

Date: May 2023August 2024

Open Architecture Radar Interface Standard

FTF-1Final Submission - 3.0

__

OMG Document Number: c4i/23-075-01

Standard document URL: https://www.omg.org/spec/OARIS/3.0

Machine Consumable File(s): https://www.omg.org/OARIS/2023020120240802

Associated Normative Machine Consumable Files:
https://www.omg.org/spec/OARIS/ 20230501 20240802 /oaris.xmi/
https://www.omg.org/spec/OARIS/ 202305 01 20240802 /oaris.graphqls/
https://www.omg.org/spec/OARIS/2023050120240802/IDL/TimeBase.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Common_Types.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/System_Track.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Coordinates_and_Positions.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Shape_Model.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Requests.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Encyclopaedic_Support.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Extended_Subsystem_Control.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Recording_and_Replay.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Simulation_Support.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Subsystem_Control.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Clutter_Reporting.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Media_Streaming.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Sensor_Assessment.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Supplementary_Measurement.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Search.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Plot_Reporting.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Sensor_Control.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Sensor_Performance.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Track_Reporting.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Tracking_Control.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Air_Engagement_Support.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Engagement_Support.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Missile_Guidance.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Surface_Engagement_Support.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Receive_Encyclopaedic_Data.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Manage_Network_Participation.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Manage_Physical_Configuration.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Perform_Offline_Test.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Networking_Statistics.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Restart.idl

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 1

https://www.omg.org/spec/OARIS/3.0/oaris.graphqls/
https://www.omg.org/spec/OARIS/3.0/oaris.graphqls/
https://www.omg.org/spec/OARIS/3.0/oaris.graphqls/
https://www.omg.org/spec/OARIS/3.0/oaris.graphqls/
https://www.omg.org/spec/OARIS/3.0/oaris.xmi/
https://www.omg.org/spec/OARIS/3.0/oaris.xmi/
https://www.omg.org/spec/OARIS/3.0/oaris.xmi/

https://www.omg.org/spec/OARIS/2023050120240802/IDL/Shutdown.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Startup.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Control_Recording.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Control_Replay.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Define_Simulation_Scenario.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Control_Simulation.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Define_Fault_Scripts.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Control_Fault_Scripts.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Manage_Technical_State.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Subsystem_Identification.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Health_State.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Manage_Operational_Mode.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Control_Battle_Override.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Manage_Subsystem_Parameters.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Subsystem_Services.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Manage_Mastership.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Register_Interest.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Area_with_Plot_Concentration.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Clutter_Assessment.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Allocate_Tracks_To_Stream.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Perform_Cued_Search.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Assess_Sensor_Track.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Filter_Plots.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Sensor_Characteristics.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Manage_Frequency_Usage.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Manage_Transmission_Sectors.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Control_Emissions.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Define_Test_Target_Scenario.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Test_Target_Facility.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Interference_Reports.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Nominal_Performance.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Performance_Assessment.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Jammer_Assessment.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Filter_Tracks.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Label_Tracks.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Sensor_Tracks.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Delete_Sensor_Track.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Receive_Track_Information.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Initiate_Track.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Manage_Tracking_Zones.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Provide_Projectile_Positional_Information.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Process_Target_Designation.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Support_Kill_Assessment.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Support_Surface_Target_Engagement.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Perform_Illumination.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Perform_Missile_Downlink.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Perform_Missile_Uplink.idl
https://www.omg.org/spec/OARIS/2023050120240802/IDL/Perform_Splash_Spotting.idl

Copyright © 2013 - 20234 BAE Systems
Copyright © 2013 - 20234 THALES Group
Copyright © 2013 Selex ES
Copyright © 2013 DSTO
Copyright © 2013 Atlas Elektronik
Copyright © 2013 EADS Deutschland GmbH
Copyright © 2018 - 2022 Naval Surface Warfare Center
Copyright © 2018 - 2019 General Dynamics
Copyright © 2021 - 20224 Real-Time Innovations
Copyright © 2021 - 20224 SimVentions
Copyright © 2021 - 20224 Micro Focus
Copyright © 2022 - 20234 IABG
Copyright © 2022 - 20234 Hensoldt
Copyright © 2022 - 20234 Weibel
Copyright © 2013 - 20234 Object Management Group, Inc

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The company listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies
of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to
have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.
Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 3

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information, which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of
the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as
indicated above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham,
MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™, Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™, MOF™, OMG Interface Definition Language (IDL)™,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 5

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a
Bug/Issue (http://www.omg.org/report_issue).

Table of Contents

1 Scope..22
2 Conformance...22
3 Normative References..23
4 Terms and Definitions..24
5 Symbols..25
6 Additional Information..25

6.1 Acknowledgements...25
6.2 Specification Generation..25

7 Open Architecture Radar Information Specification.....................................26
7.1 Introduction...26

7.1.1 Background...26
7.1.2 Section Structure..27

7.2 Document Structure..27
7.3 Usage Overview...28

7.3.1 Compliance Level 1...29
7.3.1.1 Basic Picture Compiler..30
7.3.1.2 Basic Sensor..30

7.3.2 Compliance Level 2...30
7.3.2.1 General CMS Sensor Manager..35
7.3.2.2 General Sensor Configuration Manager..35

7.3.3 Compliance Level 3A..35
7.3.3.1 CMS Analysis Data Manager..41
7.3.3.2 CMS Diagnostics Manager...42
7.3.3.3 CMS On Board Training Manager..42
7.3.3.4 Subsystem Diagnostics Manager...42
7.3.3.5 Subsystem Record and Replay Manager...42
7.3.3.6 Subsystem Simulation Manager..42
7.3.3.7 CMS Subsystem Manager...42
7.3.3.8 Subsystem Configuration Manager...42

7.3.4 Compliance Level 3B...42
7.3.4.1 CMS Combat System Configuration Manager...47
 CMS Subsystem Manager..47
 Subsystem Configuration Manager..48
7.3.4.3 A non-normative example of a subsystem function to manage its configuration and
state. ..48
7.3.4.4 Subsystem Physical Configuration Manager..48

7.3.5 Compliance Level 3C...48
7.3.5.1 CMS Sensor Picture Manager...51
7.3.5.2 Sensor Track Reporter...51

7.3.6 Compliance Level 3D..51
7.3.6.1 CMS AAW Engagement Coordinator...55
7.3.6.2 CMS ASuW Engagement Coordinator...56

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 7

7.3.6.3 Radar AAW Engagement Support Manager...56
7.3.6.4 Surface Fire Control Radar Manager..56
7.3.6.5 Surface Surveillance Radar Engagement Support Manager...........................56

7.3.7 Compliance Level 3E...56
7.3.7.1 CMS Combat System Performance Optimizer...59
7.3.7.2 CMS Interference Mitigation Coordinator..59
7.3.7.3 Sensor Functional Performance Manager...59
7.3.7.4 Sensor Interference Reporter...59

7.3.8 Compliance Level 3H..59
7.3.8.1 CMS Media Manager..62
7.3.8.2 CMS Picture Compilation...62
7.3.8.3 Sensor Media Manager..62
7.3.8.4 Sensor Parameter Assessment...62
7.3.8.5 Sensor Plot Detector..62
7.3.8.6 Sensor Track Reporter...62
7.3.8.7 Track Extractor..63

7.3.9 Compliance Level 3I..63
7.3.9.1 CMS Plot Sharing Manager..66
7.3.9.2 CMS Tactical Picture Manager...66
7.3.9.3 OARIS External Interface...66
7.3.9.4 Platform A...67
7.3.9.5 Platform B...67
7.3.9.6 Plot Fuser...67
7.3.9.7 Sensor Plot Detector..67

7.4 Common_Types..67
7.4.1 anonymous_blob_type...68
7.4.2 confidence_interval_type...69
7.4.3 confidence_type...69
7.4.4 filter_id_type..69
7.4.5 filter_mode_type..69
7.4.6 identity_type...69
7.4.7 percentage_type..70
7.4.8 quality_interval_type...70
7.4.9 strength_type..70
7.4.10 subsystem_id_type...70
7.4.11 system_track_id_type...70
7.4.12 time_type..71
7.4.13 track_priority_type...71
7.4.14 track_quality_type..71
7.4.15 frequency_band_type...71
7.4.16 System_Track...71

7.4.16.1 system_track_type...72
7.4.17 Coordinates_and_Positions..72

7.4.17.1 absolute_duration_type...77
7.4.17.2 angle_of_climb_type...77
7.4.17.3 azimuth_coordinate_type..77

7.4.17.4 azimuth_interval_type...78
7.4.17.5 azimuth_qualification_type...78
7.4.17.6 azimuth_rate_type...78
7.4.17.7 bank_coordinate_type...78
7.4.17.8 cartesian_coordinate_type...79
7.4.17.9 cartesian_interval_type..79
7.4.17.10 cartesian_position_type...79
7.4.17.11 cartesian_velocity_component_type...79
7.4.17.12 cartesian_velocity_type...79
7.4.17.13 coordinate_kind_type..80
7.4.17.14 coordinate_orientation_type..80
7.4.17.15 coordinate_origin_type..81
7.4.17.16 coordinate_specification_type...82
7.4.17.17 course_type..82
7.4.17.18 covariance_matrix_type..82
7.4.17.19 diagonal_covariance_matrix_type...83
7.4.17.20 duration_type...83
7.4.17.21 elevation_coordinate_type...83
7.4.17.22 elevation_interval_type...83
7.4.17.23 elevation_qualification_type...84
7.4.17.24 elevation_rate_type...84
7.4.17.25 full_2d_covariance_matrix_type...84
7.4.17.26 full_covariance_matrix_type...85
7.4.17.27 height_coordinate_type...86
7.4.17.28 height_interval_type..86
7.4.17.29 latitude_coordinate_type...86
7.4.17.30 latitude_interval_type..86
7.4.17.31 longitude_coordinate_type..87
7.4.17.32 longitude_interval_type...87
7.4.17.33 polar_position_type...87
7.4.17.34 polar_velocity_type...87
7.4.17.35 position_accuracy_coordinate_type..88
7.4.17.36 position_coordinate_type..88
7.4.17.37 range_coordinate_type..89
7.4.17.38 range_interval_type...89
7.4.17.39 range_qualification_type...89
7.4.17.40 range_rate_type...89
7.4.17.41 speed_interval_type...89
7.4.17.42 speed_type...90
7.4.17.43 velocity_accuracy_coordinate_type..90
7.4.17.44 velocity_coordinate_type..90
7.4.17.45 wgs84_position_type...91
7.4.17.46 wgs84_velocity_type...91
7.4.17.47 cartesian_position_accuracy_type...91
7.4.17.48 cartesian_velocity_accuracy_type...92
7.4.17.49 polar_position_accuracy_type...92

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 9

7.4.17.50 polar_velocity_accuracy_type...92
7.4.17.51 wgs84_position_accuracy_type...93
7.4.17.52 wgs84_velocity_accuracy_type...93

7.4.18 Shape_Model...93
7.4.18.1 area_2d_type...95
7.4.18.2 figure_ref_point_type..96
7.4.18.3 general_polar_volume_type..96
7.4.18.4 polar_volume_type..96
7.4.18.5 polygon_type...97
7.4.18.6 rectangle_type...97
7.4.18.7 sector_type...97
7.4.18.8 truncated_polar_volume_type...98
7.4.18.9 truncated_sector_type..98

7.4.19 Requests...99
7.4.19.1 denial_reason_type..100
7.4.19.2 denial_type..100
7.4.19.3 error_reason_type..100
7.4.19.4 parameter_reference_type...100
7.4.19.5 request_ack_type...100
7.4.19.6 request_id_type...100
7.4.19.7 common_use_case_interface...100

7.5 Subsystem_Domain...101
7.5.1 Encyclopaedic_Support...101

7.5.1.1 data_descriptor_type...102
7.5.1.2 url_type..102

7.5.2 Extended_Subsystem_Control...102
7.5.2.1 configuration_url_type..102
7.5.2.2 network_name_type..103
7.5.2.3 offline_test_result_details_type...103
7.5.2.4 offline_test_result_type...103
7.5.2.5 offline_test_type..103

7.5.3 Recording_and_Replay..103
7.5.3.1 actual_time_type...104
7.5.3.2 change_threshold_type..104
7.5.3.3 parameter_type..104
7.5.3.4 rate_type..105
7.5.3.5 record_on_change_type...105
7.5.3.6 recorded_data_type...105
7.5.3.7 recorded_time_type...105
7.5.3.8 recording_descriptor_type...105
7.5.3.9 recording_id_type..106
7.5.3.10 recording_set_type..106
7.5.3.11 recording_type...106
7.5.3.12 replay_set_type..107
7.5.3.13 replay_speed_type...107

7.5.4 Simulation_Support...107

7.5.4.1 fault_script_id_type...108
7.5.4.2 fault_script_ids_type...108
7.5.4.3 fault_script_type..108
7.5.4.4 fault_scripts_type..108
7.5.4.5 sim_mode_status_type..108
7.5.4.6 start_stop_sim_mode_request_type..109
7.5.4.7 stop_freeze_session_request_type...109

7.5.5 Subsystem_Control..109
7.5.5.1 equipment_category_type...112
7.5.5.2 function_id_type..112
7.5.5.3 function_type...112
7.5.5.4 platform_category_type...112
7.5.5.5 product_category_type..112
7.5.5.6 service_name_type..112
7.5.5.7 battle_override_state_type...114
7.5.5.8 descriptor_type..114
7.5.5.9 descriptor_sequence_type...115
7.5.5.10 device_identification_type..115
7.5.5.11 device_name_type...116
7.5.5.12 parameter_range_type ..116
7.5.5.13 quality_of_service_type ...116
7.5.5.14 recipient_type ...116
7.5.5.15 typical_value_type ..116
7.5.5.16 event_type...116
7.5.5.17 fault_type...117
7.5.5.18 fault_list_type..117
7.5.5.19 health_state_reason_type...117
7.5.5.20 health_state_type...118
7.5.5.21 information_name_type...118
7.5.5.22 interest_type..119
7.5.5.23 interest_list_type...119
7.5.5.24 mastership_state_type...119
7.5.5.25 parameter_name_type...120
7.5.5.26 name_error_pair_type...120
7.5.5.27 name_error_sequence_type...120
7.5.5.28 parameter_name_sequence_type...121
7.5.5.29 name_value_pair_type...121
7.5.5.30 name_value_sequence_type..121
7.5.5.31 operational_mode_type...121
7.5.5.32 parameter_value_response_type...121
7.5.5.33 registration_type..122
7.5.5.34 service_type...122
7.5.5.35 service_health_type...122
7.5.5.36 service_indication_list_type..123
7.5.5.37 service_indication_type...123
7.5.5.38 service_information_type..123

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 11

7.5.5.39 service_list_type..123
7.5.5.40 subsystem_health_type..123
7.5.5.41 technical_state_type..124
7.5.5.42 version_type..125

7.6 Sensor_Domain...126
7.6.1 Clutter_Reporting...126

7.6.1.1 clutter_assessment_request_type...126
7.6.1.2 clutter_indication_type..126
7.6.1.3 clutter_map_cell_type...127
7.6.1.4 clutter_report_type..127
7.6.1.5 concentration_plot_cell_type..127
7.6.1.6 intensity_units_type...128
7.6.1.7 plot_concentration_report_type...128
7.6.1.8 plot_concentration_request_data_type..128

7.6.2 Media_Streaming...129
7.6.2.1 codec_type...129
7.6.2.2 media_allocation_type...130
7.6.2.3 media_kind_type...130
7.6.2.4 media_name_type..130
7.6.2.5 media_stream_id_type...130
7.6.2.6 media_stream_metadata_type...130

7.6.3 Search...131
7.6.3.1 cued_search_cue_type...132
7.6.3.2 cued_search_report_type...133
7.6.3.3 search_pattern_type...133
7.6.3.4 search_repeat_type..133
7.6.3.5 surveillance_area_type..134
7.6.3.6 surveillance_search_type...134
7.6.3.7 surveillance_task_type..135

7.6.4 Sensor_Assessment..135
7.6.4.1 country_code_type..141
7.6.4.2 descriptor_list_type...141
7.6.4.3 descriptor_name_type...141
7.6.4.4 descriptor_single_value_type..141
7.6.4.5 descriptor_value_type...142
7.6.4.6 equipment_match_type...142
7.6.4.7 equipment_mode_match_type...142
7.6.4.8 equipment_name_type...143
7.6.4.9 equipment_parameter_match_type...143
7.6.4.10 equipment_type...143
7.6.4.11 function_name_type..143
7.6.4.12 match_id_type...143
7.6.4.13 match_link_type..144
7.6.4.14 match_type..144
7.6.4.15 measurement_element_match_type..144
7.6.4.16 mode_name_type...144

7.6.4.17 multipath_set_type..145
7.6.4.18 observable_function_type...145
7.6.4.19 parametric_mode_match_type..145
7.6.4.20 platform_activity_name_type..146
7.6.4.21 platform_activity_type..146
7.6.4.22 platform_class_type...146
7.6.4.23 platform_equipment_match_type..146
7.6.4.24 platform_match_type...147
7.6.4.25 platform_mode_match_type..147
7.6.4.26 platform_name_type..147
7.6.4.27 platform_type..147
7.6.4.28 reference_descriptor_type...148
7.6.4.29 reference_id_type..148
7.6.4.30 reference_mode_type..148
7.6.4.31 reference_parameter_match_type...148
7.6.4.32 reference_parameter_type...149
7.6.4.33 reference_type...149
7.6.4.34 sensor_plot_equipment_assessment_type...149
7.6.4.35 sensor_plot_mode_assessment_type...149
7.6.4.36 sensor_plot_platform_assessment_type..150
7.6.4.37 sensor_track_equipment_assessment_type...150
7.6.4.38 sensor_track_mode_assessment_type...150
7.6.4.39 sensor_track_platform_assessment_type..151
7.6.4.40 subplatform_match_type...151

7.6.5 Supplementary_Measurement..151
7.6.5.1 continuous_measurement_type...156
7.6.5.2 discrete_measurement_type..156
7.6.5.3 discrete_order_type...156
7.6.5.4 discrete_set_measurement_type..157
7.6.5.5 distribution_mode_type...157
7.6.5.6 distribution_parameter_measurement_type..158
7.6.5.7 distribution_parameter_name_type...158
7.6.5.8 measurement_drift_type..158
7.6.5.9 measurement_element_type..159
7.6.5.10 measurement_interval_type...159
7.6.5.11 measurement_kind_id_type...159
7.6.5.12 measurement_name_type..160
7.6.5.13 measurement_parameter_kind_type..160
7.6.5.14 measurement_parameter_set_name_type..160
7.6.5.15 measurement_parameter_status_type..160
7.6.5.16 measurement_parameter_type...161
7.6.5.17 measurement_unit_type...161
7.6.5.18 measurement_variation_kind_type...162
7.6.5.19 modulation_type..163
7.6.5.20 multi_modal_measurement_type..163
7.6.5.21 normal_measurement_type...164

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 13

7.6.5.22 parameter_distribution_type..164
7.6.5.23 parameter_id_type...164
7.6.5.24 pdf_measurement_type...164
7.6.5.25 pdf_name_type..164
7.6.5.26 plot_measurement_parameter_set_type..164
7.6.5.27 poisson_measurement_type...165
7.6.5.28 qualitative_measurement_type..165
7.6.5.29 sample_range_type..165
7.6.5.30 scalar_measurement_type...165
7.6.5.31 sensor_defined_pdf_measurement_type...166
7.6.5.32 sequence_name_type...166
7.6.5.33 single_measurement_type...166
7.6.5.34 track_measurement_parameter_set_type..167
7.6.5.35 track_measurement_parameter_type...167
7.6.5.36 vector_measurement_type...167

7.6.6 Plot_Reporting...168
7.6.6.1 error_distribution_kind_type...170
7.6.6.2 plot_distribution_type...170
7.6.6.3 plot_filter_parameters_type...171
7.6.6.4 plot_id_type...171
7.6.6.5 plot_level_filter_attributes_type...171
7.6.6.6 plot_summary_type...172
7.6.6.7 processing_capability_type...172
7.6.6.8 sensor_calibration_model_type...172
7.6.6.9 sensor_plot_set_type...173
7.6.6.10 sensor_plot_type..173
7.6.6.11 sensor_precision_model_type...175
7.6.6.12 sensor_processing_model_type...176
7.6.6.13 sensor_stabilization_model_type..176
7.6.6.14 track_level_filter_attributes_type..177
7.6.6.15 sensor_orientation_type...177

7.6.7 Sensor_Control...178
7.6.7.1 selected_frequency_list_type..180
7.6.7.2 transmission_frequency_state_type...180
7.6.7.3 all_frequencies_state_type..180
7.6.7.4 reported_frequency_state_type...180
7.6.7.5 transmission_frequency_mode_type...181
7.6.7.6 transmission_sector_set_type..181
7.6.7.7 transmission_sector_type..181
7.6.7.8 transmission_sector_power_level_type...182
7.6.7.9 sector_reference_type..182
7.6.7.10 control_emission_state_type...182
7.6.7.11 test_target_scenario_type..182
7.6.7.12 test_target_scenario_independent_target_type...183
7.6.7.13 test_target_scenario_common_parameter_target_type...............................183
7.6.7.14 test_target_type...184

7.6.7.15 test_target_plus_scenario_type...184
7.6.7.16 test_target_scenario_id_type...184
7.6.7.17 test_target_scenario_state_type...185

7.6.8 Sensor_Performance..185
7.6.8.1 absolute_performance_type...186
7.6.8.2 interference_report_type...186
7.6.8.3 interferer_kind...187
7.6.8.4 interferer_type...187
7.6.8.5 jamming_magnitude_type...188
7.6.8.6 perfomance_bin_type..188
7.6.8.7 performance_assessment_parameters_type...188
7.6.8.8 performance_assessment_report_type...189
7.6.8.9 performance_band_type..190
7.6.8.10 performance_beam_type...190
7.6.8.11 performance_sector_type..190
7.6.8.12 relative_performance_type..191

7.6.9 Track_Reporting..191
7.6.9.1 assessment_objective_id_type...193
7.6.9.2 external_track_number_type...193
7.6.9.3 plot_association_type..194
7.6.9.4 protocol_name_type..194
7.6.9.5 sensor_track_id_type...194
7.6.9.6 track_filter_parameters_type...194
7.6.9.7 environment_type..195
7.6.9.8 initiation_mode_type...195
7.6.9.9 recognition_type..196
7.6.9.10 sensor_track_type..196
7.6.9.11 sensor_track_set_type...198
7.6.9.12 track_phase_type...198

7.6.10 Tracking_Control...198
7.6.10.1 track_info_type..199
7.6.10.2 tracking_zone_set_type...200
7.6.10.3 tracking_zone_type...200
7.6.10.4 tracking_zone_kind_type..200
7.6.10.5 tracking_zone_id_type..201

7.7 Radar_Domain..201
7.7.1 Air_Engagement_Support..201

7.7.1.1 expected_hit_data_type...202
7.7.1.2 miss_indication_data_type..202
7.7.1.3 projectile_kinematics_type..202

7.7.2 Engagement_Support...203
7.7.2.1 available_fire_control_channels_type...203
7.7.2.2 fire_control_channel_id_type..203
7.7.2.3 kill_assessment_result_type..204
7.7.2.4 kinematics_type...204

7.7.3 Missile_Guidance...204

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 15

7.7.3.1 downlink_report_type...206
7.7.3.2 downlink_request_type...206
7.7.3.3 frequency_channel_type..207
7.7.3.4 illumination_request_type...207
7.7.3.5 track_id_type...207
7.7.3.6 uplink_report_type..207
7.7.3.7 uplink_request_type..208

7.7.4 Surface_Engagement_Support...208
7.7.4.1 splash_spotting_area_id_type...209
7.7.4.2 splash_spotting_area_position_type..209
7.7.4.3 splash_spotting_area_set_type..209
7.7.4.4 splash_spotting_area_type...209

7.8 Subsystem_Services..210
7.8.1 Encyclopaedic_Support...210

7.8.1.1 Receive_Encyclopaedic_Data...210
7.8.2 Extended_Subsystem_Control...212

7.8.2.1 Manage_Physical_Configuration..212
7.8.2.2 Perform_Offline_Test...214
7.8.2.3 Manage_Network_Participation..216
7.8.2.4 Startup...220
7.8.2.5 Provide_Networking_Statistics...222
7.8.2.6 Shutdown...223
7.8.2.7 Restart..225

7.8.3 Subsystem_Control..227
7.8.3.1 Manage_Technical_State..227
7.8.3.2 Heartbeat_Signal...230
7.8.3.3 Provide_Subsystem_Identification..232
7.8.3.4 Provide_Health_State..233
7.8.3.5 Manage_Operational_Mode..238
7.8.3.6 Control_Battle_Override...240
7.8.3.7 Manage_Subsystem_Parameters...242
7.8.3.8 Provide_Subsystem_Services..246
7.8.3.9 Manage_Mastership..249
7.8.3.10 Register_Interest..254

7.8.4 Recording_and_Replay..255
7.8.4.1 Control_Recording..255
7.8.4.2 Control_Replay...257

7.8.5 Simulation_Support...260
7.8.5.1 Define_Simulation_Scenario...260
7.8.5.2 Control_Simulation...263
7.8.5.3 Define_Fault_Scripts...266
7.8.5.4 Control_Fault_Scripts...268

7.9 Sensor_Services...270
7.9.1 Clutter_Reporting...270

7.9.1.1 Provide_Area_with_Plot_Concentration...270
7.9.1.2 Provide_Clutter_Assessment...273

7.9.2 Media_Streaming...275
7.9.2.1 Allocate_Tracks_To_Stream...275
7.9.2.2 Configure_Media_Streams..278

7.9.3 Search...279
7.9.3.1 Perform_Cued_Search...279

7.9.4 Sensor_Assessment..285
7.9.4.1 Assess_Sensor_Plot...285
7.9.4.2 Assess_Sensor_Track..286

7.9.5 Supplementary_Measurement..292
7.9.5.1 Configure_Measurement_Parameters...292
7.9.5.2 Provide_Sensor_Plot_Parameters...293
7.9.5.3 Provide_Sensor_Track_Parameters...294

7.9.6 Plot_Reporting...296
7.9.6.1 Filter_Plots..296
7.9.6.2 Provide_Sensor_Characteristics..298
7.9.6.3 Provide_Plots...300
7.9.6.4 Provide_Sensor_Orientation...302

7.9.7 Sensor_Control...304
7.9.7.1 Manage_Frequency_Usage...304
7.9.7.2 Manage_Transmission_Sectors...308
7.9.7.3 Control_Emissions..311
7.9.7.4 Define_Test_Target_Scenario...313
7.9.7.5 Test_Target_Facility...316

7.9.8 Sensor_Performance..319
7.9.8.1 Provide_Interference_Reports...319
7.9.8.2 Provide_Nominal_Performance..321
7.9.8.3 Provide_Performance_Assessment...323
7.9.8.4 Provide_Jammer_Assessment...325

7.9.9 Track_Reporting..327
7.9.9.1 Filter_Tracks...327
7.9.9.2 Label_Tracks...329
7.9.9.3 Provide_Sensor_Tracks...332

7.9.10 Tracking_Control...337
7.9.10.1 Delete_Sensor_Track..337
7.9.10.2 Receive_Track_Information..338
7.9.10.3 Initiate_Track..340
7.9.10.4 Manage_Tracking_Zones..342

7.10 Radar_Services..345
7.10.1 Air_Engagement_Support..345

7.10.1.1 Provide_Projectile_Positional_Information..345
7.10.2 Engagement_Support...346

7.10.2.1 Process_Target_Designation...347
7.10.2.2 Support_Kill_Assessment...351
7.10.2.3 Support_Surface_Target_Engagement..352

7.10.3 Missile_Guidance...356
7.10.3.1 Perform_Illumination..356

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 17

7.10.3.2 Perform_Missile_Downlink..359
7.10.3.3 Perform_Missile_Uplink...362

7.10.4 Surface_Engagement_Support...364
7.10.4.1 Perform_Splash_Spotting..364

8 Platform-Specific Models...371
8.1 DDS Data Model PSM..371
8.2 DDS Services PSM...371
8.3 GraphQL Data Model and Services PSM...372

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®
(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:
http://www.omg.org/spec

Specifications are organized by the following categories:

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 19

Business Modeling Specifications

Middleware Specifications

1 CORBA/IIOP

2 Data Distribution Services

3 Specialized CORBA

1. IDL/Language Mapping Specifications

2. Modeling and Metadata Specifications

1 UML, MOF, CWM, XMI

2 UML Profile

3. Modernization Specifications

4. Platform Independent Model (PIM), Platform Specific Model (PSM), Interface
Specifications

1 CORBAServices

2 CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.
Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier/Courier New - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 21

1 Scope
This specification defines the interface between the Combat Management System (CMS) and a Sensor system
(especially a Radar system) within a modular combat system architecture for naval platforms. It is structured to align
with the objective of dividing the interface into three categories, namely subsystem services (interfaces applicable to
any module within a combat system), sensor services (interfaces applicable to any sensor component within a
combat system) and radar services (interfaces applicable to complex radar components within a combat system).

Version 1.0 of the specification addressed the scope required for radar integration specifically.

Version 2.0 of the specification expanded the scope of the sensor services such that it provides the necessary
interfaces for the integration of other combat system sensors and subsystems.

Version 3.0 of the specification expanded the scope of the sensor services such that plots and other measurements
can be shared between cooperating platform units within a joint operation.

2 Conformance
In order to support utilization by a range of sensors from simple navigation radars and electro-optic systems to
complex multi-function radars, sonars or electronic warfare systems the RFP defines the following compliance
levels:

1 Level 1
The simplest sensor operation providing just plots and tracks

2 Level 2
Basic sensor operation, but a complete interface supporting control and essential system configuration for a
combat system context

3 Level 3A
In addition to basic operation (level 2), interfaces for training support

4 Level 3B
In addition to basic operation (level 2), full system configuration interfaces

5 Level 3C
In addition to basic operation (level 2), the full track and plot reporting interfaces

6 Level 3D
In addition to basic operation (level 2), the engagement support interface

7 Level 3E
In addition to basic operation (level 2), the advanced radar interfaces

8 Level 3F
In addition to basic operation (level 2), compliance with C2INav

9 Level 3G
In addition to basic operation (level 2), compliance with METOC (To be defined in a future version of
OARIS)

10 Level 3H
In addition to basic operation (level 2), the full parameter measurement and identification assessment
interfaces

11 Level 3I
In addition to basic operation (level 2), the interfaces to support cooperative plot sharing

Radars conforming to this specification shall indicate which compliance levels are supported. The following
options are possible:

1 Level 1

2 Level 2

3 Any combination of levels 3A to 3E (in addition to level 2)

Further detail on service interfaces contained within each conformance level is presented in section 7.2.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do
not apply.

Title (Acronym) Version / Date Organization Reference / URL

Data Distribution Service (DDS) 1.4 / March 2015 OMG
formal/2015-04-10

www.omg.org/spec/DDS

Interface Definition Language (IDL) 4.2 / January 2018 OMG
formal/2018-01-05

www.omg.org/spec/IDL

Extended View of Time (EVOT) 2.0 / August 2008 OMG
formal/2008-08-01

www.omg.org/spec/EVOT

Unified Modeling Language (UML) 2.0 / July 2005 OMG
formal/05-07-04

www.omg.org/spec/UML

XML Metadata Interchange (XMI) 2.1 / December 2007 OMG
formal/07-12-01

www.omg.org/spec/XMI

Meta Object Facility (MOF) 2.0 / January 2006 OMG
formal/06-01-01

www.omg.org/spec/MOF
Graph Query Language

(GraphQL)
June 2018 Facebook spec.graphql.org/June2018

NATO Tactical Data Exchange – Link

16
Edition 6 NATO STANAG 5516

Joint C3 Information Exchange Data

Model (JC3IEDM)
v3.1.4 NATO STANAG 5525

NATO Joint Military Symbology

(APP-6(B))
June 2008 NATO

NATO Joint Military Symbology

(APP-6(C))
May 2011 NATO

Common Warfighting Symbology

(MIL-STD-2525C)
November 2008 DoD MIL-STD-2525C

Joint Military Symbology (MIL-STD-

2525D)
June 2014 DoD MIL-STD-2525C

Distributed Interactive Simulation

(DIS)
1A / 1998 IEEE 1278.1A

World Geodetic System 1984 (WGS-

84)
N/A

US National

Geospatial

Intelligence

Agency

https://earth-info.nga.mil/?
dir=wgs84&action=wgs84

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 23

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

 AAW (Anti-Air Warfare)

 AB (Architecture Board)

 API (Application Programming Interface)

 APP (Allied Procedural Publication)

 ASuW (Anti-Surface Warfare)

 ATC (Air Traffic Control)

 BC (Business Committee)

 BCQ (Business Committee Questionnaire)

 BoD (Board of Directors)

 CMS (Combat Management System)

 DDS (Data Distribution Service)

 EVOT (Enhanced View of Time)

 FTF (Finalization Task Force)

 IDL (Interface Definition Language)

 IEC (International Electrotechnical Commission)

 IFF (Interrogation, Friend or Foe)

 IPR (Intellectual Property Right)

 ISO (International Organization for Standardization)

 LOI (Letter of Intent)

 MDA (Model Driven Architecture)

 METOC (Meteorological and Oceanographic)

 MOF (Meta Object Facility)

 NNSI (Naval Navigation System Interface)

 NS (Naming Service)

 OARIS (Open Architecture Radar Interface Standard)

 OASIS (Organization for Advancement of Structured Information Standards)

 OCL (Object Constraint Language)

 ODF (Open Document Format)

 OMA (Object Management Architecture)

 OMG (Object Management Group)

 PIM (Platform Independent Model)

 PSM (Platform Specific Model)

 P&P (Policies and Procedures of the OMG Technical Process)

 RFC (Request For Comment)

 RFP (Request For Proposal)

 RTF (Revision Task Force)

 SIDC (Symbol Identification Code)

 SOA (Service Oriented Architecture)

 SoaML (Service oriented architecture Modeling Language)

 SOLAS (Safety Of Life At Sea)

 TC (Technology Committee)

 TF (Task Force)

 TOS (Trading Object Service)

 UML (Unified Modeling Language)

 XMI (XML Metadata Interchange)

 XML (eXtensible Markup Language)

5 Symbols
No special symbols are introduced in this specification.

6 Additional Information

6.1 Acknowledgements
The following companies submitted this specification:

1 BAE Systems

6.2 Specification Generation
The specification is captured as a UML version 2.1 model, with this document being automatically generated as a
report from the model.

1

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 25

7 Open Architecture Radar Information Specification

7.1 Introduction

7.1.1 Background
A Combat System on a naval warship (or platform) typically consists of, amongst other things, a Combat
Management System (CMS) interfacing with a number of sensors and communication systems (e.g. DataLink
network), together providing the user with a tactical picture of all the real world entities that have been detected.
These are then passed to other ship systems (e.g. comms and weapon systems) to support ongoing warfighting
activities.
In OARIS, sensors and these other ship systems are generalized as subsystems. OARIS partitions its data model and
services into abstraction layers that are applicable to subsystems (most general), sensor and radars (most specific).

Figure 1.1 - The OARIS specification is applicable to Sensor systems within the Combat System Architecture

Sensors typically operate by recording detections of whatever physical property they are sensing (e.g. acoustic or
electromagnetic events). These detections are called plots. A sensor may analyze the plots it is detecting over a
period of time and make decisions about whether each plot has come from a real world object of interest, or whether
the plot has been received as clutter from the environment (e.g. returns from the crests of waves). If the sensor has
confidence that a number of received plots correspond to a real world object then the sensor will form a track based
on those plots which is then sent to the CMS; a track being a sensor-view representation of a real-world object over
time. The CMS maintains a track list which in general has contributions from all the sensor on the platform.

Where a platform is working as part of a task group then historically the platform is able to share tracks from its
track list with other platforms via a DataLink network. Version 3.0 of OARIS expands the scope such that it

provides the necessary interfaces for coherent sharing of plots and other measurements between cooperating
platform units in a joint operation. Version 2.0 of OARIS extended the scope of services and the data model to cover
the functionality and capabilities of sensors in addition to radars, whilst version 1.0 of OARIS focused on radars
more specifically.

Figure 1.2 - The OARIS 3.0 specification in context with other C4I specifications and other platforms (e.g. ships)
implementing the standard

7.1.2 Section Structure
This section of the document is organized as follows:

7.1 (this section) Introduces the OARIS specification and gives some context to the use of OARIS within a naval
environment.

7.2 Provides an overview of how the various interfaces (later described in sections 7.7 to 7.9) are used by nominal
components to achieve a particular level of compliance with the OARIS specification

7.3 Identifies all the common data types used within the specification

7.4 Identifies all the data types that are applicable to the Subsystem domain interfaces (described in 7.7)

7.5 Identifies all the data types that are applicable to the Sensor domain interfaces (described in 7.8)

7.6 Identifies all the data types that are applicable to the Radar domain interfaces (described in 7.9)

7.7 Identifies all the interfaces that are applicable to the Subsystem domain

7.8 Identifies all the interfaces that are applicable to the Sensor domain

7.9 Identifies all the interfaces that are applicable to the Radar domain

7.2 Document Structure

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 27

Overview

+ Usage Overview: Package

Common

+ Common_Types: Package

Domain

+ Subsystem_Domain: Package
+ Sensor_Domain: Package
+ Radar_Domain: Package

Service

+ Subsystem_Services: Package
+ Sensor_Services: Package
+ Radar_Services: Package

Figure 7.1 -Specification Master (Documentation diagram)

This specification is presented as:

· An overview of how the services are used to achieve levels of conformance to the standard

· Common data types used throughout

· Domain specific data types for the three domains (Subsystem, Sensor and Radar)

Service interfaces for the three domains (Subsystem, Sensor and Radar)

7.3 Usage Overview
Parent Package: Analysis Model (PIM)

OARIS defines compliance levels as follows:

· Level 1: A simple radar which provides just plots and tracks
· Level 2: Basic radar operation, but a complete interface supporting control and essential system configuration

for a combat system context
· Level 3A: In addition to basic operation (level 2), interfaces for training support
· Level 3B: In addition to basic operation (level 2), full system configuration interfaces
· Level 3C: In addition to basic operation (level 2), the full track and plot reporting interfaces
· Level 3D: In addition to basic operation (level 2), the engagement support interface
· Level 3E: In addition to basic operation (level 2), the advanced radar interfaces
· Level 3F (compliance with C2INav) and Level 3G (compliance with METOC). are outside the scope of this

response
· Level 3H In addition to basic operation (level 2), the full parameter measurement and identification assessment

interfaces.

Sensors conforming to this specification shall indicate which compliance levels are supported. The following
options are possible:

· Level 1
· Level 2
· Any combination of levels 3A to 3E or 3H (in addition to level 2)

In order to comply with the specification levels the following respective interfaces shall be supported in full, with
the exception of level 3C where at least one of the environment types (Space/Air/Land/Surface) shall be supported
and appropriately qualified, e.g. level 3C Air and Surface:
This section continues below with activity and component diagrams that show how the interfaces relate to achieve
the difference compliance levels. The activity diagrams capture pre-requisites for interface usage, whilst the
component diagrams illustrate non-normative functionality enabled by the interfaces within a compliance level. The
component diagrams contain non-normative components representing subsets of a typical functional decomposition
of the Subsystem and CMS interface abstractions used by the normative sections of this specification. The interfaces
entailed by each conformance level are defined in sections 7.7 to 7.9 describing the subsystem, sensor and radar
services.

7.3.1 Compliance Level 1
Parent Package: Usage Overview
The Compliance Level 1 required interfaces are:
· Register Interest
· Track Reporting
· Plot Reporting
This compliance level is aimed at the simplest integration use cases and provides an entry-point for initial adoption
of the standard by implementers.

Basic Sensor
Basic Picture Compiler

«idlInterface»

Register_Interest_Sub

«idlInterface»

Provide_Plots_CMS

«idlInterface»

Provide_Sensor_Tracks_CMS

«use»

«use»

«use»

Figure 7.2 Compliance Level 1 (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components integrated at
compliance level 1.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 29

Subsystem
CM

S

Register Interest

Plot ReportingTrack Reporting

ActivityFinal

CMS and Subsystem partitions
indicate the initiator of the
service only.For example a
service initiated by the CMS
may include a response from
the subsystem even though
the service is not in the
Subsystem swimlane.

{CMS detects that an
interface to the Subsystem is
present}

[Interest Deregistered][Deregister Interest]

[Continue to receive tracks and plots]

[Interest Registered]

Figure 7.3 Compliance Level 1 (Activity diagram)

For compliance level 1, the radar powers up and commences track and plot reporting either without intervention or
using an out of scope facility, such as a maintainer interface. The CMS detects the presence of the interface,
registers interest then processes the incoming track and plot streams.

7.3.1.1 Basic Picture Compiler

A non-normative minimal example of the picture compilation function realizing the abstraction of a CMS.

7.3.1.2 Basic Sensor

A non-normative minimal example of a sensor realizing the abstraction of a Subsystem.

7.3.2 Compliance Level 2
Parent Package: Usage Overview
The Compliance Level 2 required interfaces are:
· Control Interface Connection
· Provide Subsystem Identification
· Provide Subsystem Services
· Manage Subsystem Parameters

· Provide Health State
· Manage Mastership
· Manage Technical State
· Exchange Heartbeat
· Register Interest
· Track Reporting
· Plot Reporting
· Manage Operational Mode
· Manage Tracking Zones
· Manage Frequency Usage
· Manage Transmission Sectors
· Control Battle Override
· Control Emissions
This compliance level supports core functionality required for operational usage in a fully integrated combat system.

General Sensor
Configuration Manager

General CMS Sensor
Manager

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

«idlInterface»

Provide_Subsystem_Identification_CMS

«idlInterface»

Provide_Subsystem_Identification_Sub

«idlInterface»

Manage_Subsystem_Parameters_CMS

«idlInterface»

Manage_Subsystem_Parameters_Sub

«idlInterface»

Provide_Subsystem_Services_CMS

«idlInterface»

Provide_Subsystem_Services_Sub

«idlInterface»

Manage_Mastership_CMS

«idlInterface»

Manage_Mastership_Sub

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.4 Compliance Level 2 - Initialization (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to achieve
initialization, integrated at compliance level 2.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 31

Subsystem CMS

Provide Subsystem
Identification

Exchange Heart Beat

Provide Subsystem Services

Register Interest

(from Compliance Level 1)

Manage Mastership

ActivityFinal

Manage Technical State

Provide Health State

Manage Subsystem
Parameters

{Power Applied}

Figure 7.5 Compliance Level 2 - Initialization (Activity diagram)

For compliance level 2 a more versatile startup sequence is supported, with the subsystem and CMS going through a
negotiation and configuration stage followed by more detailed interface control and reporting, including
management of reversionary modes.

General Sensor
Configuration Manager

General CMS Sensor
Manager

«idlInterface»

Manage_Operational_Mode_CMS

«idlInterface»

Manage_Operational_Mode_Sub

«use»

«use»

Figure 7.6 Compliance Level 2 - Operational Mode (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to manage the
operational mode of the subsystem, integrated at compliance level 2.

CMS

Manage Operational Mode

ActivityFinal

{Manage Subsystem
Parameters has completed
successfully and has
identified the currently
available operational modes
and CMS has mastership}

Figure 7.7 Compliance Level 2 - Operational Mode (Activity diagram)

Level 2 continues to manage the operational mode while the CMS has mastership.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 33

General Sensor
Configuration Manager

General CMS Sensor
Manager

«idlInterface»

Heartbeat_Signal_CMS

«idlInterface»

Heartbeat_Signal_Sub

«idlInterface»

Provide_Health_State_CMS

«idlInterface»

Provide_Health_State_Sub

«use»

«use»

«use»

«use»

Figure 7.8 Compliance Level 2 - Status Monitoring (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to achieve
status monitoring of the subsystem, integrated at compliance level 2.

CMS

Control EmissionsManage Frequency U sage Manage Transmission SectorsManage Tracking Zones Control Battle Overr ide

M anage Technical State

ActivityFinal

{Provide Subsystem Services
has successfully executed
and CMS has mastership}

[Subsystem is ONLINE]

[Subsystem is ONLINE]

[Subsystem is not ONLINE]

Figure 7.9 Compliance Level 2 - Subsystem Setup (Activity diagram)

Level 2 caters for continuous management of sensor configuration when the CMS has mastership.

General CMS Sensor
Manager

General Sensor
Configuration Manager

«idlInterface»

Control_Battle_Override_CMS

«idlInterface»

Control_Battle_Override_Sub

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

«idlInterface»

Manage_Transmission_Sectors_CMS

«idlInterface»

Manage_Transmission_Sectors_Sub

«idlInterface»

Control_Emissions_CMS

«idlInterface»

Control_Emissions_Sub

«idlInterface»

Manage_Tracking_Zones_CMS

«idlInterface»

Manage_Tracking_Zones_Sub

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.10 Compliance Level 2 - Subsystem Setup (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Sensor Subsystem components, to
achieve subsystem setup, integrated at compliance level 2. The CMS sets up the sensor subsystem such that it has
the required configuration to perform the necessary operational role for the current task or mission assigned to the
platform.

7.3.2.1 General CMS Sensor Manager

A non-normative example of sensor management function within a CMS; contains functionality to support system
users in configuring combat system sensors to support their tasking and mission objectives.

7.3.2.2 General Sensor Configuration Manager

A non-normative example of a sensor configuration management function that allows the sensor to be configured to
best perform the tasks to which it is allocated.

7.3.3 Compliance Level 3A
Parent Package: Usage Overview
The Compliance Level 3A required interfaces are:
· Define Test Target Scenario

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 35

· Define Fault Scripts
· Control Simulation
· Control Fault Script
· Control Test Target Facility
· Control Recording
· Control Replay
· Provide Simulation Data
· Perform Offline Test
This compliance level supports specialized functionality relating to simulation, online test and analysis. This level is
applicable to all types of subsystem.

Define Fault Scripts

Control Fault Script

Manage Mastership

(from Compliance Level 2)

Manage Technical State

(from Compliance Level 2)

Control Simulation

ActivityFinal

Define Test Target Scenario

Control Test Target Facility

CM
S

CMS and Subsystem
partitions indicate the initiator
of the service only.For
example a service initiated by
the CMS may include a
response from the subsystem
even though the service is not
in the Subsystem swimlane.

{Provide Subsystem Services
has successfully executed}

[CMS has mastership]

[Subsystem is not in a READY
or ONLINE state]

[CMS decides to activate a test
target scenario that has been
previously defined]

[CMS decides to define a fault script]

[CMS decides to activate a
fault script that has been
previously defined]

[CMS decides to define a test target scenario]

[Subsystem is in a READY or
ONLINE state]

[CMS has mastership]
[CMS does not have mastership]

[Simulation mode is ON]

[Simulation mode is OFF]

Figure 7.11 Compliance Level 3A - Fault Scripts and Test Targets (Activity diagram)

Level 3 provides for the simulation of faults and targets for test and training purposes.

Ollie Newman, 02/08/24
OARIS3-38

Subsystem Diagnostics
Manager

CMS Diagnostics
Manager

«idlInterface»

Define_Fault_Scripts_CMS

«idlInterface»

Define_Fault_Scripts_Sub

«idlInterface»

Control_Fault_Scripts_CMS

«idlInterface»

Control_Fault_Scripts_Sub

«idlInterface»

Test_Target_Facility_CMS

«idlInterface»

Test_Target_Facility_Sub

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.12 Compliance Level 3A - Fault Scripts and Test Targets (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to support
online diagnostic analysis, integrated at compliance level 3A.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 37

Control Recording

Control Replay

ActivityFinal

CM
S

CMS and Subsystem
partitions indicate the initiator
of the service only.For
example a service initiated by
the CMS may include a
response from the subsystem
even though the service is not
in the Subsystem swimlane.

{Subsystem is READY or
ONLINE, and CMS has
mastership}

[If recording is to be replayed]

[Else]

Figure 7.13 Compliance Level 3A - Recording/Replay (Activity diagram)

Recording and replay facilities support recording and replay of subsystem parameters for the purposes of training
and/or post exercise review.

Subsystem Record and
Replay Manager

CMS Analysis Data
Manager

«idlInterface»

Control_Recording_CMS

«idlInterface»

Control_Replay_Sub

«idlInterface»

Control_Recording_Sub

«idlInterface»

Control_Replay_CMS

«use»

«use»

«use»

«use»

Figure 7.14 Compliance Level 3A - Recording/Replay (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to support
record and replay for analysis, integrated at compliance level 3A.

Subsystem Simulation
Manager

CMS On Board
Training Manager

«idlInterface»

Define_Simulation_Scenario_CMS

«idlInterface»

Define_Simulation_Scenario_Sub

«idlInterface»

Control_Simulation_CMS

«idlInterface»

Control_Simulation_Sub

«use»

«use»

«use»

«use»

Figure 7.15 Compliance Level 3A - Simulation (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to support
simulation, integrated at compliance level 3A.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 39

Provide Simulation Data

ActivityFinal

Control Simulation

CM
S

CMS and Subsystem
partitions indicate the initiator
of the service only.For
example a service initiated by
the CMS may include a
response from the subsystem
even though the service is not
in the Subsystem swimlane.

[CMS starts or allows Simulation
Scenario to continue]

[CMS ends simulation Scenario]

Figure 7.16 Compliance Level 3A - Simulation (Activity diagram)

The simulation interfaces are used to support training.

Perform Offline Test

Manage Technical State

(from Compliance Level 2)

ActivityFinal

CM
S

Subsystem

The subsystem initiates
this state change to
FAILED, and uses this
service to report the
change to the CMS

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a
service initiated by the
CMS may include a
response from the
subsystem even though
the service is not in the
Subsystem swimlane.

{Provide Subsystem Services
Successful (Subsystem is able
to communicate with the
CMS), Subsystem is in any
state except for ONLINE,
CMS has mastership of
subsystem}

[Detection of critical failure requires subsystem to transition to FAILED]

[No critical failures detected]

Figure 7.17 Compliance Level 3A - Perform Offline Test (Activity diagram)

Offline test provides a mechanism for diagnosing subsystem failures, after which the subsystem's technical state is
adjusted accordingly.

Subsystem
Configuration Manager

CMS Subsystem
Manager

«idlInterface»

Perform_Offline_Test_CMS

«idlInterface»

Perform_Offline_Test_Sub

«use»

«use»

Figure 7.18 Compliance Level 3A - Perform Offline Test (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to perform
offline tests, integrated at compliance level 3A.

7.3.3.1 CMS Analysis Data Manager

A non-normative example of an analysis data management function within a CMS. This component would support
CMS users in learning from tasks recently undertaken.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 41

Ollie Newman, 02/08/24
OARIS3-38

7.3.3.2 CMS Diagnostics Manager

A non-normative example of a diagnostics management function within a CMS. This component would enable CMS
users to investigate potential faults in the combat system.

7.3.3.3 CMS On Board Training Manager

A non-normative example of a simulation management function within a CMS. A plan rehearsal function would be
another example.

7.3.3.4 Subsystem Diagnostics Manager

A non-normative example of a diagnostic function within a subsystem. Such a function enables the generation of
diagnostic tests on the subsystem's other components.

7.3.3.5 Subsystem Record and Replay Manager

A non-normative example of a combined record and replay function within a subsystem to manage recording and
later replay of the data the subsystem generates.

7.3.3.6 Subsystem Simulation Manager

A non-normative example of a simulation function within a subsystem enabling the subsystem to take part in
federated simulated operations such as on-board training.

7.3.3.7 CMS Subsystem Manager

A non-normative example of a CMS function to manage the state of subsystems in the combat system.

7.3.3.8 Subsystem Configuration Manager

A non-normative example of a subsystem function to manage its configuration and state.

7.3.4 Compliance Level 3B
Parent Package: Usage Overview
The Compliance Level 3B required interfaces are:
· Shutdown
· Restart
· Startup
· Manage Physical Configuration
· Perform Offline Test
· Receive Encyclopedic Data
This compliance level supports specialized configuration and state management of the subsystem (and applies to
subsystems in general).

Ollie Newman, 02/08/24
OARIS3-38

Subsystem
Configuration Manager

CMS Subsystem
Manager

«idlInterface»

Startup_CMS

«idlInterface»

Startup_Sub

«idlInterface»

Shutdown_CMS

«idlInterface»

Shutdown_Sub

«idlInterface»

Restart_CMS

«idlInterface»

Restart_Sub

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.19 Compliance Level 3B - Macro State Management (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to achieve
macro state management, integrated at compliance level 3B.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 43

Shutdown Restart Startup

ActivityFinal

CM
S

CMS and Subsystem
partitions indicate the initiator
of the service only.For
example a service initiated by
the CMS may include a
response from the subsystem
even though the service is not
in the Subsystem swimlane.

{Provide Subsystem Services
Successful, CMS has
mastership of subsystem}

[Startup]
[Restart][Shutdown]

Figure 7.20 Compliance Level 3B - Macro State Management (Activity diagram)

These interfaces provide for more finely grained control of startup and shutdown.

CMS

Manage Physical
Configuration

Manage Mastership

(from Compliance Level 2)

Manage Technical State

(from Compliance Level 2)

ActivityFinal

[CMS has mastership]

[Subsystem is in STANDBY]

[CMS does not have mastership]

[Request Change to Configuration]

[Subsystem is in STANDBY]

[Subsystem is not in STANDBY]

[Request Current Configuration]

[CMS has mastership]

Figure 7.21 Compliance Level 3B - Manage Physical Configuration (Activity diagram)

These interfaces support more detailed control of the subsystem configuration.

Subsystem Physical
Configuration Manager

CMS Combat System
Configuration Manager

«idlInterface»

Manage_Physical_Configuration_CMS

«idlInterface»

Manage_Physical_Configuration_Sub

«use»

«use»

Figure 7.22 Compliance Level 3B - Manage Physical Configuration (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to manage the
subsystem's physical configuration, integrated at compliance level 3B.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 45

Perform Offline Test

Manage Technical State

(from Compliance Level 2)

ActivityFinal

CM
S

Subsystem

The subsystem initiates
this state change to
FAILED, and uses this
service to report the
change to the CMS

CMS and Subsystem
partitions indicate the
initiator of the service
only.For example a
service initiated by the
CMS may include a
response from the
subsystem even though
the service is not in the
Subsystem swimlane.

{Provide Subsystem Services
Successful (Subsystem is able
to communicate with the
CMS), Subsystem is in any
state except for ONLINE,
CMS has mastership of
subsystem}

[Detection of critical failure requires subsystem to transition to FAILED]

[No critical failures detected]

Figure 7.23 Compliance Level 3B - Perform Offline Test (Activity diagram)
Offline test provides a mechanism for diagnosing subsystem failures, after which the subsystem's technical state is

adjusted accordingly.

Subsystem
Configuration Manager

CMS Subsystem
Manager

«idlInterface»

Perform_Offline_Test_CMS

«idlInterface»

Perform_Offline_Test_Sub

«use»

«use»

Figure 7.24 Compliance Level 3B - Perform Offline Test (Component diagram)
This component diagram shows the interfaces realized and used by CMS and Subsystem components, to perform

offline tests, integrated at compliance level 3B.

CMS

Receive Encyclopaedic Data

ActivityFinal

Figure 7.25 Compliance Level 3B - Receive Encyclopedic Data (Activity diagram)

The subsystem is able to receive relevant encyclopedic data from the CMS.

Subsystem
Configuration Manager

CMS Combat System
Configuration Manager

«idlInterface»

Receive_Encyclopaedic_Data_CMS

«idlInterface»

Receive_Encyclopaedic_Data_Sub

«use»

«use»

Figure 7.26 Compliance Level 3B - Receive Encyclopedic Data (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to transfer
encyclopedic data, integrated at compliance level 3B.

7.3.4.1 CMS Combat System Configuration Manager

A non-normative example of a CMS function to manage the configuration of the Combat System.

CMS Subsystem Manager

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 47

7.3.4.2 A non-normative example of a CMS function to manage the state of subsystems in the combat
system.

7.3.4.3

Subsystem Configuration Manager

7.3.4.4 A non-normative example of a subsystem function to manage its configuration and state.

7.3.4.5 Subsystem Physical Configuration Manager

A non-normative example of a subsystem function to manage its physical configuration (i.e. state of hardware and
associated mechanical aspects and devices).

7.3.5 Compliance Level 3C
Parent Package: Usage Overview
The Compliance Level 3C required interfaces are:
· Receive Track Information
· Delete Sensor Track
· Initiate Track
· Perform Cued Search
· Provide Space Plots
· Provide Land Plots
· Provide Surface Plots
· Provide Air Plots
· Provide Sensor Space Tracks
· Provide Sensor Land Tracks
· Provide Sensor Surface Tracks
· Provide Sensor Air Tracks
This compliance level supports specialized provision and management of tracks and plots; it applies to sensors in
general.

Ollie Newman, 02/08/24
OARIS3-38

Register Interest

(from Compliance Level 1)

Subsystem

ActivityFinal

This diagram is valid for any of the Plot and Track
services depicted on this diagram in lieu of the
Provide Plots/Tracks container:
⦁ Provide Sensor Space Track
⦁ Provide Sensor Air Tracks
⦁ Provide Sensor Land Tracks
⦁ Provide Sensor Surface Track
⦁ Provide Space Plots
⦁ Provide Air Plots
⦁ Provide Land Plots
⦁ Provide Surface Plots

CM
S

CMS and Subsystem
partitions indicate the initiator
of the service only.For
example a service initiated by
the CMS may include a
response from the subsystem
even though the service is not
in the Subsystem swimlane.

Provide Plots/Tracks
container

{Interface Connection
Successful}

[Interest Deregistered]

[Continue to receive tracks and plots]

[Deregister Interest]

[Interest Registered]

Figure 7.27 Compliance Level 3C - Advanced Track and Plot Reporting (Activity diagram)

The sensor supports reporting tracks and plots selectively based on the operational environment
(space/air/land/surface).

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 49

ActivityFinal

CM
S

Perform Cued SearchInitiate TrackDelete Sensor TrackReceive Track Information

Subsystem

Track Reporting

(from Compliance Level 1)

CMS and Subsystem partitions
indicate the initiator of the
service only.For example a
service initiated by the CMS
may include a response from
the subsystem even though
the service is not in the
Subsystem swimlane.

Track Reporting is also
occurring as an ongoing
process

{Subsystem is READY and
Simulation Mode is ON, or
Subsytem is ONLINE; CMS
has mastership}

Figure 7.28 Compliance Level 3C - Advanced Track Management (Activity diagram)

The sensor supports detailed track management.

Sensor Track Reporter CMS Sensor Picture
Manager

«idlInterface»

Perform_Cued_Search_CMS

«idlInterface»

Perform_Cued_Search_Sub

«idlInterface»

Initiate_Track_CMS

«idlInterface»

Initiate_Track_Sub

«idlInterface»

Receive_Track_Information_CMS

«idlInterface»

Receive_Track_Information_Sub

«idlInterface»

Delete_Sensor_Track_CMS

«idlInterface»

Delete_Sensor_Track_Sub

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.29 Compliance Level 3C - Advanced Track Management (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Sensor Subsystem components
integrated at compliance level 3C.

7.3.5.1 CMS Sensor Picture Manager

A non-normative example of a CMS picture management function.

7.3.5.2 Sensor Track Reporter

A non-normative example of a sensor function to manage track reporting.

7.3.6 Compliance Level 3D
Parent Package: Usage Overview
The Compliance Level 3D required interfaces are:
· Process Target Designation
· Provide Projectile Positional Information
· Perform Missile Downlink

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 51

· Perform Missile Uplink
· Kill Assessment
· Support Surface Engagement
· Perform Splash Plotting
This compliance level supports specialized engagement related radar functionality; it is specific to radar sensors.

Subsystem CMS

Process Target Designation

Perform Missile UplinkPerform Missile Downlink

Perform Illumination

Kill Assessment

CMS and Subsystem
partitions indicate the initiator
of the service only.For
example a service initiated by
the CMS may include a
response from the subsystem
even though the service is not
in the Subsystem swimlane.

Track Reporting

ActivityFinal

Provide Projectile Positional
Information

{CMS has determined an
engagement is required
against an air track, CMS has
mastership, Subsystem is
ONLINE or READY (for
simulated engagements
only)}

[Missile communications required]

[Else]

[Else]

[If service required]

[Else]

[Illumination required]

Figure 7.30 Compliance Level 3D - Air Engagement Support (Activity diagram)

Level 3D provides additional information to support air engagements, including missile links and kill assessment.

Radar AAW
Engagement Support

Manager

CMS AAW
Engagement
Coordinator

«idlInterface»

Provide_Projectile_Positional_Information_CMS

«idlInterface»

Provide_Projectile_Positional_Information_Sub

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

«idlInterface»

Support_Kill_Assessment_CMS

«idlInterface»

Support_Kill_Assessment_Sub

«idlInterface»

Perform_Illumination_CMS

«idlInterface»

Perform_Illumination_Sub

«idlInterface»

Perform_Missile_Downlink_CMS

«idlInterface»

Perform_Missile_Downlink_Sub

«idlInterface»

Perform_Missile_Uplink_CMS

«idlInterface»

Perform_Missile_Uplink_Sub

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.31 Compliance Level 3D - Air Engagement Support (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Radar Subsystem components, to
support air engagements, integrated at compliance level 3D.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 53

Subsystem CMS

Process Target Designation

ActivityFinal

CMS and Subsystem partitions
indicate the initiator of the
service only.For example a
service initiated by the CMS
may include a response from
the subsystem even though
the service is not in the
Subsystem swimlane.

Track Reporting

{CMS has determined an engagement is required
against a surface track, CMS has mastership,
Subsystem is ONLINE (simulated engagements
may be performed in READY as well)}

Figure 7.32 Compliance Level 3D - Surface Engagement Support - Fire Control Radar (Activity diagram)

This provides additional surface engagement support for fire control.

Surface Fire Control
Radar Manager

CMS ASuW
Engagement
Coordinator

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

«use»

«use»

Figure 7.33 Compliance Level 3D - Surface Engagement Support - Fire Control Radar (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Fire Control Radar Subsystem
components, to support surface engagements integrated at compliance level 3D.

Subsystem CMS

Support Surface Engagement

Perform Splash Spotting

CMS and Subsystem
partitions indicate the initiator
of the service only.For
example a service initiated by
the CMS may include a
response from the subsystem
even though the service is not
in the Subsystem swimlane.

ActivityFinal

Track Reporting

Figure 7.34 Compliance Level 3D - Surface Engagement Support - Surveillance Radar (Activity diagram)

This provides additional surface engagement support for surveillance purposes.

Surface Surveillance
Radar Engagement
Support Manager

CMS ASuW
Engagement
Coordinator

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»

Support_Surface_Target_Engagement_Sub

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

«use»

«use»

«use»

«use»

Figure 7.35 Compliance Level 3D - Surface Engagement Support - Surveillance Radar (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Surveillance Radar Subsystem
components, to support surface engagements integrated at compliance level 3D.

7.3.6.1 CMS AAW Engagement Coordinator

A non-normative example of CMS functionality to coordinate anti-air warfare engagements.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 55

7.3.6.2 CMS ASuW Engagement Coordinator

A non-normative example of CMS functionality to coordinate anti-surface warfare engagements.

7.3.6.3 Radar AAW Engagement Support Manager

A non-normative example of Radar Sensor functionality providing anti-air warfare engagement support.

7.3.6.4 Surface Fire Control Radar Manager

A non-normative example of Fire-Control Radar Sensor functionality providing anti-surface warfare engagement
support.

7.3.6.5 Surface Surveillance Radar Engagement Support Manager

A non-normative example of Surveillance Radar Sensor functionality providing anti-surface warfare engagement
support.

7.3.7 Compliance Level 3E
Parent Package: Usage Overview
The Compliance Level 3E required interfaces are:
· Provide Interference Reports
· Provide Jammer Strobes
· Provide Jammer Tracks
· Provide Area with Plot Concentration
· Provide Clutter Assessment
· Provide Jamming Effect Assessment
· Provide Performance Assessment
· Provide Nominal Performance
This compliance level is for the provision and management of specialized services to manage sensor functional
performance and mitigate jamming; it is applicable to sensors in general.

Sensor Functional
Performance Manager

CMS Combat System
Performance

Optimizer

«idlInterface»

Provide_Plot_Concentration_CMS

«idlInterface»

Provide_Plot_Concentration_Sub

«idlInterface»

Provide_Clutter_Assessment_CMS

«idlInterface»

Provide_Clutter_Assessment_Sub

«idlInterface»

Provide_Interference_Reports_CMS

«idlInterface»

Provide_Interference_Reports_Sub

«idlInterface»

Provide_Nominal_Performance_CMS

«idlInterface»

Provide_Nominal_Performance_Sub

«idlInterface»

Provide_Performance_Assessment_CMS

«idlInterface»

Provide_Performance_Assessment_Sub

«idlInterface»

Provide_Jammer_Assessment_CMS

«idlInterface»

Provide_Jammer_Assessment_Sub
Sensor Interference

Reporter
CMS Interference

Mitigation Coordinator

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.36 Compliance Level 3E (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components integrated at
compliance level 3E.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 57

CM
S

ActivityFinal

Register Interest

(from Compliance Level 1)

Subsystem

CMS and Subsystem
partitions indicate the initiator
of the service only.For
example a service initiated by
the CMS may include a
response from the subsystem
even though the service is not
in the Subsystem swimlane.

Provide Interference Reports
Container

This Diagram remains valid when the provide interface
report container activity is replaced by any of:
⦁ Provide Interference Reports
⦁ Provide Area with Plot Concentration
⦁ Provide Clutter Assessment
⦁ Provide Jammer Strobes
⦁ Provide Jammer Tracks

[Continue to publish interference reports and tracks]

[Interest Registered]

[Interest Deregistered]

[Deregister interest]

Figure 7.37 Compliance Level 3E - Automatic Interference Reporting (Activity diagram)

Level 3E provides for detailed interference reporting, including jammers.

Provide Jamming Effect
Assessment

Provide Nominal PerformanceProvide Performance
Assessment

Provide Area with Plot
Concentration

Provide Clutter Assessment

CM
S

ActivityFinal

CMS and Subsystem partitions
indicate the initiator of the
service only.For example a
service initiated by the CMS
may include a response from
the subsystem even though
the service is not in the
Subsystem swimlane.

{Subsystem is ONLINE}

Figure 7.38 Compliance Level 3E - Requested Interference Reports (Activity diagram)

These interfaces provide for reporting sensor specified and actual performance in addition to interference related
information.

7.3.7.1 CMS Combat System Performance Optimizer

A non-normative example of CMS functionality to understand and hence optimize the performance of the combat
system.

7.3.7.2 CMS Interference Mitigation Coordinator

A non-normative example of CMS functionality to coordinate mitigation with respect to active interference in the
environment - e.g. jamming.

7.3.7.3 Sensor Functional Performance Manager

A non-normative example of sensor functionality to manage, interrogate and publish its own functional
performance.

7.3.7.4 Sensor Interference Reporter

A non-normative example of sensor functionality to report interference detected in the external environment.

7.3.8 Compliance Level 3H
Parent Package: Usage Overview
The Compliance Level 3H required interfaces are:

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 59

· Allocate_Tracks_To_Stream
· Configure_Media_Streams
· Assess_Sensor_Plot
· Assess_Sensor_Track
· Configure_Measurement_Parameters
· Provide_Sensor_Plot_Parameters
· Provide_Sensor_Track_Parameters
This compliance level is for the integration of sensors other than radars and in particular the publication of
parametric data, assessment of identify and classification, and to relate media streams to tracks.

