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Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies, and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG specifications 
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
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Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the link cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
report_issue.htm.
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1 Scope

This specification defines the Object Constraint Language (OCL), version 2.4 . OCL version 2.4  is the latest version of 
OCL that is aligned with UML 2.4.1 and MOF 2.4.1.

2 Conformance

The UML 2.4.1 Infrastructure and the MOF 2.4.1 Core specifications that were developed in parallel with this OCL 2.4 
specification share a common core. The OCL specification contains a well-defined and named subset of OCL that is 
defined purely based on the common core of UML and MOF. This allows this subset of OCL to be used with both the 
MOF and the UML, while the full specification can be used with the UML only.

The following compliance points are distinguished for both parts.

1. Syntax compliance: The tool can read and write OCL expressions in accordance with the grammar, including 
validating its type conformance and conformance of well-formedness rules against a model.

2. XMI compliance: The tool can exchange OCL expressions using XMI.

3. Evaluation compliance: The tool evaluates OCL expressions in accordance with the semantics clause. The following 
additional compliance points are optional for OCL evaluators, as they are dependent on the technical platform on 
which they are evaluated: 

• allInstances() 

• pre-values and oclIsNew() in postconditions

• OclMessage 

• navigating across non-navigable associations 

• accessing private and protected features of an object

The following table shows the possible compliance points. Each tool is expected to fill in this table to specify which 
compliance points are supported. 

Table 2.1 - -  Overview of OCL Compliance Points

OCL-MOF subset Full OCL

Syntax

XMI

Evaluation

- allInstances

- @pre in postcondtions

- OclMessage

- navigating non-navigable associations

- accessing private and protected features
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3 Normative References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. 

• ISO 639 (all parts) Codes for the representation of names of languages 

• ISO 3166 (all parts) Codes for the representation of names of countries and their subdivisions 

• ISO/IEC 10646:2011 Information technology - Universal Coded Character Set (UCS)   

• UML 2.4.1 Superstructure Specification:  http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

• UML 2.4.1 Infrastructure Specification:  http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF

• MOF 2.4.1 Core Specification:  http://www.omg.org/spec/MOF/2.4.1/PDF

• UNICODE 5.1 Standard: http://www.unicode.org/versions/Unicode5.1.0/

• Unicode Technical Standard#10: http://www.unicode.org/reports/tr10/

3.2 Informative References

The following specification is referenced in explanatory text, which describes differences between this specification and the 
version of OCL included in the existing standard. Its provisions do not constitute provisions of this specification. :

• ISO/IEC 19501:2005 Information technology -- Open Distributed Processing -- Unified Modeling Language (UML) 
Version 1.4.2 , also http://www.omg.org/spec/UML/ISO/19501/PDF

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification replaces the specification of OCL given in OCL 2.3.1.
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The version of OCL specified in ISO/IEC 19501:2005 is intended for use in models based on UML 1.4.1 and UML 1.5. 
However, use of the OCL specified by ISO/IEC 19501:2005 is not prescribed by this specification.

The version of OCL specified in this International Standard is not directly applicable to models based on ISO/IEC 
19501:2005.

6.2 Structure of the Specification

The document is divided into several clauses.

• The OCL Language Description clause gives an informal description of OCL. This clause is not normative, but meant 
to be explanatory. 

• Clause 8 (“Abstract Syntax”) describes the abstract syntax of OCL using a MOF 2.0 compliant metamodel. This is the 
same approach as used in the UML specifications. The metamodel is MOF  compliant in the sense that it only uses con-
structs that are defined in the MOF.

• Clause 9 (“Concrete Syntax”) describes the canonical concrete syntax using an attributed EBNF grammar. This syntax 
is mapped onto the abstract syntax, achieving a complete separation between concrete and abstract syntax.

• Clause 10 (“Semantics Described using UML”) describes the semantics for OCL using UML. 

• In Clause 11 (“The OCL Standard Library”) the OCL Standard Library is described. This defines type like Integer, 
Boolean, etc. and all the collection types. OCL is not a stand-alone language, but an integral part of the UML. An OCL 
expression needs to be placed within the context of a UML model. 

• Clause 12 (“The Use of OCL Expressions in UML Models”) describes a number of places within the UML where OCL 
expressions can be used.

• Clause 13 (“Basic OCL and Essential OCL” defines the adaptation of the OCL metamodel when used in particular con-
text of Core::Basic infrastructure library package and in the context of EMOF.
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7 OCL Language Description

This clause introduces the Object Constraint Language (OCL), a formal language used to describe expressions on UML 
models. These expressions typically specify invariant conditions that must hold for the system being modeled or queries 
over objects described in a model. Note that when the OCL expressions are evaluated, they do not have side effects (i.e., 
their evaluation cannot alter the state of the corresponding executing system).

OCL expressions can be used to specify operations / actions that, when executed, do alter the state of the system. UML 
modelers can use OCL to specify application-specific constraints in their models. UML modelers can also use OCL to 
specify queries on the UML model, which are completely programming language independent.

Note - This clause is informative only and not normative. 

7.1 Why OCL?

A UML diagram, such as a class diagram, is typically not refined enough to provide all the relevant aspects of a 
specification. There is, among other things, a need to describe additional constraints about the objects in the model. Such 
constraints are often described in natural language. Practice has shown that this will always result in ambiguities. In order 
to write unambiguous constraints, so-called formal languages have been developed. The disadvantage of traditional 
formal languages is that they are usable to persons with a strong mathematical background, but difficult for the average 
business or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains easy to read and write. It has been developed 
as a business modeling language within the IBM Insurance division, and has its roots in the Syntropy method.

OCL is a pure specification language; therefore, an OCL expression is guaranteed to be without side effects. When an 
OCL expression is evaluated, it simply returns a value. It cannot change anything in the model. This means that the state 
of the system will never change because of the evaluation of an OCL expression, even though an OCL expression can be 
used to specify a state change (e.g., in a post-condition). 

OCL is not a programming language; therefore, it is not possible to write program logic or flow control in OCL. You 
cannot invoke processes or activate non-query operations within OCL. Because OCL is a modeling language in the first 
place, OCL expressions are not by definition directly executable. 

OCL is a typed language so that each OCL expression has a type. To be well formed, an OCL expression must conform 
to the type conformance rules of the language. For example, you cannot compare an Integer with a String. Each Classifier 
defined within a UML model represents a distinct OCL type. In addition, OCL includes a set of supplementary predefined 
types. These are described in Clause 11 (“The OCL Standard Library”).

As a specification language, all implementation issues are out of scope and cannot be expressed in OCL. 

The evaluation of an OCL expression is instantaneous. This means that the states of objects in a model cannot change 
during evaluation.

7.1.1 Where to Use OCL

OCL can be used for a number of different purposes:

• as a query language,

• to specify invariants on classes and types in the class model,
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• to specify type invariant for Stereotypes,

• to describe pre- and post conditions on Operations and Methods,

• to describe Guards,

• to specify target (sets) for messages and actions,

• to specify constraints on operations, and

• to specify derivation rules for attributes for any expression over a UML model.

7.2 Introduction

7.2.1 Legend

Text written in the typeface as shown below is an OCL expression.

'This is an OCL expression'

The context keyword introduces the context for the expression. The keyword inv, pre, and post denote the stereotypes, 
respectively «invariant», «precondition», and «postcondition» of the constraint. The actual OCL expression comes after 
the colon.

context TypeName inv:

'this is an OCL expression with stereotype <<invariant>> in the

context of TypeName' = 'another string'

In the examples the keywords of OCL are written in boldface in this document. The boldface has no formal meaning, but is 
used to make the expressions more readable in this document. OCL expressions in this document are written using ASCII 
characters only.

Words in Italics within the main text of the paragraphs refer to parts of OCL expressions.

7.2.2 Example Class Diagram

The diagram below is used in the examples in this clause.
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Figure 7.1 - Class Diagram Example

7.2.3 Character Set

OCL text comprises characters in the UNICODE character set. In particular, string literals, comments, and the names of 
types, features, and other elements in the UML model may contain any valid UNICODE character.

7.3 Relation to the UML Metamodel

7.3.1 Self

Each OCL expression is written in the context of an instance of a specific type. In an OCL expression, the reserved word 
self is used to refer to the contextual instance. For example, if the context is Company, then self refers to an instance of 
Company.

7.3.2 Specifying the UML Context

The context of an OCL expression within a UML model can be specified through a so-called context declaration at the 
beginning of an OCL expression. The context declaration of the constraints in the following sub clauses is shown.

If the constraint is shown in a diagram, with the proper stereotype and the dashed lines to connect it to its contextual 
element, there is no need for an explicit context declaration in the test of the constraint. The context declaration is 
optional. 
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7.3.3 Invariants

The OCL expression can be part of an Invariant which is a Constraint stereotyped as an «invariant». When the invariant 
is associated with a Classifier, the latter is referred to as a “type” in this clause. An OCL expression is an invariant of the 
type and must be true for all instances of that type at any time. (Note that all OCL expressions that express invariants are 
of the type Boolean.)

For example, if in the context of the Company type in Figure 7.1, the following expression would specify an invariant that 
the number of employees must always exceed 50:

self.numberOfEmployees > 50

where self is an instance of type Company. (We can view self as the object from where we start evaluating the 
expression.) This invariant holds for every instance of the Company type. 

The type of the contextual instance of an OCL expression, which is part of an invariant, is written with the context 
keyword, followed by the name of the type as follows. The label inv: declares the constraint to be an «invariant» 
constraint.

context Company inv:

self.numberOfEmployees > 50

In most cases, the keyword self can be dropped because the context is clear, as in the above examples. As an alternative 
for self, a different name can be defined playing the part of self. For example:

context c : Company inv:

c.numberOfEmployees > 50

This invariant is equivalent to the previous one.

Optionally, the name of the constraint may be written after the inv keyword, allowing the constraint to be referenced by 
name. In the following example the name of the constraint is enoughEmployees.  

context c : Company inv enoughEmployees:

c.numberOfEmployees > 50

7.3.4 Pre- and Postconditions

The OCL expression can be part of a Precondition or Postcondition, corresponding to «precondition» and «postcondition» 
stereotypes of Constraint associated with an Operation or other behavioral feature. The contextual instance self then is an 
instance of the type that owns the operation or method as a feature. The context declaration in OCL uses the context 
keyword, followed by the type and operation declaration. The stereotype of constraint is shown by putting the labels 
‘pre:’ and ‘post:’ before the actual Preconditions and Postconditions. For example:

context Typename::operationName(param1 : Type1, ... ): ReturnType

pre :  param1 > ...

post:  result = ...

The name self can be used in the expression referring to the object on which the operation was called. The reserved word 
result denotes the result of the operation, if there is one. The names of the parameters (param1) can also be used in the 
OCL expression. In the example diagram, we can write:

context Person::income(d : Date) : Integer

post:  result = 5000
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Optionally, the name of the precondition or postcondition may be written after the pre or post keyword, allowing the 
constraint to be referenced by name. In the following example the name of the precondition is parameterOk and the name 
of the postcondition is resultOk. In the UML metamodel, these names are the values of the attribute name of the 
metaclass Constraint that is inherited from ModelElement.

context Typename::operationName(param1 : Type1, ... ): ReturnType

pre  parameterOk:  param1 > ...

post resultOk   :  result = ...

7.3.5 Package Context

The above context declaration is precise enough when the package in which the Classifier belongs is clear from the 
environment. To specify explicitly in which package invariant, pre or postcondition Constraints belong, these constraints 
can be enclosed between 'package' and 'endpackage' statements. The package statements have the syntax:

package Package::SubPackage

context X inv:

... some invariant ...

context X::operationName(..)

pre: ... some precondition ...

endpackage

An OCL file (or stream) may contain any number package statements, thus allowing all invariant, preconditions, and 
postconditions to be written and stored in one file. This file may co-exist with a UML model as a separate entity. 

7.3.6 Operation Body Expression

An OCL expression may be used to indicate the result of a query operation. This can be done using the following syntax:

context Typename::operationName(param1 : Type1, ... ): ReturnType

body:  -- some expression

The expression must conform to the result type of the operation. Like in the pre- and postconditions, the parameters may 
be used in the expression. Pre-, and postconditions, and body expressions may be mixed together after one operation 
context. For example:

context Person::getCurrentSpouse() : Person
pre:   self.isMarried = true
body:  self.mariages->select( m | m.ended = false ).spouse

7.3.7 Initial and Derived Values

An OCL expression may be used to indicate the initial or derived value of an attribute or association end. This can be 
done using the following syntax:

context Typename::attributeName: Type

init:  -- some expression representing the initial value

context Typename::assocRoleName: Type

derive:  -- some expression representing the derivation rule
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The expression must conform to the result type of the attribute. In the case the context is an association end the 
expression must conform to the classifier at that end when the multiplicity is at most one, or Set, or OrderedSet when the 
multiplicity may be more than one. Initial and derivation expressions may be mixed together after one context. For 
example:

context Person::income : Integer

init:   parents.income->sum() * 1% -- pocket allowance

derive:  if underAge

         then parents.income->sum() * 1% -- pocket allowance

         else job.salary                 -- income from regular job

         endif

The derivation constraint must be satisfied at any time, hence the derivation includes the initialization. Both are allowed 
on the same property but they must not be contradictory. For each property there should be at most one initialization 
constraint and at most one derivation constraint.

7.3.8 Other Types of Expressions

Any OCL expression can be used as the value for an attribute of the UML metaclass Expression or one of its subtypes. In 
that case, the semantics sub clause describes the meaning of the expression. A special subclass of Expression, called 
ExpressionInOcl is used for this purpose. See 12.1, ’Introduction’ for a definition.

7.4 Basic Values and Types

In OCL, a number of basic types are predefined and available to the modeler at all times. These predefined value types 
are independent of any object model and are part of the definition of OCL.

The most basic value in OCL is a value of one of the basic types. The basic types of OCL, with corresponding examples 
of their values, are shown in the following table.

OCL defines a number of operations on the predefined types. Table 7.2 - gives some examples of the operations on the 
predefined types. See 11.4, ’Primitive Types’ for a complete list of all operations.

Table 7.1 - - Basic OCL types and their values

type  values consistent with implementation definitions

OclInvalid invalid

OclVoid null, invalid

Boolean true, false (MOF) http://www.w3.org/TR/xmlschema-2/#boolean

Integer 1, -5, 2, 34, 26524, ... (MOF) http://www.w3.org/TR/xmlschema-2/#integer

Real 1.5, 3.14,  ... http://www.w3.org/TR/xmlschema-2/#double

String 'To be or not to be...' (MOF) http://www.w3.org/TR/xmlschema-2/#string

UnlimitedNatural 0, 1, 2, 42, ..., * http://www.w3.org/TR/xmlschema-2/#nonNegativeInteger

Table 7.2 - - Examples of operations on the predefined types

type operations

Integer *, +, -, /, abs()

Real *, +, -, /, floor()

Boolean and, or, xor, not, implies, if-then-else
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Collection, Set, Bag, Sequence, and Tuple are basic types as well. Their specifics will be described in the upcoming sub 
clauses.

Multiple adjacent strings are concatenated allowing a long string to be specified on multiple lines.

'This is a '
'concatenated string'          -- 'This is a concatenated string'

Unicode characters are used within single quoted sequences, with the following backslash based escape sequences used to 
define backslash and other characters.

