.3.10.24 full_2d_covariance_matrix_type

Type: IDLStruct

Package: Coordinates_and_Positions

The full covariance terms (in triangular form as necessarily a symmetric matrix) for reports in just the x and y dimensions.

Table 7.16 - Attributes of IDLStruct full_2d_covariance_matrix_type

Attribute	Notes
xx_variance float	
• 0	
xy_variance float	
xvx_variance float	
xvy_variance float	
yy_variance float	
yvx_variance float	
yvy_variance float	
–	
vxvx_variance float	
www. voniones fleet	
vxvy_variance float	
vyvy_variance float	

7.3.10.25 full_covariance_matrix_type

Type: Class

Package: Coordinates_and_Positions

Triangular representation of a full covariance matrix (which is by definition symmetric).

Attribute	Notes
xx_variance float	
xy_variance float	
xz_variance float	
xvx_variance float	
xvy_variance float	
xvz_variance float	
yy_variance float	
yz_variance float	
yvx_variance float	
yvy_variance float	
yvz_variance float	
zz_variance float	
zvx_variance float	
zvy_variance float	
zvz_variance float	
vxvx_variance float	
vxvy_variance float	
vxvz_variance float	
vyvy_variance float	
vyvz_variance float	
vzvz_variance float	

7.3.10.26 height_coordinate_type

Type: Class double

Package: Coordinates_and_Positions

For positive values, height above coordinate system ellipsoid, for negative values, depth below; measured in meters. This quantity is height as a measured distance rather than an inference from (for instance) barometric pressure.

See diagram note on choice of SI units ElementTag: Range = -1 e4 .. 1 e6

ElementTag: Resolution = 1 e-3

ElementTag: Unit = m

7.3.10.27 height_interval_type

Type: Class

Package: Coordinates_and_Positions

Table 7.17 - Attributes of Class height_interval_type

Notes

7.3.10.28 latitude_coordinate_type

Type: Class double

Package: Coordinates and Positions

Degrees north (positive), south (negative) relative to coordinate system datum.

See diagram note on choice of SI units

ElementTag: Range = -90 .. 90 ElementTag: Resolution = 1 e-6

ElementTag: Unit = deg

7.3.10.29 latitude_interval_type

Type: Class

Package: Coordinates_and_Positions

Table 7.18 - Attributes of Class latitude_interval_type

Attribute	Notes
start latitude_coordinate_type	
stop latitude_coordinate_type	

7.3.10.30 longitude coordinate type

Type: Class double

Package: Coordinates_and_Positions

Degrees east (positive), west (negative) relative to coordinate system datum.

See diagram note on choice of SI units ElementTag: Range = -180 .. 180

ElementTag: Resolution = 1 e-6

ElementTag: Unit = deg

7.3.10.31 longitude_interval_type

Type: Class

Package: Coordinates_and_Positions

Table 7.19 - Attributes of Class longitude_interval_type

Attribute	Notes
start longitude_coordinate_type	
stop longitude_coordinate_type	

7.3.10.32 polar_position_type

Type: IDLStruct

Package: Coordinates_and_Positions

Coordinates in a polar reference frame as a described by a coordinate specification object

Table 7.20 - Attributes of IDLStruct polar_position_type

Attribute	Notes
azimuth_coordinate azimuth_coordinate_type	
elevation_coordinate elevation_coordinate_type [01]	Optional as some sensors provide no elevation information
range_coordinate range_coordinate_type [01]	Optional as some sensor provide no range information (e.g. most passive sensors)
origin wgs84_position_type [01]	Specifies the origin from which to interpret the polar position. This attribute is optional as the origin can be implicitly specified according to the value of the applicable coordinate specification enumeration.

7.3.10.33 polar_velocity_type

Type: IDLStruct

Package: Coordinates_and_Positions

Velocity defined in a polar reference frame as a described by a coordinate specification object

Table 7.21 - Attributes of IDLStruct polar_velocity_type

Attribute	Notes
azimuth_rate azimuth_rate_type	
elevation_rate elevation_rate_type [01]	Optional as some sensors provide no elevation information
range_rate range_rate_type [01]	Optional as some sensor provide no range information (e.g. most passive sensors)

7.3.10.34 position_accuracy_coordinate_type

Type: Class

Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined by the coordinate_specification_type value, and it should only send data of that variant and it should check that all data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such data constitutes an error in the operation of the interface.

Table 7.22 - Attributes of Class position_accuracy_coordinate_type

Attribute	Notes
«idlCase» cartesian_position_accuracy	
cartesian_position_accuracy_type	
«idlCase» polar_position_accuracy	
polar_position_accuracy_type	
«idlCase» wgs84_position_accuracy	
wgs84_position_accuracy_type	

7.3.10.35 position_coordinate_type

Type: IDLUnion

Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined by the coordinate_specification_type value, and it should only send data of that variant and it should check that all data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such data constitutes an error in the operation of the interface. ElementTag: case type = coordinate_kind_type

Table 7.23 - Attributes of IDLUnion position_coordinate_type

Attribute	Notes
«idlCase» cartesian_position cartesian_position_type	AttributeTag: case value = CARTESIAN
«idlCase» polar_position polar_position_type	AttributeTag: case value = POLAR
«idlCase» wgs84_position wgs84_position_type	AttributeTag: case value = WGS84

7.3.10.36 range_coordinate_type

Type: Class double

Package: Coordinates_and_Positions

Axis in range, i.e. linear distance from the coordinate system datum. Metres.

See diagram note on choice of SI units

ElementTag: Range = 0 .. 1 e7 ElementTag: Resolution = 1 e-3

ElementTag: Unit = m

7.3.10.37 range_interval_type

Type: Class

Package: Coordinates_and_Positions

Table 7.24 - Attributes of Class range_interval_type

Attribute	Notes
start range_coordinate_type	
stop range_coordinate_type	

7.3.10.38 range_qualification_type

Type: IDLStruct

Package: Coordinates_and_Positions

Qualifies a measurement with attributes of accuracy and, if possible, variability.

Attribute	Notes
spread range_coordinate_type [01]	The spread of the measurement. The combined measures of spread should encompass the full extent of the plot. This attribute is optional. Not all sensors are capable of measuring it.
accuracy range_coordinate_type	The accuracy of the measurement; equal to one standard deviation of uncertainty.

7.3.10.39 range_rate_typeType: Class double

Package: Coordinates_and_Positions

metres per second

ElementTag: Range = 0.0 .. 1 e5 ElementTag: Resolution = 0.01

ElementTag: Unit = m/s

7.3.10.40 speed_interval_type

Type: Class

Package: Coordinates_and_Positions This class represents a range of speeds.

Table 7.25 - Attributes of Class speed_interval_type

Attribute	Notes
min speed_type	The minimum speed.
	-
max speed_type	The maximum speed.
	-

7.3.10.41 speed_typeType: Class double

Package: Coordinates_and_Positions

metres per second

ElementTag: Range = 0.0 .. 1 e5 ElementTag: Resolution = 0.01 ElementTag: Unit = m/s

7.3.10.42 velocity accuracy coordinate type

Type: Class

Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined by the coordinate_specification_type value, and it should only send data of that variant and it should check that all data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such data constitutes an error in the operation of the interface.

Table 7.26 - Attributes of Class velocity_accuracy_coordinate_type

Attribute	Notes
«idlCase» cartesian_velocity_accuracy	
cartesian_velocity_accuracy_type	
<pre>«idlCase» polar_velocity_accuracy</pre>	
polar_velocity_accuracy_type	

Attribute	Notes
«idlCase» wgs84_velocity_accuracy	
wgs84_velocity_accuracy_type	

7.3.10.43 velocity_coordinate_type

Type: IDLUnion

Package: Coordinates_and_Positions

To offer flexibility, three variants of coordinate system representation are supported - corresponding to the coordinate_kind_type enumerate. An implementation should support one kind for each relevant service as defined by the coordinate_specification_type value, and it should only send data of that variant and it should check that all data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such data constitutes an error in the operation of the interface. Three representations are supported: time derivatives within a Cartesian coordinate system; time derivatives of a polar coordinate system (range rate, bearing rate etc.); course and speed relative to the WGS84 spheroid.

ElementTag: case type = coordinate kind type

Table 7.27 - Attributes of IDLUnion velocity_coordinate_type

Attribute	Notes
«idlCase» cartesian_velocity cartesian_velocity_type	AttributeTag: case value = CARTESIAN
«idlCase» polar_velocity polar_velocity_type	AttributeTag: case value = POLAR
«idlCase» wgs84_velocity wgs84_velocity_type	AttributeTag: case value = WGS84

7.3.10.44 wgs84_position_type

Type: Class

Package: Coordinates_and_Positions Coordinate in the WGS84 reference system.

Table 7.28 - Attributes of Class wgs84_position_type

Attribute	Notes
height_coordinate height_coordinate_type [01]	Optional as some sensors as 2D (work in horizontal plane) and some other functions do not supply or require this information either.
latitude_coordinate latitude_coordinate_type	
longitude_coordinate longitude_coordinate_type	

7.3.10.45 wgs84_velocity_type

Type: IDLStruct

Package: Coordinates_and_Positions

Velocity defined in the WGS84 grid system from the viewpoint of the object in terms of course and speed with optional angle of climb for changes in height.

Table 7.29 - Attributes of IDLStruct wgs84_velocity_type

Attribute	Notes
course course_type	Relative to North in the WGS84 spheroid.
angle_of_climb angle_of_climb_type [01]	Optional as some sensors as 2D (work in horizontal plane) and some other functions do not supply or require this information either.
speed speed_type	The total speed within the WGS84 spheroid (not speed over ground) in the direction of travel including angle of climb when present.

Table 7.#Table# - Methods of IDLStruct wgs84_velocity_type[MS(1]

7.3.10.46 cartesian_position_accuracy_type

Type: Class

Package: Coordinates_and_Positions

The accuracy of the components of Cartesian position

Table 7.#Table#30 MS(2) - Attributes of Class cartesian_position_accuracy_type

Attribute	Notes
x_coordinate_accuracy cartesian_coordinate_type	
y_coordinate_accuracy cartesian_coordinate_type	
z_coordinate_accuracy cartesian_coordinate_type [01]	Optional as some sensors are 2D (horizontal plane or no elevation information)

Table 7.#Table# - Methods of Class cartesian_position_accuracy_type[MS(3]

7.3.10.47 cartesian_velocity_accuracy_type

Type: Class

Package: Coordinates_and_Positions

The accuracy of the components of Cartesian velocity

Table 7.#Table#31[MS(4] - Attributes of Class cartesian_velocity_accuracy_type

Attribute	Notes
x_dot_accuracy cartesian_velocity_component_type	
<pre>y_dot_accuracy cartesian_velocity_component_type</pre>	
z_dot_accuracy cartesian_velocity_component_type [01]	Optional as some sensors are 2D (horizontal plane or no elevation information)

Table 7.#Table# - Methods of Class cartesian_velocity_accuracy_type[MS(5]

7.3.10.48 polar_position_accuracy_type

Type: Class

Package: Coordinates_and_Positions
The accuracy of the components of polar position

Table 7.#Table#32MS(6) - Attributes of Class polar_position_accuracy_type

Attribute	Notes
azimuth_accuracy azimuth_coordinate_type	
elevation_accuracy elevation_coordinate_type [01]	Optional as some sensors provide no elevation information
range_accuracy range_coordinate_type [01]	Optional as some sensor provide no range information (e.g. most passive sensors)
origin wgs84_position_accuracy_type [01]	Specifies the accuracy of the origin from which to interpret the polar position. This attribute is optional as the origin can be implicitly specified according to the value of the applicable coordinate specification enumeration.

7.3.10.49 polar_velocity_accuracy_type

Type: Class

Package: Coordinates_and_Positions
The accuracy of the components of polar velocity

Table 7.30 Table 7.33 MS(7) - Attributes of Class polar_velocity_accuracy_type

Attribute	Notes
azimuth_rate_accuracy azimuth_rate_type	
elevation_rate_accuracy elevation_rate_type [01]	Optional as some sensors provide no elevation
	information
range_rate_accuracy range_rate_type [01]	Optional as some sensor provide no range information
	(e.g. most passive sensors)

7.3.10.50 wgs84_position_accuracy_type

Type: Class

Package: Coordinates_and_Positions

The accuracy of the components of a WGS84 position

Table 7.31 Table 7.34 MS(8) - Attributes of Class wgs84_position_accuracy_type

Attribute	Notes
height_accuracy height_coordinate_type [01]	Optional as some sensors as 2D (work in horizontal plane) and some other functions do not supply or require this information either.
latitude_accuracy latitude_coordinate_type	
longitude_accuracy longitude_coordinate_type	

7.3.10.51 wgs84_velocity_accuracy_type

Type: Class

Package: Coordinates_and_Positions

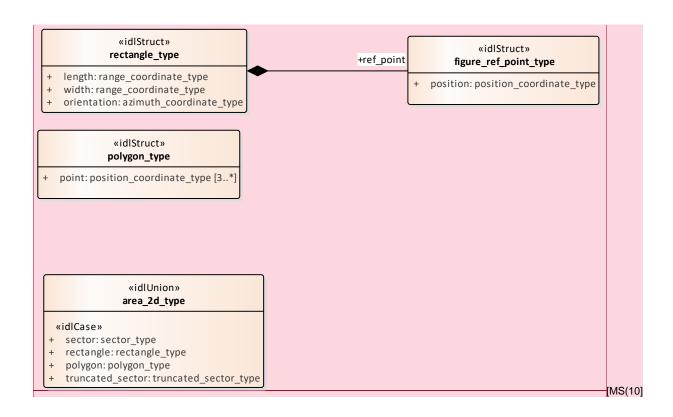

The accuracy of the components of a WGS84 velocity

Table 7.32 Table 7.35 MS(9) - Attributes of Class wgs84_velocity_accuracy_type

Attribute	Notes
course_accuracy course_type	
<pre>angle_of_climb_accuracy angle_of_climb_type [01]</pre>	Optional as some sensors as 2D (work in horizontal
	plane) and some other functions do not supply or require
	this information either.
<pre>speed_accuracy speed_type</pre>	

7.3.11 Shape_Model

Parent Package: Common_Types

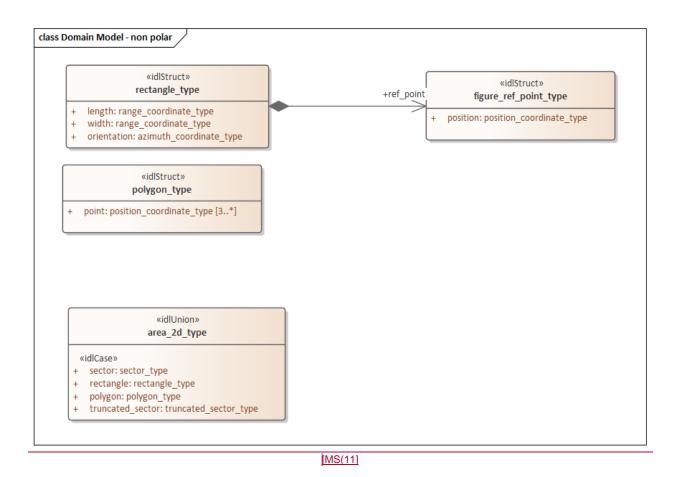


Figure 7.29 Domain Model - non polar (Class diagram)

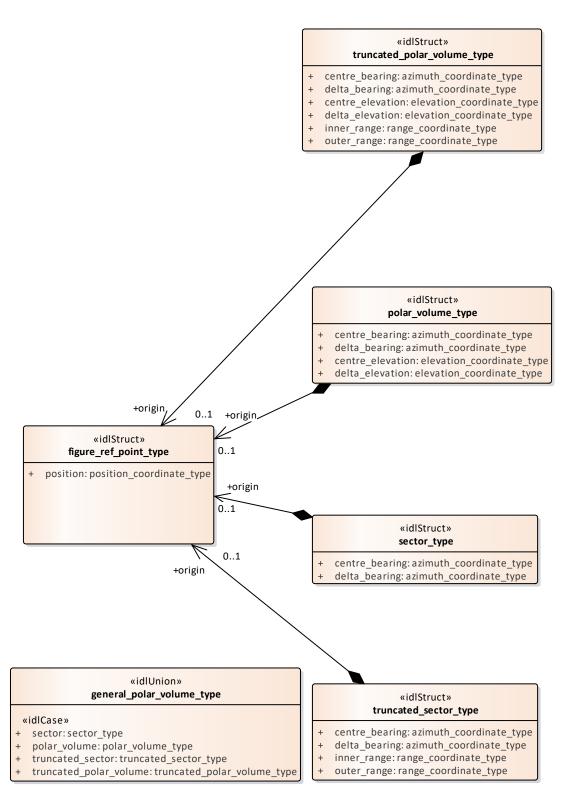


Figure 7.30 Domain Model - polar (Class diagram)

7.3.11.1 area_2d_type
Type: IDLUnion

Package: Shape_Model

An area for the sensor to keep under surveillance

ElementTag: Issue =

ElementTag: switchType = long

Table 7.33 Table 7.36 MS(12) - Attributes of IDLUnion area_2d_type

Attribute	Notes
«idlCase» sector_type	
«idlCase» rectangle rectangle_type	
«idlCase» polygon polygon_type	
<pre>«idlCase» truncated_sector truncated_sector_type</pre>	

7.3.11.2 figure_ref_point_type

Type: Class

Package: Shape_Model

A figure ref point specifies a reference point for a figure.

This reference point is a mathematically meaningful point of the figure. For a circle it is the centre of the circle, for a polygon it is the centre of gravity of the polygon, etc.

When rotating the figure, the figure_ref_point acts as the rotation point.

When a figure is not slaved to a track its figure_ref_point shall be mapped on a (moving) geo point. When the figure is slaved to an object (track, point) its figure_ref_point shall be mapped on an offset position which is relative to the master object.

ElementTag: Issue =

Table 7.34 Table 7.37 MS(13) - Attributes of Class figure_ref_point_type

Attribute	Notes
position position_coordinate_type	

7.3.11.3 general_polar_volume_type

Type: IDLUnion Package: Shape_Model

This class allow definition of a volume in space, bounded by standard polar coordinates (azimuth, elevation and range). The different options allow the dimension of either range, elevation or both to be omitted.

Table 7.35 Table 7.38 MS(14) - Attributes of IDLUnion general_polar_volume_type

Attribute	Notes
<pre>«idlCase» sector sector_type</pre>	The general polar volume is a sector
«idlCase» polar_volume polar_volume_type	The general polar volume is a polar volume
<pre>«idlCase» truncated_sector truncated_sector_type</pre>	The general polar volume is a truncated sector
<pre>«idlCase» truncated_polar_volume truncated_polar_volume_type</pre>	The general polar volume is a truncated polar volume.

Table 7.36 Table 7.39 MS(15) - Methods of IDLUnion general_polar_volume_type

7.3.11.4 polar_volume_type

Type: Class

Package: Shape_Model

A polar_volume specifies a 3D volume based on a horizontal plane by means of its origin, its centre bearing and centre elevation, its bearing delta and elevation delta.

The origin is the figure reference point of the Polar Volume.

Table 7.#Table#40[MS(16] - Attributes of Class polar_volume_type

	. – –
Attribute	Notes
centre_bearing azimuth_coordinate_type	This attribute specifies the horizontal angle measured clockwise between the Y-axis of the relevant coordinate system (true north, heading/course) and the centre bearing line of the volume.
delta_bearing azimuth_coordinate_type	This attribute specifies the bearing delta on each side of a specified centre bearing line.
centre_elevation elevation_coordinate_type	This attribute specifies the vertical angle measured counterclockwise between the horizontal plane and the centre elevation line of the volume.
delta_elevation elevation_coordinate_type	This attribute specifies the elevation delta on each side of a specified centre elevation line.

Table 7.#Table# - Methods of Class polar_volume_type[MS(17]

7.3.11.5 polygon_type

Type: IDLStruct Package: Shape_Model

A geographically defined general area

Table 7. #Table#41 MS(18) - Attributes of IDLStruct polygon_type

Attribute	Notes
point position_coordinate_type [3*]	AttributeTea: Length = 12
	AttributeTag: Length = 12

Table 7.#Table# - Methods of IDLStruct polygon_type[MS(19]

7.3.11.6 rectangle_type

Type: IDLStruct Package: Shape_Model

A geographically defined rectangle in the environment

Table 7.#Table#42MS(20] - Attributes of IDLStruct rectangle_type

Attribute	Notes
length range_coordinate_type	distance along angle of orientation from the ref point to
	the next corner
width range_coordinate_type	distance perpendicular to angle of orientation
	(clockwise) from ref point to the next corner

Attribute	Notes
orientation azimuth_coordinate_type	angle of azimuth of the length sides of the rectangle

7.3.11.7 sector_type

Type: Class

Package: Shape_Model

A sector specifies a 2D area in a horizontal plane by means of its origin, its centre bearing with its bearing delta, that together define the sector.

The origin is the figure reference point of the sector.

In case the sector is north oriented, the centre bearing is specified with respect to true north; otherwise it is specified with respect to the object's (own ship/other track, point) heading/course.

Table 7.37 Table 7.43 MS(21) - Attributes of Class sector_type

Attribute	Notes
centre_bearing azimuth_coordinate_type	This attribute specifies the horizontal angle measured clockwise between the Y-axis of the relevant coordinate system (true north, heading/course) and the centre bearing line of the sector.
delta_bearing azimuth_coordinate_type	This attribute specifies the bearing delta on each side of a specified centre bearing line.

7.3.11.8 truncated_polar_volume_type

Type: Class

Package: Shape_Model

A truncated_polar_volume specifies a 3D volume based on a horizontal plane by means of its origin, its centre bearing and centre elevation, its bearing delta and elevation delta, its inner range and outer range

Table 7.38 Table 7.44 [MS(22] - Attributes of Class truncated_polar_volume_type

Attribute	Notes
centre_bearing azimuth_coordinate_type	This attribute specifies the horizontal angle measured clockwise between the Y-axis of the relevant coordinate system (true north, heading/course) and the centre bearing line of the volume.
delta_bearing azimuth_coordinate_type	This attribute specifies the bearing delta on each side of a specified centre bearing line.
centre_elevation elevation_coordinate_type	This attribute specifies the vertical angle measured counterclockwise between the horizontal plane and the centre elevation line of the volume.
delta_elevation elevation_coordinate_type	This attribute specifies the elevation delta on each side of a specified centre elevation line.
inner_range range_coordinate_type	This attribute specifies the range that limits a volume; i.e. the minimum distance from the volume's origin.
outer_range range_coordinate_type	This attribute specifies the range that limits a volume; i.e. the maximum distance from the volume's origin.

7.3.11.9 truncated_sector_type

Type: Class

Package: Shape_Model

A truncated_sector specifies a 2D area in a horizontal plane by means of its origin, its centre bearing with its bearing delta, and its inner range and outer range, that together define the truncated sector.

The origin is the figure reference point of the truncated sector.

In case the truncated sector is north oriented, the centre bearing is specified with respect to true north; otherwise (object oriented) it is specified with respect to the object's (own ship/other track, point) heading/course.

Table 7.39 Table 7.45 MS(23) - Attributes of Class truncated sector_type

, , , , , , , , , , , , , , , , , , , ,	
Attribute	Notes
centre_bearing azimuth_coordinate_type	This attribute specifies the horizontal angle measured clockwise between the Y-axis of the relevant coordinate system (true north, heading/course) and the centre bearing line of the truncated sector.
delta_bearing azimuth_coordinate_type	This attribute specifies the bearing delta on each side of a centre bearing line.
inner_range range_coordinate_type	This attribute specifies the range that limits a truncated sector; i.e. the minimum distance from the truncated sector's origin.
outer_range range_coordinate_type	This attribute specifies the range that limits a truncated sector; i.e. the maximum distance from the truncated sector's origin.

7.3.12 Requests

Parent Package: Common_Types

This package contains common operations and associated parameters which are used by multiple interfaces. This includes the operation to acknowledge a CMS request as accepted or denied, as well as an operation to report errors while processing an accepted CMS request.

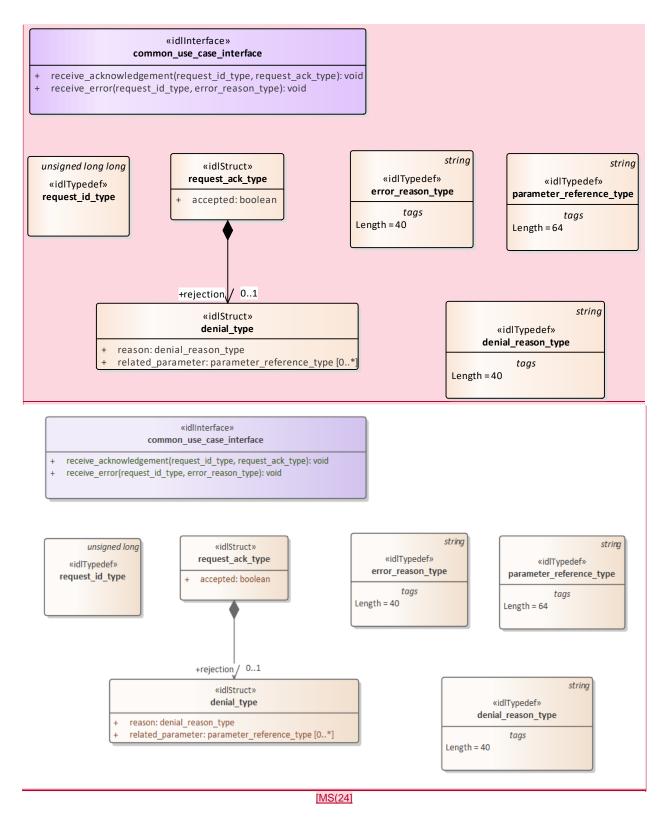


Figure 7.31 Domain Model (Class diagram)

7.3.12.1 denial_reason_type

Type: Class string Package: Requests

String which indicates rationale for rejection of the request. Is not valid when the request has been

accepted.

ElementTag: Length = 40

7.3.12.2 denial_type

Type: Class Package: Requests

Struct used within the receive_acknowledgement operation to provide information on (one of the reasons) why a request has been rejected.

Table 7.40 Table 7.46 MS(25) - Attributes of Class denial_type

Attribute	Notes
reason denial_reason_type	textual explanation of (one of) the reasons for rejection
related_parameter parameter_reference_type [0*]	A reference to the parameter or parameters that relate to the reason for rejection. If no related_parameters are supplied the rejection relates to the whole request.

7.3.12.3 error_reason_type

Type: Class string Package: Requests

A string which gives an indication of the error associated with processing of the request.

ElementTag: Length = 40

7.3.12.4 parameter_reference_type

Type: IDLTypeDef string

Package: Requests

A string which refers to a parameter in a request using an implementation specific notation.

ElementTag: Length = 64

7.3.12.5 request_ack_type

Type: Class Package: Requests

Struct used within the receive_acknowledgement operation to indicate acceptance or rejection (which

includes rationale).

Table 7.41 Table 7.47 MS(26) - Attributes of Class request_ack_type

Attribute	Notes
accepted boolean	Attribute to indicate whether a request has been
	accepted (1) or rejected (0).

7.3.12.6 request_id_type

IDLTypeDef unsigned long long | IDLTypeDef unsigned long unsigned long | IDLTypeDef unsigned long unsigned long undig unsigned long undig unsigned long unsigned long undig Type:

Requests Package:

The purpose of the request_id is to uniquely relate responses of the subsystem (server) to requests of the CMS (client). The request_id is set by the client. It is the responsibility of the client to specify a systemwide unique request_id (e.g. based on a combination of client id and a sequence number / time of request).

7.3.12.7 common use case interface

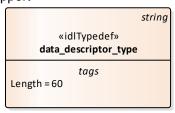
Type: Interface Package: Requests

Interface which includes operations common to all CMS interfaces.

Table 7.42 Table 7.48 MS(28) - Methods of Interface common_use_case_interface

Method	Notes	Parameters
receive_acknowledgement()	This operation is used by the subsystem to indicate whether it has accepted or rejected a request from the CMS. MethodTag: ea_guid = {C15FF90A-E3EE-4e87-AFD6-2234A76786B2} MS(29]	request_id_type request_id request_ack_type request_ack
receive_error()	This operation is used by the subsystem to indicate an error in processing a request. MethodTag: ea_guid = {5B66E72E-18EF-473e-A8B2-0DEBBC1BC698}[MS(30]	request_id_type request_id error_reason_type error_reason

7.4 Subsystem_Domain


Parent Package: Domain_Model

This package contains the Domain Models for the Encyclopaedic Support, Extended Subsystem Control, Subsystem Control, Recording and Replay, and Simulation Support services.

7.4.1 Encyclopaedic_Support

Parent Package: Subsystem_Domain

Domain classes for Encyclopaedic Support

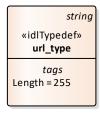


Figure 7.32 Domain Model (Class diagram)

7.4.1.1 data_descriptor_type

Type: Class string

Package: Encyclopaedic_Support

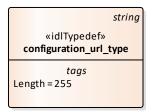
Standard description of the encyclopaedic data set

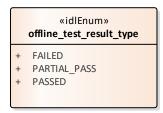
ElementTag: Length = 60

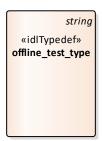
7.4.1.2 url_type

Type: Class string

Package: Encyclopaedic_Support


Representation of a Uniform Resource Locator see www.w3.org


ElementTag: Length = 255


7.4.2 Extended_Subsystem_Control

Parent Package: Subsystem_Domain

Contains Structs used within the Extended Subsystem Control service.

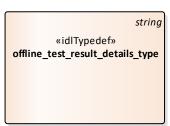


Figure 7.33 Domain Model (Class diagram)

7.4.2.1 configuration_url_type

Type: IDLTypeDef string

Package: Extended_Subsystem_Control

String which provides a url location for configuration data.

ElementTag: Length = 255

7.4.2.2 offline_test_result_details_type

Type: IDLTypeDef string

Package: Extended_Subsystem_Control

Subsystem specific detailed test results

ElementTag: Length = 4096

7.4.2.3 offline_test_result_type

Type: Class

Package: Extended_Subsystem_Control

Used to return the test results: failed, partial_pass or failed

Table 7.43 Table 7.49 MS(31) - Attributes of Class offline_test_result_type

Attribute	Notes
FAILED	A number of tests were not successful, such that the subsystem exceeded its failure threshold. Detailed information is available upon request.
PARTIAL_PASS	A number of tests were not successful, but the subsystem did not exceed its failure threshold. Detailed information is available upon request.
PASSED	All tests were successful.

7.4.2.4 offline_test_type

Type: IDLTypeDef string

Package: Extended_Subsystem_Control

A subsystem specific string identifying the required test type.

ElementTag: Length = 255

7.4.3 Recording_and_Replay

Parent Package: Subsystem_Domain

Defines the domain model for the Recording and Replay interfaces.

This contains the classes associated with Recording and Replay

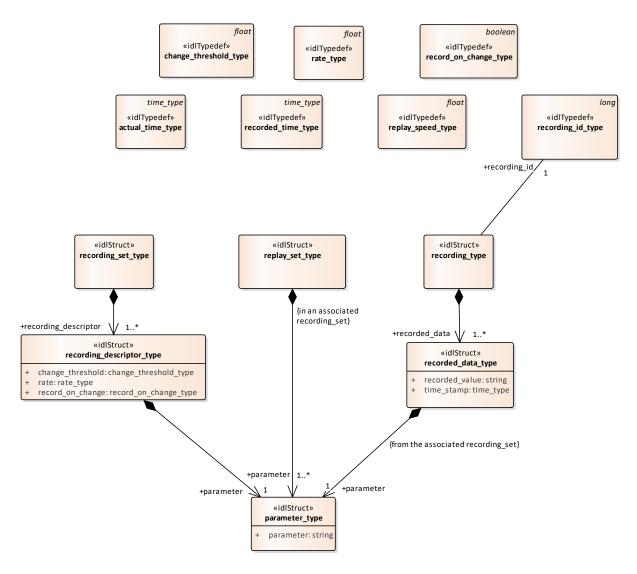


Figure 7.34 Domain Model (Class diagram)

7.4.3.1 actual_time_type

Type: Class time type

Package: Recording_and_Replay

The current time (time of day). Used to indicate when playback should start. This allows synchronisation of playback from different subsystems.

7.4.3.2 change_threshold_type

Type: IDLTypeDef float

Recording_and_Replay

The amount by which a parameter shall change in order to be recorded, when recording on change

7.4.3.3 parameter_type

Type: Class

Package: Recording_and_Replay Identified the parameter to be recorded

Table 7.44 Table 7.50 MS(32) - Attributes of Class parameter_type

Attribute	Notes
parameter string	
	AttributeTag: StringLength = 32

7.4.3.4 rate_type

Type: IDLTypeDef float Recording_and_Replay

Defined the rate at which the parameter is to be recorded for periodic recording

7.4.3.5 record_on_change_type

Type: IDLTypeDef boolean Recording_and_Replay

Boolean specifying record on change (true) or periodic (false)

7.4.3.6 recorded_data_type

Type: Class

Package: Recording_and_Replay Data recorded against the specified parameter

Table 7.45 Table 7.51 MS(33] - Attributes of Class recorded_data_type

Attribute	Notes
recorded_value string	This needs to reference allowable values defined by the possible recording parameters - see 'recording parameters'. AttributeTag: StringLength = 20
time_stamp time_type	

7.4.3.7 recorded_time_type

Type: Class time_type Recording_and_Replay

The time in a recording. This is used to indicate the position in the recording at which playback should start.

7.4.3.8 recording_descriptor_type

Type: Class

Package: Recording_and_Replay

Specifies the recording characteristics required for each parameter

Table 7.46 Table 7.52 MS(34) - Attributes of Class recording_descriptor_type

Attribute	Notes
<pre>change_threshold change_threshold_type</pre>	When record_on_change is true, any change greater than the change_threshold from the last recorded value shall be recorded. This only applies for numeric quantities i.e. not enumerated types, and is ignored otherwise.
rate rate_type	Specifies recording rate when record_on_change is false. AttributeTag: Unit = Hz

Attribute	Notes
	Indicates whether to record all changes greater than the change threshold or record at the specified rate.

7.4.3.9 recording_id_type

Type: Class long

Package: Recording_and_Replay

Used to identify a specific recording. The subsystem shall manage a number of recordings and associate recording ids with them in a subsystem dependent way. Once associated, it passes that reference through the parameter recording_id to the CMS so that the CMS may ask for a specific recording later on. Again, the CMS manages the relationship between the recording_id and the recording it requested to be made in a system dependent way.

There is no intention to model the method either the subsystem or the CMS uses to manage the relationship between recording_id and the recordings as this is transparent to the interface and would unnecessarily restrict the choices available to the designers.

7.4.3.10 recording_set_type

Type: Class

Package: Recording_and_Replay

A set of recording descriptors specifying what is to be recorded

7.4.3.11 recording_type

Type: Class

Package: Recording_and_Replay A recording: a set of recorded data

7.4.3.12 replay_set_type

Type: Class

Package: Recording_and_Replay

A set of parameters required to be replayed. These must exist in the associated recording set to be of any use.

7.4.3.13 replay_speed_type

Type: Class float

Package: Recording_and_Replay

Controls the replay speed. 1.0 represents real time.

7.4.4 Simulation_Support

Parent Package: Subsystem Domain

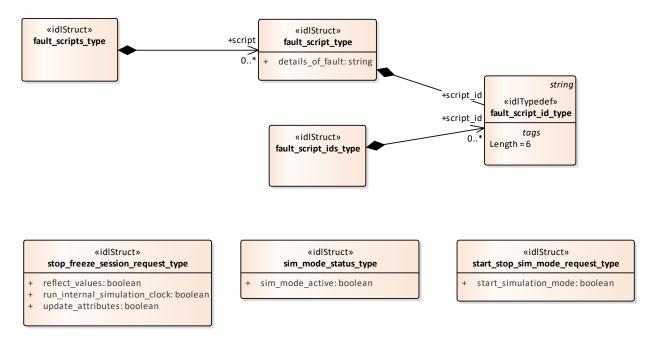


Figure 7.35 Domain Model (Class diagram)

7.4.4.1 fault_script_id_type

Type: Class string

Package: Simulation_Support

Identifies a single fault script. ElementTag: Length = 6

7.4.4.2 fault_script_ids_type

Type: Class

Package: Simulation Support

This class represents a set of references to fault scripts

7.4.4.3 fault_script_type

Type: Class

Package: Simulation_Support

Definition of a fault script. The exact form of this is not yet defined, this class represents the essential attributes. It would probably be some form of string, perhaps an XML document.

Table 7.47 Table 7.53 MS(35) - Attributes of Class fault_script_type

Attribute	Notes
details_of_fault string	A description of the fault, such as is interpretable during
	the simulation
	AttributeTag: StringLength = 200

7.4.4.4 fault_scripts_type

Type: Class

Package: Simulation_Support This class represents a set of fault scripts

7.4.4.5 sim_mode_status_type

Type: Class

Package: Simulation_Support Whether simulated mode is in operation

Table 7.48 Table 7.54 MS(36) - Attributes of Class sim_mode_status_type

Attribute	Notes
sim_mode_active boolean	Flag to indicate if the simulation mode is active.

7.4.4.6 start_stop_sim_mode_request_type

Type: Class

Package: Simulation_Support A request to change the simulation mode

Table 7.49 Table 7.55 MS(37] - Attributes of Class start_stop_sim_mode_request_type

Attribute	Notes
start_simulation_mode boolean	Flag to indicate if the simulation mode shall be started
	or stopped.

7.4.4.7 stop_freeze_session_request_type

Type: Class

Package: Simulation_Support

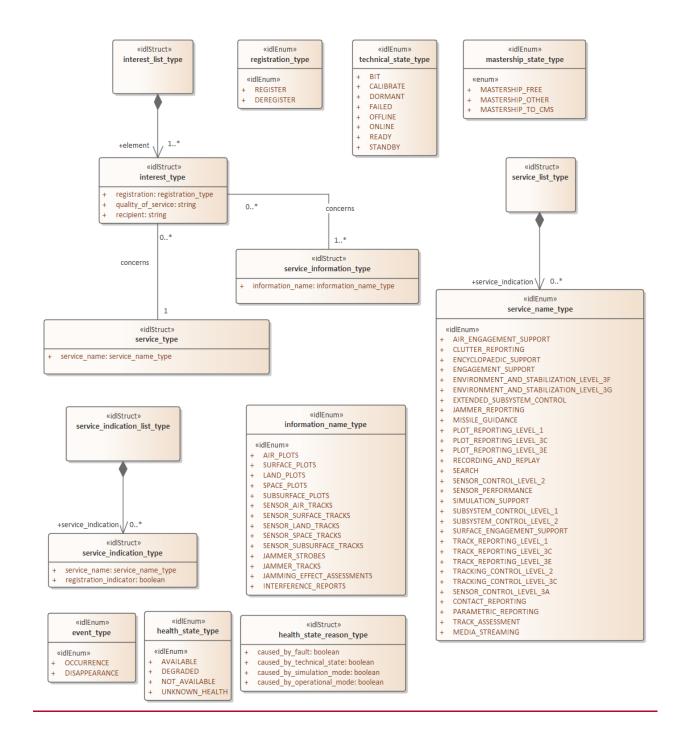
A Simulation Management (SIMAN) request, sent from a Simulation Manager to request that one or more entities either

a) pause their simulation session

or

b) stop their simulation session.

Table 7.50 Table 7.56 MS(38) - Attributes of Class stop_freeze_session_request_type


Attribute	Notes
reflect_values boolean	Whether the entity or entities being stopped/frozen should continue to reflect values when stopped/frozen.
run_internal_simulation_clock boolean	Whether the entity or entities being stopped/frozen should continue to run their internal simulation clock when stopped/frozen.
update_attributes boolean	Whether the entity or entities being stopped/frozen should continue to update attributes when stopped/frozen.

7.4.5 Subsystem_Control

Parent Package: Subsystem_Domain

Contains Structs used within the Subsystem Control service and a state diagram corresponding with the Manage Technical State interface.

MS(39)

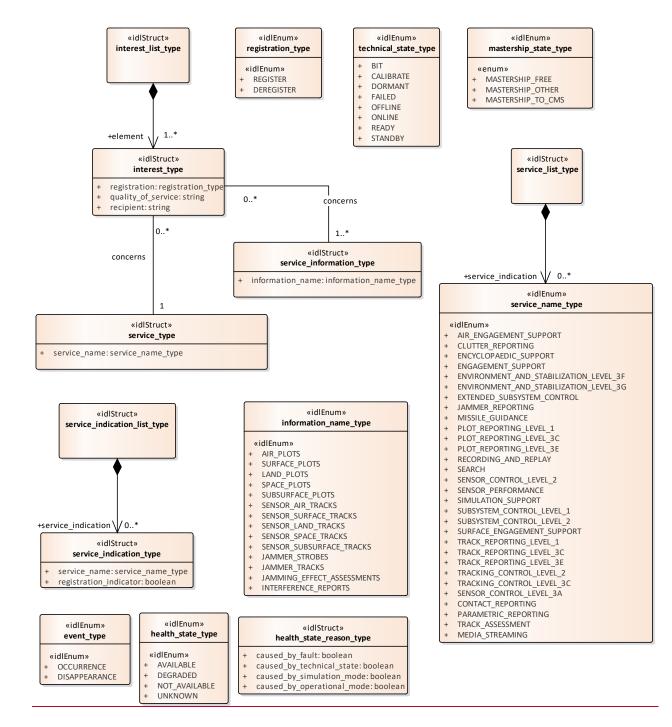


Figure 7.36 Domain Model - 1 (Class diagram)

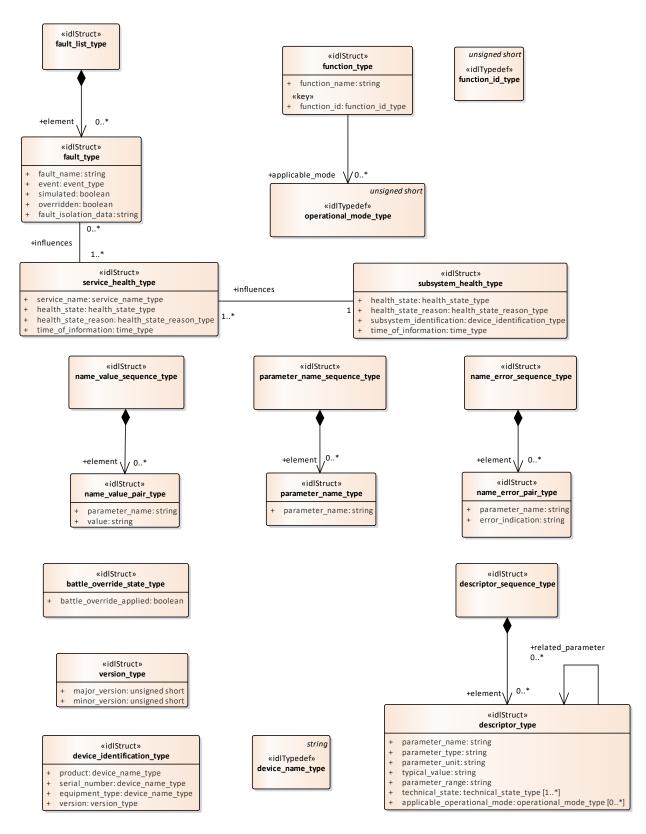


Figure 7.37 Domain Model - 2 (Class diagram)

7.4.5.1 function_id_type

Type: Class unsigned short Subsystem_Control

Unique identifier for a function within a subsystem.

7.4.5.2 function_type

Type: Class

Package: Subsystem_Control One of the functions of a subsystem

Table 7.51 Table 7.57 MS(40) - Attributes of Class function_type

Attribute	Notes
<pre>«key» function_id function_id_type</pre>	The functions unique idenitifier
function_name string	The name of function as understood by an operator
	AttributeTag: StringLength = 32

7.4.5.3 service_name_type

Type: IDLEnum

Package: Subsystem_Control

Enumeration of possible service names. Where a service may be offered at different compliance levels, multiple names are introduced with _LEVEL_x postfix to indicate different parts.

Table 7.52 Table 7.58 MS(41) - Attributes of IDLEnum service_name_type

Attribute	Notes
	INULES
«idlEnum» AIR_ENGAGEMENT_SUPPORT	
«idlEnum» CLUTTER_REPORTING	
«idlEnum» ENCYCLOPAEDIC_SUPPORT	
«idlEnum» ENGAGEMENT_SUPPORT	
_	
«idlEnum»	
ENVIRONMENT_AND_STABILIZATION_LEVEL	
3F	
«idlEnum»	
ENVIRONMENT_AND_STABILIZATION_LEVEL	
_3G	
«idlEnum» EXTENDED_SUBSYSTEM_CONTROL	
«idlEnum» JAMMER_REPORTING	
«idlEnum» MISSILE_GUIDANCE	
«idlEnum» PLOT_REPORTING_LEVEL_1	
«idlEnum» PLOT_REPORTING_LEVEL_3C	
«idlEnum» PLOT_REPORTING_LEVEL_3E	
WidiEndin// LOT_REFORTING_EEVEE_SE	
HE DECODDING AND DEDI AV	
«idlEnum» RECORDING_AND_REPLAY	

Attribute	Notes
«idlEnum» SEARCH	
«idlEnum» SENSOR_CONTROL_LEVEL_2	
«idlEnum» SENSOR_PERFORMANCE	
«idlEnum» SIMULATION_SUPPORT	
«idlEnum» SUBSYSTEM_CONTROL_LEVEL_1	
«idlEnum» SUBSYSTEM_CONTROL_LEVEL_2	
«idlEnum» SURFACE_ENGAGEMENT_SUPPORT	
«idlEnum» TRACK_REPORTING_LEVEL_1	
«idlEnum» TRACK_REPORTING_LEVEL_3C	
«idlEnum» TRACK_REPORTING_LEVEL_3E	
«idlEnum» TRACKING_CONTROL_LEVEL_2	
«idlEnum» TRACKING_CONTROL_LEVEL_3C	
«idlEnum» SENSOR_CONTROL_LEVEL_3A	
«idlEnum» CONTACT_REPORTING	
«idlEnum» PARAMETRIC_REPORTING	
«idlEnum» TRACK_ASSESSMENT	
«idlEnum» MEDIA_STREAMING	

7.4.5.4 battle_override_state_type

Type: Class

Package: Subsystem_Control

If the boolean is true the battle override is applied.

Table 7.53 Table 7.59 MS(42) - Attributes of Class battle_override_state_type

es if the battle override is applied or not.

7.4.5.5 descriptor_type

Type: Class

Package: Subsystem_Control Type for parameter descriptors.

Attribute	Notes
parameter_name string	parameter_name values are unique within the scope of a
	subsystem.
	AttributeTag: StringLength = 128
parameter_type string	
	AttributeTag: StringLength = 32
parameter_unit string	
	AttributeTag: StringLength = 32
typical_value string	*optional*
	AttributeTag: StringLength = 32
parameter_range string	*optional*
	AttributeTag: StringLength = 32
technical_state technical_state_type [1*]	Technical state(s) in which this parameter may be
	modified.
applicable_operational_mode operational_mode_type [0*]	

7.4.5.6 descriptor_sequence_type

Type: Class

Package: Subsystem_Control

Sequence of parameter descriptors, used in retrieving parameter descriptors.

7.4.5.7 device_identification_type

Type: IDLStruct

Package: Subsystem_Control Identification data of the equipment.

Table 7.54 Table 7.60 MS(43) - Attributes of IDLStruct device_identification_type

Attribute	Notes
<pre>product device_name_type</pre>	Name of the product. Example TRS3D
serial_number device_name_type	Serial number identifying the individual device.
	AttributeTag: Length = 64
equipment_type device_name_type	This describes the general type of the equipment.
	Example: Air Surveillance Radar
version version_type	Version of the device.

7.4.5.8 device_name_type

Type: IDLTypeDef string Package: Subsystem_Control

Name of an entry in the device identification.

ElementTag: Length = 64

Table 7.55 - Attributes of IDLTypeDef device_name_type[MS(44]

7.4.5.9 event_type

Type: IDLEnum

Package: Subsystem_Control

Type of event

Table 7.#Table#61|MS(45) - Attributes of IDLEnum event_type

Attribute	Notes
«idlEnum» OCCURRENCE	
«idlEnum» DISAPPEARANCE	

7.4.5.10 fault_type
Type: IDLStruct

Package: Subsystem_Control Class to represent a subsystem fault

Table 7.#Table#62[MS(46] - Attributes of IDLStruct fault_type

Attribute	Notes
fault_name string	AttributeTag: StringLength = 32
event event_type	
simulated boolean	Indicates whether this fault is real or simulated/inserted.
overridden boolean	Indicates whether this fault is overridden by Battle Override when determining the health state.
fault_isolation_data string	For instance cabinet id and rack id. AttributeTag: StringLength = 32

7.4.5.11 fault_list_type

Type: Class

Package: Subsystem_Control

A list of faults

Table 7.#Table# - Attributes of Class fault_list_type[MS(47]

7.4.5.12 health_state_reason_type

Type: IDLStruct

Package: Subsystem_Control

Reason for the health state

Table 7.#Table#63[MS(48] - Attributes of IDLStruct health_state_reason_type

Attribute	Notes
caused_by_fault boolean	
caused_by_technical_state boolean	
caused_by_simulation_mode boolean	

Attribute	Notes
caused_by_operational_mode boolean	

7.4.5.13 health_state_type

Type: IDLEnum

Package: Subsystem_Control

Encapsulation of health state

Table 7.56 Table 7.64 MS(49) - Attributes of IDLEnum health_state_type

Attribute	Notes
«idlEnum» AVAILABLE	Service: Indicates that the service is available with specified performance. Subsystem: Indicates that all implemented services of the subsystem have health state AVAILABLE.
«idlEnum» DEGRADED	Service: Indicates that the service may perform its operational task, but possibly with less than specified performance. Subsystem: Indicates that at least one of the implemented services of the subsystem have health state other than AVAILABLE.
«idlEnum» NOT_AVAILABLE	Service: Indicates that the service is not available. Subsystem: Indicates that all implemented services of the subsystem have health state NOT_AVAILABLE.
«idlEnum» <u>UNKNOWN_HEALTHUNKNOWN</u> [MS(50]	Indicates that the subsystem may not determine the health state of the service or subsystem (e.g. because BIT is not running).

7.4.5.14 information_name_type

Type: IDLEnum

Package: Subsystem_Control

Name of information

Table 7.57 Table 7.65 MS(51) - Attributes of IDLEnum information_name_type

Attribute	Notes
«idlEnum» AIR_PLOTS	
«idlEnum» SURFACE_PLOTS	
«idlEnum» LAND_PLOTS	
«idlEnum» SPACE_PLOTS	
«idlEnum» SUBSURFACE_PLOTS	
«idlEnum» SENSOR_AIR_TRACKS	
«idlEnum» SENSOR_SURFACE_TRACKS	

Attribute	Notes
«idlEnum» SENSOR_LAND_TRACKS	
«idlEnum» SENSOR_SPACE_TRACKS	
«idlEnum» SENSOR_SUBSURFACE_TRACKS	
«idlEnum» JAMMER_STROBES	
«idlEnum» JAMMER_TRACKS	
«idlEnum» JAMMING_EFFECT_ASSESSMENTS	
«idlEnum» INTERFERENCE_REPORTS	

7.4.5.15 interest_type
Type: IDLStruct

Package: Subsystem_Control Encapsulation of interest in service

Table 7.58 Table 7.66 MS(52) - Attributes of IDLStruct interest_type

Attribute	Notes
registration registration_type	
quality_of_service string	* optional *
	AttributeTag: StringLength = 32
recipient string	* optional *
	AttributeTag: StringLength = 32

7.4.5.16 interest_list_type

Type: Class

Package: Subsystem_Control

A list of interest

7.4.5.17 mastership_state_type

Type: Class

Package: Subsystem_Control

This enumeration represents the state of the mastership.

The subsystem Mastership may be either "free", that is assigned to none and then available to anybody asks for it, or assigned to somebody: CMS or not.

Table 7.59 Table 7.67 MS(53) - Attributes of Class mastership_state_type

Attribute	Notes
«enum» MASTERSHIP_FREE	Mastership state is "free", the first received Mastership request shall be satisfied.
«enum» MASTERSHIP_OTHER	The Mastership is assigned to somebody other than CMS.
«enum» MASTERSHIP_TO_CMS	The Mastership is assigned to CMS.

7.4.5.18 parameter_name_type

Type: IDLStruct

Package: Subsystem_Control

Typedef for strings representing names of parameters.

Table 7.60 Table 7.68 MS(54) - Attributes of IDLStruct parameter_name_type

Attribute	Notes
parameter_name string	parameter_name values are unique within the scope of a
	subsystem.
	AttributeTag: StringLength = 128

7.4.5.19 name_error_pair_type

Type: Class

Package: Subsystem_Control

Combination of name of parameter (for which a request could not be processed) and an indication of the error.