CM
S

Subsystem

ActivityFinal

CMS and Subsystem partitions
indicate the initiator of the
service only.For example a
service initiated by the CMS
may include a response from
the subsystem even though
the service is not in the
Subsystem swimlane.

Configure Media Streams

Allocate Tracks To Stream

Assess Sensor Track

Assess Sensor Plot

Configure Measurement
Parameters

Provide Sensor Plot
Parameters

Provide Sensor Track
Parameters

{Subsystem is READY and
Simulation Mode is ON, or
Subsytem is ONLINE; CMS
has mastership}

Figure 7.39 Compliance Level 3H - Measurement and Identification Assessment (Activity diagram)

These interfaces support the processing and assessment of information derived from the sensor's processing chain
(especially detailed parametric data) to aid the identification and classification processes within the CMS.

Sensor Media
Manager

CMS Media Manager

«idlInterface»

Allocate_Tracks_to_Stream_CMS

«idlInterface»

Allocate_Tracks_To_Stream_Sub

«idlInterface»

Configure_Media_Streams_CMS

«use»

«use»

«use»

Figure 7.40 Compliance Level 3H - Media Streaming (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to relate
media streams to the tactical picture, integrated at compliance level 3H.

Sensor Parameter
Assessment

CMS Picture
Compilation

Track Extractor

Sensor Plot Detector

«idlInterface»

Provide_Sensor_Plot_Assessment_CMS

«idlInterface»

Provide_Sensor_Track_Assessment_CMS

«idlInterface»

Provide_Sensor_Track_Assessment_Sub

«idlInterface»

Configure_Measurement_Parameters_CMS

«idlInterface»

Provide_Sensor_Plot_Parameters_CMS

«idlInterface»

Provide_Plots_CMS

«idlInterface»

Provide_Sensor_Tracks_CMS

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.41 Compliance Level 3H - Picture Compilation From Plots (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to utilize plot-
level parametric data and assessment functions, integrated at compliance level 3H.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 61

Sensor Parameter
Assessment

CMS Picture
Compilation

Sensor Track Reporter «idlInterface»

Provide_Sensor_Track_Assessment_CMS

«idlInterface»

Provide_Sensor_Track_Assessment_Sub

«idlInterface»

Configure_Measurement_Parameters_CMS

«idlInterface»

Provide_Sensor_Track_Parameters_CMS

«idlInterface»

Provide_Sensor_Tracks_CMS

«use»

«use»

«use»

«use»

«use»

Figure 7.42 Compliance Level 3H - Picture Compilation From Tracks (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to utilize
track-level parametric data and assessment functions, integrated at compliance level 3H.

7.3.8.1 CMS Media Manager

A non=normative example of CMS functionality to manage media streams derived from or otherwise available to
the combat system.

7.3.8.2 CMS Picture Compilation

A non-normative example of CMS tactical picture management functionality.

7.3.8.3 Sensor Media Manager

A non-normative example of sensor functionality for providing a media stream.

7.3.8.4 Sensor Parameter Assessment

A non-normative example of functionality for the assessment of sensor parametric data.

7.3.8.5 Sensor Plot Detector

A non-normative example of sensor plot detection and reporting functionality.

7.3.8.6 Sensor Track Reporter

A non-normative example of functionality to report sensor tracks to the combat system.

7.3.8.7 Track Extractor

A non-normative example of functionality to extract tracks from a stream of plots.

7.3.9 Compliance Level 3I
Parent Package: Usage Overview
The Compliance Level 3I required interfaces are:
· Manage_Network_Participation
· Provide_Networking_Statistics
· Filter_Plots
· Provide_Sensor_Characteristics
· Filter_Tracks
· Label_Tracks
This compliance level is for the sharing and exploitation of plots from multiple sensors across multiple platforms
(e.g. ships) cooperating within a task group.

Subsystem
CM

S

ActivityInitial ActivityFinal

Filter Plots

Manage
Network

Participation

Label Tracks

Provide Sensor
Characteristics

F ilter Tracks

Provide
Networking

Statistics

{Subsystem is READY and
Simulation Mode is ON, or
Subsytem is ONLINE; CMS
has mastership}

CMS and Subsystem
partitions indicate the
initiator of the service only.
For example a service
initiated by the CMS may
include a response from the
subsystem even though the
service is not in the
Subsystem swimlane.

Figure 7.43 Compliance Level 3I (Activity diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 63

CMS Tactical Picture
Manager

Plot FuserSensor Plot Detector

OARIS External
Interface

«idlInterface»

Provide_Plots_CMS

«idlInterface»

Provide_Sensor_Characteristics_CMS

«idlInterface»

Provide_Sensor_Characteristics_Sub

«idlInterface»

Provide_Sensor_Tracks_CMS

«idlInterface»

Provide_Sensor_Tracks_Sub

«idlInterface»

Provide_Sensor_Orientation_CMS

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.44 Compliance Level 3I - Plots (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to share plots
within a platform, integrated at compliance level 3I.

OARIS External
Interface

«idlInterface»

Filter_Plots_CMS

«idlInterface»

Filter_Plots_Sub

«idlInterface»

Manage_Network_Participation_CMS

«idlInterface»

Manage_Network_Participation_Sub

«idlInterface»

Filter_Tracks_CMS

«idlInterface»

Filter_Tracks_Sub

«idlInterface»

Label_Tracks_CMS

«idlInterface»

Label_Tracks_Sub

CMS Plot Sharing
Manager

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.45 Compliance Level 3I - Picture Management (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to manage the
sharing of tactical picture information, integrated at compliance level 3I.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 65

Platform B:
OARIS External

Interface

Platform A:
OARIS External

Interface

«idlInterface»

Provide_Plots_CMS

«idlInterface»

Provide_Sensor_Characteristics_CMS

«idlInterface»

Provide_Sensor_Characteristics_Sub

«idlInterface»

Provide_Sensor_Orientation_CMS

«idlInterface»

Provide_Sensor_Tracks_CMS

«idlInterface»

Provide_Sensor_Tracks_Sub

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 7.46 Compliance Level 3I - External Information Exchange (Component diagram)

This component diagram shows the interfaces realized and used by CMS and Subsystem components, to exchange
information between platforms, integrated at compliance level 3I.

7.3.9.1 CMS Plot Sharing Manager

A non-normative example of CMS functionality to manage the sharing of plot-level information.

7.3.9.2 CMS Tactical Picture Manager

A non-normative example of CMS functionality to produce and manage the tactical picture.

7.3.9.3 OARIS External Interface

A non-normative example of functionality to provide the external-to-platform interface for distributing plots and
other information to enable the exploitation of plots across multiple platforms. This component expects to interface
peer-to-peer with other equivalent components using a symmetric, bidirectional interface.

7.3.9.4 Platform A

A non-normative instance of the component, notionally resident on a nominal platform A.

7.3.9.5 Platform B

A non-normative instance of the component, notionally resident on a nominal platform B.

7.3.9.6 Plot Fuser

A non-normative example of functionality to fuse plots from multiple sensors (and platforms) into continuous
tracks.

7.3.9.7 Sensor Plot Detector

A non-normative example of sensor plot detection and reporting functionality.

7.4 Common_Types
Parent Package: Domain_Model

This package contains the types that are common to several areas of the model. Most of the content is in three sub-
packages: Coordinates_and_Positions, Shape_Model and Requests. General types are captured at the top level.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 67

TimeT

«idlTypedef»
time_type

octet

«idlSequence»
anonymous_blob_type

Shape_Model

+ area_2d_type

+ polygon_type

+ rectangle_type

+ figure_ref_point_type

+ general_polar_volume_type

+ polar_volume_type

+ sector_type

+ truncated_polar_volume_type

+ truncated_sector_type

Coordinates_and_Positions

+ full_2d_covariance_matrix_type

+ absolute_duration_type

+ angle_of_climb_type

+ azimuth_coordinate_type

+ azimuth_interval_type

+ azimuth_qualification_type

+ azimuth_rate_type

+ cartesian_coordinate_type

+ cartesian_interval_type

+ cartesian_position_type

+ cartesian_velocity_component_type

+ cartesian_velocity_type

+ coordinate_kind_type

+ coordinate_orientation_type

+ coordinate_origin_type

+ coordinate_specification_type

+ course_type

+ covariance_matrix_type

+ diagonal_covariance_matrix_type

+ duration_type

+ elevation_coordinate_type

+ elevation_interval_type

+ elevation_qualification_type

+ elevation_rate_type

+ full_covariance_matrix_type

+ height_coordinate_type

+ height_interval_type

+ latitude_coordinate_type

+ latitude_interval_type

+ longitude_coordinate_type

+ longitude_interval_type

+ polar_position_type

+ polar_velocity_type

+ position_accuracy_coordinate_type

+ position_coordinate_type

+ range_coordinate_type

+ range_interval_type

+ range_qualification_type

+ range_rate_type

+ speed_interval_type

+ speed_type

+ velocity_accuracy_coordinate_type

+ velocity_coordinate_type

+ wgs84_position_type

+ wgs84_velocity_type

+ cartesian_position_accuracy_type

+ cartesian_velocity_accuracy_type

+ polar_position_accuracy_type

+ polar_velocity_accuracy_type

+ wgs84_position_accuracy_type

+ wgs84_velocity_accuracy_type

unsigned long

«idlTypedef»
subsystem_id_type

«idlEnum»
identity_type

+ PENDING
+ UNKNOWN
+ ASSUMED_FRIEND
+ FRIEND
+ NEUTRAL
+ SUSPECT
+ HOSTILE

unsigned long

«idlTypedef»
system_track_id_type

Requests

+ denial_reason_type

+ denial_type

+ error_reason_type

+ parameter_reference_type

+ request_ack_type

+ request_id_type

+ common_use_case_interface

unsigned short

«idlTypedef»
strength_type

unsigned short

«idlTypedef»
frequency_band_type

float

«idlTypedef»
confidence_type

float

«idlTypedef»
percentage_type

unsigned short

«idlTypedef»
filter_id_type

unsigned short

«idlTypedef»
track_priority_type

float

«idlTypedef»
track_quality_type

«idlEnum»
filter_mode_type

«idlEnum»
+ FILTER_TRANSMISSION
+ FILTER_RECEPTION
+ FILTER_BOTH

Figure 7.47 Domain Model (Class diagram)

7.4.1 anonymous_blob_type
Type: Class

Package: Common_Types
Representation for a general binary type
ElementTag: Length = 1024

7.4.2 confidence_interval_type
Type: IDLStruct
Package: Common_Types
An abstraction for a range of confidence values.

Table 7.1 - Attributes of IDLStruct confidence_interval_type

Attribute Notes
 minimum confidence_type The minimum inclusive value for the interval.

 maximum confidence_type The maximum inclusive value for the interval.

7.4.3 confidence_type
Type: Class
Package: Common_Types
The confidence in the measurement or assessment expressed as a probability. This is the result of a hypothesis test
that the data is a measurement of real-world phenomenon corresponding to its label. For an assessment it is the
hypothesis that the assessment describes the real-world.
ElementTag: Range = 0 .. 1

7.4.4 filter_id_type
Type: IDLTypeDef
Package: Common_Types

7.4.5 filter_mode_type
Type: IDLEnum
Package: Common_Types
This class encapsulates the possible modes in which a filter can operate.

Table 7.2 - Attributes of IDLEnum filter_mode_type

Attribute Notes
«idlEnum» FILTER_TRANSMISSION The filter is applied to transmission of data (plots or

tracks).

«idlEnum» FILTER_RECEPTION The filter is applied to reception of data (plots or tracks).

«idlEnum» FILTER_BOTH The filter is applied to both transmission and reception
of data (plots or tracks).

7.4.6 identity_type
Type: IDLEnum
Package: Common_Types
Identity according to STANAG 5516.

Table 7.3 - Attributes of IDLEnum identity_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 69

Attribute Notes
 PENDING Value pending the completion of the initial identification

process

 UNKNOWN Initial identification complete but identity is unknown.

 ASSUMED_FRIEND Assumed to be a friend

 FRIEND Known to be a friend

 NEUTRAL Known to be neutral

 SUSPECT Suspected to be hostile

 HOSTILE Known to be hostile

7.4.7 percentage_type
Type: IDLTypeDef
Package: Common_Types

7.4.8 quality_interval_type
Type: IDLStruct
Package: Common_Types
An abstraction for a range of track quality values.

Table 7.4 - Attributes of IDLStruct quality_interval_type

Attribute Notes
 minimum track_quality_type The minimum inclusive value for the interval.

 maximum track_quality_type The maximum inclusive value for the interval.

7.4.9 strength_type
Type: Class
Package: Common_Types
Strength of the measurement (for a track or plot). The precise semantics of this type are sensor subsystem specific,
but a typical interpretation is as a signal to noise ratio in dB.

7.4.10 subsystem_id_type
Type: IDLTypeDef
Package: Common_Types
This type provides a unique id for different subsystems. Subsystem ids shall be allocated by the platform integrator.
Subsystem id equal to zero is reserved to imply applicability to all and any subsystem.
The lowest two bytes are used for designating subsystems within local control of a particular platform (e.g. a ship
including any off-board sensors that it controls). The highest two bytes designate a platform within a co-operating
task-force or group. (e.g. highest byte may designate country and the next highest, one of a country's platforms).

7.4.11 system_track_id_type
Type: Class
Package: Common_Types
System Track Identification

7.4.12 time_type
Type: Class
Package: Common_Types
based on start of Gregorian calendar (1582-10-15T 00:00UTC)
unit: 100 nano seconds
i.a.w CORBA Time Service Time T

7.4.13 track_priority_type
Type: Class
Package: Common_Types
The representation of the track's priority with respect to the allocation of the sensor's resources. The meaning of
track_priority_type is to assign a priority among a set of tracks based on some criteria (i.e. subsystem's time
dedicated to a track analysis). Higher values indicate higher priority and importance and hence that more resources
should be extended.
Example of values:
1 Track While Scan (TWS)
2 Low Priority Target (LPT)
3 High Priority Target (HPT)
ElementTag: Range = 0 .. 100

7.4.14 track_quality_type
Type: Class
Package: Common_Types
The representation of the quality of a track for the purposes of comparison according to system specific criteria.
ElementTag: Range = 0.0 .. 1.0

7.4.15 frequency_band_type
Type: Class
Package: Common_Types
An index indicating a particular frequency channel or band. The actual frequency is typically not of concern to the
command team. A band refers to a discrete frequency or a range of frequencies; such bands may overlap.

7.4.16 System_Track
Parent Package: Common_Types
A package to contain the system track class.

«idlStruct»
system_track_type

+ simulated: boolean
+ time_of_information: time_type
+ position_coordinate_system: coordinate_specification_type
+ position: position_coordinate_type
+ velocity_coordinate_system: coordinate_specification_type
+ velocity: velocity_coordinate_type
+ position_accuracy_coordinate_system: coordinate_specification_type
+ position_accuracy: position_accuracy_coordinate_type
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ max_range_limit: range_coordinate_type [0..1]

«key»
+ system_track_number: system_track_id_type

Figure 7.48 Domain Model (Class diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 71

7.4.16.1 system_track_type

Type: IDLStruct
Package: System_Track
System track information is limited to information required by a subsystem for missile guidance.

Table 7.5 - Attributes of IDLStruct system_track_type

Attribute Notes
«key» system_track_number system_track_id_type The identifier for the system track

 simulated boolean Whether the system track is part of a simulation

 time_of_information time_type The absolute time at which the information in the
attributes of the system track is valid.

 position_coordinate_system
coordinate_specification_type

The coordinate system used for the system track's
position.

 position position_coordinate_type The position of the system track.

 velocity_coordinate_system
coordinate_specification_type

The coordinate system used for the system track's
velocity.

 velocity velocity_coordinate_type The velocity of the system track.

 position_accuracy_coordinate_system
coordinate_specification_type

The coordinate system used for the system track's
position accuracy.

 position_accuracy position_accuracy_coordinate_type The position accuracy of the system track.

 velocity_accuracy_coordinate_system
coordinate_specification_type [0..1]

The coordinate system used for the system track's
velocity accuracy.

 velocity_accuracy velocity_accuracy_coordinate_type
[0..1]

The velocity accuracy of the system track.

 max_range_limit range_coordinate_type [0..1] The estimated maximum range of the system track (for
cases where the position coordinate does not specify
range - i.e. bearing only).

7.4.17 Coordinates_and_Positions
Parent Package: Common_Types
Definitions of types to describe positions, in accordance with the ISO 19111 abstract model.

«idlStruct»
wgs84_velocity_accuracy_type

+ course_accuracy: course_type
+ angle_of_climb_accuracy: angle_of_climb_type [0..1]
+ speed_accuracy: speed_type

«idlStruct»
wgs84_position_accuracy_type

+ height_accuracy: height_coordinate_type [0..1]
+ latitude_accuracy: latitude_coordinate_type
+ longitude_accuracy: longitude_coordinate_type

«idlStruct»
polar_velocity_accuracy_type

+ azimuth_rate_accuracy: azimuth_rate_type
+ elevation_rate_accuracy: elevation_rate_type [0..1]
+ range_rate_accuracy: range_rate_type [0..1]

«idlStruct»
polar_position_accuracy_type

+ azimuth_accuracy: azimuth_coordinate_type
+ elevation_accuracy: elevation_coordinate_type [0..1]
+ range_accuracy: range_coordinate_type [0..1]
+ origin: wgs84_position_accuracy_type [0..1]

«idlStruct»
cartesian_position_accuracy_type

+ x_coordinate_accuracy: cartesian_coordinate_type
+ y_coordinate_accuracy: cartesian_coordinate_type
+ z_coordinate_accuracy: cartesian_coordinate_type [0..1]

«idlStruct»
cartesian_velocity_accuracy_type

+ x_dot_accuracy: cartesian_velocity_component_type
+ y_dot_accuracy: cartesian_velocity_component_type
+ z_dot_accuracy: cartesian_velocity_component_type [0..1]

«idlUnion»
position_accuracy_coordinate_type

«idlCase»
+ cartesian_position_accuracy: cartesian_position_accuracy_type
+ polar_position_accuracy: polar_position_accuracy_type
+ wgs84_position_accuracy: wgs84_position_accuracy_type

To offer flexibility, three variants of coordinate system representation are
supported - corresponding to the coordinate_kind_type enumerate. An
implementation should support one kind for each relevant interface as defined
by the coordinate_specification_type value, and it should only send data of that
variant and it should check that all data received is of that variant. It should not
implement conversion of data in an unexpected variant. Receipt of such data
constitutes an error in the operation of the interface.

«idlUnion»
velocity_accuracy_coordinate_type

«idlCase»
+ cartesian_velocity_accuracy: cartesian_velocity_accuracy_type
+ polar_velocity_accuracy: polar_velocity_accuracy_type
+ wgs84_velocity_accuracy: wgs84_velocity_accuracy_type

To offer flexibility, three variants of coordinate system representation are
supported - corresponding to the coordinate_kind_type enumerate. An
implementation should support one kind for each relevant interface as defined
by the coordinate_specification_type value, and it should only send data of
that variant and it should check that all data received is of that variant. It
should not implement conversion of data in an unexpected variant. Receipt of
such data constitutes an error in the operation of the interface.

Figure 7.49 Accuracies (Class diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 73

Figure 7.50 Coordinates and Positions (Class diagram)

Ollie Newman, 02/08/24
OARIS3-31
OARIS3-25

«idlStruct»
azimuth_qualification_type

+ spread: azimuth_coordinate_type [0..1]
+ accuracy: azimuth_coordinate_type

«idlStruct»
elevation_qualification_type

+ spread: elevation_coordinate_type [0..1]
+ accuracy: elevation_coordinate_type

«idlStruct»
range_qualification_type

+ spread: range_coordinate_type [0..1]
+ accuracy: range_coordinate_type

«idlUnion»
covariance_matrix_type

«idlCase»
+ diagonal_covariance_matrix: diagonal_covariance_matrix_type
+ full_covariance_matrix: full_covariance_matrix_type
+ full_2d_covariance_matrix: full_2d_covariance_matrix_type

«idlStruct»
full_covariance_matrix_type

+ xx_variance: float
+ xy_variance: float
+ xz_variance: float
+ xvx_variance: float
+ xvy_variance: float
+ xvz_variance: float
+ yy_variance: float
+ yz_variance: float
+ yvx_variance: float
+ yvy_variance: float
+ yvz_variance: float
+ zz_variance: float
+ zvx_variance: float
+ zvy_variance: float
+ zvz_variance: float
+ vxvx_variance: float
+ vxvy_variance: float
+ vxvz_variance: float
+ vyvy_variance: float
+ vyvz_variance: float
+ vzvz_variance: float

«idlStruct»
diagonal_covariance_matrix_type

+ xx_variance: float
+ yy_variance: float
+ zz_variance: float
+ vxvx_variance: float
+ vyvy_variance: float
+ vzvz_variance: float

«idlStruct»
full_2d_covariance_matrix_type

+ xx_variance: float
+ xy_variance: float
+ xvx_variance: float
+ xvy_variance: float
+ yy_variance: float
+ yvx_variance: float
+ yvy_variance: float
+ vxvx_variance: float
+ vxvy_variance: float
+ vyvy_variance: float

Figure 7.51 Covariance and Qualification (Class diagram)

«idlStruct»
azimuth_interval_type

+ start: azimuth_coordinate_type
+ stop: azimuth_coordinate_type

«idlStruct»
elevation_interval_type

+ start: elevation_coordinate_type
+ stop: elevation_coordinate_type

«idlStruct»
range_interval_type

+ start: range_coordinate_type
+ stop: range_coordinate_type

«idlStruct»
latitude_interval_type

+ start: latitude_coordinate_type
+ stop: latitude_coordinate_type

«idlStruct»
longitude_interval_type

+ start: longitude_coordinate_type
+ stop: longitude_coordinate_type

«idlStruct»
height_interval_type

+ start: height_coordinate_type
+ stop: height_coordinate_type

«idlStruct»
absolute_duration_type

+ start: time_type
+ stop: time_type

«idlStruct»
cartesian_interval_type

+ start: cartesian_coordinate_type
+ stop: cartesian_coordinate_type

unsigned long long

«idlTypedef»
duration_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 75

Figure 7.52 Intervals (Class diagram)

Figure 7.53 Time Derivatives (Class diagram)

Ollie Newman, 02/08/24
OARIS3-52
OARIS3-23

«idlStruct»
wgs84_position_type

+ height_coordinate: height_coordinate_type [0..1]
+ latitude_coordinate: latitude_coordinate_type
+ longitude_coordinate: longitude_coordinate_type

double

«idlTypedef»
latitude_coordinate_type

tags
Range = -90 .. 90
Resolution = 1 e-6
Unit = deg

double

«idlTypedef»
longitude_coordinate_type

tags
Range = -180 .. 180
Resolution = 1 e-6
Unit = deg

double

«idlTypedef»
height_coordinate_type

tags
Range = -1 e4 .. 1 e6
Resolution = 1 e-3
Unit = m

Figure 7.54 World Coordinates and Positions (Class diagram)

7.4.17.1 absolute_duration_type

Type: Class
Package: Coordinates_and_Positions
This class represents a duration fixed to an absolute point in time.

Table 7.6 - Attributes of Class absolute_duration_type

Attribute Notes
 start time_type The earliest value at the beginning of the duration

 stop time_type The lateest value at the end of the duration

7.4.17.2 angle_of_climb_type

Type: Class
Package: Coordinates_and_Positions
The angle representing the direction of travel relative to the horizontal. Up is positive.
ElementTag: Range = -pi/2 .. pi/2
ElementTag: Resolution = 1 e-3
ElementTag: Unit = Rad

7.4.17.3 azimuth_coordinate_type

Type: Class
Package: Coordinates_and_Positions
Axis in the azimuth direction, i.e. horizontal angle from the associated coordinate system reference. Radians,
positive clockwise from above.
See diagram note on choice of SI units
ElementTag: Range = 0 .. 2 pi
ElementTag: Resolution = 1 e-4
ElementTag: Unit = rad

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 77

7.4.17.4 azimuth_interval_type

Type: Class
Package: Coordinates_and_Positions
A set of azimuth values that are continuous on the circle. If start is greater than stop then the discontinuity due to
angular wrap is included.

Table 7.7 - Attributes of Class azimuth_interval_type

Attribute Notes
 start azimuth_coordinate_type The azimuth value at the beginning of the interval when

progressing in a positive angular direction according to
the orientation specified. This is not necessarily the
lowest value as the discontinuity due to full-circle
modularity may be included in the interval.

 stop azimuth_coordinate_type The azimuth value at the end of the interval when
progressing in a positive angular direction according to
the orientation specified. This is not necessarily the
highest value as the discontinuity due to full-circle
modularity may be included in the interval.

7.4.17.5 azimuth_qualification_type

Type: IDLStruct
Package: Coordinates_and_Positions
Qualifies a measurement of azimuth with attributes of accuracy and, if possible, variability.

Table 7.8 - Attributes of IDLStruct azimuth_qualification_type

Attribute Notes
 spread azimuth_coordinate_type [0..1] The spread of the measurement. The combined measures

of spread should encompass the full extent of the plot.
This attribute is optional. Not all sensors are capable of
measuring it.

 accuracy azimuth_coordinate_type The accuracy of the measurement; equal to one standard
deviation of uncertainty.

7.4.17.6 azimuth_rate_type

Type: Class
Package: Coordinates_and_Positions
radians per second
ElementTag: Range = -100 .. 100
ElementTag: Resolution = 1 e-4
ElementTag: Unit = rad/s

7.4.17.7 bank_coordinate_type

Type: Class
Package: Coordinates_and_Positions
Axis in the bank direction, i.e. rotation angle from the associated coordinate system reference.
Radians, positive clockwise from behind.
ElementTag: Range = -pi .. pi
ElementTag: Resolution = 1 e-4
ElementTag: Unit = rad

Ollie Newman, 02/08/24
OARIS3-31

7.4.17.8 cartesian_coordinate_type

Type: Class
Package: Coordinates_and_Positions
See diagram note on choice of SI units
ElementTag: Range = -1 e7 .. 1 e7
ElementTag: Resolution = 1 e-3
ElementTag: Unit = m

7.4.17.9 cartesian_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.9 - Attributes of IDLStruct cartesian_interval_type

Attribute Notes
 start cartesian_coordinate_type Lower valued, starting coordinate.

 stop cartesian_coordinate_type Higher valued, ending coordinate.

7.4.17.10 cartesian_position_type

Type: IDLStruct
Package: Coordinates_and_Positions
Coordinates in a Cartesian reference frame as described by a coordinate specification object

Table 7.10 - Attributes of IDLStruct cartesian_position_type

Attribute Notes
 x_coordinate cartesian_coordinate_type The coordinate of the position on the x-axis

 z_coordinate cartesian_coordinate_type [0..1] The coordinate of the position on the z-axis. Optional as
some sensors are 2D (horizontal plane or no elevation
information)

 y_coordinate cartesian_coordinate_type The coordinate of the position on the y-axis

7.4.17.11 cartesian_velocity_component_type

Type: IDLTypeDef
Package: Coordinates_and_Positions

ElementTag: Range = -1 e5 .. 1 e5
ElementTag: Resolution = 0.01
ElementTag: Unit = m/s

7.4.17.12 cartesian_velocity_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.11 - Attributes of IDLStruct cartesian_velocity_type

Attribute Notes
 x_dot cartesian_velocity_component_type The rate of change in the x-axis coordinate

corresponding to the velocity

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 79

Attribute Notes
 y_dot cartesian_velocity_component_type The rate of change in the y-axis coordinate

corresponding to the velocity

 z_dot cartesian_velocity_component_type [0..1] The rate of change in the z-axis coordinate
corresponding to the velocity

7.4.17.13 coordinate_kind_type

Type: IDLEnum
Package: Coordinates_and_Positions

Table 7.12 - Attributes of IDLEnum coordinate_kind_type

Attribute Notes
«enum» CARTESIAN Indicates a Cartesian Coordinate System

«enum» POLAR Indicates a polar coordinate system

«enum» WGS84 Indicates a coordinate system based on the WGS-84
spheroid

7.4.17.14 coordinate_orientation_type

Type: IDLEnum
Package: Coordinates_and_Positions
This enumeration defines the set of coordinate systems, which compliant implementations may use. A compliant
implementation may not fully support all of these coordinate systems.

Table 7.13 - Attributes of IDLEnum coordinate_orientation_type

Attribute Notes
«enum» NORTH_HORIZONTAL Valid for Polar Coordinate Kind

Azimuth has origin (0.0) at North, positive clockwise,
measured in the horizontal plane
Elevation has origin (0.0) at the Horizontal, positive up,
measured in the vertical plane.

«enum» NORTH_DOWN Valid for Polar Coordinate Kind
Azimuth has origin (0.0) at North, clockwise positive,
measured in the horizontal plane
Elevation has origin (0.0) when pointing directly down,
and 180.0 degreesPI radians when pointing directly up,
measured in the vertical plane.

«enum» EAST_NORTH_UP Valid for Cartesian coordinate type
x is positive to the East
y is positive to the North
z is positive up

«enum» EAST_NORTH_DOWN Valid for Cartesian coordinate type
x is positive to the East
y is positive to the North
z is positive down

Ollie Newman, 02/08/24
OARIS3-25

Attribute Notes
«enum» NORTH_EAST_UP Valid for Cartesian coordinate type

x is positive to the North
y is positive to the East
z is positive up

«enum» NORTH_EAST_DOWN Valid for Cartesian coordinate type
x is positive to the North
y is positive to the East
z is positive down

«enum» EARTH_CENTRED Cartesian system with origin at centre of the Earth
(absolute reference point)
x positive through Greenwich meridian
y positive through 90 degrees east (of Greenwich
meridian)
z positive through north pole
x & y are in the equatorial plane

«enum» LAT_LONG_HEIGHT WGS84 has unique well-defined orientation (NIMA
Technical Report TR8350.2)

«enum» STERN_KEEL Valid for Polar Coordinate Kind
This is a platform orientation relative frame
Azimuth has origin (0.0) in line with the ship's stern
(heading), measured anti-clockwise
Elevation has origin (0.0) when pointing directly down
to the keel (perpendicular to the current inclination of the
deck-level, not necessarily to the Earth's surface)

«enum» STERN_DECK_LEVEL Valid for Polar Coordinate Kind
This is a platform orientation relative frame
Azimuth has origin (0.0) in line with the ship's stern
(heading), measured anti-clockwise
Elevation has origin (0.0) when pointing parallel to the
deck-level (not necessarily parallel to the Earth's surface)

«enum» STERN_STARBOARD_MAST Valid for Cartesian coordinate type
This is a platform orientation relative frame
x is positive towards the stern (negative to bow)
y is positive to starboard (negative to port)
z is positive towards the mast (negative to keel)

«enum» STERN_STARBOARD_KEEL Valid for Cartesian coordinate type
This is a platform orientation relative frame
x is positive towards the stern (negative to bow)
y is positive to starboard (negative to port)
z is positive towards the keel (negative to mast)

7.4.17.15 coordinate_origin_type

Type: IDLEnum
Package: Coordinates_and_Positions

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 81

Table 7.14 - Attributes of IDLEnum coordinate_origin_type

Attribute Notes
«enum» PLATFORM_REFERENCE_POINT The origin of the coordinate system is 'well known'

reference point for the platform (on which the CMS and
subsystem reside)

«enum» SENSOR_REFERENCE_POINT The origin for the coordinate system is the 'well known'
reference/datum point for the sensor, which is interacting
using the interface.

«enum» ABSOLUTE_REFERENCE_POINT The origin for the coordinate system is a fixed point in
Earth (WGS84) coordinates. This point is known to the
CMS and Subsystems using the interface by means
beyond the scope of the interface.

«enum» EARTH_REFERENCED This value signifies that the origin for the coordinate
system is well-defined with respect to the Earth by the
coordinate system. E.g. centre of the Earth for Earth-
Centred Earth-Fixed or the WGS84 spheroid for WGS84

«enum» EXPLICITLY_SPECIFIED This value signifies that the origin is explicitly specified
within the data model by the producer of the data.

7.4.17.16 coordinate_specification_type

Type: IDLStruct
Package: Coordinates_and_Positions
Specifies the interpretation of position_coordinate_type and velocity_coordinate_type.

Table 7.15 - Attributes of IDLStruct coordinate_specification_type

Attribute Notes
 kind coordinate_kind_type The kind of coordinate system used.

 orientation coordinate_orientation_type The orientation convention used by the coordinates

 origin coordinate_origin_type The meaning of the coordinate origin.

7.4.17.17 course_type

Type: Class
Package: Coordinates_and_Positions
The angle representing the direction of travel relative to North in the horizontal plane. Clockwise (facing down) is
positive.
ElementTag: Range = 0 .. 2 pi
ElementTag: Resolution = 1 e-3
ElementTag: Unit = rad

7.4.17.18 covariance_matrix_type

Type: Class
Package: Coordinates_and_Positions
This class represents a covariance matrix for coordinate estimates and their time derivatives through a choice of
formats.

Table 7.16 - Attributes of Class covariance_matrix_type

Attribute Notes
«idlCase» diagonal_covariance_matrix
diagonal_covariance_matrix_type

The diagonal matrix option

«idlCase» full_covariance_matrix
full_covariance_matrix_type

the full covariance option

«idlCase» full_2d_covariance_matrix
full_2d_covariance_matrix_type

the full 2d covariance option

7.4.17.19 diagonal_covariance_matrix_type

Type: Class
Package: Coordinates_and_Positions
Covariance of just the diagonal elements (i.e. the variance of the coordinate estimates).

Table 7.17 - Attributes of Class diagonal_covariance_matrix_type

Attribute Notes
 xx_variance float The variance of the x coordinate value

 yy_variance float The variance of the y coordinate value

 zz_variance float The variance of the z coordinate value

 vxvx_variance float The variance of the x component of velocity

 vyvy_variance float The variance of the y component of velocity

 vzvz_variance float The variance of the z component of velocity

7.4.17.20 duration_type

Type: Class
Package: Coordinates_and_Positions
The length of a time interval (not fixed to an absolute point in time).
unit: 100 nano seconds

7.4.17.21 elevation_coordinate_type

Type: Class
Package: Coordinates_and_Positions
Axis in the direction of elevation, i.e. vertical angle from the associated coordinate system datum, radians, positive
up.
See diagram note on choice of SI units
ElementTag: Range = -pi / 2 .. pi / 2
ElementTag: Resolution = 1 e-4
ElementTag: Unit = rad

7.4.17.22 elevation_interval_type

Type: Class
Package: Coordinates_and_Positions

Table 7.18 - Attributes of Class elevation_interval_type

Attribute Notes
 start elevation_coordinate_type The lower starting elevation value.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 83

Ollie Newman, 02/08/24
OARIS3-25

Attribute Notes
 stop elevation_coordinate_type The higher ending elevation value.

7.4.17.23 elevation_qualification_type

Type: IDLStruct
Package: Coordinates_and_Positions
Qualifies a measurement of elevation with attributes of accuracy and, if possible, variability.

Table 7.19 - Attributes of IDLStruct elevation_qualification_type

Attribute Notes
 spread elevation_coordinate_type [0..1] The spread of the measurement. The combined measures

of spread should encompass the full extent of the plot.
This attribute is optional. Not all sensors are capable of
measuring it.

 accuracy elevation_coordinate_type The accuracy of the measurement; equal to one standard
deviation of uncertainty.

7.4.17.24 elevation_rate_type

Type: Class
Package: Coordinates_and_Positions
radians per second
ElementTag: Range = -100 .. 100
ElementTag: Resolution = 1 e-4
ElementTag: Unit = rad/s

7.4.17.25 full_2d_covariance_matrix_type

Type: IDLStruct
Package: Coordinates_and_Positions
The full covariance terms (in triangular form as necessarily a symmetric matrix) for reports in just the x and y
dimensions.

Table 7.20 - Attributes of IDLStruct full_2d_covariance_matrix_type

Attribute Notes
 xx_variance float The variance of the x coordinate value

 xy_variance float The covariance of the x coordinate with the y coordinate.

 xvx_variance float The covariance of the x coordinate with the x velocity
coordinate.

 xvy_variance float The covariance of the x coordinate with the y velocity
coordinate.

 yy_variance float The variance of the y coordinate value

 yvx_variance float The covariance of the y coordinate with the x velocity
coordinate.

 yvy_variance float The covariance of the y coordinate with the y velocity
coordinate.

Attribute Notes
 vxvx_variance float The variance of the x component of velocity

 vxvy_variance float The covariance of the x velocity coordinate with the y
velocity coordinate.

 vyvy_variance float The variance of the y component of velocity

7.4.17.26 full_covariance_matrix_type

Type: Class
Package: Coordinates_and_Positions
Triangular representation of a full covariance matrix (which is by definition symmetric).

Table 7.21 - Attributes of Class full_covariance_matrix_type

Attribute Notes
 xx_variance float The variance of the x coordinate value

 xy_variance float The covariance of the x coordinate with the y coordinate.

 xz_variance float The covariance of the x coordinate with the z coordinate.

 xvx_variance float The covariance of the x coordinate with the x velocity
coordinate.

 xvy_variance float The covariance of the x coordinate with the y velocity
coordinate.

 xvz_variance float The covariance of the x coordinate with the z velocity
coordinate.

 yy_variance float The variance of the y coordinate value

 yz_variance float The covariance of the y coordinate with the z coordinate.

 yvx_variance float The covariance of the y coordinate with the x velocity
coordinate.

 yvy_variance float The covariance of the y coordinate with the y velocity
coordinate.

 yvz_variance float The covariance of the y coordinate with the z velocity
coordinate.

 zz_variance float The variance of the z coordinate value

 zvx_variance float The covariance of the z coordinate with the x velocity
coordinate.

 zvy_variance float The covariance of the z coordinate with the y velocity
coordinate.

 zvz_variance float The covariance of the z coordinate with the z velocity
coordinate.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 85

Attribute Notes
 vxvx_variance float The variance of the x component of velocity

 vxvy_variance float The covariance of the x velocity coordinate with the y
velocity coordinate.

 vxvz_variance float The covariance of the x velocity coordinate with the z
velocity coordinate.

 vyvy_variance float The variance of the y component of velocity

 vyvz_variance float The covariance of the y velocity coordinate with the z
velocity coordinate.

 vzvz_variance float The variance of the z component of velocity

7.4.17.27 height_coordinate_type

Type: Class
Package: Coordinates_and_Positions
For positive values, height above coordinate system ellipsoid, for negative values, depth below; measured in meters.
This quantity is height as a measured distance rather than an inference from (for instance) barometric pressure.
See diagram note on choice of SI units
ElementTag: Range = -1 e4 .. 1 e6
ElementTag: Resolution = 1 e-3
ElementTag: Unit = m

7.4.17.28 height_interval_type

Type: Class
Package: Coordinates_and_Positions

Table 7.22 - Attributes of Class height_interval_type

Attribute Notes
 start height_coordinate_type The lower, starting height value

 stop height_coordinate_type The higher, ending height value

7.4.17.29 latitude_coordinate_type

Type: Class
Package: Coordinates_and_Positions
Degrees north (positive), south (negative) relative to coordinate system datum.
See diagram note on choice of SI units
ElementTag: Range = -90 .. 90
ElementTag: Resolution = 1 e-6
ElementTag: Unit = deg

7.4.17.30 latitude_interval_type

Type: Class
Package: Coordinates_and_Positions

Table 7.23 - Attributes of Class latitude_interval_type

Attribute Notes
 start latitude_coordinate_type Lower valued starting latitude

 stop latitude_coordinate_type Higher valued ending latitude

7.4.17.31 longitude_coordinate_type

Type: Class
Package: Coordinates_and_Positions
Degrees east (positive), west (negative) relative to coordinate system datum.
See diagram note on choice of SI units
ElementTag: Range = -180 .. 180
ElementTag: Resolution = 1 e-6
ElementTag: Unit = deg

7.4.17.32 longitude_interval_type

Type: Class
Package: Coordinates_and_Positions
A range of longitude values

Table 7.24 - Attributes of Class longitude_interval_type

Attribute Notes
 start longitude_coordinate_type The lowest longitude value at the beginning of the

interval

 stop longitude_coordinate_type The highest longitude value at the end of the interval

7.4.17.33 polar_position_type

Type: IDLStruct
Package: Coordinates_and_Positions
Coordinates in a polar reference frame as a described by a coordinate specification object

Table 7.25 - Attributes of IDLStruct polar_position_type

Attribute Notes
 azimuth_coordinate azimuth_coordinate_type The coordinate in the azimuth plane.

 elevation_coordinate elevation_coordinate_type [0..1] Optional as some sensors provide no elevation
information

 range_coordinate range_coordinate_type [0..1] Optional as some sensors provide no range information
(e.g. most passive sensors)

 origin wgs84_position_type Specifies the origin from which to interpret the polar
position. This attribute is mandatory so that the
originator of the data unambiguously specifies the origin
(this is prioritizing accuracy and integration).
AttributeTag: Issue =

7.4.17.34 polar_velocity_type

Type: IDLStruct
Package: Coordinates_and_Positions
Velocity defined in a polar reference frame as a described by a coordinate specification object

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 87

Table 7.26 - Attributes of IDLStruct polar_velocity_type

Attribute Notes
 azimuth_rate azimuth_rate_type [0..1] The rate of change in azimuth corresponding to the

velocity. Optional as some sensors do not report
velocity

 elevation_rate elevation_rate_type [0..1] The rate of change in elevation corresponding to the
velocity. Optional as some sensors provide no elevation
information

 range_rate range_rate_type [0..1] The rate of change in range corresponding to the
velocity. Optional as some sensors provide no range
information (e.g. most passive sensors)

7.4.17.35 position_accuracy_coordinate_type

Type: Class
Package: Coordinates_and_Positions
To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined
by the coordinate_specification_type value, and it should only send data of that variant and it should check that all
data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such
data constitutes an error in the operation of the interface.

Table 7.27 - Attributes of Class position_accuracy_coordinate_type

Attribute Notes
«idlCase» cartesian_position_accuracy
cartesian_position_accuracy_type

The Cartesian accuracy option.

«idlCase» polar_position_accuracy
polar_position_accuracy_type

The polar accuracy option.

«idlCase» wgs84_position_accuracy
wgs84_position_accuracy_type

The accuracy option using the WGS-84 spheroid.

7.4.17.36 position_coordinate_type

Type: IDLUnion
Package: Coordinates_and_Positions
To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined
by the coordinate_specification_type value, and it should only send data of that variant and it should check that all
data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such
data constitutes an error in the operation of the interface.
ElementTag: case type = coordinate_kind_type

Table 7.28 - Attributes of IDLUnion position_coordinate_type

Attribute Notes
«idlCase» cartesian_position cartesian_position_type The Cartesian coordinate position option

AttributeTag: case value = CARTESIAN

«idlCase» polar_position polar_position_type The polar coordinates position option
AttributeTag: case value = POLAR

«idlCase» wgs84_position wgs84_position_type The position option using the WGS-84 spheroid.
AttributeTag: case value = WGS84

Ollie Newman, 02/08/24
OARIS3-52

7.4.17.37 range_coordinate_type

Type: Class
Package: Coordinates_and_Positions
Axis in range, i.e. linear distance from the coordinate system datum. Metres.
See diagram note on choice of SI units
ElementTag: Range = 0 .. 1 e7
ElementTag: Resolution = 1 e-3
ElementTag: Unit = m

7.4.17.38 range_interval_type

Type: Class
Package: Coordinates_and_Positions
A continuous set of range values.

Table 7.29 - Attributes of Class range_interval_type

Attribute Notes
 start range_coordinate_type The nearest value at the beginning of the interval

 stop range_coordinate_type The furthest value at the end of the interval

7.4.17.39 range_qualification_type

Type: IDLStruct
Package: Coordinates_and_Positions
Qualifies a measurement of range with attributes of accuracy and, if possible, variability.

Table 7.30 - Attributes of IDLStruct range_qualification_type

Attribute Notes
 spread range_coordinate_type [0..1] The spread of the measurement. The combined measures

of spread should encompass the full extent of the plot.
This attribute is optional. Not all sensors are capable of
measuring it.

 accuracy range_coordinate_type The accuracy of the measurement; equal to one standard
deviation of uncertainty.

7.4.17.40 range_rate_type

Type: Class
Package: Coordinates_and_Positions
metres per second
ElementTag: Range = 0.0-1 e5 .. 1 e5
ElementTag: Resolution = 0.01
ElementTag: Unit = m/s

7.4.17.41 speed_interval_type

Type: Class
Package: Coordinates_and_Positions
This class represents a range of speeds.

Table 7.31 - Attributes of Class speed_interval_type

Attribute Notes
 min speed_type The minimum speed.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 89

Ollie Newman, 02/08/24
OARIS3-23

Attribute Notes
 max speed_type The maximum speed.

7.4.17.42 speed_type

Type: Class
Package: Coordinates_and_Positions
metres per second
ElementTag: Range = 0.0 .. 1 e5
ElementTag: Resolution = 0.01
ElementTag: Unit = m/s

7.4.17.43 velocity_accuracy_coordinate_type

Type: Class
Package: Coordinates_and_Positions
To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as defined
by the coordinate_specification_type value, and it should only send data of that variant and it should check that all
data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such
data constitutes an error in the operation of the interface.

Table 7.32 - Attributes of Class velocity_accuracy_coordinate_type

Attribute Notes
«idlCase» cartesian_velocity_accuracy
cartesian_velocity_accuracy_type

The Cartesian velocity accuracy option.

«idlCase» polar_velocity_accuracy
polar_velocity_accuracy_type

The polar velocity accuracy option.

«idlCase» wgs84_velocity_accuracy
wgs84_velocity_accuracy_type

The velocity accuracy option using the WGS-84
spheroid.

7.4.17.44 velocity_coordinate_type

Type: IDLUnion
Package: Coordinates_and_Positions
To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant service as defined
by the coordinate_specification_type value, and it should only send data of that variant and it should check that all
data received is of that variant. It should not implement conversion of data in an unexpected variant. Receipt of such
data constitutes an error in the operation of the interface. Three representations are supported: time derivatives
within a Cartesian coordinate system; time derivatives of a polar coordinate system (range rate, bearing rate etc.);
course and speed relative to the WGS84 spheroid.
ElementTag: case type = coordinate_kind_type

Table 7.33 - Attributes of IDLUnion velocity_coordinate_type

Attribute Notes
«idlCase» cartesian_velocity cartesian_velocity_type The Cartesian velocity option

AttributeTag: case value = CARTESIAN

«idlCase» polar_velocity polar_velocity_type The polar velocity option
AttributeTag: case value = POLAR

Attribute Notes
«idlCase» wgs84_velocity wgs84_velocity_type The option of velocity specified with reference to the

WGS-84 spheroid.
AttributeTag: case value = WGS84

7.4.17.45 wgs84_position_type

Type: Class
Package: Coordinates_and_Positions
Coordinate in the WGS84 reference system.

Table 7.34 - Attributes of Class wgs84_position_type

Attribute Notes
 height_coordinate height_coordinate_type [0..1] Optional as some sensors as 2D (work in horizontal

plane) and some other functions do not supply or require
this information either.

 latitude_coordinate latitude_coordinate_type The latitude of the position on the WGS-84 spheroid.

 longitude_coordinate longitude_coordinate_type The longitude of the position on the WGS-84 spheroid.

7.4.17.46 wgs84_velocity_type

Type: IDLStruct
Package: Coordinates_and_Positions
Velocity defined in the WGS84 grid system from the viewpoint of the object in terms of course and speed with
optional angle of climb for changes in height.

Table 7.35 - Attributes of IDLStruct wgs84_velocity_type

Attribute Notes
 course course_type Relative to North in the WGS84 spheroid.

 angle_of_climb angle_of_climb_type [0..1] Optional as some sensors as 2D (work in horizontal
plane) and some other functions do not supply or require
this information either.

 speed speed_type The total speed within the WGS84 spheroid (not speed
over ground) in the direction of travel including angle of
climb when present.

7.4.17.47 cartesian_position_accuracy_type

Type: Class
Package: Coordinates_and_Positions
The accuracy of the components of Cartesian position

Table 7.36 - Attributes of Class cartesian_position_accuracy_type

Attribute Notes
 x_coordinate_accuracy cartesian_coordinate_type The accuracy of the x-axis coordinate

 y_coordinate_accuracy cartesian_coordinate_type The accuracy of the y-axis coordinate

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 91

Attribute Notes
 z_coordinate_accuracy cartesian_coordinate_type
[0..1]

The accuracy of the z-axis coordinate. Optional as some
sensors are 2D (horizontal plane or no elevation
information)

7.4.17.48 cartesian_velocity_accuracy_type

Type: Class
Package: Coordinates_and_Positions
The accuracy of the components of Cartesian velocity

Table 7.37 - Attributes of Class cartesian_velocity_accuracy_type

Attribute Notes
 x_dot_accuracy cartesian_velocity_component_type Accuracy of the x_dot velocity attribute

 y_dot_accuracy cartesian_velocity_component_type Accuracy of the y_dot velocity attribute

 z_dot_accuracy cartesian_velocity_component_type
[0..1]

Accuracy of the z_dot velocity attribute. Optional as
some sensors are 2D (horizontal plane or no elevation
information)

7.4.17.49 polar_position_accuracy_type

Type: Class
Package: Coordinates_and_Positions
The accuracy of the components of polar position

Table 7.38 - Attributes of Class polar_position_accuracy_type

Attribute Notes
 azimuth_accuracy azimuth_coordinate_type The accuracy of the azimuth coordinate.

 elevation_accuracy elevation_coordinate_type [0..1] Optional as some sensors provide no elevation
information

 range_accuracy range_coordinate_type [0..1] Optional as some sensors provide no range information
(e.g. most passive sensors)

 origin wgs84_position_accuracy_type [0..1] Specifies the accuracy of the origin from which to
interpret the polar position. This attribute is optional as
the origin can be implicitly specified according to the
value of the applicable coordinate specification
enumeration.

7.4.17.50 polar_velocity_accuracy_type

Type: Class
Package: Coordinates_and_Positions
The accuracy of the components of polar velocity

Table 7.39 - Attributes of Class polar_velocity_accuracy_type

Attribute Notes
 azimuth_rate_accuracy azimuth_rate_type The accuracy of the azimuth rate

Attribute Notes
 elevation_rate_accuracy elevation_rate_type [0..1] The accuracy of the elevation rate. Optional as some

sensors provide no elevation information

 range_rate_accuracy range_rate_type [0..1] The accuracy of the range rate. Optional as some sensors
provide no range information (e.g. most passive sensors)

7.4.17.51 wgs84_position_accuracy_type

Type: Class
Package: Coordinates_and_Positions
The accuracy of the components of a WGS84 position

Table 7.40 - Attributes of Class wgs84_position_accuracy_type

Attribute Notes
 height_accuracy height_coordinate_type [0..1] The accuracy of the height coordinate. Optional as some

sensors as 2D (work in horizontal plane) and some other
functions do not supply or require this information
either.

 latitude_accuracy latitude_coordinate_type The accuracy of the latitude coordinate.

 longitude_accuracy longitude_coordinate_type The accuracy of the longitude coordinate.

7.4.17.52 wgs84_velocity_accuracy_type

Type: Class
Package: Coordinates_and_Positions
The accuracy of the components of a WGS84 velocity

Table 7.41 - Attributes of Class wgs84_velocity_accuracy_type

Attribute Notes
 course_accuracy course_type The accuracy of the course attribute of the velocity

 angle_of_climb_accuracy angle_of_climb_type [0..1] The accuracy of the angle of climb attribute of the
velocity. Optional as some sensors as 2D (work in
horizontal plane) and some other functions do not supply
or require this information either.

 speed_accuracy speed_type The accuracy of the speed attribute of the velocity

7.4.18 Shape_Model
Parent Package: Common_Types

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 93

«idlStruct»
rectangle_type

+ length: range_coordinate_type
+ width: range_coordinate_type
+ orientation: azimuth_coordinate_type

«idlStruct»
polygon_type

+ point: position_coordinate_type [3..*]

«idlStruct»
figure_ref_point_type

+ position: position_coordinate_type

«idlUnion»
area_2d_type

«idlCase»
+ sector: sector_type
+ rectangle: rectangle_type
+ polygon: polygon_type
+ truncated_sector: truncated_sector_type

+ref_point

1

Figure 7.55 Domain Model - non polar (Class diagram)

«idlStruct»
figure_ref_point_type

+ position: position_coordinate_type

«idlStruct»
truncated_polar_volume_type

+ centre_bearing: azimuth_coordinate_type
+ delta_bearing: azimuth_coordinate_type
+ centre_elevation: elevation_coordinate_type
+ delta_elevation: elevation_coordinate_type
+ inner_range: range_coordinate_type
+ outer_range: range_coordinate_type

«idlStruct»
polar_volume_type

+ centre_bearing: azimuth_coordinate_type
+ delta_bearing: azimuth_coordinate_type
+ centre_elevation: elevation_coordinate_type
+ delta_elevation: elevation_coordinate_type

«idlStruct»
sector_type

+ centre_bearing: azimuth_coordinate_type
+ delta_bearing: azimuth_coordinate_type

«idlStruct»
truncated_sector_type

+ centre_bearing: azimuth_coordinate_type
+ delta_bearing: azimuth_coordinate_type
+ inner_range: range_coordinate_type
+ outer_range: range_coordinate_type

«idlUnion»
general_polar_volume_type

«idlCase»
+ sector: sector_type
+ polar_volume: polar_volume_type
+ truncated_sector: truncated_sector_type
+ truncated_polar_volume: truncated_polar_volume_type

+origin

0..1

1

+origin 0..1

1

+origin

0..1

1

+origin
0..1

1

Figure 7.56 Domain Model - polar (Class diagram)

7.4.18.1 area_2d_type

Type: IDLUnion

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 95

Package: Shape_Model
An area for the sensor to keep under surveillance
ElementTag: switchType = long

Table 7.42 - Attributes of IDLUnion area_2d_type

Attribute Notes
«idlCase» sector sector_type The sector option for a 2d area

«idlCase» rectangle rectangle_type The rectangle option for a 2d area

«idlCase» polygon polygon_type The polygon option for a 2d area

«idlCase» truncated_sector truncated_sector_type The truncated sector option for a 2d area

7.4.18.2 figure_ref_point_type

Type: Class
Package: Shape_Model
A figure_ref_point specifies a reference point for a figure.
This reference point is a mathematically meaningful point of the figure. For a circle it is the centre of the circle, for a
polygon it is the centre of gravity of the polygon, etc.

When rotating the figure, the figure_ref_point acts as the rotation point.

When a figure is not slaved to a track its figure_ref_point shall be mapped on a (moving) geo point.
When the figure is slaved to an object (track, point) its figure_ref_point shall be mapped on an offset position which
is relative to the master object.

Table 7.43 - Attributes of Class figure_ref_point_type

Attribute Notes
 position position_coordinate_type The position of the reference point.

7.4.18.3 general_polar_volume_type

Type: IDLUnion
Package: Shape_Model
This class allow definition of a volume in space, bounded by standard polar coordinates (azimuth, elevation and
range). The different options allow the dimension of either range, elevation or both to be omitted.

Table 7.44 - Attributes of IDLUnion general_polar_volume_type

Attribute Notes
«idlCase» sector sector_type The general polar volume is a sector

«idlCase» polar_volume polar_volume_type The general polar volume is a polar volume

«idlCase» truncated_sector truncated_sector_type The general polar volume is a truncated sector

«idlCase» truncated_polar_volume
truncated_polar_volume_type

The general polar volume is a truncated polar volume.

7.4.18.4 polar_volume_type

Type: Class
Package: Shape_Model

A polar_volume specifies a 3D volume based on a horizontal plane by means of its origin, its centre bearing and
centre elevation, its bearing delta and elevation delta.
The origin is the figure reference point of the Polar Volume.

Table 7.45 - Attributes of Class polar_volume_type

Attribute Notes
 centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured

clockwise between the Y-axis of the relevant coordinate
system (true north, heading/course) and the centre
bearing line of the volume.

 delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of
a specified centre bearing line.

 centre_elevation elevation_coordinate_type This attribute specifies the vertical angle measured
counterclockwise between the horizontal plane and the
centre elevation line of the volume.

 delta_elevation elevation_coordinate_type This attribute specifies the elevation delta on each side
of a specified centre elevation line.

7.4.18.5 polygon_type

Type: IDLStruct
Package: Shape_Model
A geographically defined general area

Table 7.46 - Attributes of IDLStruct polygon_type

Attribute Notes
 point position_coordinate_type [3..*] The set of points for the polygon; there must be at least

3.
AttributeTag: Length = 12

7.4.18.6 rectangle_type

Type: IDLStruct
Package: Shape_Model
A geographically defined rectangle in the environment

Table 7.47 - Attributes of IDLStruct rectangle_type

Attribute Notes
 length range_coordinate_type distance along angle of orientation from the ref point to

the next corner

 width range_coordinate_type distance perpendicular to angle of orientation
(clockwise) from ref point to the next corner

 orientation azimuth_coordinate_type angle of azimuth of the length sides of the rectangle

7.4.18.7 sector_type

Type: Class
Package: Shape_Model

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 97

A sector specifies a 2D area in a horizontal plane by means of its origin, its centre bearing with its bearing delta, that
together define the sector.
The origin is the figure reference point of the sector.
In case the sector is north oriented, the centre bearing is specified with respect to true north; otherwise it is specified
with respect to the object's (own ship/other track, point) heading/course.

Table 7.48 - Attributes of Class sector_type

Attribute Notes
 centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured

clockwise between the Y-axis of the relevant coordinate
system (true north, heading/course) and the centre
bearing line of the sector.

 delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of
a specified centre bearing line.

7.4.18.8 truncated_polar_volume_type

Type: Class
Package: Shape_Model
A truncated_polar_volume specifies a 3D volume based on a horizontal plane by means of its origin, its centre
bearing and centre elevation, its bearing delta and elevation delta, its inner range and outer range

Table 7.49 - Attributes of Class truncated_polar_volume_type

Attribute Notes
 centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured

clockwise between the Y-axis of the relevant coordinate
system (true north, heading/course) and the centre
bearing line of the volume.

 delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of
a specified centre bearing line.

 centre_elevation elevation_coordinate_type This attribute specifies the vertical angle measured
counterclockwise between the horizontal plane and the
centre elevation line of the volume.

 delta_elevation elevation_coordinate_type This attribute specifies the elevation delta on each side
of a specified centre elevation line.

 inner_range range_coordinate_type This attribute specifies the range that limits a volume;
i.e. the minimum distance from the volume's origin.

 outer_range range_coordinate_type This attribute specifies the range that limits a volume;
i.e. the maximum distance from the volume's origin.

7.4.18.9 truncated_sector_type

Type: Class
Package: Shape_Model
A truncated_sector specifies a 2D area in a horizontal plane by means of its origin, its centre bearing with its bearing
delta, and its inner range and outer range, that together define the truncated sector.
The origin is the figure reference point of the truncated sector.
In case the truncated sector is north oriented, the centre bearing is specified with respect to true north; otherwise
(object oriented) it is specified with respect to the object's (own ship/other track, point) heading/course.

Table 7.50 - Attributes of Class truncated_sector_type

Attribute Notes
 centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured

clockwise between the Y-axis of the relevant coordinate
system (true north, heading/course) and the centre
bearing line of the truncated sector.

 delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of
a centre bearing line.

 inner_range range_coordinate_type This attribute specifies the range that limits a truncated
sector; i.e. the minimum distance from the truncated
sector's origin.

 outer_range range_coordinate_type This attribute specifies the range that limits a truncated
sector; i.e. the maximum distance from the truncated
sector's origin.

7.4.19 Requests
Parent Package: Common_Types
This package contains common operations and associated parameters which are used by multiple interfaces. This
includes the operation to acknowledge a CMS request as accepted or denied, as well as an operation to report errors
while processing an accepted CMS request.

unsigned long

«idlTypedef»
request_id_type

«idlInterface»
common_use_case_interface

+ receive_acknowledgement(request_id_type, request_ack_type): void
+ receive_error(request_id_type, error_reason_type): void

string

«idlTypedef»
error_reason_type

tags
Length = 40

«idlStruct»
request_ack_type

+ accepted: boolean

string

«idlTypedef»
denial_reason_type

tags
Length = 40

«idlStruct»
denial_type

+ reason: denial_reason_type
+ related_parameter: parameter_reference_type [0..*]

string

«idlTypedef»
parameter_reference_type

tags
Length = 64

+rejection 0..1

1

Figure 7.57 Domain Model (Class diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 99

7.4.19.1 denial_reason_type

Type: Class
Package: Requests
String which indicates rationale for rejection of the request. Is not valid when the request has been accepted.
ElementTag: Length = 40

7.4.19.2 denial_type

Type: Class
Package: Requests
Struct used within the receive_acknowledgement operation to provide information on (one of the reasons) why a
request has been rejected.

Table 7.51 - Attributes of Class denial_type

Attribute Notes
 reason denial_reason_type textual explanation of (one of) the reasons for rejection

 related_parameter parameter_reference_type [0..*] A reference to the parameter or parameters that relate to
the reason for rejection. If no related_parameters are
supplied the rejection relates to the whole request.

7.4.19.3 error_reason_type

Type: Class
Package: Requests
A string which gives an indication of the error associated with processing of the request.
ElementTag: Length = 40

7.4.19.4 parameter_reference_type

Type: IDLTypeDef
Package: Requests
A string which refers to a parameter in a request using an implementation specific notation.
ElementTag: Length = 64

7.4.19.5 request_ack_type

Type: Class
Package: Requests
Struct used within the receive_acknowledgement operation to indicate acceptance or rejection (which includes
rationale).

Table 7.52 - Attributes of Class request_ack_type

Attribute Notes
 accepted boolean Attribute to indicate whether a request has been accepted

(1) or rejected (0).

7.4.19.6 request_id_type

Type: IDLTypeDef
Package: Requests
The purpose of the request_id is to uniquely relate responses of the subsystem (server) to requests of the CMS
(client). The request_id is set by the client. It is the responsibility of the client to specify a system-wide unique
request_id (e.g. based on a combination of client id and a sequence number / time of request).

7.4.19.7 common_use_case_interface

Type: Interface
Package: Requests
Interface which includes operations common to all CMS interfaces.

Table 7.53 - Methods of Interface common_use_case_interface

Method Notes Parameters
receive_acknowledgement() This operation is used by the

subsystem to indicate whether it has
accepted or rejected a request from
the CMS.
MethodTag: ea_guid = {C15FF90A-
E3EE-4c87-AFD6-2234A76786B2}

request_id_type request_id
request_ack_type request_ack

receive_error() This operation is used by the
subsystem to indicate an error in
processing a request.

request_id_type request_id
error_reason_type error_reason

7.5 Subsystem_Domain

Parent Package: Domain_Model
This package contains the Domain Models for the Encyclopaedic Support, Extended Subsystem Control, Subsystem
Control, Recording and Replay, and Simulation Support services.

7.5.1 Encyclopaedic_Support

Parent Package: Subsystem_Domain

Domain classes for Encyclopaedic Support

string

«idlTypedef»
data_descriptor_type

tags
Length = 60

string

«idlTypedef»
url_type

tags
Length = 255

Figure 7.58 Domain Model (Class diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 101

7.5.1.1 data_descriptor_type

Type: Class
Package: Encyclopaedic_Support
Standard description of the encyclopaedic data set
ElementTag: Length = 60

7.5.1.2 url_type

Type: Class
Package: Encyclopaedic_Support
Representation of a Uniform Resource Locator see www.w3.org
ElementTag: Length = 255

7.5.2 Extended_Subsystem_Control

Parent Package: Subsystem_Domain
Contains Structs used within the Extended Subsystem Control service.

string

«idlTypedef»
configuration_url_type

tags
Length = 255

«idlEnum»
offline_test_result_type

+ FAILED
+ PARTIAL_PASS
+ PASSED

string

«idlTypedef»
offline_test_type

string

«idlTypedef»
offline_test_result_details_type

string

«idlTypedef»
network_name_type

Figure 7.59 Domain Model (Class diagram)

7.5.2.1 configuration_url_type

Type: IDLTypeDef
Package: Extended_Subsystem_Control
String which provides a url location for configuration data.
ElementTag: Length = 255

7.5.2.2 network_name_type

Type: IDLTypeDef
Package: Extended_Subsystem_Control
The name identifying an external network.

7.5.2.3 offline_test_result_details_type

Type: IDLTypeDef
Package: Extended_Subsystem_Control
Subsystem specific detailed test results
ElementTag: Length = 4096

7.5.2.4 offline_test_result_type

Type: Class
Package: Extended_Subsystem_Control
Used to return the test results: failed, partial_pass or failed

Table 7.54 - Attributes of Class offline_test_result_type

Attribute Notes
 FAILED A number of tests were not successful, such that the

subsystem exceeded its failure threshold. Detailed
information is available upon request.

 PARTIAL_PASS A number of tests were not successful, but the subsystem
did not exceed its failure threshold. Detailed information
is available upon request.

 PASSED All tests were successful.

7.5.2.5 offline_test_type

Type: IDLTypeDef
Package: Extended_Subsystem_Control
A subsystem specific string identifying the required test type.
ElementTag: Length = 255

7.5.3 Recording_and_Replay

Parent Package: Subsystem_Domain
Defines the domain model for the Recording and Replay interfaces.

This contains the classes associated with Recording and Replay

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 103

long

«idlTypedef»
recording_id_type

«idlStruct»
recording_descriptor_type

+ change_threshold: change_threshold_type
+ rate: rate_type
+ record_on_change: record_on_change_type

«idlStruct»
recorded_data_type

+ recorded_value: string
+ time_stamp: time_type

«idlStruct»
recording_set_type

«idlStruct»
replay_set_type

«idlStruct»
recording_type

float

«idlTypedef»
replay_speed_type

time_type

«idlTypedef»
actual_time_type

time_type

«idlTypedef»
recorded_time_type

«idlStruct»
parameter_type

+ parameter: string

float

«idlTypedef»
change_threshold_type

float

«idlTypedef»
rate_type

boolean

«idlTypedef»
record_on_change_type

+recorded_data 1..*

1

+parameter 1..*

{in an associated recording_set}

1

+parameter1

{from the associated recording_set}

1

+recording_descriptor 1..*

1

+recording_id
1

+parameter 1

1

Figure 7.60 Domain Model (Class diagram)

7.5.3.1 actual_time_type

Type: Class
Package: Recording_and_Replay
The current time (time of day). Used to indicate when playback should start. This allows synchronisation of
playback from different subsystems.

7.5.3.2 change_threshold_type

Type: IDLTypeDef
Package: Recording_and_Replay
The amount by which a parameter shall change in order to be recorded, when recording on change

7.5.3.3 parameter_type

Type: Class
Package: Recording_and_Replay
Identified the parameter to be recorded

Table 7.55 - Attributes of Class parameter_type

Attribute Notes
 parameter string The parameter value.