\b          -- backspace
\t          -- horizontal tab
\n          -- linefeed
\f          -- form feed
\r          -- carriage return
\"         -- double quote
\'          -- single quote
\\          -- backslash
\xhh     -- #x00 to #xFF
\uhhhh -- #x0000 to #xFFFF

where h is a hex digit: 0 to 9, A to F or a to f. 

Reserved words such as true and arbitrary awkward spellings may be used as names by enclosing the name in underscore-
prefixed single quotes.

self.'if' = 'tabbed\tvariable'.'spaced operation'()

7.4.1 Types from the UML Model

Each OCL expression is written in the context of a UML model, a number of classifiers (types/classes, ...), their features 
and associations, and their generalizations. All classifiers from the UML model are types in the OCL expressions that are 
attached to the model.

7.4.2 Enumeration Types

Enumerations are Datatypes in UML and have a name, just like any other Classifier. An enumeration defines a number of 
enumeration literals that are the possible values of the enumeration. Within OCL one can refer to the value of an 
enumeration. When we have Datatype named Gender in the example model with values ‘female’ or ‘male’ they can be 
used as follows:

context Person inv: gender = Gender::male

7.4.3 Let Expressions

Sometimes a sub-expression is used more than once in a constraint. The let expression allows one to define a variable that 
can be used in the constraint. 

context Person inv:
let income : Integer = self.job.salary->sum() in

String concat(), size(), substring()

UnlimitedNatural *, +, /

Table 7.2 - - Examples of operations on the predefined types
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if isUnemployed then
income < 100

else
income >= 100 

endif

A let expression may be included in any kind of OCL expression. It is only known within this specific expression. A 
variable declaration inside a let must have a declared type and an initial value. 

7.4.4 Additional operations/attributes through «definition» expressions

The Let expression allows a variable to be used in one OCL expression. To enable reuse of variables/operations over 
multiple OCL expressions one can use a Constraint with the stereotype «definition», in which helper variables/operations 
are defined. This «definition» Constraint must be attached to a Classifier and may only contain variable and/or operation 
definitions, nothing else. All variables and operations defined in the «definition» constraint are known in the same context 
as where any property of the Classifier can be used. Such variables and operations are attributes and operations with 
stereotype «OclHelper» of the classifier. They are used in an OCL expression in exactly the same way as normal 
attributes or operations are used. The syntax of the attribute or operation definitions is similar to the Let expression, but 
each attribute and operation definition is prefixed with the keyword ‘def’ as shown below. 

context Person
def: income : Integer = self.job.salary->sum() 
def: nickname : String = ‘Little Red Rooster’
def: hasTitle(t : String) : Boolean = self.job->exists(title = t)

Operations or attributes defined by "definitions expressions" may be static (classifier scoped). In that case the static 
keyword should be used before "def."

context MyClass

static def : globalId() : Integer = ...

The names of the attributes / operations in a let expression may not conflict with the names of respective attributes/ 
associationEnds and operations of the Classifier.

Using this definition syntax is identical to defining an attribute/operation in the UML with stereotype «OclHelper» with 
an attached OCL constraint for its derivation.

7.4.5 Type Conformance

OCL is a typed language and the basic value types are organized in a type hierarchy. This hierarchy determines 
conformance of the different types to each other. You cannot, for example, compare an Integer with a Boolean or a String.

An OCL expression in which all the types conform is a valid expression. An OCL expression in which the types don’t 
conform is an invalid expression. It contains a type conformance error. A type type1 conforms to a type type2 when an 
instance of type1 can be substituted at each place where an instance of type2 is expected. The type conformance rules for 
types in the class diagrams are simple.

• Each type conforms to each of its supertypes.

• Type conformance is transitive: if type1 conforms to type2, and type2 conforms to type3, then type1 conforms to type3.
12                 Object Constraint Language, v2.4



The effect of this is that a type conforms to its supertype, and all the supertypes above. The type conformance rules for 
the types from the OCL Standard Library are listed in Table 7.3 -, where the third column specifies an additional condition 
which must be satisfied by the involved types to verify the type conformance rule..

Although UnlimitedNatural conforms to Integer, '*' is an invalid Integer, so that the evaluation of the expression '1 + *' 
results in invalid.

The conformance relation between the collection types only holds if they are collections of element types that conform to 
each other. See 7.5.13, ’Collection Type Hierarchy and ype Conformance Rules’ for the complete conformance rules for 
collections.

Table 7.4 - provides examples of valid and invalid expressions.

7.4.6 Re-typing or Casting Objects

In some circumstances, it is desirable to use a property of an object that is defined on a subtype of the current known type 
of the object. Because the property is not defined on the current known type, this results in a type conformance error.

When it is certain that the actual type of the object is the subtype, the object can be re-typed using the operation 
oclAsType(Classifier). This operation results in the same object, but the known type is the argument Classifier. When 
there is an object object of type Type1 and Type2 is another type, it is allowed to write:

object.oclAsType(Type2) --- changes the static type of the expression to Type2

An object can only be re-typed to a type to which it conforms.  If the actual type of the object, at evaluation time, is not 
a subtype of the type to which it is re-typed, then the result of oclAsType is invalid.

Casting provides visibility, at parse time, of features not defined in the context of an expression's static type. It does not 
coerce objects to instances of another type, nor can it provide access to hidden or overridden features of a type.  For this, 
the feature call is qualified by the name of the type (a path name, if necessary) whose definition of the feature is to be 
accessed.

For example, if class Employee redefines the age() : Integer operation of the Person class, a constraint may access the 
Person definition as in

Table 7.3 - - Type conformance rules

Type Conforms to/Is a subtype of Condition

Set(T1) Collection(T2) if T1 conforms to T2

Sequence(T1) Collection(T2) if T1 conforms to T2

Bag(T1) Collection(T2) if T1 conforms to T2

OrderedSet(T1) Collection(T2) if T1 conforms to T2

Integer Real

UnlimitedNatural Integer * is an invalid Integer

Table 7.4 - - Valid and Invalid Expressions

OCL expression valid explanation

1 + 2 * 34 yes

1 + 'motorcycle' no type String does not conform to type Integer

23 * false no type Boolean does not conform to Integer

12 + 13.5 yes
Object Constraint Language, v2.4        13



context Employee

inv:  self.age() <= self.Person::age()

For clarity, the qualified form may only be used with an explicit source expression.

7.4.7 Re-typing or Casting Collections 

A Collection may be retyped in a similar way, but using the collection navigation operator.
aCollection->oclAsType(Set(String)) 

This will return invalid if either aCollection is not a Set or the elements of aCollection are not conformant with String. 

The elements of a collection may be retyped individually using a collect iteration.
aCollection->collect(oclAsType(String)) 

This preserves the kind of collection (Set or Sequence or ...) but retypes the elements.

The selectByKind operation may be used to select a type conformant sub-collection.
aCollection->selectByKind(Person) 

This returns a sub-collection of the same kind as aCollection containing all the non-null elements that are conformant to 
Person. Similarly selectByType returns a sub-collection of the non-null elements with the exact type. 

7.4.8 Precedence Rules

The precedence order for the operations, starting with highest precedence, in OCL is:

• literal and variable expressions, “(“ and “)”, “if-then-else-endif”

• “let-in”

• @pre 

• call expressions: "^", "^^", “.” and “->”

• unary “not” and unary “-”

• “*” and “/”

• “+” and binary “-”

• “<“, “>”, “<=”, “>=” 

• “=”, “<>”

• “and”

• “or”

• “xor”

• “implies”

• “in”

All infix operators are left associative, equal precedence operators are evaluated left to right.
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A let expression is both high precedence and low precedence; high on the left so that a let expression behaves as an 
atomic value in operations, low on the right so that the in-expression can be an arbitrary expression. "a + let ... in a + let 
... in a + a" is "a + (let ... in (a + (let ... in (a + a))))".

Parentheses “(“ and “)” can be used to change precedence and associativity.

7.4.9 Use of Infix Operators

The use of infix operators is allowed in OCL. The operators ‘+’, ‘-’, ‘*’, ‘/’, ‘=’, ‘<>’, ‘<’, ‘>’, ‘<=’, ‘>=’ are used as 
infix operators. If a type defines one of those operators with the correct signature, they will be used as infix operators. 
The expression:

a + b

is equal to the expression:

a._'+'(b)

that is, invoking the “+” operation on a with b as the parameter to the operation.

The infix operators defined for a type must have exactly one parameter. For the infix operators ‘<,’ ‘>,’ ‘<=,’ ‘>=,’ ‘<>,’ 
‘and,’ ‘or,’ and ‘xor’ the return type must be Boolean.

7.4.10 Navigation Operators and Navigation Shorthands 

There are two navigation operators: "." and "->". 

The "." navigation operator supports navigation from an object using a property or operation. 

anObject.name                                           aString.indexOf(':') 

The "->" navigation operator supports navigation from a collection using a property, operation or iteration. 

aBag->elementType                    aSet->union(anotherSet)                           aSet->collect(name) 

Additionally there are two navigation shorthands: "." and "->". 

The "." navigation shorthand performs an implicit collect of a property or operation on a collection. 

aSet.name    is a shorthand for              aSet->collect(name) 

The "->" navigation shorthand performs an implicit set conversion of an object. 

anObject->union(aSet)     is a shorthand for                      anObject.oclAsSet()->union(aSet)

These operators and shorthands are summarized in Table 7.5.
Table 7.5 -  - Navigation Operators and Shorthands

Object Source Collection Source

. Object Navigation Operator Implicit Collect Conversion Navigation Shorthand

-> Implicit Set Conversion Navigation Shorthand Collection Navigation Operator
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7.4.11 Keywords

Keywords in OCL are reserved words. That means that the keywords cannot occur as a name. A reserved word may be 
used as the name of a package, a type, a feature, a variable or a constraint by enclosing the word in underscore-prefixed 
single quotes. The list of keywords is shown below:

The following words are restricted. A restricted word can only be used as a name when preceded by a "::". A restricted 
word may also be used by enclosing the word in underscore-prefixed single quotes.

Note that operation names such as iterate, forAll, and oclType, are not reserved or restricted.

7.4.12   Comment

Comments in OCL are written following two successive dashes (minus signs). Everything immediately following the two 
dashes up to and including the end of line is part of the comment. 

For example:
       -- this is a comment

7.4.13 Invalid Values

Some expressions will, when evaluated, have an invalid value. For instance, typecasting with oclAsType() to a type that 
the object does not support or getting the ->first() element of an empty collection will result in invalid. In general, an 
expression where one of the parts is null or invalid will itself be invalid. There are some important exceptions to this rule, 
however. First, there are the logical operators:

• True OR-ed with anything is True

• False AND-ed with anything is False

• False IMPLIES anything is True

• anything IMPLIES True is True

and
body
context
def
derive
else
endif
endpackage
false

if
implies
in
init
inv
invalid
let
not
null

or
package
post
pre
self
static
then
true
xor

Bag
Boolean
Collection
Integer
OclAny
OclInvalid
OclMessage
OclVoid

OrderedSet
Real
Sequence
Set
String
Tuple
UnlimitedNatural
16                 Object Constraint Language, v2.4



The rules for OR and AND are valid irrespective of the order of the arguments and they are valid whether the value of the 
other sub-expression is known or not.

The rules for OR and AND apply to the exists and forAll iterations that are defined as iterated OR and AND.

The IF-expression is another exception. It will be valid as long as the condition and the chosen branch is valid, 
irrespective of the value of the other branch. 

null objects may be compared with non-invalid objects in = and <> comparisons. 

Finally, there are explicit operations for testing if the value of an expression is undefined. oclIsUndefined() is an operation 
on OclAny that results in true if its argument is null or invalid and false otherwise. Similarly oclIsInvalid() is an operation 
on OclAny that results in true if its argument is invalid and false otherwise. All explicit operations are defined in 11.3.2 and 
11.3.3.

7.5 Objects and Properties

OCL expressions can refer to Classifiers, e.g., types, classes, interfaces, associations (acting as types), and datatypes. Also 
all attributes, association-ends, methods, and operations without side effects that are defined on these types, etc. can be 
used. In a class model, an operation or method is defined to be side effect free if the isQuery attribute of the operations is 
true. For the purpose of this document, we will refer to attributes, association-ends, and side effect free methods and 
operations as being properties. A property is one of:

• an Attribute

• an AssociationEnd

• an Operation with isQuery being true

• a Method with isQuery being true

The value of a property on an object that is defined in a class diagram is specified in an OCL expression by a dot 
followed by the name of the property. For example:

context Person inv: 
self.isMarried

If self is a reference to an object, then self.property is the value of the property property on self. 

7.5.1 Properties: Attributes

For example, the age of a Person is written as self.age:

context Person inv:
self.age > 0

The value of the subexpression self.age is the value of the age attribute on the particular instance of Person identified by 
self. The type of this subexpression is the type of the attribute age, which is the standard type Integer. 

Using attributes and operations defined on the basic value types, we can express calculations etc. over the class model. 
For example, a business rule might be “the age of a Person is always greater than zero.” This can be stated by the 
invariant above.

Attributes may have multiplicities in a UML model. Whenever the multiplicity of an attribute is greater than 1, the result 
type is collection of values. Collections in OCL are described later in this clause.
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7.5.2 Properties: Operations

Operations may have parameters. For example, as shown earlier, a Person object has an income expressed as a function 
of the date. This operation would be accessed as follows, for a Person aPerson and a date aDate:

aPerson.income(aDate)

The result of this operation call is a value of the return type of the operation, which is Integer in this example. If the 
operation has out or in/out parameters, the result of this operation is a tuple containing all out, in/out parameters and the 
return value. For example, if the income operation would have an out parameter bonus, the result of the above operation 
call is of type Tuple( bonus: Integer, result: Integer). You can access these values using the names of the out parameters, 
and the keyword result. For example:

aPerson.income(aDate).bonus = 300 and
aPerson.income(aDate).result = 5000

Note that the out parameters need not be included in the operation call. Values for all in or in/out parameters are 
necessary.

Defining operations

The operation itself could be defined by a postcondition constraint. This is a constraint that is stereotyped as 
«postcondition». The object that is returned by the operation can be referred to by result. It takes the following form:

context Person::income (d: Date) : Integer
post: result = age * 1000

The right-hand-side of this definition may refer to the operation being defined (i.e., the definition may be recursive) as 
long as the recursion is not infinite. Inside a pre- or postcondition one can also use the parameters of the operation. The 
type of result, when the operation has no out or in/out parameters, is the return type of the operation, which is Integer in 
the above example. When the operation does have out or in/out parameters, the return type is a Tuple as explained above. 
The postcondition for the income operation with out parameter bonus may take the following form:

context Person::income (d: Date, bonus: Integer) : Integer
post: result = Tuple { bonus = ...,

                       result = .... }

To refer to an operation or a method that doesn’t take a parameter, parentheses with an empty argument list are 
mandatory:

context Company inv:
self.stockPrice() > 0

7.5.3 Properties:  AssociationEnds and Navigation

Starting from a specific object, we can navigate an association on the class diagram to refer to other objects and their 
properties. To do so, we navigate the association by using the opposite association-end:

object.associationEndName

The value of this expression is the set of objects on the other side of the associationEndName association. If the 
multiplicity of the association-end has a maximum of one (“0..1” or “1”), then the value of this expression is an object. In 
the example class diagram, when we start in the context of a Company (i.e., self is an instance of Company), we can 
write:

context Company 
inv: self.manager.isUnemployed = false
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inv: self.employee->notEmpty() 

In the first invariant self.manager is a Person, because the multiplicity of the association is one. In the second invariant 
self.employee will evaluate in a Set of Persons. By default, navigation will result in a Set. When the association on the 
Class Diagram is adorned with {ordered}, the navigation results in an OrderedSet.