Table 7.61 Table 7.69 MS(55) - Attributes of Class name_error_pair_type

Attribute	Notes
parameter_name string	parameter_name values are unique within the scope of a subsystem. AttributeTag: StringLength = 128
error_indication string	AttributeTag: StringLength = 32

7.4.5.20 name_error_sequence_type

Type: Class

Package: Subsystem_Control

sequence of error reports identifying the parameter names for which the request could not be processed, including an indication of the error (e.g. unknown parameter, illegal value).

7.4.5.21 parameter_name_sequence_type

Type: Class

Package: Subsystem_Control

A sequence of strings (names). Used in request for parameters and parameter descriptors. If the sequence is empty, the request is for all parameters.

7.4.5.22 name_value_pair_type

Type: Class

Package: Subsystem Control

A generic struct for (name, value) pairs. Used in multiple situations.

Table 7.62 Table 7.70 MS(56) - Attributes of Class name_value_pair_type

Attribute	Notes
parameter_name string	parameter_name values are unique within the scope of a
	subsystem.
	AttributeTag: StringLength = 128

Attribute	Notes
value string	
	AttributeTag: StringLength = 32

7.4.5.23 name_value_sequence_type

Type: Class

Package: Subsystem_Control

Sequence of (name, value) pairs used in retrieving and modifying parameters.

7.4.5.24 operational_mode_type

Type: IDLTypeDef unsigned short

Package: Subsystem_Control

The value should be mapped to the corresponding operational mode. This mapping is retrieved through the service 'Manage Subsystem Parameters'.

7.4.5.25 parameter_value_response_type

Type: Class

Package: Subsystem_Control

Response type for retrieving and modifying sequences of parameters.

Table 7.63 Table 7.71 MS(57) - Attributes of Class parameter_value_response_type

Attribute	Notes
request_id long	

7.4.5.26 registration_type

Type: IDLEnum

Package: Subsystem_Control

Type of registration

Table 7.64 Table 7.72 MS(58) - Attributes of IDLEnum registration_type

Attribute	Notes
«idlEnum» REGISTER	
«idlEnum» DEREGISTER	

7.4.5.27 service_type

Type: IDLStruct

Package: Subsystem_Control

Type of service

Table 7.65 Table 7.73 MS(59) - Attributes of IDLStruct service_type

Attribute	Notes
service_name service_name_type	Only registrable services are allowed

7.4.5.28 service_health_type

Type: IDLStruct

Package: Subsystem_Control

Health of service

Table 7.66 Table 7.74 MS(60) - Attributes of IDLStruct service_health_type

Attribute	Notes
service_name service_name_type	
health_state health_state_type	
health_state_reason health_state_reason_type	
time_of_information time_type	

7.4.5.29 service_indication_list_type

Type: IDLStruct

Package: Subsystem_Control

A list of service indications as used by Provide_Subsystem_Services.

7.4.5.30 service_indication_type

Type: IDLStruct

Package: Subsystem_Control

Indication of a service provided by the subsystem.

Table 7.67 Table 7.75 MS(61) - Attributes of IDLStruct service_indication_type

Attribute	Notes
service_name service_name_type	Name of the service.
registration_indicator boolean	Indication whether the service is registered.
	-

7.4.5.31 service_information_type

Type: IDLStruct

Package: Subsystem_Control

Information about a service

Table 7.68 Table 7.76 MS(62] - Attributes of IDLStruct service_information_type

Attribute	Notes
<pre>information_name information_name_type</pre>	

7.4.5.32 service_list_type

Type: IDLStruct

Package: Subsystem_Control

A list of service names as used by Provide_Subsystem_Services.

7.4.5.33 subsystem_health_type

Type: IDLStruct

Package: Subsystem Control

Type describing the health state of a subsystem

Table 7.69 Table 7.77 MS(63] - Attributes of IDLStruct subsystem_health_type

Attribute	Notes
health_state health_state_type	Current health state

Attribute	Notes
health_state_reason health_state_reason_type	Reason for last change of health state
<pre>subsystem_identification device_identification_type</pre>	
time_of_information time_type	

7.4.5.34 technical_state_type

Type: Class

Package: Subsystem_Control

Type which is used to indicate a technical state.

Table 7.70 Table 7.78 MS(64) - Attributes of Class technical_state_type

Attribute	Notes
BIT	Subsystem is running Built-In-Test procedure. CMS may communicate with subsystem, but subsystem shall only respond affirmatively to a limited set of commands. From this state the subsystem may transition to <i>READY</i> , <i>FAILED</i> , <i>CALIBRATE</i> , STANDBY (transition may be ordered before completion of BIT if Battle Override is enabled), or <i>OFFLINE</i> .
CALIBRATE	Subsystem is running calibration procedure. Subsystem shall only respond to a limited set of commands from CMS. From this state the subsystem may transition to <i>READY</i> , <i>FAILED</i> , BIT, STANDBY (transition may be ordered before completion of calibration if Battle Override is enabled), or <i>OFFLINE</i> .
DORMANT	Interface between CMS and subsystem may or may not exist. Some power is applied to the subsystem and temperature control (e.g. cooling) is active. From this state, the sub-system may transition to FAILED, STANDBY, or OFFLINE.
FAILED	Subsystem is non-operational due to a critical fault such as a primary power supply failure. CMS is able to communicate with subsystem to perform diagnostics. In the FAILED state, the health state of the sub-system and nearly all associated services is NOT AVAILABLE or UNKNOWN (provided via Health State). If the health state of the sub-system or some services is DEGRADED, the sub-system is not required to enter into this state. From this state the sub-system may transition to <i>BIT</i> , <i>STANDBY</i> , <i>READY</i> , CALIBRATE, DORMANT or <i>OFFLINE</i> .
OFFLINE	No connection between CMS and Subsystem is open. Main power is usually not applied to subsystem. From OFFLINE, subsystem transitions to FAILED, DORMANT, BIT, or STANDBY.

Attribute	Notes
ONLINE	Subsystem is operational and may respond to all requests from CMS. Simulation and diagnostics may be allowed in this state. Radiation is allowed in this state but must be commanded on via Control Emissions. From this state the subsystem may transition to <i>BIT</i> , <i>CALIBRATE</i> , <i>READY</i> , <i>STANDBY</i> , <i>FAILED</i> , or <i>OFFLINE</i> .
READY	Subsystem is ready for CMS to command full operation. Simulation may be allowed in this state. Ready to transition to <i>ONLINE</i> , self-tests and calibration has been performed as necessary. Radiation is not allowed in the READY state. From this state the subsystem may transition to <i>STANDBY</i> , ONLINE, FAILED, BIT, CALIBRATE, or <i>OFFLINE</i> .
STANDBY	Interface between CMS and subsystem is established. Subsystem may not operate fully. Maintenance may be performed in this state. From this state the sub-system may transition to READY, CALIBRATE, BIT, FAILED, DORMANT, or OFFLINE.

7.4.5.35 version_type

Type: IDLStruct

Package: Subsystem_Control

Version of the equipment

Table 7.71 Table 7.79 MS(65) - Attributes of IDLStruct version_type

Attribute	Notes
major_version unsigned short	Major version number
minor_version unsigned short	Minor version number

7.4.5.36 Initial

Type: Initial State

Package: Subsystem_Control

7.5 Sensor_Domain

Parent Package: Domain_Model

This package contains the Domain Models for the Clutter Reporting, Plot Reporting, Sensor Control, Sensor Performance, Track Reporting, and Tracking Control services.

7.5.1 Clutter_Reporting

Parent Package: Sensor_Domain

Contains Structs used within the Clutter Reporting service.

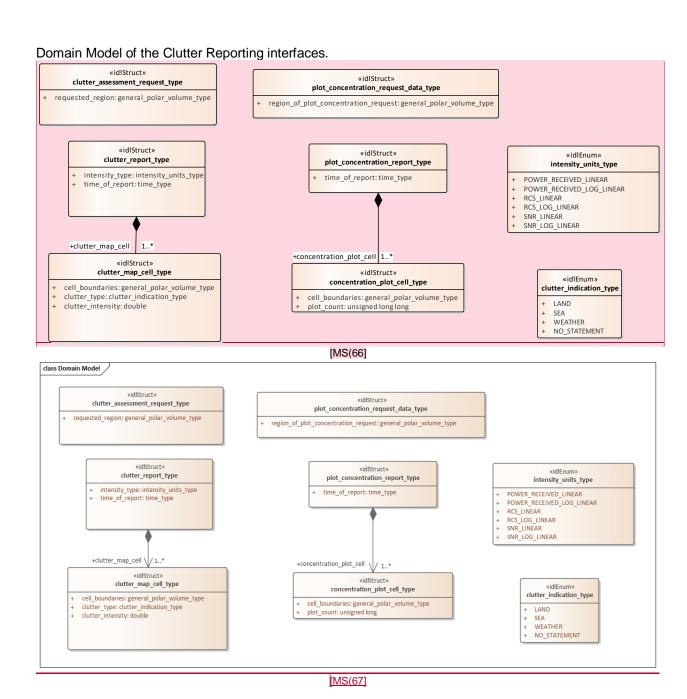


Figure 7.38 Domain Model (Class diagram)

7.5.1.1 clutter_assessment_request_type

Type: IDLStruct

Package: Clutter_Reporting

CMS generated request for a clutter assessment.

Fable 7.72Table 7.80 MS(68) - Attributes of IDLStruct clutter_assessment_request_type

Attribute	Notes
<pre>requested_region general_polar_volume_type</pre>	Region for which the CMS clutter request was
	generated.

7.5.1.2 clutter_indication_type

Type: Class

Package: Clutter_Reporting

Indicates if the clutter within the cell is of a specific type.

Table 7.73 Table 7.81 MS(69) - Attributes of Class clutter_indication_type

Attribute	Notes
LAND	
SEA	
WEATHER	
NO_STATEMENT	

7.5.1.3 clutter_map_cell_type

Type: IDLStruct

Package: Clutter_Reporting

Indicates the intensity and type of clutter for a defined geometric type.

Table 7.74 Table 7.82 MS(70) - Attributes of IDLStruct clutter_map_cell_type

Attribute	Notes
cell_boundaries general_polar_volume_type	Indicates the boundaries of the cell for which clutter is being reported.
	being reported.
clutter_type clutter_indication_type	Indicates whether the clutter is LAND, SEA, WEATHER, or unspecified (NO_STATEMENT).
clutter_intensity double	Intensity of the clutter for the specified cell. Units indicated by the intensity type attribute.

7.5.1.4 clutter_report_type

Type: IDLStruct

Package: Clutter_Reporting

Clutter report generated by the subsystem.

Table 7.75 Table 7.83 MS(71) - Attributes of IDLStruct clutter_report_type

,	
Attribute	Notes
<pre>intensity_type intensity_units_type</pre>	Indicates the units of the clutter intensity reported.
time_of_report time_type	Time of the clutter report.

7.5.1.5 concentration_plot_cell_type

Type: Class

Package: Clutter_Reporting

Indicates the plot concentration of a defined geometric type.

Table 7.76 Table 7.84 MS(72) - Attributes of Class concentration_plot_cell_type

Attribute	Notes
	Specifies the dimension of the cell for which plot concentration is being reported.
plot_count unsigned long long MS(73]-	The number of plots generated within the cell.

7.5.1.6 intensity_units_type

Type: Class

Package: Clutter_Reporting

Units of the clutter intensity

Table 7.77 Table 7.85 MS(74) - Attributes of Class intensity_units_type

Attribute	Notes
POWER_RECEIVED_LINEAR	
POWER_RECEIVED_LOG_LINEAR	(e.g. dBm, dBW)
RCS_LINEAR	square meters
RCS_LOG_LINEAR	
SNR_LINEAR	
SNR_LOG_LINEAR	

7.5.1.7 plot_concentration_report_type

Type: IDLStruct

Package: Clutter_Reporting

Plot concentration report as generated by the subsystem.

Table 7.78 Table 7.86 MS(75) - Attributes of IDLStruct plot_concentration_report_type

Attribute	Notes
time_of_report time_type	Time of the plot concentration report.

7.5.1.8 plot_concentration_request_data_type

Type: IDLStruct

Package: Clutter_Reporting

CMS request for plot concentration of a specified region.

Table 7.79 Table 7.87 [MS(76] - Attributes of IDLStruct plot_concentration_request_data_type

Attribute	Notes
region_of_plot_concentration_request	Region for which the plot concentration was requested.
general_polar_volume_type	

7.5.2 Media_Streaming

Parent Package: Sensor_Domain

This package provides a data model for describing the metadata associated with a sensor's media streams.

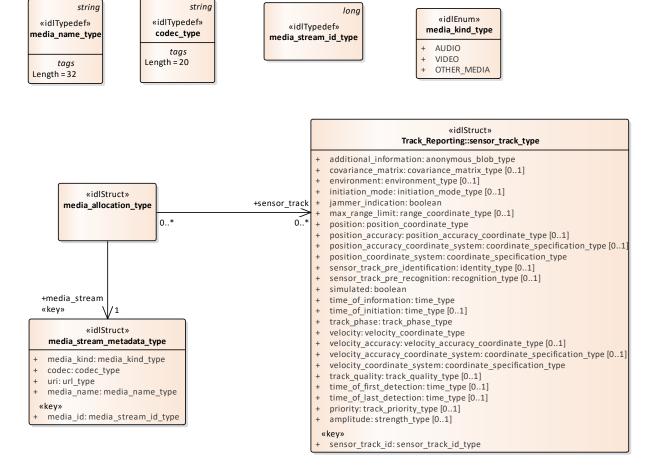


Figure 7.39 Media_Streaming (Class diagram)

7.5.2.1 codec_type

Type: Class string Package: Media_Streaming

The representation of the codec associated with the stream

ElementTag: Length = 20

7.5.2.2 media_allocation_type

Type: Class

Package: Media_Streaming

To represent the allocation of sensor tracks to media streams.

7.5.2.3 media_kind_type

Type: Class

Package: Media_Streaming

The high-level categorisation of types of media

Attribute	Notes
AUDIO	Audio media stream
VIDEO	Video media stream
OTHER_MEDIA	Another media stream

7.5.2.4 media_name_type

Type: Class string Package: Media_Streaming

The representation for the identifying name of a media stream

ElementTag: Length = 32

7.5.2.5 media_stream_id_type

Type: Class long

Package: Media_Streaming

The representation for the unique identifier for the media stream

7.5.2.6 media_stream_metadata_type

Type: Class

Package: Media_Streaming

The representation of a media stream such as video or audio

Table 7.80 Table 7.88 MS(77) - Attributes of Class media_stream_metadata_type

Attribute	Notes
media_kind media_kind_type	The kind of media associated with the stream
codec codec_type	The code identifier for the string
uri url_type	The source (end point) of the stream.
media_name media_name_type	The identifying name for the media stream
«key» media_id media_stream_id_type	

7.5.3 Search

Parent Package: Sensor_Domain

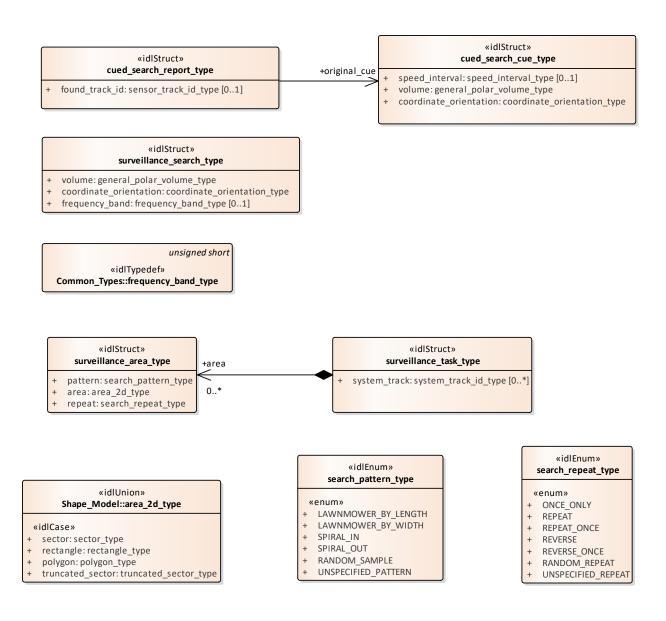


Figure 7.40 Domain Model (Class diagram)

7.5.3.1 cued_search_cue_type

Type: Class Package: Search

Type used for specifying the constraints on a cued search.

Table 7.81 Table 7.89 MS(78) - Attributes of Class cued_search_cue_type

Attribute	Notes
speed_interval speed_interval_type [01]	The range of track-speed to search for from the cue.
volume general_polar_volume_type	The region in the environment, in which the cue to search for tracks is to be performed.

Attribute	Notes
<pre>coordinate_orientation coordinate_orientation_type</pre>	The orientation of the polar coordinates used in this
	class. Note that the origin is always the sensor reference
	point and that the coordinate system is always polar.

7.5.3.2 cued_search_report_type

Type: Class Package: Search

Data returned to the CMS to indicate the results of a cued search.

Table 7.82 Table 7.90 MS(79) - Attributes of Class cued_search_report_type

Attribute	Notes
found_track_id sensor_track_id_type [01]	

7.5.3.3 search_pattern_type

Type: IDLEnum Package: Search

The types of search pattern that can be employed for search and surveillance tasks

Table 7.83 Table 7.91 MS(80) - Attributes of IDLEnum search_pattern_type

Attribute	Notes
«enum» LAWNMOWER_BY_LENGTH	Coverage by alternating traversal of the area lengthwise. Valid for rectangular areas.
«enum» LAWNMOWER_BY_WIDTH	Coverage by alternating traversal of the area width-wise. Valid for rectangular areas.
«enum» SPIRAL_IN	Coverage by traversing the perimeter and then progressively smaller traversals of the interior towards the center
«enum» SPIRAL_OUT	Coverage by starting at the center and traversing through the interior on a path that is (approximately) tangential to the center and parallel to the perimeter until the perimeter has been traversed.
«enum» RANDOM_SAMPLE	Search by sensing subsets of the area selected at random.
«enum» UNSPECIFIED_PATTERN	No search pattern is specified.

7.5.3.4 search_repeat_type

Type: IDLEnum Package: Search

Defines the search behavior on repeat / subsequent searches

Attribute	Notes
«enum» ONCE_ONLY	Complete a single search pattern.

Attribute	Notes
«enum» REPEAT	Repeat the task indefinitely.
«enum» REPEAT_ONCE	Repeat the task once.
«enum» REVERSE	Repeat the task in reverse indefinitely.
«enum» REVERSE_ONCE	Repeat the task in reverse once.
«enum» RANDOM_REPEAT	Randomly repeat the elements of the task indefinitely.
«enum» UNSPECIFIED_REPEAT	No repeat specified.

7.5.3.5 surveillance_area_type

Type: IDLStruct Package: Search

A 2D area that is included in a surveillance task

Table 7.84 Table 7.92 MS(81) - Attributes of IDLStruct surveillance_area_type

Attribute	Notes
<pre>pattern search_pattern_type</pre>	The pattern to apply to the area
area area_2d_type	The area to be kept under surveillance.
repeat search_repeat_type	

7.5.3.6 surveillance_search_type

Type: IDLStruct Package: Search

The parameters with which to task a sensor to concentrate its surveillance efforts within a spatial and / or frequency band.

Table 7.85 Table 7.93 MS(82) - Attributes of IDLStruct surveillance_search_type

Attribute	Notes
volume general_polar_volume_type	The region of surveillance in the environment to be searched for tracks.
coordinate_orientation coordinate_orientation_type	The orientation of the polar coordinates used in this class. Note that the origin is always the sensor reference point and that the coordinate system is always polar.
frequency_band frequency_band_type [01]	The frequency band to be searched.

7.5.3.7 surveillance_task_type

Type: IDLStruct Package: Search

The information for a CMS request to the subsystem (as appropriate to be a directional sensor that can be steered) to undertake a surveillance task.

Table 7.86 Table 7.94 MS(83) - Attributes of IDLStruct surveillance_task_type

Attribute	Notes
<pre>system_track system_track_id_type [0*]</pre>	The system tracks to keep under surveillance. The
	information regarding the system tracks is published
	using another interface standard, such as the TACSIT
	Data Exchange specification (TEX), the choice of which
	may be system specific.
	AttributeTag: Length = 100

7.5.4 Sensor_Assessment

Parent Package: Sensor_Domain

This package provides a data model to describe the identification and classification assessment that a sensor can make about its sensor tracks. The approach is to be agnostic to any specific assessment process or classification regime. The model assumes a general process whereby matches (with confidence values) are made between data relating to the sensor track and reference data. Matches can relate to previous matches building up a structured hierarchy of assumptions leading to progressively higher-level identification and classification assessments. The lowest level is to match measurement parameters with reference data; the next level is to match one or more of these with modes; then modes with equipment and finally equipment with platforms.

Assessment Objectives (Equipment, Function, Platform and Activity) are passed from Subsystems to CMS by value in the Sensor Assessment use cases. They contain an Objective Id key value which is used to refer to the assessment values in Track Reporting use cases.

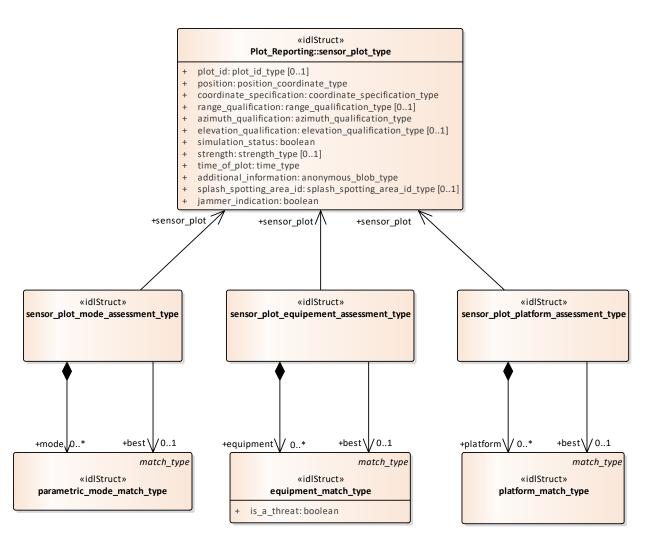


Figure 7.41 Sensor_Assessment - plots (Class diagram)

The classes to support assessment of a sensor track at the equipment and platform level.

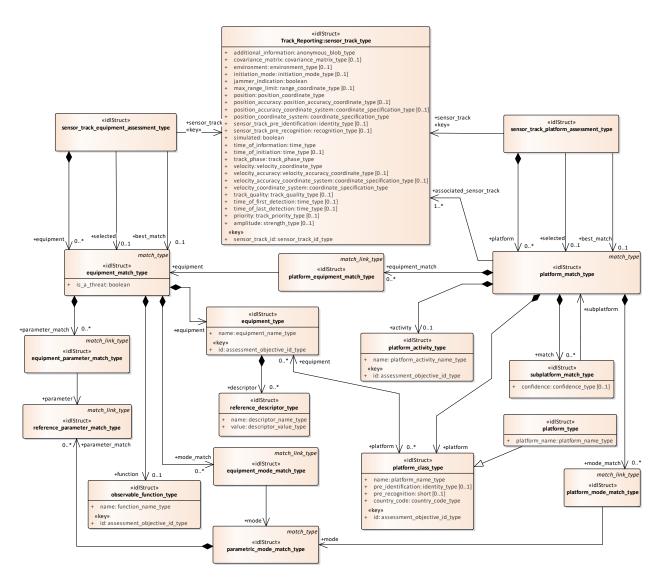


Figure 7.42 Sensor_Assessment - platform (Class diagram)

The classes to support the assessment of a sensor track at the mode level

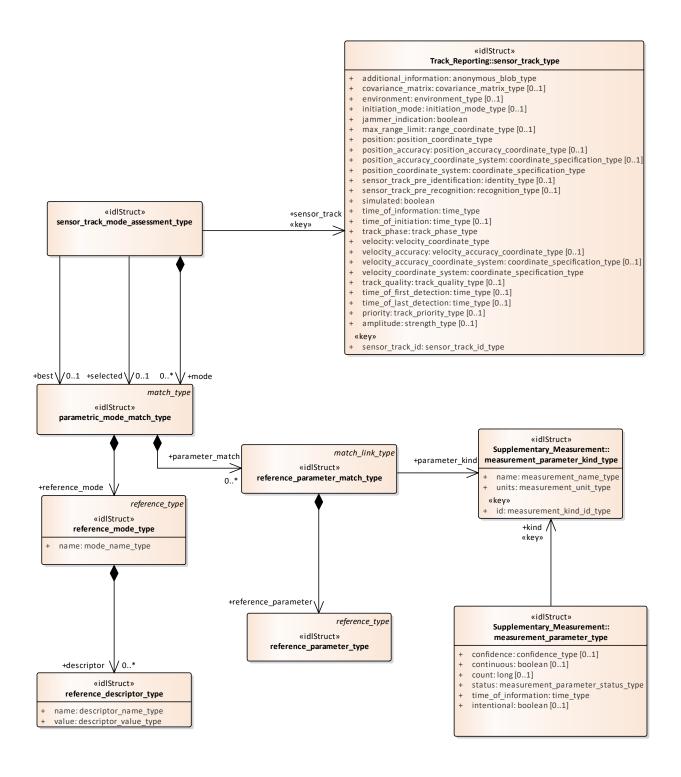


Figure 7.43 Sensor_Assessment - modes (Class diagram)

Basic types to support sensor assessment

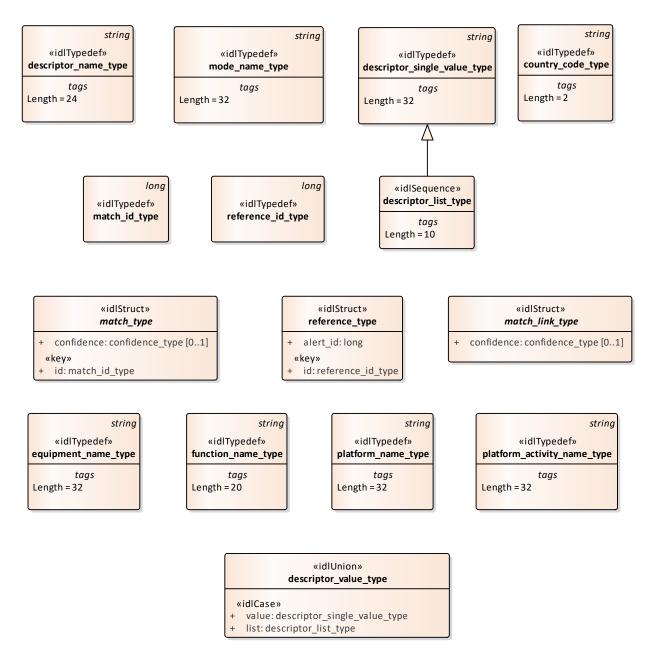
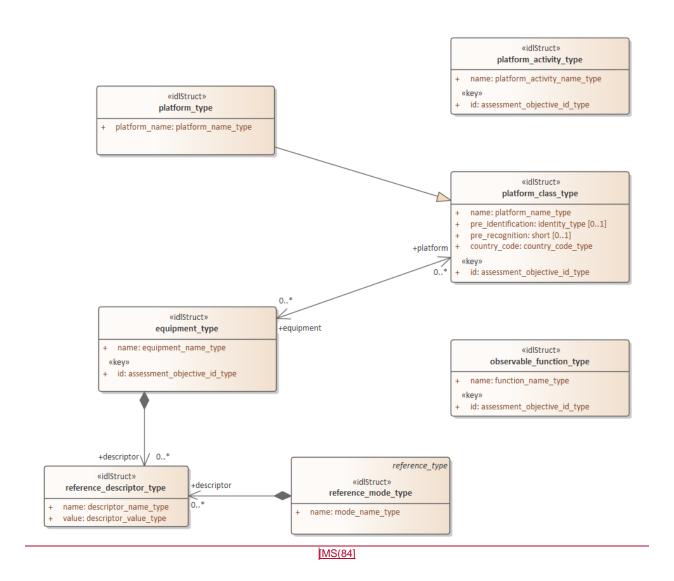



Figure 7.44 Sensor_Assessment - base types (Class diagram)

Classes to support the configuration of supported categories for sensor assessment

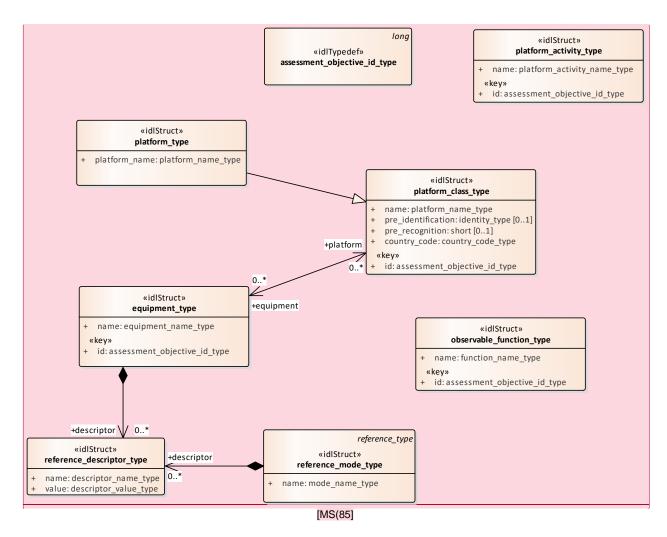


Figure 7.45 Sensor_Assessment - objectives (Class diagram)

Classes to support the assessment of multi-path effects.

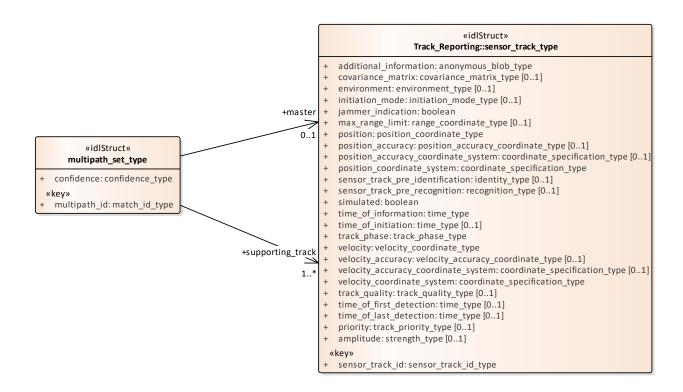


Figure 7.46 Sensor_Assessment - multipath (Class diagram)

7.5.4.1 assessment_objective_id_type

Type: Class long

Package: Sensor_Assessment

Unique identifier for the objects to which the sensor assessment is attempting to match the measurement parameters. [MS(86]

7.5.4.27.5.4.1 country_code_type

Type: Class string

Package: Sensor_Assessment

Two character (Alpha 2) country code as defined by ISO 3166-1.

An empty string represents undefined data.

ElementTag: Length = 2

7.5.4.3 7.5.4.2 descriptor_list_type

Type: Class descriptor_single_value_type

Package: Sensor_Assessment

list of descriptor values ElementTag: Length = 10

7.5.4.47.5.4.3 descriptor_name_type

Type: Class string

Package: Sensor_Assessment Represents the name of a descriptor

ElementTag: Length = 24

7.5.4.57.5.4.4 descriptor_single_value_type

Type: Class string

Package: Sensor_Assessment Represents the value of a descriptor

ElementTag: Length = 32

Table 7.#Table# - Attributes of Class descriptor_single_value_type [MS(87]

7.5.4.67.5.4.5 descriptor value type

Type: IDLUnion

Package: Sensor_Assessment

The value of the descriptor - a single value or a list

ElementTag: switchType = long

Table 7. #Table#95 MS(88) - Attributes of IDLUnion descriptor_value_type

Attribute	Notes
«idlCase» value descriptor_single_value_type	
«idlCase» list descriptor_list_type	

7.5.4.77.5.4.6 equipment_match_type

Type: IDLStruct match_type **Package:** Sensor_Assessment

The representation of a match between a sensor track and an item of equipment.

Table 7.#Table#96MS(89] - Attributes of IDLStruct equipment_match_type

Attribute	Notes
is_a_threat boolean	Whether the equipment - function combination is
	considered to be threatening

7.5.4.87.5.4.7 equipment_mode_match_type

Type: IDLStruct match_link_type Package: Sensor Assessment

A match between an equipment match and a mode match. For a possible match to an equipment this represents the linkage to a possible parametric mode that has been identified in the assessment of the sensor track.

Table 7.#Table# - Attributes of IDLStruct equipment_mode_match_type [MS(90]

7.5.4.97.5.4.8 equipment_name_type

Type: Class string

Package: Sensor Assessment

The name of or label for an item of equipment

ElementTag: Length = 32

Table 7.#Table# - Attributes of Class equipment_name_type [MS(91]

7.5.4.107.5.4.9 equipment_parameter_match_type

Type: IDLStruct match_link_type **Package:** Sensor_Assessment

A match between an equipment match and a measurement parameter match. For a possible match to an equipment this represents the linkage to a possible reference parameter that has been identified in the

assessment of the sensor track.

7.5.4.11 7.5.4.10 ____equipment_type

Type: IDLStruct

Package: Sensor_Assessment

The representation of an item of equipment that is relevant to assessment of parametric sensor measurements.

Table 7.87 Table 7.97 [MS(92] - Attributes of IDLStruct equipment_type

Attribute	Notes
name equipment_name_type	The name of the equipment
«key» id assessment_objective_id_type	Unique identifier for the equipment (within the scope of
	the sensor).

7.5.4.12 function_name_type

Type: Class string

Package: Sensor_Assessment

The name of some functional behavior exhibited by an equipment

ElementTag: Length = 20

7.5.4.137.5.4.12 match_id_type

Type: Class long

Package: Sensor_Assessment

The unique identifier for a match instance (within the scope of a sensor).

7.5.4.147.5.4.13 match_link_type

Type: Class

Package: Sensor_Assessment

The representation of a link between an assessment match and an existing lower level match.

Table 7.88 Table 7.98 MS(93) - Attributes of Class match_link_type

Attribute	Notes
confidence confidence_type [01]	The confidence in the match between a one match and
	an existing lower level match for a sensor track. This is
	the result of a statistical hypothesis test.

7.5.4.157.5.4.14 match_type

Type: Class

Package: Sensor_Assessment

An abstract base class for matches between measurements and reference data in the assessment process

Table 7.89 Table 7.99 MS(94) - Attributes of Class match_type

Attribute	Notes
- · · ·	The confidence in the match between an equipment and a parametric measurement for a sensor track. This is result of a statistical hypothesis test.

Attribute	Notes
«key» id match_id_type	The unique identifier (within the scope of a sensor) for
	the match instance. Match links for higher-level
	assessment objectives refer to lower-level matches using
	this identifier.

7.5.4.167.5.4.15 measurement_element_match_type

Type: Class match_link_type Package: Sensor_Assessment

7.5.4.177.5.4.16 mode_name_type

Type: Class string

Package: Sensor_Assessment

The name or label for a kind of mode that gives rise to a set of measurements.

ElementTag: Length = 32

7.5.4.187.5.4.17 multipath_set_type

Type: Class

Package: Sensor_Assessment

Represents a set of tracks that correspond to the signal which has been measured through the detection of discrete signals that have arrived at the sensor by means of different paths through the environment.

Table 7.90 Table 7.100 MS(95) - Attributes of Class multipath_set_type

Attribute	Notes
«key» multipath_id match_id_type	The unique identifier for the multi-path set
confidence confidence_type	The probability that the set represents independently routed detections of the same real world object.

7.5.4.197.5.4.18 observable_function_type

Type: IDLStruct

Package: Sensor_Assessment

The representation of a function observable by the sensor that can be exhibited by equipment detected by the sensor and matched to sensor parametric measurements

Table 7.91 Table 7.101 MS(96) - Attributes of IDLStruct observable_function_type

Attribute	Notes
name function_name_type	The name or label of the function
«key» id assessment_objective_id_type	Unique identifier for the function (within the scope of
	the sensor).

7.5.4.207.5.4.19 parametric_mode_match_type

Type: IDLStruct match_type Sensor_Assessment

The identification of a mode within a sensor track's parametric data. A mode is a behavior of the real-world object being tracked by the sensor (or a component of that object).

7.5.4.217.5.4.20 platform_activity_name_type

Type: Class string

Package: Sensor_Assessment

The name of or label for an activity that can be undertaken by a platform.

ElementTag: Length = 32

Table 7.#Table# - Attributes of Class platform_activity_name_type[MS(97]

7.5.4.227.5.4.21 platform activity type

Type: IDLStruct

Package: Sensor_Assessment

An activity that can be undertaken by a platform

Table 7. #Table#102 MS(98] - Attributes of IDLStruct platform_activity_type

Attribute	Notes
name platform_activity_name_type	The name of the platform's activity
«key» id assessment_objective_id_type	Unique identifier for the activity (within the scope of the sensor).

7.5.4.23 platform_class_type

Type: IDLStruct

Package: Sensor_Assessment

The class of an individual platform instance - i.e. a common design from which platform instances are manufactured. This contains attributes that apply to all the platform instances of a class

Table 7.#Table#103MS(99) - Attributes of IDLStruct platform_class_type

Attribute	Notes
name platform_name_type	The name of the platform (or class of platforms)
<pre>pre_identification identity_type [01]</pre>	The standard identification of the platform
pre_recognition short [01]	The discrete code representing the type of platform.
country_code country_code_type	The code representing the country of registration of the platform
«key» id assessment_objective_id_type	Unique identifier for the platform (within the scope of the sensor).

7.5.4.247.5.4.23 ___platform_equipment_match_type

Type: IDLStruct match_link_type Package: Sensor_Assessment

Represents the matching link between a platform and a constituent piece of equipment

Table 7.#Table# - Attributes of IDLStruct platform_equipment_match_type[MS(100]

7.5.4.25 7.5.4.24 platform_match_type

Type: IDLStruct match_type Sensor_Assessment

The representation of a match between a sensor track and a platform.

7.5.4.267.5.4.25 platform_mode_match_type

Type: IDLStruct match_link_type Package: Sensor Assessment

Represents the matching link between a platform and a mode of a constituent piece of equipment

7.5.4.277.5.4.26 platform_name_type

Type: Class string

Package: Sensor_Assessment

The name or label for a platform or class of platforms. A platform being a discrete independently acting object in the real-world environment.

ElementTag: Length = 32

7.5.4.287.5.4.27 platform_type

Type: IDLStruct platform_class_type

Package: Sensor Assessment

The representation of a platform that an assessment of sensor track data can match against.

Table 7.92 Table 7.104 MS(101) - Attributes of IDLStruct platform_type

Attribute	Notes
<pre>platform_name platform_name_type</pre>	The name of the platform (or class of platforms)

7.5.4.297.5.4.28 reference_descriptor_type

Type: Class

Package: Sensor_Assessment

The representation of descriptor for a configuration reference data instance. Reference descriptor instances qualify the reference data instance (e.g. mode, equipment) and are a mechanism to specify aliases and other supporting information.

Table 7.93 Table 7.105 MS(102) - Attributes of Class reference_descriptor_type

Attribute	Notes
name descriptor_name_type	The name of the descriptor for the mode
1	1
value descriptor_value_type	The value of the descriptor for the mode

7.5.4.307.5.4.29 reference_id_type

Type: Class long

Package: Sensor_Assessment

The unique identifier for a reference parameter, sequence or mode.

7.5.4.31 7.5.4.30 reference_mode_type

Type: Class reference_type **Package:** Sensor Assessment

This class represents a label for a reference mode for a sensor tracks measurement parameter. Such tactically significant labels and their underlying data sets may be made available as an encyclopedic library.

Table 7.94 Table 7.106 MS(103] - Attributes of Class reference_mode_type

Attribute	Notes
name mode_name_type	The name or label of the mode.

7.5.4.327.5.4.31 reference_parameter_match_type

Type: Class match_link_type
Package: Sensor_Assessment

The representation of a match to a reference parameter for a sensor track

7.5.4.337.5.4.32 reference_parameter_type

Type: Class reference_type **Package:** Sensor Assessment

This class represents a label for a reference value, set or distribution for a parameter. Such tactically significant labels and their underlying data sets may be made available as an encyclopedic library.

7.5.4.347.5.4.33 reference_type

Type: IDLStruct

Package: Sensor_Assessment

A base class for reference data being compared with measurements in the assessment process.

Table 7.95 Table 7.107 MS(104) - Attributes of IDLStruct reference_type

Attribute	Notes
«key» id reference_id_type	The unique identifier for the reference data. This may facilitate the retrieval of additional data outside the scope of this specification.
alert_id long	The identifier for an alerting or warning process associated with the matching of this reference data.

7.5.4.357.5.4.34 sensor_plot_equipmentequipement MS(105]_assessment_type

Type: IDLStruct

Package: Sensor_Assessment

The sensor subsystem's assessment of the equipment potentially matched by the sensor plot's measurement parameters.

7.5.4.367.5.4.35 sensor_plot_mode_assessment_type

Type: IDLStruct

Package: Sensor Assessment

The sensor subsystem's assessment of the modes potentially matched by the sensor plot's measurement parameters.

7.5.4.377.5.4.36 sensor_plot_platform_assessment_type

Type: IDLStruct

Package: Sensor_Assessment

The sensor subsystem's assessment of the platforms potentially matched by the sensor plot's measurement parameters.

7.5.4.387.5.4.37 ____sensor_track_equipment_assessment_type

Type: IDLStruct

Package: Sensor_Assessment

A representation of an assessment of the equipment that potentially correspond to a sensor track.

7.5.4.397.5.4.38 sensor_track_mode_assessment_type

Type: Class

Package: Sensor Assessment

The representation of the state of the assessment of a sensor track's possible identified modes.

7.5.4.407.5.4.39 sensor_track_platform_assessment_type

Type: IDLStruct

Package: Sensor_Assessment

A representation of an assessment of the platforms that potentially correspond to a sensor track.

7.5.4.417.5.4.40 subplatform_match_type

Type: IDLStruct

Package: Sensor_Assessment

Table 7.96 Table 7.108 MS(106) - Attributes of IDLStruct subplatform_match_type

Attribute	Notes
confidence confidence_type [01]	The confidence in the match between a (super) platform
	and a potential constituent sub-platform. This is result of
	a statistical hypothesis test.

7.5.5 Supplementary_Measurement

Parent Package: Sensor_Domain

This package provides a data model to describe supplementary parameters that a sensor can provide about a sensor track. The approach is to be agnostic to any specific type of measurement that a sensor may make. Rather, classes are provided that allow the sensor to describe the parameters that it supports and then to describe the measurements that it has made of those parameters. Measurement can be treated as a single instance, a continuous range or a discrete set; the quantity can be scalar, vector, discrete or qualitative; and confidence values can be supplied where appropriate as can accuracy estimates.

Supplementary measurements as relating to a sensor track.

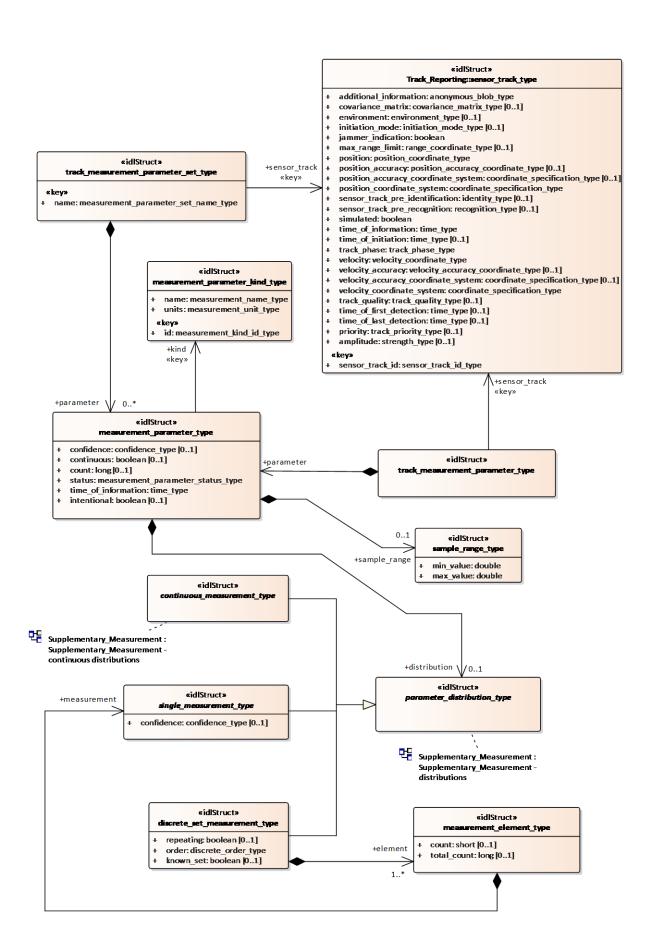


Figure 7.47 Supplementary_Measurement - tracks (Class diagram)



Figure 7.48 Supplementary_Measurement - plots (Class diagram)

Base types for supplementary measurements.

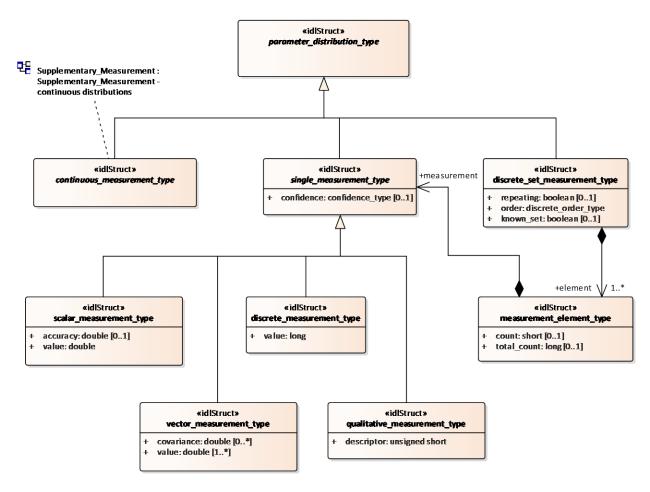


Figure 7.49 Supplementary_Measurement - distributions (Class diagram)

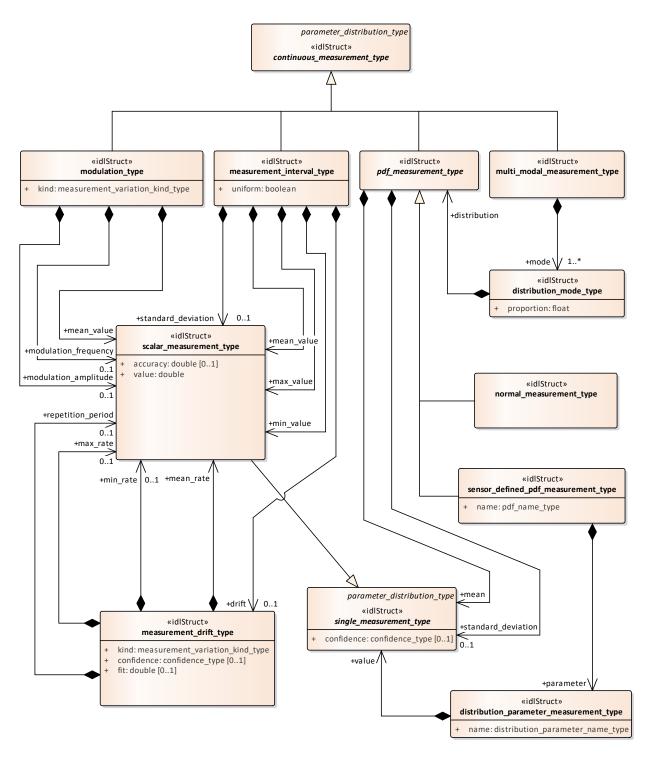


Figure 7.50 Supplementary_Measurement - continuous distributions (Class diagram)

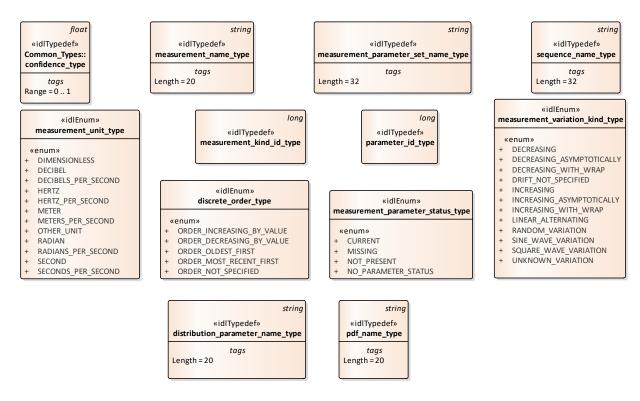


Figure 7.51 Supplementary_Measurement - base types (Class diagram)

7.5.5.1 continuous_measurement_type

Type: IDLStruct parameter_distribution_type

Package: Supplementary_Measurement

A continuous representation of a parameter measurement value.

7.5.5.2 discrete_measurement_type

Type: Class single_measurement_type
Package: Supplementary_Measurement

This represents a parameter which takes discrete values.

Table 7.97 Table 7.109 MS(107) - Attributes of Class discrete_measurement_type

Attribute	Notes
value long	The discrete value of the measurement

7.5.5.3 discrete_order_type

Type: IDLEnum

Package: Supplementary_Measurement

The ordering semantics of a set of measurements of a parameter.

Table 7.98 Table 7.110 MS(108) - Attributes of IDLEnum discrete_order_type

Attribute	Notes
«enum» ORDER_INCREASING_BY_VALUE	The measurements are ordered by increasing value such
	that the smallest value is first and the largest value is
	last.

Attribute	Notes
«enum» ORDER_DECREASING_BY_VALUE	The measurements are ordered by decreasing value such that the smallest value is last and the largest value is first.
«enum» ORDER_OLDEST_FIRST	The measurements are ordered by age such that the value received first is first and the latest value is last.
«enum» ORDER_MOST_RECENT_FIRST	The measurements are ordered by age such that the value received first is last and the latest value is first.
«enum» ORDER_NOT_SPECIFIED	The ordering is not specified as it is not semantically meaningful.

7.5.5.4 discrete_set_measurement_type

Type: IDLStruct parameter_distribution_type

Package: Supplementary_Measurement

The values of the measurement parameter follow a discrete distribution

Table 7.99 Table 7.111 MS(109) - Attributes of IDLStruct discrete_set_measurement_type

Attribute	Notes
repeating boolean [01]	Whether the elements within the discrete distribution repeat (in the same order)
order discrete_order_type	The semantics of the ordering of the elements of the discrete distribution
known_set boolean [01]	Whether the elements within the discrete distribution correspond to a known set of measurement values

7.5.5.5 distribution_mode_type

Type: IDLStruct

Package: Supplementary_Measurement

The distribution of one mode independently contributing to a multi-modal distribution.

Table 7.100 Table 7.112 MS(110) - Attributes of IDLStruct distribution_mode_type

Attribute	Notes
proportion float	The proportion that this mode contributes to the overall
	distribution. The sum of all the modes equals 1.

7.5.5.6 distribution_parameter_measurement_type

Type: IDLStruct

Package: Supplementary_Measurement

The measurement estimation of a (sensor defined) parameter describing a measurement parameter's distribution

Table 7.101 Table 7.113 MS(1111 - Attributes of IDLStruct distribution_parameter_measurement_type

Attribute	Notes
<pre>name distribution_parameter_name_type</pre>	The name of a parameter describing a distribution

7.5.5.7 distribution_parameter_name_type

Type: Class string

Package: Supplementary_Measurement

The name of a sensor defined probability density function.

ElementTag: Length = 20

7.5.5.8 measurement_drift_type

Type: IDLStruct

Package: Supplementary_Measurement

Describes how a measurement varies with time (on a time-scale longer than that described by modulation measurements).

Table 7.102 Table 7.114 MS(112) - Attributes of IDLStruct measurement_drift_type

Attribute	Notes
kind measurement_variation_kind_type	The qualitative measure of the kind of drift detected.
confidence confidence_type [01]	The sensor's confidence in identifying the kind of drift.
fit double [01]	Sample size independent measure of the closeness by which the measurement sample fit the model of the identified kind of drift.

7.5.5.9 measurement_element_type

Type: IDLStruct

Package: Supplementary_Measurement

The representation of an element within a discrete distribution

Table 7.103 Table 7.115 MS(113) - Attributes of IDLStruct measurement_element_type

Attribute	Notes
count short [01]	The number of times the parameter measured has corresponded to this element in a row. That is since another element was measured.
total_count long [01]	The total number of times this element has been measured with the discrete distribution for this parameter value for the sensor track.

