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Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG'’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through afull-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG'’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:

http: //mww.omg.org/technol ogy/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
. XMl

. CWM

. Profile specifications

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM)
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Platform Specific Model and Interface Specifications

. CORBAservices

. CORBA(facilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.
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1 Scope

This specification defines the Object Constraint Language (OCL), version 2.2. OCL version 2.2 is the version of OCL
that is aligned with UML 2.2 and MOF 2.0.

2 Conformance

The UML 2.0 Infrastructure and the MOF 2.0 Core specifications that were developed in parallel with this OCL 2.0
specification share a common core. The OCL specification contains a well-defined and named subset of OCL that is
defined purely based on the common core of UML and MOF. This allows this subset of OCL to be used with both the
MOF and the UML, while the full specification can be used with the UML only.

The following compliance points are distinguished for both parts.

1. Syntax compliance: Thetool can read and write OCL expressions in accordance with the grammar, including
validating its type conformance and conformance of well-formedness rules against a model.

2. XMI compliance: The tool can exchange OCL expressions using XMI.

3. Evaluation compliance: Thetool evaluates OCL expressions in accordance with the semantics clause. The following
additional compliance points are optional for OCL evaluators, as they are dependent on the technical platform on
which they are evaluated:

« dllnstances()

« pre-values and ocllsNew() in postconditions

* OclMessage

* navigating across non-navigable associations

« accessing private and protected features of an object

The following table shows the possible compliance points. Each tool is expected to fill in this table to specify which
compliance points are supported.

Table 2.1 - Overview of OCL Compliance Points

OCL-MOF subset Full OCL

Syntax
XMl

Evaluation
- dllnstances

- @pre in postcondtions

- OclMessage
- havigating non-navigable associations

- accessing private and protected features
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3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

» UML 2.0 Superstructure Specification

« UML 2.0 Infrastructure Specification

» MOF 2.0 Core Specification

» UNICODE 5.1 Standard: http://www.unicode.org/versions/Unicode5.1.0/

4 Terms and Definitions

There are no formal definitionsin this specification that are taken from other documents.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification replaces the specification of OCL givenin UML 1.4.1 and UML 1.5.

6.2 Structure of the Specification

The document is divided into several clauses.

» The OCL Language Description clause gives an informal description of OCL in the style that has been used in the
UML versions 1.1 through 1.4. This clause is not normative, but meant to be explanatory.

» Clause 8 (“Abstract Syntax™) describes the abstract syntax of OCL using a MOF 2.0 compliant metamodel. Thisisthe
same approach as used in the UML, v1.4 and other UML 2.0 specifications. The metamodel is MOF 2.0 compliant in
the sense that it only uses constructs that are defined in the MOF 2.0.

» Clause 9 (“Concrete Syntax™) describes the canonical concrete syntax using an attributed EBNF grammar. This syntax
is mapped onto the abstract syntax, achieving a complete separation between concrete and abstract syntax.

 Clause 10 (“ Semantics Described using UML") describes the semantics for OCL using UML.
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» InClause 11 (“The OCL Standard Library”) the OCL Standard Library is described. This defines type like Integer,
Boolean, etc. and all the collection types. OCL is not a stand-al one language, but an integral part of the UML. An OCL
expression needs to be placed within the context of aUML model.

» Clause 12 (“The Use of Ocl Expressionsin UML Models’) describes a number of places within the UML where OCL
expressions can be used.

» Clause 13 (“Basic OCL and Essential OCL" defines the adaptation of the OCL metamodel when used in particular con-
text of Core::Basic infrastructure library package and in the context of EMOF.

6.3 Acknowledgements

The following companies submitted and/or supported parts of this specification:
» Adaptive Ltd.
» BoldSoft
» Borland Software Corporation
» Compuware Corporation
» Dresden University of Technology
» France Telecom
- International Business Machines
« IONA
» KabiraTechnologies Inc.
» Kings College
» Klasse Objecten
» Open Canarias, SL
« Oracle
 Project Technology Inc.
 Rational Software Corporation
« SAPAG
- Softeam
« Syntropy Ltd.
» Telelogic
 University of Bremen
» University of Kent
 University of York
» Zdigsoft, Inc.
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7  OCL Language Description

This clause introduces the Object Constraint Language (OCL), a formal language used to describe expressions on UML

models. These expressions typically specify invariant conditions that must hold for the system being modeled or queries
over objects described in a model. Note that when the OCL expressions are evauated, they do not have side effects (i.e.,
their evaluation cannot alter the state of the corresponding executing system).

OCL expressions can be used to specify operations / actions that, when executed, do alter the state of the system. UML
modelers can use OCL to specify application-specific constraints in their models. UML modelers can also use OCL to
specify queries on the UML model, which are completely programming language independent.

Note - This clause is informative only and not normative.

7.1  Why OCL?

A UML diagram, such as a class diagram, is typically not refined enough to provide all the relevant aspects of a
specification. There is, among other things, a need to describe additional constraints about the objects in the model. Such
constraints are often described in natural language. Practice has shown that this will always result in ambiguities. In order
to write unambiguous constraints, so-called formal languages have been developed. The disadvantage of traditional
formal languages is that they are usable to persons with a strong mathematical background, but difficult for the average
business or system modeler to use.

OCL has been developed to fill this gap. It is aformal language that remains easy to read and write. It has been devel oped
as a business modeling language within the IBM Insurance division, and has its roots in the Syntropy method.

OCL is a pure specification language; therefore, an OCL expression is guaranteed to be without side effects. When an
OCL expression is evaluated, it simply returns a value. It cannot change anything in the model. This means that the state
of the system will never change because of the evaluation of an OCL expression, even though an OCL expression can be
used to specify a state change (e.g., in a post-condition).

OCL is not a programming language; therefore, it is not possible to write program logic or flow control in OCL. You
cannot invoke processes or activate non-query operations within OCL. Because OCL is a modeling language in the first
place, OCL expressions are not by definition directly executable.

OCL is atyped language so that each OCL expression has a type. To be well formed, an OCL expression must conform
to the type conformance rules of the language. For example, you cannot compare an Integer with a String. Each Classifier
defined within a UML model represents a distinct OCL type. In addition, OCL includes a set of supplementary predefined
types. These are described in Clause 11 (“The OCL Standard Library”).

As a specification language, all implementation issues are out of scope and cannot be expressed in OCL.

The evaluation of an OCL expression is instantaneous. This means that the states of objects in a model cannot change
during evaluation.

7.1.1 Where to Use OCL
OCL can be used for a number of different purposes:

« asaquery language,
« to specify invariants on classes and types in the class model,
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« to specify type invariant for Stereotypes,

« to describe pre- and post conditions on Operations and Methods,

+ to describe Guards,

« to specify target (sets) for messages and actions,

« to specify constraints on operations, and

« to specify derivation rules for attributes for any expression over aUML model.

7.2 Introduction

7.2.1 Legend
Text written in the typeface as shown below is an OCL expression.
‘Thisisan OCL expression’

The context keyword introduces the context for the expression. The keyword inv, pre, and post denote the stereotypes,
respectively «invariant», «precondition», and «postcondition» of the constraint. The actual OCL expression comes after
the colon.

context TypeNameinv:
'thisis an OCL expression with stereotype <<invariant>> in the
context of TypeName' = ‘another string'

In the examples the keywords of OCL are written in boldface in this document. The boldface has no forma meaning, but is
used to make the expressions more readabl e in this document. OCL expressions in this document are written using ASCI|
characters only.

Words in Italics within the main text of the paragraphs refer to parts of OCL expressions.

7.2.2 Example Class Diagram

The diagram below is used in the examples in this clause.
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Bank wenumerations
Gender
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income(Cate) : Integer — .

0.1 Job

husband | 0..1 tifle : String
startDats © Date
salary - Integer

T

|

1

Marriage

place - String
date : Date

Figure 7.1 - Class Diagram Example

7.2.3 Character Set

OCL text comprises characters in the UNICODE character set. In particular, string literals, comments, and the names of
types, features, and other elements in the UML model may contain any valid UNICODE character.

7.3 Relation to the UML Metamodel

7.3.1 Self

Each OCL expression is written in the context of an instance of a specific type. In an OCL expression, the reserved word
self is used to refer to the contextual instance. For example, if the context is Company, then self refers to an instance of
Company.

7.3.2 Specifying the UML Context

The context of an OCL expression within a UML model can be specified through a so-called context declaration at the
beginning of an OCL expression. The context declaration of the constraints in the following sub clauses is shown.

If the constraint is shown in a diagram, with the proper stereotype and the dashed lines to connect it to its contextual
element, there is no need for an explicit context declaration in the test of the constraint. The context declaration is
optional.
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7.3.3 Invariants

The OCL expression can be part of an Invariant which is a Constraint stereotyped as an «invariant». When the invariant
is associated with a Classifier, the latter is referred to as a “type” in this clause. An OCL expression is an invariant of the
type and must be true for all instances of that type at any time. (Note that all OCL expressions that express invariants are
of the type Boolean.)

For example, if in the context of the Company type in Figure 7.1, the following expression would specify an invariant that
the number of employees must always exceed 50:

sdlf.numberOfEmployees > 50

where self is an instance of type Company. (We can view self as the object from where we start evaluating the
expression.) This invariant holds for every instance of the Company type.

The type of the contextual instance of an OCL expression, which is part of an invariant, is written with the context
keyword, followed by the name of the type as follows. The label inv: declares the constraint to be an «invariant»
constraint.
context Company inv:
self.numberOfEmployees > 50

In most cases, the keyword self can be dropped because the context is clear, as in the above examples. As an alternative
for self, a different name can be defined playing the part of self. For example:
context ¢ : Company inv:
¢.numberOfEmployees > 50

This invariant is equivalent to the previous one.

Optionally, the name of the constraint may be written after the inv keyword, allowing the constraint to be referenced by
name. In the following example the name of the constraint is enoughEmployees. In the UML 1.4 metamodel, this name is
a (meta-)attribute of the metaclass Constraint that is inherited from Model Element.
context ¢ : Company inv enoughEmployees:
¢.numberOfEmployees > 50

7.3.4 Pre- and Postconditions

The OCL expression can be part of a Precondition or Postcondition, corresponding to «precondition» and «postcondition»
stereotypes of Constraint associated with an Operation or other behavioral feature. The contextual instance self then is an
instance of the type that owns the operation or method as a feature. The context declaration in OCL uses the context
keyword, followed by the type and operation declaration. The stereotype of constraint is shown by putting the labels
‘pre;’ and ‘post:’ before the actual Preconditions and Postconditions. For example:
context Typename::operationName(paraml : Typel, ... ): ReturnType
pre: paraml> ...
post: result = ...

The name self can be used in the expression referring to the object on which the operation was called. The reserved word
result denotes the result of the operation, if there is one. The names of the parameters (paraml) can also be used in the
OCL expression. In the example diagram, we can write:

context Person::income(d : Date) : Integer
post: result = 5000
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Optionally, the name of the precondition or postcondition may be written after the pre or post keyword, allowing the
constraint to be referenced by name. In the following example the name of the precondition is parameter Ok and the name
of the postcondition is resultOk. In the UML metamodel, these names are the values of the attribute name of the
metaclass Constraint that is inherited from Model Element.

context Typename::operationName(paraml : Typel, ... ): ReturnType
pre parameterOk: paraml> ...
post resultOk : result = ...

7.3.5 Package Context

The above context declaration is precise enough when the package in which the Classifier belongsis clear from the
environment. To specify explicitly in which package invariant, pre or postcondition Constraints belong, these constraints
can be enclosed between 'package’ and ‘endpackage’ statements. The package statements have the syntax:

package Package:: SubPackage

context X inv:
... Someinvariant ...

context X::operationName(..)
pre: ... some precondition ...

endpackage

An OCL file (or stream) may contain any number package statements, thus allowing all invariant, preconditions, and
postconditions to be written and stored in one file. This file may co-exist with a UML model as a separate entity.

7.3.6 Operation Body Expression

An OCL expression may be used to indicate the result of a query operation. This can be done using the following syntax:
context Typename::operationName(paraml : Typel, ... ): ReturnType
body: -- some expression

The expression must conform to the result type of the operation. Like in the pre- and postconditions, the parameters may

be used in the expression. Pre-, and postconditions, and body expressions may be mixed together after one operation
context. For example:

context Person::getCurrentSpouse() : Person
pre. sef.isMarried = true
body: self.mariages->select( m | m.ended = false ).spouse

7.3.7 Initial and Derived Values

An OCL expression may be used to indicate the initial or derived value of an attribute or association end. This can be
done using the following syntax:

context Typename::attributeName: Type
init: -- some expression representing theinitial value

context Typename::assocRoleName: Type
derive: -- some expression representing the derivation rule
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The expression must conform to the result type of the attribute. In the case the context is an association end the
expression must conform to the classifier at that end when the multiplicity is at most one, or Set, or OrderedSet when the
multiplicity may be more than one. Initial and derivation expressions may be mixed together after one context. For
example:

context Person::income : Integer
init: parentsincome->sum() * 1% -- pocket allowance
derive: if underAge
then parents.income->sum() * 1% -- pocket allowance
elsejob.salary -- income from regular job
endif
The derivation constraint must be satisfied at any time, hence the derivation includes the initialization. Both are alowed

on the same property but they must not be contradictory. For each property there should be at most one initialization
constraint and at most one derivation constraint

7.3.8 Other Types of Expressions

Any OCL expression can be used as the value for an attribute of the UML metaclass Expression or one of its subtypes. In
that case, the semantics sub clause describes the meaning of the expression. A special subclass of Expression, called
ExpressioninOcl is used for this purpose. See 12.1, 'Introduction’ for a definition.

7.4 Basic Values and Types

In OCL, a number of basic types are predefined and available to the modeler at all times. These predefined value types
are independent of any object model and are part of the definition of OCL.

The most basic value in OCL is a value of one of the basic types. The basic types of OCL, with corresponding examples
of their values, are shown in the following table.

Table 7.1 - Basic OCL types and their values

type values

Boolean true, false

Integer 1,-5, 2, 34, 26524, ...
Rea 15,314, ..

String "To be or not to be..."

OCL defines a number of operations on the predefined types. Table 7.2 gives some examples of the operations on the
predefined types. See 11.3, 'Primitive Types for a complete list of all operations.

Table 7.2 - Examples of operations on the predefined types

type oper ations

Integer * 4+, -/, abs()

Real * +, -/, floor()

Boolean and, or, xor, not, implies, if-then-else
String concat(), size(), substring()

Collection, Set, Bag, Sequence, and Tuple are basic types as well. Their specifics will be described in the upcoming sub
clauses.
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7.4.1 Types from the UML Model

Each OCL expression is written in the context of a UML model, a number of classifiers (types/classes, ...), their features
and associations, and their generalizations. All classifiers from the UML model are types in the OCL expressions that are
attached to the model.

7.4.2 Enumeration Types

Enumerations are Datatypes in UML and have a name, just like any other Classifier. An enumeration defines a number of
enumeration literals that are the possible values of the enumeration. Within OCL one can refer to the value of an
enumeration. When we have Datatype named Gender in the example model with values ‘female’ or ‘male’ they can be
used as follows:

context Person inv: gender = Gender::male

7.4.3 Let Expressions

Sometimes a sub-expression is used more than once in a constraint. The let expression allows one to define a variable that
can be used in the constraint.

context Person inv:
let income : Integer = self.job.salary->sum() in
if isUnemployed then
income < 100
ese
income >= 100
endif

A let expression may be included in any kind of OCL expression. It is only known within this specific expression.A
variable declaration inside a let must have a declared type and an initial value.

7.4.4 Additional operations/attributes through «definition» expressions

The Let expression allows a variable to be used in one Ocl expression. To enable reuse of variables/operations over
multiple OCL expressions one can use a Constraint with the stereotype «definition», in which helper variables/operations
are defined. This «definition» Constraint must be attached to a Classifier and may only contain variable and/or operation
definitions, nothing else. All variables and operations defined in the «definition» constraint are known in the same context
as where any property of the Classifier can be used. Such variables and operations are attributes and operations with
stereotype «OclHelper» of the classifier. They are used in an OCL expression in exactly the same way as normal
attributes or operations are used. The syntax of the attribute or operation definitions is similar to the Let expression, but
each attribute and operation definition is prefixed with the keyword ‘def’ as shown below.

context Person

def: income : Integer = self.job.saary->sum()

def: nickname : String = ‘Little Red Rooster’

def: hasTitle(t : String) : Boolean = self.job->exists(title = t)

Operations or attributes defined by "definitions expressions' may be static (classifier scoped). In that case the static
keyword should be used before "def."

context MyClass

static def : globalld() : Integer = ...
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The names of the attributes / operations in a let expression may not conflict with the names of respective attributes/
associationEnds and operations of the Classifier.

Using this definition syntax is identical to defining an attribute/operation in the UML with stereotype «OclHel per» with
an attached OCL constraint for its derivation.
7.4.5 Type Conformance

OCL is atyped language and the basic value types are organized in a type hierarchy. This hierarchy determines
conformance of the different types to each other. You cannot, for example, compare an Integer with a Boolean or a String.

An OCL expression in which all the types conform is a valid expression. An OCL expression in which the types don’t
conform is an invalid expression. It contains a type conformance error. A type typel conforms to a type type2 when an
instance of typel can be substituted at each place where an instance of type2 is expected. The type conformance rules for
types in the class diagrams are simple.

» Each type conforms to each of its supertypes.
« Type conformanceistransitive: if typel conforms to type2, and type2 conforms to type3, then typel conformsto types3.

The effect of this is that a type conforms to its supertype, and all the supertypes above. The type conformance rules for
the types from the OCL Standard Library are listed in Table 7.3.

Table 7.3 - Type conformance rules

Type Conformsto/lsa subtype of | Condition

Set(T1) Collection(T?2) if T1 conformsto T2
Sequence(T1) Collection(T?2) if T1 conformsto T2
Bag(T1) Collection(T2) if T1 conformsto T2
OrderedSet(T1) Collection(T2) if T1 conformsto T2
Integer Real

The conformance relation between the collection types only holds if they are collections of element types that conform to
each other. See 7.5.13, " Collection Type Hierarchy and Type Conformance Rules' for the complete conformance rules for
collections.

Table 7.4 provides examples of valid and invalid expressions.

Table 7.4 - Valid and Invalid Expressions

OCL expression valid explanation

1+2*34 yes

1+ 'motorcycle no type String does not conform to type Integer
23 * fase no type Boolean does not conform to Integer
12+ 135 yes

7.4.6 Re-typing or Casting

In some circumstances, it is desirable to use a property of an object that is defined on a subtype of the current known type
of the object. Because the property is not defined on the current known type, this results in a type conformance error.
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When it is certain that the actual type of the object is the subtype, the object can be re-typed using the operation
oclAsType(Classifier). This operation results in the same object, but the known type is the argument Classifier. When
there is an object object of type Typel and Type2 is another type, it is alowed to write:

object.ocl AsType(Type2) --- changes the static type of the expression to Type2

An object can only be re-typed to a type to which it conforms. If the actual type of the object, at evaluation time, is not
a subtype of the type to which it is re-typed, then the result of oclAsTypeis invalid.

Casting provides visibility, at parse time, of features not defined in the context of an expression's static type. It does not
coerce objects to instances of another type, nor can it provide access to hidden or overridden features of atype. For this,
the feature call is qualified by the name of the type (a path name, if necessary) whose definition of the feature is to be
accessed.

For example, if class Employee redefines the age() : Integer operation of the Person class, a constraint may access the
Person definition asin

context Employee
inv: self.age() <= self.Person::age()
For clarity, the qualified form may only be used with an explicit source expression.

7.4.7 Precedence Rules
The precedence order for the operations, starting with highest precedence, in OCL is:
. @pre
» message-expression operators. "M and "M
« dot and arrow operations. “.” and “->"
« unary “not” and unary “-"
- “*7and"/”
« “+" and binary “-”

o “if-then-else-endif”

N >
o U R

« “and”

o “or"

« “xor”

« “implies’

o “let-in”

Parentheses “(“ and “)” can be used to change precedence.
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7.4.8 Use of Infix Operators

The use of infix operators is allowed in OCL. The operators ‘+,” ‘-, ‘*.) /] ‘< *> ‘<> ‘<=’ '>= are used as infix
operators. If atype defines one of those operators with the correct signature, they will be used as infix operators. The
expression:

a+b
is conceptually equal to the expression:
a+(b)
that is, invoking the “+” operation on a with b as the parameter to the operation.

The infix operators defined for atype must have exactly one parameter. For the infix operators ‘<,” ‘>, ‘<=, ‘>= ‘<>
‘and,’ ‘or,” and ‘xor’ the return type must be Boolean.

7.49 Keywords

Keywords in OCL are reserved words. That means that the keywords cannot occur anywhere in an OCL expression as the
name of a package, atype, or a property. The list of keywords is shown below:

and
bodycontext
def
derive
else
endif
endpackage
if
implies
in

init

inv

let

not

or
package
post

pre
static
then

xor

7.4.10 Comment

Comments in OCL are written following two successive dashes (minus signs). Everything immediately following the two
dashes up to and including the end of line is part of the comment.

For example:
-- thisis a comment
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Undefined Values

Some expressions will, when evaluated, have an undefined value. For instance, typecasting with oclAsType() to a type
that the object does not support or getting the ->first() element of an empty collection will result in undefined. In general,
an expression where one of the parts is undefined will itself be undefined. There are some important exceptions to this
rule, however. First, there are the logical operators:

» True OR-ed with anything is True

» False AND-ed with anything is False
» False IMPLIES anything is True

« anything IMPLIES Trueis True

The rules for OR and AND are valid irrespective of the order of the arguments and they are valid whether the value of the
other sub-expression is known or not.

The IF-expression is another exception. It will be valid as long as the chosen branch is valid, irrespective of the value of
the other branch.

Finally, there is an explicit operation for testing if the value of an expression is undefined. ocllsUndefined() is an
operation on OclAny that results in True if its argument is undefined and False otherwise.

7.5 Objects and Properties

OCL expressions can refer to Classifiers, e.g., types, classes, interfaces, associations (acting as types), and datatypes. Also
all attributes, association-ends, methods, and operations without side-effects that are defined on these types, etc. can be
used. In a class model, an operation or method is defined to be side-effect-free if the isQuery attribute of the operationsis
true. For the purpose of this document, we will refer to attributes, association-ends, and side-effect-free methods and
operations as being properties. A property is one of:

 an Attribute

« an AssociationEnd

» an Operation with isQuery being true

» aMethod with isQuery being true
The value of a property on an object that is defined in a class diagram is specified in an OCL expression by a dot
followed by the name of the property. For example:

context Personinv:
self.isMarried

If self is areference to an object, then self.property is the value of the property property on self.

7.5.1 Properties: Attributes

For example, the age of a Person is written as self.age:

context Personinv:
self.age>0

The value of the subexpression self.age is the value of the age attribute on the particular instance of Person identified by
self. The type of this subexpression is the type of the attribute age, which is the standard type Integer.
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Using attributes and operations defined on the basic value types, we can express calculations etc. over the class model.
For example, a business rule might be “the age of a Person is always greater than zero.” This can be stated by the
invariant above.

Attributes may have multiplicitiesin a UML model. Whenever the multiplicity of an attribute is greater than 1, the result
type is collection of values. Collections in OCL are described later in this clause.

7.5.2 Properties: Operations

Operations may have parameters. For example, as shown earlier, a Person object has an income expressed as a function
of the date. This operation would be accessed as follows, for a Person aPerson and a date aDate:

aPerson.income(aDate)

The result of this operation call is a value of the return type of the operation, which is Integer in this example. If the
operation has out or in/out parameters, the result of this operation is a tuple containing all out, in/out parameters and the
return value. For example, if the income operation would have an out parameter bonus, the result of the above operation
call is of type Tuple( bonus: Integer, result: Integer). You can access these values using the names of the out parameters,
and the keyword result. For example:

aPerson.income(aDate).bonus = 300 and
aPerson.income(aDate).result = 5000

Note that the out parameters need not be included in the operation call. Values for all in or infout parameters are
necessary.

Defining operations
The operation itself could be defined by a postcondition constraint. Thisis a constraint that is stereotyped as
«postcondition». The object that is returned by the operation can be referred to by result. It takes the following form:

context Person::income (d: Date) : Integer
post: result = age* 1000

The right-hand-side of this definition may refer to the operation being defined (i.e., the definition may be recursive) as
long as the recursion is not infinite. Inside a pre- or postcondition one can also use the parameters of the operation. The
type of result, when the operation has no out or in/out parameters, is the return type of the operation, which is Integer in
the above example. When the operation does have out or infout parameters, the return type is a Tuple as explained above.
The postcondition for the income operation with out parameter bonus may take the following form:

context Person::income (d: Date, bonus: Integer) : Integer
post: result = Tuple { bonus=...,
result=....}

To refer to an operation or a method that doesn’t take a parameter, parentheses with an empty argument list are
mandatory:

context Company inv:
self.stockPrice() > 0

7.5.3 Properties: AssociationEnds and Navigation

Starting from a specific object, we can navigate an association on the class diagram to refer to other objects and their
properties. To do so, we navigate the association by using the opposite association-end:

object.associationEndName
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The value of this expression is the set of objects on the other side of the associationEndName association. If the
multiplicity of the association-end has a maximum of one (“0..1” or “1"), then the value of this expression is an object. In
the example class diagram, when we start in the context of a Company (i.e., self is an instance of Company), we can
write:

context Company
inv: self.manager.isUnemployed = false
inv: self.employee->notEmpty()

In the first invariant self.manager is a Person, because the multiplicity of the association is one. In the second invariant
self.employee will evaluate in a Set of Persons. By default, navigation will result in a Set. When the association on the
Class Diagram is adorned with {ordered}, the navigation results in an OrderedSet.

Collections, like Sets, OrderedSets, Bags, and Sequences are predefined types in OCL. They have a large number of
predefined operations on them. A property of the collection itself is accessed by using an arrow ‘->’ followed by the name
of the property. The following example is in the context of a person:

context Personinv:
self.employer->size() < 3

This applies the size property on the Set self.employer, which results in the number of employers of the Person self.

context Personinv:
self.employer->isEmpty/()

This applies the isEmpty property on the Set self.employer. This evaluates to true if the set of employers is empty and
false otherwise.

Missing AssociationEnd names

When the name of an association-end is missing at one of the ends of an association, the name of the type at the
association end starting with alowercase character is used as the rolename. If this results in an ambiguity, the rolenameis
mandatory. This is, for example, the case with unnamed rolenames in reflexive associations. If the rolename is
ambiguous, then it cannot be used in OCL.

Qualifying association ends with association names
In cases the association that is being navigated has a non empty name, it is possible to qualify the accessed role name
with the name of the association. This notation can be used to solve ambiguities as in the example below:

A1l and A2 are two associations both linking classes C1 and C2 and each with ends ¢1 and c2. If aCl isaCl
access, aC1.c2 will not be valid since it is ambiguous, whereas aC1.Al::c2 or aC1.A2::c2 will be valid.

Ends owned by associations

In aUML association, an end may be owned by the Classifier at that end, or by the association, itself. The ownership of
the end is not significant to OCL. In either case, the association end is considered as a property of the Classifier and can
be navigated from that end to the other.

Navigation over Associations with Multiplicity Zero or One

Because the multiplicity of the role manager is one, self.manager is an object of type Person. Such a single object can be
used as a Set as well. It then behaves as if it is a Set containing the single object. The usage as a set is done through the
arrow followed by a property of Set. Thisis shown in the following example:
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context Company inv:
self.manager->size() = 1

The sub-expression self.manager is used as a Set, because the arrow is used to access the size property on Set. This
expression evaluates to true.

context Company inv:
self.manager->foo

The sub-expression self.manager is used as Set, because the arrow is used to access the foo property on the Set. This
expression is incorrect, because foo is not a defined property of Set.

context Company inv:
self.manager.age > 40

The sub-expression self.manager is used as a Person, because the dot is used to access the age property of Person.
In the case of an optional (0..1 multiplicity) association, thisis especially useful to check whether there is an object or not
when navigating the association. In the example we can write:

context Person inv:
self.wife->notEmpty() implies self.wife.gender = Gender::female

Combining Properties

Properties can be combined to make more complicated expressions. An important rule is that an OCL expression aways
evaluates to a specific object of a specific type. After obtaining a result, one can always apply another property to the
result to get a new result value. Therefore, each OCL expression can be read and evaluated |eft-to-right.

Following are some invariants that use combined properties on the example class diagram:

[1] Married people are of age >= 18

context Person inv:
self.wife->notEmpty() implies self wife.age >= 18 and
self.husband->notEmpty() implies self.husband.age >= 18

[2] acompany has at most 50 employees

context Company inv:
self.employee->size() <= 50

7.5.4 Navigation to Association Classes

To specify navigation to association classes (Job and Marriage in the example), OCL uses a dot and the name of the
association class starting with a lowercase character:

context Person inv:
self.job

The sub-expression self.job evaluates to a Set of all the jobs a person has with the companies that are his’/her employer. In
the case of an association class, there is no explicit rolename in the class diagram. The name job used in this navigation
is the name of the association class starting with a lowercase character, similar to the way described in the sub clause
“Missing AssociationEnd names’ above.

In case of arecursive association, that is an association of aclass with itself, the name of the association class alone is not
enough. We need to distinguish the direction in which the association is navigated as well as the name of the association
class. Take the following model as an example.
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Figure 7.2 - Navigating recursive association classes

When navigating to an association class such as employeeRanking there are two possibilities depending on the direction.
For instance, in the above example, we may navigate towards the employees end, or the bosses end. By using the name of
the association class alone, these two options cannot be distinguished. To make the distinction, the rolename of the
direction in which we want to navigate is added to the association class name, enclosed in square brackets. In the
expression
context Personinv:
self.employeeRanking[bosses]->sum() > 0

the self.employeeRanking[ bosses] evaluates to the set of EmployeeRankings belonging to the collection of bosses. And in
the expression

context Personinv:
self.empl oyeeRanking[employees]->sum() > 0

the self.empl oyeeRanking[ employees] evaluates to the set of EmployeeRankings belonging to the collection of employees.
The unqualified use of the association class name is not allowed in such arecursive situation. Thus, the following
example is invalid:

context Personinv:
self.employeeRanking->sum() > 0 -- INVALID!

In anon-recursive situation, the association class name alone is enough, athough the qualified version is allowed as well.
Therefore, the examples at the start of this sub clause could also be written as:

context Personinv:
self.job[employer]

7.5.5 Navigation from Association Classes

We can navigate from the association class itself to the objects that participate in the association. This is done using the
dot-notation and the role-names at the association-ends.

context Job
inv: self.employer.numberOfEmployees >= 1
inv: self.employee.age> 21

Navigation from an association class to one of the objects on the association will always deliver exactly one object. This
is aresult of the definition of AssociationClass. Therefore, the result of this navigation is exactly one object, although it
can be used as a Set using the arrow (->).

7.5.6 Navigation through Qualified Associations

Qualified associations use one or more qualifier attributes to select the objects at the other end of the association. To
navigate them, we can add the values for the qualifiers to the navigation. This is done using square brackets, following the
role-name. It is permissible to leave out the qualifier values, in which case the result will be all objects at the other end of
the association. The following example results in a Set(Person) containing all customers of the Bank.

Object Constraint Language, v2.2 19



context Bank inv:
self.customer

The next example results in one Person, having account number 8764423.

context Bank inv:
self.customer[8764423]

If there is more than one qualifier attribute, the values are separated by commas, in the order which is specified in the
UML class model. It is not permissible to partially specify the qualifier attribute values.

7.5.7 Using Pathnames for Packages
Within UML, types are organized in packages. OCL provides a way of explicitly referring to types in other packages by
using a package-pathname prefix. The syntax is a package name, followed by a double colon:
Packagename:: Typename
This usage of pathnames is transitive and can also be used for packages within packages:

Packagenamel::Packagename2:: Typename

7.5.8 Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the property of the supertypes can be accessed using the ocl AsType()
operation. Whenever we have a class B as a subtype of class A, and a property pl of both A and B, we can write:

context B inv:
self.oclAsType(A).pl -- accesses the pl property defined in A
sef.pl  -- accessesthe pl property defined in B

Figure 7.3 shows an example where such a construct is needed. In this model fragment there is an ambiguity with the
OCL expression on Dependency:

context Dependency inv:
self.source <> self

This can either mean normal association navigation, which is inherited from ModelElement, or it might also mean
navigation through the dotted line as an association class. Both possible navigations use the same role-name, so thisis
always ambiguous. Using ocl AsType() we can distinguish between them with:

context Dependency
inv: self.ocl AsType(Dependency).source->isEmpty()
inv: self.oclAsType(Model Element).source->iSEmpty()
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Figure 7.3 - Accessing Overridden Properties Example

7.5.9 Predefined properties on All Objects

There are several properties that apply to all objects, and are predefined in OCL. These are;

oclIsTypeOf (t : Classifier) : Boolean
ocllsKindOf (t : Classifier) : Boolean
oclInState (s : Ocl State) : Boolean
oclisNew () : Boolean

oclAsType (t : Classifier) : instance of OclType
The operation is oclIsTypeOf results in true if the type of self and t are the same. For example:

context Person
inv: self.ocllsTypeOf( Person ) --istrue
inv: self.ocllsTypeOf( Company) --isfase

The above property deals with the direct type of an object. The ocllsKindOf property determines whether t is either the
direct type or one of the supertypes of an object.

The operation oclInSate(s) results in true if the object is in the state s. Possible states for the operation oclInSate(s) are
all states of the statemachine that defines the classifier's behavior. For nested states the statenames can be combined
using the double colon “::".

e =~ ™
1 { Standby L_gue!, MoPowsr |

.\‘. - .f/’.

Figure 7.4 - Statemachine Example

In the exampl e statemachine above, values for s can be On, Off, Off:: Sandby, Off::NoPower. If the classifier of object has
the above associated statemachine, valid OCL expressions are:
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object.oclInState(On)
object.oclInState(Off)

object.oclI nstate(Off:: Standby)
object.oclInState(Off::NoPower)

If there are multiple statemachines attached to the object’s classifier, then the statename can be prefixed with the name of
the statemachine containing the state and the double colon *::," as with nested states.

The operation ocllsNew evaluates to true if, used in a postcondition, the object is created during performing the operation
(i.e., it didn't exist at precondition time).

7.5.10 Features on Classes Themselves

All properties discussed until now in OCL are properties on instances of classes. The types are either predefined in OCL
or defined in the class model. In OCL, it is also possible to use static features, applicable to the types/classes themselves
rather than to their instances. For example, the Employee class may define a static operation “uniquelD” that computes a
unique ID to use in the initialization of the employee ID attribute:
context Employee::id : String init:
Employee::uniquel D()

Static features are invoked using the ::' operator and are distinct from the features of the Classifier metaclass, which
include the alllnstances operation pre-defined by OCL. If we want to make sure that all instances of Person have unique
names, we can write:
context Person inv:
Person.alll nstances()->forAll(p1, p2 |
pl <> p2 implies pl.name <> p2.name)

Invocation of alllnstances uses the '." operator rather than '::' because it is not a static operation. It is an operation
applicable to instances of the Classifier metaclass, of which Person is an example.

7.5.11 Collections

Single navigation of an association results in a Set, combined navigations in a Bag, and navigation over associations
adorned with {ordered} results in an OrderedSet. Therefore, the collection types defined in the OCL Standard Library
play an important role in OCL expressions.

The type Collection is predefined in OCL. The Collection type defines a large number of predefined operations to enable
the OCL expression author (the modeler) to manipulate collections. Consistent with the definition of OCL as an
expression language, collection operations never change collections; isQuery is always true. They may result in a
collection, but rather than changing the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL distinguishes three different
collection types: Set, Sequence, and Bag. A Set is the mathematical set. It does not contain duplicate elements. A Bag is
like a set, which may contain duplicates (i.e., the same element may be in a bag twice or more). A Sequenceislike aBag
in which the elements are ordered. Both Bags and Sets have no order defined on them.

Collection Literals

Sets, Sequences, and Bags can be specified by aliteral in OCL. Curly brackets surround the elements of the collection,
elements in the collection are written within, separated by commas. The type of the collection is written before the curly
brackets:
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Set{1,2,5,88}
Set { 'apple,’ '‘orange,’ 'strawberry’ }

A Seguence:
Sequence{ 1, 3,45, 2,3}
Sequence { 'ape,’ 'nut' }

A bag:
Bag{1,3,4,35}

Because of the usefulness of a Sequence of consecutive Integers, there is a separate literal to create them. The elements
inside the curly brackets can be replaced by an interval specification, which consists of two expressions of type Integer,
Int-expr1 and Int-expr2, separated by ‘... This denotes all the Integers between the values of Int-exprl and Int-expr2,
including the values of Int-exprl and Int-expr2 themselves:

Sequence{ 1..(6+4) }
Sequence{ 1..10}
-- are both identical to

Sequence{ 1,2, 3,4,5,6,7,8,9,10}
The complete list of Collection operations is described in Clause 11 (“The OCL Standard Library”).

Collections can be specified by aliteral, as described above. The only other way to get a collection is by navigation. To
be more precise, the only way to get a Set, OrderedSet, Sequence, or Bag is:

1. aliteral, thiswill result in a Set, OrderedSet, Sequence, or Bag:

Set  {2,4,1,5,7,13,11,17}

OrderedSet{1,2,3,5,7,11,13,17}
Sequence {1,2,3,5,7,11,13,17}
Bag {1,2321}

2. anavigation starting from a single object can result in a collection:

context Company inv:
self.employee

3. operations on collections may result in new collections:

collection1->union(collection2)

7.5.12 Collections of Collections

In UML 1.4 a collection in OCL was always flattened (i.e., a collection could never contain other collections as
elements). This restriction is relieved in UML 2.0. OCL allows elements of collections to be collections themselves. The
OCL Standard Library includes specific flattened operations for collections. These can be used to flatten collections of
collections explicitly.

7.5.13 Collection Type Hierarchy and Type Conformance Rules

In addition to the type conformance rules in 7.4.5, ' Type Conformance’ the following rules hold for al types, including
the collection types:

» Thetypes Set (X), Bag (X), and Sequence (X) are all subtypes of Collection (X).

Type conformance rules are as follows for the collection types:
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» Typel conformsto Type2 when they are identical (standard rule for all types).
 Typel conformsto Type2 when it is a subtype of Type2 (standard rule for al types).

« Collection(Typel) conforms to Collection(Type2), when Typel conformsto Type2. Thisis also true for Set(Typel)/
Set(Type2), Sequence(Typel)/Sequence(Type2), Bag(Typel)/Bag(Type2).

» Type conformanceistransitive: if Typel conformsto Type2, and Type2 conforms to Type3, then Typel conformsto
Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set(Bicycle) conformsto Set(Transport)
Set(Bicycle) conformsto Collection(Bicycle)
Set(Bicycle) conformsto Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around. They are both subtypes of
Collection(Bicycle) at the same level in the hierarchy.

7.5.14 Previous Values in Postconditions

As stated in 7.3.4, 'Pre- and Postconditions’ OCL can be used to specify pre- and postconditions on operations and
behaviorsin UML. In a postcondition, the expression can refer to values of any feature of an object at two moments in
time:

 thevalue of afeature at the start of the operation or behavior
- thevalue of afeature upon completion of the operation or behavior

The value of an operation call or a property navigation in a postcondition is the value upon completion of the operation.
To refer to the value of afeature at the start of the operation, one has to postfix the property name with the keyword
‘@pre':
context Person::birthdayHappens()
post: age = age@pre + 1

The property age refers to the property of the instance of Person that executes the operation. The property age@pre refers
to the value of the property age of the Person that executes the operation, at the start of the operation.

In the case of an operation call, the '@pre' is postfixed to the operation name, before the parameters.

context Company::hireEmployee(p : Person)
post: employees = employees@pre->including(p) and
stockprice() = stockprice@pre() + 10

When the pre-value of a feature evaluates to an object, all further properties that are accessed of this object are the new
values (upon completion of the operation) of this object. So:

ab@pre.c -- takes the old value of property b of a, say x
-- and then the new value of ¢ of x.

ab@pre.c@pre --takesthe old value of property b of a, say x
-- and then the old value of c of x.

The *@pre’ postfix is allowed only in OCL expressions that are part of a Postcondition, and only on invocations of the
features of model classifiers. Asking for a current property of an object that has been destroyed during execution of the
operation results in null. Also, referring to the previous value of an object that has been created during execution of the
operation resultsin null.
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7.5.15 Tuples

It is possible to compose several values into atuple. A tuple consists of named parts, each of which can have a distinct
type. Some examples of tuples are:

Tuple { name: String = ‘John,” age: Integer = 10}

Tuple{a Collection(Integer) = Set{ 1, 3, 4}, b: String = ‘foo,” ¢: String = ‘bar’}

This is also the way to write tuple literals in OCL; they are enclosed in curly brackets, and the parts are separated by
commas. The type names are optional, and the order of the parts is unimportant. Thus:

Tuple {name: String = ‘John,’ age: Integer = 10} is equivalent to
Tuple { name = ‘John,” age = 10} and to
Tuple { age = 10, name = ‘' John’}

Also, note that the values of the parts may be given by arbitrary OCL expressions, so for example we may write:

context Person def:
attr statistics : Set(TupleType(company: Company, numEmployees: Integer,
wellpaidEmployees: Set(Person), total Salary: Integer)) =
managedCompanies->collect(c |
Tuple { company: Company = c,
numEmployees: Integer = c.employee->size(),
wellpaidEmployees: Set(Person) = c.job->select(sal ary>10000).empl oyee->asSet(),
total Salary: Integer = c.job.salary->sum()
}
)

This results in a bag of tuples summarizing the company, number of employees, the best paid employees, and total salary
costs of each company a person manages.

The parts of atuple are accessed by their names, using the same dot notation that is used for accessing attributes. Thus:
Tuple{x: Integer =5, y: String="hi"'} x=5
isatrue, if somewhat pointless, expression. Using the definition of statistics above, we can write:

context Person inv:
statistics->sortedBy(total Sal ary)->last().wel | pai dEmpl oyees->includes(self)

This asserts that a person is one of the best-paid employees of the company with the highest total salary that he manages.
In this expression, both ‘totalSalary’ and ‘wellpaidEmployees’ are accessing tuple parts.

7.6 Collection Operations

OCL defines many operations on the collection types. These operations are specifically meant to enable a flexible and
powerful way of projecting new collections from existing ones. The different constructs are described in the following sub
clauses.

7.6.1 Select and Reject Operations

Sometimes an expression using operations and navigations results in a collection, while we are interested only in a special
subset of the collection. OCL has special constructs to specify a selection from a specific collection. These are the select
and reject operations. The select specifies a subset of a collection. A select is an operation on a collection and is specified
using the arrow-syntax:
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collection->select( ...)

The parameter of select has a special syntax that enables one to specify which elements of the collection we want to
select. There are three different forms, of which the simplest one is:

collection->sel ect( bool ean-expression )
This results in a collection that contains all the elements from collection for which the boolean-expression evaluates to
true. To find the result of this expression, for each element in collection the expression boolean-expression is evaluated.

If this evaluates to true, the element isincluded in the result collection, otherwise not. As an example, the following OCL
expression specifies that the collection of all the employees older than 50 years is not empty:

context Company inv:
self.employee->sel ect(age > 50)->notEmpty/()

The self.employee is of type Set(Person). The select takes each person from self.employee and evaluates age > 50 for this
person. If this results in true, then the person isin the result Set.

As shown in the previous example, the context for the expression in the select argument is the element of the collection
on which the select is invoked. Thus the age property is taken in the context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you can only refer to properties of

them. To enable to refer to the persons themselves, there is a more general syntax for the select expression:
collection->select( v | bool ean-expression-with-v )

The variable v is called the iterator. When the select is evaluated, v iterates over the collection and the boolean-

expression-with-v is evaluated for each v. The v is areference to the object from the collection and can be used to refer to
the objects themselves from the collection. The two examples below are identical:

context Company inv:
self.employee->sel ect(age > 50)->notEmpty ()

context Company inv:
self.employee->select(p | p.age > 50)->notEmpty/()

The result of the complete select is the collection of persons p for which the p.age > 50 evaluates to True. This amounts

to a subset of self.employee.