Collections, like Sets, OrderedSets, Bags, and Sequences are predefined types in OCL. They have a large number of 
predefined operations on them. A property of the collection itself is accessed by using an arrow ‘->’ followed by the name 
of the property. The following example is in the context of a person:

context Person inv:
self.employer->size() < 3

This applies the size property on the Set self.employer, which results in the number of employers of the Person self.

context Person inv:
self.employer->isEmpty()

This applies the isEmpty property on the Set self.employer. This evaluates to true if the set of employers is empty and 
false otherwise.

Missing Association names

The association name is never missing. If no explicit name is available, an implicit name is constructed in accordance 
with the UML style guide. Associations that are not explicitly named, are given names that are constructed according to 
the following production rule:

“A_” <association-end-name1> “_” <association-end-name2>

where <association-end-name1> is the name of one association end and lexically precedes  <association-end-name2> 
which is the name of the other association end.

Missing Association End names

The name of an association-end is never missing. If no explicit name is available an implicit name is taken from the name 
of the class to which the end is attached.

Note to tool vendors; this is a non-normative change from OCL 2.2, where the UML style guidance of converting the first letter of 
the implicit name to lowercase was endorsed. The normative text has never defined how implicit names are obtained. Tool vendors 
may wish to provide backward/forward compatibility warnings for this change.

Figure 7.2 Ambiguous name example

This may result in an ambiguity between an implicit association end name and another explicit name, unless only one of 
the association ends is navigable. The ambiguous name cannot be used in OCL.

aPerson.role   -- ambiguous

Qualifying association ends with association names

An association end name may be qualified with its association name or its source classifier name to resolve an ambiguity.

aPerson.Person::role -- still ambiguous
aPerson.A_person_role::role -- some Parts, using implicit Person to Part association name
aPerson.A_owner_role::role -- a Role, using implicit Person to Role association name
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Ends owned by associations

In a UML association, an end may be owned by the Classifier at that end, or by the association, itself.  The ownership of 
the end is not significant to OCL.  In either case, the association end is considered as a property of the Classifier and can 
be navigated from that end to the other.

Navigation over Associations with Multiplicity Zero or One

Because the multiplicity of the role manager is one, self.manager is an object of type Person. Such a single object can be 
used as a Set as well by using oclAsSet() or its "->" shorthand. It then behaves as if it is a Set containing the single object.  
The usage as a set is done through the arrow followed by a property of Set. This is shown in the following example:

context Company inv:
self.manager->size() = 1

The sub-expression self.manager is used as a Set, because the arrow is used to access the size property on Set. This 
expression evaluates to true.

context Company inv:
self.manager->foo

The sub-expression self.manager is used as Set, because the arrow is used to access the foo property on the Set. This 
expression is incorrect, because foo is not a defined property of Set.

context Company inv:
self.manager.age > 40

The sub-expression self.manager is used as a Person, because the dot is used to access the age property of Person. 

In the case of an optional (0..1 multiplicity) association, this is especially useful to check whether there is an object or not 
when navigating the association. In the example we can write:

context Person inv: 
self.wife->notEmpty() implies self.wife.gender = Gender::female

Combining Properties

Properties can be combined to make more complicated expressions. An important rule is that an OCL expression always 
evaluates to a specific object of a specific type. After obtaining a result, one can always apply another property to the 
result to get a new result value. Therefore, each OCL expression can be read and evaluated left-to-right. 

Following are some invariants that use combined properties on the example class diagram:

[1] Married people are of age >= 18

context Person inv:
(self.wife->notEmpty() implies self.wife.age >= 18) and
(self.husband->notEmpty() implies self.husband.age >= 18)

[2] a company has at most 50 employees

context Company inv:
self.employee->size() <= 50
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7.5.4 Navigation to Association Classes

To specify navigation to association classes (Job and Marriage in the example), OCL uses a dot and the name of the 
association class:

context Person inv:
self.Job 

The sub-expression self.Job evaluates to a Set of all the jobs a person has with the companies that are his/her employer. 
In the case of an association class, there is no explicit rolename in the class diagram. The name Job used in this 
navigation is the name of the association class. 

In case of a recursive association, that is an association of a class with itself, the name of the association class alone is not 
enough. We need to distinguish the direction in which the association is navigated as well as the name of the association 
class. Take the following model as an example.

Figure 7.3  - Navigating recursive association classes

When navigating to an association class such as EmployeeRanking there are two possibilities depending on the direction. 
For instance, in the above example, we may navigate towards the employees end, or the bosses end. By using the name of 
the association class alone, these two options cannot be distinguished. To make the distinction, the rolename of the 
direction in which we want to navigate is added to the association class name, enclosed in square brackets. In the 
expression

context Person inv:
self.EmployeeRanking[bosses]->sum() > 0

the self.EmployeeRanking[bosses] evaluates to the set of EmployeeRankings belonging to the collection of bosses. And in 
the expression

context Person inv:
self.EmployeeRanking[employees]->sum() > 0

the self.EmployeeRanking[employees] evaluates to the set of EmployeeRankings belonging to the collection of employees. 
The unqualified use of the association class name is not allowed in such a recursive situation. Thus, the following 
example is invalid:

context Person inv:
self.EmployeeRanking->sum() > 0 -- INVALID!

In a non-recursive situation, the association class name alone is enough, although the qualified version is allowed as well. 
Therefore, the examples at the start of this sub clause could also be written as:

context Person inv:
self.Job[employer] 
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7.5.5 Navigation from Association Classes

We can navigate from the association class itself to the objects that participate in the association. This is done using the 
dot-notation and the role-names at the association-ends.

context Job
inv: self.employer.numberOfEmployees >= 1
inv: self.employee.age > 21

Navigation from an association class to one of the objects on the association will always deliver exactly one object. This 
is a result of the definition of AssociationClass. Therefore, the result of this navigation is exactly one object, although it 
can be used as a Set using oclAsSet() or its "->" shorthand.

7.5.6 Navigation through Qualified Associations

Qualified associations use one or more qualifier attributes to select the objects at the other end of the association. To 
navigate them, we can add the values for the qualifiers to the navigation. This is done using square brackets, following the 
role-name. It is permissible to leave out the qualifier values, in which case the result will be all objects at the other end of 
the association. The following example results in a Set(Person) containing all customers of the Bank.

context Bank inv: 
self.customer

The next example results in one Person, having account number 8764423.

context Bank inv:
self.customer[8764423]

If there is more than one qualifier attribute, the values are separated by commas, in the order which is specified in the 
UML class model. It is not permissible to partially specify the qualifier attribute values.

7.5.7 Using Pathnames for Packages

Within UML, types are organized in packages. OCL provides a way of explicitly referring to types in other packages by 
using a package-pathname prefix. The syntax is a package name, followed by a double colon:

Packagename::Typename

This usage of pathnames is transitive and can also be used for packages within packages:

Packagename1::Packagename2::Typename

7.5.8 Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the property of the supertypes can be accessed using the oclAsType() 
operation. Whenever we have a class B as a subtype of class A, and a property p1 of both A and B, we can write:

context B inv: 
self.oclAsType(A).p1  -- accesses the p1 property defined in A 
self.p1  -- accesses the p1 property defined in B 

Figure 7.4 shows an example where such a construct is needed. In this model fragment there is an ambiguity with the 
OCL expression on Dependency:

context Dependency inv: 
self.source <> self
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This can either mean normal association navigation, which is inherited from ModelElement, or it might also mean 
navigation through the dotted line as an association class. Both possible navigations use the same role-name, so this is 
always ambiguous. Using oclAsType() we can distinguish between them with:

context Dependency 
inv: self.oclAsType(Dependency).source->isEmpty()
inv: self.oclAsType(ModelElement).source->isEmpty()

Figure 7.4 - Accessing Overridden Properties Example

7.5.9 Predefined properties on All Objects

There are several properties that apply to all objects, and are predefined in OCL. These are:

oclIsTypeOf (t : Classifier)  : Boolean
oclIsKindOf (t : Classifier) : Boolean
oclIsInState (s : OclState)  : Boolean
oclIsNew   ()    : Boolean
oclAsType (t : Classifier) : instance of Classifier

The operation is oclIsTypeOf results in true if the type of self and t are the same. For example:

context Person
inv: self.oclIsTypeOf( Person )        -- is true 
inv: self.oclIsTypeOf( Company)     -- is false

The above property deals with the direct type of an object. The oclIsKindOf property determines whether t is either the 
direct type or one of the supertypes of an object.

The operation oclIsInState(s) results in true if the object is in the state s. Possible states for the operation oclIsInState(s) 
are all states of the statemachine that defines the classifier's behavior. For nested states the statenames can be combined 
using the double colon “::”.

ModelElement

target

*

*
source

Note

value:Uninterpreted

Dependency

.. ..
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Figure 7.5 - Statemachine Example

In the example statemachine above, values for s can be On, Off, Off::Standby, Off::NoPower. If the classifier of object has 
the above associated statemachine, valid OCL expressions are:

object.oclIsInState(On)
object.oclIsInState(Off)
object.oclIsInState(Off::Standby)
object.oclIsInState(Off::NoPower)

If there are multiple statemachines attached to the object’s classifier, then the statename can be prefixed with the name of 
the statemachine containing the state and the double colon ‘::,’ as with nested states.

The operation oclIsNew evaluates to true if, used in a postcondition, the object is created during performing the operation 
(i.e., it didn’t exist at precondition time).

The operation oclAsType(t) casts the source to the type t, which must be a subtype or supertype of the source type.

7.5.10 Features on Classes Themselves

All properties discussed until now in OCL are properties on instances of classes. The types are either predefined in OCL 
or defined in the class model. In OCL, it is also possible to use static features, applicable to the types/classes themselves 
rather than to their instances.  For example, the Employee class may define a static operation “uniqueID” that computes a 
unique ID to use in the initialization of the employee ID attribute:

context Employee::id : String init:
       Employee::uniqueID()

Static features are invoked using the '::' operator and are distinct from the features of the Classifier metaclass, which 
include the allInstances operation pre-defined by OCL.  If we want to make sure that all instances of Person have unique 
names, we can write: 

context Person  inv:
       Person.allInstances()->forAll(p1, p2 | 
           p1 <> p2 implies p1.name <> p2.name)

Invocation of allInstances uses the '.' operator rather than '::' because it is not a static operation. It is an operation 
applicable to instances of the Classifier metaclass, of which Person is an example.

7.5.11   Collections

Single navigation of an association results in a Set, combined navigations in a Bag, and navigation over associations 
adorned with {ordered} results in an OrderedSet. Therefore, the collection types defined in the OCL Standard Library 
play an important role in OCL expressions.
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The type Collection is predefined in OCL. The Collection type defines a large number of predefined operations to enable 
the OCL expression author (the modeler) to manipulate collections. Consistent with the definition of OCL as an 
expression language, collection operations never change collections; isQuery is always true. They may result in a 
collection, but rather than changing the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL distinguishes three different 
collection types: Set, Sequence, and Bag. A Set is the mathematical set. It does not contain duplicate elements. A Bag is 
like a set, which may contain duplicates (i.e., the same element may be in a bag twice or more). A Sequence is like a Bag 
in which the elements are ordered. Both Bags and Sets have no order defined on them. 

Collection Literals

Sets, Sequences, and Bags can be specified by a literal in OCL. Curly brackets surround the elements of the collection, 
elements in the collection are written within, separated by commas. The type of the collection is written before the curly 
brackets:

Set { 1 , 88, 5, 2 }
Set { 'strawberry', 'apple', 'orange' }

A Sequence:

Sequence { 45, 3, 3, 2, 1 }
Sequence { 'ape', 'nut' }

A bag:

Bag {1, 3, 4, 3, 5 }

Because of the usefulness of a Sequence of consecutive Integers, there is a separate literal to create them. The elements 
inside the curly brackets can be replaced by an interval specification, which consists of two expressions of type Integer, 
Int-expr1 and Int-expr2, separated by ‘..’. This denotes all the Integers between the values of Int-expr1 and Int-expr2, 
including the values of Int-expr1 and Int-expr2 themselves:

Sequence{ 1..(6 + 4) }  
Sequence{ 1..10 }
-- are both identical to
Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The complete list of Collection operations is described in Clause 11 (“The OCL Standard Library”). 

Collections can be specified by a literal, as described above. The only other way to get a collection is by navigation. To 
be more precise, the only way to get a Set, OrderedSet, Sequence, or Bag is:

1. a literal, this will result in a Set, OrderedSet, Sequence, or Bag:

 Set        {2 , 4, 1 , 5 , 7 , 13, 11, 17 }
 OrderedSet {1 , 2, 3 , 5 , 7 , 11, 13, 17 }
 Sequence   {1 , 2, 3 , 5 , 7 , 11, 13, 17 }
 Bag        {1, 2, 3, 2, 1}

2. a navigation starting from a single object can result in a collection:

 context Company inv:
 self.employee

3. operations on collections may result in new collections:

collection1->union(collection2)
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7.5.12   Collections of Collections

OCL allows elements of collections to be collections themselves. The OCL Standard Library includes specific flattened 
operations for collections. These can be used to flatten collections of collections explicitly.

7.5.13  Collection Type Hierarchy and  ype Conformance Rules

In addition to the type conformance rules in 7.4.5, ’Type Conformance’ the following rules hold for all types, including 
the collection types:

• The types Set (X), Bag (X), and Sequence (X) are all subtypes of Collection (X). 

Type conformance rules are as follows for the collection types:

• Type1 conforms to Type2 when they are identical (standard rule for all types).

• Type1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to Type2. This is also true for Set(Type1)/ 
Set(Type2), Sequence(Type1)/Sequence(Type2), Bag(Type1)/Bag(Type2).

• Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms to Type3, then Type1 conforms to 
Type3 (standard rule for all types).

For example, if Bicycle is a subtype of Transport:

Set(Bicycle)  conforms to  Set(Transport)
Set(Bicycle)  conforms to  Collection(Bicycle)
Set(Bicycle)  conforms to  Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around, since Set and Bag are subtypes of 
Collection but not of each other.

7.5.14  Previous Values in Postconditions

As stated in 7.3.4, ’Pre- and Postconditions’ OCL can be used to specify pre- and postconditions on operations and 
behaviors in UML. In a postcondition, the expression can refer to values of any feature of an object at two moments in 
time:

• the value of a feature at the start of the operation or behavior

• the value of a feature upon completion of the operation or behavior

The value of an operation call or a property navigation in a postcondition is the value upon completion of the operation. 
To refer to the value of a feature at the start of the operation, one has to postfix the property name with the keyword 
‘@pre’:

context Person::birthdayHappens()
post: age = age@pre + 1

The property age refers to the property of the instance of Person that executes the operation. The property age@pre refers 
to the value of the property age of the Person that executes the operation, at the start of the operation.