7.5.5.10 measurement_interval_type

Type: IDLStruct continuous_measurement_type

Package: Supplementary Measurement

The representation of parameter measurement values that are distributed within a bounded interval

Table 7.104Table 7.116 MS(114] - Attributes of IDLStruct measurement_interval_type

Attribute	Notes
uniform boolean	The measurement values are uniformly distributed
	within the bounded interval

7.5.5.11 measurement_kind_id_type

Type: Class long

Package: Supplementary_Measurement

The unique identifier for describing kinds of measurements

7.5.5.12 measurement_name_type

Type: Class string

Package: Supplementary_Measurement The name or label for a kind of measurement

ElementTag: Length = 20

7.5.5.13 measurement_parameter_kind_type

Type: Class

Package: Supplementary_Measurement

Describes a kind of measurement parameters in terms of its meta-data (the information that applies to all measurement_parameter_type instances)

Table 7.105 Table 7.117 MS(115) - Attributes of Class measurement_parameter_kind_type

Attribute	Notes
<pre>name measurement_name_type</pre>	The name or label for the measurement.
«key» id measurement_kind_id_type	The unique identifier for this kind of parameter.
units measurement_unit_type	The units of the measurement.

7.5.5.14 measurement_parameter_set_name_type

Type: IDLTypeDef string

Package: Supplementary_Measurement Names of sets of parameters for sensor tracks

ElementTag: Length = 32

7.5.5.15 measurement_parameter_status_type

Type: IDLEnum

Package: Supplementary_Measurement The measurement status of the parameter

Table 7.106Table 7.118 MS(116] - Attributes of IDLEnum measurement_parameter_status_type

Attribute	Notes
«enum» CURRENT	The parameter is currently subject to measurement for this sensor track
«enum» MISSING	The parameter temporarily cannot be measured for this sensor track
«enum» NOT_PRESENT	The parameter can no longer be measured for this sensor track
«enum» NO_PARAMETER_STATUS	No statement is available regarding the parameter's measurement status for this sensor track

7.5.5.16 measurement_parameter_type

Type: IDLStruct

Package: Supplementary_Measurement

A measurement of a parameter by a sensor for a sensor track.

Table 7.107 Table 7.119 MS(117) - Attributes of IDLStruct measurement_parameter_type

Attribute	Notes
confidence confidence_type [01]	The probability that the measurement corresponds to measure labelled for the sensor track.
continuous boolean [01]	Indicates that the phenomenon being measured is in an enduring steady state and hence that complementary/orthogonal measurements of more detailed time-varying characteristics/phenomena are not present for this track.
count long [01]	The number of coherent discrete measurements of this quantity. If the sensor detects a qualitative change then the count is reset.
status measurement_parameter_status_type	The measurement status of the parameter
time_of_information time_type	The time at which the parameter was measured
intentional boolean [01]	Whether or not the phenomenon being measured by this parameter is considered to be design feature of the equipment causing the phenomenon.

7.5.5.17 measurement_unit_type

Type: IDLEnum

Package: Supplementary_Measurement

The units used to quantify the measurement values and accuracies

Table 7.108 Table 7.120 MS(118) - Attributes of IDLEnum measurement_unit_type

Attribute	Notes
«enum» DIMENSIONLESS	There are no units as the quantity is a dimensionless value
«enum» DECIBEL	units are in decibels to measure amplitudes
«enum» DECIBELS_PER_SECOND	units are in decibels per second to measure change in amplitude with time.
«enum» HERTZ	units are in Hertz to measure frequencies
«enum» HERTZ_PER_SECOND	Units are in Hertz per second to measure change in frequency with time
«enum» METER	Units are meters
«enum» METERS_PER_SECOND	Units are in meters per second to measure speeds
«enum» OTHER_UNIT	Another unit is used to quantify the measurements and accuracies
«enum» RADIAN	Units are in radians to measure angles

Attribute	Notes
«enum» RADIANS_PER_SECOND	Units are in radians per seconds to measure the change in angles with time
«enum» SECOND	Units are in seconds to measure time or intervals.
«enum» SECONDS_PER_SECOND	Units are in seconds per second to measure the change in regular intervals over time.

7.5.5.18 measurement_variation_kind_type

Type: Class

Package: Supplementary_Measurement

A qualitative description of change in a parameter measurement value over time within a distribution. The characteristic quantitative values of the variation pattern can be represented by other related measurement parameters.

Table 7.109 Table 7.121 MS(119) - Attributes of Class measurement_variation_kind_type

Attribute	Notes
«enum» DECREASING	The value is decreasing monotonically; a minimum value is not yet determined
«enum» DECREASING_ASYMPTOTICALLY	The value is decreasing monotonically towards an asymptotic minimum value
«enum» DECREASING_WITH_WRAP	The value decreases monotonically until it reaches a minimum value at which point it wraps or resets to a maximum value.
«enum» DRIFT_NOT_SPECIFIED	The drift behavior is not specified
«enum» INCREASING	The is increasing monotonically; a maximum value is not yet determined
«enum» INCREASING_ASYMPTOTICALLY	The is increasing monotonically towards a maximum asymptotic value.
«enum» INCREASING_WITH_WRAP	The value increases monotonically until it reaches a maximum value at which point it wraps or resets to a minimum value.
«enum» LINEAR_ALTERNATING	The value alternately increases monotonically until it reaches a maximum value and decreases monotonically until it reaches a minimum value.
«enum» RANDOM_VARIATION	The change in value over time is considered to be random
«enum» SINE_WAVE_VARIATION	The value of the measurement parameter value is sinusoidal over time.
«enum» SQUARE_WAVE_VARIATION	The value of the measurement parameter alternates discontinuously between minimum and maximum values over time.

Attribute	Notes
«enum» UNKNOWN_VARIATION	The drift pattern is unknown to (not recognized by) the
	sensor.

7.5.5.19 modulation_type

Type: IDLStruct continuous measurement type

Package: Supplementary Measurement

The representation of parameter measurement values that are distributed within a bounded interval

Table 7.110 Table 7.122 MS(120) - Attributes of IDLStruct modulation_type

Attribute	Notes
kind measurement_variation_kind_type	The qualitative measure of the kind of modulation detected.
	detected.

7.5.5.20 multi_modal_measurement_type

Type: IDLStruct continuous_measurement_type

Package: Supplementary Measurement

The representation of parameter measurement values that have a multi-modal distribution

7.5.5.21 normal_measurement_type

Type: IDLStruct pdf_measurement_type **Package:** Supplementary Measurement

The representation of a measurement parameter that is normally distributed

7.5.5.22 parameter_distribution_type

Type: IDLStruct

Package: Supplementary_Measurement

A representation of the statistical distribution of a parameter.

7.5.5.23 parameter_id_type

Type: Class long

Package: Supplementary_Measurement The unique identifier for a measurement parameter.

7.5.5.24 pdf measurement type

Type: IDLStruct continuous_measurement_type

Package: Supplementary_Measurement

The values of the parameter measurement are distributed according to a probability density function.

7.5.5.25 pdf_name_type

Type: Class string

Package: Supplementary_Measurement

The name of a sensor defined probability density function.

ElementTag: Length = 20

7.5.5.26 plot_measurement_parameter_set_type

Type: IDLStruct

Package: Supplementary_Measurement

A set of the measurement parameters relating to a sensor track. Subsystems form measurement parameters into sets for efficient information transfer to the CMS. A subsystem may chose the number and composition of these sets. A subsystem may place all measurements into a single set per track,

create multiple sets or create no sets and report measurement parameters individually instead. For a particular sensor track, measurement parameter names shall be unique across all measurement parameter set instances - i.e. sets shall be non-overlapping.

Table 7.111 Table 7.123 MS(121) - Attributes of IDLStruct plot measurement parameter set type

Attribute	Notes
«key» name measurement_parameter_set_name_type	The name of the set of parameters

7.5.5.27 poisson_measurement_type

Type: IDLStruct pdf_measurement_type
Package: Supplementary Measurement

The parameter measurement follows a Poisson distribution

7.5.5.28 qualitative_measurement_type

Type: Class single_measurement_type **Package:** Supplementary Measurement

This describes a qualitative measure

Fable 7.112 Table 7.124 MS(122) - Attributes of Class qualitative_measurement_type

Attribute	Notes
descriptor unsigned short	The descriptor for the qualitative measurement

7.5.5.29 sample_range_type

Type: IDLStruct

Package: Supplementary Measurement

The inclusive range of samples sensed that contribute to the measurement value

Table 7.113 Table 7.125 MS(123] - Attributes of IDLStruct sample_range_type

Attribute	Notes
min_value double	The minimum value of a sample for the measurement
max_value double	The maximum value of a sample for the measurement

7.5.5.30 scalar_measurement_type

Type: Class single_measurement_type **Package:** Supplementary_Measurement

This class represents individual scalar measurements of parameter values.

Table 7.114 Table 7.126 MS(124) - Attributes of Class scalar_measurement_type

Attribute	Notes
accuracy double [01]	The accuracy of the measurement value (one standard deviation)
value double	The value of the parameter measurement

7.5.5.31 sensor_defined_pdf_measurement_type

Type: IDLStruct pdf_measurement_type **Package:** Supplementary_Measurement

The representation of a measurement of generalised probability density function whose definition can be

instantiated by a sensor for extensibility.

Table 7.115 Table 7.127 MS(125] - Attributes of IDLStruct sensor defined pdf measurement type

Attribute	Notes
name pdf_name_type	The name of the probability density function

7.5.5.32 sequence_name_type

Type: Class string

Package: Supplementary Measurement

To name a sequence ElementTag: Length = 32

7.5.5.33 single_measurement_type

Type: IDLStruct parameter_distribution_type

Package: Supplementary Measurement

A single discrete representation of a parameter measurement value.

Table 7.116 Table 7.128 MS(126) - Attributes of IDLStruct single_measurement_type

Attribute	Notes
confidence confidence_type [01]	The confidence in the parameter measurement value;
	this is the probability that the value and accuracy
	represent the true distribution of the physical effect they
	are labelled as measuring in the real world.

7.5.5.34 track_measurement_parameter_set_type

Type: IDLStruct

Package: Supplementary_Measurement

A set of the measurement parameters relating to a sensor track. Subsystems form measurement parameters into sets for efficient information transfer to the CMS. A subsystem may chose the number and composition of these sets. A subsystem may place all measurements into a single set per track, create multiple sets or create no sets and report measurement parameters individually instead. For a particular sensor track, measurement parameter names shall be unique across all measurement parameter set instances - i.e. sets shall be non-overlapping.

Table 7.117 Table 7.129 MS(127] - Attributes of IDLStruct track measurement parameter set type

Attribute	Notes
«key» name measurement_parameter_set_name_type	The name of the set of parameters

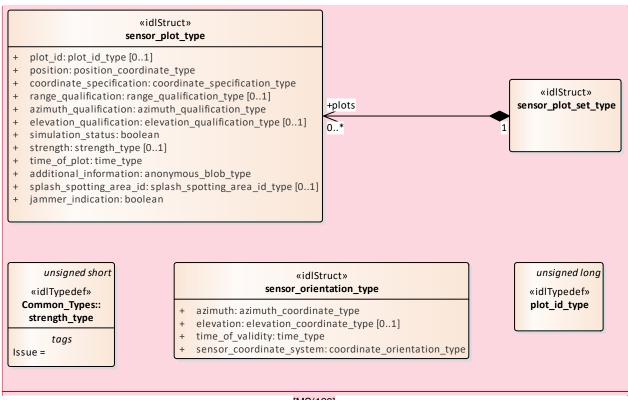
7.5.5.35 track_measurement_parameter_type

Type: IDLStruct

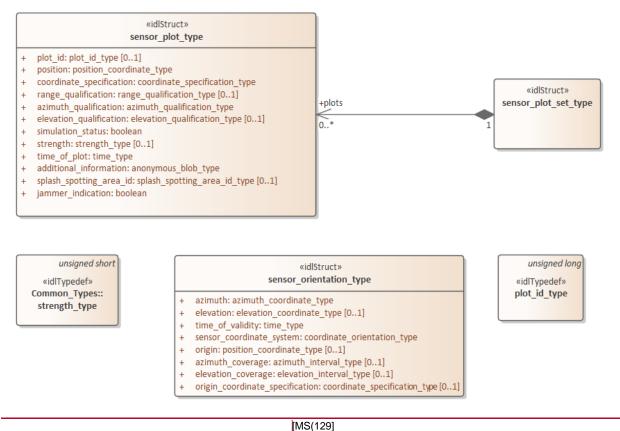
Package: Supplementary_Measurement

To represent parameter measurements for a sensor track reported individually

7.5.5.36 vector_measurement_typeType: Class single_measurement_type


Package: Supplementary_Measurement

This class represents individual vector measurements of parameter values.


Attribute	Notes
covariance double [0*]	The covariance between the elements of the vector value
	in a 1-dimensional representation of the triangular
	matrix. The i,j element $(i \ge j)$ of a covariance matrix
	for a vector of size N is at position sum(k=0j-1, N - k)
	+ (i - j). The covariance is zero length if not specified.
	AttributeTag: Length = 21
value double [1*]	The vector values
	AttributeTag: Length = 6

7.5.6 Plot_Reporting

Parent Package: Sensor_Domain

[MS(128]

* \ 1

Figure 7.52 Domain Model (Class diagram)

7.5.6.1 plot_id_type

Type: Class unsigned long **Package:** Plot Reporting

Identifier for a plot, unique within a given sensor. Such plot ids, should not be reused between sensor subsystem restarts.

Table 7.118 Table 7.130 MS(130) - Attributes of Class plot_id_type

7.5.6.2 sensor_plot_set_type

Type: Class

Package: Plot_Reporting Set of one or more sensor plots.

Table 7.#Table# - Attributes of Class sensor_plot_set_type[MS(131]

7.5.6.3 sensor_plot_type

Type: Class

Package: Plot_Reporting

One plot from a sensor.

The additional_information attribute is used for characteristics of the plot that are specific to certain sensors, and therefore not in the general plot type, for example MTI or range rate.

Table 7.#Table#131 MS(132) - Attributes of Class sensor_plot_type

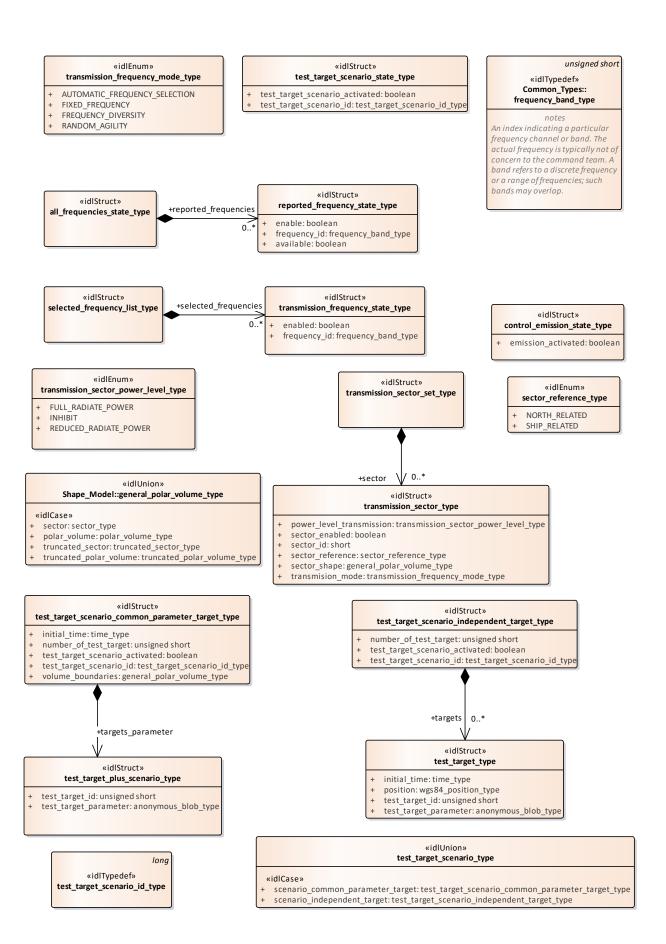
Notes
A unique identifier for the plot within the scope of the sensor. This attribute is optional as not all sensors need to provide such an identifier for each plot.
The position of the plot. This is the mean, central position. Note the qualification attributes, which give information on accuracy and spread estimates.
This attribute defines the characteristics of the
coordinate system used
A measure of the spread and accuracy of the plot in range. This is optional as not all sensors measure range.
A measure of the spread and accuracy of the plot in azimuth.
A measure of the spread and accuracy of the plot in elevation. This is optional as not all sensors measure elevation.
If true, the plot is simulated. See also simulation support services within this standard.
The signal strength of the plot. This attribute is optional as not all sensors measure a quantity which has equivalence to strength.
The time at which the plot was measured.
Potentially classified information about the plot, which may be used in a system specific way to distribute information about a plot to other subsystems. Further information about this attribute, including layout semantics is outside of the scope of this interface standard.
Indicates which splash spotting area the plot refers to - if any - hence it is optional.
Indication whether or not a plot is from a source of jamming.

7.5.6.4 sensor_orientation_type

Type: Class

Package: Plot_Reporting

This class describes the orientation of the sensor at a particular moment in time. This is useful for plot processing functionality such as track extraction as it allows instantaneous coverage of the sensor to be estimated.


Table 7.119 Table 7.132 MS(133) - Attributes of Class sensor_orientation_type

Attribute	Notes
azimuth azimuth_coordinate_type	The (azimuth) direction of the head of the sensor (e.g. antenna, lens or hydro-phone)
elevation elevation_coordinate_type [01]	The (elevation) direction of the head of the sensor (e.g. antenna, lens or hydro-phone). If not supplied either horizontal is assumed or a constant angle is defined through the Manage_Subsystem_Parameters use case.
time_of_validity time_type	The time for which is sensor orientation is valid
sensor_coordinate_system coordinate_orientation_type	This attribute defines the interpretation of azimuth and elevation. Valid enumerates are: NORTH_HORIZONTAL, NORTH_DOWN, STERN_KEEL, STERN_DECK_LEVEL
origin position_coordinate_type [01] azimuth_coverage azimuth_interval_type [01]	The position of the origin of the head of the sensor. The instantaneous extent of the coverage of the sensor in azimuth with respect the origin of its head.
elevation_coverage elevation_interval_type [01]	The instantaneous extent of the coverage of the sensor in elevation with respect the origin of its head. It is only valid to set this when the elevation attribute is also specified.
origin_coordinate_specification coordinate_specification_type [01]	This attribute defines the characteristics of the coordinate system used to define the origin. It is only valid to set this when origin attribute is also specified.[MS(134]

7.5.7 Sensor_Control

Parent Package: Sensor_Domain

This package contains structs and type defs for managing frequency usage, transmission sectors, emission control, and test target scenarios.

Figure 7.53 Domain Model (Class diagram)

7.5.7.1 selected_frequency_list_type

Type: IDLStruct Sensor_Control

This struct contains zero to many frequencies which may be enabled/disabled by the CMS

7.5.7.2 transmission_frequency_state_type

Type: Class

Package: Sensor_Control State of frequency transmission

Table 7.120 Table 7.133 MS(135) - Attributes of Class transmission_frequency_state_type

Attribute	Notes
enabled boolean	Indicates whether the CMS is enabling or disabling a transmission frequency.
frequency_id frequency_band_type	A unique identifier for the transmission frequency.

7.5.7.3 all_frequencies_state_type

Type: Class

Package: Sensor_Control

This struct contains zero to many "available" or "not available" frequencies which may be enabled/disabled by the CMS

7.5.7.4 reported_frequency_state_type

Type: IDLStruct
Package: Sensor_Control
reported frequency state

Table 7.121 Table 7.134 MS(136) - Attributes of IDLStruct reported_frequency_state_type

Attribute	Notes
enable boolean	Indicates whether the CMS is enabling or disabling a transmission frequency.
frequency_id frequency_band_type	A unique identifier for the transmission frequency.
available boolean	Indicates whether a transmission frequency is available or not available.

7.5.7.5 transmission_frequency_mode_type

Type: Class

Package: Sensor_Control

The mode

Table 7.122 Table 7.135 MS(137) - Attributes of Class transmission_frequency_mode_type

Attribute	Notes
AUTOMATIC_FREQUENCY_SELECTION	The sensor always uses the same pre-selected frequency

Attribute	Notes
FIXED_FREQUENCY	At each transmission sensor selects the frequency to be used inside a pre-selected subset of frequencies
FREQUENCY_DIVERSITY	At each transmission sensor selects the frequency to be used among the least jammed frequencies
RANDOM_AGILITY	At each transmission sensor random selects the frequency to be used.

7.5.7.6 transmission_sector_set_type

Type: IDLStruct Sensor_Control

This struct contains zero to many transmission sectors which must be set/reset by the CMS.

7.5.7.7 transmission_sector_type

Type: Class

Package: Sensor_Control

Sector for transmission

Table 7.123 Table 7.136 MS(138] - Attributes of Class transmission_sector_type

Attribute	Notes
power_level_transmission transmission_sector_power_level_type	Indicates the transmission power level of the sector.
sector_enabled boolean	Indicates whether the CMS is enabling or disabling a transmission sector.
sector_id short	A unique identifier for the transmission sector.
sector_reference sector_reference_type	This indicates the reference system of the transmission sector.
sector_shape general_polar_volume_type	Note that the azimuth dimension of the sector shape (polar volume) applies to the horizon plane (i.e. elevation=0)
transmission_mode transmission_frequency_mode_type	Indicates the transmission mode used within the sector

7.5.7.8 transmission_sector_power_level_type

Type: Class

Package: Sensor_Control

This enumeration allows specification of a CMS commanded power level for a sector.

Table 7.124 Table 7.137 [MS(139] - Attributes of Class transmission_sector_power_level_type

Attribute	Notes
FULL_RADIATE_POWER	
INHIBIT	
REDUCED_RADIATE_POWER	

7.5.7.9 sector_reference_type

Type: IDLEnum Sensor_Control

This enumeration specifies the sectors reference systems.

Table 7.125 Table 7.138 MS(140) - Attributes of IDLEnum sector_reference_type

Attribute	Notes
NORTH_RELATED	
SHIP_RELATED	

7.5.7.10 control_emission_state_type

Type: Class

Package: Sensor_Control

Emission state

Table 7.126 Table 7.139 MS(141) - Attributes of Class control_emission_state_type

Attribute	Notes
emission_activated boolean	Indicates whether the CMS is enabling or disabling the
	sensor emission state.

7.5.7.11 test_target_scenario_type

Type: IDLUnion
Package: Sensor_Control
Scenario for test targets

Table 7.127 Table 7.140 MS(142) - Attributes of IDLUnion test_target_scenario_type

Attribute	Notes
<pre>«idlCase» scenario_common_parameter_target test_target_scenario_common_parameter_target_type</pre>	This case is used when a test target scenario is constituted by a number of targets distributed in a defined area/volume and having the same common parameters.
«idlCase» scenario_independent_target test_target_scenario_independent_target_type	This case is used when a test target scenario is constituted by a number of independent targets.

7.5.7.12 test_target_scenario_independent_target_type

Type: IDLStruct Package: Sensor_Control

The scenario is defined by a number of independent targets, with each target having own characteristic parameters.

Table 7.128Table 7.141 MS(143) - Attributes of IDLStruct test_target_scenario_independent_target_type

•	
Attribute	Notes
number_of_test_target unsigned short	This is the number of the test targets composing the scenario.
test_target_scenario_activated boolean	Indicates whether the CMS is enabling or disabling the generation of a test target scenario.

Attribute	Notes
test_target_scenario_id test_target_scenario_id_type	A unique identifier for the test target scenario.

7.5.7.13 test_target_scenario_common_parameter_target_type

Type: IDLStruct Sensor_Control

The scenario is defined by a number of targets distributed in a defined area/volume and having the same common parameters.

Table 7.129Table 7.142 MS(144] - Attributes of IDLStruct test_target_scenario_common_parameter_target_type

Attribute	Notes
initial_time time_type	This indicates the common initial time of the targets.
number_of_test_target unsigned short	This is the number of the test targets composing the scenario.
test_target_scenario_activated boolean	Indicates whether the CMS is enabling or disabling the generation of a test target scenario.
test_target_scenario_id test_target_scenario_id_type	A unique identifier for the test target scenario.
volume_boundaries general_polar_volume_type	This indicates the area/volume boundaries where the test targets are distributed.

7.5.7.14 test_target_type

Type: IDLStruct Sensor_Control

Encapsulation of a test target (simulated target to enable technical testing of a sensor)

Table 7.130 Table 7.143 MS(145] - Attributes of IDLStruct test_target_type

Attribute	Notes
initial_time time_type	This attribute defines the relevant initial time.
position wgs84_position_type	This attribute defines the initial target position.
test_target_id unsigned short	A identifier for the test targets.
test_target_parameter anonymous_blob_type	This attribute defines: - the target motion type, with the relevant motion parameters - the target generation parameters, such as injection type (internal / external), attenuation law (constant / variable-with-range), doppler type (0 / PRF/2).

7.5.7.15 test_target_plus_scenario_type

Type: Class

Package: Sensor_Control Test target with its scenario

Attribute	Notes
test_target_id unsigned short	A identifier for the test targets.
test_target_parameter anonymous_blob_type	This attribute defines: - the target motion type, with the relevant motion parameters - the target generation parameters, such as injection type (internal / external), attenuation law (constant / variable-with-range), doppler type (0 / PRF/2).

7.5.7.16 test_target_scenario_id_type

Type: IDLTypeDef long Package: Sensor_Control

This typedef is used to identify a specific test target scenario.

7.5.7.17 test_target_scenario_state_type

Type: Class

Package: Sensor_Control

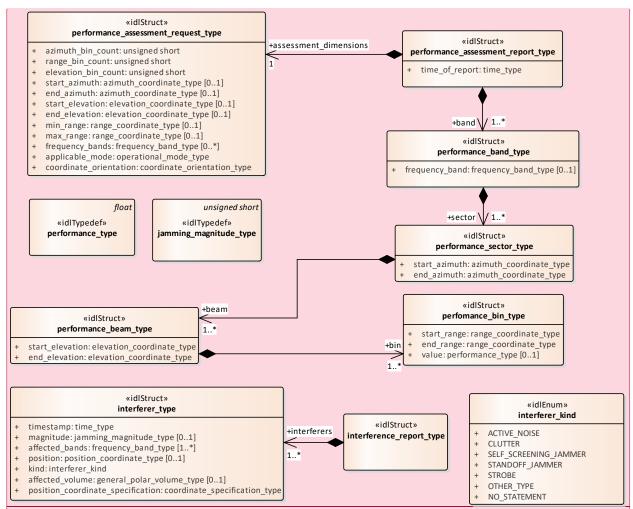

scenario state

Table 7.131 Table 7.144 MS(146] - Attributes of Class test_target_scenario_state_type

Attribute	Notes
	Indicates whether the CMS is enabling or disabling the execution of the test target scenario.
test_target_scenario_id test_target_scenario_id_type	A unique identifier for the test target scenario.

7.5.8 Sensor_Performance

Parent Package: Sensor_Domain

[MS(147]

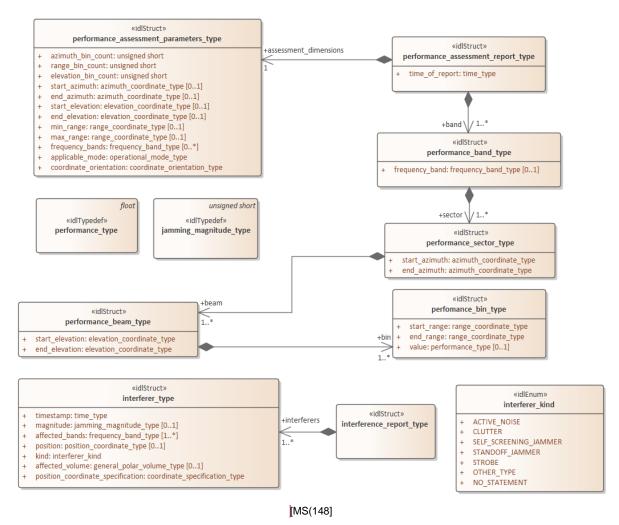


Figure 7.54 Domain Model (Class diagram)

7.5.8.1 interference_report_type

Type: Class

Package: Sensor_Performance Set of interferer objects in a report.

7.5.8.2 interferer_kind

Type: Class

Package: Sensor_Performance

Enumeration of the types of interferers that are known about.

Table 7.132 Table 7.145 MS(149) - Attributes of Class interferer_kind

Attribute	Notes
ACTIVE_NOISE	Interference from active noise.
CLUTTER	Interference from clutter.
SELF_SCREENING_JAMMER	Interference from a jammer, which is self screening.

Attribute	Notes
STANDOFF_JAMMER	Interference from a stand-off jammer
STROBE	Interference from a strobe jammer.
OTHER_TYPE	The interference source is of a different type to the other declared interference kinds
NO_STATEMENT	The interference source could not be classified by the sensor subsystem.

7.5.8.3 interferer_type

Type: Class

Package: Sensor_Performance

A single source of interference.

Table 7.133 Table 7.146 MS(150) - Attributes of Class interferer_type

Attribute	Notes
timestamp time_type	Time to which the performance report applies.
magnitude jamming_magnitude_type [01]	The Effective Radiated Power (ERP) of the source of interference. This is an optional attribute, which may not all sensors may be able to calculate.
affected_bands frequency_band_type [1*]	A list of frequency bands which are effected by the source of interference.
position position_coordinate_type [01]	The source position of the interference. This is an optional attribute that not all sensors may be able to calculate.
kind interferer_kind	A classification of the interference source.
affected_volume general_polar_volume_type [01]	The volume in space, which the interference source is affecting. This is an optional attribute, which may not all sensors may be able to calculate.
position_coordinate_specification coordinate_specification_type	Specifies the coordinate system used to define the interferer.

7.5.8.4 jamming_magnitude_type

Type: Class unsigned short **Package:** Sensor_Performance

Target strength (Effective Radiated Power - ERP) of a jammer. The precise semantics of this type are sensor subsystem specific, but a typical interpretation is as a signal to noise ratio in dB.

7.5.8.5 perfomance_bin_type

Type: IDLStruct

Package: Sensor_Performance

Value of performance in a volume of space. This is given as a signal excess in dB above noise floor for a nominal 0dB target strength. For a current performance report, this noise floor shall include clutter and jamming. These are not included in a nominal performance report.

Table 7.134 Table 7.147 MS(151) - Attributes of IDLStruct perfomance_bin_type

Attribute	Notes
start_range range_coordinate_type	The start of the bin in range.
end_range range_coordinate_type	The end of the bin in range.
value performance_type [01]	The assessed level of performance. If no value present, there is no performance data available for this bin.

7.5.8.6 performance_assessment_report_type

Type: Class

Package: Sensor_Performance

Contains the results of a performance assessment.

Table 7.135Table 7.148 MS(152) - Attributes of Class performance_assessment_report_type

Attribute	Notes
time_of_report time_type	The time of validity of the performance assessment.

7.5.8.7 performance assessment parameters typeperformance_assessment_request_type [MS(153]

Type: Class

Package: Sensor_Performance

The parameters of aA MS(154) performance assessment request consists of an overall volume of interest and a specification of a number of 'bins' into which that volume is to be sub-divided. In response the sensor assess performance for each 'bin'.

The coordinate origin for the request is the SENSOR_REFERENCE_POINT as defined in coordinate_origin_type.

Table 7.136Table 7.149[MS(155] - Attributes of Class performance assessment parameters typeperformance_assessment_request_type [MS(156]]

Attribute	Notes
azimuth_bin_count unsigned short	Number of azimuth bins that the CMS would like in the performance report. The subsystem should try to honour this request but does not have to.
range_bin_count unsigned short	Number of range bins that the CMS would like in the report. The subsystem should try to honour this request but does not have to.
elevation_bin_count unsigned short	The number of elevation bins that the CMS would like in the report. The subsystem should try to honour this request but does not have to.
start_azimuth azimuth_coordinate_type [01]	Defines the start of the arc of azimuth (positive orientation) of the volume in which the sensor's performance is to be assessed.
end_azimuth azimuth_coordinate_type [01]	Defines the end of the arc of azimuth (positive orientation) of the volume in which the sensor's performance is to be assessed.

Attribute	Notes
start_elevation elevation_coordinate_type [01]	Defines the start of the arc of elevation (positive orientation) of the volume in which the sensor's performance is to be assessed.
end_elevation elevation_coordinate_type [01]	Defines the end of the arc of elevation (positive orientation) of the volume in which the sensor's performance is to be assessed.
min_range range_coordinate_type [01]	Defines the minimum range of the volume in which the sensor's performance is to be assessed.
max_range range_coordinate_type [01]	Defines the maximum range of the volume in which the sensor's performance is to be assessed.
frequency_bands frequency_band_type [0*]	The set of frequency bands to assess the performance for. Where no bands are specified the performance is assessed for the sensor in general in the specified operational mode.
applicable_mode operational_mode_type	The performance assessment is to be in the context of this operational mode of the sensor subsystem.
coordinate_orientation coordinate_orientation_type	The orientation of the polar coordinates used in this class. Note that the origin is always the sensor reference point and that the coordinate system is always polar.

7.5.8.8 performance_band_type

Type: IDLStruct

Package: Sensor_Performance

The performance reported in a particular band (or in general)

Table 7.137 Table 7.150 MS(157) - Attributes of IDLStruct performance_band_type

Attribute	Notes
frequency_band frequency_band_type [01]	The specific band to which the contained performance assessments refers

7.5.8.9 performance_beam_type

Type: IDLStruct

Package: Sensor_Performance

Set of performance values for a line of points in space. Each value applies to a volume whose boundaries may be inferred from the numbers of bins and the min and max values in the report.

Table 7.138 Table 7.151 MS(158) - Attributes of IDLStruct performance_beam_type

Attribute	Notes
start_elevation elevation_coordinate_type	The start of the beam in elevation (positive orientation).
end_elevation elevation_coordinate_type	The end of the beam in elevation (positive orientation).

7.5.8.10 performance_sector_type

Type: Class

Package: Sensor_Performance

A set of performance values for a sector of azimuth [start_azimuth..end_azimuth].

Table 7.139 Table 7.152 MS(159) - Attributes of Class performance_sector_type

Attribute	Notes
start_azimuth azimuth_coordinate_type	The start of the sector of azimuth (positive orientation).
end_azimuth azimuth_coordinate_type	The end of the sector of azimuth (positive orientation).

7.5.8.11 performance_type

Type: Class float

Package: Sensor_Performance

Defined as a signal excess in dB above noise floor for a nominal 0dB target strength, when assessing nominal performance or for the jammer when providing jammer assessment..

7.5.9 Track_Reporting

Parent Package: Sensor_Domain

This service provides facilities to report different types of sensor tracks.

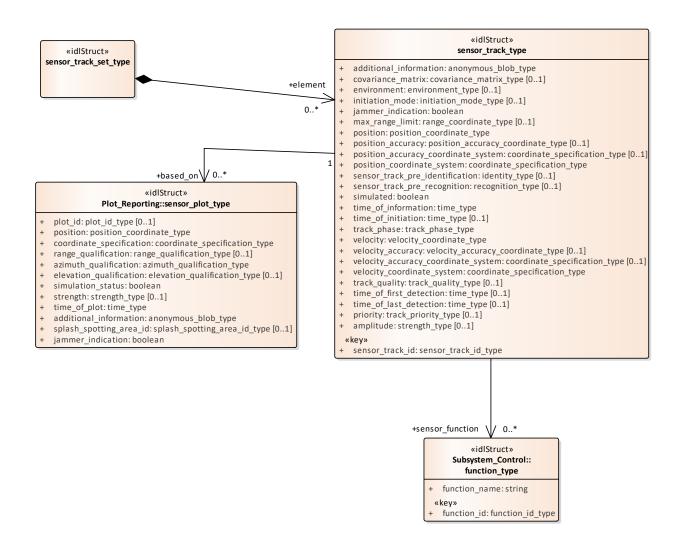


Figure 7.55 Track Reporting - Sensor Track (Class diagram)

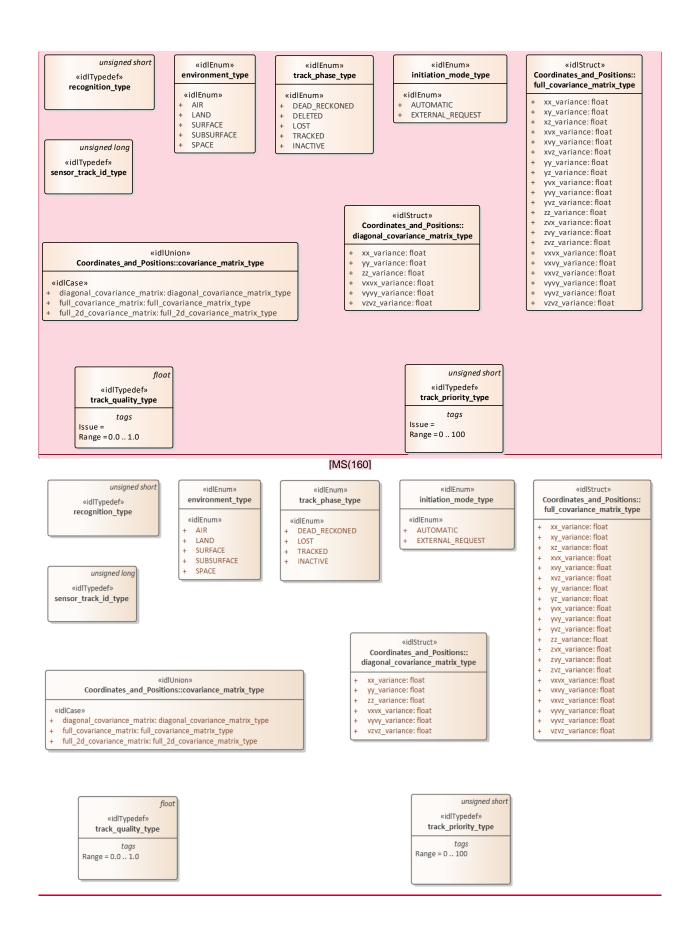
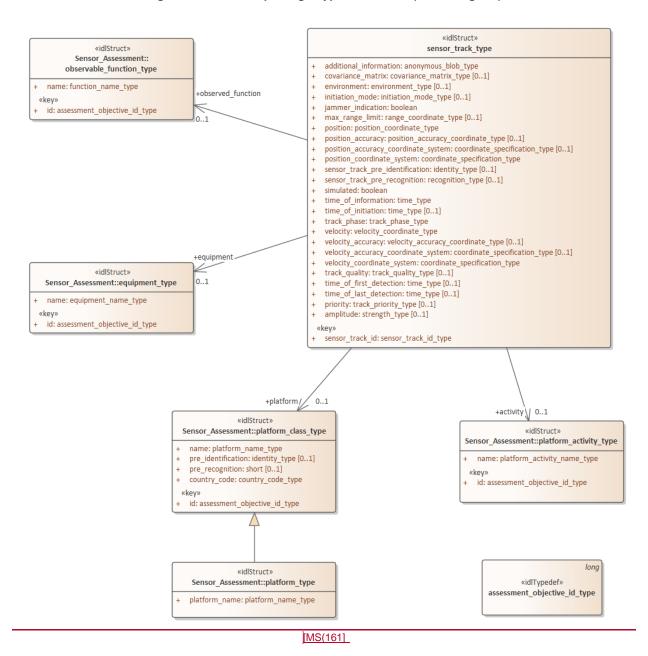
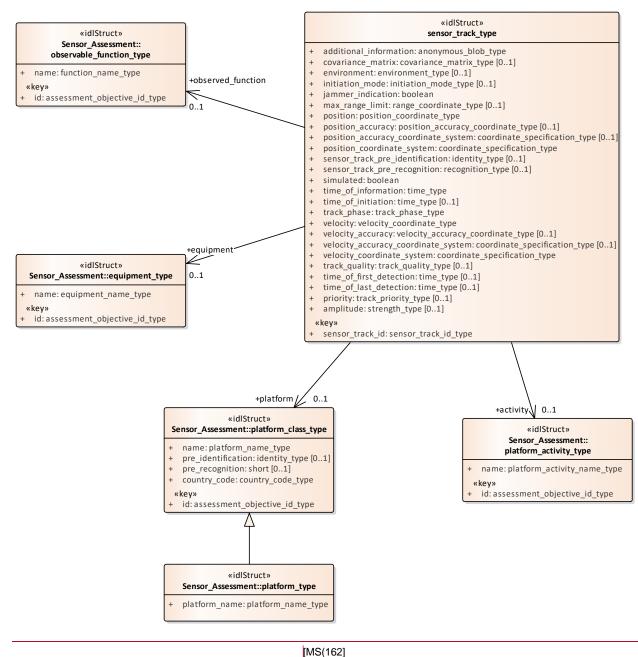




Figure 7.56 Track Reporting - Type Definitions (Class diagram)

[IVI3(102

Figure 7.57 Track_Reporting - Assessment (Class diagram)

7.5.9.1 sensor_track_id_type

Type: IDLTypeDef unsigned long

Package: Track_Reporting Sensor Track Identification

7.5.9.2 track_priority_type

Type: Class unsigned short Package: Track_Reporting

The representation of the track's priority with respect to the allocation of the sensor's resources.

ElementTag: Range = 0 .. 100

7.5.9.3 track_quality_type

Type: Class float Package: Track_Reporting

The representation of the quality of a track for the purposes of comparison according to system specific

criteria.

ElementTag: Range = 0.0 .. 1.0

7.5.9.4 environment_type

Type: Class

Package: Track_Reporting The sensor tracking environment

Table 7.140 Table 7.153 MS(163) - Attributes of Class environment_type

Attribute	Notes
«idlEnum» AIR	
«idlEnum» LAND	
«idlEnum» SURFACE	
«idlEnum» SUBSURFACE	
«idlEnum» SPACE	

7.5.9.5 initiation_mode_type

Type: Class

Package: Track_Reporting

Type of track initiation

Table 7.141 Table 7.154 MS(164) - Attributes of Class initiation_mode_type

Attribute	Notes
«idlEnum» AUTOMATIC	Automatic track initiation mode
«idlEnum» EXTERNAL_REQUEST	Track initiation on external request (e.g. from CMS)

7.5.9.6 recognition_type

Type: IDLTypeDef unsigned short

Package: Track_Reporting

The recognition type indicates the type of the real-world physical object being tracked.

The numeric value is used to map to a system or implementation specific taxonomy of real-world physical objects that are of tactical interest.

7.5.9.7 sensor_track_type

Type: IDLStruct

Package: Track_Reporting Encapsulation of a sensor track

Table 7.142 Table 7.155 MS(165) - Attributes of IDLStruct sensor_track_type

Attribute	Notes
additional_information anonymous_blob_type	Additional, vendor-specific information
covariance_matrix covariance_matrix_type [01]	The number of elements in the covariance matrix is dependent on the sensor. When present, the position_accuracy and velocity_accuracy attributes should not be present.
environment environment_type [01]	Environment of the track (air, surface etc)
initiation_mode initiation_mode_type [01]	Initiation mode of track (automatic or externally initiated)
jammer_indication boolean	Indication whether or not a track is jamming.
max_range_limit range_coordinate_type [01]	Maximal range for a bearing track
position position_coordinate_type	The location of the track as calculated in the sensor's chosen coordinate system at the stated time.
position_accuracy position_accuracy_coordinate_type [01]	The sensor's stated accuracy for its calculated position. When present, the covariance_matrix attribute should not be present.
position_accuracy_coordinate_system coordinate_specification_type [01]	The coordinate system chosen by the sensor for reporting accuracy.
position_coordinate_system coordinate_specification_type	The coordinate system chosen by the sensor.
«key» sensor_track_id sensor_track_id_type	The sensor's unique identifying reference for the track. Sensors may reuse identifiers after they have deleted the corresponding track. The scheme used for identifier reallocation is system dependent.
sensor_track_pre_identification identity_type [01]	Identification information for the sensor track (if available)
sensor_track_pre_recognition recognition_type [01]	Recognition information for the sensor track (if available)
simulated boolean	Whether the CMS should process the track as having been synthetically generated as opposed to corresponding to an actual detection in the real world.
time_of_information time_type	The time at which the information in this object is valid, in particular its position.
time_of_initiation time_type [01]	The time at which the sensor first determined the existence of this track. AttributeTag: Issue =
track_phase track_phase_type	Track phase (e.g. TRACKED, DELETED, LOST)

Attribute	Notes
velocity velocity_coordinate_type	The velocity of the track as calculated in the sensor's chosen coordinate system at the stated time.
velocity_accuracy velocity_accuracy_coordinate_type [01]	The sensor's stated accuracy for its calculated velocity. When present, the covariance_matrix attribute should not be present.
velocity_accuracy_coordinate_system coordinate_specification_type [01]	The coordinate system chosen by the sensor for reporting accuracy.
velocity_coordinate_system coordinate_specification_type	The coordinate system chosen by the sensor.
track_quality track_quality_type [01]	The sensor specific quality of this track in comparison to its typical tracks.
time_of_first_detection time_type [01]	The time at which the sensor first made measurements leading to the detection of the existence of this track (as opposed to the time of initiation when there was sufficient confidence in one or more detection to initiate a track).
time_of_last_detection time_type [01]	The time at which the sensor last detected the existence of this track.
<pre>priority track_priority_type [01]</pre>	The relative priority of a track with regard to the sensor's resources
amplitude strength_type [01]	The amplitude or strength of the measurement(s) being tracked by the sensor

7.5.9.8 sensor_track_set_type

Type: Class

Package: Track_Reporting

A set of sensor tracks (to enable batch reporting)

7.5.9.9 track_phase_type

Type: Class

Package: Track_Reporting

The detection lifecycle phase of the track

Attribute	Notes
«idlEnum» DEAD_RECKONED	Track provided based on extrapolated position (dead-reckoned)
«idlEnum» DELETED	Track has been deleted. AttributeTag: DDS_PSM_Name = NOT_USED AttributeTag: DDS_PSM_Notes = Delete enumeration not used for DDS; dispose topic instance instead.
«idlEnum» LOST	Track has been lost

Attribute	Notes
«idlEnum» TRACKED	Regular update of new and existing track
«idlEnum» INACTIVE	No new measurements were available to contribute to this track at the last opportunity to do so. It is expected
	that should such measurements be made at the next opportunity, these will successfully update the track.

7.5.9.10 assessment_objective_id_type

Type: Class long
Package: Track Reporting

Unique identifier for the objects to which the sensor assessment is attempting to match the measurement

parameters.[MS(166]

7.5.10 Tracking_Control

Parent Package: Sensor_Domain

This package contains structs and type defs for managing tracking zones and sensor track information.

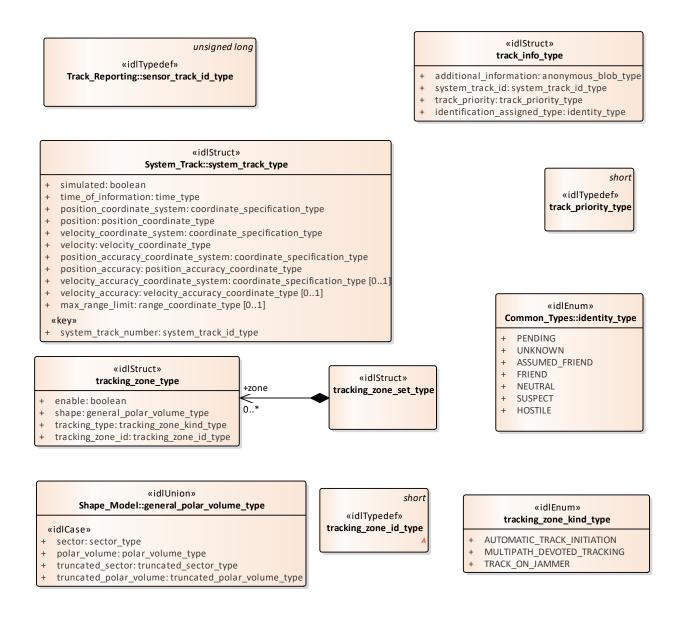


Figure 7.58 Domain Model (Class diagram)

7.5.10.1 track_info_type

Type: Class

Package: Tracking_Control This struct identifies track information.

Attribute	Notes
additional_information anonymous_blob_type	This is additional information that is not specified as part of the interface. Candidate information includes: - Track type, - Track priority, - Track Identification Category Assigned (Pending, Friend, Assumed Friend, Neutral, Unknown, Suspect, Hostile).
system_track_id system_track_id_type	
track_priority track_priority_type	
identification_assigned_type identity_type	

7.5.10.2 track_priority_type

Type: Class short Package: Tracking_Control

The meaning of track_priority_type is to assign a priority among a set of tracks based on some criteria (i.e. subsystem's time dedicated to a track analysis).

Example of values:

1 Track While Scan (TWS)

2 Low Priority Target (LPT)

3 High Priority Target (HPT)

7.5.10.3 tracking_zone_set_type

Type: IDLStruct

Package: Tracking_Control

This struct contains zero to many tracking zones which must be set/reset by the CMS.

7.5.10.4 tracking_zone_type

Type: Class

Package: Tracking_Control This struct identifies a tracking zone.

Table 7.143 Table 7.156 MS(167) - Attributes of Class tracking_zone_type

Attribute	Notes
enable boolean	Indicates whether the CMS is enabling or disabling a
	tracking zone.
shape general_polar_volume_type	This is the polar volume of the zone.
tracking_type tracking_zone_kind_type	This indicates the tracking zone type.
tracking_zone_id tracking_zone_id_type	A unique identifier for the tracking zone.

7.5.10.5 tracking_zone_kind_type

Type: Class

Package: Tracking_Control Identifies the kind of a tracking zone.

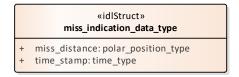
Table 7.144 Table 7.157 MS(168) - Attributes of Class tracking_zone_kind_type

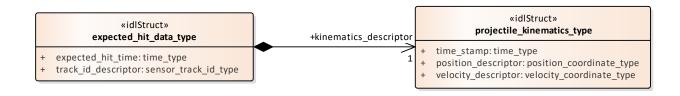
Attribute	Notes
AUTOMATIC_TRACK_INITIATION	Zones where the sensor is allowed to auto initiate new tracks. Depending on the sensor type and its capabilities, such a type of zones may be delimited in azimuth only, or both in azimuth and elevation, or may have further range bounds, and in some cases also additional constraints (such as target type, velocity bounds, etc.).
MULTIPATH_DEVOTED_TRACKING	Sectors where the sensor is required to use, for tracking activities, devoted waveforms to reduce the multipath effects. This capability is usually provided by multifunctional radars. Such a type of sectors is usually limited in azimuth only, below a defined elevation.
TRACK_ON_JAMMER	Sectors where the sensor is allowed to manage Track-On-Jammer. Depending on the sensor type and its capabilities, such a type of sectors may be delimited either in azimuth only or both in azimuth and elevation.

7.5.10.6 tracking_zone_id_type

Type: Class short Package: Tracking_Control

This typedef is used to identify a specific tracking zone.


7.6 Radar_Domain


Parent Package: Domain_Model

This package contains the Domain Models for the Air Engagement Support, Engagement Support, Missile Guidance, Search, and Surface Engagement Support services.

7.6.1 Air_Engagement_Support

Parent Package: Radar_Domain

Figure 7.59 Domain Model (Class diagram)

7.6.1.1 expected_hit_data_type

Type: IDLStruct

Package: Air_Engagement_Support

Expected hit identifies the target and the time a hit is expected. This data is used to initiate the evaluation of a miss indication within the radar.

Table 7.145 Table 7.158 MS(169) - Attributes of IDLStruct expected_hit_data_type

Attribute	Notes
expected_hit_time time_type	Time when projectile is expected to hit the target.
track_id_descriptor sensor_track_id_type	The target track id.

7.6.1.2 miss_indication_data_type

Type: IDLStruct

Package: Air_Engagement_Support

Is sent once a hit or miss is noted.

Table 7.146 Table 7.159 MS(170) - Attributes of IDLStruct miss_indication_data_type

Attribute	Notes
	Closest distance of the projectile to the target expressed in polar coordinates.
time_stamp time_type	Closest time of approach of the projectile to the target.

7.6.1.3 projectile_kinematics_type

Type: IDLStruct

Package: Air_Engagement_Support

Identifies the kinematics of the projectile that is expected to hit the target.

Table 7.147 Table 7.160 MS(171) - Attributes of IDLStruct projectile_kinematics_type

Attribute	Notes
time_stamp time_type	The timestamp when the kinematics was valid/measured.
position_descriptor position_coordinate_type	The projectile's position.
velocity_descriptor velocity_coordinate_type	The projectile's velocity.