As afinal extension to the select syntax, the expected type of the variable v can be given. The select now is written as:
collection->select( v : Type | boolean-expression-with-v )

The meaning of thisis that the objects in collection must be of type Type. The next example isidentica to the previous

examples:

context Company inv:
self.employee.select(p : Person | p.age > 50)->notEmpty()

The compete select syntax now looks like one of:

collection->select( v : Type | boolean-expression-with-v )
collection->select( v | boolean-expression-with-v )
collection->sel ect( bool ean-expression )

The reject operation is identical to the select operation, but with reject we get the subset of all the elements of the
collection for which the expression evaluates to False. The reject syntax is identical to the select syntax:
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collection->reject( v : Type | boolean-expression-with-v )
collection->reject( v | boolean-expression-with-v )
collection->reject( boolean-expression )

As an example, specify that the collection of all the employees who are not married is empty:
context Company inv:
self.employee->reject( isMarried )->isEmpty()
The reject operation is available in OCL for convenience, because each reject can be restated as a select with the negated
expression. Therefore, the following two expressions are identical:

collection->reject( v : Type | bool ean-expression-with-v )
collection->select( v : Type | not (boolean-expression-with-v) )

7.6.2 Collect Operation

As shown in the previous sub clause, the select and reject operations always result in a sub-collection of the original
collection. When we want to specify a collection that is derived from some other collection, but which contains different
objects from the original collection (i.e., it is not a sub-collection), we can use a collect operation. The collect operation
uses the same syntax as the select and reject and is written as one of:

collection->collect( v : Type | expression-with-v )
collection->collect( v | expression-with-v )
collection->collect( expression )

The value of the reject operation is the collection of the results of all the evaluations of expression-with-v.
An example: specify the collection of birthDates for all employees in the context of a company. This can be written in the
context of a Company object as one of:

self.employee->collect( birthDate )
self.employee->collect( person | person.birthDate )
self.employee->collect( person : Person | person.birthDate )

An important issue here is that when the source collection is a Set the resulting collection is not a Set but a Bag.
Moreover, if the source collection is a Sequence or an OrderedSet, the resulting collection is a Sequence. When more than
one employee has the same value for birthDate, this value will be an element of the resulting Bag more than once. The
Bag resulting from the collect operation always has the same size as the original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The following expression results in the
Set of different birthDates from all employees of a Company:

self.employee->collect( birthDate )->asSet()

Shorthand for Collect

Because navigation through many objects is very common, there is a shorthand notation for the collect that makes the
OCL expressions more readable. Instead of

self.employee->collect(birthdate)

we can also write:

self.employee.birthdate
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In general, when we apply a property to a collection of Objects, then it will automatically be interpreted as a collect over
the members of the collection with the specified property.

For any propertyname that is defined as a property on the objects in a collection, the following two expressions are
identical:

collection.propertyname

collection->collect(propertyname)

and so are these if the property is parameterized:

collection.propertyname (parl, par2, ...)
collection->collect (propertyname(parl, par2, ...))

7.6.3 ForAll Operation

Many times a constraint is needed on all elements of a collection. The forAll operation in OCL allows specifying a
Boolean expression, which must hold for all objects in a collection:

collection->forAll( v : Type | bool ean-expression-with-v )
collection->forAll( v | boolean-expression-with-v )
collection->forAll( boolean-expression )

This forAll expression results in a Boolean. The result is true if the boolean-expression-with-v is true for al elements of
collection. If the boolean-expression-with-v is false for one or more v in collection, then the complete expression
evaluates to false. For example, in the context of a company:

context Company
inv: self.employee->forAll( age <= 65)
inv: self.employee->forAll( p | p.age <= 65)
inv: self.employee->forAll( p : Person | p.age<=65)

These invariants evaluate to true if the age property of each employee is less or equal to 65.

The forAll operation has an extended variant in which more than one iterator is used. Both iterators will iterate over the
complete collection. Effectively this is aforAll on the Cartesian product of the collection with itself.

context Company inv:
self.employee->forAll( el, €2 : Person |
el <> e2 implies el.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different. It is semantically equivalent to:

context Company inv:
self.employee->forAll (el | self.employee->forAll (e2 |
el <> e2 implies el.forename <> e2.forename))

7.6.4 Exists Operation

Many times one needs to know whether there is at least one element in a collection for which a constraint holds. The
exists operation in OCL allows you to specify a Boolean expression that must hold for at least one object in a collection:
collection->exists( v : Type | boolean-expression-with-v )
collection->exists( v | boolean-expression-with-v )
collection->exists( boolean-expression )
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This exists operation results in a Boolean. The result is true if the boolean-expression-with-v is true for at least one
element of collection. If the boolean-expression-with-v is false for all v in collection, then the complete expression
evaluates to false. For example, in the context of a company:

context Company inv:
self.employee->exists( forename = 'Jack’ )
context Company inv:
self.employee->exists( p | p.forename = 'Jack')
context Company inv:
self.employee->exists( p : Person | p.forename = 'Jack’)

These expressions evaluate to true if the forename property of at least one employee is equal to ‘Jack.’

Similarly to forAll expression an exists expression may declare multiple iterators

7.6.5 Iterate Operation

The iterate operation is slightly more complicated, but is very generic. The operations reject, select, forAll, exists, collect
can al be described in terms of iterate. An accumulation builds one value by iterating over a collection.

collection->iterate( elem : Type; acc : Type = <expression> |
expression-with-elem-and-acc )

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the accumulator. The
accumulator gets an initial value <expression>. When the iterate is evaluated, elem iterates over the collection and the
expression-with-elem-and-acc is evaluated for each elem. After each evaluation of expression-with-elem-and-acc, its
value is assigned to acc. In this way, the value of acc is built up during the iteration of the collection. The collect
operation described in terms of iterate will look like:

collection->collect(x : T | x.property)
-- isidentical to:
collection->iterate(x : T; acc: T2 = Bag{} |
acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:

iterate(elem : T; acc : T2 = value)
{
acc = value;
for(Enumeration e = collection.elements() ; e.hasMoreElements(); ){
elem = e.nextElement();
acc.add(<expression-with-elem-and-acc>
}

return acc;

}

Although the Java pseudo code uses a ‘ next element,’ the iterate operation is defined not only for Sequence, but for each
collection type. The order of the iteration through the elements in the collection is not defined for Set and Bag. For a
Sequence the order is the order of the elements in the sequence.

7.7 Messages in OCL

This sub clause contains some examples of the concrete syntax and explains the finer details of the message expression.
In earlier versions the phrase “actions in OCL” was used, but message was found to capture the meaning more precisely.
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7.7.1 Calling operations and sending signals

To specify that communication has taken place, the hasSent (‘') operator is used:

context Subject::hasChanged()
post: observer“update(12, 14)

The observer~update(12, 14) results in true if an update message with arguments 12 and 14 was sent to observer during
the execution of the operation. Update() is either an Operation that is defined in the class of observer, or it is a Sgnal
specified in the UML model. The argument(s) of the message expression (12 and 14 in this example) must conform to the
parameters of the operation/signal definition.

If the actual arguments of the operation/signal are not known, or not restricted in any way, it can be left unspecified. This
is shown by using a question mark. Following the question mark is an optional type, which may be needed to find the
correct operation when the same operation exists with different parameter types.

context Subject::hasChanged()
post: observer*update(? : Integer, ?: Integer)

This example states that the message update has been sent to observer, but that the values of the parameters are not
known.

OCL also defines a special OclMessage type. One can get the actual OclM essages through the message operator: ™.

context Subject::hasChanged()
post: observer"update(12, 14)

This results in the Sequence of messages sent. Each element of the collection is an instance of OclMessage. In the
remainder of the constraint one can refer to the parameters of the operation using their formal parameter name from the
operation definition. If the operation update has been defined with formal parameters named i and j, then we can write:

context Subject::hasChanged()

post: let messages : Sequence(OclMessage) = observer™update(? : Integer, ?: Integer) in
messages->notEmpty() and
messages->exists(m | m.i > 0and m.,j >=m.i )

The value of the parameter i is not known, but it must be greater than zero and the value of parameter j must be larger or
equal toi.

Because the ™ operator results in an instance of OclMessage, the message expression can also be used to specify
collections of messages sent to different targets. For an observer pattern we can write:

context Subject::hasChanged()
post: let messages : Sequence(OclMessage) =
observers->collect(o | oM update(? : Integer, ?: Integer) ) in
messages->forAll(m | m.i <=m,j )

Messages is now a set of OclMessage instances, where every OclMessage instance has one of the observers as a target.

7.7.2 Accessing result values

A signal sent message is by definition asynchronous, so there never is areturn value. If there is alogical return value it
must be modeled as a separate signal message. Yet, for an operation call there is a potential return value. This is only
available if the operation has already returned (not necessary if the operation call is asynchronous), and it specifies a
return type in its definition. The standard operation result() of OclMessage contains the return value of the called
operation. If getMoney(...) is an operation on Company that returns a boolean, as in Company::getMoney(amount :
Integer) : Boolean, we can write:
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context Person::giveSalary(amount : Integer)
post: let message : OclMessage = company”*getM oney(amount) in

message.hasReturned() -- getMoney was sent and returned
and
message.result() = true -- the getMoney call returned true

As with the previous example we can also access a collection of return values from a collection of OclMessages. If
message.hasReturned() is false, then message.result() will be undefined.

7.7.3 An example

This sub clause shows an example of using the OCL message expression.

The Example and Problem

Suppose we have built a component, which takes any form of input and transforms it into garbage (aka encrypts it). The
component GarbageCan uses an interface UsefullnformationProvider that must be implemented by users of the
component to provide the input. The operation getNextPieceOfGarbage of GarbageCan can then be used to retrieve the
garbled data. Figure 7.5 shows the component’s class diagram. Note that none of the operations are marked as queries.

GarbageCan

SetUsefullnformationProvider(uip:UsefulinformationProvider)
getNextPieceOfGarbage() : Integer

0.1 #datasource

<<interface>>
UsefullnformationProvider

getNextPieceOfData():Integer

Figure 7.5 - OclMessageExample

When selling the component, we do not want to give the source code to our customers. However, we want to specify the
component’s behavior as precisely as possible. So, for example, we want to specify, what getNextPieceOfGarbage does.
Note that we cannot write:

context GarbageCan::getNextPieceOf Garbage() : Integer
post: result = (datasource.getNextPieceOf Data() * .7683425 + 10000) / 20 + 3

because UsefulInformationProvider: : getNextPieceOfData() is not a query (e.g., it may increase some internal pointer so
that it can return the next piece of data at the next call). Still we would like to say something about how the garbage is
derived from the original data.

The solution

To solve this problem, we can use an OclMessage to represent the call to getNextPieceOfData. This allows us to check for
the result. Note that we need to demand that the call has returned before accessing the result:

context GarbageCan::getNextPieceOf Garbage() : Integer
post: let message : OclMessage = datasource™ getNextPieceOfData()->first() in
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message.hasReturned()
and
result = (message.result() * .7683425 + 10000) / 20 + 3

7.8 Resolving Properties

For any property (attribute, operation, or navigation) the full notation includes the object of which the property is taken.
Asseenin 7.3.3, 'Invariants’ self can be left implicit, and so can the iterator variables in collection operations. At any
place in an expression, when an iterator is left out, an implicit iterator-variable is introduced. For example in:

context Person inv:
employer->forAll( employee->exists( lastName = name) )

three implicit variables are introduced. The first is self, which is always the instance from which the constraint starts.
Secondly an implicit iterator is introduced by the forAll and third by the exists. The implicit iterator variables are
unnamed. The properties employer, employee, lastName, and name all have the object on which they are applied left out.
Resolving these goes as follows:

« at the place of employer thereis one implicit variable: self : Person. Therefore employer must be a property of self.

- at the place of employee there are two implicit variables: self : Person and iter1 : Company. Therefore employer must
be a property of either self or iter1. If employeeis a property of both self and iter1, then it is defined to belong to the
variable in the most inner scope, which isiterl.

« at the place of lastName and name there are three implicit variables: self : Person, iterl : Company and iter2 : Person.
Therefore lastName and name must both be a property of either self or iter1 or iter2. In the UML model property name
isaproperty of iterl. However, lastNameis a property of both self and iter2. Thisis ambiguous and therefore the last-
Name refers to the variable in the most inner scope, which isiter2.

Both of the following invariant constraints are correct, but have a different meaning:

context Person
inv: employer->forAll( employee->exists( p | p.lastName = name) )
inv: employer->forAll( employee->exists( self.lastName = name) )

32 Object Constraint Language, v2.2



8 Abstract Syntax

This clause describes the abstract syntax of the OCL. In this abstract syntax a number of metaclasses from the UML
metamodel are imported. These metaclasses are shown in the models with a transparent fill color. All metaclasses defined
as part of the OCL abstract syntax are shown with a light gray background.

8.1 Introduction

The abstract syntax as described below defines the concepts that are part of the OCL using a MOF compliant metamodel.
The abstract syntax is divided into several packages.

» The Types package describes the concepts that define the type system of OCL. It shows which types are predefined in
OCL and which types are deduced from the UML models.

» The Expressions package describes the structure of OCL expressions.

8.2 The Types Package

OCL is atyped language. Each expression has a type that is either explicitly declared or can be statically derived.
Evaluation of the expression yields a value of this type. Therefore, before we can define expressions, we have to provide
amodel for the concept of type. A metamodel for OCL types is shown in this sub clause. Note that instances of the
classes in the metamodel are the types themselves (e.g., Integer) not instances of the domain they represent (e.g., -15, 0,
2, 3).

The model in Figure 8.1 shows the OCL types. The basic type is the UML Classifier, which includes all subtypes of
Classifier from the UML Superstructure.

In the model, the CollectionType (and its subclasses) and the TupleType are special. One can never instantiate all
collection types, because there is an infinite number, especially when nested collections are taken into account.
Conceptually all these types do exist, but such a type should be (lazily) instantiated by a tool, whenever it is needed in an
expression. For convenience an instance representing a collection type or a tuple type may be replicated in different
namespaces (such as in atop-level package or within the expression referencing it) , however they represent semantically
the same type.
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Figure 8.1 - Abstract Syntax Kernel Metamodel for OCL Types

AnyType

AnyType is the metaclass of the special type OclAny, which is the type to which all other types conform. OclAny is the
sole instance of AnyType. This metaclass allows defining the specia property of being the generalization of all other
Classifiers, including Classes, DataTypes, and PrimitiveTypes.

BagType

BagType is a collection type that describes a multiset of elements where each element may occur multiple times in the
bag. The elements are unordered. Part of a BagType is the declaration of the type of its elements.

CollectionType

CollectionType describes a list of elements of a particular given type. CollectionType is a concrete metaclass whose
instances are the family of abstract Collection(T) data types. Its subclasses are SetType, OrderedSetType, SequenceType,
and BagType, whose instances are the concrete Set(T), OrderedSet(T), Sequence(T), and Bag(T), data types, respectively.

Part of every collection type is the declaration of the type of its elements (i.e., a collection type is parameterized with an
element type). In the metamodel, this is shown as an association from CollectionType to Classifier. Note that there is no
restriction on the element type of a collection type. This means in particular that a collection type may be parameterized
with other collection types allowing collections to be nested arbitrarily deep.

Associations

elementType The type of the elements in a collection. All elements in a collection must conform to this type.
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InvalidType

InvalidType represents a type that conforms to all types except the VoidType type. The only instance of InvalidType is
Invalid, which is further defined in the standard library. Furthermore Invalid has exactly one runtime instance identified
as Ocllnvalid.

MessageType

MessageType describes ocl messages. Similar to the collection types, MessageType describes a set of typesin the standard
library. Part of every MessageType is a reference to the declaration of the type of its operation or signal, i.e., an ocl
message type is parameterized with an operation or signal. In the metamodel, this is shown as an association from
MessageType to Operation and to Signal. MessageType is part of the abstract syntax of OCL, residing on M2 level. Its
instances, called OclMessage, and subtypes of OclMessage, reside on M1 level.

Associations

referredSignal The Signal that is sent by the message.
referredOperation  The Operation that is called by the message.

OrderedSetType

OrderedSetType is a collection type that describes a set of elements where each distinct element occurs only once in the
set. The elements are ordered by their position in the sequence. Part of an OrderedSetType is the declaration of the type
of its elements.

SequenceType

SequenceType is a collection type that describes a list of elements where each element may occur multiple times in the
sequence. The elements are ordered by their position in the sequence. Part of a SequenceType is the declaration of the type
of its elements.

SetType

SetType is a collection type that describes a set of elements where each distinct element occurs only once in the set. The
elements are not ordered. Part of a SetType is the declaration of the type of its elements.

TemplateParameterType

A TemplateParameter Type is used to refer to generic types in parameterized definitions. It is used in the standard library
to represent the parameterized collection operations. A TemplateParameter Type is usually named “T” (or “T2,” “T3,” and
so on, when more than one type parameter is involved).

The TemplateParameter Type is a sub-class of Classifier.
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Attributes

specification An un-interpreted opaque definition of the template parameter type.

TupleType

TupleType (informally known as record type or struct) combines different types into a single aggregate type. The parts of
a TupleType are described by its attributes, each having a name and a type. There is no restriction on the kind of types that
can be used as part of atuple. In particular, a TupleType may contain other tuple types and collection types. Each attribute
of a TupleType represents a single feature of a TupleType. Each part is uniquely identified by its name.

VoidType

\oidType represents a type that conforms to all types. The only instance of VoidType is OclVoid, which is further defined
in the standard library. Furthermore OclVoid has exactly one instance called null - corresponding to the UML NullLiteral
literal specification - and representing the absence of value. Note that in contrast with Oclinvalid null isavalid value and
as such can be owned by collections.

8.2.1 Type Conformance

The type conformance rules are formally underpinned in the Semantics sub clasue of the specification. To ensure that the
rules are accessible to UML modelers they are specified in this sub clause using OCL. For this, the additional operation
conformsTo(c : Classifier) : Boolean is defined on Classifier. It evaluates to true, if the self Classifier conforms to the
argument c. The following OCL statements define type conformance for individual types.

BagType

[1] Different bag types conform to each other if their element types conform to each other.

context BagType
inv: BagType.allnstances()->forAll(b |
self.elementType.conformsTo(b.elementType) implies self.conformsTo(b))

Classifier

[1] Conformanceis atransitive relationship.

context Classifier
inv Transitivity: Classifier.alllnstances()->forAll(x|Classifier.allInstances()
->forAll(y|
(self.conformsTo(x) and x.conformsTo(y)) implies self.conformsTo(y)))

[2] Classes conform to superclasses and interfaces that they realize.

context Class
inv : self.generalization.general->forAll (p |
(p.oclIsKindOf (Class) or p.ocllsKindOf(Interface)) implies
self.conformsTo(p.ocl AsType(Classifier)))

[3] Interfaces conforms to super interfaces.

context Interface
inv : self.generalization.general->forAll (p |
p.oclIsKindOf (Interface) implies self.conformsTo(p.ocl AsType(I nterface)))
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[4] The Conforms operation between Typesisreflexive, a Classifier aways conform to itself.
context Classifier
inv: self.conformsTo(self)

[5] The Conforms operation between Typesis anti-symmetric.

context Classifier
inv: Classifier.allInstances()->forAll(t1, t2 |
(t1.conformsTo(t2) and t2.conformsTo(t1)) impliestl = t2)

CollectionType

[1] Specific collection types conform to collection type.

context CollectionType
inv: -- al instances of SetType, SequenceType, BagType conform to a
-- CollectionType if the elementTypes conform
CollectionType.allInstances()->forAll (c |
c.ocllsTypeOf(CollectionType) and
sdlf.elementType.conformsTo(c.elementType) implies
self.conformsTo(c))

[2] Collectionsdo not conform to any primitive type.

context CollectionType
inv: PrimitiveType.dllnstances()->forAll (p | not self.conformsTo(p))

[3] Collections of non-conforming types do not conform.

context CollectionType
inv: CollectionType.allnstances()->forAll (c |
(not self.elementType.conformsTo (c.elementType)) implies (not self.conformsTo (c)))

InvalidType

[1] Invalid conformsto all other types except OclVoid.
context InvalidType
inv: Classifier.alllnstances()->forAll (c | not c.ocllsTypeOf(OclVoid) implies self.conformsTo (c))

OrderedSetType

[1] Different ordered set types conform to each other if their element types conform to each other.

context OrderedSetType
inv: OrderedSetType.alllnstances()->forAll(s|
self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

PrimitiveType

[1] Integer conformstoreal.
context PrimitiveType
inv: (self.name = 'Integer’) implies
PrimitiveType.allInstances()->forAll (p | (p.name = 'Real’) implies
(self.conformsTo(p)))
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SequenceType
[1] Different sequence types conform to each other if their element types conform to each other.

context SequenceType
inv: SequenceType.allInstances()->forAll(s |
self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

SetType
[1] Different set types conform to each other if their element types conform to each other.

context SetType
inv: SetType.alllnstances()->forAll(s |
self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

TupleType
[1] Tuple types conform to each other when their names and types conform to each other. Note that allPropertiesisan
additional operation inthe UML.
context TupleType

inv: TupleType.allnstances()->forAll (t |
(t.alProperties()->forAll (tp |
-- make sure at least one tuplepart has the same name
-- (uniqueness of tuplepart names will ensure that not two
-- tupleparts have the same name within one tupl€)
self.all Properties()->exists(stp|stp.name = tp.name) and
-- make sure that al tupleparts with the same name conforms.
self.all Properties()->forAll(stp | (stp.name = tp.name) implies
stp.type.conformsTo(tp.type))
)
implies
self.conformsTo(t)
)

VoidType

[1] Void conformsto al other types except Oclinvalid.

context VoidType
inv: Classifier.allnstances()->forAll (c | not c.ocllsTypeOf(Oclinvalid) implies self.conformsTo (c))

8.2.2 Well-formedness Rules for the Types Package

BagType
[1] Thename of abagtypeis“Bag” followed by the element type’'s name in parentheses.

context BagType
inv: self.name = ‘Bag(' + self.elementType.name+ )’

CollectionType
[1] The name of acollection typeis“Collection” followed by the element type’s name in parentheses.

context CollectionType
inv: self.name = ‘Collection(* + self.elementType.name + ‘)’
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MessageType

[1] MessageType has either alink with a Signal or with an operation, but not both.

context MessageType
inv: referredOperation->size() + referredSignal->size() = 1

[2] The parameters of the referredOperation become attributes of the instance of MessageType.

context MessageType:
inv: referredOperation->size()=1 implies
Setf{ 1..self.ownedAttribute->size()} ->forAll(i | self.ownedAttribute.at(i).cmpSlots(
referredOperation.ownedParameter.asProperty()->at(i)))

[3] Theattributes of the referredSignal become attributes of the instance of MessageType.

context MessageType
inv: referredSignal->size() = 1 implies
Set{ 1..self.ownedAttribute->size()} ->forAll(i | self.ownedAttribute.asOrderedSet().at(i).cmpSl ots(
referredSignal.ownedAttribute.asOrderedSet()->at(i)))

OrderedSetType

[1] Thename of aset typeis“OrderedSet” followed by the element type's name in parentheses.

context OrderedSetType
inv: self.name = ‘OrderedSet(‘ + self.elementType.name + ‘)’

SequenceType

[1] The name of a sequence typeis*“Sequence” followed by the element type's name in parentheses.

context SequenceType
inv: self.name = ‘ Sequence(* + self.elementType.name + ‘)’

SetType

[1] Thename of aset typeis*“Set” followed by the element type’'s name in parentheses.

context SetType
inv: self.name = * Set(* + self.elementType.name + )’

TupleType

[1] Thename of atuple typeincludes the names of the individual parts and the types of those parts.

context TupleType
inv: name =
‘Tuple(‘ .concat (
Sequence({ 1.al | Properties()->size()} ->iterate (pn; s: String = *" |
let p: Attribute = allProperties()->at (pn) in (
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s.concat (
(if (pn>1) then ;" else’’ endif)
.concat (p.name).concat (i:i)
.concat (p.type.name)

)
)
)

).concat (i)i)
[2] All parts belonging to atuple type have unique names.

context TupleType
inv: -- dways true, because attributes must have unique names.

[3] A TupleType instance has only features that are Properties(tuple parts).

context TupleType
inv: feature->forAll (f | f.ocllsTypeOf(Property))

8.3 The Expressions Package

This sub clause defines the abstract syntax of the expressions package. This package defines the structure that OCL
expressions can have. An overview of the inheritance relationships between all classes defined in this package is shown
in Figure 8.2.

TypedElement
+body _'A
1 OclExpression +initExpression
0.1 0.1
+source
+appliedElement Z}
0.1
CallExp LiteralExp IfExp VariableExp | | TypeExp | | MessageExp StateExp
Z> ’ ’ .
| +referreqdState
‘ ‘ +referringExp +refefredType o1
FeatureCallExp LoopExp [*1o0PEXP o1V
® | | Classifier State
0.1 . +referredVariable
- +iteratgr
+loopBodyOwner ? \ 0.1 o1 o
01 Variable P - +initializedElement
+variable
* +representedParameter
IteratorExp IterateExp 01 ot
- +result \
+haseExp Parameter

Figure 8.2 - The basic structure of the abstract syntax kernel metamodel for Expressions
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8.3.1 Expressions Core

Figure 8.2 shows the core part of the Expressions package. The basic structure in the package consists of the classes
OclExpression, CallExp, and VariableExp. An OclExpression always has a type, which is usually not explicitly modeled,
but derived. Each CallExp has exactly one source, identified by an OclExpression. In this sub clause we use the term
‘property’ that is a generalization of Feature, AssociationEnd, and predefined iterating OCL collection operations.

A FeatureCallExp generalizes all property calls that refer to Features in the UML metamodel. In Figure 8.3 the various
subtypes of FeatureCallExp are defined.

Most of the remainder of the expressions package consists of a specification of the different subclasses of CallExp and
their specific structure. From the metamodel it can be deduced that an OCL expression always starts with a variable or
literal, on which a property is recursively applied.

CallExp

A CallExp is an expression that refers to a feature (operation, property) or to a predefined iterator for collections. Its
result value is the evaluation of the corresponding feature. This is an abstract metaclass.

Associations
source The result value of the source expression is the instance that performs the property call.

FeatureCallExp

A FeatureCallExp expression is an expression that refers to a feature that is defined for a Classifier in the UML model to
which this expression is attached. Its result value is the evaluation of the corresponding feature.

Attributes
isPre Boolean indicating whether the expression accesses the precondition-time value of the referred
feature.
IfEXp

An IfExp is defined in 8.3.3, 'If Expressions’ but included in this diagram for completeness.

IterateExp

An lterateExp is an expression that evaluates its body expression for each element of a collection. It acts as a loop
construct that iterates over the elements of its source collection and results in a value. An iterate expression evaluates its
body expression for each element of its source collection. The evaluated value of the body expression in each iteration-
step becomes the new value for the result variable for the succeeding iteration-step. The result can be of any type and is
defined by the result association. The IterateExp is the most fundamental collection expression defined in the OCL
Expressions package.
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Associations
result The Variable that represents the result variable.

IteratorExp

An lteratorExp is an expression that evaluates its body expression for each element of a collection. It acts as a loop
construct that iterates over the elements of its source collection and results in a value. The type of the iterator expression
depends on the name of the expression, and sometimes on the type of the associated source expression. The Iterator Exp
represents all other predefined collection operations that use an iterator. This includes select, collect, reject, forAll, exists,
etc. The OCL Standard Library defines a number of predefined iterator expressions. Their semantics is defined in terms
of the iterate expression in 11.7, 'Predefined Iterator Expressions.’

LiteralExp

A LiteralExp is an expression with no arguments producing a value. In general the result value is identical with the
expression symbol. This includes things like the integer 1 or literal strings like ‘thisis a LiteralExp.’

LoopExp

A LoopEXxp is an expression that represents aloop construct over a collection. It has an iterator variable that represents the
elements of the collection during iteration. The body expression is evaluated for each element in the collection. The result
of aloop expression depends on the specific kind and its name.

Associations

iterator The iterator variables. These variables are, each in its turn, bound to every element value of the
source collection while evaluating the body expression.
body The OclExpression that is evaluated for each element in the source collection.
MessageExp

MessageExp is defined in Section 8.3.4, “Message Expressions,” on page 46, but included in this diagram for
compl eteness.

OclExpression

An OclExpression is an expression that can be evaluated in a given environment. OclExpression is the abstract superclass
of al other expressions in the metamodel - except for the ExpressionlnOcl container class. It is the top-level element of
the OCL Expressions package. Every OclExpression has a type that can be statically determined by analyzing the
expression and its context. Evaluation of an expression results in a value. Expressions with boolean result can be used as
constraints (e.g., to specify an invariant of a class). Expressions of any type can be used to specify queries, initial attribute
values, target sets, etc.

The environment of an OclExpression defines what model elements are visible and can be referred to in an expression. At
the topmost level the environment will be defined by the Element to which the OCL expression is attached, for example
by a Classifier if the OCL expression is used as an invariant. On alower level, each iterator expression can aso introduce
one or more iterator variables into the environment. The environment is not modeled as a separate metaclass because it
can be completely derived using derivation rules. The complete derivation rules can be found in Clause 9 (“ Concrete

Syntax”).
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StateExp

A StateExp is an expression used to refer to a state of a class within an expression. It is used to pass directly to the pre-
defined operation ocllsinState the reference of a state of a class defined in the UML model.

Associations

referredState The State being referred.

TypeExp

A TypeExp is an expression used to refer to an existing meta type within an expression. It is used in particular to pass the
reference of the meta type when invoking the operations ocllsKindOf, ocllsTypeOf, and oclAsType.

Associations

referredType The type being referred.

Variable

Variables are typed elements for passing data in expressions. The variable can be used in expressions where the variable
isin scope. This metaclass represents amongst others the variables self and result and the variables defined using the Let
expression.

Associations

initExpression The OclExpression that represents the initial value of the variable. Depending on the role that
a variable declaration plays, the init expression might be mandatory.

representedParameter The Parameter in the current operation this variable is representing. Any access to the
variable represents an access to the parameter value.

VariableExp

A VariableExp is an expression that consists of a reference to a variable. References to the variables self and result or to
variables defined by Let expressions are examples of such variable expressions.

Associations
referredVariable The Variable to which this variable expression refers.

8.3.2 FeatureCall Expressions

A FeatureCallExp can refer to any of the subtypes of Feature as defined in the UML kernel. Thisis shown in Figure 8.3
by the three different subtypes, each of which is associated with its own type of Element.
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Figure 8.3 - Abstract syntax metamodel for FeatureCallExp in the Expressions package

AssociationClassCallExp

An AssociationClassCallExp is a reference to an AssociationClass defined in a UML model. It is used to determine
objects linked to a target object by an association class. The expression refers to these target objects by the name of the
target associationclass.

Associations

referredAssociationClass  The AssociationClass to which this AssociationClassCallExp is areference. Thisrefersto an
AssociationClass that is defined in the UML model.

PropertyCallExp

A PropertyCallExpression is a reference to an Attribute of a Classifier defined in a UML model. It evaluates to the value
of the attribute.

Associations
referredProperty The Attribute to which this AttributeCallExp is a reference.

NavigationCallExp

A NavigationCallExp is areference to a Property or an AssociationClass defined in a UML model. It is used to determine
objects linked to atarget object by an association, whether explicitly modeled as an Association or implicit. If thereis a
qualifier attached to the source end of the association, then additional qualifier expressions may be used to specify the
values of the qualifying attributes.
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Associations

qualifier The values for the qualifier attributes if applicable.

navigationSource The source denotes the association end Property at the end of the object itself. Thisis used to
resolve ambiguities when the same Classifier is at more than one end (plays more than one
role) in the same association. In other cases it can be derived.

OperationCallExp

An OperationCallExp refers to an operation defined in a Classifier. The expression may contain a list of argument
expressions if the operation is defined to have parameters. In this case, the number and types of the arguments must match
the parameters.

Associations

argument The arguments denote the arguments to the operation call. Thisis only useful when the
operation call is related to an Operation that takes parameters.

referredOperation The Operation to which this OperationCallExp is a reference. Thisis an Operation of a
Classifier that is defined in the UML model.

8.3.3 If Expressions

This sub clause describes the if expression in detail. Figure 8.4 shows the structure of the if expression.

0.1
- IfExp @

+
+thenOwner g 1 elseOwner

0.1
+ifOwner

. +condition
+thenExpression 1

1 \
OclExpression |_

1

+elseExpression

Figure 8.4 - Abstract syntax metamodel for if expression

IfExp

An IfExp results in one of two alternative expressions depending on the evaluated value of a condition. Note that both the
thenExpression and the el seExpression are mandatory. The reason behind thisis that an if expression should always result
in avalue, which cannot be guaranteed if the else part is left out.
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Associations

condition The OclExpression that represents the boolean condition. If this condition evaluates to true,
the result of the if expression isidentical to the result of the thenExpression. If this condition
evaluates to false, the result of the if expression isidentical to the result of the
€l seExpression.

thenExpression The OclExpression that represents the then part of the if expression.
elseExpression The OclExpression that represents the else part of the if expression.

8.3.4 Message Expressions

In the specification of communication between instances we unify the notions of asynchronous and synchronous
communication. The structure of the message expressions is shown in Figure 8.5.

UnspecifiedValueExp

T
\

+arget OCIExpression

1 /\ Fargument

T {ordered}

MessageExp

0.1 0.1

+calledOperation +sentSignal
0.1\/ \|/0--1

CallOperationAction CallSignalAction

Figure 8.5 - The abstract syntax of Ocl messages

MessageExp

A MessageExp is an expression that results in a collection of OclMessage value. An OclMessage is the unification of a
signal sent, and an operation call. The target of the operation call or signal sent is specified by the target OclExpression.
Arguments are OclExpressions, in particular they may be unspecified value expressions for arguments whose value is not
specified. It covers both synchronous and asynchronous actions. See [K1eppe2000] for a complete description and
motivation of this type of expression, also called “action clause.”
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Associations

target The OclExpression that represents the target instance to which the signal is sent.

argument The OclExpressions that represent the parameters to the Operation or Sgnal. The number
and type of arguments should conform to those defined in the Operation or Signal. The order
of the arguments is the same as the order of the parameters of the Operation or the attributes

of aSgnal.
calledOperation If thisis a message to request an operation call, this is the requested CallOperationAction.
sentSignal If thisisa UML signal sent, this is the SendSignal Action.

UnspecifiedValueExp

An UnpecifiedValueExp is an expression whose value is unspecified in an OCL expression. It is used within OCL
messages to leave parameters of messages unspecified.

8.3.5 Literal Expressions

This sub clause defines the different types of literal expressions of OCL. It also refers to enumeration types and
enumeration literals. Figure 8.6 shows all types of literal expressions.

LiteralExp
Q
« | EnumLiteralExp PrimitiveLiteralExp NullLiteralExp InvalidLiteralExp
+literalExp Lﬁ
| | |
NumericLiteralExp StringLiteralExp BooleanLiteralExp
stringSymbol : String booleanSymbol : Boolean
0.1
EnumerationLiteral ?
r | |
RealLiteralExp UnlimitedNaturalExp IntegerLiteralExp
realSymbol : Real symbol : UnlimitedNatural integerSymbol : Integer

Figure 8.6 - Abstract syntax metamodel for Literal expression
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Figure 8.7 - Abstract syntax metamodel for Collection and Tuple Literal expression

BooleanLiteralExp
A BooleanLiteral Exp represents the value true or false of the predefined type Boolean.

Attributes
booleanSymbol The Boolean that represents the value of the literal.

Collectionltem
A Collectionltem represents an individual element of a collection.

CollectionKind
The CollectionKind enumeration lists the kinds of collections. Its literals are Collection, Set, OrderedSet, Bag, and

Sequence.

CollectionLiteralExp

A CollectionLiteral Exp represents a reference to collection literal.
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Attributes

kind The kind of collection literal that is specified by this CollectionLiteral Exp.

Associations

part The parts of the collection literal expression.

CollectionLiteralPart

A CollectionLiteralPart is a member of the collection literal.
Associations
type The type of the collection literal.

CollectionRange

A CollectionRange represents a range of integers.

EnumLiteralExp

An EnumLiteral Exp represents a reference to an enumeration literal.
Associations
referredEnumL.iteral The EnumLiteral to which the enum expression refers.

IntegerLiteralExp

An IntegerLiteral Exp denotes a value of the predefined type Integer.
Attributes
integerSymbol The Integer that represents the value of the literal.

NumericLiteralExp

A NumericLiteral Exp denotes a value of either the type Integer or the type Real.

PrimitiveLiteralExp

A PrimitiveLiteralExp literal denotes a value of a primitive type.

Attributes

symbol The Sring that represents the value of the literal.

ReallLiteralExp
A RealLiteralExp denotes a value of the predefined type Real.
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Attributes

real Symbol The Real that represents the value of the literal.

StringLiteralExp
A SringLiteralExp denotes a value of the predefined type String.

Attributes

stringSymbol The Sring that represents the value of the literal.

TupleLiteralExp

A TupleLiteralExp denotes a tuple value. It contains a name and a value for each part of the tuple type.

Associations
part The Variable declarations defining the parts of the literal.

8.3.6 Let Expressions

This sub clause defines the abstract syntax metamodel for Let expressions. The only addition to the abstract syntax is the
metaclass LetExp as shown in Figure 8.8. The other metaclasses are re-used from the previous diagrams.

Note: Let expressions that take arguments are no longer allowed in OCL 2.0. This feature is redundant. Instead, a
modeler can define an additional operation in the UML Classifier, potentially with a specia stereotype to denote that this
operation is only meant to be used as a helper operation in OCL expressions. The postcondition of such an additional
operation can then define its result value. Removal of Let functions will therefore not affect the expressibility of the
modeler. Another way to define such helper operations is through the «definition» constraint, which reuses some of the
concrete syntax defined for Let expressions (see 12.5, 'Definition’), but is nothing more than an OCL -based syntax for
defining helper attributes and operations.

OcIExpression +initExpression

0.1
/\\ +in PR
[\ +initializedElement

0.1 0..

LetExp +variable Variable

0.1 1

Figure 8.8 - Abstract syntax metamodel for let expression

LetExp

A LetExp is a special expression that defined a new variable with an initial value. A variable defined by a LetExp cannot
change its value. The value is always the evaluated value of the initial expression. The variable is visible in the in
expression.
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Associations

variable The Variable introduced by the Let expression.
in The OclExpression in whose environment the defined variable is visible.

8.3.7 Well-formedness Rules of the Expressions package

The metaclasses defined in the abstract syntax have the following well-formedness rules:

PropertyCallExp

The type of the call expression is the type of the referred property.

context PropertyCallExp
inv: type = referredProperty.type

BooleanLiteralExp

[1] Thetype of aboolean Literal expression is the type Boolean.

context BooleanLitera Exp
inv: self.type.name = ‘Boolean’

CollectionLiteralExp

[1] ‘Collection’ isan abstract class on the M1 level and has no MO instances.

context CollectionLiteralExp
inv: kind <> CollectionKind::Collection

[2] Thetype of acollection literal expression is determined by the collection kind selection and the common supertype of all
elements. Note that the definition below implicitly states that empty collections have Ocl\Void as their elementType.

context CollectionLiteral Exp

inv: kind = CollectionKind::Set implies type.oclIsKindOf (SetType)

inv: kind = CollectionKind::OrderedSet implies type.oclI sKindOf (OrderedSetType)

inv: kind = CollectionKind::Sequence implies type.ocllsKindOf (SequenceType)

inv: kind = CollectionKind::Bag implies type.ocl1sKindOf (BagType)

inv: type.ocl AsType (CollectionType).elementType = part->iterate (p; ¢ : Classifier = OclVoid | c.commonSuperType (p.type))

CollectionLiteralPart

No additional well-formedness rules.

Collectionltem

[1] Thetype of a Collectionltem is the type of the item expression.
context Collectionltem

inv: type = item.type
CollectionRange

[1] Thetype of a CollectionRange isthe common supertype of the expressions taking part in the range.

context CollectionRange
inv: type = first.type.commonSuperType (last.type)

Object Constraint Language, v2.2 51



EnumLiteralExp

[1] Thetypeof an enum Literal expression isthe type of the referred literal.

context EnumL.iteral Exp
inv: self.type = referredEnumL.iteral.enumeration

IfEXp

[1] Thetype of the condition of an if expression must be Boolean.

context IfExp
inv: self.condition.type.ocl1sKindOf(PrimitiveType) and self.condition.type.name = ‘ Boolean’

[2] Thetypeof theif expression isthe most common supertype of the else and then expressions.

context IfExp
inv: self.type = thenExpression.type.commonSuper Ty pe(el seExpression.type)

IntegerLiteralExp

[1] Thetypeof aninteger Literal expression isthe type Integer.

context IntegerLiteral Exp
inv: self.type.name = ‘Integer’

IteratorExp

[1] If theiterator is‘forAll,” ‘isUnique,’ or ‘exists,’ the type of the iterator must be Boolean.
context |teratorExp
inv: name = ‘exists' or name = ‘forAll’ or name = ‘isUnique’
implies type.ocll sKindOf (PrimitiveType) and type.name = ‘ Boolean’

[2] The result type of the 'collect' operation on an OrderedSet or a Sequence type is a Sequence, the result type of 'collect’' on
any other collection type is a Bag. The type of the body is always the type of the elementsin the returned collection.
context IteratorExp
inv: name = 'collect’ implies
if source.type.ocllsKindOf(SequenceType) or source.type.ocll sKindOf (OrderedSetType) then
type = body.type.collectionType->sel ect(ocl | STypeOf (SequenceType))->first()
else
type = body.type.collectionType->select(ocl  sTypeOf (BagType))->first()
endif

[3] The'select’ and ‘reject’ iterators have the same type as its source.
context IteratorExp
inv: name = ‘select’ or name = ‘reject’ impliestype = source.type

[4] Thetype of the body of the select, reject, exists, and forAll must be boolean.

context IteratorExp
inv: name = ‘exists’ or name = ‘forAll’ or name = ‘select’ or name = ‘reject’
implies body.type.name = ‘ Boolean’

IterateExp

[1] Thetypeof theiterateis the type of the result variable.

context IterateExp
inv: type = result.type
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[2] Thetype of the body expression must conform to the declared type of the result variable.

context IterateExp
inv: body.type.conformsTo(result.type)

[3] A result variable must have an init expression.

context IterateExp
inv: self.result.initExpression->size() = 1

LetExp

[1] Thetypeof alLet expression isthe type of the in expression.
context LetExp

inv: type = in.type
LiteralExp
No additional well-formedness rules.

LoopExp

[1] Thetype of the source expression must be a collection.

context LoopExp
inv: source.type.ocllsKindOf (CollectionType)

[2] Theloop variable of an iterator expression has no init expression.

context L oopExp
inv: self.iterator->forAll(initExpression->isEmpty())

[3] Thetype of eachiterator variable must be the type of the elements of the source collection.

context IteratorExp
inv: self.iterator->forAll(type = source.type.ocl AsType (CollectionType).elementType)

FeatureCallExp

No additional well-formedness rules.

NumericLiteralExp

No additional well-formedness rules.

OclExpression
No additional well-formedness rules.

MessageExp

[1] If the messageisan operation call action, the arguments must conform to the parameters of the operation.

context MessageExp
inv: calledOperation->notEmpty() implies
argument->forAll (a| atype.conformsTo
(self.calledOperation.operation.ownedParameter->
select( kind = ParameterDirectionKind::in)
->at (argument->indexOf (a)).type))
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[2] If the messageisasend signal action, the arguments must conform to the attributes of the signal.

context MessageExp
inv: sentSignal->notEmpty() implies
argument->forAll (a| atype.conformsTo
(self.sentSignal .signal .ownedAttribute
->at (argument->indexOf (a)).type))

[3] If the messageisacall operation action, the operation must be an operation of the type of the target expression.

context MessageExp
inv: calledOperation->notEmpty() implies
target.type.allOperations()->includes(cal | edOperation.operation)

[4] An OCL message has either a called operation or a sent signal.
context M essageExp
inv: calledOperation->size() + sentSignal->size() = 1

[5] Thetarget of an OCL message cannot be a collection.

context MessageExp
inv: not target.type.oclIsKindOf (CollectionType)

OperationCallExp

[1] All the arguments must conform to the parameters of the referred operation.

context OperationCallExp
inv: arguments->forAll (a| a.type.conformsTo
(self.refParams->at (arguments->indexOf (a)).type))

[2] There must be exactly as many arguments as the referred operation has parameters.

context OperationCallExp
inv: arguments->size() = refParams->size()

[3] Anadditiona attribute refParams lists all parameters of the referred operation except the return and out parameter(s).

context OperationCallExp

def: refParams: Sequence(Parameter) = referredOperation.ownedParameter->select (p |
p.kind <> ParameterDirectionKind::return or
p.kind <> ParameterDirectionKind::out)

CallExp

No additional well-formedness rules.

ReallLiteralExp

[1] Thetypeof areal Literal expressionisthe type Real.

context RealLiteral Exp
inv: self.type.name = iRed i

StateExp

No additional well-formedness rules.
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StringLiteralExp

[1] Thetype of astring Literal expression is the type String.

context StringLiteral Exp
inv: self.type.name = * String’

TypeExp

No additional well-formedness rules.

TupleLiteralExp

[1] Thetypeof aTupleLiteralExp is a TupleType with the specified parts.
context TupleLitera Exp
inv: type.ocllsKindOf (TupleType)
and part->size() = type.allProperties()->size()
and part->forAll (tlep |
type.allProperties()->exists (tp | tlep.attribute.name = tp.name and tlep.attribute.type = tp.type))

[2] All tupleliteral expression parts of one tupleliteral expression have unique names.
context TupleLitera Exp

inv: part->isUnique (attribute.name)
TupleLiteralPart

[1] Thetype of the attribute conforms to the type of the value expression.

context TupleLiteral Part
inv: attribute.type.conformsTo(val ue.type)

UnspecifiedValueExp

No additional well-formedness rules.