In the case of an operation call, the '@pre' is postfixed to the operation name, before the parameters. 

context Company::hireEmployee(p : Person)
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post: employees = employees@pre->including(p) and
    stockprice() = stockprice@pre() + 10

When the pre-value of a feature evaluates to an object, all further properties that are accessed of this object are the new 
values (upon completion of the operation) of this object. So:

a.b@pre.c -- takes the old value of property b of a, say x
    -- and then the new value of c of x.
a.b@pre.c@pre-- takes the old value of property b of a, say x
    -- and then the old value of c of x.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a Postcondition, and only on invocations of the 
features of model classifiers. Asking for a current property of an object that has been destroyed during execution of the 
operation results in null. Also, referring to the previous value of an object that has been created during execution of the 
operation results in null.

7.5.15  Tuples

It is possible to compose several values into a tuple. A tuple consists of named parts, each of which can have a distinct 
type. Some examples of tuples are:

Tuple {name: String = ‘John,’  age: Integer = 10}
Tuple {a: Collection(Integer) = Set{1, 3, 4}, b: String = ‘foo,’ c: String = ‘bar’}

This is also the way to write tuple literals in OCL; they are enclosed in curly brackets, and the parts are separated by 
commas. The type names are optional, and the order of the parts is unimportant. Thus:

Tuple {name: String = ‘John,’ age: Integer = 10} is equivalent to
Tuple {name = ‘John,’ age = 10} and to
Tuple {age = 10, name = ‘John’}

Also, note that the values of the parts may be given by arbitrary OCL expressions, so for example we may write:

context Person def:
statistics : Set(Tuple(company: Company, numEmployees: Integer, 
                               wellpaidEmployees: Set(Person), totalSalary: Integer)) = 
      managedCompanies->collect(c | 
       Tuple { company: Company = c,
           numEmployees: Integer = c.employee->size(), 
           wellpaidEmployees: Set(Person) = c.Job->select(salary>10000).employee->asSet(),
           totalSalary: Integer = c.Job.salary->sum()
          }
      )

This results in a bag of tuples summarizing the company, number of employees, the best paid employees, and total salary 
costs of each company a person manages.

The parts of a tuple are accessed by their names, using the same dot notation that is used for accessing attributes. Thus:

Tuple {x: Integer = 5, y: String = ‘hi’}.x = 5

is a true, if somewhat pointless, expression. Using the definition of statistics above, we can write:

context Person inv:
statistics->sortedBy(totalSalary)->last().wellpaidEmployees->includes(self)
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This asserts that a person is one of the best-paid employees of the company with the highest total salary that he manages. 
In this expression, both ‘totalSalary’ and ‘wellpaidEmployees’ are accessing tuple parts.

7.6 Collection Operations

OCL defines many operations on the collection types. These operations are specifically meant to enable a flexible and 
powerful way of projecting new collections from existing ones. The different constructs are described in the following sub 
clauses.

7.6.1 Select and Reject Operations

Sometimes an expression using operations and navigations results in a collection, while we are interested only in a special 
subset of the collection. OCL has special constructs to specify a selection from a specific collection. These are the select 
and reject operations. The select specifies a subset of a collection. A select is an operation on a collection and is specified 
using the arrow-syntax:

collection->select( ... )

The parameter of select has a special syntax that enables one to specify which elements of the collection we want to 
select. There are three different forms, of which the simplest one is:

collection->select( boolean-expression )

This results in a collection that contains all the elements from collection for which the boolean-expression evaluates to 
true. To find the result of this expression, for each element in collection the expression boolean-expression is evaluated. 
If this evaluates to true, the element is included in the result collection, otherwise not. As an example, the following OCL 
expression specifies that the collection of all the employees older than 50 years is not empty:

context Company inv: 
self.employee->select(age > 50)->notEmpty()

The self.employee is of type Set(Person). The select takes each person from self.employee and evaluates age > 50 for this 
person. If this results in true, then the person is in the result Set.

As shown in the previous example, the context for the expression in the select argument is the element of the collection 
on which the select is invoked. Thus the age property is taken in the context of a person. 

In the above example, it is impossible to refer explicitly to the persons themselves; you can only refer to properties of 
them. To enable to refer to the persons themselves, there is a more general syntax for the select expression:

collection->select( v | boolean-expression-with-v )

The variable v is called the iterator. When the select is evaluated, v iterates over the collection and the boolean-
expression-with-v is evaluated for each v. The v is a reference to the object from the collection and can be used to refer to 
the objects themselves from the collection. The two examples below are identical:

context Company inv: 
self.employee->select(age > 50)->notEmpty()

context Company inv: 
self.employee->select(p | p.age > 50)->notEmpty()

The result of the complete select is the collection of persons p for which the p.age > 50 evaluates to True. This amounts 
to a subset of self.employee.

As a final extension to the select syntax, the expected type of the variable v can be given. The select now is written as:
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collection->select( v : Type | boolean-expression-with-v )

The meaning of this is that the objects in collection must be of type Type. The next example is identical to the previous 
examples:

context Company inv: 
self.employee.select(p : Person | p.age > 50)->notEmpty()

The complete select syntax now looks like one of: 

collection->select( v : Type | boolean-expression-with-v )
collection->select( v | boolean-expression-with-v )
collection->select( boolean-expression )

The reject operation is identical to the select operation, but with reject we get the subset of all the elements of the 
collection for which the expression evaluates to False. The reject syntax is identical to the select syntax:

collection->reject( v : Type | boolean-expression-with-v )
collection->reject( v | boolean-expression-with-v )
collection->reject( boolean-expression )

As an example, specify that the collection of all the employees who are not married is empty:

context Company inv: 
self.employee->reject( isMarried )->isEmpty()

The reject operation is available in OCL for convenience, because each reject can be restated as a select with the negated 
expression. Therefore, the following two expressions are identical:

collection->reject( v : Type | boolean-expression-with-v )
collection->select( v : Type  | not (boolean-expression-with-v) )

7.6.2 Collect Operation

As shown in the previous sub clause, the select and reject operations always result in a sub-collection of the original 
collection. When we want to specify a collection that is derived from some other collection, but which contains different 
objects from the original collection (i.e., it is not a sub-collection), we can use a collect operation. The collect operation 
uses the same syntax as the select and reject and is written as one of:

collection->collect( v : Type | expression-with-v )
collection->collect( v | expression-with-v )
collection->collect( expression )

The value of the collect operation is the collection of the results of all the evaluations of expression-with-v. 

An example: specify the collection of birthDates for all employees in the context of a company. This can be written in the 
context of a Company object as one of:

self.employee->collect( birthDate )
self.employee->collect( person | person.birthDate )
self.employee->collect( person : Person | person.birthDate )

An important issue here is that when the source collection is a Set the resulting collection is not a Set but a Bag. 
Moreover, if the source collection is a Sequence or an OrderedSet, the resulting collection is a Sequence. When more than 
one employee has the same value for birthDate, this value will be an element of the resulting Bag more than once. The 
Bag resulting from the collect operation always has the same size as the original collection.
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It is possible to make a Set from the Bag, by using the asSet property on the Bag. The following expression results in the 
Set of different birthDates from all employees of a Company:

self.employee->collect( birthDate )->asSet()

Shorthand for Collect

Because navigation through many objects is very common, there is a shorthand notation for the collect that makes the 
OCL expressions more readable. Instead of

self.employee->collect(birthdate)

we can also write:

self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will automatically be interpreted as a collect over 
the members of the collection with the specified property. 

For any propertyname that is defined as a property on the objects in a collection, the following two expressions are 
identical:

collection.propertyname
collection->collect(propertyname)

and so are these if the property is parameterized:

collection.propertyname (par1, par2, ...)
collection->collect (propertyname(par1, par2, ...))

7.6.3 ForAll Operation

Many times a constraint is needed on all elements of a collection. The forAll operation in OCL allows specifying a 
Boolean expression, which must hold for all objects in a collection:

collection->forAll( v : Type | boolean-expression-with-v )
collection->forAll( v | boolean-expression-with-v )
collection->forAll( boolean-expression )

This forAll expression results in a Boolean. The result is true if the boolean-expression-with-v is true for all elements of 
collection. If the boolean-expression-with-v is false for one or more v in collection, then the complete expression 
evaluates to false. For example, in the context of a company:

context Company 
inv: self.employee->forAll( age <= 65 )
inv: self.employee->forAll( p | p.age <= 65 )
inv: self.employee->forAll( p : Person | p.age <= 65 )

These invariants evaluate to true if the age property of each employee is less or equal to 65. 

The forAll operation has an extended variant in which more than one iterator is used. Both iterators will iterate over the 
complete collection. Effectively this is a forAll on the Cartesian product of the collection with itself.

context Company inv: 
self.employee->forAll( e1, e2 : Person |

e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different. It is semantically equivalent to:

context Company inv: 
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self.employee->forAll (e1 | self.employee->forAll (e2 |
                     e1 <> e2 implies e1.forename <> e2.forename))

7.6.4 Exists Operation

Many times one needs to know whether there is at least one element in a collection for which a constraint holds. The 
exists operation in OCL allows you to specify a Boolean expression that must hold for at least one object in a collection:

collection->exists( v : Type | boolean-expression-with-v )
collection->exists( v | boolean-expression-with-v )
collection->exists( boolean-expression )

This exists operation results in a Boolean. The result is true if the boolean-expression-with-v is true for at least one 
element of collection. If the boolean-expression-with-v is false for all v in collection, then the complete expression 
evaluates to false. For example, in the context of a company:

context Company inv: 
self.employee->exists( forename = 'Jack' )

context Company inv: 
self.employee->exists( p | p.forename = 'Jack' )

context Company inv: 
self.employee->exists( p : Person | p.forename = 'Jack' )

These expressions evaluate to true if the forename property of at least one employee is equal to ‘Jack.’

Similarly to forAll expression an exists expression may declare multiple iterators.

7.6.5 Closure Operation 

The iterators described in the preceding sub-clauses return results from the elements of a collection. The closure supports 
returning results from the elements of a collection, the elements of the elements of a collection, the elements of the 
elements of the elements of a collection, and so forth. This can be useful for iterating over a transitive relationship such 
as a UML generalization. closure operation uses the same syntax as the select and reject iterators and is written as one of 

source>closure( v : Type | expression-with-v )
source>closure( v | expression-with-v )
source>closure( expression )

The returned collection of the closure iteration is an accumulation of the sources, and the collections resulting from the 
recursive invocation of expression-with-v in which v is associated exactly once with each distinct element of the returned 
collection. The iteration terminates when expression-with-v returns empty collections or collections containing only 
already accumulated elements. The collection type of the result collection is the unique form (Set or OrderedSet) of the 
original source collection. If the source collection is ordered, the result is in depth first preorder. The result satisfies the 
postconditions:

post: result->includesAll(source)
post: result->asSet() = result->collect(expression)->asSet() 

For a simple parent-children relationship and known parents
parents->closure(children)

computes the set of parents, parents.children, parents.children.children etc.

In the opposite direction
self->asOrderedSet()->closure(mother)
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computes the maternal line.

For a more complex relationship such as UML Classifier generalization
 aClassifier.generalization()->closure(general.generalization).general()->including(aClassifier)

computes the set comprising aClassifier and all its generalizations. The closure recurses over the Generalizations to 
compute the transitive set of all Generalizations. The generalized classifier is collected from each of these before 
including the originating aClassifier in the result.

As with all other iterators, self remains unchanged throughout the recursion, and an implicit source attempts to resolve 
features against iterators.

7.6.6 Iterate Operation

The iterate operation is slightly more complicated, but is very generic. The operations reject, select, forAll, exists, collect 
can all be described in terms of iterate. An accumulation builds one value by iterating over a collection.

collection->iterate( elem : Type; acc : Type = <expression> |
expression-with-elem-and-acc )

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the accumulator. The 
accumulator gets an initial value <expression>. When the iterate is evaluated, elem iterates over the collection and the 
expression-with-elem-and-acc is evaluated for each elem. After each evaluation of expression-with-elem-and-acc, its 
value is assigned to acc. In this way, the value of acc is built up during the iteration of the collection. The collect 
operation described in terms of iterate will look like:

collection->collect(x : T | x.property)
-- is identical to:

collection->iterate(x : T; acc : T2 = Bag{} |
acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:

iterate(elem : T; acc : T2 = value)
{
   acc = value;
   for(Enumeration e = collection.elements() ; e.hasMoreElements(); ){
       elem = e.nextElement();
       acc.add(<expression-with-elem-and-acc>
   }
   return acc;
}

Although the Java pseudo code uses a ‘next element,’ the iterate operation is defined not only for Sequence, but for each 
collection type. The order of the iteration through the elements in the collection is not defined for Set and Bag. For a 
Sequence the order is the order of the elements in the sequence.

7.7 Messages in OCL

This sub clause contains some examples of the concrete syntax and explains the finer details of the message expression. 
In earlier versions the phrase “actions in OCL” was used, but message was found to capture the meaning more precisely.
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7.7.1 Calling operations and sending signals

To specify that communication has taken place, the hasSent (‘^’) operator is used: 

context Subject::hasChanged()
post:  observer^update(12, 14)

The observer^update(12, 14) results in true if an update message with arguments 12 and 14 was sent to observer during 
the execution of the operation. Update() is either an Operation that is defined in the class of observer, or it is a Signal 
specified in the UML model. The argument(s) of the message expression (12 and 14 in this example) must conform to the 
parameters of the operation/signal definition.

If the actual arguments of the operation/signal are not known, or not restricted in any way, it can be left unspecified. This 
is shown by using a question mark. Following the question mark is an optional type, which may be needed to find the 
correct operation when the same operation exists with different parameter types.

context Subject::hasChanged()
post:  observer^update(? : Integer, ? : Integer)

This example states that the message update has been sent to observer, but that the values of the parameters are not 
known.

OCL also defines a special OclMessage type. One can get the actual OclMessages through the message operator: ^^. 

context Subject::hasChanged()
post:  observer^^update(12, 14)

This results in the Sequence of messages sent. Each element of the collection is an instance of OclMessage. In the 
remainder of the constraint one can refer to the parameters of the operation using their formal parameter name from the 
operation definition. If the operation update has been defined with formal parameters named i and j, then we can write:

context Subject::hasChanged()
post: let messages : Sequence(OclMessage) = observer^^update(? : Integer, ? : Integer) in
      messages->notEmpty() and
      messages->exists( m | m.i > 0 and m.j >= m.i )

The value of the parameter i is not known, but it must be greater than zero and the value of parameter j must be larger or 
equal to i.

Because the ^^ operator results in an instance of OclMessage, the message expression can also be used to specify 
collections of messages sent to different targets. For an observer pattern we can write: 

context Subject::hasChanged()
post:  let messages : Sequence(OclMessage) =
                    observers->collect(o | o^^update(? : Integer, ? : Integer) ) in
       messages->forAll(m | m.i <= m.j )

Messages is now a set of OclMessage instances, where every OclMessage instance has one of the observers as a target. 

7.7.2 Accessing result values

A signal sent message is by definition asynchronous, so there never is a return value. If there is a logical return value it 
must be modeled as a separate signal message. Yet, for an operation call there is a potential return value. This is only 
available if the operation has already returned (not necessary if the operation call is asynchronous), and it specifies a 
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return type in its definition. The standard operation result() of OclMessage contains the return value of the called 
operation. If getMoney(...) is an operation on Company that returns a Boolean, as in Company::getMoney(amount : 
Integer) : Boolean, we can write:

context Person::giveSalary(amount : Integer)
post: let message : OclMessage = company^getMoney(amount) in
      message.hasReturned()                         -- getMoney was sent and returned
      and
      message.result() = true                         -- the getMoney call returned true

As with the previous example we can also access a collection of return values from a collection of OclMessages. If 
message.hasReturned() is false, then message.result() will be invalid.