7.6.2 Engagement_Support

Parent Package: Radar_Domain

- + PROBABLE KILL
- + PROBABLE_MISS
- + NO RESULT

«idlStruct» kinematics_type

- + orientation: coordinate_orientation_type
- + position: cartesian_position_type
- + reference_position: coordinate_origin_type
- + time_stamp:time_type
- + velocity: cartesian_velocity_type
- + coordinate_kind:coordinate_kind_type

unsigned short

«idlTypedef»
available_fire_control_channels_type

«idlUnion» Coordinates_and_Positions::velocity_coordinate_type

«idlCase»

- + cartesian_velocity: cartesian_velocity_type
- + polar_velocity: polar_velocity_type
- + wgs84_velocity: wgs84_velocity_type

notes

To offer flexibility, three variants of coordinate system representation are supported-corresponding to the coordinate_kind_type enumerate. An implementation should support one kind for each relevant service as defined by the coordinate_specification_type value, and it should only send data of that variant and should check that all data received is of that variant. It should not implement

conversion of data in an unexpected variant. Receipt of such data constitutes an error in the operation of the interface. Three representations are supported: time derivatives within a Cartesian coordinate system; time derivatives of a polar coordinate system (range rate, bearing rate etc.); course and speed relative to the WGS84 spheroid.

unsigned short

«idlTypedef»
fire_control_channel_id_type

Figure 7.60 Domain Model (Class diagram)

7.6.2.1 available_fire_control_channels_type

Type: Class unsigned short **Package:** Engagement_Support

The number/amount of available fire control channels.

7.6.2.2 fire_control_channel_id_type

Type: Class unsigned short **Package:** Engagement_Support

The fire control channel ID as assigned by the subsystem.

7.6.2.3 kill_assessment_result_type

Type: Class

Package: Engagement_Support The possible outcomes of a kill assessment.

Table 7.148 Table 7.161 MS(172) - Attributes of Class kill_assessment_result_type

otes
ll Probability > 50%
•
ll Probability < 50%
•
ssessment indeterminate
1

7.6.2.4 kinematics_type

Type: IDLStruct

Package: Engagement_Support

Target position/kinematics for which a fire control channel is requested to designate.

Attribute	Notes
orientation coordinate_orientation_type	
position cartesian_position_type	
reference_position coordinate_origin_type	
time_stamp time_type	
velocity cartesian_velocity_type	
coordinate_kind coordinate_kind_type	

7.6.3 Missile_Guidance

Parent Package: Radar_Domain

«idlUnion» track_id_type

«idlCase»

- + sensor_track_id:sensor_track_id_type
- + system_track_id:system_track_id_type

notes

The track referred to by a missile guidance command may either be a system track (provided by the CMS) or a sensor track (if the object is already tracked by the sensor). Therefore, the track_id(s) in the missile guidance command may be a sensor_track_id or a missile_track_id.

unsigned long

«idlTypedef»
Common_Types::
system_track_id_type

- + simulated: boolean
- + time_of_information: time_type
- + position_coordinate_system: coordinate_specification_type
- + position: position_coordinate_type
- + velocity_coordinate_system: coordinate_specification_type
- + velocity: velocity_coordinate_type
- + position_accuracy_coordinate_system: coordinate_specification_type
- + position_accuracy: position_accuracy_coordinate_type
- + velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
- + velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
- + max_range_limit:range_coordinate_type [0..1]

«key»

+ system_track_number:system_track_id_type

A system track may be based on a sensor track (produced by a sensor on the same platform), but may also be based on a link received track (not modelled).

On the same platform, different objects (targets and own missiles) may be tracked by different sensor types (e.g 3D radar, or ESM). Therefore, for the same interface with a sensor, in successive missile_guidance commands, the referred system tracks may be a cartesian point_track at one time and polar bearing_track at the next time.

Figure 7.61 Missile Guidance - Track (Class diagram)

- + target_track_id:track_id_type
- own_missile_track_id: track_id_type [0..*]
- + illumination_period: absolute_duration_type
- + frequency_channel: frequency_channel_type [0..1]
- + additional_parameters:anonymous_blob_type

unsigned short

«id|Typedef»

frequency_channel_type

Figure 7.62 Illumination (Class diagram)

«idlStruct» uplink_request_type

- + own_missile_track_id: track_id_type
- + frequency_channel: frequency_channel_type [0..1]
- + request_info: anonymous_blob_type

«idlStruct» uplink_report_type

- + own_missile_track_id: track_id_type
- + uplink_info: anonymous_blob_type [0..1]

unsigned short

«idlTypedef»
frequency_channel_type

Figure 7.63 Missile Uplink (Class diagram)

«idlStruct» downlink_request_type

- + own_missile_track_id:track_id_type
- + listening_period: absolute_duration_type
- + frequency_channel: frequency_channel_type [0..1]
- + additional_parameters: anonymous_blob_type

«idlStruct» downlink_report_type

- + own_missile_track_id: track_id_type
- + time_of_receipt: time_type
- + downlink content: anonymous blob type

unsigned short

«idlTypedef»
frequency_channel_type

Figure 7.64 Missile Downlink (Class diagram)

7.6.3.1 downlink_report_type

Type: Class

Package: Missile_Guidance

Information downlinked by the missile to the radar.

Table 7.149 Table 7.162 MS(173) - Attributes of Class downlink_report_type

Attribute	Notes
own_missile_track_id track_id_type	
time_of_receipt time_type	

Attribute	Notes
downlink_content anonymous_blob_type	

7.6.3.2 downlink_request_type

Type: Class

Package: Missile_Guidance

request to downlink

Table 7.150 Table 7.163 MS(174) - Attributes of Class downlink_request_type

Attribute	Notes
own_missile_track_id track_id_type	
listening_period absolute_duration_type	Start of period during which downlinks shall be received
frequency_channel frequency_channel_type [01]	
additional_parameters anonymous_blob_type	

7.6.3.3 frequency_channel_type

Type: Class unsigned short **Package:** Missile_Guidance

A frequency channel identifies a specific radar frequency.

7.6.3.4 illumination_request_type

Type: Class

Package: Missile Guidance

semantics of selects association is implementation specific.

Table 7.151 Table 7.164 MS(175) - Attributes of Class illumination request type

Attribute	Notes
target_track_id track_id_type	
own_missile_track_id track_id_type [0*]	
illumination_period absolute_duration_type	
frequency_channel frequency_channel_type [01]	
additional_parameters anonymous_blob_type	

7.6.3.5 track_id_type

Type: Class

Package: Missile_Guidance

The track referred to by a missile guidance command may either be a system track (provided by the CMS) or a sensor track (if the object is already tracked by the sensor). Therefore, the track_id(s) in the missile guidance command may be a sensor_track_id or a missile_track_id.

Table 7.152 Table 7.165 [MS(176] - Attributes of Class track_id_type

Attribute	Notes
<pre>«idlCase» sensor_track_id sensor_track_id_type</pre>	

Attribute	Notes
<pre>«idlCase» system_track_id system_track_id_type</pre>	

7.6.3.6 uplink_report_type

Type: IDLStruct

Package: Missile_Guidance

a report from uplink

Table 7.153 Table 7.166 MS(177) - Attributes of IDLStruct uplink_report_type

Attribute	Notes
own_missile_track_id track_id_type	
<pre>uplink_info anonymous_blob_type [01]</pre>	* optional *

7.6.3.7 uplink_request_type

Type: IDLStruct

Package: Missile_Guidance

a request to downlink

Table 7.154 Table 7.167 MS(178) - Attributes of IDLStruct uplink_request_type

Attribute	Notes
own_missile_track_id track_id_type	
frequency_channel frequency_channel_type [01]	* optional *
<pre>request_info anonymous_blob_type</pre>	

7.6.4 Surface_Engagement_Support

Parent Package: Radar_Domain

unsigned long unsigned short «idlTypedef» «idlTypedef» Track_Reporting::sensor_track_id_type splash_spotting_area_id_type «idlStruct» «idlStruct» splash_spotting_area_position_type splash_spotting_area_set_type + azimuth_max: azimuth_coordinate_type azimuth_min: azimuth_coordinate_type range_max: range_coordinate_type range_min: range_coordinate_type +splash_spotting_area_descriptor_0..* «idlStruct» splash_spotting_area_type shape: truncated_sector_type area_id:splash_spotting_area_id_type

Figure 7.65 Domain Model (Class diagram)

7.6.4.1 splash_spotting_area_id_type

Type: Class unsigned short

Package: Surface_Engagement_Support

the area ID assigned by the sensor.

7.6.4.2 splash_spotting_area_position_type

Type: Class

Package: Surface_Engagement_Support

The area definition from the User (CMS) when Splash Spotting is defined using the service "activate splash spotting area by position". The minimum and maximum available sizes are defined in "Manage Subsystem Parameters".

Table 7.155 Table 7.168 MS(179] - Attributes of Class splash_spotting_area_position_type

Attribute	Notes
azimuth_max azimuth_coordinate_type	when max is less than min, areas covers the north azimuth
azimuth_min azimuth_coordinate_type	when min is less than max, areas covers the north azimuth
range_max range_coordinate_type	limited to less than or equal to instrumented range
range_min range_coordinate_type	limited to greater than or equal to minimum visible range

7.6.4.3 splash_spotting_area_set_type

Type: Class

Package: Surface_Engagement_Support

A set consisting of splash spotting areas.

7.6.4.4 splash_spotting_area_type

Type: Class

Package: Surface_Engagement_Support Definition of a single splash spotting area.

Table 7.156 Table 7.169 MS(180] - Attributes of Class splash_spotting_area_type

Attribute	Notes
shape truncated_sector_type	Shape and size of the splash spotting area
area_id splash_spotting_area_id_type	Area ID of the splash spotting area.

7.7 Subsystem_Services

Parent Package: Service_Interfaces

Contains services associated with the Subsystem Domain.

7.7.1 Encyclopaedic_Support

Parent Package: Subsystem_Services

7.7.1.1 Receive_Encyclopaedic_Data

Parent Package: Encyclopaedic_Support

Receive_Encyclopaedic_Data_CMS

Type: Interface common_use_case_interface

Package: Receive Encyclopaedic Data

This interface describes the process whereby the subsystem receives encyclopedic data. Such data is used by the subsystem to perform self-adaptation to the prevailing environmental conditions.

This interface is modelled as a control interaction between the CMS and the subsystem rather than a data flow interaction. The CMS controls the loading of subsystem encyclopaedic data by sending the location of the data, rather than sending the data itself. Of course an implementation may move the encyclopaedic data around a file system beforehand, but that is outside the scope of this standard.

The subsystem is aware of its real-time geographic position and orientation.

It is expected that the transfer of this data would be initiated at the start of the 'mission of the day'. Updates would only be envisaged when the current data set became inapplicable to the current mission. Specific encyclopedic data might be requested by the subsystem. Alternatively, a default set of summary data is sent. Such data, which is an example of 'reference' data, would generally be non-sensor in origin and static i.e. not changing in real-time. In the simplest case this data might simply define clutter areas and known jammer locations to assist the subsystem in effecting suitable mitigation for these effects. For a subsystem such as a more complex multi-function radar this might include relevant extracts from a commercial shipping database (Lloyd's etc.), giving shipping lanes or ship movements or civil airline flight plan data (Civil Aviation Authority etc), locations of wind-farms, major highways, significant structures and potential sources of interference, such as other radars, including consorts, cellular phone masts etc. This data would be used by the subsystem to contribute to the tactical picture. Alternatively, it could be used within the automatic tracking function to enable the identification/elimination from the track picture of nonhostile tracks. Such data could also include, for example, the reference data types communicated via Link 16 such as hazard areas and other fixed point type data. Navigational charts might also be a part of such data. The subsystem VOI (volume of interest) or other filter mechanisms might be supplied in a request from the actor.

Pre-condition: Technical State The subsystem is in technical state STANDBY, READY or ONLINE

Pre-condition: Mastership Required The CMS has mastership

Pre-condition: Subsystem Services Provide Subsystem Services has completed successfully, in

particular this service is available.

Post-condition Success The subsystem has received updated Encyclopedic Data.

Post-condition No Success The subsystem has not received updated Encyclopedic Data

Table 7.157 Table 7.170 MS(181) - Methods of Interface Receive_Encyclopaedic_Data_CMS

Method	Notes	Parameters
encyclopaedic_data_loaded()	The subsystem responds to the CMS that the encyclopaedic data	request_id_type request_id The unique id for this request -
	previously requested has been loaded.	corresponds to the parameter in the load_encyclopaedic_data request

Receive_Encyclopaedic_Data_Sub

Type: Interface

Package: Receive_Encyclopaedic_Data

Table 7.158 Table 7.171 MS(182) - Methods of Interface Receive_Encyclopaedic_Data_Sub

Method	Notes	Parameters
load_encyclopaedic_data()	The CMS requests the subsystem to	request_id_type request_id The
	load encyclopaedic data of a	unique identifier for this request
	particular type from a particular	url_type url The location of the file
	location.	containing the encyclopaedic data
		data_descriptor_type
		data_descriptor A description of the
		type of encyclopaedic data (e.g.
		name of the data set). It is expected
		that implementations will specify a
		list of descriptors known to
		particular subsystems. Such a list
		may be accessible at run-time
		through the Manage Subsystem
		Parameters interface.

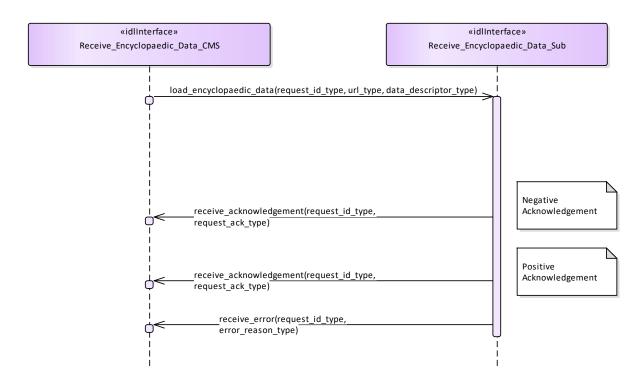


Figure 7.66 Alternate Flow - Receive Encyclopaedic Data (Interaction diagram)

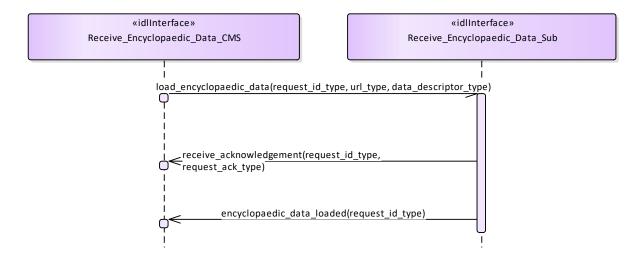


Figure 7.67 Basic Flow - Receive Encyclopaedic Data (Interaction diagram)

7.7.2 Extended_Subsystem_Control

Parent Package: Subsystem_Services

Contains interfaces for the Extended Subsystem Control service.

7.7.2.1 Manage_Physical_Configuration

Parent Package: Extended_Subsystem_Control

Contains operations and sequence diagrams for the Manage Physical Configuration interface.

Manage_Physical_Configuration_CMS

Type: Interface common_use_case_interface **Package:** Manage Physical Configuration

The purpose of this interface is to provide a mechanism to exchange a physical configuration data file between a subsystem and the CMS (potentially xml format). The exact format of the file is subsystem specific. The purpose of the file is to support the maintainer with facilities to configure the internal parts of the subsystem; also to be used as integration support.

Additional Information:

There are at least two cases where the CMS would provide a sub-system's physical configuration. Case 1 is when the sub-system was able to detect a configuration change and the data must be manually entered in sub-system configuration data (e.g. a servo type and serial number). Case 2 is when the sub-system is being developed and changes to the configuration which cause changes in system behavior are being tested.

Pre-condition: Subsystem must be in a STANDBY state in order for the CMS to request changes to Physical Configuration Data. This precondition does not apply if the CMS is only requesting current Physical Configuration Data to be provided by the subsystem.

Pre-condition: CMS must have mastership in order for the CMS to request changes to Physical Configuration Data. This precondition does not apply if the CMS is only requesting current Physical Configuration Data to be provided by the subsystem.

Post-condition For a change in Physical Configuration Data Request, configuration data is properly updated.

Table 7.159Table 7.172 MS(183] - Methods of Interface Manage Physical Configuration CMS

Method	Notes	Parameters
receive_physical_configuration()	Interface used by CMS to receive a url to access physical configuration data from the subsystem.	configuration_url_type configuration_url request_id_type request_id
receive_physical_configuration_success()	Interface used by CMS to receive an indication from the subsystem that it has successfully changed its physical configuration data.	request_id_type request_id

Manage_Physical_Configuration_Sub

Type: Interface

Package: Manage_Physical_Configuration

Table 7.160 Table 7.173 MS(184] - Methods of Interface Manage Physical Configuration Sub

Method	Notes	Parameters
change_physical_configuration()	Interface used by the subsystem to receive requests from the CMS to change its physical configuration data to align with data located at the url specified in the request.	request_id_type request_id configuration_url_type configuraiton_url
provide_physical_configuration()	Interface used by the subsystem to receive requests from the CMS to provide its current physical configuration data.	request_id_type request_id

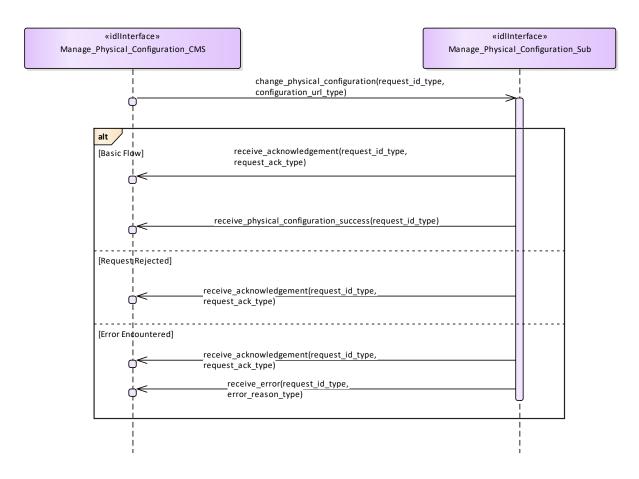


Figure 7.68 Manage Physical Configuration - Change (Interaction diagram)

Flow of events which depicts the CMS requesting that the subsystem changing its physical configuration data (also depicts alternate rejection and error paths).

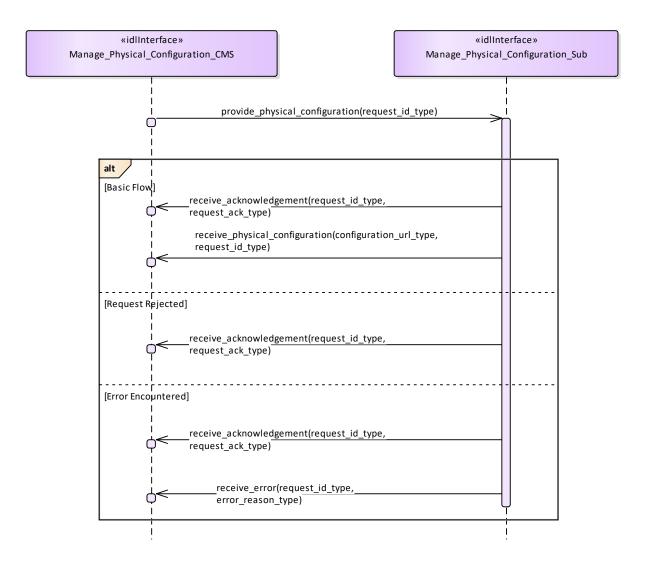


Figure 7.69 Manage Physical Configuration - Request (Interaction diagram)

Flow of events which depicts the CMS requesting that the subsystem report on its current physical configuration data (also depicts alternate rejection and error paths).

7.7.2.2 Perform Offline Test

Parent Package: Extended_Subsystem_Control

Contains the interface for offline testing.

Perform_Offline_Test_CMS

Type: Interface common_use_case_interface

Package: Perform Offline Test

This is used to instruct the subsystem to perform offline test and return the results to the CMS. The nature of the offline tests is subsystem specific

Pre-condition: Provide Subsystem Services must have executed successfully.

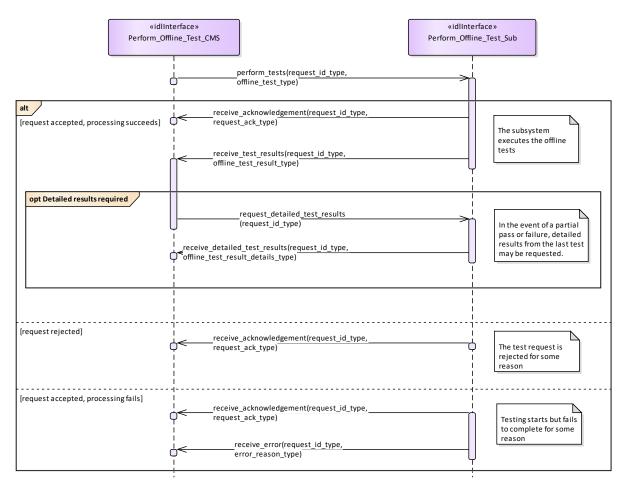
Pre-condition: The CMS must have Mastership

Pre-condition: The subsystem may be in any Technical State except for ONLINE

Post-condition For the response FAILED, the subsystem transitions to Technical State FAILED, but otherwise remains in the previous Technical State.

Table 7.161 Table 7.174 MS(185) - Methods of Interface Perform Offline Test CMS

Method	Notes	Parameters


receive_detailed_test_results()	Provides the CMS with subsystem specific information concerning offline test failures	request_id_type request_id offline_test_result_details_type offline_test_detailed_results
receive_test_results()	Informs the CMS whether the offline tests passed, passed partially, or failed.	request_id_type request_id offline_test_result_type test_results

Perform_Offline_Test_Sub Type: Interface

Package: Perform_Offline_Test

Table 7.162 Table 7.175 MS(186) - Methods of Interface Perform_Offline_Test_Sub

Method	Notes	Parameters
perform_tests()	Instructs the subsystem to perform the offline tests.	request_id_type request_id offline_test_type test_name Allows a particular test to be selected. If null, all tests are performed.
request_detailed_test_results()	Asks the subsystem to provide detailed information on the failures.	request_id_type request_id

Figure 7.70 Perform Offline Test (Interaction diagram)

This shows the required sequential behaviour for Perform_Offline_Test, See diagram embedded notes for further explanation

7.7.2.3 Restart

Parent Package: Extended_Subsystem_Control

Contains operations and sequence diagrams for the Restart interface.

Restart CMS

Type: Interface common_use_case_interface

Package: Restart

The purpose of this interface is to cause a normal transition to STANDBY and then to READY states as

defined by Manage Technical State.

Pre-condition: Šub-system is in ONLINE, READY, FAILED, BIT, or CALIBRATION Pre-condition: CMS has mastership of sub-system

Post-condition Sub-system is in READY state if successful, otherwise current state is reported by

subsystem.

Table 7.163 Table 7.176 MS(187] - Methods of Interface Restart_CMS

Method	Notes	Parameters
	Interface used by CMS to receive an indication from the subsystem that it has successfully performed restart.	request_id_type request_id technical_state_type technical_state

Restart Sub

Type: Interface Package: Restart

Table 7.164 Table 7.177 MS(188) - Methods of Interface Restart_Sub

Method	Notes	Parameters
perform_restart()	Interface used by the subsystem to receive a request from the CMS to execute a restart.	request_id_type request_id

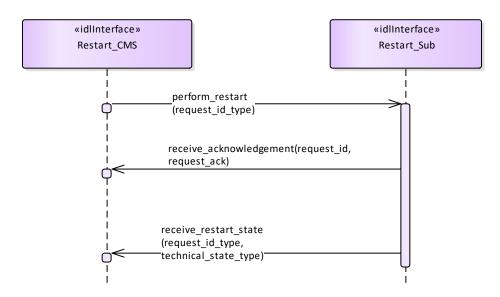


Figure 7.71 Basic Flow - Restart (Interaction diagram)

Basic flow for CMS requesting the subsystem to transition to STANDBY followed by a transition to READY.

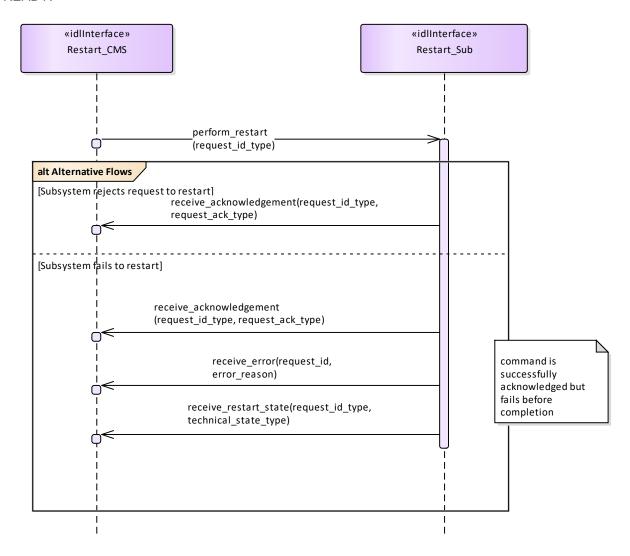


Figure 7.72 Alternative Flow - Restart (Interaction diagram)

Alternate flow for CMS requesting the subsystem to transition to STANDBY followed by a transition to READY (depicts rejection and error paths).

7.7.2.4 Shutdown

Parent Package: Extended_Subsystem_Control

Contains operations and sequence diagrams for the Shutdown interface.

Shutdown CMS

Type: Interface common_use_case_interface

Package: Shutdown

The purpose of this interface is to transition the sub-system to the STANDBY state from any other state as defined by Manage Technical State. Note: this shall cause the Subsystem to cease radiating if it is in an ONLINE state with emissions enabled.

Pre-condition: Subsystem is in ONLINE, READY, FAILED, BIT, or CALIBRATION

Pre-condition: CMS has mastership of subsystem.

Post-condition Sub-system is in STANDBY state if successful, otherwise the current state is reported by

the subsystem.

Table 7.165 Table 7.178 MS(189] - Methods of Interface Shutdown_CMS

Method	Notes	Parameters
receive_shutdown_state()	Interface used by CMS to receive an indication from the subsystem that it has successfully performed shutdown.	request_id_type request_id technical_state_type technical_state

Shutdown_Sub

Type: Interface Package: Shutdown

Table 7.166 Table 7.179 MS(190] - Methods of Interface Shutdown_Sub

Method	Notes	Parameters
	Interface used by the subsystem to receive a request from the CMS to execute a shutdown.	request_id_type request_id

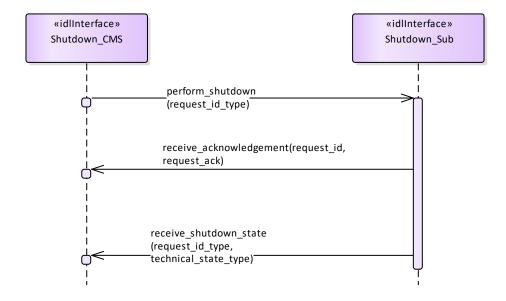


Figure 7.73 Basic Flow - Shutdown (Interaction diagram)

Basic flow for CMS requesting the subsystem to transition to STANDBY.

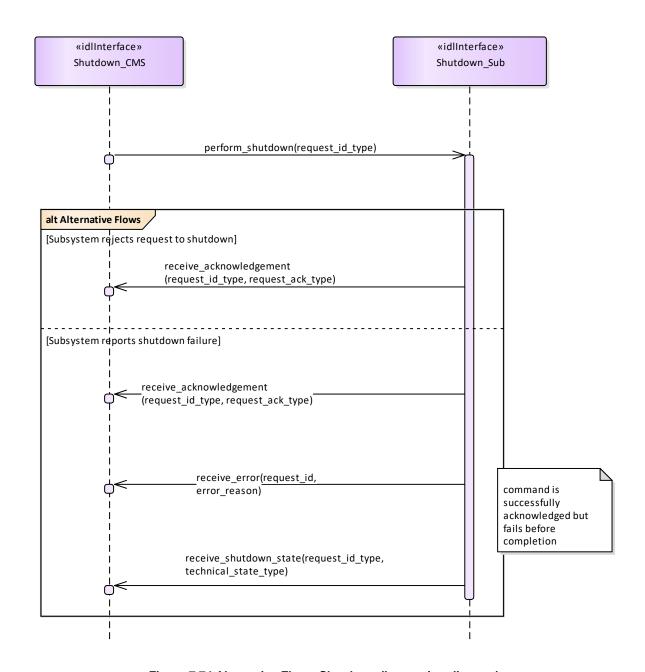


Figure 7.74 Alternative Flow - Shutdown (Interaction diagram)

Alternate flow for CMS requesting the subsystem to transition to STANDBY (depicts rejection and error paths).

7.7.2.5 Startup

Parent Package: Extended_Subsystem_Control

Contains operations and sequence diagrams for the Startup interface.

Startup CMS

Type: Interface common_use_case_interface

Package: Startup

The purpose of this interface is to cause a normal transition from the STANDBY state to the READY state using the transitions defined in the Manage Technical State service.

Pre-condition: Subsystem is in STANDBY State. Pre-condition: CMS has mastership of subsystem.

Post-condition Subsystem is in READY state if successful. If not execute successful, current state shall be reported by subsystem.

Table 7.167 Table 7.180 MS(191) - Methods of Interface Startup_CMS

Method	Notes	Parameters
receive_startup_state()	Interface used by CMS to receive an indication from the subsystem that it has successfully performed startup.	request_id_type request_id technical_state_type technical_state

Startup_Sub

Type: Interface Package: Startup

Table 7.168 Table 7.181 [MS(192] - Methods of Interface Startup_Sub

Method	Notes	Parameters
perform_startup()	Interface used by the subsystem to receive a request from the CMS to execute startup.	request_id_type request_id

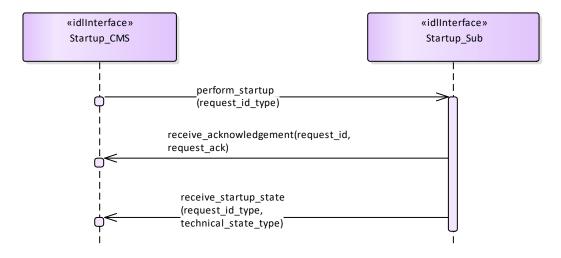


Figure 7.75 Basic Flow -Startup (Interaction diagram)

Basic flow for CMS requesting the subsystem to transition from STANDBY to READY.

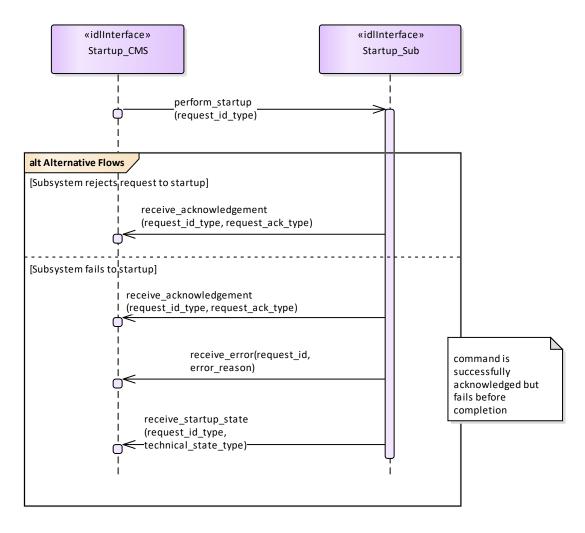


Figure 7.76 Alternative Flow - Startup (Interaction diagram)

Alternate flow for CMS requesting the subsystem to transition from STANDBY to READY (depicts rejection and error paths).

7.7.3 Recording_and_Replay

Parent Package: Subsystem_Services

Contains the interfaces controlling recording and replay.

7.7.3.1 Control_Recording

Parent Package: Recording_and_Replay

Contains the interface controlling the recording of information.

Control_Recording_CMS

Type: Interface common_use_case_interface

Package: Control_Recording

The interface describes how the CMS controls the recording of information. Such information may be used to support:

- Setting-to Work/Commissioning
- Equipment monitoring
- Performance monitoring and evaluation
- 'Black Box' recording
- Safety of Life at Sea (SOLAS) recording

- De-briefing
- Training
- Post exercise analysis

For the purposes of this interface, 'recording' is defined as the synchronous capture of real-time information at a defined rate. Provision of additional 'live' real-time data for instrumentation purposes, i.e. for display rather than recording, is outside the scope.

Each record within the recording must be identified and time-stamped.

The operation of the recording function must not affect normal operation of the subsystem.

For simplicity, concurrent recording and replay is not supported.

Pre-condition: Provide Subsystem Services must have executed successfully. Pre-condition: The subsystem must be in Technical State READY or ONLINE

Pre-condition: The CMS must have Mastership.

Post-condition After successful termination, the recording is available for replay via Control_Replay,

using the identifier specified.

Post-condition In the case of abnormal termination, there is a possible fault in the recording subsystem.

Control_Recording_Sub Type: Interface

Package: Control Recording

Table 7.169 Table 7.182 MS(193] - Methods of Interface Control_Recording_Sub

Method	Notes	Parameters
define_recording_set()	Specifies what is to be recorded	request_id_type request_id recording_set_type recording_parameters_list
start_recording()	Starts the recording as specified. Note that only one recording may be running at a time.	request_id_type request_id recording_id_type id
stop_recording()	Stops the recording	request_id_type request_id

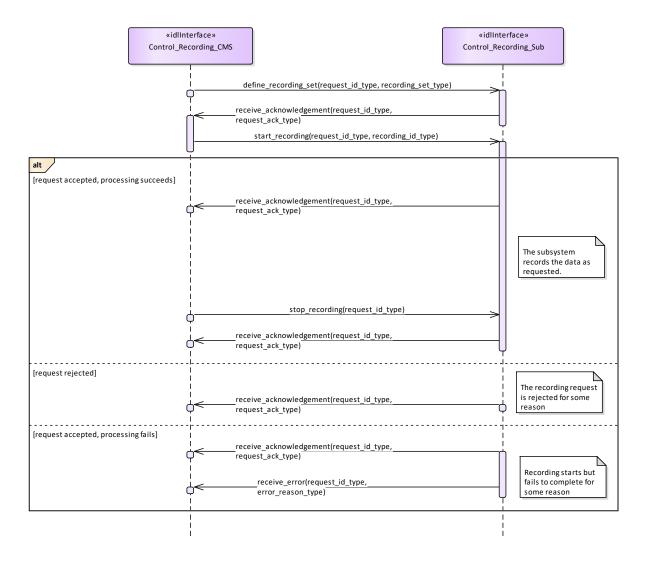


Figure 7.77 Control Recording (Interaction diagram)

This shows the required sequential behaviour for Control_Recording, See diagram embedded notes for further explanation.

7.7.3.2 Control_Replay

Parent Package: Recording_and_Replay

Contains the interfaces controlling the replay of information; either using the original interfaces or as a data dump for offline processing.

Control_Replay_CMS

Type: Interface common_use_case_interface

Package: Control Replay

This interface defines how the CMS controls the replay of information previously recorded using Control Recording

Replay is supported in two modes: REAL-TIME and RAW. REAL-TIME mode is used to replay in real time, or at a multiple of real-time, data that was visible on other OARIS interfaces via the interfaces used during recording. RAW mode is used to replay data that was visible on other OARIS interfaces and/or internal subsystem data that was not available on other OARIS interfaces. In this case the data is merely transferred to the CMS as a set of time-tagged values with no attempt made to reconstruct real-time behaviour.

One or more recordings must have been made using Control Recording.

For simplicity, concurrent recording and replay is not supported.

Pre-condition: Provide Subsystem Services must have executed successfully. Pre-condition: The subsystem must be in Technical State READY or ONLINE

Pre-condition: The CMS must have Mastership..

Pre-condition: In the case of abnormal termination, there is a possible fault in the replay subsystem.

Table 7.170 Table 7.183 MS(194] - Methods of Interface Control_Replay_CMS

Method	Notes	Parameters
end_of_recording()	The subsystem has reached the end of the recording before a stop command was received.	request_id_type request_id
receive_recording()	Used to transfer a raw recording to the CMS	request_id_type request_id recording_type requested_recording The raw recording data.

Control_Replay_Sub
Type: Interface
Package: Control_Replay

Table 7.171 Table 7.184 MS(195] - Methods of Interface Control_Replay_Sub

Method	Notes	Parameters
resume_replay()	Resumes replay following a stop command	request_id_type request_id actual_time_type actual_time The current time (time of day) at which playback should start. This allows synchronisation of playback from different subsystems. replay_speed_type replay_speed Controls the replay speed. 1.0 represents real time.
start_replay()	Starts replay as specified	request_id_type request_id replay_set_type replay_parameters_list recording_id_type id actual_time_type actual_time The current time (time of day) at which playback should start. This allows synchronisation of playback from different subsystems. recorded_time_type recorded_time The time in the recording at which playback should start. replay_speed_type replay_speed Controls the replay speed. 1.0 represents real time.
stop_replay()	Stops replay	request_id_type request_id
upload_recording()	Requests transfer of a raw recording	request_id_type request_id recording_id_type id

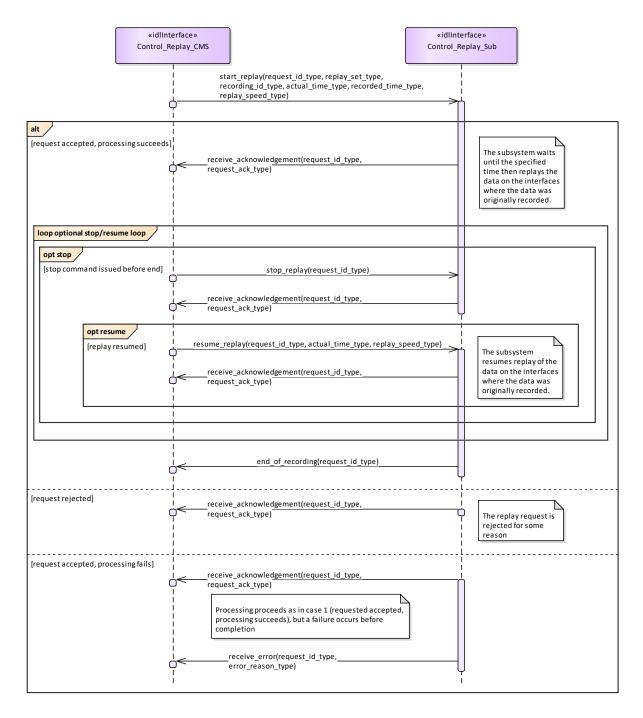


Figure 7.78 Control Replay (Interaction diagram)

This shows the required sequential behaviour for Control_Replay using real_time mode, See diagram embedded notes for further explanation.

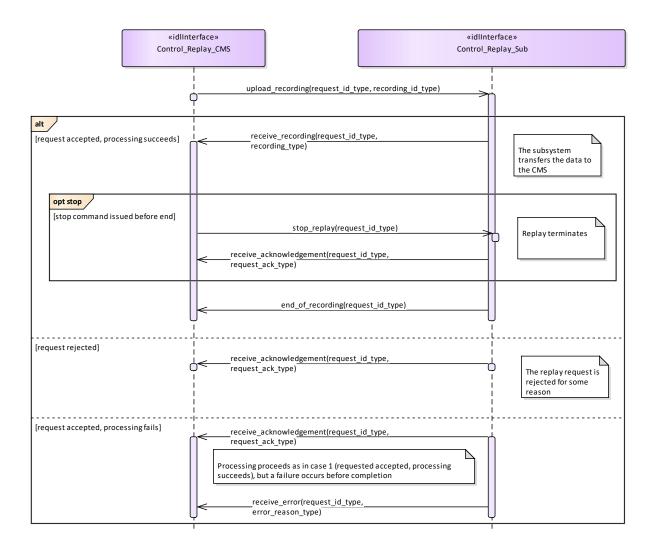


Figure 7.79 Control Replay (RAW) (Interaction diagram)

This shows the required sequential behaviour for Control_Replay using raw mode, See diagram embedded notes for further explanation.

7.7.4 Simulation Support

Parent Package: Subsystem_Services

7.7.4.1 Define_Simulation_Scenario

Parent Package: Simulation_Support

Define_Simulation_Scenario_CMS

Type: Interface

Package: Define_Simulation_Scenario

This describes how the contents of a simulation scenario are communicated between the CMS and the subsystem.

The CMS provides the subsystem with a simulated environment which consists of simulated objects of different kinds.

A subsystem with built-in simulation capability may participate in this simulation not only by being a consumer of the simulated environment but by contributing actively to it.

Radar type subsystems shall typically build simulated plots or tracks from the simulated environment, while contributing simulated electromagnetic emissions to it. These simulated emissions may in turn be used and detected by other (ESM type) simulations.

Weapon type subsystems when in simulation mode shall typically contribute simulated objects to the simulation that represent the launch/firing and movement of own missiles, bullets or torpedoes and their effect on other simulated objects.

Thus CMS and subsystem both contribute to the simulated environment. Together they form a simulation federation.

The actor is the Combat Management System.

Relationship to 'control simulation'

The definition of simulation mode and flow of commands to start/stop/freeze/resume a simulation scenario are defined in 'control simulation'.

Relationship to provision of tracks

A radar type subsystem shall provide tracks based on information from the simulated environment, as described above. The interfaces that deal with the provision of tracks indicate whether tracks are simulated or not under amplifying information. This indication should be set for all tracks that are reported in the context of this interface.

Relationship to Receive geographic information

Geographic information is received by using 'Receive geographic information'.

Pre-condition: Subsystem health state. The subsystem and the relevant subsystem services need to be in the health state AVAILABLE or DEGRADED.

Pre-condition: CMS has mastership.

Pre-condition: Subsystem simulation mode. The subsystem must be in subsystem simulation mode ON to participate in the simulation federation.

Pre-condition: Simulation scenario started. The actor must have started or resumed a simulation

scenario.

Pre-condition: Geographic information. The subsystem may need geographic information about its simulated surroundings available locally or by means of other interfaces in order to calculate the detectability or reachability of simulated objects due to obstacles in the surroundings.

Table 7.172 Table 7.185 MS(196) - Methods of Interface Define Simulation Scenario CMS

Method	Notes	Parameters
write_emitter_system_data_CMS()	Write emitter system data	anonymous_blob_type emitter_system_data
write_radar_beam_data()	Write radar beam data	anonymous_blob_type radar_beam_data

Define_Simulation_Scenario_Sub

Type: Interface

Package: Define_Simulation_Scenario

Table 7.173 Table 7.186 MS(197) - Methods of Interface Define Simulation Scenario Sub

Method	Notes	Parameters
write_emitter_system_data_Sub()	Write emitter system data	anonymous_blob_type emitter_system_data
write_environment_data()	Write environment data	anonymous_blob_type environmental_entity_data

write_jammer_beam_data()	Write jammer beam data	anonymous_blob_type jammer_beam_data
write_platform_data()	Write platform data	anonymous_blob_type platform_data

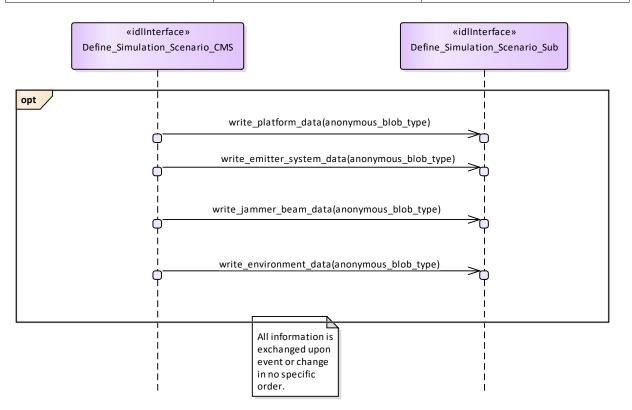


Figure 7.80 Basic Flow - Define Simulation Scenario Data (Interaction diagram)

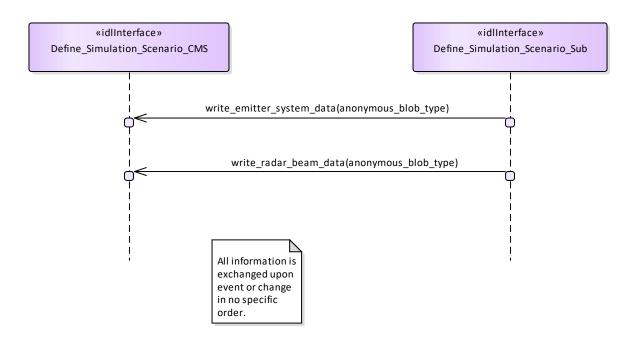


Figure 7.81 Basic Flow - Define Subsystem Scenario Data (Interaction diagram)

7.7.4.2 Control_Simulation

Parent Package: Simulation_Support

Control_Simulation_CMS

Type: Interface common use case interface

Package: Control_Simulation

This service controls the simulation mode of a subsystem. This simulation mode is independent of the operational mode of the subsystem. Simulation mode is either ON or OFF. "ON" has different meanings for different kinds of subsystems. Effector type subsystems shall not engage real targets but shall simulate the engagement instead. Sensor type subsystems may be fed with simulated targets which shall be reported as plots or tracks. In each case while in simulation mode "ON" the subsystem shall strictly avoid any impact on the environment that could be the result if simulation mode was "OFF".

The actor is the Combat Management System.

Basic Flow - Control simulation mode

Start event – command of simulation-mode

The service is triggered by the actor. The actor commands the simulation mode which may be one of the following:

- ON: This indicates that the subsystem shall operate in simulation mode
- OFF: This indicates that the subsystem shall stop operating in simulation mode and that any current simulation shall be terminated

On occurrence of the trigger provision of subsystem-simulation-mode is executed.

Provision of subsystem-simulation-mode

After receipt of the simulation mode from the actor the subsystem responds with its subsystem simulation mode.

The subsystem simulation mode may be one of the two:

- ON: This indicates that the subsystem is operating in simulation mode
- OFF: This indicates that the subsystem is not operating in simulation mode

Basic Flow - Control Simulation (Start/Resume, Stop/Freeze)

START/RESUME simulation scenario

Only when in simulation mode ON:

Upon preport_rovision of the START/RESUME command by the actor the simulation scenario starts or is resumed after a previously issued FREEZE.

STOP/FREEZE simulation scenario

Only when in simulation mode ON:

Upon provision of the STOP/FREEZE command by the actor the simulation scenario stops or stays frozen.

The service ends.

Provision on initialization

The simulation mode shall be provided by the actor after initialization of the CMS.

The flow of information relevant to subsystem simulation are the subject of another service: Define simulation scenario.

If simulation is stopped or frozen simulation time of the subsystem and the actor shall be also stopped.

The synchronization of simulation time may be performed using START/RESUME command.

Pre-condition: CMS has mastership.

Table 7.174 Table 7.187 MS(198) - Methods of Interface Control_Simulation_CMS

Method	Notes	Parameters
report MS(199]sim_mode_status()	Receive the status and mode of simulation.	request_id_type request_id sim_mode_status_type the_status

Control_Simulation_Sub

Type: Interface common_use_case_interface

Package: Control_Simulation

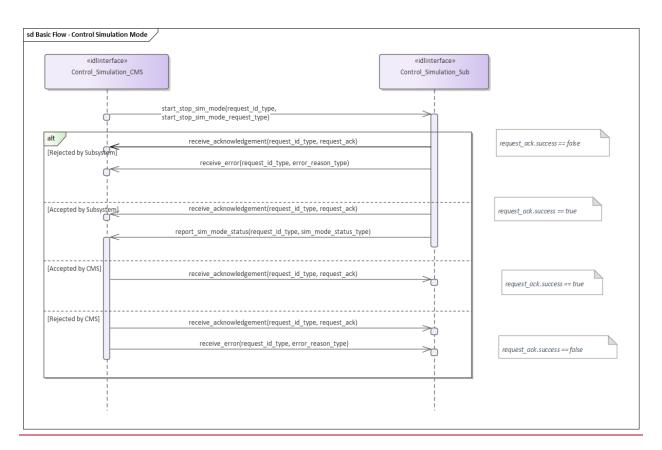


Table 7.175 Table 7.188 MS(200) - Methods of Interface Control_Simulation_Sub

Method	Notes	Parameters
start_resume_session()	This request shall be initiated on demand of the CMS. If the subsystem is in simulation mode it shall start/resume its simulation session and acknowledges the request.	request_id_type request_id
start_stop_sim_mode()	This request shall be initiated on demand of the CMS to activate/deactivate the simulation mode of the subsystem. The subsystem needs to acknowledge the request.	request_id_type request_id start_stop_sim_mode_request_type the_request
stop_freeze_session()	This request shall be initiated on demand of the CMS. If the subsystem is in simulation mode and the session state is running the subsystem needs to stop/freeze its session and acknowledges the request.	request_id_type request_id stop_freeze_session_request_type the_request

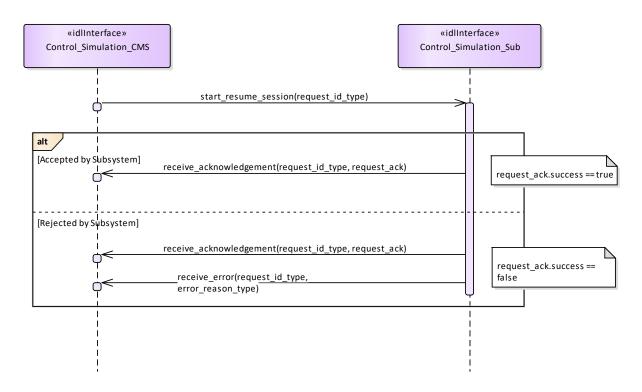


Figure 7.82 Basic Flow - Control Simulation Start/Resume (Interaction diagram)

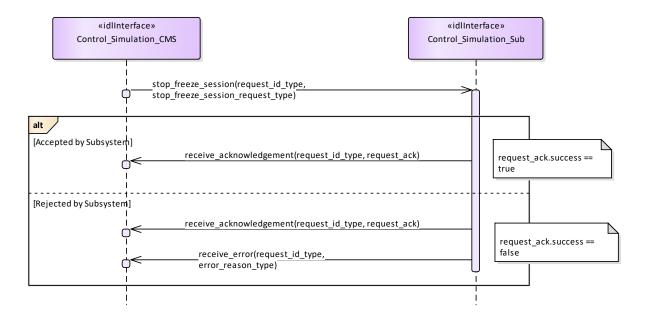


Figure 7.83 Basic Flow - Control Simulation Stop/Freeze (Interaction diagram)

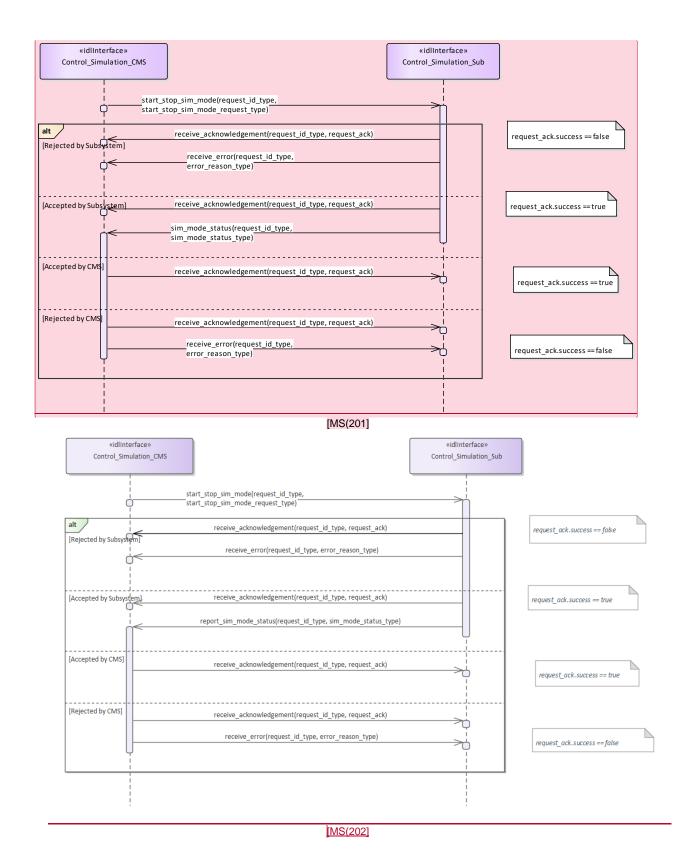


Figure 7.84 Basic Flow - Control Simulation Mode (Interaction diagram)

7.7.4.3 Define_Fault_Scripts

Parent Package: Simulation_Support

Define_Fault_Scripts_CMS

Type: Interface common_use_case_interface

Package: Define_Fault_Scripts

This enables a maintainer trainer to script a set of subsystem faults, the effects of which would be simulated for training purposes. The faults may be scripted in relation to a specific simulation scenario. Each fault script shall include a unique identifier.

Pre-condition: Subsystem Services Provide subsystem services has been completed successfully, in particular this service is available.