AttributeTag: StringLength = 32

7.5.3.4 rate_type

Type: IDLTypeDef
Package: Recording_and_Replay
Defined the rate at which the parameter is to be recorded for periodic recording

7.5.3.5 record_on_change_type

Type: IDLTypeDef
Package: Recording_and_Replay
Boolean specifying record on change (true) or periodic (false)

7.5.3.6 recorded_data_type

Type: Class
Package: Recording_and_Replay
Data recorded against the specified parameter

Table 7.56 - Attributes of Class recorded_data_type

Attribute Notes
 recorded_value string This needs to reference allowable values defined by the

possible recording parameters - see 'recording
parameters'.
AttributeTag: StringLength = 20

 time_stamp time_type The absolute time at which the value was recorded

Table 7.57 - Relations of Class recorded_data_type
Connector Notes
Aggregation: parameter parameter_type [1]

7.5.3.7 recorded_time_type

Type: Class
Package: Recording_and_Replay
The time in a recording. This is used to indicate the position in the recording at which playback should start.

7.5.3.8 recording_descriptor_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 105

Type: Class
Package: Recording_and_Replay
Specifies the recording characteristics required for each parameter

Table 7.58 - Attributes of Class recording_descriptor_type

Attribute Notes
 change_threshold change_threshold_type When record_on_change is true, any change greater than

the change_threshold from the last recorded value shall
be recorded. This only applies for numeric quantities i.e.
not enumerated types, and is ignored otherwise.

 rate rate_type Specifies recording rate when record_on_change is false.
AttributeTag: Unit = Hz

 record_on_change record_on_change_type Indicates whether to record all changes greater than the
change threshold or record at the specified rate.

Table 7.59 - Relations of Class recording_descriptor_type
Connector Notes
Aggregation: parameter parameter_type [1]

7.5.3.9 recording_id_type

Type: Class
Package: Recording_and_Replay
Used to identify a specific recording. The subsystem shall manage a number of recordings and associate recording
ids with them in a subsystem dependent way. Once associated, it passes that reference through the parameter
recording_id to the CMS so that the CMS may ask for a specific recording later on. Again, the CMS manages the
relationship between the recording_id and the recording it requested to be made in a system dependent way.

There is no intention to model the method either the subsystem or the CMS uses to manage the relationship between
recording_id and the recordings as this is transparent to the interface and would unnecessarily restrict the choices
available to the designers.

7.5.3.10 recording_set_type

Type: Class
Package: Recording_and_Replay
A set of recording descriptors specifying what is to be recorded

Table 7.60 - Relations of Class recording_set_type
Connector Notes
Aggregation: recording_descriptor
recording_descriptor_type [1..*]

7.5.3.11 recording_type

Type: Class
Package: Recording_and_Replay
A recording: a set of recorded data

Table 7.61 - Relations of Class recording_type
Connector Notes
Aggregation: recorded_data recorded_data_type [1..*]
Association: recording_id recording_id_type reference
[1]

7.5.3.12 replay_set_type

Type: Class
Package: Recording_and_Replay
A set of parameters required to be replayed. These must exist in the associated recording set to be of any use.

Table 7.62 - Relations of Class replay_set_type
Connector Notes
Aggregation: parameter parameter_type [1..*]

7.5.3.13 replay_speed_type

Type: Class
Package: Recording_and_Replay
Controls the replay speed. 1.0 represents real time.

7.5.4 Simulation_Support

Parent Package: Subsystem_Domain

string

«idlTypedef»
fault_script_id_type

tags
Length = 6

«idlStruct»
fault_script_ids_type

«idlStruct»
fault_script_type

+ details_of_fault: string

«idlStruct»
fault_scripts_type

«idlStruct»
sim_mode_status_type

+ sim_mode_active: boolean

«idlStruct»
start_stop_sim_mode_request_type

+ start_simulation_mode: boolean

«idlStruct»
stop_freeze_session_request_type

+ reflect_values: boolean
+ run_internal_simulation_clock: boolean
+ update_attributes: boolean

+script_id

1

1

+script_id

0..*

1

+script

0..*1

Figure 7.61 Domain Model (Class diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 107

7.5.4.1 fault_script_id_type

Type: Class
Package: Simulation_Support
Identifies a single fault script.
ElementTag: Length = 6

7.5.4.2 fault_script_ids_type

Type: Class
Package: Simulation_Support
This class represents a set of references to fault scripts

Table 7.63 - Relations of Class fault_script_ids_type
Connector Notes
Aggregation: script_id fault_script_id_type [0..*]

7.5.4.3 fault_script_type

Type: Class
Package: Simulation_Support
Definition of a fault script. The exact form of this is not yet defined, this class represents the essential attributes. It
would probably be some form of string, perhaps an XML document.

Table 7.64 - Attributes of Class fault_script_type

Attribute Notes
 details_of_fault string A description of the fault, such as is interpretable during

the simulation
AttributeTag: StringLength = 200

Table 7.65 - Relations of Class fault_script_type
Connector Notes
Aggregation: script_id fault_script_id_type [1]

7.5.4.4 fault_scripts_type

Type: Class
Package: Simulation_Support
This class represents a set of fault scripts

Table 7.66 - Relations of Class fault_scripts_type
Connector Notes
Aggregation: script fault_script_type [0..*]

7.5.4.5 sim_mode_status_type

Type: Class
Package: Simulation_Support
Whether simulated mode is in operation

Table 7.67 - Attributes of Class sim_mode_status_type

Attribute Notes
 sim_mode_active boolean Flag to indicate if the simulation mode is active.

7.5.4.6 start_stop_sim_mode_request_type

Type: Class
Package: Simulation_Support
A request to change the simulation mode

Table 7.68 - Attributes of Class start_stop_sim_mode_request_type

Attribute Notes
 start_simulation_mode boolean Flag to indicate if the simulation mode shall be started or

stopped.

7.5.4.7 stop_freeze_session_request_type

Type: Class
Package: Simulation_Support
A Simulation Management (SIMAN) request, sent from a Simulation Manager to request that one or more entities
either
a) pause their simulation session
or
b) stop their simulation session.

Table 7.69 - Attributes of Class stop_freeze_session_request_type

Attribute Notes
 reflect_values boolean Whether the entity or entities being stopped/frozen

should continue to reflect values when stopped/frozen.

 run_internal_simulation_clock boolean Whether the entity or entities being stopped/frozen
should continue to run their internal simulation clock
when stopped/frozen.

 update_attributes boolean Whether the entity or entities being stopped/frozen
should continue to update attributes when
stopped/frozen.

7.5.5 Subsystem_Control

Parent Package: Subsystem_Domain
Contains Structs used within the Subsystem Control service and a state diagram corresponding with the Manage
Technical State interface.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 109

Figure 7.62 Domain Model - 1 (Class diagram)

Figure 7.63 Domain Model - 2 (Class diagram)

Ollie Newman, 02/08/24
OARIS3-3

Ollie Newman, 02/08/24
OARIS3-3

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 111

7.5.5.1 equipment_category_type

Type: Class
Package: Subsystem_Control
Categorization of equipment. Values correspond to items in an externally defined list.

7.5.5.2 function_id_type

Type: Class
Package: Subsystem_Control
Unique identifier for a function within a subsystem.

7.5.5.3 function_type

Type: Class
Package: Subsystem_Control
One of the functions of a subsystem

Table 7.70 - Attributes of Class function_type

Attribute Notes
«key» function_id function_id_type The functions unique idenitifier

 function_name string The name of function as understood by an operator
AttributeTag: StringLength = 32

Table 7.71 - Relations of Class function_type
Connector Notes
Association: applicable_mode operational_mode_type
reference [0..*]

The operational modes in which the function is available

7.5.5.4 platform_category_type

Type: Class
Package: Subsystem_Control
Categorization of platforms (i.e. structures such as ships and planes) that host CMS, sensors and other subsystems.
Values correspond to items in an externally defined list.

7.5.5.5 product_category_type

Type: Class
Package: Subsystem_Control
Categorization of a product. Values correspond to items in an externally defined list.

7.5.5.6 service_name_type

Type: IDLEnum
Package: Subsystem_Control
Enumeration of possible service names. Where a service may be offered at different compliance levels, multiple
names are introduced with _LEVEL_x postfix to indicate different parts.

Table 7.72 - Attributes of IDLEnum service_name_type

Attribute Notes
«idlEnum» AIR_ENGAGEMENT_SUPPORT air engagement support service

«idlEnum» CLUTTER_REPORTING clutter reporting service

«idlEnum» ENCYCLOPAEDIC_SUPPORT encyclopaedic support service

«idlEnum» ENGAGEMENT_SUPPORT engagement support service

«idlEnum»
NAVIGATION_INFORMATION_LEVEL_3F

C2INav service support as per compliance level 3F

«idlEnum» METOC_LEVEL_3G Meteorological and Oceanographic support service as
per compliance level 3G

«idlEnum» EXTENDED_SUBSYSTEM_CONTROL Extensions to the subsystem control service

«idlEnum» JAMMER_REPORTING jammer reporting service

«idlEnum» MISSILE_GUIDANCE missile guidance service

«idlEnum» PLOT_REPORTING_LEVEL_1 plot reporting service to compliance level 1

«idlEnum» PLOT_REPORTING_LEVEL_3C plot reporting service to compliance level 3C

«idlEnum» PLOT_REPORTING_LEVEL_3E plot reporting service to compliance level 3E

«idlEnum» RECORDING_AND_REPLAY recording and replay service

«idlEnum» SEARCH search service

«idlEnum» SENSOR_CONTROL_LEVEL_2 sensor control service to compliance level 2

«idlEnum» SENSOR_PERFORMANCE sensor performance service

«idlEnum» SIMULATION_SUPPORT simulation support service

«idlEnum» SUBSYSTEM_CONTROL_LEVEL_1 subsystem control service to compliance level 1

«idlEnum» SUBSYSTEM_CONTROL_LEVEL_2 subsystem control service to compliance level 2

«idlEnum» SURFACE_ENGAGEMENT_SUPPORT surface engagement support service

«idlEnum» TRACK_REPORTING_LEVEL_1 track reporting service to compliance level 1

«idlEnum» TRACK_REPORTING_LEVEL_3C track reporting service to compliance level 3C

«idlEnum» TRACK_REPORTING_LEVEL_3E track reporting service to compliance level 3E

«idlEnum» TRACKING_CONTROL_LEVEL_2 tracking control service to compliance level 2

«idlEnum» TRACKING_CONTROL_LEVEL_3C tracking control service to compliance level 3C

«idlEnum» SENSOR_CONTROL_LEVEL_3A sensor control service to compliance level 3A

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 113

Attribute Notes
«idlEnum» CONTACT_REPORTING contact reporting service

«idlEnum» PARAMETRIC_REPORTING parametric reporting

«idlEnum» TRACK_ASSESSMENT track assessment service

«idlEnum» MEDIA_STREAMING media streaming service

7.5.5.7 battle_override_state_type

Type: Class
Package: Subsystem_Control
If the boolean is true the battle override is applied.

Table 7.73 - Attributes of Class battle_override_state_type

Attribute Notes
 battle_override_applied boolean Indicates if the battle override is applied or not.

7.5.5.8 descriptor_type

Type: Class
Package: Subsystem_Control
Type for parameter descriptors.

Table 7.74 - Attributes of Class descriptor_type

Attribute Notes
 parameter_name string parameter_name values are unique within the scope of a

subsystem.
AttributeTag: StringLength = 128

 parameter_type string The type of the information parameter
AttributeTag: StringLength = 32

 parameter_unit string The units in which the value of the parameter is
expressed.
AttributeTag: StringLength = 32

 typical_value typical_value_typestring [0..1] A typical value of the information parameter so as to
assist in providing a suitable value.
AttributeTag: StringLength = 32

 parameter_range string parameter_range_type [0..1] The valid range of the information parameter.
AttributeTag: StringLength = 32

 technical_state technical_state_type [1..*] Technical state(s) in which this parameter may be
modified.

Ollie Newman, 02/08/24
OARIS3-3

Attribute Notes
 applicable_operational_mode operational_mode_type
[0..*]

Operational modes to which the information value
applies.

7.5.5.9 descriptor_sequence_type

Type: Class
Package: Subsystem_Control
Sequence of parameter descriptors, used in retrieving parameter descriptors.

Table 7.75 - Relations of Class descriptor_sequence_type
Connector Notes
Aggregation: element descriptor_type [0..*]

7.5.5.10 device_identification_type

Type: IDLStruct
Package: Subsystem_Control
Identification data of the equipment.

Table 7.76 - Attributes of IDLStruct device_identification_type

Attribute Notes
 product device_name_type Name of the product. Example TRS3D

 serial_number device_name_type Serial number identifying the individual device.
AttributeTag: Length = 64

 equipment_type device_name_type This describes the general type of the equipment.
Example: Air Surveillance Radar

 version version_type Version of the device.

 product_category product_category_type Categorization of the product implementing the
interface. This is the unique identification of the product
given a particular external schema.
AttributeTag: Issue =

 equipment_category equipment_category_type Categorization of the kind of equipment implementing
the interface. This is the specific identification of the
product's equipment category given a particular external
schema.
AttributeTag: Issue =

 platform_name device_name_type The name of the platform hosting the interface
participant.
AttributeTag: Issue =

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 115

Attribute Notes
 platform_category platform_category_type Categorization of platform hosting the product

implementing the interface. This is the unique
identification of the platform given a particular external
schema.
AttributeTag: Issue =

7.5.5.11 device_name_type

Type: IDLTypeDef
Package: Subsystem_Control
Name of an entry in the device identification.
ElementTag: Length = 64

7.5.5.12 parameter_range_type

Type: IDLTypeDef
Package: Subsystem_Control
The valid range of the information parameter.
ElementTag: Length = 32

7.5.5.13 quality_of_service_type

Type: IDLTypeDef
Package: Subsystem_Control
The quality of service being requested of the information service.
ElementTag: Length = 32

7.5.5.14 recipient_type

Type: IDLTypeDef
Package: Subsystem_Control
Identification of the recipient of the information service.
ElementTag: Length = 32

7.5.5.15 typical_value_type

Type: IDLTypeDef
Package: Subsystem_Control
A typical value of the information parameter so as to assist in providing a suitable value.
ElementTag: Length = 32

7.5.5.16 event_type

Type: IDLEnum
Package: Subsystem_Control
Type of event

Table 7.77 - Attributes of IDLEnum event_type

Attribute Notes
«idlEnum» OCCURRENCE The event corresponds to the occurrence of some

phenomena

Ollie Newman, 02/08/24
OARIS3-3

Attribute Notes
«idlEnum» DISAPPEARANCE The event corresponds to the disappearance of some

phenomena

7.5.5.17 fault_type

Type: IDLStruct
Package: Subsystem_Control
Class to represent a subsystem fault

Table 7.78 - Attributes of IDLStruct fault_type

Attribute Notes
 fault_name string The name of the fault. Distinct instances of the same

fault condition have the same name.
AttributeTag: StringLength = 32

 event event_type The categorization of the fault as an event; whether it is
an occurrence or the disappearance of some phenomenon

 simulated boolean Indicates whether this fault is real or simulated/inserted.

 overridden boolean Indicates whether this fault is overridden by Battle
Override when determining the health state.

 fault_isolation_data string For instance cabinet id and rack id.
AttributeTag: StringLength = 32

7.5.5.18 fault_list_type

Type: Class
Package: Subsystem_Control
A list of faults

Table 7.79 - Relations of Class fault_list_type
Connector Notes
Aggregation: element fault_type [0..*]

7.5.5.19 health_state_reason_type

Type: IDLStruct
Package: Subsystem_Control
Reason for the health state

Table 7.80 - Attributes of IDLStruct health_state_reason_type

Attribute Notes
 caused_by_fault boolean The health state has been caused by a fault

 caused_by_technical_state boolean The health state is due to the subsystem being in a
particular technical state

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 117

Attribute Notes
 caused_by_simulation_mode boolean The health state is due to the subsystem being in a

particular simulation mode

 caused_by_operational_mode boolean The health state is due to the subsystem being in a
particular operational mode

7.5.5.20 health_state_type

Type: IDLEnum
Package: Subsystem_Control
Encapsulation of health state

Table 7.81 - Attributes of IDLEnum health_state_type

Attribute Notes
«idlEnum» AVAILABLE Service: Indicates that the service is available with

specified performance.
Subsystem: Indicates that all implemented services of
the subsystem have health state AVAILABLE.

«idlEnum» DEGRADED Service: Indicates that the service may perform its
operational task, but possibly with less than specified
performance.
Subsystem: Indicates that at least one of the
implemented services of the subsystem have health state
other than AVAILABLE.

«idlEnum» NOT_AVAILABLE Service: Indicates that the service is not available.
Subsystem: Indicates that all implemented services of
the subsystem have health state NOT_AVAILABLE.

«idlEnum» UNKNOWN_HEALTH Indicates that the subsystem may not determine the
health state of the service or subsystem (e.g. because
BIT is not running).

7.5.5.21 information_name_type

Type: IDLEnum
Package: Subsystem_Control
Name of information

Table 7.82 - Attributes of IDLEnum information_name_type

Attribute Notes
«idlEnum» AIR_PLOTS Air plots information service

«idlEnum» SURFACE_PLOTS Surface plots information service

«idlEnum» LAND_PLOTS Land plots information service

«idlEnum» SPACE_PLOTS Space plots information service

Attribute Notes
«idlEnum» SUBSURFACE_PLOTS Subsurface plots information service

«idlEnum» SENSOR_AIR_TRACKS Air tracks information service

«idlEnum» SENSOR_SURFACE_TRACKS Surface tracks information service

«idlEnum» SENSOR_LAND_TRACKS Land tracks information service

«idlEnum» SENSOR_SPACE_TRACKS Space tracks information service

«idlEnum» SENSOR_SUBSURFACE_TRACKS Subsurface tracks information service

«idlEnum» JAMMER_STROBES Jammer strobes information service

«idlEnum» JAMMER_TRACKS jammer tracks information service

«idlEnum» JAMMING_EFFECT_ASSESSMENTS jammer effect assessments information service

«idlEnum» INTERFERENCE_REPORTS interference reports information service

7.5.5.22 interest_type

Type: IDLStruct
Package: Subsystem_Control
Encapsulation of interest in service

Table 7.83 - Attributes of IDLStruct interest_type

Attribute Notes
 registration registration_type Whether adding or removing interest in an information

service.

 quality_of_service stringquality_of_service_type
[0..1]

The quality of service being requested of the information
service.
AttributeTag: StringLength = 32

 recipient stringrecepient_type [0..1] Identification of the recipient of the information service.
AttributeTag: StringLength = 32

7.5.5.23 interest_list_type

Type: Class
Package: Subsystem_Control
A list of interest

Table 7.84 - Relations of Class interest_list_type
Connector Notes
Aggregation: element interest_type [1..*]

7.5.5.24 mastership_state_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 119

Ollie Newman, 02/08/24
OARIS3-3

Type: Class
Package: Subsystem_Control
This enumeration represents the state of the mastership.
The subsystem Mastership may be either “free”, that is assigned to none and then available to anybody asks for it, or
assigned to somebody: CMS or not.

Table 7.85 - Attributes of Class mastership_state_type

Attribute Notes
«enum» MASTERSHIP_FREE Mastership state is “free”, the first received Mastership

request shall be satisfied.

«enum» MASTERSHIP_OTHER The Mastership is assigned to somebody other than
CMS.

«enum» MASTERSHIP_TO_CMS The Mastership is assigned to CMS.

7.5.5.25 parameter_name_type

Type: IDLStruct
Package: Subsystem_Control
Typedef for strings representing names of parameters.

Table 7.86 - Attributes of IDLStruct parameter_name_type

Attribute Notes
 parameter_name string parameter_name values are unique within the scope of a

subsystem.
AttributeTag: StringLength = 128

7.5.5.26 name_error_pair_type

Type: Class
Package: Subsystem_Control
Combination of name of parameter (for which a request could not be processed) and an indication of the error.

Table 7.87 - Attributes of Class name_error_pair_type

Attribute Notes
 parameter_name string parameter_name values are unique within the scope of a

subsystem.
AttributeTag: StringLength = 128

 error_indication string A description of or reference for the error condition.
AttributeTag: StringLength = 32

7.5.5.27 name_error_sequence_type

Type: Class
Package: Subsystem_Control

sequence of error reports identifying the parameter names for which the request could not be processed, including an
indication of the error (e.g. unknown parameter, illegal value).

Table 7.88 - Relations of Class name_error_sequence_type
Connector Notes
Aggregation: element name_error_pair_type [0..*]

7.5.5.28 parameter_name_sequence_type

Type: Class
Package: Subsystem_Control
A sequence of strings (names). Used in request for parameters and parameter descriptors. If the sequence is empty,
the request is for all parameters.

Table 7.89 - Relations of Class parameter_name_sequence_type
Connector Notes
Aggregation: element parameter_name_type [0..*]

7.5.5.29 name_value_pair_type

Type: Class
Package: Subsystem_Control
A generic struct for (name, value) pairs. Used in multiple situations.

Table 7.90 - Attributes of Class name_value_pair_type

Attribute Notes
 parameter_name string parameter_name values are unique within the scope of a

subsystem.
AttributeTag: StringLength = 128

 value string The value of the parameter
AttributeTag: StringLength = 32

7.5.5.30 name_value_sequence_type

Type: Class
Package: Subsystem_Control
Sequence of (name, value) pairs used in retrieving and modifying parameters.

Table 7.91 - Relations of Class name_value_sequence_type
Connector Notes
Aggregation: element name_value_pair_type [0..*]

7.5.5.31 operational_mode_type

Type: IDLTypeDef
Package: Subsystem_Control
The value should be mapped to the corresponding operational mode. This mapping is retrieved through the service
'Manage Subsystem Parameters'.

7.5.5.32 parameter_value_response_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 121

Type: Class
Package: Subsystem_Control
Response type for retrieving and modifying sequences of parameters.

Table 7.92 - Attributes of Class parameter_value_response_type

Attribute Notes
 request_id long The identifier for the request.

7.5.5.33 registration_type

Type: IDLEnum
Package: Subsystem_Control
Type of registration

Table 7.93 - Attributes of IDLEnum registration_type

Attribute Notes
«idlEnum» REGISTER Registering for a service

«idlEnum» DEREGISTER Deregistering for a service

7.5.5.34 service_type

Type: IDLStruct
Package: Subsystem_Control
Type of service

Table 7.94 - Attributes of IDLStruct service_type

Attribute Notes
 service_name service_name_type Only registrable services are allowed

7.5.5.35 service_health_type

Type: IDLStruct
Package: Subsystem_Control
Health of service

Table 7.95 - Attributes of IDLStruct service_health_type

Attribute Notes
 service_name service_name_type The name of the service being reported on

 health_state health_state_type The state of health of the service

 health_state_reason health_state_reason_type The reason for the health state

 time_of_information time_type The absolute time at which the information was known
to be valid

Table 7.96 - Relations of IDLStruct service_health_type
Connector Notes
Association: influences fault_type reference [0..*]

7.5.5.36 service_indication_list_type

Type: IDLStruct
Package: Subsystem_Control
A list of service indications as used by Provide_Subsystem_Services.

Table 7.97 - Relations of IDLStruct service_indication_list_type
Connector Notes
Aggregation: service_indication
service_indication_type [0..*]

7.5.5.37 service_indication_type

Type: IDLStruct
Package: Subsystem_Control
Indication of a service provided by the subsystem.

Table 7.98 - Attributes of IDLStruct service_indication_type

Attribute Notes
 service_name service_name_type Name of the service.

 registration_indicator boolean Indication whether the service is registered.

7.5.5.38 service_information_type

Type: IDLStruct
Package: Subsystem_Control
Information about a service

Table 7.99 - Attributes of IDLStruct service_information_type

Attribute Notes
 information_name information_name_type The name of the information in the service.

7.5.5.39 service_list_type

Type: IDLStruct
Package: Subsystem_Control
A list of service names as used by Provide_Subsystem_Services.

Table 7.100 - Relations of IDLStruct service_list_type
Connector Notes
Aggregation: service_indication service_name_type
[0..*]

7.5.5.40 subsystem_health_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 123

Type: IDLStruct
Package: Subsystem_Control
Type describing the health state of a subsystem

Table 7.101 - Attributes of IDLStruct subsystem_health_type

Attribute Notes
 health_state health_state_type Current health state

 health_state_reason health_state_reason_type Reason for last change of health state

 subsystem_identification device_identification_type The subsystem being reported upon

 time_of_information time_type The absolute time at which the information provided in
the report was known to be valid

Table 7.102 - Relations of IDLStruct subsystem_health_type
Connector Notes
Association: influences service_health_type reference
[1..*]

7.5.5.41 technical_state_type

Type: IDLEnumClass
Package: Subsystem_Control
Type which is used to indicate a technical state.

Table 7.103 - Attributes of Class technical_state_type

Attribute Notes
 BIT Subsystem is running Built-In-Test procedure. CMS

may communicate with subsystem, but subsystem shall
only respond affirmatively to a limited set of commands.
From this state the subsystem may transition to READY,
FAILED, CALIBRATE, STANDBY (transition may be
ordered before completion of BIT if Battle Override is
enabled), or OFFLINE.

 CALIBRATE Subsystem is running calibration procedure. Subsystem
shall only respond to a limited set of commands from
CMS. From this state the subsystem may transition to
READY, FAILED, BIT, STANDBY (transition may be
ordered before completion of calibration if Battle
Override is enabled), or OFFLINE.

 DORMANT Interface between CMS and subsystem may or may not
exist. Some power is applied to the subsystem and
temperature control (e.g. cooling) is active. From this
state, the sub-system may transition to FAILED,
STANDBY, or OFFLINE.

Ollie Newman, 02/08/24
OARIS3-45

Attribute Notes
 FAILED Subsystem is non-operational due to a critical fault such

as a primary power supply failure. CMS is able to
communicate with subsystem to perform diagnostics. In
the FAILED state, the health state of the sub-system and
nearly all associated services is NOT AVAILABLE or
UNKNOWN (provided via Health State). If the health
state of the sub-system or some services is
DEGRADED, the sub-system is not required to enter
into this state. From this state the sub-system may
transition to BIT, STANDBY, READY, CALIBRATE,
DORMANT or OFFLINE.

 OFFLINE No connection between CMS and Subsystem is open.
Main power is usually not applied to subsystem. From
OFFLINE, subsystem transitions to FAILED,
DORMANT, BIT, or STANDBY.

 ONLINE Subsystem is operational and may respond to all requests
from CMS. Simulation and diagnostics may be allowed
in this state. Radiation is allowed in this state but must
be commanded on via Control Emissions. From this state
the subsystem may transition to BIT, CALIBRATE,
READY, STANDBY, FAILED, or OFFLINE.

 READY Subsystem is ready for CMS to command full operation.
Simulation may be allowed in this state. Ready to
transition to ONLINE, self-tests and calibration has been
performed as necessary. Radiation is not allowed in the
READY state. From this state the subsystem may
transition to STANDBY, ONLINE, FAILED, BIT,
CALIBRATE, or OFFLINE.

 STANDBY Interface between CMS and subsystem is established.
Subsystem may not operate fully. Maintenance may be
performed in this state. From this state the sub-system
may transition to READY, CALIBRATE, BIT,
FAILED, DORMANT, or OFFLINE.

7.5.5.42 version_type

Type: IDLStruct
Package: Subsystem_Control
Version of the equipment

Table 7.104 - Attributes of IDLStruct version_type

Attribute Notes
 major_version unsigned short Major version number

 minor_version unsigned short Minor version number

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 125

7.6 Sensor_Domain

Parent Package: Domain_Model
This package contains the Domain Models for the Clutter Reporting, Plot Reporting, Sensor Control, Sensor
Performance, Track Reporting, and Tracking Control services.

7.6.1 Clutter_Reporting

Parent Package: Sensor_Domain
Contains Structs used within the Clutter Reporting service.

Domain Model of the Clutter Reporting interfaces.

«idlStruct»
clutter_map_cell_type

+ cell_boundaries: general_polar_volume_type
+ clutter_type: clutter_indication_type
+ clutter_intensity: double

«idlStruct»
clutter_report_type

+ intensity_type: intensity_units_type
+ time_of_report: time_type

«idlStruct»
clutter_assessment_request_type

+ requested_region: general_polar_volume_type

«idlEnum»
clutter_indication_type

+ LAND
+ SEA
+ WEATHER
+ NO_STATEM ENT

«idlEnum»
intensity_units_type

+ POWER_RECEIVED_LINEAR
+ POWER_RECEIVED_LOG_LINEAR
+ RCS_LINEAR
+ RCS_LOG_LINEAR
+ SNR_LINEAR
+ SNR_LOG_LINEAR

«idlStruct»
plot_concentration_request_data_type

+ region_of_plot_concentration_request: general_polar_volume_type

«idlStruct»
plot_concentration_report_type

+ time_of_report: time_type

«idlStruct»
concentration_plot_cell_type

+ cell_boundaries: general_polar_volume_type
+ plot_count: unsigned long

+concentration_plot_cell 1..*

1

+clutter_map_cell 1..*

1

Figure 7.64 Domain Model (Class diagram)

7.6.1.1 clutter_assessment_request_type

Type: IDLStruct
Package: Clutter_Reporting
CMS generated request for a clutter assessment.

Table 7.105 - Attributes of IDLStruct clutter_assessment_request_type

Attribute Notes
 requested_region general_polar_volume_type Region for which the CMS clutter request was

generated.

7.6.1.2 clutter_indication_type

Type: Class
Package: Clutter_Reporting
Indicates if the clutter within the cell is of a specific type.

Table 7.106 - Attributes of Class clutter_indication_type

Attribute Notes
 LAND clutter caused by land

 SEA clutter caused by sea surface

 WEATHER clutter caused by weather phenomena

 NO_STATEMENT clutter cause unknown or unstated

7.6.1.3 clutter_map_cell_type

Type: IDLStruct
Package: Clutter_Reporting
Indicates the intensity and type of clutter for a defined geometric type.

Table 7.107 - Attributes of IDLStruct clutter_map_cell_type

Attribute Notes
 cell_boundaries general_polar_volume_type Indicates the boundaries of the cell for which clutter is

being reported.

 clutter_type clutter_indication_type Indicates whether the clutter is LAND, SEA,
WEATHER, or unspecified (NO_STATEMENT).

 clutter_intensity double Intensity of the clutter for the specified cell. Units
indicated by the intensity type attribute.

7.6.1.4 clutter_report_type

Type: IDLStruct
Package: Clutter_Reporting
Clutter report generated by the subsystem.

Table 7.108 - Attributes of IDLStruct clutter_report_type

Attribute Notes
 intensity_type intensity_units_type Indicates the units of the clutter intensity reported.

 time_of_report time_type Time of the clutter report.

Table 7.109 - Relations of IDLStruct clutter_report_type
Connector Notes
Aggregation: clutter_map_cell clutter_map_cell_type
[1..*]

7.6.1.5 concentration_plot_cell_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 127

Type: Class
Package: Clutter_Reporting
Indicates the plot concentration of a defined geometric type.

Table 7.110 - Attributes of Class concentration_plot_cell_type

Attribute Notes
 cell_boundaries general_polar_volume_type Specifies the dimension of the cell for which plot

concentration is being reported.

 plot_count unsigned long The number of plots generated within the cell.

7.6.1.6 intensity_units_type

Type: Class
Package: Clutter_Reporting
Units of the clutter intensity

Table 7.111 - Attributes of Class intensity_units_type

Attribute Notes
 POWER_RECEIVED_LINEAR Direct measurement of power in Watts on a linear scale

 POWER_RECEIVED_LOG_LINEAR Direct measurement of power on a logarithmic scale
(e.g. dBW)

 RCS_LINEAR estimated radar cross section in square meters

 RCS_LOG_LINEAR estimated radar cross section on a logarithmic scale

 SNR_LINEAR Ratio of the signal and noise amplitudes

 SNR_LOG_LINEAR Ratio of the signal and noise amplitudes on a logarithmic
scale

7.6.1.7 plot_concentration_report_type

Type: IDLStruct
Package: Clutter_Reporting
Plot concentration report as generated by the subsystem.

Table 7.112 - Attributes of IDLStruct plot_concentration_report_type

Attribute Notes
 time_of_report time_type Time of the plot concentration report.

Table 7.113 - Relations of IDLStruct plot_concentration_report_type
Connector Notes
Aggregation: concentration_plot_cell
concentration_plot_cell_type [1..*]

7.6.1.8 plot_concentration_request_data_type

Type: IDLStruct
Package: Clutter_Reporting
CMS request for plot concentration of a specified region.

Table 7.114 - Attributes of IDLStruct plot_concentration_request_data_type

Attribute Notes
 region_of_plot_concentration_request
general_polar_volume_type

Region for which the plot concentration was requested.

7.6.2 Media_Streaming

Parent Package: Sensor_Domain
This package provides a data model for describing the metadata associated with a sensor's media streams.

«idlStruct»
media_stream_metadata_type

+ media_kind: media_kind_type
+ codec: codec_type
+ uri: url_type
+ media_name: media_name_type

«key»
+ media_id: media_stream_id_type

«idlEnum»
media_kind_type

+ AUDIO
+ VIDEO
+ OTHER_MEDIA

string

«idlTypedef»
media_name_type

tags
Length = 32

string

«idlTypedef»
codec_type

tags
Length = 20

«idlStruct»
Track_Reporting::sensor_track_type

+ additional_information: anonymous_blob_type
+ covariance_matrix: covariance_matrix_type [0..1]
+ environment: environment_type [0..1]
+ initiation_mode: initiation_mode_type [0..1]
+ jammer_indication: boolean
+ max_range_limit: range_coordinate_type [0..1]
+ position: position_coordinate_type
+ position_accuracy: position_accuracy_coordinate_type [0..1]
+ position_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ position_coordinate_system: coordinate_specification_type
+ sensor_track_pre_identification: identity_type [0..1]
+ sensor_track_pre_recognition: recognition_type [0..1]
+ simulated: boolean
+ time_of_information: time_type
+ time_of_initiation: time_type [0..1]
+ track_phase: track_phase_type
+ velocity: velocity_coordinate_type
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_coordinate_system: coordinate_specification_type
+ track_quality: track_quality_type [0..1]
+ time_of_first_detection: time_type [0..1]
+ time_of_last_detection: time_type [0..1]
+ priority: track_priority_type [0..1]
+ amplitude: strength_type [0..1]

«key»
+ sensor_track_id: sensor_track_id_type

long

«idlTypedef»
media_stream_id_type

«idlStruct»
media_allocation_type

+media_stream
«key» 1

0..*

+sensor_track

0..*

Figure 7.65 Media_Streaming (Class diagram)

7.6.2.1 codec_type

Type: Class

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 129

Package: Media_Streaming
The representation of the codec associated with the stream
ElementTag: Length = 20

7.6.2.2 media_allocation_type

Type: Class
Package: Media_Streaming
To represent the allocation of sensor tracks to media streams.

Table 7.115 - Relations of Class media_allocation_type
Connector Notes
Association: media_stream
media_stream_metadata_type reference [1]

The media stream relating to this allocation of tracks

Association: sensor_track sensor_track_type reference
[0..*]

The sensor tracks that are present in the media stream

7.6.2.3 media_kind_type

Type: Class
Package: Media_Streaming
The high-level categorisation of types of media

Table 7.116 - Attributes of Class media_kind_type

Attribute Notes
 AUDIO Audio media stream

 VIDEO Video media stream

 OTHER_MEDIA Another media stream

7.6.2.4 media_name_type

Type: Class
Package: Media_Streaming
The representation for the identifying name of a media stream
ElementTag: Length = 32

7.6.2.5 media_stream_id_type

Type: Class
Package: Media_Streaming
The representation for the unique identifier for the media stream

7.6.2.6 media_stream_metadata_type

Type: Class
Package: Media_Streaming
The representation of a media stream such as video or audio

Table 7.117 - Attributes of Class media_stream_metadata_type

Attribute Notes
 media_kind media_kind_type The kind of media associated with the stream

 codec codec_type The code identifier for the string

 uri url_type The source (end point) of the stream.

 media_name media_name_type The identifying name for the media stream

«key» media_id media_stream_id_type Identifier for the media stream.

7.6.3 Search

Parent Package: Sensor_Domain

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 131

«idlStruct»
cued_search_cue_type

+ speed_interval: speed_interval_type [0..1]
+ volume: general_polar_volume_type
+ coordinate_orientation: coordinate_orientation_type

«idlStruct»
cued_search_report_type

+ found_track_id: sensor_track_id_type [0..1]

«idlStruct»
surveillance_search_type

+ volume: general_polar_volume_type
+ coordinate_orientation: coordinate_orientation_type
+ frequency_band: frequency_band_type [0..1]

unsigned short

«idlTypedef»
Common_Types::frequency_band_type

«idlUnion»
Shape_Model::area_2d_type

«idlCase»
+ sector: sector_type
+ rectangle: rectangle_type
+ polygon: polygon_type
+ truncated_sector: truncated_sector_type

«idlStruct»
surveillance_task_type

+ system_track: system_track_id_type [0..*]

«idlStruct»
surveillance_area_type

+ pattern: search_pattern_type
+ area: area_2d_type
+ repeat: search_repeat_type

«idlEnum»
search_pattern_type

«enum»
+ LAWNMOWER_BY_LENGTH
+ LAWNMOWER_BY_WIDTH
+ SPIRAL_IN
+ SPIRAL_OUT
+ RANDOM_SAMPLE
+ UNSPECIFIED_PATTERN

«idlEnum»
search_repeat_type

«enum»
+ ONCE_ONLY
+ REPEAT
+ REPEAT_ONCE
+ REVERSE
+ REVERSE_ONCE
+ RANDOM_REPEAT
+ UNSPECIFIED_REPEAT

+area

0..* 1

+original_cue

Figure 7.66 Domain Model (Class diagram)

7.6.3.1 cued_search_cue_type

Type: Class
Package: Search
Type used for specifying the constraints on a cued search.

Table 7.118 - Attributes of Class cued_search_cue_type

Attribute Notes
 speed_interval speed_interval_type [0..1] The range of track-speed to search for from the cue.

 volume general_polar_volume_type The region in the environment, in which the cue to
search for tracks is to be performed.

Attribute Notes
 coordinate_orientation coordinate_orientation_type The orientation of the polar coordinates used in this

class. Note that the origin is always the sensor reference
point and that the coordinate system is always polar.

7.6.3.2 cued_search_report_type

Type: Class
Package: Search
Data returned to the CMS to indicate the results of a cued search.

Table 7.119 - Attributes of Class cued_search_report_type

Attribute Notes
 found_track_id sensor_track_id_type [0..1] The identifier of the track formed as a result of the

search request

Table 7.120 - Relations of Class cued_search_report_type
Connector Notes
Association: original_cue cued_search_cue_type
reference

7.6.3.3 search_pattern_type

Type: IDLEnum
Package: Search
The types of search pattern that can be employed for search and surveillance tasks

Table 7.121 - Attributes of IDLEnum search_pattern_type

Attribute Notes
«enum» LAWNMOWER_BY_LENGTH Coverage by alternating traversal of the area length-wise.

Valid for rectangular areas.

«enum» LAWNMOWER_BY_WIDTH Coverage by alternating traversal of the area width-wise.
Valid for rectangular areas.

«enum» SPIRAL_IN Coverage by traversing the perimeter and then
progressively smaller traversals of the interior towards
the center..

«enum» SPIRAL_OUT Coverage by starting at the center and traversing through
the interior on a path that is (approximately) tangential to
the center and parallel to the perimeter until the
perimeter has been traversed.

«enum» RANDOM_SAMPLE Search by sensing subsets of the area selected at random.

«enum» UNSPECIFIED_PATTERN No search pattern is specified.

7.6.3.4 search_repeat_type

Type: IDLEnum

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 133

Package: Search
Defines the search behavior on repeat / subsequent searches

Table 7.122 - Attributes of IDLEnum search_repeat_type

Attribute Notes
«enum» ONCE_ONLY Complete a single search pattern.

«enum» REPEAT Repeat the task indefinitely.

«enum» REPEAT_ONCE Repeat the task once.

«enum» REVERSE Repeat the task in reverse indefinitely.

«enum» REVERSE_ONCE Repeat the task in reverse once.

«enum» RANDOM_REPEAT Randomly repeat the elements of the task indefinitely.

«enum» UNSPECIFIED_REPEAT No repeat specified.

7.6.3.5 surveillance_area_type

Type: IDLStruct
Package: Search
A 2D area that is included in a surveillance task

Table 7.123 - Attributes of IDLStruct surveillance_area_type

Attribute Notes
 pattern search_pattern_type The pattern to apply to the area

 area area_2d_type The area to be kept under surveillance.

 repeat search_repeat_type The search behavior at the end of a search cycle.

7.6.3.6 surveillance_search_type

Type: IDLStruct
Package: Search
The parameters with which to task a sensor to concentrate its surveillance efforts within a spatial and / or frequency
band.

Table 7.124 - Attributes of IDLStruct surveillance_search_type

Attribute Notes
 volume general_polar_volume_type The region of surveillance in the environment to be

searched for tracks.

 coordinate_orientation coordinate_orientation_type The orientation of the polar coordinates used in this
class. Note that the origin is always the sensor reference
point and that the coordinate system is always polar.

Attribute Notes
 frequency_band frequency_band_type [0..1] The frequency band to be searched.

7.6.3.7 surveillance_task_type

Type: IDLStruct
Package: Search
The information for a CMS request to the subsystem (as appropriate to be a directional sensor that can be steered) to
undertake a surveillance task.

Table 7.125 - Attributes of IDLStruct surveillance_task_type

Attribute Notes
 system_track system_track_id_type [0..*] The system tracks to keep under surveillance. The

information regarding the system tracks is published
using another interface standard, such as the TACSIT
Data Exchange specification (TEX), the choice of which
may be system specific.
AttributeTag: Length = 100

Table 7.126 - Relations of IDLStruct surveillance_task_type
Connector Notes
Aggregation: area surveillance_area_type [0..*]

7.6.4 Sensor_Assessment

Parent Package: Sensor_Domain
This package provides a data model to describe the identification and classification assessment that a sensor can
make about its sensor tracks. The approach is to be agnostic to any specific assessment process or classification
regime. The model assumes a general process whereby matches (with confidence values) are made between data
relating to the sensor track and reference data. Matches can relate to previous matches building up a structured
hierarchy of assumptions leading to progressively higher-level identification and classification assessments. The
lowest level is to match measurement parameters with reference data; the next level is to match one or more of these
with modes; then modes with equipment and finally equipment with platforms.
Assessment Objectives (Equipment, Function, Platform and Activity) are passed from Subsystems to CMS by value
in the Sensor Assessment use cases. They contain an Objective Id key value which is used to refer to the assessment
values in Track Reporting use cases.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 135

«idlStruct»
Plot_Reporting::sensor_plot_type

+ position: polar_position_type
+ coordinate_specification: coordinate_specification_type
+ range_rate: speed_type [0..1]
+ range_qualification: range_qualification_type [0..1]
+ azimuth_qualification: azimuth_qualification_type
+ elevation_qualification: elevation_qualification_type [0..1]
+ range_rate_accuracy: speed_type [0..1]
+ simulation_status: boolean
+ strength: strength_type [0..1]
+ confidence: confidence_type [0..1]
+ time_of_plot: time_type
+ time_accuracy: duration_type [0..1]
+ additional_information: anonymous_blob_type
+ splash_spotting_area_id: splash_spotting_area_id_type [0..1]
+ jammer_indication: boolean

«key»
+ plot_id: plot_id_type

«idlStruct»
sensor_plot_mode_assessment_type

«idlStruct»
sensor_plot_equipment_assessment_type

«idlStruct»
sensor_plot_platform_assessment_type

match_type

«idlStruct»
parametric_mode_match_type

match_type

«idlStruct»
equipment_match_type

+ is_a_threat: boolean

match_type

«idlStruct»
platform_match_type

+mode 0..*

1

+best 0..1 +best 0..1 +best 0..1

+sensor_plot+sensor_plot

+platform 0..*

1

+sensor_plot

+equipment 0..*

1

Figure 7.67 Sensor_Assessment - plots (Class diagram)

The classes to support assessment of a sensor track at the equipment and platform level.

«idlStruct»
Track_Reporting::sensor_track_type

+ additional_information: anonymous_blob_type
+ covariance_matrix: covariance_matrix_type [0..1]
+ environment: environment_type [0..1]
+ initiation_mode: initiation_mode_type [0..1]
+ jammer_indication: boolean
+ max_range_limit: range_coordinate_type [0..1]
+ position: position_coordinate_type
+ position_accuracy: position_accuracy_coordinate_type [0..1]
+ position_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ position_coordinate_system: coordinate_specification_type
+ sensor_track_pre_identification: identity_type [0..1]
+ sensor_track_pre_recognition: recognition_type [0..1]
+ simulated: boolean
+ time_of_information: time_type
+ time_of_initiation: time_type [0..1]
+ track_phase: track_phase_type
+ velocity: velocity_coordinate_type
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_coordinate_system: coordinate_specification_type
+ track_quality: track_quality_type [0..1]
+ time_of_first_detection: time_type [0..1]
+ time_of_last_detection: time_type [0..1]
+ priority: track_priority_type [0..1]
+ amplitude: strength_type [0..1]

«key»
+ sensor_track_id: sensor_track_id_type

«idlStruct»
sensor_track_equipment_assessment_type

match_type

«idlStruct»
equipment_match_type

+ is_a_threat: boolean

match_link_type

«idlStruct»
equipment_parameter_match_type

match_type

«idlStruct»
parametric_mode_match_type

match_link_type

«idlStruct»
equipment_mode_match_type

match_type

«idlStruct»
platform_match_type

«idlStruct»
sensor_track_platform_assessment_type

match_link_type

«idlStruct»
platform_equipment_match_type

«idlStruct»
subplatform_match_type

+ confidence: confidence_type [0..1]

«idlStruct»
platform_type

+ platform_name: platform_name_type

«idlStruct»
platform_activity_type

+ name: platform_activity_name_type

«key»
+ id: assessment_objective_id_type

«idlStruct»
equipment_type

+ name: equipment_name_type

«key»
+ id: assessment_objective_id_type

«idlStruct»
observable_function_type

+ name: function_name_type

«key»
+ id: assessment_objective_id_type

match_link_type

«idlStruct»
reference_parameter_match_type

match_link_type

«idlStruct»
platform_mode_match_type

«idlStruct»
platform_class_type

+ name: platform_name_type
+ pre_identification: identity_type [0..1]
+ pre_recognition: short [0..1]
+ country_code: country_code_type

«key»
+ id: assessment_objective_id_type

«idlStruct»
reference_descriptor_type

+ name: descriptor_name_type
+ value: descriptor_value_type

+descriptor 0..*

1

+mode

+selected
0..1

+parameter_match0..*

1

+best_match

0..1

1

+equipment

+selected
0..1

+mode_match 0..*

1

+platform 0..*

+equipment0..*

+equipment 0..*

1

+equipment_match

0..* 1

+sensor_track
«key»

+equipment

1

+platform

+best_match
0..1

1

+function 0..1

+mode_match

0..*

1

+parameter

+subplatform

+match 0..*

1

+platform
0..*

1

1

+activity 0..1

+sensor_track
«key»

+parameter_match 0..*

1

+mode

+associated_sensor_track

1..*

Figure 7.68 Sensor_Assessment - platform (Class diagram)

The classes to support the assessment of a sensor track at the mode level

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 137

«idlStruct»
Track_Reporting::sensor_track_type

+ additional_information: anonymous_blob_type
+ covariance_matrix: covariance_matrix_type [0..1]
+ environment: environment_type [0..1]
+ initiation_mode: initiation_mode_type [0..1]
+ jammer_indication: boolean
+ max_range_limit: range_coordinate_type [0..1]
+ position: position_coordinate_type
+ position_accuracy: position_accuracy_coordinate_type [0..1]
+ position_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ position_coordinate_system: coordinate_specification_type
+ sensor_track_pre_identification: identity_type [0..1]
+ sensor_track_pre_recognition: recognition_type [0..1]
+ simulated: boolean
+ time_of_information: time_type
+ time_of_initiation: time_type [0..1]
+ track_phase: track_phase_type
+ velocity: velocity_coordinate_type
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_coordinate_system: coordinate_specification_type
+ track_quality: track_quality_type [0..1]
+ time_of_first_detection: time_type [0..1]
+ time_of_last_detection: time_type [0..1]
+ priority: track_priority_type [0..1]
+ amplitude: strength_type [0..1]

«key»
+ sensor_track_id: sensor_track_id_type

«idlStruct»
Supplementary_Measurement::
measurement_parameter_type

+ confidence: confidence_type [0..1]
+ continuous: boolean [0..1]
+ count: long [0..1]
+ status: measurement_parameter_status_type
+ time_of_information: time_type
+ intentional: boolean [0..1]

match_type

«idlStruct»
parametric_mode_match_type

«idlStruct»
Supplementary_Measurement::

measurement_parameter_kind_type

+ name: measurement_name_type
+ units: measurement_unit_type

«key»
+ id: measurement_kind_id_type

reference_type

«idlStruct»
reference_parameter_type

match_link_type

«idlStruct»
reference_parameter_match_type

reference_type

«idlStruct»
reference_mode_type

+ name: mode_name_type

«idlStruct»
reference_descriptor_type

+ name: descriptor_name_type
+ value: descriptor_value_type

«idlStruct»
sensor_track_mode_assessment_type

+selected 0..1

+parameter_match

0..*

1

+kind
«key»

+best 0..1

+parameter_kind

+descriptor 0..*

1

1

+reference_mode

+sensor_track
«key»

1

+reference_parameter

+mode0..*

1

Figure 7.69 Sensor_Assessment - modes (Class diagram)

Basic types to support sensor assessment

string

«idlTypedef»
mode_name_type

tags
Length = 32

long

«idlTypedef»
reference_id_type

string

«idlTypedef»
descriptor_name_type

tags
Length = 24

string

«idlTypedef»
descriptor_single_value_type

tags
Length = 32

«idlStruct»
match_type

+ confidence: confidence_type [0..1]

«key»
+ id: match_id_type

long

«idlTypedef»
match_id_type

string

«idlTypedef»
equipment_name_type

tags
Length = 32

string

«idlTypedef»
function_name_type

tags
Length = 20

string

«idlTypedef»
platform_name_type

tags
Length = 32

string

«idlTypedef»
platform_activity_name_type

tags
Length = 32

string

«idlTypedef»
country_code_type

tags
Length = 2

«idlStruct»
match_link_type

+ confidence: confidence_type [0..1]

«idlUnion»
descriptor_value_type

«idlCase»
+ value: descriptor_single_value_type
+ list: descriptor_list_type

«idlSequence»
descriptor_list_type

tags
Length = 10

«idlStruct»
reference_type

+ alert_id: long

«key»
+ id: reference_id_type

Figure 7.70 Sensor_Assessment - base types (Class diagram)

Classes to support the configuration of supported categories for sensor assessment

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 139

«idlStruct»
equipment_type

+ name: equipment_name_type

«key»
+ id: assessment_objective_id_type

«idlStruct»
observable_function_type

+ name: function_name_type

«key»
+ id: assessment_objective_id_type

«idlStruct»
platform_type

+ platform_name: platform_name_type

«idlStruct»
platform_activity_type

+ name: platform_activity_name_type

«key»
+ id: assessment_objective_id_type

reference_type

«idlStruct»
reference_mode_type

+ name: mode_name_type

«idlStruct»
reference_descriptor_type

+ name: descriptor_name_type
+ value: descriptor_value_type

«idlStruct»
platform_class_type

+ name: platform_name_type
+ pre_identification: identity_type [0..1]
+ pre_recognition: short [0..1]
+ country_code: country_code_type

«key»
+ id: assessment_objective_id_type

+descriptor 0..*

1

+platform

0..*

+equipment

0..*

+descriptor

0..* 1

Figure 7.71 Sensor_Assessment - objectives (Class diagram)

Classes to support the assessment of multi-path effects.

«idlStruct»
multipath_set_type

+ confidence: confidence_type

«key»
+ multipath_id: match_id_type

«idlStruct»
Track_Reporting::sensor_track_type

+ additional_information: anonymous_blob_type
+ covariance_matrix: covariance_matrix_type [0..1]
+ environment: environment_type [0..1]
+ initiation_mode: initiation_mode_type [0..1]
+ jammer_indication: boolean
+ max_range_limit: range_coordinate_type [0..1]
+ position: position_coordinate_type
+ position_accuracy: position_accuracy_coordinate_type [0..1]
+ position_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ position_coordinate_system: coordinate_specification_type
+ sensor_track_pre_identification: identity_type [0..1]
+ sensor_track_pre_recognition: recognition_type [0..1]
+ simulated: boolean
+ time_of_information: time_type
+ time_of_initiation: time_type [0..1]
+ track_phase: track_phase_type
+ velocity: velocity_coordinate_type
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_coordinate_system: coordinate_specification_type
+ track_quality: track_quality_type [0..1]
+ time_of_first_detection: time_type [0..1]
+ time_of_last_detection: time_type [0..1]
+ priority: track_priority_type [0..1]
+ amplitude: strength_type [0..1]

«key»
+ sensor_track_id: sensor_track_id_type

+master

0..1

+supporting_track

1..*

Figure 7.72 Sensor_Assessment - multipath (Class diagram)

7.6.4.1 country_code_type

Type: Class
Package: Sensor_Assessment
Two character (Alpha 2) country code as defined by ISO 3166-1.
An empty string represents undefined data.
ElementTag: Length = 2

7.6.4.2 descriptor_list_type

Type: Class
Package: Sensor_Assessment
list of descriptor values
ElementTag: Length = 10

7.6.4.3 descriptor_name_type

Type: Class
Package: Sensor_Assessment
Represents the name of a descriptor
ElementTag: Length = 24

7.6.4.4 descriptor_single_value_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 141

Type: Class
Package: Sensor_Assessment
Represents the value of a descriptor
ElementTag: Length = 32

7.6.4.5 descriptor_value_type

Type: IDLUnion
Package: Sensor_Assessment
The value of the descriptor - a single value or a list
ElementTag: switchType = long

Table 7.127 - Attributes of IDLUnion descriptor_value_type

Attribute Notes
«idlCase» value descriptor_single_value_type The option for a single value

«idlCase» list descriptor_list_type The option for a list of values

7.6.4.6 equipment_match_type

Type: IDLStruct
Package: Sensor_Assessment
The representation of a match between a sensor track and an item of equipment.

Table 7.128 - Attributes of IDLStruct equipment_match_type

Attribute Notes
 is_a_threat boolean Whether the equipment - function combination is

considered to be threatening

Table 7.129 - Relations of IDLStruct equipment_match_type
Connector Notes
Association: function observable_function_type
reference [0..1]

The function the equipment has been matched as
performing

Association: equipment equipment_type reference
Aggregation: mode_match
equipment_mode_match_type [0..*]

A match between an equipment an a mode identified in
the sensor track's parametric measurements.

Aggregation: parameter_match
equipment_parameter_match_type [0..*]

A match between an equipment an a measurement
parameter of the sensor track.

7.6.4.7 equipment_mode_match_type

Type: IDLStruct
Package: Sensor_Assessment
A match between an equipment match and a mode match. For a possible match to an equipment this represents the
linkage to a possible parametric mode that has been identified in the assessment of the sensor track.

Table 7.130 - Relations of IDLStruct equipment_mode_match_type
Connector Notes
Association: mode parametric_mode_match_type
reference

The mode from the sensor track's parametric
measurements being matched.

7.6.4.8 equipment_name_type

Type: Class
Package: Sensor_Assessment
The name of or label for an item of equipment
ElementTag: Length = 32

7.6.4.9 equipment_parameter_match_type

Type: IDLStruct
Package: Sensor_Assessment
A match between an equipment match and a measurement parameter match. For a possible match to an equipment
this represents the linkage to a possible reference parameter that has been identified in the assessment of the sensor
track.

Table 7.131 - Relations of IDLStruct equipment_parameter_match_type
Connector Notes
Association: parameter
reference_parameter_match_type reference

The parameter from the sensor tracks measurement
parameters being matched.

7.6.4.10 equipment_type

Type: IDLStruct
Package: Sensor_Assessment
The representation of an item of equipment that is relevant to assessment of parametric sensor measurements.

Table 7.132 - Attributes of IDLStruct equipment_type

Attribute Notes
 name equipment_name_type The name of the equipment

«key» id assessment_objective_id_type Unique identifier for the equipment (within the scope of
the sensor).

Table 7.133 - Relations of IDLStruct equipment_type
Connector Notes
Aggregation: descriptor reference_descriptor_type
[0..*]

Descriptors for the equipment providing supporting,
amplifying or qualifying information

Association: platform platform_class_type reference
[0..*]

The platforms known to contain the equipment

7.6.4.11 function_name_type

Type: Class
Package: Sensor_Assessment
The name of some functional behavior exhibited by an equipment
ElementTag: Length = 20

7.6.4.12 match_id_type

Type: Class
Package: Sensor_Assessment
The unique identifier for a match instance (within the scope of a sensor).

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 143

7.6.4.13 match_link_type

Type: Class
Package: Sensor_Assessment
The representation of a link between an assessment match and an existing lower level match.

Table 7.134 - Attributes of Class match_link_type

Attribute Notes
 confidence confidence_type [0..1] The confidence in the match between a one match and an

existing lower level match for a sensor track. This is the
result of a statistical hypothesis test.

7.6.4.14 match_type

Type: Class
Package: Sensor_Assessment
An abstract base class for matches between measurements and reference data in the assessment process

Table 7.135 - Attributes of Class match_type

Attribute Notes
 confidence confidence_type [0..1] The confidence in the match between an equipment and

a parametric measurement for a sensor track. This is
result of a statistical hypothesis test.

«key» id match_id_type The unique identifier (within the scope of a sensor) for
the match instance. Match links for higher-level
assessment objectives refer to lower-level matches using
this identifier.

7.6.4.15 measurement_element_match_type

Type: Class
Package: Sensor_Assessment

Table 7.136 - Relations of Class measurement_element_match_type
Connector Notes
Association: discrete_parameter_element
measurement_element_type reference [1..*]

The discrete parameter measurement value contained in
the element of the sequence. Each
measurement_element_type instance referred to by an
association instance belongs to a different
discrete_set_measurement_type instance

7.6.4.16 mode_name_type

Type: Class
Package: Sensor_Assessment
The name or label for a kind of mode that gives rise to a set of measurements.
ElementTag: Length = 32

7.6.4.17 multipath_set_type

Type: Class
Package: Sensor_Assessment
Represents a set of tracks that correspond to the signal which has been measured through the detection of discrete
signals that have arrived at the sensor by means of different paths through the environment.

Table 7.137 - Attributes of Class multipath_set_type

Attribute Notes
«key» multipath_id match_id_type The unique identifier for the multi-path set

 confidence confidence_type The probability that the set represents independently
routed detections of the same real world object.

Table 7.138 - Relations of Class multipath_set_type
Connector Notes
Association: supporting_track sensor_track_type
reference [1..*]

One of the tracks in the multipath set

Association: master sensor_track_type reference [0..1] The master track for the multipath set

7.6.4.18 observable_function_type

Type: IDLStruct
Package: Sensor_Assessment
The representation of a function observable by the sensor that can be exhibited by equipment detected by the sensor
and matched to sensor parametric measurements

Table 7.139 - Attributes of IDLStruct observable_function_type

Attribute Notes
 name function_name_type The name or label of the function

«key» id assessment_objective_id_type Unique identifier for the function (within the scope of
the sensor).

7.6.4.19 parametric_mode_match_type

Type: IDLStruct
Package: Sensor_Assessment
The identification of a mode within a sensor track's parametric data. A mode is a behavior of the real-world object
being tracked by the sensor (or a component of that object).

Table 7.140 - Relations of IDLStruct parametric_mode_match_type
Connector Notes
Association: reference_mode reference_mode_type
reference

The reference mode being matched

Aggregation: parameter_match
reference_parameter_match_type [0..*]

The reference parameters, which have been matched by
the measurement parameters in determining the mode
assessment.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 145

7.6.4.20 platform_activity_name_type

Type: Class
Package: Sensor_Assessment
The name of or label for an activity that can be undertaken by a platform.
ElementTag: Length = 32

7.6.4.21 platform_activity_type

Type: IDLStruct
Package: Sensor_Assessment
An activity that can be undertaken by a platform

Table 7.141 - Attributes of IDLStruct platform_activity_type

Attribute Notes
 name platform_activity_name_type The name of the platform's activity

«key» id assessment_objective_id_type Unique identifier for the activity (within the scope of the
sensor).

7.6.4.22 platform_class_type

Type: IDLStruct
Package: Sensor_Assessment
The class of an individual platform instance - i.e. a common design from which platform instances are
manufactured. This contains attributes that apply to all the platform instances of a class

Table 7.142 - Attributes of IDLStruct platform_class_type

Attribute Notes
 name platform_name_type The name of the platform (or class of platforms)

 pre_identification identity_type [0..1] The standard identification of the platform

 pre_recognition short [0..1] The discrete code representing the type of platform.

 country_code country_code_type The code representing the country of registration of the
platform

«key» id assessment_objective_id_type Unique identifier for the platform (within the scope of
the sensor).

Table 7.143 - Relations of IDLStruct platform_class_type
Connector Notes
Association: equipment equipment_type reference
[0..*]

The equipment known to be associated with a platform

7.6.4.23 platform_equipment_match_type

Type: IDLStruct
Package: Sensor_Assessment
Represents the matching link between a platform and a constituent piece of equipment

Table 7.144 - Relations of IDLStruct platform_equipment_match_type
Connector Notes
Association: equipment equipment_match_type
reference

7.6.4.24 platform_match_type

Type: IDLStruct
Package: Sensor_Assessment
The representation of a match between a sensor track and a platform.

Table 7.145 - Relations of IDLStruct platform_match_type
Connector Notes
Association: associated_sensor_track
sensor_track_type reference [1..*]

The set of sensor tracks that are all associated with the
same platform instance and hence real world object
under the hypothesis of this platform match.

Association: activity platform_activity_type reference
[0..1]

The activity identified as being undertaken by the
platform when matching the sensor track to it.

Association: platform platform_class_type reference The platform being matched
Aggregation: mode_match platform_mode_match_type
[0..*]

The observable equipment modes matched by the sensor
in determining the platform match.

Aggregation: match subplatform_match_type [0..*] A hierarchical match from a (super) platform to a
separable (sub) platform that it is potentially hosting or
carrying as one of its constituent parts.

Aggregation: equipment_match
platform_equipment_match_type [0..*]

A match between a platform and a constituent equipment

7.6.4.25 platform_mode_match_type

Type: IDLStruct
Package: Sensor_Assessment
Represents the matching link between a platform and a mode of a constituent piece of equipment

Table 7.146 - Relations of IDLStruct platform_mode_match_type
Connector Notes
Association: mode parametric_mode_match_type
reference

7.6.4.26 platform_name_type

Type: Class
Package: Sensor_Assessment
The name or label for a platform or class of platforms. A platform being a discrete independently acting object in the
real-world environment.
ElementTag: Length = 32

7.6.4.27 platform_type

Type: IDLStruct
Package: Sensor_Assessment
The representation of a platform that an assessment of sensor track data can match against.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 147

Table 7.147 - Attributes of IDLStruct platform_type

Attribute Notes
 platform_name platform_name_type The name of the platform (or class of platforms)

7.6.4.28 reference_descriptor_type

Type: Class
Package: Sensor_Assessment
The representation of descriptor for a configuration reference data instance. Reference descriptor instances qualify
the reference data instance (e.g. mode, equipment) and are a mechanism to specify aliases and other supporting
information.

Table 7.148 - Attributes of Class reference_descriptor_type

Attribute Notes
 name descriptor_name_type The name of the descriptor for the mode

 value descriptor_value_type The value of the descriptor for the mode

7.6.4.29 reference_id_type

Type: Class
Package: Sensor_Assessment
The unique identifier for a reference parameter, sequence or mode.

7.6.4.30 reference_mode_type

Type: Class
Package: Sensor_Assessment
This class represents a label for a reference mode for a sensor tracks measurement parameter. Such tactically
significant labels and their underlying data sets may be made available as an encyclopedic library.

Table 7.149 - Attributes of Class reference_mode_type

Attribute Notes
 name mode_name_type The name or label of the mode.

Table 7.150 - Relations of Class reference_mode_type
Connector Notes
Aggregation: descriptor reference_descriptor_type
[0..*]

The descriptors associated with the mode

7.6.4.31 reference_parameter_match_type

Type: Class
Package: Sensor_Assessment
The representation of a match to a reference parameter for a sensor track

Table 7.151 - Relations of Class reference_parameter_match_type
Connector Notes
Association: parameter_kind
measurement_parameter_kind_type reference

The kind of the measured parameters that support the
mode identification.

Association: reference_parameter
reference_parameter_type reference

The reference parameters matched by this mode
identification

7.6.4.32 reference_parameter_type

Type: Class
Package: Sensor_Assessment
This class represents a label for a reference value, set or distribution for a parameter. Such tactically significant
labels and their underlying data sets may be made available as an encyclopedic library.

7.6.4.33 reference_type

Type: IDLStruct
Package: Sensor_Assessment
A base class for reference data being compared with measurements in the assessment process.

Table 7.152 - Attributes of IDLStruct reference_type

Attribute Notes
«key» id reference_id_type The unique identifier for the reference data. This may

facilitate the retrieval of additional data outside the scope
of this specification.

 alert_id long The identifier for an alerting or warning process
associated with the matching of this reference data.

7.6.4.34 sensor_plot_equipment_assessment_type

Type: IDLStruct
Package: Sensor_Assessment
The sensor subsystem's assessment of the equipment potentially matched by the sensor plot's measurement
parameters.

Table 7.153 - Relations of IDLStruct sensor_plot_equipment_assessment_type
Connector Notes
Association: best equipment_match_type reference
[0..1]

The equipment assessed by the sensor as being the best
match for the sensor plot

Association: sensor_plot sensor_plot_type reference The sensor plot to which the assessment refers. The plot
instance must contain a plot_id attribute.

Aggregation: equipment equipment_match_type [0..*] The equipment assessed as potentially being represented
by the sensor plot

7.6.4.35 sensor_plot_mode_assessment_type

Type: IDLStruct
Package: Sensor_Assessment
The sensor subsystem's assessment of the modes potentially matched by the sensor plot's measurement parameters.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 149

Table 7.154 - Relations of IDLStruct sensor_plot_mode_assessment_type
Connector Notes
Association: sensor_plot sensor_plot_type reference The sensor plot to which the assessment refers. The plot

instance must contain a plot_id attribute.
Association: best parametric_mode_match_type
reference [0..1]

The mode assessed as most likely by the sensor.

Aggregation: mode parametric_mode_match_type [0..*] The modes assessed as candidates for the sensor plot.

7.6.4.36 sensor_plot_platform_assessment_type

Type: IDLStruct
Package: Sensor_Assessment
The sensor subsystem's assessment of the platforms potentially matched by the sensor plot's measurement
parameters.

Table 7.155 - Relations of IDLStruct sensor_plot_platform_assessment_type
Connector Notes
Association: sensor_plot sensor_plot_type reference The sensor plot to which the assessment refers. The plot

instance must contain a plot_id attribute.
Association: best platform_match_type reference [0..1] The platform assessed by the sensor as the best match for

the sensor plot.
Aggregation: platform platform_match_type [0..*] The platforms assessed as potentially being represented

by the sensor plot

7.6.4.37 sensor_track_equipment_assessment_type

Type: IDLStruct
Package: Sensor_Assessment
A representation of an assessment of the equipment that potentially correspond to a sensor track.