7.7.3 An example

This sub clause shows an example of using the OCL message expression.

The Example and Problem

Suppose we have built a component, which takes any form of input and transforms it into garbage (aka encrypts it). The 
component GarbageCan uses an interface UsefulInformationProvider that must be implemented by users of the 
component to provide the input. The operation getNextPieceOfGarbage of GarbageCan can then be used to retrieve the 
garbled data. Figure 7.6 shows the component’s class diagram. Note that none of the operations are marked as queries.

Figure 7.6 - OclMessageExample

When selling the component, we do not want to give the source code to our customers. However, we want to specify the 
component’s behavior as precisely as possible. So, for example, we want to specify, what getNextPieceOfGarbage does. 
Note that we cannot write:

context GarbageCan::getNextPieceOfGarbage() : Integer 
post: result = (datasource.getNextPieceOfData() * .7683425 + 10000) / 20 + 3

because UsefulInformationProvider::getNextPieceOfData() is not a query (e.g., it may increase some internal pointer so 
that it can return the next piece of data at the next call). Still we would like to say something about how the garbage is 
derived from the original data.

GarbageCan

SetUsefulInformationProvider(uip:UsefulInformationProvider)
getNextPieceOfGarbage() : Integer

<<interface>>
UsefulInformationProvider

getNextPieceOfData():Integer

0..1 #datasource
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The solution

To solve this problem, we can use an OclMessage to represent the call to getNextPieceOfData. This allows us to check for 
the result. Note that we need to demand that the call has returned before accessing the result: 

context GarbageCan::getNextPieceOfGarbage() : Integer 
post: let message : OclMessage = datasource^^getNextPieceOfData()->first() in
      message.hasReturned()
      and
      result = (message.result() * .7683425 + 10000) / 20 + 3

7.8 Resolving Properties

For any property (attribute, operation, or navigation) the full notation includes the object of which the property is taken. 
As seen in 7.3.3, ’Invariants’ self can be left implicit, and so can the iterator variables in collection operations. At any 
place in an expression, when an iterator is left out, an implicit iterator-variable is introduced. For example in: 

context Person inv:
employer->forAll( employee->exists( lastName = name) )

three implicit variables are introduced. The first is self, which is always the instance from which the constraint starts. 
Secondly an implicit iterator is introduced by the forAll and third by the exists. The implicit iterator variables are 
unnamed. The properties employer, employee, lastName, and name all have the object on which they are applied left out. 
Resolving these goes as follows:

• at the place of employer there is one implicit variable: self : Person. Therefore employer must be a property of self.

• at the place of employee there are two implicit variables: self : Person and iter1 : Company. Therefore employer must 
be a property of either self or iter1. If employee is a property of both self and iter1, then it is defined to belong to the 
variable in the most inner scope, which is iter1.

• at the place of lastName and name there are three implicit variables: self : Person, iter1 : Company and iter2 : Person. 
Therefore lastName and name must both be a property of either self or iter1 or iter2. In the UML model property name 
is a property of iter1. However, lastName is a property of both self and iter2. This is ambiguous and therefore the last-
Name refers to the variable in the most inner scope, which is iter2.

Both of the following invariant constraints are correct, but have a different meaning:

context Person
inv: employer->forAll( employee->exists( p | p.lastName = name) ) 
inv: employer->forAll( employee->exists( self.lastName = name) ) 

A closure iteration may introduce an implicit iterator-variable at each level of recursion and so multiple iterator-variable 
candidates for consideration as the implicit self. Since all candidates have the same static type, it is only the least deeply 
nested candidate, with respect to the iteration body, that need be considered as the implicit iterator-variable for a closure.
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8 Abstract Syntax

This clause describes the abstract syntax of the OCL. In this abstract syntax a number of metaclasses from the UML 
metamodel are imported. These metaclasses are shown in the models with a transparent fill color. All metaclasses defined 
as part of the OCL abstract syntax are shown with a light gray background.

8.1 Introduction

The abstract syntax as described below defines the concepts that are part of the OCL using a MOF compliant metamodel. 
The abstract syntax is divided into several packages.

• The Types package describes the concepts that define the type system of OCL. It shows which types are predefined in 
OCL and which types are deduced from the UML models.

• The Expressions package describes the structure of OCL expressions.

8.2 The Types Package

OCL is a typed language. Each expression has a type that is either explicitly declared or can be statically derived. 
Evaluation of the expression yields a value of this type. Therefore, before we can define expressions, we have to provide 
a model for the concept of type. A metamodel for OCL types is shown in this sub clause. Note that instances of the 
classes in the metamodel are the types themselves (e.g., Integer) not instances of the domain they represent (e.g., -15, 0, 
2, 3).

The model in Figure 8.1 shows the OCL types. The basic type is the UML Classifier, which includes all subtypes of 
Classifier from the UML Superstructure. 

In the model, the CollectionType (and its subclasses) and the TupleType are special. One can never instantiate all 
collection types, because there is an infinite number, especially when nested collections are taken into account. 
Conceptually all these types do exist, but such a type should be (lazily) instantiated by a tool, whenever it is needed in an 
expression. For convenience an instance representing a collection type or a tuple type may be replicated in different 
namespaces (such as in a top-level package or within the expression referencing it), however they represent semantically 
the same type.
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Figure 8.1 - Abstract Syntax Kernel Metamodel for OCL Types

AnyType

AnyType is the metaclass of the special type OclAny, which is the type to which all other types conform.  OclAny is the 
sole instance of AnyType.  This metaclass allows defining the special property of being the generalization of all other 
Classifiers, including Classes, DataTypes, and PrimitiveTypes.

BagType

BagType is a collection type that describes a multiset of elements where each element may occur multiple times in the 
bag. The elements are unordered. Part of a BagType is the declaration of the type of its elements.

CollectionType

CollectionType describes a list of elements of a particular given type. CollectionType is a concrete metaclass whose 
instances are the family of abstract Collection(T) data types. Its subclasses are SetType, OrderedSetType, SequenceType, 
and BagType, whose instances are the concrete Set(T), OrderedSet(T), Sequence(T), and Bag(T), data types, respectively.

Part of every collection type is the declaration of the type of its elements (i.e., a collection type is parameterized with an 
element type). In the metamodel, this is shown as an association from CollectionType to Classifier. Note that there is no 
restriction on the element type of a collection type. This means in particular that a collection type may be parameterized 
with other collection types allowing collections to be nested arbitrarily deep.

VoidType
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TupleType
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Associations

InvalidType

InvalidType represents a type that conforms to all types except the VoidType type. The only instance of InvalidType is 
Invalid, which is further defined in the standard library. Furthermore Invalid has exactly one runtime instance identified 
as OclInvalid.

MessageType

MessageType describes ocl messages. Similar to the collection types, MessageType describes a set of types in the standard 
library. Part of every MessageType is a reference to the declaration of the type of its operation or signal, i.e., an ocl 
message type is parameterized with an operation or signal. In the metamodel, this is shown as an association from 
MessageType to Operation and to Signal. MessageType is part of the abstract syntax of OCL, residing on M2 level. Its 
instances, called OclMessage, and subtypes of OclMessage, reside on M1 level.

Associations

OrderedSetType

OrderedSetType is a collection type that describes a set of elements where each distinct element occurs only once in the 
set. The elements are ordered by their position in the sequence. Part of an OrderedSetType is the declaration of the type 
of its elements.

SequenceType

SequenceType is a collection type that describes a list of elements where each element may occur multiple times in the 
sequence. The elements are ordered by their position in the sequence. Part of a SequenceType is the declaration of the type 
of its elements.

SetType

SetType is a collection type that describes a set of elements where each distinct element occurs only once in the set. The 
elements are not ordered. Part of a SetType is the declaration of the type of its elements.

TemplateParameterType

A TemplateParameterType is used to refer to generic types in parameterized definitions. It is used in the standard library 
to represent the parameterized collection operations. A TemplateParameterType is usually named “T” (or “T2,” “T3,” and 
so on, when more than one type parameter is involved).

The TemplateParameterType is a sub-class of Classifier.

elementType The type of the elements in a collection. All elements in a collection must conform to this type.

referredSignal The Signal that is sent by the message.

referredOperation The Operation that is called by the message.
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Attributes

TupleType

TupleType (informally known as record type or struct) combines different types into a single aggregate type. The parts of 
a TupleType are described by its attributes, each having a name and a type. There is no restriction on the kind of types that 
can be used as part of a tuple. In particular, a TupleType may contain other tuple types and collection types. Each attribute 
of a TupleType represents a single feature of a TupleType. Each part is uniquely identified by its name.

VoidType

VoidType is the metaclass of the OclVoid type that conforms to all types except the OclInvalid type. The only instance of 
VoidType is OclVoid, which is further defined in the standard library. Furthermore OclVoid has exactly one instance called 
null - corresponding to the UML NullLiteral literal specification - and representing the absence of value. Note that in 
contrast with invalid, null is a valid value and as such can be owned by collections.

8.2.1 Type Conformance

The type conformance rules are formally underpinned in the Semantics sub clause of the specification. To ensure that the 
rules are accessible to UML modelers they are specified in this sub clause using OCL. For this, the additional operation 
conformsTo(c : Classifier) : Boolean is defined on Classifier. It evaluates to true, if the self Classifier conforms to the 
argument c. The following OCL statements define type conformance for individual types.

BagType

[1] Different bag types conform to each other if their element types conform to each other.

context BagType 
inv: BagType.allInstances()->forAll(b | 
            self.elementType.conformsTo(b.elementType) implies self.conformsTo(b)) 

Classifier

[1] Conformance is a transitive relationship.

context Classifier
inv Transitivity: Classifier.allInstances()->forAll(x|Classifier.allInstances()
                  ->forAll(y| 
                      (self.conformsTo(x) and x.conformsTo(y)) implies self.conformsTo(y)))

[2] Classes conform to superclasses and interfaces that they realize.

context Class 
inv : self.generalization.general->forAll (p | 
          (p.oclIsKindOf(Class) or p.oclIsKindOf(Interface)) implies 
                                                self.conformsTo(p.oclAsType(Classifier)))

[3] Interfaces conforms to super interfaces.

context Interface 
inv : self.generalization.general->forAll (p | 
              p.oclIsKindOf(Interface) implies self.conformsTo(p.oclAsType(Interface)))

specification An un-interpreted opaque definition of the template parameter type.
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[4] The Conforms operation between Types is reflexive, a Classifier always conforms to itself.

context Classifier

inv: self.conformsTo(self)

[5] The Conforms operation between Types is anti-symmetric.

context Classifier
inv: Classifier.allInstances()->forAll(t1, t2 |
           (t1.conformsTo(t2) and t2.conformsTo(t1)) implies t1 = t2)

CollectionType

[1] Specific collection types conform to collection type.

context CollectionType 
inv: -- all instances of SetType, SequenceType, BagType conform to a 
     -- CollectionType if the elementTypes conform 
        CollectionType.allInstances()->forAll (c | 
                c.oclIsKindOf(CollectionType) and 
                self.elementType.conformsTo(c.elementType) implies 
                          self.conformsTo(c))

[2] Collections do not conform to any primitive type.

context CollectionType 
inv: PrimitiveType.allInstances()->forAll (p | not self.conformsTo(p))

[3] Collections of non-conforming types do not conform.

context CollectionType 
inv: CollectionType.allInstances()->forAll (c |
    (not self.elementType.conformsTo (c.elementType)) implies (not self.conformsTo (c)))

InvalidType

[1] OclInvalid conforms to all other types.

context InvalidType 

inv: Classifier.allInstances()->forAll (c | self.conformsTo (c))

OrderedSetType

[1] Different ordered set types conform to each other if their element types conform to each other.

context OrderedSetType 
inv: OrderedSetType.allInstances()->forAll(s | 
                  self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

PrimitiveType

[1] Integer conforms to Real.

context PrimitiveType 
inv: (self.name = 'Integer') implies 
         PrimitiveType.allInstances()->forAll (p | (p.name = 'Real') implies 
                                                         (self.conformsTo(p)))
Object Constraint Language, v2.4        41



[2] UnlimitedNatural conforms to Integer.

context PrimitiveType 
inv: (self.name = 'UnlimitedNatural') implies 
         PrimitiveType.allInstances()->forAll (p | (p.name = 'Integer') implies 
                                                         (self.conformsTo(p)))

Note that * is an invalid Integer and so conversion of * to Integer yields invalid whose type conforms to all types.

SequenceType

[1] Different sequence types conform to each other if their element types conform to each other.

context SequenceType 
inv: SequenceType.allInstances()->forAll(s | 
               self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

SetType

[1] Different set types conform to each other if their element types conform to each other.

context SetType 
inv: SetType.allInstances()->forAll(s | 
                  self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

TupleType

[1] Tuple types conform to each other when their names and types conform to each other.  Note that allProperties is an 
additional operation in the UML.

context TupleType 
inv: TupleType.allInstances()->forAll (t | 
       ( t.allProperties()->forAll (tp | 
            -- make sure at least one tuplepart has the same name 
            -- (uniqueness of tuplepart names will ensure that not two 
            -- tupleparts have the same name within one tuple) 
           self.allProperties()->exists(stp|stp.name = tp.name) and 
           -- make sure that all tupleparts with the same name conforms. 
           self.allProperties()->forAll(stp | (stp.name = tp.name) implies 
           stp.type.conformsTo(tp.type)) 
      ) 
      implies 
          self.conformsTo(t) 
) 

VoidType

[1]  OclVoid conforms to all other types except OclInvalid.

context VoidType 
inv: Classifier.allInstances()->forAll (c |  not c.oclIsTypeOf(OclInvalid) implies self.conformsTo (c)) 
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8.2.2 Operations and Well-formedness Rules for the Types Package

BagType

[1] The name of a bag type is “Bag” followed by the element type’s name in parentheses.

context BagType
inv: self.name = ‘Bag(‘ + self.elementType.name + ‘)’

BooleanType

allInstances() : Set(Boolean)

Returns Set{true,false}.

CollectionType

[1] The name of a collection type is “Collection” followed by the element type’s name in parentheses.

context CollectionType
inv: self.name = ‘Collection(‘ + self.elementType.name + ‘)’

InvalidType

allInstances() : Set(OclInvalid)

Returns invalid, since the notional return of Set{invalid} is not well-formed.