Variable

[1] For initialized variable declarations, the type of the initExpression must conform to the type of the declared variable.
context Variable

inv: initExpression->notEmpty() implies initExpression.type.conformsTo (type)
VariableExp

[1] Thetype of aVariableExp isthe type of the variable to which it refers.

context VariableExp
inv: type = referredVariable.type

8.3.8 Additional Operations on UML metaclasses

In the clauses “ Abstract Syntax,” “ Concrete Syntax,” and “The Use of Ocl Expressionsin UML Models” many additional
operations on UML metaclasses are used. They are defined in this sub clause. The next sub clause defines additional
operations for the OCL metaclasses.
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Classifier

The operation commonSuperType results in the most specific common supertype of two classifiers.

context Classifier
def: commonSuperType (c : Classifier) : Classifier =
Classifier.allInstances()->select (cst |
c.conformsTo (cst) and
self.conformsTo (cst) and
not Classifier.alllnstances()->exists (clst |
c.conformsTo (clst) and
self.conformsTo (clst) and
clst.conformsTo (cst) and
clst <> cst
)

)->any (true)

The following operations have been added to Classifier to lookup properties and operations.

context Classifier
def: lookupProperty(attName : String) : Attribute =
self.allProperties()->any(me | me.name = attName)
def: lookupAssociationClass(name : String) : AssociationClass =
self.all AssociationClasses()->any (ae | ae.name = name)
def: lookupOperation (name: String, paramTypes. Sequence(Classifier)): Operation =
self.allOperations()->any (op | op.name = name and
op.hasMatchingSignature(paramTypes))
def: lookupSignal (sigName: String, paramTypes: Sequence(Classifier)): Signal =
self.allReceptions().signal->any (sig | sig.name = sigName and
sig.hasMatchingSignature(paramTypes))
def: allReceptions() : Set(Reception) =
self.all Features()->select(f | f.ocl I sKindOf (Reception))
def: allProperties() : Set(Property) =
self.all Features()->select(f | f.oclI sKindOf (Property))
def: allOperations() : Set(Property) =
self.all Features()->select(f | f.ocllsSKindOf(Operation))

The operation allFeatures() is defined in the UML semantics.

The operation alllnstances()
context Classifier
def: allnstances() : Set( T ) = -- al instances of self

returns all instances of the classifier and the classifiers specializing it. May only be used for classifiers that have a finite
number of instances. Thisisthe case, for example, for user defined classes because instances need to be created explicitly,
and for enumerations, the standard Boolean type, and other special types such as OclVoid and Oclinvalid. This is not the
case, for example, for data types such as collection types or the standard String, Integer, and Real types.

Operation

An additional operation is added to Operation, which checks whether its signature matches with a sequence of Classifiers.
Note that in making the match only parameters with direction kind ‘in’ are considered.
context Operation
def: hasMatchingSignature(paramTypes. Sequence(Classifier)) : Boolean =
-- check that operation op has a signature that matches the given parameter lists
let sigParamTypes: Sequence(Classifier) = self.allProperties().typein
(
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( sigParamTypes->size() = paramTypes->size() ) and
( Set{ 1..paramTypes->size()} ->forAll (i |
paramTypes->at (i).conformsTo (sigParamTypes->at (i))
)
)

)
def: allProperties() : Set(Property) =
self.ownedParameter->asProperty()

Parameter

The operation asProperty results in a property that has the same name, type, etc. as the parameter.
context Parameter::asProperty(): Property

pre: -- none

post: result.name = self.name

post: result.type = self.type

post: result.upperVaue =1

post: result.lowerValue =1

post: result.isOrdered =true

post: result.isStatic =fase

post: result.visibility = VisibilityKind::private

An additional class operation is added to Parameter to return a Parameter.

context Parameter::make(n : String, ¢ : Classifier, k : ParameterDirectionKind) :Parameter
post: result.name=n

post: result.kind = k

post: result.type=c

Property

The operation cmpSlots returns true if the compared property has identical name and type.

context Parameter::cmpSlots(): Boolean =
result.name = self.name and result.type = self .type

Signal

An additional operation is added to Signal, which checks whether its signature matches with a sequence of Classifiers.
Note that in making the match the parameters of the signal are its attributes.

context Signal
def: hasMatchingSignature(paramTypes. Sequence(Classifier)) : Boolean =
-- check that signal has a signature that matches the given parameter lists
let opParamTypes. Sequence(Classifier) = self.ownedParameter->select (p | p.kind <>
ParameterDirectionKind::return).typein
(
( opParamTypes->size() = paramTypes->size() ) and
( Set{ 1..paramTypes->size()} ->forAll (i |
paramTypes->at (i).conformsTo (opParamTypes->at (i))
)
)
)
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State

The operation getStateM achine() returns the statemachine to which a state belongs.

context State::getStateM achine() : StateMachine
post: result = container.stateM achine

Transition

The operation getStateMachine() returns the statemachine to which a transition belongs.

context Transition::getStateMachine() : StateMachine
post: result = container.stateM achine

8.3.9 Additional Operations on OCL Metaclasses

In clauses “Abstract Syntax,” “Concrete Syntax,” and “The Use of Ocl Expressions in UML Models” many additional
operations on OCL metaclasses are used. They are defined in this sub clause. The previous sub clause defines additional
operations for the UML metaclasses.

OclExpression
The following operation returns an operation call expression for the predefined asSet() operation with the self expression
as its source.

context OclExpression::withAsSet() : OperationCallExp
post: result.name = ‘asSet’

post: result.argument->isEmpty/()

post: result.source = self

TupleType
An additional class operation is added to Tuple to return a new tuple. The name of atupletype is defined in the abstract
syntax clause and need not be specified here.

context TupleType::make(atts : Sequence(Property) ) : TupleType
post: Sequence( 1...atts->size()} ->forAll(i | result.ownedAttribute.at(i).cmpSlots(atts.at(i))

Variable

An additional operation is added to Variable to return a corresponding Parameter.

context Variable::asParameter() : Parameter

post: result.name = self.name

post: result.direction = ParameterDirectionKind::in
post: result.type = self.type

An additional operation is added to Variable to return a corresponding Property.
context Variable::asProperty() : Attribute

post: result.name = self.name

post: result.type = sdf.type

upperValue =1

post: result.lowerValue =1

post: result.isOrdered =true

post: result.isStatic =fase

post: result.visibility = VisihilityKind::private

post: result.constraint.specification.bodyExpression = self.initExpression
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8.3.10 Overview of class hierarchy of OCL Abstract Syntax metamodel

ModelElement
(from Core)
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NavigationCallExp
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Figure 8.9 - Overview of the abstract syntax metamodel for Expressions
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9 Concrete Syntax

This clause describes the concrete syntax of the OCL. This allows modelers to write down OCL expressions in a
standardized way. A formal mapping from the concrete syntax to the abstract syntax from Clause 8 (“ Abstract Syntax”) is
given. Although not required, Sub clause 9.6 describes a mapping from the abstract syntax to the concrete syntax. This
allows one to produce a standard human readable version of any OCL expression that is represented as an instance of the
abstract syntax.

Sub clause 9.1, Structure of the Concrete Syntax describes the structure of the grammar and the motivation for the use of
an attribute grammar.

9.1 Structure of the Concrete Syntax

The concrete syntax of OCL is described in the form of a full attribute grammar. Each production in an attribute grammar
may have synthesized attributes attached to it. The value of synthesized attributes of elements on the left hand side of a
production rule is always derived from attributes of elements at the right hand side of that production rule. Each
production may also have inherited attributes attached to it. The value of inherited attributes of elements on the right hand
side of a production rule is always derived from attributes of elements on the left hand side of that production.

In the attribute grammar that specifies the concrete syntax, every production rule is denoted using the EBNF formalism
and annotated with synthesized and inherited attributes, and disambiguating rules. There are a number of special
annotations, as follows.

Synthesized Attributes

Each production rule has one synthesized attribute called ast (short for abstract syntax tree), that holds the instance of the
OCL Abstract Syntax that is returned by the rule. The type of ast is different for every rule, but it always is an element of
the abstract syntax. The type is stated with each production rule under the heading “ Abstract Syntax Mapping.” The ast
attribute constitutes the formal mapping from concrete syntax to abstract syntax.

The motivation for the use of an attribute grammar is the easiness of the construction and the clarity of this mapping.
Note that each name in the EBNF format of the production rule is postfixed with ‘CS’ to clearly distinguish between the
concrete syntax elements and their abstract syntax counterparts.

Inherited Attributes

Each production rule has one inherited attribute called env (short for environment), that holds a list of names that are
visible from the expression. All names are references to elements in the model. In fact, env is a hame space environment
for the expression or expression part denoted according to the production rule. The type of the env attribute is
Environment, as shown in Figure 9.1. A number of operations are defined for this type. Their definitions and more details
on the Environment type can be found in Sub clause 9.4, Environment Definition. The manner in which both the ast and
env attributes are determined is given using OCL expressions.
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Environment
EMPTY_ ENV : Environment

lookupLocal()

lookup()

lookupLocal()

lookup()

addElement()
addNamespace()
nestedEnvironment()
lookupImplicitAttribute()
lookuplmplicitSourceForAttribute()
lookuplmplicitAssociationEnd()
lookupImplicitOperation()

+namedElements 0..n

NamedElement
name : String +referredElement ModelElement
mayBelmplicit : Boolean 1 (from Core)
getType()

Figure 9.1 - The Environment type

Note that the contents of the env attribute are fully determined by the context of the OCL expression. When an OCL
expression is used as an invariant to class X, its environment will be different than in the case the expression is used as a
postcondition to an operation of class Y. In Clause 12 (“The Use of Ocl Expressionsin UML Models’) the context of
OCL expressions is defined in detail.

Multiple Production Rules

For some elements there is a choice of multiple production rules. In that case the EBNF format of each production rule is
prefixed by a capital letter between square brackets. The same prefix is used for the corresponding determination rules for
the ast and env attributes.

Multiple Occurrences of Production Names

In some production rules the same element name is used more than once. To distinguish between these occurrences the
names will be postfixed by a number in square brackets, as in the following example.

CollectionRangeCS ::= OclExpressionCS[1] ‘.." OclExpressionCS[2]

Disambiguating Rules

Some of the production rules are syntactically ambiguous. For such productions disambiguating rules have been defined.
Using these rules, each production and thus the complete grammar becomes nonambiguous. For example in parsing a.b(),
there are at least three possible parsing solutions:

1. aisaVariableExpr (areferenceto alet or an iterator variable)

2. aisanAttributeCallExp (self isimplicit)
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3. aisaNavigationCalExp (self isimplicit)

A decision on which grammar production rule to use can only be made when the environment of the expression is taken
into account. The disambiguating rules describe these choices based on the environment and allow unambiguous parsing
of a.b(). In this case the rules (in plain English) would be:

 If aisadefined variable in the current scope, a is a VariableExp.

« If not, check self and all iterator variables in scope. The inner-most scope for which asis either
« an attribute with the name a, resulting in an AttributeCallExp, or

* an opposite association-end with the name a, resulting in a NavigationCall Exp, defines the meaning of a.b().
« If neither of the above istrue, the expressionisillegal / incorrect and cannot be parsed.

Disambiguating rules may be based on the UML model to which the OCL expression is attached (e.g., does an attribute
exist or not). Because of this, the UML model must be available when an OCL expression is parsed, otherwise it cannot
be validated as a correct expression. The grammar is structured in such a way that at most one of the production rules will
fulfill al the disambiguating rules, thus ensuring that the grammar as a whole is unambiguous. The disambiguating rules
are written in OCL, and use some metaclasses and additional operations from the UML 1.4 semantics.

9.2 A Noteto Tool Builders

9.2.1 Parsing

The grammar in this clause might not prove to be the most efficient way to directly construct a tool. Of course, a tool-
builder is free to use a different parsing mechanism. He can, for example, first parse an OCL expression using a special
concrete syntax tree, and do the semantic validation against a UML model in a second pass. Also, error correction or
syntax directed editing might need hand-optimized grammars. This document does not prescribe any specific parsing
approach. The only restriction is that at the end of all processing atool should be able to produce the same well-formed
instance of the abstract syntax, as would be produced by this grammar.

9.2.2 Visibility

The OCL specification puts no restriction on the visibility declared for a property defined in the model (such as ‘private,’
‘protected,’” or ‘public’). In OCL, all modelelements are considered visible. The reason for thisisto allow a modeler to
specify constraints, even between ‘hidden’ elements. At the lowest implementation level this might be useful.

As a separate option OCL tools may enforce all UML visibility rules to support OCL expressions to be specified only
over visible modelelements. Especially when a tool needs to generate code for runtime evaluation of OCL expressions,
this visibility enforcement is necessary.

9.3 Concrete Syntax

As a convention to the concrete syntax, conflicting properties or conflicting class names can be aliased using the «_»
(underscore) prefix. Inside an OCL expression that is written with the concrete syntax, when a property name or a class
name is found to start with a « >, firstly the symbol is lookup in the metamodel. If not found, the same symbol with the
«_ » skipped is tried.
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9.3.1 ExpressionIinOcICS

The ExpressionIinOcl symbol has been added to set up the initial environment of an expression.

ExpressionlnOclCS ::= OclExpressionCS

Abstract syntax mapping
ExpressionInOclCS.ast : OclExpression

Synthesized attributes
ExpressionlnOcl CS.ast = OclExpressionCS.ast

Inherited attributes

The environment of the OCL expression must be defined, but what exactly needs to be in the environment depends on the
context of the OCL expression. The following rule is therefore not complete. It defines the env attribute by adding the self
variable to an empty environment, as well as a Namespace containing all elements visible from self. (In Sub clause 12.2,
The ExpressionInOcl Type, the contextual Classifier will be defined for the various places where an ocl expression may
occur.) In the context of a pre- or postcondition, the result variable as well as variable definitions for any named operation
parameters can be added in a similar way.

OclExpressionCS.env =
ExpressionlnOcl CS.contextual Classifier.namespace.getEnvironmentWithParents()
.addElement (‘self,” ExpressionlnOclCS.contextual Classifier, true)

9.3.2 OclExpressionCS

An OclExpression has several production rules, one for each subclass of OclExpression. Note that UnspecifiedValueExp
is handled explicitly in OclMessageArgCS, because that is the only place where it is allowed.

[A] OclExpressionCS ::= CalExpCS

[B] OclExpressionCS ::= VariableExpCS

[C] OclExpressionCS ::= Litera ExpCS

[D] OclExpressionCS ::= LetExpCS

[E] OclExpressionCS ::= OclMessageExpCS
[F] OclExpressionCS ::= IfExpCS

Abstract syntax mapping
OclExpressionCS.ast : OclExpression

Synthesized attributes

[A] OclExpressionCS.ast = CallExpCS.ast

[B] OclExpressionCS.ast = VariableExpCS.ast

[C] OclExpressionCS.ast = Literal ExpCS.ast

[D] OclExpressionCS.ast = LetExpCS.ast

[E] OclExpressionCS.ast = OclMessageExpCS.ast
[F] OclExpressionCS.ast = IfExpCS.ast
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Inherited attributes

[A] CalExpCS.env = OclExpressionCS.env
[B] VariableExpCS.env = OclExpressionCS.env
[C] LiteralExpCS.env = OclExpressionCS.env
[D] LetExpCS.env = OclExpressionCS.env
[E] OclMessageExpCS.env. = OclExpressionCS.env
[F] IfExpCS.env = OclExpressionCS.env

Disambiguating rules

The disambiguating rules are defined in the children.

9.3.3 \VariableExpCS

A variable expression is just a name that refersto avariable.

VariableExpCS ::= smpleNameCS

Abstract syntax mapping
VariableExpCS.ast : VariableExpression

Synthesized attributes
VariableExpCS.ast.referredVariable =

env.lookup(simpleNameCS.ast).referredElement.ocl AsType(VariableDeclaration)

Inherited attributes
-- none

Disambiguating rules

[1] simpleName must be a name of avisible VariableDeclaration in the current environment

env.lookup (simpleNameCS.ast).referredElement.ocl 1 sKindOf (VariableDeclaration)

9.3.4 simpleNameCS

This production rule represents a single name. No special rules are applicable. The exact syntax of a String is undefined

in UML 1.4, and remains undefined in OCL 2.0. The reason for this is internationalization.

simpleNameCS ::= <String>

Abstract syntax mapping
simpleNameGr.ast : String

Synthesized attributes
simpleNameGr.ast = <String>

Inherited attributes
-- none

Disambiguating rules
-- hone
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9.3.5 pathNameCS

This rule represents a path name, which is held in its ast as a sequence of Strings.

pathNameCS ::= simpleNameCS (*::’ pathNameCS)?

Abstract syntax mapping
pathNameCS.ast : Sequence(String)

Synthesized attributes
pathNameCS.ast = Sequence{ simpleNameCS.ast} ->union(pathNameCS.ast)

Inherited attributes
-- none

Disambiguating rules
-- hone

9.3.6 LiteralExpCS
This rule represents literal expressions.

[A] LiteralExpCS ::= EnumL.itera ExpCS
[B] Litera ExpCS ::= CollectionLitera ExpCS
[C] Litera ExpCS ::= TupleLitera ExpCS
[D] LiteralExpCS ::= PrimitiveLitera ExpCS

Abstract syntax mapping
LiteralExpCS.ast : Literd Exp

Synthesized attributes

[A] Literal ExpCS.ast = EnumLiteral ExpCS.ast

[B] Litera ExpCS.ast = CollectionLiteral ExpCS.ast
[C] Litera ExpCS.ast = TupleLitera ExpCS.ast

[D] Litera ExpCS.ast = PrimitiveL iteral ExpCS.ast

Inherited attributes

[A] EnumLitera ExpCS.env = Litera ExpCS.env
[B] CollectionLiteral ExpCS.env = Litera ExpCS.env
[C] TupleLitera ExpCS.env = Literal ExpCS.env
[D] PrimitiveLitera ExpCS.env = Litera ExpCS.env

Disambiguating rules
-- none
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9.3.7 EnumLiteralExpCS

The rule represents Enumeration Literal expressions.
EnumLiteral ExpCS ::= pathNameCS ‘::" simpleNameCS

Abstract syntax mapping
EnumLiteral ExpCS.ast : EnumLitera Exp

Synthesized attributes

EnumLiteral ExpCS.ast.type =
env.lookupPathName (pathNameCS.ast).referredElement.ocl AsType (Classifier)

EnumLiteral ExpCS.ast.referredEnumLiteral =
EnumLiteral ExpCS.ast.type.ocl AsType (Enumeration).literal->
select (I | l.name = simpleNameCS.ast )->any(true)

Inherited attributes
-- none

Disambiguating rules
[1] The specified name must indeed reference an enumeration:

not EnumL.iteral ExpCS.ast.type.ocll sUndefined() and
EnumLiteral ExpCS.ast.type.ocl sKindOf (Enumeration)

9.3.8 CollectionLiteralExpCS

This rule represents a collection literal expression.

CollectionLitera ExpCS ::= CollectionTypel dentifierCS
‘{* CollectionLiteraPartsCS?‘}’

Abstract syntax mapping
CollectionLitera ExpCS.ast : CollectionLiteral Exp

Synthesized attributes

CollectionLitera ExpCS.ast.parts = CollectionL iteral PartsCS.ast
CollectionLitera ExpCS.ast.kind = CollectionTypeldentifierCS.ast

Inherited attributes

CollectionTypel dentifierCS.env = CollectionLiteral ExpCS.env
CollectionLiteralPartsCS.env = CollectionLiteral ExpCS.env

Disambiguating rules
[1] Inaliteral the collection type may not be Collection.

CollectionTypel dentifierCS.ast <> * Collection’
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9.3.9 CollectionTypeldentifierCS

This rule represents the type identifier in a collection literal expression. The Collection type is an abstract type on M1
level, so it has no corresponding literals.

[A] CollectionTypeldentifierCS ::= * Set’

[B] CollectionTypeldentifierCS ::= ‘Bag’

[C] CollectionTypeldentifierCS ::= * Sequence’

[D] CollectionTypeldentifierCS ::= ‘ Collection’

[E] CoallectionTypeldentifierCs ::= ‘ OrderedSet’

Abstract syntax mapping
CollectionTypeldentifierCS.ast : CollectionKind

Synthesized attributes

[A] CollectionTypeldentifierCS.ast = CollectionKind:: Set

[B] CollectionTypel dentifierCS.ast = CollectionKind::Bag

[C] CollectionTypel dentifierCS.ast = CollectionKind:: Sequence
[D] CollectionTypel dentifierCS.ast = CollectionKind::Collection
[E] CollectionTypeldentifierCS.ast = CollectionKind::OrderedSet

Inherited attributes

-- hone

Disambiguating rules

-- none

9.3.10 CollectionLiteralPartsCS

This production rule describes a sequence of items that are the contents of a collection literal.

CollectionLiteralPartsCS[1] = CollectionLiteral PartCS
(", CollectionLiteralPartsCS[2] )?

Abstract syntax mapping
CollectionLiteral PartsCS[1].ast : Sequence(CollectionLiteral Part)

Synthesized attributes

CollectionLiteral PartsCS[1].ast =
Sequence({ CollectionLiteral PartCS.ast} ->union(CollectionL iteral PartsCS[ 2] .ast)

Inherited attributes
CollectionLiteralPartCS.env = CollectionLiteral PartsCS[1].env
CollectionLiteral PartSCS[ 2] .env = CollectionLiteral PartsCS[1].env

Disambiguating rules
-- none
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9.3.11 CollectionLiteralPartCS

[A] CollectionLiteralPartCS ::= CollectionRangeCS
[B] CollectionLiteral PartCS ::= OclExpressionCS

Abstract syntax mapping
CollectionLitera PartCS.ast : CollectionLiteral Part

Synthesized attributes

[A] CollectionLiteralPartCS.ast = CollectionRange.ast
[B] CollectionLiteral PartCS.ast.ocl sKindOf (Collectionltem) and
CollectionLiteral PartCS.ast.ocl AsType(Coll ectionltem).Ocl Expression = OclExpressionCS.ast

Inherited attributes

[A] CollectionRangeCS.env = CollectionLiteral PartCS.env
[B] OclExpressionCS.env = CollectionLiteral PartCS.env

Disambiguating rules
-- none

9.3.12 CollectionRangeCS
CollectionRangeCS ::= OclExpressionCY[ 1] *,” OclExpressionCS[2]

Abstract syntax mapping
CollectionRangeCS.ast : CollectionRange

Synthesized attributes

CollectionRangeCS.ast.first = OclExpressionCS[1].ast
CollectionRangeCS.ast.last = OclExpressionCS[2].ast

Inherited attributes

OclExpressionCS[1].env = CollectionRangeCS.env
OclExpressionCS[ 2] .env = CollectionRangeCS.env

Disambiguating rules
-- none

9.3.13 PrimitiveLiteralExpCS

This includes Real, Boolean, Integer, and String literals. Especially String literals must take internationalization into
account and might need to remain undefined in this specification.

[A] PrimitiveLiteral ExpCS ::= IntegerLiteral ExpCS

[B] PrimitiveLiteral ExpCS ::= RealLiteral ExpCS

[C] PrimitiveLiteral ExpCS ::= StringLitera ExpCS

[D] PrimitiveLiteral ExpCS ::= BooleanL itera ExpCS
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Abstract syntax mapping
PrimitiveLitera ExpCS.ast : PrimitiveLitera Exp

Synthesized attributes

[A] PrimitiveLitera ExpCS.ast = IntegerLitera ExpCS.ast
[B] PrimitivelLitera ExpCS.ast = Real Litera ExpCS.ast

[C] PrimitiveLiterd ExpCS.ast = StringLiteral ExpCS.ast
[D] PrimitiveLiterad ExpCS.ast = BooleanLiteral ExpCS.ast

Inherited attributes
-- none

Disambiguating rules
-- none

9.3.14 TupleLiteralExpCS

This rule represents tuple literal expressions.

TupleLitera ExpCS ::= ‘Tuple’ ‘{* variableDeclarationListCS ‘}’

Abstract syntax mapping
TupleLitera ExpCS.ast : TupleLitera Exp

Synthesized attributes
TupleLitera ExpCS.tuplePart = variableDeclarationListCS.ast

Inherited attributes
variableDeclarationListCS[1].env = TupleLitera ExpCS.env

Disambiguating rules

[1] TheinitExpression and type of all VariableDeclarations must exist.

TupleLiteral ExpCS.tuplePart->forAll( varDecl |

varDecl.initExpression->notEmpty() and not varDecl.type.oclIsUndefined() )

9.3.15 IntegerLiteralExpCS

This rule represents integer literal expressions.

IntegerLiteral ExpCS ::= <String>

Abstract syntax mapping
IntegerLiteral ExpCS.ast : IntegerLiteral Exp

Synthesized attributes
IntegerLiteral ExpCS.ast.integerSymbol = <String>.tol nteger()
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Inherited attributes
-- none

Disambiguating rules
-- hone

9.3.16 ReallLiteralExpCS
This rule represents real literal expressions.

RealLiteral ExpCS ::= <String>

Abstract syntax mapping
RealLitera ExpCS.ast : Redl Literal Exp

Synthesized attributes
RealL iteral ExpCS.ast.real Symbol = <String>.toReal ()

Inherited attributes
-- none

Disambiguating rules
-- hone

9.3.17 StringLiteralExpCS

Thisrule represents string literal expressions.
StringLitera ExpCS ::= “<String> “

Abstract syntax mapping
StringLitera ExpCS.ast : StringLiteral Exp

Synthesized attributes
StringLitera ExpCS.ast.symbol = <String>

Inherited attributes
-- none

Disambiguating rules
-- none

9.3.18 BooleanLiteralExpCS

This rule represents boolean literal expressions.
[A] BooleanL iteral ExpCS ::= ‘true’
[B] BooleanLitera ExpCS ::= ‘false’
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Abstract syntax mapping
BooleanLitera ExpCS.ast : BooleanLiteral Exp

Synthesized attributes

[A] BooleanLiteral ExpCS.ast.booleanSymbol = true
[B] BooleanL itera ExpCS.ast.booleanSymbol = false

Inherited attributes
-- none

Disambiguating rules
-- none

9.3.19 CallExpCS

This rule represents property call expressions.
[A] CalEXpCS ::= FeatureCallExpCS
[B] CalEXpCS ::= LoopEXpCS

Abstract syntax mapping
CallExpCS.ast : CallExp

Synthesized attributes

[A] CallExpCS.ast = Model PropertyCall CS.ast
[B] CallExpCS.ast = LoopExpCS.ast

Inherited attributes

[A] ModelPropertyCallCS.env = CallExpCS.env
[B] LoopExpCS.env = CallExpCS.env

Disambiguating rules
The disambiguating rules are defined in the children.

9.3.20 LoopEXpCS

This rule represents loop expressions.
[A] LoOpEXpCS ::= IteratorExpCS
[B] LOOPEXPCS ::= IterateExpCS

Abstract syntax mapping
L oopExpCS.ast : LoopExp

Synthesized attributes

[A] LoopExpCS.ast = IteratorExpCS.ast
[B] LoopExpCS.ast = IterateExpCS.ast
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Inherited attributes

[A] IteratorExpCS.env = LoopEXpCS.env
[B] IterateExpCS.env = LOOpEXpCS.env

Disambiguating rules
-- none

9.3.21 IteratorExpCS

The first alternative is a straightforward lterator expression, with optional iterator variable. The second and third

alternatives are so-called implicit collect iterators. B is for operations and C for attributes, D for navigations, and E for

associ ationclasses.

[A] IteratorExpCS ::= OclExpressionCY[ 1] ‘->" simpleNameCS
‘(" (VariableDeclarationCS[1],
(*, VariableDeclarationCS[2])? ‘[ )?
OclExpressionCS[2]
Y
[B] IteratorExpCS ::= OclExpressionCS ‘.’ simpleNameCS * (‘ argumentsCS?')’
[C] IteratorExpCS ::= OclExpressionCS ‘. simpleNameCS
[D] IteratorExpCS ::= OclExpressionCS ‘.’ simpleNameCS
(‘[' argumentsCS ‘]")?
[E] IteratorExpCS ::= OclExpressionCS *." simpleNameCS
(‘[' argumentsCS ‘]")?

Abstract syntax mapping
IteratorExpCS.ast : IteratorExp

Synthesized attributes
-- the ast needs to be determined bit by bit, first the source association of IteratorExp
[A] IteratorExpCS.ast.source = Ocl ExpressionCS[1].ast
-- next the iterator association of IteratorExp
-- when the variable declaration is present, its ast is the iterator of thisiteratorExp
-- when the variable declaration is not present, the iterator has a default name and
-- type
-- In any case, theiterator does not have an init expression
[A] IteratorExpCS.ast.iterators->at(1).name = if VariableDeclarationCS[ 1]->isEmpty()
then ii
else VariableDeclarationCS[ 1] .ast.name
endif
[A] IteratorExpCS.ast.iterator->at(1).type =
if VariableDeclarationCS[ 1]->isEmpty() or
(VariableDeclarationCS[ 1]->notEmpty() and
VariableDeclarationCS[1].ast.type.ocl I sUndefined() )
then
OclExpressionCS[ 1] .type.ocl AsType (CollectionType).elementType
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ese
VariableDeclarationCS[1].ast.type
endif
- The optional second iterator
[A] if VariableDeclarationCS[2]->isEmpty() then
IteratorExpCS.ast.iterators->size() = 1
ese
IteratorExpCS.ast.iterators->at(2).name = VariableDeclarationCS[ 2] .ast.name
and
IteratorExpCS.ast.iterators->at(2).type =
if VariableDeclarationCS[ 2]->isEmpty() or
(VariableDeclarationCS[ 2]->notEmpty() and
VariableDeclarationCS[ 2] .ast.type.oclIsUndefined() )
then
OclExpressionCq 1] .type.ocl AsType (CollectionType).elementType
else
VariableDeclarationCS 2] .ast.type
endif
endif
[A] IteratorExpCS.ast.iterators->forAll(initExpression->isEmpty())
-- next the name attribute and body association of the IteratorExp
[A] IteratorExpCS.ast.name = simpleNameCS.ast and
[A] IteratorExpCS.ast.body = OclExpressionCY2].ast
-- Alternative B isan implicit collect of an operation over a collection
[B] IteratorExpCS.ast.iterator.type
OclExpressionCS.ast.type.ocl AsType (CollectionType).elementType
[B] IteratorExpCS.ast.source = OclExpressionCS.ast
[B] IteratorExpCS.ast.name = icollecti
[B] -- the body of the implicit collect is the operation call referred to by inamef
IteratorExpCS.ast.body.ocl I sKindOf (OperationCallExp) and
let body : OperationCallExp = IteratorExpCS.ast.body.ocl AsType(OperationCal | Exp)
in
body.arguments = argumentsCS.ast
and
body.source.ocl | sKindOf (VariableExp)
and
body.source.ocl AsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator
and
body.referredOperation =
OclExpressionCS.ast.type.oclAsType (CollectionType ).elementType
lookupOperation( simpleNameCS.ast,
if (argumentsCS->notEmpty())
then arguments.ast->collect(type)
else Sequence{} endif)
-- Alternative C/D is an implicit collect of an association or attribute over a collection
[C, D] IteratorExpCS.ast.iterator.type =
OclExpressionCS.ast.type.ocl AsType (CollectionType).elementType
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[C, D] IteratorExpCS.ast.source = OclExpressionCS.ast
[C, D] IteratorExpCS.ast.name = ‘collect’
[C] -- the body of the implicit collect is the attribute referred to by ‘ name’
let refAtt : Attribute = OclExpressionCS.ast.type.ocl AsType (CollectionType).
e ementType.lookupAttribute( ssimpleNameCS.ast),
in
IteratorExpCS.ast.body.ocl I sKindOf (AttributeCallExp) and
let body : AttributeCallExp = IteratorExpCS.ast.body.ocl AsType(AttributeCall Exp)
in
body.source.ocl I sKindOf (VariableExp)
and
body.source.ocl AsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator
and
body.referredAttribute = refAtt
[D] -- the body of the implicit collect isthe navigation call referred to by ‘name’
let refNav : AssociationEnd = OclExpressionCS.ast.type.ocl AsType (CoallectionType).
e ementType.lookupA ssoci ationEnd(simpleNameCS.ast)

IteratorExpCS.ast.body.ocl I sKindOf (AssociationEndCallExp) and
let body : AssociationEndCallExp =
IteratorExpCS.ast.body.ocl AsType(AssociationEndCall Exp)

body.source.ocl I sKindOf (VariableExp)
and
body.source.ocl AsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator
and
body.referredAssociationEnd = refNav
and
body.ast.qualifiers = argumentsCS.ast
[E] -- the body of the implicit collect is the navigation to the association class
-- referred to by inamei
let refClass: AssociationClass =
OclExpressionCS.ast.type.ocl AsType (CollectionType).
e ementType.lookupA ssoci ationClass(simpleNameCS.ast)

IteratorExpCS.ast.body.ocl I sKindOf (AssociationClassCallExp) and
let body : AssociationClassCallExp =
IteratorExpCS.ast.body.ocl AsType(AssociationClassCall Exp)

body.source.ocl I sKindOf (VariableExp)

and

body.source.ocl AsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator
and

body.referredAssociationClass = refNav

and

body.ast.qualifiers = argumentsCS.ast
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Inherited attributes
[A] OclExpressionCY[1].env = IteratorExpCS.env
[A] VariableDeclarationCS.env = IteratorExpCS.env
-- inside an iterator expression the body is evaluated with a new environment that
-- includes the iterator variable.
[A] OclExpressionCS[2].env =
IteratorExpCS.env.nestedEnvironment().addElement(VariableDecl arationCS.ast.varName,
VariableDeclarationCS.ast,

true)
[B] OclExpressionCS.env = IteratorExpCS.env
[B] argumentsCS.env = IteratorExpCS.env

[C] OclExpressionCS.env = IteratorExpCS.env
[D] OclExpressionCS.env = IteratorExpCS.env

Disambiguating rules

[1] [A] When the variable declaration is present, it may not have an init expression.
VariableDeclarationCS->notEmpty() implies
VariableDeclarationCS.ast.initExpression->isEmpty/()

[2] [B] The source must be of acollection type.
OclExpressionCS.ast.type.ocl sKindOf (CollectionType)

[3] [C] The source must be of acollection type.
OclExpressionCS.ast.type.ocl sKindOf (CollectionType)

[4] [C] Thereferred attribute must be present.
refAtt->notEmpty()

[5] [D] Thereferred navigation must be present.
refNav->notEmpty()

9.3.22 IterateExpCS

IterateEXpCS ::= OclExpressionCS[1] ‘->' ‘iterate’
‘(* (VariableDeclarationCS[1] *;’)?
VariableDeclarationCS[2] ‘|
OclExpressionCg[2]
'y

Abstract syntax mapping
IterateExpCS.ast : IterateExp

Synthesized attributes
-- the ast needs to be determined hit by bit, first the source association of IterateExp
IterateExpCS.ast.source = OclExpressionCS[1].ast
-- next the iterator association of IterateExp
-- when the first variable declaration is present, its ast is the iterator of this
-- iterateExp, when the variable declaration is not present, the iterator has a default
-- name and type,

76 Object Constraint Language, v2.2



-- inany case, the iterator has an empty init expression.
IterateExpCS.ast.iterator.name = if VariableDeclarationCS1]->isEmpty() then *’
else VariableDeclarationCS[ 1] .ast.name
endif
IterateExpCS.ast.iterator.type =
if VariableDeclarationCS[ 1]->isEmpty() or
(VariableDeclarationCS[ 1]->notEmpty() and
VariableDeclarationCS[1].ast.type.oclIsUndefined() )
then
OclExpressionCS[ 1] .type.ocl AsType (CollectionType).element Type
else
VariableDeclarationCS[1].ast.type
endif
IterateExpCS.ast.iterator.initExpression->isEmpty()
-- next the name attribute and body and result association of the IterateExp
IterateExpCS.ast.result = VariableDeclarationCS[2].ast
IterateExpCS.ast.name = ‘iterate’
IterateEXpCS.ast.body = OclExpressionCS[2].ast

Inherited attributes

OclExpressionCS[1].env = lteratorExpCS.env

VariableDeclarationCS[1].env = IteratorExpCS.env

VariableDeclarationCS[2].env = IteratorExpCS.env

-- Inside an iterate expression the body is evaluated with a new environment that includes

-- the iterator variable and the result variable.

OclExpressionCS[2].env = =

IteratorExpCS.env.nestedEnvironment().addElement

(VariableDeclarationCS[1].ast.varName,
VariableDeclarationCS[1].ast,
true).addElement
(VariableDeclarationCS[2].ast.varName,
VariableDeclarationCS[2].ast,
true)

Disambiguating rules
[1] A result variable declaration must have atype and aninitia value
not VariableDeclarationCS[ 2] .ast.type.ocll sUndefined() VariableDeclarationCS| 2] .ast.initExpressi on->notEmpty/()

[2] When thefirst variable declaration is present, it may not have an init expression.
VariableDeclarationCS[1]->notEmpty() implies
VariableDeclarationCS[1].ast.initExpression->isEmpty()
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9.3.23 VariableDeclarationCS

In the variable declaration, the type and init expression are optional. When these are required, thisis defined in the
production rule where the variable declaration is used.

VariableDeclarationCS ::= simpleNameCS (‘" typeCS)?
‘=" OclExpressionCS )?

Abstract syntax mapping
VariableDeclarationCS.ast : VariableDeclaration

Synthesized attributes
VariableDeclarationCS.ast.name = simpleNameCS.ast
VariableDeclarationCS.ast.initExpression = OclExpressionCS.ast
-- A well-formed VariableDeclaration must have a type according to the abstract syntax.
-- The value OclUndefined is used when no type has been given in the concrete syntax.
-- Production rules that use this need to check on this type.
VariableDeclarationCS.ast.type = if typeCS->notEmpty() then
typeCS.ast

else

OclUndefined

endif

Inherited attributes
OclExpressionCS.env = VariableDeclarationCS.env
typeCS.env = VariableDeclarationCS.env

Disambiguating rules
-- hone

9.3.24 TypeCS

A typename is either a Classifier, or a collection of some type.
[A] typeCS ::= pathNameCS

[B] typeCS ::= collectionTypeCS

[C] typeCS ::= tupleTypeCS

Abstract syntax mapping
typeCS.ast : Classifier

Synthesized attributes

[A] typeCS.ast = typeCS.env.lookupPathName(pathNameCS.ast).referredElement.ocl AsType(Classifier)
[B] typeCS.ast = CollectionTypeCS.ast
[C] typeCS.ast = tupleTypeCS.ast
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Inherited attributes

[B] collectionTypeCS.env = typeCS.env
[C] tupleTypeCS.env  =typeCS.env

Disambiguating rules

[1] [A] pathName must be a name of a Classifier in current environment.
typeCS.env.lookupPathName(pathNameCS.ast).referredEl ement.ocl | SKindOf (Classifier)

9.3.25 collectionTypeCS

A typename is either a Classifier, or a collection of some type.
collectionTypeCS ::= collectionTypeldentifierCS * (* typeCS ')’

Abstract syntax mapping
typeCS.ast : CollectionType

Synthesized attributes
collectionTypeCS.ast.elementType = typeCS.ast
-- We know that the ‘ast’ is acollectiontype, all we need to state now iswhich
-- gpecific collection typeit is.
kind = CollectionKind::Set implies collectionTypeCS.ast.oclsKindOf (SetType)
kind = CollectionKind::Sequence implies collectionTypeCS.ast.ocllsKindOf (SequenceType)
kind = CollectionKind::Bag implies collectionTypeCS.ast.oclIsKindOf (BagType)
kind = CollectionKind::Collection implies collectionTypeCS.ast.ocl I sKindOf (CollectionType)
kind = CollectionKind::OrderedSetimplies collectionTypeCS.ast.ocl I sSKindOf (OrderedSetType)

Inherited attributes
typeCS.env = collectionTypeCS.env

Disambiguating rules
-- hone

9.3.26 tupleTypeCS

This represents a tuple type declaration.
tupleTypeCS ::= ‘Tuple’ ‘(* variableDeclarationListCS? ‘)’

Abstract syntax mapping
typeCS.ast : TupleType

Synthesized attributes
typeCS.ast = TupleType::make( variableDeclarationListCS->collect( v | v.asAttribute() ))

Inherited attributes
variableDeclarationListCS.env = tupleTypeCS.env
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Disambiguating rules

[1] Of al VariableDeclarations the initExpression must be empty and the type must exist.
variableDeclarationListCS.ast->forAll( varDecl |
varDecl.initExpression->notEmpty() and varDecl.type->notEmpty() )

9.3.27 variableDeclarationListCS
This production rule represents the formal parameters of a tuple or attribute definition.

variableDeclarationListCS[1] = VariableDeclarationCS
() variableDeclarationListCS[2] )?

Abstract syntax mapping
variableDeclarationListC[1].ast : Sequence( VariableDeclaration )

Synthesized attributes
variableDeclarationListCS[1].ast = Sequence{ VariableDeclarationCS.ast}
->union(variableDeclarationListCS[ 2] .ast)

Inherited attributes
VariableDeclarationCS.env = variableDeclarationListCS[1].env
variableDeclarationListCS[2].env = variableDeclarationListCS[1].env

Disambiguating rules
-- none

9.3.28 FeatureCallExpCS

A FeatureCallExp expression may have three different productions. Which one is chosen depends on the disambiguating
rules defined in each of the alternatives.

[A] FeatureCallExpCS ::= OperationCallExpCS

[B] FeatureCallExpCS ::= PropertyCallExpCS

[C] FeatureCallExpCS ::= NavigationCal|[ExpCS

Abstract syntax mapping
FeatureCallExpCS.ast : FeatureCallExp

Synthesized attributes
The value of this production is the value of its child production.

[A] FeatureCallExpCS.ast = OperationCall ExpCS.ast
[B] FeatureCallExpCS.ast = PropertyCall ExpCS.ast
[C] FeatureCallExpCS.ast = NavigationCal|ExpCS.ast

Inherited attributes

[A] OperationCalExpCS.env = FeatureCallExpCS.env
[B] PropertyCallExpCS.env = FeatureCallExpCS.env
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[C] NavigationCallExpCS.env = FeatureCal| ExpCS.env

Disambiguating rules
These are defined in the children.

9.3.29 OperationCallExpCS

An operation call has many different forms. A is used for infix, B for using an object as an implicit collection. C isa
straightforward operation call, while D has an implicit source expression. E, F and J are like C, D, and I, with the @pre
addition. G covers the static operation call. Rule H is for unary prefix expressions. | and J use pathNameCS to permit
qualification of operation names in access to redefined operations.