Table 7.176 Table 7.189 MS(203) - Methods of Interface Define_Fault_Scripts_CMS

Method	Notes	Parameters
fault_script_summary()	This provides a list of all fault scripts for a subsystem to the CMS for confirmation.	request_id_type request_id fault_scripts_type faults The list of fault scripts

Define_Fault_Scripts_Sub **Type:** Interface

Package: Define_Fault_Scripts

Table 7.177 Table 7.190 MS(204) - Methods of Interface Define_Fault_Scripts_Sub

Method	Notes	Parameters
add_fault_scripts()	Adds the given fault scripts to the subsystem's simulation.	request_id_type request_id fault_scripts_type scripts The fault scripts to be added
remove_fault_scripts()	Removes the given fault scripts from the subsystem's simulation.	request_id_type request_id fault_script_ids_type fault_scripts The ids of the fault scripts to be removed

Figure 7.85 Alternative Flow - Define Fault Scripts (Interaction diagram)

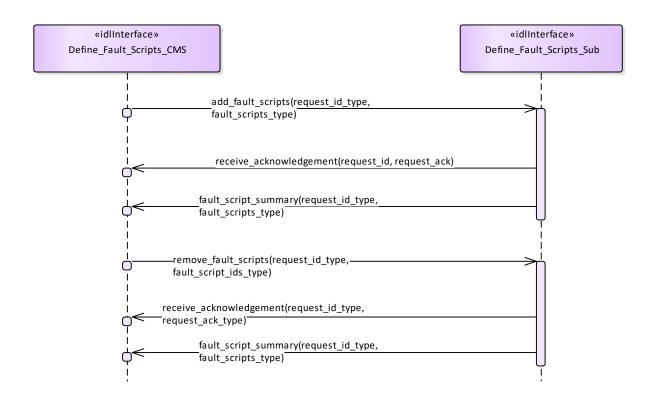


Figure 7.86 Basic Flow - Define Fault Scripts (Interaction diagram)

7.7.4.4 Control_Fault_Scripts

Parent Package: Simulation_Support

Control Fault Scripts CMS

Type: Interface common_use_case_interface

Package: Control_Fault_Scripts

This enables a trainee, at a CMS Console to cause the generation of predefined fault messages for training purposes(see also Define Fault Scripts). The subsystem shall output Fault Reports to the CMS which a trainee may respond to via the CMS Console. Fault clearance messages shall also be sent to the CMS in response to the trainee taking the appropriate action.

Pre-condition: Technical State Subsystem is in technical state READY or ONLINE

Pre-condition: Fault Script Subsystem has a fault scripts which has been defined previously

Pre-condition: Mastership Required The CMS has Mastership

Pre-condition: Subsystem Services Provide Subsystem Services has successfully completed; in

particular this service is available

Pre-condition: Simulation Mode Simulation Mode is ON

Post-condition Success Subsystem has provided simulated fault and response to clearance action Post-condition Failure Subsystem has not provided simulated fault and response to clearance action

Control_Fault_Scripts_Sub

Type: Interface

Package: Control_Fault_Scripts

Table 7.178 Table 7.191 MS(205] - Methods of Interface Control_Fault_Scripts_Sub

Method	Notes	Parameters
enable_fault_script()	Causes the subsystem to indicate the faults specified by the given fault scripts when appropriately stimulated. The faults remain in place until they are cleared either by a call to clear_fault or by an action on another interface that would clear the equivalent non-simulated fault.	request_id_type request_id fault_script_ids_type scripts The script ids to be enabled
clear_faults()	Clears the faults defined by the given fault scripts.	request_id_type request_id fault_script_ids_type fault_scripts The script ids to be cleared

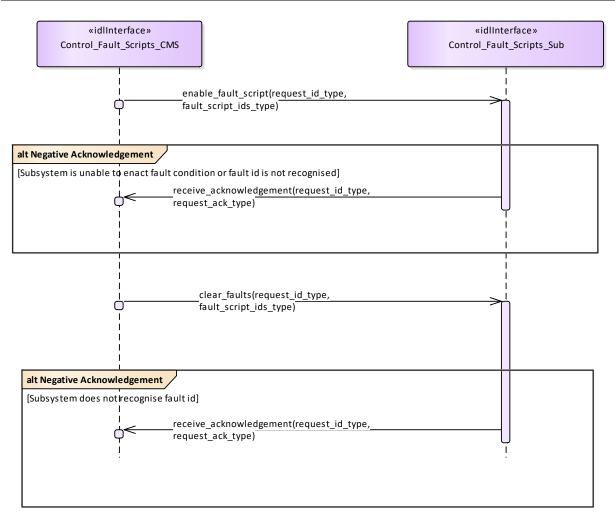


Figure 7.87 Alternative Flow - Control Fault Scripts (Interaction diagram)

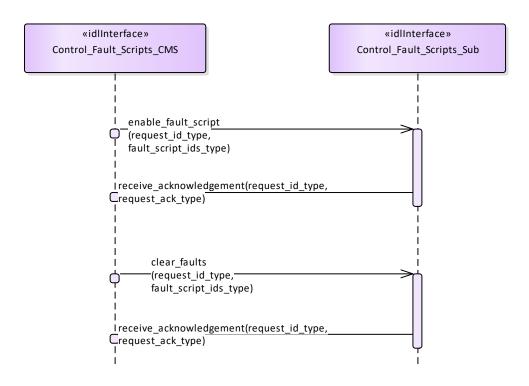


Figure 7.88 Basic Flow - Control Fault Scripts (Interaction diagram)

7.7.5 Subsystem_Control

Parent Package: Subsystem_Services

Contains interfaces for the Subsystem Control service.

7.7.5.1 Manage_Technical_State

Parent Package: Subsystem_Control

Contains operations and sequence diagrams for the Manage Technical State interface.

Manage Technical State CMS

Type: Interface common_use_case_interface

Package: Manage_Technical_State

Manage Technical State causes the subsystem to provide or change its technical state.

Special Requirements:

Initialization: Upon initialization, reset or power-on, the sub-system shall transition to a pre-defined state and report the current state to the CMS.

Additional Information:

If a critical component of the subsystem becomes NOT AVAILABLE, the technical state shall transition to FAILED.

All states may transition to OFFLINE, but the subsystem shall only do so in emergency situations or catastrophic damage, to indicate an uncontrolled shutdown

Startup, Shutdown, and Restart explain the sequence of actions for nominal progression through the technical states.

Pre-condition: If the CMS requests a Technical State to change, mastership of the subsystem is

required.

Pre-condition: CMS is aware of the current subsystem state.

Pre-condition: CMS is aware of the possible technical states supported by the subsystem.

Post-condition None.

Table 7.179 Table 7.192 MS(206) - Methods of Interface Manage_Technical_State_CMS

Method	Notes	Parameters
receive_periodic_technical_state()	Interface used by CMS to receive periodic technical state reports from the subsystem.	technical_state_type technical_state
receive_technical_state()	Interface used by CMS to receive technical state reports from the subsystem which were the result of a transition request from the CMS.	request_id_type request_id technical_state_type technical_state

Manage_Technical_State_Sub

Type: Interface

Package: Manage_Technical_State

Table 7.180 Table 7.193 MS(207) - Methods of Interface Manage_Technical_State_Sub

Method	Notes	Parameters
change_technical_state()	Interface used by the subsystem to receive requests from the CMS to change its technical state.	request_id_type request_id technical_state_type technical_state
provide_technical_state()	Interface used by the subsystem to receive requests from the CMS to provide its current technical state.	request_id_type request_id

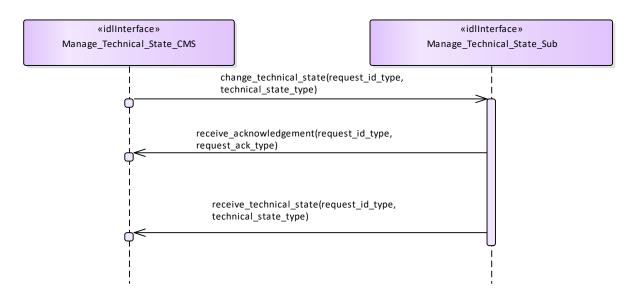


Figure 7.89 Basic Flow - Manage Technical State - Change (Interaction diagram)

Flow of events which depicts the CMS requesting that the subsystem changing its current technical state.

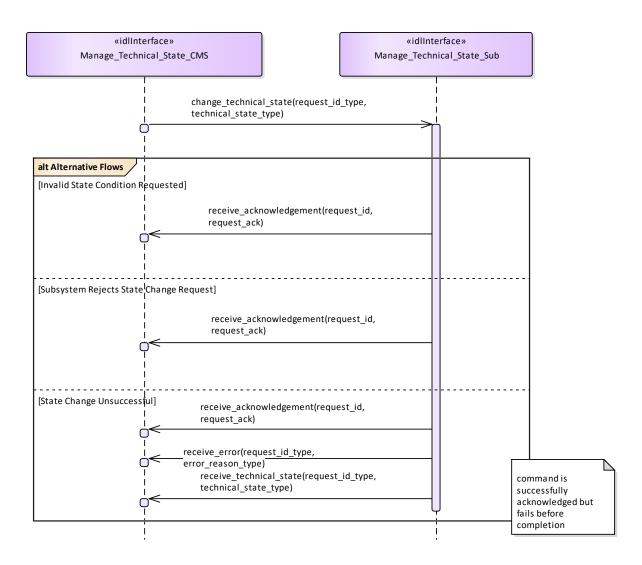


Figure 7.90 Alternative Flow - Manage Technical State - Change (Interaction diagram)

Alternate flow depicting rejection and error cases for a CMS requesting the subsystem to change its Technical State.

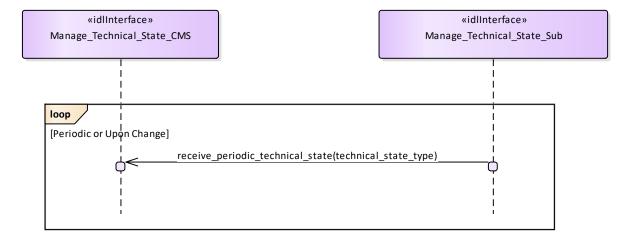


Figure 7.91 Basic Flow - Manage Technical State - Periodic Reporting (Interaction diagram)

Flow of events which depicts a subsystem that periodically reports its technical state (without the need for a CMS request).

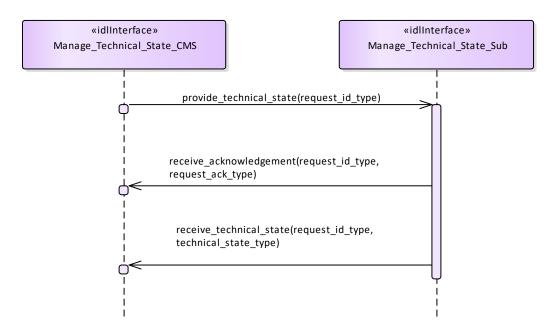


Figure 7.92 Basic Flow - Manage Technical State - Request (Interaction diagram)

Flow of events which depicts the CMS requesting that the subsystem report on its current technical state.

7.7.5.2 Heartbeat Signal

Parent Package: Subsystem_Control

Heartbeat_Signal_CMS **Type:** Interface

Package: Heartbeat_Signal

The service describes how the availability of an established communication between CMS and the subsystem as well as the subsystem itself shall be monitored. The heartbeat signal is triggered by Control Interface Connection. The basic flow is asynchronous.

The actor is the Combat Management System.

Pre-condition: Connection established Provide Subsystem Services has successfully established

communication between CMS and the subsystem.

Post-condition Interface is alive The heartbeat has been received successful. Post-condition Interface is not alive The heartbeat has not been received.

Table 7.181 Table 7.194 MS(208) - Methods of Interface Heartbeat_Signal_CMS

Method	Notes	Parameters
receive_subsystem_heartbeat_signal(Receive the periodic heartbeat signal	unsigned long count This parameter
)	to verify, that the connection is still	is used with implementation specific
	alive.	semantics for monitoring interface
		participant liveliness.

Heartbeat_Signal_Sub **Type:** Interface

Package: Heartbeat_Signal

Table 7.182 Table 7.195 MS(209) - Methods of Interface Heartbeat_Signal_Sub

Method	Notes	Parameters
receive_cms_heartbeat_signal()	Receive the periodic heartbeat signal	unsigned long count This parameter
	to verify, that the connection is still	is used with implementation specific
	alive.	semantics for monitoring interface
		participant liveliness.
		ļ

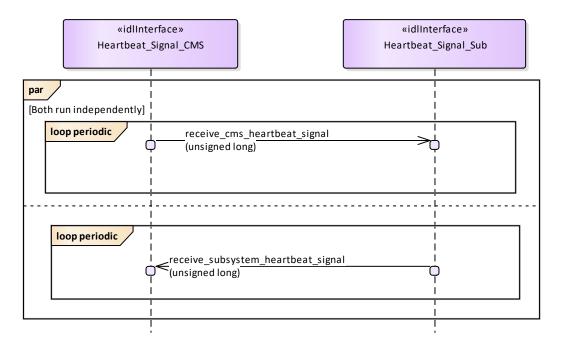


Figure 7.93 Basic Flow - Heartbeat Signal (Interaction diagram)

7.7.5.3 Provide_Subsystem_Identification

Parent Package: Subsystem_Control

Provide_Subsystem_Identification_CMS

Type: Interface common_use_case_interface **Package:** Provide Subsystem Identification

In order to enable two interface partners to connect to each other and to open mutual communication, one partner shall initiate and the other to answer. The intention is to let the subsystem initiate the communication.

Consequently, the subsystem introduces itself to the CMS identifying e.g. the type of subsystem, the product and its version. That allows the CMS to decide whether it may work with that subsystem.

The actor is the Combat Management System.

The possibility that CMS and subsystem are connected without being capable to work with each other is a consequence of a plug-&-play concept.

Although the interface is standardized the CMS may need a setup process to prepare it for a subsystem. This process shall introduce the information necessary to configure functions of that particular CMS with respect to the subsystem.

This may also be necessary on side of the subsystem.

The preparation for a subsystem may be done by means of system configuration data which are implemented on installation of the combat system. It does not address security information.

Pre-condition: CMS and Subsystem can communicate with each other.

Post-condition CMS and subsystem may work together. CMS and subsystem have verified that they may work with each other.

They shall do some organization regarding the communication (out of scope).

Post-condition CMS and subsystem may not work together. The interface between CMS and subsystem is closed.

Table 7.183 Table 7.196 MS(210) - Methods of Interface Provide_Subsystem_Identification_CMS

Method	Notes	Parameters
receive_sub_identification_data()	Receive the identification data from	device_identification_type
	the subsystem.	<pre>identification request_id_type the_request_id</pre>
		request_ra_type the_request_ra

Provide_Subsystem_Identification_Sub

Type: Interface common_use_case_interface Package: Provide_Subsystem_Identification

Table 7.184 Table 7.197 [MS(211] - Methods of Interface Provide_Subsystem_Identification_Sub

Method	Notes	Parameters
receive_cms_identification_data()	Receive the identification data from the CMS.	device_identification_type identification request_id_type the_request_id

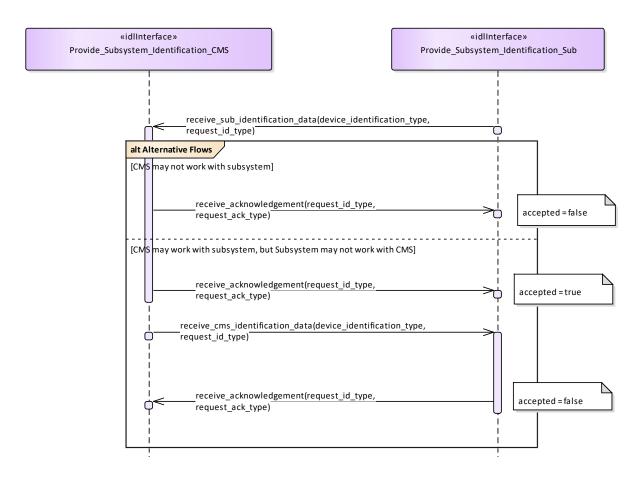


Figure 7.94 Alternative Flow - Introduction of subsystems (Interaction diagram)

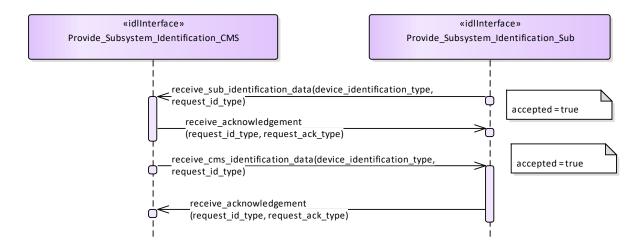


Figure 7.95 Basic Flow - Introduction of the subsystem (Interaction diagram)

7.7.5.4 Provide_Health_State

Parent Package: Subsystem_Control

Provide_Health_State_CMS

Type: Interface common use case interface

Package: Provide_Health_State

The service allows the CMS to monitor and evaluate the health state of the subsystem. The health state information describes functional availability of the subsystem and the services it provides.

The service may be triggered by several possible situations:

- Periodic event, for example by internal clock,
- Actor (CMS) request,
- Health state change,
- Initialization (start-up),
- Recovery of the subsystem after a failure.

In addition to the health state being provided, additional information may be provided to the CMS. In case of a service, the information may include a list of detected faults. In case of a subsystem, the information may include the list of services together with their health state, and for every service which has health state other than AVAILABLE, a list of detected faults. This two dimensional structure is called the service availability matrix.

The state NOT AVAILABLE may also describe the situation in which the service is not implemented. In this case the list of faults shall be empty. In the state UNKNOWN, the subsystem may provide the reason for not being able to evaluate health state (e.g. BIT process not running).

The service ends with success when the health state (possibly accompanied by additional information) is provided to the actor.

Relationship to technical state.

The reported health state of the services is dependent on the technical state.

In the technical state ONLINE, the health state of the services is determined based on the detected faults (if any).

In all technical states other than ONLINE (except OFFLINE), the health state of all services, except the service Subsystem Control, is NOT AVAILABLE.

The health state of the service Subsystem_Control shall then be DEGRADED, since some functions (e.g. Control Battle Override) are not available in those technical states, and some functions are (e.g. Manage Technical State).

In the technical state OFFLINE no communication at all is possible with the CMS so the health state is not reported.

Relationship to battle override.

When Battle Override is set (see service Control Battle Override), certain faults are not taken into account when determining the health state. These overridable faults generally refer to circumstances that may cause damage to own equipments, but do not prohibit executing the requested task.

Relationship to simulation mode.

If the subsystem is in Simulation mode (technical state is ONLINE), only the faults for parts needed for the simulated execution of the service are taken into account when determining the health state of a service. For instance, if the transmitter is defective, the service Track_Reporting is reported AVAILABLE when in Simulation mode, but is reported NOT AVAILABLE when not in Simulation mode.

Faults may also be simulated for training purposes (see service Define Fault Script). Therefore, irrespective of the Simulation mode, all faults (real and simulated) are included in the reported list of detected faults, each with an indication whether the fault is real or simulated.

If a real system part is simulated, faults of the simulated part should have a different identification.

For instance (see previous example) in Simulation mode, a simulated transmitter could be used, for which the trainer has inserted a simulated fault.

Any faults in the real transmitter would be reported (real fault) as well as the injected fault in the simulated

transmitter (simulated fault). However, the health state of the service Track_Reporting would be based only on the status of the simulated transmitter.

Reason for health state

Each reported health state other than AVAILABLE is accompanied by the reason(s) for that health. In this way the CMS may for instance derive that although the technical state of the subsystem is STANDBY (and NOT AVAILABLE for that reason), there are also faults that would prevent the service to become AVAILABLE when the technical state would be switched to ONLINE.

Pre-condition: Subsystem technical state The subsystem is in technical state ONLINE or READY. Post-condition CMS awareness CMS is aware of the health state of the subsystem and/or its services.

Table 7.185 Table 7.198 MS(212) - Methods of Interface Provide_Health_State_CMS

Method	Notes	Parameters
report_fault()	Report a fault to CMS	fault_type the_fault
report_service_health()	Report health of service	request_id_type request_id service_health_type health fault_list_type the_fault_list
report_subsystem_health()	Report health of subsystem	request_id_type request_id subsystem_health_type health

Provide_Health_State_Sub **Type:** Interface

Package: Provide_Health_State

Table 7.186 Table 7.199 MS(213) - Methods of Interface Provide_Health_State_Sub

Method	Notes	Parameters
request_service_health()	Request service health	request_id_type request_id service_name_type service_name
request_subsystem_health()	Request subsystem health	request_id_type request_id

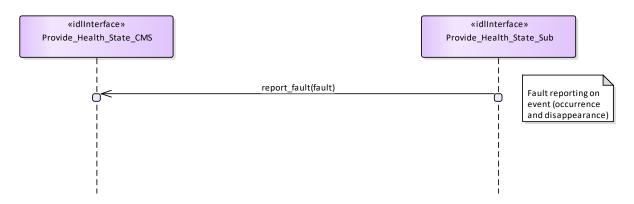
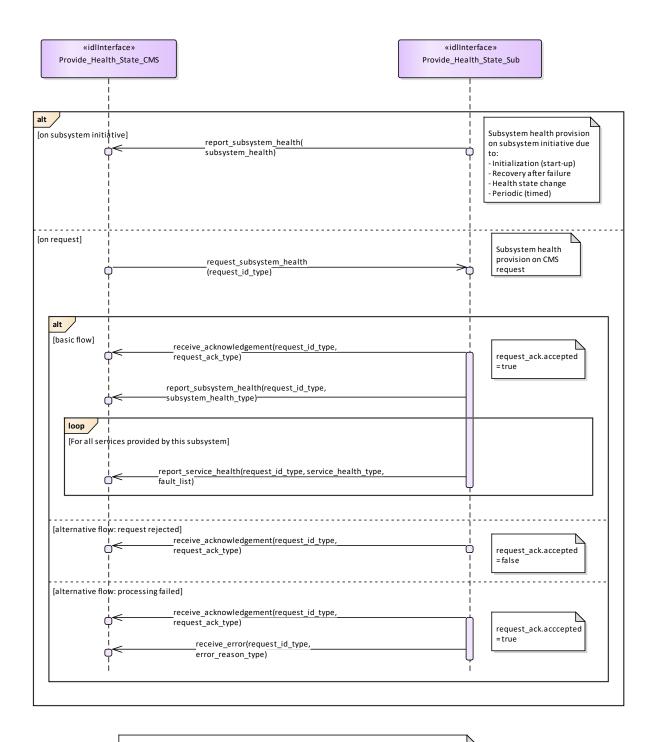



Figure 7.96 Basic Flow - Fault Reporting (Interaction diagram)

Figure 7.97 Basic Flow - Service Health Reporting (Interaction diagram)

Service health and corresponding fault lists shall accompany subsystem health report only when subsystem health is reported on request. For subsystem health provision on subsystem initiative, the service health and corresponding fault lists shall be reported on subsystem initiative separately (see sequence diagram Service Health Reporting).

Figure 7.98 Basic Flow - Subsystem Health Reporting (Interaction diagram)

7.7.5.5 Manage_Operational_Mode

Parent Package: Subsystem_Control

Manage_Operational_Mode_CMS

Type: Interface common_use_case_interface

Package: Manage_Operational_Mode

Subsystems provide several operational modes like long-range-detection, missile-detection, surface surveillance etc. in case of surveillance radar, normal tracking, slaved, joystick controlled in case of fire control radar etc.

Operational modes summarise a set of subsystem parameters optimising the subsystem with respect to an operational purpose.

The names of modes of a specific type of subsystem (e.g. or a radar) differ from supplier to supplier. Consequently, they shall be handled as configuration parameters. They shall be offered to the operator to enable him for a selection and shall be transferred to the subsystem to achieve the intended reaction.

The definition of names of operational modes is not within the scope of this standard.

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the subsystem.

In the case where the CMS does not have mastership of the subsystem, a change of the operational mode shall be indicated by informing the CMS about the new operational mode (see service "Provide health state").

Configuration data like the set of available operational modes may be received at runtime but may also be inserted by means of an automatic or manual setup process. Although automatic runtime transfer of such information may be achieved through 'Manage Subsystem Parameters' it is not a mandatory requirement of this standard for that mechanism to be used.

Pre-condition: Technical state READY or ONLINE.

Pre-condition: "Manage Subsystem Parameters" executed successfully

Pre-condition: CMS must have Mastership

Post-condition Service ends with success - the subsystem is in the commanded operational state, the

CMS is informed that this is the case

Post-condition Service ends with fail - the subsystem is still in the original operational state, the CMS has the correct information regarding that state.

Table 7.187 Table 7.200 MS(214) - Methods of Interface Manage_Operational_Mode_CMS

Method	Notes	Parameters
report_operational_mode()	The current operational mode is reported via this interface method.	request_id_type request_id operational_mode_type current_mode
configure_operational_functions()		function_type function A function operated by the subsystem

Manage Operational Mode Sub

Type: Interface

Package: Manage_Operational_Mode

Table 7.188 Table 7.201 MS(215) - Methods of Interface Manage_Operational_Mode_Sub

Method	Notes	Parameters
request_get_operational_mode()	The subsystem is requested to report	request_id_type request_id
	the current operational mode.	

request_set_operational_mode()	The subsystem is requested to change the operational mode to the given new operational mode.	request_id_type request_id operational_mode_type new_operational_mode

Manage_Operational_Mode_CMS **Type:** ActivityPartition

Package: Manage_Operational_Mode

Manage_Operational_Mode_Sub **Type:** ActivityPartition

Package: Manage_Operational_Mode

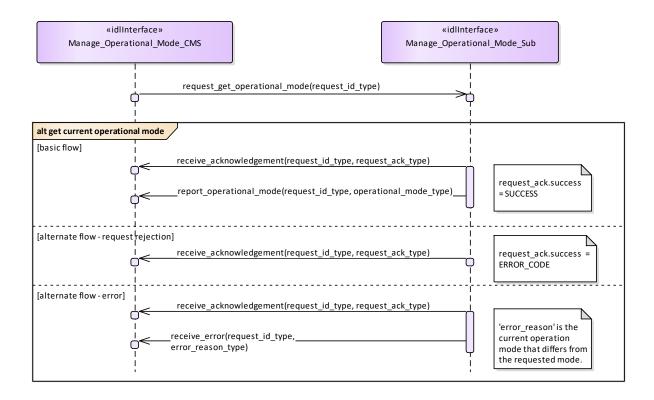


Figure 7.99 Manage Operational Mode - get current operational mode (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "get current operational mode" of the service "Manage Operational Mode".

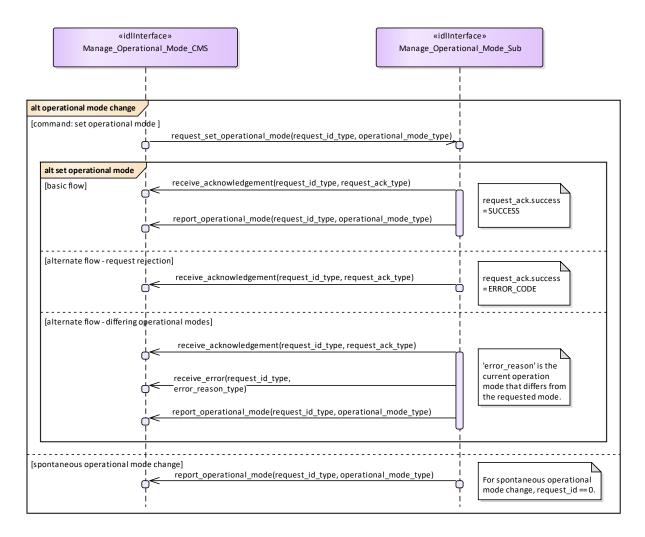


Figure 7.100 Manage Operational Mode - set operational mode (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "set operational mode" of the service "Manage Operational Mode".

7.7.5.6 Control_Battle_Override

Parent Package: Subsystem_Control

This package contains interfaces for the Control Battle Override service.

Control_Battle_Override_CMS

Type: Interface common_use_case_interface

Package: Control_Battle_Override

The subsystem is requested to set/reset the Battle Override. When Battle Override is set the subsystem disregards warnings on circumstances which may cause damage to own equipment, typically the overtemperature protections.

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the subsystem.

Provision of the Battle Override state

Subsystem shall keep CMS informed about the current Battle Override state and its changes (if any).

Lack of mastership

In the case where CMS does not have mastership of the subsystem, CMS shall be informed about the

current Battle Override state and its changes (if any).

Relationship to the subsystem health state

As long as the Battle Override is set, the subsystem internal overtemperature indications shall not result in any heath state set to "NOT AVAILABLE" (see *Provide health state*).

Pre-condition: Mastership Required CMS has mastership of the subsystem

Pre-condition: Subsystem Services *Provide subsystem services* has been completed successfully. Post-condition Success The subsystem Battle Override is set/reset as requested and CMS is informed that this is the case.

Post-condition No Success The subsystem Battle Override is still equal to the original one and CMS has the correct information regarding that state.

Table 7.189Table 7.202 MS(216] - Methods of Interface Control_Battle_Override_CMS

Method	Notes	Parameters
battle_override_setting()	This metod is used by the subsystem	request_id_type request_id
	to return the current Battle Override	battle_override_state_type
	state.	battle_override_state

Control_Battle_Override_Sub **Type:** Interface

Package: Control_Battle_Override

Table 7.190 Table 7.203 MS(217) - Methods of Interface Control_Battle_Override_Sub

Method	Notes	Parameters
set_battle_override()	This method is used by the CMS to send a Battle Override set/reset request to the subsystem,	request_id_type request_id battle_override_state_type battle_override_state

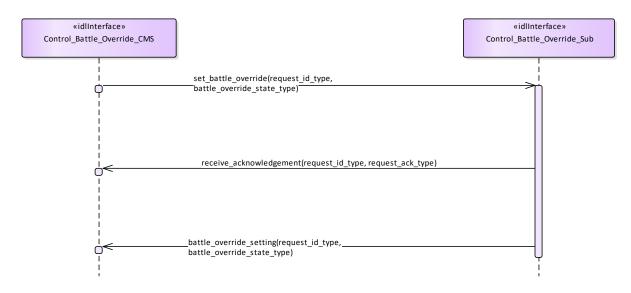


Figure 7.101 Basic Flow - Control Battle Override - Set/Reset (Interaction diagram)

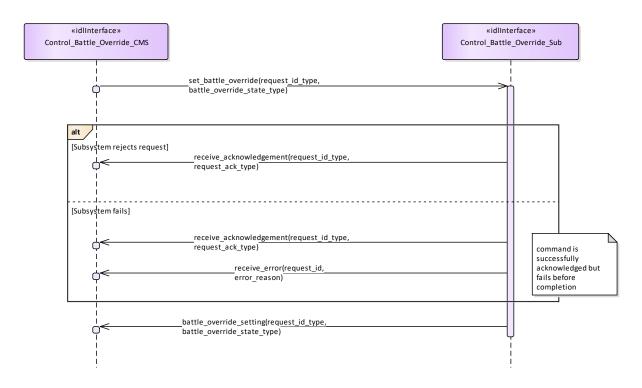


Figure 7.102 Alternative Flow - Control Battle Override - Set/Reset - loss of mastership (Interaction diagram)

7.7.5.7 Manage_Subsystem_Parameters

Parent Package: Subsystem_Control

Manage_Subsystem_Parameters_CMS

Type: Interface common_use_case_interface
Package: Manage Subsystem Parameters

The service allows the actor to obtain and modify the values of parameters of the subsystem. It also provides the facilities to retrieve the descriptions of parameters available in a certain subsystem.

The actor of the service is the Combat Management System.

The service starts when the CMS requests one of the following:

- Parameter value retrieval
- Parameter value modification
- Retrieval of parameter descriptor,

with a list of parameter names (and values in case of modification).

A parameter value may be structured (e.g. a vector or a table).

The service ends when the subsystem has provided the requested information or modified the parameter value.

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the subsystem.

Parameter names used by a subsystem are to be unique within the scope of that subsystem. Requests for parameter descriptions and to get and set current values are consequently well-defined. Parameter names may be structured using a namespace scheme to promote uniqueness.

Unknown parameter

On receipt of a request for parameter value retrieval, parameter value modification or parameter descriptor retrieval for an unknown parameter name, the subsystem responds with an indication "unknown parameter". Other (correctly identified) parameters in the same request are processed as requested.

Illegal parameter value

On receipt of a request for parameter value modification with a parameter value that is outside the allowable range of the specified parameter, the subsystem responds with an indication "illegal parameter value" and does not change the parameter value.

This includes inconsistencies of parameter type (e.g. real where integer is expected) and structure (e.g. vector of 2 elements, where a vector of 3 is expected).

Other parameters with legal values in the same request are modified as requested.

In case of an illegal value for an element of a structured parameter, the entire parameter remains unchanged.

Modification of parameter value

A parameter value may only be modified in the technical state(s) as specified in the descriptor of that parameter.

Security

Access to the service may be restricted to certain parts of the CMS because of security restrictions.

Pre-condition: Subsystem technical state The subsystem is in a technical state other than OFFLINE.

Pre-condition: Mastership The CMS has mastership of the subsystem in case of parameter value modification.

Table 7.191Table 7.204[MS(218] - Methods of Interface Manage_Subsystem_Parameters_CMS

Method	Notes	Parameters
report_parameter_values()		request_id_type request_id
		name_value_sequence_type
		the_name_value_set
		name_error_sequence_type
		the_name_error_set
report_parameter_descriptors()		request_id_type request_id
		descriptor_sequence_type
		the_descriptor_sequence
		name_error_sequence_type
		the_name_error_set

Manage_Subsystem_Parameters_Sub

Type: Interface

Package: Manage Subsystem Parameters

Table 7.192 Table 7.205 MS(219) - Methods of Interface Manage_Subsystem_Parameters_Sub

Method	Notes	Parameters
retrieve_parameter_values()		request_id_type request_id
		parameter_name_sequence_type
		the_name_set
modify_parameter_values()		request_id_type request_id
		name_value_sequence_type
		the_name_value_set
retrieve_parameter_descriptors()		request_id_type request_id

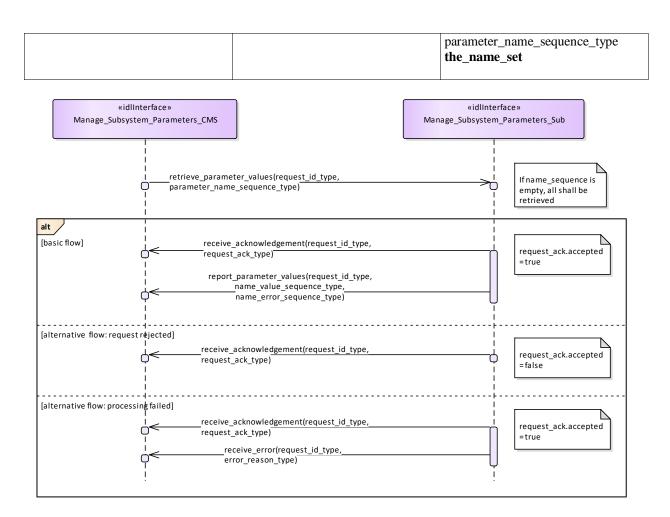


Figure 7.103 Basic Flow - Parameter Retrieval (Interaction diagram)

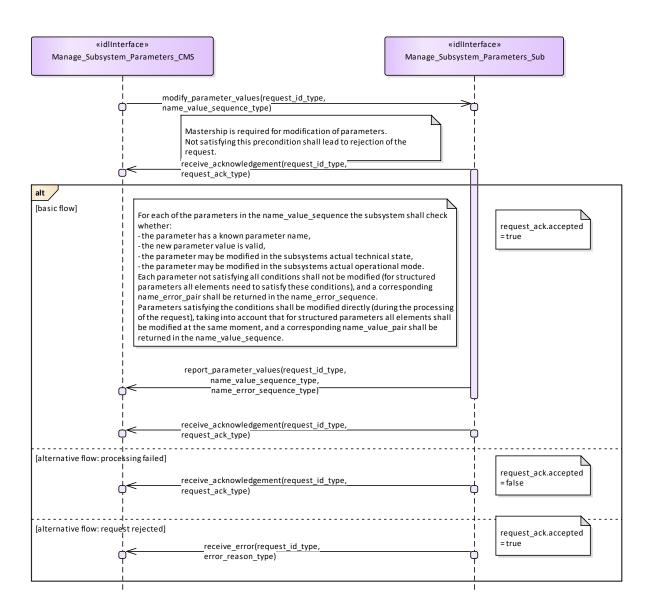


Figure 7.104 Basic Flow - Parameter Value Modification (Interaction diagram)

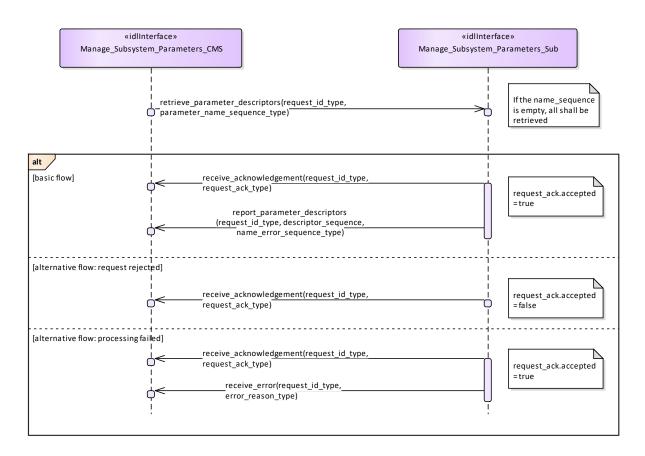


Figure 7.105 Basic Flow - Parameter Descriptor Retrieval (Interaction diagram)

7.7.5.8 Provide_Subsystem_Services

Parent Package: Subsystem_Control

PackageTag: No_PSM = DDS Provide_Subsystem_Services_CMS

Type: Interface common use case interface

Package: Provide_Subsystem_Services

Subsystems offer a number of services to a CMS. Some of the services are mandatory for the type of subsystem, others are optional. New services may be known to the CMS or may not be known.

Consequently, the CMS needs to know which services are provided by a subsystem and the subsystem needs to know which services the CMS is able to interact with.

The services considered here are the final versions of those that are specified and defined by the rest of this standard. Some of them are not necessarily implemented by each product of the type of subsystem but also not necessarily supported by each CMS.

The service-related information provided by the subsystem to the CMS deals with both, the interfaces offered by the subsystem and the interfaces expected on CMS side which are necessary to use the service.

Lack of mastership

Mastership of the subsystem must not have an impact upon this interface.

Plug-&-Play aspect

Both sides, subsystem and CMS, shall follow a technical evolution process which is not necessarily

coordinated. Therefore, the latest subsystem version may provide a service which is not yet supported by the CMS or the CMS may be prepared to use a service which is not provided by the subsystem. This may also cause inconsistencies regarding the interfaces to be made available on both sides. As the subsystem may not have an own operator display, it is intended to use the health state of the subsystem if an indication at CMS is to be achieved saying that the interface to the CMS is not implemented properly.

Configuration data of services

The information to be provided to the CMS as information about the implemented services may include related configuration data and may include the information which parts of the service interfaces are supported.

System integration test

After installation of a subsystem on-board, connecting the hardware interfaces with the related CMS hardware interfaces and performing a setup process if applicable it is expected that an interface verification procedure shall be performed. This procedure shall apply all negotiated interfaces so that an improper implementation shall turn-up at that occasion, already. Insofar, the alternative flows should be considered as an integration aid, only.

Spontaneous reporting

Interfaces for which registration/de-registration is considered as an optional facility are written, accordingly.

Registration/de-registration of recipients is done using standard registration mechanism (register interest)
Pre-condition: Subsystem identification. Provide subsystem identification has been passed successfully.
Post-condition The CMS is aware of the services and related interfaces supported by the subsystem.
Post-condition The subsystem is aware of the service-related interfaces the CMS may interact with.
Post-condition The Services do not match. Each of the alternative flows indicates a fatal error which means that the interface is not implemented properly. The CMS does not take any further action but alerts the operator, accordingly.

Table 7.193 Table 7.206 MS(220) - Methods of Interface Provide_Subsystem_Services_CMS

Method	Notes	Parameters
receive_implemented_services()	Receive services which are implemented by a subsystem	request_id_type the_request_id service_indication_list_type service_indication_list

Provide_Subsystem_Services_Sub

Type: Interface common_use_case_interface

Package: Provide Subsystem Services

Table 7.194Table 7.207[MS(221] - Methods of Interface Provide Subsystem Services Sub

Method	Notes	Parameters
receive_supported_services()	Receive services which are supported by the CMS	request_id_type the_request_id service_list_type supported_service_list

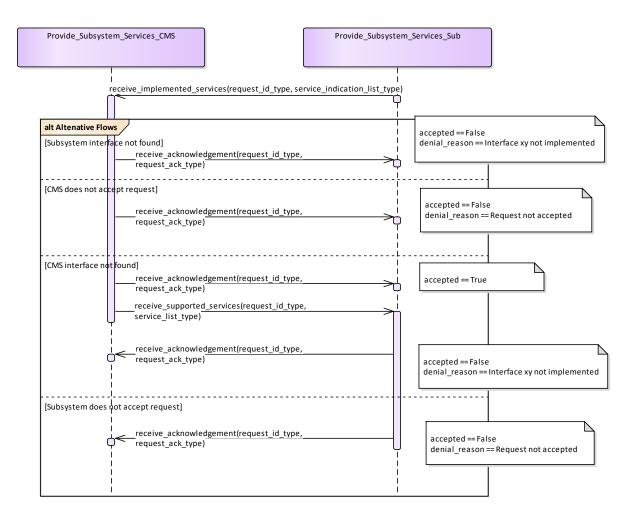


Figure 7.106 Alternative Flow - Service negotiation (Interaction diagram)

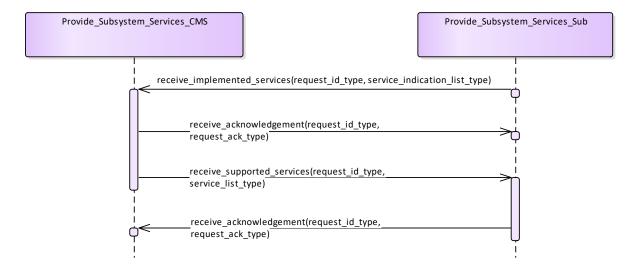


Figure 7.107 Basic Flow - Service negotiation (Interaction diagram)

7.7.5.9 Manage_Mastership

Parent Package: Subsystem Control

This package contains interfaces for the Manage Mastership service.

Manage_Mastership_CMS

Type: Interface common_use_case_interface

Package: Manage_Mastership

Besides the CMS, the subsystem may be controlled via other control points, e.g. the subsystem local control unit. This interface describes how the CMS, as any other actor, shall handle the exclusive control of the subsystem (mastership). In fact, every subsystem may be controlled by only one actor at the same time. Only the actor who has the mastership of a subsystem may have exclusive control of the subsystem. Exclusive control means that the subsystem may accept only commands sent by the actor who has its mastership.

The subsystem Mastership may be acquired in two ways:

- 1. PERIODIC MASTERSHIP REQUEST: The actor who wants to acquire the mastership of a subsystem send to it a periodic Mastership request; the subsystem may accept or deny. Once acquired, the subsystem Mastership is released giving up the periodic Mastership requests sending. This happens both in case of intentional decision and critical event as CMS unavailability or connection loss. As long as CMS wants to maintain the Mastership of the subsystem, it shall continue the periodic Mastership requests sending. The CMS is informed about the Mastership control state by receiving a periodic message sent by the subsystem.
- 1. ASYNCHRONOUS MASTERSHIP REQUEST: The actor who wants to acquire the mastership of a subsystem send to it an asynchronous request. the subsystem may accept or deny. Once acquired, the mastership is until the mastership owner decides to intentionally release it or until a critical event, which is mastership owner unavailability or connection failure, occurs. In case of intentional mastership release, the CMS shall send an asynchronous mastership release request. In case of critical event, the mastership of the subsystem is automatically released. This happens when the subsystem does no longer receive the CMS heartbeat. The CMS is informed about the Mastership control state by receiving an asynchronous message sent on change by the subsystem.

Mastership management rules

The subsystem Mastership assignment is controlled by the subsystem itself according to the following rules:

- no more than one Master at any time, so the subsystem may not be commanded by more than one control point
- the actor which wants to acquire the subsystem Mastership shall ask the subsystem for it, so no request no assignment
- subsystem assigns the Mastership to any actor asking for it without any priority policy, no actor is "more important" than any other.
- On each request, the mastership may be assigned only if it's free, that is not already assigned (unless a Mastership override request is received)

The Mastership management protocol is managed as follows:

- actor which wants to acquire the subsystem Mastership shall ask for it sending to the subsystem the Mastership requests which could be asynchronous or periodic
- in case of periodic request for Mastership assignment, as long as the actual Master wants to maintain the Mastership, it shall continue the periodic Mastership requests sending
- if the actual Master wants to release the Mastership in case of periodic request for Mastership management, it shall give up the periodic Mastership requests sending, otherwise, in case of asynchronous request, it shall send an asynchronous request for mastership release
- subsystem keeps informed about the actual Mastership state and its changes (if any).

At any time the subsystem Mastership may be either "free", that is assigned to none and then available to anybody asks for it, or assigned to somebody, where this somebody may be CMS or not. At the subsystem power-on the Mastership is "free", then:

- as long as the Mastership state is "free", the first received Mastership request shall be satisfied (whether the requestor is CMS or not)
- as long as the Mastership is assigned (to CMS or to somebody other than CMS), the current Master shall maintain the Mastership possession until the Mastership owner is no longer available or decides to release it
- as long as the Mastership is assigned (to CMS or to somebody other than CMS), Mastership requests
 received from other than the current Master shall be no satisfied, unless a Mastership Override is
 received, which shall force a Mastership switch to another Master

Note that the Mastership possession is required to control the subsystem (e.g. execute write commands to it), but it is not required to communicate with subsystem and receive information from it.

Mastership Override

The Mastership management protocol could include a Mastership Override to force a Mastership switch from a Master to another one.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Post-condition Success The subsystem Mastership state is assigned to CMS or not assigned to CMS, according to the CMS requests, and CMS is informed about.

Post-condition No Success The subsystem Mastership state is not according to the CMS requests and CMS has the correct information regarding that state (except in the case of connection loss).

Table 7.195 Table 7.208 MS(222) - Methods of Interface Manage_Mastership_CMS

Method	Notes	Parameters
1 - 1-	This method is used by the subsystem to return the mastership state.	mastership_state_type control_state

Manage_Mastership_Sub **Type:** Interface

Package: Manage_Mastership

Table 7.196 Table 7.209 MS(223] - Methods of Interface Manage Mastership Sub

Method	Notes	Parameters
acquire_mastership()	This method is used by the CMS to acquire the mastership.	unsigned long count This parameter is used with implementation specific semantics to manage subsystem mastership.
release_mastership()	This method is used by the CMS to release the mastership.	unsigned long count This parameter is used with implementation specific semantics to manage subsystem mastership.

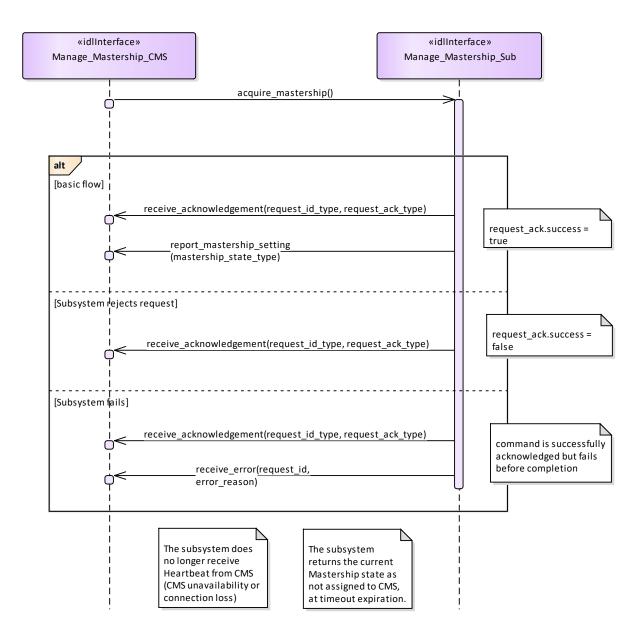


Figure 7.108 Basic Flow - Mastership Acquisition - asynchronous request (Interaction diagram)

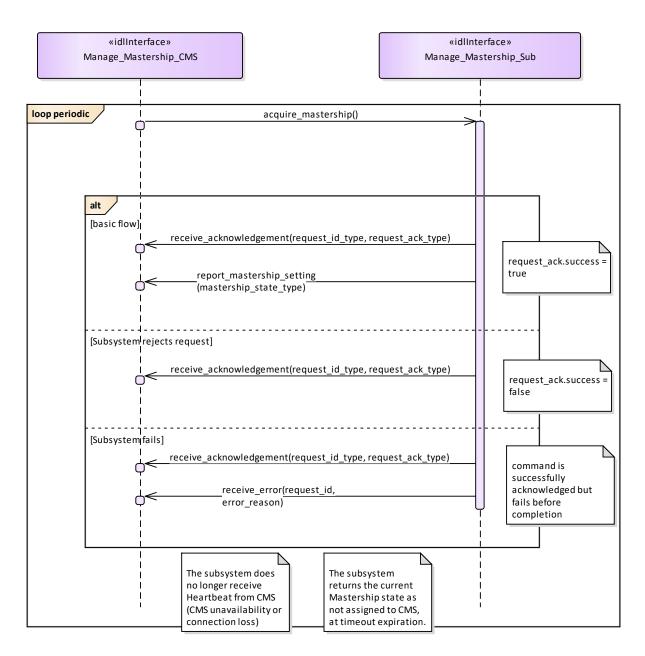


Figure 7.109 Basic Flow - Mastership Acquisition - periodic request (Interaction diagram)

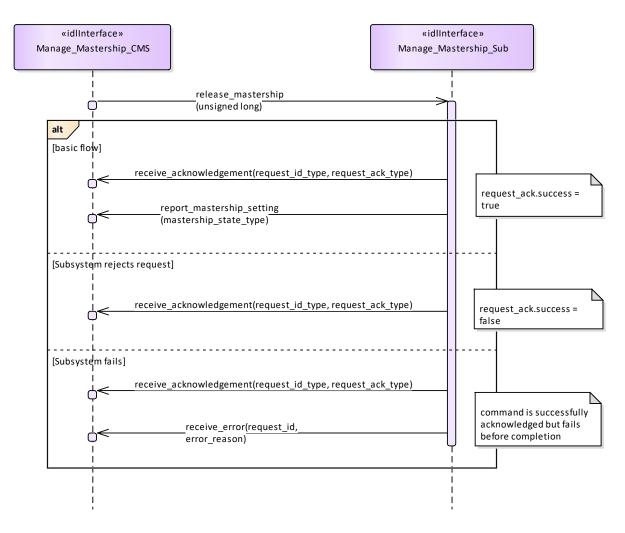


Figure 7.110 Basic Flow - Mastership Release - asynchronous request (Interaction diagram)

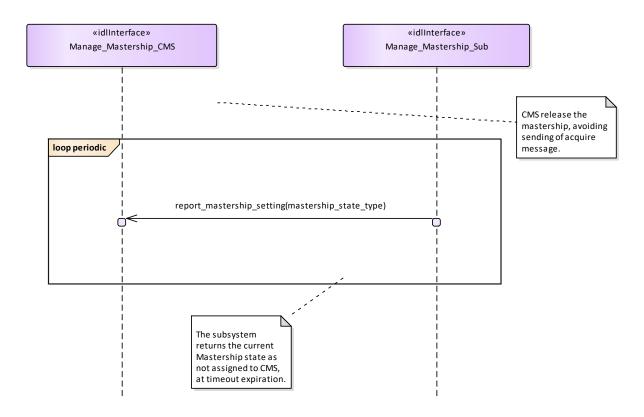


Figure 7.111 Basic Flow - Mastership Release - periodic request (Interaction diagram)

7.7.5.10 Register_Interest

Parent Package: Subsystem_Control

PackageTag: No_PSM = DDS Register Interest CMS

Type: Interface common use case interface

Package: Register_Interest

This service allows the CMS to register (and deregister) interest in other services. It is explicitly meant to address the possibility of CMS "subscribing" to information supplied by the subsystem, with the understanding that the information shall be provided by the subsystem, without the need for further request. Such mode of operation may be applicable for those services, which have been reported as such in Provide subsystem services. This includes typically track and plot reporting services, but may involve other services as well.

The service starts when the actor registers interest in information provided by a service. The registration shall include information on:

- The service for which the actor wants to register / deregister his interest
- The information within the service for which the actor wants to register / deregister his interest
- The intended (direct or indirect) recipient(s) of the information provided by the subsystem.
- Any parameters of the provision needed such as Quality of Service parameters.