MessageType

[1] MessageType has either a link with a Signal or with an operation, but not both.

context MessageType
inv: referredOperation->size() + referredSignal->size() = 1 

[2] The parameters of the referredOperation become attributes of the instance of MessageType.

context MessageType:
inv: referredOperation->size()=1 implies

Set{1..self.ownedAttribute->size()}->forAll(i | self.ownedAttribute.at(i).cmpSlots(
              referredOperation.ownedParameter.asProperty()->at(i)))

[3] The attributes of the referredSignal become attributes of the instance of MessageType.

context MessageType
inv: referredSignal->size() = 1 implies 
       Set{1..self.ownedAttribute->size()}->forAll(i | self.ownedAttribute.asOrderedSet().at(i).cmpSlots(
              referredSignal.ownedAttribute.asOrderedSet()->at(i)))

OrderedSetType

[1] The name of a set type is “OrderedSet” followed by the element type’s name in parentheses.

context OrderedSetType
inv: self.name = ‘OrderedSet(‘ + self.elementType.name + ‘)’
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SequenceType

[1] The name of a sequence type is “Sequence” followed by the element type’s name in parentheses.

context SequenceType
inv: self.name = ‘Sequence(‘ + self.elementType.name + ‘)’

SetType

[1] The name of a set type is “Set” followed by the element type’s name in parentheses.

context SetType
inv: self.name = ‘Set(‘ + self.elementType.name + ‘)’

TupleType

[1] The name of a tuple type includes the names of the individual parts and the types of those parts.

context TupleType
inv: name =
  ‘Tuple(‘.concat (
    Sequence{1.allProperties()->size()}->iterate (pn; s: String = ‘’ |
      let p: Attribute = allProperties()->at (pn) in (
        s.concat (
          (if (pn>1) then ‘,’ else ‘’ endif)
          .concat (p.name).concat (í:í)
          .concat (p.type.name)
        )
      )
    )
  ).concat (í)í)

[2] All parts belonging to a tuple type have unique names.

context TupleType
inv: -- always true, because attributes must have unique names.

[3] A TupleType instance has only features that are Properties(tuple parts).

context TupleType
inv: feature->forAll (f | f.oclIsTypeOf(Property))

VoidType

allInstances() : Set(OclVoid)

Returns Set{null}.

8.3 The Expressions Package

This sub clause defines the abstract syntax of the expressions package. This package defines the structure that OCL 
expressions can have. An overview of the inheritance relationships between all classes defined in this package is shown 
in Figure 8.2. 
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Figure 8.2 - The basic structure of the abstract syntax kernel metamodel for Expressions

8.3.1 Expressions Core

Figure 8.2 shows the core part of the Expressions package. The basic structure in the package consists of the classes 
OclExpression, CallExp, and VariableExp. An OclExpression always has a type, which is usually not explicitly modeled, 
but derived. Each CallExp has exactly one source, identified by an OclExpression. In this sub clause we use the term 
‘property’ that is a generalization of Feature, AssociationEnd, and predefined iterating OCL collection operations.

A FeatureCallExp generalizes all property calls that refer to Features in the UML metamodel. In Figure 8.3 the various 
subtypes of FeatureCallExp are defined.

Most of the remainder of the expressions package consists of a specification of the different subclasses of CallExp and 
their specific structure. From the metamodel it can be deduced that an OCL expression always starts with a variable or 
literal, on which a property is recursively applied.

CallExp

A CallExp is an expression that refers to a feature (operation, property) or to a predefined iterator for collections. Its 
result value is the evaluation of the corresponding feature. This is an abstract metaclass.
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Associations

FeatureCallExp

A FeatureCallExp expression is an expression that refers to a feature that is defined for a Classifier in the UML model to 
which this expression is attached. Its result value is the evaluation of the corresponding feature. 

Attributes

IfExp

An IfExp is defined in 8.3.3, ’If Expressions’ but included in this diagram for completeness.

IterateExp

An IterateExp is an expression that evaluates its body expression for each element of a collection. It acts as a loop 
construct that iterates over the elements of its source collection and results in a value. An iterate expression evaluates its 
body expression for each element of its source collection. The evaluated value of the body expression in each iteration-
step becomes the new value for the result variable for the succeeding iteration-step. The result can be of any type and is 
defined by the result association. The IterateExp is the most fundamental collection expression defined in the OCL 
Expressions package. 

Associations

IteratorExp

An IteratorExp is an expression that evaluates its body expression for each element of a collection. It acts as a loop 
construct that iterates over the elements of its source collection and results in a value. The type of the iterator expression 
depends on the name of the expression, and sometimes on the type of the associated source expression. The IteratorExp 
represents all other predefined collection operations that use an iterator. This includes select, collect, reject, forAll, exists, 
etc. The OCL Standard Library defines a number of predefined iterator expressions. Their semantics is defined in terms 
of the iterate expression in 11.7, ’Predefined Iterator Expressions.’

LiteralExp

A LiteralExp is an expression with no arguments producing a value. In general the result value is identical with the 
expression symbol. This includes things like the integer 1 or literal strings like ‘this is a LiteralExp.’

LoopExp

A LoopExp is an expression that represents a loop construct over a collection. It has an iterator variable that represents the 
elements of the collection during iteration. The body expression is evaluated for each element in the collection. The result 
of a loop expression depends on the specific kind and its name.

source The result value of the source expression is the instance that performs the property call.

isPre Boolean indicating whether the expression accesses the precondition-time value of the referred 
feature.

result The Variable that represents the result variable.
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Associations

MessageExp

MessageExp is defined in 8.3.4, but included in this diagram for completeness.

OclExpression

An OclExpression is an expression that can be evaluated in a given environment. OclExpression is the abstract superclass 
of all other expressions in the metamodel - except for the ExpressionInOcl container class. It is the top-level element of 
the OCL Expressions package. Every OclExpression has a type that can be statically determined by analyzing the 
expression and its context. Evaluation of an expression results in a value. Expressions with Boolean result can be used as 
constraints (e.g., to specify an invariant of a class). Expressions of any type can be used to specify queries, initial attribute 
values, target sets, etc.

The environment of an OclExpression defines what model elements are visible and can be referred to in an expression. At 
the topmost level the environment will be defined by the Element to which the OCL expression is attached, for example 
by a Classifier if the OCL expression is used as an invariant. On a lower level, each iterator expression can also introduce 
one or more iterator variables into the environment. The environment is not modeled as a separate metaclass because it 
can be completely derived using derivation rules. The complete derivation rules can be found in Clause 9 (“Concrete 
Syntax”). 

StateExp

A StateExp is an expression used to refer to a state of a class within an expression. It is used to pass directly to the pre-
defined operation oclIsInState the reference of a state of a class defined in the UML model.

Associations

TypeExp

A TypeExp is an expression used to refer to an existing type within an expression. It is used in particular to pass the 
reference of the type when invoking the operations oclIsKindOf, oclIsTypeOf, and oclAsType.

Associations

Variable

Variables are typed elements for passing data in expressions. The variable can be used in expressions where the variable 
is in scope. This metaclass represents among others the variables self and result and the variables defined using the Let 
expression.

iterator The iterator variables. These variables are, each in its turn, bound to every element value of the 
source collection while evaluating the body expression.

body The OclExpression that is evaluated for each element in the source collection.

referredState The State being referred.

referredType The type being referred.
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Associations

VariableExp

A VariableExp is an expression that consists of a reference to a variable. References to the variables self and result or to 
variables defined by Let expressions are examples of such variable expressions.

Associations

8.3.2 FeatureCall Expressions

A FeatureCallExp can refer to any of the subtypes of Feature as defined in the UML kernel. This is shown in Figure 8.3 
by the three different subtypes, each of which is associated with its own type of Element.

Figure 8.3 - Abstract syntax metamodel for FeatureCallExp in the Expressions package

AssociationClassCallExp

An AssociationClassCallExp is a reference to an AssociationClass defined in a UML model. It is used to determine 
objects linked to a target object by an association class. The expression refers to these target objects by the name of the 
target associationclass.

initExpression The OclExpression that represents the initial value of the variable. Depending on the role that 
a variable declaration plays, the init expression might be mandatory.

representedParameter The Parameter in the current operation this variable is representing. Any access to the 
variable represents an access to the parameter value.

referredVariable The Variable to which this variable expression refers.
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Associations

PropertyCallExp

A PropertyCallExpression is a reference to an Attribute of a Classifier defined in a UML model. It evaluates to the value 
of the attribute.

Associations

NavigationCallExp

A NavigationCallExp is a reference to a Property or an AssociationClass defined in a UML model. It is used to determine 
objects linked to a target object by an association, whether explicitly modeled as an Association or implicit. If there is a 
qualifier attached to the source end of the association, then additional qualifier expressions may be used to specify the 
values of the qualifying attributes.

Associations

OperationCallExp

An OperationCallExp refers to an operation defined in a Classifier. The expression may contain a list of argument 
expressions if the operation is defined to have parameters. In this case, the number and types of the arguments must match 
the parameters.

Associations

8.3.3 If Expressions

This sub clause describes the if expression in detail. Figure 8.4 shows the structure of the if expression.

referredAssociationClass The AssociationClass to which this AssociationClassCallExp is a reference. This refers to an 
AssociationClass that is defined in the UML model.

referredProperty The Attribute to which this AttributeCallExp is a reference.

qualifier The values for the qualifier attributes if applicable.

navigationSource The source denotes the association end Property at the end of the object itself. This is used to 
resolve ambiguities when the same Classifier is at more than one end (plays more than one 
role) in the same association. In other cases it can be derived.

argument The arguments denote the arguments to the operation call. This is only useful when the 
operation call is related to an Operation that takes parameters.

referredOperation The Operation to which this OperationCallExp is a reference. This is an Operation of a 
Classifier that is defined in the UML model.
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Figure 8.4 - Abstract syntax metamodel for if expression

IfExp

An IfExp results in one of two alternative expressions depending on the evaluated value of a condition. Note that both the 
thenExpression and the elseExpression are mandatory. The reason behind this is that an if expression should always result 
in a value, which cannot be guaranteed if the else part is left out.

Associations

8.3.4 Message Expressions

In the specification of communication between instances we unify the notions of asynchronous and synchronous 
communication. The structure of the message expressions is shown in Figure 8.5.

condition The OclExpression that represents the Boolean condition. If this condition evaluates to true, 
the result of the if expression is identical to the result of the thenExpression. If this condition 
evaluates to false, the result of the if expression is identical to the result of the 
elseExpression.

thenExpression The OclExpression that represents the then part of the if expression.

elseExpression The OclExpression that represents the else part of the if expression.
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Figure 8.5 - The abstract syntax of OCL messages

MessageExp

A MessageExp is an expression that results in a collection of OclMessage value. An OclMessage is the unification of a 
signal sent, and an operation call. The target of the operation call or signal sent is specified by the target OclExpression. 
Arguments are OclExpressions, in particular they may be unspecified value expressions for arguments whose value is not 
specified. It covers both synchronous and asynchronous actions. 

Associations

UnspecifiedValueExp

An UnpecifiedValueExp is an expression whose value is unspecified in an OCL expression. It is used within OCL 
messages to leave parameters of messages unspecified.

8.3.5 Literal Expressions

This sub clause defines the different types of literal expressions of OCL. It also refers to enumeration types and 
enumeration literals. Figure 8.6 shows all types of literal expressions.

target The OclExpression that represents the target instance to which the signal is sent.

argument The OclExpressions that represent the parameters to the Operation or Signal. The number 
and type of arguments should conform to those defined in the Operation or Signal. The order 
of the arguments is the same as the order of the parameters of the Operation or the attributes 
of a Signal.

calledOperation If this is a message to request an operation call, this is the requested CallOperationAction. 

sentSignal If this is a UML signal sent, this is the SendSignalAction.
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Figure 8.6 - Abstract syntax metamodel for Literal expression

Figure 8.7 - Abstract syntax metamodel for Collection and Tuple Literal expression
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BooleanLiteralExp

A BooleanLiteralExp represents the value true or false of the predefined type Boolean.

Attributes

CollectionItem

A CollectionItem represents an individual element of a collection.

CollectionKind

The CollectionKind enumeration lists the kinds of collections. Its literals are Collection, Set, OrderedSet, Bag, and 
Sequence.

CollectionLiteralExp

A CollectionLiteralExp represents a reference to collection literal.

Attributes

Associations

CollectionLiteralPart

A CollectionLiteralPart is a member of the collection literal.

Associations

CollectionRange

A CollectionRange represents a range of integers from a first integer up to and including a last integer.

EnumLiteralExp

An EnumLiteralExp represents a reference to an enumeration literal.

booleanSymbol The Boolean that represents the value of the literal.

kind The kind of collection literal that is specified by this CollectionLiteralExp.

part The parts of the collection literal expression.

type The type of the collection literal.
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Associations

IntegerLiteralExp

An IntegerLiteralExp denotes a value of the predefined type Integer.

Attributes

NumericLiteralExp

A NumericLiteralExp denotes a value of either the type UnlimitedNatural, Integer or Real types.

PrimitiveLiteralExp

A PrimitiveLiteralExp literal denotes a value of a primitive type.

Attributes

RealLiteralExp

A RealLiteralExp denotes a value of the predefined type Real.

Attributes

StringLiteralExp

A StringLiteralExp denotes a value of the predefined type String.

Attributes

TupleLiteralExp

A TupleLiteralExp denotes a tuple value. It contains a name and a value for each part of the tuple type.

referredEnumLiteral The EnumLiteral to which the enum expression refers.

integerSymbol The Integer that represents the value of the literal.

symbol The String that represents the value of the literal.

realSymbol The Real that represents the value of the literal.

stringSymbol The String that represents the value of the literal.
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Associations

UnlimitedNaturalLiteralExp

An UnlimitedNaturalLiteralExp denotes a value of the predefined type UnlimitedNatural.

Attributes

8.3.6 Let Expressions

This sub clause defines the abstract syntax metamodel for Let expressions. The only addition to the abstract syntax is the 
metaclass LetExp as shown in Figure 8.8. The other metaclasses are re-used from the previous diagrams.

Note:  Let expressions that take arguments are no longer allowed in OCL 2.0. This feature is redundant. Instead, a 
modeler can define an additional operation in the UML Classifier, potentially with a special stereotype to denote that this 
operation is only meant to be used as a helper operation in OCL expressions. The postcondition of such an additional 
operation can then define its result value. Removal of Let functions will therefore not affect the expressibility of the 
modeler. Another way to define such helper operations is through the «definition» constraint, which reuses some of the 
concrete syntax defined for Let expressions (see 12.5, ’Definition’), but is nothing more than an OCL-based syntax for 
defining helper attributes and operations.

Figure 8.8 - Abstract syntax metamodel for let expression

LetExp

A LetExp is a special expression that defined a new variable with an initial value. A variable defined by a LetExp cannot 
change its value. The value is always the evaluated value of the initial expression. The variable is visible in the in 
expression.

part The Variable declarations defining the parts of the literal.

unlimitedNaturalSymbol The UnlimitedNatural that represents the value of the literal.
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Associations

8.3.7 Well-formedness Rules of the Expressions package

The metaclasses defined in the abstract syntax have the following well-formedness rules:

PropertyCallExp

The type of the call expression is the type of the referred property.

context PropertyCallExp
inv: type = referredProperty.type

BooleanLiteralExp

[1] The type of a Boolean Literal expression is the type Boolean.

context BooleanLiteralExp
inv: self.type.name = ‘Boolean’

CollectionLiteralExp

[1] ‘Collection’ is an abstract class on the M1 level and has no M0 instances.

context CollectionLiteralExp
inv: kind <> CollectionKind::Collection

[2] The type of a collection literal expression is determined by the collection kind selection and the common supertype of all 
elements. Note that the definition below implicitly states that empty collections have OclVoid as their elementType.

context CollectionLiteralExp
inv: kind = CollectionKind::Set  implies type.oclIsKindOf (SetType)
inv: kind = CollectionKind::OrderedSet implies type.oclIsKindOf (OrderedSetType)
inv: kind = CollectionKind::Sequence  implies type.oclIsKindOf (SequenceType)
inv: kind = CollectionKind::Bag implies type.oclIsKindOf (BagType)
inv: type.oclAsType (CollectionType).elementType = part->iterate (p; c : Classifier = OclVoid | c.commonSuperType (p.type))

CollectionLiteralPart

No additional well-formedness rules.