[A] OperationCall ExpCS ::= OclExpressionCS[1] simpleNameCS Ocl ExpressionCS[2]

[B] OperationCallEXpCS ::= OclExpressionCS ‘->' simpleNameCS ‘(' argumentsCS? ‘)’

[C] OperationCallExpCS ::= OclExpressionCS ‘" simpleNameCS ‘ (* argumentsCS? ‘)’

[D] OperationCall ExpCS ::= simpleNameCS ‘(* argumentsCS? ")’

[E] OperationCallExpCS ::= OclExpressionCS‘." simpleNameCS isMarkedPreCS ‘ (* argumentsCS? ‘)’

[F] OperationCallExpCS ::= simpleNameCS isMarkedPreCS ‘ (* argumentsCS? ‘)’

[G] OperationCallExpCS ::= pathNameCS ‘(* argumentsCS? ‘)’

[H] OperationCall ExpCS ::= simpleNameCS OclExpressionCS

[1] OperationCallExpCS ::= OclExpressionCS "' pathNameCS ":;' smpleNameCS ‘(' argumentsCS? ")’

[J] OperationCallExpCS ::= OclExpressionCS".' pathNameCS "::' simpleNameCS isMarkedPreCS'(* argumentsCS? ")’

Abstract syntax mapping
OperationCallExpCS.ast : OperationCallExp

Synthesized attributes
-- thisruleisfor binary operatorsas‘+,” ‘-, ‘*, etc. It has only one argument.
[A] OperationCallExpCS.ast.arguments = Sequence{ OclExpression2[2].ast}
OperationCallExpCS.ast.source = OclExpressionCS[1].ast
OperationCall ExpCS.ast.referredOperation =
OclExpressionCS.ast.type.lookupOperation (
simpleNameCS.ast,
Sequence{ OclExpression[2].ast.type} )
-- The sourceis either a collection or asingle object used as a collection.
[B] OperationCall ExpCS.ast.arguments = argumentsCS.ast
-- if the OclExpressionCS is a collectiontype, then the source is this OclExpressionCS.
-- Otherwise, the source must be build up by defining a singleton set containing
-- the OclExpressionCS. This is done though inserting a call to the standard
-- operation "asSet()"
OperationCall ExpCS.ast.source =
if OclExpressionCS.ast.type.ocllsKindOf(CollectionType)
then OclExpressionCS.ast
else OclExpressionCS.ast.withAsSet()
endif
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---- The referred operation:
OperationCall ExpCS.ast.referredOperation =
if OclExpressionCS.ast.type.oclIsKindOf (CollectionType)
then -- thisisacollection operation called on a collection
OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,
if (argumentsCS->notEmpty())
then argumentsCS.ast->collect(type)
else Sequence{} endif )
else
-- thisis a set operation called on an object => implicit Set with one element
SetType.allnstances()->any (st |
st.elementType = Ocl ExpressionCS.ast.type).lookupOperation (
simpleNameCS.ast,
if (argumentsCS->notEmpty())
then argumentsCS.ast->collect(type)
else Sequence{} endif )
endif
[C] OperationCallExpCS.ast.referredOperation =
OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
OperationCall ExpCS.ast.arguments = argumentsCS.ast
OperationCall ExpCS.ast.source = OclExpressionCS.ast
[D] OperationCallExpCS.ast.arguments = argumentsCS.ast and
OperationCall ExpCS.ast.referredOperation =
env.lookupl mplicitOperation(simpleName.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
OperationCall ExpCS.ast.source = env.lookupl mplicitSourceForOperation(
simpleName.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
[E] -- incorporate the isPre() operation.
OperationCall ExpCS.ast.referredOperation =
OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
OperationCall ExpCS.ast.arguments = argumentsCS.ast
OperationCall ExpCS.ast.source = OclExpressionCS.ast.isPre = true
[F] -- incorporate atPre() operation with the implicit source
OperationCall ExpCS.ast.arguments = argumentsCS.ast and
OperationCall ExpCS.ast.referredOperation =
env.lookupl mplicitOperation(simpleName.ast,
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if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence(} endif)
)
OperationCallExpCS.ast.source =
env.lookupl mplicitSourceForOperation(simpleName.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
).isPre = true
[G] OperationCallExpCS.ast.arguments = argumentsCS.ast and
OperationCall ExpCS.ast.referredOperation =
env.lookupPathName(pathName.ast,
e{} endif)
OperationCall ExpCS.ast.source->isEmpty()
-- thisruleisfor unary operatorsas ‘-’ and ‘not’ etc. It has no argument.
[H] OperationCallExpCS.ast.arguments->isEmpty()
OperationCallExpCS.ast.source = OclExpressionCS.ast
OperationCall ExpCS.ast.referredOperation =
OclExpressionCS.ast.type.lookupOperation (
simpleNameCS.ast,
Sequence(} )
[I] let owner : Classifier = pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.ocl AsType(Classifier) in
OperationCall ExpCS.ast.referredOperation =
owner.lookupOperation (simpleNameCS.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
OperationCall ExpCS.ast.arguments = argumentsCS.ast
OperationCall ExpCS.ast.source = OclExpressionCS.ast
[J] -- incorporate the isPre() operation.
let owner : Classifier =
pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.ocl AsType(Classifier)
in OperationCallExpCS.ast.referredOperation =
owner.lookupOperation (simpleNameCS.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
OperationCall ExpCS.ast.arguments = argumentsCS.ast
OperationCall ExpCS.ast.source = OclExpressionCS.ast.isPre = true

Inherited attributes
[A] OclExpressionCq 1].env= OperationCal|ExpCS.env
[A] OclExpressionCS[2].env= OperationCal| ExpCS.env
[B] OclExpressionCS.env= OperationCal| ExpCS.env
[B] argumentsCS.env = OperationCallExpCS.env

Object Constraint Language, v2.2

83



[C] OclExpressionCS.env= OperationCallExpCS.env
[C] argumentsCS.env = OperationCallExpCS.env
[D] argumentsCS.env = OperationCallExpCS.env
[E] OclExpressionCS.env= OperationCall ExpCS.env
[E] argumentsCS.env = OperationCallExpCS.env
[F] argumentsCS.env = OperationCallExpCS.env
[I] OclExpressionCS.env= OperationCall ExpCS.env
[I] argumentsCS.env = OperationCallExpCS.env

[J] OclExpressionCS.env= OperationCallExpCS.env
[J] argumentsCS.env = OperationCall ExpCS.env

Disambiguating rules

[1] [A] The name of the referred Operation must be an operator
Set{*+ - *" ) and’ or' ' xor' =" <=" ' >=" "<’ ">"}->includes(simpleNameCS.ast)
[2] [A,B,C,D,E,F] The referred Operation must be defined for the type of source
not OperationCallExpCS.ast.referredOperation.ocl I sUndefined()
[3] [C] The name of the referred Operation cannot be an operator.
Set{‘+' -, *" )/ and’ or' ' xor’ =" <=" ' >=" < > ->excludes(simpleNameCS.ast)
[4] [1,J] pathNameCS must be a name of a Classifier in current environment.
OperationCall ExpCS.env.lookupPathName(pathNameCS.ast).referredEl ement.ocl | sKindOf (Cl assifier)

[5] [1,J] The type of the source expression must conform to the owner type of the referenced operation
let owner : Classifier = pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.ocl AsType(Classifier) in
OclExpressionCS.ast.type.conformsTo(owner)

9.3.30 PropertyCallExpCS

This production rule results in a PropertyCallExp. In production [A] the source is explicit, while production [B] is used
for an implicit source. Alternative C covers the use of a static attribute. Alternative D uses pathNameCS to permit
qualification of attribute names in access to redefined attributes.

[A] PropertyCallExpCS ::= OclExpressionCS ‘. simpleNameCS isMarkedPreCS?

[B] PropertyCallExpCS ::= simpleNameCS isMarkedPreCS?

[C] PropertyCallExpCS ::= pathNameCS

[D] PropertyCallExpCS ::= OclExpressionCS "' pathNameCS "::' simpleNameCS isMarkedPreCS?

Abstract syntax mapping
PropertyCallExpCS.ast : PropertyCallExp

Synthesized attributes
[A] PropertyCallExpCS.ast.referredAttribute =
OclExpressionCS.ast.type.lookupAttribute(simpleNameCS.ast)
[A] PropertyCallExpCS.ast.source = if isMarkedPreCS->isEmpty()
then OclExpressionCS.ast
else OclExpressionCS.ast.isPre = true
endif
[B] PropertyCallExpCS.ast.referredAttribute =
env.lookupl mplicitAttribute(simpleNameCS.ast)
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[B] PropertyCallExpCS.ast.source =

if isMarkedPreCS->isEmpty()

then env.findlmplicitSourceForAttribute(simpleNameCS.ast)

e se env.findlmplicitSourceForAttribute(simpleNameCS.ast).isPre = true
endif

[C] PropertyCallExpCS.ast.referredAttribute =

[D] let owner : Classifier = pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.ocl AsType(Classifier) in

env.lookupPathName(pathNameCS.ast).ocl AsType(Attribute)

PropertyCallExpCS.ast.referredAttribute = owner.lookupAttribute(simpleNameCS.ast)
[D] PropertyCallExpCS.ast.source = if isMarkedPreCS->isEmpty()
then OclExpressionCS.ast
else OclExpressionCS.ast.isPre = true endif

Inherited attributes

[A] OclExpressionCS.env = PropertyCall ExpCS.env
[D] OclExpressionCS.env = PropertyCall ExpCS.env

Disambiguating rules

[1] [A, B] ‘ssmpleName’ is name of an Property of the type of source or if source is empty the name of an attribute of ‘self’ or
any of theiterator variablesin (nested) scope. In OCL.:
not PropertyCallExpCS.ast.referredAttribute.ocl 1 sUndefined()

[2] [C] The pathName refersto a class attribute.
env.lookupPathName(pathNameCS.ast).ocl | sSKindOf (Attribute)

and

PropertyCallExpCS.ast.referredAttribute.ownerscope = ScopeKind::instance

[3] [D] pathNameCS must be a name of a Classifier in current environment.

PropertyCallExpCS.env.lookupPathName(pathNameCS.ast).referredEl ement.ocl | sKindOf (Cl assifier)

[4] [D] The type of the source expression must conform to the owner type of the referenced attribute
let owner : Classifier = pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.ocl AsType(Classifier) in

OclExpressionCS.ast.type.conformsTo(owner)

9.3.31 NavigationCallExpCS

This production rule represents a navigation call expression.

[A] NavigationCallExpCS ::= PropertyCallExpCS
[B] NavigationCallExpCS ::= AssociationClassCallExpCS

Abstract syntax mapping

NavigationCallExpCS.ast : NavigationCallExp

Synthesized attributes

The value of this production is the value of its child production.

[A] NavigationCallExpCS.ast = PropertyCall ExpCS.ast
[B] NavigationCallExpCS.ast = AssociationClassCall ExpCS.ast
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Inherited attributes

[A] PropertyCallExpCS.env = NavigationCallExpCS.env
[B] AssociationClassCallExpCS.env = NavigationCallExpCS.env

Disambiguating rules
These are defined in the children.

9.3.32 AssociationClassCallExpCS
This production rule represents a navigation to an association class.

[A] AssociationClassCallExpCS ::= OclExpressionCS *." simpleNameCS (‘[* argumentsCS ‘]’)? isMarkedPreCS?
[B] AssaciationClassCallExpCS ::= simpleNameCS (‘[* argumentsCS ‘]’)? isMarkedPreCS?

Abstract syntax mapping
AssociationClassCallExpCS.ast : AssociationClassCallExp

Synthesized attributes
[A] AssociationClassCallExpCS.ast.referredAssociationClass =
OclExpressionCS.ast.type.lookupA ssociationClass(simpleNameCS.ast)
AssociationClassCall ExpCS.ast.source = if isMarkedPreCS->isEmpty()
then OclExpressionCS.ast
else OclExpressionCS.ast.isPre = true
endif
[A] AssociationClassCall ExpCS.ast.qudifiers = argumentsCS.ast
[B] AssociationClassCall ExpCS.ast.referredAssociationClass =
env.lookupl mplicitAssociationClass(simpleNameCS.ast)
AssociationClassCall ExpCS.ast.source =
if isMarkedPreCS->isEmpty()
then env.findlmplicitSourceForA ssociationClass(simpleNameCS.ast)
el se env.findlmplicitSourceForA ssociationClass(simpleNameCS.ast).isPre = true
endif
[B] AssociationClassCall ExpCS.ast.qualifiers = argumentsCS.ast

Inherited attributes
[A] OclExpressionCS.env = AssociationClassCal|ExpCS.env
[A, B] argumentsCS.env = AssociationClassCall ExpCS.env

Disambiguating rules
[1] ‘simpleName’ is name of an AssociationClass of the type of source.
not AssociationClassCal | ExpCS.ast.referredAssoci ationClass.ocl | sUndefined()

9.3.33 isMarkedPreCS
This production rule represents the marking @pre in an ocl expression.

isMarkedPreCS ::= ‘@’ ‘pre’
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Abstract syntax mapping
isMarkedPreCS.ast : Boolean

Synthesized attributes
self.ast = true

Inherited attributes
-- none

Disambiguating rules
-- none

9.3.34 argumentsCS
This production rule represents a sequence of arguments.
argumentsCS[1] ::= OclExpressionCS ( ‘,” argumentsCY[2] )?

Abstract syntax mapping
argumentsCY[ 1] .ast : Sequence(Ocl Expression)

Synthesized attributes
argumentsCY[ 1] .ast = Sequence{ Ocl ExpressionCS.ast} ->union(argumentsCS| 2] .ast)

Inherited attributes
OclExpressionCS.env = argumentsCS[ 1].env
argumentsCY[2].env = argumentsCS[1].env

Disambiguating rules
-- hone

9.3.35 LetExpCS

This production rule represents a let expression. The LetExpSubCS nonterminal has the purpose of allowing directly
nested let expressions with the shorthand syntax, i.e., ending with one ‘in’ keyword.

LetExpCS ::= ‘let’ VariableDeclarationCS
L etExpSubCS

Abstract syntax mapping
LetExpCS.ast : LetExp

Synthesized attributes

LetExpCS.ast.variable = VariableDeclarationCS.ast
LetExpCS.ast.in = LetExpSubCS.ast
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Inherited attributes
LetExpSubCS.env = LetExpCS.env.nestedEnvironment().addEl ement(
VariableDeclarationCS.ast.varName,
VariableDeclarationCS.ast,
false)

Disambiguating rules
[1] The variable name must be unique in the current scope
LetExpCS.env.lookup (VariableDeclarationCS.ast.varName).ocl | sUndefined()

[2] A variable declaration inside alet must have a declared type and an initia value.
not VariableDeclarationCS.ast.type.oclI sUndefined() and
VariableDeclarationCS.ast.initExpression->notEmpty()

9.3.36 LetExpSubCS
[A] LetExpSubCS[1] ::="*," VariableDeclarationCS L etExpSubCS[ 2]
[B] L&tExpSubCS ::=‘in" OclExpressionCS

Abstract syntax mapping
LetExpSubCS.ast : OclExpression

Synthesized attributes
[A] LetExpSubCS[1].ast.oclAsType(LetExp).variable = VariableDeclarationCS.ast
[A] LetExpSubCS[1].ast.ocl AsType(LetExp).OCIExpression = LetExpSubCS[2].ast
[B] LetExpSubCS.ast = OclExpressionCS.ast

Inherited attributes
[A] VariableDeclarationCS.env = LetExpSubCS[1].env
[A] LetExpSubCS[2].env = LetExpSubCS[1].env.nestedEnvironment().addElement(
VariableDeclarationCS.ast.varName,
VariableDeclarationCS.ast,
false)
[B] OCIExpressionCS.env = LetExpSubCS.env

Disambiguating rules

[A] The variable name must be unique in the current scope.
LetExpSubCS[ 1].env.lookup (VariableDeclarationCS.ast.varName).ocl | sUndefined()

[A] A variable declaration inside a let must have a declared type and an initial value.
not VariableDeclarationCS.ast.type.ocll sUndefined() and
VariableDeclarationCS.ast.initExpression->notEmpty()

9.3.37 OclMessageExpCS

The message Name must either be the name of a Signal, or the name of an Operation belonging to the target object(s).
[A] OclMessageExpCS ::= OclExpressionCS ‘M simpleNameCS * (* OclMessageArgumentsCS? ‘)’
[B] OcIMessageEXpCS ::= OclExpressionCS ‘~  simpleNameCS ‘(' OclMessageArgumentsCS?*)’
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Abstract syntax mapping
[A] OclMessageExpCS.ast : OclMessageExp
[B] OclMessageExpCS.ast : OclMessageExp

Synthesized attributes
[A] OclMessageExpCS.ast.target = OclExpressionCS.ast
[A] OclM essageExpCS.ast.arguments = Ocl M essageA rgumentsCS.ast
-- first, find the sequence of types of the operation/signal parameters
[A] let params : Sequence(Classifier) = OclMessageArguments.ast->collect(messArg |
messArg.getType() ),
-- try to find either the called operation or the sent signal
[A] operation : Operation = OclM essageExpCS.ast.target.type.
|ookupOperation(simpleNameCS.ast, params),
signa : Signal = OclMessageExpCS.ast.target.type.
lookupSignal (simpleNameCS.ast, params)
in
OclMessageExpCS.ast.calledOperation = if operation->isEmpty/()
then OclUndefined
else = operation
endif
OclMessageExpCS.ast.sentSignal = if signal->isEmpty()
then OclUndefined
else signal
endif
(B
-- OclExpressionsimpleNameCS(Ocl MessageArguments) is identical to
-- OclExpression™simpleNameCS(OclM essageArguments)->size() = 1
-- actua mapping: straigthforward, TBD...

Inherited attributes
OclExpressionCS.env = OclM essageExpCS.env
OclMessageArgumentsCS.env = OclM essageExpCS.env

Disambiguating rules
-- hone

9.3.38 OclMessageArgumentsCS
OclMessageArgumentsCS[1] ::= OclMessageArgCS
(*, OclMessageArgumentsCS[2] )?

Abstract syntax mapping
OclMessageArgumentsCS[1].ast : Sequence(OclM essageArg)

Synthesized attributes

OclMessageArgumentsCY[1].ast =
Sequence{ OclM essageArgCS.ast} ->union(Ocl M essageArgumentsCS[ 2] .ast)
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Inherited attributes

OclMessageArgCS.env = OclMessageArgumentsCS[1].env
OclMessageArgumentsCS[2].env = OclM essageA rgumentsCS[ 1].env

Disambiguating rules
-- hone

9.3.39 OclMessageArgCsS
[A] OclMessageArgCS ::=*'? (‘' typeCS)?
[B] OcIMessageArgCsS ::= Ocl ExpressionCS

Abstract syntax mapping
OclMessageArgCS.ast : OclMessageArg

Synthesized attributes
[A] OclMessageArgCS.ast.expression->isEmpty()
[A] OclMessageArgCS.ast.unspecified->notEmpty/()
[A] OclMessageArgCS.ast.type = typeCS.ast
[B] OclMessageArgCS.ast.unspecified->isEmpty/()

[B] OclMessageArgCS.ast.expression = OclExpressionCS.ast

Inherited attributes
OclExpressionCS.env = OclMessageArgCS.env

Disambiguating rules
-- hone

9.3.40 IfExpCS

IfEXpCS ::= ‘if’ OclExpression[1]
‘then’ OclExpression[2]
‘else’ OclExpression[3]
‘endif’

Abstract syntax mapping
IfExpCS.ast : IfExp

Synthesized attributes
IfExpCS.ast.condition = OclExpression[1].ast
IfExpCS.ast.thenExpression = Ocl Expression[ 2] .ast
IfEXpCS.ast.el seExpression = OclExpression[ 3] .ast

Inherited attributes
OclExpression[1].env = IfExpCS.env
OclExpression[2].env = IfExpCS.env
OclExpression[3].env = IfExpCS.env
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Disambiguating rules
-- hone

9.3.41 NullLiteralExpCS
This production rule results in a NullLiteral Exp.

[A] NullLitera ExpCS ::= 'null’

Abstract syntax mapping
NullLitera ExpCS.ast : NullLiteral Exp

Synthesized attributes
-- hone

Inherited attributes

-- hone

Disambiguating rules

-- none

9.3.42 InvalidLiteralExpCS
This production rule results in an InvalidLiteral Exp.

[A] InvalidLiteral ExpCS ::= "invaid'

Abstract syntax mapping
InvalidLitera ExpCS.ast : InvalidLiteral Exp

Synthesized attributes
-- none

Inherited attributes
-- none

Disambiguating rules
-- none

9.3.43 Comments

It is possible to include comments anywhere in a text composed according to the above concrete syntax. There will be no
mapping of any comments to the abstract syntax. Comments are simply skipped when the text is being parsed. There are
two forms of comments, a line comment, and a paragraph comment. The line comment starts with the string ‘--* and ends
with the next newline. The paragraph comment starts with the string ‘/*’ and ends with the string ‘*/.” Paragraph

comments may be nested.
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9.3.44 Operator Precedence
In the grammar, the precedence of the operators from highest to lowest is as follows:
. @pre
» Mmessage-expression operators. "M and "M
« dot and arrow operations: “.” and “->"
« unary “not” and unary “-"
- “*7and"/”
« “+” and binary “-”
 “if-then-else-endif”

o <n “ >u, “ <:n’ u>:n

o U H?
« “and”

« “or

« “xor”

« “implies’

Parentheses ‘(" and ‘)’ can be used to change precedence.

9.4 Environment Definition

The Environment type used in the rules for the concrete syntax is defined according to the following invariants and
additional operations. A diagrammatic view can be found in Figure 9.1. Environments can be nested, denoted by the
existence of a parent environment. Each environment keeps a list of named elements, that have a name a reference to a
Model Element.

9.4.1 Environment

The definition of Environment has the following invariants and specifications of its operations.
[1] Theattribute EMPTY_ENV isreadly just a helper to avoid having to say new Environment (...).

context Environment
inv EMPTY_ENV_Déefinition: EMPTY_ENV.namedElements->isEmpty/()

[2] Find anamed element in the current environment, not in its parents, based on a single name.

context Environment::lookupL ocal(name : String) : NamedElement
post: result = namedElements->any(v | v.name = name)

[3] Find anamed element in the current environment or recursively in its parent environment, based on a single name.

context Environment::lookup(name: String) : Model Element
post: result = if not lookupL ocal (hame).ocllsUndefined() then
lookupL ocal (name).referredElement
else
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parent.lookup(name)
endif

[4] Find anamed element in the current environment or recursively in its parent environment, based on a path name.

context Environment::lookupPathName(names: Sequence(String)) : M odel Element
post: let firstNamespace : Model Element = lookupL ocal ( names->first() ).referredElement
in
if firstNamespace.isOclKind(Namespace)
-- indicates a sub namespace of the namespace in which self is present
then
result = self.nestedEnvironment().addNamespace(
firstNamespace ).lookupPathName( names->tail() )
ese
-- search in surrounding namespace
result = parent.lookupPathName( names)
endif

[5] Addanew named element to the environment. Note that this operation is defined as a query operation so that it can be
used in OCL constraints.

context Environment::addElement (name : String,
elem : ModelElement, imp : Boolean) : Environment
pre : -- the name must not clash with names already existing in this environment
self.lookupL ocal (name).ocl I sUndefined()
post: result.parent = self.parent and
result.namedElements->includesAll (self.namedElements) and
result.namedElements->count (v | v.oclIsNew()) = 1 and
result.namedElements->forAll (v | v.ocllsNew() implies
v.name = name and v.referredElement = elem)
and
v.mayBelmplicit=imp)

[6] Combine two environments resulting in a new environment. Note that this operation is defined as a query operation so
that it can be used in OCL constraints.

context Environment::addEnvironment(env : Environment) : Environment
pre : -- the names must not clash with names already existing in this environment
enf.namedElements->forAll(nm | self.lookupLocal (nm).ocllsUndefined() )
post: result.parent = self.parent and
result.namedEl ements = self.namedElements->union(env.namedEl ements)

[7] Addal elementsin the namespace to the environment.

context Environment::addNamespace(ns: Namespace) : Environment

post: result.namedElements = ns.getEnvironmentWithoutParents().namedEl ements->union(
self.namedElements)

post: result.parent = self.parent

[8] This operation resultsin anew environment that has the current one as its parent.

context Environment::nestedEnvironment() : Environment
post: result.namedElements->iSEmpty()

post: result.parent = self

post: result.ocllsNew()

[9] Lookup agiven attribute name of an implicitly named element in the current environment, including its parents.
context Environment::lookupl mplicitAttribute(name: String) : Attribute
pre: -- none
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post: result =
lookuplmplicitSourceForAttribute(name).referredEl ement.ocl AsType(Attribute)

[10] Lookup the implicit source belonging to a given attribute name in the current environment, including the parents.

context Environment::lookupl mplicitSourceForAttribute(name: String) : NamedElement
pre: -- none
post: let foundElement : NamedElement =
namedElements->sel ect(mayBel mplicit)
->any( ne | not ne.getType().lookupAttribute(name).oclIsUndefined() ) in
result = if foundAttribute.ocllsUndefined() then
self.parent.lookuplmplicitSource ForAttribute(name)

ese
foundElement
end

[11] Lookup agiven association end name of an implicitly named element in the current environment, including its parents.

context Environment::lookupl mplicitAssociationEnd(name: String) : AssociationEnd
pre: -- none
post: let foundAssociationEnd : AssociationEnd =
namedElements->sel ect(mayBelmplicit)
->any( ne | not ne.getType().lookupA ssociationEnd(name).ocllsUndefined() ) in
result = if foundA ssociationEnd.oclIsUndefined() then
self.parent.lookupl mplicitAssociationEnd(name)
else
foundAssociationEnd
end

[12] Lookup an operation of an implicitly named element with given name and parameter typesin the current environment,
including its parents.

context Environment::lookupl mplicitOperation(name: String,
params : Sequence(Classifier)) : Operation
pre: -- none
post: let foundOperation : Operation =
namedElements->sel ect(mayBelmplicit)
->any( ne | not ne.getType().lookupOperation(name, params).oclisUndefined() ) in
result = if foundOperation.ocllsUndefined() then
self.parent.lookupl mplicitOperation(name)
ese
foundOperation
end

9.4.2 NamedElement

A named element is a modelelement that is referred to by a name. A modelelement itself has a name, but this is not
always the name that is used to refer to it.

The operation getType() returns the type of the referred modelelement.

context NamedElement::getType() : Classifier
pre: -- none
post: referredElement.ocl I sKindOf (VariableDeclaration) implies
result = referredElement.ocl AsType(VariableDeclaration).type
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post: referredElement.ocl sKindOf(Classifier) implies
result = referredElement
post: referredElement.oclIsKindOf (State) implies
result = -- TBD: when aligning with UML 2.0 Infrastructure

9.4.3 Namespace

The following additional operation returns the information of the contents of the namespace in the form of an
Environment object, where Environment is the class defined in this clause. Note that the parent association of
Environment is not filled.

Because the definition of this operation is completely dependent on the UML metamodel, and this model will be
considerably different in the 2.0 version, the definition is left to be done.

context Namespace::getEnvironmentWithoutParents() : Environment

post: self.isTypeOf(Classifier) implies-- TBD when aligning with UML 2.0 Infrastructure
-- include all class features and contained classifiers

post: self.isTypeOf(Package) implies-- TBD when aligning with UML 2.0 Infrastructure
-- include all classifiers and subpackages

post: self.isTypeOf(StateMachine) implies -- TBD when aligning with UML 2.0 Infrastructure
-- include all states

post: self.isTypeOf(Subsystem) implies-- TBD when aigning with UML 2.0 Infrastructure
-- include all classifiers and subpackages

The following operation returns an Environment that contains a reference to its parent environment, which is itself created
by this operation by means of a recursive call, and therefore contains a parent environment too.

context Namespace::getEnvironmentWithParents() : Environment

post: result.NamedElements = self.getEnvironmentWithoutParents()

post: if self.namespace->notEmpty() -- this namespace has an owning namespace
then result.parent = self.namespace.getEnvironmentWithParents()
else result.parent = OclUndefined
endif

9.5 Concrete to Abstract Syntax Mapping

The mapping from concrete to abstract syntax is described as part of the grammar. It is described by adding a synthesized
attribute ast to each production that has the corresponding metaclass from the abstract syntax as its type. This allows the
mapping to be fully formalized within the attribute grammar formalism.

9.6  Abstract Syntax to Concrete Syntax Mapping

It is often useful to have a defined mapping from the abstract syntax to the concrete syntax. This mapping can be defined
by applying the production rules in Sub clause 9.3, Concrete Syntax from left to right. As a general guideline nothing will
be implicit (for example, implicit collect, implicit use of object as set) and al iterator variables will be filled in
completely. The mapping is not formally defined in this document but should be obvious.
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10 Semantics Described Using UML

This clause describes the semantics of the OCL using the UML itself to describe the semantic domain and the mapping
between semantic domain and abstract syntax. It explains the semantics of OCL in a manner based on the report
Unification of Satic and Dynamic Semantics for UML [Kleppe2001], which in its turn is based on the MML report
[Clark2000]. This clause defines a semantics for the ocl message expression.

10.1 Introduction

In sub clause 8.3, The Expressions Package an OCL expression is defined as: “an expression that can be evaluated in a
given environment,” and in sub clause 8.2, The Types Package it is stated that an “evaluation of the expression yields a
value.” The ‘meaning’ (semantics) of an OCL expression, therefore, can be defined as the value yielded by its evaluation
in a given environment.

To specify the semantics of OCL expressions we need to define two things: (1) the set of possible values that evaluations
of expressions may yield, and (2) evaluations and their environment. The set of possible values is called the semantic
domain. The set of evaluations together with their associations with the concepts from the abstract syntax represent the
mapping from OCL expressions to values from the semantic domain. Together the semantic domain and the evaluations
with their environment will be called domain in this clause.

The semantic domain is described in the form of a UML package, containing a UML class diagram, classes, associations,
and attributes. The real semantic domain is the (infinite) set of instances that can be created according to this class
diagram. To represent the evaluation of the OCL expressions in the semantic domain a second UML package is used. In
it, a set of so-called evaluation classes is defined (in short eval). Each evaluation classis associated with a value (its result
value), and a name space environment that binds names to values. Note that the UML model comprising both packages,
resides on layer 1 of the OMG 4-layered architecture, while the abstract syntax defined in Clause 8 (“ Abstract Syntax”),
resides on layer 2.

The semantics of an OCL expression is given by association: each value defined in the semantic domain is associated
with a type defined in the abstract syntax, each evaluation is associated with an expression from the abstract syntax. The
value yielded by an OCL expression in a given environment, its ‘meaning’ is the result value of its evaluation within a
certain name space environment. The semantics are also described in the form of a UML package called “AS-Domain-
Mapping.” Note that this package links the domain on layer 1 of the OMG 4-layered architecture with the abstract syntax
on layer 2. The AS-Domain-Mapping package itself cannot be positioned in one of the layers of the OMG 4-layered
architecture. Note also that this package contains associations only, no new classes are defined.

Figure 10.1 shows how the packages defined in this clause relate to each other, and to the packages from the abstract
syntax. It shows the following packages:
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—‘ Ocl-AbstractSyntax OCL-Domain

Types —‘
(from Ocl-AbstractSyntax)
Values
(from OCL-Domain)
L Expressions AN $ Evaluations .
(from Ocl-AbstractSyntax) ‘ | (from OCL-Domain)

OCL-AS-Domain-Mapping

Type-Value
(from OCL-AS-Domain-Mapping) J

\
-t

‘ Expression-Evaluation
L (from OCL-AS-Domain-Mapping)

i

Figure 10.1 - Overview of Packages in the UML-based Semantics

» The Domain package describes the values and evaluations. It is subdivided into two subpackages:
 The Values package describes the semantic domain. It shows the values OCL expressions may yield as result.

 The Evaluations package describes the evaluations of OCL expressions. It contains the rules that determine the
result value for a given expression.

» The AS-Domain-Mapping package describes the associations of the values and evaluations with elements from the
abstract syntax. It is subdivided into two subpackages:

 The Type-Value package contains the associations between the instances in the semantics domain and the typesin
the abstract syntax.

 The Expression-Eval uation package contains the associations between the evaluation classes and the expressions
in the abstract syntax.

10.2 The Values Package

OCL is an object language. A value can be either an object, which can change its state in time, or a data type, which can
not change its state. The model in Figure 10.2 shows the values that form the semantic domain of an OCL expression. The
basic type is the Value, which includes both objects and data values. There is a special subtype of Value called
UndefinedValue, which is used to represent the undefined value for any Type in the abstract syntax.
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Figure 10.3 shows a number of specia data values, the collection and tuple values. To distinguish between instances of

the Set, Bag, and Sequence types defined in the standard library, and the classes in this package that represent instances
in the semantic domain, the names SetTypeValue, BagTypeValue, and SequenceTypeValue are used, instead of SetValue,
BagValue, and SequenceValue.

DomainElement

&

+bindings

0.1 LocalSnapshot NameValueBinding +value value
Hsucc 0..n : Stri
01 o name : String 0..n 1
+pred +history
{ordered} ‘
[ \ |
1 ObjectValue StaticValue OclVoidValue

Figure 10.2 - The kernel values in the semantic domain

The value resulting from an ocl message expression is shown in Figure 10.4. It links an ocl message value to the snapshot
of an object.

10.2.1 Definitions of Concepts for the Values Package

The sbu clause lists the definitions of concepts in the Values package in alphabetical order.

BagTypeValue

A bag type value is a collection value that is a multiset of values, where each value may occur multiple times in the bag.
The values are unordered. In the metamodel, this list of values is shown as an association from CollectionValue (a
generalization of BagTypeValue) to Element.

CollectionValue

A collection valueis alist of values. In the metamodel, this list of valuesis shown as an association from CollectionValue
to Element.

Associations
elements The values of the elements in a collection.

DomainElement

A domain element is an element of the domain of OCL expressions. It is the generic superclass of all classes defined in
this clause, including Value and OclExpEval. It serves the same purpose as ModelElement in the UML meta model.
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SetTypeValue SequenceTypeValue BagTypeValue

Figure 10.3 - The collection and tuple values in the semantic domain

Element

An element represents a single component of a tuple value, or collection value. An element has an index number and a
value. The purpose of the index number is to uniquely identify the position of each element within the enclosing value,
when it is used as an element of a SequenceValue.

LocalSnapshot

A local snapshot is a domain element that holds for one point in time the subvalues of an object value. It is aways part

of an ordered list of local snapshots of an object value, which is represented in the metamodel by the associations pred,

succ, and history. An object value may also hold a sequence of OclMessageValues, which the object value has sent, and a
sequence of OclMessageValues, which the object value has received. Both sequences can change in time, therefore they

are included in alocal snapshot. This is represented by the associations in the metamodel called inputQ, and outputQ.

A local snapshot has two attributes, isPost and isPre, that indicate whether this snapshot is taken at postcondition or
precondition time of an operation execution. Within the history of an object value it is always possible to find the local
snapshot at precondition time that corresponds with a given snapshot at postcondition time. The association pre (shown in
Figure 10.3) is redundant, but added for convenience.
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Associations

bindings The set of name value bindings that hold the changes in time of the subvalues of the associated
object value.

outputQ The sequence of OclMessageValues that the associated ObjectValue at the certain point in time has
sent, and are not yet put through to their targets.

inputQ The sequence of OclMessageValues that the associated ObjectValue at the certain point in time has
received, but not yet dealt with.

pred The predecessor of this local snapshot in the history of an object value.

succ The successor of this local snapshot in the history of an object value.

pre If this snapshot is a snapshot at postcondition time of a certain operation execution, then pre is the

associated snapshot at precondition time of the same operation in the history of an object value.

NameValueBinding

A name value binding is a domain element that binds a name to a value.

ObjectValue

An object value is a value that has an identity, and a certain structure of subvalues. Its subvalues may change over time,
although the structure remains the same. Its identity may not change over time. In the metamodel, the structure is shown
as a set of NameValueBindings. Because these bindings may change over time, the ObjectValue is associated with a
sequence of Local Shapshots that hold a set of NameValueBindings at a certain point in time.

Associations

history The sequence of local snapshots that hold the changes in time of the subvalues of this object value.
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Figure 10.4 - The message values in the semantic domain

OclMessageValue

An ocl message value is a value that has as target and as source an object value. An ocl message value has a number of
attributes. The name attribute corresponds to the name of the operation called, or signal sent. The isSyncOperation,
isAsyncOperation, and isSignal attributes indicate respectively whether the message corresponds to a synchronous
operation, an asynchronous operation, or a signal.

Associations

arguments A sequence of name value bindings that hold the arguments of the message from the source
to the target.

source The object value that has sent this signal.

target The object value for which this signal has been intended.

returnM essage The ocl message value that holds the values of the result and out parameters of a

synchronous operation call in its arguments. Is only present if this message represents a
synchronous operation call.

OclVoidValue
An undefined value is a value that represents void or undefined for any type.

PrimitiveValue
A primitive value is a predefined static value, without any relevant substructure (i.e., it has no parts).
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SequenceTypeValue

A sequence type value is a collection value that is a list of values where each value may occur multiple times in the
sequence. The values are ordered by their position in the sequence. In the metamodel, this list of values is shown as an
association from CollectionValue (a generalization of SequenceTypeValue) to Element. The position of an element in the
list is represented by the attribute indexNr of Element.

SetTypeValue

A set type value is a collection value that is a set of elements where each distinct element occurs only once in the set. The
elements are not ordered. In the metamodel, this list of values is shown as an association from CollectionValue (a
generalization of SetTypeValue) to Element.

StaticValue

A static value is a value that will not change over time.!

TupleValue

A tuple value (also known as record value) combines values of different types into a single aggregate value. The
components of a tuple value are described by tuple parts each having a name and a value. In the metamodel, this is shown
as an association from TupleValue to NameValueBinding.

Associations

elements The names and values of the elements in a tuple value.

Value

A part of the semantic domain.
10.2.2 Well-formedness Rules for the Values Package

BagTypeValue
No additional well-formedness rules.

CollectionValue
No additional well-formedness rules.

DomainElement
No additional well-formedness rules.

Element

No additional well-formedness rules.

1. AsSaticValueisthe counterpart of the DataType concept in the abstract syntax, the name DataValue would be preferable. Because
this nameis used in the UML 1.4 specification to denote a model of a data value, the name SaticValue is used here.
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EnumValue
No additional well-formedness rules.

LocalSnapshot

[1] Only one of the attributes isPost and isPre may be true at the same time.
context Local Snapshot
inv: isPost impliesisPre = false
inv: ispreimpliesisPost = false
[2] Only if asnapshot isa postcondition snapshot will it have an associated precondition snapshot.
context Local Snapshot
inv: isPost implies pre->size() = 1
inv: not isPost implies pre->size() =0
inv: self.pre->size() = 1 implies self.pre.isPre = true

NameValueBinding

No additional well-formedness rules.

ObjectValue

[1] Thehistory of an object isordered. The first element does not have a predecessor, the last does not have a successor.
context ObjectValue
inv: history->ocllsTypeOf( Sequence(L ocal SnapShot) )
inv: history->last().succ->size=0
inv: history->first().pre->size=0

OclMessageValue

[1] Only one of the attributes isSyncOperation, isAsyncOperation, and isSignal may be true at the same time.
context OclMessageValue
inv: isSyncOperation implies isAsyncOperation = false and isSignal = false
inv: isAsyncOperation implies isSyncOperation = false and isSignal = false
inv: isSignal impliesisSyncOperation = false and isAsyncOperation = false

[2] Thereturn messageisonly present if, and only if, the ocl message value is a synchronous operation call.
context OclMessageValue
inv: isSyncOperation implies returnMessage->size() = 1
inv: not isSyncOperation implies returnMessage->size() =0

OclVoidValue
No additional well-formedness rules.

PrimitiveValue

No additional well-formedness rules.

SequenceTypeValue
[1] All elements belonging to a sequence value have unique index numbers.
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self.element->isUnique(e : Element | e.indexNr)

SetTypeValue

[1] All elements belonging to a set value have unique values.
self.element->isUnique(e : Element | e.value)

StaticValue

No additional well-formedness rules.

TupleValue

[1] All elements belonging to atuple value have unique names.
self.elements->isUnique(e : Element | e.name)

Value
No additional well-formedness rules.

10.2.3 Additional Operations for the Values Package

LocalSnapshot

[1] The operation allPredecessors returns the collection of all snapshots before a snapshot, all Successors returns the
collection of &l snapshots after a snapshot.
context Local Snapshot
def: let allPredecessors() : Sequence(Local Snapshot) =
if pred->notEmpty then
pred->union(pred.al | Predecessors())
else
Sequence {}
endif
def: let allSuccessors() : Sequence(L oca Snapshot) =
if succ->notEmpty then
succ->union(succ.all Successors())
else

Sequence {}

endif

ObjectValue
[1] The operation getCurrentValueOf resultsin the value that is bound to the name parameter in the latest snapshot in the
history of an object value. Note that the value may be the UndefinedValue.
context ObjectValue::getCurrentValueOf(n: String): Value
pre: -- none
post: result = history->last().bindings->any(name = n).value

[2] The operation outgoingMessages results in the sequence of OclMessageValues that have been in the output queue of the
object between the last postcondition snapshot and its associated precondition snapshot.

context Ocl ExpEval::outgoingMessages() : Sequence( OclMessageValue)
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pre: -- none
post:
let end: Local Snapshot =
history->last().all Predecessors()->sel ect( isPost = true )->first() in
let start: Local Snapshot = end.pre in
let inBetween: Sequence( Local Snapshot ) =
start.all Successors()->excluding( end.all Successors())->including( start ) in
result = inBetween.outputQ->iterate (
-- creating a sequence with all elements present once
m : oclMessageValue;
res: Sequence( OclM essageValue ) = Sequence{}
| if not res->includes( m)
then res->append( m)
elseres
endif )
endif

TupleValue

[1] The operation getValueOf results in the value that is bound to the name parameter in the tuple value.
context TupleValue::getValueOf(n: String): Value
pre: -- none
post: result = elements->any(name = n).value
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10.2.4 Overview of the Values Package

Figure 10.5 shows an overview of the inheritance relationships between the classes in the Values package.

DomainElement

NameValueBinding Value LocalSnapshot Element
]
ObjectValue OclMessageValue StaticValue OclVoidValue
it
CollectionValuL TupleValue PrimitivLValue
- .
SetTypeValue BagTypeValue EnumValue StringValue

‘ SequenceTypeValue ‘

Figure 10.5 - The inheritance tree of classes in the Values package

10.3 The Evaluations Package

This sub clause defines the evaluations of OCL expressions. The eval uations package is a mirror image of the expressions
package from the abstract syntax. Figure 10.6 shows how the environment of an OCL expression evaluation is structured.
The environment is determined by the placement of the expression within the UML model as discussed in Clause 12
(“The Use of Ocl Expressionsin UML Models’). The calculation of the environment is done in the ExpressioninOclEval,
which will be left undefined here.
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Figure 10.6 - The environment for ocl evaluations

+fnvironment

Figure 10.6 shows the core part of the Evaluations package. The basic elements in the package are the classes
OclEvaluation, PropertyCallExpEval, and VariableExpEval. An OclEvaluation always has a result value, and a name
space that binds names to values. In Figure 10.7 the various subtypes of model propertycall evaluation are defined.
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Figure 10.7 - Domain model for ocl evaluations

Most of the OCL expressions can be simply evaluated, i.e., their value can be determined based on a non-changing set of
name value bindings. Operation call expressions, however, need the execution of the called operation. The semantics of
the execution of an operation will be defined in the UML infrastructure. For our purposes it is enough to assume that an
operation execution will add to the environment of an OCL expression the name ‘result’ bound to a certain value. In order
not to become tangled in a mix of terms, the term evaluation is used in the following to denote both the ‘normal’ OCL
evaluations and the executions of operation call expressions.

In Section 10.3.1.1, “Model PropertyCall Evaluations,” on page 112 to Section 10.3.1.5, “Let Expressions,” on page 117
specia subclasses of OclExpEval will be defined.

10.3.1 Definitions of Concepts for the Evaluations Package

This sub clause lists the definitions of concepts in the Evaluations package in alphabetical order.

EvalEnvironment

An EvaEnvironment is a set of NameValueBindings that form the environment in which an OCL expression is evaluated.
An EvalEnvironment has three operations that are defined in “Additional Operations of the Evaluations Package.”
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Associations

bindings The NameValueBindings that are the elements of this name space.

IterateExpEval

An lterateExpEval is an expression evaluation that evaluates its body expression for each element of a collection value,
and accumulates a value in a result variable. It evaluates an IterateExp.

IteratorExpEval

An lteratorExp is an expression evaluation that evaluates its body expression for each element of a collection.

ExpressioninOclEval

An ExpressioninOclEval is an evaluation of the context of an OCL expression. It is the counterpart in the domain of the
ExpressionlnOcl metaclass defined in Clause 12 (“The Use of Ocl Expressions in UML Models"). It is merely included
here to be able to determine the environment of an OCL expression.

LiteralExpEval

A Literal expression evaluation is an evaluation of a Literal expression.

LoopExpEval

A loop expression evaluation is an evaluation of a Loop expression.

Associations

bodyEvals The oclExpEvaluations that represent the evaluation of the body expression for each
element in the source collection.

iterators The names of the iterator variables in the loop expression.

ModelPropertyCallExpEval

A model property call expression evaluation is an evaluation of a Model PropertyCallExp. In Figure 10.8 the various
subclasses of Model PropertyCall ExpEval are shown.

Operations
atPre The atPre operation returns true if the property call is marked as being evaluated at pre-
condition time.
OclExpEval

An ocl expression evaluation is an evaluation of an OclExpression. It has aresult value, and it is associated with a set of
name-value bindings called environment. These bindings represent the values that are visible for this evaluation, and the
names by which they can be referenced. A second set of name-value bindings is used to evaluate any sub expression for
which the operation atPre returns true, called beforeEnvironment.
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Note that as explained in Clauses 9 (“Concrete Syntax”) and 12 (“The Use of Ocl Expressionsin UML Models’) these
bindings need to be established, based on the placement of the OCL expression within the UML model. A binding for an
invariant will not need the beforeEnvironment, and it will be different from a binding of the same expression when used
as precondition.

Associations

environment The set of name value bindings that is the context for this evaluation of an ocl expression.
beforeEnvironment The set of name value bindings at the precondition time of an operation, to evaluate any sub

expressions of type ModelPropertyCallExp for which the operation atPre returns true.

resultVaue The value that is the result of evaluating the OclExpression.

OclMessageExpEval

An ocl message expression evaluation is defined in Section 10.3.1.3, “Ocl Message Expression Evaluations,” on page
114, but included in this diagram for completeness.

PropertyCallExpEval

A property call expression evaluation is an evaluation of a PropertyCallExp.

Associations

source The result value of the source expression evaluation is the instance that performs the
property call.

VariableDecl|Eval

A variable declaration evaluation represents the evaluation of a variable declaration. Note that this is not a subtype of
OclExpEval, therefore it has no resultValue.

Associations

name The name of the variable.

initExp The value that will be initially bound to the name of this evaluation.

VariableExpEval

A variable expression evaluation is an evaluation of a VariableExp, which in effect is the search of the value that is bound
to the variable name within the environment of the expression.

Associations

variable The name that refers to the value that is the result of this evaluation.
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10.3.1.1 Model PropertyCall Evaluations

The subtypes of ModelPropertyCallExpEval are shown in Figure 10.8, and are defined in this sub clause in alphabetical
order.

ModelPropertyCallExpEval

L

AttributeCallExpEval

0..n

NavigationCallExpEval 0.n

.

AssociationClassCallExpEval

+navigationSource +referredAttribute

0..n - 1 1
+referredAssociationClass
AssociationEndCallExpEval StringValue

(from Values)

o.n +referredAssociationEnd 1 )
{ordered} +referredOperation

+qualifiers 0..n__ 1
OclExpEval

+arguments Q..n

1
OperationCallExpEval

0..n

Figure 10.8 - Domain model for ModelPropertyCallExpEval and subtypes

AssociationClassCallExpEval

An association end call expression evaluation is an evaluation of an AssociationClassCallExp, which in effect is the
search of the value that is bound to the associationClass name within the expression environment.

Associations

referredA ssociationClass The name of the AssociationClass to which the corresponding AssociationClassCallExp
is areference.

AssociationEndCallExpEval

An association end call expression evaluation is an evaluation of an AssociationEndCallExp, which in effect is the search
of the value that is bound to the associationEnd name within the expression environment.
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Associations

referredA ssociationEnd The name of the AssociationEnd to which the corresponding NavigationCallExp is a
reference.

AttributeCallExpEval

An attribute call expression evaluation is an evaluation of an AttributeCallExp, which in effect is the search of the value
that is bound to the attribute name within the expression environment.