The service ends when the subsystem confirms registration / deregistration of interest. Pre-condition: Sensor health state The sensor and the service need to be in the health state AVAILABLE or DEGRADED.

Method	Notes	Parameters
confirm_registration()	Confirm registration of interest	request_id_type request_id

Register_Interest_Sub **Type:** Interface

Package: Register_Interest

Table 7.197 Table 7.210 MS(224) - Methods of Interface Register_Interest_Sub

Method	Notes	Parameters
register_interest()	Register interest in the service	request_id_type request_id interest_list_type the_interest_list

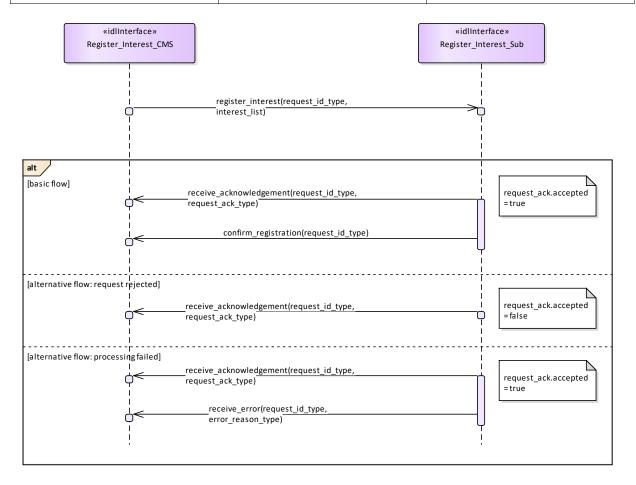


Figure 7.112 Basic Flow - Interest Registration (Interaction diagram)

7.8 Sensor_Services

Parent Package: Service_Interfaces

Contains services associated with the Sensor Domain.

7.8.1 Clutter_Reporting

Parent Package: Sensor_Services

This package contains interfaces for the Clutter Reporting service.

7.8.1.1 Provide Area with Plot Concentration

Parent Package: Clutter_Reporting

Contains operations and sequence diagrams for the Provide Area with Plot Concentration interface.

Provide Plot Concentration CMS

Type: Interface common_use_case_interface **Package:** Provide_Area_with_Plot_Concentration

The Radar provides the combat management system with the number of plots in a specific sector. The sector information consists of range, azimuth, and elevation. The number of plots observed in the region may provide an indication of high clutter.

Additional Information:

The information may be developed when requested or based on scan histories. The choice of methods depends upon radar design. The timestamp should indicate the oldest data used to create the report to allow the CMS or an operator to determine the validity of the report (i.e. day old data mixed with recent is still only as good as day old data).

Sector Information must consist of a measurement time stamp, range extents, azimuth extents, and elevation extents in platform coordinates.

For radars which report plot concentration without a CMS request, the CMS shall begin to receive reports upon registration of the Provide Plot Concentration interface.

Pre-condition: Radar in ONLINE State

Post-condition None

Table 7.198Table 7.211 MS(225] - Methods of Interface Provide_Plot_Concentration_CMS

Method	Notes	Parameters
receive_periodic_plot_concentration()	Interface used by CMS to receive periodic plot concentration reports from the subsystem.	plot_concentration_report_type plot_concentration_report
receive_plot_concentration()	Interface used by the CMS to receive a requested plot concentration report from the subsystem.	request_id_type request_id plot_concentration_report_type plot_concentratrion

Provide_Plot_Concentration_Sub

Type: Interface

Package: Provide Area with Plot Concentration

Table 7.199 Table 7.212 MS(226] - Methods of Interface Provide_Plot_Concentration_Sub

Method	Notes	Parameters
provide_plot_concentration()	Interface used by the subsystem to receive a plot concentration request from the CMS.	request_id_type request_id plot_concentration_request_data_typ e plot_request

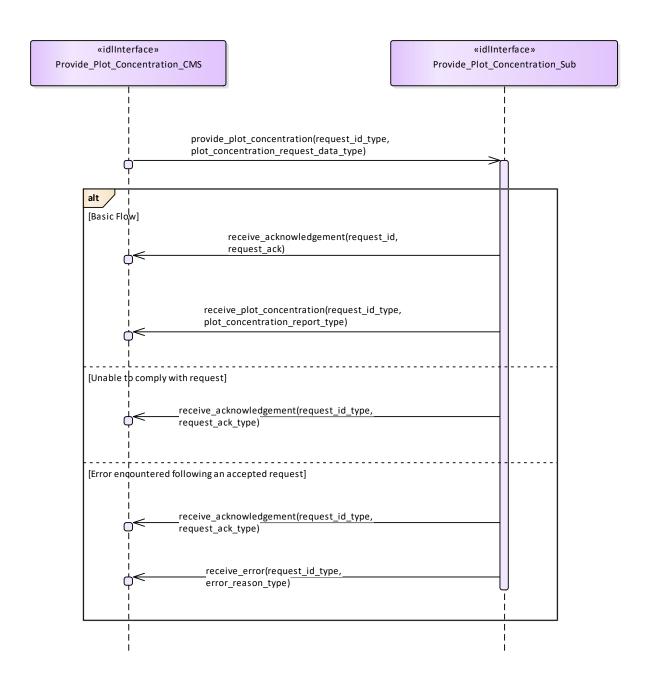


Figure 7.113 Provide Plot Concentration - Report Requested by CMS (Interaction diagram)

Flow of events which depicts a subsystem that reports plot concentration following an explicit request from the CMS (also depicts alternate rejection and error paths).

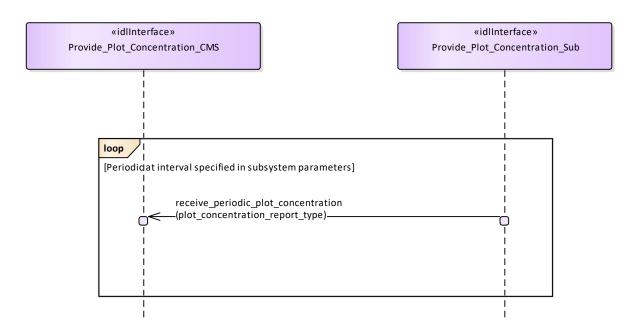


Figure 7.114 Provide Plot Concentration - Periodic (Interaction diagram)

Flow of events which depicts a subsystem that periodically reports plot concentration reports (without the need for a CMS request).

7.8.1.2 Provide Clutter Assessment

Parent Package: Clutter_Reporting

Contains operations and sequence diagrams for the Provide Clutter Assessment interface.

Provide_Clutter_Assessment_CMS

Type: Interface common_use_case_interface

Package: Provide Clutter Assessment

The radar reports visible clutter to the combat management system. The report shall include a map (collection of cells) with information on range, azimuth, elevation and intensity in platform relative coordinates. Clutter may be classified by type, Land, Sea, Weather (optional), etc.. Intensity may be indicated by linear signal-to-noise ratio (SNR), log-linear SNR, linear power received, log-linear power received (e.g. dBm, dBW), linear Radar Cross Section (square meters), or log-linear RCS (dbsm).

For radars which report clutter assessment without a CMS request, the CMS shall begin to receive reports upon registration of the Provide Clutter Assessment interface.

Pre-condition: Radar is in ONLINE State

Pre-condition: The Radar is capable of distinguishing clutter from targets.

Post-condition None

Table 7.200 Table 7.213 MS(227) - Methods of Interface Provide Clutter Assessment CMS

Method	Notes	Parameters
receive_clutter_assessment()	Interface used by the CMS to receive a requested clutter assessment report from the subsystem.	request_id_type request_id clutter_report_type clutter_report
receive_periodic_clutter_assessment()	Interface used by CMS to receive periodic clutter assessment reports from the subystem.	clutter_report_type clutter_report

Provide_Clutter_Assessment_Sub

Type: Interface

Table 7.201 Table 7.214 MS(228) - Methods of Interface Provide_Clutter_Assessment_Sub

Method	Notes	Parameters
provide_clutter_assessment()	_ ·	request_id_type request_id
	receive a clutter assessment request	clutter_assessment_request_type
	from the CMS.	clutter_request

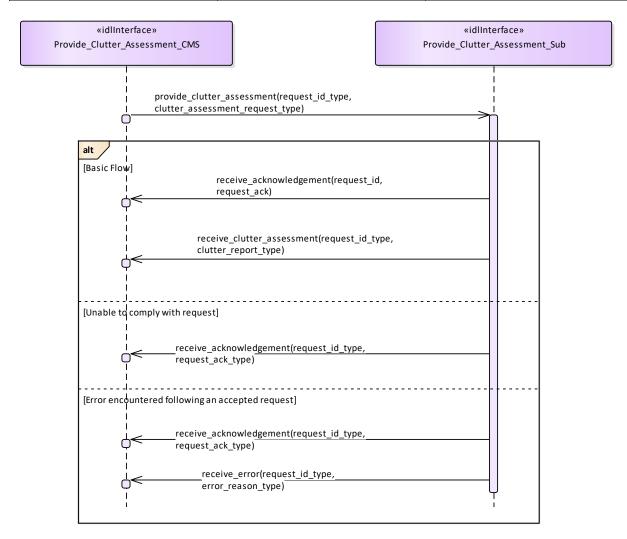


Figure 7.115 Provide Clutter Assessment (Interaction diagram)

Flow of events which depicts a subsystem that reports a clutter assessment following an explicit request from the CMS (also depicts alternate rejection and error paths).

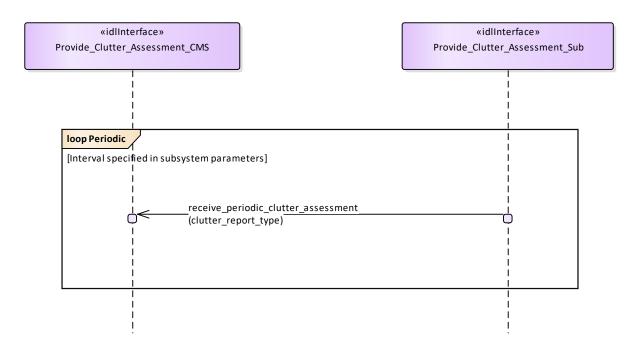


Figure 7.116 Periodic Clutter Reporting (Interaction diagram)

Flow of events which depicts a subsystem that periodically reports a clutter assessment (without the need for a CMS request).

7.8.2 Media_Streaming

Parent Package: Sensor_Services

This package contains interfaces for the Media Streaming service.

7.8.2.1 Allocate_Tracks_To_Stream Parent Package: Media_Streaming

Allocate_Tracks_To_Stream_Sub

Type: Interface

Package: Allocate_Tracks_To_Stream

Table 7.202 Table 7.215 MS(229) - Methods of Interface Allocate_Tracks_To_Stream_Sub

Method	Notes	Parameters
Add_Track_To_Stream()	A request to add the sensor's track to the specified stream.	media_stream_id_type Stream_Id sensor_track_id_type Track_Id request_id_type Request_Id
Remove_Track_From_Stream()	A request to remove the sensor's track from the specified stream.	media_stream_id_type Stream_Id sensor_track_id_type Track_Id request_id_type Request_Id
Add_All_Tracks_To_Stream()	A request to add all the sensor's tracks to the specified stream.	media_stream_id_type Stream_Id request_id_type Request_Id
Remove_All_Tracks_From_Stream()	A request to remove all the sensor's tracks from the specified stream.	media_stream_id_type Stream_Id request_id_type Request_Id

Allocate_Tracks_to_Stream_CMS

Type: Interface common_use_case_interface

Package: Allocate_Tracks_To_Stream

This service allows the CMS to receive the allocation of sensor tracks to media streams

Table 7.203 Table 7.216 MS(230) - Methods of Interface Allocate_Tracks_to_Stream_CMS

Method	Notes	Parameters
report_media_stream_allocation()	For a sensor to report on the allocation of tracks to one of its media streams	media_allocation_type allocation The allocation of sensor tracks to a media stream

Figure 7.117 Allocate_Tracks_To_Stream (Class diagram)

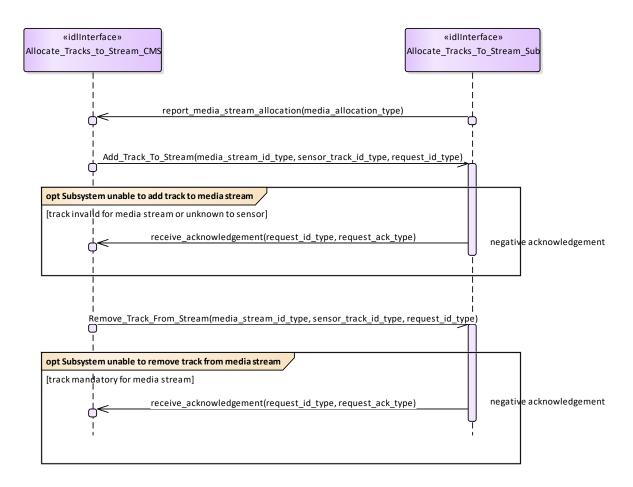


Figure 7.118 Allocate_Tracks_To_Stream - Alternate Flow (Interaction diagram)

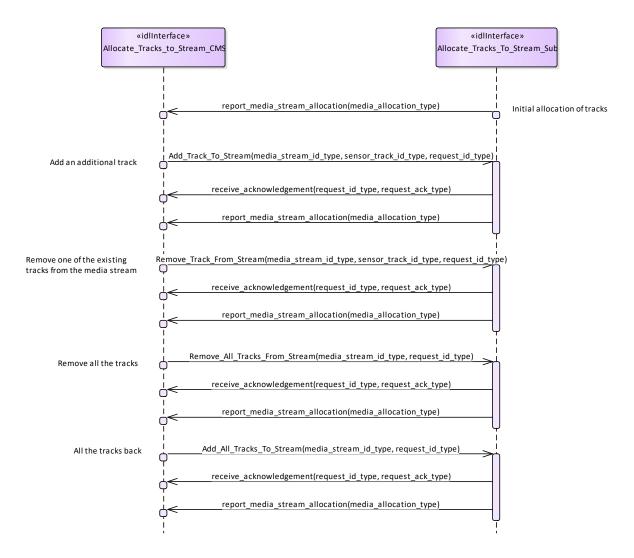


Figure 7.119 Allocate_Tracks_To_Stream - Basic Flow (Interaction diagram)

7.8.2.2 Configure_Media_Streams

Parent Package: Media_Streaming

Configure_Media_Streams_CMS

Type: Interface

Package: Configure_Media_Streams

This service allows the CMS to be informed about the configuration of media streams provided by the sensor.

Table 7.204 Table 7.217 MS(231) - Methods of Interface Configure_Media_Streams_CMS

Method	Notes	Parameters
configure_media_stream()		media_stream_metadata_type
		metadata The metadata for the
		stream

Configure_Media_Streams_Sub

Type: Interface

Package: Configure_Media_Streams

«idlInterface» Configure_Media_Streams_Sub

Figure 7.120 Configure_Media_Streams (Class diagram)

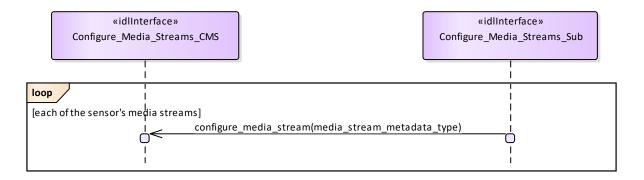


Figure 7.121 Configure_Media_Streams (Interaction diagram)

7.8.3 Search

Parent Package: Sensor_Services

This package contains interfaces for the Search service.

7.8.3.1 Perform_Cued_Search Parent Package: Search

Perform_Cued_Search_CMS

Type: Interface common_use_case_interface

Package: Perform Cued Search

The CMS Search Interface.

The subsystem is requested to undertake a cued search in the requested cue volume or to the requested track. The cue may be 1D (azimuth only), 2D (has an additional elevation constraint), 3D (has a further range constraint) or 4D (has a further target velocity constraint). The response of the subsystem is either to reject the cued search request if it is invalid within the current mode/configuration or to provide a cue request reply containing data relating to any resulting tracks.

Depending upon the individual radar it may be possible to predefine a cued search waveform

The cued search request may contain azimuth, elevation and range data along with time of the positional data.

Pre-condition: Technical State The Subsystem is in Technical State ONLINE.

Pre-condition: Mastership The CMS has Mastership

Pre-condition: Subsystem Services The Provide Subsystem Services Service has been executed

successfully.

Post-condition Success The CMS has received a 'Cued Search Report' Post-condition Failure The CMS has not received a 'Cued Search Report'

Table 7.205 Table 7.218 MS(232) - Methods of Interface Perform_Cued_Search_CMS

Method	Notes	Parameters
report_cued_search_result()	Send a report to the CMS containing the results of a previously cued search.	cued_search_report_type result_report The result of the search. request_id_type request_id The unique id relating to this cued search request as supplied by the CMS.

Perform_Cued_Search_Sub **Type:** Interface

Package: Perform_Cued_Search

The Subsystem Search Interface.

Table 7.206 Table 7.219 MS(233) - Methods of Interface Perform_Cued_Search_Sub

Method	Notes	Parameters
perform_cued_search()	Request to subsystem to perform a cued search in accordance with the given set of constraints.	cued_search_cue_type constraint The details of the constraints on where the radar is to look for tracks. request_id_type request_id The unique id for this request. The radar includes this in all replies relating to this request.
perform_cue_to_track()	Request to subsystem to perform a cue to the position of a track produced by a different subsystem.	sensor_track_id_type sensor_track_id The identifier of the track to cue to. string subsystem_name The name of the subsystem that produced the track to cue to. request_id_type request_id The unique id for this request. The radar includes this in all replies relating to this request.
perform_surveillance()		surveillance_task_type surveillance_task The surveillance task to be performed request_id_type request_id The unique id for this request. The sensor includes this in all replies relating to this request.
stop_surveillance()		request_id_type request_id The unique id for this request. The sensor includes this in all replies relating to

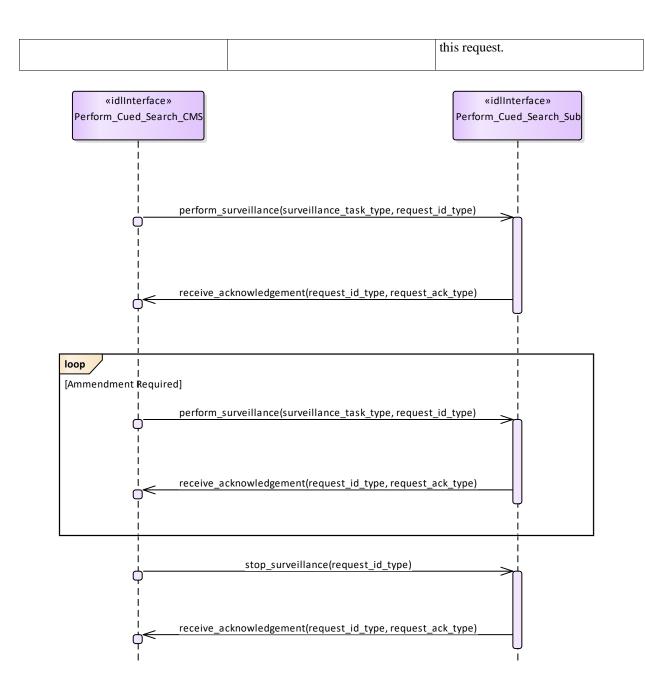


Figure 7.122 Basic Flow - Perform Surveillance (Interaction diagram)

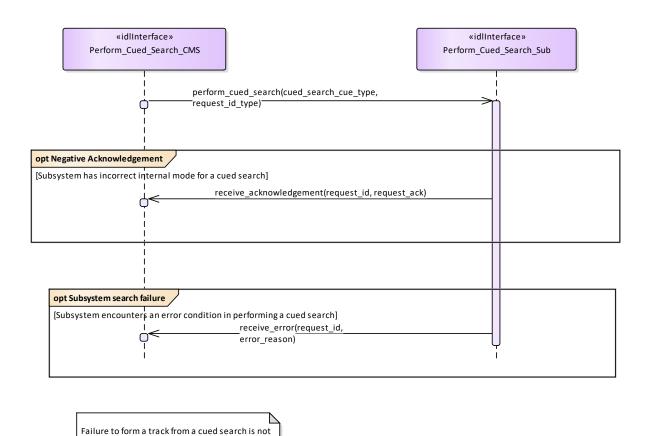
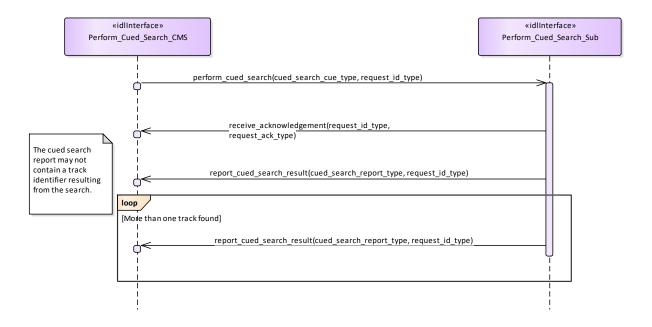



Figure 7.123 Alternative Flow - Sensor does not Perform Cued Search (Interaction diagram)

an error condition. This results in a report without a track identifier being returned.

Figure 7.124 Basic Flow - Perform Cued Search (Interaction diagram)

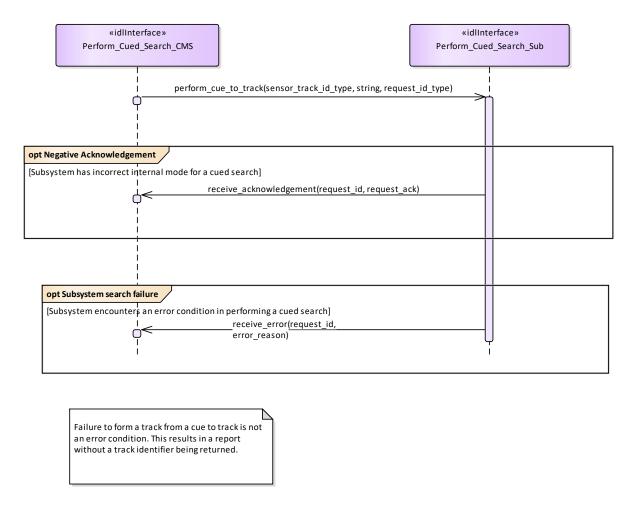


Figure 7.125 Alternative Flow - Sensor does not Perform Cued To Track (Interaction diagram)

Figure 7.126 Basic Flow - Perform Cued To Track (Interaction diagram)

7.8.4 Sensor_Assessment

Parent Package: Sensor_Services

This package contains interfaces for the Sensor Assessment service.

Figure 7.127 Sensor_Assessment (Class diagram)

7.8.4.1 Assess_Sensor_Plot

Parent Package: Sensor_Assessment

Provide_Sensor_Plot_Assessment_CMS

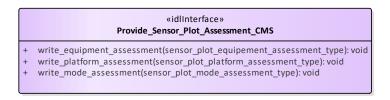
Type: Interface

Package: Assess_Sensor_Plot

The interface for a sensor to provide assessments (identification and classification) of sensor plots to the CMS. It is expected that the assessment relates to matching the plot's measurement parameters to reference data. The sensor provides a set of mode, equipment and/or platform matches relating to a particular plot (referenced by the plot id). Therefore the sensor plot must have a plot_id attribute defined.

Table 7.207 Table 7.220 [MS(234] - Methods of Interface Provide_Sensor_Plot_Assessment_CMS

Method	Notes	Parameters
write_equipment_assessment()	To report on the overall equipment assessment for a sensor plot.	sensor_plot_equipmentequipement [MS(235]_assessment_type equipment_assessment The assessment of the equipment to which the sensor track's data may correspond.
write_platform_assessment()	To report on the overall platform assessment for a sensor plot.	sensor_plot_platform_assessment_ty pe platform_assessment The assessment of the platform to which the sensor track's data may correspond.
write_mode_assessment()	To report on the overall mode assessment for a sensor plot.	sensor_plot_mode_assessment_type assessment The overall assessment of mode (of the detected equipment) for a sensor track


Provide_Sensor_Plot_Assessment_Sub

Type: Interface

Package: Assess_Sensor_Plot

The interface by which a CMS can control the sensor's assessment of the plot data. The sensor matches parametric measurements to reference data and then reports each of these sets as an assessment for

each plot for the categories of equipment modes, equipment marks (build standards / versions) and platform instances (or platform classes). The sensor also reports what it has assessed to be the best match.

«idlInterface»
Provide_Sensor_Plot_Assessment_Sub

Figure 7.128 Assess_Sensor_Plot (Class diagram)

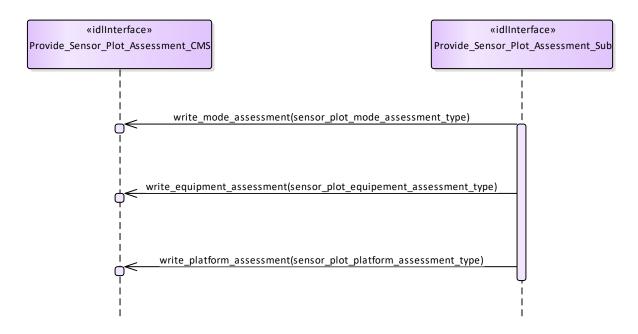


Figure 7.129 Assess_Sensor_Plot (Interaction diagram)

7.8.4.2 Assess_Sensor_Track

Parent Package: Sensor Assessment

Provide_Sensor_Track_Assessment_CMS

Type: Interface common_use_case_interface

Package: Assess_Sensor_Track

The interface for a sensor to provide assessments (identification and classification) of sensor tracks to the CMS. The sensor matches parametric measurements to reference data and then reports each of these sets as an assessment for each track for the categories of equipment modes, equipment marks (build

standards / versions) and platform instances (or platform classes). The sensor also reports what it has assessed to be the best match and the match currently selected. The currently selected match influences the attributes reported for the sensor track (including its recognition and identification).

The CMS uses the select and deselect methods to set or override the match that is selected for an assessment of a sensor track.

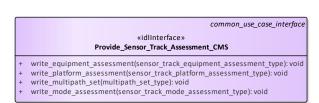
Sensors report a track to the CMS using the Track Reporting use case before providing an assessment. Assessments are only reported for tracks whilst the sensor track is in the TRACKED track state.

Table 7.208Table 7.221 MS(236] - Methods of Interface Provide_Sensor_Track_Assessment_CMS

Method	Notes	Parameters
write_equipment_assessment()	To report on the overall equipment assessment for a sensor track.	sensor_track_equipment_assessment _type equipment_assessment The assessment of the equipment to which the sensor track's data may correspond.
write_platform_assessment()	To report on the overall platform assessment for a sensor track.	sensor_track_platform_assessment_t ype platform_assessment The assessment of the platform to which the sensor track's data may correspond.
write_multipath_set()	To report on the assessment of a set of sensor track representing the same real world object through multiple paths.	multipath_set_type set
write_mode_assessment()	To report on the overall mode assessment for a sensor track.	sensor_track_mode_assessment_type assessment The overall assessment of mode (of the detected equipment) for a sensor track

Provide Sensor Track Assessment Sub

Type: Interface


Package: Assess Sensor Track

The interface by which a CMS can control the sensor's assessment of the track data.

Table 7.209 Table 7.222 MS(237) - Methods of Interface Provide_Sensor_Track_Assessment_Sub

Method	Notes	Parameters
select_equipment_assessment()	The CMS selects a particular equipment match as being the authoritative assessment for the sensor track with regard to the equipment it is a detection of. The Subsystem, thereafter reports the sensor track in accordance with this assessment.	request_id_type request_id The unique identifier of the request to select the match long match_id The identifier of the match to be selected sensor_track_id_type sensor_track_id The sensor track to which the assessment applies
select_platform_assessment()	The CMS selects a particular platform match as being the authoritative assessment for the sensor track with regard to the platform it is a detection of. The Subsystem, thereafter reports the sensor track in accordance with this	request_id_type request_id The unique identifier of the request to select the match long match_id The identifier of the match to be selected sensor_track_id_type sensor_track_id The sensor track to

	assessment.	which the assessment applies
select_mode_assessment()	The CMS selects a particular mode match as being the authoritative assessment for the sensor track with regard to the equipment mode it is a detection of. The Subsystem, thereafter reports the sensor track in accordance with this assessment.	request_id_type request_id The unique identifier of the request to select the match long match_id The identifier of the match to be selected sensor_track_id_type sensor_track_id The sensor track to which the assessment applies
deselect_equipment_assessment()	The CMS deselects equipment match as being the authoritative assessment for the sensor track with regard to the equipment it is a detection of. The Subsystem, stops reporting the sensor track in accordance with the previously selected assessment.	request_id_type request_id The unique identifier of the request to deselect matches sensor_track_id_type sensor_track_id The sensor track to which the assessment applies
deselect_platform_assessment()	The CMS deselects platform match as being the authoritative assessment for the sensor track with regard to the platform it is a detection of. The Subsystem, stops reporting the sensor track in accordance with the previously selected assessment.	request_id_type request_id The unique identifier of the request to deselect matches sensor_track_id_type sensor_track_id The sensor track to which the assessment applies
deselect_mode_assessment()	The CMS deselects mode match as being the authoritative assessment for the sensor track with regard to the equipment it is a detection of. The Subsystem, stops reporting the sensor track in accordance with the previously selected assessment.	request_id_type request_id The unique identifier of the request to deselect matches sensor_track_id_type sensor_track_id The sensor track to which the assessment applies

	«idlInterface» Provide_Sensor_Track_Assessment_Sub
+	select_equipment_assessment(request_id_type, long, sensor_track_id_type): void
+	select_platform_assessment(request_id_type, long, sensor_track_id_type): void
+	select_mode_assessment(request_id_type, long, sensor_track_id_type): void
+	deselect_equipment_assessment(request_id_type, sensor_track_id_type): void
+	deselect_platform_assessment(request_id_type, sensor_track_id_type): void
+	deselect_mode_assessment(request_id_type, sensor_track_id_type): void

Figure 7.130 Assess_Sensor_Track (Class diagram)

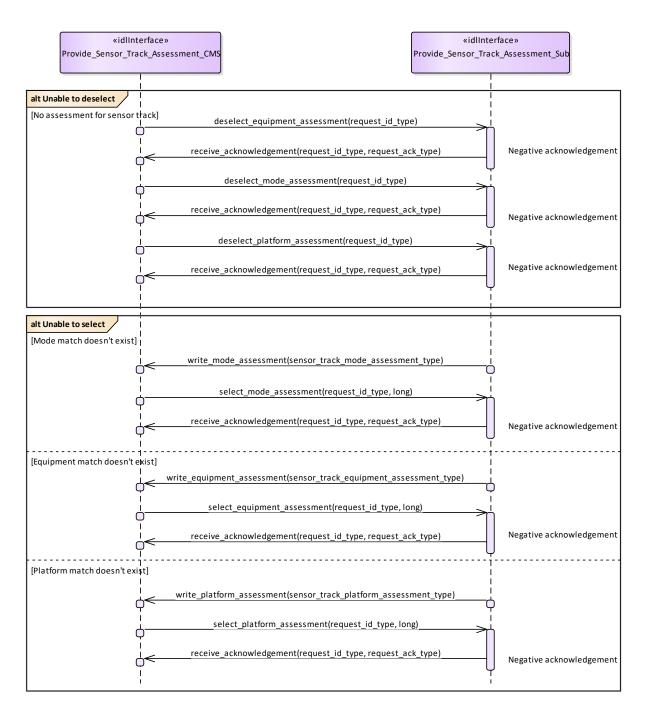


Figure 7.131 Assess_Sensor_Track - alternate flows (Interaction diagram)

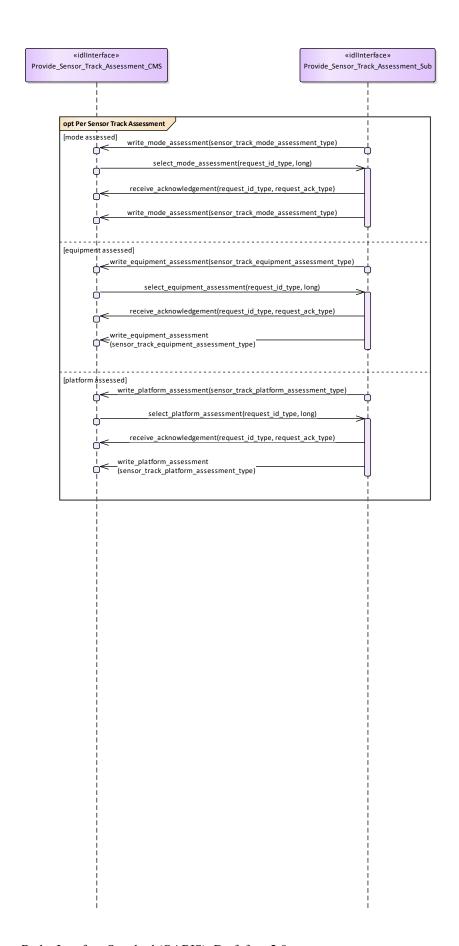


Figure 7.132 Assess_Sensor_Track - assessment and selection (Interaction diagram)

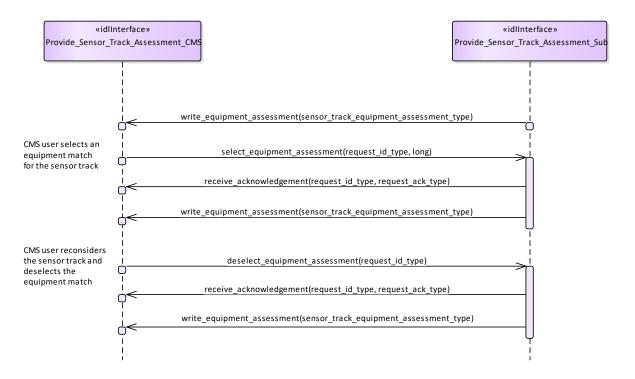


Figure 7.133 Assess_Sensor_Track - equipment deselection (Interaction diagram)

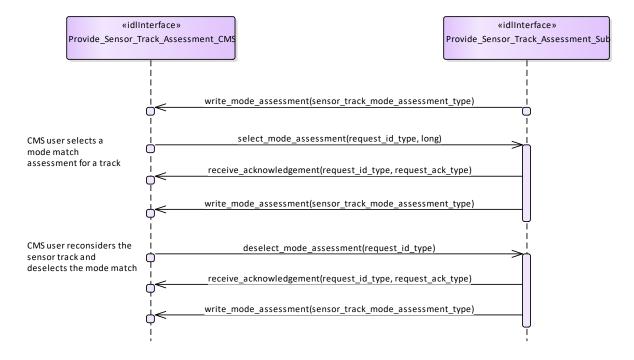


Figure 7.134 Assess_Sensor_Track - mode deselection (Interaction diagram)

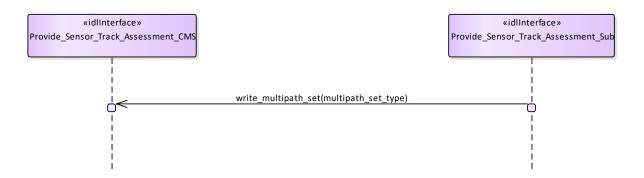


Figure 7.135 Assess_Sensor_Track - multipath (Interaction diagram)

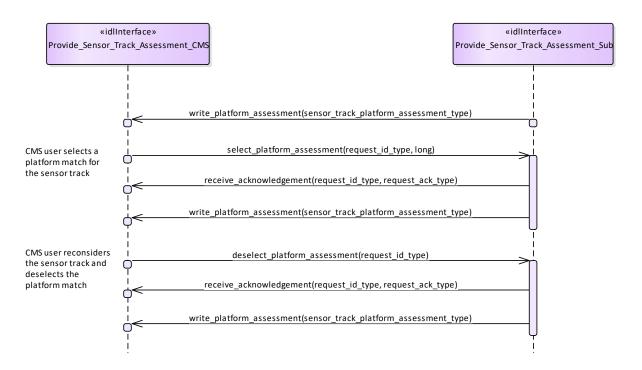


Figure 7.136 Assess_Sensor_Track - platform deselection (Interaction diagram)

7.8.5 Supplementary_Measurement

Parent Package: Sensor_Services

This package contains interfaces for the Supplementary Measurement service.

7.8.5.1 Configure_Measurement_Parameters

Parent Package: Supplementary_Measurement

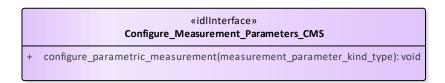
Configure Measurement Parameters CMS

Type: Interface

Package: Configure_Measurement_Parameters

The configuration of measurement parameters allows integrated systems to specify the set of measurement types for which the installed equipment has a measurement capability and semantics associated with these measurement types.

Measurement types have the potential to be classified and also the set of measurement types can be expected to grow as technology advances. Therefore the meaning of the associated identifiers are systems specific and determined from configuration data.


Table 7.210 Table 7.223 MS(238) - Methods of Interface Configure_Measurement_Parameters_CMS

Method	Notes	Parameters
configure_parametric_measurement(measurement_parameter_kind_type
)		parameter A kind of parameter
		supported by the sensor

Configure_Measurement_Parameters_Sub

Type: Interface

Package: Configure_Measurement_Parameters

«idlInterface»
Configure_Measurement_Parameters_Sub

Figure 7.137 Configure_Measurement_Parameters (Class diagram)

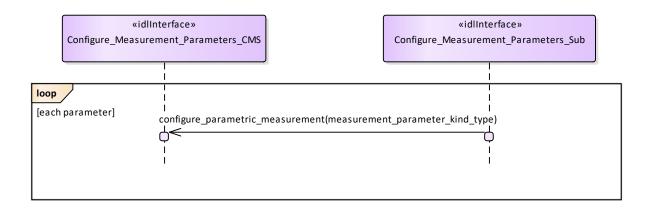


Figure 7.138 Configure_Measurement_Parameters - basic flow (Interaction diagram)

7.8.5.2 Provide_Sensor_Plot_Parameters

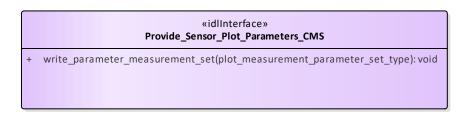
Parent Package: Supplementary_Measurement

Provide_Sensor_Plot_Parameters_CMS

Type: Interface

Package: Provide Sensor Plot Parameters

Interface for a sensor to provide its supplementary parametric data with respect to plots to the CMS. A sensor can pass a set of measurements with plot data when reporting to the CMS.


Table 7.211 Table 7.224 MS(239) - Methods of Interface Provide_Sensor_Plot_Parameters_CMS

Method	Notes	Parameters
write_parameter_measurement_set()	For the sensor to report on the measurement of a set of parameters with a plot defined by configuration data.	plot_measurement_parameter_set_ty pe parameter_set The sensor's measurement of a set of parameters

Provide_Sensor_Plot_Parameters_Sub

Type: Interface

Package: Provide_Sensor_Plot_Parameters

«idlInterface»
Provide_Sensor_Plot_Parameters_Sub

Figure 7.139 Provide_Sensor_Plot_Parameters (Class diagram)

7.8.5.3 Provide_Sensor_Track_Parameters

Parent Package: Supplementary_Measurement

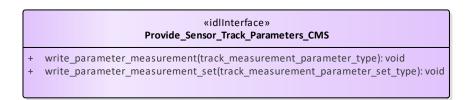
Provide_Sensor_Track_Parameters_CMS

Type: Interface

Package: Provide_Sensor_Track_Parameters

Interface for a sensor to provide its supplementary parametric data with respect to tracks to the CMS. A sensor can pass measurements to the CMS individually or as a set (relating to the same track). Sensors report a track to the CMS using the Track Reporting use case before reporting any of its supplementary measurements. Supplementary measurements are only reported for tracks whilst the sensor track is in the TRACKED track state.

Table 7.212 Table 7.225 MS(240] - Methods of Interface Provide Sensor Track Parameters CMS


		
Method	Notes	Parameters
<pre>write_parameter_measurement()</pre>	For the sensor to report on the	track_measurement_parameter_type
	measurement of an individual	parameter The sensor's

	parameter defined by configuration data.	measurement of a parameter
write_parameter_measurement_set()	For the sensor to report on the measurement of a set of parameters for a track defined by configuration data.	track_measurement_parameter_set_t ype parameter_set The sensor's measurement of a set of parameters

Provide_Sensor_Track_Parameters_Sub

Type: Interface

Package: Provide_Sensor_Track_Parameters

«idlInterface»
Provide_Sensor_Track_Parameters_Sub

Figure 7.140 Provide_Sensor_Track_Parameters (Class diagram)

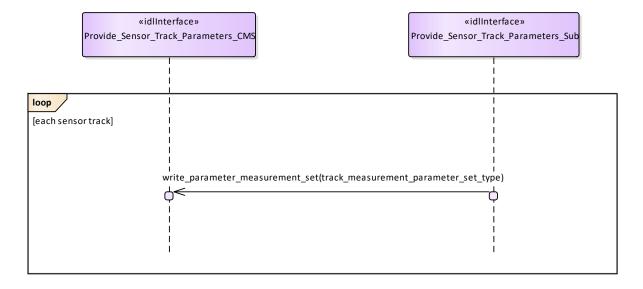


Figure 7.141 Provide_Sensor_Track_Parameters - parameter sets (Interaction diagram)

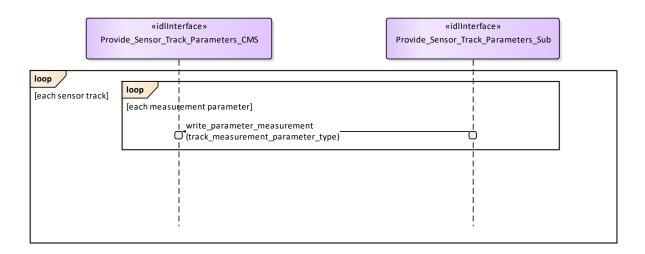


Figure 7.142 Provide_Sensor_Track_Parameters - single parameters (Interaction diagram)

7.8.6 Plot_Reporting

Parent Package: Sensor_Services

This package contains interfaces for the Plot Reporting service.

7.8.6.1 Provide Plots

Parent Package: Plot_Reporting

Provide_Plots_CMS **Type:** Interface **Package:** Provide Plots

Interface to the CMS for receiving plot updates.

This interface provides sensor plots to the CMS (filterable to air, surface, land and space environments). The transfer of data is expected to take place asynchronously, although for certain classes of sensor it may appear periodic

Pre-condition: Subsystem Services Provide Subsystem Services has successfully executed Pre-condition: Register Interest The CMS has successfully registered interest in this service

Post-condition Success CMS has received plot datastream

Table 7.213 Table 7.226 MS(241) - Methods of Interface Provide_Plots_CMS

Method	Notes	Parameters
write_sensor_plot()	This method receives a individual plot update from the sensor. It is expected to be called periodically from the sensor.	sensor_plot_type plots The set of plots
write_sensor_plot_set()	This method receives a set of one or more plot updates from the sensor. It is expected to be called periodically from the sensor.	sensor_plot_set_type plots The set of plots

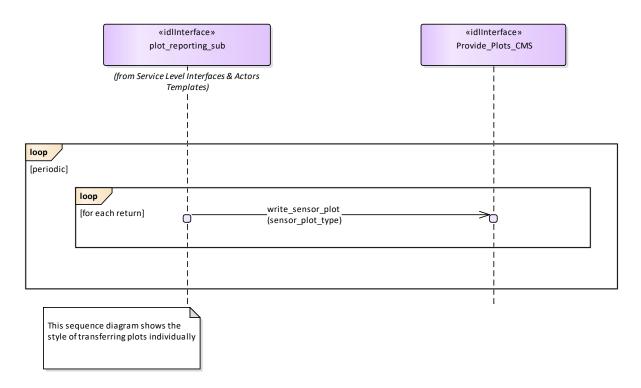


Figure 7.143 Basic Flow - Provide Plots (Individual) (Interaction diagram)

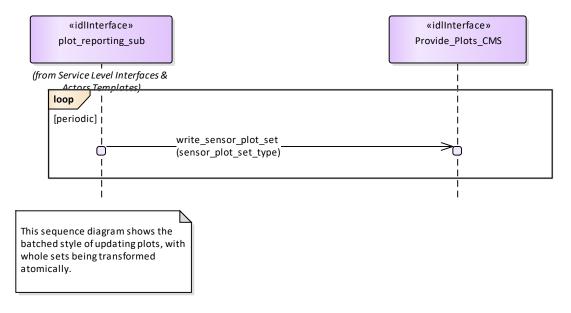


Figure 7.144 Basic Flow - Provide Plots (Sets) (Interaction diagram)

7.8.6.2 Provide_Sensor_Orientation Parent Package: Plot_Reporting

Provide_Sensor_Orientation_CMS

Type: Interface

Package: Provide_Sensor_Orientation

The interface to the CMS for receiving sensor orientation updates.

The sensor provides its orientation in the case that it has movement that is independent of that for the overall platform. It is provided periodically with a frequency defined using the manage subsystem parameters use case.

Pre-condition: Subsystem Services Provide Subsystem Services has successfully executed Pre-condition: Register Interest The CMS has successfully registered interest in this service

Post-condition Success CMS has received sensor orientation datastream

Table 7.214 Table 7.227 MS(242) - Methods of Interface Provide_Sensor_Orientation_CMS

Method	Notes	Parameters
	Informs the CMS of the orientation of the sensor	sensor_orientation_type orientation The orientation of the sensor

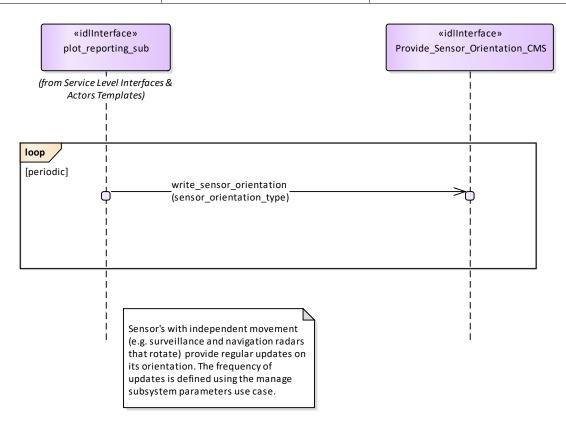


Figure 7.145 Basic Flow - Provide Sensor Orientation (Interaction diagram)

Figure 7.146 Provide_Sensor_Orientation (Class diagram)

7.8.7 Sensor_Control

Parent Package: Sensor_Services

This package contains interfaces for the Sensor Control service.

7.8.7.1 Manage_Frequency_Usage

Parent Package: Sensor Control

This package contains interfaces for the Manage Frequency Usage service.

Manage Frequency Usage CMS

Type: Interface common_use_case_interface

Package: Manage_Frequency_Usage

This controls the sensor behaviour with respect to the transmission frequency management. Basing on a discrete set of transmission frequencies offered by the sensor, CMS may disable/enable the use of a subset of them. As well CMS may select the sensor transmission mode, i.e. how the sensor shall select the transmission frequencies, among the set of transmission modes supported by the sensor.

The transmission mode defines how the sensor selects the transmission frequencies, which may be:

- Fixed Frequency: sensor always uses the same pre-selected frequency
- Frequency Diversity: at each transmission sensor selects the frequency to be used inside a preselected subset of frequencies
- Automatic Frequency Selection: at each transmission sensor selects the frequency to be used among the least jammed frequencies
- Random Agility: at each transmission sensor random selects the frequency to be used.

The availability of each of the above listed transmission modes depends on the sensor type and its capabilities (not all the sensor types support all them). Besides a transmission mode supported by the sensor may be "selectable" or "not selectable" according to the specific sensor rules and the state of transmission frequencies.

Both the set of transmission frequencies offered by the sensor and the supported transmission modes (names and characteristics) differ from sensor to sensor, so they shall be handled as configuration parameters. The sensor reports all supported frequencies whether or not currently available or enabled. Sensors cannot enable/disable the setting of the frequency usage at its own initiative, but at any time a transmission frequency could become not available because of a fault (e.g. fault of the relevant oscillator), and this could affect the effective availability of one or more sensor supported transmission modes.

Provision of the frequency usage state

Sensor shall keep CMS informed about the current availability of the frequency usage and its changes (if any).

Provision of the transmission mode

Sensor shall keep CMS informed about the currently selected transmission mode, with the relevant parameters, and its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the subsystem.

Lack of mastership

In the case where CMS does not have mastership of the sensor, CMS shall be informed about both the actual setting of the frequency usage and the actual transmission mode, with its changes (if any).

State of transmission frequencies

With respect to its operational use each sensor transmission frequency may be "enabled" or "disabled", according to the relevant setting. On the other hand, with respect to its health status, each transmission frequency may be "available" or "not available" according to the presence of faults.

Note that a transmission frequency may be effectively selectable for the sensor transmission if it is both "enabled" and not in fault.

Relationship to Manage Transmission Sectors

As well as the overall transmission mode, here specified, CMS may define sectors where a devoted transmission mode is to be applied (see *Manage Transmission Sectors*).

Pre-condition: Mastership Required CMS has mastership of the sensor.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed.

Pre-condition: Transmission Frequencies CMS knows the transmission frequencies offered by the sensor and their actual availability.

Pre-condition: Selectable Transmission modes and frequencies CMS is aware of the currently selectable transmission modes and transmission frequencies.

Post-condition Success Both the setting of the frequency usage and the sensor transmission mode are according to the request and CMS is informed that this is the case.

Post-condition No Success Both the setting of the frequency usage and the sensor transmission mode are unchanged with respect to the original one and CMS is informed that this is the case.

Table 7.215 Table 7.228 MS(243) - Methods of Interface Manage_Frequency_Usage_CMS

Method	Notes	Parameters
report_frequencies_state()	Method used by the sensor to return the current availability of the frequency usage and its changes (if any).	all_frequencies_state_type frequencies_state
report_transmission_mode_state()	Method used by the sensor to return the selected transmission mode, with the relevant parameters, and its changes (if any).	request_id_type request_id transmission_frequency_mode_type transmissionModeSetting
transmission_frequency_state_respo nse()	Method used by the sensor to return the actual setting of the frequency usage modified according to the request.	request_id_type request_id selected_frequency_list_type setting_message

Manage_Frequency_Usage_Sub

Type: Interface

Package: Manage_Frequency_Usage

This is the Subsystem interface for managing frequency usage.