CollectionItem

[1] The type of a CollectionItem is the type of the item expression.

context CollectionItem
inv: type = item.type

variable The Variable introduced by the Let expression.

in The OclExpression in whose environment the defined variable is visible.
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CollectionRange

[1] The type of a CollectionRange is the common supertype of the expressions taking part in the range.

context CollectionRange
inv: type = first.type.commonSuperType (last.type)

[2] The last value follows the first value.

context CollectionRange
inv IncreasingRange: first <= last 

EnumLiteralExp

[1] The type of an enum Literal expression is the type of the referred literal.

context EnumLiteralExp
inv: self.type = referredEnumLiteral.enumeration

IfExp

[1] The type of the condition of an if expression must be Boolean.

context IfExp
inv: self.condition.type.oclIsKindOf(PrimitiveType) and self.condition.type.name = ‘Boolean’

[2] The type of the if expression is the most common supertype of the else and then expressions.

context IfExp
inv: self.type = thenExpression.type.commonSuperType(elseExpression.type)

IntegerLiteralExp

[1] The type of an integer Literal expression is the type Integer. 

context IntegerLiteralExp
inv: self.type.name = ‘Integer’

IteratorExp any

[1] There is exactly one iterator.

context IteratorExp
inv: name = ‘any’ implies iterator->size() = 1

[2] The type is the same as the source element type

context IteratorExp
inv: name = ‘any’ implies type = source.type.oclAsType(CollectionType).elementType

[3] The type of the body must be Boolean.

context IteratorExp
inv: name = ‘any’ implies body.type.oclIsKindOf(PrimitiveType) and body.type.name = ‘Boolean’
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IteratorExp closure

[1] There is exactly one iterator.

context IteratorExp
inv: name = 'closure' implies iterator->size() = 1

[2] The collection type for an OrderedSet or a Sequence source type is OrderedSet. For any other source the collection type is 
Set.

context IteratorExp
inv: name = 'closure' implies
  if source.type.oclIsKindOf(SequenceType) or source.type.oclIsKindOf(OrderedSetType) then
      type.oclIsKindOf(OrderedSetType)
    else
      type.oclIsKindOf(SetType)
    endif

[3] The source element type is the same as type of the body elements or element.

context IteratorExp
inv: name = 'closure' implies
        source.type.oclAsType(CollectionType).elementType =
                if body.type.oclIsKindOf(CollectionType)
                then body.type.oclAsType(CollectionType).elementType
                else body.type
                endif

[4] The element type is the same as the source element type.

context IteratorExp
inv: name = 'closure' implies
        type.oclAsType(CollectionType).elementType
                = source.type.oclAsType(CollectionType).elementType

IteratorExp collect

[1] There is exactly one iterator.

context IteratorExp
inv: name = 'collect' implies iterator->size() = 1

[2] The collection type for an OrderedSet or a Sequence type is a Sequence, the result type for any other collection type is a 
Bag.

context IteratorExp
inv: name = 'collect' implies
  if source.type.oclIsKindOf(SequenceType) or source.type.oclIsKindOf(OrderedSetType) then
    type.oclIsKindOf(SequenceType)
  else
    type.oclIsKindOf(BagType)
  endif
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[3] The element type is the type of the body elements.

context IteratorExp
inv: name = 'collect' implies
  type.oclAsType(CollectionType).elementType =
    body.type.oclAsType(CollectionType).elementType
IteratorExp collectNested

[1] There is exactly one iterator.

context IteratorExp
inv: name = 'collectNested' implies iterator->size() = 1

[2] The type is a Bag.

context IteratorExp
inv: name = 'collectNested' implies type.oclIsKindOf(BagType)

[3] The type is the type of source.

context IteratorExp
inv: name = 'collectNested' implies type = body.type

IteratorExp exists

[1] The type must be Boolean.

context IteratorExp
inv: name = ‘exists’ implies type.oclIsKindOf(PrimitiveType) and type.name = ‘Boolean’

[2] The type of the body must be Boolean.

context IteratorExp
inv: name = ‘exists’ implies body.type.oclIsKindOf(PrimitiveType) and body.type.name = ‘Boolean’

IteratorExp forAll

[1] The type must be Boolean.

context IteratorExp
inv: name = ‘forAll’ implies type.oclIsKindOf(PrimitiveType) and type.name = ‘Boolean’

[2] The type of the body must be Boolean.

context IteratorExp
inv: name = ‘forAll’ implies body.type.oclIsKindOf(PrimitiveType) and body.type.name = ‘Boolean’

IteratorExp isUnique

[1] There is exactly one iterator.

context IteratorExp
inv: name = ‘isUnique’ implies iterator->size() = 1

[2] The type must be Boolean.

context IteratorExp
inv: name = ‘isUnique’ implies type.oclIsKindOf(PrimitiveType) and type.name = ‘Boolean’
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IteratorExp one

[1] There is exactly one iterator.

context IteratorExp
inv: name = ‘one’ implies iterator->size() = 1

[2] The type is Boolean

context IteratorExp
inv: name = ‘one’ implies type.oclIsKindOf(PrimitiveType) and type.name = ‘Boolean’

[3] The type of the body must be Boolean.

context IteratorExp
inv: name = ‘one’ implies body.type.oclIsKindOf(PrimitiveType) and body.type.name = ‘Boolean’

IteratorExp reject or select

[1] There is exactly one iterator.

context IteratorExp
inv: name = ‘reject’ or name = ‘select’ implies iterator->size() = 1

[2] The type is the same as the source.

context IteratorExp
inv: name = ‘reject’ or name = ‘select’ implies type = source.type

[3] The type of the body must be Boolean.

context IteratorExp
inv: name = ‘reject’ or name = ‘select’ implies
body.type.oclIsKindOf(PrimitiveType) and body.type.name = ‘Boolean’

IteratorExp sortedBy

[1] There is exactly one iterator.

context IteratorExp
inv: name = 'sortedBy' implies iterator->size() = 1

[2] The collection type for an OrderedSet or a Sequence type is a Sequence, the result type for any other collection type is Bag.

context IteratorExp
inv: name = 'sortedBy' implies
  if source.type.oclIsKindOf(SequenceType) or source.type.oclIsKindOf(BagType) then
    type.oclIsKindOf(SequenceType)
  else
    type.oclIsKindOf(OrderedSetType)
  endif

[3] The element type is the type of the body elements.

context IteratorExp
inv: name = 'sortedBy' implies
  type.oclAsType(CollectionType).elementType =
    body.type.oclAsType(CollectionType).elementType
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IterateExp

[1] The type of the iterate is the type of the result variable.

context IterateExp
inv: type = result.type

[2] The type of the body expression must conform to the declared type of the result variable.

context IterateExp
inv: body.type.conformsTo(result.type)

[3] A result variable must have an init expression.

context IterateExp
inv: self.result.initExpression->size() = 1

LetExp

[1] The type of a Let expression is the type of the in expression.

context LetExp
inv: type = in.type

LiteralExp

No additional well-formedness rules.

LoopExp

[1] The type of the source expression must be a collection.

context LoopExp
inv: source.type.oclIsKindOf (CollectionType)

[2] The loop variable of an iterator expression has no init expression.

context LoopExp
inv: self.iterator->forAll(initExpression->isEmpty())

[3] The type of each iterator variable must be the type of the elements of the source collection.

context IteratorExp
inv: self.iterator->forAll(type = source.type.oclAsType (CollectionType).elementType)

FeatureCallExp

No additional well-formedness rules.

NumericLiteralExp

No additional well-formedness rules. 

OclExpression

No additional well-formedness rules. 
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MessageExp

[1] If the message is an operation call action, the arguments must conform to the parameters of the operation.

context MessageExp 
inv: calledOperation->notEmpty() implies
        argument->forAll (a | a.type.conformsTo  
             (self.calledOperation.operation.ownedParameter->
                    select( kind = ParameterDirectionKind::in )
                                 ->at (argument->indexOf (a)).type)) 

[2] If the message is a send signal action, the arguments must conform to the attributes of the signal.

context MessageExp
inv: sentSignal->notEmpty() implies
        argument->forAll (a | a.type.conformsTo 
             (self.sentSignal.signal.ownedAttribute
                                 ->at (argument->indexOf (a)).type))

[3] If the message is a call operation action, the operation must be an operation of the type of the target expression.

context MessageExp 
inv: calledOperation->notEmpty() implies
       target.type.allOperations()->includes(calledOperation.operation)

[4] An OCL message has either a called operation or a sent signal.

context MessageExp 
inv: calledOperation->size() + sentSignal->size() = 1

[5] The target of an OCL message cannot be a collection.

context MessageExp
inv: not target.type.oclIsKindOf (CollectionType)

OperationCallExp

[1] All the arguments must conform to the parameters of the referred operation.

context OperationCallExp
inv: arguments->forAll (a | a.type.conformsTo 
                                         (self.refParams->at (arguments->indexOf (a)).type))

[2] There must be exactly as many arguments as the referred operation has parameters.

context OperationCallExp
inv: arguments->size() = refParams->size()

[3] An additional attribute refParams lists all parameters of the referred operation except the return and out parameter(s).

context OperationCallExp
def: refParams: Sequence(Parameter) = referredOperation.ownedParameter->select (p |  
                              p.kind <> ParameterDirectionKind::return or
                              p.kind <> ParameterDirectionKind::out)

CallExp

No additional well-formedness rules. 
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RealLiteralExp

[1] The type of a real Literal expression is the type Real.

context RealLiteralExp
inv: self.type.name = íRealí

StateExp

No additional well-formedness rules.

StringLiteralExp

[1] The type of a string Literal expression is the type String.

context StringLiteralExp
inv: self.type.name = ‘String’

TypeExp

No additional well-formedness rules.

TupleLiteralExp

[1] The type of a TupleLiteralExp is a TupleType with the specified parts.

context TupleLiteralExp

inv: type.oclIsKindOf (TupleType) 

     and  part->size() = type.allProperties()->size()

     and part->forAll (tlep | 

        type.allProperties()->exists (tp | tlep.attribute.name = tp.name and tlep.attribute.type = tp.type)) 

[2] All tuple literal expression parts of one tuple literal expression have unique names.

context TupleLiteralExp
inv: part->isUnique (attribute.name)

TupleLiteralPart

[1] The type of the attribute conforms to the type of the value expression.

context TupleLiteralPart
inv: attribute.type.conformsTo(value.type)

UnlimitedNaturalLiteralExp

[1] The type of an unlimited natural Literal expression is the type UnlimitedNatural. 

context UnlimitedNaturalLiteralExp
inv: self.type.name = ‘UnlimitedNatural’

UnspecifiedValueExp

No additional well-formedness rules.
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Variable 

[1] For initialized variable declarations, the type of the initExpression must conform to the type of the declared variable.

context Variable
inv: initExpression->notEmpty() implies initExpression.type.conformsTo (type)

VariableExp

[1] The type of a VariableExp is the type of the variable to which it refers.

context VariableExp
inv: type = referredVariable.type

8.3.8 Additional Operations on UML metaclasses

In the clauses “Abstract Syntax,” “Concrete Syntax,” and “The Use of Ocl Expressions in UML Models” many additional 
operations on UML metaclasses are used. They are defined in this sub clause. The next sub clause defines additional 
operations for the OCL metaclasses.

Classifier

The operation commonSuperType results in the most specific common supertype of two classifiers.

context Classifier
def: commonSuperType (c : Classifier) : Classifier =
    Classifier.allInstances()->select (cst |
        c.conformsTo (cst) and
        self.conformsTo (cst) and
        not Classifier.allInstances()->exists (clst |
          c.conformsTo (clst) and
          self.conformsTo (clst) and
          clst.conformsTo (cst) and
          clst <> cst
        )
      )->any (true)

The following operations have been added to Classifier to lookup properties and operations.

context Classifier
def: lookupProperty(attName : String) : Attribute = 
                          self.allProperties()->any(me | me.name = attName) 
def: lookupAssociationClass(name : String) : AssociationClass =
                          self.allAssociationClasses()->any (ae | ae.name = name)
def: lookupOperation (name: String, paramTypes: Sequence(Classifier)): Operation =
                          self.allOperations()->any (op | op.name = name and
                                                op.hasMatchingSignature(paramTypes))
def: lookupSignal (sigName: String, paramTypes: Sequence(Classifier)): Signal =
                         self.allReceptions().signal->any (sig | sig.name = sigName and
                                                sig.hasMatchingSignature(paramTypes))
def: allReceptions() : Set(Reception) =
                       self.allFeatures()->select(f | f.oclIsKindOf(Reception))
def: allProperties() : Set(Property) =
                       self.allFeatures()->select(f | f.oclIsKindOf(Property))
def: allOperations() : Set(Property) =
                       self.allFeatures()->select(f | f.oclIsKindOf(Operation))
64                 Object Constraint Language, v2.4



The operation allFeatures() is defined in the UML semantics.

The operation allInstances()
context Classifier
def: allInstances() : Set( T ) = -- all instances of self

returns all instances of the classifier and the classifiers specializing it. May only be used for classifiers that have a finite 
number of instances. This is the case, for example, for user defined classes because instances need to be created explicitly, 
and for enumerations, the standard Boolean type, and other special types such as OclVoid. This is not the case, for 
example, for data types such as collection types or the standard String, UnlimitedNatural, Integer, and Real types. 

Operation

An additional operation is added to Operation, which checks whether its signature matches with a sequence of Classifiers. 
Note that in making the match only parameters with direction kind ‘in’ are considered. 

context Operation
def: hasMatchingSignature(paramTypes: Sequence(Classifier)) : Boolean =
     -- check that operation op has a signature that matches the given parameter lists
     let sigParamTypes: Sequence(Classifier) = self.allProperties().type in
           (
             ( sigParamTypes->size() = paramTypes->size() ) and
             ( Set{1..paramTypes->size()}->forAll ( i |
                 paramTypes->at (i).conformsTo (sigParamTypes->at (i))
               )
             )
           )
def: allProperties() : Set(Property) =
                       self.ownedParameter->asProperty()

Parameter

The operation asProperty results in a property that has the same name, type, etc. as the parameter.

context Parameter::asProperty(): Property
pre: -- none
post: result.name = self.name
post: result.type = self.type
post: result.upperValue = 1
post: result.lowerValue = 1
post: result.isOrdered = true
post: result.isStatic = false
post: result.visibility = VisibilityKind::private

An additional class operation is added to Parameter to return a Parameter. 

context Parameter::make(n : String, c : Classifier, k : ParameterDirectionKind) :Parameter
post: result.name = n
post: result.kind = k
post: result.type = c

Property

The operation cmpSlots returns true if the compared property has identical name and type.

context Parameter::cmpSlots(): Boolean =
  result.name = self.name and result.type = self.type
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Signal

An additional operation is added to Signal, which checks whether its signature matches with a sequence of Classifiers. 
Note that in making the match the parameters of the signal are its attributes. 

context Signal
def: hasMatchingSignature(paramTypes: Sequence(Classifier)) : Boolean =
     -- check that signal has a signature that matches the given parameter lists
      let opParamTypes: Sequence(Classifier) = self.ownedParameter->select (p | p.kind <>
                                                  ParameterDirectionKind::return).type in
           (
             ( opParamTypes->size() = paramTypes->size() ) and
             ( Set{1..paramTypes->size()}->forAll ( i |
                 paramTypes->at (i).conformsTo (opParamTypes->at (i))
               )
             )
           )

State

The operation getStateMachine() returns the statemachine to which a state belongs.

context State::getStateMachine() : StateMachine
post: result = container.stateMachine

Transition

The operation getStateMachine() returns the statemachine to which a transition belongs.

context Transition::getStateMachine() : StateMachine
post: result = container.stateMachine

8.3.9 Additional Operations on OCL Metaclasses

In clauses “Abstract Syntax,” “Concrete Syntax,” and “The Use of Ocl Expressions in UML Models” many additional 
operations on OCL metaclasses are used. They are defined in this sub clause. The previous sub clause defines additional 
operations for the UML metaclasses.