Associations

referredAttribute The name of the Attribute to which the corresponding AttributeCallExp is a reference.

NavigationCallExpEval

A navigation call expression evauation is an evaluation of a NavigationCallExp.

Associations

navigationSource The name of the AssociationEnd of which the corresponding NavigationCallExp is the
source.

OperationCallExp

An operation call expression evaluation is an evaluation of an OperationCall Exp.

Associations

arguments The arguments denote the arguments to the operation call. Thisis only useful when the
operation call is related to an Operation that takes parameters.

referredOperation The name of the Operation to which this OperationCallExp is areference. Thisis an
Operation of a Classifier that is defined in the UML model.

10.3.1.2 If Expression Evaluations

If expression evaluations are shown in Figure 10.9 and defined in this sub clause.

+thenExpression |~ 5iExpEval elseExpression

1 n 1
+condition

IfExpEval

Figure 10.9 - Domain model for if expression
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IfExpEval
An IfExpEval is an evaluation of an IfExp.

Associations

condition The OclExpEval that evaluates the condition of the corresponding IfExpression.
thenExpression The OclExpEval that evaluates the thenExpression of the corresponding IfExpression.
el seExpression The OclExpEval that evaluates the elseExpression of the corresponding IfExpression.

10.3.1.3 Ocl Message Expression Evaluations

Ocl message expressions are used to specify the fact that an object has, or will send some message to another object at
some moment in time. Ocl message expression evaluations are shown in Figure 10.10, and defined in this sub clause.

DomainElement

0..

i OclExpEval
| +expressio
UnspecifiedValueExpEval 1
+target
1
+unspecified /]\0..1
1 | OcIMessageArgEval
+arguments/\ 0..n
{ordered}
1 1
OclMessageExpEval

name : String

Figure 10.10 - Domain model for message evaluation

OclMessageArgEval

An ocl message argument evaluation is an evaluation of an OclMessageArg. It represents the evaluation of the actual
parameters to the Operation or Signal. An argument of a message expression is either an ocl expression, or a variable
declaration.
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Associations

variable The OclExpEval that represents the evaluation of the argument, in case the argument is
a VariableDeclaration.

expression The OclExpEval that represents the evaluation of the argument, in case the argument is
an OclExpression.

OclMessageExpEval

An ocl message expression evaluation is an evaluation of an OclMessageExp. As explained in [Kleppe2000] the only
demand we can put on the ocl message expression is that the OclMessageValue it represents (either an operation call, or
a UML signal), has been at some time between ‘now’ and a reference point in time in the output queue of the sending
instance. The ‘now’ timepoint is the point in time at which this evaluation is performed. This point is represented by the
environment link of the OclMessageExpEval (inherited from OclExpEval).

Associations

target The OclExpEval that represents the evaluation of the target instance or instances on
which the action is performed.

arguments The OclMessageArgEvals that represent the evaluation of the actual parameters to the
Operation or Message.

UnspecifiedValueExpEval

An unspecified value expression evaluation is an evaluation of an UnSpecifiedValueExp. It results in a randomly picked
instance of the type of the expression.

10.3.1.4 Literal Expression Evaluations

This sub clause defines the different types of literal expression evaluations in OCL, as shown in Figure 10.11. Again it is
a complete mirror image of the abstract syntax.
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LiteralExpEval

L

[ [
PrimitiveLiteralExpEval EnumLiteralExpEval
% TupleLiteralExpEval
1 ——
BooleanLiteralExpEval StringLiteralExpEval CollectionLiteralExpEval
kind : CollectionKind
+uplePart | 0N 1
NumericLiteralExpEval VariableDeclEval Value
name : String {ordered}
o1 +parts,|,0.-n +element/\ 1
N CollectionLiteralPartEval
IntegerLiteralExpEval RealLiteralExpEval ‘ 4
CollectionRangeEval CollectionltemEval

0.1 0.1 0.1

+first\[/1 +last\|/1
1 OclExpEval +item
+initExp 1

Figure 10.11 - Domain model for literal expressions

BooleanLiteralExpEval

A boolean literal expression evaluation represents the evaluation of a boolean literal expression.

CollectionltemEval

A collection item evaluation represents the evaluation of a collection item.

CollectionLiteralExpEval
A collection literal expression evaluation represents the evaluation of a collection literal expression.

CollectionLiteralPartEval
A collection literal part evaluation represents the evaluation of a collection literal part.

CollectionRangeEval
A collection range evaluation represents the evaluation of a collection range.
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EnumLiteralExpEval
An enumeration literal expression evaluation represents the evaluation of an enumeration literal expression.

IntegerLiteralExpEval
A integer literal expression evaluation represents the evaluation of a integer literal expression.

NumericLiteralExpEval
A numeric literal expression evaluation represents the evaluation of a numeric literal expression.

PrimitiveLiteralExpEval
A primitive literal expression evaluation represents the evaluation of a primitive literal expression.

ReallLiteralExpEval

A real literal expression evaluation represents the evaluation of areal literal expression.

StringLiteralExpEval

A string literal expression evaluation represents the evaluation of a string literal expression.

TupleLiteralExpEval
A tuple literal expression evaluation represents the evaluation of atuple literal expression.

TupleLiteralExpPartEval
A tuple literal expression part evaluation represents the evaluation of atuple literal expression part.

10.3.1.5 Let Expressions

Let expressions define new variables. The structure of the let expression evaluation is shown in Figure 10.12.

+in

OclExpEval
1 - :
0..1 /\\+initExpression
0.1 0.1 +variabl
LetExpEval 5 vanable StringValue
.1
1

Figure 10.12 - Domain model for let expression

LetExpEval

A Let expression evaluation is an evaluation of a Let expression that defines a new variable with an initial value. A Let
expression evaluation changes the environment of the in expression evaluation.
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Associations

variable The name of the variable that is defined.
in The expression in whose environment the defined variable is visible.
initExpression The expression that represents the initial value of the defined variable.

10.3.2 Well-formedness Rules of the Evaluations Package

The metaclasses defined in the evaluations package have the following well-formedness rules. These rules state how the
result value is determined. This defines the semantics of the OCL expressions.

AssociationClassCallExpEval

[1] Theresult value of an association class call expression is the value bound to the name of the association class to which it
refers. Note that the determination of the result value when qualifiers are present is specified in 10.4.2.1, Well-formedness
rules for the AS-Domain-Mapping.exp-eval Package. The operation getCurrentValueOf is an operation defined on
ObjectValuein 10.2.3, Additional Operations for the Values Package.

context AssociationClassCallExpEval inv:
quaifiers->size= 0 implies
resultValue =
source.resultValue.getCurrentVal ueOf (ref erredA ssoci ationCl ass.name)

AssociationEndCallExpEval

[1] Theresult value of an association end call expression is the value bound to the name of the association end to which it
refers. Note that the determination of the result value when qualifiers are present is specified in 10.4.2.1, Well-formedness
rules for the AS-Domain-Mapping.exp-eval Package.

context AssociationEndCallExpEval inv:
quaifiers->size= 0 implies
resultValue =
source.resultValue.getCurrentVal ueOf (referredA ssoci ationEnd.name)

AttributeCallExpEval
[1] Theresult value of an attribute call expression is the value bound to the name of the attribute to which it refers.

context AttributeCallExpEval inv:
resultValue = if source.resultValue->isOcl Type( ObjectValue) then
source.resultValue->asOcl Type( ObjectValue)
.getCurrentVal ueOf (referredAttribute.name)
else -- must be atuple value
source.resultValue->asOcl Type( TupleValue)
.getValueOf (referredAttribute.name)
endif

BooleanLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.2.1, Well-formedness
rules for the AS-Domain-Mapping.exp-eval Package.
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CollectionltemEval

[1] Thevalueof acollectionitem istheresult value of itsitem expression. The environment of thisitem expression isequal to
the environment of the collection item evaluation.

context CollectionltemEval
inv: element = item.resultValue
inv: item.environment = self.environment

CollectionLiteralExpEval

[1] Theenvironment of its partsis equal to the environment of the collection literal expression evaluation.
context CollectionLiteral ExpEval
inv: parts->forAll( p | p.environment = self.environment )

[2] Theresult value of acollection literal expression evaluation is a collection literal value, or one of its subtypes.
context CollectionLiteral ExpEval inv:

resultValue.isOclKind( CollectionValue)

[3] Thenumber of elementsin the result value is equal to the number of el ementsin the collection literal parts, taking into
account that a collection range can result in many elements.

context CollectionLiteral ExpEval inv:

resultValue.elements->size() = parts->collect( element )->size()->sum()

[4] Theelementsin the result value are the elements in the collection literal parts, taking into account that a collection range
can result in many elements.

context CollectionLiteral ExpEval inv:
let allElements = parts->collect( element )->flatten() in
Sequence({ 1..allElements->size()} ->forAll(i: Integer |
resultValue.elements->at(i).name = ii and
resultVal ue.elements->at(i).value = allElements->at(i) and
self.kind = CollectionKind::Sequence implies
resultValue.elements->at(i).indexNr =i )

CollectionLiteralPartEval

No extra well-formedness rules. The manner in which its value is determined is given by its subtypes.

CollectionRangeEval

[1] Thevalue of acollection rangeis the range of integer numbers between the result value of itsfirst expression and its last
expression.

context CollectionRangeEval
inv: element.isOcl Type( Sequence(Integer) ) and
element = getRange( first->asOcl Type(Integer), last->asOcl Type(I nteger) )

EnumLiteralExpEval

No extra well-formedness rules.
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EvalEnvironment

[1]

All names in a name space must be unique.

context EvalEnvironment inv:
bindings->collect(name)->forAll( name: String | bindings->collect(name)->isUni que(name))

ExpressioninOclEval

No extra well-formedness rules.

IfExpEval

[1]

(2]

The result value of an if expression isthe result of the thenExpression if the condition istrue, elseit is the result of the
elseExpression.

context IfExpEval inv:

resultValue = if condition then thenExpression.resultVal ue el se el seExpression.resultValue

The environment of the condition, thenExpression and elseExpression are equal to the environment of the if expression.

context IfExpEval

inv: condition.environment = environment

inv: thenExpression.environment = environment
inv: elseExpression.environment = environment

IntegerLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.2.1, Well-formedness
rules for the AS-Domain-Mapping.exp-eval Package.

IterateExpEval

(1

(2]

120

All sub evaluations have a different environment. The first sub evaluation will start with an environment in which all
iterator variables are bound to the first element of the source, plus the result variable that is bound to the init expression of
the variable declaration in which it is defined.

context IterateExpEval
inv: let bindings: Sequence( NameValueBindings) =
iterators->collect( i |
NameValueBinding( i.varName, source->asSequence()->first() )
in
bodyEvals->at(1).environment = self.environment->addAll( bindings)
->add( NameValueBinding( result.name, result.initExp.resultValue))

The environment of any sub evaluation is the same environment as the one from its previous sub eval uation, taking
into account the bindings of the iterator variables, plus the result variable which is bound to the result value of the last
sub evaluation.

inv: let SS: Integer = source.value->size()
inif iterators->size() = 1 then
Sequence{ 2..SS}->forAll(i: Integer |
bodyEvals->at(i).environment = bodyEvals->at(i-1).environment
->replace( NameValueBinding( iterators->at(1).varName,
source.val ue->asSequence()->at(i)))
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->replace( NameVa ueBinding( result.varName,
bodyEvals->at(i-1).resultValue)))
else -- iterators->size() = 2
Sequence{ 2..SS* SS}->forAll( i: Integer |
bodyEvals->at(i).environment = bodyEvals->at(i-1).environment
->replace( NameValueBinding( iterators->at(1).varName,
source->asSequence()->at(i.div(SS) + 1) ))
->replace( NameValueBinding( iterators->at(2).varName,
source.val ue->asSequence()->at(i.mod(SS))))
->replace( NameValueBinding( result.varName,
bodyEvals->at(i-1).resultValue)))
endif

[3] Theresult value of an IteratorExpEval isthe result of the last of its body evaluations.

context IteratorExpEval
inv: resultValue = bodyEvals->last().resultValue

IteratorExpEval

The IteratorExp in the abstract syntax is merely a placeholder for the occurrence of one of the predefined iterator
expressions in the standard library (see Clause 11 “The OCL Standard Library”). These predefined iterator expressions
are all defined in terms of an iterate expression. The semantics defined for the iterate expression are sufficient to define
the iterator expression. No well-formedness rules for IteratorExpEval are defined.

LetExpEval

[1] A let expression resultsin the value of itsin expression.

context LetExpEval inv:
resultValue = in.resultValue

[2] A let expression evaluation adds a name value binding that binds the variable to the value of its initExpression, to the
environment of itsin expression.

context LetExpEval
inv: in.environment = self.environment
->add( NameValueBinding( variable.varName, variable.initExpression.resultValue ))

[3] Theenvironment of the initExpression is equal to the environment of this L et expression evaluation.

context LetExpEval
inv: initExpression.environment = self.environment

LiteralExpEval

No extra well-formedness rules.
LoopExpEval
The result value of aloop expression evaluation is determined by its subtypes.

[1] Thereisan OclExpEval (a sub evaluation) for combination of values for the iterator variables. Each iterator variable
will run through every element of the source collection.
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context LoopExpEval
inv: bodyEvas->size() =
if iterators->size() = 1 then
source.value->size()
else -- iterators->size() = 2
source.vaue->size() * source.value->size()
endif

[2] All sub evaluations (in the sequence bodyEvals) have a different environment. The first sub evaluation will start with
an environment in which all iterator variables are bound to the first element of the source. Note that thisisan
arbitrary choice, one could easily start with the last element of the source, or any other combination.

context LoopExpEval
inv: let bindings: Sequence( NameValueBindings) =
iterators->collect(i |
NameVaueBinding( i.varName, source->asSequence()->first() )

bodyEvals->at(1).environment = self.environment->addAll ( bindings)

[3] All sub evaluations (in the sequence bodyEvals) have a different environment. The environment is the same
environment as the one from the previous bodyEval, where the iterator variable or variables are bound to the
subsequent elements of the source.

context LoopExpEval
inv:
let SS: Integer = source.value->size()
inif iterators->size() = 1 then
Sequence{ 2..SS}->forAll(i: Integer |
bodyEvals->at(i).environment = bodyEvals->at(i-1).environment
->replace( NameValueBinding( iterators->at(1).varName,
source.val ue->asSequence()->at(i) )))
else -- iterators->size() = 2
Sequence{ 2..SS* SS}->forAll(i: Integer |
bodyEvals->at(i).environment = bodyEvals->at(i-1).environment
->replace( NameValueBinding( iterators->at(1).varName,
source->asSequence()->at(i.div(SS) + 1) ))
->replace( NameValueBinding( iterators->at(2).varName,
source.val ue->asSequence()->at(i.mod(SS)) )) ) ))
endif

ModelPropertyCallExpEval
Result value is determined by its subtypes.

[1] The environment of a Model PropertyCall expression is equal to the environment of its source.

context Model PropertyCallExpEval inv:
environment = source.environment
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NavigationCallExpEval

[1] When the navigation call expression has qualifiers, the result value is limited to those elements for which the
qualifier value equals the value of the attribute.
-- To be done.

NumericLiteralExpEval

No extra well-formedness rules. Result value is determined by its subtypes.

OclExpEval

The result value of an ocl expression is determined by its subtypes.

[1] Theenvironment of an OclExpEval is determined by its context, i.e., the ExpressioninOclEval.

context OclExpEval
inv: environment = context.environment

[2] Every OclExpEval has an environment in which at most one self instance is known.

context OclExpEval
inv: environment->select( name = ‘self’ )->size() = 1

OclMessageExpEval
[1] Theresult value of an ocl message expression is an ocl message value.

context OclMessageExpEval
inv: resultValue->isTypeOf( OclMessageValue )

[2] Theresult value of an ocl message expression is the sequence of the outgoing messages of the ‘self’ object that
matches the expression. Note that this may result in an empty sequence when the expression does not match any
of the outgoing messages.

context OclM essageExpEval
inv: resultValue =
environment.getValueOf( ‘self’ ).outgoingM essages->select( m |
m.target = target.resultValue and
m.name = self.name and
self.arguments->forAll( expArg: OclMessageArgEval |
not expArg.resultVal ue.ocllsUndefined() implies
m.arguments->exists( messArg | messArg.value = expArg.value))

[3] Thesource of the resulting ocl message valueis equal to the ‘self’ object of the ocl message expression.

context OclM essageExpEval
inv: resultValue.source = environment.getValueOf ( ‘self’ )

[4] TheisSent attribute of the resulting ocl message value istrue only if the message value isin the outgoing messages
of the ‘self’ object.

context OclMessageExpEval

inv:

if resultValue.ocllsUndefined()
resultValue.isSent = false
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ese
resultValue.isSent = true
endif

[5] Thetarget of an ocl message expression is an object value.

context OclM essageExpEval
inv: target.resultValue->isTypeOf( ObjectValue)

[6] Theenvironment of all arguments, and the environment of the target expression are equal to the environment of
this ocl message value.

context OclM essageExpEval
inv: arguments->forAll( a| a.environment = self.environment )
inv: target.environment = self.environment

OclMessageArgEval

[1] An ocl message argument evaluation has either an ocl expression evaluation, or an unspecified value expression
evaluation, not both.

context OclMessageArgEval inv:
expression->size() = 1 implies unspecified->size() =0
expression->size() = 0 implies unspecified->size() = 1

[2] Theresult value of an ocl message argument is determined by the result value of its expression, or its unspecified
value expression.

context OclMessageArgEval inv:

if expression->size() =1

then resultValue = expression.resultValue
el se resultValue = unspecified.resultValue
endif

[3] Theenvironment of the expression and unspecified value are equal to the environment of this ocl message argument.

context OclM essageArgEval
inv: expression.environment = self.environment
inv: unspecified.environment = self.environment

OperationCallExpEval

The definition of the semantics of the operation call expression depends on the definition of operation call execution in
the UML semantics. Thisis part of the UML infrastructure specification, and will not be defined here. For the semantics
of the OperationCallExp it suffices to know that the execution of an operation call will produce a result of the correct
type. The latter will be specified in 10.4, The AS-Domain-Mapping Package.

[1] The environments of the arguments of an operation call expression are equal to the environment of this call.

context OperationCallExpEval inv:
arguments->forall( a| a.environment = self.environment )

PropertyCallExpEval

The result value and environment are determined by its subtypes.
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[1] Theenvironment of the source of an property call expression is equal to the environment of this call.

context PropertyCallExpEval inv:
source.environment = self.environment

PrimitiveLiteralExpEval

No extra well-formedness rules. The result value is determined by its subtypes.

ReallLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.2.1, Well-formedness
rules for the AS-Domain-Mapping.exp-eval Package.

StringLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.2.1, Well-formedness
rules for the AS-Domain-Mapping.exp-eval Package.

TupleLiteralExpEval

[1] Theresult value of atuple literal expression evaluation is a tuple value whose elements correspond to the parts of the
tuple literal expression evaluation.

context TupleLiteral ExpEval inv:
resultValue.isOcl Type( TupleValue ) and
tuplePart->size() = resultValue.elements->size() and
Sequence({ 1..tuplePart->size()} ->forAll(i: Integer |
resultVal ue.elements->at(i).name = tuplePart.name and
resultValue.elements->at(i).val ue = tuplePart.initExpression.resultValue )

UnspecifiedValueExpEval

The result of an unspecified value expression is a randomly picked instance of the type of the expression. This rule will
be defined in 10.4.2.1, Well-formedness rules for the AS-Domain-Mapping.exp-eval Package.

VariableDecl|Eval

No extra well-formedness rules.

VariableExpEval
[1] Theresult of aVariableExpEval isthe value bound to the name of the variable to which it refers.

context VariableExpEval inv:
resultValue = environment.getVal ueOf (referredVariable.varName)

10.3.3 Additional Operations of the Evaluations Package

EvalEnvironment

[1] The operation getValueOf results in the value that is bound to the name parameter in the bindings of a name space.
Note that the value may be the UndefinedValue.
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context Eval Environment::getValueOf(n: String): Value
pre: -- none
post: result = bindings->any(name = n).vaue

[2] The operation replace replaces the value of a name, by the value given in the nvb parameter.

context Eval Environment::replace(nvb: NameVa ueBinding): EvalEnvironment
pre: -- none
post: result.bindings = self.bindings

->excluding( self.bindings->any( name = nvb.name) )->including( nvb)

[3] The operation add adds the name and value indicated by the NameValueBinding given by the nvb parameter.

context Eval Environment::add(nvb: NameVa ueBinding): Eval Environment
pre: -- none
post: result.bindings = self.bindings->including( nvb)

[4] The operation addAll adds all NameValueBindings in the nvbs parameter.

context Eval Environment::add(nvbs: Collection(NameVaueBinding)): Eva Environment
pre: -- none
post: result.bindings = self.bindings->union( nvbs)

CollectionRangeEval

[1] The operation getRange() returns a sequence of integersthat contains all integer in the collection range.
context CollectionRangeEval::getRange(first, last: Integer): Sequence(Integer)
pre: -- none
post: result = if first = last then
first->asSequence()
else
first->asSequence()->union(getRange(first + 1, last))
endif
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10.3.4 Overview of the Values Package

Figure 10.13 shows an overview of the inheritance relationships between the classes in the Values package.

DomainElement
(from Values)

1

‘ CollectionLiteralPartEval ‘ ‘ TupleLiteralExpPartEval ‘ ‘ ExpressionIinOclEval ‘ ‘ UnspecifiedValueExpEval ‘

‘ ‘ EvalNameSpace OCIExpEval
‘ CollectionltemEval ‘ ‘ CollectionRangeEval ‘
‘ PropertyCallExpEval ‘ VariableExpEval LetExpEval IfExpEval

‘ OclMessageArgEval

Z> LiteralExpEval OclMessageExpEval

[

‘ ModelPropertyCallExpEval ‘ LoopExpEval Z>
‘ 4 ‘ 4 ‘ TupleLiteralExpEval ‘ ‘ CollectionLiteralExpEval ‘
AttributeCallExpEval OperationCallExpEval
‘ PrimitiveLiteralExpEval ‘ ‘ EnumLiteralExpEval ‘
‘ IterateExpEval ‘ IteratorExpEval ‘ Z>
‘ NavigationCallExpEval ‘

‘ BooleanLiteralExpEval ‘ ‘ StringLiteralExpEval ‘

‘ NumericLiteralExpEval ‘

‘ AssociationClassCallExpEval ‘ ‘ AssociationEndCallExpEval ‘ ZF

‘ IntegerLiteralExpEval ‘ ‘ReaILiteralExpEvaI ‘

Figure 10.13 - The inheritance tree of classes in the Evaluations package

10.4 The AS-Domain-Mapping Package

Figure 10.14 shows the associations between the abstract syntax concepts and the domain concepts defined in this clause.
Each domain concept has a counterpart called model in the abstract syntax. Each model has one or more instances in the
semantic domain. Note that in particular every OCL expression can have more than one evaluation. Still every evaluation
has only one value. For example, the “asSequence”’ applied to a Set may have n! evaluations, which each give a different

permutation of the elements in the set, but each evaluation has exactly one result value.
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BagTypevalue |tinstances +model BagType
0..n 1 | (from Types)
CollectionValue +instances +model [ collectionType
(from Types)
..n 1
EnumValue | +instances +model Enumeration
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0..n 1 ( )
+instances +model Class
ObjectValue
(from Core)
0..n 1
+instances +model| QclMessage(T)

OclMessageValue
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+ian)t'arl1nces :Lmodel
OclVoidValue VoidType
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0..1
+instances +model
SequenceTypeValue | SequenceType
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.n 1
+instances +model
SetTypeValue SetType
1 (from Types)
. +instances +model
StaticValue DataType
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finstances +model :
- String
ST e (from StandardLibrary)
..n 1
+instances +model
TupleValue TupleType
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0..n 1
stances +model | Classifier
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Value
0..n

(from Core)

1

Figure 10.14 - Associations between values and the types defined in the abstract syntax

128

Object Constraint Language, v2.2



+instances

+model

[ AssociationClassCallExp

‘ AssociationClassCallExpEval |

1]

+model [ AssociationEndCallExp

1]

+m°del' AttributeCallExp

+m°d5|l BooleanLiteralExp

+model [ Collectionltem
1

+model CollectionLiteralExp
1

‘ 0..n
— i
AssociationEndCallExpEval | *instances
[0.n
AttributeCallExpEval | Hinstances
0..n
- +i
‘ BooleanLiteralExpEval | Finstances
CollectionltemEval | tinstances
0..n
CollectionLiteralExpEval | +instances
p.n
‘ CollectionLiteralPartEval _ [-nstances
.n

+model | CollectionLiteralPart
1

CollectionRangeEval | finstances
0..n

+model CollectionRange
1

EnumLiteralExpEval +(;n5tances
.n

+model EnumLiteralExp
1

+model IfExp

IfExpEval | tinstances
0..n

1

- +instances
IntegerLiteralExpEval o
..n

v
IterateExpEval instances

+model -
mode IntegerLiteralExp
1

0..n
IteratorExpEval | *instances

+model
IterateExp
1

Finddances

+model IteratorExp

LetExpEval
0..n
LiteralExpEval ~ finstances

+mddel
LetExp
1

LoopExpEval ifsiances

+model | LiteralExp

0..n
‘ ModelPropertyCallExpEval +ir151ances

+model :|LoopExp
1

+m0der ModelPropertyCallExp

[
+fhodel NavigationCallExp

+m0dell NumericLiteralExp

1
+model OclExpression

OcIM JeArg
+model

|
_ +inst&hdks
‘ NavigationCallExpEval |
on
— +ifistances
‘ NumericLiteralExpEval |
_ ‘O..n
+instances
OclExpEval
0..n 0..n 11
OclMessageArgEval Hinstances
0..n

OclMessageExpEval ‘ +instances

1 | OclMessageExp
+model 5 ol
+model perationCallExp

- instances
‘ OperationCallExpEval ‘

0..n PrimitiveLiteralExp
‘ PrimitiveLiteralExpEval Tlnstances +model
PropertyCallEx|
inst@nces +model 1‘ perty P
‘PropenyCallExpEvaI \
+rfstances +inodel ‘ReaItheralExp ‘
(TR |
ReallLiteralExpEval StingLiterale
Qrifstances +modell ‘ fingtiteralxp ‘
(TR
StringLiteralExpEval e S ITETaE
Lﬁ'sfl‘ances +modell ‘ upleLiteralxp ‘
TupleLiteralExpEval on 1 U fiedvalueE.
" +instances +model ‘ nspecitiedvaluexp ‘
‘ UnspecifiedValueExpEval L 1
+instance +model VariableExp
VariableExpEval
0..n 1

Object Constraint Language, v2.2

129



10.4.1 Well-formedness rules for the AS-Domain-Mapping.type-value Package

CollectionValue
[1] All elementsin acollection value must have atype that conforms to the elementType of its corresponding CollectionType.

context CollectionValue inv:
elements->forAll( e: Element | e.value.model .conformsTo( model.elementType) )

DomainElement
No additional well-formedness rules.

Element
No additional well-formedness rules.

EnumValue

No additional well-formedness rules.

ObjectValue
[1] All bindingsin an object value must correspond to attributes or associations defined in the object’s Classifier.

context ObjectValue inv:
history->forAll( snapshot | snapshot.bindings->forAll( b |
self.model.all Attributes()->exists (attr | b.name = attr.name)
or
self.model.all AssociationEnds()->exists ( role | b.name = role.name) ) )

OclMessageValue

No additional well-formedness rules.

PrimitiveValue
No additional well-formedness rules.

SequenceTypeValue
No additional well-formedness rules.

SetTypeValue

No additional well-formedness rules.

StaticValue

No additional well-formedness rules.

TupleValue
[1] The elementsin atuple value must have atype that conforms to the type of the corresponding tuple parts.

context TupleValue inv:

130 Object Constraint Language, v2.2



elements->forAll( elem |
let correspondingPart: Attribute =
self.model.all Attributes()->select( part | part.name = elem.name) in
elem.value.model .conformsTo( correspondingPart.type ) )

UndefinedValue

No additional well-formedness rules.

Value

No additional well-formedness rules.

10.4.2 Additional Operations for the AS-Domain-Mapping.type-value Package

Value

[1]

The additional operation islnstanceOf returns true if this value is an instance of the parameter classifier.

context Value::islnstanceOf( ¢: Classifier ): Boolean
pre: -- none
post: result = self.model.conformsTo( ¢ )

10.4.2.1 Well-formedness rules for the AS-Domain-Mapping.exp-eval Package

AssociationClassCallExpEval

(1]

(2]

The string that represents the referredA ssociationClass in the evaluation must be equal to the name of the
referredA ssociationClass in the corresponding expression.

context AssociationClassCallExpEval inv:
referredAssociationClass = model .referredAssociationClass.name

Theresult value of an association class call expression evaluation that has qualifiers, is determined according to the
following rule. The ‘normal’ determination of result valueis already given in 10.3.2, Well-formedness Rules of the
Evaluations Package.

let
-- the attributes that are the formal qualifiers. Because and association class has two or
-- more association ends, we must select the qualifiers from the other end(s), not from
-- the source of this expression. We allow only 2-ary associations.
formalQualifiers : Sequence(Attribute) =
self.model.referred A ssociationClass.connection->any( C |
¢ <> self.navigationSource).qualifier.asSequence() ,

-- the attributes of the class at the qualified end. Here we aready assume that an
-- AssociationEnd will be owned by a Classifier, as will most likely be the casein the
-- UML 2.0 Infrastructure.
objectAttributes: Sequence(Attribute) =
self.model.referredA ssociationCl ass.connection->any( ¢ |
¢ <> self.navigationSource).owner.feature->select( f |
f.isOcl Type( Attribute ).asSequence() ,
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-- the rolename of the qualified association end
qualifiedEnd: String = self.model.referredA ssociationClass.connection->any( ¢ |
¢ <> self.navigationSource).name,

-- the values for the qualifiers given in the ocl expression
qualifierValues : Sequence( Value) = self.qualifiers.asSequence()

-- the objects from which a subset must be selected through the qualifiers
normal Result =
source.resultValue.getCurrentVal ueOf (ref erredA ssoci ationCl ass.name)

in

-- if name of attribute of object at qualified end equals name of formal qualifier then
-- if value of attribute of object at qualified end equals the value given in the exp

-- then select this object and put it in the resultVa ue of this expression.

quaifiers->size <> 0implies
normal Result->select( obj |
Sequence{ 1..formal Qualifiers->size()} ->forAll (i |
objectAttributes->at(i).name = formal Qualifiers->at(i).name and
obj.qualifiedEnd.getCurrentVal ueOf( objectAttributes->at(i).name) =
qualifiersValues->at(i) ))

AssociationEndCallExpEval

[1] The string that represents the referredA ssociationEnd in the evaluation must be equal to the name of the
referredAssociationEnd in the corresponding expression.

context AssociationEndCallExpEval inv:
referredAssociationEnd = model .referredA ssociationEnd.name

[2] Theresult value of an association end call expression evaluation that has qualifiers, is determined according to the
following rule. The ‘normal’ determination of result valueis aready givenin 10.3.2, Well-formedness Rules of the
Evaluations Package.

let
-- the attributes that are the formal qualifiers
formalQualifiers : Sequence(Attribute) = self.model.referredAssociationEnd.qualifier ,

-- the attributes of the class at the qualified end
objectAttributes: Sequence(Attribute) =
(if self.resultValue.model.isOclKind( Collection ) implies
then self.resultValue.model .ocl AsType( Collection ).elementType->
collect( feature->asOcl Type( Attribute ) )
el se self.resultVal ue.model ->coll ect( feature->asOcl Type( Attribute ) )

endif).asSequence() ,

-- the values for the qualifiers given in the ocl expression
qualifierValues : Sequence( Value ) = self.qualifiers.asSequence()

132 Object Constraint Language, v2.2



-- the objects from which a subset must be selected through the qualifiers
normal Result =
source.resultValue.getCurrentVal ueOf (referred A ssoci ationEnd.name)

in

-- if name of attribute of object at qualified end equals name of formal qualifier then
-- if value of attribute of object at qualified end equals the value given in the exp

-- then select this object and put it in the resultValue of this expression.

quaifiers->size <> 0implies
normal Result->select( obj |
Sequence({ 1..forma Qualifiers->size()} ->forAll(i |
objectAttributes->at(i).name = formal Qualifiers->at(i).name and
obj.getCurrentVal ueOf ( objectAttributes->at(i).name) =
qualifiersValues->at(i) ))

AttributeCallExpEval

[1] The string that represents the referredAttribute in the evaluation must be equal to the name of the referredAttribute in the
corresponding expression.

context AttributeCallExpEval inv:
referredAttribute = model .referredAttribute.name

BooleanLiteralExpEval

[1] Theresult value of aboolean literal expression is equal to the literal expressionitself (‘true’ or ‘false’). Because the
booleanSymboal attribute in the abstract syntax is of type Boolean as defined in the MOF, and resultValue is of type
Primitive as defined in this clause, a conversion is necessary. For the moment, we assume the additional operation
M OFbooleanToOCL boolean() exists. Thiswill need to be re-examined when the MOF and/or UML Infrastructure
submissions are finalized.

context BooleanL itera ExpEval inv:
resultValue = model .booleanSymbol .M OFbool eanToOCL bool ean()

CollectionltemEval
No extra well-formedness rules.

CollectionLiteralExpEval
No extra well-formedness rules.

CollectionLiteralPartEval

No extra well-formedness rules.

CollectionRangeEval

No extra well-formedness rules.

Object Constraint Language, v2.2 133



EvalEnvironment

Because there is no mapping of name space to an abstract syntax concept, there are no extra well-formedness rules.

LiteralExpEval
No extra well-formedness rules.

LoopExpEval

No extra well-formedness rules.

EnumLiteralExpEval
[1] Theresult value of an EnumLiteral ExpEval must be equal to one of the literals defined in its type.

context EnumLiteral ExpEval inv:
model.type->includes( self.resultValue )

IfExpEval

[1] The condition evaluation corresponds with the condition of the expression, and likewise for the thenExpression and the
else Expression.

context IfExpEval inv:

condition.model = model.condition
thenExpression.model = model.thenExpression
elseExpression.model = model.elseExpression

IntegerLiteralExpEval
context IntegerLitera ExpEval inv:
resultValue = model.integer Symbol

IterateExpEval
[1] Themodel of the result of an iterate expression evaluation is equal to the model of the result of the associated IterateExp.

context IterateExpEval
inv: result.model = model.result )

IteratorExpEval

No extra well-formedness rules.

LetExpEval
[1] All parts of alet expression evaluation correspond to the parts of its associated LetExp.

context LetExpEval inv:

in.model = model.in and

initExpression.model = model.initExpression and
variable = model .variable.varName
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LoopExpEval
[1] All sub evaluations have the same model, which is the body of the associated L oopEXxp.

context LoopExpEval
inv: bodyEvals->forAll( model = self.model )

ModelPropertyCallExpEval
No extra well-formedness rules.

NumericLiteralExpEval
No extra well-formedness rules.

NavigationCallExpEval

[1] Thestring that represents the navigation source in the eval uation must be equal to the name of the navigationSource in the
corresponding expression.

context NavigationCallExpEval inv:
navigationSource = model .navigationSource.name

[2] Thequaifiersof anavigation call expression evaluation must correspond with the qualifiers of the associated expression.

context NavigationCallExpEval inv:
Sequence({ 1..qualifiers->size()} ->forAll (i |
qualifiers->at(i).model = model.qualifiers->at(i).type)

OclExpEval
[1] Theresult value of the evaluation of an ocl expression must be an instance of the type of that expression.

context OclExpEval
inv: resultValue.isl nstanceOf ( model.type)

OclMessageExpEval
[1] An ocl message expression evaluation must correspond with its message expression.

context OclMessageExpEval
inv: target.model = model.target
inv: Set{ 1..arguments->size()}->fordl (i | arguments->at(i) = model .arguments->at(i) )

[2] The name of the resulting ocl message value must be equal to the name of the operation or signal indicated in the message
expression.
context OclMessageExpEval inv:
if model.operation->size() = 1
then resultValue.name = model .operation.name
e se resultValue.name = model .signal .name
endif

[3] TheisSgnal, isSyncOperation, and isAsyncOperation attributes of the result value of an ocl message expression
evaluation must correspond to the operation indicated in the ocl message expression.
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context OclM essageExpEval inv:
if model.calledOperation->size() = 1
then model .calledOperation.isAsynchronous = true implies
resultValue.isA syncOperation = true
else -- message represents sending a signal
resultValueisSigna = true
endif

[4] The arguments of an ocl message expression evaluation must correspond to the formal input parameters of the operation,
or the attributes of the signal indicated in the ocl message expression.
context OclMessageExpEval
inv: model.calledOperation->size() = 1 implies

Sequence({ 1.. arguments->size()} ->forAll(i |
arguments->at(i).variable->size() = 1 implies
model.calledOperation.operation.parameter->
select( kind = ParameterDirectionKind::in )->at(i).name =
arguments->at(i).variable
and
arguments->at(i).expression->size() = 1 implies
model .calledOperati on.operation.parameter->
select( kind = ParameterDirectionKind::in )at(i).type =
arguments->at(i).expression.model
inv: model.sentSignal->size() = 1implies
Sequence{ 1.. arguments->size()} ->forAll(i |
arguments->at(i).variable->size() = 1 implies
model.sentSignal.signal .feature->sel ect(
arguments->at(i).variable )->notEmpty()
and
arguments->at(i).expression->size() = 1 implies
model.sentSignal.signal .feature.ocl AsType(Structural Feature).type =
arguments->at(i).expression.model

[5] The arguments of the return message of an ocl message expression evaluation must correspond to the names given by the
formal output parameters, and the result type of the operation indicated in the ocl message expression. Note that the
Parameter typeis defined in the UML 1.4 foundation package.
context OclM essageExpEval
inv: let returnArguments: Sequence{ NameValueBindings) =

resultVal ue.returnM essage.arguments,,
formal Parameters. Sequence{ Parameter } =
model.calledOperati on.operation.parameter

in
resultValue.returnMessage->size() = 1 and model.calledOperation->size() = 1 implies
-- ‘result’ must be present and have correct type
returnArguments->any( name = ‘result’ ).valuemodel =
formal Parameters->sel ect( kind = ParameterDirectionKind::return ).type
and
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-- al ‘out’ parameters must be present and have correct type
Sequence{ 1.. returnArguments->size()} ->forAll(i |
returnArguments->at(i).name =
formal Parameters->select( kind = ParameterDirectionKind::out )->at(i).name
and
returnArguments->at(i).val ue.model =
formal Parameters->select( kind = ParameterDirectionKind::out )->at(i).type)

OclMessageArgEval
[1] An ocl message argument evaluation must correspond with its argument expression.

context OclMessageArgEval
inv: model .variable->size() = 1

implies variable->size() = 1 and variable.symbol = model.variable.name
inv: model.expression->size() = 1

implies expression and expression.model = model .expression

OperationCallExpEval

[1] Theresult value of an operation call expression will have the type given by the Operation being called, if the operation has
no out or in/out parameters, else the type will be atuple containing all out, in/out parameters and the result value.

context OperationCallEval inv:
let outparameters : Set( Parameter ) = referredOperation.parameter->select(p |
p.kind = ParameterDirectionKind::in/out or
p.kind = ParameterDirectionKind::out)
in
if outparameters->isEmpty()
then resultValue.model = model.referredOperati on.parameter
->select( kind = ParameterDirectionKind::result ).type
else resultValue.model .ocl I SType( TupleType ) and
outparameters->forAll( p |
resultValue.model .attribute->exist( a| a.name = p.name and a.type = p.type))
endif
[2] Thestring that represents the referred operation in the evaluation must be equal to the name of the referredOperation in
the corresponding expression.
context OperationCallExpEval inv:
referredOperation = model.referredOperation.name

[3] Thearguments of an operation call expression evaluation must correspond with the arguments of its associated
expression.

context OperationCall ExpEval inv:
Sequence({ 1..arguments->size} ->forAll( i |
arguments->at(i).model = model .arguments->at(i) )
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PropertyCallExpEval

[1] The source of the evaluation of a property call corresponds to the source of its associated expression.

context PropertyCallExpEval inv:
source.model = model.source

PrimitiveLiteralExpEval

No extra well-formedness rules.

ReallLiteralExpEval
context RealLiteral ExpEval inv:
resultValue = model.real Symbol

StringLiteralExpEval
context StringLiteral ExpEval inv:
resultValue = model .stringSymbol

TupleLiteralExpEval
context TupleLiteral ExpEval inv:
model.tuplePart = tuplePart.model

UnspecifiedValueExpEval

[1] Theresult of an unspecified value expression is a randomly picked instance of the type of the expression.

context UnspecifiedValueExpEval

inv: resultValue = model.type.allInstances()->any( true)
inv: resultValue.model = model.type

VariableDeclEval
context VariableDeclEval inv:

model.initExpression = initExpression.model

VariableExpEval
No extra well-formedness rules.
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11 OCL Standard Library

This clause describes the OCL Standard Library of predefined types, their operations, and predefined expression
templates in the OCL. This sub clause contains all standard types defined within OCL, including all the operations
defined on those types. For each operation the signature and a description of the semantics is given. Within the
description, the reserved word ‘result’ is used to refer to the value that results from evaluating the operation. In several
places, post conditions are used to describe properties of the result. When there is more than one postcondition, all
postconditions must be true. A similar thing is true for multiple preconditions. If these are used, the operation is only
defined if all preconditions evaluate to true.

11.1 Introduction

The structure, syntax, and semantics of the OCL is defined in Clauses 8 (“Abstract Syntax”), 9 (“Concrete Syntax”), and
10 (“Semantics Described using UML™). This sub clause adds another part to the OCL definition: a library of predefined
types and operations. Any implementation of OCL must include this library package. This approach has also been taken
by e.g., the Java definition, where the language definition and the standard libraries are both mandatory parts of the
complete language definition.

The OCL standard library defines a number of types. It includes several primitive types. Integer, Real, String, and
Boolean. These are familiar from many other languages. The second part of the standard library consists of the collection
types. They are Bag, Set, Sequence, and Collection where Collection is an abstract type. Note that all types defined in the
OCL standard library are instances of an abstract syntax class. The OCL standard library exists at the modeling level, also
referred to as the M1 level, where the abstract syntax is the metalevel or M2 level.

Next to definitions of types the OCL standard library defines a number of template expressions. Many operations defined
on collections map not on the abstract syntax metaclass FeatureCallExp, but on the IteratorExp. For each of these a
template expression that defines the name and format of the expression is defined in 11.7, Predefined Iterator Expressions.

The Standard Library may be extended with new types, new operations and new iterators. In particular new operations
can be defined for collections.

11.2 The OclAny, OclVoid, Oclinvalid, and OclMessage Types

11.2.1 OclAny

All types in the UML model and the primitive and collection types in the OCL standard library conforms to the type
OclAny. Conceptually, OclAny behaves as a supertype for all the types. Features of OclAny are available on each object
in all OCL expressions. OclAny is itself an instance of the metatype AnyType.

All classes in a UML model inherit all operations defined on OclAny. To avoid name conflicts between properties in the
model and the properties inherited from OclAny, all names on the properties of OclAny start with ‘ocl.” Although
theoretically there may still be name conflicts, they can be avoided. One can also use qualification by OclAny (name of
the type) to explicitly refer to the OclAny properties.

Operations of OclAny, where the instance of OclAny is called object.
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11.2.2 OclMessage

This sub clause contains the definition of the standard type OclMessage. As defined in this sub clause, each ocl message
type is actually a template type with one parameter. ‘T’ denotes the parameter. A concrete ocl message type is created by
substituting an operation or signal for the T.

The predefined type OclMessage is an instance of MessageType. Every OclMessage is fully determined by either the
operation, or signal given as parameter. Note that there is conceptually an undefined (infinite) number of these types, as
each is determined by a different operation or signal. These types are unnamed. Every type has as attributes the name of
the operation or signal, and either all formal parameters of the operation, or all attributes of the signal. OclMessage is
itself an instance of the metatype MessageType.

OclMessage has a number of predefined operations, as shown in the OCL Standard Library.

11.2.3 OclVoid

The type Ocl\Void is a type that conforms to all other types except Ocllnvalid. It has one single instance, identified as null,
that corresponds with the UML LiteralNull value specification. Any property call applied on null results in OclInvalid,
except for the operation ocllsUndefined() and oclislnvalid(). However, by virtue of the implicit conversion to a collection
literal, an expression evaluating to null can be used as source of collection operations (such as ‘isEmpty’). If the sourceis
the null literal, it is implicitly converted to Bag{}.

Ocl\oid is itself an instance of the metatype VoidType.

11.2.4 Oclinvalid

The type Ocllinvalid is a type that conforms to all other types except OclVoid. It has one single instance, identified as
invalid. Any property call applied on invalid results in Oclinvalid, except for the operations ocllsUndefined() and
ocllslnvalid(). Oclinvalid is itself an instance of the metatype InvalidType.

11.2.5 Operations and Well-formedness Rules

OCLAny
=(object2: OclAny) : Boolean

True if self is the same object as object2. Infix operator.
post: result = (self = object?)