Table 7.216 Table 7.229 MS(244) - Methods of Interface Manage_Frequency_Usage_Sub

Method	Notes	Parameters
set_frequencies()	Method used by the CMS to enable or disable frequency bands or discrete frequencies.	request_id_type request_id selected_frequency_list_type request
set_transmission_mode()	Method used by the CMS to select the available sensor transmission mode.	request_id_type request_id transmission_frequency_mode_type trasmissionmode

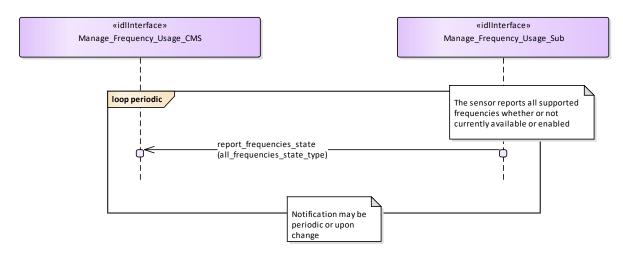


Figure 7.147 Basic Flow - Frequency Availability Change Notification (Interaction diagram)

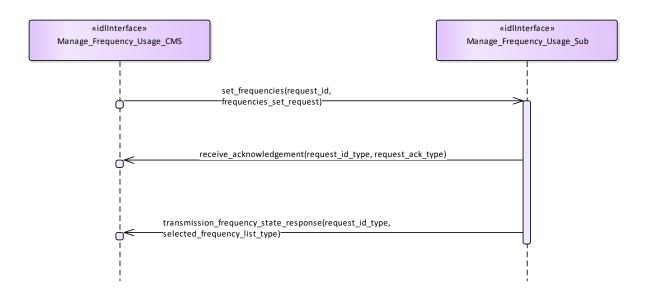


Figure 7.148 Basic Flow - Enable/Disable Frequency Usage (Interaction diagram)

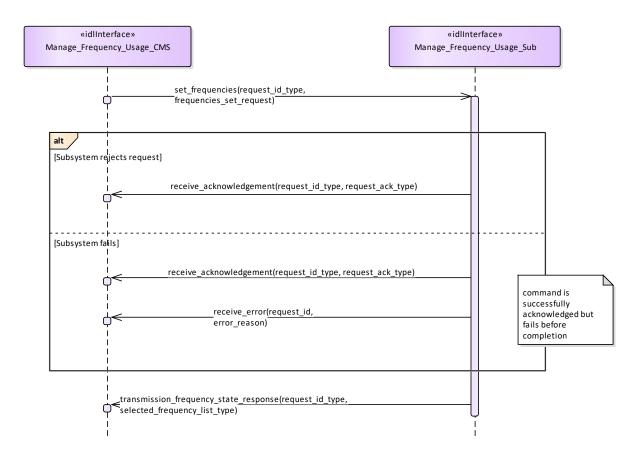


Figure 7.149 Alternative Flow - Enable/Disable Frequency Usage - loss of mastership (Interaction diagram)

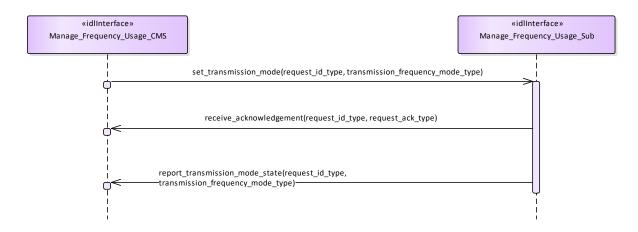


Figure 7.150 Basic Flow - Transmission Mode Selection (Interaction diagram)

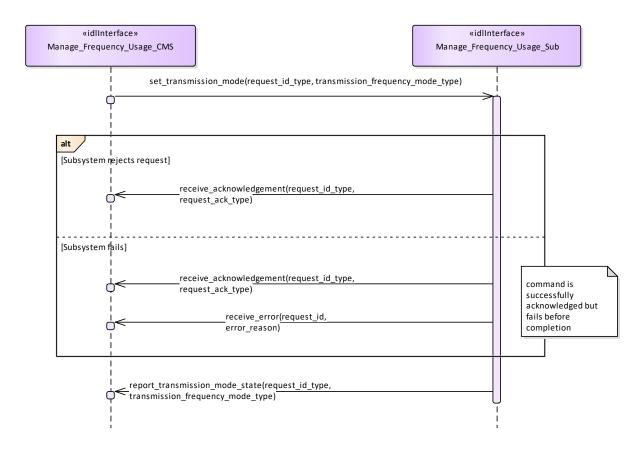


Figure 7.151 Alternative Flow - Transmission Mode Selection - loss of mastership (Interaction diagram)

7.8.7.2 Manage_Transmission_Sectors

Parent Package: Sensor_Control

This package contains interfaces for the Manage Transmission Sectors service.

Manage_Transmission_Sectors_CMS

Type: Interface common_use_case_interface

Package: Manage_Transmission_Sectors

This determines the sectors where the sensor is allowed to radiate together with the relevant transmission modes and parameters. Sectors may be delimited in azimuth only, or both in azimuth and elevation; for each sector the sensor may be requested either to no transmit at all or to apply a proper transmission mode. Typical transmission sectors types are:

Transmit Inhibit Sectors

sectors where the sensor is not allowed to radiate. Depending on the sensor type and its capabilities, such a type of sectors may be delimited in azimuth only, or both in azimuth and elevation.

Reduced Radiate Power Sectors

sectors where the sensor shall radiate at reduced power. Depending on the sensor type and its capabilities, such a type of sectors may be delimited either in azimuth only or both in azimuth and elevation.

Transmission Mode Sectors

sectors where the sensor is required to apply a devoted transmission mode (see *Manage Frequency Usage*). Depending on the sensor type and its capabilities, such a type of sectors may be delimited either in azimuth only or both in azimuth and elevation, but they may not overlap each other.

Blind Arc Sectors

sectors where the sensor is not allowed to radiate. Such a type of sectors may be delimited in azimuth only, or both in azimuth and elevation, depending on the sensor type and its capabilities. (Note: the same as "Transmit Inhibit Sectors", with the difference that sectors are defined in Ship's Reference System.)

Provision of the sensor transmission sectors setting

Sensor shall keep CMS informed about the actual setting of the transmission sectors and its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the subsystem.

Lack of mastership

In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual setting of the transmission sectors and its changes (if any).

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Transmission Sectors CMS is aware of which types of transmission sectors the sensor may manage and of their current setting.

Post-condition Success The setting of the transmission sectors has been modified according to the request and CMS is informed that this is the case.

Post-condition No Success The setting of the transmission sectors is unchanged with respect to the original one and CMS is informed that this is the case.

Table 7.217 Table 7.230 MS(245) - Methods of Interface Manage Transmission Sectors CMS

Method	Notes	Parameters
transmission_sector_setting()	Method used by the sensor to return	request_id_type request_id
	the actual setting of the transmission	transmission_sector_set_type
	sectors and its changes (if any).	setting_message

Manage_Transmission_Sectors_Sub

Type: Interface

Package: Manage_Transmission_Sectors

This is the Subsystem interface for managing transmission sectors.

Method	Notes	Parameters
set_transmission_sector()	Method used by the CMS to send a	request_id_type request_id
	set/reset transmission sector request	transmission_sector_set_type sector
	to the sensor.	

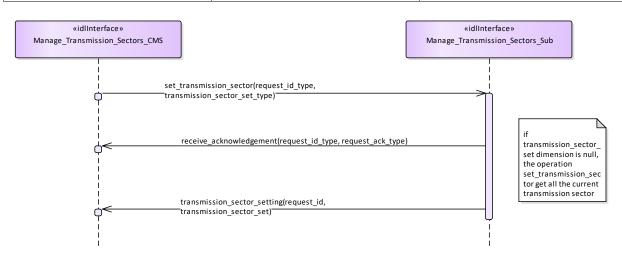


Figure 7.152 Basic Flow - Manage Transmission Sectors - Enable/Disable (Interaction diagram)

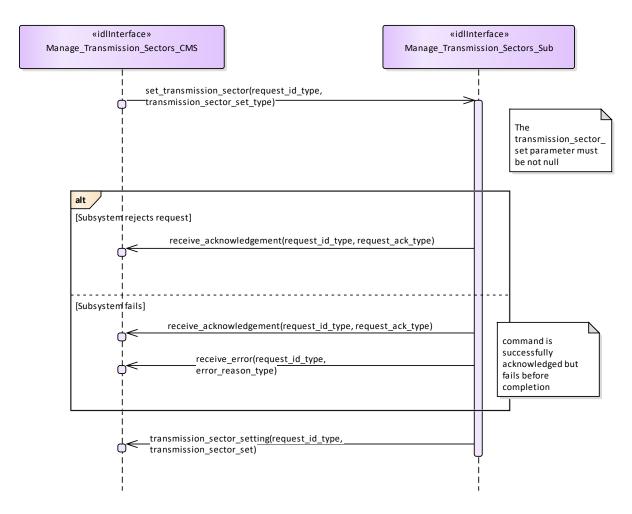


Figure 7.153 Alternative Flow - Manage Transmission Sectors - Enable/Disable - loss of masterhip (Interaction diagram)

7.8.7.3 Control Emissions

Parent Package: Sensor_Control

This package contains interfaces for the Control Emissions service.

Control_Emissions_CMS

Type: Interface common_use_case_interface

Package: Control Emissions

The sensor is requested to inhibit/enable own emissions. In the case where the sensor is a radar, this shall result in the Radiation on/off command.

Note that this interface just covers the software managed control of the emission state. For safety reasons many sensors are supplied with an additional hardware control of own emission state, such as a pushbutton directly connected to the transmitter.

Provision of the Emission state

Sensor shall keep CMS informed about the current state of emissions and its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the subsystem.

Lack of mastership

In the case where CMS does not have mastership of the sensor, CMS shall be informed about the current emissions state and its changes (if any).

Relationship to the Transmission Sectors management

As long as emissions are on, the sensor shall transmit in the sectors where transmission is allowed and according to the relevant transmission modes and parameters, as determined through *Manage Transmission Sectors*.

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Emissions State CMS is aware that actually the sensor may switch its emissions state,

e.g. both the technical state and the health state allow the sensor to switch to Radiation on, no engagement in execution to switch to Radiation off, and so on.

Post-condition Success The sensor emissions state is on/off as requested and CMS is informed that this is the case.

Post-condition No Success The sensor emissions state is still equal to the original one and CMS has the correct information regarding that state

Table 7.218 Table 7.231 MS(246) - Methods of Interface Control_Emissions_CMS

Method	Notes	Parameters
control_emission_setting()	Method used by the sensor to return the current state of emissions and its changes (if any).	request_id_type request_id control_emission_state_type emission state

Control_Emissions_Sub

Type: Interface

Package: Control_Emissions

This is the Subsystem interface for controlling emissions.

Table 7.219 Table 7.232 MS(247) - Methods of Interface Control_Emissions_Sub

Method	Notes	Parameters
set_control_emission()	Method used by the CMS to send an	
	Emissions on/off request to the	control_emission_state_type
	sensor.	control_emission_state

Figure 7.154 Basic Flow - Control Emissions - On/Off (Interaction diagram)

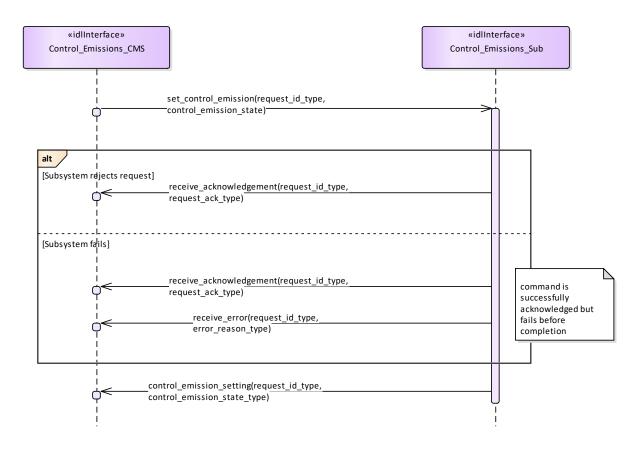


Figure 7.155 Alternative Flow - Control Emissions - On/Off - loss of masterhip (Interaction diagram)

7.8.7.4 Define_Test_Target_Scenario

Parent Package: Sensor_Control

This package contains interfaces for the Define Test Target Scenario service.

Define_Test_Target_Scenario_CMS

Type: Interface common_use_case_interface

Package: Define Test Target Scenario

This specifies the interactions for defining and modifying a test target scenario. A Test Target scenario consists of a number of Test Targets to be generated according to their characteristics (positions, motion law, generation parameters) with the purpose of producing stimuli devoted to the execution of an internal functional test of the sensor.

A number of Test Target scenarios may be maintained in a sensor internal Test Targets scenarios database, where each scenario is identified by a unique identification number. Write accesses to this database shall rejected if the sensor Mastership is not actually assigned to CMS, but the possession of the sensor Mastership is not required for executing read accesses.

The generation of the so defined Test Target scenarios may be activated as specified in *Control Test Target Facility*. For the generation mechanism see the interface *Control Test Target Facility*

One or more Test Target scenarios may be maintained in a sensor internal Test Targets scenarios database, where each scenario is identified by an unique identification number. The number of available Test Target scenarios is accessed by *Manage subsystem parameters*.

Depending on the sensor type and its capabilities, a Test Target scenario may be constituted by:

- a) a number of independent targets, with each target having own characteristic parameters; so the scenario is defined by:
- number of targets

and for each target

- the initial target position with the relevant initial time
- target parameters
- b) a number of targets distributed in a defined area/volume and having the same common parameters, so the scenario is defined by:
- number of targets
- area/volume boundaries
- · common initial time
- common targets parameters

Target parameters define:

- a. the target motion type, with the relevant motion parameters
- b. the target generation parameters, such as injection type (internal / external), attenuation law (constant / variable-with-range), doppler type (0 / PRF/2).

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Test Target Facility Test Target facility is supported by the sensor and CMS is aware of which types of Test Target the sensor may manage

Post-condition Success Write access:

The specified Test Target scenario is modified according to the request and CMS is informed that this is the case.

Read access:

The requested Test Target scenario is reported to CMS.

Post-condition No Success Write access:

The specified Test Target scenario is unchanged and CMS is informed about the denial reason.

Read access:

The requested Test Target scenario is not reported to CMS and CMS is informed about the denial reason.

Table 7.220 Table 7.233 MS(248) - Methods of Interface Define_Test_Target_Scenario_CMS

Method	Notes	Parameters
test_target_scenario_setting()	Method used by the sensor to return the identification number of the modified or created test target scenario.	request_id_type request_id test_target_scenario_id_type test_target_scenario_id
test_target_scenario_setting_all_feat ure()	Method used by the sensor to return the required test target scenario with its parameters.	request_id_type request_id test_target_scenario_type test_target_features

Define Test Target Scenario Sub

Type: Interface

Package: Define_Test_Target_Scenario

This is the Subsystem interface for defining test target scenarios.

Table 7.221 Table 7.234 MS(249) - Methods of Interface Define_Test_Target_Scenario_Sub

Method	Notes	Parameters
read_test_target_scenario()	Method used by the CMS to send to the sensor a read request of a specified Test Target scenario.	request_id_type request_id test_target_scenario_id_type test_target_scenario_id
write_test_target_scenario()	Method used by the CMS to send to the sensor a write request of a specified Test Target scenario.	request_id_type request_id test_target_scenario_type test_target_scenario

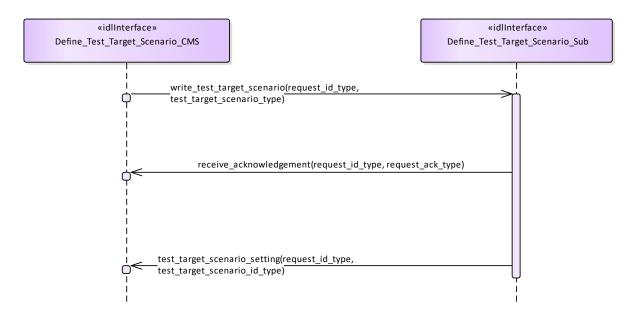


Figure 7.156 Basic Flow - Write a Target Test Target Scenario (Interaction diagram)

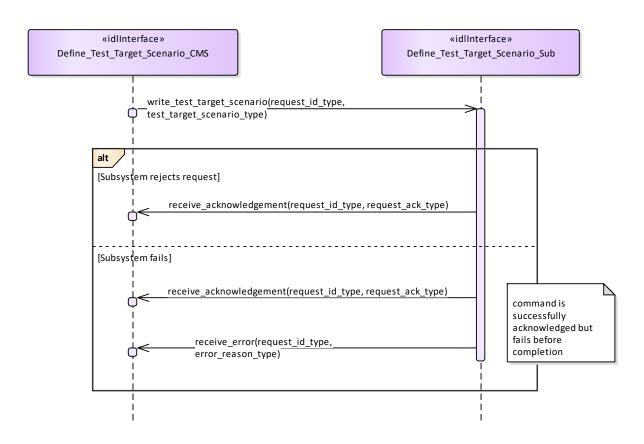


Figure 7.157 Alternative Flow - Write a Target Test Target Scenario - loss of mastership (Interaction diagram)

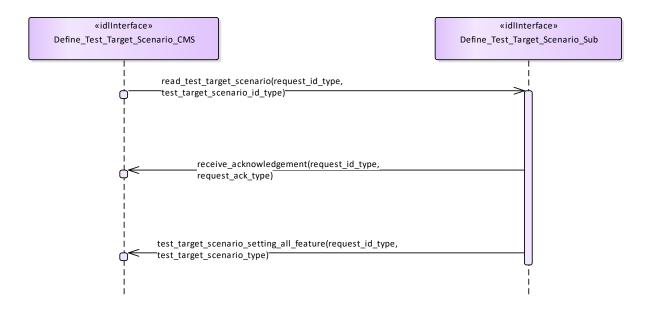


Figure 7.158 Basic Flow - Inspect a Test Target Scenario (Interaction diagram)

7.8.7.5 Test_Target_Facility

Parent Package: Sensor_Control

This package contains interfaces for the Test Target Facility service.

Test Target Facility CMS

Type: Interface common use case interface

Package: Test_Target_Facility

The sensor is requested to activate/deactivate the execution of its internal functional test and stimulation realized by means of test targets generation. A number of Test Target scenarios may be defined and modified as specified in *Define Test Target Scenario*, each scenario is identified by a proper identification. At any time no more than one Test Target scenario may be active.

Test Target generation mechanism (applicable to some sensors)

The Test Target generation consists of the injection of proper signals at different points of the receiver chain in order to produce the relevant detections in input to the RMC (Radar Management Computer); these Test Target detections are processed by the RMC as the real ones, so they shall generate one o more plots ("Test Target" plots) and tracks ("Test Target" tracks).

Such a generation mechanism is controlled by the RMC driving a devoted hardware, its purpose is to execute an on-line BITE of the complete receiver chain.

Test Target generation is executed while the radar is working in operational mode, so Test Target detections and real detections live together, forming "Test Target" plots and tracks at the same time as real plots and tracks. This implies that CMS shall receive "Test Target" plots and tracks together with real plots and tracks.

Lack of mastership

In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual state of the Test Target generation and its changes (if any).

Provision of the Test Target generation state

Sensor shall keep CMS informed about the actual state of the Test Target generation and its changes (if any).

Relationship to the subsystem health state

As long as a Test Target scenario is in generation sensor checks the relevant returns at different points of the receiver chain, up to form plots in the same positions where Test Targets have been generated. The relevant results contribute to the sensor health state.

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Test Target facility Test Target facility is supported by the sensor and CMS is aware of the current availability of the Test Target generation.

Post-condition Success The state of the Test Target generation is modified according to the request and CMS is informed that this is the case.

Post-condition No Success The state of the Test Target generation is unchanged with respect the original one and CMS is informed about the denial reason.

Table 7.222 Table 7.235 [MS(250] - Methods of Interface Test_Target_Facility_CMS

Method	Notes	Parameters
notify_test_target()	Method used by the sensor to return the actual state of the Test Target generation consistent with the request.	request_id_type request_id test_target_scenario_state_type test_target_scenario_state

Test_Target_Facility_Sub

Type: Interface

Package: Test Target Facility

This is the Subsystem interface for testing target facilities.

Method	Notes	Parameters
set_test_target_facility_state()	Method used by the CMS to send an	
	activation request of a specified Test	test_target_scenario_state_type
	Target scenario.	scenario_state

Figure 7.159 Basic Flow - Activate/Deactivate Test Target Facility (Interaction diagram)

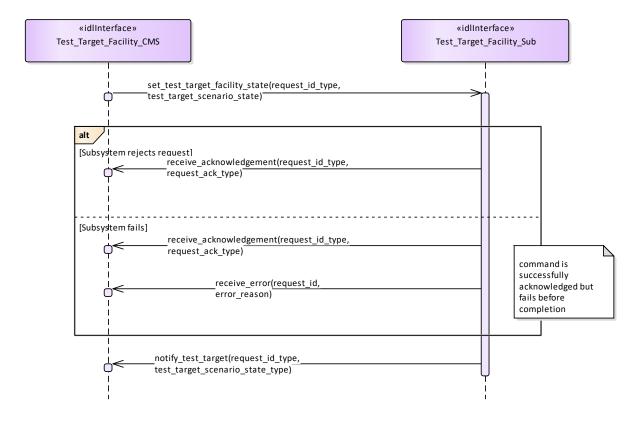


Figure 7.160 Alternative Flow - Activate/Deactivate Test Target Facility - loss of mastership (Interaction diagram)

7.8.8 Sensor Performance

Parent Package: Sensor_Services

This package contains interfaces for the Sensor Performance service.

7.8.8.1 Provide_Interference_Reports

Parent Package: Sensor Performance

Provide_Interference_Reports_CMS

Type: Interface common_use_case_interface

Package: Provide Interference Reports

This describes the process whereby the subsystem provides a set of reports on sources of interference, including jammers. The data shall, therefore, in general, be non-real-time but should, where appropriate, be time-tagged and shall be updated when any observed data changes.

The sensor need not be radiating but shall at least be receiving. The subsystem VOI (volume of interest) or other filter mechanisms might be supplied in a request to the subsystem

For a nominal effect assessment, the request might contain data on number, strength/Effective Radiated Power (ERP), type and deployment of jammers and other interferers affecting radar operations. For example, for each interferer

- Sensor time-tag
- Interference type active noise, self-screening jammer, standoff jammer etc
- Strength/Effective Radiated Power
- Locations strobes etc.
- Affected sectors
- Frequency bands affected

Pre-condition: Technical State The subsystem is in technical state ONLINE.

Pre-condition: Subsystem Services The Provide Subsystem Services Service has been completed

successfully

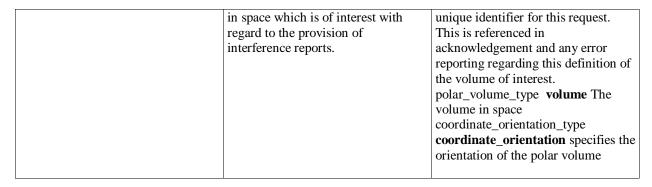
Pre-condition: Register Interest The Register Interest Service has been executed successfully to

register interest in Interference Reports.

Post-condition Success The CMS has received Interference Reports Post-condition Failure The CMS receives no Interference Reports

Table 7.223 Table 7.236 MS(251] - Methods of Interface Provide_Interference_Reports_CMS

Method	Notes	Parameters
interference_report_response()	Provides an updated set of interference reports to the CMS.	request_id_type request_id interference_report_type interference_report The report on interference
interference_report_periodic()	Provides an updated set of interference reports to the CMS.	interference_report_type interference_report The report on interference


Provide_Interference_Reports_Sub

Type: Interface

Package: Provide_Interference_Reports

Table 7.224Table 7.237MS(252) - Methods of Interface Provide_Interference_Reports_Sub

Method	Notes	Parameters
volume for interference reports()	This allows definition of the volume	request id type request id The

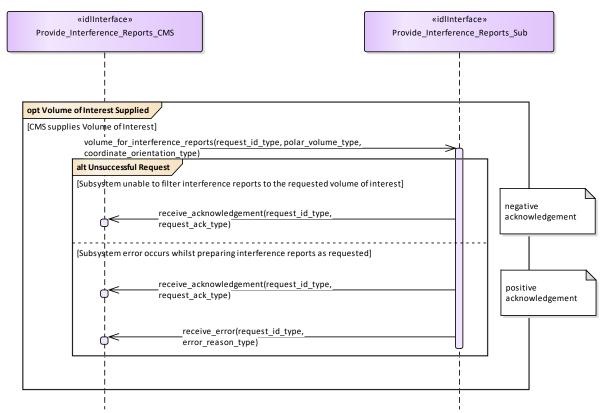


Figure 7.161 Alternative Flow - Provide Interference Reports (Interaction diagram)



Figure 7.162 Basic Flow - Provide Interference Reports (Interaction diagram)

7.8.8.2 Provide Nominal Performance

Parent Package: Sensor Performance

Provide_Nominal_Performance_CMS

Type: Interface common use case interface

Package: Provide_Nominal_Performance

This is incremental to *Register Interest*, which deals with the subscription to subsystem functions. It provides an indication of the expected performance of the available subsystem services such as those presented in Provide Subsystem Services, based upon the current environmental conditions (See Receive Meteorological Data - METOC).

The subsystem need not be radiating to provide this assessment. This interface is more targeted towards a subsystem such as the complex MFR than the 2D surveillance radar. The most basic example of performance would be reporting of the nominal coverage, in elevation, azimuth and range, given an assumed operating regime with no jamming and with default clutter conditions. Other examples might be that the actor requests the probability of detection for a specified target type or perhaps the probability of correct automatic classification of such a target within a specified sector of coverage under current environmental conditions.

Pre-condition: Technical State The Subsystem is in the Technical State ONLINE.

Pre-condition: Subsystem Services The Provide Subsystem Services Service has been executed

successfully.

Post-condition Success The CMS is aware of the Nominal Performance of the Subsystem Post-condition Failure The CMS is not aware of the Nominal Performance of the Subsystem

Method	Notes	Parameters
nominal_performance_response()	The subsystem responds to the previous nominal performance request with its determination of the requested aspect of nominal performance.	request_id_type request_id The unique id from the request performance_assessment_report_typ e report The report on nominal performance

Provide_Nominal_Performance_Sub

Type: Interface

Package: Provide_Nominal_Performance

Subsystem interface for provision of nominal performance assessment.

Table 7.225 Table 7.238 MS(253] - Methods of Interface Provide_Nominal_Performance_Sub

Method	Notes	Parameters
nominal_performance_request()	The CMS requests nominal performance of the subsystem in the current environmental conditions. The aspect of performance requested is a parameter of the request.	request_id_type request_id The unique id which identifies this request. It is used to mark replies from the sensor relating to this request. performance_assessment_request_ty pe request The details of the performance request

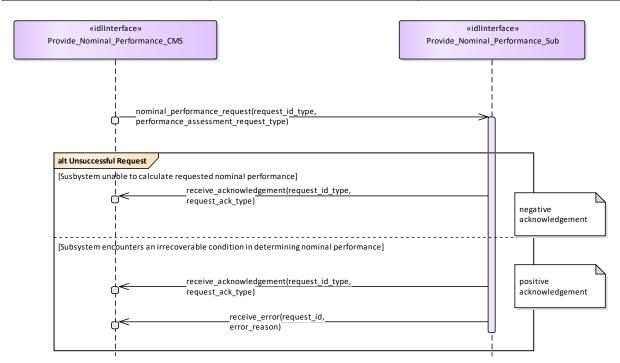


Figure 7.163 Alternative Flow - Provide Nominal Performance (Interaction diagram)

Figure 7.164 Basic Flow - Provide Nominal Performance (Interaction diagram)

7.8.8.3 Provide_Performance_Assessment

Parent Package: Sensor_Performance

Provide_Performance_Assessment_CMS

Type: Interface common_use_case_interface **Package:** Provide_Performance_Assessment

This is incremental to *Register Interest*, which deals with the subscription to subsystem functions and *Provide Nominal Performance* which provides the subsystem nominal performance. This interface reports the real-time performance of the available subsystem functions against the goals of the mission. The reported performance is that currently being attained by the subsystem subject to the current operating regime and environmental conditions, including any clutter and jamming and taking account of any mitigation/cancellation of such effects by the subsystem.

This interface is aimed at a subsystem such as an MFR radar. Information is provided to the Command function allowing decisions to be made on the achieved performance, which is often considerably different to the anticipated performance level as reported through the Provide Nominal Performance Service. The most basic example of performance would be reporting of the radar coverage, in elevation, azimuth and range, for the current operating regime and environmental conditions. This would take account of any clutter and jamming present. Other examples might be that the actor requests the probability of detection for a specified target type or perhaps the probability of correct automatic classification of such a target within a specified range under current environmental conditions N.B. if the radar is operating in an appropriate mode then real-time clutter and/or jamming data might be available to the radar subsystem. Otherwise the actor would have to supply any known data to the subsystem for performance assessment (see Receive Encyclopaedic Data and Receive Geographic Information). If no environmental data is specified then the design performance would be reported.

Pre-condition: Technical State The Subsystem is in the technical state ONLINE.

Pre-condition: Subsystem Services The Provide Subsystem Services Service has completed

successfully.

Post-condition Success The CMS is aware of the assessed performance of the subsystem Post-condition Failure The CMS is not aware of the assessed performance of the subsystem

Table 7.226Table 7.239 MS(254) - Methods of Interface Provide Performance Assessment CMS

Method	Notes	Parameters
performance_assessment_response()	The subsystem responds to the	request_id_type request_id The
	previous performance assessment	unique identifier for this assessment.
	request with its assessment of the	This identifier is supplied by the
	requested aspect of actual	CMS when the assessment is
	performance.	requested.
		performance_assessment_report_typ

e performance_assessment The details of the assessment	

Provide_Performance_Assessment_Sub

Type: Interface

Package: Provide_Performance_Assessment

Subsystem interface for provision of current performance assessment.

Note that the coordinates are always polar for this service and that the origin is always the sensor reference point as per the coordinates and positions package.

Table 7.227 Table 7.240 MS(255) - Methods of Interface Provide_Performance_Assessment_Sub

Method	Notes	Parameters
performance_assessment_request()	The CMS requests assessment of actual performance of the subsystem. The aspect of performance requested is a parameter of the request.	request_id_type request_id The unique identifier for this assessment. This identifier is contained in all related replies from the sensor. performance_assessment_request_ty pe request Details of the assessment

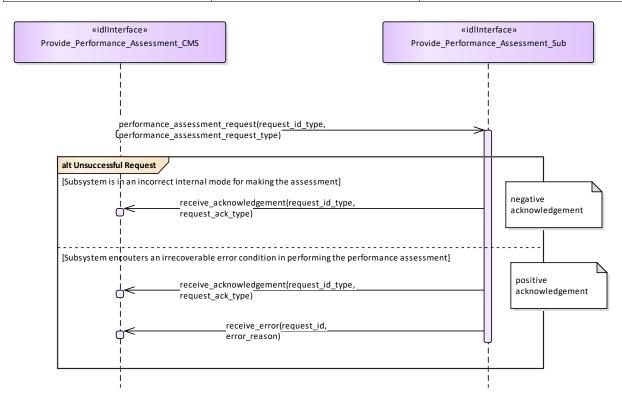


Figure 7.165 Alternate Flow - Provide_Performance_Assessment (Interaction diagram)

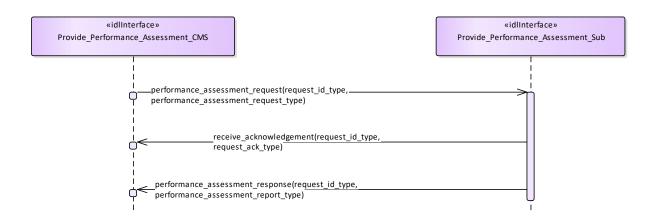


Figure 7.166 Basic Flow - Provide Performance Assessment (Interaction diagram)

7.8.8.4 Provide Jammer Assessment

Parent Package: Sensor_Performance

Provide_Jammer_Assessment_CMS

Type: Interface common_use_case_interface

Package: Provide_Jammer_Assessment

This interface describes the process whereby the subsystem provides a periodic assessment of the effects of actual jamming on the detection and tracking performance of the subsystem. The actual subsystem performance vs the nominal (see Provide Nominal Performance) shall be reported so that this data is current and real-time. This should include the effects on (spatial) coverage caused by any jamming. The impact on frequencies used e.g. operating band limitations is dealt with in Provide Interference Reports

Mastership is not required.

The radar need not be radiating in the ONLINE state but shall at least be receiving. The subsystem VOI (volume of interest) or other filter mechanisms might be supplied in a request to the subsystem. The kind of information which could be provided in the returned assessment, depending on any jamming mitigation strategy (frequency agility, moving target indication, low side-lobe levels, main beam or side-lobe cancellation, side-lobe blanking etc.) might then include:

- Noise floor pre-/post-jammer cancellation, as applicable
- Degradation in detectability (compared with the nominal)

Pre-condition: Technical State The subsystem is in the technical state ONLINE

Pre-condition: Subsystem Services The Provide Subsystem Services Service has been successfully

executed

Pre-condition: Register Interest The Register Interest Service has completed successfully.

Post-condition Success CMS has received Jamming Effect Assessments

Post-condition No Success The CMS has not received Jamming Effect Assessments.

Table 7.228 Table 7.241 MS(256] - Methods of Interface Provide_Jammer_Assessment_CMS

Method	Notes	Parameters
jammer_assessment_response()		request_id_type request_id performance_assessment_report_typ e report
		o Topozo

Provide Jammer Assessment Sub

Type: Interface

Package: Provide_Jammer_Assessment

Table 7.229 Table 7.242 MS(257] - Methods of Interface Provide_Jammer_Assessment_Sub

Method	Notes	Parameters
jammer_assessment_request()		request_id_type request_id
		performance_assessment_request_ty
		pe jammer_assessment_request

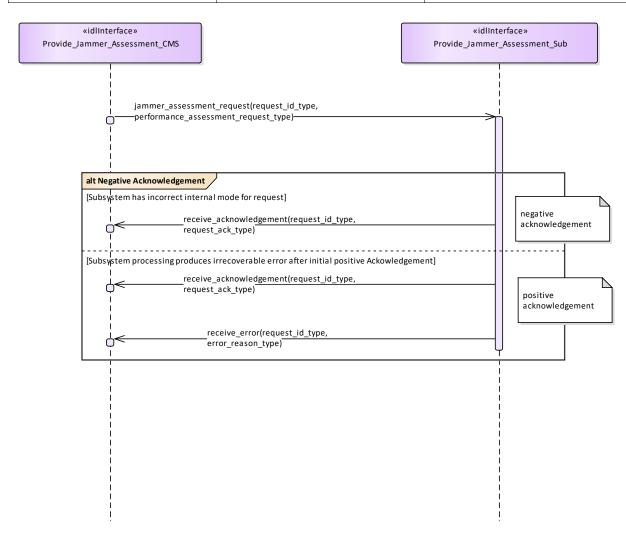


Figure 7.167 Alternate Flow - Provide Jammer Assessment (Interaction diagram)

Figure 7.168 Basic Flow - Provide Jammer Assessment (Interaction diagram)

7.8.9 Track_Reporting

Parent Package: Sensor_Services

This package contains interfaces for the Track Reporting service.

7.8.9.1 Provide_Sensor_Tracks

Parent Package: Track_Reporting

Provide_Sensor_Tracks_CMS

Type: Interface common use case interface

Package: Provide_Sensor_Tracks

This service allows the CMS to obtain an overview of (real and/or simulated) air / land / space / surface objects observed or simulated. Information may cover all aspects of a track such as kinematic and amplifying information.

The service does not cover:

- additional track information provision dedicated for engagement support,
- special search functions such as cued search, volume search and horizon search (however, if such a search function is initiated by means of another service, the tracks shall be provided by this service),

Although the service focuses on radar as an example of a sensor, the service also applies to other sensors, like IR/EO sensors and ECM/ESM sensors.

The actor is the Combat Management System.

The service starts when:

- if the service does provide registration capabilities: the service "Register interest" has completed successfully, or
- if the service does not provide registration capabilities: the service "Provide subsystem services" has completed successfully for this service.

The sensor provides, periodically or on event, a set of sensor tracks observed by the sensor. These may be sensor point or bearing tracks. The set of sensor tracks includes:

- Track updates of existing and new sensor tracks. These are provided when there are sufficient
 measurements (e.g. plots) in the last observation cycle, which may be associated with the sensor
 track.
- Dead-reckoned tracks. These are sensor track updates for which in the last observation cycle there

are no measurements that may be associated with the sensor track. For dead-reckoned tracks, the sensor track information (e.g. kinematics) is extrapolated. The dead-reckoned tracks may become "normal" tracks again if, in the next scan, there are measurement(s) that may be associated with the track. Alternatively, dead-reckoned tracks (after n unsuccessful scans) may become lost tracks.

• Lost tracks. These are sensor track updates that are reported once, if in the last n scans, there are no measurements that may be associated with the sensor track. The value of n is typically a sensor parameter that is managed by the service "Manage subsystem parameters".

Some sensors are not capable of reporting lost and/or dead-reckoned tracks.

The sensor may also provide single sensor tracks periodically or on event.

The service ends with success when:

- if the service does provide registration capabilities: the service "Register interest" has completed successfully for a deregistration request, or
- if the service does not provide registration capabilities: the sensor is shutdown using service "Shut down".

Pre-condition: Sensor health state The sensor and the service need to be in the health state AVAILABLE or DEGRADED

Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies, transmission sectors) need to be set¹.

Table 7.230 Table 7.243 MS(258) - Methods of Interface Provide_Sensor_Tracks_CMS

Method	Notes	Parameters
write_sensor_track()	The method represents a write of a single sensor track (air, land, space or surface) to the CMS. The write may be periodic or not. MethodTag: ea_guid = {674682AC-3306 4567 8E2C-7A9C428EAA34}[MS(259]	sensor_track_type the_sensor_track
write_sensor_track_set()	The method represents a single write of a set of sensor tracks to the CMS. The write may be: - periodic or not - include all tracks observed during a sensor scan - be an update of just one track (a set of 1) if this is how the sensor works	sensor_track_set_type the_track_set
delete_sensor_track()	The method represents a deletion of a single sensor track (air, land, space or surface) to the CMS. After a deletion, no further writes for that sensor track instance are made. Subsystems may subsequently use the same sensor track id to denote another sensor track instance possibly after a 'cooling off period'. Such behavior is implementation specific.	sensor_track_id_type_the_sensor_track_id[MS(260]

Provide_Sensor_Tracks_Sub

¹ The manner in which this is done is described in other services of the OARIS ("Manage frequency usage", "Manage transmission sectors", "Control emissions" and "Manage subsystem parameters").

Type: Interface

Package: Provide_Sensor_Tracks

Table 7.231 Table 7.244 MS(261) - Methods of Interface Provide_Sensor_Tracks_Sub

Method	Notes	Parameters
prioritize_track()	CMS requests the subsystem to report the referenced sensor track with the stated priority. MethodTag: ea_guid = [47B331AA-50E2-4afd-B7C3-86E27DADFB75] [MS(262]	request_id_type request_id sensor_track_id_type sensor_track_id track_priority_type priority
remove_track_priority()	The CMS requests the subsystem to report the track with the default priority for that subsystem. MethodTag: ea_guid = {0FD4DA0F 644B 4128 A064-5888E3B04FF8} MS(263]	request_id_type request_id sensor_track_id_type sensor_track_id

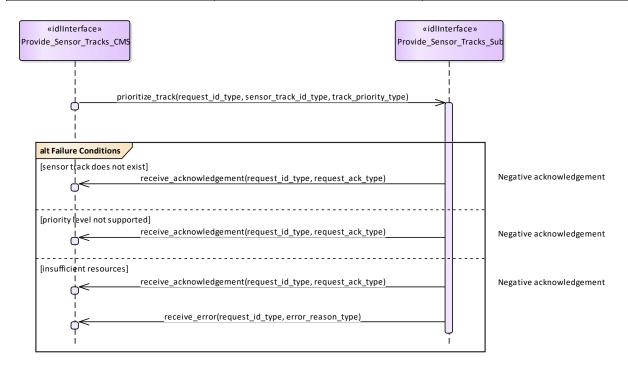


Figure 7.169 Alternative Flow - Track Prioritization (Interaction diagram)

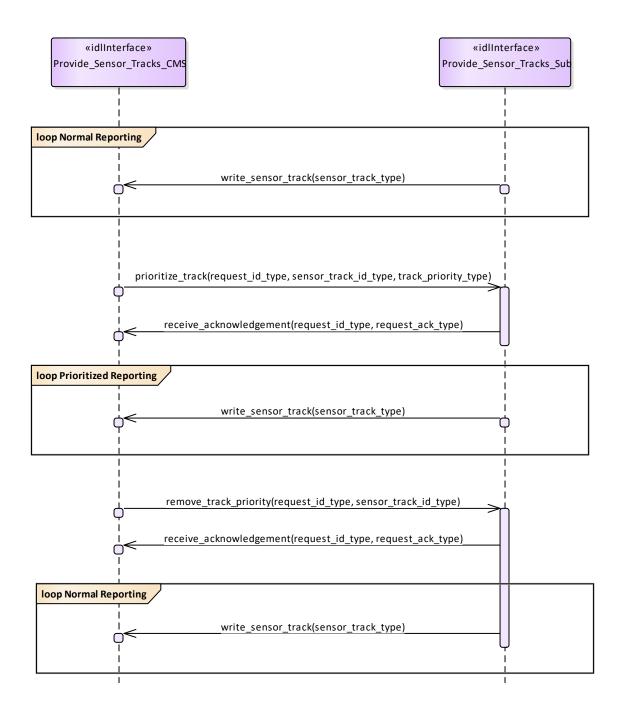


Figure 7.170 Basic Flow - Change Priority (Interaction diagram)

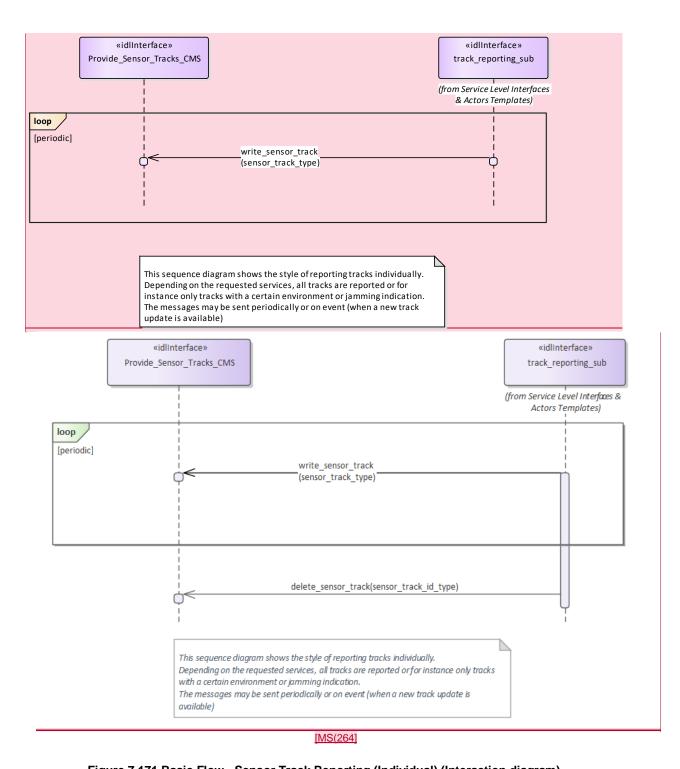


Figure 7.171 Basic Flow - Sensor Track Reporting (Individual) (Interaction diagram)

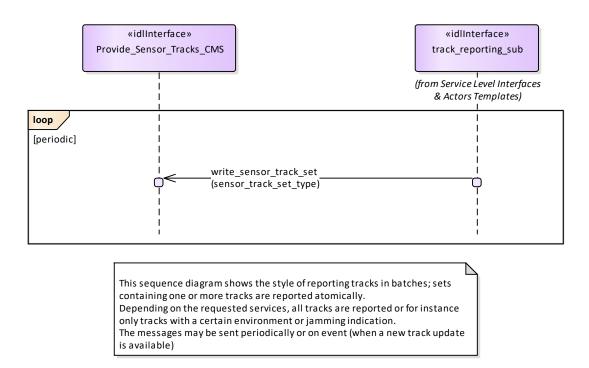


Figure 7.172 Basic Flow - Sensor Track Reporting (Sets) (Interaction diagram)

7.8.10 Tracking_Control

Parent Package: Sensor Services

This package contains interfaces for the Tracking Control service.

7.8.10.1 Delete_Sensor_Track

Parent Package: Tracking_Control

This package contains interfaces for the Delete Sensor Track service.

Delete Sensor Track CMS

Type: Interface common_use_case_interface

Package: Delete_Sensor_Track

The sensor is requested to remove a specified track from its internal Track Data Base; obviously the deleted track may come back (with another track identification number) within a few seconds if it was a living track.

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Tracking capability Tracking capability is supported by the sensor, and CMS is aware that actually the sensor may delete that track

Post-condition Success CMS is informed of the successful deletion of the required track, and the next track reporting shall no contain the deleted track. Obviously the deleted track may come back within a few seconds if it was a living target, but with another identification number.

Post-condition No Success CMS is informed of the request rejection and of the denial reason. No impact on the sensor track management evolution.

Delete_Sensor_Track_Sub **Type:** Interface

Package: Delete_Sensor_Track

This is the Subsystem interface for deleting sensor tracks.

Table 7.232 Table 7.245 MS(265) - Methods of Interface Delete_Sensor_Track_Sub

Method	Notes	Parameters
delete_track()	Method used by the CMS to send a	sensor_track_id_type trackId
	track deletion request, specifying the identification number of the track to	request_id_type request_id
	be deleted.	

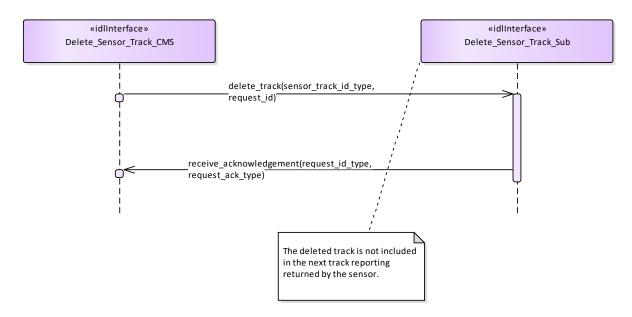


Figure 7.173 Basic Flow - Delete Sensor Track (Interaction diagram)



Figure 7.174 Alternative Flow - Delete Sensor Track (Interaction diagram)

7.8.10.2 **Receive Track Information**

Tracking_Control Parent Package:

This package contains interfaces for the Receive Track Information service.

Receive Track Information CMS

Type: Interface common use case interface

Package: Receive Track Information

CMS may provide information belonging to a sensor track in order to enable for a coordinated presentation of the sensor track both on CMS consoles and a dedicated radar console. The track information which may be supplied are:

- 1. External track identification number
- 2. Additional Information this is not specified as part of the interface, candidate information includes:
- Track type
- Track priority
- Track Identification Category Assigned (Pending, Friend, Assumed Friend, Neutral, Unknown, Suspect, Hostile)

Track identities management

Each sensor track shall have an "Internal Track Identification Number" and may one or more additional "External Track Identification Numbers". The former shall be assigned by the sensor when the track is formed and, as long as the track is alive, it cannot changed for any reason. The latter shall be set to "none" when the track is formed and then overwritten, during the track life, to report the track identity/ies externally assigned to the track.

All track identification numbers shall be reported together with the track data, but the track identification shall be made through the "Internal Track Identification Number".

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Tracking capability Tracking capability is supported by the sensor, and CMS is aware that actually the sensor may manage that track

Pre-condition: Technical State Sensor is working in Operational Success CMS is informed of the successful execution of the request, and the next track reporting shall contain the identified track with the provided information.

Post-condition No Success CMS is informed of the request rejection and of the denial reason. No impact on the sensor track management evolution.

Receive_Track_Information_Sub

Type: Interface

Receive_Track_Information Package:

This is the Subsystem interface for receiving track information.

Table 7.233 Table 7.246 MS(266) - Methods of Interface Receive Track Information Sub

Method	Notes	Parameters
insert_info_track()	Method used by the CMS to send a receive track information request, specifying the track identification number and related track information.	request_id_type request_id sensor_track_id_type trackId track_info_type trackInfo

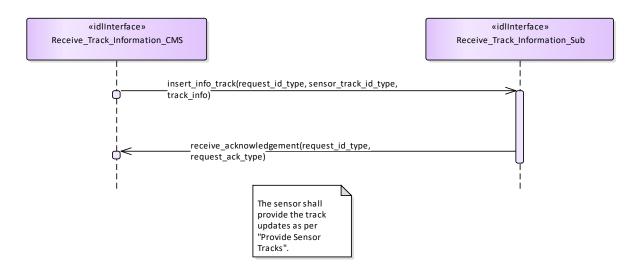


Figure 7.175 Basic Flow - Receive Track Information (Interaction diagram)

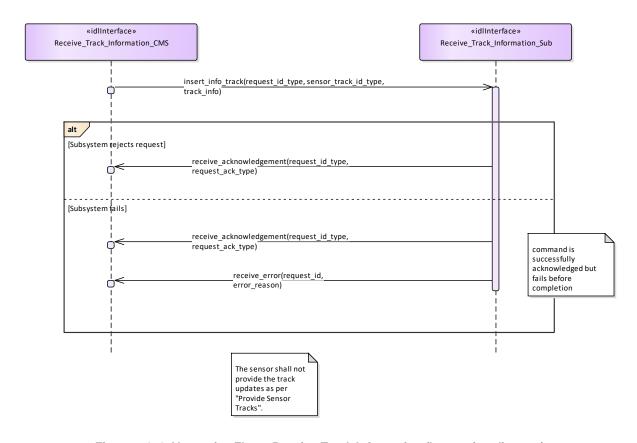


Figure 7.176 Alternative Flow - Receive Track Information (Interaction diagram)

7.8.10.3 Initiate_Track

Parent Package: Tracking_Control

This package contains interfaces for the Initiate Track service. Initiate_Track_CMS

Type: Interface common_use_case_interface

Package: Initiate Track

The sensor is requested to start tracking on a new target based on given information, such as positional data and additionally also kinematic data. Sensor replies indicating the request acceptance or rejection. If accepted, the initiation of a new track shall be attempted as required, and the relevant result shall be reported later through an "externally designated track initiation report" containing the identification number of the resulting track (if any).

Additional Information

Data reported in the "externally designated track initiation request"

The provided information depends on the sensor type and its capabilities, typically they are:

- Identification number of the designation (mandatory)
- Position and time (mandatory)
- Accuracy of the provided positional data (optional)
- Velocity and relevant accuracy (optional)
- Track characteristics (optional)

Data reported in the "externally designated track initiation report"

The purpose is this report is to inform CMS about the final result of the track initiation request, i.e. it reports to CMS if the track has been successfully initiated or not, and (in case of success) the identification number of the new formed track.

The provided information depends on the sensor type and its capabilities, typically they are:

- Identification number of the designation (mandatory)
- Initiation result (mandatory)
- Identification number of the initiated track, if any (mandatory)
- other info (optional).

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Post-condition Success The setting of the tracking zones has been modified according to the request and CMS is informed that this is the case.

Post-condition No Success The setting of the tracking zones is unchanged with respect to the original one and CMS is informed that this is the case.

Table 7.234 Table 7.247 MS(267) - Methods of Interface Initiate_Track_CMS

Method	Notes	Parameters
report_track()	Method used by the sensor to issue an "externally designated track initiation report" containing data of the successfully initiated track.	request_id_type request_id sensor_track_id_type id_report

Initiate_Track_Sub
Type: Interface
Package: Initiate Track

This is the Subsystem interface for initiating tracks.

Table 7.235 Table 7.248 MS(268) - Methods of Interface Initiate_Track_Sub

Method	Notes	Parameters
initiate_track()	Method used by the CMS to send an "externally designated track	request_id_type request_id system_track_type track_info
	initiation request", specifying a timed position and kinematic.	system_uuek_type truck_mo

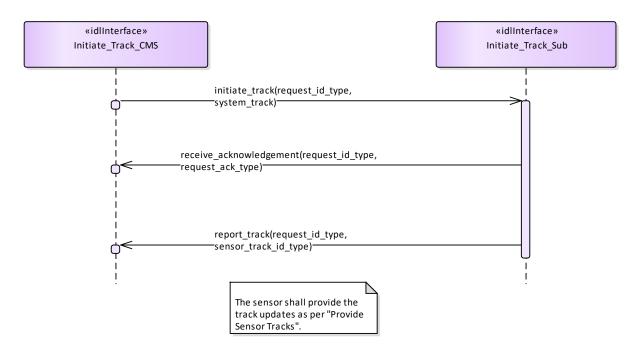


Figure 7.177 Basic Flow Initiate Track (Interaction diagram)

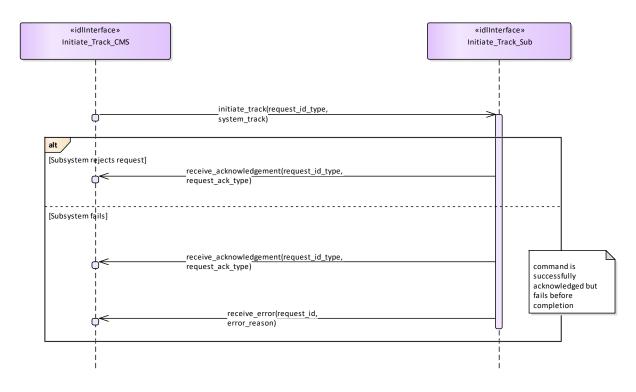


Figure 7.178 Alternative Flow - Initiate Track - loss of mastership (Interaction diagram)

7.8.10.4 Manage_Tracking_Zones Parent Package: Tracking_Control

This package contains interfaces for the Manage Tracking Zones service.

Manage Tracking Zones CMS

Type: Interface common_use_case_interface

Package: Manage_Tracking_Zones

This controls the sensor tracking behaviour in selected zones, which may be 1D (delimited in azimuth only), 2D (have additional elevation bounds) or 3D (have further range bounds). Depending on the zone type the sensor may be requested to modify its normal tracking behaviour, such as enable/disable the capability to auto initiate new tracks, or the capability of managing Track-On-Jammer. A list of typical tracking zones is

Automatic Track Initiation Zones

zones where the sensor is allowed to auto initiate new tracks. Depending on the sensor type and its capabilities, such a type of zones may be delimited in azimuth only, or both in azimuth and elevation, or may have further range bounds, and in some cases also additional constraints (such as target type, velocity bounds, etc.).

Track-On-Jammer Sectors

sectors where the sensor is allowed to manage Track-On-Jammer. Depending on the sensor type and its capabilities, such a type of sectors may be delimited either in azimuth only or both in azimuth and elevation.