Table 7.156 - Relations of IDLStruct sensor_track_equipment_assessment_type
Connector Notes
Association: sensor_track sensor_track_type reference
Association: best_match equipment_match_type
reference [0..1]

The equipment assessed as most likely to correspond to
the sensor track

Association: selected equipment_match_type reference
[0..1]

The match selected as the authoritative assessment by
command

Association: equipment equipment_match_type
reference [0..*]

An item of equipment that has been assessed as a
possible match for the sensor track

7.6.4.38 sensor_track_mode_assessment_type

Type: Class
Package: Sensor_Assessment
The representation of the state of the assessment of a sensor track's possible identified modes.

Table 7.157 - Relations of Class sensor_track_mode_assessment_type
Connector Notes
Association: sensor_track sensor_track_type reference The sensor track to which the mode assessment relates
Association: selected parametric_mode_match_type
reference [0..1]

The match that has been authoritatively selected as the
mode relating to the sensor track.

Association: best parametric_mode_match_type
reference [0..1]

The sensor's best match

Aggregation: mode parametric_mode_match_type [0..*] The parametric modes matched in the assessment of the
sensor track's measurement parameters.

7.6.4.39 sensor_track_platform_assessment_type

Type: IDLStruct
Package: Sensor_Assessment
A representation of an assessment of the platforms that potentially correspond to a sensor track.

Table 7.158 - Relations of IDLStruct sensor_track_platform_assessment_type
Connector Notes
Association: sensor_track sensor_track_type reference The sensor track corresponding to the platform

assessment
Association: selected platform_match_type reference
[0..1]

The match selected as the authoritative assessment by
command

Association: best_match platform_match_type
reference [0..1]

The platform assessed as most likely to correspond to the
sensor track

Association: platform platform_match_type reference
[0..*]

A platform that has been assessed as a possible match for
the sensor track

7.6.4.40 subplatform_match_type

Type: IDLStruct
Package: Sensor_Assessment

Table 7.159 - Attributes of IDLStruct subplatform_match_type

Attribute Notes
 confidence confidence_type [0..1] The confidence in the match between a (super) platform

and a potential constituent sub-platform. This is result of
a statistical hypothesis test.

Table 7.160 - Relations of IDLStruct subplatform_match_type
Connector Notes
Association: subplatform platform_match_type
reference

A (sub) platform (potentially independently operating
real-world object) that is currently contained by the
platform. Examples include a helicopter that is currently
on a ship's landing deck.

7.6.5 Supplementary_Measurement

Parent Package: Sensor_Domain
This package provides a data model to describe supplementary parameters that a sensor can provide about a sensor
track. The approach is to be agnostic to any specific type of measurement that a sensor may make. Rather, classes
are provided that allow the sensor to describe the parameters that it supports and then to describe the measurements
that it has made of those parameters. Measurement can be treated as a single instance, a continuous range or a
discrete set; the quantity can be scalar, vector, discrete or qualitative; and confidence values can be supplied where
appropriate as can accuracy estimates.

Supplementary measurements as relating to a sensor track.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 151

«idlStruct»
Track_Reporting::sensor_track_type

+ additional_information: anonymous_blob_type
+ covariance_matrix: covariance_matrix_type [0..1]
+ environment: environment_type [0..1]
+ initiation_mode: initiation_mode_type [0..1]
+ jammer_indication: boolean
+ max_range_limit: range_coordinate_type [0..1]
+ position: position_coordinate_type
+ position_accuracy: position_accuracy_coordinate_type [0..1]
+ position_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ position_coordinate_system: coordinate_specification_type
+ sensor_track_pre_identification: identity_type [0..1]
+ sensor_track_pre_recognition: recognition_type [0..1]
+ simulated: boolean
+ time_of_information: time_type
+ time_of_initiation: time_type [0..1]
+ track_phase: track_phase_type
+ velocity: velocity_coordinate_type
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_coordinate_system: coordinate_specification_type
+ track_quality: track_quality_type [0..1]
+ time_of_first_detection: time_type [0..1]
+ time_of_last_detection: time_type [0..1]
+ priority: track_priority_type [0..1]
+ amplitude: strength_type [0..1]

«key»
+ sensor_track_id: sensor_track_id_type

«idlStruct»
parameter_distribution_type

«idlStruct»
measurement_parameter_type

+ confidence: confidence_type [0..1]
+ continuous: boolean [0..1]
+ count: long [0..1]
+ status: measurement_parameter_status_type
+ time_of_information: time_type
+ intentional: boolean [0..1]

«idlStruct»
discrete_set_measurement_type

+ repeating: boolean [0..1]
+ order: discrete_order_type
+ known_set: boolean [0..1]

«idlStruct»
measurement_element_type

+ count: short [0..1]
+ total_count: long [0..1]

«idlStruct»
measurement_parameter_kind_type

+ name: measurement_name_type
+ units: measurement_unit_type

«key»
+ id: measurement_kind_id_type

«idlStruct»
track_measurement_parameter_set_type

«key»
+ name: measurement_parameter_set_name_type

«idlStruct»
track_measurement_parameter_type

«idlStruct»
continuous_measurement_type

«idlStruct»
single_measurement_type

+ confidence: confidence_type [0..1]

«idlStruct»
sample_range_type

+ min_value: double
+ max_value: double

Supplementary_Measurement :
Supplementary_Measurement - continuous
distributions

Supplementary_Measurement :
Supplementary_Measurement - distributions

+distribution 0..1

1

+element

1..*1

+sample_range

0..1

1

+sensor_track
«key»

+parameter

1

+sensor_track
«key»

+kind
«key»

+measurement

1

+parameter 0..*

1

Figure 7.73 Supplementary_Measurement - tracks (Class diagram)

«idlStruct»
Plot_Reporting::sensor_plot_type

+ position: polar_position_type
+ coordinate_specification: coordinate_specification_type
+ range_rate: speed_type [0..1]
+ range_qualification: range_qualification_type [0..1]
+ azimuth_qualification: azimuth_qualification_type
+ elevation_qualification: elevation_qualification_type [0..1]
+ range_rate_accuracy: speed_type [0..1]
+ simulation_status: boolean
+ strength: strength_type [0..1]
+ confidence: confidence_type [0..1]
+ time_of_plot: time_type
+ time_accuracy: duration_type [0..1]
+ additional_information: anonymous_blob_type
+ splash_spotting_area_id: splash_spotting_area_id_type [0..1]
+ jammer_indication: boolean

«key»
+ plot_id: plot_id_type

«idlStruct»
plot_measurement_parameter_set_type

«key»
+ name: measurement_parameter_set_name_type

«idlStruct»
measurement_parameter_type

+ confidence: confidence_type [0..1]
+ continuous: boolean [0..1]
+ count: long [0..1]
+ status: measurement_parameter_status_type
+ time_of_information: time_type
+ intentional: boolean [0..1]

«idlStruct»
sample_range_type

+ min_value: double
+ max_value: double

«idlStruct»
parameter_distribution_type

«idlStruct»
measurement_parameter_kind_type

+ name: measurement_name_type
+ units: measurement_unit_type

«key»
+ id: measurement_kind_id_type

+distribution

0..1

1

+parameter 0..*

1

+plot
1

+sample_range 0..1

1

+kind
«key»

Figure 7.74 Supplementary_Measurement - plots (Class diagram)

Base types for supplementary measurements.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 153

«idlStruct»
scalar_measurement_type

+ accuracy: double [0..1]
+ value: double

«idlStruct»
vector_measurement_type

+ covariance: double [0..*]
+ value: double [1..*]

«idlStruct»
qualitative_measurement_type

+ descriptor: unsigned short

«idlStruct»
discrete_measurement_type

+ value: long

«idlStruct»
parameter_distribution_type

«idlStruct»
discrete_set_measurement_type

+ repeating: boolean [0..1]
+ order: discrete_order_type
+ known_set: boolean [0..1]

«idlStruct»
measurement_element_type

+ count: short [0..1]
+ total_count: long [0..1]

«idlStruct»
continuous_measurement_type

«idlStruct»
single_measurement_type

+ confidence: confidence_type [0..1]

Supplementary_Measurement :
Supplementary_Measurement -
continuous distributions

+measurement

1 +element 1..*

1

Figure 7.75 Supplementary_Measurement - distributions (Class diagram)

«idlStruct»
scalar_measurement_type

+ accuracy: double [0..1]
+ value: double

«idlStruct»
normal_measurement_type

«idlStruct»
sensor_defined_pdf_measurement_type

+ name: pdf_name_type

«idlStruct»
measurement_drift_type

+ kind: measurement_variation_kind_type
+ confidence: confidence_type [0..1]
+ fit: double [0..1]

«idlStruct»
distribution_parameter_measurement_type

+ name: distribution_parameter_name_type

«idlStruct»
multi_modal_measurement_type

«idlStruct»
distribution_mode_type

+ proportion: float

«idlStruct»
measurement_interval_type

+ uniform: boolean

«idlStruct»
pdf_measurement_type

«idlStruct»
modulation_type

+ kind: measurement_variation_kind_type

parameter_distribution_type

«idlStruct»
continuous_measurement_type

parameter_distribution_type

«idlStruct»
single_measurement_type

+ confidence: confidence_type [0..1]

+repetition_period

0..1

1

+modulation_frequency

0..1

1

+max_rate

0..1

1

+standard_deviation 0..1

1

+modulation_amplitude

0..1

1

+mean_rate

1

+max_value

1

+drift 0..1

1

+min_value

1

+min_rate 0..1

1

+standard_deviation

0..1

1

+distribution

1

+mode 1..*

1

+mean_value

1

+parameter

1

+mean

1

+mean_value

1

+value

1

Figure 7.76 Supplementary_Measurement - continuous distributions (Class diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 155

string

«idlTypedef»
measurement_name_type

tags
Length = 20

«idlEnum»
measurement_unit_type

«enum»
+ DIMENSIONLESS
+ DECIBEL
+ DECIBELS_PER_SECOND
+ HERTZ
+ HERTZ_PER_SECOND
+ METER
+ METERS_PER_SECOND
+ OTHER_UNIT
+ RADIAN
+ RADIANS_PER_SECOND
+ SECOND
+ SECONDS_PER_SECOND

float

«idlTypedef»
Common_Types::
confidence_type

tags
Range = 0 .. 1

«idlEnum»
discrete_order_type

«enum»
+ ORDER_INCREASING_BY_VALUE
+ ORDER_DECREASING_BY_VALUE
+ ORDER_OLDEST_FIRST
+ ORDER_MOST_RECENT_FIRST
+ ORDER_NOT_SPECIFIED

«idlEnum»
measurement_variation_kind_type

«enum»
+ DECREASING
+ DECREASING_ASYMPTOTICALLY
+ DECREASING_WITH_WRAP
+ DRIFT_NOT_SPECIFIED
+ INCREASING
+ INCREASING_ASYMPTOTICALLY
+ INCREASING_WITH_WRAP
+ LINEAR_ALTERNATING
+ RANDOM_VARIATION
+ SINE_WAVE_VARIATION
+ SQUARE_WAVE_VARIATION
+ UNKNOWN_VARIATION

long

«idlTypedef»
parameter_id_type

string

«idlTypedef»
sequence_name_type

tags
Length = 32

long

«idlTypedef»
measurement_kind_id_type

«idlEnum»
measurement_parameter_status_type

«enum»
+ CURRENT
+ MISSING
+ NOT_PRESENT
+ NO_PARAMETER_STATUS

string

«idlTypedef»
measurement_parameter_set_name_type

tags
Length = 32

string

«idlTypedef»
pdf_name_type

tags
Length = 20

string

«idlTypedef»
distribution_parameter_name_type

tags
Length = 20

Figure 7.77 Supplementary_Measurement - base types (Class diagram)

7.6.5.1 continuous_measurement_type

Type: IDLStruct
Package: Supplementary_Measurement
A continuous representation of a parameter measurement value.

7.6.5.2 discrete_measurement_type

Type: Class
Package: Supplementary_Measurement
This represents a parameter which takes discrete values.

Table 7.161 - Attributes of Class discrete_measurement_type

Attribute Notes
 value long The discrete value of the measurement

7.6.5.3 discrete_order_type

Type: IDLEnum
Package: Supplementary_Measurement
The ordering semantics of a set of measurements of a parameter.

Table 7.162 - Attributes of IDLEnum discrete_order_type

Attribute Notes
«enum» ORDER_INCREASING_BY_VALUE The measurements are ordered by increasing value such

that the smallest value is first and the largest value is
last.

«enum» ORDER_DECREASING_BY_VALUE The measurements are ordered by decreasing value such
that the smallest value is last and the largest value is
first.

«enum» ORDER_OLDEST_FIRST The measurements are ordered by age such that the value
received first is first and the latest value is last.

«enum» ORDER_MOST_RECENT_FIRST The measurements are ordered by age such that the value
received first is last and the latest value is first.

«enum» ORDER_NOT_SPECIFIED The ordering is not specified as it is not semantically
meaningful.

7.6.5.4 discrete_set_measurement_type

Type: IDLStruct
Package: Supplementary_Measurement
The values of the measurement parameter follow a discrete distribution

Table 7.163 - Attributes of IDLStruct discrete_set_measurement_type

Attribute Notes
 repeating boolean [0..1] Whether the elements within the discrete distribution

repeat (in the same order)

 order discrete_order_type The semantics of the ordering of the elements of the
discrete distribution

 known_set boolean [0..1] Whether the elements within the discrete distribution
correspond to a known set of measurement values

Table 7.164 - Relations of IDLStruct discrete_set_measurement_type
Connector Notes
Aggregation: element measurement_element_type [1..*] A discrete element within the discrete distribution

7.6.5.5 distribution_mode_type

Type: IDLStruct
Package: Supplementary_Measurement
The distribution of one mode independently contributing to a multi-modal distribution.

Table 7.165 - Attributes of IDLStruct distribution_mode_type

Attribute Notes
 proportion float The proportion that this mode contributes to the overall

distribution. The sum of all the modes equals 1.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 157

Table 7.166 - Relations of IDLStruct distribution_mode_type
Connector Notes
Aggregation: distribution pdf_measurement_type The distribution for this mode.

7.6.5.6 distribution_parameter_measurement_type

Type: IDLStruct
Package: Supplementary_Measurement
The measurement estimation of a (sensor defined) parameter describing a measurement parameter's distribution

Table 7.167 - Attributes of IDLStruct distribution_parameter_measurement_type

Attribute Notes
 name distribution_parameter_name_type The name of a parameter describing a distribution

Table 7.168 - Relations of IDLStruct distribution_parameter_measurement_type
Connector Notes
Aggregation: value single_measurement_type The measured value for a parameter describing a

distribution.

7.6.5.7 distribution_parameter_name_type

Type: Class
Package: Supplementary_Measurement
The name of a sensor defined probability density function.
ElementTag: Length = 20

7.6.5.8 measurement_drift_type

Type: IDLStruct
Package: Supplementary_Measurement
Describes how a measurement varies with time (on a time-scale longer than that described by modulation
measurements).

Table 7.169 - Attributes of IDLStruct measurement_drift_type

Attribute Notes
 kind measurement_variation_kind_type The qualitative measure of the kind of drift detected.

 confidence confidence_type [0..1] The sensor's confidence in identifying the kind of drift.

 fit double [0..1] Sample size independent measure of the closeness by
which the measurement sample fit the model of the
identified kind of drift.

Table 7.170 - Relations of IDLStruct measurement_drift_type
Connector Notes
Aggregation: max_rate scalar_measurement_type [0..1] The maximum rate of change of the measurement

detected (in the units of the measurement's kind per
second).

Aggregation: mean_rate scalar_measurement_type The mean rate of change of the measurement detected
(in the units of the measurement's kind per second).

Aggregation: repetition_period
scalar_measurement_type [0..1]

The time for the drift behavior to repeat itself.

Connector Notes
Aggregation: min_rate scalar_measurement_type [0..1] The minimum rate of change of the measurement

detected (in the units of the measurement's kind per
second).

7.6.5.9 measurement_element_type

Type: IDLStruct
Package: Supplementary_Measurement
The representation of an element within a discrete distribution

Table 7.171 - Attributes of IDLStruct measurement_element_type

Attribute Notes
 count short [0..1] The number of times the parameter measured has

corresponded to this element in a row. That is since
another element was measured.

 total_count long [0..1] The total number of times this element has been
measured with the discrete distribution for this parameter
value for the sensor track.

Table 7.172 - Relations of IDLStruct measurement_element_type
Connector Notes
Aggregation: measurement single_measurement_type The measurement of the element within the discrete

distribution.

7.6.5.10 measurement_interval_type

Type: IDLStruct
Package: Supplementary_Measurement
The representation of parameter measurement values that are distributed within a bounded interval

Table 7.173 - Attributes of IDLStruct measurement_interval_type

Attribute Notes
 uniform boolean The measurement values are uniformly distributed

within the bounded interval

Table 7.174 - Relations of IDLStruct measurement_interval_type
Connector Notes
Aggregation: drift measurement_drift_type [0..1] A qualitative description of how the parameter

measurement changes over time
Aggregation: min_value scalar_measurement_type The lower bound of the parameter measurements, which

may be extrapolated from actual sample measurements
received or processed.

Aggregation: mean_value scalar_measurement_type The mean value of the measurement within the interval.
Aggregation: max_value scalar_measurement_type The upper bound of the parameter measurements, which

may be extrapolated from actual sample measurements
received or processed.

Aggregation: standard_deviation
scalar_measurement_type [0..1]

The standard deviation of the measurement within the
interval.

7.6.5.11 measurement_kind_id_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 159

Type: Class
Package: Supplementary_Measurement
The unique identifier for describing kinds of measurements

7.6.5.12 measurement_name_type

Type: Class
Package: Supplementary_Measurement
The name or label for a kind of measurement
ElementTag: Length = 20

7.6.5.13 measurement_parameter_kind_type

Type: Class
Package: Supplementary_Measurement
Describes a kind of measurement parameters in terms of its meta-data (the information that applies to all
measurement_parameter_type instances)

Table 7.175 - Attributes of Class measurement_parameter_kind_type

Attribute Notes
 name measurement_name_type The name or label for the measurement.

«key» id measurement_kind_id_type The unique identifier for this kind of parameter.

 units measurement_unit_type The units of the measurement.

7.6.5.14 measurement_parameter_set_name_type

Type: IDLTypeDef
Package: Supplementary_Measurement
Names of sets of parameters for sensor tracks
ElementTag: Length = 32

7.6.5.15 measurement_parameter_status_type

Type: IDLEnum
Package: Supplementary_Measurement
The measurement status of the parameter

Table 7.176 - Attributes of IDLEnum measurement_parameter_status_type

Attribute Notes
«enum» CURRENT The parameter is currently subject to measurement for

this sensor track

«enum» MISSING The parameter temporarily cannot be measured for this
sensor track

Attribute Notes
«enum» NOT_PRESENT The parameter can no longer be measured for this sensor

track

«enum» NO_PARAMETER_STATUS No statement is available regarding the parameter's
measurement status for this sensor track

7.6.5.16 measurement_parameter_type

Type: IDLStruct
Package: Supplementary_Measurement
A measurement of a parameter by a sensor for a sensor track.

Table 7.177 - Attributes of IDLStruct measurement_parameter_type

Attribute Notes
 confidence confidence_type [0..1] The probability that the measurement corresponds to

measure labelled for the sensor track.

 continuous boolean [0..1] Indicates that the phenomenon being measured is in an
enduring steady state and hence that
complementary/orthogonal measurements of more
detailed time-varying characteristics/phenomena are not
present for this track.

 count long [0..1] The number of coherent discrete measurements of this
quantity.If the sensor detects a qualitative change then
the count is reset.

 status measurement_parameter_status_type The measurement status of the parameter

 time_of_information time_type The time at which the parameter was measured

 intentional boolean [0..1] Whether or not the phenomenon being measured by this
parameter is considered to be design feature of the
equipment causing the phenomenon.

Table 7.178 - Relations of IDLStruct measurement_parameter_type
Connector Notes
Association: kind measurement_parameter_kind_type
reference

The description of the parameter and the unique
identifier (within the scope of a sensor track) of a
measurement parameter instance.

Aggregation: distribution parameter_distribution_type
[0..1]

The representation of the statistical distribution of the
measurement parameter.

Aggregation: sample_range sample_range_type [0..1] The range in which samples contributing to the
measurement have occurred.

7.6.5.17 measurement_unit_type

Type: IDLEnum
Package: Supplementary_Measurement
The units used to quantify the measurement values and accuracies

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 161

Table 7.179 - Attributes of IDLEnum measurement_unit_type

Attribute Notes
«enum» DIMENSIONLESS There are no units as the quantity is a dimensionless

value

«enum» DECIBEL units are in decibels to measure amplitudes

«enum» DECIBELS_PER_SECOND units are in decibels per second to measure change in
amplitude with time.

«enum» HERTZ units are in Hertz to measure frequencies

«enum» HERTZ_PER_SECOND Units are in Hertz per second to measure change in
frequency with time

«enum» METER Units are meters

«enum» METERS_PER_SECOND Units are in meters per second to measure speeds

«enum» OTHER_UNIT Another unit is used to quantify the measurements and
accuracies

«enum» RADIAN Units are in radians to measure angles

«enum» RADIANS_PER_SECOND Units are in radians per seconds to measure the change in
angles with time

«enum» SECOND Units are in seconds to measure time or intervals.

«enum» SECONDS_PER_SECOND Units are in seconds per second to measure the change in
regular intervals over time.

7.6.5.18 measurement_variation_kind_type

Type: Class
Package: Supplementary_Measurement
A qualitative description of change in a parameter measurement value over time within a distribution. The
characteristic quantitative values of the variation pattern can be represented by other related measurement
parameters.

Table 7.180 - Attributes of Class measurement_variation_kind_type

Attribute Notes
«enum» DECREASING The value is decreasing monotonically; a minimum

value is not yet determined

«enum» DECREASING_ASYMPTOTICALLY The value is decreasing monotonically towards an
asymptotic minimum value

«enum» DECREASING_WITH_WRAP The value decreases monotonically until it reaches a
minimum value at which point it wraps or resets to a
maximum value.

Attribute Notes
«enum» DRIFT_NOT_SPECIFIED The drift behavior is not specified

«enum» INCREASING The is increasing monotonically; a maximum value is
not yet determined

«enum» INCREASING_ASYMPTOTICALLY The is increasing monotonically towards a maximum
asymptotic value.

«enum» INCREASING_WITH_WRAP The value increases monotonically until it reaches a
maximum value at which point it wraps or resets to a
minimum value.

«enum» LINEAR_ALTERNATING The value alternately increases monotonically until it
reaches a maximum value and decreases monotonically
until it reaches a minimum value.

«enum» RANDOM_VARIATION The change in value over time is considered to be
random

«enum» SINE_WAVE_VARIATION The value of the measurement parameter value is
sinusoidal over time.

«enum» SQUARE_WAVE_VARIATION The value of the measurement parameter alternates
discontinuously between minimum and maximum values
over time.

«enum» UNKNOWN_VARIATION The drift pattern is unknown to (not recognized by) the
sensor.

7.6.5.19 modulation_type

Type: IDLStruct
Package: Supplementary_Measurement
The representation of parameter measurement values that are distributed within a bounded interval

Table 7.181 - Attributes of IDLStruct modulation_type

Attribute Notes
 kind measurement_variation_kind_type The qualitative measure of the kind of modulation

detected.

Table 7.182 - Relations of IDLStruct modulation_type
Connector Notes
Aggregation: modulation_amplitude
scalar_measurement_type [0..1]

The amplitude of the modulation of the parameter being
measured.

Aggregation: mean_value scalar_measurement_type The mean value of the measurement that is subject to
modulation.

Aggregation: modulation_frequency
scalar_measurement_type [0..1]

The frequency of the modulation of the parameter being
measured.

7.6.5.20 multi_modal_measurement_type

Type: IDLStruct

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 163

Package: Supplementary_Measurement
The representation of parameter measurement values that have a multi-modal distribution

Table 7.183 - Relations of IDLStruct multi_modal_measurement_type
Connector Notes
Aggregation: mode distribution_mode_type [1..*] A mode within a multi-mode distribution for the

parameter measurement

7.6.5.21 normal_measurement_type

Type: IDLStruct
Package: Supplementary_Measurement
The representation of a measurement parameter that is normally distributed

7.6.5.22 parameter_distribution_type

Type: IDLStruct
Package: Supplementary_Measurement
A representation of the statistical distribution of a parameter.

7.6.5.23 parameter_id_type

Type: Class
Package: Supplementary_Measurement
The unique identifier for a measurement parameter.

7.6.5.24 pdf_measurement_type

Type: IDLStruct
Package: Supplementary_Measurement
The values of the parameter measurement are distributed according to a probability density function.

Table 7.184 - Relations of IDLStruct pdf_measurement_type
Connector Notes
Aggregation: standard_deviation
single_measurement_type [0..1]

The standard deviation of values from the probability
density function.

Aggregation: mean single_measurement_type The mean (expected) value of the probability density
function.

7.6.5.25 pdf_name_type

Type: Class
Package: Supplementary_Measurement
The name of a sensor defined probability density function.
ElementTag: Length = 20

7.6.5.26 plot_measurement_parameter_set_type

Type: IDLStruct
Package: Supplementary_Measurement

A set of the measurement parameters relating to a sensor track. Subsystems form measurement parameters into sets
for efficient information transfer to the CMS. A subsystem may chose the number and composition of these sets. A
subsystem may place all measurements into a single set per track, create multiple sets or create no sets and report
measurement parameters individually instead.
For a particular sensor track, measurement parameter names shall be unique across all measurement parameter set
instances - i.e. sets shall be non-overlapping.

Table 7.185 - Attributes of IDLStruct plot_measurement_parameter_set_type

Attribute Notes
«key» name measurement_parameter_set_name_type The name of the set of parameters

Table 7.186 - Relations of IDLStruct plot_measurement_parameter_set_type
Connector Notes
Aggregation: parameter measurement_parameter_type
[0..*]

The set of measurement parameters associated with the
plot

Aggregation: plot sensor_plot_type The plot associated with the set of parameter
measurements

7.6.5.27 poisson_measurement_type

Type: IDLStruct
Package: Supplementary_Measurement
The parameter measurement follows a Poisson distribution

7.6.5.28 qualitative_measurement_type

Type: Class
Package: Supplementary_Measurement
This describes a qualitative measure

Table 7.187 - Attributes of Class qualitative_measurement_type

Attribute Notes
 descriptor unsigned short The descriptor for the qualitative measurement

7.6.5.29 sample_range_type

Type: IDLStruct
Package: Supplementary_Measurement
The inclusive range of samples sensed that contribute to the measurement value

Table 7.188 - Attributes of IDLStruct sample_range_type

Attribute Notes
 min_value double The minimum value of a sample for the measurement

 max_value double The maximum value of a sample for the measurement

7.6.5.30 scalar_measurement_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 165

Type: Class
Package: Supplementary_Measurement
This class represents individual scalar measurements of parameter values.

Table 7.189 - Attributes of Class scalar_measurement_type

Attribute Notes
 accuracy double [0..1] The accuracy of the measurement value (one standard

deviation)

 value double The value of the parameter measurement

7.6.5.31 sensor_defined_pdf_measurement_type

Type: IDLStruct
Package: Supplementary_Measurement
The representation of a measurement of generalised probability density function whose definition can be instantiated
by a sensor for extensibility.

Table 7.190 - Attributes of IDLStruct sensor_defined_pdf_measurement_type

Attribute Notes
 name pdf_name_type The name of the probability density function

Table 7.191 - Relations of IDLStruct sensor_defined_pdf_measurement_type
Connector Notes
Aggregation: parameter
distribution_parameter_measurement_type

The list of additional parameters required to describe the
sensor defined probability density function

7.6.5.32 sequence_name_type

Type: Class
Package: Supplementary_Measurement
To name a sequence
ElementTag: Length = 32

7.6.5.33 single_measurement_type

Type: IDLStruct
Package: Supplementary_Measurement
A single discrete representation of a parameter measurement value.

Table 7.192 - Attributes of IDLStruct single_measurement_type

Attribute Notes
 confidence confidence_type [0..1] The confidence in the parameter measurement value; this

is the probability that the value and accuracy represent
the true distribution of the physical effect they are
labelled as measuring in the real world.

7.6.5.34 track_measurement_parameter_set_type

Type: IDLStruct
Package: Supplementary_Measurement
A set of the measurement parameters relating to a sensor track. Subsystems form measurement parameters into sets
for efficient information transfer to the CMS. A subsystem may chose the number and composition of these sets. A
subsystem may place all measurements into a single set per track, create multiple sets or create no sets and report
measurement parameters individually instead.
For a particular sensor track, measurement parameter names shall be unique across all measurement parameter set
instances - i.e. sets shall be non-overlapping.

Table 7.193 - Attributes of IDLStruct track_measurement_parameter_set_type

Attribute Notes
«key» name measurement_parameter_set_name_type The name of the set of parameters

Table 7.194 - Relations of IDLStruct track_measurement_parameter_set_type
Connector Notes
Association: sensor_track sensor_track_type reference
Aggregation: parameter measurement_parameter_type
[0..*]

The parameter measurement for the element

7.6.5.35 track_measurement_parameter_type

Type: IDLStruct
Package: Supplementary_Measurement
To represent parameter measurements for a sensor track reported individually

Table 7.195 - Relations of IDLStruct track_measurement_parameter_type
Connector Notes
Association: sensor_track sensor_track_type reference The sensor track to which the measurement parameter

relates.
Aggregation: parameter measurement_parameter_type The individual parameter

7.6.5.36 vector_measurement_type

Type: Class
Package: Supplementary_Measurement
This class represents individual vector measurements of parameter values.

Table 7.196 - Attributes of Class vector_measurement_type

Attribute Notes
 covariance double [0..*] The covariance between the elements of the vector value

in a 1-dimensional representation of the triangular
matrix. The i,j element (i >= j) of a covariance matrix for
a vector of size N is at position sum(k=0..j-1, N - k) + (i
- j). The covariance is zero length if not specified.
AttributeTag: Length = 21

 value double [1..*] The vector values
AttributeTag: Length = 6

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 167

7.6.6 Plot_Reporting

Parent Package: Sensor_Domain

«idlStruct»
sensor_plot_set_type

«idlStruct»
sensor_plot_type

+ position: polar_position_type
+ coordinate_specification: coordinate_specification_type
+ range_rate: speed_type [0..1]
+ range_qualification: range_qualification_type [0..1]
+ azimuth_qualification: azimuth_qualification_type
+ elevation_qualification: elevation_qualification_type [0..1]
+ range_rate_accuracy: speed_type [0..1]
+ simulation_status: boolean
+ strength: strength_type [0..1]
+ confidence: confidence_type [0..1]
+ time_of_plot: time_type
+ time_accuracy: duration_type [0..1]
+ additional_information: anonymous_blob_type
+ splash_spotting_area_id: splash_spotting_area_id_type [0..1]
+ jammer_indication: boolean

«key»
+ plot_id: plot_id_type

unsigned short

«idlTypedef»
Common_Types::

strength_type

unsigned long

«idlTypedef»
plot_id_type

«idlStruct»
plot_distribution_type

+ range_cell_count: short
+ azimuth_cell_count: short
+ elevation_cell_count: short

«idlStruct»
plot_summary_type

+ range_bounds: range_interval_type [0..1]
+ azimuth_bounds: azimuth_interval_type [0..1]
+ elevation_bounds: elevation_interval_type [0..1]
+ time_interval: absolute_duration_type

+cell_strength

1..*1

+plots

0..* 1

+distribution 0..1

1

+plots

0..*

Figure 7.78 Domain Model - Sensor Plot (Class diagram)

Figure 7.79 Domain Model - Supporting Types (Class diagram)

«idlStruct»
plot_filter_parameters_type

+ mode: filter_mode_type
+ area: area_2d_type [0..1]
+ height: height_interval_type [0..1]
+ is_inclusive: boolean
+ higher_values: boolean

«idlStruct»
plot_level_filter_attributes_type

+ strength: strength_type [0..1]
+ radial_velocity: speed_type [0..1]
+ spectral_spread: percentage_type [0..1]

«idlStruct»
track_level_filter_attributes_type

+ speed: speed_type [0..1]
+ priority: track_priority_type [0..1]
+ association_status: confidence_interval_type
+ external_protocol_name: String [0..*]
+ quality: quality_interval_type

plot distribution filter (to
distinguish from Kalman
Filters)

+plot_attributes

1

+track_attributes

1

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 169

Ollie Newman, 02/08/24
OARIS3-31
OARIS3-30

Figure 7.80 Domain Model - Filtering (Class diagram)

7.6.6.1 error_distribution_kind_type

Type: IDLEnum
Package: Plot_Reporting
The class models the kinds of error distribution supported for sensors accuracy.

Table 7.197 - Attributes of IDLEnum error_distribution_kind_type

Attribute Notes
«idlEnum» GAUSSIAN The error has a Gaussian distribution with zero mean and

stated standard deviation.

«idlEnum» UNIFORM The error has a uniform distribution with zero mean and
stated standard deviation.

«idlEnum» TRIANGULAR The error has a symmetric triangular distribution with
zero mean and stated standard deviation.

«idlEnum» UNDEFINED_DISTRIBUTION The distribution of the error is not defined

7.6.6.2 plot_distribution_type

Type: IDLStruct
Package: Plot_Reporting
This class encapsulates the strength of the plot over a grid of higher-resolution range cells. The spatial extent of the
distribution in range, azimuth and elevation is defined by the spread attribute of the relevant qualification attribute.
The sequence of strength values represents a 3D array over range (inner iteration), azimuth and elevation (outer
iteration). The cell at logical index i,j,k for range, azimuth and elevation respectively is at index:
i + j * range_cell_count + k * azimuth_cell_count * range_cell_count
The cell indexed zero represents the lowest values of range, azimuth or elevation and cells are equally spaced such
that the cell at logical index i,j,k for range, azimuth and elevation respectively corresponds to:
min_range + i * range_spread / range_cell_count < range < min_range + (i + 1) * range_spread / range_cell_count;
min_range = range - range_spread / 2
min_azimuth + i * azimuth_spread /azimuth_cell_count < azimuth < min_azimuth + (i + 1) * azimuth_spread /
azimuth_cell_count; min_azimuth = azimuth - azimuth_spread / 2
min_elevation + i * elevation_spread / elevation_cell_count < elevation < min_elevation + (i + 1) *
elevation_spread / elevation_cell_count; min_elevation = elevation - elevation_spread / 2
where range_spread = range_qualification.spread for the plot and range, azimuth and elevation are the mean
coordinates reported for the plot.
If no spread is defined for a plot in the range, azimuth or elevation qualification then it is only valid for there to be a
count of one defined for that dimension.

Table 7.198 - Attributes of IDLStruct plot_distribution_type

Attribute Notes
 range_cell_count short The number of cells in the range dimension. Only one

cell is valid if no range spread is defined.

 azimuth_cell_count short The number of cells in the azimuth dimension. Only one
cell is valid if no azimuth spread is defined.

Attribute Notes
 elevation_cell_count short The number of cells in the elevation dimension. Only

one cell is valid if no elevation spread is defined.

Table 7.199 - Relations of IDLStruct plot_distribution_type
Connector Notes
Aggregation: cell_strength strength_type [1..*] The strength of plot signal in a higher resolution spatial

cell

7.6.6.3 plot_filter_parameters_type

Type: IDLStruct
Package: Plot_Reporting
The criteria that must all be met for a plot to pass the filter. The filter attributes are applied with and-wise logic. For
or-wise logic define multiple filter objects.

Table 7.200 - Attributes of IDLStruct plot_filter_parameters_type

Attribute Notes
 mode filter_mode_type The mode in which the plots are filtered.

 area area_2d_type [0..1] An area which is optionally part of the filter.

 height height_interval_type [0..1] The height values that are optionally part of the filter.

 is_inclusive boolean If true, tracks that pass the filter are included in
transmission and/or reception dependent upon the mode
attribute. Otherwise, they are excluded.

 higher_values boolean When true, for real-valued criteria, plots meet the
criteria of the filter if the plot's value is equal to or higher
than the corresponding filter criteria value. Otherwise,
the criteria is met if equal to or lower.

Table 7.201 - Relations of IDLStruct plot_filter_parameters_type
Connector Notes
Aggregation: plot_attributes
plot_level_filter_attributes_type

The filter criteria for plots that relate to characteristics of
the plots themsleves.

Aggregation: track_attributes
track_level_filter_attributes_type

The filter criteria for plots that relate to the tracks to
which the plots contribute.

7.6.6.4 plot_id_type

Type: Class
Package: Plot_Reporting
Identifier for a plot, unique within a given sensor. Such plot ids should not be reused between sensor subsystem
restarts.

7.6.6.5 plot_level_filter_attributes_type

Type: IDLStruct
Package: Plot_Reporting
The plot-level criteria which the plot attributes must pass in order to pass the filter.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 171

Table 7.202 - Attributes of IDLStruct plot_level_filter_attributes_type

Attribute Notes
 strength strength_type [0..1] The plot strength criterion for the filter.

 radial_velocity speed_type [0..1] The plot radial velocity criterion for the filter.

 spectral_spread percentage_type [0..1] The plot spectral spread criterion for the filter.

7.6.6.6 plot_summary_type

Type: IDLStruct
Package: Plot_Reporting
The class provides a summary of plots found by the sensor in a region of the environment. Objects expected to be in
the region for which there is no corresponding plot have not been detected by sensor, therefore missed
measurements can be identified from this information.

Table 7.203 - Attributes of IDLStruct plot_summary_type

Attribute Notes
 range_bounds range_interval_type [0..1] The bounds of the region being summarized in range. If

omitted the region in unbounded in range.

 azimuth_bounds azimuth_interval_type [0..1] The bounds of the region being summarized in azimuth.
If omitted the region in unbounded in azimuth.

 elevation_bounds elevation_interval_type [0..1] The bounds of the region being summarized in elevation.
If omitted the region in unbounded in elevation.

 time_interval absolute_duration_type The period of time during which the sensor sensed the
region

Table 7.204 - Relations of IDLStruct plot_summary_type
Connector Notes
Association: plots sensor_plot_type reference [0..*] The set of plots found in the region

7.6.6.7 processing_capability_type

Type: IDLTypeDef
Package: Plot_Reporting
Encapsulates a category of sensor processing capability. The set of known categories of sensor processing is defined
on an implementation specific basis.
ElementTag: Length = 20

7.6.6.8 sensor_calibration_model_type

Type: IDLStruct
Package: Plot_Reporting
This class models the residual global sensor error estimate after calibration

Table 7.205 - Attributes of IDLStruct sensor_calibration_model_type

Attribute Notes
 azimuth_error azimuth_coordinate_type [0..1] Residual error in azimuth to one standard deviation

 elevation_error elevation_coordinate_type [0..1] Residual error in elevation to one standard deviation

 orientation_error_distribution
error_distribution_kind_type

The statistical distribution of the azimuth and elevation
errors.

 range_error range_coordinate_type [0..1] Residual error in range to one standard deviation

 range_rate_error range_rate_type [0..1] Residual error in range rate to one standard deviation

 signal_error_distribution
error_distribution_kind_type

The statistical distribution of the range and range rate
errors.

 stern_offset_error cartesian_coordinate_type [0..1] Residual error in offset of the sensor bore-sight origin on
the stern-bow axis to one standard deviation

 port_offset_error cartesian_coordinate_type [0..1] Residual error in offset of the sensor bore-sight origin on
the port-starboard axis to one standard deviation

 mast_offset_error cartesian_coordinate_type [0..1] Residual error in offset of the sensor bore-sight origin on
the mast-keel axis to one standard deviation

 offset_error_distribution error_distribution_kind_type The statistical distribution of the sensor origin offset
errors.

7.6.6.9 sensor_plot_set_type

Type: Class
Package: Plot_Reporting
Set of one or more sensor plots.

Table 7.206 - Relations of Class sensor_plot_set_type
Connector Notes
Aggregation: plots sensor_plot_type [0..*] The plots in the sensor plot set

7.6.6.10 sensor_plot_type

Type: Class
Package: Plot_Reporting
One plot from a sensor, a plot being a measurement estimate of an object's state in terms of location, motion and
optionally size at a particular moment in time.

Table 7.207 - Attributes of Class sensor_plot_type

Attribute Notes
«key» plot_id plot_id_type A unique identifier for the plot within the scope of the

sensor. This attribute is mandatory so that a sensor's plot
summary can refer to published plots.
AttributeTag: Issue =

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 173

Attribute Notes
 position polar_position_type The position of the plot in polar coordinates

(measurements assumed to be relative to a particular
sensor position). This is the mean, central position. Note
the qualification attributes, which give information on
accuracy and spread estimates.
AttributeTag: Issue =

 coordinate_specification
coordinate_specification_type

This attribute defines the characteristics of the
coordinate system used

 range_rate speed_type [0..1] The speed of the object detected along the line-of-sight
of the sensor; positive values for an object receding from
the sensor. Doppler processing can derive this value.

 range_qualification range_qualification_type [0..1] A measure of the spread and accuracy of the plot in
range. This is optional as not all sensors measure range.

 azimuth_qualification azimuth_qualification_type A measure of the spread and accuracy of the plot in
azimuth.

 elevation_qualification elevation_qualification_type
[0..1]

A measure of the spread and accuracy of the plot in
elevation. This is optional as not all sensors measure
elevation.

 range_rate_accuracy speed_type [0..1] A measure of the accuracy of the plot in range rate equal
to one standard deviation of uncertainty. This is optional
as not all sensors measure range rate. Note that for rigid
objects a continuous spread in the measurement of range
rate is not expected.
AttributeTag: Issue =

 simulation_status boolean If true, the plot is simulated. See also simulation support
services within this standard.

 strength strength_type [0..1] The signal strength of the plot. This attribute is optional
as not all sensors measure a quantity which has
equivalence to strength.

 confidence confidence_type [0..1] The probability that the plot represents a true object of
interest as opposed to clutter, noise or other false objects.
AttributeTag: Issue =

 time_of_plot time_type The time at which the plot was measured.

 time_accuracy duration_type [0..1] A measure of the accuracy of the time-stamping of the
plot's time_of_plot attribute. This is equal to one
standard deviation of uncertainty. This is optional as not
all sensors estimate time accuracy and for some
applications the uncertainty is negligible.
AttributeTag: Issue =

Attribute Notes
 additional_information anonymous_blob_type Potentially classified information about the plot, which

may be used in a system specific way to distribute
information about a plot to other subsystems. Further
information about this attribute, including layout
semantics is outside of the scope of this interface
standard.

 splash_spotting_area_id splash_spotting_area_id_type
[0..1]

Indicates which splash spotting area the plot refers to - if
any - hence it is optional.

 jammer_indication boolean Indication whether or not a plot is from a source of
jamming.

Table 7.208 - Relations of Class sensor_plot_type
Connector Notes
Aggregation: distribution plot_distribution_type [0..1] The optional spatial distribution of plot strength in

higher resolution. It is only valid to specify a distribution
when a spread had been specified in one of the plot's
qualification attributes.

7.6.6.11 sensor_precision_model_type

Type: IDLStruct
Package: Plot_Reporting
This class models the precision of the sensor - i.e. the smallest changes in measurement quantities that it is capable
of distinguishing.

Table 7.209 - Attributes of IDLStruct sensor_precision_model_type

Attribute Notes
 azimuth_precision azimuth_coordinate_type [0..1] The precision with which the sensor is capable of

measuring azimuth.

 elevation_precision elevation_coordinate_type [0..1] The precision with which the sensor is capable of
measuring elevation.

 range_precision range_coordinate_type [0..1] The precision with which the sensor is capable of
measuring range.

 range_rate_precision range_rate_type [0..1] The precision with which the sensor is capable of
measuring range rate.

 time_precision duration_type [0..1] The precision with which the sensor is capable of
measuring time.

 strength_precision strength_type [0..1] The precision with which the sensor is capable of
measuring signal strength.

 confidence_threshold confidence_type [0..1] The threshold probability for signal strength to identify a
plot
AttributeTag: Issue =

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 175

7.6.6.12 sensor_processing_model_type

Type: IDLStruct
Package: Plot_Reporting
This class encapsulates sensor processing parameters to promote the accurate statistical processing of its
measurements

Table 7.210 - Attributes of IDLStruct sensor_processing_model_type

Attribute Notes
 nominal_reporting_interval duration_type [0..1] The nominal period between successive measurements

on the same object for the sensor.
AttributeTag: Issue =

 nominal_internal_reporting_latency duration_type
[0..1]

The nominal period between the sensor's measurement
of an object and its reporting of the object to systems on
the same platform.
AttributeTag: Issue =

 nominal_external_reporting_latency duration_type
[0..1]

The nominal period between the sensor's measurement
of an object and its reporting of the object to a system on
any other connected platform.
AttributeTag: Issue =

 processing_capability processing_capability_type
[0..10]

The set of processing capabilities of which the sensor is
capable. These capabilities have quality implications for
the sensors plot measurement information.

7.6.6.13 sensor_stabilization_model_type

Type: IDLStruct
Package: Plot_Reporting
This class models the sensor error estimate due to sensor stabilization. These are errors that are in addition to any
calibration errors,

Table 7.211 - Attributes of IDLStruct sensor_stabilization_model_type

Attribute Notes
 azimuth_error azimuth_coordinate_type [0..1] Current error in azimuth due to stabilization to one

standard deviation

 elevation_error azimuth_coordinate_type [0..1] Current error in elevation due to stabilization to one
standard deviation

 orientation_error_distribution
error_distribution_kind_type

The statistical distribution of the azimuth and elevation
stabilization errors.

 temporal_error_correlation_interval duration_type
[0..1]

The time period, centered on the time of information,
such that the coefficient of correlation between
stabilization errors at either end is expected to be 0.5.
Measurements made within this interval are expected to
have stabilization errors that are strongly correlated with
each other.

Attribute Notes
 time_of_information time_type The time for which the stabilization error estimates are

valid.

7.6.6.14 track_level_filter_attributes_type

Type: IDLStruct
Package: Plot_Reporting
The track-level criteria that must be met for the plot to pass the filter. These are criteria applied with respect to any
track to which the plot is contributing.

Table 7.212 - Attributes of IDLStruct track_level_filter_attributes_type

Attribute Notes
 speed speed_type [0..1] A speed criterion. A track to which the plot contributes

must have an absolute speed greater than this.

 priority track_priority_type [0..1] A priority criterion. A track to which the plot contributes
must have a priority greater than or equal to this.

 association_status confidence_interval_type A criterion relating to whether the plot is contributing to
a track. The cumulative probability of being associated
to a track must be within the interval defined to pass the
filter. If no filtering is required then an interval including
all confidence values is defined.

 external_protocol_name String [0..*] Filter on the basis of the external protocols on which the
track is known.
AttributeTag: Issue =

 quality quality_interval_type A criterion relating to the quality of a track. A track to
which the plot contributes must have a track quality
within the interval defined to pass the filter. If no
filtering is required then an interval including all quality
values is defined.

7.6.6.15 sensor_orientation_type

Type: Class
Package: Plot_Reporting
This class describes the orientation of the sensor at a particular moment in time. This is useful for plot processing
functionality such as track extraction as it allows instantaneous coverage of the sensor to be estimated.

Table 7.213 - Attributes of Class sensor_orientation_type

Attribute Notes
 azimuth azimuth_coordinate_type The (azimuth) direction of the head of the sensor (e.g.

antenna, lens or hydro-phone)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 177

Attribute Notes
 elevation elevation_coordinate_type [0..1] The (elevation) direction of the head of the sensor (e.g.

antenna, lens or hydro-phone). If not supplied either
horizontal is assumed or a constant angle is defined
through the Manage_Subsystem_Parameters use case.

bank bank_coordinate_type [0..1] The (bank) direction of the head of the sensor (e.g.
antenna, lens or hydro-phone). If not supplied either no
bank is assumed or a constant angle is defined through
the Manage_Subsystem_Parameters use case.

 time_of_validity time_type The time for which is sensor orientation is valid

 sensor_coordinate_system
coordinate_orientation_type

This attribute defines the interpretation of azimuth and
elevation.
Valid enumerates are:
NORTH_HORIZONTAL,
NORTH_DOWN,
STERN_KEEL,
STERN_DECK_LEVEL

 origin position_coordinate_type [0..1] The position of the origin of the head of the sensor.

 azimuth_coverage azimuth_interval_type [0..1] The instantaneous extent of the coverage of the sensor in
azimuth with respect the origin of its head.

 elevation_coverage elevation_interval_type [0..1] The instantaneous extent of the coverage of the sensor in
elevation with respect the origin of its head. It is only
valid to set this when the elevation attribute is also
specified.

 origin_coordinate_specification
coordinate_specification_type [0..1]

This attribute defines the characteristics of the
coordinate system used to define the origin. It is only
valid to set this when origin attribute is also specified.

sensor_id short [0..1] For a multi sensor radar system, this attribute defines the
sensor_id for which this orientation applies.

7.6.7 Sensor_Control

Parent Package: Sensor_Domain
This package contains structs and type defs for managing frequency usage, transmission sectors, emission control,
and test target scenarios.

Ollie Newman, 02/08/24
OARIS3-30

Ollie Newman, 02/08/24
OARIS3-31

«idlStruct»
transmission_frequency_state_type

+ enabled: boolean
+ frequency_id: frequency_band_type

«idlEnum»
transmission_frequency_mode_type

+ AUTOMATIC_FREQUENCY_SELECTION
+ FIXED_FREQUENCY
+ FREQUENCY_DIVERSITY
+ RANDOM_AGILITY

«idlStruct»
selected_frequency_list_type

«idlStruct»
all_frequencies_state_type

«idlStruct»
reported_frequency_state_type

+ enable: boolean
+ frequency_id: frequency_band_type
+ available: boolean

unsigned short

«idlTypedef»
Common_Types::

frequency_band_type

An index indicating a particular
frequency channel or band. The actual
frequency is typically not of concern to
the command team. A band refers to
a discrete frequency or a range of
frequencies; such bands may overlap.

«idlEnum»
transmission_sector_power_level_type

+ FULL_RADIATE_POWER
+ INHIBIT
+ REDUCED_RADIATE_POWER

«idlStruct»
transmission_sector_type

+ power_level_transmission: transmission_sector_power_level_type
+ sector_enabled: boolean
+ sector_id: short
+ sector_reference: sector_reference_type
+ sector_shape: general_polar_volume_type
+ transmision_mode: transmission_frequency_mode_type

«idlStruct»
transmission_sector_set_type

«idlEnum»
sector_reference_type

+ NORTH_RELATED
+ SHIP_RELATED

«idlUnion»
Shape_Model::general_polar_volume_type

«idlCase»
+ sector: sector_type
+ polar_volume: polar_volume_type
+ truncated_sector: truncated_sector_type
+ truncated_polar_volume: truncated_polar_volume_type

«idlStruct»
control_emission_state_type

+ emission_activated: boolean

«idlStruct»
test_target_plus_scenario_type

+ test_target_id: unsigned short
+ test_target_parameter: anonymous_blob_type

«idlStruct»
test_target_scenario_independent_target_type

+ number_of_test_target: unsigned short
+ test_target_scenario_activated: boolean
+ test_target_scenario_id: test_target_scenario_id_type

«idlStruct»
test_target_scenario_common_parameter_target_type

+ initial_time: time_type
+ number_of_test_target: unsigned short
+ test_target_scenario_activated: boolean
+ test_target_scenario_id: test_target_scenario_id_type
+ volume_boundaries: general_polar_volume_type

«idlUnion»
test_target_scenario_type

«idlCase»
+ scenario_common_parameter_target: test_target_scenario_common_parameter_target_type
+ scenario_independent_target: test_target_scenario_independent_target_type

«idlStruct»
test_target_type

+ initial_time: time_type
+ position: wgs84_position_type
+ test_target_id: unsigned short
+ test_target_parameter: anonymous_blob_type

long

«idlTypedef»
test_target_scenario_id_type

«idlStruct»
test_target_scenario_state_type

+ test_target_scenario_activated: boolean
+ test_target_scenario_id: test_target_scenario_id_type

+targets 0..*

1

+sector 0..*

1

+selected_frequencies

0..*1

+targets_parameter

1

+reported_frequencies

0..*1

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 179

Figure 7.81 Domain Model (Class diagram)

7.6.7.1 selected_frequency_list_type

Type: IDLStruct
Package: Sensor_Control
This struct contains zero to many frequencies which may be enabled/disabled by the CMS

Table 7.214 - Relations of IDLStruct selected_frequency_list_type
Connector Notes
Aggregation: selected_frequencies
transmission_frequency_state_type [0..*]

7.6.7.2 transmission_frequency_state_type

Type: Class
Package: Sensor_Control
State of frequency transmission

Table 7.215 - Attributes of Class transmission_frequency_state_type

Attribute Notes
 enabled boolean Indicates whether the CMS is enabling or disabling a

transmission frequency.

 frequency_id frequency_band_type A unique identifier for the transmission frequency.

7.6.7.3 all_frequencies_state_type

Type: Class
Package: Sensor_Control
This struct contains zero to many "available" or "not available" frequencies which may be enabled/disabled by the
CMS

Table 7.216 - Relations of Class all_frequencies_state_type
Connector Notes
Aggregation: reported_frequencies
reported_frequency_state_type [0..*]

7.6.7.4 reported_frequency_state_type

Type: IDLStruct
Package: Sensor_Control
reported frequency state

Table 7.217 - Attributes of IDLStruct reported_frequency_state_type

Attribute Notes
 enable boolean Indicates whether the CMS is enabling or disabling a

transmission frequency.

 frequency_id frequency_band_type A unique identifier for the transmission frequency.

Attribute Notes
 available boolean Indicates whether a transmission frequency is available

or not available.

7.6.7.5 transmission_frequency_mode_type

Type: Class
Package: Sensor_Control
The mode

Table 7.218 - Attributes of Class transmission_frequency_mode_type

Attribute Notes
 AUTOMATIC_FREQUENCY_SELECTION The sensor always uses the same pre-selected frequency

 FIXED_FREQUENCY At each transmission sensor selects the frequency to be
used inside a pre-selected subset of frequencies

 FREQUENCY_DIVERSITY At each transmission sensor selects the frequency to be
used among the least jammed frequencies

 RANDOM_AGILITY At each transmission sensor random selects the
frequency to be used.

7.6.7.6 transmission_sector_set_type

Type: IDLStruct
Package: Sensor_Control
This struct contains zero to many transmission sectors which must be set/reset by the CMS.

Table 7.219 - Relations of IDLStruct transmission_sector_set_type
Connector Notes
Aggregation: sector transmission_sector_type [0..*]

7.6.7.7 transmission_sector_type

Type: Class
Package: Sensor_Control
Sector for transmission

Table 7.220 - Attributes of Class transmission_sector_type

Attribute Notes
 power_level_transmission
transmission_sector_power_level_type

Indicates the transmission power level of the sector.

 sector_enabled boolean Indicates whether the CMS is enabling or disabling a
transmission sector.

 sector_id short A unique identifier for the transmission sector.

 sector_reference sector_reference_type This indicates the reference system of the transmission
sector.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 181

Attribute Notes
 sector_shape general_polar_volume_type Note that the azimuth dimension of the sector shape

(polar volume) applies to the horizon plane (i.e.
elevation=0)

 transmision_mode
transmission_frequency_mode_type

Indicates the transmission mode used within the sector

7.6.7.8 transmission_sector_power_level_type

Type: Class
Package: Sensor_Control
This enumeration allows specification of a CMS commanded power level for a sector.

Table 7.221 - Attributes of Class transmission_sector_power_level_type

Attribute Notes
 FULL_RADIATE_POWER radiate with full power

 INHIBIT inhibit transmission

 REDUCED_RADIATE_POWER radiate with reduced power

7.6.7.9 sector_reference_type

Type: IDLEnum
Package: Sensor_Control
This enumeration specifies the sectors reference systems.

Table 7.222 - Attributes of IDLEnum sector_reference_type

Attribute Notes
 NORTH_RELATED Indicates values referenced with respect to true North

 SHIP_RELATED Indicates values referenced with respect to ship's heading

7.6.7.10 control_emission_state_type

Type: Class
Package: Sensor_Control
Emission state

Table 7.223 - Attributes of Class control_emission_state_type

Attribute Notes
 emission_activated boolean Indicates whether the CMS is enabling or disabling the

sensor emission state.

7.6.7.11 test_target_scenario_type

Type: IDLUnion

Package: Sensor_Control
Scenario for test targets

Table 7.224 - Attributes of IDLUnion test_target_scenario_type

Attribute Notes
«idlCase» scenario_common_parameter_target
test_target_scenario_common_parameter_target_type

This case is used when a test target scenario is
constituted by a number of targets distributed in a
defined area/volume and having the same common
parameters.

«idlCase» scenario_independent_target
test_target_scenario_independent_target_type

This case is used when a test target scenario is
constituted by a number of independent targets.

7.6.7.12 test_target_scenario_independent_target_type

Type: IDLStruct
Package: Sensor_Control
The scenario is defined by a number of independent targets, with each target having own characteristic parameters.

Table 7.225 - Attributes of IDLStruct test_target_scenario_independent_target_type

Attribute Notes
 number_of_test_target unsigned short This is the number of the test targets composing the

scenario.

 test_target_scenario_activated boolean Indicates whether the CMS is enabling or disabling the
generation of a test target scenario.

 test_target_scenario_id test_target_scenario_id_type A unique identifier for the test target scenario.

Table 7.226 - Relations of IDLStruct test_target_scenario_independent_target_type
Connector Notes
Aggregation: targets test_target_type [0..*]

7.6.7.13 test_target_scenario_common_parameter_target_type

Type: IDLStruct
Package: Sensor_Control
The scenario is defined by a number of targets distributed in a defined area/volume and having the same common
parameters.

Table 7.227 - Attributes of IDLStruct test_target_scenario_common_parameter_target_type

Attribute Notes
 initial_time time_type This indicates the common initial time of the targets.

 number_of_test_target unsigned short This is the number of the test targets composing the
scenario.

 test_target_scenario_activated boolean Indicates whether the CMS is enabling or disabling the
generation of a test target scenario.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 183

Attribute Notes
 test_target_scenario_id test_target_scenario_id_type A unique identifier for the test target scenario.

 volume_boundaries general_polar_volume_type This indicates the area/volume boundaries where the test
targets are distributed.

Table 7.228 - Relations of IDLStruct test_target_scenario_common_parameter_target_type
Connector Notes
Aggregation: targets_parameter
test_target_plus_scenario_type

7.6.7.14 test_target_type

Type: IDLStruct
Package: Sensor_Control
Encapsulation of a test target (simulated target to enable technical testing of a sensor)

Table 7.229 - Attributes of IDLStruct test_target_type

Attribute Notes
 initial_time time_type This attribute defines the relevant initial time.

 position wgs84_position_type This attribute defines the initial target position.

 test_target_id unsigned short A identifier for the test targets.

 test_target_parameter anonymous_blob_type This attribute defines:
- the target motion type, with the relevant motion
parameters
- the target generation parameters, such as injection type
(internal / external), attenuation law (constant / variable-
with-range), doppler type (0 / PRF/2).

7.6.7.15 test_target_plus_scenario_type

Type: Class
Package: Sensor_Control
Test target with its scenario

Table 7.230 - Attributes of Class test_target_plus_scenario_type

Attribute Notes
 test_target_id unsigned short A identifier for the test targets.

 test_target_parameter anonymous_blob_type This attribute defines:
- the target motion type, with the relevant motion
parameters
- the target generation parameters, such as injection type
(internal / external), attenuation law (constant / variable-
with-range), doppler type (0 / PRF/2).

7.6.7.16 test_target_scenario_id_type

Type: IDLTypeDef
Package: Sensor_Control
This typedef is used to identify a specific test target scenario.

7.6.7.17 test_target_scenario_state_type

Type: Class
Package: Sensor_Control
scenario state

Table 7.231 - Attributes of Class test_target_scenario_state_type

Attribute Notes
 test_target_scenario_activated boolean Indicates whether the CMS is enabling or disabling the

execution of the test target scenario.

 test_target_scenario_id test_target_scenario_id_type A unique identifier for the test target scenario.

7.6.8 Sensor_Performance

Parent Package: Sensor_Domain

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 185

float

«idlTypedef»
relative_performance_type

«idlStruct»
interference_report_type

«idlEnum»
interferer_kind

+ ACTIVE_NOISE
+ CLUTTER
+ SELF_SCREENING_JAMMER
+ STANDOFF_JAMMER
+ STROBE
+ OTHER_TYPE
+ NO_STATEMENT

«idlStruct»
interferer_type

+ timestamp: time_type
+ magnitude: jamming_magnitude_type [0..1]
+ affected_bands: frequency_band_type [1..*]
+ position: position_coordinate_type [0..1]
+ kind: interferer_kind
+ affected_volume: general_polar_volume_type [0..1]
+ position_coordinate_specification: coordinate_specification_type

unsigned short

«idlTypedef»
jamming_magnitude_type

«idlStruct»
perfomance_bin_type

+ start_range: range_coordinate_type
+ end_range: range_coordinate_type
+ relative_value: relative_performance_type [0..1]
+ absolute_value: absolute_performance_type [0..1]

«idlStruct»
performance_assessment_report_type

+ time_of_report: time_type

«idlStruct»
performance_assessment_parameters_type

+ azimuth_bin_count: unsigned short
+ range_bin_count: unsigned short
+ elevation_bin_count: unsigned short
+ start_azimuth: azimuth_coordinate_type [0..1]
+ end_azimuth: azimuth_coordinate_type [0..1]
+ start_elevation: elevation_coordinate_type [0..1]
+ end_elevation: elevation_coordinate_type [0..1]
+ min_range: range_coordinate_type [0..1]
+ max_range: range_coordinate_type [0..1]
+ frequency_bands: frequency_band_type [0..*]
+ applicable_mode: operational_mode_type
+ coordinate_orientation: coordinate_orientation_type

«idlStruct»
performance_beam_type

+ start_elevation: elevation_coordinate_type
+ end_elevation: elevation_coordinate_type

«idlStruct»
performance_sector_type

+ start_azimuth: azimuth_coordinate_type
+ end_azimuth: azimuth_coordinate_type

«idlStruct»
performance_band_type

+ frequency_band: frequency_band_type [0..1]

float

«idlTypedef»
absolute_performance_type

+bin

1..*1

+band 1..*

1

+assessment_dimensions

1 1

+interferers

1..* 1

+sector 1..*

1

+beam

1..*

1

Figure 7.82 Domain Model (Class diagram)

7.6.8.1 absolute_performance_type

Type: IDLTypeDef
Package: Sensor_Performance
Defined as a signal excess in dB above noise floor for a nominal ideal target with 1m2 tangential cross-section.

7.6.8.2 interference_report_type

Type: Class
Package: Sensor_Performance
Set of interferer objects in a report.

Table 7.232 - Relations of Class interference_report_type
Connector Notes
Aggregation: interferers interferer_type [1..*] The interference sources, which are described by the

report.

7.6.8.3 interferer_kind

Type: Class
Package: Sensor_Performance
Enumeration of the types of interferers that are known about.

Table 7.233 - Attributes of Class interferer_kind

Attribute Notes
 ACTIVE_NOISE Interference from active noise.

 CLUTTER Interference from clutter.

 SELF_SCREENING_JAMMER Interference from a jammer, which is self screening.

 STANDOFF_JAMMER Interference from a stand-off jammer

 STROBE Interference from a strobe jammer.

 OTHER_TYPE The interference source is of a different type to the other
declared interference kinds

 NO_STATEMENT The interference source could not be classified by the
sensor subsystem.

7.6.8.4 interferer_type

Type: Class
Package: Sensor_Performance
A single source of interference.

Table 7.234 - Attributes of Class interferer_type

Attribute Notes
 timestamp time_type Time to which the performance report applies.

 magnitude jamming_magnitude_type [0..1] The Effective Radiated Power (ERP) of the source of
interference. This is an optional attribute, which may not
all sensors may be able to calculate.

 affected_bands frequency_band_type [1..*] A list of frequency bands which are effected by the
source of interference.

 position position_coordinate_type [0..1] The source position of the interference. This is an
optional attribute that not all sensors may be able to
calculate.

 kind interferer_kind A classification of the interference source.

 affected_volume general_polar_volume_type [0..1] The volume in space, which the interference source is
affecting. This is an optional attribute, which may not all
sensors may be able to calculate.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 187

Attribute Notes
 position_coordinate_specification
coordinate_specification_type

Specifies the coordinate system used to define the
interferer.

7.6.8.5 jamming_magnitude_type

Type: Class
Package: Sensor_Performance
Target strength (Effective Radiated Power - ERP) of a jammer. The precise semantics of this type are sensor
subsystem specific, but a typical interpretation is as a signal to noise ratio in dB.

7.6.8.6 perfomance_bin_type

Type: IDLStruct
Package: Sensor_Performance
Value of performance in a volume of space. This is given as a signal excess in dB above noise floor for a nominal
0dB target strength. For a current performance report, this noise floor shall include clutter and jamming. These are
not included in a nominal performance report.

Table 7.235 - Attributes of IDLStruct perfomance_bin_type

Attribute Notes
 start_range range_coordinate_type The start of the bin in range.

 end_range range_coordinate_type The end of the bin in range.

 relative_value relative_performance_type [0..1] The assessed relative level of performance (comparable
with other instances of the sensor or the same sensor in a
different context).
If no value present, there is no performance data
available for this bin.

 absolute_value absolute_performance_type [0..1] The assessed absolute level of performance (comparable
with other sensors).
If no value present, there is no performance data
available for this bin.

7.6.8.7 performance_assessment_parameters_type

Type: Class
Package: Sensor_Performance
A performance assessment request consists of an overall volume of interest and a specification of a number of 'bins'
into which that volume is to be sub-divided. In response the sensor assess performance for each 'bin'.
The coordinate origin for the request is the SENSOR_REFERENCE_POINT as defined in coordinate_origin_type.

Table 7.236 - Attributes of Class performance_assessment_parameters_type

Attribute Notes
 azimuth_bin_count unsigned short Number of azimuth bins that the CMS would like in the

performance report. The subsystem should try to honour
this request but does not have to.

Attribute Notes
 range_bin_count unsigned short Number of range bins that the CMS would like in the

report. The subsystem should try to honour this request
but does not have to.

 elevation_bin_count unsigned short The number of elevation bins that the CMS would like in
the report. The subsystem should try to honour this
request but does not have to.

 start_azimuth azimuth_coordinate_type [0..1] Defines the start of the arc of azimuth (positive
orientation) of the volume in which the sensor's
performance is to be assessed.

 end_azimuth azimuth_coordinate_type [0..1] Defines the end of the arc of azimuth (positive
orientation) of the volume in which the sensor's
performance is to be assessed.

 start_elevation elevation_coordinate_type [0..1] Defines the start of the arc of elevation (positive
orientation) of the volume in which the sensor's
performance is to be assessed.

 end_elevation elevation_coordinate_type [0..1] Defines the end of the arc of elevation (positive
orientation) of the volume in which the sensor's
performance is to be assessed.

 min_range range_coordinate_type [0..1] Defines the minimum range of the volume in which the
sensor's performance is to be assessed.

 max_range range_coordinate_type [0..1] Defines the maximum range of the volume in which the
sensor's performance is to be assessed.

 frequency_bands frequency_band_type [0..*] The set of frequency bands to assess the performance
for. Where no bands are specified the performance is
assessed for the sensor in general in the specified
operational mode.

 applicable_mode operational_mode_type The performance assessment is to be in the context of
this
operational mode of the sensor subsystem.

 coordinate_orientation coordinate_orientation_type The orientation of the polar coordinates used in this
class. Note that the origin is always the sensor reference
point and that the coordinate system is always polar.