<> (object2 : OclAny) : Boolean

True if self is a different object from object2. Infix operator.
post: result = not (self = object2)

ocllsNew() : Boolean

Can only be used in a postcondition. Evaluates to true if the self is created during performing the operation (for instance,
it didn't exist at precondition time).
post: self @pre.oclIsUndefined()

ocllsUndefined() : Boolean

Evaluates to true if the self is equal to Oclinvalid or equal to null.
post: result = self.isTypeOf( OclVoid) or self.isTypeOf(Oclinvalid)
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ocllslnvalid() : Boolean

Evaluates to true if the self is equal to Oclinvalid.
post: result = self.isTypeOf( Ocllnvalid)

oclAsType(type: Classifier) : T

Evaluates to self, where self is of the type identified by t. The type t may be any classifier defined in the UML model; if

the actual type of self at evaluation time does not conform to t, then the ocl AsType operation evaluates to null.

In the case of feature redefinition, casting an object to a supertype of its actual type does not access the supertype's

definition of the feature; according to the semantics of redefinition, the redefined feature simply does not exist for the

object. However, when casting to a supertype, any features additionally defined by the subtype are suppressed.

post: (result = self) and result.oclIsTypeOf( t)
ocll sTypeOf(type: Classifier) : Boolean

Evaluates to true if self is of the type t but not a subtype of t
post: self.ocl Type() = type

ocllsKindOf(type : Classifier) : Boolean

Evaluates to true if the type of self conformstot. That is, self is of typet or a subtype of t.

post: self.ocl Type().conformsTo(type)

ocllslnState(statespec : OclSate) : Boolean

Evaluates to true if the self is in the state indentified by statespec.
post: -- TBD

OclVoid = (object : OclAny) : Boolean

Redefines the OclAny operation, returning true if object is null.
post: result = object.ocllsTypeOf(OclVoid)

Ocllinvalid = (object : OclAny) : Boolean

Redefines the OclAny operation, returning true if object is invalid.
post: result = object.ocllsTypeOf(OclInvalid)

oclType() : Classifier

Evaluates to the type of which self is an instance.
post: self.ocllsTypeOf (result)

11.2.6 OclMessage

hasReturned() : Boolean

True if type of template parameter is an operation call, and the called operation has returned a value. This implies the fact

that the message has been sent. False in all other cases.
post: --

result() : <<Thereturn type of the called operation>>
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Returns the result of the called operation, if type of template parameter is an operation call, and the called operation has
returned a value. Otherwise the undefined value is returned.

pre: hasReturned()
isSignal Sent() : Boolean
Returns true if the OclMessage represents the sending of a UML Signal.

isOperationCall() : Boolean

Returns true if the OclMessage represents the sending of a UML Operation call.

11.3 Primitive Types

The primitive types defined in the OCL standard library are Integer, Real, String, and Boolean. They are all instances of
the metaclass Primitive from the UML core package.

11.3.1 Real

The standard type Real represents the mathematical concept of real. Note that Integer is a subclass of Real, so for each
parameter of type Real, you can use an integer as the actual parameter. Real isitself an instance of the metatype
PrimitiveType (from UML).

11.3.2 Integer

The standard type Integer represents the mathematical concept of integer. Integer is itself an instance of the metatype
PrimitiveType (from UML).

11.3.3 String

The standard type String represents strings, which can be both ASCII or Unicode. String is itself an instance of the
metatype PrimitiveType (from UML).

11.3.4 Boolean

The standard type Boolean represents the common true/false values. Boolean is itself an instance of the metatype
PrimitiveType (from UML).

11.3.5 UnlimitedNatural

The standard type UnlimitedNatural is used to encode the upper value of a multiplicity specification. UnlimitedNatural is
itself an instance of the metatype UnlimitedNatura Type.

11.4 Operations and Well-formedness Rules
This sub clause contains the operations and well-formedness rules of the primitive types.

11.4.1 Real

Note that Integer is a subclass of Real, so for each parameter of type Real, you can use an integer as the actual parameter.
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+(r : Real) : Real

The value of the addition of self and r.

-(r : Real) : Real

The value of the subtraction of r from self.
* (r : Real) : Real

The value of the multiplication of self and r.
- Real

The negative value of self.

/(r : Real) : Real

The value of self divided by r. Evaluates to Ocllnvalid if r is equal to zero.
abs() : Real

The absolute value of self.
post: if self < 0 then result = - self else result = salf endif

floor () : Integer

The largest integer that is less than or equal to self.
post: (result <= self) and (result + 1 > self)

round() : Integer

The integer that is closest to self. When there are two such integers, the largest one.

post: ((self - result).abs() < 0.5) or ((self - result).abs() = 0.5 and (result > self))
max(r : Real) : Real

The maximum of self and r.
post: if self >=r then result = sdlf elseresult = r endif

min(r : Real) : Real

The minimum of self and r.
post: if self <=r then result = self else result = r endif

<(r : Real) : Boolean
True if self isless thanr.
> (r : Real) : Boolean

True if self is greater thanr.
post: result = not (self <=r)

<=(r : Real) : Boolean

True if self is less than or equal tor.
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post: result = ((self = r) or (self <))
>=(r : Real) : Boolean

True if self is greater than or equal tor.
post: result = ((self =) or (self >r))

toSring() : Sring

Converts self to a string value.

11.4.2 Integer

- Integer

The negative value of self.

+ (i : Integer) : Integer

The value of the addition of self and i.

- (i : Integer) : Integer

The value of the subtraction of i from self.
* (i : Integer) : Integer

The value of the multiplication of self and i.

/(i : Integer) : Real

The value of self divided by i.Evaluates to Oclinvalid if r is equal to zero.

abs() : Integer

The absolute value of self.
post: if self < 0 then result = - self elseresult = self endif

div(i: Integer) : Integer

The number of times that i fits completely within self.

pre:i<>0

post: if self /i >= 0 then result = (self /i).floor()

else result = -((-self/i).floor())
endif

mod( i : Integer) : Integer
The result is self modulo i.

post: result = self - (self.div(i) * i)
max(i : Integer) : Integer

The maximum of self ani.
post: if self >=i then result = self else result =i endif

144

Object Constraint Language, v2.2



min(i : Integer) : Integer

The minimum of self ani.
post: if self <=1 then result = self else result =i endif

toSring() : Sring

Converts self to a string value.

11.4.3 String
+(s: &ring) : Sring

The concatenation of self and s.
post: result = self.concat(s)

size() : Integer
The number of characters in self.
concat(s: Sring) : String

The concatenation of self and s.
post: result.size() = self.size() + string.size()
post: result.substring(1, self.size() ) = self
post: result.substring(self.size() + 1, result.size() ) = s

substring(lower : Integer, upper : Integer) : Sring

The sub-string of self starting at character number lower, up to and including character number upper. Character numbers
run from 1 to self.size().

pre: 1 <= lower

pre: lower <= upper

pre: upper <= self.size()

tolnteger () : Integer
Converts self to an Integer value.

toReal() : Real
Converts self to a Real value.

toUpper Case() : String

Converts self to upper case, if appropriate to the locale. Otherwise, returns the same string as self.
toL ower Case() : I nteger

Converts self to lower case, if appropriate to the locale. Otherwise, returns the same string as self.
indexOf(s: Sring) : Integer

Queries the index in self at which s is a substring of self, or zero if sis not a substring of self. The empty string is
considered to be a substring of every string but the empty string, at index 1. No string is a substring of the empty string.
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post: self.size() = 0impliesresult =0
post: s.size() = 0 and self.size() > 0 impliesresult = 1
post: s.size() > 0 and result > 0 implies self.substring(result, result + s.size() - 1) =s

equalsignoreCase(s: Sring) : I nteger
Queries whether s and self are equivalent under case-insensitive collation in the locale of self.
at(i : Integer) : String

Queries the character at position i in self.
prei>0
pre: i <= self.size()
post: result = self.substring(i, i)

characters() : Sequence(Sring)

Obtains the characters of self as a sequence.
post: result =
if self.size() = O then
Sequencef{ }

ese
Sequence({ 1..self.size()} ->iterate(i; acc : Sequence(String) = Sequence{} |
acc->append(self.at(i)))
endif
toBoolean() : Boolean
Converts self to a boolean value.
post: result = (self = 'true’)

11.4.4 Boolean

or (b : Boolean) : Boolean

True if either self or b is true.

xor (b : Boolean) : Boolean

True if either self or b is true, but not both.
post: (self or b) and not (self = b)

and (b : Boolean) : Boolean
True if both bl and b are true.

not : Boolean

True if self is false.
post: if self then result = false else result = true endif

implies (b : Boolean) : Boolean

True if self is false, or if self istrue and b is true.
post: (not self) or (self and b)
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toSring() : Sring

Converts self to a string value.

11.5 Collection-Related Types

This sub clause defines the collection types and their operations. As defined in this sub clause, each collection type is
actually a template type with one parameter. ‘T’ denotes the parameter. A concrete collection type is created by
substituting a type for the T. So Set (Integer) and Bag (Person) are collection types.

11.5.1 Collection

Collection is the abstract supertype of all collection types in the OCL Standard Library. Each occurrence of an object in a
collection is called an element. If an object occurs twice in a collection, there are two elements. This sub clause defines
the properties on Collections that have identical semantics for all collection subtypes. Some operations may be defined
within the subtype as well, which means that there is an additional postcondition or a more specialized return value.
Collection is itself an instance of the metatype CollectionType.

The definition of several common operations is different for each subtype. These operations are not mentioned in this sub
clause.

The semantics of the collection operations is given in the form of a postcondition that uses the IterateExp of the
Iterator Exp construct. The semantics of those constructs is defined in Clause 10 (“ Semantics Described using UML™). In
several cases the postcondition refers to other collection operations, which in turn are defined in terms of the IterateExp
or Iterator Exp constructs.

11.5.2 Set

The Set is the mathematical set. It contains elements without duplicates. Set is itself an instance of the metatype SetType.

11.5.3 OrderedSet

The OrderedSet is a Set, the elements of which are ordered. It contains no duplicates. OrderedSet is itself an instance of
the metatype OrderedSetType.

An OrderedSet is not a subtype of Set, neither a subtype of Sequence. The common supertype of Sets and OrderedSetsis
Collection.

11.5.4 Bag

A bag is a collection with duplicates allowed. That is, one object can be an element of a bag many times. There is no
ordering defined on the elements in a bag. Bag is itself an instance of the metatype BagType.

11.5.5 Sequence

A sequence is a collection where the elements are ordered. An element may be part of a sequence more than once.
Sequence is itself an instance of the metatype SequenceType.

A Sentence is not a subtype of Bag. The common supertype of Sentence and Bags is Collection.
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11.6 Operations and Well-formedness Rules

This sub clause contains the operations and well-formedness rules of the collection types.

11.6.1 Collection

= (c: Collection(T)) : Boolean

True if c is a collection of the same kind as self and contains the same elements in the same quantities and in the same

order, in the case of an ordered collection type.

<> (c: Collection(T)) : Boolean

Trueif cis not equal to self.
post: result = not (self = c)

size() : Integer

The number of elements in the collection self.
post: result = self->iterate(elem; acc : Integer = 0| acc + 1)

includes(abject : T) : Boolean

True if object is an element of self, false otherwise.
post: result = (self->count(object) > 0)

excludes(object : T) : Boolean

True if object is not an element of self, false otherwise.
post: result = (self->count(object) = 0)

count(object : T) : Integer

The number of times that object occurs in the collection self.
post: result = self->iterate( elem; acc : Integer =0 |
if elem = object then acc + 1 el'se acc endif)

includesAll(c2: Collection(T)) : Boolean

Does self contain all the elements of c2 ?
post: result = c2->forAll(elem | self->includes(elem))

excludesAll(c2 : Coallection(T)) : Boolean

Does self contain none of the elements of c2 ?
post: result = c2->forAll(elem | self->excludes(elem))

isEmpty() : Boolean

Is self the empty collection?
post: result = ( self->size() =0)

Note: null->isEmpty() returns 'true' in virtue of the implicit casting from null to Bag{}

notEmpty() : Boolean
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I's self not the empty collection?
post: result = ( self->size() <> 0)

null->notEmpty() returns ‘false' in virtue of the implicit casting from null to Bag{}.
max(): T

The element with the maximum value of all elements in self. Elements must be of a type supporting the max operation.
The max operation - supported by the elements - must take one parameter of type T and be both associative and
commutative. Integer and Real fulfill this condition.

post: result = self->iterate( elem; acc: T = self first() | acc.max(elem) )

min(): T

The element with the minimum value of all elements in self. Elements must be of a type supporting the min operation.
The min operation - supported by the elements - must take one parameter of type T and be both associative and
commutative. Integer and Real fulfill this condition.

post: result = self->iterate( elem; acc : T = salf first() | acc.min(elem) )

sum(): T

The addition of all elements in self. Elements must be of atype supporting the + operation. The + operation must take one
parameter of type T and be both associative: (a+b)+c = a+(b+c), and commutative: a+b = b+a. Integer and Real fulfill this
condition.

post: result = self->iterate( elem; acc: T =0 | acc + elem)

product(c2: Collection(T?2)) : Set( Tuple( first: T, second: T2))

The cartesian product operation of self and c2.
post: result = self->iterate (el; acc: Set(Tuple(first: T, second: T2)) = Set{} |
c2->iterate (e2; acc2: Set(Tuple(first: T, second: T2)) = acc |
acc2->including (Tuple{first = el, second =€2}) ) )

asSet() : Set(T)

The Set containing all the elements from self, with duplicates removed.
post: result->forAll(elem | self ->includes(elem))
post: self ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T)

An OrderedSet that contains all the elements from self, with duplicates removed, in an order dependent on the particul ar
concrete collection type.

post: result->forAll(elem | self->includes(elem))

post: self ->forAll(elem | result->includes(elem))

asSequence() : Sequence(T)

A Sequence that contains all the elements from self, in an order dependent on the particular concrete collection type.
post: result->forAll(elem | self->includes(elem))
post: self ->forAll(elem | result->includes(elem))

asBag() : Bag(T)
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The Bag that contains all the elements from self.
post: result->forAll(elem | self->includes(elem))
post: self ->forAll(elem | result->includes(elem))

flatten() : Collection(T2)

If the element type is not a collection type, this results in the same collection as self. If the element type is a collection
type, the result is a collection containing all the elements of all the recursively flattened elements of self.

Well-formedness rules

[1] A collection cannot contain Ocllnvalid values.
context Collection
inv: self->forAll(not ocllsinvalid())

11.6.2 Set
union(s: Set(T)) : Set(T)

The union of self and s.
post: result->forAll(elem | self->includes(elem) or s->includes(elem))
post: self ->forAll(elem | result->includes(elem))
post: s ->forAll(elem | result->includes(elem))

union(bag : Bag(T)) : Bag(T)

The union of self and bag.
post: result->forAll(elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: self->forAll(elem | result->includes(elem))
post: bag ->forAll(elem | result->includes(elem))

=(s: Set(T)) : Boolean

Evaluates to true if self and s contain the same elements.
post: result = (self->forAll(elem | s->includes(elem)) and
s->forAll(elem | self->includes(elem)) )

intersection(s: Set(T)) : Set(T)

The intersection of self and s (i.e., the set of all elements that are in both self and s).

post: result->forAll(elem | self->includes(elem) and s->includes(elem))
post: self->forAll(elem | s ->includes(elem) = result->includes(elem))
post: s ->forAll(elem | self->includes(elem) = result->includes(elem))

intersection(bag : Bag(T)) : Set(T)

The intersection of self and bag.
post: result = self->intersection( bag->asSet )

—(s: Set(T)) : Set(T)

The elements of self, which are not in s.
post: result->forAll(elem | self->includes(elem) and s->excludes(elem))
post: self ->forAll(elem | result->includes(elem) = s->excludes(elem))
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including(object : T) : Set(T)

The set containing all elements of self plus object.
post: result->forAll(elem | self->includes(elem) or (elem = object))
post: self- >forAll(elem | result->includes(elem))
post: result->includes(object)

excluding(object : T) : Set(T)

The set containing all elements of self without object.
post: result->forAll(elem | self->includes(elem) and (elem <> object))
post: self- >forAll(elem | result->includes(elem) = (object <> elem))
post: result->excludes(object)

symmetricDifference(s: Set(T)) : Set(T)

The sets containing all the elements that are in self or s, but not in both.
post: result->forAll(elem | self->includes(elem) xor s->includes(elem))
post: self->forAll(elem | result->includes(elem) = s ->excludes(elem))
post: s ->forAll(elem | result->includes(elem) = self->excludes(elem))

count(object : T) : Integer

The number of occurrences of object in self.
post: result <=1

flatten() : Set(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same set as self. If the
element type is a collection type, the result is the set containing all the elements of all the recursively flattened elements
of self.
post: result = if self.ocl Type().elementType.ocl I sKindOf (CollectionType) then
self->iterate(c; acc : Set(T2) = Set{} |
acc->union(c->flatten()->asSet() ) )
ese
self
endif

asSet() : Set(T)

Redefines the Collection operation. A Set identical to self. This operation exists for convenience reasons.
post: result = self

asOrderedSet() : OrderedSet(T)

Redefines the Collection operation. An OrderedSet that contains al the elements from self, in undefined order.
post: result->forAll(elem | self->includes(elem))

asSequence() : Sequence(T)

Redefines the Collection operation. A Sequence that contains all the elements from self, in undefined order.
post: result->forAll(elem | self->includes(elem))
post: self->forAll(elem | result->count(elem) = 1)
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asBag() : Bag(T)

Redefines the Collection operation. The Bag that contains all the elements from self.

post: result->forAll(elem | self->includes(elem))
post: self->forAll(elem | result->count(elem) = 1)

11.6.3 OrderedSet
append (object: T) : OrderedSet(T)

The set of elements, consisting of all elements of self, followed by object.
post: result->size() = self->size() + 1
post: result->at(result->size() ) = object
post: Sequence{ 1..self->size() }->forAll(index : Integer |
result->at(index) = self ->at(index))

prepend(object : T) : OrderedSet(T)

The sequence consisting of object, followed by all elements in self.
post: result->size = self->size() + 1
post: result->at(1) = object
post: Sequence{ 1..self->size()} ->forAll(index : Integer |
self->at(index) = result->at(index + 1))

insertAt(index : Integer, object : T) : OrderedSet(T)

The set consisting of self with object inserted at position index.
post: result->size = self->size() + 1
post: result->at(index) = object
post: Sequence({ 1..(index - 1)}->forAll(i : Integer |
self->at(i) = result->at(i))
post: Sequence{ (index + 1)..self->size()}->forAll(i : Integer |
self->at(i) = result->at(i + 1))

subOrderedSet(lower : Integer, upper : Integer) : OrderedSet(T)

The sub-set of self starting at number lower, up to and including element number upper.

pre: 1 <=lower
pre: lower <= upper
pre: upper <= self->size()
post: result->size() = upper -lower + 1
post: Sequence{lower..upper}->forAll(index |
result->at(index - lower + 1) =
self->at(index))

at(i: Integer) : T

The i-th element of self.
pre:i>=1andi <= self->size()

indexOf(obj : T) : Integer

The index of object obj in the sequence.
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pre : self->includes(aobj)
post : self->at(i) = obj

first(): T

The first element in self.
post: result = self->at(1)

last() : T

The last element in self.
post: result = self->at(self->size() )

reverse() : OrderedSet(T)

The ordered set of elements with same elements but with the opposite order.
post: result->size() = self->size()

asSet() : Set(T)

Redefines the Set operation. Returns a Set containing all of the elements of self, in undefined order.

asOrderedSet() : OrderedSet(T)

Redefines the Set operation. An OrderedSet identical to self.
post: result = self
post: Sequence{ 1..self.size()}->forAll(i | result->at(i) = self->at(i))

asSequence() : Sequence(T)

Redefines the Set operation. A Sequence that contains all the elements from self, in the same order.
post: Sequencef 1..self.size()} ->forAll(i | result->at(i) = self->at(i))

asBag() : Bag(T)
Redefines the Set operation. The Bag that contains all the elements from self, in undefined order.

11.6.4 Bag
= (bag: Bag(T)) : Boolean

True if self and bag contain the same elements, the same number of times.
post: result = (self->forAll(elem | self->count(elem) = bag->count(elem)) and
bag->forAll(elem | bag->count(elem) = self->count(elem)) )

union(bag : Bag(T)) : Bag(T)

The union of self and bag.
post: result->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: self ->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: bag ->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem))

union(set : Set(T)) : Bag(T)

The union of self and set.
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post: result->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))
post: self ->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))
post: set ->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))

intersection(bag : Bag(T)) : Bag(T)

The intersection of self and bag.
post: result->forAll(elem |
result->count(elem) = self->count(elem).min(bag->count(elem)) )
post: self->forAll(elem |
result->count(elem) = self->count(elem).min(bag->count(elem)) )
post: bag->forAll(elem |
result->count(elem) = self->count(elem).min(bag->count(elem)) )

inter section(set : Set(T)) : Set(T)

The intersection of self and set.
post: result->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) )
post: self ->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) )
post: set ->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) )

including(object : T) : Bag(T)

The bag containing all elements of self plus object.
post: result->forAll(elem |
if elem = object then
result->count(elem) = self->count(elem) + 1
else
result->count(elem) = self->count(elem)
endif)
post: self->forAll(elem |
if elem = object then
result->count(elem) = self->count(elem) + 1
else
result->count(elem) = self->count(elem)
endif)

excluding(object : T) : Bag(T)

The bag containing all elements of self apart from all occurrences of object.
post: result->forAll(elem |
if elem = object then
result->count(elem) = 0
else
result->count(elem) = self->count(elem)
endif)
post: self->forAll(elem |
if elem = object then
result->count(elem) = 0
ese
result->count(elem) = self->count(elem)
endif)
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count(object : T) : Integer
The number of occurrences of object in self.

flatten() : Bag(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same bag as self. If the
element type is a collection type, the result is the bag containing all the elements of all the recursively flattened elements

of self.
post: result = if self.ocl Type().elementType.ocl I sKindOf (CollectionType) then
self->iterate(c; acc : Bag(T2) = Bag{} |
acc->union(c->flatten()->asBag() ) )
else
self
endif

asBag() : Bag(T)

Redefines the Collection operation. A Bag identical to self. This operation exists for convenience reasons.
post: result = self

asSequence() : Sequence(T)

Redefines the Collection operation. A Sequence that contains all the elements from self, in undefined order.
post: result->forAll(elem | self->count(elem) = result->count(elem))
post: self ->forAll(elem | self->count(elem) = result->count(elem))

asSet() : Set(T)

Redefines the Collection operation. The Set containing all the elements from self, with duplicates removed.
post: result->forAll(elem | self ->includes(elem))
post: self ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T)

Redefines the Collection operation. An OrderedSet that contains al the elements from self, in undefined order, with

duplicates removed.
post: result->forAll(elem | self ->includes(elem))
post: self ->forAll(elem | result->includes(elem))
post: self ->forAll(elem | result->count(elem) = 1)

11.6.5 Sequence

count(object : T) : Integer

The number of occurrences of object in self.
=(s: Sequence(T)) : Boolean

True if self contains the same elements as s in the same order.
post: result = Sequencef 1..self->size()}->forAll(index : Integer |
salf->at(index) = s->at(index))
and
self->size() = s->size()
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union (s: Sequence(T)) : Sequence(T)

The sequence consisting of all elementsin self, followed by all elementsin s.
post: result->size() = self->size() + s->size()
post: Sequence( 1..self->size()} ->forAll(index : Integer |
self->at(index) = result->at(index))
post: Sequencef{ 1..s->size()} ->forAll(index : Integer |
s->at(index) = result->at(index + self->size() )))

flatten() : Sequence(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same sequence as self.
If the element type is a collection type, the result is the sequence containing all the elements of all the recursively
flattened elements of self. The order of the elements is partial.
post: result = if self.ocl Type().elementType.ocl I sKindOf (CollectionType) then
self->iterate(c; acc : Sequence(T2) = Sequence(} |
acc->union(c->flatten()->asSequence() ) )
else
self
endif

append (object: T) : Sequence(T)

The sequence of elements, consisting of all elements of self, followed by object.
post: result->size() = self->size() + 1
post: result->at(result->size() ) = object
post:  Sequence{ 1..self->size() } ->forAll(index : Integer |
result->at(index) = self ->at(index))

prepend(object : T) : Sequence(T)

The sequence consisting of object, followed by all elementsin self.
post: result->size = self->size() + 1
post: result->at(1) = object
post: Sequence{ 1..self->size()} ->forAll(index : Integer |
self->at(index) = result->at(index + 1))

insertAt(index : Integer, object : T) : Sequence(T)

The sequence consisting of self with object inserted at position index.
post: result->size = self->size() + 1
post: result->at(index) = object
post: Sequence{1..(index - 1)} ->forAll(i : Integer |
self->at(i) = result->at(i))
post: Sequence{ (index + 1)..self->size()}->forAll(i : Integer |
self->at(i) = result->at(i + 1))

subSequence(lower : Integer, upper : Integer) : Sequence(T)

The sub-sequence of self starting at number lower, up to and including element number upper.
pre: 1 <=lower
pre: lower <= upper
pre : upper <= self->size()
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post: result->size() = upper -lower + 1
post: Sequencef lower..upper}->forAll( index |
result->at(index - lower + 1) =
self->at(index))

at(i: Integer): T

The i-th element of sequence.
pre:i>=1andi <= self->size()

indexOf(obj : T) : Integer

The index of object obj in the sequence.
pre : sdf->includes(obj)
post : self->at(i) = ohj

first(): T

The first element in self.
post: result = self->at(1)

last(): T

The last element in self.
post: result = self->at(self->size() )

including(object : T) : Sequence(T)

The sequence containing all elements of self plus object added as the last element.
post: result = self.append(object)

excluding(object : T) : Sequence(T)
The sequence containing all elements of self apart from all occurrences of object.

The order of the remaining elements is not changed.
post:result->includes(object) = false
post: result->size() = self->size() - self->count(object)
post: result = self->iterate(elem; acc : Sequence(T)
= Sequence{} |

if elem = object then acc else acc->append(elem) endif )

reverse() : Sequence(T)

The sequence containing the same elements but with the opposite order.
post: result->size() = self->size()

asBag() : Bag(T)

Redefines the Collection operation. The Bag containing all the elements from self, including duplicates.
post: result->forAll(elem | self->count(elem) = result->count(elem) )
post: self->forAll(elem | self->count(elem) = result->count(elem) )

asSequence() : Sequence(T)
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Redefines the Collection operation. The Sequence identical to the object itself. This operation exists for convenience
reasons.
post: result = self

asSet() : Set(T)

Redefines the Collection operation. The Set containing al the elements from self, with duplicates removed.
post: result->forAll(elem | self ->includes(elem))
post: self ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T)

Redefines the Collection operation. An OrderedSet that contains all the elements from self, in the same order, with
duplicates removed.

post: result->forAll(elem | self ->includes(elem))

post: self ->forAll(elem | result->includes(elem))

post: self ->forAll(elem | result->count(elem) = 1)

post: self ->forAll(eleml, elem2 |

self->indexOf (eleml) < self->indexOf (elem2)
implies result->indexOf(eleml) < result->indexOf(elem2) )

11.7 Predefined Iterator Expressions

This sub clause defines the standard OCL iterator expressions. In the abstract syntax these are all instances of IteratorExp.
These iterator expressions always have a collection expression as their source, as is defined in the well-formedness rules
in Clause 8 (“Abstract Syntax”). The defined iterator expressions are shown per source collection type. The semantics of
each iterator expression is defined through a mapping from the iterator to the ‘iterate’ construct. This means that the
semantics of the iterator expressions do not need to be defined separately in the semantics sub clauses.

In all of the following OCL expressions, the lefthand side of the equals sign is the Iterator Exp to be defined, and the
righthand side of the equals sign is the equivalent as an IterateExp. The names source, body, and iterator refer to the role
names in the abstract syntax:

source The source expression of the IteratorExp.
body The body expression of the IteratorExp.
iterator The iterator variable of the IteratorExp.
result The result variable of the IterateExp.

11.7.1 Extending the Standard Library with Iterator Expressions

It is possible to add new iterator expressions in the standard library. If this is done the semantics of a new iterator should
be defined by mapping it to existing constructs, in the same way the semantics of pre-defined iterators is done (see Sub
clause 11.9)

11.8 Mapping Rules for Predefined Iterator Expressions

This sub clause contains the operations and well-formedness rules of the collection types.

158 Object Constraint Language, v2.2



11.8.1 Collection

exists

Results in true if body evaluates to true for at least one element in the source collection.
source->exists(iterators | body) =
source->iterate(iterators; result : Boolean = false | result or body)

forAll

Resultsin true if the body expression evaluates to true for each element in the source collection; otherwise, result is false.
source->forAll(iterators | body ) =
source->iterate(iterators; result : Boolean = true | result and body)

isUnique

Results in true if body evaluates to a different value for each element in the source collection; otherwise, result is false.
source->isUnique (iterator | body) =
source->collect (iterator | Tuple{iter = Tuple{iterator}, value = body})
->forAll (x, y | (x.iter <> y.iter) implies (x.value <> y.value))

isUnique may have at most one iterator variable.

any

Returns any element in the source collection for which body evaluates to true. If there is more than one element for which
body is true, one of them is returned. There must be at least one element fulfilling body, otherwise the result of this
IteratorExp is null.
source->any(iterator | body) =
source->sel ect(iterator | body)->asSequence()->first()

any may have at most one iterator variable.

one

Results in true if there is exactly one element in the source collection for which body is true.
source->one(iterator | body) =
source->select(iterator | body)->size() = 1

one may have at most one iterator variable.

collect

The Collection of elements that results from applying body to every member of the source set. The result is flattened.
Notice that this is based on collectNested, which can be of different type depending on the type of source. collectNested
is defined individually for each subclass of CollectionType.

source->collect (iterator | body) = source->collectNested (iterator | body)->flatten()

collect may have at most one iterator variable.

11.8.2 Set

The standard iterator expression with source of type Set(T) are:
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select

The subset of set for which expr is true.
source->sel ect(iterator | body) =
source->iterate(iterator; result : Set(T) = Set{} |
if body then result->including(iterator)
else result
endif)

select may have at most one iterator variable.

reject
The subset of the source set for which body is false.

source->reject(iterator | body) =
source->select(iterator | not body)

reject may have at most one iterator variable.

collectNested
The Bag of elements which results from applying body to every member of the source set.

source->collectNested(iterator | body) =
source->iterate(iterator; result : Bag(body.type) = Bag{} |
result->including(body ) )

collectNested may have at most one iterator variable.

sortedBy

Results in the OrderedSet containing all elements of the source collection. The element for which body has the lowest
value comes first, and so on. The type of the body expression must have the < operation defined. The < operation must
return a Boolean value and must be transitive (i.e., if a< b and b < c then a< ¢).

source->sortedBy(iterator | body) =
iterate( iterator ; result : OrderedSet(T) : OrderedSet {} |

if result->isEmpty() then
result.append(iterator)

else
let position : Integer = result->indexOf (

result->select (item | body (item) > body (iterator)) ->first() )
in
result.insertAt(position, iterator)
endif

sortedBy may have at most one iterator variable.

11.8.3 Bag
The standard iterator expressions with source of type Bag(T) are:

select

The sub-bag of the source bag for which body is true.
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source->select(iterator | body) =
source->iterate(iterator; result : Bag(T) = Bag{} |
if body then result->including(iterator)
elseresult
endif)

select may have at most one iterator variable.

reject

The sub-bag of the source bag for which body is false.
source->reject(iterator | body) =
source->sel ect(iterator | not body)

reject may have at most one iterator variable.

collectNested
The Bag of elements which results from applying body to every member of the source bag.

source->collectNested(iterator | body) =
source->iterate(iterator; result : Bag(body.type) = Bag{} |
result->including(body ) )

collectNested may have at most one iterator variable.

sortedBy

Results in the Sequence containing all elements of the source collection. The element for which body has the lowest value
comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a
Boolean value and must be transitive (i.e., if a<band b < cthena< ¢).

source->sortedBy(iterator | body) =
iterate( iterator ; result : Sequence(T) : Sequence{} |

if result->isEmpty() then
result.append(iterator)

else
let position : Integer = result->indexOf (

result->select (item | body (item) > body (iterator)) ->first() )
in
result.insertAt(position, iterator)
endif

sortedBy may have at most one iterator variable.

11.8.4 Sequence
The standard iterator expressions with source of type Sequence(T) are:
select(expression : OclExpression) : Sequence(T)

The subsequence of the source sequence for which body is true.

source->sel ect(iterator | body) =
source->iterate(iterator; result : Sequence(T) = Sequence{} |
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if body then result->including(iterator)
elseresult
endif)

select may have at most one iterator variable.

reject
The subsequence of the source sequence for which body is false.

source->reject(iterator | body) =
source->select(iterator | not body)

reject may have at most one iterator variable.

collectNested

The Sequence of elements that results from applying body to every member of the source sequence.

source->collectNested(iterator | body) =
source->iterate(iterator; result : Sequence(body.type) = Sequence{} |
result->append(body ) )

collectNested may have at most one iterator variable.

sortedBy

Results in the Sequence containing all elements of the source collection. The element for which body has the lowest value
comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a

Boolean value and must be transitive (i.e., if a<band b < c then a< ¢).

source->sortedBy (iterator | body) =
iterate( iterator ; result : Sequence(T) : Sequence{} |

if result->isEmpty() then
result.append(iterator)

else
let position : Integer = result->indexOf (

result->select (item | body (item) > body (iterator)) ->first() )
in
result.insertAt(position, iterator)
endif

sortedBy may have at most one iterator variable.

11.8.5 OrderedSet

The standard iterator expressions with source of type OrderedSet(T) are:
select(expression : OclExpression) : OrderedSet(T)

The ordered set of the source ordered set for which body is true
source->sel ect(iterator | body) =
source->iterate(iterator; result : OrderedSet(T) = OrderedSet{} |
if body then result->including(iterator)
elseresult
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endif)
select may have at most one iterator variable.
reject (expression : OclExpression) : OrderedSet(T)

The ordered set of the source ordered set for which body is false.
source->reject(iterator | body) =
source->sel ect(iterator | not body)

reject may have at most one iterator variable.
collectNested (expression : OclExpression) : Sequence(T)

The sequence of elements that results from applying body to every member of the source ordered set.
source->collectNested(iterator | body) =
source->iterate(iterator; result : Sequence(body.type) = Sequence{} |
result->append(body ) )

collectNested may have at most one iterator variable.
sortedBy (expression : OclExpression) : OrderedSet(T)

Results in the ordered set containing all elements of the source collection. The element for which body has the lowest
value comes first, and so on. The type of the body expression must have the < operation defined. The < operation must
return a Boolean value and must be transitive (i.e., if a< b and b < ¢, then a< c).
source->sortedBy(iterator | body) =
iterate( iterator ; result : OrderedSet(T) : OrderedSet {} |
if result->isEmpty() then
result.append(iterator)
else
let position : Integer = result->indexOf (
result->select (item | body (item) > body (iterator)) ->first() )
in result.insertAt(position, iterator)
endif)

sortedBy may have at most one iterator variable.

Object Constraint Language, v2.2 163



164 Object Constraint Language, v2.2



12 The Use of OCL Expressions in UML Models

This clause describes the various manners in which OCL expressions can be used in UML models.

12.1 Introduction

In principle, everywhere in the UML specification where the term expression is used, an OCL expression can be used. In
UML 1.4 OCL expressions could be used (e.g., for invariants, preconditions, and postconditions), but other placements
are possible too. The meaning of the value, which results from the evaluation of the OCL expression, depends on its
placement within the UML model.

In this specification the structure of an expression, and its evaluation are separated from the usage of the expression.
Clause 8 (“Abstract Syntax”) defines the structure of an expression. In Clause 9 (“Concrete Syntax”) it was already noted
that the contents of the name space environment of an OCL expression are fully determined by the placement of the OCL
expression in the model. In that clause an inherited attribute env was introduced for every production rule in the attribute
grammar to represent this name space environment.

This sub clause specifies a number of predefined places where OCL expressions can be used, their associated meaning,
and the contents of the name space environment. The modeler has to define hisslher own meaning if OCL is used at a
place in the UML model that is not defined in this sub clause.

For every occurrence of an OCL expression three things need to be separated: the placement, the contextual classifier, and
the self instance of an OCL expression.

» The placement is the position where the OCL expression is used in the UML model (e.g., asinvariant connected to
class Person).

» Thecontextual classifier defines the namespace in which the expression is evaluated. For example, the contextual
classifier of a precondition isthe classifier that is the owner of the operation for which the precondition is defined.
Visible within the precondition are all model elementsthat are visible in the contextual classifier.

» The self instance is the reference to the object that evaluates the expression. It is always an instance of the contextual
classifier. Note that evaluation of an OCL expression may result in a different value for every instance of the contextual
classifier.

In the next sub clause a number of placements are stated explicitly. For each, the contextual classifier is defined and well-
formedness rules are given that exactly define the place where the OCL expression is attached to the UML model.

12.2 The ExpressionIinOcl Type

Because in the abstract syntax OclExpression is defined recursively, we need a new metaclass to represent the top of the
abstract syntax tree that represents an OCL expression. This metaclass is called ExpressionInOcl, and it is defined to be a
subclass of the Expression metaclass from the UML core, as shown in Figure 12.1. In UML (1.4) the Expression
metaclass has an attribute language that may have the value ‘OCL." The body attribute contains a text representation of
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the actual expression. The bodyExpression association of ExpressioninQOcl is an association to the OCL expression as
represented by the OCL Abstract syntax metamodel. The body attribute (inherited from Expression) may still be used to
store the string representation of the OCL expression. The language attribute (also inherited from Expression) has the
value ‘OCL.

OpaqueExpression

+owringClazsifier %

.| ExpressioninOcl +iopE pression
D..H. 0.1
If O
+5elf Oy ner o1 01
+resuftw ner +v ar Oy ner
+hody Brpression
1
+regulty ariable -
+contexty ariable | 0.1 OclE xpression
0.1 Variable -
+generatedType parametary ariable
D“l %
Classifier TypedElement

Figure 12.1 - Metaclass ExpressioninOcl added to the UML metamodel

12.2.1 ExpressioninOcl

An expression in OCL is an expression that is written in OCL. The value of the language attribute is therefore always
equal to ‘OCL.’

Associations

bodyExpression The bodyExpression is an OclExpression that is the root of the actual OCL expression,
which is described fully by the OCL abstract syntax metamodel.

contextVariable The ‘self’ variable. The contextual classifier is the type of the ‘self’ variable.

resultVariable The ‘result’ variable representing the value to be returned by the operation.

parameterVariable The variables representing the owned parameters of the current operation.

generatedType Types, such as collection types, that are created on demand by OCL to serve as the types of

OclExpressions in the bodyExpression.
12.3 Well-formedness Rules

12.3.1 ExpressioninOcl

[1] Thisexpressionisawayswrittenin OCL
context ExpressionlnOcl
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inv: language = ‘OCL’

12.4 Standard Placements of OCL Expressions

This sub clause defines the standard places where OCL expressions may occur, and defines for each case the value for the
contextua classifier. Note that this list of places is not exhausting, and can be enhanced.

12.4.1 How to Extend the Use of OCL at Other Places

At many places in the UML where an Expression is used, one can write this expression in OCL. To define the use of OCL
at such aplace, the main task is to define what the contextual classifier is. When that is given, the OCL expression isfully
defined. This sub clause defines a number of often used placements of OCL expressions.

12.5 Definition

A definition constraint is a constraint that is linked to a Classifier. It may only consist of one or more LetExps. The
variable or function defined by the Let expression can be used in an identical way as an attribute or operation of the
Classifier. Their visibility is equal to that of a public attribute or operation. The purpose of a definition constraint is to
define reusable sub-expressions for use in other OCL expressions.

The placement of a definition constraint in the UML metamodel is shown in Figure 12.2. The following well-formedness
rule must hold. This rule also defines the value of the contextual Classifier.

ModelElement | 0.n +eonstraint [ constraint
(from Core) fconstrainedElement . | (fromcCore)

0.1
1 | +body

Classifier Expression
(from DataTypes)

T

ExpressionInOcl

(from Core)

+bodyExpression OclExpression

1

Figure 12.2 - Situation of Ocl expression used as definition or invariant

12.5.1 Well-formedness Rules
[1] The ExpressionInOcl is a definition constraint if it has the stereotype «definition» (A) and the constraint is attached to
only one model element (B) and the constraint is attached to a Classifier (C).

context ExpressionlnOcl
def: isDefinitionConstraint : Boolean =

self.constraint.stereotype.name = * definition’ - A
and
self.constraint.constrainedElement->size() = 1 -B
and

self.constraint.constrainedElement.any(true).ocl sKindOf(Classifier) -- C
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[2] For adefinition constraint the contextual classifier isthe constrained element.
context ExpressionlnOcl
inv: isDefinitionConstraint implies
contextual Classifier =
self.constraint.constrainedElement.any(true).ocl AsType(Classifier)

[3] Inside adefinition constraint the use of @pre is not allowed.
context ExpressionlnOcl
inv: --

12.6 Invariant

An invariant constraint is a constraint that is linked to a Classifier. The purpose of an invariant constraint is to specify
invariants for the Classifier. An invariant constraint consists of an OCL expression of type Boolean. The expression must
be true for each instance of the classifier at any moment in time. Only when an instance is executing an operation, this
does not need to evaluate to true.

The placement of an invariant constraint in the UML metamodel is equal to the placement of a definition constraint,
which is shown in Figure 12.3. The following well-formedness rule must hold. This rule also defines the value of the
contextual Classifier.

12.6.1 Well-formedness rules

[1] The constraint has the stereotype «invariant» (A) and the constraint is attached to only one model element (B) the
constraint is attached to a Classifier (C). The contextual classifier isthe constrained element and the type of the OCL
expression must be Boolean.

context ExpressioninOcl

inv: self.constraint.stereotype.name = ‘invariant’ -A
and
self.constraint.constrainedElement->size() = 1 -B
and
self.constraint.constrainedElement.any(true).ocl I sKindOf (Classifier) -- C
implies

contextual Classifier =

salf.constraint.constrai nedElement->any(true).ocl AsType(Classifier)
and
self.bodyExpression.type.name = ‘ Boolean’

[2] Inside aninvariant constraint the use of @preis not allowed.

context ExpressionlnOcl
inv: --
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12.7 Precondition

A precondition is a constraint that may be linked to an Operation of a Classifier. The purpose of a precondition is to
specify the conditions that must hold before the operation executes. A precondition consists of an OCL expression of type
Boolean. The expression must evaluate to true whenever the operation starts executing, but only for the instance that will
execute the operation.

The placement of a precondition in the UML metamodel is shown in Figure 12.4. The following well-formedness rule
must hold. This rule also defines the value of the contextual Classifier.

ModelElement 0..n +constraint Constraint
(from Core) +constrainedElement (from Core)

0..n
4& 0.1
{ordered} 1| +body

+owner —
Feature  0.n Classifier Expression
(from Core)  yfeature 0..1 | (from Core) (from DataTypes)

i i

BehavioralFeature ExpressioninOcl
(from Core)

OclExpression

+bodyExpression

Figure 12.3 - An OCL ExpressionInOcl used as a pre- or postcondition

12.7.1 Well-formedness rules

[1] The Constraint has the stereotype «precondition» (A), and is attached to only one model element (B), andto a
Behaviora Feature (C), which has an owner (D). The contextua classifier isthe owner of the operation to which the
constraint is attached, and the type of the OCL expression must be Boolean.

context Expression

inv: self.constraint.stereotype.name = ‘ precondition’ -A
and
self.constraint.constrainedElement->size() = 1 -B
and
self.constraint.constrai nedElement->any(true).ocl 1 sKindOf (Behavioral Feature)  -- C
and
self.constraint.constrai nedEl ement->any(true) -D

.oclAsType(Behavioral Feature).owner->size() = 1
implies
contextual Classifier =
self.constraint.constrainedEl ement->any(true)
.0clAsType(Behavioral Feature).owner
and
self.bodyExpression.type.name = ‘ Boolean’

[2] Inside aprecondition constraint the use of @preis not allowed.

context ExpressionlnOcl
inv: --
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12.7.2 Postcondition

Like a precondition, a postcondition is a constraint that may be linked to an Operation of a Classifier. The purpose of a
postcondition is to specify the conditions that must hold after the operation executes. A postcondition consists of an OCL
expression of type Boolean. The expression must evaluate to true at the moment that the operation stops executing, but

only for the instance that has just executed the operation. Within an OCL expression used in a postcondition, the " @pre"
mark can be used to refer to values at precondition time. The variable result refers to the return value of the operation if
there is any.

The placement of a postcondition in the UML metamodel is equal to the placement of a precondition, which is shown in
Figure 12.4. The following well-formedness rule must hold. This rule also defines the value of the contextual Classifier.

12.7.3 Well-formedness rules

[1] The Congtraint has the stereotype «postcondition» (A), and it is attached to only one model element (B), that isa
Behaviora Feature (C), which has an owner (D). The contextua classifier isthe owner of the operation to which the
constraint is attached, and the type of the OCL expression must be Boolean.

context Expression

inv: self.constraint.stereotype.name = ‘ postcondition’ -A
and
self.constraint.constrainedElement->size() = 1 -B
and
self.constraint.constrainedElement->any(true).ocl 1 sKindOf(Behavioral Feature) -- C
and
self.constraint.constrainedEl ement->any(true) -D

.0clAsType(Behavioral Feature).owner->size() = 1
implies
contextual Classifier =
self.constraint.constrainedElement->any().ocl AsType(Behaviora Feature).owner
and
self.bodyExpression.type.name = ‘ Boolean’

12.8 Initial Value Expression

Aninitial value expression is an expression that may be linked to an Attribute of a Classifier, or to an AssociationEnd. An
OCL expression acting as the initial value of an attribute must conform to the defined type of the attribute. An OCL
expression acting as the initial value of an association end must conform to the type of the association end. For instance,
the type of the attached Classifier when the multiplicity is maximum one, or OrderedSet with element type the type of the
attached Classifier when the multiplicity is maximum more than one.