Multipath Devoted Tracking Sectors

sectors where the sensor is required to use, for tracking activities, devoted waveforms to reduce the multipath effects. This capability is usually provided by multifunctional radars. Such a type of sectors is usually limited in azimuth only, below a defined elevation.

The supported tracking zone types (names and characteristics) differ from sensor to sensor, so they shall be handled as configuration parameters. They shall be offered to the operator to enable him for a selection and then transferred to the sensor to achieve the intended response.

Special Requirements

Provision of the sensor tracking zones setting

Sensor shall keep CMS informed about the actual setting of the tracking zones and its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the subsystem.

Additional Information

Lack of mastership

In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual setting of the tracking zones and its changes (if any).

Pre-condition: Mastership Required CMS has mastership of the sensor

Pre-condition: Subsystem Services Provide subsystem services is successfully passed

Pre-condition: Tracking zones setting CMS is aware of which types of tracking zones the sensor may manage and of their current setting.

Post-condition Success The setting of the tracking zones has been modified according to the request and CMS is informed that this is the case.

Post-condition No Success The setting of the tracking zones is unchanged with respect to the original one and CMS is informed that this is the case.

Table 7.236 Table 7.249 MS(269) - Methods of Interface Manage_Tracking_Zones_CMS

Method	Notes	Parameters
tracking_zone_setting()		request_id_type request_id tracking_zone_set_type setting_message

Manage_Tracking_Zones_Sub

Type: Interface

Package: Manage_Tracking_Zones

This is the Subsystem interface for managing tracking zones.

Table 7.237 Table 7.250 MS(270) - Methods of Interface Manage_Tracking_Zones_Sub

Method	Notes	Parameters
set_tracking_zone()	Method used by the sensor to return the actual setting of the tracking zones modified according to the request.	request_id_type request_id tracking_zone_set_type zone

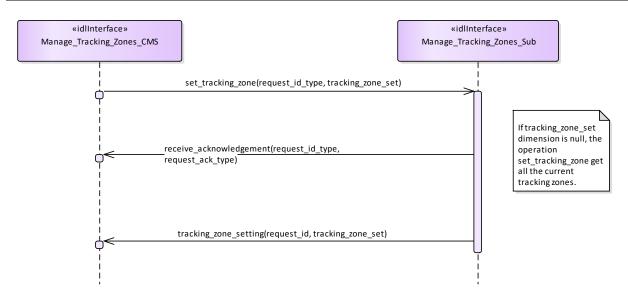


Figure 7.179 Basic Flow - Manage Tracking Zone - Enable/Disable (Interaction diagram)

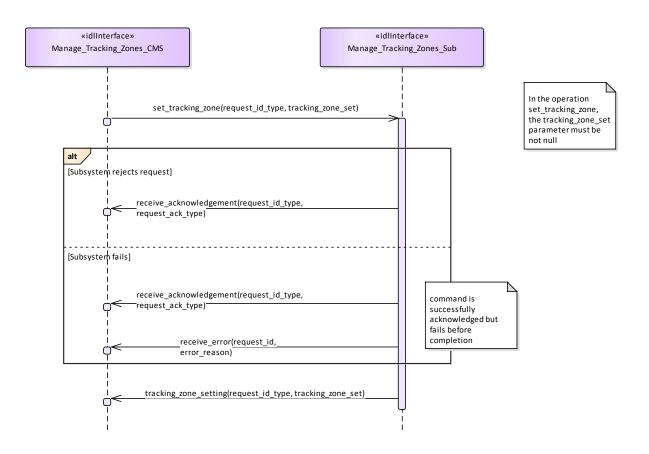


Figure 7.180 Alternative Flow - Manage Tracking Zone - Enable/Disable - loss of Mastership (Interaction diagram)

7.9 Radar_Services

Parent Package: Service_Interfaces

Contains services associated with the Radar Domain.

7.9.1 Air_Engagement_Support

Parent Package: Radar_Services

7.9.1.1 Provide_Projectile_Positional_Information

Parent Package: Air_Engagement_Support

Provide_Projectile_Positional_Information_CMS

Type: Interface common_use_case_interface
Package: Provide_Projectile_Positional_Information

Fire control radars suitable for Close-In-Weapon-Systems need the capability to observe the projectiles in flight, to measure at which distance they pass the target so that related shot corrections for the gun may be calculated, automatically. The measured distance in azimuth and elevation is called miss indication in the following.

This capability may be available in a non-close-in-weapon-system environment, too. It may also be available for phased-array radars.

Mastership of the subsystem must not have any impact upon the miss indication capability.

See also service 'Process Target Designation'.

Pre-condition: "Process Target Designation" was successfully carried out and a target is being tracked.

Pre-condition: CMS must have mastership.

Table 7.238Table 7.251 MS(271] - Methods of Interface Provide_Projectile_Positional_Information_CMS

Method	Notes	Parameters
report_miss_indication()	Via this message, the subsystem reports to the CMS the miss indication.	miss_indication_data_type MissIndicationData request_id_type RequestID

Provide Projectile Positional Information Sub

Type: Interface

Package: Provide_Projectile_Positional_Information

Table 7.239Table 7.252 MS(272) - Methods of Interface Provide_Projectile_Positional_Information_Sub

Method	Notes	Parameters
request_miss_indication()	Request the subsystem to report a	request_id_type RequestID
	miss indication.	expected_hit_data_type
		ExpectedHitData

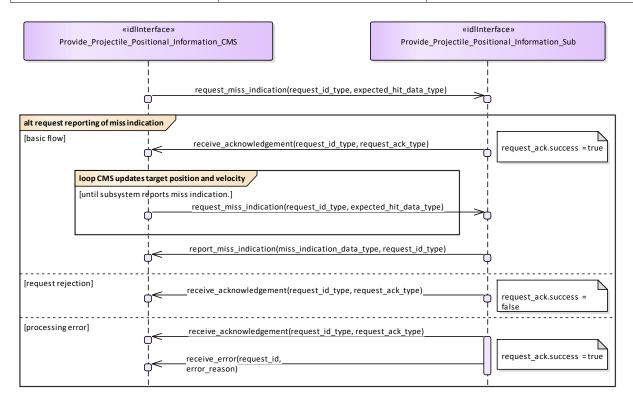


Figure 7.181 Provide projectile positional information - Request reporting of miss indications (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "request reporting of miss indications" of the service 'Provide projectile position information'.

7.9.2 Engagement_Support

Parent Package: Radar_Services

7.9.2.1 Process Target Designation

Parent Package: Engagement_Support

Process_Target_Designation_CMS

Type: Interface common_use_case_interface

Package: Process_Target_Designation

Fire control radars are designed to perform one target engagement at a time with respect to an air, surface or land target and provide the necessary information for a fire control solution regarding that target.

The CMS selects a track and requests the fire control radar to acquire and track the target behind that track. If the acquisition is successful the radar starts tracking the target and reporting fire control information.

Some fire control radars provide information about one or more other targets appearing in its field of view and may even provide associated sensor tracks. This is, however, not within the scope of this service interface but covered by "Provide sensor tracks".

The fire control information may be plots and/or tracks, depending on the product.

On receiving the de-designation request the fire control radar stops following the target and stops providing fire control information.

Phased array radars may include fire control capabilities as well. If they do, they provide a number of 'virtual fire control radars'. To the extent that these virtual fire control radars are comparable in function and performance, there may be no need for the CMS to select a specific fire control channel to be used for a particular engagement.

In the case where the CMS looses or releases mastership of the subsystem, the subsystems ceases all fire control activities.

A target designation to a weapon with its own fire control capabilities may be done in an analogous way. In that sense, the service (interface) may also be employed by weapon systems.

Pre-condition: CMS must have Mastership.

Pre-condition: Technical state READY or ONLINE.

Table 7.240 Table 7.253 MS(273) - Methods of Interface Process Target Designation CMS

Method	Notes	Parameters
receive_fire_control_channel_release d()	Via this message, the subsystem confirms the release of a target acquisition.	request_id_type RequestID fire_control_channel_id_type FireControlChannelID
receive_target_acquired()	Via this message, the subsystem confirms the target acquisition.	request_id_type RequestID sensor_track_id_type TrackID fire_control_channel_id_type FireControlChannelID
receive_target_dedesignation()	Via this message, the subsystem reports the de-designation of a target.	request_id_type RequestID sensor_track_id_type TrackID

Process_Target_Designation_Sub

Type: Interface

Package: Process_Target_Designation

Table 7.241 Table 7.254 MS(274) - Methods of Interface Process_Target_Designation_Sub

Method	Notes	Parameters
dedesignate_target()	The subsystem is requested to dedesignate a fire control channel.	request_id_type RequestID fire_control_channel_id_type FireControlChannelID
designate_target_by_position()	The subsystem is requested to designate a fire control channel based on a position/kinematics.	request_id_type RequestID kinematics_type PositionVelocity
designate_target_by_track()	The subsystem is requested to designate a fire control channel based on a track.	request_id_type RequestID sensor_track_id_type TrackID

Sensor Track Reporting

Type: InteractionOccurrence
Package: Process_Target_Designation

The sensor track reporting itself is not covered in this service interface. See the corresponding service interface 'Sensor Track Reporting'.

Sensor Track Reporting

Type: InteractionOccurrence
Package: Process_Target_Designation

The sensor track reporting itself is not covered in this service interface. See the corresponding service interface 'Sensor Track Reporting'.

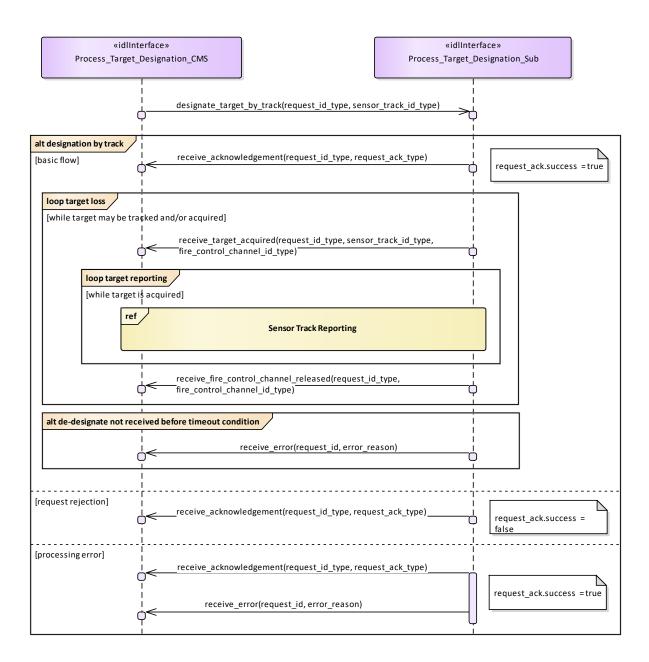


Figure 7.182 Process Target Designation - Designation by track (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "designate (target) by track" of the service "Process Target Designation".

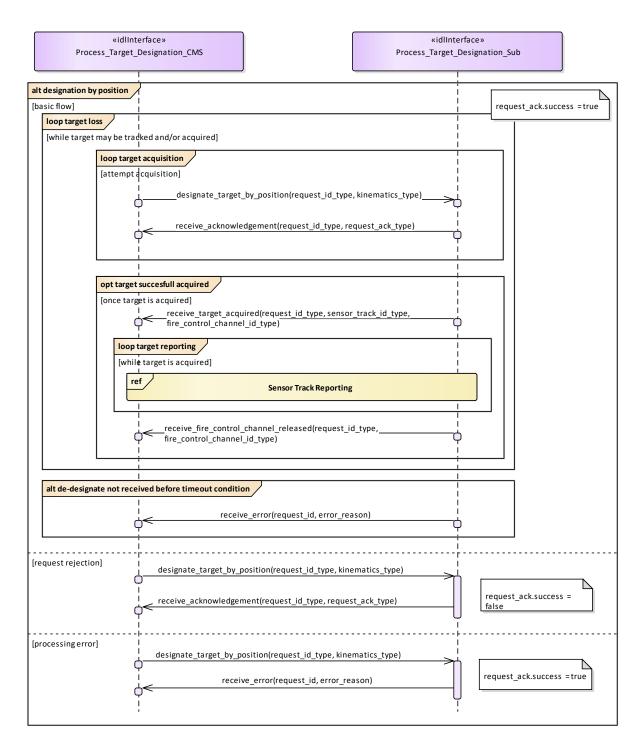


Figure 7.183 Process Target Designation - Designation by position (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "designate (target) by position" of the service "Process Target Designation".

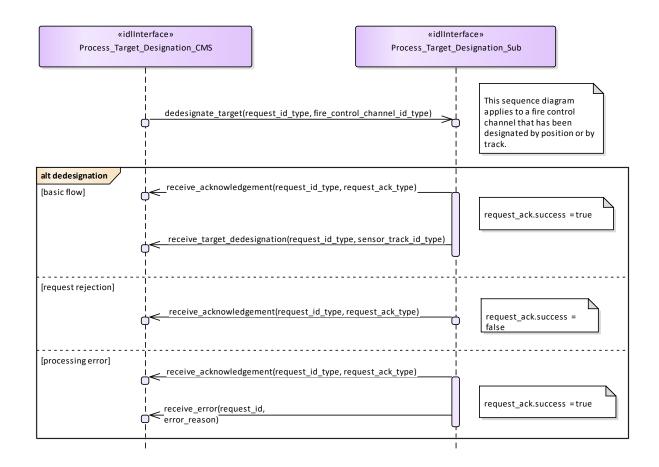


Figure 7.184 Process Target Designation - De-designation (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "de-designate (target)" of the service "Process Target Designation". It applies to a fire control channel that has been designated by position or by track.

7.9.2.2 Support Kill Assessment

Parent Package: Engagement_Support

Support_Kill_Assessment_CMS

Type: Interface common_use_case_interface

Package: Support Kill Assessment

With this service the subsystem provides of kill assessment information to the CMS. The information relates to an above water engagement primarily against an air target.

The kill assessment report of the subsystem may be one of the three:

- PROBABLE-KILL. This indicates that the subsystem assumes the target to be killed.
- PROBABLE-MISS. This indicates that the subsystem assumes the target to be missed by the used weapon system.
- NO-RESULT. This indicates that the subsystem was not able to determine a valid result for this
 request.

See also service (interface) "Process Target Designation".

Pre-condition: Service "Process Target Designation" successfully carried out.

Pre-condition: CMS must have Mastership.

Table 7.242 Table 7.255 MS(275) - Methods of Interface Support_Kill_Assessment_CMS

Method	Notes	Parameters
report_kill_assessment_result()	Via this message, the subsystem reports the kill assessment to the CMS.	request_id_type RequestID kill_assessment_result_type KillAssessmentReport

Support_Kill_Assessment_Sub **Type:** Interface

Package: Support_Kill_Assessment

Table 7.243 Table 7.256 MS(276) - Methods of Interface Support_Kill_Assessment_Sub

Method	Notes	Parameters
request_kill_assessment()		request_id_type RequestID expected_hit_data_type KillAssessmentData

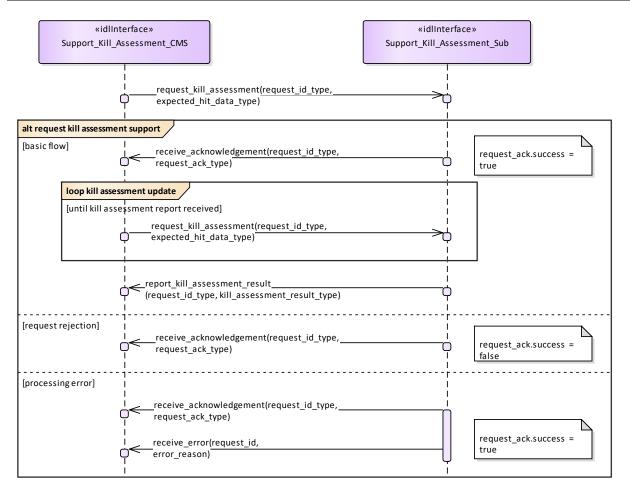


Figure 7.185 Basic Flow - Support Kill Assessment - Request Kill Assessment Support (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "request kill assessment support " of the service "Support Kill Assessment".

7.9.2.3 Support_Surface_Target_Engagement

Parent Package: Engagement_Support

Support_Surface_Target_Engagement_CMS

Type: Interface common_use_case_interface **Package:** Support_Surface_Target_Engagement

This service is intended for fire control radars, as well as surveillance radar systems that have facilities to perform surface target engagements by means of dedicated fire control channels. These fire control channels may need a differently parameterized or more elaborate track algorithm, and they may be combined with related splash spotting video.

The CMS requests the surface track to be engaged. The maximum number of tracks that may be engaged simultaneously is determined by the radar.

The functionality may also be available for land targets, provided they may be tracked by the radar.

In the case where the CMS looses or releases mastership of the subsystem, a change of the availability of fire control channels shall be indicated to the CMS. Fire control radars shall cease all fire control activities.

The set of operational modes that make fire control channels available, as well as the number of available channels shall be provided by means of service "Manage Subsystem Parameters".

Pre-condition: Technical state ONLINE.

Pre-condition: CMS must have Mastership.

Post-condition Service ends with success - check availability - the CMS is informed about the availability of fire control channels.

Post-condition Service ends with success - target designation - the radar provides a fire control track for the selected sensor track.

Post-condition Service ends with success - reporting - the CMS receives regular updates of the fire control track.

Post-condition Service ends with success - de-designation - the fire control channel is de-assigned and has become available.

Post-condition Service ends with fail - target designation - the fire control channel is not assigned; no fire control track.

Post-condition Service ends with fail - surface track is lost - the fire control channel is not assigned; the fire control track is terminated. The CMS is informed about the availability of fire control channel. Post-condition Service ends with Fail - de-designation - the fire control channel is not assigned.

Table 7.244Table 7.257 MS(277] - Methods of Interface Support_Surface_Target_Engagement_CMS

Method	Notes	Parameters
report_availability_state_of_fire_con trol_channels()	Via this interface method, the number of available fire control channels are returned from the subsystem to the CMS. If no channel is available, the value '0' is returned.	request_id_type RequestID available_fire_control_channels_typ e AvailableFireControlChannels
report_available_fire_control_chann el()	Via this interface method, the number of available fire control channels are returned from the subsystem to the CMS.	request_id_type RequestID fire_control_channel_id_type FireControlChannelID
report_selected_fire_control_channel ()	Via this interface method, the selected fire control channel is returned from the subsystem to the CMS.	request_id_type RequestID fire_control_channel_id_type FireControlChannelID sensor_track_id_type SensorTrackId

Support_Surface_Target_Engagement_Sub

Type: Interface

Package: Support_Surface_Target_Engagement

Table 7.245Table 7.258MS(278] - Methods of Interface Support_Surface_Target_Engagement_Sub

Method	Notes	Parameters
dedesignate_fire_control_channel()	Request to the subsystem to dedesignate a fire control channel.	request_id_type RequestID fire_control_channel_id_type FireControlChannelID
designate_fire_control_channel()	Request to the subsystem to designate a fire control channel.	request_id_type request_id sensor_track_id_type track_id
request_availability_of_fire_control_channels()	Request to the subsystem to report the available fire control channels.	request_id_type RequestID

Support_Surface_Target_Engagement_CMS

Type: ActivityPartition

Package: Support_Surface_Target_Engagement

Support_Surface_Target_Engagement_Sub

Type: ActivityPartition

Package: Support_Surface_Target_Engagement

sensor track reporting

Type: InteractionOccurrence

Package: Support_Surface_Target_Engagement

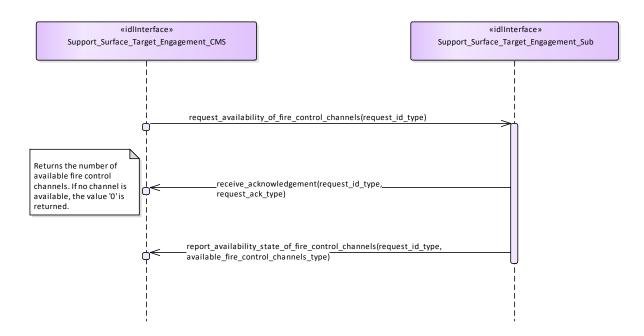


Figure 7.186 Support surface target engagement - Check availability (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "check availability" of the service "Support surface target engagement".



Figure 7.187 Support surface target engagement - Designate fire control channel (Interaction diagram)
This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "designate fire control channel" of the service "Support surface target engagement".

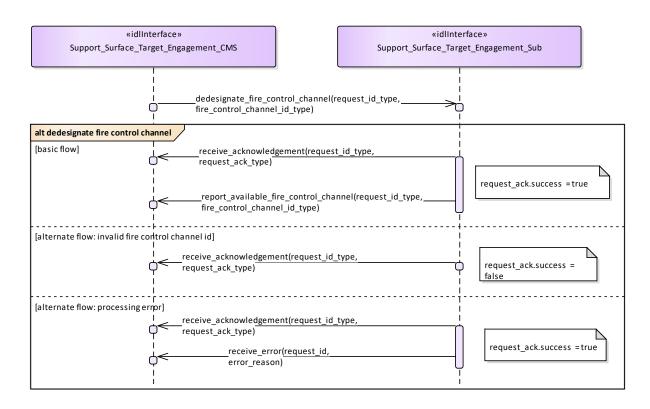


Figure 7.188 Support surface target engagement - Dedesignate fire control channel (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "De-designate fire control channel" of the service "Support surface target engagement".

7.9.3 Missile Guidance

Parent Package: Radar Services

7.9.3.1 Perform_Illumination

Parent Package: Missile_Guidance

Perform_Illumination_CMS

Type: Interface common_use_case_interface

Package: Perform_Illumination

This service covers the control of target illumination to support a semi-active homing missile engagement.

The actor is the Combat Management System.

The service is triggered by the illumination request of the actor. Typically, illumination takes place during a specific period within the engagement sequence.

The actor sends an illumination request to the radar.

On the requested start time, the radar starts illuminating the target with specified parameters.

During the illumination, the actor may provide updates of illumination parameters, e.g. to change the stop time

The service ends at stop time of the illumination.

If the radar may not fulfil the illumination request, this is reported to the actor and the service stops.

If during the illumination a radar fault takes place that prevents execution of illumination (e.g. illumination

frequency not more available), the health state of the Missile Guidance service (of which this service is part) becomes DEGRADED (if the Missile Guidance service is still capable of performing uplinks and/or downlinks) or NOT AVAILABLE, and the service stops.

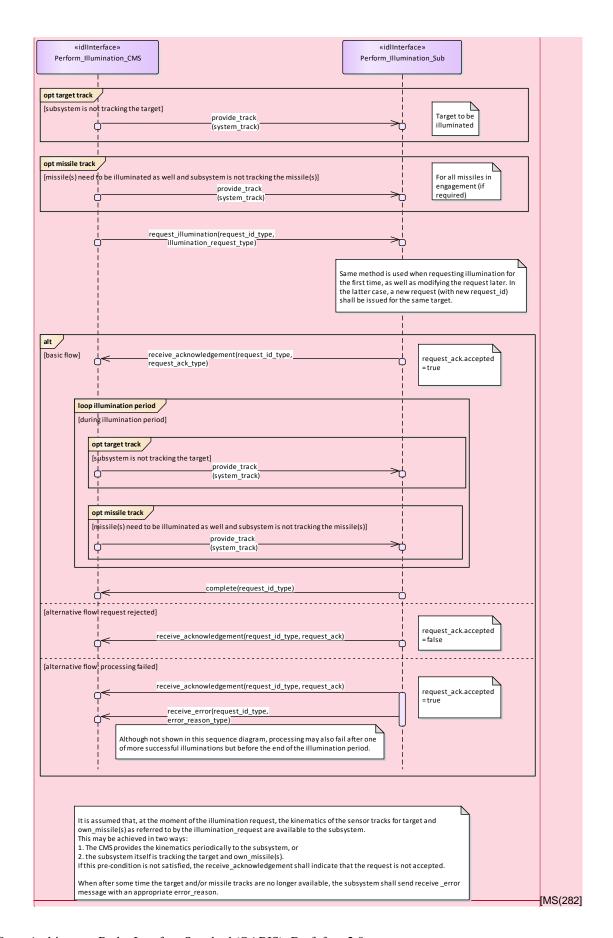
If the target track becomes lost during the illumination, the service stops.

Pre-condition: Sensor health state The sensor and the Missile Guidance service are in the health state AVAILABLE or DEGRADED.

Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies, transmission sectors) are set¹.

Table 7.246 Table 7.259 MS(279) - Methods of Interface Perform_Illumination_CMS

Method	Notes	Parameters
report_illumination_completed		request_id_type request_id
complete MS(280)()		


Perform_Illumination_Sub **Type:** Interface

Package: Perform_Illumination

Table 7.247 Table 7.260 [MS(281] - Methods of Interface Perform_Illumination_Sub

Method	Notes	Parameters
request_illumination()		request_id_type request_id illumination_request_type request
provide_track()		system_track_type track

¹ The manner in which this is done is described in other services of the OARIS ("Manage frequency usage", "Manage transmission sectors", "Control emissions" and "Manage subsystem parameters").

Figure 7.189 Basic Flow - Illumination (Interaction diagram)

7.9.3.2 Perform_Missile_Downlink

Parent Package: Missile Guidance

Perform_Missile_Downlink_CMS

Type: Interface common use case interface

Package: Perform Missile Downlink

The service describes the reception and provision of missile downlink information to the CMS.

Downlink consists of transmission of energy by the missile. The radar subsystem may track a missile based on these downlink transmissions (beacon track). Provision of the beacon track of the missile to the CMS is covered by service Provide sensor tracks.

This service handles the situation where the downlink also has content.

Generally, a sequence of downlinks is transmitted by the missile, on periodic basis or triggered by an uplink. However, the CMS (or a dedicated missile subsystem) is responsible for evaluating the downlinks in this sequence. The radar subsystem only receives downlinks and provides them to the CMS, and does not keep track of the sequence. In the special case where the downlink contains own missile kinematics, this data may also be used internally by the radar subsystem.

The actor is the Combat Management System.

Although the downlink may be evaluated by a missile subsystem (which is not part of the CMS), the downlink is assumed to be passed to that missile subsystem via the CMS.

The service is triggered by the downlink request of the actor.

The actor sends a downlink request to the radar.

During the request listening period, the radar listens to transmissions that are in accordance with the provided downlink parameters.

The radar reports to the actor the occurrence of the downlink, including the (decoded) content of the downlink.

The information provided by the missile may vary depending on the applied missile fire control principle, and lies outside the scope of the OARIS standard.

The information within the downlink may be used internally by the radar.

The service ends at the end of the listening period.

If the downlink transmission is interrupted, this is reported to the actor, and the service stops.

If during the downlink a radar fault takes place that prevents execution of the downlink, the health state of the Missile Guidance service (of which this service is part) becomes DEGRADED (if the Missile Guidance service is still capable of performing uplinks and/or illumination) or NOT AVAILABLE, and the service stops.

Relationship to missile uplink

For some missile types a downlink may be transmitted as a response to a received uplink (e.g. an acknowledge of receipt). This relationship (including the inherent timing relationship) depends heavily on the missile type and lies outside the scope of the OARIS standard.

Relationship to provide sensor tracks

If the downlink contains kinematic information about the missile, the radar subsystem may use this information internally to improve the own missile track (provided service Provide sensor tracks or service Process target designation).

It is also possible that the missile is tracked based on the fact that it transmits energy and not based on the contents of the downlink. This so-called beacon tracking is covered by service Provide sensor tracks. Pre-condition: Sensor health state The sensor and the Missile Guidance service are in the health state

AVAILABLE or DEGRADED.

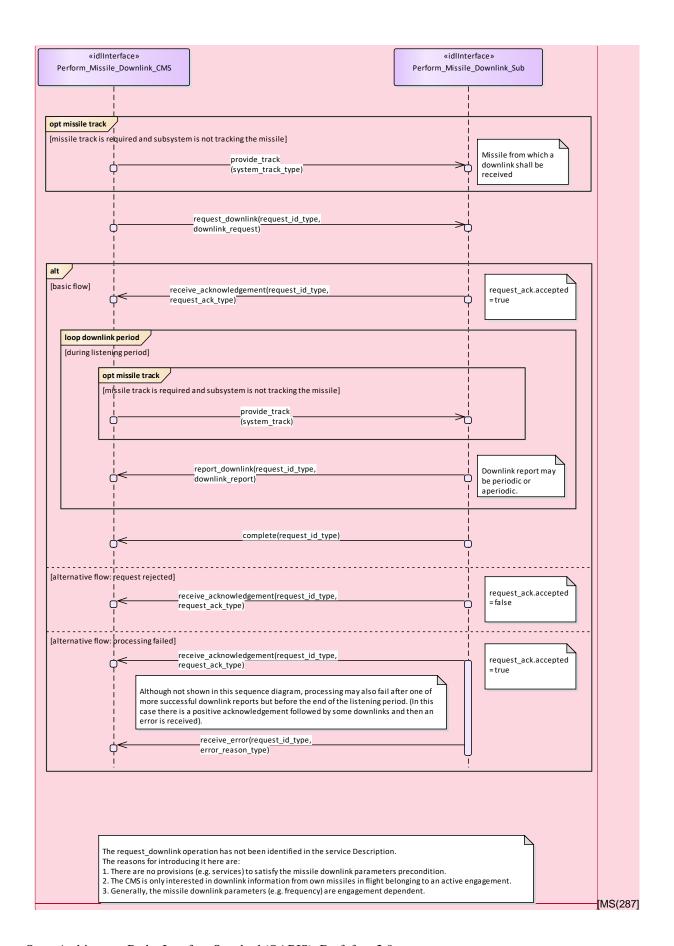
Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies, transmission sectors) are set¹.

Pre-condition: Engagement phase An engagement must be taking place.

Pre-condition: Missile downlink parameters The parameters of the missile downlink transmission must be known to the radar. Note that this does not concern the content of the transmission, but rather the transmission characteristics (e.g. frequency).

Table 7.248 Table 7.261 MS(284) - Methods of Interface Perform_Missile_Downlink_CMS

Method	Notes	Parameters
report_downlink()		request_id_type request_id downlink_report_type the_downlink_info
report_downlink_completed complete[MS(285]()		request_id_type request_id


Perform_Missile_Downlink_Sub **Type:** Interface

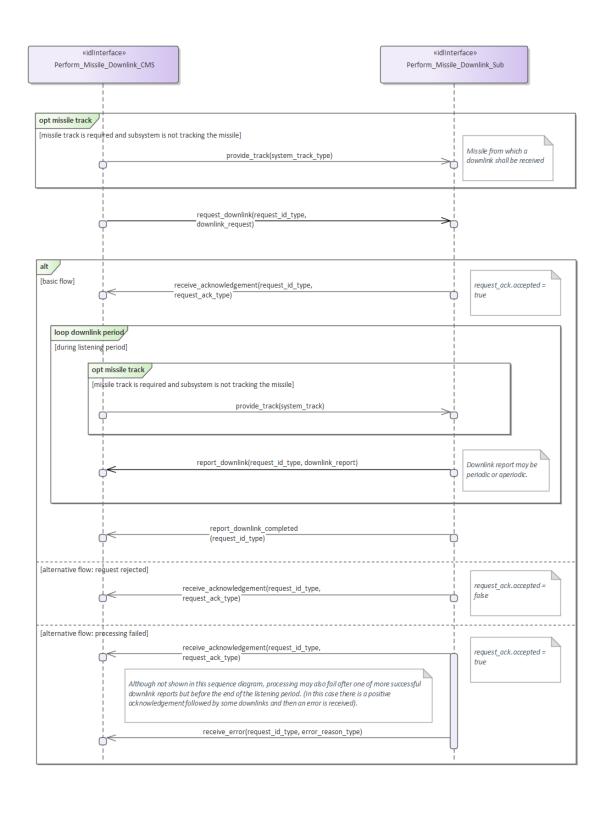

Package: Perform_Missile_Downlink

Table 7.249 Table 7.262 MS(286] - Methods of Interface Perform_Missile_Downlink_Sub

Method	Notes	Parameters
request_downlink()		request_id_type request_id downlink_request_type request
provide_track()		system_track_type track

¹ The manner in which this is done is described in other services of the OARIS ("Manage frequency usage", "Manage transmission sectors", "Control emissions" and "Manage subsystem parameters"). Pre-condition: Engagement phase An engagement must be taking place.

The request_downlink operation has not been identified in the service Description.
The reasons for introducing it here are:

1. These map operations of a consistent in entirity the price land qualitate programmers.

- There are no provisions (e.g. services) to satisfy the missile downlink parameters precondition.
 The CMS is only interested in downlink information from own missiles in flight belonging to an active engagement.
- ${\it 3. Generally, the missile downlink parameters (e.g. frequency) are engagement dependent.}\\$

Figure 7.190 Basic Flow - Downlink (Interaction diagram)

7.9.3.3 Perform_Missile_Uplink

Parent Package: Missile Guidance

Perform Missile Uplink CMS

Type: Interface common use case interface

Package: Perform Missile Uplink

The service describes the execution of uplink of relevant information from the radar to the missile in flight during an engagement.

Generally, a sequence of uplinks (of various types) must be transmitted to a missile during an engagement. However, the CMS (or a dedicated missile subsystem) is responsible for planning and requesting the correct sequence of uplinks. The radar subsystem only transmits an uplink on request of the CMS. Therefore, this service starts with the request of a single uplink and ends when the radar subsystem has transmitted the uplink.

The actor is the Combat Management System. Although the uplink may be initiated by a missile subsystem (which is not part of the CMS), the uplink is assumed to be passed through the CMS to the radar subsystem.

The service is triggered by the uplink request of the actor.

The actor sends an uplink request to the radar.

At the requested time, the radar sends the uplink to the missile in accordance with the provided uplink parameters.

The information provided to the missile may vary depending on the applied missile fire control principle, and lies outside the scope of the OARIS standard.

The service ends when the radar has confirmed the transmission of the uplink.

If the radar may not fulfil the uplink request, this is reported to the actor and the service stops.

If during the uplink a radar fault takes place that prevents execution of the uplink (e.g. uplink frequency not more available), the health state of the Missile Guidance service (of which this service is part) becomes DEGRADED (if the Missile Guidance service is still capable of performing illumination and/or downlinks) or NOT AVAILABLE, and the service stops.

If the missile track becomes lost during the uplink, the service stops.

Network Centric engagements

In Network-Centric or Network-Enabled systems, guidance of the missile may be transferred during the flight of the missile to another surface platform. As the related technologies are still being developed, it shall be too early to include specific NEC requirements here. However, care should be taken in the design of OARIS that such capabilities could be included at a later date. This means that there should be no built-in restrictions in the standard, which would prevent addition of such facilities in the future.

Relationship to missile downlink

For some missile types an uplink transmission may trigger the transmission of a downlink by the missile (e.g. an acknowledge of receipt). This relation depends heavily on the missile type and lies outside the scope of the OARIS standard.

Pre-condition: Sensor health state The sensor and the Missile Guidance service are in the health state AVAILABLE or DEGRADED.

Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies, transmission sectors) are set¹.

Pre-condition: Engagement phase An engagement must be taking place.
Pre-condition: Known position of missile The position of the missile must be known, i.e. own missile track must exist. The missile track may be provided by the CMS or by the radar subsystem itself.

Table 7.250 Table 7.263 MS(289) - Methods of Interface Perform_Missile_Uplink_CMS

Method	Notes	Parameters
report_uplink_completed()		request_id_type request_id
		uplink_report_type report

Perform_Missile_Uplink_Sub Type: Interface

Perform_Missile_Uplink Package:

Table 7.251 Table 7.264 MS(290) - Methods of Interface Perform_Missile_Uplink_Sub

Method	Notes	Parameters
request_uplink()		request_id_type request_id uplink_request_type request
provide_track()		system_track_type track

¹ The manner in which this is done is described in other services of the OARIS ("Manage frequency usage", "Manage transmission sectors", "Control emissions" and "Manage subsystem parameters").

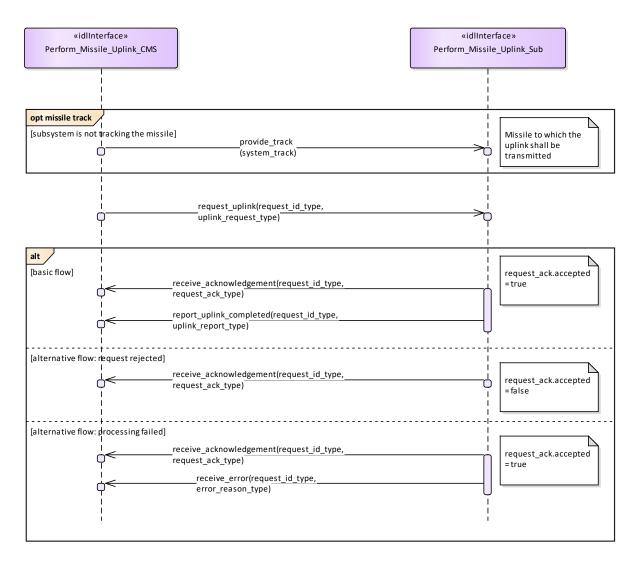


Figure 7.191 Basic Flow - Uplink (Interaction diagram)

7.9.4 Surface_Engagement_Support

Parent Package: Radar Services

7.9.4.1 Perform_Splash_Spotting

Parent Package: Surface_Engagement_Support

Perform_Splash_Spotting_CMS

Type: Interface common_use_case_interface

Package: Perform_Splash_Spotting

Surveillance radar systems may support engagements against surface targets by means of a splash spotting video or measured splash positions. In the vicinity of the target a signal processing is applied which is optimized to observe splashes of the shells hitting the sea surface.

The splash spotting information may be used to achieve shot corrections for a running engagement. The engagement may use a fire control channel of the radar but also of another device like fire control radar. The CMS requests the radar to localize a splash spotting area at a defined position derived from the

target kinematics.

The use of splash spotting areas may be limited to fire control channels of the radar. Then, only the localization of a splash spotting area may be done in accordance with this service. Normally, it shall be localized at the predicted hitting point.

These splash spotting areas shall not differ in terms of function and performance so that the selection of the area to be applied to an engagement may be done by the radar, automatically. The CMS just indicates where to localize it.

If mastership is lost during execution in any of the flows the services are terminated.

Pre-condition: Technical state ONLINE.

Pre-condition: Assigned fire control channel. - a fire control channel has been assigned using "Support

Surface Target Engagement"

Pre-condition: CMS must have Mastership

Post-condition Success: The subsystem provides splash spotting videos as long as the splash spotting

areas are active.

Post-condition No success: The subsystem does not perform as requested.

Table 7.252 Table 7.265 MS(291) - Methods of Interface Perform_Splash_Spotting_CMS

Method	Notes	Parameters
confirm_reposition_splash_splotting _area()	Via this method, the request for the repositioning of a splash spotting area is confirmed by the subsystem.	request_id_type RequestID splash_spotting_area_id_type SplashSpottingAreaID
confirm_splash_spotting_area_deactivation()	Via this method, the request for the deactivation of a splash spotting area is confirmed by the subsystem.	request_id_type RequestID splash_spotting_area_id_type SplashSpottingAreaId
receive_splash_splotting_area_positi on()	Via this method, the request for a new splash spotting area based on a position is confirmed by the subsystem.	request_id_type RequestID splash_spotting_area_id_type SplashSpottingAreaID
receive_splash_splotting_area_track()	Via this method, the request for a new splash spotting area based on a track is confirmed by the subsystem.	request_id_type RequestID splash_spotting_area_id_type SplashSpottingAreaID
report_splash_spotting_area_activati on_state()	Via this interface, the splash spotting areas are reported to the CMS.	request_id_type RequestID splash_spotting_area_set_type SplashSpottingAreaSet

Perform_Splash_Spotting_Sub **Type:** Interface

Package: Perform_Splash_Spotting

Table 7.253 Table 7.266 MS(292) - Methods of Interface Perform_Splash_Spotting_Sub

Method	Notes	Parameters
activate_splash_spotting_area_by_po sition()	Requests the subsystem to activate a new splash spotting area based on a area/position.	request_id_type RequestID splash_spotting_area_position_type SplashSpottingAreaPosition
activate_splash_spotting_area_by_tr	Requests the subsystem to activate a	request_id_type RequestID
ack()	new splash spotting area based on a	sensor_track_id_type TrackID

	sensor track.	
deactivate_splash_spotting_area()	Requests the subsystem to deactivate a splash spotting area.	request_id_type RequestID splash_spotting_area_id_type SplashSpottingAreaID
report_splash_spotting_information()	Requests the subsystem to report splash spotting information/splash positions for an existing splash spotting area.	request_id_type RequestID splash_spotting_area_id_type SplashSpottingAreaID
reposition_splash_spotting_area()	Requests the subsystem to reposition a existing splash spotting area.	request_id_type RequestID splash_spotting_area_id_type SplashSpottingAreaID splash_spotting_area_position_type SplashSpottingAreaPosition
request_splash_spotting_areas()	Request the subsystem to report the splash spotting areas to the CMS.	request_id_type RequestID

Perform_Splash_Spotting_CMS **Type:** ActivityPartition

Package: Perform_Splash_Spotting

Perform_Splash_Spotting_Sub **Type:** ActivityPartition

Package: Perform_Splash_Spotting

Report measured splash positions **Type:** InteractionOccurrence **Package:** Perform_Splash_Spotting

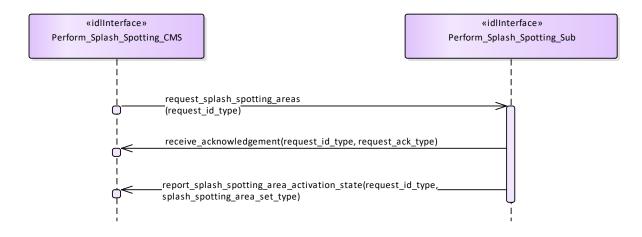


Figure 7.192 Perform Splash Spotting - Check Activation (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "check activation" of the service "Perform splash spotting".

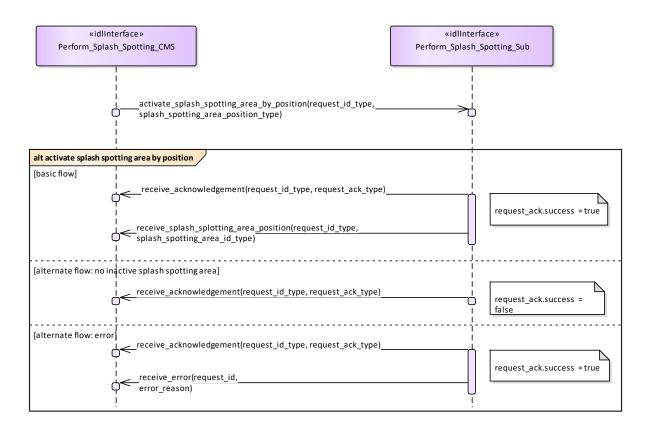
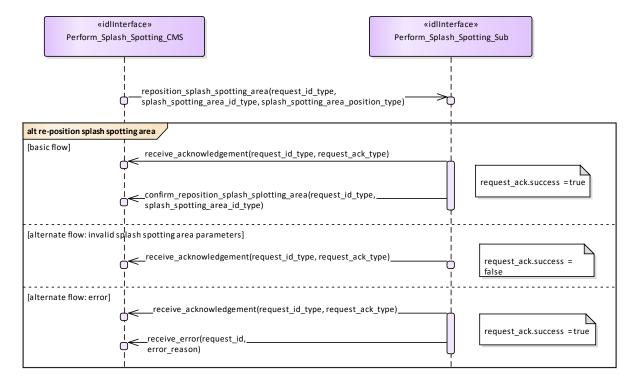



Figure 7.193 Perform Splash Spotting - Activate Splash Spotting Area by Position (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "activate splash spotting area by position" of the service "Perform Splash Spotting".

Figure 7.194 Perform Splash Spotting - Re-position Splash Spotting Area (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "reposition splash spotting area" of the service "Perform splash spotting".

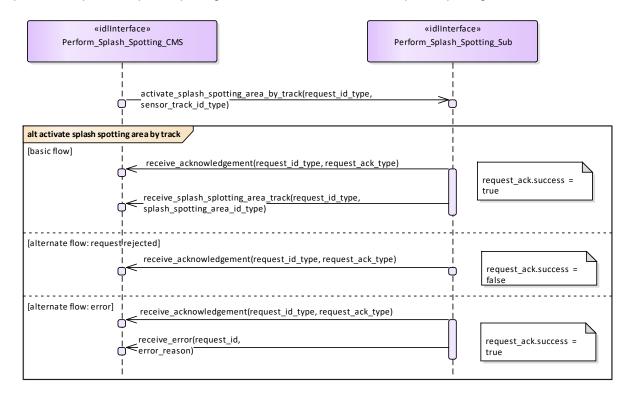


Figure 7.195 Perform Splash Spotting - Activate Splash Spotting Area by Fire Control Track (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "activate splash spotting area by fire control track" of the service "Perform splash spotting".

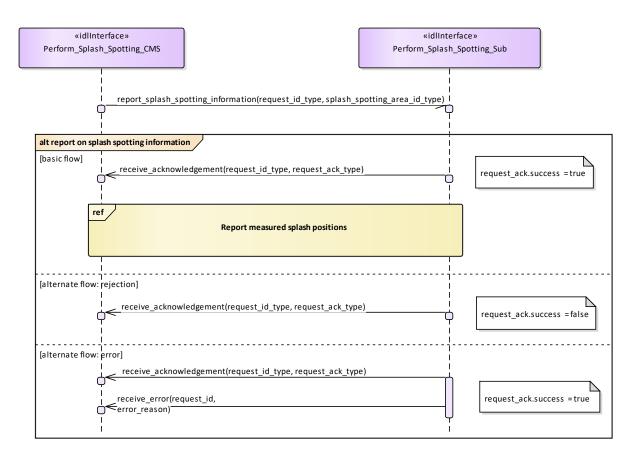


Figure 7.196 Perform Splash Spotting - Report On Splash Splotting Information (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "report on splash spotting information" of the service "Perform splash spotting".

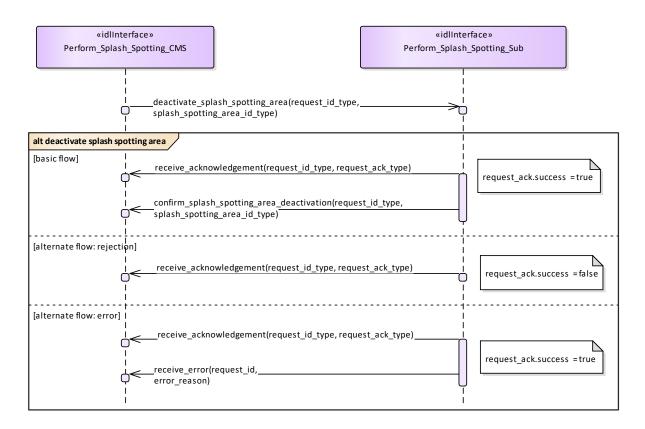


Figure 7.197 Perform Splash Spotting - Deactivate Splash Spotting Area (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "deactivate splash spotting area" of the service "Perform splash spotting".

8 Platform-Specific Models

8.1 DDS Data Model PSM

The DDS Data Model PSM defines a set of IDL files for the Data Model packages defined by the PIM. Comments are added to the IDL files to reflect the mapping rules below.

The detailed rules for the MDA code generation from the Data Model PIM to the DDS PSM IDL are as follows:

- PIM attributes and compositions are mapped to IDL attributes;
- Optional PIM attributes are mapped to a union type with a single member present when the exists case attribute is true;
- Collections in the PIM are mapped to IDL sequences; a Length tag determines the sequence bounds;
- Specialization / Generalization PIM relationships are mapped to IDL unions and enumerations MS(293).
 Additional data base MS(294) classes are introduced for non-abstract generalization classes that have attributes and each specialization class has an attribute named 'base' typed to the base class. MS(295)
- Navigable association to topic instance types are mapped to a PIM key value, or set of values defined by a struct, where there are multiple keys. Where the association is to a generalization a union of the possible key types of the specializations is used. Unions and supporting enumerations are defined irrespective of the existence of associations to use them. One-to-many associations map to a bounded sequence of such values. MS(296)

8.2 DDS Services PSM

The DDS Services PSM defines IDL files for each package defined in the Services PIM. For each method on each interface class an IDL struct for a DDS topic named for the method is generated; each parameter is mapped to an attribute of the IDL struct. Note that the PIM only defines parameters with an 'in' mode, there are no 'return' parameters defined and all methods have at least one parameter. Comments are generated to match the PIM notes and to include the version number of this standard in each file. Additionally the struct contains a subsystem_id key attribute of type subsystem_id_type. This indicates which subsystem published the data or is intended to read it as a subscriber. As associations do not span subsystems, reference key values mapped from navigable associations do not contain subsystem_id_values.[MS(297]

Operations that require a response contain a request_id in the PIM that logically links request and response instances. In the DDS PSM, each request_id operation parameter is mapped to a keyed attribute of the DDS topic so that distinct request and response pairs can be retrieved from the DDS data space.

To robustly and efficiently ensure that the data exchanged between a particular subsystem and a CMS is recognized correctly, topic samples pertaining to a particular subsystem are published on the partition corresponding to the name used in the Subsystem Identification use case. Also, the CMS uses the receive_cms_identification_data topic to allocate a subsystem_id to a subsystem; the subsystem sets the subsystem_id to zero for the receive_subsystem_identification_data topic, for which the CMS subscribes on the wildcard partition "*". Subsequently, for data intended for all subsystems, the CMS publishes samples on partition "*" with a subsystem id of zero.

However, the Register Interest use case is mapped to the DDS DCPS Reader Listener interface, the Heartbeat Signal use case is mapped to the DDS DCPS Reader and Writer Listener interfaces [MS(298]and the Provide Subsystem Services use case is mapped to the DDS DCPS Data Reader and Data Writer interfaces, so there are no IDL files for these use cases.

8.3 GraphQL Data Model and Services PSM

The GraphQL PSM defines a single combined schema file for the Data Model and Service Model set of schema definition language files, one for each Service interface [MS(299)] defined by the PIM; each of these files represents a self-contained service and contains definition for the types represented [MS(300]]. Comments are added to these files to reflect the mapping rules below.

The detailed rules for the MDA code generation from the Data Model PIM to the GraphQL are as follows:

- Enumerations are mapped to GraphQL enums;
- PIM Classes with an 'idlStruct' stereotype are mapped to both a GraphQL object and input type;
- Scalar idlTypedef stereotyped classes are inlined to primitive GraphQL types in the types that use them;
- PIM attributes and compositions are mapped to GraphQL object and input attributes;
- Non-optional PIM attributes are mandatory GraphQL attributes;
- Collections in the PIM are mapped to GraphQL lists (which are unbounded);
- Specialization / Generalization PIM relationships are mapped to GraphQL unions. Generalization classes that have attributes are mapped to a GraphQL type containing a base GraphQL type for its common attributes and a variants union for the specialization attributes union and interface object types and an input type with optional attributes (and the same semantics). Additional data classes are introduced for non-abstract generalization classes that have attributes MS(301)
- Navigable associations to service-level instance types (subjects of query, mutation and subscription)
 are mapped to a key value, or set of values defined by a GraphQL type, where there are multiple
 keys. Where the association is to a generalization a union of the possible key types of the
 specializations is used. Unions and supporting enumerations are defined irrespective of the existence
 of associations to use them. One-to-many associations map to a bounded sequence of such
 values. MS(302)

The GraphQL services derived from CMS interfaces allow the CMS to query and subscribe to operations invoked by a Subsystem, whilst Subsystem can invoke the interface by making mutations. Services derived from Subsystem interfaces allow the Subsystem to query and subscribe and the CMS to mutate.

Each GraphQL serviceFor each service, the combined schema MS(303)contains:

- A schema object declaring query, mutation and subscription attributes;
- The GraphQL schema Query type supports queries for any combination of interface methods in the Service Model.
- The GraphQL schema Mutation type supports invocation of single or multiple instances of any combination of interface methods in the Service Model.
- The GraphQL schema Subscription type supports subscription for any combination of interface methods in the Service Model.
- The GraphQL PSM maps the services for Register Interest and Provide Subsystem Services use cases to the GraphQL discovery mechanisms. The Heartbeat Signal use case is not applicable for a PSM based on GraphQL technology.
- Query (also used for subscription) with an argument list allowing filtering by subsystem and whether simulated
- Mutation object types each returning lists of operations;

- A union type with choices for each operation on the interface;
- A options input type with optional attributes for each operation on the interface for mutations;
- An object type for each operation including a argument list containing each key in the operation types
 (as well as request_id if present) and an additional list of subsystem names returning a list of
 operations;
- An input type for each operation including an additional list of subsystem names;
- Sensor Assessment, Supplementary Measurement and Track Reporting operations also support additional arguments to filter by environment and area [MS(304]