7.6.8.8 performance_assessment_report_type

Type: Class
Package: Sensor_Performance
Contains the results of a performance assessment.

Table 7.237 - Attributes of Class performance_assessment_report_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 189

Attribute Notes
 time_of_report time_type The time of validity of the performance assessment.

Table 7.238 - Relations of Class performance_assessment_report_type
Connector Notes
Aggregation: band performance_band_type [1..*] The performance assessment for the band (or the sensor

in general)
Aggregation: assessment_dimensions
performance_assessment_parameters_type [1]

The actual dimensions of the assessment that is
performed are reported with the result.

7.6.8.9 performance_band_type

Type: IDLStruct
Package: Sensor_Performance
The performance reported in a particular band (or in general)

Table 7.239 - Attributes of IDLStruct performance_band_type

Attribute Notes
 frequency_band frequency_band_type [0..1] The specific band to which the contained performance

assessments refers

Table 7.240 - Relations of IDLStruct performance_band_type
Connector Notes
Aggregation: sector performance_sector_type [1..*] The list of sectors in the performance assessment

7.6.8.10 performance_beam_type

Type: IDLStruct
Package: Sensor_Performance
Set of performance values for a line of points in space. Each value applies to a volume whose boundaries may be
inferred from the numbers of bins and the min and max values in the report.

Table 7.241 - Attributes of IDLStruct performance_beam_type

Attribute Notes
 start_elevation elevation_coordinate_type The start of the beam in elevation (positive orientation).

 end_elevation elevation_coordinate_type The end of the beam in elevation (positive orientation).

Table 7.242 - Relations of IDLStruct performance_beam_type
Connector Notes
Aggregation: bin perfomance_bin_type [1..*] The list of 'bins' in a beam of the performance

assessment

7.6.8.11 performance_sector_type

Type: Class
Package: Sensor_Performance
A set of performance values for a sector of azimuth [start_azimuth..end_azimuth].

Table 7.243 - Attributes of Class performance_sector_type

Attribute Notes
 start_azimuth azimuth_coordinate_type The start of the sector of azimuth (positive orientation).

 end_azimuth azimuth_coordinate_type The end of the sector of azimuth (positive orientation).

Table 7.244 - Relations of Class performance_sector_type
Connector Notes
Aggregation: beam performance_beam_type [1..*] The list of beams in the sector of the performance report

7.6.8.12 relative_performance_type

Type: Class
Package: Sensor_Performance
Defined as a signal excess in dB above noise floor for a nominal 0dB target strength, when assessing nominal
performance or for the jammer when providing jammer assessment.

7.6.9 Track_Reporting

Parent Package: Sensor_Domain
This service provides facilities to report different types of sensor tracks.

Figure 7.83 Track Reporting - Sensor Track (Class diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 191

unsigned short

«idlTypedef»
recognition_type

«idlEnum»
environment_type

«idlEnum»
+ AIR
+ LAND
+ SURFACE
+ SUBSURFACE
+ SPACE

unsigned long

«idlTypedef»
sensor_track_id_type

«idlEnum»
track_phase_type

«idlEnum»
+ DEAD_RECKONED
+ LOST
+ TRACKED
+ INACTIVE

«idlEnum»
initiation_mode_type

«idlEnum»
+ AUTOMATIC
+ EXTERNAL_REQUEST

«idlStruct»
Coordinates_and_Positions::
full_covariance_matrix_type

+ xx_variance: float
+ xy_variance: float
+ xz_variance: float
+ xvx_variance: float
+ xvy_variance: float
+ xvz_variance: float
+ yy_variance: float
+ yz_variance: float
+ yvx_variance: float
+ yvy_variance: float
+ yvz_variance: float
+ zz_variance: float
+ zvx_variance: float
+ zvy_variance: float
+ zvz_variance: float
+ vxvx_variance: float
+ vxvy_variance: float
+ vxvz_variance: float
+ vyvy_variance: float
+ vyvz_variance: float
+ vzvz_variance: float

«idlStruct»
Coordinates_and_Positions::

diagonal_covariance_matrix_type

+ xx_variance: float
+ yy_variance: float
+ zz_variance: float
+ vxvx_variance: float
+ vyvy_variance: float
+ vzvz_variance: float

«idlUnion»
Coordinates_and_Positions::covariance_matrix_type

«idlCase»
+ diagonal_covariance_matrix: diagonal_covariance_matrix_type
+ full_covariance_matrix: full_covariance_matrix_type
+ full_2d_covariance_matrix: full_2d_covariance_matrix_type

«idlStruct»
track_filter_parameters_type

+ mode: filter_mode_type
+ protocol_name: protocol_name_type [0..*]
+ is_inclusive: boolean
+ priority: track_priority_type [0..1]
+ area: area_2d_type [0..1]
+ quality: quality_interval_type
+ height: height_interval_type [0..1]

long

«idlTypedef»
assessment_objective_id_type

string

«idlTypedef»
protocol_name_type

Figure 7.84 Track Reporting - Type Definitions (Class diagram)

«idlStruct»
sensor_track_type

+ additional_information: anonymous_blob_type
+ covariance_matrix: covariance_matrix_type [0..1]
+ environment: environment_type [0..1]
+ initiation_mode: initiation_mode_type [0..1]
+ jammer_indication: boolean
+ max_range_limit: range_coordinate_type [0..1]
+ position: position_coordinate_type
+ position_accuracy: position_accuracy_coordinate_type [0..1]
+ position_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ position_coordinate_system: coordinate_specification_type
+ sensor_track_pre_identification: identity_type [0..1]
+ sensor_track_pre_recognition: recognition_type [0..1]
+ simulated: boolean
+ time_of_information: time_type
+ time_of_initiation: time_type [0..1]
+ track_phase: track_phase_type
+ velocity: velocity_coordinate_type
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_coordinate_system: coordinate_specification_type
+ track_quality: track_quality_type [0..1]
+ time_of_first_detection: time_type [0..1]
+ time_of_last_detection: time_type [0..1]
+ priority: track_priority_type [0..1]
+ amplitude: strength_type [0..1]

«key»
+ sensor_track_id: sensor_track_id_type

«idlStruct»
Sensor_Assessment::equipment_type

+ name: equipment_name_type

«key»
+ id: assessment_objective_id_type

«idlStruct»
Sensor_Assessment::observable_function_type

+ name: function_name_type

«key»
+ id: assessment_objective_id_type

«idlStruct»
Sensor_Assessment::platform_type

+ platform_name: platform_name_type

«idlStruct»
Sensor_Assessment::platform_activity_type

+ name: platform_activity_name_type

«key»
+ id: assessment_objective_id_type

«idlStruct»
Sensor_Assessment::platform_class_type

+ name: platform_name_type
+ pre_identification: identity_type [0..1]
+ pre_recognition: short [0..1]
+ country_code: country_code_type

«key»
+ id: assessment_objective_id_type

+activity 0..1
+platform 0..1

+equipment

0..1

+observed_function

0..1

Figure 7.85 Track_Reporting - Assessment (Class diagram)

7.6.9.1 assessment_objective_id_type

Type: Class
Package: Track_Reporting
Unique identifier for the objects to which the sensor assessment is attempting to match the measurement parameters.

7.6.9.2 external_track_number_type

Type: IDLStruct
Package: Track_Reporting

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 193

A track number from an external protocol (to OARIS) such as a data-link.

Table 7.245 - Attributes of IDLStruct external_track_number_type

Attribute Notes
 protocol_name String The name of the external protocol, system of network

 track_number String The string representation (human readable) of the
external track number value.

7.6.9.3 plot_association_type

Type: IDLStruct
Package: Track_Reporting
This class represents an association between a sensor track and a sensor plot, supporting a multi-hypothesis many-
to-many mapping between plots and tracks.

Table 7.246 - Attributes of IDLStruct plot_association_type

Attribute Notes
 association_likelihood confidence_type The likelihood of this sensor plot given the prior sensor

track. This is independent of the likelihood of other track
associations. In general, the association likelihood values
for a plot do not sum to one.
AttributeTag: Issue =

Table 7.247 - Relations of IDLStruct plot_association_type
Connector Notes
Association: plot sensor_plot_type reference [1] The sensor plot that the sensor track is based on

7.6.9.4 protocol_name_type

Type: IDLTypeDef
Package: Track_Reporting
The name of an external protocol on which objects (e.g. tracks) could also be reported. Values are system
implementation specific.

7.6.9.5 sensor_track_id_type

Type: IDLTypeDef
Package: Track_Reporting
Sensor Track Identification

7.6.9.6 track_filter_parameters_type

Type: IDLStruct
Package: Track_Reporting
The criteria that must all be met for a track to pass the filter. The filter attributes are applied with and-wise logic. For
or-wise logic define multiple filter objects.

Table 7.248 - Attributes of IDLStruct track_filter_parameters_type

Attribute Notes
 mode filter_mode_type The mode in which the tracks are filtered.

 protocol_name protocol_name_type [0..*] Filter tracks that are also being reported on these
protocols.

 is_inclusive boolean If true, tracks that pass the filter are included in
transmission and/or reception dependent upon the mode
attribute. Otherwise, they are excluded.

 priority track_priority_type [0..1] A priority criterion. A track must have a priority greater
than or equal to this.

 area area_2d_type [0..1] An area which is optionally part of the filter.

 quality quality_interval_type A track quality criterion. A track must have a track
quality within the interval defined to pass the filter. If no
filtering is required then an interval including all quality
values is defined.

 height height_interval_type [0..1] The height values that are optionally part of the filter.

7.6.9.7 environment_type

Type: Class
Package: Track_Reporting
The sensor tracking environment

Table 7.249 - Attributes of Class environment_type

Attribute Notes
«idlEnum» AIR In the air

«idlEnum» LAND On land

«idlEnum» SURFACE On the sea surface

«idlEnum» SUBSURFACE Below the sea surface

«idlEnum» SPACE Outside the Earth's atmosphere

7.6.9.8 initiation_mode_type

Type: Class
Package: Track_Reporting
Type of track initiation

Table 7.250 - Attributes of Class initiation_mode_type

Attribute Notes
«idlEnum» AUTOMATIC Automatic track initiation mode

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 195

Attribute Notes
«idlEnum» EXTERNAL_REQUEST Track initiation on external request (e.g. from CMS)

7.6.9.9 recognition_type

Type: IDLTypeDef
Package: Track_Reporting
The recognition type indicates the type of the real-world physical object being tracked.
The numeric value is used to map to a system or implementation specific taxonomy of real-world physical objects
that are of tactical interest.

7.6.9.10 sensor_track_type

Type: IDLStruct
Package: Track_Reporting
Encapsulation of a sensor track

Table 7.251 - Attributes of IDLStruct sensor_track_type

Attribute Notes
 additional_information anonymous_blob_type Additional, vendor-specific information

 covariance_matrix covariance_matrix_type [0..1] The number of elements in the covariance matrix is
dependent on the sensor. When present, the
position_accuracy and velocity_accuracy attributes
should not be present.

 environment environment_type [0..1] Environment of the track (air, surface etc)

 initiation_mode initiation_mode_type [0..1] Initiation mode of track (automatic or externally
initiated)

 jammer_indication boolean Indication whether or not a track is jamming.

 max_range_limit range_coordinate_type [0..1] Maximal range for a bearing track

 position position_coordinate_type The location of the track as calculated in the sensor's
chosen coordinate system at the stated time.

 position_accuracy position_accuracy_coordinate_type
[0..1]

The sensor's stated accuracy for its calculated position.
When present, the covariance_matrix attribute should
not be present.

 position_accuracy_coordinate_system
coordinate_specification_type [0..1]

The coordinate system chosen by the sensor for reporting
accuracy.

 position_coordinate_system
coordinate_specification_type

The coordinate system chosen by the sensor.

«key» sensor_track_id sensor_track_id_type The sensor's unique identifying reference for the track.
Sensors may reuse identifiers after they have deleted the
corresponding track. The scheme used for identifier
reallocation is system dependent.

Attribute Notes
 sensor_track_pre_identification identity_type [0..1] Identification information for the sensor track (if

available)

 sensor_track_pre_recognition recognition_type [0..1] Recognition information for the sensor track (if
available)

 simulated boolean Whether the CMS should process the track as having
been synthetically generated as opposed to
corresponding to an actual detection in the real world.

 time_of_information time_type The time at which the information in this object is valid,
in particular its position.

 time_of_initiation time_type [0..1] The time at which the sensor first determined the
existence of this track.

 track_phase track_phase_type Track phase (e.g. TRACKED, DELETED, LOST)

 velocity velocity_coordinate_type The velocity of the track as calculated in the sensor's
chosen coordinate system at the stated time.

 velocity_accuracy velocity_accuracy_coordinate_type
[0..1]

The sensor's stated accuracy for its calculated velocity.
When present, the covariance_matrix attribute should
not be present.

 velocity_accuracy_coordinate_system
coordinate_specification_type [0..1]

The coordinate system chosen by the sensor for reporting
accuracy.

 velocity_coordinate_system
coordinate_specification_type

The coordinate system chosen by the sensor.

 track_quality track_quality_type [0..1] The sensor specific quality of this track in comparison to
its typical tracks.

 time_of_first_detection time_type [0..1] The time at which the sensor first made measurements
leading to the detection of the existence of this track (as
opposed to the time of initiation when there was
sufficient confidence in one or more detection to initiate
a track).

 time_of_last_detection time_type [0..1] The time at which the sensor last detected the existence
of this track.

 priority track_priority_type [0..1] The relative priority of a track with regard to the sensor's
resources

 amplitude strength_type [0..1] The amplitude or strength of the measurement(s) being
tracked by the sensor

Table 7.252 - Relations of IDLStruct sensor_track_type
Connector Notes
Association: platform platform_class_type reference
[0..1]

The sensor's assessment of the name of the platform or
class of platform of the real world object.

Association: activity platform_activity_type reference
[0..1]

The sensor's assessment of the activity being undertaken
by the real world object represented by the sensor track
as observed by the sensor.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 197

Connector Notes
Association: observed_function
observable_function_type reference [0..1]

The sensor's assessment of the function being undertaken
by the equipment of real world object represented by the
sensor track that has been observed by the sensor.

Association: sensor_function function_type reference
[0..*]

The sensor functions whose processing has contributed
to the track's data.

Association: equipment equipment_type reference
[0..1]

The sensor's assessment of the equipment on the real
world object represented by the sensor track that has
been detected by the sensor.

Aggregation: external_track_number
external_track_number_type [0..*]

A track number for this sensor track from another
protocol

Aggregationssociation: based_on plot_association_type
reference [0..*]

The set of plots on which the creation or update of
sensor track is based

7.6.9.11 sensor_track_set_type

Type: Class
Package: Track_Reporting
A set of sensor tracks (to enable batch reporting)

Table 7.253 - Relations of Class sensor_track_set_type
Connector Notes
Aggregation: element sensor_track_type [0..*]

7.6.9.12 track_phase_type

Type: Class
Package: Track_Reporting
The detection lifecycle phase of the track

Table 7.254 - Attributes of Class track_phase_type

Attribute Notes
«idlEnum» DEAD_RECKONED Track provided based on extrapolated position (dead-

reckoned)

«idlEnum» LOST Track has been lost

«idlEnum» TRACKED Regular update of new and existing track

«idlEnum» INACTIVE No new measurements were available to contribute to
this track at the last opportunity to do so. It is expected
that should such measurements be made at the next
opportunity, these will successfully update the track.

7.6.10 Tracking_Control

Parent Package: Sensor_Domain
This package contains structs and type defs for managing tracking zones and sensor track information.

unsigned long

«idlTypedef»
Track_Reporting::sensor_track_id_type

«idlStruct»
track_info_type

+ additional_information: anonymous_blob_type
+ system_track_id: system_track_id_type
+ track_priority: track_priority_type
+ identification_assigned_type: identity_type

«idlEnum»
Common_Types::identity_type

+ PENDING
+ UNKNOWN
+ ASSUMED_FRIEND
+ FRIEND
+ NEUTRAL
+ SUSPECT
+ HOSTILE

«idlStruct»
System_Track::system_track_type

+ simulated: boolean
+ time_of_information: time_type
+ position_coordinate_system: coordinate_specification_type
+ position: position_coordinate_type
+ velocity_coordinate_system: coordinate_specification_type
+ velocity: velocity_coordinate_type
+ position_accuracy_coordinate_system: coordinate_specification_type
+ position_accuracy: position_accuracy_coordinate_type
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ max_range_limit: range_coordinate_type [0..1]

«key»
+ system_track_number: system_track_id_type

«idlStruct»
tracking_zone_type

+ enable: boolean
+ shape: general_polar_volume_type
+ tracking_type: tracking_zone_kind_type
+ tracking_zone_id: tracking_zone_id_type

«idlEnum»
tracking_zone_kind_type

+ AUTOMATIC_TRACK_INITIATION
+ MULTIPATH_DEVOTED_TRACKING
+ TRACK_ON_JAMMER

«idlStruct»
tracking_zone_set_type

«idlUnion»
Shape_Model::general_polar_volume_type

«idlCase»
+ sector: sector_type
+ polar_volume: polar_volume_type
+ truncated_sector: truncated_sector_type
+ truncated_polar_volume: truncated_polar_volume_type

short

«idlTypedef»
tracking_zone_id_type

A

+zone

0..* 1

Figure 7.86 Domain Model (Class diagram)

7.6.10.1 track_info_type

Type: Class
Package: Tracking_Control
This struct identifies track information.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 199

Table 7.255 - Attributes of Class track_info_type

Attribute Notes
 additional_information anonymous_blob_type This is additional information that is not specified as part

of the interface. Candidate information includes:
- Track type,
- Track priority,
- Track Identification Category Assigned (Pending,
Friend, Assumed Friend, Neutral, Unknown, Suspect,
Hostile).

 system_track_id system_track_id_type Identifier of the system track being described

 track_priority track_priority_type The priority assigned to the system track
AttributeTag: Issue =

 identification_assigned_type identity_type The standard identity of the system track.

7.6.10.2 tracking_zone_set_type

Type: IDLStruct
Package: Tracking_Control
This struct contains zero to many tracking zones which must be set/reset by the CMS.

Table 7.256 - Relations of IDLStruct tracking_zone_set_type
Connector Notes
Aggregation: zone tracking_zone_type [0..*]

7.6.10.3 tracking_zone_type

Type: Class
Package: Tracking_Control
This struct identifies a tracking zone.

Table 7.257 - Attributes of Class tracking_zone_type

Attribute Notes
 enable boolean Indicates whether the CMS is enabling or disabling a

tracking zone.

 shape general_polar_volume_type This is the polar volume of the zone.

 tracking_type tracking_zone_kind_type This indicates the tracking zone type.

 tracking_zone_id tracking_zone_id_type A unique identifier for the tracking zone.

7.6.10.4 tracking_zone_kind_type

Type: Class
Package: Tracking_Control
Identifies the kind of a tracking zone.

Ollie Newman, 02/08/24
OARIS3-42

Table 7.258 - Attributes of Class tracking_zone_kind_type

Attribute Notes
 AUTOMATIC_TRACK_INITIATION Zones where the sensor is allowed to auto initiate new

tracks. Depending on the sensor type and its capabilities,
such a type of zones may be delimited in azimuth only,
or both in azimuth and elevation, or may have further
range bounds, and in some cases also additional
constraints (such as target type, velocity bounds, etc.).

 MULTIPATH_DEVOTED_TRACKING Sectors where the sensor is required to use, for tracking
activities, devoted waveforms to reduce the multipath
effects. This capability is usually provided by
multifunctional radars. Such a type of sectors is usually
limited in azimuth only, below a defined elevation.

 TRACK_ON_JAMMER Sectors where the sensor is allowed to manage Track-
On-Jammer. Depending on the sensor type and its
capabilities, such a type of sectors may be delimited
either in azimuth only or both in azimuth and elevation.

7.6.10.5 tracking_zone_id_type

Type: Class
Package: Tracking_Control
This typedef is used to identify a specific tracking zone.

7.7 Radar_Domain

Parent Package: Domain_Model
This package contains the Domain Models for the Air Engagement Support, Engagement Support, Missile
Guidance, Search, and Surface Engagement Support services.

7.7.1 Air_Engagement_Support

Parent Package: Radar_Domain

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 201

«idlStruct»
expected_hit_data_type

+ expected_hit_time: time_type
+ track_id_descriptor: sensor_track_id_type

«idlStruct»
projectile_kinematics_type

+ time_stamp: time_type
+ position_descriptor: position_coordinate_type
+ velocity_descriptor: velocity_coordinate_type

«idlStruct»
miss_indication_data_type

+ miss_distance: polar_position_type
+ time_stamp: time_type

+kinematics_descriptor

11

Figure 7.87 Domain Model (Class diagram)

7.7.1.1 expected_hit_data_type

Type: IDLStruct
Package: Air_Engagement_Support
Expected hit identifies the target and the time a hit is expected. This data is used to initiate the evaluation of a miss
indication within the radar.

Table 7.259 - Attributes of IDLStruct expected_hit_data_type

Attribute Notes
 expected_hit_time time_type Time when projectile is expected to hit the target.

 track_id_descriptor sensor_track_id_type The target track id.

Table 7.260 - Relations of IDLStruct expected_hit_data_type
Connector Notes
Aggregation: kinematics_descriptor
projectile_kinematics_type [1]

7.7.1.2 miss_indication_data_type

Type: IDLStruct
Package: Air_Engagement_Support
Is sent once a hit or miss is noted.

Table 7.261 - Attributes of IDLStruct miss_indication_data_type

Attribute Notes
 miss_distance polar_position_type Closest distance of the projectile to the target expressed

in polar coordinates.

 time_stamp time_type Closest time of approach of the projectile to the target.

7.7.1.3 projectile_kinematics_type

Type: IDLStruct
Package: Air_Engagement_Support

Identifies the kinematics of the projectile that is expected to hit the target.

Table 7.262 - Attributes of IDLStruct projectile_kinematics_type

Attribute Notes
 time_stamp time_type The timestamp when the kinematics was valid/measured.

 position_descriptor position_coordinate_type The projectile's position.

 velocity_descriptor velocity_coordinate_type The projectile's velocity.

7.7.2 Engagement_Support

Parent Package: Radar_Domain

unsigned short

«idlTypedef»
available_fire_control_channels_type

unsigned short

«idlTypedef»
fire_control_channel_id_type

«idlStruct»
kinematics_type

+ orientation: coordinate_orientation_type
+ position: cartesian_position_type
+ reference_position: coordinate_origin_type
+ time_stamp: time_type
+ velocity: cartesian_velocity_type

«idlEnum»
kill_assessment_result_type

+ PROBABLE_KILL
+ PROBABLE_MISS
+ NO_RESULT

«idlUnion»
Coordinates_and_Positions::velocity_coordinate_type

«idlCase»
+ cartesian_velocity: cartesian_velocity_type
+ polar_velocity: polar_velocity_type
+ wgs84_velocity: wgs84_velocity_type

Figure 7.88 Domain Model (Class diagram)

7.7.2.1 available_fire_control_channels_type

Type: Class
Package: Engagement_Support
The number/amount of available fire control channels.

7.7.2.2 fire_control_channel_id_type

Type: Class

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 203

Package: Engagement_Support
The fire control channel ID as assigned by the subsystem.

7.7.2.3 kill_assessment_result_type

Type: Class
Package: Engagement_Support
The possible outcomes of a kill assessment.

Table 7.263 - Attributes of Class kill_assessment_result_type

Attribute Notes
 PROBABLE_KILL Kill Probability > 50%

 PROBABLE_MISS Kill Probability < 50%

 NO_RESULT Assessment indeterminate

7.7.2.4 kinematics_type

Type: IDLStruct
Package: Engagement_Support
Target position/kinematics for which a fire control channel is requested to designate.

Table 7.264 - Attributes of IDLStruct kinematics_type

Attribute Notes
 orientation coordinate_orientation_type The orientation of the kinematic coordinates

 position cartesian_position_type The positional element of the kinematics in Cartesian
coordinates

 reference_position coordinate_origin_type The origin of the Cartesian coordinate frame

 time_stamp time_type The absolute time at which the kinematic information is
valid.

 velocity cartesian_velocity_type The velocity element of the kinematics in Cartesian
coordinates.

7.7.3 Missile_Guidance

Parent Package: Radar_Domain

«idlStruct»
System_Track::system_track_type

+ simulated: boolean
+ time_of_information: time_type
+ position_coordinate_system: coordinate_specification_type
+ position: position_coordinate_type
+ velocity_coordinate_system: coordinate_specification_type
+ velocity: velocity_coordinate_type
+ position_accuracy_coordinate_system: coordinate_specification_type
+ position_accuracy: position_accuracy_coordinate_type
+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]
+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]
+ max_range_limit: range_coordinate_type [0..1]

«key»
+ system_track_number: system_track_id_type

A system track may be based on a sensor track (produced
by a sensor on the same platform), but may also be based
on a link received track (not modelled).

unsigned long

«idlTypedef»
Common_Types::

system_track_id_type

«idlUnion»
track_id_type

«idlCase»
+ sensor_track_id: sensor_track_id_type
+ system_track_id: system_track_id_type

The track referred to by a missile guidance command
may either be a system track (provided by the CMS) or a
sensor track (if the object is already tracked by the
sensor). Therefore, the track_id(s) in the missile
guidance command may be a sensor_track_id or a
missile_track_id.

On the same platform, different objects (targets and own
missiles) may be tracked by different sensor types (e.g 3D
radar, or ESM).
Therefore, for the same interface with a sensor, in
successive missile_guidance commands, the referred
system tracks may be a cartesian point_track at one time
and polar bearing_track at the next time.

Figure 7.89 Missile Guidance - Track (Class diagram)

«idlStruct»
illumination_request_type

+ target_track_id: track_id_type
+ own_missile_track_id: track_id_type [0..*]
+ illumination_period: absolute_duration_type
+ frequency_channel: frequency_channel_type [0..1]
+ additional_parameters: anonymous_blob_type

unsigned short

«idlTypedef»
frequency_channel_type

Figure 7.90 Illumination (Class diagram)

«idlStruct»
uplink_request_type

+ own_missile_track_id: track_id_type
+ frequency_channel: frequency_channel_type [0..1]
+ request_info: anonymous_blob_type

«idlStruct»
uplink_report_type

+ own_missile_track_id: track_id_type
+ uplink_info: anonymous_blob_type [0..1]

unsigned short

«idlTypedef»
frequency_channel_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 205

Figure 7.91 Missile Uplink (Class diagram)

«idlStruct»
downlink_report_type

+ own_missile_track_id: track_id_type
+ time_of_receipt: time_type
+ downlink_content: anonymous_blob_type

«idlStruct»
downlink_request_type

+ own_missile_track_id: track_id_type
+ listening_period: absolute_duration_type
+ frequency_channel: frequency_channel_type [0..1]
+ additional_parameters: anonymous_blob_type

unsigned short

«idlTypedef»
frequency_channel_type

Figure 7.92 Missile Downlink (Class diagram)

7.7.3.1 downlink_report_type

Type: Class
Package: Missile_Guidance
Information downlinked by the missile to the radar.

Table 7.265 - Attributes of Class downlink_report_type

Attribute Notes
 own_missile_track_id track_id_type The identifier for the track representing the missile

providing the downlink.

 time_of_receipt time_type The absolute time at which the downlink was received

 downlink_content anonymous_blob_type The system specific content of the downlink from the
missile.

7.7.3.2 downlink_request_type

Type: Class
Package: Missile_Guidance
request to downlink

Table 7.266 - Attributes of Class downlink_request_type

Attribute Notes
 own_missile_track_id track_id_type The identifier for track that is representing the system's

own missile in the engagement.

 listening_period absolute_duration_type The absolute period of time during which downlinks
shall be received

 frequency_channel frequency_channel_type [0..1] Optionally the frequency channel to use for the
downlink.

Attribute Notes
 additional_parameters anonymous_blob_type System specific information to support the downlink

7.7.3.3 frequency_channel_type

Type: Class
Package: Missile_Guidance
A frequency channel identifies a specific radar frequency.

7.7.3.4 illumination_request_type

Type: Class
Package: Missile_Guidance
semantics of selects association is implementation specific.

Table 7.267 - Attributes of Class illumination_request_type

Attribute Notes
 target_track_id track_id_type The identifier for the target track

 own_missile_track_id track_id_type [0..*] The identifier for track that is representing the system's
own missile in the engagement.

 illumination_period absolute_duration_type The length of time to provide illumination of the target

 frequency_channel frequency_channel_type [0..1] The frequency channel to use for target illumination

 additional_parameters anonymous_blob_type System specific information to support the illumination

7.7.3.5 track_id_type

Type: Class
Package: Missile_Guidance
The track referred to by a missile guidance command may either be a system track (provided by the CMS) or a
sensor track (if the object is already tracked by the sensor). Therefore, the track_id(s) in the missile guidance
command may be a sensor_track_id or a missile_track_id.

Table 7.268 - Attributes of Class track_id_type

Attribute Notes
«idlCase» sensor_track_id sensor_track_id_type sensor track id option

«idlCase» system_track_id system_track_id_type system track id option

7.7.3.6 uplink_report_type

Type: IDLStruct
Package: Missile_Guidance
a report from uplink

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 207

Table 7.269 - Attributes of IDLStruct uplink_report_type

Attribute Notes
 own_missile_track_id track_id_type The identifier for track that is representing the system's

own missile in the engagement.

 uplink_info anonymous_blob_type [0..1] System specific information to support the uplink

7.7.3.7 uplink_request_type

Type: IDLStruct
Package: Missile_Guidance
a request to downlink

Table 7.270 - Attributes of IDLStruct uplink_request_type

Attribute Notes
 own_missile_track_id track_id_type The identifier for track that is representing the system's

own missile in the engagement.

 frequency_channel frequency_channel_type [0..1] Optionally, the frequency channel to use for the uplink.

 request_info anonymous_blob_type System specific information regarding the uplink.

7.7.4 Surface_Engagement_Support

Parent Package: Radar_Domain

unsigned short

«idlTypedef»
splash_spotting_area_id_type

«idlStruct»
splash_spotting_area_type

+ shape: truncated_sector_type
+ area_id: splash_spotting_area_id_type

«idlStruct»
splash_spotting_area_position_type

+ azimuth_max: azimuth_coordinate_type
+ azimuth_min: azimuth_coordinate_type
+ range_max: range_coordinate_type
+ range_min: range_coordinate_type

«idlStruct»
splash_spotting_area_set_type

unsigned long

«idlTypedef»
Track_Reporting::sensor_track_id_type

+splash_spotting_area_descriptor 0..*

1

Figure 7.93 Domain Model (Class diagram)

7.7.4.1 splash_spotting_area_id_type

Type: Class
Package: Surface_Engagement_Support
the area ID assigned by the sensor.

7.7.4.2 splash_spotting_area_position_type

Type: Class
Package: Surface_Engagement_Support
The area definition from the User (CMS) when Splash Spotting is defined using the service "activate splash spotting
area by position". The minimum and maximum available sizes are defined in "Manage Subsystem Parameters".

Table 7.271 - Attributes of Class splash_spotting_area_position_type

Attribute Notes
 azimuth_max azimuth_coordinate_type when max is less than min, areas covers the north

azimuth

 azimuth_min azimuth_coordinate_type when min is less than max, areas covers the north
azimuth

 range_max range_coordinate_type limited to less than or equal to instrumented range

 range_min range_coordinate_type limited to greater than or equal to minimum visible range

7.7.4.3 splash_spotting_area_set_type

Type: Class
Package: Surface_Engagement_Support
A set consisting of splash spotting areas.

Table 7.272 - Relations of Class splash_spotting_area_set_type
Connector Notes
Aggregation: splash_spotting_area_descriptor
splash_spotting_area_type [0..*]

7.7.4.4 splash_spotting_area_type

Type: Class
Package: Surface_Engagement_Support
Definition of a single splash spotting area.

Table 7.273 - Attributes of Class splash_spotting_area_type

Attribute Notes
 shape truncated_sector_type Shape and size of the splash spotting area

 area_id splash_spotting_area_id_type Area ID of the splash spotting area.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 209

7.8 Subsystem_Services
Parent Package: Service_Interfaces
Contains services associated with the Subsystem Domain.

7.8.1 Encyclopaedic_Support
Parent Package: Subsystem_Services

7.8.1.1 Receive_Encyclopaedic_Data

Parent Package: Encyclopaedic_Support

Receive_Encyclopaedic_Data_CMS
Type: Interface
Package: Receive_Encyclopaedic_Data
This interface describes the process whereby the subsystem receives encyclopedic data.Such data is used by the
subsystem to perform self-adaptation to the prevailing environmental conditions.
This interface is modelled as a control interaction between the CMS and the subsystem rather than a data flow
interaction. The CMS controls the loading of subsystem encyclopaedic data by sending the location of the data,
rather than sending the data itself. Of course an implementation may move the encyclopaedic data around a file
system beforehand, but that is outside the scope of this standard.
The subsystem is aware of its real-time geographic position and orientation.
It is expected that the transfer of this data would be initiated at the start of the ‘mission of the day’. Updates would
only be envisaged when the current data set became inapplicable to the current mission.
Specific encyclopedic data might be requested by the subsystem. Alternatively, a default set of summary data is
sent. Such data, which is an example of ‘reference’ data, would generally be non-sensor in origin and static i.e. not
changing in real-time. In the simplest case this data might simply define clutter areas and known jammer locations to
assist the subsystem in effecting suitable mitigation for these effects. For a subsystem such as a more complex multi-
function radar this might include relevant extracts from a commercial shipping database (Lloyd’s etc.), giving
shipping lanes or ship movements or civil airline flight plan data (Civil Aviation Authority etc), locations of wind-
farms, major highways, significant structures and potential sources of interference, such as other radars, including
consorts, cellular phone masts etc. This data would be used by the subsystem to contribute to the tactical picture.
Alternatively, it could be used within the automatic tracking function to enable the identification/elimination from
the track picture of non-hostile tracks. Such data could also include, for example, the reference data types
communicated via Link 16 such as hazard areas and other fixed point type data. Navigational charts might also be a
part of such data. The subsystem VOI (volume of interest) or other filter mechanisms might be supplied in a request
from the actor.
Pre-condition: Technical State: The subsystem is in technical state STANDBY, READY or ONLINE
Pre-condition: Mastership Required: The CMS has mastership
Pre-condition: Subsystem Services: Provide Subsystem Services has completed successfully, in particular this
service is available.
Post-condition: Success: The subsystem has received updated Encyclopedic Data.
Post-condition: No Success: The subsystem has not received updated Encyclopedic Data

Table 7.274 - Methods of Interface Receive_Encyclopaedic_Data_CMS

Method Notes Parameters
encyclopaedic_data_loaded() The subsystem responds to the CMS

that the encyclopaedic data
previously requested has been
loaded.

request_id_type request_id The
unique id for this request -
corresponds to the parameter in the
load_encyclopaedic_data request

Receive_Encyclopaedic_Data_Sub
Type: Interface
Package: Receive_Encyclopaedic_Data

Table 7.275 - Methods of Interface Receive_Encyclopaedic_Data_Sub

Method Notes Parameters
load_encyclopaedic_data() The CMS requests the subsystem to

load encyclopaedic data of a
particular type from a particular
location.

request_id_type request_id The
unique identifier for this request
url_type url The location of the file
containing the encyclopaedic data
data_descriptor_type
data_descriptor A description of the
type of encyclopaedic data (e.g. name
of the data set). It is expected that
implementations will specify a list of
descriptors known to particular
subsystems. Such a list may be
accessible at run-time through the
Manage Subsystem Parameters
interface.

«idlInterface»

Receive_Encyclopaedic_Data_CMS

«idlInterface»

Receive_Encyclopaedic_Data_Sub

Negative
Acknowledgement

Positive
Acknowledgementreceive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

load_encyclopaedic_data(request_id_type, url_type, data_descriptor_type)

receive_error(request_id_type, error_reason_type)

Figure 7.94 Alternate Flow - Receive Encyclopaedic Data (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 211

«idlInterface»

Receive_Encyclopaedic_Data_CMS

«idlInterface»

Receive_Encyclopaedic_Data_Sub

encyclopaedic_data_loaded(request_id_type)

load_encyclopaedic_data(request_id_type, url_type, data_descriptor_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.95 Basic Flow - Receive Encyclopaedic Data (Interaction diagram)

7.8.2 Extended_Subsystem_Control
Parent Package: Subsystem_Services
Contains interfaces for the Extended Subsystem Control service.

7.8.2.1 Manage_Physical_Configuration

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Manage Physical Configuration interface.
Manage_Physical_Configuration_CMS
Type: Interface
Package: Manage_Physical_Configuration
The purpose of this interface is to provide a mechanism to exchange a physical configuration data file between a
subsystem and the CMS (potentially xml format). The exact format of the file is subsystem specific. The purpose of
the file is to support the maintainer with facilities to configure the internal parts of the subsystem; also to be used as
integration support.

Additional Information:

There are at least two cases where the CMS would provide a sub-system’s physical configuration. Case 1 is when
the sub-system was able to detect a configuration change and the data must be manually entered in sub-system
configuration data (e.g. a servo type and serial number). Case 2 is when the sub-system is being developed and
changes to the configuration which cause changes in system behavior are being tested.
Pre-condition: Subsystem must be in a STANDBY state in order for the CMS to request changes to Physical
Configuration Data. This precondition does not apply if the CMS is only requesting current Physical Configuration
Data to be provided by the subsystem. :
Pre-condition: CMS must have mastership in order for the CMS to request changes to Physical Configuration
Data. This precondition does not apply if the CMS is only requesting current Physical Configuration Data to be
provided by the subsystem. :
Post-condition: For a change in Physical Configuration Data Request, configuration data is properly updated.:

Table 7.276 - Methods of Interface Manage_Physical_Configuration_CMS

Method Notes Parameters
receive_physical_configuration() Interface used by CMS to receive a

url to access physical configuration
data from the subsystem.

configuration_url_type
configuration_url
request_id_type request_id

receive_physical_configuration_succ
ess()

Interface used by CMS to receive an
indication from the subsystem that it
has successfully changed its physical
configuration data.

request_id_type request_id

Manage_Physical_Configuration_Sub
Type: Interface
Package: Manage_Physical_Configuration

Table 7.277 - Methods of Interface Manage_Physical_Configuration_Sub

Method Notes Parameters
change_physical_configuration() Interface used by the subsystem to

receive requests from the CMS to
change its physical configuration
data to align with data located at the
url specified in the request.

request_id_type request_id
configuration_url_type
configuraiton_url

provide_physical_configuration() Interface used by the subsystem to
receive requests from the CMS to
provide its current physical
configuration data.

request_id_type request_id

«idlInterface»

Manage_Physical_Configuration_CMS

«idlInterface»

Manage_Physical_Configuration_Sub

alt

[Basic Flow]

[Request Rejected]

[Error Encountered]

receive_acknowledgement(request_id_type,
request_ack_type)

change_physical_configuration(request_id_type,
configuration_url_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_physical_configuration_success(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

Figure 7.96 Manage Physical Configuration - Change (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 213

Flow of events which depicts the CMS requesting that the subsystem changing its physical configuration data (also
depicts alternate rejection and error paths).

«idlInterface»

Manage_Physical_Configuration_CMS

«idlInterface»

Manage_Physical_Configuration_Sub

alt

[Basic Flow]

[Request Rejected]

[Error Encountered]

provide_physical_configuration(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_physical_configuration(configuration_url_type,
request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

Figure 7.97 Manage Physical Configuration - Request (Interaction diagram)

Flow of events which depicts the CMS requesting that the subsystem report on its current physical configuration
data (also depicts alternate rejection and error paths).

7.8.2.2 Perform_Offline_Test

Parent Package: Extended_Subsystem_Control
Contains the interface for offline testing.
Perform_Offline_Test_CMS
Type: Interface
Package: Perform_Offline_Test
This is used to instruct the subsystem to perform offline test and return the results to the CMS. The nature of the
offline tests is subsystem specific
Pre-condition: Provide Subsystem Services must have executed successfully.:
Pre-condition: The CMS must have Mastership:
Pre-condition: The subsystem may be in any Technical State except for ONLINE:
Post-condition: For the response FAILED, the subsystem transitions to Technical State FAILED, but otherwise
remains in the previous Technical State.:

Table 7.278 - Methods of Interface Perform_Offline_Test_CMS

Method Notes Parameters
receive_detailed_test_results() Provides the CMS with subsystem

specific information concerning
offline test failures

request_id_type request_id
offline_test_result_details_type
offline_test_detailed_results

receive_test_results() Informs the CMS whether the offline
tests passed, passed partially, or
failed.

request_id_type request_id
offline_test_result_type test_results

Perform_Offline_Test_Sub
Type: Interface
Package: Perform_Offline_Test

Table 7.279 - Methods of Interface Perform_Offline_Test_Sub

Method Notes Parameters
perform_tests() Instructs the subsystem to perform

the offline tests.
request_id_type request_id
offline_test_type test_name Allows
a particular test to be selected. If null,
all tests are performed.

request_detailed_test_results() Asks the subsystem to provide
detailed information on the failures.

request_id_type request_id

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 215

«idlInterface»

Perform_Offline_Test_CMS

«idlInterface»

Perform_Offline_Test_Sub

The subsystem executes
the offline tests

opt Detailed results required

In the event of a partial pass
or failure, detailed results
from the last test may be
requested.

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The test request is
rejected for some reason

Testing starts but fails to
complete for some reason

receive_acknowledgement(request_id_type, request_ack_type)

receive_detailed_test_results(request_id_type, offline_test_result_details_type)

request_detailed_test_results(request_id_type)

receive_error(request_id_type, error_reason_type)

receive_test_results(request_id_type, offline_test_result_type)

receive_acknowledgement(request_id_type, request_ack_type)

perform_tests(request_id_type, offline_test_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.98 Perform Offline Test (Interaction diagram)

This shows the required sequential behaviour for Perform_Offline_Test, See diagram embedded notes for further
explanation

7.8.2.3 Manage_Network_Participation

Parent Package: Extended_Subsystem_Control

Manage_Network_Participation_CMS
Type: Interface
Package: Manage_Network_Participation
The purpose of this interface is to provide a mechanism for a CMS to manage the connectivity of the OARIS data
exchange through some external network gateway represented by the Subsystem interface in this use case. When
connectivity is established, information can be exchanged between the local CMS and local Subsystems with other
CMS and Subsystems connected by this network as if they were locally connected from a functional viewpoint.
Additional Information:
The management of such network connectivity may be integral for the sharing of plot data between distributed
platforms.

Table 7.280 - Methods of Interface Manage_Network_Participation_CMS

Method Notes Parameters
report_network_status() Send a report to the CMS when the String network_name The name

identifying the network
subsystem_id_type
joined_local_subsystems The

subsystems joined to the network at
the node that the CMS is controlling
subsystem_id_type
joined_remote_subsystems The
subsystems joined to the network at
other nodes

network_status_response() String network_name The
identifyng name for the network
boolean is_joined True if the
subsystem is joined to the network;
false otherwise
subsystem_id_type
statused_subsystem_id The
identifier for the subsystem that is the
subject of the request
request_id_type request_id The
identifier of the originating request

Manage_Network_Participation_Sub
Type: Interface
Package: Manage_Network_Participation

Table 7.281 - Methods of Interface Manage_Network_Participation_Sub

Method Notes Parameters
request_network_status() String network_name The name

identifying the network
request_id_type request_id The
unique identifier for this specific
request

join_network() String network_name The name
identifying the network to be joined
request_id_type request_id The
unique identifier for this specific
request
subsystem_id_type
joining_subsystem_id The unique
identifier of the subsystem to join the
network

leave_network() String network_name The name
identifying the network to be left
request_id_type request_id The
unique identifier for this specific
request
subsystem_id_type
leaving_subsystem_id The unique
identifier for the subsystem to leave
the network

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 217

Manage_Physical_Configuration_CMS
Perform_O ffline_Test_CMS

Provide_Networking_Statistics_CMS
Restart_CM S

Shutdown_CMS
Startup_CMS

«idlInterface»
Service Level Interfaces & Actors Templates::extended_subsystem_control_cms

::Startup_CMS
+ receive_startup_state(request_id_type, technical_state_type): void

::Shutdown_CMS
+ receive_shutdown_state(request_id_type, technical_state_type): void

::Provide_Networking_Statistics_CM S
+ write_bandwidth_statistics(percentage_type, percentage_type, device_name_type, absolute_duration_type): void
+ write_latency_statistics(time_type, time_type, device_name_type, absolute_duration_type): void

::Perform_Offline_Test_CM S
+ receive_detailed_test_results(request_id_type, offline_test_result_details_type): void
+ receive_test_results(request_id_type, offline_test_result_type): void

::Restart_CM S
+ receive_restart_state(request_id_type, technical_state_type): void

::Manage_Network_Participation_CMS
+ report_network_status(String, subsystem_id_type, subsystem_id_type): void
+ network_status_response(String, boolean, subsystem_id_type, request_id_type): void

::Manage_Physical_Configuration_CMS
+ receive_physical_configuration(configuration_url_type, request_id_type): void
+ receive_physical_configuration_success(request_id_type): void

::common_use_case_interface
+ receive_acknowledgement(request_id_type, request_ack_type): void
+ receive_error(request_id_type, error_reason_type): void

M anage_Physical_Configuration_Sub
Perform_Offline_Test_Sub

Restart_Sub
Shutdown_Sub

Startup_Sub

«idlInterface»
Service Level Interfaces & Actors Templates::extended_subsystem_control_sub

::Manage_Physical_Configuration_Sub
+ change_physical_configuration(request_id_type, configuration_url_type): void
+ provide_physical_configuration(request_id_type): void

::Perform_Offline_Test_Sub
+ perform_tests(request_id_type, offline_test_type): void
+ request_detailed_test_results(request_id_type): void

::Manage_Network_Participation_Sub
+ request_network_status(String, request_id_type): void
+ join_network(String, request_id_type, subsystem_id_type): void
+ leave_network(String, request_id_type, subsystem_id_type): void

::Startup_Sub
+ perform_startup(request_id_type): void

::Restart_Sub
+ perform_restart(request_id_type): void

::Shutdown_Sub
+ perform_shutdown(request_id_type): void

«idlInterface»
Manage_Network_Participation_Sub

+ request_network_status(String, request_id_type): void
+ join_network(String, request_id_type, subsystem_id_type): void
+ leave_network(String, request_id_type, subsystem_id_type): void

«idlInterface»
M anage_N etwork_Participation_CM S

+ report_network_status(String, subsystem_id_type, subsystem_id_type): void
+ network_status_response(String, boolean, subsystem_id_type, request_id_type): void

«idlInterface»
Requests::com mon_use_case_interface

+ receive_acknowledgement(request_id_type, request_ack_type): void
+ receive_error(request_id_type, error_reason_type): void

Figure 7.99 Manage_Network_Participation (Class diagram)

«idlInterface»

Manage_Network_Participation_CMS

«idlInterface»

Manage_Network_Participation_Sub

accepted = false
The platform the CMS is
controlling is unable to join
the network (e.g. it is not in
the current plan for the
network, or the network
name is not recognized).

accepted = false
The subsystem is unable to
report the network status
(e.g. the network name is
not recognized).

accepted = false
The subsystem is unable to
report the network status
(e.g. the network name is
not recognized).

alt Failure Case

[join fails]

[status request fails]

[leave fails]

[network fails]

The lists of local and remote
subsystems are empty

request_network_status(String, request_id_type)

join_network(String, request_id_type, subsystem_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_network_status(String, subsystem_id_type, subsystem_id_type)

leave_network(String, request_id_type, subsystem_id_type)

Figure 7.100 Manage_Network_Participation - alternate flow - unable to join (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 219

«idlInterface»

Manage_Network_Participation_CMS

«idlInterface»

Manage_Network_Participation_Sub

loop remote change

[remote subsystem joins or leaves]

receive_acknowledgement(request_id_type, request_ack_type)

network_status_response(String, boolean, subsystem_id_type, request_id_type)

report_network_status(String, subsystem_id_type, subsystem_id_type)

network_status_response(String, boolean, subsystem_id_type, request_id_type)

report_network_status(String, subsystem_id_type, subsystem_id_type)

request_network_status(String, request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_network_status(String, subsystem_id_type, subsystem_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

leave_network(String, request_id_type, subsystem_id_type)

join_network(String, request_id_type, subsystem_id_type)

report_network_status(String, subsystem_id_type, subsystem_id_type)

Figure 7.101 Manage_Network_Participation - basic flow (Interaction diagram)

7.8.2.4 Startup

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Startup interface.
Startup_CMS
Type: Interface
Package: Startup
The purpose of this interface is to cause a normal transition from the STANDBY state to the READY state using the
transitions defined in the Manage Technical State service.
Pre-condition: Subsystem is in STANDBY State.:
Pre-condition: CMS has mastership of subsystem.:

Post-condition: Subsystem is in READY state if successful. If not execute successful, current state shall be
reported by subsystem.:

Table 7.282 - Methods of Interface Startup_CMS

Method Notes Parameters
receive_startup_state() Interface used by CMS to receive an

indication from the subsystem that it
has successfully performed startup.

request_id_type request_id
technical_state_type technical_state

Startup_Sub
Type: Interface
Package: Startup

Table 7.283 - Methods of Interface Startup_Sub

Method Notes Parameters
perform_startup() Interface used by the subsystem to

receive a request from the CMS to
execute startup.

request_id_type request_id

«idlInterface»

Startup_CMS

«idlInterface»

Startup_Sub

receive_acknowledgement(request_id,
request_ack)

perform_startup
(request_id_type)

receive_startup_state(request_id_type,
technical_state_type)

Figure 7.102 Basic Flow -Startup (Interaction diagram)

Basic flow for CMS requesting the subsystem to transition from STANDBY to READY.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 221

«idlInterface»

Startup_CMS

«idlInterface»

Startup_Sub

alt Alternative Flows

[Subsystem rejects request to startup]

[Subsystem fails to startup]

command is successfully
acknowledged but fails
before completion

receive_error(request_id,
error_reason)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_startup_state(request_id_type,
technical_state_type)

perform_startup
(request_id_type)

Figure 7.103 Alternative Flow - Startup (Interaction diagram)

Alternate flow for CMS requesting the subsystem to transition from STANDBY to READY (depicts rejection and
error paths).

7.8.2.5 Provide_Networking_Statistics

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Provide Bandwidth Statistics interface.
Provide_Networking_Statistics_CMS
Type: Interface
Package: Provide_Networking_Statistics
This is used to inform the CMS of the bandwidth being used by and quality of service achieved by the Subsystem
(e.g. an off-platform communications and/or networking device).

Table 7.284 - Methods of Interface Provide_Networking_Statistics_CMS

Method Notes Parameters
write_bandwidth_statistics() Informs the CMS of the most recent

bandwidth utilization
percentage_type peak_utilization
The greatest utlization of bandwidth
since the last update
percentage_type mean_utilization
The average utilization of bandwidth
since the last update
device_name_type connection The

device specific to the connection to
which the statistic pertain
absolute_duration_type
period_of_validity The period of
time for which the statistic apply

write_latency_statistics() Informs the CMS of the most recent
latency associated with data transfer

time_type peak_latency The
greatest latency experienced across
the network scope since the last
update
time_type mean_latency The
average latency experienced across
the network scope since the last
update
device_name_type connection The
device specific to the connection to
which the statistic pertain
absolute_duration_type
period_of_validity The period of
time for which the statistics apply

Provide_Networking_Statistics_CMS«idlInterface»

extended_subsystem_control_sub

(from Service Level Interfaces &
Actors Templates)

loop periodic

write_latency_statistics(time_type, time_type, device_name_type, absolute_duration_type)

write_bandwidth_statistics(percentage_type, percentage_type, device_name_type, absolute_duration_type)

Figure 7.104 Basic Flow - Provide_Networking_Statistics (Interaction diagram)

7.8.2.6 Shutdown

Parent Package: Extended_Subsystem_Control

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 223

Contains operations and sequence diagrams for the Shutdown interface.
Shutdown_CMS
Type: Interface
Package: Shutdown
The purpose of this interface is to transition the sub-system to the STANDBY state from any other state as defined
by Manage Technical State. Note: this shall cause the Subsystem to cease radiating if it is in an ONLINE state with
emissions enabled.
Pre-condition: Subsystem is in ONLINE, READY, FAILED, BIT, or CALIBRATION:
Pre-condition: CMS has mastership of subsystem.:
Post-condition: Sub-system is in STANDBY state if successful, otherwise the current state is reported by the
subsystem.:

Table 7.285 - Methods of Interface Shutdown_CMS

Method Notes Parameters
receive_shutdown_state() Interface used by CMS to receive an

indication from the subsystem that it
has successfully performed
shutdown.

request_id_type request_id
technical_state_type technical_state

Shutdown_Sub
Type: Interface
Package: Shutdown

Table 7.286 - Methods of Interface Shutdown_Sub

Method Notes Parameters
perform_shutdown() Interface used by the subsystem to

receive a request from the CMS to
execute a shutdown.

request_id_type request_id

«idlInterface»

Shutdown_CMS

«idlInterface»

Shutdown_Sub

perform_shutdown
(request_id_type)

receive_acknowledgement(request_id,
request_ack)

receive_shutdown_state(request_id_type,
technical_state_type)

Figure 7.105 Basic Flow - Shutdown (Interaction diagram)

Basic flow for CMS requesting the subsystem to transition to STANDBY.

«idlInterface»

Shutdown_CMS

«idlInterface»

Shutdown_Sub

alt Alternative Flows

[Subsystem rejects request to shutdown]

[Subsystem reports shutdown failure]

command is successfully
acknowledged but fails
before completion

perform_shutdown(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id,
error_reason)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_shutdown_state(request_id_type,
technical_state_type)

Figure 7.106 Alternative Flow - Shutdown (Interaction diagram)

Alternate flow for CMS requesting the subsystem to transition to STANDBY (depicts rejection and error paths).

7.8.2.7 Restart

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Restart interface.
Restart_CMS
Type: Interface
Package: Restart
The purpose of this interface is to cause a normal transition to STANDBY and then to READY states as defined by
Manage Technical State.
Pre-condition: Sub-system is in ONLINE, READY, FAILED, BIT, or CALIBRATION:
Pre-condition: CMS has mastership of sub-system:
Post-condition: Sub-system is in READY state if successful, otherwise current state is reported by subsystem.:

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 225

Table 7.287 - Methods of Interface Restart_CMS

Method Notes Parameters
receive_restart_state() Interface used by CMS to receive an

indication from the subsystem that it
has successfully performed restart.

request_id_type request_id
technical_state_type technical_state

Restart_Sub
Type: Interface
Package: Restart

Table 7.288 - Methods of Interface Restart_Sub

Method Notes Parameters
perform_restart() Interface used by the subsystem to

receive a request from the CMS to
execute a restart.

request_id_type request_id

«idlInterface»

Restart_CMS

«idlInterface»

Restart_Sub

receive_acknowledgement(request_id,
request_ack)

perform_restart
(request_id_type)

receive_restart_state(request_id_type,
technical_state_type)

Figure 7.107 Basic Flow - Restart (Interaction diagram)

Basic flow for CMS requesting the subsystem to transition to STANDBY followed by a transition to READY.

«idlInterface»

Restart_CMS

«idlInterface»

Restart_Sub

alt Alternative Flows

[Subsystem rejects request to restart]

[Subsystem fails to restart]

command is successfully
acknowledged but fails
before completion

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_restart_state(request_id_type,
technical_state_type)

receive_error(request_id,
error_reason)

perform_restart(request_id_type)

Figure 7.108 Alternative Flow - Restart (Interaction diagram)

Alternate flow for CMS requesting the subsystem to transition to STANDBY followed by a transition to READY
(depicts rejection and error paths).

7.8.3 Subsystem_Control
Parent Package: Subsystem_Services
Contains interfaces for the Subsystem Control service.

7.8.3.1 Manage_Technical_State

Parent Package: Subsystem_Control
Contains operations and sequence diagrams for the Manage Technical State interface.
Manage_Technical_State_CMS
Type: Interface
Package: Manage_Technical_State
Manage Technical State causes the subsystem to provide or change its technical state.

Special Requirements:

Initialization: Upon initialization, reset or power-on, the sub-system shall transition to a pre-defined state and report
the current state to the CMS.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 227

Additional Information:

If a critical component of the subsystem becomes NOT AVAILABLE, the technical state shall transition to
FAILED.

All states may transition to OFFLINE, but the subsystem shall only do so in emergency situations or catastrophic
damage, to indicate an uncontrolled shutdown

Startup, Shutdown, and Restart explain the sequence of actions for nominal progression through the technical states.
Pre-condition: If the CMS requests a Technical State to change, mastership of the subsystem is required.:
Pre-condition: CMS is aware of the current subsystem state.:
Pre-condition: CMS is aware of the possible technical states supported by the subsystem.:
Post-condition: None.:

Table 7.289 - Methods of Interface Manage_Technical_State_CMS

Method Notes Parameters
receive_periodic_technical_state() Interface used by CMS to receive

periodic technical state reports from
the subsystem.

technical_state_type technical_state

receive_technical_state() Interface used by CMS to receive
technical state reports from the
subsystem which were the result of a
transition request from the CMS.

request_id_type request_id
technical_state_type technical_state

Manage_Technical_State_Sub
Type: Interface
Package: Manage_Technical_State

Table 7.290 - Methods of Interface Manage_Technical_State_Sub

Method Notes Parameters
change_technical_state() Interface used by the subsystem to

receive requests from the CMS to
change its technical state.

request_id_type request_id
technical_state_type technical_state

provide_technical_state() Interface used by the subsystem to
receive requests from the CMS to
provide its current technical state.

request_id_type request_id

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

change_technical_state(request_id_type,
technical_state_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_technical_state(request_id_type,
technical_state_type)

Figure 7.109 Basic Flow - Manage Technical State - Change (Interaction diagram)

Flow of events which depicts the CMS requesting that the subsystem changing its current technical state.

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

alt Alternative Flows

[Invalid State Condition Requested]

[Subsystem Rejects State Change Request]

[State Change Unsuccessful]

command is successfully
acknowledged but fails
before completion

receive_acknowledgement(request_id,
request_ack)

receive_technical_state(request_id_type,
technical_state_type)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id,
request_ack)

receive_acknowledgement(request_id,
request_ack)

change_technical_state(request_id_type,
technical_state_type)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 229

Figure 7.110 Alternative Flow - Manage Technical State - Change (Interaction diagram)

Alternate flow depicting rejection and error cases for a CMS requesting the subsystem to change its Technical State.

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

loop

[Periodic or Upon Change]

receive_periodic_technical_state(technical_state_type)

Figure 7.111 Basic Flow - Manage Technical State - Periodic Reporting (Interaction diagram)

Flow of events which depicts a subsystem that periodically reports its technical state (without the need for a CMS
request).

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

provide_technical_state(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_technical_state(request_id_type,
technical_state_type)

Figure 7.112 Basic Flow - Manage Technical State - Request (Interaction diagram)

Flow of events which depicts the CMS requesting that the subsystem report on its current technical state.

7.8.3.2 Heartbeat_Signal

Parent Package: Subsystem_Control

Heartbeat_Signal_CMS
Type: Interface
Package: Heartbeat_Signal

The service describes how the availability of an established communication between CMS and the subsystem as
well as the subsystem itself shall be monitored. The heartbeat signal is triggered by Control Interface Connection.
The basic flow is asynchronous.

The actor is the Combat Management System.
Pre-condition: Connection established: Provide Subsystem Services has successfully established communication
between CMS and the subsystem.
Post-condition: Interface is alive: The heartbeat has been received successful.
Post-condition: Interface is not alive: The heartbeat has not been received.

Table 7.291 - Methods of Interface Heartbeat_Signal_CMS

Method Notes Parameters
receive_subsystem_heartbeat_signal(
)

Receive the periodic heartbeat signal
to verify, that the connection is still
alive.

unsigned long count This parameter
is used with implementation specific
semantics for monitoring interface
participant liveliness.

Heartbeat_Signal_Sub
Type: Interface
Package: Heartbeat_Signal

Table 7.292 - Methods of Interface Heartbeat_Signal_Sub

Method Notes Parameters
receive_cms_heartbeat_signal() Receive the periodic heartbeat signal

to verify, that the connection is still
alive.

unsigned long count This parameter
is used with implementation specific
semantics for monitoring interface
participant liveliness.

«idlInterface»

Heartbeat_Signal_CMS

«idlInterface»

Heartbeat_Signal_Sub

loop periodic

loop periodic

par

[Both run independently]

receive_subsystem_heartbeat_signal
(unsigned long)

receive_cms_heartbeat_signal
(unsigned long)

Figure 7.113 Basic Flow - Heartbeat Signal (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 231

7.8.3.3 Provide_Subsystem_Identification

Parent Package: Subsystem_Control

Provide_Subsystem_Identification_CMS
Type: Interface
Package: Provide_Subsystem_Identification
In order to enable two interface partners to connect to each other and to open mutual communication, one partner
shall initiate and the other to answer. The intention is to let the subsystem initiate the communication.
Consequently, the subsystem introduces itself to the CMS identifying e.g. the type of subsystem, the product and its
version. That allows the CMS to decide whether it may work with that subsystem.

The actor is the Combat Management System.

The possibility that CMS and subsystem are connected without being capable to work with each other is a
consequence of a plug-&-play concept.
Although the interface is standardized the CMS may need a setup process to prepare it for a subsystem. This process
shall introduce the information necessary to configure functions of that particular CMS with respect to the
subsystem.
This may also be necessary on side of the subsystem.
The preparation for a subsystem may be done by means of system configuration data which are implemented on
installation of the combat system. It does not address security information.
Pre-condition: CMS and Subsystem can communicate with each other.:
Post-condition: CMS and subsystem may work together.: CMS and subsystem have verified that they may work
with each other.
They shall do some organization regarding the communication (out of scope).
Post-condition: CMS and subsystem may not work together.: The interface between CMS and subsystem is
closed.

Table 7.293 - Methods of Interface Provide_Subsystem_Identification_CMS

Method Notes Parameters
receive_sub_identification_data() Receive the identification data from

the subsystem.
device_identification_type
identification
request_id_type the_request_id

Provide_Subsystem_Identification_Sub
Type: Interface
Package: Provide_Subsystem_Identification

Table 7.294 - Methods of Interface Provide_Subsystem_Identification_Sub

Method Notes Parameters
receive_cms_identification_data() Receive the identification data from

the CMS.
device_identification_type
identification
request_id_type the_request_id

«idlInterface»

Provide_Subsystem_Identification_CMS

«idlInterface»

Provide_Subsystem_Identification_Sub

alt Alternative Flows

[CMS may not work with subsystem]

[CMS may work with subsystem, but Subsystem may not work with CMS]

accepted = false

accepted = true

accepted = false

receive_sub_identification_data(device_identification_type,
request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_cms_identification_data(device_identification_type,
request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.114 Alternative Flow - Introduction of subsystems (Interaction diagram)

«idlInterface»

Provide_Subsystem_Identification_CMS

«idlInterface»

Provide_Subsystem_Identification_Sub

accepted = true

accepted = true

receive_sub_identification_data(device_identification_type,
request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_cms_identification_data(device_identification_type,
request_id_type)

Figure 7.115 Basic Flow - Introduction of the subsystem (Interaction diagram)

7.8.3.4 Provide_Health_State

Parent Package: Subsystem_Control

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 233

Provide_Health_State_CMS
Type: Interface
Package: Provide_Health_State
The service allows the CMS to monitor and evaluate the health state of the subsystem. The health state information
describes functional availability of the subsystem and the services it provides.

The service may be triggered by several possible situations:
· Periodic event, for example by internal clock,
· Actor (CMS) request,
· Health state change,
· Initialization (start-up),
· Recovery of the subsystem after a failure.

In addition to the health state being provided, additional information may be provided to the CMS. In case of a
service, the information may include a list of detected faults. In case of a subsystem, the information may include
the list of services together with their health state, and for every service which has health state other than
AVAILABLE, a list of detected faults. This two dimensional structure is called the service availability matrix.

The state NOT AVAILABLE may also describe the situation in which the service is not implemented. In this case
the list of faults shall be empty. In the state UNKNOWN, the subsystem may provide the reason for not being able
to evaluate health state (e.g. BIT process not running).

The service ends with success when the health state (possibly accompanied by additional information) is provided to
the actor.

Relationship to technical state.
The reported health state of the services is dependent on the technical state.
In the technical state ONLINE, the health state of the services is determined based on the detected faults (if any).
In all technical states other than ONLINE (except OFFLINE), the health state of all services, except the service
Subsystem_Control, is NOT AVAILABLE.
The health state of the service Subsystem_Control shall then be DEGRADED, since some functions (e.g. Control
Battle Override) are not available in those technical states, and some functions are (e.g. Manage Technical State).
In the technical state OFFLINE no communication at all is possible with the CMS so the health state is not reported.

Relationship to battle override.
When Battle Override is set (see service Control Battle Override), certain faults are not taken into account when
determining the health state. These overridable faults generally refer to circumstances that may cause damage to
own equipments, but do not prohibit executing the requested task.

Relationship to simulation mode.
If the subsystem is in Simulation mode (technical state is ONLINE), only the faults for parts needed for the
simulated execution of the service are taken into account when determining the health state of a service.
For instance, if the transmitter is defective, the service Track_Reporting is reported AVAILABLE when in
Simulation mode, but is reported NOT AVAILABLE when not in Simulation mode.
Faults may also be simulated for training purposes (see service Define Fault Script). Therefore, irrespective of the
Simulation mode, all faults (real and simulated) are included in the reported list of detected faults, each with an
indication whether the fault is real or simulated.
If a real system part is simulated, faults of the simulated part should have a different identification.
For instance (see previous example) in Simulation mode, a simulated transmitter could be used, for which the trainer
has inserted a simulated fault.
Any faults in the real transmitter would be reported (real fault) as well as the injected fault in the simulated
transmitter (simulated fault). However, the health state of the service Track_Reporting would be based only on the
status of the simulated transmitter.

Reason for health state

Each reported health state other than AVAILABLE is accompanied by the reason(s) for that health. In this way the
CMS may for instance derive that although the technical state of the subsystem is STANDBY (and NOT
AVAILABLE for that reason), there are also faults that would prevent the service to become AVAILABLE when
the technical state would be switched to ONLINE.
Pre-condition: Subsystem technical state: The subsystem is in technical state ONLINE, STANDBY or READY.
Post-condition: CMS awareness: CMS is aware of the health state of the subsystem and/or its services.