The OCL expression is evaluated at the creation time of the instance that owns the attribute for this created instance in the
case of an initial value for an attribute. In the case of an initial value for an association end, the OCL expression is
evaluated at the creation time of the instance of the Classifier at the other end(s) of the association.

The placement of an attribute initial value in the UML metamodel is shown in Figure 12.5. The following well-
formedness rule must hold. This rule also defines the value of the contextual Classifier.

Note - The placement of an initial value of an association end is dependent upon the UML 2.0 metamodel. So are the well-
formedness rules for this case.
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12.8.1 Well-formedness rules

[1] The Expressionistheinitia value of an attribute (A), and the Attribute has an owner (B). The contextual classifier isthe
owner of the attribute, and the type of the OCL expression must conform to the type of the attribute.

context ExpressionlnOcl
inv: self.attribute->notEmpty/() -A
and
sdlf .attribute.owner->size() = 1 -B
implies
contextual Classifier = self.attribute.owner
and
self.bodyExpression.type.conformsTo(sel f .attribute.type)

[2] Insideaninitial attribute value the use of @preis not allowed.

context ExpressionlnOcl

inv: -- TBD
Feature |ireature rowner g, Classifier
0..n f C
(from Core) {ordered} 0.1 (from Core)
1 |+type
StructuralFeature
(from Core) 0..n
Attribute  Hattribute 0.1 | Expression

(from Core) 0.1  +initialValue~ | (from DataTypes)

7

ExpressionIinOcl

+bodyExpression OclExpression

Figure 12.4 - Expression used to define the initial value of an attribute

12.9 Derived Value Expression

A derived value expression is an expression that may be linked to an Attribute of a Classifier, or to an AssociationEnd.
An OCL expression acting as the derived value of an attribute must conform to the defined type of the attribute. An OCL
expression acting as the derived value of an association end must conform to the type of the association end. For instance,
the type of the attached Classifier when the multiplicity is maximum one, or OrderedSet with element type the type of the
attached Classifier when the multiplicity is maximum more than one.

A derived value expression is an invariant that states that the value of the attribute or association end must always be
equal to the value obtained from evaluating the expression.

Note - The placement of a derived value expression is dependent upon the UML 2.0 metamodel. So are the well-formedness
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rules for this case.

12.10 Operation Body Expression

A body expression is an expression that may be linked to an Operation of a Classifier, that is marked Query operation. An
OCL expression acting as the body of an operation must conform to the result type of the operation. Evaluating the body
expression gives the result of the operation at a certain point in time.

Note - The placement of an operation body expression is dependent upon the UML 2.0 metamodel. So are the well-formed-
ness rules for this case.

12.11 Guard

A guard is an expression that may be linked to a Transition in a StateMachine. An OCL expression acting as the guard of
a transition restricts the transition. An OCL expression acting as value of a guard is of type Boolean. The expression is
evaluated at the moment that the transition attached to the guard is attempted.

The placement of a guard in the UML metamodel is shown in Figure 12.5. The following well-formedness rule must hold.
In order to state the rule a number of additional operations are defined. The rule also defines the value of the contextual
Classifier.

ModelElement Classifier
(from Core) (from Core)

+context 0.1 OclExpression

0..n ‘ +behavior +bodyExpression 1
StateMachine
(from State Machines)

0.1 T +statemachine ExpressionInOcl

0..n

Transition 0..n State
(from State Machines) +internalTransition 0.1 (from State Machines)

1 +transition
+guard 0.1

Guard 0.1 +expression
(from State Machines) =

+transitions

+state

Expression
+guard 1 (from DataTypes)

Figure 12.5 - An OCL expression used as a Guard expression

12.11.1 Well-formedness rules

[1] The statemachine in which the guard appears must have a context (A), that is a Classifier (B). The contextual classifier is
the owner of the statemachine, and the type of the OCL expression must be Boolean.

context ExpressionlnOcl

inv: not self.guard.transition.getStateM achine().context.ocl 1 sUndefined() -A
and
self.guard.transition.getStateM achine().context.ocl I sKindOf (Classifier) --B
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implies
contextual Classifier =
self.guard.transition.getStateM achine().context.ocl AsType(Cl assifier)
and
self.bodyExpression.type.name = ‘ Bool ean’

[2] Inside aguard the use of @preisnot allowed.

context ExpressionlnOcl
inv: --

12.12 Concrete Syntax of Context Declarations

This sub clause describes the concrete syntax for specifying the context of the different types of usage of OCL
expressions. It makes use of grammar rules defined in Clause 9 (“ Concrete Syntax”). Here too, every production rule is
associated to the abstract syntax by the type of the attribute ast. However, we must sometimes refer to the abstract syntax
of the UML to find the right type for each production.

Visibility rules etc. must be defined in the UML metamodel. Here we assume that every classifier has an operation
visibleElements(), which returns an instance of type Environment, as defined in Clause 9 (“Concrete Syntax”).

Note - The context declarations as described in this sub clause are not needed when the OCL expressions are attached directly
to the UML model. This concrete syntax for context declarations is only there to facilitate separate OCL expressions in text
files.

Because of the assumption that the concrete syntax below is used separate from the UML model, we assume the existence
of an operation getClassifier() on the UML model that allows us to find a Classifier anywhere in the corresponding
model. The signature of this operation is defined as follows:

context Model::findClassifier( pathName : Sequence(String) ) : Classifier

The pathName need not be a fully qualified name (it may be), aslong as it can uniquely identify the classifier somewhere
in the UML model. If aclassifier name occurs more than once, it needs to be qualified with its owning package
(recursively) until the qualified name is unique. If more than one classifier is found, the operation returns OclUndefined.
The variable Model is used to refer to the UML Model. It is used as Model.findClassifier().

Likewise, we assume the existence of an operation getPackage() on the UML model that allows us to find a Package
anywhere in the corresponding model. The signature of this operation is defined as follows:

context Model::findPackage( pathName : Sequence(String) ) : Package

In this case the pathName needs to be a fully qualified name.

Note - Therulesfor the synthesized and inherited attributes associated with the grammar all depend upon the UML 2.0
metamodel. They cannot be written until this metamodel has been stabilized. Therefore only the grammar rules are given.

12.12.1 packageDeclarationCS
This production rule represents a package declaration.

[A] packageDeclarationCsS ::= “package’ pathNameCS contextDecl CS*
“endpackage”

[B] packageDeclarationCS ::= contextDecl CS*
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12.12.2  contextDeclarationCS

This production rule represents all different context declarations.
[A] contextDeclarationCS ::= attrOrAssocContextCS

[C] contextDeclarationCS ::= classifierContextDecl CS

[D] contextDeclarationCS ::= operationContextDeclCS

12.12.3 attrOrAssocContextCS

This production rule represents a context declaration for expressions that can be coupled to an attribute or association end.
The path name refers to the “owner” of the attribute or association end, the simple name refers to its name, the type states
its type.

attrOrAssocContextCS ::= ‘ context’ pathNameCS *::’ simpleName':’ typeCS
initOrDerValueCS

12.12.4 initOrDerValueCS

This production rule represents an initial or derived value expression.

[A] initOrDerValueCS[1] ::=‘init" ‘:" OclExpression
initOrDerValueCy[ 2] ?

[B] initOrDerVaueCq[1] ::=‘derive’ ‘" OclExpression
initOrDerValueCy[ 2] ?

12.12.5 classifierContextDeclCS

This production rule represents a context declaration for expressions that can be coupled to classifiers.

classifierContextDeclCS ::= ‘ context’ pathNameCS invOrDefCS

12.12.6 invOrDefCS

This production rule represents an invariant or definition.

[A] invOrDefCS[1] ::=*inv’ (simpleNameCS)?‘:" OclExpressionCS
invOrDefCS[ 2]

[B] invOrDefCq[1] ::= (‘static’)? ‘def’ (simpleNameCS)?*:’ defExpressionCS
invOrDefCY[ 2]
12.12.7 defExpressionCS

This production rule represents a definition expression. The defExpressionCS nonterminal has the purpose of defining
additional attributes or operations in OCL. They map directly to a UML attribute or operation with a constraint that
defines the derivation of the attribute or operation result value. Note that VariableDeclarationCS has been defined in
Clause 9.
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[A] defExpressionCS ::= VariableDeclarationCS ‘=" OclExpression

[B] defExpressionCS ::= operationCS ‘=" OclExpression

12.12.8 operationContextDeclCS

This production rule represents a context declaration for expressions that can be coupled to an operation.

operationContextDeclCS ::= ‘context’ operationCS prePostOrBodyDeclCS

12.12.9 prePostOrBodyDecICS

This production rule represents a pre- or postcondition or body expression.

[A] prePostOrBodyDeclCH[ 1] ::=‘pre’ (ssmpleNameCS)?‘:" OclExpressionCS
prePostOrBodyDeclCS[2] ?

[B] prePostOrBodyDeclCS[1] ::=‘post’ (simpleNameCS)? *:’ OclExpressionCS
prePostOrBodyDeclCS[2] ?

[C] prePostOrBodyDeclCS[1] ::= ‘body’ (simpleNameCS)?*:" OclExpressionCS
prePostOrBodyDeclCS[2] ?

12.12.10 operationCS

This production rule represents an operation in a context declaration or definition expression.
[A] operationCS ::= pathNameCS ‘::’ simpleNameCS ‘(' parametersCS?*)’ ‘" typeCS?

[B] operationCS ::= simpleNameCS * (* parametersCS?*)’ *:’ typeCS?

12.12.11 parametersCS

This production rule represents the formal parameters of an operation.

parametersCY[ 1] ::= VariableDeclarationCS (*," parametersCS 2] )?
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13 The Basic OCL and Essential OCL

This clause describes the connections between the OCL and UML metamodels.

13.1 Introduction

BasicOCL is the package exposing the minimal OCL required to work with Core;:Basic.

Basic OCL depends on the Core::Basic Package. It references explicitly the following Core::Basic classes. Property,
Operation, Parameter, TypedElement, Type, Class, DataType, Enumeration, PrimitiveType, and EnumerationLiteral.

Essential OCL is the package exposing the minimal OCL required to work with EMOF. EssentialOcl depends on the
EMOF Package. It references explicitly the EMOF classes: Property, Operation, Parameter, TypedElement, Type, Class,
DataType, Enumeration, PrimitiveType, and EnumerationLiteral.

Essential OCL is built from Core::Basic and BasicOcl using package merge with copy semantics in a similar way as
EMOF is built from Core::Basic. Structurally there is no difference between BasicOCL and Essential OCL. For this reason
we provide in this clause a unique set of diagrams that defines the abstract syntax for both packages.

For convenience, because BasicOCL (respectively EssentialOCL) is - conceptually a subset of the complete OCL
language for UML superstructure, we will not repeat or redefine here all the class descriptions and the well-formedness
rules defined in the other clauses. When applicable, all these definitions are to be re-interpreted in the specific context of
Core::Basic (respectively EMOF). The sub clause “OCL adaptation for meta-modeling” defines specific rules for the re-
interpretation of the “complete” OCL, whereas the “Diagrams’ sub clause provides the complete diagrams defining the
BasicOCL (respectively Essential OCL) abstract syntax.

13.2 OCL Adaptation for Metamodeling

We provide below a set of rules and conventions that are applied to define BasicOCL (and consegquently Essential OCL)
from the OCL defined for UML superstructure - called “complete OCL” in this sub clause.

1. Thefollowing metaclasses defined in complete OCL are not part of BasicOCL (and Essential OCL):
* MessageType
* ElementType
« AssociationClassCallExp
* MessageExp
 StateExp
 UnspecifiedVaueExp
Any well-formedness rules defined for these classes are consequently not part of the definition of Basic OCL.

The properties NavigationCallExp::qualifier and NavigationCallExp::navigationSource are suppressed since not
needed in this context.

2. Core::Basic does not contain the intermediate notion of Classifier but usesinstead directly the Type notion asthe base
classfor the type system. Conseguently, any reference to the Classifier classin the complete OCL specification hasto
be re-interpreted as a reference to the Type class.
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Note - It isexpected that further revisions of this specification will provide explicitly the complete set of well-formedness
rules and additional operations that apply to Core::Basic - to replace the lazy re-interpretation statement we are using here.

3. Incomplete OCL, TupleType has DataType as base type. In BasicOCL Tuple also has Class as base type so that the
attributes of the tuple can be defined in the same way asin complete OCL - as Property instances.

4. Incomplete OCL, pre-defined types have pre-defined operations defined in the standard library. However, a
DataType in Core::Basic cannot define such operations since it inherits from Type (and not from Class). For all data
types and special types - like VoidType, InvalidType, and AnyType - the following convention is used: in the standard
library the instance representing the pre-defined type is accompanied with a class instance with the same name that
holds the operations. An access to an operation of the pre-defined type implies an access to the operation of the
complementary class instance.

5. The EMOF Reflection capahility is not merged to the metamodel. AnyType plays the role of Object. At instance
level, reflection is provided by the oclsKindOf(), oclIsTypeOf(), and ocl Type() operations.
13.3 Diagrams

The diagrams below define completely the abstract syntax of BasicOCL (respectively Essential OCL). The classes that are
not imported from Core::Basic (respectively EMOF) are shown with a transparent fill color.

+elementType 1 Type

&

I [ |
VoidType AnyType TemplateParameterType
+specification: String

InvalidType DataType Class

T

CollectionType PrimitiveType TupleType

L
| | | |

OrderedSetType SequenceType BagType SetType

Figure 13.1 - Types
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Figure 13.2 - The top container expression
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Annex A: Semantics

(informative)

Thisannex formally defines the syntax and semantics of OCL and is organized as follows. Sub clause A.1 defines the concept
of object models. Object models provide information used as context for OCL expressions and constraints. Sub clause A.2
defines the type system of OCL and the set of standard operations. Finally, sub clause A.3 defines the syntax and semantics of
OCL expressions.

A.1 Object Models

In this sub clause, the notion of an object model isformally defined. An object model provides the context for OCL
expressions and constraints. A precise understanding of object modelsis required before aformal definition of OCL
expressions can be given. Sub clause A.1.1 proceeds with aformal definition of the syntax of object models. The semantics of
object modelsis defined in sub clause A.1.2. This sub clause al so defines the notion of system states as snapshots of arunning
system.

A.1.1 Syntax of Object Models

In this sub clause, we formally define the syntax of object models. Such amodel has the following components:

» asetof classes

« aset of attributes for each class

» aset of operations for each class

» aset of associations with role names and multiplicities

» ageneralization hierarchy over classes

Additionally, types such as Integer, Sring, Set(Real) are available for describing types of attributes and operation parameters.
In the following, each of the model componentsis considered in detail. The following definitions are combined in A.1.1.7,
"Formal Syntax’ to give a complete definition of the syntax of object models. For naming model components, we assume in
this sub clause an alphabet 2 and a set of finite, non-empty names & C _4+over aphabet 4 to be given.

A.1.1.1 Types

Types are considered in depth in sub clause A.2. For now, we assumethat thereisasignature ¥ = (7, Q) with Theing a set of
type names, and Q being a set of operations over typesin 7. The set Tincludes the basic types Integer, Real, Boolean, and
Sring. These are the predefined basic types of OCL. All type domains include an invalid and a null value that allows one to
operate respectively with unknown and “null” values. Operationsin Q include, for example, the usual arithmetic operations
+, -, _,/, etc. for integers. Furthermore, collection types are available for describing collections of values, for example,
Set(Sring), Bag(Integer), and Sequence(Real). Structured val ues are described by tupl e types with named components, for
example, Tuple(name: Sring, age: Integer).
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A.1.1.2 Classes

The central concept of UML for modeling entities of the problem domain isthe class. A class provides acommon description
for a set of objects sharing the same properties.

Definition A.1 (Classes)

The set of classesis afinite set of names CLASSC

Each class c € CLASS induces an object typet. € Thaving the same name as the class. A value of an object type refersto

an aobject of the corresponding class. The main difference between classes and object types is that the interpretation of the
latter includes a special undefined value.

Note that for a definition of the semantics of OCL, UML's distinction between classes and interfaces does not matter. OCL
specifies constraints for instances of a given interface specification. Whether this specification is stated in the form of a class
or interface definition makes no difference.

A.1.1.3 Attributes

Attributes are part of a class declaration in UML. Objects are associated with attribute values describing properties of the
object. An attribute has a name and a type specifying the domain of attribute values.

Definition A.2 (Attributes)

Let t €T beatype. Theattributes of aclassc € CLASS are defined asa set ATT,, of signaturesa : t, — t where the attribute
name aisan element of &, andt. € T isthetype of classc.

All attributes of a class have distinct names. In particular, an attribute name may not be used again to define another attribute
with a different type.

Vtte T:(a:t;—>te ATT,anda:t,—> e ATT) = t=t'

Attributes with the same name may, however, appear in different classes that are not related by generalization. Details are
givenin sub clause A.1.1.6 where we discuss generalization. The set of attribute names and class names need not be digjoint.

A.1.1.4 Operations

Operations are part of a class definition. They are used to describe behavioral properties of objects. The effect of an operation
may be specified in adeclarative way with OCL pre- and postconditions. Sub clause A.3 discusses pre- and postconditionsin
detail. Furthermore, operations performing computations without side effects can be specified with OCL. In this case, the
computation is determined by an explicit OCL expression. Thisis also discussed in Sub clause A.3. Here, we focus on the
syntax of operation signatures declaring the interface of user-defined operations. In contrast, other kinds of operations which
are not explicitly defined by amodeler are, for example, navigation operations derived from associations. These are discussed
in the next sub clause and in sub clause A.2.

Definition A.3 (Operations)

Lettand ¢, ..., t, betypesin T. Operationsof aclassc € CLASSwithtypet, € T aredefined by a set OP, of signatures @
Tt Xty X -+ - X t, — t with operation symbols @ being elements of V.

The name of an operation is determined by the symbol @ Thefirst parameter ¢, denotes the type of the class instance to which
the operation is applied. An operation may have any number of parameters but only a single return type. In general, UML
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alows multiple return values. We currently do not support this feature in OCL.

A.1.1.5 Associations

Associations describe structural relationships between classes. Generally, classes may participate in any number of
associations, and associations may connect two or more classes.
Definition A.4 (Associations)

The set of associationsis given by

i. afinite set of names ASSOC € W,

B . _ AssoC — CLASS'
ii. afunction associates:

as—(Cy, ..., ¢y with(n>2)

The function associates maps each association name as € ASSOC to afinitelist{c, ..., ¢, of classes participating in the
association. The number = of participating classesis also called the degree of an association; associations with degree n are
called n-ary associations. For many problems the use of binary associationsis often sufficient. A self-association (or recursive
association) sz is abinary association where both ends of the association are attached to the same class ¢ such that associates
(sa) = (c, ¢) . The function associates does not have to be injective. Multiple associations over the same set of classes are
possible.

Role Names

Classes may appear more than once in an association each time playing a different role. For example, in a self-association
PhoneCall on aclass Person we need to distinguish between the person having the role of a caller and another person being the
callee. Therefore we assign each class participating in an association a unique role name. Role names are also important for
OCL navigation expressions. A role name of a classis used to determine the navigation path in this kind of expression.

Definition A.5 (Role Names)

Let as € ASSOC be an association with associates(as) = (cy, . . . , C,,). Role names for an association are defined by afunction

ASSOC — A*
roles:

as—(n, ..., iy with (n = 2)

where al role names must be distinct, i.e.,

Vi.\je l....n:i#j = n#.

Thefunction roles(as) =(rn, . . ., 1, assigns each class ¢; for 1 < i < n participating in the association aunique role name 7 . If
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role names are omitted in a class diagram, implicit names are constructed in UML by using the name of the class at the target
end and changing itsfirst letter to lower case. As mentioned above, explicit role names are mandatory for self-associations.

Additional syntactical constraints are required for ensuring the uniqueness of role names when aclassis part of many
associations. We first define a function participating that gives the set of associations a class participatesin.

CLASS — ®ASSOC)

participating : c—{as|ase ASSOC A associates(as) = (cy, . . . , G

Adie{l,...,nf:¢g=¢c}

The following function navends gives the set of al role names reachable (or navigable) from a class over a given association.

-
CLASS X ASSOC — ®AN)
navends: < (c,as) — {r | associates(as) =(cy, . .., C
Aroles(@as) =(rq, ..., Iy
Adi, je{l,...,nt:(i#j A G=C ATj=T)}
.

The set of role names that are reachable from a class along all associations the class participatesin can then be determined by
the following function.

CLASS —» @A)
navends(c) :
- Uase participating(c) Navends(c, as)

Multiplicities

An association specifies the possible existence of links between objects of associated classes. The number of links that an
object can be part of is specified with multiplicities. A multiplicity specificationin UML can be represented by a set of natural
numbers.

Definition A.6 (Multiplicities)

Let ase ASSOC be an association with associates(as) = (cy, . . ., Cy. Thefunction multiplicities(as) = (Mq, . . ., M,,) assigns
each class ¢; participating in the association a non-empty set M; € Ngwith M; = {0} foral 1<i<n.

The precise meaning of multiplicitiesis defined as part of the interpretation of object modelsin sub clause A.1.2.
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Remark: Aggregation and Composition

Specia forms of associations are aggregation and composition. In general, aggregations and compositions impose additional
restrictions on relationships. An aggregation is a special kind of binary association representing a part-of relationship. The
aggregate is marked with a hollow diamond at the association end in class diagrams. An aggregation implies the constraint that
an object cannot be part of itself. Therefore, alink of an aggregation may not connect the same object. In case of chained
aggregations, the chain may not contain cycles.

An even stronger form of aggregation is composition. The compositeis marked with afilled diamond at the association end in
class diagrams. In addition to the requirements for aggregations, a part may only belong to at most one composite.

These seemingly simple concepts can have quite complex semantic issues [AFGP96, M ot96, Pri97, GR99, HSB99, BH S99,
BHSOGO01]. Here, we are concerned only with syntax. The syntax of aggregations and compositionsis very similar to
associations. Therefore, we do not add an extra concept to our formalism. As a convention, we always use the first component
in an association for a class playing the role of an aggregate or composite. The semantic restrictions then have to be expressed
as an explicit congtraint. A systematic way for mapping aggregations and compositions to simple associations plus OCL
constraintsis presented in [GR99].

A.1.1.6 Generalization

A generalization is ataxonomic relationship between two classes. This relationship specializes a general classinto amore
specific class. Specialization and generalization are different views of the same concept. Generalization relationships form a
hierarchy over the set of classes.

Definition A.7 (Generalization Hierarchy)

A generdlization hierarchy = isapartial order on the set of classes CLASS.

Pairsin - describe generalization relationships between two classes. For classescy, ¢, € CLASS with ¢y « ¢,
the class ¢, is called achild class of ¢,, and ¢, is called a parent class of c;.

Full Descriptor of a Class

A child class implicitly inherits attributes, operations, and associations of its parent classes. The set of properties defined in a
class together with itsinherited propertiesis called afull descriptor in UML. We can formalize the full descriptor in our
framework as follows. First, we define a convenience function for collecting all parents of agiven class.

CLASS — ‘P(CLASS)
parents:

c—{c | ¢ € CLASS A c=C}
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Thefull set of attributes of classcistheset ATT_ C* containing al inherited attributes and those that are defined directly in the
class.

arti=att v U ATTe
C’e parents(c)

We define the set of inherited user-defined operations analogously.

or-op, u U OPy
C’e parents(c)
Finally, the set of navigable role namesfor aclassand all of its parentsis given as follows.

navends' (c) = navends(c) U U navends(c’)
C’e parents(c)

Definition A.8 (Full Descriptor of a Class)

The full descriptor of aclassc € CLASS s astructure FD. = (ATT" o OP' o havends* (c)) containing all attributes, user-
defined operations, and navigable role names defined for the class and all of its parents.

The UML standard requires that properties of afull descriptor must be distinct. For example, a class may not define an
attribute that is already defined in one of its parent classes. These constraints are captured more precisely by the following

well-formedness rules in our framework. Each constraint must hold for each classc € CLASS.
1. Attributes are defined in exactly one class.
V@:totaity— t ATT )
(@a=a = te=tg At=t) (WF-1)
2. Inafull class descriptor, an operation may only be defined once. The first parameter of an operation signature
indicates the class in which the operation is defined. The following condition guarantees that each operation in afull

class descriptor is defined in asingle class.

V(@:tX .. Xtg—t @ tg Xty X .. Xt,— '€ OP )
(te=tc)

(WF-2)
3. Role names are defined in exactly one class.
V ¢l1,c2 € parents(c) U {c} :
(c1 # ¢y = navends(c,) ] navends(c,) = 0) (WF-3)
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4. Attribute names and role names must not conflict. Thisis necessary because in OCL the same notation is used for
attribute access and navigation by role name. For example, the expression self .x may either be areference to an
attribute x or areference to arole name x.

V(@: t, >te ATT o) : Vr € navends (c) : :

(a=r) (WF-4)

Note that operations may have the same name as attributes or role names because the concrete syntax of OCL allows usto
distinguish between these cases. For example, the expression self . age iseither an attribute or role name reference, but a

call to an operation age without parametersiswritten asself . age ().

A.1.1.7 Formal Syntax
We combine the components introduced in the previous sub clause to formally define the syntax of object models.

Definition A.9 (Syntax of Object Models)

The syntax of an object model is a structure.

M= (CLASS, ATTc, OPc, ASSOC, associates, roles, multiplicities=! )

where

i CLASSIisaset of classes (Definition A.1).

ii. ATT, isaset of operation signatures for functions mapping an object of class ¢ to an associated attribute value
(Definition A.2).

iii. OP. isaset of signatures for user-defined operations of a class ¢ (Definition A.3).

iv. ASSOC is aset of association names (Definition A.4).

(a) associatesis a function mapping each association name to alist of participating classes (Definition A.4).
(b) rolesis afunction assigning each end of an association arole name (Definition A.5).
(c) multiplicities is afunction assigning each end of an association a multiplicity specification (Definition A.6).

v. = isapartial order on CLASS reflecting the generalization hierarchy of classes (Definitions A.7 and A.8).

A.1.2 Interpretation of Object Models

In the previous sub clause, the syntax of object models has been defined. An interpretation of object modelsis presented as
follows.
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A.1.2.1 Objects

The domain of aclassc € CLASSIisthe set of objects that can be created by this class and all of its child classes. Objects are
referred to by unique object identifiers. In the following, we will make no conceptual distinction between objects and their
identifiers. Each object isuniquely determined by itsidentifier and vice versa. Therefore, the actual representation of an object
is not important for our purposes.

Definition A.10 (Object Identifiers)

i. The set of object identifiers of aclassc € CLASSisdefined by aninfinite set oid(c) ={ ¢;,Co, . . .},

ii. Thedomain of aclassc € CLASS isdefined aslg pos5(C) = U{oid(c) |c’e CLASS~ ¢ =
c}.

In the following, we will omit the index for amapping | when the context is obvious. The concrete scheme for naming objects
is not important aslong as every object can be uniquely identified, i.e., there are no different objects having the same name.
We sometimes use single | etters combined with increasing indexes to name objectsif it is clear from the context to which class
these objects belong.

A.1.2.2 Generalization

The above definition implies that a generalization hierarchy induces a subset relation on the semantic domain of classes. The
set of object identifiers of achild classisa subset of the set of object identifiers of its parent classes. In other words, we have

Ve € CLASS: i ¢ = I(cyy < 1(cy

From the perspective of programming languages this closely corresponds to the domain-inclusion semantics commonly
associated with subtyping and inheritance [CW85]. Data models for object-oriented databases such as the generic OODB
model presented in [AHV95] also assume an inclusion semantics for class extensions. This requirement guarantees two
fundamental properties of generalizations. First, an object of a child class has (inherits) all the properties of its parent classes
because it is an instance of the parent classes. Second, thisimplies that an object of a more specialized class can be used
anywhere where an object of amore general classis expected (principle of substitutability) because it has at least all the
properties of the parent classes. In general, the interpretation of classesis pairwise digoint if two classifiers are not related by
generalization and do not have a common child.

A.1.2.3 Links

An association describes possible connections between objects of the classes participating in the association. A connection is
also caled alink in UML terminology. The interpretation of an association is arelation describing the set of all possible links
between objects of the associated classes and their children.

Definition A.11 (Links)

Each association as€ ASSOC with associates(as) = ( ¢y, . . ., C iSinterpreted as the Cartesian product of the sets of object
identifiers of the participating classes: | osgoc(@s) = I ass(Cr) X+ -+ X I ass(Cr)- A link denoting a connection between

objectsis an element las € |5 sgoc(@s).

A.1.2.4 System State

Objects, links, and attribute values constitute the state of a system at a particular moment in time. A system isin different
states asit changes over time. Therefore, a system state is also called a snapshot of arunning system. With respect to OCL, we
can in many cases concentrate on a single system state given at a discrete point in time. For example, a system state provides
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the complete context for the evaluation of OCL invariants. For pre- and postconditions, however, it is necessary to consider
two consecutive states.

Definition A.12 (System State)

A system state for amodel M isastructure 6( M ) = (6¢ assy SATT: OASSOC)-
i. Thefinite sets 6 ass(C) contain all objectsof aclassc € CLASS existing in the system state:

OcLass(C) < oid(c).
ii. Functions oa71 assign attribute values to each object: oa77(a) : 6 ass(C) — I(t) for each
a:t, > teATT ..

iii. The finite sets 65 sgoc contain links connecting objects. For each as€ ASSOC: 6s50c(8s) < | assoc(as).
A link set must satisfy all multiplicity specifications defined for an association (the function m;(l) projects
the ith component of atuple or list |, whereas the function m;(l) projects all but the ith component):

Vi € { 1, .. n} VI € GAssoc(aS):

{I"l 1" € oassoc(as) ™ (mi(l") = (m()} € m(multiplicities(as))

A.2 Ocl Types and Operations

OCL isastrongly typed language. A typeisassigned to every OCL expression and typing rules determine in which ways well-
formed expressions can be constructed. In addition to those types introduced by UML models, there are a number of
predefined OCL types and operations available for use with any UML model. This sub clause formally defines the type system
of OCL. Types and their domains are fixed, and the abstract syntax and semantics of operationsis defined.

Our general approach to defining the type system isas follows. Types are associated with a set of operations. These operations
describe functions combining or operating on values of the type domains. In our approach, we use a data signature X = (T, Q)
to describe the syntax of types and operations. The semantics of typesin T and operationsin Q is defined by a mapping that
assigns each type a domain and each operation afunction. The definition of the syntax and semantics of types and operations
will be developed and extended in several steps. At the end of this sub clause, the complete set of typesis defined in asingle
data signature.

Sub clause A.2.1 defines the basic types | nteger, Real, Boolean, and Sring. Enumeration types are defined in sub clause A.2.3.
Sub clause A.2.4 introduces object types that correspond to classes in amodel. Collection and tuple types are discussed in sub
clause A.2.5. The special types OclAny and OclSate are considered in sub clause A.2.6. Sub clause A.2.7 introduces subtype
relationships forming atype hierarchy. All types and operations are finally summarized in a data signature defined in sub
clause A.2.8.

A.2.1 Basic Types

Basic types are Integer, Real, Boolean, and Sring. The syntax of basic types and their operations is defined by asignature g
= (Tg, Qp). Tg isthe set of basic types, Qg is the set of signatures describing operations over basic types.
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Definition A.13 (Syntax Of Basic Types)

The set of basic types Tg is defined as Tg = { Integer, Real, Boolean, Sring} . Next we define the semantics of basic types by
mapping each type to a domain.

Definition A.14 (Semantics Of Basic Types)

Let A* bethe set of finite sequences of characters from afinite alphabet A. The semantics of abasic typet € Tgisafunction
| mapping each typeto a set:

e I(Integer) =Z U {1}

« I(Rea)=R U {1}

» |(Boolean) ={ true, false} U {1}

o 1(Sring)=A* U {1} .
The basic type Integer represents the set of integers, Real the set of real numbers, Boolean the truth values true and false, and

Sring all finite strings over a given alphabet. Each domain also contains a special undefined value that is motivated in the next
sub clause.

A.2.1.1 Error Handling

Each domain of abasic typet contains a special value L. This value represents an undefined value that is useful for two
purposes:

1. Anundefined value may, for example, be assigned to an attribute of an object. In this case the undefined value helps
to model the situation where the attribute valueis not yet known (for example, the email address of a customer is
unknown at the time of thefirst contact, but will be added later) or does not apply to this specific object instance (e.g.,
the customer does not have an email address). This usage of undefined valuesis well-known in database modeling
and querying with SQL [Dat90, EN94]), in the Extended ER-Model [Gog94], and in the object specification
language TROLL light [Her95].

2. Anundefined value can signal an error in the evaluation of an expression. An example for an expression that is
defined by a partial function isthe division of integers. The result of adivision by zero is undefined. The problems
with partial functions can be eliminated by including an undefined value L into the domains of types. For all
operations we can then extend their interpretation to total functions.

The interpretation of operationsis considered strict unless there is an explicit statement in the following. Hence, an undefined
argument value causes an undefined operation result. This ensures the propagation of error conditions.

A.2.1.2 Operations

There are anumber of predefined operations on basic types. The set Qg contains the signatures of these operations. An
operation signature describes the name, the parameter types, and the result type of an operation.

Definition A.15 (Syntax Of Operations)

The syntax of an operation is defined by asignature @: t; x - - - X tn — t. The signature contains the operation symbol @) alist
of parameter typesty, ..., t, € T, and aresult typet € T.
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Table A.1 shows a schema defining most predefined operations over basic types. The left column contains partially
parameterized signaturesin Qg . The right column specifies variations for the operation symbols or typesin the left column.

The set of predefined operationsincludes the usual arithmetic operations+, -, _, /, etc. for integers and real numbers, division
(div) and modulo (mod) of integers, sign manipulation ( -, abs), conversion of Real valuesto Integer values (floor, round), and
comparison operations (<, >, <, >).

Operations for equality and inequality are presented later in sub clause A.2.2, since they apply to all types. Boolean values can
be combined in different ways (and, or, xor, implies), and they can be negated (not). For strings the length of a string (size) can
be determined, a string can be projected to a substring, and two strings can be concatenated (concat). Finally, assuming a
standard alphabet like ASCII or Unicode, case translations are possible with toUpper and toL ower.

Some operation symbols (such as + and -) are overloaded, that is there are signatures having the same operation symbol but
different parameters (concerning number or type) and possibly different result types. Thusin general, the full argument list has
to be considered in order to identify a signature unambiguously.

The operationsin Table A.1 all have at least one parameter. Thereis another set of operationsin Qg that do not have

parameters. These operations are used to produce constant values of basic types. For example, the integer value 12 can be
generated by the operation 12 : — Integer. Similar operations exist for the other basic types. For each value, thereisan
operation with no parameters and an operation symbol that corresponds to the common notational representation of this value.

Table A.1 - Schema for operations on basic types

Signature Schema parameters

w: Integer X Integer — Integer W € {+,-,* max, min}

Integer X Real — Real
Real X Integer — Real
Real X Real — Real

: Integer X Integer — Integer w € {div, mod}

/: t; Xt, — Real ty, t, € {Integer, Real}
- to>t t € {Integer, Real}
abs: tot

floor: t — Integer

round t — Integer

: t1Xt, — Boolean we {<.>.<, >},

tq, t, € {Integer, Real, String, Boolean}

w € {and, or, xor, implies}

: Boolean X Boolean — Boolean
not: Boolean — Boolean

size: Sring — Integer

concat: Sring X String — Sring
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Table A.1 - Schema for operations on basic types

ToUpper Sring — Sring

toL ower Sring — Sring

substring: Sring X Integer X Integer — Sring

A.2.1.3 Semantics of Operations

Definition A.16 (Semantics of Operations)

The semantics of an operation with signature @: t; x - - - x t, —> tisatotal function I(e@: ty x - - - x t; = 1) :
Ity x - - x 1(t) = 1().

When we refer to an operation, we usually omit the specification of the parameter and result types and only use the operation
symbol if the full signature can be derived from the context.

The next example shows the interpretation of the operation + for adding two integers. The operation has two argumentsiy, i
€ I(Integer). This example also demonstrates the strict evaluation semantics for undefined arguments.

I(+H)(iqg, ip) = ip+ip ifig # L andip, # L,

1 otherwise

We can define the semantics of the other operationsin Table A.1 analogously. The usual semantics of the boolean operations
and, or, xor, implies, and not, is extended for dealing with undefined argument values. Table A.2 shows the interpretation of
boolean operations following the proposal in [CKM +99] based on three-valued logic. Since the semantics of the other basic
operations for Integer, Real, and Sring valuesis rather obvious, we will not further elaborate on them here.

Table A.2 - Semantics of boolean operations

b, b, b, and b, blorb, b, xor b, b, impliesh, | not by
false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false 1 false 1 1 true true
true 1 1 true 1 1 false
1 false false 1 1 1 1

L true L true L true L

L L L L L L L
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A.2.2 Common Operations On All Types

At this point, we introduce some operations that are defined on all types (including those that are defined in subsequent sub
clauses). The equality of values of the same type can be checked with the operation = t x t — Boolean. Furthermore, the

semantics of = is defined to be strict. For two valuesvy, v, € I(t), we have

-
true ifvi= vy andvy # L andvy, # L,
(=)L) = < ) ifvp= Lorv,=1,
false  otherwise.
.

A test for inequality #: t x t — Boolean can be defined analogously. It is also useful to have an operation that allows oneto
check whether an arbitrary value is well defined or undefined. This can be done with the operations isDefinedt : t — Boolean
and isUndefined; : t — Boolean for any typet € T. The semantics of these operationsis given for any v € I(t) by:

I(isDefinedt)(v) = (v L)
I(isUndefined))(v) = (v = L)

A.2.3 Enumeration Types

Enumeration types are user-defined types. An enumeration typeis defined by specifying aname and a set of literals. An
enumeration value is one of the literals used for its type definition. The syntax of enumeration types and their operationsis
defined by asignature Xg = (Tg, Q). Tg isthe set of enumeration types and Qp the set of signatures describing the operations

on enumeration types.

Definition A.17 (Syntax Of Enumeration Types)

An enumeration typet € T is associated with afinite non-empty set of enumeration literals by afunction literals
O ={ex,... e

An enumeration typeis interpreted by the set of literals used for its declaration.

Definition A.18 (Semantics Of Enumeration Types)

The semantics of an enumeration typet € Tg isafunction I(t) = literals(t) U { L}.

A.2.3.1 Operations

Thereis only asmall number of operations defined on enumeration types: the test for equality or inequality of two
enumeration values. The syntax and semantics of these general operations was defined in sub clause A.2.2 and applies to
enumeration types as well.

In addition, the operation alllnstances; : — Set(t) is defined for each t € Tg to return the set of all literals of the enumeration:

Vt e Tg: I(allnstances()) = literals(t)
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A.2.4 Object Types

A central part of aUML model are classes that describe the structure of objectsin a system. For each class, we define a
corresponding object type describing the set of possible object instances. The syntax of object types and their operationsis
defined by asignature ¢ = (T, Q¢). Tcis the set of object types, and Q isthe set of signatures describing operations on

object types.
Definition A.19 (Syntax Of Object Types)

Let M beamodel with aset CLASS of class names. The set T of object typesis defined such that for each classc € CLASS
thereisatypet € T having the same name asthe classc.

We define the following two functions for mapping a classto itstype and vice versa.
typeOf : CLASS — Tc
classOf : T - CLASS

Theinterpretation of classesis used for defining the semantics of object types. The set of object identifiers || asg(c) was
introduced in “Definition A.10 (Object Identifiers)” on page 190.

Definition A.20 (Semantics Of Object Types)

The semantics of an object typet € T with classOf(t) = cisdefined asI(t) = I ass(C) U{L}.

In summary, the domain of an object typeis the set of object identifiers defined for the class and its children. The undefined
value that is only available with the type — not the class — allows us to work with values not referring to any existing object.
Thisisuseful, for example, when we have anavigation expression pointing to aclasswith multiplicity 0. . 1. Theresult of the
navigation expression is avalue referring to the actual object only if atarget object exists. Otherwise, the result isthe
undefined value.

A.2.4.1 Operations

There are four different kinds of operations that are specific to object types:
» Predefined operations: These are operations that are implicitly defined in OCL for all object types.
» Attribute operations: An attribute operation allows access to the attribute value of an object in agiven system state.

» Object operations: A class may have operations that do not have side effects. These operations are marked in the UML
model with the tag isQuery. In general, OCL expressions could be used to define object operations. The semantics of
an object operation is therefore given by the semantics of the associated OCL expression.

» Navigation operations: An object may be connected to other objects via association links. A navigation expression
alows one to follow these links and to retrieve connected objects.

A.2.4.2 Predefined Operations
For all classesc € CLAsswith object type t. = typeOf(c) the operations

allnstances: : — Set

arein Q¢ . The semantics is defined as
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|(a”|nstancestc - %t(tc )) = GCLASS(C)'

Thisinterpretation of alllnstances is safe in the sense that itsresult is aways limited to afinite set. The extension of aclassis
aways afinite set of objects.

A.2.4.3 Attribute Operations

Attribute operations are declared in amodel specification by the set ATT c for each class c. The set contains signatures

a: t. — t with a being the name of an attribute defined in the class c. The type of the attribute ist. All attribute operationsin
ATT. are elements of Q. The semantics of an attribute operation is a function mapping an object identifier to a value of the
attribute domain. An attribute value depends on the current system state.

Definition A.21 (Semantics of Attribute Operations)

An attribute signature a : tc — tin Q¢ isinterpreted by an attribute value function I ir(a : t. — t) @ I(to) — 1(t) mapping objects
of classc to avalue of typet.

oart(@(©) ifce oc ass(O),
larr(@:te = 9(c) =
1 otherwise

Note that attribute functions are defined for all possible objects. The attempt to access an attribute of a non-existent object
resultsin an undefined value.

A.2.4.4 Object Operations

Object operations are declared in amodel specification. For side effect-free operations the computation can often be described
with an OCL expression. The semantics of a side effect-free object operation can then be given by the semantics of the OCL
expression associated with the operation. We give a semantics for object operationsin sub clause A.3 when OCL expressions
are introduced.

A.2.4.5 Navigation Operations

A fundamental concept of OCL is navigation along associations. Navigation operations start from an object of a source class
and retrieve all connected objects of atarget class. In general, every n-ary association induces atotal of n- (n - 1) directed
navigation operations, because OCL navigation operations only consider two classes of an association at atime. For defining
the set of navigation operations of a given class, we have to consider all associationsthe classis participating in. A
corresponding function named participating was defined on page 4.

Definition A.22 (Syntax of Navigation Operations)
Let M be amodel
M = (CLASS, ATT ., OP., ASSOC, associates, roles, multiplicities, 1.
The set Q,,,,(C) of navigation operations for aclassc € CLASS s defined such that for each association as € participating(c)

with associates(as) = (cy, . . ., ), roles(as) =(r, . . . ,ry), and multiplicities(as) = (My, . . . , M,;) the following signatures are
in Q,(c).
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Forali,je {1,...,n} withi=], ci =c, t = typeOf(c;), and t; = typeOf(c)
i.ifn=2and Mj - {0,1} =@ then rj (as;ri) : tCi - th (S Qnav(C),
ii.ifn>2or Mj - {0,1} = then M (asri) - tg — &‘ttcj (S Qnav(C).

All navigation operations are elements of Q.

Asdiscussed in sub clause A.1, we use unique role names instead of class names for navigation operationsin order to avoid
ambiguities. The index of the navigation operation name specifies the association to be navigated along as well as the source
role name of the navigation path. The result type of a navigation over binary associationsis the type of the target classif the
multiplicity of thetargetisgivenaso. .1 or 1 (i). All other multiplicities allow an object of the source class to be linked
with multiple objects of the target class. Therefore, we need a set type to represent the navigation result (ii). Non-binary
associations always induce set-valued results since amultiplicity at the target end is interpreted in terms of all source objects.
However, for a navigation operation, only a single source object is considered.

Navigation operations are interpreted by navigation functions. Such afunction has the effect of first selecting all those links of
an association where the source object occursin the link component corresponding to the role of the source class. Theresulting
links are then projected onto those objects that correspond to the role of the target class.

Definition A.23 (Semantics of Navigation Operations)

The set of objects of class ¢j linked to an object ¢; viaassociation as is defined as

L@s)(ci) ={cjl (Cp--- Cir---,Cj,---,Cn) € OcLass(O)}

The semantics of operationsin Q,4,(C) isthen defined as

(©) ifge L@)(c),

i Wrjasri)  t 2 tg)(C) =
L otherwise

i (1 asriy * o = Set(tg))(S) = L(as)(c)).
A.2.5 Collection and Tuple Types

We call atype that allows the aggregation of several valuesinto a single value a complex type. OCL provides the complex
types Set(t), Sequence(t), and Bag(t) for describing collections of values of typet. Thereis also a supertype Collection(t) that
describes common properties of these types. The OCL collection types are homogeneous in the sense that all elements of a
collection must be of the same typet. This restriction is dightly relaxed by the substitution rule for subtypesin OCL (see
Section A.2.7, “Type Hierarchy,” on page 205). Therule says that the actual elements of a collection must have atypethat isa
subtype of the declared element type. For example, a Set(Person) may contain elements of type Customer or Employee.