Table 7.295 - Methods of Interface Provide_Health_State_CMS

Method Notes Parameters
report_fault() Report a fault to CMS fault_type the_fault

report_service_health() Report health of service request_id_type request_id
service_health_type health
fault_list_type the_fault_list

report_subsystem_health() Report health of subsystem request_id_type request_id
subsystem_health_type health

provide_service_health() Report health of service (on
subsystem initiative)

service_health_type health
fault_list_type the_fault_list

provide_subsystem_health() Report health of subsystem (on
subsystem initiative)

subsystem_health_type health

Provide_Health_State_Sub
Type: Interface
Package: Provide_Health_State

Table 7.296 - Methods of Interface Provide_Health_State_Sub

Method Notes Parameters
request_service_health() Request service health request_id_type request_id

service_name_type service_name

request_subsystem_health() Request subsystem health request_id_type request_id

«idlInterface»

Provide_Health_State_CMS

«idlInterface»

Provide_Health_State_Sub

Fault reporting on event
(occurrence and
disappearance)

report_fault(fault)

Figure 7.116 Basic Flow - Fault Reporting (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 235

Ollie Newman, 02/08/24
OARIS3-51

Ollie Newman, 02/08/24
OARIS3-48

Figure 7.117 Basic Flow - Service Health Reporting (Interaction diagram)

Ollie Newman, 02/08/24
OARIS3-51

Figure 7.118 Basic Flow - Subsystem Health Reporting (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 237

Ollie Newman, 02/08/24
OARIS3-51

7.8.3.5 Manage_Operational_Mode

Parent Package: Subsystem_Control

Manage_Operational_Mode_CMS
Type: Interface
Package: Manage_Operational_Mode
Subsystems provide several operational modes like long-range-detection, missile-detection, surface surveillance etc.
in case of surveillance radar, normal tracking, slaved, joystick controlled in case of fire control radar etc.

Operational modes summarise a set of subsystem parameters optimising the subsystem with respect to an
operational purpose.

The names of modes of a specific type of subsystem (e.g. or a radar) differ from supplier to supplier. Consequently,
they shall be handled as configuration parameters. They shall be offered to the operator to enable him for a selection
and shall be transferred to the subsystem to achieve the intended reaction.

The definition of names of operational modes is not within the scope of this standard.

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

In the case where the CMS does not have mastership of the subsystem, a change of the operational mode shall be
indicated by informing the CMS about the new operational mode (see service "Provide health state").

Configuration data like the set of available operational modes may be received at runtime but may also be inserted
by means of an automatic or manual setup process. Although automatic runtime transfer of such information may be
achieved through ‘Manage Subsystem Parameters’ it is not a mandatory requirement of this standard for that
mechanism to be used.
Pre-condition: Technical state READY or ONLINE.:
Pre-condition: "Manage Subsystem Parameters" executed successfully:
Pre-condition: CMS must have Mastership:
Post-condition: Service ends with success: - the subsystem is in the commanded operational state, the CMS is
informed that this is the case
Post-condition: Service ends with fail: - the subsystem is still in the original operational state, the CMS has the
correct information regarding that state.

Table 7.297 - Methods of Interface Manage_Operational_Mode_CMS

Method Notes Parameters
report_operational_mode() The current operational mode is

reported via this interface method.
request_id_type request_id
operational_mode_type
current_mode

configure_operational_functions() function_type function A function
operated by the subsystem

Manage_Operational_Mode_Sub
Type: Interface
Package: Manage_Operational_Mode

Table 7.298 - Methods of Interface Manage_Operational_Mode_Sub

Method Notes Parameters
request_get_operational_mode() The subsystem is requested to report

the current operational mode.
request_id_type request_id

request_set_operational_mode() The subsystem is requested to
change the operational mode to the
given new operational mode.

request_id_type request_id
operational_mode_type
new_operational_mode

Manage_Operational_Mode_CMS
Type: ActivityPartition
Package: Manage_Operational_Mode

Manage_Operational_Mode_Sub
Type: ActivityPartition
Package: Manage_Operational_Mode

«idlInterface»

Manage_Operational_Mode_CMS

«idlInterface»

Manage_Operational_Mode_Sub

request_ack.success =
SUCCESS

request_ack.success =
ERROR_CODE

alt get current operational mode

[basic flow]

[alternate flow - request rejection]

[alternate flow - error]

'error_reason' is the
current operation mode
that differs from the
requested mode.

request_get_operational_mode(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_operational_mode(request_id_type, operational_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.119 Manage Operational Mode - get current operational mode (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "get
current operational mode" of the service "Manage Operational Mode".

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 239

«idlInterface»

Manage_Operational_Mode_CMS

«idlInterface»

Manage_Operational_Mode_Sub

alt set operational mode

[basic flow]

[alternate flow - request rejection]

[alternate flow - differing operational modes]

request_ack.success =
SUCCESS

request_ack.success =
ERROR_CODE

'error_reason' is the
current operation mode
that differs from the
requested mode.

alt operational mode change

[command: set operational mode]

[spontaneous operational mode change]

For spontaneous operational mode
change, request_id == 0.

receive_acknowledgement(request_id_type, request_ack_type)

report_operational_mode(request_id_type, operational_mode_type)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_operational_mode(request_id_type, operational_mode_type)

report_operational_mode(request_id_type, operational_mode_type)

request_set_operational_mode(request_id_type, operational_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.120 Manage Operational Mode - set operational mode (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "set
operational mode" of the service "Manage Operational Mode".

7.8.3.6 Control_Battle_Override

Parent Package: Subsystem_Control
This package contains interfaces for the Control Battle Override service.
Control_Battle_Override_CMS
Type: Interface
Package: Control_Battle_Override
The subsystem is requested to set/reset the Battle Override. When Battle Override is set the subsystem disregards
warnings on circumstances which may cause damage to own equipment, typically the overtemperature protections.

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

Provision of the Battle Override state
Subsystem shall keep CMS informed about the current Battle Override state and its changes (if any).

Lack of mastership
In the case where CMS does not have mastership of the subsystem, CMS shall be informed about the current Battle
Override state and its changes (if any).

Relationship to the subsystem health state
As long as the Battle Override is set, the subsystem internal overtemperature indications shall not result in any heath
state set to “NOT AVAILABLE” (see Provide health state).
Pre-condition: Mastership Required: CMS has mastership of the subsystem
Pre-condition: Subsystem Services: Provide subsystem services has been completed successfully.
Post-condition: Success: The subsystem Battle Override is set/reset as requested and CMS is informed that this is
the case.
Post-condition: No Success: The subsystem Battle Override is still equal to the original one and CMS has the
correct information regarding that state.

Table 7.299 - Methods of Interface Control_Battle_Override_CMS

Method Notes Parameters
battle_override_setting() This metod is used by the subsystem

to return the current Battle Override
state.

request_id_type request_id
battle_override_state_type
battle_override_state

Control_Battle_Override_Sub
Type: Interface
Package: Control_Battle_Override

Table 7.300 - Methods of Interface Control_Battle_Override_Sub

Method Notes Parameters
set_battle_override() This method is used by the CMS to

send a Battle Override set/reset
request to the subsystem,

request_id_type request_id
battle_override_state_type
battle_override_state

«idlInterface»

Control_Battle_Override_Sub

«idlInterface»

Control_Battle_Override_CMS

set_battle_override(request_id_type, battle_override_state_type)

battle_override_setting(request_id_type, battle_override_state_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.121 Basic Flow - Control Battle Override - Set/Reset (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 241

«idlInterface»

Control_Battle_Override_CMS

«idlInterface»

Control_Battle_Override_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

battle_override_setting(request_id_type,
battle_override_state_type)

set_battle_override(request_id_type,
battle_override_state_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.122 Alternative Flow - Control Battle Override - Set/Reset - loss of mastership (Interaction diagram)

7.8.3.7 Manage_Subsystem_Parameters

Parent Package: Subsystem_Control

Manage_Subsystem_Parameters_CMS
Type: Interface
Package: Manage_Subsystem_Parameters
The service allows the actor to obtain and modify the values of parameters of the subsystem. It also provides the
facilities to retrieve the descriptions of parameters available in a certain subsystem.

The actor of the service is the Combat Management System.

The service starts when the CMS requests one of the following:
· Parameter value retrieval
· Parameter value modification
· Retrieval of parameter descriptor,
with a list of parameter names (and values in case of modification).
A parameter value may be structured (e.g. a vector or a table).
The service ends when the subsystem has provided the requested information or modified the parameter value.

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

Parameter names used by a subsystem are to be unique within the scope of that subsystem. Requests for parameter
descriptions and to get and set current values are consequently well-defined. Parameter names may be structured
using a namespace scheme to promote uniqueness.

Unknown parameter

On receipt of a request for parameter value retrieval, parameter value modification or parameter descriptor retrieval
for an unknown parameter name, the subsystem responds with an indication “unknown parameter”. Other (correctly
identified) parameters in the same request are processed as requested.

Illegal parameter value
On receipt of a request for parameter value modification with a parameter value that is outside the allowable range
of the specified parameter, the subsystem responds with an indication “illegal parameter value” and does not change
the parameter value.
This includes inconsistencies of parameter type (e.g. real where integer is expected) and structure (e.g. vector of 2
elements, where a vector of 3 is expected).
Other parameters with legal values in the same request are modified as requested.
In case of an illegal value for an element of a structured parameter, the entire parameter remains unchanged.

Modification of parameter value
A parameter value may only be modified in the technical state(s) as specified in the descriptor of that parameter.

Security
Access to the service may be restricted to certain parts of the CMS because of security restrictions.
Pre-condition: Subsystem technical state: The subsystem is in a technical state other than OFFLINE.
Pre-condition: Mastership: The CMS has mastership of the subsystem in case of parameter value modification.

Table 7.301 - Methods of Interface Manage_Subsystem_Parameters_CMS

Method Notes Parameters
report_parameter_values() request_id_type request_id

name_value_sequence_type
the_name_value_set
name_error_sequence_type
the_name_error_set

report_parameter_descriptors() request_id_type request_id
descriptor_sequence_type
the_descriptor_sequence
name_error_sequence_type
the_name_error_set

Manage_Subsystem_Parameters_Sub
Type: Interface
Package: Manage_Subsystem_Parameters

Table 7.302 - Methods of Interface Manage_Subsystem_Parameters_Sub

Method Notes Parameters
retrieve_parameter_values() request_id_type request_id

parameter_name_sequence_type
the_name_set

modify_parameter_values() request_id_type request_id
name_value_sequence_type
the_name_value_set

retrieve_parameter_descriptors() request_id_type request_id
parameter_name_sequence_type
the_name_set

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 243

«idlInterface»

Manage_Subsystem_Parameters_CMS

«idlInterface»

Manage_Subsystem_Parameters_Sub

If name_sequence is
empty, all shall be
retrieved

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

receive_acknowledgement(request_id_type, request_ack_type)

report_parameter_values(request_id_type,
name_value_sequence_type,
name_error_sequence_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

retrieve_parameter_values(request_id_type,
parameter_name_sequence_type)

Figure 7.123 Basic Flow - Parameter Retrieval (Interaction diagram)

«idlInterface»

Manage_Subsystem_Parameters_CMS

«idlInterface»

Manage_Subsystem_Parameters_Sub

alt

[basic flow]

[alternative flow: processing failed]

[alternative flow: request rejected]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

Mastership is required for modification of parameters.
Not satisfying this precondition shall lead to rejection of the request.

For each of the parameters in the name_value_sequence the subsystem shall check whether:
- the parameter has a known parameter name,
- the new parameter value is valid,
- the parameter may be modified in the subsystems actual technical state,
- the parameter may be modified in the subsystems actual operational mode.
Each parameter not satisfying all conditions shall not be modified (for structured parameters all
elements need to satisfy these conditions), and a corresponding name_error_pair shall be returned in
the name_error_sequence.
Parameters satisfying the conditions shall be modified directly (during the processing of the request),
taking into account that for structured parameters all elements shall be modified at the same
moment, and a corresponding name_value_pair shall be returned in the name_value_sequence.

report_parameter_values(request_id_type,
name_value_sequence_type,
name_error_sequence_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)

modify_parameter_values(request_id_type,
name_value_sequence_type)

Figure 7.124 Basic Flow - Parameter Value Modification (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 245

«idlInterface»

Manage_Subsystem_Parameters_CMS

«idlInterface»

Manage_Subsystem_Parameters_Sub

If the name_sequence is
empty, all shall be
retrieved

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

receive_acknowledgement(request_id_type, request_ack_type)

retrieve_parameter_descriptors(request_id_type,
parameter_name_sequence_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_parameter_descriptors(request_id_type,
descriptor_sequence, name_error_sequence_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

Figure 7.125 Basic Flow - Parameter Descriptor Retrieval (Interaction diagram)

7.8.3.8 Provide_Subsystem_Services

Parent Package: Subsystem_Control

PackageTag: No_PSM = DDS
Provide_Subsystem_Services_CMS
Type: Interface
Package: Provide_Subsystem_Services
Subsystems offer a number of services to a CMS. Some of the services are mandatory for the type of subsystem,
others are optional. New services may be known to the CMS or may not be known.
Consequently, the CMS needs to know which services are provided by a subsystem and the subsystem needs to
know which services the CMS is able to interact with.
The services considered here are the final versions of those that are specified and defined by the rest of this standard.
Some of them are not necessarily implemented by each product of the type of subsystem but also not necessarily
supported by each CMS.
The service-related information provided by the subsystem to the CMS deals with both, the interfaces offered by the
subsystem and the interfaces expected on CMS side which are necessary to use the service.

Lack of mastership
Mastership of the subsystem must not have an impact upon this interface.

Plug-&-Play aspect

Both sides, subsystem and CMS, shall follow a technical evolution process which is not necessarily coordinated.
Therefore, the latest subsystem version may provide a service which is not yet supported by the CMS or the CMS
may be prepared to use a service which is not provided by the subsystem.
This may also cause inconsistencies regarding the interfaces to be made available on both sides. As the subsystem
may not have an own operator display, it is intended to use the health state of the subsystem if an indication at CMS
is to be achieved saying that the interface to the CMS is not implemented properly.

Configuration data of services
The information to be provided to the CMS as information about the implemented services may include related
configuration data and may include the information which parts of the service interfaces are supported.

System integration test
After installation of a subsystem on-board, connecting the hardware interfaces with the related CMS hardware
interfaces and performing a setup process if applicable it is expected that an interface verification procedure shall be
performed. This procedure shall apply all negotiated interfaces so that an improper implementation shall turn-up at
that occasion, already. Insofar, the alternative flows should be considered as an integration aid, only.

Spontaneous reporting
Interfaces for which registration/de-registration is considered as an optional facility are written, accordingly.
Registration/de-registration of recipients is done using standard registration mechanism (register interest)
Pre-condition: Subsystem identification.: Provide subsystem identification has been passed successfully.
Post-condition: The CMS is aware of the services and related interfaces supported by the subsystem.:
Post-condition: The subsystem is aware of the service-related interfaces the CMS may interact with.:
Post-condition: The Services do not match.: Each of the alternative flows indicates a fatal error which means that
the interface is not implemented properly. The CMS does not take any further action but alerts the operator,
accordingly.

Table 7.303 - Methods of Interface Provide_Subsystem_Services_CMS

Method Notes Parameters
receive_implemented_services() Receive services which are

implemented by a subsystem
request_id_type the_request_id
service_indication_list_type
service_indication_list

Provide_Subsystem_Services_Sub
Type: Interface
Package: Provide_Subsystem_Services

Table 7.304 - Methods of Interface Provide_Subsystem_Services_Sub

Method Notes Parameters
receive_supported_services() Receive services which are

supported by the CMS
request_id_type the_request_id
service_list_type
supported_service_list

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 247

«idlInterface»

Provide_Subsystem_Services_CMS

«idlInterface»

Provide_Subsystem_Services_Sub

alt Altenative Flows

[Subsystem interface not found]

[CMS does not accept request]

[CMS interface not found]

[Subsystem does not accept request]

accepted == False
denial_reason == Interface xy not implemented

accepted == False
denial_reason == Request not accepted

accepted == True

accepted == False
denial_reason == Interface xy not implemented

accepted == False
denial_reason == Request not accepted

receive_implemented_services(request_id_type, service_indication_list_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_supported_services(request_id_type, service_list_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.126 Alternative Flow - Service negotiation (Interaction diagram)

«idlInterface»

Provide_Subsystem_Services_CMS

«idlInterface»

Provide_Subsystem_Services_Sub

receive_supported_services(request_id_type, service_list_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_implemented_services(request_id_type, service_indication_list_type)

Figure 7.127 Basic Flow - Service negotiation (Interaction diagram)

7.8.3.9 Manage_Mastership

Parent Package: Subsystem_Control
This package contains interfaces for the Manage Mastership service.
Manage_Mastership_CMS
Type: Interface
Package: Manage_Mastership
Besides the CMS, the subsystem may be controlled via other control points, e.g. the subsystem local control unit.
This interface describes how the CMS, as any other actor, shall handle the exclusive control of the subsystem
(mastership). In fact, every subsystem may be controlled by only one actor at the same time. Only the actor who has
the mastership of a subsystem may have exclusive control of the subsystem. Exclusive control means that the
subsystem may accept only commands sent by the actor who has its mastership.
The subsystem Mastership may be acquired in two ways:

1. PERIODIC MASTERSHIP REQUEST: The actor who wants to acquire the mastership of a subsystem send to
it a periodic Mastership request; the subsystem may accept or deny. Once acquired, the subsystem Mastership is
released giving up the periodic Mastership requests sending. This happens both in case of intentional decision
and critical event as CMS unavailability or connection loss. As long as CMS wants to maintain the Mastership
of the subsystem, it shall continue the periodic Mastership requests sending. The CMS is informed about the
Mastership control state by receiving a periodic message sent by the subsystem.

1. ASYNCHRONOUS MASTERSHIP REQUEST: The actor who wants to acquire the mastership of a subsystem
send to it an asynchronous request. the subsystem may accept or deny. Once acquired, the mastership is until
the mastership owner decides to intentionally release it or until a critical event, which is mastership owner
unavailability or connection failure, occurs. In case of intentional mastership release, the CMS shall send an
asynchronous mastership release request. In case of critical event, the mastership of the subsystem is
automatically released. This happens when the subsystem does no longer receive the CMS heartbeat. The CMS
is informed about the Mastership control state by receiving an asynchronous message sent on change by the
subsystem.

Mastership management rules
The subsystem Mastership assignment is controlled by the subsystem itself according to the following rules:
· no more than one Master at any time, so the subsystem may not be commanded by more than one control point
· the actor which wants to acquire the subsystem Mastership shall ask the subsystem for it, so no request no

assignment
· subsystem assigns the Mastership to any actor asking for it without any priority policy, no actor is "more

important" than any other.
· On each request, the mastership may be assigned only if it’s free, that is not already assigned (unless a

Mastership override request is received)

The Mastership management protocol is managed as follows:
· actor which wants to acquire the subsystem Mastership shall ask for it sending to the subsystem the Mastership

requests which could be asynchronous or periodic
· in case of periodic request for Mastership assignment, as long as the actual Master wants to maintain the

Mastership, it shall continue the periodic Mastership requests sending
· if the actual Master wants to release the Mastership in case of periodic request for Mastership management, it

shall give up the periodic Mastership requests sending, otherwise, in case of asynchronous request, it shall send
an asynchronous request for mastership release

· subsystem keeps informed about the actual Mastership state and its changes (if any).

At any time the subsystem Mastership may be either “free”, that is assigned to none and then available to anybody
asks for it, or assigned to somebody, where this somebody may be CMS or not. At the subsystem power-on the
Mastership is “free”, then:

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 249

· as long as the Mastership state is “free”, the first received Mastership request shall be satisfied (whether the
requestor is CMS or not)

· as long as the Mastership is assigned (to CMS or to somebody other than CMS), the current Master shall
maintain the Mastership possession until the Mastership owner is no longer available or decides to release it

· as long as the Mastership is assigned (to CMS or to somebody other than CMS), Mastership requests received
from other than the current Master shall be no satisfied, unless a Mastership Override is received, which shall
force a Mastership switch to another Master

Note that the Mastership possession is required to control the subsystem (e.g. execute write commands to it), but it is
not required to communicate with subsystem and receive information from it.

Mastership Override
The Mastership management protocol could include a Mastership Override to force a Mastership switch from a
Master to another one.
Pre-condition: Subsystem Services: Provide subsystem services is successfully passed
Post-condition: Success: The subsystem Mastership state is assigned to CMS or not assigned to CMS, according
to the CMS requests, and CMS is informed about.
Post-condition: No Success: The subsystem Mastership state is not according to the CMS requests and CMS has
the correct information regarding that state (except in the case of connection loss).

Table 7.305 - Methods of Interface Manage_Mastership_CMS

Method Notes Parameters
report_mastership_setting() This method is used by the

subsystem to return the mastership
state.

mastership_state_type control_state

Manage_Mastership_Sub
Type: Interface
Package: Manage_Mastership

Table 7.306 - Methods of Interface Manage_Mastership_Sub

Method Notes Parameters
acquire_mastership() This method is used by the CMS to

acquire the mastership.
unsigned long count This parameter
is used with implementation specific
semantics to manage subsystem
mastership.subsystem_id_type
target_subsystem_id The subsystem
to which the request to acquire
mastership is being sent.
request_id_type request_id
unsigned long count This parameter
is used with implementation specific
semantics to manage subsystem
mastership.

release_mastership() This method is used by the CMS to
release the mastership.

unsigned long count This parameter
is used with implementation specific
semantics to manage subsystem
mastership.subsystem_id_type
target_subsystem_id The subsystem
to which the request to acquire

mastership is being sent.
request_id_type request_id
unsigned long count This parameter
is used with implementation specific
semantics to manage subsystem
mastership.

Figure 7.128 Basic Flow - Mastership Acquisition - asynchronous request (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 251

Ollie Newman, 02/08/24
OARIS3-19

Ollie Newman, 02/08/24
OARIS3-19

Figure 7.129 Basic Flow - Mastership Acquisition - periodic request (Interaction diagram)

Ollie Newman, 02/08/24
OARIS3-19

Figure 7.130 Basic Flow - Mastership Release - asynchronous request (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 253

Ollie Newman, 02/08/24
OARIS3-19

Figure 7.131 Basic Flow - Mastership Release - periodic request (Interaction diagram)

7.8.3.10 Register_Interest

Parent Package: Subsystem_Control

PackageTag: No_PSM = DDS
Register_Interest_CMS
Type: Interface
Package: Register_Interest
This service allows the CMS to register (and deregister) interest in other services. It is explicitly meant to address
the possibility of CMS “subscribing” to information supplied by the subsystem, with the understanding that the
information shall be provided by the subsystem, without the need for further request. Such mode of operation may
be applicable for those services, which have been reported as such in Provide subsystem services. This includes
typically track and plot reporting services, but may involve other services as well.

The service starts when the actor registers interest in information provided by a service. The registration shall
include information on:
· The service for which the actor wants to register / deregister his interest
· The information within the service for which the actor wants to register / deregister his interest
· The intended (direct or indirect) recipient(s) of the information provided by the subsystem.
· Any parameters of the provision needed such as Quality of Service parameters.

The service ends when the subsystem confirms registration / deregistration of interest.
Pre-condition: Sensor health state: The sensor and the service need to be in the health state AVAILABLE or
DEGRADED.

Ollie Newman, 02/08/24
OARIS3-19

Table 7.307 - Methods of Interface Register_Interest_CMS

Method Notes Parameters
confirm_registration() Confirm registration of interest request_id_type request_id

Register_Interest_Sub
Type: Interface
Package: Register_Interest

Table 7.308 - Methods of Interface Register_Interest_Sub

Method Notes Parameters
register_interest() Register interest in the service request_id_type request_id

interest_list_type the_interest_list

«idlInterface»

Register_Interest_CMS

«idlInterface»

Register_Interest_Sub

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

register_interest(request_id_type, interest_list)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack_type)

confirm_registration(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.132 Basic Flow - Interest Registration (Interaction diagram)

7.8.4 Recording_and_Replay
Parent Package: Subsystem_Services
Contains the interfaces controlling recording and replay.

7.8.4.1 Control_Recording

Parent Package: Recording_and_Replay

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 255

Contains the interface controlling the recording of information.
Control_Recording_CMS
Type: Interface
Package: Control_Recording
The interface describes how the CMS controls the recording of information. Such information may be used to
support:
· Setting-to Work/Commissioning
· Equipment monitoring
· Performance monitoring and evaluation
· ‘Black Box’ recording
· Safety of Life at Sea (SOLAS) recording
· De-briefing
· Training
· Post exercise analysis
For the purposes of this interface, ‘recording’ is defined as the synchronous capture of real-time information at a
defined rate. Provision of additional ‘live’ real-time data for instrumentation purposes, i.e. for display rather than
recording, is outside the scope.

Each record within the recording must be identified and time-stamped.
The operation of the recording function must not affect normal operation of the subsystem.
For simplicity, concurrent recording and replay is not supported.
Pre-condition: Provide Subsystem Services must have executed successfully.:
Pre-condition: The subsystem must be in Technical State READY or ONLINE:
Pre-condition: The CMS must have Mastership.:
Post-condition: After successful termination, the recording is available for replay via Control_Replay, using the
identifier specified.:
Post-condition: In the case of abnormal termination, there is a possible fault in the recording subsystem.:
Control_Recording_Sub
Type: Interface
Package: Control_Recording

Table 7.309 - Methods of Interface Control_Recording_Sub

Method Notes Parameters
define_recording_set() Specifies what is to be recorded request_id_type request_id

recording_set_type
recording_parameters_list

start_recording() Starts the recording as specified.
Note that only one recording may be
running at a time.

request_id_type request_id
recording_id_type id

stop_recording() Stops the recording request_id_type request_id

«idlInterface»

Control_Recording_CMS

«idlInterface»

Control_Recording_Sub

The subsystem records
the data as requested.

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The recording request is
rejected for some reason

Recording starts but fails
to complete for some
reason

define_recording_set(request_id_type, recording_set_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

start_recording(request_id_type, recording_id_type)

stop_recording(request_id_type)

Figure 7.133 Control Recording (Interaction diagram)

This shows the required sequential behaviour for Control_Recording, See diagram embedded notes for further
explanation.

7.8.4.2 Control_Replay

Parent Package: Recording_and_Replay
Contains the interfaces controlling the replay of information; either using the original interfaces or as a data dump
for offline processing.
Control_Replay_CMS
Type: Interface
Package: Control_Replay
This interface defines how the CMS controls the replay of information previously recorded using
Control_Recording
Replay is supported in two modes: REAL-TIME and RAW. REAL-TIME mode is used to replay in real time, or at a
multiple of real-time, data that was visible on other OARIS interfaces via the interfaces used during recording. RAW
mode is used to replay data that was visible on other OARIS interfaces and/or internal subsystem data that was not
available on other OARIS interfaces. In this case the data is merely transferred to the CMS as a set of time-tagged
values with no attempt made to reconstruct real-time behaviour.
One or more recordings must have been made using Control_Recording.
For simplicity, concurrent recording and replay is not supported.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 257

Pre-condition: Provide Subsystem Services must have executed successfully.:
Pre-condition: The subsystem must be in Technical State READY or ONLINE:
Pre-condition: The CMS must have Mastership..:
Pre-condition: In the case of abnormal termination, there is a possible fault in the replay subsystem. :

Table 7.310 - Methods of Interface Control_Replay_CMS

Method Notes Parameters
end_of_recording() The subsystem has reached the end

of the recording before a stop
command was received.

request_id_type request_id

receive_recording() Used to transfer a raw recording to
the CMS

request_id_type request_id
recording_type
requested_recording The raw
recording data.

Control_Replay_Sub
Type: Interface
Package: Control_Replay

Table 7.311 - Methods of Interface Control_Replay_Sub

Method Notes Parameters
resume_replay() Resumes replay following a stop

command
request_id_type request_id
actual_time_type actual_time The
current time (time of day) at which
playback should start. This allows
synchronisation of playback from
different subsystems.
replay_speed_type replay_speed
Controls the replay speed. 1.0
represents real time.

start_replay() Starts replay as specified request_id_type request_id
replay_set_type
replay_parameters_list
recording_id_type id
actual_time_type actual_time The
current time (time of day) at which
playback should start. This allows
synchronisation of playback from
different subsystems.
recorded_time_type recorded_time
The time in the recording at which
playback should start.
replay_speed_type replay_speed
Controls the replay speed. 1.0
represents real time.

stop_replay() Stops replay request_id_type request_id

upload_recording() Requests transfer of a raw recording request_id_type request_id
recording_id_type id

«idlInterface»

Control_Replay_CMS

«idlInterface»

Control_Replay_Sub

opt resume

[replay resumed]

opt stop

[stop command issued before end]

loop optional stop/resume loop

The subsystem waits until
the specified time then
replays the data on the
interfaces where the data
was originally recorded.

The subsystem resumes
replay of the data on the
interfaces where the data
was originally recorded.

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The replay request is
rejected for some reason

Processing proceeds as in case 1 (requested accepted, processing
succeeds), but a failure occurs before completion

end_of_recording(request_id_type)

stop_replay(request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

resume_replay(request_id_type, actual_time_type, replay_speed_type)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

start_replay(request_id_type, replay_set_type, recording_id_type,
actual_time_type, recorded_time_type, replay_speed_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.134 Control Replay (Interaction diagram)

This shows the required sequential behaviour for Control_Replay using real_time mode, See diagram embedded
notes for further explanation.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 259

«idlInterface»

Control_Replay_CMS

«idlInterface»

Control_Replay_Sub

opt stop

[stop command issued before end]

The subsystem transfers
the data to the CMS

Replay terminates

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The replay request is
rejected for some reason

Processing proceeds as in case 1 (requested accepted, processing succeeds), but a
failure occurs before completion

upload_recording(request_id_type, recording_id_type)

receive_error(request_id_type, error_reason_type)

receive_recording(request_id_type, recording_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

stop_replay(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

end_of_recording(request_id_type)

Figure 7.135 Control Replay (RAW) (Interaction diagram)

This shows the required sequential behaviour for Control_Replay using raw mode, See diagram embedded notes for
further explanation.

7.8.5 Simulation_Support
Parent Package: Subsystem_Services

7.8.5.1 Define_Simulation_Scenario

Parent Package: Simulation_Support

Define_Simulation_Scenario_CMS
Type: Interface
Package: Define_Simulation_Scenario
This describes how the contents of a simulation scenario are communicated between the CMS and the subsystem.
The CMS provides the subsystem with a simulated environment which consists of simulated objects of different
kinds.
A subsystem with built-in simulation capability may participate in this simulation not only by being a consumer of
the simulated environment but by contributing actively to it.

Radar type subsystems shall typically build simulated plots or tracks from the simulated environment, while
contributing simulated electromagnetic emissions to it. These simulated emissions may in turn be used and detected
by other (ESM type) simulations.
Weapon type subsystems when in simulation mode shall typically contribute simulated objects to the simulation that
represent the launch/firing and movement of own missiles, bullets or torpedoes and their effect on other simulated
objects.
Thus CMS, and subsystem both contribute to the simulated environment. Together they form a simulation
federation.

The actor is the Combat Management System.

Relationship to ‘control simulation’
The definition of simulation mode and flow of commands to start/stop/freeze/resume a simulation scenario are
defined in ‘control simulation’.

Relationship to provision of tracks
A radar type subsystem shall provide tracks based on information from the simulated environment, as described
above. The interfaces that deal with the provision of tracks indicate whether tracks are simulated or not under
amplifying information. This indication should be set for all tracks that are reported in the context of this interface.

Relationship to Receive geographic information
Geographic information is received by using ‘Receive geographic information’.
Pre-condition: Subsystem health state.: The subsystem and the relevant subsystem services need to be in the
health state AVAILABLE or DEGRADED.
Pre-condition: CMS has mastership.:
Pre-condition: Subsystem simulation mode.: The subsystem must be in subsystem simulation mode ON to
participate in the simulation federation.
Pre-condition: Simulation scenario started.: The actor must have started or resumed a simulation scenario.
Pre-condition: Geographic information.: The subsystem may need geographic information about its simulated
surroundings available locally or by means of other interfaces in order to calculate the detectability or reachability of
simulated objects due to obstacles in the surroundings.

Table 7.312 - Methods of Interface Define_Simulation_Scenario_CMS

Method Notes Parameters
write_emitter_system_data_CMS() Write emitter system data anonymous_blob_type

emitter_system_data

write_radar_beam_data() Write radar beam data anonymous_blob_type
radar_beam_data

Define_Simulation_Scenario_Sub
Type: Interface
Package: Define_Simulation_Scenario

Table 7.313 - Methods of Interface Define_Simulation_Scenario_Sub

Method Notes Parameters
write_emitter_system_data_Sub() Write emitter system data anonymous_blob_type

emitter_system_data

write_environment_data() Write environment data anonymous_blob_type
environmental_entity_data

write_jammer_beam_data() Write jammer beam data anonymous_blob_type

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 261

jammer_beam_data

write_platform_data() Write platform data anonymous_blob_type
platform_data

«idlInterface»

Define_Simulation_Scenario_CMS

«idlInterface»

Define_Simulation_Scenario_Sub

All information is
exchanged upon
event or change in
no specific order.

opt

write_jammer_beam_data(anonymous_blob_type)

write_platform_data(anonymous_blob_type)

write_environment_data(anonymous_blob_type)

write_emitter_system_data(anonymous_blob_type)

Figure 7.136 Basic Flow - Define Simulation Scenario Data (Interaction diagram)

«idlInterface»

Define_Simulation_Scenario_CMS

«idlInterface»

Define_Simulation_Scenario_Sub

All information is
exchanged upon
event or change in
no specific order.

write_emitter_system_data(anonymous_blob_type)

write_radar_beam_data(anonymous_blob_type)

Figure 7.137 Basic Flow - Define Subsystem Scenario Data (Interaction diagram)

7.8.5.2 Control_Simulation

Parent Package: Simulation_Support

Control_Simulation_CMS
Type: Interface
Package: Control_Simulation
This service controls the simulation mode of a subsystem. This simulation mode is independent of the operational
mode of the subsystem. Simulation mode is either ON or OFF. “ON” has different meanings for different kinds of
subsystems. Effector type subsystems shall not engage real targets but shall simulate the engagement instead. Sensor
type subsystems may be fed with simulated targets which shall be reported as plots or tracks. In each case while in
simulation mode “ON” the subsystem shall strictly avoid any impact on the environment that could be the result if
simulation mode was “OFF”.

The actor is the Combat Management System.

Basic Flow – Control simulation mode

Start event – command of simulation-mode

The service is triggered by the actor. The actor commands the simulation mode which may be one of the following:
· ON: This indicates that the subsystem shall operate in simulation mode
· OFF: This indicates that the subsystem shall stop operating in simulation mode and that any current simulation

shall be terminated
On occurrence of the trigger provision of subsystem-simulation-mode is executed.

Provision of subsystem-simulation-mode
After receipt of the simulation mode from the actor the subsystem responds with its subsystem simulation mode.
The subsystem simulation mode may be one of the two:
· ON: This indicates that the subsystem is operating in simulation mode
· OFF: This indicates that the subsystem is not operating in simulation mode

Basic Flow – Control Simulation (Start/Resume, Stop/Freeze)

START/RESUME simulation scenario
Only when in simulation mode ON:
Upon provision of the START/RESUME command by the actor the simulation scenario starts or is resumed after a
previously issued FREEZE.

STOP/FREEZE simulation scenario
Only when in simulation mode ON:
Upon provision of the STOP/FREEZE command by the actor the simulation scenario stops or stays frozen.
The service ends.

Provision on initialization
The simulation mode shall be provided by the actor after initialization of the CMS.

The flow of information relevant to subsystem simulation are the subject of another service: Define simulation
scenario.
If simulation is stopped or frozen simulation time of the subsystem and the actor shall be also stopped.
The synchronization of simulation time may be performed using START/RESUME command.
Pre-condition: CMS has mastership.:

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 263

Table 7.314 - Methods of Interface Control_Simulation_CMS

Method Notes Parameters
report_sim_mode_status() Receive the status and mode of

simulation.
request_id_type request_id
sim_mode_status_type the_status

Control_Simulation_Sub
Type: Interface
Package: Control_Simulation

Table 7.315 - Methods of Interface Control_Simulation_Sub

Method Notes Parameters
start_resume_session() This request shall be initiated on

demand of the CMS. If the
subsystem is in simulation mode it
shall start/resume its simulation
session and acknowledges the
request.

request_id_type request_id

start_stop_sim_mode() This request shall be initiated on
demand of the CMS to
activate/deactivate the simulation
mode of the subsystem. The
subsystem needs to acknowledge the
request.

request_id_type request_id
start_stop_sim_mode_request_type
the_request

stop_freeze_session() This request shall be initiated on
demand of the CMS. If the
subsystem is in simulation mode and
the session state is running the
subsystem needs to stop/freeze its
session and acknowledges the
request.

request_id_type request_id
stop_freeze_session_request_type
the_request

«idlInterface»

Control_Simulation_CMS

«idlInterface»

Control_Simulation_Sub

alt

[Accepted by Subsystem]

[Rejected by Subsystem]

request_ack.success == false

request_ack.success == true

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack)

start_resume_session(request_id_type)

Figure 7.138 Basic Flow - Control Simulation Start/Resume (Interaction diagram)

«idlInterface»

Control_Simulation_CMS

«idlInterface»

Control_Simulation_Sub

alt

[Accepted by Subsystem]

[Rejected by Subsystem]

request_ack.success == false

request_ack.success == true

stop_freeze_session(request_id_type,
stop_freeze_session_request_type)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack)

Figure 7.139 Basic Flow - Control Simulation Stop/Freeze (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 265

«idlInterface»

Control_Simulation_CMS

«idlInterface»

Control_Simulation_Sub

alt

[Rejected by Subsystem]

[Accepted by Subsystem]

[Accepted by CMS]

[Rejected by CMS]

request_ack.success == false

request_ack.success == false

request_ack.success == true

request_ack.success == true

start_stop_sim_mode(request_id_type,
start_stop_sim_mode_request_type)

receive_acknowledgement(request_id_type, request_ack)

receive_acknowledgement(request_id_type, request_ack)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack)

sim_mode_status(request_id_type,
sim_mode_status_type)

Figure 7.140 Basic Flow - Control Simulation Mode (Interaction diagram)

7.8.5.3 Define_Fault_Scripts

Parent Package: Simulation_Support

Define_Fault_Scripts_CMS
Type: Interface
Package: Define_Fault_Scripts
This enables a maintainer trainer to script a set of subsystem faults, the effects of which would be simulated for
training purposes. The faults may be scripted in relation to a specific simulation scenario. Each fault script shall
include a unique identifier.
Pre-condition: Subsystem Services: Provide subsystem services has been completed successfully, in particular
this service is available.

Table 7.316 - Methods of Interface Define_Fault_Scripts_CMS

Method Notes Parameters
fault_script_summary() This provides a list of all fault scripts

for a subsystem to the CMS for
confirmation.

request_id_type request_id
fault_scripts_type faults The list of
fault scripts

Define_Fault_Scripts_Sub
Type: Interface
Package: Define_Fault_Scripts

Table 7.317 - Methods of Interface Define_Fault_Scripts_Sub

Method Notes Parameters
add_fault_scripts() Adds the given fault scripts to the request_id_type request_id

subsystem's simulation. fault_scripts_type scripts The fault
scripts to be added

remove_fault_scripts() Removes the given fault scripts from
the subsystem's simulation.

request_id_type request_id
fault_script_ids_type fault_scripts
The ids of the fault scripts to be
removed

«idlInterface»

Define_Fault_Scripts_CMS

«idlInterface»

Define_Fault_Scripts_Sub

alt Unsuccessful Request

[Subsystem is unable to process request - e.g. script is not interpretable]

[Subsystem is unable to process request - e.g. a script id is not valid]

Negative
Acknowledgement

Positive
Acknowledgement

Applies to remove_fault_scripts as
well

receive_acknowledgement(request_id_type,
request_ack_type)

add_fault_scripts(request_id_type,
fault_scripts_type)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.141 Alternative Flow - Define Fault Scripts (Interaction diagram)

«idlInterface»

Define_Fault_Scripts_Sub

«idlInterface»

Define_Fault_Scripts_CMS

receive_acknowledgement(request_id, request_ack)

add_fault_scripts(request_id_type,
fault_scripts_type)

fault_script_summary(request_id_type,
fault_scripts_type)

remove_fault_scripts(request_id_type,
fault_script_ids_type)

fault_script_summary(request_id_type,
fault_scripts_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 267

Figure 7.142 Basic Flow - Define Fault Scripts (Interaction diagram)

7.8.5.4 Control_Fault_Scripts

Parent Package: Simulation_Support

Control_Fault_Scripts_CMS
Type: Interface
Package: Control_Fault_Scripts
This enables a trainee, at a CMS Console to cause the generation of predefined fault messages for training purposes
(see also Define Fault Scripts). The subsystem shall output Fault Reports to the CMS which a trainee may respond
to via the CMS Console. Fault clearance messages shall also be sent to the CMS in response to the trainee taking the
appropriate action.
Pre-condition: Technical State: Subsystem is in technical state READY or ONLINE
Pre-condition: Fault Script: Subsystem has a fault script which has been defined previously
Pre-condition: Mastership Required: The CMS has Mastership
Pre-condition: Subsystem Services: Provide Subsystem Services has successfully completed; in particular this
service is available
Pre-condition: Simulation Mode: Simulation Mode is ON
Post-condition: Success: Subsystem has provided simulated fault and response to clearance action
Post-condition: Failure: Subsystem has not provided simulated fault and response to clearance action
Control_Fault_Scripts_Sub
Type: Interface
Package: Control_Fault_Scripts

Table 7.318 - Methods of Interface Control_Fault_Scripts_Sub

Method Notes Parameters
enable_fault_script() Causes the subsystem to indicate the

faults specified by the given fault
scripts when appropriately
stimulated. The faults remain in
place until they are cleared either by
a call to clear_fault or by an action
on another interface that would clear
the equivalent non-simulated fault.

request_id_type request_id
fault_script_ids_type scripts The
script ids to be enabled

clear_faults() Clears the faults defined by the given
fault scripts.

request_id_type request_id
fault_script_ids_type fault_scripts
The script ids to be cleared

«idlInterface»

Control_Fault_Scripts_CMS

«idlInterface»

Control_Fault_Scripts_Sub

alt Negative Acknowledgement

[Subsystem is unable to enact fault condition or fault id is not recognised]

alt Negative Acknowledgement

[Subsystem does not recognise fault id]

enable_fault_script(request_id_type,
fault_script_ids_type)

clear_faults(request_id_type,
fault_script_ids_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.143 Alternative Flow - Control Fault Scripts (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 269

«idlInterface»

Control_Fault_Scripts_Sub

«idlInterface»

Control_Fault_Scripts_CMS

receive_acknowledgement(request_id_type,
request_ack_type)

enable_fault_script(request_id_type,
fault_script_ids_type)

receive_acknowledgement(request_id_type,
request_ack_type)

clear_faults(request_id_type,
fault_script_ids_type)

Figure 7.144 Basic Flow - Control Fault Scripts (Interaction diagram)

7.9 Sensor_Services
Parent Package: Service_Interfaces
Contains services associated with the Sensor Domain.

7.9.1 Clutter_Reporting
Parent Package: Sensor_Services
This package contains interfaces for the Clutter Reporting service.

7.9.1.1 Provide_Area_with_Plot_Concentration

Parent Package: Clutter_Reporting
Contains operations and sequence diagrams for the Provide Area with Plot Concentration interface.
Provide_Plot_Concentration_CMS
Type: Interface
Package: Provide_Area_with_Plot_Concentration
The Radar provides the combat management system with the number of plots in a specific sector. The sector
information consists of range, azimuth, and elevation. The number of plots observed in the region may provide an
indication of high clutter.

Additional Information:

The information may be developed when requested or based on scan histories. The choice of methods depends upon
radar design. The timestamp should indicate the oldest data used to create the report to allow the CMS or an
operator to determine the validity of the report (i.e. day old data mixed with recent is still only as good as day old
data).

Sector Information must consist of a measurement time stamp, range extents, azimuth extents, and elevation extents
in platform coordinates.

For radars which report plot concentration without a CMS request, the CMS shall begin to receive reports upon
registration of the Provide Plot Concentration interface.
Pre-condition: Radar in ONLINE State:
Post-condition: None:

Table 7.319 - Methods of Interface Provide_Plot_Concentration_CMS

Method Notes Parameters
receive_periodic_plot_concentration(
)

Interface used by CMS to receive
periodic plot concentration reports
from the subsystem.

plot_concentration_report_type
plot_concentration_report

receive_plot_concentration() Interface used by the CMS to receive
a requested plot concentration report
from the subsystem.

request_id_type request_id
plot_concentration_report_type
plot_concentratrion

Provide_Plot_Concentration_Sub
Type: Interface
Package: Provide_Area_with_Plot_Concentration

Table 7.320 - Methods of Interface Provide_Plot_Concentration_Sub

Method Notes Parameters
provide_plot_concentration() Interface used by the subsystem to

receive a plot concentration request
from the CMS.

request_id_type request_id
plot_concentration_request_data_typ
e plot_request

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 271

«idlInterface»

Provide_Plot_Concentration_CMS

«idlInterface»

Provide_Plot_Concentration_Sub

alt

[Basic Flow]

[Unable to comply with request]

[Error encountered following an accepted request]

receive_acknowledgement(request_id,
request_ack)

receive_plot_concentration(request_id_type,
plot_concentration_report_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

provide_plot_concentration(request_id_type,
plot_concentration_request_data_type)

Figure 7.145 Provide Plot Concentration - Report Requested by CMS (Interaction diagram)

Flow of events which depicts a subsystem that reports plot concentration following an explicit request from the
CMS (also depicts alternate rejection and error paths).

«idlInterface»

Provide_Plot_Concentration_CMS

«idlInterface»

Provide_Plot_Concentration_Sub

loop

[Periodic at interval specified in subsystem parameters]

receive_periodic_plot_concentration(plot_concentration_report_type)

Figure 7.146 Provide Plot Concentration - Periodic (Interaction diagram)

Flow of events which depicts a subsystem that periodically reports plot concentration reports (without the need for a
CMS request).

7.9.1.2 Provide_Clutter_Assessment

Parent Package: Clutter_Reporting
Contains operations and sequence diagrams for the Provide Clutter Assessment interface.
Provide_Clutter_Assessment_CMS
Type: Interface
Package: Provide_Clutter_Assessment
The radar reports visible clutter to the combat management system. The report shall include a map (collection of
cells) with information on range, azimuth, elevation and intensity in platform relative coordinates. Clutter may be
classified by type, Land, Sea, Weather (optional), etc.. Intensity may be indicated by linear signal-to-noise ratio
(SNR), log-linear SNR, linear power received, log-linear power received (e.g. dBm, dBW), linear Radar Cross
Section (square meters), or log-linear RCS (dbsm).

For radars which report clutter assessment without a CMS request, the CMS shall begin to receive reports upon
registration of the Provide Clutter Assessment interface.
Pre-condition: Radar is in ONLINE State:
Pre-condition: The Radar is capable of distinguishing clutter from targets.:
Post-condition: None:

Table 7.321 - Methods of Interface Provide_Clutter_Assessment_CMS

Method Notes Parameters
receive_clutter_assessment() Interface used by the CMS to receive

a requested clutter assessment report
from the subsystem.

request_id_type request_id
clutter_report_type clutter_report

receive_periodic_clutter_assessment(
)

Interface used by CMS to receive
periodic clutter assessment reports
from the subystem.

clutter_report_type clutter_report

Provide_Clutter_Assessment_Sub

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 273

Type: Interface
Package: Provide_Clutter_Assessment

Table 7.322 - Methods of Interface Provide_Clutter_Assessment_Sub

Method Notes Parameters
provide_clutter_assessment() Interface used by the subsystem to

receive a clutter assessment request
from the CMS.

request_id_type request_id
clutter_assessment_request_type
clutter_request

«idlInterface»

Provide_Clutter_Assessment_CMS

«idlInterface»

Provide_Clutter_Assessment_Sub

alt

[Basic Flow]

[Unable to comply with request]

[Error encountered following an accepted request]

receive_acknowledgement(request_id,
request_ack)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

receive_clutter_assessment(request_id_type,
clutter_report_type)

provide_clutter_assessment(request_id_type,
clutter_assessment_request_type)

Figure 7.147 Provide Clutter Assessment (Interaction diagram)

Flow of events which depicts a subsystem that reports a clutter assessment following an explicit request from the
CMS (also depicts alternate rejection and error paths).

«idlInterface»

Provide_Clutter_Assessment_CMS

«idlInterface»

Provide_Clutter_Assessment_Sub

loop Periodic

[Interval specified in subsystem parameters]

receive_periodic_clutter_assessment(clutter_report_type)

Figure 7.148 Periodic Clutter Reporting (Interaction diagram)

Flow of events which depicts a subsystem that periodically reports a clutter assessment (without the need for a CMS
request).

7.9.2 Media_Streaming
Parent Package: Sensor_Services
This package contains interfaces for the Media Streaming service.

7.9.2.1 Allocate_Tracks_To_Stream

Parent Package: Media_Streaming

Allocate_Tracks_to_Stream_CMS
Type: Interface
Package: Allocate_Tracks_To_Stream
This service allows the CMS to receive the allocation of sensor tracks to media streams

Table 7.323 - Methods of Interface Allocate_Tracks_to_Stream_CMS

Method Notes Parameters
report_media_stream_allocation() For a sensor to report on the

allocation of tracks to one of its
media streams

media_allocation_type allocation
The allocation of sensor tracks to a
media stream

Allocate_Tracks_To_Stream_Sub
Type: Interface
Package: Allocate_Tracks_To_Stream

Table 7.324 - Methods of Interface Allocate_Tracks_To_Stream_Sub

Method Notes Parameters
Add_Track_To_Stream() A request to add the sensor's track to

the specified stream.
media_stream_id_type Stream_Id
sensor_track_id_type Track_Id
request_id_type Request_Id

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 275

Remove_Track_From_Stream() A request to remove the sensor's
track from the specified stream.

media_stream_id_type Stream_Id
sensor_track_id_type Track_Id
request_id_type Request_Id

Add_All_Tracks_To_Stream() A request to add all the sensor's
tracks to the specified stream.

media_stream_id_type Stream_Id
request_id_type Request_Id

Remove_All_Tracks_From_Stream() A request to remove all the sensor's
tracks from the specified stream.

media_stream_id_type Stream_Id
request_id_type Request_Id

common_use_case_interface

«idlInterface»
Allocate_Tracks_to_Stream_CMS

+ report_media_stream_allocation(media_allocation_type): void

«idlInterface»
Allocate_Tracks_To_Stream_Sub

+ Add_Track_To_Stream(media_stream_id_type, sensor_track_id_type, request_id_type): void
+ Remove_Track_From_Stream(media_stream_id_type, sensor_track_id_type, request_id_type): void
+ Add_All_Tracks_To_Stream(media_stream_id_type, request_id_type): void
+ Remove_All_Tracks_From_Stream(media_stream_id_type, request_id_type): void

Figure 7.149 Allocate_Tracks_To_Stream (Class diagram)

«idlInterface»

Allocate_Tracks_to_Stream_CMS

«idlInterface»

Allocate_Tracks_To_Stream_Sub

opt Subsystem unable to add track to media stream

[track invalid for media stream or unknown to sensor]

opt Subsystem unable to remove track from media stream

[track mandatory for media stream]

negative acknowledgement

negative acknowledgement

report_media_stream_allocation(media_allocation_type)

receive_acknowledgement(request_id_type, request_ack_type)

Remove_Track_From_Stream(media_stream_id_type, sensor_track_id_type, request_id_type)

Add_Track_To_Stream(media_stream_id_type, sensor_track_id_type, request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.150 Allocate_Tracks_To_Stream - Alternate Flow (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 277

«idlInterface»

Allocate_Tracks_to_Stream_CMS

«idlInterface»

Allocate_Tracks_To_Stream_Sub

Add an additional track

Initial allocation of tracks

Remove one of the existing tracks from
the media stream

Remove all the tracks

All the tracks back

receive_acknowledgement(request_id_type, request_ack_type)

report_media_stream_allocation(media_allocation_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_media_stream_allocation(media_allocation_type)

Add_All_Tracks_To_Stream(media_stream_id_type, request_id_type)

report_media_stream_allocation(media_allocation_type)

Remove_All_Tracks_From_Stream(media_stream_id_type, request_id_type)

Remove_Track_From_Stream(media_stream_id_type, sensor_track_id_type, request_id_type)

Add_Track_To_Stream(media_stream_id_type, sensor_track_id_type, request_id_type)

report_media_stream_allocation(media_allocation_type)

report_media_stream_allocation(media_allocation_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.151 Allocate_Tracks_To_Stream - Basic Flow (Interaction diagram)

7.9.2.2 Configure_Media_Streams

Parent Package: Media_Streaming

Configure_Media_Streams_CMS
Type: Interface
Package: Configure_Media_Streams
This service allows the CMS to be informed about the configuration of media streams provided by the sensor.

Table 7.325 - Methods of Interface Configure_Media_Streams_CMS

Method Notes Parameters
configure_media_stream() media_stream_metadata_type

metadata The metadata for the
stream

Configure_Media_Streams_Sub
Type: Interface
Package: Configure_Media_Streams

«idlInterface»

Configure_Media_Streams_CMS

«idlInterface»

Configure_Media_Streams_Sub

loop

[each of the sensor's media streams]
configure_media_stream(media_stream_metadata_type)

Figure 7.152 Configure_Media_Streams (Interaction diagram)

«idlInterface»
Configure_Media_Streams_CMS

+ configure_media_stream(media_stream_metadata_type): void

«idlInterface»
Configure_Media_Streams_Sub

Figure 7.153 Configure_Media_Streams (Class diagram)

7.9.3 Search
Parent Package: Sensor_Services
This package contains interfaces for the Search service.

7.9.3.1 Perform_Cued_Search

Parent Package: Search

Perform_Cued_Search_CMS
Type: Interface
Package: Perform_Cued_Search
The CMS Search Interface.
The subsystem is requested to undertake a cued search in the requested cue volume or to the requested track. The
cue may be 1D (azimuth only), 2D (has an additional elevation constraint), 3D (has a further range constraint) or 4D
(has a further target velocity constraint). The response of the subsystem is either to reject the cued search request if it
is invalid within the current mode/configuration or to provide a cue request reply containing data relating to any
resulting tracks.
Depending upon the individual radar it may be possible to predefine a cued search waveform
The cued search request may contain azimuth, elevation and range data along with time of the positional data.
Pre-condition: Technical State: The Subsystem is in Technical State ONLINE.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 279

Pre-condition: Mastership: The CMS has Mastership
Pre-condition: Subsystem Services: The Provide Subsystem Services Service has been executed successfully.
Post-condition: Success: The CMS has received a 'Cued Search Report'
Post-condition: Failure: The CMS has not received a 'Cued Search Report'

Table 7.326 - Methods of Interface Perform_Cued_Search_CMS

Method Notes Parameters
report_cued_search_result() Send a report to the CMS containing

the results of a previously cued
search.

cued_search_report_type
result_report The result of the
search.
request_id_type request_id The
unique id relating to this cued search
request as supplied by the CMS.

Perform_Cued_Search_Sub
Type: Interface
Package: Perform_Cued_Search
The Subsystem Search Interface.

Table 7.327 - Methods of Interface Perform_Cued_Search_Sub

Method Notes Parameters
perform_cued_search() Request to subsystem to perform a

cued search in accordance with the
given set of constraints.

cued_search_cue_type constraint
The details of the constraints on
where the radar is to look for tracks.
request_id_type request_id The
unique id for this request. The radar
includes this in all replies relating to
this request.

perform_cue_to_track() Request to subsystem to perform a
cue to the position of a track
produced by a different subsystem.

sensor_track_id_type
sensor_track_id The identifier of the
track to cue to.
string subsystem_name The name
of the subsystem that produced the
track to cue to.
request_id_type request_id The
unique id for this request. The radar
includes this in all replies relating to
this request.

perform_surveillance() surveillance_task_type
surveillance_task The surveillance
task to be performed
request_id_type request_id The
unique id for this request. The sensor
includes this in all replies relating to
this request.

stop_surveillance() request_id_type request_id The
unique id for this request. The sensor
includes this in all replies relating to
this request.

 stop_cued_search() Request to subsystem to stop a cued request_id_type request_id The

search. unique id for this request. The sensor
includes this in all replies relating to
this request.

«idlInterface»

Perform_Cued_Search_CMS

«idlInterface»

Perform_Cued_Search_Sub

loop

[Ammendment Required]

stop_surveillance(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

perform_surveillance(surveillance_task_type, request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

perform_surveillance(surveillance_task_type, request_id_type)

Figure 7.154 Basic Flow - Perform Surveillance (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 281

Ollie Newman, 02/08/24
OARIS3-22

«idlInterface»

Perform_Cued_Search_CMS

«idlInterface»

Perform_Cued_Search_Sub

opt Negative Acknowledgement

[Subsystem has incorrect internal mode for a cued search]

opt Subsystem search failure

[Subsystem encounters an error condition in performing a cued search]

Failure to form a track from a cued search is not an error
condition.This results in a report without a track identifier
being returned.

receive_acknowledgement(request_id, request_ack)

perform_cued_search(cued_search_cue_type,
request_id_type)

receive_error(request_id, error_reason)

Figure 7.155 Alternative Flow - Sensor does not Perform Cued Search (Interaction diagram)

Figure 7.156 Basic Flow - Perform Cued Search (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 283

Ollie Newman, 02/08/24
OARIS3-22

«idlInterface»

Perform_Cued_Search_CMS

«idlInterface»

Perform_Cued_Search_Sub

opt Negative Acknowledgement

[Subsystem has incorrect internal mode for a cued search]

opt Subsystem search failure

[Subsystem encounters an error condition in performing a cued search]

Failure to form a track from a cue to track is not an error
condition. This results in a report without a track identifier
being returned.

receive_error(request_id, error_reason)

receive_acknowledgement(request_id, request_ack)

perform_cue_to_track(sensor_track_id_type, string, request_id_type)

Figure 7.157 Alternative Flow - Sensor does not Perform Cued To Track (Interaction diagram)

«idlInterface»

Perform_Cued_Search_CMS

«idlInterface»

Perform_Cued_Search_Sub

The cued search report may
not contain a track identifier
resulting from the search.

loop

[More than one track found]

report_cued_search_result(cued_search_report_type, request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

perform_cue_to_track(sensor_track_id_type, string, request_id_type)

report_cued_search_result(cued_search_report_type, request_id_type)

Figure 7.158 Basic Flow - Perform Cued To Track (Interaction diagram)

7.9.4 Sensor_Assessment
Parent Package: Sensor_Services
This package contains interfaces for the Sensor Assessment service.

Figure 7.159 Sensor_Assessment (Class diagram)

7.9.4.1 Assess_Sensor_Plot

Parent Package: Sensor_Assessment

Provide_Sensor_Plot_Assessment_CMS
Type: Interface
Package: Assess_Sensor_Plot
The interface for a sensor to provide assessments (identification and classification) of sensor plots to the CMS. It is
expected that the assessment relates to matching the plot's measurement parameters to reference data. The sensor
provides a set of mode, equipment and/or platform matches relating to a particular plot (referenced by the plot id).
Therefore the sensor plot must have a plot_id attribute defined.

Table 7.328 - Methods of Interface Provide_Sensor_Plot_Assessment_CMS

Method Notes Parameters
write_equipment_assessment() To report on the overall equipment

assessment for a sensor plot.
sensor_plot_equipment_assessment_t
ype equipment_assessment The
assessment of the equipment to
which the sensor track's data may
correspond.

write_platform_assessment() To report on the overall platform
assessment for a sensor plot.

sensor_plot_platform_assessment_ty
pe platform_assessment The
assessment of the platform to which
the sensor track's data may
correspond.

write_mode_assessment() To report on the overall mode
assessment for a sensor plot.

sensor_plot_mode_assessment_type
assessment The overall assessment
of mode (of the detected equipment)
for a sensor track

Provide_Sensor_Plot_Assessment_Sub
Type: Interface
Package: Assess_Sensor_Plot
The interface by which a CMS can control the sensor's assessment of the plot data. The sensor matches parametric
measurements to reference data and then reports each of these sets as an assessment for each plot for the categories
of equipment modes, equipment marks (build standards / versions) and platform instances (or platform classes). The
sensor also reports what it has assessed to be the best match.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 285

Figure 7.160 Assess_Sensor_Plot (Interaction diagram)

«idlInterface»
Provide_Sensor_Plot_Assessment_CMS

+ write_equipment_assessment(sensor_plot_equipment_assessment_type): void
+ write_platform_assessment(sensor_plot_platform_assessment_type): void
+ write_mode_assessment(sensor_plot_mode_assessment_type): void

«idlInterface»
Provide_Sensor_Plot_Assessment_Sub

Figure 7.161 Assess_Sensor_Plot (Class diagram)

7.9.4.2 Assess_Sensor_Track

Parent Package: Sensor_Assessment

Provide_Sensor_Track_Assessment_CMS
Type: Interface
Package: Assess_Sensor_Track
The interface for a sensor to provide assessments (identification and classification) of sensor tracks to the CMS. The
sensor matches parametric measurements to reference data and then reports each of these sets as an assessment for
each track for the categories of equipment modes, equipment marks (build standards / versions) and platform
instances (or platform classes). The sensor also reports what it has assessed to be the best match and the match

Ollie Newman, 02/08/24
OARIS3-28

currently selected. The currently selected match influences the attributes reported for the sensor track (including its
recognition and identification).
The CMS uses the select and deselect methods to set or override the match that is selected for an assessment of a
sensor track.
Sensors report a track to the CMS using the Track Reporting use case before providing an assessment. Assessments
are only reported for tracks whilst the sensor track is in the TRACKED track state.

Table 7.329 - Methods of Interface Provide_Sensor_Track_Assessment_CMS

Method Notes Parameters
write_equipment_assessment() To report on the overall equipment

assessment for a sensor track.
sensor_track_equipment_assessment
_type equipment_assessment The
assessment of the equipment to
which the sensor track's data may
correspond.

write_platform_assessment() To report on the overall platform
assessment for a sensor track.

sensor_track_platform_assessment_t
ype platform_assessment The
assessment of the platform to which
the sensor track's data may
correspond.

write_multipath_set() To report on the assessment of a set
of sensor track representing the same
real world object through multiple
paths.

multipath_set_type set

write_mode_assessment() To report on the overall mode
assessment for a sensor track.

sensor_track_mode_assessment_type
assessment The overall assessment
of mode (of the detected equipment)
for a sensor track

Provide_Sensor_Track_Assessment_Sub
Type: Interface
Package: Assess_Sensor_Track
The interface by which a CMS can control the sensor's assessment of the track data.

Table 7.330 - Methods of Interface Provide_Sensor_Track_Assessment_Sub

Method Notes Parameters
select_equipment_assessment() The CMS selects a particular

equipment match as being the
authoritative assessment for the
sensor track with regard to the
equipment it is a detection of. The
Subsystem, thereafter reports the
sensor track in accordance with this
assessment.

request_id_type request_id The
unique identifier of the request to
select the match
long match_id The identifier of the
match to be selected
sensor_track_id_type
sensor_track_id The sensor track to
which the assessment applies

select_platform_assessment() The CMS selects a particular
platform match as being the
authoritative assessment for the
sensor track with regard to the
platform it is a detection of. The
Subsystem, thereafter reports the
sensor track in accordance with this
assessment.

request_id_type request_id The
unique identifier of the request to
select the match
long match_id The identifier of the
match to be selected
sensor_track_id_type
sensor_track_id The sensor track to
which the assessment applies

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 287

select_mode_assessment() The CMS selects a particular mode
match as being the authoritative
assessment for the sensor track with
regard to the equipment mode it is a
detection of. The Subsystem,
thereafter reports the sensor track in
accordance with this assessment.

request_id_type request_id The
unique identifier of the request to
select the match
long match_id The identifier of the
match to be selected
sensor_track_id_type
sensor_track_id The sensor track to
which the assessment applies

deselect_equipment_assessment() The CMS deselects equipment match
as being the authoritative assessment
for the sensor track with regard to
the equipment it is a detection of.
The Subsystem, stops reporting the
sensor track in accordance with the
previously selected assessment.

request_id_type request_id The
unique identifier of the request to
deselect matches
sensor_track_id_type
sensor_track_id The sensor track to
which the assessment applies

deselect_platform_assessment() The CMS deselects platform match
as being the authoritative assessment
for the sensor track with regard to
the platform it is a detection of. The
Subsystem, stops reporting the
sensor track in accordance with the
previously selected assessment.

request_id_type request_id The
unique identifier of the request to
deselect matches
sensor_track_id_type
sensor_track_id The sensor track to
which the assessment applies

deselect_mode_assessment() The CMS deselects mode match as
being the authoritative assessment
for the sensor track with regard to
the equipment it is a detection of.
The Subsystem, stops reporting the
sensor track in accordance with the
previously selected assessment.

request_id_type request_id The
unique identifier of the request to
deselect matches
sensor_track_id_type
sensor_track_id The sensor track to
which the assessment applies

common_use_case_interface

«idlInterface»
Provide_Sensor_Track_Assessment_CMS

+ write_equipment_assessment(sensor_track_equipment_assessment_type): void
+ write_platform_assessment(sensor_track_platform_assessment_type): void
+ write_multipath_set(multipath_set_type): void
+ write_mode_assessment(sensor_track_mode_assessment_type): void

«idlInterface»
Provide_Sensor_Track_Assessment_Sub

+ select_equipment_assessment(request_id_type, long, sensor_track_id_type): void
+ select_platform_assessment(request_id_type, long, sensor_track_id_type): void
+ select_mode_assessment(request_id_type, long, sensor_track_id_type): void
+ deselect_equipment_assessment(request_id_type, sensor_track_id_type): void
+ deselect_platform_assessment(request_id_type, sensor_track_id_type): void
+ deselect_mode_assessment(request_id_type, sensor_track_id_type): void

Figure 7.162 Assess_Sensor_Track (Class diagram)

«idlInterface»

Provide_Sensor_Track_Assessment_CMS

«idlInterface»

Provide_Sensor_Track_Assessment_Sub

Negative acknowledgement

alt Unable to deselect

[No assessment for sensor track]

Negative acknowledgement

Negative acknowledgement

Negative acknowledgement

alt Unable to select

[Mode match doesn't exist]

[Equipment match doesn't exist]

[Platform match doesn't exist]

Negative acknowledgement

Negative acknowledgement

receive_acknowledgement(request_id_type, request_ack_type)

select_equipment_assessment(request_id_type, long)

receive_acknowledgement(request_id_type, request_ack_type)

deselect_equipment_assessment(request_id_type)

deselect_mode_assessment(request_id_type)

write_mode_assessment(sensor_track_mode_assessment_type)

deselect_platform_assessment(request_id_type)

select_platform_assessment(request_id_type, long)

receive_acknowledgement(request_id_type, request_ack_type)

write_equipment_assessment(sensor_track_equipment_assessment_type)

select_mode_assessment(request_id_type, long)

write_platform_assessment(sensor_track_platform_assessment_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.163 Assess_Sensor_Track - alternate flows (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 289

«idlInterface»

Provide_Sensor_Track_Assessment_CMS

«idlInterface»

Provide_Sensor_Track_Assessment_Sub

opt Per Sensor Track Assessment

[mode assessed]

[equipment assessed]

[platform assessed]

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

write_mode_assessment(sensor_track_mode_assessment_type)

write_platform_assessment(sensor_track_platform_assessment_type)

write_equipment_assessment(sensor_track_equipment_assessment_type)

write_equipment_assessment
(sensor_track_equipment_assessment_type)

write_mode_assessment(sensor_track_mode_assessment_type)

receive_acknowledgement(request_id_type, request_ack_type)

select_mode_assessment(request_id_type, long)

select_platform_assessment(request_id_type, long)

select_equipment_assessment(request_id_type, long)

write_platform_assessment
(sensor_track_platform_assessment_type)

Figure 7.164 Assess_Sensor_Track - assessment and selection (Interaction diagram)

CMS user selects an
equipment match for
the sensor track

CMS user reconsiders the
sensor track and deselects
the equipment match

«idlInterface»

Provide_Sensor_Track_Assessment_CMS

«idlInterface»

Provide_Sensor_Track_Assessment_Sub

receive_acknowledgement(request_id_type, request_ack_type)

write_equipment_assessment(sensor_track_equipment_assessment_type)

write_equipment_assessment(sensor_track_equipment_assessment_type)

select_equipment_assessment(request_id_type, long)

write_equipment_assessment(sensor_track_equipment_assessment_type)

deselect_equipment_assessment(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.165 Assess_Sensor_Track - equipment deselection (Interaction diagram)

«idlInterface»

Provide_Sensor_Track_Assessment_CMS

«idlInterface»

Provide_Sensor_Track_Assessment_Sub

CMS user selects a mode
match assessment for a
track

CMS user reconsiders the
sensor track and deselects the
mode match

receive_acknowledgement(request_id_type, request_ack_type)

select_mode_assessment(request_id_type, long)

write_mode_assessment(sensor_track_mode_assessment_type)

deselect_mode_assessment(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

write_mode_assessment(sensor_track_mode_assessment_type)

write_mode_assessment(sensor_track_mode_assessment_type)

Figure 7.166 Assess_Sensor_Track - mode deselection (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 291

«idlInterface»

Provide_Sensor_Track_Assessment_CMS

«idlInterface»

Provide_Sensor_Track_Assessment_Sub

write_multipath_set(multipath_set_type)

Figure 7.167 Assess_Sensor_Track - multipath (Interaction diagram)

CMS user selects a
platform match for the
sensor track

CMS user reconsiders the
sensor track and deselects
the platform match

«idlInterface»

Provide_Sensor_Track_Assessment_Sub

«idlInterface»

Provide_Sensor_Track_Assessment_CMS

write_platform_assessment(sensor_track_platform_assessment_type)

write_platform_assessment(sensor_track_platform_assessment_type)

write_platform_assessment(sensor_track_platform_assessment_type)

receive_acknowledgement(request_id_type, request_ack_type)

select_platform_assessment(request_id_type, long)

deselect_platform_assessment(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.168 Assess_Sensor_Track - platform deselection (Interaction diagram)

7.9.5 Supplementary_Measurement
Parent Package: Sensor_Services
This package contains interfaces for the Supplementary Measurement service.

7.9.5.1 Configure_Measurement_Parameters

Parent Package: Supplementary_Measurement

Configure_Measurement_Parameters_CMS
Type: Interface
Package: Configure_Measurement_Parameters
The configuration of measurement parameters allows integrated systems to specify the set of measurement types for
which the installed equipment has a measurement capability and semantics associated with these measurement
types.

Measurement types have the potential to be classified and also the set of measurement types can be expected to grow
as technology advances. Therefore the meaning of the associated identifiers are systems specific and determined
from configuration data.

Table 7.331 - Methods of Interface Configure_Measurement_Parameters_CMS

Method Notes Parameters
configure_parametric_measurement(
)

measurement_parameter_kind_type
parameter A kind of parameter
supported by the sensor

Configure_Measurement_Parameters_Sub
Type: Interface
Package: Configure_Measurement_Parameters

«idlInterface»
Configure_Measurement_Parameters_CMS

+ configure_parametric_measurement(measurement_parameter_kind_type): void

«idlInterface»
Configure_Measurement_Parameters_Sub

Figure 7.169 Configure_Measurement_Parameters (Class diagram)

«idlInterface»

Configure_Measurement_Parameters_CMS

«idlInterface»

Configure_Measurement_Parameters_Sub

loop

[each parameter]
configure_parametric_measurement(measurement_parameter_kind_type)

Figure 7.170 Configure_Measurement_Parameters - basic flow (Interaction diagram)

7.9.5.2 Provide_Sensor_Plot_Parameters

Parent Package: Supplementary_Measurement

Provide_Sensor_Plot_Parameters_CMS
Type: Interface

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 293

Package: Provide_Sensor_Plot_Parameters
Interface for a sensor to provide its supplementary parametric data with respect to plots to the CMS. A sensor can
pass a set of measurements with plot data when reporting to the CMS.

Table 7.332 - Methods of Interface Provide_Sensor_Plot_Parameters_CMS

Method Notes Parameters
write_parameter_measurement_set() For the sensor to report on the

measurement of a set of parameters
with a plot defined by configuration
data.

plot_measurement_parameter_set_ty
pe parameter_set The sensor's
measurement of a set of parameters

Provide_Sensor_Plot_Parameters_Sub
Type: Interface
Package: Provide_Sensor_Plot_Parameters

«idlInterface»
Provide_Sensor_Plot_Parameters_CMS

+ write_parameter_measurement_set(plot_measurement_parameter_set_type): void

«idlInterface»
Provide_Sensor_Plot_Parameters_Sub

Figure 7.171 Provide_Sensor_Plot_Parameters (Class diagram)

7.9.5.3 Provide_Sensor_Track_Parameters

Parent Package: Supplementary_Measurement

Provide_Sensor_Track_Parameters_CMS
Type: Interface
Package: Provide_Sensor_Track_Parameters
Interface for a sensor to provide its supplementary parametric data with respect to tracks to the CMS. A sensor can
pass measurements to the CMS individually or as a set (relating to the same track).
Sensors report a track to the CMS using the Track Reporting use case before reporting any of its supplementary
measurements. Supplementary measurements are only reported for tracks whilst the sensor track is in the
TRACKED track state.

Table 7.333 - Methods of Interface Provide_Sensor_Track_Parameters_CMS

Method Notes Parameters
write_parameter_measurement() For the sensor to report on the

measurement of an individual
parameter defined by configuration

track_measurement_parameter_type
parameter The sensor's
measurement of a parameter

data.

write_parameter_measurement_set() For the sensor to report on the
measurement of a set of parameters
for a track defined by configuration
data.

track_measurement_parameter_set_t
ype parameter_set The sensor's
measurement of a set of parameters

Provide_Sensor_Track_Parameters_Sub
Type: Interface
Package: Provide_Sensor_Track_Parameters

«idlInterface»
Provide_Sensor_Track_Parameters_CMS

+ write_parameter_measurement(track_measurement_parameter_type): void
+ write_parameter_measurement_set(track_measurement_parameter_set_type): void

«idlInterface»
Provide_Sensor_Track_Parameters_Sub

Figure 7.172 Provide_Sensor_Track_Parameters (Class diagram)

«idlInterface»

Provide_Sensor_Track_Parameters_CMS

«idlInterface»

Provide_Sensor_Track_Parameters_Sub

loop

[each sensor track]

write_parameter_measurement_set(track_measurement_parameter_set_type)

Figure 7.173 Provide_Sensor_Track_Parameters - parameter sets (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 295

«idlInterface»

Provide_Sensor_Track_Parameters_CMS

«idlInterface»

Provide_Sensor_Track_Parameters_Sub

loop

[each sensor track]
loop

[each measurement parameter]

write_parameter_measurement
(track_measurement_parameter_type)

Figure 7.174 Provide_Sensor_Track_Parameters - single parameters (Interaction diagram)

7.9.6 Plot_Reporting
Parent Package: Sensor_Services
This package contains interfaces for the Plot Reporting service.

7.9.6.1 Filter_Plots

Parent Package: Plot_Reporting
This package contains interfaces for the Filter Plots service.
Filter_Plots_CMS
Type: Interface
Package: Filter_Plots
The interface to the CMS for receiving information relating to the filters used to control which plots are made
available to other network segments.
The plot sharing architecture recognizes that connectivity between different platforms hosting sensors may not
support the bandwidth required to share all plot and track updates. It is possible for a sensor also to provide the
networking functionality in which case it is providing an additional role in the interface.

Table 7.334 - Methods of Interface Filter_Plots_CMS

Method Notes Parameters
report_plot_filter() Reports the parameters of one of the

filters that are active for plots in the
communication and networking
subsystem. Plots are transmitted or
received, according to their mode, if
they pass the conditions of at least
one of the active filters.

filter_id_type filter_id The identifier
for the filter
plot_filter_parameters_type
filter_value The criteria for the filter

plot_filter_removed() Reports that a particular plot filter
has been removed.

filter_id_type filter_id The identifier
of the filter removed

Filter_Plots_Sub
Type: Interface
Package: Filter_Plots
The interface to the subsystem for receiving updates to the filters used to control which plots are made available to
other network segments.

The plot sharing architecture recognizes that connectivity between different platforms hosting sensors may not
support the bandwidth required to share all plot and track updates.
In this use case the subsystem is the network component providing connectivity to other platforms, as distinct from
the local sensors providing the plots. It is possible for a sensor to also provide the networking functionality, in which
case it is providing an additional role in the interface.

Table 7.335 - Methods of Interface Filter_Plots_Sub

Method Notes Parameters
add_plot_filter() Adds an active filter for plots to the

communication and networking
subsystem.

request_id_type request_id unique
reference for the request
plot_filter_parameters_type filter
the values to be used to filter plots by

remove_plot_filter() Removes a filter for plots from the
communication and networking
subsystem.

request_id_type request_id The
unique reference for the request
filter_id_type filter_id The identifier
for the filter to be removed

«idlInterface»

Filter_Plots_CMS

«idlInterface»

Filter_Plots_Sub

alt failure cases

[Add fails]

accepted = false
E.g. owing to unsupported
filter data or capacity
exceeded

receive_acknowledgement(request_id_type, request_ack_type)

add_plot_filter(request_id_type, plot_filter_parameters_type)

Figure 7.175 Filter_Plots - alternative flows (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 297

«idlInterface»

Filter_Plots_Sub

«idlInterface»

Filter_Plots_CMS

add_plot_filter(request_id_type, plot_filter_parameters_type)

receive_acknowledgement(request_id_type, request_ack_type)

plot_filter_removed(filter_id_type)

remove_plot_filter(request_id_type, filter_id_type)

report_plot_filter(filter_id_type, plot_filter_parameters_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.176 Filter_Plots - Basic Flow (Interaction diagram)

7.9.6.2 Provide_Sensor_Characteristics

Parent Package: Plot_Reporting
This package contains interfaces for the Provide Sensor Characteristic service.
Provide_Sensor_Characteristics_CMS
Type: Interface
Package: Provide_Sensor_Characteristics
The interface to the CMS for providing information about the characteristics of a sensor. This enables sensor
agnostic processing of sensor data particularly plot data.
Sensor characteristics are sent by the subsystem when it receives a request from the CMS.

Table 7.336 - Methods of Interface Provide_Sensor_Characteristics_CMS

Method Notes Parameters
report_sensor_calibration_model() Method for a sensor subsystem to

inform CMS of its calibration model.
request_id_type request_id The
unique identifier of the request for
the sensor's calibration model
sensor_calibration_model_type
model The sensor's calibration model

report_sensor_precision_model() Method for a sensor subsystem to
inform CMS of its precision model.

request_id_type request_id The
unique identifier of the request for
the sensor's precision model
sensor_precision_model_type model
The sensor's model of its precision

report_sensor_stabilization_model() Method for a sensor subsystem to
inform CMS of its stabilization
model.

request_id_type request_id The
unique identifier of the request for
the sensor's stabilization model
sensor_stabilization_model_type
model The sensor's model of
stabilization characteristics

report_sensor_processing_model() Method for a sensor subsystem to
inform CMS of its processing model.

request_id_type request_id The
unique identifier of the request for
the sensor's processing model
sensor_processing_model_type
model The sensor's model of its own
processing algorithms

Provide_Sensor_Characteristics_Sub
Type: Interface
Package: Provide_Sensor_Characteristics
The interface to the Subsystem for requesting sensor characteristics.

Table 7.337 - Methods of Interface Provide_Sensor_Characteristics_Sub

Method Notes Parameters
request_characteristics() This requests the subsystem to send

its characteristics to the CMS.
request_id_type request_id The
unique identifier for the request

«idlInterface»

Provide_Sensor_Characteristics_Sub

«idlInterface»

Provide_Sensor_Characteristics_CMS

report_sensor_precision_model(request_id_type, sensor_precision_model_type)

request_characteristics(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_sensor_stabilization_model(request_id_type, sensor_stabilization_model_type)

report_sensor_calibration_model(request_id_type, sensor_calibration_model_type)

report_sensor_processing_model(request_id_type, sensor_processing_model_type)

Figure 7.177 Basic Flow - Provide_Sensor_Characteristics on request (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 299

«idlInterface»

Provide_Sensor_Characteristics_CMS

«idlInterface»

Provide_Sensor_Characteristics_Sub

accepted = false
One or more sensors
models are unavailable.

receive_acknowledgement(request_id_type, request_ack_type)

request_characteristics(request_id_type)

Figure 7.178 Provide_Sensor_Characteristics - Alternate Flow - models unavailable (Interaction diagram)

7.9.6.3 Provide_Plots

Parent Package: Plot_Reporting

Provide_Plots_CMS
Type: Interface
Package: Provide_Plots
Interface to the CMS for receiving plot updates.
This interface provides sensor plots to the CMS (filterable to air, surface, land and space environments). The transfer
of data is expected to take place asynchronously, although for certain classes of sensor it may appear periodic
Pre-condition: Subsystem Services: Provide Subsystem Services has successfully executed
Pre-condition: Register Interest: The CMS has successfully registered interest in this service
Post-condition: Success: CMS has received plot datastream

Table 7.338 - Methods of Interface Provide_Plots_CMS

Method Notes Parameters
write_sensor_plot() This method receives a individual

plot update from the sensor. It is
expected to be called periodically
from the sensor.

sensor_plot_type plots The set of
plots

write_sensor_plot_set() This method receives a set of one or
more plot updates from the sensor. It
is expected to be called periodically
from the sensor.

sensor_plot_set_type plots The set
of plots

write_sensor_plot_summary() This method receives a summary of
plots found by the sensor in a region
of the environment. It is expected to
be called periodically from the

plot_summary_type
plot_summary The summary of
the plots

Ollie Newman, 02/08/24
OARIS3-2

sensor.

«idlInterface»

Provide_Plots_CMS

«idlInterface»

plot_reporting_sub

(from Service Level Interfaces & Actors Templates)

loop

[periodic]

loop

[for each return]

This sequence diagram shows the style of
transferring plots individually

write_sensor_plot(sensor_plot_type)

Figure 7.179 Basic Flow - Provide Plots (Individual) (Interaction diagram)

«idlInterface»

plot_reporting_sub

(from Service Level Interfaces &
Actors Templates)

«idlInterface»

Provide_Plots_CMS

loop

[periodic]

This sequence diagram shows the batched
style of updating plots, with whole sets
being transformed atomically.

write_sensor_plot_set(sensor_plot_set_type)

Figure 7.180 Basic Flow - Provide Plots (Sets) (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 301

Figure 7.181 Basic Flow - Provide Plot Summery (Interaction diagram)

7.9.6.4 Provide_Sensor_Orientation

Parent Package: Plot_Reporting

Provide_Sensor_Orientation_CMS
Type: Interface
Package: Provide_Sensor_Orientation
The interface to the CMS for receiving sensor orientation updates.
The sensor provides its orientation in the case that it has movement that is independent of that for the overall
platform. It is provided periodically with a frequency defined using the manage subsystem parameters use case.
Pre-condition: Subsystem Services: Provide Subsystem Services has successfully executed
Pre-condition: Register Interest: The CMS has successfully registered interest in this service
Post-condition: Success: CMS has received sensor orientation datastream

Table 7.339 - Methods of Interface Provide_Sensor_Orientation_CMS

Method Notes Parameters
write_sensor_orientation() Informs the CMS of the orientation

of the sensor
sensor_orientation_type orientation
The orientation of the sensor

Ollie Newman, 02/08/24
OARIS3-2

«idlInterface»

Provide_Sensor_Orientation_CMS

«idlInterface»

plot_reporting_sub

(from Service Level Interfaces &
Actors Templates)

loop

[periodic]

Sensor's with independent movement (e.g.
surveillance and navigation radars that
rotate) provide regular updates on its
orientation. The frequency of updates is defined
using the manage subsystem parameters use
case.

write_sensor_orientation(sensor_orientation_type)

Figure 7.182 Basic Flow - Provide Sensor Orientation (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 303

«idlInterface»
Provide_Sensor_Orientation_CMS

+ write_sensor_orientation(sensor_orientation_type): void

Filter_Plots_CMS
Provide_Plots_CMS

Provide_Sensor_Characteristics_CMS

«idlInterface»
Service Level Interfaces & Actors Templates::plot_reporting_cms

::Filter_Plots_CMS
+ report_plot_filter(filter_id_type, plot_filter_parameters_type): void
+ plot_filter_removed(filter_id_type): void

::Provide_Sensor_Orientation_CMS
+ write_sensor_orientation(sensor_orientation_type): void

::Provide_Plots_CMS
+ write_sensor_plot(sensor_plot_type): void
+ write_sensor_plot_set(sensor_plot_set_type): void

::Provide_Sensor_Characteristics_CMS
+ report_sensor_calibration_model(request_id_type, sensor_calibration_model_type): void
+ report_sensor_precision_model(request_id_type, sensor_precision_model_type): void
+ report_sensor_stabilization_model(request_id_type, sensor_stabilization_model_type): void
+ report_sensor_processing_model(request_id_type, sensor_processing_model_type): void

::common_use_case_interface
+ receive_acknowledgement(request_id_type, request_ack_type): void
+ receive_error(request_id_type, error_reason_type): void

Figure 7.183 Provide_Sensor_Orientation (Class diagram)

7.9.7 Sensor_Control
Parent Package: Sensor_Services
This package contains interfaces for the Sensor Control service.

7.9.7.1 Manage_Frequency_Usage

Parent Package: Sensor_Control
This package contains interfaces for the Manage Frequency Usage service.
Manage_Frequency_Usage_CMS
Type: Interface
Package: Manage_Frequency_Usage
This controls the sensor behaviour with respect to the transmission frequency management. Basing on a discrete set
of transmission frequencies offered by the sensor, CMS may disable/enable the use of a subset of them. As well
CMS may select the sensor transmission mode, i.e. how the sensor shall select the transmission frequencies, among
the set of transmission modes supported by the sensor.

The transmission mode defines how the sensor selects the transmission frequencies, which may be:
· Fixed Frequency: sensor always uses the same pre-selected frequency
· Frequency Diversity: at each transmission sensor selects the frequency to be used inside a pre-selected subset of

frequencies
· Automatic Frequency Selection: at each transmission sensor selects the frequency to be used among the least

jammed frequencies
· Random Agility: at each transmission sensor random selects the frequency to be used.

The availability of each of the above listed transmission modes depends on the sensor type and its capabilities (not
all the sensor types support all them). Besides a transmission mode supported by the sensor may be “selectable” or
“not selectable” according to the specific sensor rules and the state of transmission frequencies.

Both the set of transmission frequencies offered by the sensor and the supported transmission modes (names and
characteristics) differ from sensor to sensor, so they shall be handled as configuration parameters. The sensor reports
all supported frequencies whether or not currently available or enabled.
Sensors cannot enable/disable the setting of the frequency usage at its own initiative, but at any time a transmission
frequency could become not available because of a fault (e.g. fault of the relevant oscillator), and this could affect
the effective availability of one or more sensor supported transmission modes.

Provision of the frequency usage state
Sensor shall keep CMS informed about the current availability of the frequency usage and its changes (if any).

Provision of the transmission mode
Sensor shall keep CMS informed about the currently selected transmission mode, with the relevant parameters, and
its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about both the actual setting
of the frequency usage and the actual transmission mode, with its changes (if any).

State of transmission frequencies
With respect to its operational use each sensor transmission frequency may be “enabled” or “disabled”, according to
the relevant setting. On the other hand, with respect to its health status, each transmission frequency may be
“available” or “not available” according to the presence of faults.
Note that a transmission frequency may be effectively selectable for the sensor transmission if it is both “enabled”
and not in fault.

Relationship to Manage Transmission Sectors
As well as the overall transmission mode, here specified, CMS may define sectors where a devoted transmission
mode is to be applied (see Manage Transmission Sectors).
Pre-condition: Mastership Required: CMS has mastership of the sensor.
Pre-condition: Subsystem Services: Provide subsystem services is successfully passed.
Pre-condition: Transmission Frequencies: CMS knows the transmission frequencies offered by the sensor and
their actual availability.
Pre-condition: Selectable Transmission modes and frequencies: CMS is aware of the currently selectable
transmission modes and transmission frequencies.
Post-condition: Success: Both the setting of the frequency usage and the sensor transmission mode are according
to the request and CMS is informed that this is the case.
Post-condition: No Success: Both the setting of the frequency usage and the sensor transmission mode are
unchanged with respect to the original one and CMS is informed that this is the case.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 305

Table 7.340 - Methods of Interface Manage_Frequency_Usage_CMS

Method Notes Parameters
report_frequencies_state() Method used by the sensor to return

the current availability of the
frequency usage and its changes (if
any).

all_frequencies_state_type
frequencies_state

report_transmission_mode_state() Method used by the sensor to return
the selected transmission mode, with
the relevant parameters, and its
changes (if any).

request_id_type request_id
transmission_frequency_mode_type
transmissionModeSetting

transmission_frequency_state_respo
nse()

Method used by the sensor to return
the actual setting of the frequency
usage modified according to the
request.

request_id_type request_id
selected_frequency_list_type
setting_message

Manage_Frequency_Usage_Sub
Type: Interface
Package: Manage_Frequency_Usage
This is the Subsystem interface for managing frequency usage.

Table 7.341 - Methods of Interface Manage_Frequency_Usage_Sub

Method Notes Parameters
set_frequencies() Method used by the CMS to enable

or disable frequency bands or
discrete frequencies.

request_id_type request_id
selected_frequency_list_type
request

set_transmission_mode() Method used by the CMS to select
the available sensor transmission
mode.

request_id_type request_id
transmission_frequency_mode_type
trasmissionmode

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

loop periodic

Notification may be
periodic or upon change

The sensor reports all supported
frequencies whether or not currently
available or enabled

report_frequencies_state(all_frequencies_state_type)

Figure 7.184 Basic Flow - Frequency Availability Change Notification (Interaction diagram)

«idlInterface»

Manage_Frequency_Usage_Sub

«idlInterface»

Manage_Frequency_Usage_CMS

receive_acknowledgement(request_id_type, request_ack_type)

set_frequencies(request_id, frequencies_set_request)

transmission_frequency_state_response(request_id_type, selected_frequency_list_type)

Figure 7.185 Basic Flow - Enable/Disable Frequency Usage (Interaction diagram)

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

transmission_frequency_state_response(request_id_type, selected_frequency_list_type)

receive_acknowledgement(request_id_type, request_ack_type)

set_frequencies(request_id_type, frequencies_set_request)

Figure 7.186 Alternative Flow - Enable/Disable Frequency Usage - loss of mastership (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 307

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

set_transmission_mode(request_id_type, transmission_frequency_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_transmission_mode_state(request_id_type, transmission_frequency_mode_type)

Figure 7.187 Basic Flow - Transmission Mode Selection (Interaction diagram)

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

report_transmission_mode_state(request_id_type, transmission_frequency_mode_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type,
request_ack_type)

set_transmission_mode(request_id_type, transmission_frequency_mode_type)

Figure 7.188 Alternative Flow - Transmission Mode Selection - loss of mastership (Interaction diagram)

7.9.7.2 Manage_Transmission_Sectors

Parent Package: Sensor_Control
This package contains interfaces for the Manage Transmission Sectors service.
Manage_Transmission_Sectors_CMS
Type: Interface
Package: Manage_Transmission_Sectors

This determines the sectors where the sensor is allowed to radiate together with the relevant transmission modes and
parameters. Sectors may be delimited in azimuth only, or both in azimuth and elevation; for each sector the sensor
may be requested either to no transmit at all or to apply a proper transmission mode. Typical transmission sectors
types are:

· Transmit Inhibit Sectors
sectors where the sensor is not allowed to radiate. Depending on the sensor type and its capabilities, such a type of
sectors may be delimited in azimuth only, or both in azimuth and elevation.

· Reduced Radiate Power Sectors
sectors where the sensor shall radiate at reduced power. Depending on the sensor type and its capabilities, such a
type of sectors may be delimited either in azimuth only or both in azimuth and elevation.

· Transmission Mode Sectors
sectors where the sensor is required to apply a devoted transmission mode (see Manage Frequency Usage).
Depending on the sensor type and its capabilities, such a type of sectors may be delimited either in azimuth only or
both in azimuth and elevation, but they may not overlap each other.

· Blind Arc Sectors
sectors where the sensor is not allowed to radiate. Such a type of sectors may be delimited in azimuth only, or both
in azimuth and elevation, depending on the sensor type and its capabilities. (Note: the same as "Transmit Inhibit
Sectors”, with the difference that sectors are defined in Ship’s Reference System.)

Provision of the sensor transmission sectors setting
Sensor shall keep CMS informed about the actual setting of the transmission sectors and its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual setting of
the transmission sectors and its changes (if any).
Pre-condition: Mastership Required: CMS has mastership of the sensor
Pre-condition: Subsystem Services: Provide subsystem services is successfully passed
Pre-condition: Transmission Sectors: CMS is aware of which types of transmission sectors the sensor may
manage and of their current setting.
Post-condition: Success: The setting of the transmission sectors has been modified according to the request and
CMS is informed that this is the case.
Post-condition: No Success: The setting of the transmission sectors is unchanged with respect to the original one
and CMS is informed that this is the case.

Table 7.342 - Methods of Interface Manage_Transmission_Sectors_CMS

Method Notes Parameters
transmission_sector_setting() Method used by the sensor to return

the actual setting of the transmission
sectors and its changes (if any).

request_id_type request_id
transmission_sector_set_type
setting_message

Manage_Transmission_Sectors_Sub
Type: Interface
Package: Manage_Transmission_Sectors
This is the Subsystem interface for managing transmission sectors.

Table 7.343 - Methods of Interface Manage_Transmission_Sectors_Sub

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 309

Method Notes Parameters
set_transmission_sector() Method used by the CMS to send a

set/reset transmission sector request
to the sensor.

request_id_type request_id
transmission_sector_set_type sector

«idlInterface»

Manage_Transmission_Sectors_Sub

«idlInterface»

Manage_Transmission_Sectors_CMS

if transmission_sector_set
dimension is null, the
operation
set_transmission_sector
get all the current
transmission sector

set_transmission_sector(request_id_type, transmission_sector_set_type)

receive_acknowledgement(request_id_type, request_ack_type)

transmission_sector_setting(request_id, transmission_sector_set)

Figure 7.189 Basic Flow - Manage Transmission Sectors - Enable/Disable (Interaction diagram)

«idlInterface»

Manage_Transmission_Sectors_CMS

«idlInterface»

Manage_Transmission_Sectors_Sub

The
transmission_sector_set
parameter must be not
null

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

transmission_sector_setting(request_id_type, transmission_sector_set)

receive_error(request_id_type, error_reason_type)

set_transmission_sector(request_id_type, transmission_sector_set_type)

Figure 7.190 Alternative Flow - Manage Transmission Sectors - Enable/Disable - loss of mastership (Interaction diagram)

7.9.7.3 Control_Emissions

Parent Package: Sensor_Control
This package contains interfaces for the Control Emissions service.
Control_Emissions_CMS
Type: Interface
Package: Control_Emissions
The sensor is requested to inhibit/enable own emissions. In the case where the sensor is a radar, this shall result in
the Radiation on/off command.
Note that this interface just covers the software managed control of the emission state. For safety reasons many
sensors are supplied with an additional hardware control of own emission state, such as a pushbutton directly
connected to the transmitter.

Provision of the Emission state
Sensor shall keep CMS informed about the current state of emissions and its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

Lack of mastership

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 311

In the case where CMS does not have mastership of the sensor, CMS shall be informed about the current emissions
state and its changes (if any).

Relationship to the Transmission Sectors management
As long as emissions are on, the sensor shall transmit in the sectors where transmission is allowed and according to
the relevant transmission modes and parameters, as determined through Manage Transmission Sectors.
Pre-condition: Mastership Required: CMS has mastership of the sensor
Pre-condition: Subsystem Services: Provide subsystem services is successfully passed
Pre-condition: Emissions State: CMS is aware that actually the sensor may switch its emissions state, e.g. both
the technical state and the health state allow the sensor to switch to Radiation on, no engagement in execution to
switch to Radiation off, and so on.
Post-condition: Success: The sensor emissions state is on/off as requested and CMS is informed that this is the
case.
Post-condition: No Success: The sensor emissions state is still equal to the original one and CMS has the correct
information regarding that state

Table 7.344 - Methods of Interface Control_Emissions_CMS

Method Notes Parameters
control_emission_setting() Method used by the sensor to return

the current state of emissions and its
changes (if any).

request_id_type request_id
control_emission_state_type
emission_state

Control_Emissions_Sub
Type: Interface
Package: Control_Emissions
This is the Subsystem interface for controlling emissions.

Table 7.345 - Methods of Interface Control_Emissions_Sub

Method Notes Parameters
set_control_emission() Method used by the CMS to send an

Emissions on/off request to the
sensor.

request_id_type request_id
control_emission_state_type
control_emission_state

«idlInterface»

Control_Emissions_Sub

«idlInterface»

Control_Emissions_CMS

receive_acknowledgement(request_id_type,
request_ack_type)

control_emission_setting(request_id_type, control_emission_state_type)

set_control_emission(request_id, control_emission_state)

Figure 7.191 Basic Flow - Control Emissions - On/Off (Interaction diagram)

«idlInterface»

Control_Emissions_CMS

«idlInterface»

Control_Emissions_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

control_emission_setting(request_id_type, control_emission_state_type)

receive_error(request_id_type, error_reason_type)

set_control_emission(request_id_type, control_emission_state)

Figure 7.192 Alternative Flow - Control Emissions - On/Off - loss of masterhip (Interaction diagram)

7.9.7.4 Define_Test_Target_Scenario

Parent Package: Sensor_Control
This package contains interfaces for the Define Test Target Scenario service.
Define_Test_Target_Scenario_CMS
Type: Interface
Package: Define_Test_Target_Scenario
This specifies the interactions for defining and modifying a test target scenario. A Test Target scenario consists of a
number of Test Targets to be generated according to their characteristics (positions, motion law, generation
parameters) with the purpose of producing stimuli devoted to the execution of an internal functional test of the
sensor.
A number of Test Target scenarios may be maintained in a sensor internal Test Targets scenarios database, where
each scenario is identified by a unique identification number. Write accesses to this database shall rejected if the
sensor Mastership is not actually assigned to CMS, but the possession of the sensor Mastership is not required for
executing read accesses.
The generation of the so defined Test Target scenarios may be activated as specified in Control Test Target Facility.
For the generation mechanism see the interface Control Test Target Facility

One or more Test Target scenarios may be maintained in a sensor internal Test Targets scenarios database, where
each scenario is identified by an unique identification number. The number of available Test Target scenarios is
accessed by Manage subsystem parameters.

Depending on the sensor type and its capabilities, a Test Target scenario may be constituted by:

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 313

a) a number of independent targets, with each target having own characteristic parameters; so the scenario is
defined by:
· number of targets

and for each target

· the initial target position with the relevant initial time
· target parameters

b) a number of targets distributed in a defined area/volume and having the same common parameters, so the
scenario is defined by:
· number of targets
· area/volume boundaries
· common initial time
· common targets parameters

Target parameters define:
a. the target motion type, with the relevant motion parameters
b. the target generation parameters, such as injection type (internal / external), attenuation law (constant / variable-
with-range), doppler type (0 / PRF/2).
Pre-condition: Mastership Required: CMS has mastership of the sensor
Pre-condition: Subsystem Services: Provide subsystem services is successfully passed
Pre-condition: Test Target Facility: Test Target facility is supported by the sensor and CMS is aware of which
types of Test Target the sensor may manage
Post-condition: Success: Write access:
The specified Test Target scenario is modified according to the request and CMS is informed that this is the case.

Read access:
The requested Test Target scenario is reported to CMS.
Post-condition: No Success: Write access:
The specified Test Target scenario is unchanged and CMS is informed about the denial reason.

Read access:
The requested Test Target scenario is not reported to CMS and CMS is informed about the denial reason.

Table 7.346 - Methods of Interface Define_Test_Target_Scenario_CMS

Method Notes Parameters
test_target_scenario_setting() Method used by the sensor to return

the identification number of the
modified or created test target
scenario.

request_id_type request_id
test_target_scenario_id_type
test_target_scenario_id

test_target_scenario_setting_all_feat
ure()

Method used by the sensor to return
the required test target scenario with
its parameters.

request_id_type request_id
test_target_scenario_type
test_target_features

Define_Test_Target_Scenario_Sub
Type: Interface
Package: Define_Test_Target_Scenario
This is the Subsystem interface for defining test target scenarios.

Table 7.347 - Methods of Interface Define_Test_Target_Scenario_Sub

Method Notes Parameters
read_test_target_scenario() Method used by the CMS to send to

the sensor a read request of a
specified Test Target scenario.

request_id_type request_id
test_target_scenario_id_type
test_target_scenario_id

write_test_target_scenario() Method used by the CMS to send to
the sensor a write request of a
specified Test Target scenario.

request_id_type request_id
test_target_scenario_type
test_target_scenario

«idlInterface»

Define_Test_Target_Scenario_CMS

«idlInterface»

Define_Test_Target_Scenario_Sub

receive_acknowledgement(request_id_type, request_ack_type)

test_target_scenario_setting(request_id_type, test_target_scenario_id_type)

write_test_target_scenario(request_id_type, test_target_scenario_type)

Figure 7.193 Basic Flow - Write a Target Test Target Scenario (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 315

«idlInterface»

Define_Test_Target_Scenario_CMS

«idlInterface»

Define_Test_Target_Scenario_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

write_test_target_scenario(request_id_type, test_target_scenario_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.194 Alternative Flow - Write a Target Test Target Scenario - loss of mastership (Interaction diagram)

«idlInterface»

Define_Test_Target_Scenario_Sub

«idlInterface»

Define_Test_Target_Scenario_CM S

read_test_target_scenario(request_id_type, test_target_scenario_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

test_target_scenario_setting_all_feature(request_id_type, test_target_scenario_type)

Figure 7.195 Basic Flow - Inspect a Test Target Scenario (Interaction diagram)

7.9.7.5 Test_Target_Facility

Parent Package: Sensor_Control

This package contains interfaces for the Test Target Facility service.
Test_Target_Facility_CMS
Type: Interface
Package: Test_Target_Facility
The sensor is requested to activate/deactivate the execution of its internal functional test and stimulation realized by
means of test targets generation. A number of Test Target scenarios may be defined and modified as specified in
Define Test Target Scenario, each scenario is identified by a proper identification. At any time no more than one
Test Target scenario may be active.

Test Target generation mechanism (applicable to some sensors)
The Test Target generation consists of the injection of proper signals at different points of the receiver chain in order
to produce the relevant detections in input to the RMC (Radar Management Computer); these Test Target detections
are processed by the RMC as the real ones, so they shall generate one o more plots (“Test Target” plots) and tracks
(“Test Target” tracks).
Such a generation mechanism is controlled by the RMC driving a devoted hardware, its purpose is to execute an on-
line BITE of the complete receiver chain.
Test Target generation is executed while the radar is working in operational mode, so Test Target detections and real
detections live together, forming “Test Target” plots and tracks at the same time as real plots and tracks. This
implies that CMS shall receive “Test Target” plots and tracks together with real plots and tracks.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual state of the
Test Target generation and its changes (if any).

Provision of the Test Target generation state
Sensor shall keep CMS informed about the actual state of the Test Target generation and its changes (if any).

Relationship to the subsystem health state
As long as a Test Target scenario is in generation sensor checks the relevant returns at different points of the
receiver chain, up to form plots in the same positions where Test Targets have been generated. The relevant results
contribute to the sensor health state.
Pre-condition: Mastership Required: CMS has mastership of the sensor
Pre-condition: Subsystem Services: Provide subsystem services is successfully passed
Pre-condition: Test Target facility: Test Target facility is supported by the sensor and CMS is aware of the
current availability of the Test Target generation.
Post-condition: Success: The state of the Test Target generation is modified according to the request and CMS is
informed that this is the case.
Post-condition: No Success: The state of the Test Target generation is unchanged with respect the original one and
CMS is informed about the denial reason.

Table 7.348 - Methods of Interface Test_Target_Facility_CMS

Method Notes Parameters
notify_test_target() Method used by the sensor to return

the actual state of the Test Target
generation consistent with the
request.

request_id_type request_id
test_target_scenario_state_type
test_target_scenario_state

Test_Target_Facility_Sub
Type: Interface
Package: Test_Target_Facility
This is the Subsystem interface for testing target facilities.

Table 7.349 - Methods of Interface Test_Target_Facility_Sub

Method Notes Parameters

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 317

set_test_target_facility_state() Method used by the CMS to send an
activation request of a specified Test
Target scenario.

request_id_type request_id
test_target_scenario_state_type
scenario_state

«idlInterface»

Test_Target_Facility_Sub

«idlInterface»

Test_Target_Facility_CMS

notify_test_target(request_id_type, test_target_scenario_state_type)

receive_acknowledgement(request_id_type,
request_ack_type)

set_test_target_facility_state(request_id, test_target_scenario_state)

Figure 7.196 Basic Flow - Activate/Deactivate Test Target Facility (Interaction diagram)

«idlInterface»

Test_Target_Facility_CMS

«idlInterface»

Test_Target_Facility_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

set_test_target_facility_state(request_id_type, test_target_scenario_state)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

notify_test_target(request_id_type, test_target_scenario_state_type)

Figure 7.197 Alternative Flow - Activate/Deactivate Test Target Facility - loss of mastership (Interaction diagram)

7.9.8 Sensor_Performance
Parent Package: Sensor_Services
This package contains interfaces for the Sensor Performance service.

7.9.8.1 Provide_Interference_Reports

Parent Package: Sensor_Performance

Provide_Interference_Reports_CMS
Type: Interface
Package: Provide_Interference_Reports
This describes the process whereby the subsystem provides a set of reports on sources of interference, including
jammers. The data shall, therefore, in general, be non-real-time but should, where appropriate, be time-tagged and
shall be updated when any observed data changes.
The sensor need not be radiating but shall at least be receiving. The subsystem VOI (volume of interest) or other
filter mechanisms might be supplied in a request to the subsystem
For a nominal effect assessment, the request might contain data on number, strength/Effective Radiated Power
(ERP), type and deployment of jammers and other interferers affecting radar operations. For example, for each
interferer
· Sensor time-tag
· Interference type - active noise, self-screening jammer, standoff jammer etc
· Strength/Effective Radiated Power
· Locations - strobes etc.
· Affected sectors
· Frequency bands affected
Pre-condition: Technical State: The subsystem is in technical state ONLINE.
Pre-condition: Subsystem Services: The Provide Subsystem Services Service has been completed successfully
Pre-condition: Register Interest: The Register Interest Service has been executed successfully to register interest
in Interference Reports.
Post-condition: Success: The CMS has received Interference Reports
Post-condition: Failure: The CMS receives no Interference Reports

Table 7.350 - Methods of Interface Provide_Interference_Reports_CMS

Method Notes Parameters
interference_report_response() Provides an updated set of

interference reports to the CMS.
request_id_type request_id
interference_report_type
interference_report The report on
interference

interference_report_periodic() Provides an updated set of
interference reports to the CMS.

interference_report_type
interference_report The report on
interference

Provide_Interference_Reports_Sub
Type: Interface
Package: Provide_Interference_Reports

Table 7.351 - Methods of Interface Provide_Interference_Reports_Sub

Method Notes Parameters
volume_for_interference_reports() This allows definition of the volume

in space which is of interest with
regard to the provision of

request_id_type request_id The
unique identifier for this request. This
is referenced in acknowledgement

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 319

interference reports. and any error reporting regarding this
definition of the volume of interest.
polar_volume_type volume The
volume in space
coordinate_orientation_type
coordinate_orientation specifies the
orientation of the polar volume

«idlInterface»

Provide_Interference_Reports_CMS

«idlInterface»

Provide_Interference_Reports_Sub

opt Volume of Interest Supplied

[CMS supplies Volume of Interest]

alt Unsuccessful Request

[Subsystem unable to filter interference reports to the requested volume of interest]

[Subsystem error occurs whilst preparing interference reports as requested]

positive
acknowledgement

negative
acknowledgement

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

volume_for_interference_reports(request_id_type, polar_volume_type, coordinate_orientation_type)

Figure 7.198 Alternative Flow - Provide Interference Reports (Interaction diagram)

«idlInterface»

Provide_Interference_Reports_CMS

«idlInterface»

Provide_Interference_Reports_Sub

loop periodic

opt Volume of Interest Supplied

[CMS supplies Volume of Interest]

volume_for_interference_reports(request_id_type, polar_volume_type, coordinate_orientation_type)

receive_acknowledgement(request_id_type, request_ack_type)

interference_report_periodic(interference_report_type)

interference_report_response(request_id_type, interference_report_type)

Figure 7.199 Basic Flow - Provide Interference Reports (Interaction diagram)

7.9.8.2 Provide_Nominal_Performance

Parent Package: Sensor_Performance

Provide_Nominal_Performance_CMS
Type: Interface
Package: Provide_Nominal_Performance
This is incremental to Register Interest, which deals with the subscription to subsystem functions. It provides an
indication of the expected performance of the available subsystem services such as those presented in Provide
Subsystem Services, based upon the current environmental conditions (See Receive Meteorological Data -
METOC).
The subsystem need not be radiating to provide this assessment. This interface is more targeted towards a subsystem
such as the complex MFR than the 2D surveillance radar. The most basic example of performance would be
reporting of the nominal coverage, in elevation, azimuth and range, given an assumed operating regime with no
jamming and with default clutter conditions. Other examples might be that the actor requests the probability of
detection for a specified target type or perhaps the probability of correct automatic classification of such a target
within a specified sector of coverage under current environmental conditions.
Pre-condition: Technical State: The Subsystem is in the Technical State ONLINE.
Pre-condition: Subsystem Services: The Provide Subsystem Services Service has been executed successfully.
Post-condition: Success: The CMS is aware of the Nominal Performance of the Subsystem
Post-condition: Failure: The CMS is not aware of the Nominal Performance of the Subsystem

Table 7.352 - Methods of Interface Provide_Nominal_Performance_CMS

Method Notes Parameters

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 321

nominal_performance_response() The subsystem responds to the
previous nominal performance
request with its determination of the
requested aspect of nominal
performance.

request_id_type request_id The
unique id from the request
performance_assessment_report_type
report The report on nominal
performance

Provide_Nominal_Performance_Sub
Type: Interface
Package: Provide_Nominal_Performance
Subsystem interface for provision of nominal performance assessment.

Table 7.353 - Methods of Interface Provide_Nominal_Performance_Sub

Method Notes Parameters
nominal_performance_request() The CMS requests nominal

performance of the subsystem in the
current environmental conditions.
The aspect of performance requested
is a parameter of the request.

request_id_type request_id The
unique id which identifies this
request. It is used to mark replies
from the sensor relating to this
request.
performance_assessment_parameters
_type request The details of the
performance request

«idlInterface»

Provide_Nominal_Performance_CMS

«idlInterface»

Provide_Nominal_Performance_Sub

alt Unsuccessful Request

[Susbystem unable to calculate requested nominal performance]

[Subsystem encounters an irrecoverable condition in determining nominal performance]

negative
acknowledgement

positive
acknowledgement

receive_acknowledgement(request_id_type,
request_ack_type)

nominal_performance_request(request_id_type, performance_assessment_request_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.200 Alternative Flow - Provide Nominal Performance (Interaction diagram)

«idlInterface»

Provide_Nominal_Performance_Sub

«idlInterface»

Provide_Nominal_Performance_CMS

receive_acknowledgement(request_id_type, request_ack_type)

nominal_performance_request(request_id_type, performance_assessment_request_type)

nominal_performance_response(request_id_type, performance_assessment_report_type)

Figure 7.201 Basic Flow - Provide Nominal Performance (Interaction diagram)

7.9.8.3 Provide_Performance_Assessment

Parent Package: Sensor_Performance

Provide_Performance_Assessment_CMS
Type: Interface
Package: Provide_Performance_Assessment
This is incremental to Register Interest, which deals with the subscription to subsystem functions and Provide
Nominal Performance which provides the subsystem nominal performance. This interface reports the real-time
performance of the available subsystem functions against the goals of the mission. The reported performance is that
currently being attained by the subsystem subject to the current operating regime and environmental conditions,
including any clutter and jamming and taking account of any mitigation/cancellation of such effects by the
subsystem.
This interface is aimed at a subsystem such as an MFR radar. Information is provided to the Command function
allowing decisions to be made on the achieved performance, which is often considerably different to the anticipated
performance level as reported through the Provide Nominal Performance Service.
The most basic example of performance would be reporting of the radar coverage, in elevation, azimuth and range,
for the current operating regime and environmental conditions. This would take account of any clutter and jamming
present. Other examples might be that the actor requests the probability of detection for a specified target type or
perhaps the probability of correct automatic classification of such a target within a specified range under current
environmental conditions N.B. if the radar is operating in an appropriate mode then real-time clutter and/or jamming
data might be available to the radar subsystem. Otherwise the actor would have to supply any known data to the
subsystem for performance assessment (see Receive Encyclopaedic Data and Receive Geographic Information). If
no environmental data is specified then the design performance would be reported.
Pre-condition: Technical State: The Subsystem is in the technical state ONLINE.
Pre-condition: Subsystem Services: The Provide Subsystem Services Service has completed successfully.
Post-condition: Success: The CMS is aware of the assessed performance of the subsystem
Post-condition: Failure: The CMS is not aware of the assessed performance of the subsystem

Table 7.354 - Methods of Interface Provide_Performance_Assessment_CMS

Method Notes Parameters
performance_assessment_response() The subsystem responds to the

previous performance assessment
request with its assessment of the
requested aspect of actual
performance.

request_id_type request_id The
unique identifier for this assessment.
This identifier is supplied by the
CMS when the assessment is
requested.
performance_assessment_report_type
performance_assessment The

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 323

details of the assessment

Provide_Performance_Assessment_Sub
Type: Interface
Package: Provide_Performance_Assessment
Subsystem interface for provision of current performance assessment.
Note that the coordinates are always polar for this service and that the origin is always the sensor reference point as
per the coordinates and positions package.

Table 7.355 - Methods of Interface Provide_Performance_Assessment_Sub

Method Notes Parameters
performance_assessment_request() The CMS requests assessment of

actual performance of the subsystem.
The aspect of performance requested
is a parameter of the request.

request_id_type request_id The
unique identifier for this assessment.
This identifier is contained in all
related replies from the sensor.
performance_assessment_parameters
_type request Details of the
assessment

«idlInterface»

Provide_Performance_Assessment_CMS

«idlInterface»

Provide_Performance_Assessment_Sub

alt Unsuccessful Request

[Subsystem is in an incorrect internal mode for making the assessment]

[Subsystem encouters an irrecoverable error condition in performing the performance assessment]

positive
acknowledgement

negative
acknowledgement

performance_assessment_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.202 Alternate Flow - Provide_Performance_Assessment (Interaction diagram)

«idlInterface»

Provide_Performance_Assessment_Sub

«idlInterface»

Provide_Performance_Assessment_CMS

performance_assessment_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,
request_ack_type)

performance_assessment_response(request_id_type, performance_assessment_report_type)

Figure 7.203 Basic Flow - Provide Performance Assessment (Interaction diagram)

7.9.8.4 Provide_Jammer_Assessment

Parent Package: Sensor_Performance

Provide_Jammer_Assessment_CMS
Type: Interface
Package: Provide_Jammer_Assessment
This interface describes the process whereby the subsystem provides a periodic assessment of the effects of actual
jamming on the detection and tracking performance of the subsystem. The actual subsystem performance vs the
nominal (see Provide Nominal Performance) shall be reported so that this data is current and real-time. This should
include the effects on (spatial) coverage caused by any jamming. The impact on frequencies used e.g. operating
band limitations is dealt with in Provide Interference Reports
Mastership is not required.
The radar need not be radiating in the ONLINE state but shall at least be receiving. The subsystem VOI (volume of
interest) or other filter mechanisms might be supplied in a request to the subsystem.
The kind of information which could be provided in the returned assessment, depending on any jamming mitigation
strategy (frequency agility, moving target indication, low side-lobe levels, main beam or side-lobe cancellation,
side-lobe blanking etc.) might then include:
· Noise floor pre-/post-jammer cancellation, as applicable
· Degradation in detectability (compared with the nominal)
Pre-condition: Technical State: The subsystem is in the technical state ONLINE
Pre-condition: Subsystem Services: The Provide Subsystem Services Service has been successfully executed
Pre-condition: Register Interest: The Register Interest Service has completed successfully.
Post-condition: Success: CMS has received Jamming Effect Assessments
Post-condition: No Success: The CMS has not received Jamming Effect Assessments.

Table 7.356 - Methods of Interface Provide_Jammer_Assessment_CMS

Method Notes Parameters
jammer_assessment_response() request_id_type request_id

performance_assessment_report_type
report

Provide_Jammer_Assessment_Sub
Type: Interface
Package: Provide_Jammer_Assessment

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 325

Table 7.357 - Methods of Interface Provide_Jammer_Assessment_Sub

Method Notes Parameters
jammer_assessment_request() request_id_type request_id

performance_assessment_parameters
_type jammer_assessment_request

«idlInterface»

Provide_Jammer_Assessment_CMS

«idlInterface»

Provide_Jammer_Assessment_Sub

alt Negative Acknowledgement

[Subsystem has incorrect internal mode for request]

[Subsystem processing produces irrecoverable error after initial positive Ackowledgement]

negative
acknowledgement

positive
acknowledgement

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type,
request_ack_type)

jammer_assessment_request(request_id_type,
performance_assessment_request_type)

Figure 7.204 Alternate Flow - Provide Jammer Assessment (Interaction diagram)

«idlInterface»

Provide_Jammer_Assessment_CMS

«idlInterface»

Provide_Jammer_Assessment_Sub

jammer_assessment_response(request_id_type,
performance_assessment_report_type)

jammer_assessment_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.205 Basic Flow - Provide Jammer Assessment (Interaction diagram)

7.9.9 Track_Reporting
Parent Package: Sensor_Services
This package contains interfaces for the Track Reporting service.

7.9.9.1 Filter_Tracks

Parent Package: Track_Reporting

Filter_Tracks_CMS
Type: Interface
Package: Filter_Tracks
The interface to the CMS for receiving information relating to the filters used to control which tracks are made
available to other network segments.
The plot (and track) sharing architecture recognizes that connectivity between different platforms hosting sensors
may not support the bandwidth required to share all plot and track updates. It is possible for a sensor also to provide
the networking functionality in which case it is providing an additional role in the interface.

Table 7.358 - Methods of Interface Filter_Tracks_CMS

Method Notes Parameters
report_track_filter() Reports the parameters of one of the

filters that are active for tracks in the
communication and networking
subsystem. Tracks are transmitted or
received, according to their mode, if
they pass the conditions of at least
one of the active filters.

filter_id_type filter_id The identifier
for the filter
track_filter_parameters_type filter
The criteria for the filter

track_filter_removed() Reports that a particular track filter
has been removed.

filter_id_type filter_id The identifier
of the filter removed

Filter_Tracks_Sub
Type: Interface
Package: Filter_Tracks
The interface to the subsystem for receiving updates to the filters used to control which tracks are made available to
other network segments.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 327

The plot (and track) sharing architecture recognizes that connectivity between different platforms hosting sensors
may not support the bandwidth required to share all plot and track updates.
In this use case the subsystem is the network component providing connectivity to other platforms, as distinct from
the local sensors providing the plots. It is possible for a sensor to also provide the networking functionality, in which
case it is providing an additional role in the interface.

Table 7.359 - Methods of Interface Filter_Tracks_Sub

Method Notes Parameters
add_track_filter() Adds an active filter for tracks to the

communication and networking
subsystem.

request_id_type request_id unique
reference for the request
track_filter_parameters_type filter
the values to be used to filter tracks
by

remove_track_filter() Removes a filter for tracks from the
communication and networking
subsystem.

request_id_type request_id The
unique reference for the request
filter_id_type filter_id The identifier
for the filter to be removed

«idlInterface»

Filter_Tracks_Sub

«idlInterface»

Filter_Tracks_CMS

alt failure cases

accepted = false
E.g. because there is no
such sensor track, the
external protocol is not
supported or the track
number is not in a
recognized format.

add_track_filter(request_id_type, track_filter_parameters_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.206 Alternative Flow Filter_Tracks (Interaction diagram)

«idlInterface»

Filter_Tracks_Sub

«idlInterface»

Filter_Tracks_CMS

add_track_filter(request_id_type, track_filter_parameters_type)

remove_track_filter(request_id_type, filter_id_type)

track_filter_removed(filter_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_track_filter(filter_id_type, track_filter_parameters_type)

Figure 7.207 Basic Flow Filter_Tracks (Interaction diagram)

7.9.9.2 Label_Tracks

Parent Package: Track_Reporting

Label_Tracks_CMS
Type: Interface
Package: Label_Tracks
The interface to the CMS for track number labeling. The subsystem uses the mappings received in transmissions to
other platforms. This enables distributed local pictures to be formed that are coherent with other protocols being
used for sharing data.

Table 7.360 - Methods of Interface Label_Tracks_CMS

Method Notes Parameters
external_track_label_response()

MethodTag: ea_guid = {63D77188-
01A4-484c-AC10-F2C575C4AF6C}

request_id_type request_id The
unique identifier for the request
sensor_track_id_type
sensor_track_id The identifier for
the sensor track
external_track_number_type
external_track_number The
external track numbers labelling the
sensor track

Label_Tracks_Sub
Type: Interface
Package: Label_Tracks

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 329

The interface to the subsystem for track number labeling. The CMS instructs the subsystem responsible for
transmission of sensor tracks to other platforms to label such sensor tracks with the track numbers of any external
protocols on which the sensor track data is being transmitted or otherwise corresponds.
The subsystem acknowledges the request and responds with the sensor track's mapping to external track numbers
used for transmission to other platforms.

Table 7.361 - Methods of Interface Label_Tracks_Sub

Method Notes Parameters
label_track_for_external_protocol() This operation is used to instruct the

subsystem to label a sensor track
with an external track number when
transmitting it off-platform.
MethodTag: ea_guid = {0751D342-
4ED1-4513-8FA6-5B97A5FFC475}

request_id_type request_id The
unique identifier for the request
sensor_track_id_type
sensor_track_id The identifier for
the sensor track
external_track_number_type
external_track_number The track
number on an external protocol to
label the track with

unlabel_track_for_external_protocol(
)

This operation is used to instruct the
subsystem to no longer label a sensor
track with a track number for a
particular external protocol when
transmitting it off-platform.
MethodTag: ea_guid = {7C320CF0-
ABD8-4a76-998D-D2077C43497F}

request_id_type request_id The
unique identifier for the request
sensor_track_id_type
sensor_track_id The identifier for
the sensor track
String external_protocol The name
of the external protocol

«idlInterface»

Label_Tracks_Sub

«idlInterface»

Label_Tracks_CMS

accepted = false
E.g. because there is no
such sensor track, the
external protocol is not
supported or the track
number is not in a
recognized format.

accepted = false
E.g. because there is no
such sensor track or the
external protocol is not
supported

receive_acknowledgement(request_id_type, request_ack_type)

unlabel_track_for_external_protocol(request_id_type, sensor_track_id_type, String)

receive_acknowledgement(request_id_type, request_ack_type)

label_track_for_external_protocol(request_id_type, sensor_track_id_type, external_track_number_type)

Figure 7.208 Alternate Flow Label_Tracks (Interaction diagram)

«idlInterface»

Label_Tracks_Sub

«idlInterface»

Label_Tracks_CMS

external_track_label_response(request_id_type, sensor_track_id_type, external_track_number_type)

receive_acknowledgement(request_id_type, request_ack_type)

unlabel_track_for_external_protocol(request_id_type, sensor_track_id_type,
String)

external_track_label_response(request_id_type, sensor_track_id_type, external_track_number_type)

receive_acknowledgement(request_id_type, request_ack_type)

label_track_for_external_protocol(request_id_type, sensor_track_id_type, external_track_number_type)

Figure 7.209 Basic Flow Label_Tracks (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 331

Figure 7.210 Service Interface Label_Tracks (Class diagram)

7.9.9.3 Provide_Sensor_Tracks

Parent Package: Track_Reporting

Provide_Sensor_Tracks_CMS
Type: Interface
Package: Provide_Sensor_Tracks
This service allows the CMS to obtain an overview of (real and/or simulated) air / land / space / surface objects
observed or simulated. Information may cover all aspects of a track such as kinematic and amplifying information.
The service does not cover:
· additional track information provision dedicated for engagement support,
· special search functions such as cued search, volume search and horizon search (however, if such a search

function is initiated by means of another service, the tracks shall be provided by this service),
Although the service focuses on radar as an example of a sensor, the service also applies to other sensors, like IR/EO
sensors and ECM/ESM sensors.

The actor is the Combat Management System.

The service starts when:
· if the service does provide registration capabilities: the service "Register interest" has completed successfully,

or
· if the service does not provide registration capabilities: the service "Provide subsystem services" has completed

successfully for this service.

Ollie Newman, 02/08/24
OARIS3-46

The sensor provides, periodically or on event, a set of sensor tracks observed by the sensor. These may be sensor
point or bearing tracks. The set of sensor tracks includes:
· Track updates of existing and new sensor tracks. These are provided when there are sufficient measurements

(e.g. plots) in the last observation cycle, which may be associated with the sensor track.
· Dead-reckoned tracks. These are sensor track updates for which in the last observation cycle there are no

measurements that may be associated with the sensor track. For dead-reckoned tracks, the sensor track
information (e.g. kinematics) is extrapolated. The dead-reckoned tracks may become"normal" tracks again if, in
the next scan, there are measurement(s) that may be associated with the track. Alternatively, dead-reckoned
tracks (after n unsuccessful scans) may become lost tracks.

· Lost tracks. These are sensor track updates that are reported once, if in the last n scans, there are no
measurements that may be associated with the sensor track. The value of n is typically a sensor parameter that is
managed by the service "Manage subsystem parameters".

Some sensors are not capable of reporting lost and/or dead-reckoned tracks.
The sensor may also provide single sensor tracks periodically or on event.

The service ends with success when:
· if the service does provide registration capabilities: the service "Register interest" has completed successfully

for a deregistration request, or
· if the service does not provide registration capabilities: the sensor is shutdown using service "Shut down".
Pre-condition: Sensor health state: The sensor and the service need to be in the health state AVAILABLE or
DEGRADED
Pre-condition: Sensor parameters: The relevant sensor parameters (e.g. allowed frequencies, transmission
sectors) need to be set1.

1 The manner in which this is done is described in other services of the OARIS (“Manage frequency usage”,
“Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).

Table 7.362 - Methods of Interface Provide_Sensor_Tracks_CMS

Method Notes Parameters
write_sensor_track() The method represents a write of a

single sensor track (air, land, space
or surface) to the CMS.
The write may be periodic or not.

sensor_track_type the_sensor_track

write_sensor_track_set() The method represents a single write
of a set of sensor tracks to the CMS.
The write may be:
- periodic or not
- include all tracks observed during a
sensor scan
- be an update of just one track (a set
of 1) if this is how the sensor works

sensor_track_set_type
the_track_set

enddelete_sensor_track() The method represents a deletion of
a single sensor track (air, land, space
or surface) to the CMS. After a
deletion, no further writes for that
sensor track instance are made.
Subsystems may subsequently use
the same sensor_track_id to denote
another sensor track instance
possibly after a 'cooling off period'.
Such behavior is implementation

sensor_track_id_type
the_sensor_track_id

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 333

Ollie Newman, 02/08/24
OARIS3-46

specific.

Provide_Sensor_Tracks_Sub
Type: Interface
Package: Provide_Sensor_Tracks

Table 7.363 - Methods of Interface Provide_Sensor_Tracks_Sub

Method Notes Parameters
prioritize_track() CMS requests the subsystem to

report the referenced sensor track
with the stated priority.
MethodTag: Issue =

request_id_type request_id
sensor_track_id_type
sensor_track_id
track_priority_type priority

remove_track_priority() The CMS requests the subsystem to
report the track with the default
priority for that subsystem.

request_id_type request_id
sensor_track_id_type
sensor_track_id

«idlInterface»

Provide_Sensor_Tracks_CMS

«idlInterface»

Provide_Sensor_Tracks_Sub

Negative acknowledgement

Negative acknowledgement

Negative acknowledgement

alt Failure Conditions

[sensor track does not exist]

[priority level not supported]

[insufficient resources]

receive_acknowledgement(request_id_type, request_ack_type)

prioritize_track(request_id_type, sensor_track_id_type, track_priority_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.211 Alternative Flow - Track Prioritization (Interaction diagram)

«idlInterface»

Provide_Sensor_Tracks_CMS

«idlInterface»

Provide_Sensor_Tracks_Sub

loop Normal Reporting

loop Prioritized Reporting

loop Normal Reporting

prioritize_track(request_id_type, sensor_track_id_type, track_priority_type)

remove_track_priority(request_id_type, sensor_track_id_type)

write_sensor_track(sensor_track_type)

write_sensor_track(sensor_track_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

write_sensor_track(sensor_track_type)

Figure 7.212 Basic Flow - Change Priority (Interaction diagram)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 335

Figure 7.213 Basic Flow - Sensor Track Reporting (Individual) (Interaction diagram)

«idlInterface»

track_reporting_sub

(from Service Level Interfaces &
Actors Templates)

«idlInterface»

Provide_Sensor_Tracks_CMS

loop

[periodic]

This sequence diagram shows the style of reporting tracks in batches; sets containing one or
more tracks are reported atomically.
Depending on the requested services, all tracks are reported or for instance only tracks with a
certain environment or jamming indication.
The messages may be sent periodically or on event (when a new track update is available)

write_sensor_track_set(sensor_track_set_type)

Ollie Newman, 02/08/24
OARIS3-46

Figure 7.214 Basic Flow - Sensor Track Reporting (Sets) (Interaction diagram)

7.9.10 Tracking_Control
Parent Package: Sensor_Services
This package contains interfaces for the Tracking Control service.

7.9.10.1 Delete_Sensor_Track

Parent Package: Tracking_Control
This package contains interfaces for the Delete Sensor Track service.
Delete_Sensor_Track_CMS
Type: Interface
Package: Delete_Sensor_Track
The sensor is requested to remove a specified track from its internal Track Data Base; obviously the deleted track
may come back (with another track identification number) within a few seconds if it was a living track.
Pre-condition: Mastership Required: CMS has mastership of the sensor
Pre-condition: Subsystem Services: Provide subsystem services is successfully passed
Pre-condition: Tracking capability: Tracking capability is supported by the sensor, and CMS is aware that
actually the sensor may delete that track
Post-condition: Success: CMS is informed of the successful deletion of the required track, and the next track
reporting shall no contain the deleted track. Obviously, the deleted track may come back within a few seconds if it
was a living target, but with another identification number.
Post-condition: No Success: CMS is informed of the request rejection and of the denial reason. No impact on the
sensor track management evolution.
Delete_Sensor_Track_Sub
Type: Interface
Package: Delete_Sensor_Track
This is the Subsystem interface for deleting sensor tracks.

Table 7.364 - Methods of Interface Delete_Sensor_Track_Sub

Method Notes Parameters
delete_track() Method used by the CMS to send a

track deletion request, specifying the
identification number of the track to
be deleted.

sensor_track_id_type trackId
request_id_type request_id

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 337

«idlInterface»

Delete_Sensor_Track_Sub

«idlInterface»

Delete_Sensor_Track_CMS

The deleted track is not included in the
next track reporting returned by the
sensor.

delete_track(sensor_track_id_type, request_id)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.215 Basic Flow - Delete Sensor Track (Interaction diagram)

«idlInterface»

Delete_Sensor_Track_CMS

«idlInterface»

Delete_Sensor_Track_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

delete_track(sensor_track_id_type, request_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.216 Alternative Flow - Delete Sensor Track (Interaction diagram)

7.9.10.2 Receive_Track_Information

Parent Package: Tracking_Control
This package contains interfaces for the Receive Track Information service.
Receive_Track_Information_CMS
Type: Interface

Package: Receive_Track_Information
CMS may provide information belonging to a sensor track in order to enable for a coordinated presentation of the
sensor track both on CMS consoles and a dedicated radar console. The track information which may be supplied are:

1. External track identification number
2. Additional Information – this is not specified as part of the interface, candidate information includes:
· Track type
· Track priority
· Track Identification Category Assigned (Pending, Friend, Assumed Friend, Neutral, Unknown, Suspect,

Hostile)

Track identities management
Each sensor track shall have an “Internal Track Identification Number” and may one or more additional “External
Track Identification Numbers”. The former shall be assigned by the sensor when the track is formed and, as long as
the track is alive, it cannot be changed for any reason. The latter shall be set to “none” when the track is formed and
then overwritten, during the track life, to report the track identity/ies externally assigned to the track.
All track identification numbers shall be reported together with the track data, but the track identification shall be
made through the “Internal Track Identification Number”.
Pre-condition: Mastership Required: CMS has mastership of the sensor
Pre-condition: Subsystem Services: Provide subsystem services is successfully passed
Pre-condition: Tracking capability: Tracking capability is supported by the sensor, and CMS is aware that
actually the sensor may manage that track
Pre-condition: Technical State: Sensor is working in Operational
Post-condition: Success: CMS is informed of the successful execution of the request, and the next track reporting
shall contain the identified track with the provided information.
Post-condition: No Success: CMS is informed of the request rejection and of the denial reason. No impact on the
sensor track management evolution.
Receive_Track_Information_Sub
Type: Interface
Package: Receive_Track_Information
This is the Subsystem interface for receiving track information.

Table 7.365 - Methods of Interface Receive_Track_Information_Sub

Method Notes Parameters
insert_info_track() Method used by the CMS to send a

receive track information request,
specifying the track identification
number and related track
information.

request_id_type request_id
sensor_track_id_type trackId
track_info_type trackInfo

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 339

«idlInterface»

Receive_Track_Information_Sub

«idlInterface»

Receive_Track_Information_CMS

The sensor shall provide
the track updates as per
"Provide Sensor Tracks".

insert_info_track(request_id_type, sensor_track_id_type, track_info)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.217 Basic Flow - Receive Track Information (Interaction diagram)

«idlInterface»

Receive_Track_Information_CMS

«idlInterface»

Receive_Track_Information_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

The sensor shall not
provide the track updates
as per "Provide Sensor
Tracks".

receive_acknowledgement(request_id_type,
request_ack_type)

insert_info_track(request_id_type, sensor_track_id_type, track_info)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

Figure 7.218 Alternative Flow - Receive Track Information (Interaction diagram)

7.9.10.3 Initiate_Track

Parent Package: Tracking_Control
This package contains interfaces for the Initiate Track service.
Initiate_Track_CMS
Type: Interface

Package: Initiate_Track
The sensor is requested to start tracking on a new target based on given information, such as positional data and
additionally also kinematic data. Sensor replies indicating the request acceptance or rejection. If accepted, the
initiation of a new track shall be attempted as required, and the relevant result shall be reported later through an
“externally designated track initiation report” containing the identification number of the resulting track (if any).