A.2.5.1 Syntax and Semantics

Since complex types are parameterized types, we define their syntax recursively by means of type expressions.
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A.2.5.2 Definition A.24 (Type Expressions)
Let T"beaset of typesand |y, ..., In€ N aset of digoint names. The set of type expressions Tg,,(T") over * Tis

defined as follows.

i.Ifte "Tthente T (" T).

i fte Teyp( " T) then Set(t), Sequence(t), Bag(t) € Teyp( " T).

ii.If t€ Teyp (" T) then Collection(t) € Teyp (" T).

iV Ifty, .. th € Tep( M T) then Tuple(ly ity ..., 1 t) € Te( N T).

The definition saysthat every typet € T can be used as an element type for constructing a set, sequence, bag, or collection
type. The components of atupletype are marked with labelsly, . . ., I,,. Complex types may again be used as element types for
constructing other complex types. The recursive definition allows unlimited nesting of type expressions.

For the definition of the semantics of type expressions we make the following conventions. Let F (S) denote the set of all finite
subsets of agiven set S S* isthe set of al finite sequencesover S and B (S) is the set of al finite multisets (bags) over S.

Definition A.25 (Semantics of Type Expressions)

Let ™ T be aset of types where the domain of eacht € " Tis(t). The semantics of type expressions Tgy (" T) over * Tis
defined for all t € * T asfollows.

i. I(t) isdefined as given.

H1(Set() =F (1)) U {1},

I(Sequence(t)) = (I())* U {1},

I(Bag(t)) =B (I(t)) U {L}.
iii. I(Collection(t)) = 1(Set(t)) U I(Sequence(t)) U I(Bag(t)).
iv. [(Tuple(ly i tq, ..., It ) = 1(t) x .. xI(ty) U {L}.

In this definition, we observe that the interpretation of the type Collection(t) subsumes the semantics of the set, sequence, and
bag type. In OCL, the collection type is described as a supertype of Set(t), Sequence(t), and Bag(t). This construction greatly
simplifies the definition of operations having a similar semantics for each of the concrete collection types. Instead of explicitly
repeating these operations for each collection type, they are defined once for Collection(t). Examples for operations that are
“inherited” in thisway are the size and includes operations that determine the number of elementsin a collection or test for the
presence of an element in a collection, respectively.

A.2.5.3 Operations

A.2.5.4 Constructors

The most obvious way to create a collection value is by explicitly enumerating its el ement values. We therefore define a set of
generic operations that allow us to construct sets, sequences, and bags from an enumeration of element values. For example,
the set {1; 2; 5} can be described in OCL by the expression set {1, 2,5}, thelist{1; 2; 5} by Sequence{1,2,5},and
thebag {{2; 2; 7}} by Bag {2, 2, 7}. A shorthand notation for collections containing integer intervals can be used by
specifying lower and upper bounds of the interval. For example, the expression Sequence {3 . . 6 } denotesthe sequence{3;
4; 5; 6}. Thisisonly syntactic sugar because the same collection can be described by explicitly enumerating all values of the
interval.
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Operations for constructing collection values by enumerating their element values are called constructors. For typest € Tgyp(
A T) constructorsin Qreyp ~ 1) are defined below. A parameter listtx . . . x t denotesn (n > 0) parameters of the sametypet.
We define constructors mkSet;, mkSequence;, and mkBag; not only for any type t but also for any finite number n of
parameters.

o mkSet:itx...xt— Set(t)
« mkSequence i tXx . ..Xxt— Sequence(t)
« mkBagi:tx...xt— Bag(t)
The semantics of constructors is defined for valuesvy, . . ., v, € I(t) by the following functions.
o I(mkSet)(Vq, -« - V) ={Vq, ..., V)
« I(mkSequence) (Vi, ..., Vp) =(Vq, ««+ s Vi
o I(mkBag)(Vq, - .-, V) ={{Vv1, ..., V}}

A tuple constructor in OCL specifies values and labels for all components, for example, Tuple {number:3,
fruit:’apple’, flag:true}.A constructor for atuplewith component typesty, ..., t, € Texp( " T) (N> 1) isgiven
in abstract syntax by the following operation.

o mKTuple:l:tyx ... X Ity Tuple(ly ity ..., 1q ity
The semantics of tuple constructorsis defined for valuesv; € 1(tj) withi =1, ..., n by the following function.
o I(mkTuple)(ly:vy, ..oy iv) = (Ve oo 0 V)

Note that constructors having element values as arguments are deliberately defined not to be strict. A collection value
therefore may contain undefined values while still being well defined.

A.2.5.5 Collection Operations

The definition of operations of collection types comprises the set of all predefined collection operations. Operations common
to the types Set(t), Sequence(t), and Bag(t) are defined for the supertype Collection(t). Table A.3 shows the operation schema
for these operations. For al t € Tg,p, (" T), the signatures resulting from instantiating the schema are included

in Qreyp( * T) . Theright column of the tableillustrates the intended set-theoretic interpretation. For this purpose, C, C, C2
are values of type Collection(t), and visavalue of typet.

Table A.3 - Operations for type Collection(t)

Signature Semantics
size: Collection(t) — Integer [C]
count: Collection(t) x t— Integer [CTT{V} |
includes: Collection(t) x t— Boolean ve C
excludes: Collection(t) x t— Boolean
includesAll: Collection(t) x Collectiont x — Boolean C,cC
excludesAll: Collection(t) x Collectiont x — Boolean C IIC,-@
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Table A.3 - Operations for type Collection(t)

iSEmpty Collection(t) — Boolean C=g

notEmpty Collection(t) — Boolean Cz0

sum: Collection(t) — t X|c| ¢
i=1

The operation schemain Table A.3 can be applied to sets (sequences, bags) by substituting Set(t) (Sequence(t), Bag(t)) for all
occurrences of type Collection(t). A semantics for the operationsin Table A.3 can be easily defined for each of the concrete
collection types Set(t), Sequence(t), and Bag(t). The semantics for the operations of Collection(t) can then be reduced to one of
the three cases of the concrete types because every collection type is either a set, a sequence, or abag. Consider, for example,
the operation count : Set(t) _t! Integer that countsthe number of occurrences of an element vin aset s. The semantics of count
is:

(1 ifves

I(count) : Set(t) x t — Integer)(s,v) = < 2if ves

1ifs= 1.

-

Note that count is not strict. A set may contain the undefined value so that the result of count is 1 if the undefined valueis
passed as the second argument, for example, count({ L}, 1) = 1 and count({1}, 1) = 0.

For bags (and very similar for sequences), the meaning of count is

I(count : Bag)(t) xt — Integer)({{vy, ..., vV}, V)
0 ifn=0,
= [(count)({{vo, .. ., Vp}} V) ifn>0and vy # v,

[(count)({{vo, ..., v}} VM) +1 ifn>0andv; =V,

As explained before, the semantics of count for values of type Collection(t) can now be defined in terms of the semantics of
count for sets, sequences, and bags.

I(count : Collection)(t) x t — Integer)(c,v)

(" 1(count) : Set(t) x t — Integer)(c.v) if ce I(Set(t),
I (count) : Sequence(t) x t — Integer)(c,v) if c € 1(Sequence(t),
- I(count) : Bag(t) x t — Integer)(c,v) if ce I(Bag(t)),
L otherwise.
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A.2.5.6 Set Operations

Operations on sets include the operations listed in Table A.3. These are inherited from Collection(t). Operations that are
specific to setsare shown in Table A.4 where § S, S, are values of type Set(t), B is a value of type Bag(t) and vis a value of

typet.

Table A.4 - Operations for type Set(t)

Signature Semantics
union: Set(t) x Set(t) > Set(t) SUS
union: Set(t) x Bag(t) — Bag(t) SUB
intersection: Set(t) x Set(t) > Set(t) SUS
intersection: Set(t) x Bag(t) — Set(t) SUB
- Set(t) x Set(t) —> Set(t) S-S
symmetricDifference: Set(t) x Set(t) — Set(t) (SIUS)-(S1US)y)
including: Set(t) x t — Set(t) SU{v}
excluding: Set(t) x t > Set(t) S-{v}
asSequence: Set(t) x t — Sequence(t)
asBag: Set(t) — Bag(t)

Note that the semantics of the operation as Sequence is hondeterministic. Any sequence containing only the elements of the
source set (in arbitrary order) satisfies the operation specification in OCL.

A.2.5.7 Bag Operations
Operations for bags are shown in Table A.5, the operation asSequence is nondeterministic also for bags.

Table A.5 - Operations for type Bag(t)

Signature Semantics
union: Bag(t) x Bag(t) — Bag(t) BLUB,
union: Bag(t) x Set(t) — Bag(t) BUS
intersection: Bag(t) x Bag(t) — Bag(t) B, UB,
intersection: Bag(t) x Set(t) — Set(t) BUS
including: Bag(t) x t — Bag(t) BU{{v}}
excluding: Bag(t) x t — Bag(t) B-{{v}}
asSequence: Bag(t) x t — Sequence(t)
asSet: Bag(t) — Set(t)

A.2.5.8 Sequence Operations

Sequence operations are displayed in Table A.6. The intended semantics again is shown in the right column of thetable. S, S,
S, are sequences occurring as argument values, visavaue of typet, and i, j are arguments of type Integer. The length of
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sequence Sis n. The operator o denotes the concatenation of lists, mi(S) projects the ith element of a sequence S and zi ; (S)

resultsin a subsequence of Sstarting with theith element up to and including the jth element. Theresultis_L if anindex is out
of range. S - (v) produces a sequence equal to Sbut with all elements equal to v removed. Note that the operations append and
including are also defined identically in the OCL standard.

Table A.6 - Operations for type Sequence(t)

Signature Semantics
union: Sequence(t) x Sequence(t) — Sequence(t) S 0S
append: Sequence(t) x t — Sequence(t) So(e)
prepend: Sequence(t) X t — Sequence(t) (e0S
subSequence: Sequence(t) x Integer x Integer — Sequence(t) i (9
at: Sequence(t) x Integer — t 7 (9
first: Sequence(t) — t (9
last: Sequence(t) — t 7in (S
including: Sequence(t) X t — Sequence(t) So(e)
excluding: Sequence(t) x t — Sequence(t) S-(e)
asSet: Sequence(t) —» Set(t)
asBag: Sequence(t) — Bag(t)

A.2.5.9 Flattening Of Collections

Type expressions as introduced in Definition A.24 alow arbitrarily deep nested collection types. We pursue the following
approach for giving a precise meaning to collection flattening. First, we keep nested collection types because they not only
make the type system more orthogonal, but they are also necessary for describing the input of the flattening process. Second,
we define flattening by means of an explicit function making the effect of the flattening process clear. There may be a
shorthand notation omitting the flatten operation in concrete syntax that would expand in abstract syntax to an expression with
an explicit flattening function.

Flattening in OCL does apply to all collection types. We have to consider al possible combinationsfirst. Table A.7 shows all
possibilities for combining Set, Bag, and Sequence into a nested collection type. For each of the different cases, the collection
type resulting from flattening is shown in the right column. Note that the element typet can be any type. In particular, if tis
also a collection type the indicated rules for flattening can be applied recursively until the element type of the result is a non-
collection type.

Table A.7 - Flattening of nested collections

Nested collection type Type after flattening
Set(Sequence(t)) Set(t)

Set(Set(t)) Set(t)

Set(Bag(t)) Set(t)
Bag(Sequence(t)) Bag(t)
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Table A.7 - Flattening of nested collections

Bag(Set(t)) Bag(t)
Bag(Bag(t)) Bag(t)
Sequence(Sequence(t)) Sequence(t)
Sequence(Set(t)) Sequence(t)
Sequence(Bag(t)) Sequence(t)

A signature schemafor aflatten operation that removes one level of nesting can be defined as
flatten : C1(Cy(1)) > C4(t)

where C; and C, denote any collection type name Set, Sequence, or Bag. The meaning of the flatten operations can be defined

by the following generic iterate expression. The semantics of OCL iterate expressions is defined in Section A.3.1.2,
“Semantics of Expressions,” on page 209.

<collection-of-type-Cl(C2(t))>->iterate(el : C2(t);

accl : Cl(t) = cC1 {} |
el->iterate(v : t;
acc2 : Cl(t) = accl |

acc2->including(v)))

The following example shows how this expression schema is instantiated for abag of sets of integers, that is, C; = Bag, C, =
Set, and t = Integer. The result of flattening the value Bag {Set {3,2},Set {1,2,4}isBag {1,2,2,3,4}.

Bag{Set{3,2},Set{1,2,4} ->iterate(el : Set(Integer);

accl : Bag(Integer) = Bag {}
el->iterate(v : Integer;
acc2 : Bag(Integer) = accl |

acc2->including(v)))

It isimportant to note that flattening sequences of sets and bags (see the last two rowsin Table A.7) is potentialy
nondeterministic. For these two cases, the flatten operation would have to map each element of the (multi-) set to a distinct
position in the resulting sequence, thus imposing an order on the elements that did not exist in the first place. Since there are
types (e.g., object types) that do not define an order on their domain elements, there is no obvious mapping for these types.
Fortunately, these problematic cases do not occur in standard navigation expressions. Furthermore, these kinds of collections
can be flattened if the criteriafor ordering the elementsis explicitly specified.

A.2.5.10 Tuple Operations

An essential operation for tuple typesis the projection of atuple value onto one of its components. An element of atuple with
|abeled components can be accessed by specifying itslabel.

. element|i:TupIe(|l:t1,...,Ii:ti,...,ln:tn)% ti

o l(element;: Tuple(ly ity ..., it oo lqity) = (Ve - -y Vi ooy V) TV,

A.2.6 Special Types

Special typesin OCL that do not fit into the categories discussed so far are OclAny, OclSate, and Ocl\oid.
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» OclAny isthe supertype of all other types except for the collection types. The exception has been introduced in UML
1.3 because it considerably simplifies the type system [CKM+99]. A simple set inclusion semantics for subtype rela-
tionships as described in the next sub section would not be possible due to cyclic domain definitions if OclAny were
the supertype of Set(OclAny).

» OclSateisatype very similar to an enumeration type. It is only used in the operation oclinState for referring to state
names in a state machine. There are no operations defined on thistype. OclSate is therefore not treated specially.

» OclVoid isthe subtype of al other types. The only value of this type is the undefined value. Notice that thereisno
problem with cyclic domain definitions as L is an instance of every type.

A.2.6.1 Definition A.26 (Special Types)

The set of specia typesis Tg={ OclAny, Ocl\bid}.

Let * T be the set of basic, enumeration, and object types™ T=TB U Tg U T . The domain of OclAny is given as
1(OclAny) = (Uger 1) U {L}.

The domain of OclVoid is|(OclVoid) ={1}.

Operations on OclAny include equality (=) and inequality (<>) that already have been defined for all typesin sub clause A.2.2.
The operations oclIsKindOf, ocllsTypeOf, and ocl AsType expect a type as argument. We define them as part of the OCL
expression syntax in the next section. The operation ocllisNew is only alowed in postconditions and will be discussed in sub
clause A.3.2.

For OclVoid, the constant operation undefined : — OclVoid results in the undefined value L. The semanticsis given by
I(undefined) = L.
A.2.7 Type Hierarchy

The type system of OCL supports inclusion polymorphism by introducing the concept of a type hierarchy. The type hierarchy
is used to define the notion of type conformance. Type conformance is a relationship between two types, expressed by the
conformsTo () operation from the abstract syntax metamodel. A valid OCL expression is an expression in which all the types
conform. The consequence of type conformance can be loosely stated as: avalue of a conforming type B may be used
wherever avalue of type Ais required.

The type hierarchy reflects the subtype/supertype relationship between types. The following relationships are defined in OCL.
1. Integer isasubtype of Real.
2. All types, except for the collection and tuple types, are subtypes of OclAny.
3. Set(t), Sequence(t), and Bag(t) are subtypes of Collection(t).
4. OclVoid is subtype of al other types.
5

The hierarchy of typesintroduced by UML model elements mirrors the generalization hierarchy in the UML model.

Type conformance is arelation that isidentical to the subtype relation introduced by the type hierarchy. Therelationis
reflexive and transitive.
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Definition A.27 (Type Hierarchy)

Let T be aset of typesand TC a set of object typeswith TC _ T. Therelation _isapartial order on T and is called the type
hierarchy over T. Thetype hierarchy isdefined for all t; t0; t002 T and all tc; t0 ¢ 2 TC; n; m2 N as follows:

i. < is(a) reflexive, (b) transitive, and (c) antisymmetric:
@t<t
bt <t rt<t=t <t
Ot <t rt<t= t=t

ii. Integer < Real.

iii. t< OclAnyforalte (TgU Tg U T).

iv. Ocl\oid < t.

v. Set(t) < Collection(t),
Sequence(t) < Collection(t), and
Bag(t) < Collection(t).

vi. If t' < tthen Set(t’) < Set(t), Sequence(t’) < Sequence(t), Bag(t') < Bag(t), and
Collection(t’) < Collection(t).

vii. If ty<tfori=1,...,nand n< mthen
Tuple(ly it g, . gt it m) < Tuple(ly i tq, .o 1y t)-
viii. If classOf(t' . ) { classOf(ty) thent' ¢ < ..

If atypet’ isasubtype of another typet (i.e., t' < t), wesay that t' conformsto t. Type conformance is associated with the
principle of substitutability. A value of typet’ may be used wherever avalue of typet is expected. Thisruleis defined more
formally in sub clause A.3.1, which defines the syntax and semantics of expressions.

The principle of substitutability and the interpretation of types as sets suggest that the type hierarchy should be defined as a
subset relation on the type domains. Hence, for atypet’ being a subtype of t, we postulate that the interpretation of t’ isa
subset of the interpretation of t. It follows that every operation @ accepting values of type t has the same semantics for values

of typet’, since (@) is already well-defined for valuesin I(t'):

Ift' < tthenl(t’) c I(t) for al typest’, te T.
A.2.8 Data Signhature

We now have available al elements necessary to define the final data signature for OCL expressions. The signature provides
the basic set of syntactic elements for building expressions. It defines the syntax and semantics of types, the type hierarchy,
and the set of operations defined on types.

Definition A.28 (Data Signature)

Let * T be the set of non-collection types: * T=Tg U Tg U Tc U Tg The syntax of a data signature over an object model M is
astructure Xy, = (Ty, <, Q) where

. Twm =TExpr(AT)v

ii. < isatype hierarchy over T ,
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iii. Qu= Qe "T)U Qg UQeUQcU Qs.

The semantics of Xy, isastructure [(Zy; ) = (I(Tp), 1(<), 1( 2y ) where
i.1(Ty ) assignseacht e Ty, aninterpretation I(t).
ii. I(<) impliesfor al typest’, te Ty that I(t") c I(t) if t' < t.

iii. 1(€)y ) assigns each operation @ty x ... xth—t € Q) atotal function
(@) 1 1(t) x ... xI(t,) — ().

A.3 Ocl Expressions and Constraints

The core of OCL is given by an expression language. Expressions can be used in various contexts, for example, to define
constraints such as class invariants and pre-/postconditions on operations. In this sub clause, we formally define the syntax and
semantics of OCL expressions, and give precise meaning to notions like context, invariant, and pre-/postconditions.

Sub clause A.3.1 defines the abstract syntax and semantics of OCL expressions and shows how other OCL constructs can be
derived from this language core. The context of expressions and other important concepts such as invariants, queries, and
shorthand notations are discussed. Sub clause A.3.2 defines the meaning of operation specifications with pre- and
postconditions.

A.3.1 Expressions

In this sub clause, we define the syntax and semantics of expressions. The definition of expressionsis based upon the data
signature we devel oped in the previous sub clause. A datasignature Xy, = (T, <, Q) provides aset of types Ty, arelation <

=

on types reflecting the type hierarchy, and a set of operations Q). The signature contains the initial set of syntactic elements
upon which we build the expression syntax.

A.3.1.1 Syntax of Expressions

We define the syntax of expressionsinductively so that more complex expressions are recursively built from simple structures.
For each expression the set of free occurrences of variablesis also defined. Also, each sub clause in the definition corresponds
to asubclass of OCLExpression in the abstract syntax. The mapping is indicated.

Definition A.29 (Syntax of Expressions)

Let Zy = (T, <, Q) be adatasignature over an object model M. Let Var = {Var} te Ty, be afamily of variable sets where
each variable set isindexed by atypet. The syntax of expressions over the signature X, is given by aset Expr = {Exprt}t e
Ty and afunction free : Expr — F (Var) that are defined as follows.

i. If v € Var, thenv e Expr; and free(v) := {v}. Thismapsinto the VariableExp classin the abstract syntax.

ii. If v € Vary, e, € Expryy, € Expry, thenlet v=e; in e, € Expry, andfree (letv =g, ine,) :=free(ey) - {v}. This
maps into L etExpression in the abstract syntax. v = e is the VariableDeclar ation referred through the variable associa-
tion; e, isthe OclExpression referred through association end in. e; isthe OclExpression referred from the Variable-
Declar ation through the initExpression association.

iii. (@ If teTyadw:—->te Q) then @ € Expr; and undefined € EXprogyeig and free (@) =&
and free(undefined) := &. Thismapsinto the ConstantExp class and its subclasses from the abstract
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syntax.

(b) If w:tx...xt,>te Qyande e Expry fordli=1,...,nthen@ (e, ..., ¢, € Expr;and
free(w(ey, . .. &) :=free(e)) U ... U free(e,). Thismapsinto M odelPropertyCallExp and its
subclasses, with e; representing the source and e, to en the arguments.

iv. If &1 € EXpregglean @d €, €3 € Expr; then if e; then e, else e; endif € Expr, and free(if e, then e, else e3 endif)
:=free(e;) U free(e2) U free(ez). This corresponds to the I fExpression in the abstract syntax. e isthe
OclExpression referred through condition, e, corresponds to the thenExpression association, and ez maps into
the OclExpression elseExpression.

v. Ifee Expryandt’ <t ort < t' then (easTypet’) € Expry (eisTypeOft') € EXprgoglean » (€1SKindOf t')

€ EXprggolean and free((e asTypet’)) := free(e), free((eisTypeOf t')) :=free(e), free((eisKindOf t' )) :=free(e).
This maps into some special instances of OclOperationWithTypeArgument.

vi. If & € EXpregiiection(t), V1 € Valiy, Vo € Vary, and €2, e3 € Expry, then e — iterate(vy; vo =€ | €3)
€ Expry, and free(e; — iterate(vy; Vo = &5 | €3)) = (free(e;) U free(ey) U free(es)) - {vy, o} . Thisisa
representation of the | terateExp. e; isthe source, v, = &, isthe VariableDeclaration which is referred to
through the result association in the abstract syntax. v; corresponds to the iterator VariableDeclaration. Finally,
e3 isthe OclExpression body. Instances of Iterator Exp are defined in the OCL Standard Library.

An expression of typet’ isalso an expression of amore general typet. For al t <t:if e€ Expry thenee Expry .

A variable expression (i) refersto the value of avariable. Variables (including the special variable se1f) may beintroduced

by the context of an expression, as part of an iterate expression, and by a let expression. Let expressions (ii) do not add to the
expressiveness of OCL but help to avoid repetitions of common sub-expressions. Constant expressions (iiia) refer to avalue

from the domain of atype. Operation expressions (iiib) apply an operation from €, . The set of operations includes:

» predefined data operations. +, -, *, <, >, size, max
- dtribute operations: self.age, e.salary

 side effect-free operations defined by a class:
b.rentalsForDay(...)

» navigation by rolenames; self.employee

As demonstrated by the examples, an operation expression may also be written in OCL path syntax ase;.aXe,, . . ., €,). This
notational style is common in many object-oriented languages. It emphasizes the role of the first argument as the “receiver” of
a“message.” If e; denotes a collection value, an arrow symbol isused in OCL instead of the period: e — aXe,, . . ., &,).
Collections may be bags, sets, or lists.

Anif-expression (iv) provides an aternative selection of two expressions depending on the result of a condition given by a
boolean expression.

An asType expression (v) can be used in cases where static type information isinsufficient. It correspondsto the oc1AsType
operation in OCL and can be understood as a cast of a source expression to an equivalent expression of a (usually) more
specific target type. Thetarget type must be related to the source type, that is, one must be a subtype of the other. The isTypeOf
and isKindOf expressions correspond to the oc1IsTypeOf and oc1IsKindOf operations, respectively. An expression (e
isTypeOf t) can be used to test whether the type of the value resulting from the expression e hasthe typet’ given asargument.
AnisKindOf expression (eisKindOf t') isnot as strict in that it is sufficient for the expression to becometrueif t' isa
supertype of the type of the value of e. Note that in previous OCL versions these type casts and tests were defined as
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operations with parameters of type OclType. Here, we technically define them asfirst class expressions, which has the benefit
that we do not need the metatype Ocl Type. Thus the type system is kept simple while preserving compatibility with standard
OCL syntax.

An iterate expression (vi) is ageneral loop construct that eval uates an argument expression e; repeatedly for all elements of a
collection that is given by a source expression e;. Each element of the collection is bound in turn to the variable v, for each
evaluation of the argument expression. The argument expression ez may contain the variable v, to refer to the current element
of the collection. The result variable v, isinitialized with the expression e, . After each evaluation of the argument expression
€3, theresult is bound to the variable v, . The final value of v, is the result of the whole iterate expression.

Theiterate construct is probably the most important kind of expression in OCL. Many other OCL constructs (such as
select, reject, collect, exists, forAll, and isUnique) can be equivalently defined in terms of aniterate
expression (see Section A.3.1.3, “Derived Expressions Based on Iterate,” on page 212).

Following the principle of substitutability, the syntax of expressionsis defined such that wherever an expression e € Expr; is

expected as part of another expression, an expression with amore special typet’, (t' < t) may be used. In particular, operation
arguments and variable assignmentsin let and iterate expressions may be given by expressions of more specia types.

A.3.1.2 Semantics of Expressions

The semantics of expressionsis made precisein the following definition. A context for evaluation is given by an environment
7 = (o, B) consisting of a system state ¢ and a variable assignment 3 : Var; — I(t). A system state ¢ provides access to the set

of currently existing objects, their attribute values, and association links between objects. A variable assignment B maps
variable namesto values.
Definition A.30 (Semantics of Expressions)

Let Env be the set of environmentsnt = (o, B). The semantics of an expression e € Expr;isafunction I[[ e]] : Env — I(t) that
is defined as follows.

Lo IVIT) = BW).

i I[[letv=eyiney)](r) = I[[ex]](c, B{v/ I[[e1]1()}).

iii. I[[undefined]] (r) = L and I[[w]](r) = (W)

iv. I[[wey, .. . &I = 1wW) (@) (1[leg](0). .. . M1 (r)).

(el () if 1[[ed](r) =true,

v. I[[if e then e, else ez endif]] (r) = I[[es]] (r) if 1[[eg]] (r) = false,

N

1 otherwise.
.
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{ I'[[e]] () if I[[e]] () € I(t),
vi. l[[easTypet’)]] (r) =

L otherwise.

true if I[[e]] () € I(t) - Upep I(1"),
I[[eisTypet’)]] (r) =

false otherwise.

true if I[[e]] (r) € I(t),
I[[easKindOf t') ]] (r) =

false otherwise.

vii. I[[ e — iterate(vy;vo = e | €3)]] (r) = I[[e] — iterate’ (vq | €3)]] (') where ' = (o, B) andr” = (o, B") are
environments with modified variable assignments

B":= B{va/1[led] (N}
" = p{va/1[[€3]] (o, B" {v1/Xq})}
and iterate’ is defined as:
(@ If e; € EXPr sequencerty) then
(vl )

I[[el— iterate vy | e3)]] (') = it 1ifed] () = O,
[[[mkSequence; (X, . . ., Xn) — iterate’(vq | e3)]] (")

if 1[Teq]] (1) = (g, - - - X

(b) If e; € EXPr geyry) then

-
vl ()
if If[e] (") =&,

I[[mkSetyy (X, - . ., X)) — iterate’(vy | e9)]] (")

I[[el— iterate’ vq | e3)]] () =

if feal] (1) = D o).

() If e; € EXpr gy then

-
I[Iv21] ()
I[[e1— iterate vy | e3)]] () = if Ifey] () =2,
I[[mkBag (X, - . ., Xp) — iterate/(vy | €3)]] ()
if1[[egd] () = {{xq, - - .. Xp}}-
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The semantics of avariable expression (i) isthe value assigned to the variable. A let expression (ii) results in the value of the
sub-expression e,. Free occurrences of the variable v in e, are bound to the value of the expression e;. An operation expression
(iv) isinterpreted by the function associated with the operation. Each argument expression is evaluated separately. The state 6
is passed to operations whose interpretation depends on the system state. These include, for example, attribute and navigation
operations as defined in Section A.2.4, “ Object Types,” on page 196.

The computation of side effect-free operations can often be described with OCL expressions. We can extend the definition to
allow object operations whose effects are defined in terms of OCL expressions. The semantics of a side effect-free operation
can then be given by the semantics of the OCL expression associated with the operation. Recall that object operationsin OP;
are declared in amodel specification. Let oclexp : OP, — Expr be apartial function mapping object operations to OCL
expressions. We define the semantics of an operation with an associated OCL expression as

I[[w(py: ey ..., Py en) ]1(r) = I[[ oclexp() 11(r")
wherepy, . . . p, are parameter names, and r’ = (o, ") denotes an environment with a modified variable assignment defined as

B := B{p/I[ € 11(r). - - -, pn /[ €n ]1(N)}

Argument expressions are eval uated and assigned to parameters that bind free occurrences of py, . . ., pyinthe
expression oclexp(a). For awell-defined semantics, we need to make sure that thereis no infinite recursion resulting from an

expansion of the operation call. A strict solution that can be statically checked isto forbid any occurrences of @in oclexp(@).
However, allowing recursive operation calls considerably adds to the expressiveness of OCL. We therefore allow recursive
invocations as long as the recursion is finite. Unfortunately, this property is generally undecidable.

Theresult of an if-expression (v) is given by the then-part if the condition istrue. If the condition isfalse, the else-part isthe
result of the expression. An undefined condition makes the whole expression undefined. Note that when an expression in one
of the alternative branches is undefined, the whole expression may still have awell-defined result. For example, the result of
the following expression is 1.

if truethen 1 else 1 div 0 endif

Theresult of acast expression (vi) using asType is the value of the expression, if the value lies within the domain of the
specified target type, otherwiseit is undefined. A type test expression with isTypeOf istrueif the expression value lies exactly
within the domain of the specified target type without considering subtypes. An isKindOf type test expression istrue if the
expression value lies within the domain of the specified target type or one of its subtypes. Note that these type cast and test
expressions also work with undefined values since every value — including an undefined one — has a well-defined type.

An iterate expression (vii) loops over the elements of a collection and allows the application of afunction to each collection
element. The function results are successively combined into a value that serves as the result of the whole iterate expression.
Thiskind of evaluation is aso known in functional style programming languages as fold operation (see, e.g., [Tho99]).

In Definition A.30, the semantics of iterate expressions is given by arecursive evaluation scheme. Information is passed
between different levels of recursion by modifying the variable assignment B appropriately in each step. The interpretation of
iterate starts with the initialization of the accumulator variable. The recursive evaluation following thereafter uses asimplified
version of iterate, namely an expression iterate’ where the initialization of the accumulator variableis left out, since this sub-
expression needsto be evaluated only once. If the source collection is not empty, (1) an element from the collection is bound to
the iteration variable, (2) the argument expression is evaluated, and (3) the result is bound to the accumulator variable. These
steps are al part of the definition of the variable assignment 3". The recursion terminates when there are no more elementsin
the collection to iterate over. The constructor operations mkSequence; ; mkBag;, and mkSet; arein €2, and provide the abstract

syntax for collection literalslike Set {1, 2} in concrete OCL syntax.
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The result of an iterate expression applied to a set or bag is deterministic only if the inner expression is both commutative and
associative.

A.3.1.3 Derived Expressions Based on Iterate

A number of important OCL constructs such asexists, forAll, select, reject, collect, and isUnique are
defined in terms of iterate expressions. The following schema shows how these expressions can be trandlated to equivalent
iterate expressions. A similar translation can be found in [Cla99].

I[[ & — exists(vy | €3) ]1(r) =
I[[ e;— iterate(vy; v, = false | v, or e3) 1](T)

I[[ ey — forAll(vy | e T(r ) =
I[[ g — iterate(vl; v2 = true | v, and e3) J1(r )

I[[ &;— select(vy | e) J1(r) =
I[[ &g — iterate(vl; v2 = |
if e3 then v, elsev, — excluding(v;) endif) ]1(r)
I[[ & — refect(vy | e3) ]1(r ) =
I[[ ey — iterate(vl; v2 = |
if e3 then v, — excluding(v,) else v, endif) ]](r)
I[[ el — collect(vq | e3) 1](r) =
I[[ e — iterate(v1; v2 = mkBag type of-e3 () | V2 — including(es)) 11(r)

I[[ e1 — isUnique(v | e3) 11(r) =
I[[ ey — iterate(vl; v2 = true | v, and e; — count(vq) = 1) ]1(r )

A.3.1.4 Expression Context

An OCL expression is always written in some syntactical context. Since the primary purpose of OCL is the specification of
constraintson a UML model, it is obvious that the model itself provides the most general kind of context. In our approach, the
signature X, contains types (e.g., object types) and operations (e.g., attribute operations) that are “imported” from a model,

thus providing a context for building expressions that depend on the elements of a specific model.

On amuch smaller scale, there is also a notion of context in OCL that simply introduces variable declarations. This notion is
closely related to the syntax for constraints written in OCL. A context clause declares variablesin invariants, and parameters
in pre- and postconditions.

A context of an invariant is adeclaration of variables. The variable declaration may be implicit or explicit. In the implicit
form, the context is written as

context Cinv:
<expressions>

In this case, the <expression> may usethe variable self of type C asafree variable. In the explicit form, the context is
written as

contextVvy:Cyq,...,V,:C,inv:
<expressions>

The <expression> may usethevariablesvy, ..., v, of typesCy, .. ., C, asfree variables.
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A context of a pre-/postcondition is adeclaration of variables. In this case, the context iswritten as

context Cliop(Pr:Ty, -y PriTh): T
pre: P
post: Q
Thismeansthat the variable sel1f (of type C) and the parameterspy, . . . , p, may be used as free variablesin the precondition

P and the postcondition Q. Additionally, the postcondition may use result (of type T) asafreevariable. The details are
explained in Section A.3.2, “Pre- and Postconditions,” on page 213.

A.3.1.5 Invariants

Aninvariant is an expression with boolean result type and a set of (explicitly or implicitly declared) free variables

Vi:Cq, ..., vy CywhereCy, . . ., C, areclassifier types. Aninvariant
contextVv;:Cyq,...,V,:C,inv:
<expression>

is equivalent to the following expression without free variables that must be valid in all system states.

C,.allInstances->forAll (v;: C, |

C,.allInstances->foraAll(v,: C,|

<expression>

)

A system state is called valid with respect to an invariant if the invariant evaluates to true. Invariants with undefined result
invalidate a system state.

A.3.2 Pre-and Postconditions

The definition of expressionsin the previous sub clause is sufficient for invariants and queries where we have to consider only
single system states. For pre- and postconditions, there are additional language constructsin OCL that enable referencesto the
system state before the execution of an operation and to the system state that results from the operation execution. The general
syntax of an operation specification with pre- and postconditions is defined as

context C:op(p,: Ty ..., P Ty

pre: P

post: Q
First, the context is determined by giving the signature of the operation for which pre- and postconditions are to be specified.
The operation op which is defined as part of the classifier C hasa set of typed parameters PARAM S, =
{p1,---,Pn}- The UML model providing the definition of an operation signature &l so specifies the direction kind of each
parameter. We use afunction kind : PARAMS,, — {in, out, inout, return} to map each parameter to one of these kinds.
Although UML makes no restriction on the number of return parameters, there is usually only at most one return parameter
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considered in OCL, which isreferred to by the keyword result in apostcondition. In this case, the signature is also written
asC:op(P1:Tq, -y Pt Thop) : T with T being the type of the result parameter.

The precondition of the operation is given by an expression P, and the postcondition is specified by an expression Q. P and Q
must have a boolean result type. If the precondition holds, the contract of the operation guarantees that the postcondition is
satisfied after completion of op. Pre- and postconditions form a pair. A condition defaults to true if it is not explicitly
specified.

A.3.2.1 Example

Before we give aformal definition of operation specifications with pre- and postconditions, we demonstrate the fundamental
concepts by means of an example. Figure A.1 shows a class diagram with two classes A and B that are related to each other by
an association R. Class A has an operation op () but no attributes. Class B has an attribute ¢ and no operations. The implicit
role names a and b at the link ends allow navigation in OCL expressions from a B object to the associated A object and vice
versa

A B

c : Integer

op()

Figure A.1 - Example class diagram

Figure A.2 shows an example for two consecutive states of a system corresponding to the given class model. The object
diagrams show instances of classes A and B and links of the association R. The left object diagram shows the state before the
execution of an operation, whereas the right diagram shows the state after the operation has been executed. The effect of the
operation can be described by the following changes in the post-state: (1) the value of the attribute ¢ in object b 1 has been
incremented by one, (2) anew object b 2 has been created, (3) the link between a and b 1 has been removed, and (4) anew link
between a and b 2 has been established.
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=0
R c
R
a:A bl:B QA bl:B
c=1 c=2
(@ Pre-state with objects (b) Post-state. Object b, did not
aandb,. exist in the pre-state.

Figure A.2 - Object diagrams showing a pre- and a post-state

For the following discussion, consider the OCL expression a . b . ¢ where a isavariable denoting the object a. The expression
navigates to the associated object of class B and results in the value of the attribute c. Therefore, the expression evaluates to 1
in the pre-state shown in Figure A.2(a). As an example of how the OCL modifier @pre may be used in a postcondition to
refer to properties of the previous state, we now look at some variations of the expressiona .b. ¢ that may appear as part of a
postcondition. For each case, the result is given and explained.

* a.b.c =0
Because the expression is completely evaluated in the post-state, the navigation from a leads to the b, object.

The value of the attribute ¢ of b, is0in Figure A.2(b).

* a.bepre.c = 2
This expression refers to both the pre- and the post-state. The previous value of a . b isareference to
object b; . However, since the @pre modifier only appliesto the expression a . b, the following reference to

the attribute c is evaluated in the post-state of by, even though by is not connected anymore to a. Therefore,
theresult is 2.

e a.bepre.cepre =1
In this case, the value of the attribute c of object b, istaken from the pre-state. This expression is semantically

equivalent to the expression a . b . ¢ in aprecondition.

e a.b.cepre = L
The expression a . b evaluated in the post-state yields a reference to object b, which is now connected to a.

Since b, has just been created by the operation, there is no previous state of b,. Hence, areference to the
previous value of attribute ¢ is undefined.

Note that the @pre modifier may only be applied to operations not to arbitrary expressions. An expression such as
(a.b)@pre issyntacticaly illegal.

OCL provides the standard operation oc1IsNew for checking whether an object has been created during the execution of an
operation. This operation may only be used in postconditions. For our example, the following conditions indicate that the
object b, hasjust been created in the post-state and b, already existed in the pre-state.
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e a.b.oclIsNew = true

* a.b@pre.oclIsNew = false

A.3.2.2 Syntax and Semantics of Postconditions

All common OCL expressions can be used in a precondition P. Syntax and semantics of preconditions are defined exactly like
those for plain OCL expressionsin Sub clause A.3.1. Also, all common OCL expressions can be used in a postcondition Q.
Additionally, the epre construct, the special variable result, and the operation oc1 IsNew may appear in a postcondition.
In the following, we extend Definition A.29 for the syntax of OCL expressions to provide these additional features.

Definition A.31 (Syntax of Expressions In Postconditions)

L et op be an operation with a set of parameters PARAMS,,. The set of parameters includes at most one parameter of kind
“return.” The basic set of expressions in postconditionsis defined by repeating Definition A.29 while substituting all
occurrences of Expr, with Post-Expr, . Furthermore, we define that:

+ Each non-return parameter p € PARAMS,, with adeclared typet is available as variable: p € Var;.
+ If PARAMS,, contains a parameter of kind “return” and typet then result isavariable: result € Var,.

+ Theoperation oc1IsNew : c — Booleanisin Q for all object typesc € Ty,.
The syntax of expressionsin postconditions is extended by the following rule.

vii. If @:t;x ... xt,>te Qyand g e Post-Expr, forali=1,...,nthen
Wgp(€L, . . ., en) € Post-Expr; .

All general OCL expressions may be used in a postcondition. Moreover, the basic rules for recursively constructing
expressions do aso apply. Operation parameters are added to the set of variables. For operations with areturn type, the
variable result refersto the operation result. The set of operationsis extended by oc1 IsNew which is defined for all
object types. Operations (g, are added for allowing references to the previous state (vii). The rule says that the epre
modifier may be applied to all operations, although, in general, not all operations do actually depend on a system state (for
example, operations on data types). The result of these operations will be the same in all states. Operations which do depend
on asystem state are, e.g., attribute access and navigation operations.

For a definition of the semantics of postconditions, we will refer to environments describing the previous state and the state
resulting from executing the operation. An environment © = (o, B isapair consisting of asystem state ¢ and avariable
assignment [ (see Section A.3.1.2, “ Semantics of Expressions,” on page 209). The necessity of including variable assignments
into environments will be discussed shortly. We call an environment e = (Gyrer Bpre) describing a system state and variable
assignments before the execution of an operation a pre-environment. Likewise, an environment .4 = (Gpost Ppost) after the
completion of an operation is called a post-environment.

Definition A.32 (Semantics of Postcondition Expressions)

Let Env be the set of environments. The semantics of an expression e € Post-Expr;isafunction I[[ e]] : Env x Env — I(1).
The semantics of the basic set of expressions in postconditions is defined by repeating Definition A.30 while substituting all
occurrences of Expr, with Post-Expr,. Referencesto I[[ e]](r) are replaced by I[[ €]](r e, I'pos) t0 include the pre-environment.
Occurrences of r are changed to r . Which is the default environment in a postcondition.

+ Forall pe F)ARAMSop: l[[ p]](rprer rpost) = Bpost(p)-
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« Input parameters may not be modified by an operation:
kind(p) = inimplies Bye(P) = Poos()-
 Output parameters are undefined on entry:
kind(p) = out implies B,«(p) = L.
e |I[[ result ]](rpre, rpost) = Bposi(result).

true ifcg ope(C) andc € G,(0),
. I[[ oc11sNew ]](rpre, rpost)(c) =

fase otherwise.

Vil [ @gpe(®1, - - -, €) 1(Fpres Tpos) = (@) () (1 €211 (Mpres Fposd)s - - -5 1L €611 (Fpres Tpost)

Standard expressions are evaluated as defined in Definition A.30 with the post-environment determining the context of
evaluation. Input parameters do not change during the execution of the operation. Therefore, their values are equal in the pre-
and post-environment. The value of the result variable is determined by the variable assignment of the post-environment.
The oc1IsNew operation yieldstrue if an object did not exist in the previous system state. Operations referring to the
previous state are evaluated in context of the pre-environment (vii). Note that the operation arguments may still be evaluated in
the post-environment. Therefore, in anested expression, the environment only appliesto the current operation, whereas deeper
nested operations may evaluate in a different environment.

With these preparations, the semantics of an operation specification with pre- and postconditions can be precisely defined as
follows. We say that a precondition P satisfies a pre-environment r,..— written asr . |= P —if the expression P evaluatesto true
according to Definition A.30. Similarly, a postcondition Q satisfiesa pair of pre-and post-environments, if the expression Q
evaluates to true according to Definition A.32;

ree|[= P iff  I[[ P]](rye) = true
(Fpres Tpos) 1= Q iff [ QI1(Fpres Fpost) = true

Definition A.33 (Semantics of Operation Specifications)
The semantics of an operation specification isa set R < Env x Env defined as

[[ context C::op(p,: Ty, ..., P Ty)
pre: P
post: Q]] =R

where Risthe set of all pre- and post-environment pairs such that the pre-environment rpre satisfies the precondition P and the
pair of both environments satisfies the postcondition Q:

R= { (rpref rpoﬁ) | rpre |: P~ (rpref rpost) |: Q}
The satisfaction relation for Q is defined in terms of both environments since the postcondition may contain references to the
previous state. The set R defines al legal transitions between two states corresponding to the effect of an operation. It therefore
provides a framework for a correct implementation.

Definition A.34 (Satisfaction of Operation Specifications)

An operation specification with pre- and postconditionsis satisfied by a program Sin the sense of total correctnessif the
computation of Sisatotal function fS: dom(R) — im(R) and graph(fS) c R.
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In other words, the program Saccepts each environment satisfying the precondition as input and produces an environment that
satisfies the postcondition. The definition of R allows us to make some statements about the specification. In general, a
reasonabl e specification implies a non-empty set R allowing one or more different implementations of the operation. If R= &
, then there is obviously no implementation possible. We distinguish two cases: (1) no environment satisfying the precondition
exists, or (2) there are environments making the precondition true, but no environments do satisfy the postcondition. Both
cases indicate that the specification isinconsistent with the model. Either the constraint or the model providing the context
should be changed. A more restrictive definition might even prohibit the second case.
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