Additional Information

Data reported in the “externally designated track initiation request”
The provided information depends on the sensor type and its capabilities, typically they are:
• Identification number of the designation (mandatory)
• Position and time (mandatory)
• Accuracy of the provided positional data (optional)
• Velocity and relevant accuracy (optional)
• Track characteristics (optional)

Data reported in the “externally designated track initiation report”

The purpose is this report is to inform CMS about the final result of the track initiation request, i.e. it reports to CMS
if the track has been successfully initiated or not, and (in case of success) the identification number of the new
formed track.
The provided information depends on the sensor type and its capabilities, typically they are:
• Identification number of the designation (mandatory)
• Initiation result (mandatory)
• Identification number of the initiated track, if any (mandatory)
• other info (optional).
Pre-condition: Mastership Required: CMS has mastership of the sensor
Pre-condition: Subsystem Services: Provide subsystem services is successfully passed
Post-condition: Success: The setting of the tracking zones has been modified according to the request and CMS is
informed that this is the case.
Post-condition: No Success: The setting of the tracking zones is unchanged with respect to the original one and
CMS is informed that this is the case.

Table 7.366 - Methods of Interface Initiate_Track_CMS

Method Notes Parameters
report_track() Method used by the sensor to issue

an "externally designated track
initiation report” containing data of
the successfully initiated track.

request_id_type request_id
sensor_track_id_type id_report

Initiate_Track_Sub
Type: Interface
Package: Initiate_Track
This is the Subsystem interface for initiating tracks.

Table 7.367 - Methods of Interface Initiate_Track_Sub

Method Notes Parameters
initiate_track() Method used by the CMS to send an

"externally designated track
initiation request”, specifying a
timed position and kinematic.

request_id_type request_id
system_track_type track_info

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 341

«idlInterface»

Initiate_Track_Sub

«idlInterface»

Initiate_Track_CMS

The sensor shall provide the track
updates as per "Provide Sensor
Tracks".

initiate_track(request_id_type, system_track)

report_track(request_id_type, sensor_track_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.219 Basic Flow Initiate Track (Interaction diagram)

«idlInterface»

Initiate_Track_CMS

«idlInterface»

Initiate_Track_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

initiate_track(request_id_type, system_track)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

Figure 7.220 Alternative Flow - Initiate Track - loss of mastership (Interaction diagram)

7.9.10.4 Manage_Tracking_Zones

Parent Package: Tracking_Control
This package contains interfaces for the Manage Tracking Zones service.

Manage_Tracking_Zones_CMS
Type: Interface
Package: Manage_Tracking_Zones
This controls the sensor tracking behaviour in selected zones, which may be 1D (delimited in azimuth only), 2D
(have additional elevation bounds) or 3D (have further range bounds). Depending on the zone type the sensor may
be requested to modify its normal tracking behaviour, such as enable/disable the capability to auto initiate new
tracks, or the capability of managing Track-On-Jammer. A list of typical tracking zones is

· Automatic Track Initiation Zones
zones where the sensor is allowed to auto initiate new tracks. Depending on the sensor type and its capabilities, such
a type of zones may be delimited in azimuth only, or both in azimuth and elevation, or may have further range
bounds, and in some cases also additional constraints (such as target type, velocity bounds, etc.).
• Track-On-Jammer Sectors
sectors where the sensor is allowed to manage Track-On-Jammer. Depending on the sensor type and its capabilities,
such a type of sectors may be delimited either in azimuth only or both in azimuth and elevation.
• Multipath Devoted Tracking Sectors
sectors where the sensor is required to use, for tracking activities, devoted waveforms to reduce the multipath
effects. This capability is usually provided by multifunctional radars. Such a type of sectors is usually limited in
azimuth only, below a defined elevation.

The supported tracking zone types (names and characteristics) differ from sensor to sensor, so they shall be handled
as configuration parameters. They shall be offered to the operator to enable him for a selection and then transferred
to the sensor to achieve the intended response.

Special Requirements
Provision of the sensor tracking zones setting
Sensor shall keep CMS informed about the actual setting of the tracking zones and its changes (if any).

It is the CMS's responsibility to initiate the determination of initial state by making a request for information to the
subsystem.

Additional Information
Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual setting of
the tracking zones and its changes (if any).
Pre-condition: Mastership Required: CMS has mastership of the sensor
Pre-condition: Subsystem Services: Provide subsystem services is successfully passed
Pre-condition: Tracking zones setting: CMS is aware of which types of tracking zones the sensor may manage
and of their current setting.
Post-condition: Success: The setting of the tracking zones has been modified according to the request and CMS is
informed that this is the case.
Post-condition: No Success: The setting of the tracking zones is unchanged with respect to the original one and
CMS is informed that this is the case.

Table 7.368 - Methods of Interface Manage_Tracking_Zones_CMS

Method Notes Parameters
tracking_zone_setting() Method used by the CMS to send an

enable/disable tracking zone request
to the sensor.

request_id_type request_id
tracking_zone_set_type
setting_message

Manage_Tracking_Zones_Sub
Type: Interface
Package: Manage_Tracking_Zones
This is the Subsystem interface for managing tracking zones.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 343

Table 7.369 - Methods of Interface Manage_Tracking_Zones_Sub

Method Notes Parameters
set_tracking_zone() Method used by the sensor to return

the actual setting of the tracking
zones modified according to the
request.

request_id_type request_id
tracking_zone_set_type zone

«idlInterface»

Manage_Tracking_Zones_Sub

«idlInterface»

Manage_Tracking_Zones_CMS

If tracking_zone_set
dimension is null, the
operation
set_tracking_zone get all
the current tracking zones.

set_tracking_zone(request_id_type, tracking_zone_set)

receive_acknowledgement(request_id_type,
request_ack_type)

tracking_zone_setting(request_id, tracking_zone_set)

Figure 7.221 Basic Flow - Manage Tracking Zone - Enable/Disable (Interaction diagram)

«idlInterface»

Manage_Tracking_Zones_CMS

«idlInterface»

Manage_Tracking_Zones_Sub

In the operation
set_tracking_zone, the
tracking_zone_set
parameter must be not
null

alt

[Subsystem rejects request]

[Subsystem fails]

command is successfully
acknowledged but fails
before completion

set_tracking_zone(request_id_type, tracking_zone_set)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type,
request_ack_type)

tracking_zone_setting(request_id_type, tracking_zone_set)

Figure 7.222 Alternative Flow - Manage Tracking Zone - Enable/Disable - loss of Mastership (Interaction diagram)

7.10 Radar_Services
Parent Package: Service_Interfaces
Contains services associated with the Radar Domain.

7.10.1 Air_Engagement_Support
Parent Package: Radar_Services

7.10.1.1 Provide_Projectile_Positional_Information

Parent Package: Air_Engagement_Support

Provide_Projectile_Positional_Information_CMS
Type: Interface
Package: Provide_Projectile_Positional_Information
Fire control radars suitable for Close-In-Weapon-Systems need the capability to observe the projectiles in flight, to
measure at which distance they pass the target so that related shot corrections for the gun may be calculated,
automatically. The measured distance in azimuth and elevation is called miss indication in the following.

This capability may be available in a non-close-in-weapon-system environment, too. It may also be available for
phased-array radars.

Mastership of the subsystem must not have any impact upon the miss indication capability.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 345

See also service 'Process Target Designation'.
Pre-condition: "Process Target Designation" was successfully carried out and a target is being tracked.:
Pre-condition: CMS must have mastership.:

Table 7.370 - Methods of Interface Provide_Projectile_Positional_Information_CMS

Method Notes Parameters
report_miss_indication() Via this message, the subsystem

reports to the CMS the miss
indication.

miss_indication_data_type
MissIndicationData
request_id_type RequestID

Provide_Projectile_Positional_Information_Sub
Type: Interface
Package: Provide_Projectile_Positional_Information

Table 7.371 - Methods of Interface Provide_Projectile_Positional_Information_Sub

Method Notes Parameters
request_miss_indication() Request the subsystem to report a

miss indication.
request_id_type RequestID
expected_hit_data_type
ExpectedHitData

«idlInterface»

Provide_Projectile_Positional_Information_CMS

«idlInterface»

Provide_Projectile_Positional_Information_Sub

alt request reporting of miss indication

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

loop CMS updates target position and velocity

[until subsystem reports miss indication.]

request_miss_indication(request_id_type, expected_hit_data_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

request_miss_indication(request_id_type, expected_hit_data_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type, request_ack_type)

report_miss_indication(miss_indication_data_type, request_id_type)

Figure 7.223 Provide projectile positional information - Request reporting of miss indications (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation
"request reporting of miss indications" of the service 'Provide projectile position information'.

7.10.2 Engagement_Support
Parent Package: Radar_Services

7.10.2.1 Process_Target_Designation

Parent Package: Engagement_Support

Process_Target_Designation_CMS
Type: Interface
Package: Process_Target_Designation
Fire control radars are designed to perform one target engagement at a time with respect to an air, surface or land
target and provide the necessary information for a fire control solution regarding that target.

The CMS selects a track and requests the fire control radar to acquire and track the target behind that track. If the
acquisition is successful the radar starts tracking the target and reporting fire control information.

Some fire control radars provide information about one or more other targets appearing in its field of view and may
even provide associated sensor tracks. This is, however, not within the scope of this service interface but covered by
"Provide sensor tracks".

The fire control information may be plots and/or tracks, depending on the product.

On receiving the de-designation request the fire control radar stops following the target and stops providing fire
control information.

Phased array radars may include fire control capabilities as well. If they do, they provide a number of ‘virtual fire
control radars’. To the extent that these virtual fire control radars are comparable in function and performance, there
may be no need for the CMS to select a specific fire control channel to be used for a particular engagement.

In the case where the CMS looses or releases mastership of the subsystem, the subsystems ceases all fire control
activities.

A target designation to a weapon with its own fire control capabilities may be done in an analogous way. In that
sense, the service (interface) may also be employed by weapon systems.
Pre-condition: CMS must have Mastership.:
Pre-condition: Technical state READY or ONLINE.:

Table 7.372 - Methods of Interface Process_Target_Designation_CMS

Method Notes Parameters
receive_fire_control_channel_release
d()

Via this message, the subsystem
confirms the release of a target
acquisition.

request_id_type RequestID
fire_control_channel_id_type
FireControlChannelID

receive_target_acquired() Via this message, the subsystem
confirms the target acquisition.

request_id_type RequestID
sensor_track_id_type TrackID
fire_control_channel_id_type
FireControlChannelID

receive_target_dedesignation() Via this message, the subsystem
reports the de-designation of a target.

request_id_type RequestID
sensor_track_id_type TrackID

Process_Target_Designation_Sub
Type: Interface
Package: Process_Target_Designation

Table 7.373 - Methods of Interface Process_Target_Designation_Sub

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 347

Method Notes Parameters
dedesignate_target() The subsystem is requested to de-

designate a fire control channel.
request_id_type RequestID
fire_control_channel_id_type
FireControlChannelID

designate_target_by_position() The subsystem is requested to
designate a fire control channel
based on a position/kinematics.

request_id_type RequestID
kinematics_type PositionVelocity

designate_target_by_track() The subsystem is requested to
designate a fire control channel
based on a track.

request_id_type RequestID
sensor_track_id_type TrackID

Sensor Track Reporting
Type: InteractionOccurrence
Package: Process_Target_Designation
The sensor track reporting itself is not covered in this service interface. See the corresponding service interface
'Sensor Track Reporting'.
Sensor Track Reporting
Type: InteractionOccurrence
Package: Process_Target_Designation
The sensor track reporting itself is not covered in this service interface. See the corresponding service interface
'Sensor Track Reporting'.

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

loop target loss

[while target may be tracked and/or acquired]

alt designation by track

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

loop target reporting

[while target is acquired]

ref
Sensor Track Reporting

alt de-designate not received before timeout condition

designate_target_by_track(request_id_type, sensor_track_id_type)

receive_error(request_id, error_reason)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type, request_ack_type)

receive_fire_control_channel_released(request_id_type,
fire_control_channel_id_type)

receive_target_acquired(request_id_type, sensor_track_id_type,
fire_control_channel_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.224 Process Target Designation - Designation by track (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation
"designate (target) by track" of the service "Process Target Designation".

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 349

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

loop target loss

[while target may be tracked and/or acquired]

alt designation by position

[basic flow]

[request rejection]

[processing error]

loop target acquisition

[attempt acquisition]

request_ack.success = false

request_ack.success = true

request_ack.success = true

loop target reporting

[while target is acquired]

opt target succesfull acquired

[once target is acquired]

ref
Sensor Track Reporting

alt de-designate not received before timeout condition

receive_fire_control_channel_released(request_id_type,
fire_control_channel_id_type)

receive_error(request_id, error_reason)

designate_target_by_position(request_id_type, kinematics_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type, request_ack_type)

receive_target_acquired(request_id_type, sensor_track_id_type,
fire_control_channel_id_type)

designate_target_by_position(request_id_type, kinematics_type)

designate_target_by_position(request_id_type, kinematics_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.225 Process Target Designation - Designation by position (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation
"designate (target) by position" of the service "Process Target Designation".

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

alt dedesignation

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

This sequence diagram applies to a
fire control channel that has been
designated by position or by track.

dedesignate_target(request_id_type, fire_control_channel_id_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type, request_ack_type)

receive_target_dedesignation(request_id_type, sensor_track_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.226 Process Target Designation - De-designation (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "de-
designate (target)" of the service "Process Target Designation". It applies to a fire control channel that has been
designated by position or by track.

7.10.2.2 Support_Kill_Assessment

Parent Package: Engagement_Support

Support_Kill_Assessment_CMS
Type: Interface
Package: Support_Kill_Assessment
With this service the subsystem provides of kill assessment information to the CMS. The information relates to an
above water engagement primarily against an air target.

The kill assessment report of the subsystem may be one of the three:
· PROBABLE-KILL. This indicates that the subsystem assumes the target to be killed.
· PROBABLE-MISS. This indicates that the subsystem assumes the target to be missed by the used weapon

system.
· NO-RESULT. This indicates that the subsystem was not able to determine a valid result for this request.

See also service (interface) "Process Target Designation".
Pre-condition: Service "Process Target Designation" successfully carried out.:
Pre-condition: CMS must have Mastership.:

Table 7.374 - Methods of Interface Support_Kill_Assessment_CMS

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 351

Method Notes Parameters
report_kill_assessment_result() Via this message, the subsystem

reports the kill assessment to the
CMS.

request_id_type RequestID
kill_assessment_result_type
KillAssessmentReport

Support_Kill_Assessment_Sub
Type: Interface
Package: Support_Kill_Assessment

Table 7.375 - Methods of Interface Support_Kill_Assessment_Sub

Method Notes Parameters
request_kill_assessment() The subsystem is requested to

evaluate and report a kill assessment.
request_id_type RequestID
expected_hit_data_type
KillAssessmentData

«idlInterface»

Support_Kill_Assessment_CMS

«idlInterface»

Support_Kill_Assessment_Sub

loop kill assessment update

[until kill assessment report received]

alt request kill assessment support

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = truereceive_acknowledgement(request_id_type,
request_ack_type)

report_kill_assessment_result(request_id_type,
kill_assessment_result_type)

request_kill_assessment(request_id_type,
expected_hit_data_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type,
request_ack_type)

request_kill_assessment(request_id_type,
expected_hit_data_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.227 Basic Flow - Support Kill Assessment - Request Kill Assessment Support (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation
"request kill assessment support " of the service "Support Kill Assessment".

7.10.2.3 Support_Surface_Target_Engagement

Parent Package: Engagement_Support

Support_Surface_Target_Engagement_CMS
Type: Interface
Package: Support_Surface_Target_Engagement
This service is intended for fire control radars, as well as surveillance radar systems that have facilities to perform
surface target engagements by means of dedicated fire control channels. These fire control channels may need a
differently parameterized or more elaborate track algorithm, and they may be combined with related splash spotting
video.

The CMS requests the surface track to be engaged. The maximum number of tracks that may be engaged
simultaneously is determined by the radar.
The functionality may also be available for land targets, provided they may be tracked by the radar.

In the case where the CMS looses or releases mastership of the subsystem, a change of the availability of fire control
channels shall be indicated to the CMS. Fire control radars shall cease all fire control activities.

The set of operational modes that make fire control channels available, as well as the number of available channels
shall be provided by means of service "Manage Subsystem Parameters".
Pre-condition: Technical state ONLINE.:
Pre-condition: CMS must have Mastership.:
Post-condition: Service ends with success - check availability: - the CMS is informed about the availability of fire
control channels.
Post-condition: Service ends with success - target designation: - the radar provides a fire control track for the
selected sensor track.
Post-condition: Service ends with success - reporting: - the CMS receives regular updates of the fire control track.
Post-condition: Service ends with success - de-designation: - the fire control channel is de-assigned and has
become available.
Post-condition: Service ends with fail - target designation: - the fire control channel is not assigned; no fire control
track.
Post-condition: Service ends with fail - surface track is lost: - the fire control channel is not assigned; the fire
control track is terminated. The CMS is informed about the availability of fire control channel.
Post-condition: Service ends with Fail - de-designation: - the fire control channel is not assigned.

Table 7.376 - Methods of Interface Support_Surface_Target_Engagement_CMS

Method Notes Parameters
report_availability_state_of_fire_con
trol_channels()

Via this interface method, the
number of available fire control
channels are returned from the
subsystem to the CMS. If no channel
is available, the value '0' is returned.

request_id_type RequestID
available_fire_control_channels_type
AvailableFireControlChannels

report_available_fire_control_chann
el()

Via this interface method, the
number of available fire control
channels are returned from the
subsystem to the CMS.

request_id_type RequestID
fire_control_channel_id_type
FireControlChannelID

report_selected_fire_control_channel
()

Via this interface method, the
selected fire control channel is
returned from the subsystem to the
CMS.

request_id_type RequestID
fire_control_channel_id_type
FireControlChannelID
sensor_track_id_type
SensorTrackId

Support_Surface_Target_Engagement_Sub

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 353

Type: Interface
Package: Support_Surface_Target_Engagement

Table 7.377 - Methods of Interface Support_Surface_Target_Engagement_Sub

Method Notes Parameters
dedesignate_fire_control_channel() Request to the subsystem to de-

designate a fire control channel.
request_id_type RequestID
fire_control_channel_id_type
FireControlChannelID

designate_fire_control_channel() Request to the subsystem to
designate a fire control channel.

request_id_type request_id
sensor_track_id_type track_id

request_availability_of_fire_control_
channels()

Request to the subsystem to report
the available fire control channels.

request_id_type RequestID

sensor track reporting
Type: InteractionOccurrence
Package: Support_Surface_Target_Engagement

Support_Surface_Target_Engagement_CMS
Type: ActivityPartition
Package: Support_Surface_Target_Engagement

Support_Surface_Target_Engagement_Sub
Type: ActivityPartition
Package: Support_Surface_Target_Engagement

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»

Support_Surface_Target_Engagement_Sub

Returns the number of available
fire control channels. If no
channel is available, the value
'0' is returned.

receive_acknowledgement(request_id_type,
request_ack_type)

request_availability_of_fire_control_channels(request_id_type)

report_availability_state_of_fire_control_channels(request_id_type,
available_fire_control_channels_type)

Figure 7.228 Support surface target engagement - Check availability (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "check
availability" of the service "Support surface target engagement".

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»

Support_Surface_Target_Engagement_Sub

alt designate fire control channel

[basic flow]

[alternate flow: invalid track id]

[alternate flow: processing error]

loop report fire control track (asynchronous)

[while fire control channel is assigned]

This message corresponds with the
COMPLETE message.

Internally, the asynchronous
reporting of the fire control channel
has been triggered.

The reporting of fire control tracks
is part of sensor track reporting.

When the reporting ends, the
number of available fire control
channels is reported.

request_ack.success = false

request_ack.success = true

request_ack.success = true

ref
sensor track reporting

designate_fire_control_channel(request_id_type, sensor_track_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_selected_fire_control_channel(request_id_type,
fire_control_channel_id_type, sensor_track_id_type)

receive_error(request_id, error_reason)

report_available_fire_control_channel(request_id_type, fire_control_channel_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

Figure 7.229 Support surface target engagement - Designate fire control channel (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation
"designate fire control channel" of the service "Support surface target engagement".

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 355

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»

Support_Surface_Target_Engagement_Sub

alt dedesignate fire control channel

[basic flow]

[alternate flow: invalid fire control channel id]

[alternate flow: processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

dedesignate_fire_control_channel(request_id_type,
fire_control_channel_id_type)

report_available_fire_control_channel(request_id_type,
fire_control_channel_id_type)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type,
request_ack_type)

receive_acknowledgement(request_id_type,
request_ack_type)

Figure 7.230 Support surface target engagement - Dedesignate fire control channel (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "De-
designate fire control channel" of the service "Support surface target engagement".

7.10.3 Missile_Guidance
Parent Package: Radar_Services

7.10.3.1 Perform_Illumination

Parent Package: Missile_Guidance

Perform_Illumination_CMS
Type: Interface
Package: Perform_Illumination
This service covers the control of target illumination to support a semi-active homing missile engagement.

The actor is the Combat Management System.

The service is triggered by the illumination request of the actor. Typically, illumination takes place during a specific
period within the engagement sequence.
The actor sends an illumination request to the radar.
On the requested start time, the radar starts illuminating the target with specified parameters.
During the illumination, the actor may provide updates of illumination parameters, e.g. to change the stop time.
The service ends at stop time of the illumination.

If the radar may not fulfil the illumination request, this is reported to the actor and the service stops.

If during the illumination a radar fault takes place that prevents execution of illumination (e.g. illumination
frequency not more available), the health state of the Missile Guidance service (of which this service is part)

becomes DEGRADED (if the Missile Guidance service is still capable of performing uplinks and/or downlinks) or
NOT AVAILABLE, and the service stops.

If the target track becomes lost during the illumination, the service stops.
Pre-condition: Sensor health state: The sensor and the Missile Guidance service are in the health state
AVAILABLE or DEGRADED.
Pre-condition: Sensor parameters: The relevant sensor parameters (e.g. allowed frequencies, transmission
sectors) are set1.

1 The manner in which this is done is described in other services of the OARIS (“Manage frequency usage”,
“Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).

Table 7.378 - Methods of Interface Perform_Illumination_CMS

Method Notes Parameters
report_illumination_completed() request_id_type request_id

Perform_Illumination_Sub
Type: Interface
Package: Perform_Illumination

Table 7.379 - Methods of Interface Perform_Illumination_Sub

Method Notes Parameters
request_illumination() request_id_type request_id

illumination_request_type request

provide_track() system_track_type track

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 357

«idlInterface»

Perform_Illumination_CMS

«idlInterface»

Perform_Illumination_Sub

Same method is used when requesting illumination for the first
time, as well as modifying the request later. In the latter case, a
new request (with new request_id) shall be issued for the same
target.

It is assumed that, at the moment of the illumination request, the kinematics of the sensor tracks for target and own_missile(s) as referred to
by the illumination_request are available to the subsystem.
This may be achieved in two ways:
1. The CMS provides the kinematics periodically to the subsystem, or
2. the subsystem itself is tracking the target and own_missile(s).
If this pre-condition is not satisfied, the receive_acknowledgement shall indicate that the request is not accepted.

When after some time the target and/or missile tracks are no longer available, the subsystem shall send receive _error message with an
appropriate error_reason.

opt target track

[subsystem is not tracking the target]

opt missile track

[missile(s) need to be illuminated as well and subsystem is not tracking the missile(s)]

Target to be
illuminated

For all missiles in
engagement (if
required)

opt target track

[subsystem is not tracking the target]

opt missile track

[missile(s) need to be illuminated as well and subsystem is not tracking the missile(s)]

loop illumination period

[during illumination period]

request_ack.accepted =
true

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
false

request_ack.accepted =
true

Although not shown in this sequence diagram, processing may also fail after one of more
successful illuminations but before the end of the illumination period.

provide_track(system_track)

receive_error(request_id_type, error_reason_type)

request_illumination(request_id_type, illumination_request_type)

receive_acknowledgement(request_id_type, request_ack)

provide_track(system_track)

receive_acknowledgement(request_id_type, request_ack_type)

provide_track(system_track)

provide_track(system_track)

complete(request_id_type)

receive_acknowledgement(request_id_type, request_ack)

Figure 7.231 Basic Flow - Illumination (Interaction diagram)

7.10.3.2 Perform_Missile_Downlink

Parent Package: Missile_Guidance

Perform_Missile_Downlink_CMS
Type: Interface
Package: Perform_Missile_Downlink
The service describes the reception and provision of missile downlink information to the CMS.
Downlink consists of transmission of energy by the missile. The radar subsystem may track a missile based on these
downlink transmissions (beacon track). Provision of the beacon track of the missile to the CMS is covered by
service Provide sensor tracks.
This service handles the situation where the downlink also has content.
Generally, a sequence of downlinks is transmitted by the missile, on periodic basis or triggered by an uplink.
However, the CMS (or a dedicated missile subsystem) is responsible for evaluating the downlinks in this sequence.
The radar subsystem only receives downlinks and provides them to the CMS, and does not keep track of the
sequence. In the special case where the downlink contains own missile kinematics, this data may also be used
internally by the radar subsystem.

The actor is the Combat Management System.

Although the downlink may be evaluated by a missile subsystem (which is not part of the CMS), the downlink is
assumed to be passed to that missile subsystem via the CMS.

The service is triggered by the downlink request of the actor.
The actor sends a downlink request to the radar.
During the request listening period, the radar listens to transmissions that are in accordance with the provided
downlink parameters.
The radar reports to the actor the occurrence of the downlink, including the (decoded) content of the downlink.
The information provided by the missile may vary depending on the applied missile fire control principle, and lies
outside the scope of the OARIS standard.
The information within the downlink may be used internally by the radar.
The service ends at the end of the listening period.

If the downlink transmission is interrupted, this is reported to the actor, and the service stops.

If during the downlink a radar fault takes place that prevents execution of the downlink, the health state of the
Missile Guidance service (of which this service is part) becomes DEGRADED (if the Missile Guidance service is
still capable of performing uplinks and/or illumination) or NOT AVAILABLE, and the service stops.

Relationship to missile uplink
For some missile types a downlink may be transmitted as a response to a received uplink (e.g. an acknowledge of
receipt). This relationship (including the inherent timing relationship) depends heavily on the missile type and lies
outside the scope of the OARIS standard.

Relationship to provide sensor tracks
If the downlink contains kinematic information about the missile, the radar subsystem may use this information
internally to improve the own missile track (provided service Provide sensor tracks or service Process target
designation).
It is also possible that the missile is tracked based on the fact that it transmits energy and not based on the contents
of the downlink. This so-called beacon tracking is covered by service Provide sensor tracks.
Pre-condition: Sensor health state: The sensor and the Missile Guidance service are in the health state
AVAILABLE or DEGRADED.

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 359

Pre-condition: Sensor parameters: The relevant sensor parameters (e.g. allowed frequencies, transmission
sectors) are set. (The manner in which this is done is described in other services of the specification: see “Manage
frequency usage”, “Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).
Pre-condition: Engagement phase: An engagement must be taking place.
Pre-condition: Missile downlink parameters: The parameters of the missile downlink transmission must be
known to the radar. Note that this does not concern the content of the transmission, but rather the transmission
characteristics (e.g. frequency).

Table 7.380 - Methods of Interface Perform_Missile_Downlink_CMS

Method Notes Parameters
report_downlink() request_id_type request_id

downlink_report_type
the_downlink_info

report_downlink_completed() request_id_type request_id

Perform_Missile_Downlink_Sub
Type: Interface
Package: Perform_Missile_Downlink

Table 7.381 - Methods of Interface Perform_Missile_Downlink_Sub

Method Notes Parameters
request_downlink() request_id_type request_id

downlink_request_type request

provide_track() system_track_type track

«idlInterface»

Perform_Missile_Downlink_CMS

«idlInterface»

Perform_Missile_Downlink_Sub

Downlink report may be
periodic or aperiodic.

loop downlink period

[during listening period]

The request_downlink operation has not been identified in the service Description.
The reasons for introducing it here are:
1. There are no provisions (e.g. services) to satisfy the missile downlink parameters precondition.
2. The CMS is only interested in downlink information from own missiles in flight belonging to an active engagement.
3. Generally, the missile downlink parameters (e.g. frequency) are engagement dependent.

opt missile track

[missile track is required and subsystem is not tracking the missile]

opt missile track

[missile track is required and subsystem is not tracking the missile]

Missile from which a
downlink shall be received

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

Although not shown in this sequence diagram, processing may also fail after one of more successful
downlink reports but before the end of the listening period. (In this case there is a positive
acknowledgement followed by some downlinks and then an error is received).

provide_track(system_track_type)

receive_acknowledgement(request_id_type,
request_ack_type)

request_downlink(request_id_type,
downlink_request)

report_downlink(request_id_type, downlink_report)

receive_acknowledgement(request_id_type,
request_ack_type)

provide_track(system_track)

receive_acknowledgement(request_id_type,
request_ack_type)

complete(request_id_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 361

Figure 7.232 Basic Flow - Downlink (Interaction diagram)

7.10.3.3 Perform_Missile_Uplink

Parent Package: Missile_Guidance

Perform_Missile_Uplink_CMS
Type: Interface
Package: Perform_Missile_Uplink
The service describes the execution of uplink of relevant information from the radar to the missile in flight during an
engagement.
Generally, a sequence of uplinks (of various types) must be transmitted to a missile during an engagement.
However, the CMS (or a dedicated missile subsystem) is responsible for planning and requesting the correct
sequence of uplinks. The radar subsystem only transmits an uplink on request of the CMS. Therefore, this service
starts with the request of a single uplink and ends when the radar subsystem has transmitted the uplink.

The actor is the Combat Management System. Although the uplink may be initiated by a missile subsystem (which
is not part of the CMS), the uplink is assumed to be passed through the CMS to the radar subsystem.

The service is triggered by the uplink request of the actor.
The actor sends an uplink request to the radar.
At the requested time, the radar sends the uplink to the missile in accordance with the provided uplink parameters.
The information provided to the missile may vary depending on the applied missile fire control principle, and lies
outside the scope of the OARIS standard.
The service ends when the radar has confirmed the transmission of the uplink.

If the radar may not fulfil the uplink request, this is reported to the actor and the service stops.

If during the uplink a radar fault takes place that prevents execution of the uplink (e.g. uplink frequency not more
available), the health state of the Missile Guidance service (of which this service is part) becomes DEGRADED (if
the Missile Guidance service is still capable of performing illumination and/or downlinks) or NOT AVAILABLE,
and the service stops.

If the missile track becomes lost during the uplink, the service stops.

Network Centric engagements
In Network-Centric or Network-Enabled systems, guidance of the missile may be transferred during the flight of the
missile to another surface platform. As the related technologies are still being developed, it shall be too early to
include specific NEC requirements here. However, care should be taken in the design of OARIS that such
capabilities could be included at a later date. This means that there should be no built-in restrictions in the standard,
which would prevent addition of such facilities in the future.

Relationship to missile downlink
For some missile types an uplink transmission may trigger the transmission of a downlink by the missile (e.g. an
acknowledge of receipt). This relation depends heavily on the missile type and lies outside the scope of the OARIS
standard.
Pre-condition: Sensor health state: The sensor and the Missile Guidance service are in the health state
AVAILABLE or DEGRADED.
Pre-condition: Sensor parameters: The relevant sensor parameters (e.g. allowed frequencies, transmission
sectors) are set1.

1 The manner in which this is done is described in other services of the OARIS (“Manage frequency usage”,
“Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).
Pre-condition: Engagement phase: An engagement must be taking place.

Pre-condition: Known position of missile: The position of the missile must be known, i.e. own missile track must
exist. The missile track may be provided by the CMS or by the radar subsystem itself.

Table 7.382 - Methods of Interface Perform_Missile_Uplink_CMS

Method Notes Parameters
report_uplink_completed() request_id_type request_id

uplink_report_type report

Perform_Missile_Uplink_Sub
Type: Interface
Package: Perform_Missile_Uplink

Table 7.383 - Methods of Interface Perform_Missile_Uplink_Sub

Method Notes Parameters
request_uplink() request_id_type request_id

uplink_request_type request

provide_track() system_track_type track

«idlInterface»

Perform_Missile_Uplink_CMS

«idlInterface»

Perform_Missile_Uplink_Sub

opt missile track

[subsystem is not tracking the missile]

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =
true

request_ack.accepted =
false

request_ack.accepted =
true

Missile to which the uplink
shall be transmittedprovide_track(system_track)

receive_error(request_id_type, error_reason_type)

report_uplink_completed(request_id_type, uplink_report_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

request_uplink(request_id_type, uplink_request_type)

receive_acknowledgement(request_id_type, request_ack_type)

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 363

Figure 7.233 Basic Flow - Uplink (Interaction diagram)

7.10.4 Surface_Engagement_Support
Parent Package: Radar_Services

7.10.4.1 Perform_Splash_Spotting

Parent Package: Surface_Engagement_Support

Perform_Splash_Spotting_CMS
Type: Interface
Package: Perform_Splash_Spotting
Surveillance radar systems may support engagements against surface targets by means of a splash spotting video or
measured splash positions. In the vicinity of the target a signal processing is applied which is optimized to observe
splashes of the shells hitting the sea surface.

The splash spotting information may be used to achieve shot corrections for a running engagement. The engagement
may use a fire control channel of the radar but also of another device like fire control radar. The CMS requests the
radar to localize a splash spotting area at a defined position derived from the target kinematics.

The use of splash spotting areas may be limited to fire control channels of the radar. Then, only the localization of a
splash spotting area may be done in accordance with this service. Normally, it shall be localized at the predicted
hitting point.

These splash spotting areas shall not differ in terms of function and performance so that the selection of the area to
be applied to an engagement may be done by the radar, automatically. The CMS just indicates where to localize it.

If mastership is lost during execution in any of the flows the services are terminated.
Pre-condition: Technical state ONLINE.:
Pre-condition: Assigned fire control channel.: - a fire control channel has been assigned using "Support Surface
Target Engagement"
Pre-condition: CMS must have Mastership:
Post-condition: Success: The subsystem provides splash spotting videos as long as the splash spotting areas are
active.:
Post-condition: No success: The subsystem does not perform as requested.:

Table 7.384 - Methods of Interface Perform_Splash_Spotting_CMS

Method Notes Parameters
confirm_reposition_splash_splotting
spotting_area()

Via this method, the request for the
repositioning of a splash spotting
area is confirmed by the subsystem.

request_id_type RequestID
splash_spotting_area_id_type
SplashSpottingAreaID

confirm_splash_spotting_area_deacti
vation()

Via this method, the request for the
deactivation of a splash spotting area
is confirmed by the subsystem.

request_id_type RequestID
splash_spotting_area_id_type
SplashSpottingAreaId

receive_splash_splottingspotting_are
a_position()

Via this method, the request for a
new splash spotting area based on a
position is confirmed by the
subsystem.

request_id_type RequestID
splash_spotting_area_id_type
SplashSpottingAreaID

receive_splash_splottingspotting_are Via this method, the request for a request_id_type RequestID

Ollie Newman, 02/08/24
OARIS3-29

a_track() new splash spotting area based on a
track is confirmed by the subsystem.

splash_spotting_area_id_type
SplashSpottingAreaID

report_splash_spotting_area_activati
on_state()

Via this interface, the splash spotting
areas are reported to the CMS.

request_id_type RequestID
splash_spotting_area_set_type
SplashSpottingAreaSet

Perform_Splash_Spotting_Sub
Type: Interface
Package: Perform_Splash_Spotting

Table 7.385 - Methods of Interface Perform_Splash_Spotting_Sub

Method Notes Parameters
activate_splash_spotting_area_by_po
sition()

Requests the subsystem to activate a
new splash spotting area based on a
area/position.

request_id_type RequestID
splash_spotting_area_position_type
SplashSpottingAreaPosition

activate_splash_spotting_area_by_tr
ack()

Requests the subsystem to activate a
new splash spotting area based on a
sensor track.

request_id_type RequestID
sensor_track_id_type TrackID

deactivate_splash_spotting_area() Requests the subsystem to de-
activate a splash spotting area.

request_id_type RequestID
splash_spotting_area_id_type
SplashSpottingAreaID

report_splash_spotting_information() Requests the subsystem to report
splash spotting information/splash
positions for an existing splash
spotting area.

request_id_type RequestID
splash_spotting_area_id_type
SplashSpottingAreaID

reposition_splash_spotting_area() Requests the subsystem to reposition
a existing splash spotting area.

request_id_type RequestID
splash_spotting_area_id_type
SplashSpottingAreaID
splash_spotting_area_position_type
SplashSpottingAreaPosition

request_splash_spotting_areas() Request the subsystem to report the
splash spotting areas to the CMS.

request_id_type RequestID

Perform_Splash_Spotting_CMS
Type: ActivityPartition
Package: Perform_Splash_Spotting

Perform_Splash_Spotting_Sub
Type: ActivityPartition
Package: Perform_Splash_Spotting

Report measured splash positions
Type: InteractionOccurrence
Package: Perform_Splash_Spotting

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 365

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

receive_acknowledgement(request_id_type, request_ack_type)

request_splash_spotting_areas(request_id_type)

report_splash_spotting_area_activation_state(request_id_type,
splash_spotting_area_set_type)

Figure 7.234 Perform Splash Spotting - Check Activation (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "check
activation" of the service "Perform splash spotting".

Figure 7.235 Perform Splash Spotting - Activate Splash Spotting Area by Position (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation
"activate splash spotting area by position" of the service "Perform Splash Spotting".

Ollie Newman, 02/08/24
OARIS3-29

Figure 7.236 Perform Splash Spotting - Re-position Splash Spotting Area (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation
"reposition splash spotting area" of the service "Perform splash spotting".

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 367

Ollie Newman, 02/08/24
OARIS3-29

Figure 7.237 Perform Splash Spotting - Activate Splash Spotting Area by Fire Control Track (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation
"activate splash spotting area by fire control track" of the service "Perform splash spotting".

Ollie Newman, 02/08/24
OARIS3-29

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

alt report on splash spotting information

[basic flow]

[alternate flow: rejection]

[alternate flow: error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

ref

Report measured splash positions

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_splash_spotting_information(request_id_type, splash_spotting_area_id_type)

Figure 7.238 Perform Splash Spotting - Report On Splash SplottingSpotting Information (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation "report
on splash spotting information" of the service "Perform splash spotting".

Open Architecture Radar Interface Standard (OARIS), Draft for v3.0 369

Ollie Newman, 02/08/24
OARIS 3-29

«idlInterface»

Perform_Splash_Spotting_Sub

«idlInterface»

Perform_Splash_Spotting_CMS

alt deactivate splash spotting area

[basic flow]

[alternate flow: rejection]

[alternate flow: error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

deactivate_splash_spotting_area(request_id_type,
splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

confirm_splash_spotting_area_deactivation(request_id_type,
splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

Figure 7.239 Perform Splash Spotting - Deactivate Splash Spotting Area (Interaction diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the operation
"deactivate splash spotting area" of the service "Perform splash spotting".

8 Platform-Specific Models

8.1 DDS Data Model PSM

The DDS Data Model PSM defines a set of IDL files for the Data Model packages defined by the PIM. Comments
are added to the IDL files to reflect the mapping rules below.

The detailed rules for the MDA code generation from the Data Model PIM to the DDS PSM IDL are as follows:
 PIM attributes and compositions are mapped to IDL attributes;

◦ Optional PIM attributes are mapped to a union type with a single member present when the exists case
attribute is true;

 Collections in the PIM are mapped to IDL sequences; a Length tag determines the sequence bounds;

◦ Specialization / Generalization PIM relationships are mapped to IDL unions. Additional data classes are
introduced for non-abstract generalization classes that have attributes

8.2 DDS Services PSM

The DDS Services PSM defines IDL files for each package defined in the Services PIM. For each method on each
interface class an IDL struct for a DDS topic named for the method is generated; each parameter is mapped to an
attribute of the IDL struct. Note that the PIM only defines parameters with an 'in' mode, there are no 'return'
parameters defined and all methods have at least one parameter. Comments are generated to match the PIM notes
and to include the version number of this standard in each file.

Additionally the struct contains a subsystem_id key attribute of type subsystem_id_type. This indicates which
subsystem published the data or is intended to read it as a subscriber.

Operations that require a response contain a request_id in the PIM that logically links request and response
instances. In the DDS PSM, each request_id operation parameter is mapped to a keyed attribute of the DDS topic so
that distinct request and response pairs can be retrieved from the DDS data space.

To robustly and efficiently ensure that the data exchanged between a particular subsystem and a CMS is recognized
correctly a system integrator should mandate a strategy to ensure that subsystems and topic instances can not clash.
Two such strategies are:

 separating subsystems by topic (for example using "write_sensor_track__RADAR1" as a topic name for all
sensor track samples being provided by the RADAR1 subsystem).

 separating subsystems by partition (for example using "write_sensor_track" on partition "RADAR1" for all
sensor track samples being provided by the RADAR1 subsystem).

Also, the CMS uses the receive_cms_identification_data topic to allocate a subsystem_id to a subsystem; the
subsystem sets the subsystem_id to zero for the receive_subsystem_identification_data topic, for which the CMS
subscribes on the wildcard partition "*". Subsequently, for data intended for all subsystems, the CMS publishes
samples on partition "*" with a subsystem id of zero.

However, the Register Interest use case is mapped to the DDS DCPS Reader Listener interface and the Provide
Subsystem Services use case is mapped to the DDS DCPS Data Reader and Data Writer interfaces, so there are no IDL
files for these use cases.

Ollie Newman, 02/08/24
OARIS3-7

Ollie Newman, 02/08/24
OARIS3-1

8.3 GraphQL Data Model and Services PSM

The GraphQL PSM defines a set of schema definition language files, one for each Service interface defined by the
PIM; each of these files represents a self-contained service and contains definition for the types represented.
Comments are added to these files to reflect the mapping rules below.

The detailed rules for the MDA code generation from the Data Model PIM to the GraphQL are as follows:
 Enumerations are mapped to GraphQL enums;

 PIM Classes with an 'idlStruct' stereotype are mapped to both a GraphQL object and input type;

◦ Scalar idlTypedef stereotyped classes are inlined to primitive GraphQL types in the types that use them;

 PIM attributes and compositions are mapped to GraphQL object and input attributes;

 Non-optional PIM attributes are mandatory GraphQL attributes;

 Collections in the PIM are mapped to GraphQL lists (which are unbounded);

◦ Specialization / Generalization PIM relationships are mapped to GraphQL union and interface object
types and an input type with optional attributes (and the same semantics). Additional data classes are
introduced for non-abstract generalization classes that have attributes

The GraphQL services derived from CMS interfaces allow the CMS to query and subscribe to operations invoked by a
Subsystem, whilst Subsystem can invoke the interface by making mutations. Services derived from Subsystem
interfaces allow the Subsystem to query and subscribe and the CMS to mutate. Each GraphQL service contains:

 A schema object declaring query, mutation and subscription attributes;

◦ Query (also used for subscription) with an argument list allowing filtering by subsystem and whether
simulated

 Mutation object types each returning lists of operations;

 A union type with choices for each operation on the interface;

 A options input type with optional attributes for each operation on the interface for mutations;

◦ An object type for each operation including a argument list containing each key in the operation types (as
well as request_id if present) and an additional list of subsystem names returning a list of operations;

 An input type for each operation including an additional list of subsystem names;

◦ Sensor Assessment, Supplementary Measurement and Track Reporting operations also support additional
arguments to filter by environment and area

1 PIM Classes with an 'idlStruct' stereotype are mapped to both a GraphQL object and input type;

2 Scalar idlTypedef stereotyped classes are inlined to primitive GraphQL types in the
types that use them;

3 PIM attributes and compositions are mapped to GraphQL object and input attributes;

4 Non-optional PIM attributes are mandatory GraphQL attributes;

5 Collections in the PIM are mapped to GraphQL lists (which are unbounded);

6 Specialization / Generalization PIM relationships are mapped to GraphQL union and
interface object types and an input type with optional attributes (and the same semantics).
Additional data classes are introduced for non-abstract generalization classes that have
attributes

The GraphQL services derived from CMS interfaces allow the CMS to query and subscribe to operations invoked
by a Subsystem, whilst Subsystem can invoke the interface by making mutations. Services derived from Subsystem
interfaces allow the Subsystem to query and subscribe and the CMS to mutate. Each GraphQL service contains:

7 A schema object declaring query, mutation and subscription attributes;

8 Query (also used for subscription) with an argument list allowing filtering by subsystem
and whether simulated

9 Mutation object types each returning lists of operations;

10 A union type with choices for each operation on the interface;

11 A options input type with optional attributes for each operation on the interface for mutations;

12 An object type for each operation including a argument list containing each key in the
operation types (as well as request_id if present) and an additional list of subsystem names
returning a list of operations;

13 An input type for each operation including an additional list of subsystem names;

14 Sensor Assessment, Supplementary Measurement and Track Reporting operations
also support additional arguments to filter by environment and area

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgements
	6.2 Specification Generation

	7 Open Architecture Radar Information Specification
	7.1 Introduction
	7.1.1 Background
	7.1.2 Section Structure

	7.2 Document Structure
	7.3 Usage Overview
	7.3.1 Compliance Level 1
	7.3.1.1 Basic Picture Compiler
	7.3.1.2 Basic Sensor

	7.3.2 Compliance Level 2
	7.3.2.1 General CMS Sensor Manager
	7.3.2.2 General Sensor Configuration Manager

	7.3.3 Compliance Level 3A
	7.3.3.1 CMS Analysis Data Manager
	7.3.3.2 CMS Diagnostics Manager
	7.3.3.3 CMS On Board Training Manager
	7.3.3.4 Subsystem Diagnostics Manager
	7.3.3.5 Subsystem Record and Replay Manager
	7.3.3.6 Subsystem Simulation Manager
	7.3.3.7 CMS Subsystem Manager
	7.3.3.8 Subsystem Configuration Manager

	7.3.4 Compliance Level 3B
	7.3.4.1 CMS Combat System Configuration Manager
	CMS Subsystem Manager
	7.3.4.2 A non-normative example of a CMS function to manage the state of subsystems in the combat system.
	Subsystem Configuration Manager
	7.3.4.4 A non-normative example of a subsystem function to manage its configuration and state.
	7.3.4.5 Subsystem Physical Configuration Manager

	7.3.5 Compliance Level 3C
	7.3.5.1 CMS Sensor Picture Manager
	7.3.5.2 Sensor Track Reporter

	7.3.6 Compliance Level 3D
	7.3.6.1 CMS AAW Engagement Coordinator
	7.3.6.2 CMS ASuW Engagement Coordinator
	7.3.6.3 Radar AAW Engagement Support Manager
	7.3.6.4 Surface Fire Control Radar Manager
	7.3.6.5 Surface Surveillance Radar Engagement Support Manager

	7.3.7 Compliance Level 3E
	7.3.7.1 CMS Combat System Performance Optimizer
	7.3.7.2 CMS Interference Mitigation Coordinator
	7.3.7.3 Sensor Functional Performance Manager
	7.3.7.4 Sensor Interference Reporter

	7.3.8 Compliance Level 3H
	7.3.8.1 CMS Media Manager
	7.3.8.2 CMS Picture Compilation
	7.3.8.3 Sensor Media Manager
	7.3.8.4 Sensor Parameter Assessment
	7.3.8.5 Sensor Plot Detector
	7.3.8.6 Sensor Track Reporter
	7.3.8.7 Track Extractor

	7.3.9 Compliance Level 3I
	7.3.9.1 CMS Plot Sharing Manager
	7.3.9.2 CMS Tactical Picture Manager
	7.3.9.3 OARIS External Interface
	7.3.9.4 Platform A
	7.3.9.5 Platform B
	7.3.9.6 Plot Fuser
	7.3.9.7 Sensor Plot Detector

	7.4 Common_Types
	7.4.1 anonymous_blob_type
	7.4.2 confidence_interval_type
	7.4.3 confidence_type
	7.4.4 filter_id_type
	7.4.5 filter_mode_type
	7.4.6 identity_type
	7.4.7 percentage_type
	7.4.8 quality_interval_type
	7.4.9 strength_type
	7.4.10 subsystem_id_type
	7.4.11 system_track_id_type
	7.4.12 time_type
	7.4.13 track_priority_type
	7.4.14 track_quality_type
	7.4.15 frequency_band_type
	7.4.16 System_Track
	7.4.16.1 system_track_type

	7.4.17 Coordinates_and_Positions
	7.4.17.1 absolute_duration_type
	7.4.17.2 angle_of_climb_type
	7.4.17.3 azimuth_coordinate_type
	7.4.17.4 azimuth_interval_type
	7.4.17.5 azimuth_qualification_type
	7.4.17.6 azimuth_rate_type
	7.4.17.7 bank_coordinate_type
	7.4.17.8 cartesian_coordinate_type
	7.4.17.9 cartesian_interval_type
	7.4.17.10 cartesian_position_type
	7.4.17.11 cartesian_velocity_component_type
	7.4.17.12 cartesian_velocity_type
	7.4.17.13 coordinate_kind_type
	7.4.17.14 coordinate_orientation_type
	7.4.17.15 coordinate_origin_type
	7.4.17.16 coordinate_specification_type
	7.4.17.17 course_type
	7.4.17.18 covariance_matrix_type
	7.4.17.19 diagonal_covariance_matrix_type
	7.4.17.20 duration_type
	7.4.17.21 elevation_coordinate_type
	7.4.17.22 elevation_interval_type
	7.4.17.23 elevation_qualification_type
	7.4.17.24 elevation_rate_type
	7.4.17.25 full_2d_covariance_matrix_type
	7.4.17.26 full_covariance_matrix_type
	7.4.17.27 height_coordinate_type
	7.4.17.28 height_interval_type
	7.4.17.29 latitude_coordinate_type
	7.4.17.30 latitude_interval_type
	7.4.17.31 longitude_coordinate_type
	7.4.17.32 longitude_interval_type
	7.4.17.33 polar_position_type
	7.4.17.34 polar_velocity_type
	7.4.17.35 position_accuracy_coordinate_type
	7.4.17.36 position_coordinate_type
	7.4.17.37 range_coordinate_type
	7.4.17.38 range_interval_type
	7.4.17.39 range_qualification_type
	7.4.17.40 range_rate_type
	7.4.17.41 speed_interval_type
	7.4.17.42 speed_type
	7.4.17.43 velocity_accuracy_coordinate_type
	7.4.17.44 velocity_coordinate_type
	7.4.17.45 wgs84_position_type
	7.4.17.46 wgs84_velocity_type
	7.4.17.47 cartesian_position_accuracy_type
	7.4.17.48 cartesian_velocity_accuracy_type
	7.4.17.49 polar_position_accuracy_type
	7.4.17.50 polar_velocity_accuracy_type
	7.4.17.51 wgs84_position_accuracy_type
	7.4.17.52 wgs84_velocity_accuracy_type

	7.4.18 Shape_Model
	7.4.18.1 area_2d_type
	7.4.18.2 figure_ref_point_type
	7.4.18.3 general_polar_volume_type
	7.4.18.4 polar_volume_type
	7.4.18.5 polygon_type
	7.4.18.6 rectangle_type
	7.4.18.7 sector_type
	7.4.18.8 truncated_polar_volume_type
	7.4.18.9 truncated_sector_type

	7.4.19 Requests
	7.4.19.1 denial_reason_type
	7.4.19.2 denial_type
	7.4.19.3 error_reason_type
	7.4.19.4 parameter_reference_type
	7.4.19.5 request_ack_type
	7.4.19.6 request_id_type
	7.4.19.7 common_use_case_interface

	7.5 Subsystem_Domain
	7.5.1 Encyclopaedic_Support
	7.5.1.1 data_descriptor_type
	7.5.1.2 url_type

	7.5.2 Extended_Subsystem_Control
	7.5.2.1 configuration_url_type
	7.5.2.2 network_name_type
	7.5.2.3 offline_test_result_details_type
	7.5.2.4 offline_test_result_type
	7.5.2.5 offline_test_type

	7.5.3 Recording_and_Replay
	7.5.3.1 actual_time_type
	7.5.3.2 change_threshold_type
	7.5.3.3 parameter_type
	7.5.3.4 rate_type
	7.5.3.5 record_on_change_type
	7.5.3.6 recorded_data_type
	7.5.3.7 recorded_time_type
	7.5.3.8 recording_descriptor_type
	7.5.3.9 recording_id_type
	7.5.3.10 recording_set_type
	7.5.3.11 recording_type
	7.5.3.12 replay_set_type
	7.5.3.13 replay_speed_type

	7.5.4 Simulation_Support
	7.5.4.1 fault_script_id_type
	7.5.4.2 fault_script_ids_type
	7.5.4.3 fault_script_type
	7.5.4.4 fault_scripts_type
	7.5.4.5 sim_mode_status_type
	7.5.4.6 start_stop_sim_mode_request_type
	7.5.4.7 stop_freeze_session_request_type

	7.5.5 Subsystem_Control
	7.5.5.1 equipment_category_type
	7.5.5.2 function_id_type
	7.5.5.3 function_type
	7.5.5.4 platform_category_type
	7.5.5.5 product_category_type
	7.5.5.6 service_name_type
	7.5.5.7 battle_override_state_type
	7.5.5.8 descriptor_type
	7.5.5.9 descriptor_sequence_type
	7.5.5.10 device_identification_type
	7.5.5.11 device_name_type
	7.5.5.12 parameter_range_type
	7.5.5.13 quality_of_service_type
	7.5.5.14 recipient_type
	7.5.5.15 typical_value_type
	7.5.5.16 event_type
	7.5.5.17 fault_type
	7.5.5.18 fault_list_type
	7.5.5.19 health_state_reason_type
	7.5.5.20 health_state_type
	7.5.5.21 information_name_type
	7.5.5.22 interest_type
	7.5.5.23 interest_list_type
	7.5.5.24 mastership_state_type
	7.5.5.25 parameter_name_type
	7.5.5.26 name_error_pair_type
	7.5.5.27 name_error_sequence_type
	7.5.5.28 parameter_name_sequence_type
	7.5.5.29 name_value_pair_type
	7.5.5.30 name_value_sequence_type
	7.5.5.31 operational_mode_type
	7.5.5.32 parameter_value_response_type
	7.5.5.33 registration_type
	7.5.5.34 service_type
	7.5.5.35 service_health_type
	7.5.5.36 service_indication_list_type
	7.5.5.37 service_indication_type
	7.5.5.38 service_information_type
	7.5.5.39 service_list_type
	7.5.5.40 subsystem_health_type
	7.5.5.41 technical_state_type
	7.5.5.42 version_type

	7.6 Sensor_Domain
	7.6.1 Clutter_Reporting
	7.6.1.1 clutter_assessment_request_type
	7.6.1.2 clutter_indication_type
	7.6.1.3 clutter_map_cell_type
	7.6.1.4 clutter_report_type
	7.6.1.5 concentration_plot_cell_type
	7.6.1.6 intensity_units_type
	7.6.1.7 plot_concentration_report_type
	7.6.1.8 plot_concentration_request_data_type

	7.6.2 Media_Streaming
	7.6.2.1 codec_type
	7.6.2.2 media_allocation_type
	7.6.2.3 media_kind_type
	7.6.2.4 media_name_type
	7.6.2.5 media_stream_id_type
	7.6.2.6 media_stream_metadata_type

	7.6.3 Search
	7.6.3.1 cued_search_cue_type
	7.6.3.2 cued_search_report_type
	7.6.3.3 search_pattern_type
	7.6.3.4 search_repeat_type
	7.6.3.5 surveillance_area_type
	7.6.3.6 surveillance_search_type
	7.6.3.7 surveillance_task_type

	7.6.4 Sensor_Assessment
	7.6.4.1 country_code_type
	7.6.4.2 descriptor_list_type
	7.6.4.3 descriptor_name_type
	7.6.4.4 descriptor_single_value_type
	7.6.4.5 descriptor_value_type
	7.6.4.6 equipment_match_type
	7.6.4.7 equipment_mode_match_type
	7.6.4.8 equipment_name_type
	7.6.4.9 equipment_parameter_match_type
	7.6.4.10 equipment_type
	7.6.4.11 function_name_type
	7.6.4.12 match_id_type
	7.6.4.13 match_link_type
	7.6.4.14 match_type
	7.6.4.15 measurement_element_match_type
	7.6.4.16 mode_name_type
	7.6.4.17 multipath_set_type
	7.6.4.18 observable_function_type
	7.6.4.19 parametric_mode_match_type
	7.6.4.20 platform_activity_name_type
	7.6.4.21 platform_activity_type
	7.6.4.22 platform_class_type
	7.6.4.23 platform_equipment_match_type
	7.6.4.24 platform_match_type
	7.6.4.25 platform_mode_match_type
	7.6.4.26 platform_name_type
	7.6.4.27 platform_type
	7.6.4.28 reference_descriptor_type
	7.6.4.29 reference_id_type
	7.6.4.30 reference_mode_type
	7.6.4.31 reference_parameter_match_type
	7.6.4.32 reference_parameter_type
	7.6.4.33 reference_type
	7.6.4.34 sensor_plot_equipment_assessment_type
	7.6.4.35 sensor_plot_mode_assessment_type
	7.6.4.36 sensor_plot_platform_assessment_type
	7.6.4.37 sensor_track_equipment_assessment_type
	7.6.4.38 sensor_track_mode_assessment_type
	7.6.4.39 sensor_track_platform_assessment_type
	7.6.4.40 subplatform_match_type

	7.6.5 Supplementary_Measurement
	7.6.5.1 continuous_measurement_type
	7.6.5.2 discrete_measurement_type
	7.6.5.3 discrete_order_type
	7.6.5.4 discrete_set_measurement_type
	7.6.5.5 distribution_mode_type
	7.6.5.6 distribution_parameter_measurement_type
	7.6.5.7 distribution_parameter_name_type
	7.6.5.8 measurement_drift_type
	7.6.5.9 measurement_element_type
	7.6.5.10 measurement_interval_type
	7.6.5.11 measurement_kind_id_type
	7.6.5.12 measurement_name_type
	7.6.5.13 measurement_parameter_kind_type
	7.6.5.14 measurement_parameter_set_name_type
	7.6.5.15 measurement_parameter_status_type
	7.6.5.16 measurement_parameter_type
	7.6.5.17 measurement_unit_type
	7.6.5.18 measurement_variation_kind_type
	7.6.5.19 modulation_type
	7.6.5.20 multi_modal_measurement_type
	7.6.5.21 normal_measurement_type
	7.6.5.22 parameter_distribution_type
	7.6.5.23 parameter_id_type
	7.6.5.24 pdf_measurement_type
	7.6.5.25 pdf_name_type
	7.6.5.26 plot_measurement_parameter_set_type
	7.6.5.27 poisson_measurement_type
	7.6.5.28 qualitative_measurement_type
	7.6.5.29 sample_range_type
	7.6.5.30 scalar_measurement_type
	7.6.5.31 sensor_defined_pdf_measurement_type
	7.6.5.32 sequence_name_type
	7.6.5.33 single_measurement_type
	7.6.5.34 track_measurement_parameter_set_type
	7.6.5.35 track_measurement_parameter_type
	7.6.5.36 vector_measurement_type

	7.6.6 Plot_Reporting
	7.6.6.1 error_distribution_kind_type
	7.6.6.2 plot_distribution_type
	7.6.6.3 plot_filter_parameters_type
	7.6.6.4 plot_id_type
	7.6.6.5 plot_level_filter_attributes_type
	7.6.6.6 plot_summary_type
	7.6.6.7 processing_capability_type
	7.6.6.8 sensor_calibration_model_type
	7.6.6.9 sensor_plot_set_type
	7.6.6.10 sensor_plot_type
	7.6.6.11 sensor_precision_model_type
	7.6.6.12 sensor_processing_model_type
	7.6.6.13 sensor_stabilization_model_type
	7.6.6.14 track_level_filter_attributes_type
	7.6.6.15 sensor_orientation_type

	7.6.7 Sensor_Control
	7.6.7.1 selected_frequency_list_type
	7.6.7.2 transmission_frequency_state_type
	7.6.7.3 all_frequencies_state_type
	7.6.7.4 reported_frequency_state_type
	7.6.7.5 transmission_frequency_mode_type
	7.6.7.6 transmission_sector_set_type
	7.6.7.7 transmission_sector_type
	7.6.7.8 transmission_sector_power_level_type
	7.6.7.9 sector_reference_type
	7.6.7.10 control_emission_state_type
	7.6.7.11 test_target_scenario_type
	7.6.7.12 test_target_scenario_independent_target_type
	7.6.7.13 test_target_scenario_common_parameter_target_type
	7.6.7.14 test_target_type
	7.6.7.15 test_target_plus_scenario_type
	7.6.7.16 test_target_scenario_id_type
	7.6.7.17 test_target_scenario_state_type

	7.6.8 Sensor_Performance
	7.6.8.1 absolute_performance_type
	7.6.8.2 interference_report_type
	7.6.8.3 interferer_kind
	7.6.8.4 interferer_type
	7.6.8.5 jamming_magnitude_type
	7.6.8.6 perfomance_bin_type
	7.6.8.7 performance_assessment_parameters_type
	7.6.8.8 performance_assessment_report_type
	7.6.8.9 performance_band_type
	7.6.8.10 performance_beam_type
	7.6.8.11 performance_sector_type
	7.6.8.12 relative_performance_type

	7.6.9 Track_Reporting
	7.6.9.1 assessment_objective_id_type
	7.6.9.2 external_track_number_type
	7.6.9.3 plot_association_type
	7.6.9.4 protocol_name_type
	7.6.9.5 sensor_track_id_type
	7.6.9.6 track_filter_parameters_type
	7.6.9.7 environment_type
	7.6.9.8 initiation_mode_type
	7.6.9.9 recognition_type
	7.6.9.10 sensor_track_type
	7.6.9.11 sensor_track_set_type
	7.6.9.12 track_phase_type

	7.6.10 Tracking_Control
	7.6.10.1 track_info_type
	7.6.10.2 tracking_zone_set_type
	7.6.10.3 tracking_zone_type
	7.6.10.4 tracking_zone_kind_type
	7.6.10.5 tracking_zone_id_type

	7.7 Radar_Domain
	7.7.1 Air_Engagement_Support
	7.7.1.1 expected_hit_data_type
	7.7.1.2 miss_indication_data_type
	7.7.1.3 projectile_kinematics_type

	7.7.2 Engagement_Support
	7.7.2.1 available_fire_control_channels_type
	7.7.2.2 fire_control_channel_id_type
	7.7.2.3 kill_assessment_result_type
	7.7.2.4 kinematics_type

	7.7.3 Missile_Guidance
	7.7.3.1 downlink_report_type
	7.7.3.2 downlink_request_type
	7.7.3.3 frequency_channel_type
	7.7.3.4 illumination_request_type
	7.7.3.5 track_id_type
	7.7.3.6 uplink_report_type
	7.7.3.7 uplink_request_type

	7.7.4 Surface_Engagement_Support
	7.7.4.1 splash_spotting_area_id_type
	7.7.4.2 splash_spotting_area_position_type
	7.7.4.3 splash_spotting_area_set_type
	7.7.4.4 splash_spotting_area_type

	7.8 Subsystem_Services
	7.8.1 Encyclopaedic_Support
	7.8.1.1 Receive_Encyclopaedic_Data

	7.8.2 Extended_Subsystem_Control
	7.8.2.1 Manage_Physical_Configuration
	7.8.2.2 Perform_Offline_Test
	7.8.2.3 Manage_Network_Participation
	7.8.2.4 Startup
	7.8.2.5 Provide_Networking_Statistics
	7.8.2.6 Shutdown
	7.8.2.7 Restart

	7.8.3 Subsystem_Control
	7.8.3.1 Manage_Technical_State
	7.8.3.2 Heartbeat_Signal
	7.8.3.3 Provide_Subsystem_Identification
	7.8.3.4 Provide_Health_State
	7.8.3.5 Manage_Operational_Mode
	7.8.3.6 Control_Battle_Override
	7.8.3.7 Manage_Subsystem_Parameters
	7.8.3.8 Provide_Subsystem_Services
	7.8.3.9 Manage_Mastership
	7.8.3.10 Register_Interest

	7.8.4 Recording_and_Replay
	7.8.4.1 Control_Recording
	7.8.4.2 Control_Replay

	7.8.5 Simulation_Support
	7.8.5.1 Define_Simulation_Scenario
	7.8.5.2 Control_Simulation
	7.8.5.3 Define_Fault_Scripts
	7.8.5.4 Control_Fault_Scripts

	7.9 Sensor_Services
	7.9.1 Clutter_Reporting
	7.9.1.1 Provide_Area_with_Plot_Concentration
	7.9.1.2 Provide_Clutter_Assessment

	7.9.2 Media_Streaming
	7.9.2.1 Allocate_Tracks_To_Stream
	7.9.2.2 Configure_Media_Streams

	7.9.3 Search
	7.9.3.1 Perform_Cued_Search

	7.9.4 Sensor_Assessment
	7.9.4.1 Assess_Sensor_Plot
	7.9.4.2 Assess_Sensor_Track

	7.9.5 Supplementary_Measurement
	7.9.5.1 Configure_Measurement_Parameters
	7.9.5.2 Provide_Sensor_Plot_Parameters
	7.9.5.3 Provide_Sensor_Track_Parameters

	7.9.6 Plot_Reporting
	7.9.6.1 Filter_Plots
	7.9.6.2 Provide_Sensor_Characteristics
	7.9.6.3 Provide_Plots
	7.9.6.4 Provide_Sensor_Orientation

	7.9.7 Sensor_Control
	7.9.7.1 Manage_Frequency_Usage
	7.9.7.2 Manage_Transmission_Sectors
	7.9.7.3 Control_Emissions
	7.9.7.4 Define_Test_Target_Scenario
	7.9.7.5 Test_Target_Facility

	7.9.8 Sensor_Performance
	7.9.8.1 Provide_Interference_Reports
	7.9.8.2 Provide_Nominal_Performance
	7.9.8.3 Provide_Performance_Assessment
	7.9.8.4 Provide_Jammer_Assessment

	7.9.9 Track_Reporting
	7.9.9.1 Filter_Tracks
	7.9.9.2 Label_Tracks
	7.9.9.3 Provide_Sensor_Tracks

	7.9.10 Tracking_Control
	7.9.10.1 Delete_Sensor_Track
	7.9.10.2 Receive_Track_Information
	7.9.10.3 Initiate_Track
	7.9.10.4 Manage_Tracking_Zones

	7.10 Radar_Services
	7.10.1 Air_Engagement_Support
	7.10.1.1 Provide_Projectile_Positional_Information

	7.10.2 Engagement_Support
	7.10.2.1 Process_Target_Designation
	7.10.2.2 Support_Kill_Assessment
	7.10.2.3 Support_Surface_Target_Engagement

	7.10.3 Missile_Guidance
	7.10.3.1 Perform_Illumination
	7.10.3.2 Perform_Missile_Downlink
	7.10.3.3 Perform_Missile_Uplink

	7.10.4 Surface_Engagement_Support
	7.10.4.1 Perform_Splash_Spotting

	8 Platform-Specific Models
	8.1 DDS Data Model PSM
	8.2 DDS Services PSM
	8.3 GraphQL Data Model and Services PSM