OclExpression

The following operation returns an operation call expression for the predefined asSet() operation with the self expression 
as its source.

context OclExpression::withAsSet() : OperationCallExp
post: result.name = ‘asSet’
post: result.argument->isEmpty()
post: result.source = self

TupleType

An additional class operation is added to Tuple to return a new tuple. The name of a tupletype is defined in the abstract 
syntax clause and need not be specified here. 

context TupleType::make(atts : Sequence(Property) ) : TupleType
post: Sequence{1...atts->size()}->forAll(i | result.ownedAttribute.at(i).cmpSlots(atts.at(i))
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Variable

An additional operation is added to Variable to return a corresponding Parameter. 

context Variable::asParameter() : Parameter
post: result.name = self.name
post: result.direction = ParameterDirectionKind::in
post: result.type = self.type

An additional operation is added to Variable to return a corresponding Property. 

context Variable::asProperty() : Attribute
post: result.name = self.name
post: result.type = self.type
upperValue = 1
post: result.lowerValue = 1
post: result.isOrdered = true
post: result.isStatic = false
post: result.visibility = VisibilityKind::private
post: result.constraint.specification.bodyExpression = self.initExpression
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8.3.10 Overview of class hierarchy of OCL Abstract Syntax metamodel

Figure 8.9 - Overview of the abstract syntax metamodel for Expressions
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9 Concrete Syntax

This clause describes the concrete syntax of the OCL. This allows modelers to write down OCL expressions in a 
standardized way. A formal mapping from the concrete syntax to the abstract syntax from Clause 8 (“Abstract Syntax”) is 
given. Although not required, sub clause 9.6 describes a mapping from the abstract syntax to the concrete syntax. This 
allows one to produce a standard human readable version of any OCL expression that is represented as an instance of the 
abstract syntax.

Sub clause 9.1, Structure of the Concrete Syntax describes the structure of the grammar and the motivation for the use of 
an attribute grammar.

9.1 Structure of the Concrete Syntax

The concrete syntax of OCL is described in the form of a full attribute grammar. Each production in an attribute grammar 
may have synthesized attributes attached to it. The value of synthesized attributes of elements on the left hand side of a 
production rule is always derived from attributes of elements at the right hand side of that production rule. Each 
production may also have inherited attributes attached to it. The value of inherited attributes of elements on the right hand 
side of a production rule is always derived from attributes of elements on the left hand side of that production. 

In the attribute grammar that specifies the concrete syntax, every production rule is denoted using the EBNF formalism 
and annotated with synthesized and inherited attributes, and disambiguating rules. There are a number of special 
annotations, as follows.

Synthesized Attributes

Each production rule has one synthesized attribute called ast (short for abstract syntax tree), that holds the instance of the 
OCL Abstract Syntax that is returned by the rule. The type of ast is different for every rule, but it always is an element of 
the abstract syntax. The type is stated with each production rule under the heading “Abstract Syntax Mapping.” The ast 
attribute constitutes the formal mapping from concrete syntax to abstract syntax. 

The motivation for the use of an attribute grammar is the easiness of the construction and the clarity of this mapping. 
Note that each name in the EBNF format of the production rule is postfixed with ‘CS’ to clearly distinguish between the 
concrete syntax elements and their abstract syntax counterparts.

Inherited Attributes

Each production rule has one inherited attribute called env (short for environment), that holds a list of names that are 
visible from the expression. All names are references to elements in the model. In fact, env is a name space environment 
for the expression or expression part denoted according to the production rule. The type of the env attribute is 
Environment, as shown in Figure 9.1. A number of operations are defined for this type. Their definitions and more details 
on the Environment type can be found in sub clause 9.4. The manner in which both the ast and env attributes are 
determined is given using OCL expressions. 
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Figure 9.1 - The Environment type

Note that the contents of the env attribute are fully determined by the context of the OCL expression. When an OCL 
expression is used as an invariant to class X, its environment will be different than in the case the expression is used as a 
postcondition to an operation of class Y. In Clause 12 (“The Use of Ocl Expressions in UML Models”) the context of 
OCL expressions is defined in detail.

Multiple Production Rules

For some elements there is a choice of multiple production rules. In that case the EBNF format of each production rule is 
prefixed by a capital letter between square brackets. The same prefix is used for the corresponding determination rules for 
the ast and env attributes.

Multiple Occurrences of Production Names

In some production rules the same element name is used more than once. To distinguish between these occurrences the 
names will be postfixed by a number in square brackets, as in the following example.

 CollectionRangeCS ::= OclExpressionCS[1] ‘..’ OclExpressionCS[2]

Disambiguating Rules

Some of the production rules are syntactically ambiguous. For such productions disambiguating rules have been defined. 
Using these rules, each production and thus the complete grammar becomes nonambiguous. For example in parsing a.b(), 
there are at least three possible parsing solutions:

1. a is a VariableExpr             (a reference to a let or an iterator variable)

ModelElement
(from Core)

Environment
EMPTY_ENV : Environment

lookupLocal()
lookup()
lookupLocal()
lookup()
addElement()
addNamespace()
nestedEnvironment()
lookupImplicitAttribute()
lookupImplicitSourceForAttribute()
lookupImplicitAssociationEnd()
lookupImplicitOperation()

NamedElement
name : String
mayBeImplicit : Boolean

getType()
1

0..n+namedElements 0..n

+referredElement

1
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2. a is an AttributeCallExp     (self is implicit)

3. a is a NavigationCallExp    (self is implicit)

A decision on which grammar production rule to use can only be made when the environment of the expression is taken 
into account. The disambiguating rules describe these choices based on the environment and allow unambiguous parsing 
of a.b(). In this case the rules (in plain English) would be:

• If a is a defined variable in the current scope, a is a VariableExp.

• If not, check self and all iterator variables in scope. The inner-most scope for which as is either 

• an attribute with the name a, resulting in an AttributeCallExp, or

• an opposite association-end with the name a, resulting in a NavigationCallExp, defines the meaning of a.b().

• If neither of the above is true, the expression is illegal / incorrect and cannot be parsed.

Disambiguating rules may be based on the UML model to which the OCL expression is attached (e.g., does an attribute 
exist or not). Because of this, the UML model must be available when an OCL expression is parsed, otherwise it cannot 
be validated as a correct expression. The grammar is structured in such a way that at most one of the production rules will 
fulfill all the disambiguating rules, thus ensuring that the grammar as a whole is unambiguous. The disambiguating rules 
are written in OCL, and use some metaclasses and additional operations from UML.

9.2 A Note to Tool Builders

9.2.1 Parsing

The grammar in this clause might not prove to be the most efficient way to directly construct a tool. Of course, a tool-
builder is free to use a different parsing mechanism. He can, for example, first parse an OCL expression using a special 
concrete syntax tree, and do the semantic validation against a UML model in a second pass. Also, error correction or 
syntax directed editing might need hand-optimized grammars. This document does not prescribe any specific parsing 
approach. The only restriction is that at the end of all processing a tool should be able to produce the same well-formed 
instance of the abstract syntax, as would be produced by this grammar.

9.2.2 Visibility

The OCL specification puts no restriction on the visibility declared for a property defined in the model (such as ‘private,’ 
‘protected,’ or ‘public’). In OCL, all modelelements are considered visible. The reason for this is to allow a modeler to 
specify constraints, even between ‘hidden’ elements. At the lowest implementation level this might be useful.

As a separate option OCL tools may enforce all UML visibility rules to support OCL expressions to be specified only 
over visible modelelements. Especially when a tool needs to generate code for runtime evaluation of OCL expressions, 
this visibility enforcement is necessary.

9.3 Concrete Syntax

In the concrete syntax, names that are reserved words or include punctuation characters can be used by enclosing the 
required name in underscore-prefixed single quotes.

_'and' _'>='
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[In OCL 2.0 and 2.2 a reserved word could be used as a name after prefixing it with an underscore.
_and

The subsequent symbol lookup would look first for the spelling with an underscore in the metamodel and if that was not 
found would attempt a further lookup after removing the underscore. This behavior was indeterminate, could not access 
names that existed both with and without prefixes, and did not support punctuation characters. The simple underscore 
prefix was therefore deprecated in OCL 2.3 and will be removed in OCL 3.0.]

9.3.1 ExpressionInOclCS

The ExpressionInOcl symbol has been added to set up the initial environment of an expression.

ExpressionInOclCS ::= OclExpressionCS

Abstract syntax mapping

ExpressionInOclCS.ast : OclExpression

Synthesized attributes

ExpressionInOclCS.ast = OclExpressionCS.ast

Inherited attributes

The environment of the OCL expression must be defined, but what exactly needs to be in the environment depends on the 
context of the OCL expression. The following rule is therefore not complete. It defines the env attribute by adding the self 
variable to an empty environment, as well as a Namespace containing all elements visible from self. In sub clause 12.2, 
the contextualClassifier will be defined for the various places where an ocl expression may occur. In the context of a pre- 
or postcondition, the result variable as well as variable definitions for any named operation parameters can be added in a 
similar way. 

OclExpressionCS.env = 
      ExpressionInOclCS.contextualClassifier.namespace.getEnvironmentWithParents()
                 .addElement (‘self,’ ExpressionInOclCS.contextualClassifier, true)

9.3.2 OclExpressionCS

An OclExpression has several production rules, one for each subclass of OclExpression. Note that UnspecifiedValueExp 
is handled explicitly in OclMessageArgCS, because that is the only place where it is allowed.

[A] OclExpressionCS ::= CallExpCS

[B] OclExpressionCS ::= VariableExpCS

[C] OclExpressionCS ::= LiteralExpCS

[D] OclExpressionCS ::= LetExpCS

[E] OclExpressionCS ::= OclMessageExpCS

[F] OclExpressionCS ::= IfExpCS

Abstract syntax mapping

OclExpressionCS.ast : OclExpression
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Synthesized attributes

[A] OclExpressionCS.ast = CallExpCS.ast
[B] OclExpressionCS.ast = VariableExpCS.ast
[C] OclExpressionCS.ast = LiteralExpCS.ast
[D] OclExpressionCS.ast = LetExpCS.ast
[E] OclExpressionCS.ast = OclMessageExpCS.ast
[F] OclExpressionCS.ast = IfExpCS.ast

Inherited attributes

[A] CallExpCS.env = OclExpressionCS.env
[B] VariableExpCS.env = OclExpressionCS.env
[C] LiteralExpCS.env = OclExpressionCS.env
[D] LetExpCS.env = OclExpressionCS.env
[E] OclMessageExpCS.env = OclExpressionCS.env
[F] IfExpCS.env = OclExpressionCS.env

Disambiguating rules

The disambiguating rules are defined in the children.

9.3.3 VariableExpCS

A variable expression is just a name that refers to a variable or self.

[A] VariableExpCS ::= simpleNameCS
[B] VariableExpCS ::= 'self'

Abstract syntax mapping

VariableExpCS.ast : VariableExpression

Synthesized attributes

[A] VariableExpCS.ast.referredVariable =
               env.lookup(simpleNameCS.ast).referredElement.oclAsType(VariableDeclaration)
[B] VariableExpCS.ast.referredVariable =
               env.lookup('self').referredElement.oclAsType(VariableDeclaration) 

Inherited attributes

-- none

Disambiguating rules

[1][A] simpleNameCS must be a name of a visible VariableDeclaration in the current environment

env.lookup (simpleNameCS.ast).referredElement.oclIsKindOf (VariableDeclaration)

9.3.4 simpleNameCS

This production rule represents a single name. No special rules are applicable. The abstract syntax of a simpleNameCS 
String is undefined in UML, and so is undefined in OCL. The reason for this is internationalization.

The concrete syntax of a simpleNameCS String supports a Unicode letter-prefixed identifier (form [A]). Reserved words 
and names involving awkward characters such as punctuation may be specified by prefixing a String Literal with an '_' 
(form [B] and [C]).
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[A] simpleNameCS ::= NameStartChar NameChar*
[B] simpleNameCS ::= '_' #x27 StringChar* #x27
[C] simpleNameCS[1] ::= simpleNameCS[2] WhiteSpaceChar* #x27 StringChar* #x27

The identifier form starts with a Unicode letter:

NameStartChar ::= [A-Z] | "_" | "$" | [a-z]
                             | [#xC0-#xD6] | [#xD8-#xF6] | [#xF8-#x2FF]
                             | [#x370-#x37D] | [#x37F-#x1FFF]
                             | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF]
                             | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD]
                             | [#x10000-#xEFFFF]

and may continue with a Unicode letter or digit.

NameChar ::= NameStartChar | [0-9]

The StringChar form is defined under StringLiteralExpCS.

Example simpleNameCS values are:

String    i3    αρετη    MAX_VALUE   isLetterOrDigit    _'true'    _'>='    _'\''

Abstract syntax mapping

simpleNameCS.ast : String

Synthesized attributes

[A] simpleNameCS.ast = <CodePoints of NameStartChar NameChar*>
[B] simpleNameCS.ast = <CodePoints of StringChar*>
[C] simpleNameCS[1].ast = simpleNameCS[2] + <CodePoints of StringChar*>

Inherited attributes

-- none

Disambiguating rules

[1] [A]  the character, if any, following the last NameChar is not a NameChar.
[2] [A]  simpleNameCS.ast is not a reserved word
[3] [B]  No whitespace is permitted between the '_' and the first NameChar.
[4] [C]  simpleNameCS[2] is a simpleNameCS [B] or [C].

9.3.5 restrictedKeywordCS

This production rule represents any name that is not a reserved keyword.

[A] restrictedKeywordCS ::= CollectionTypeIdentifierCS
[B] restrictedKeywordCS ::= primitiveTypeCS
[C] restrictedKeywordCS ::= oclTypeCS
[D] restrictedKeywordCS ::= 'Tuple'

Abstract syntax mapping

restrictedKeywordCS.ast : String
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Synthesized attributes

[A] restrictedKeywordCS.ast = CollectionTypeIdentifierCS.ast.name
[B] restrictedKeywordCS.ast = primitiveTypeCS.ast.name
[C] restrictedKeywordCS.ast = oclTypeCS.ast.name
[D] restrictedKeywordCS.ast = 'Tuple'

Inherited attributes

-- none

Disambiguating rules

-- none

9.3.6 unreservedSimpleNameCS

This production rule represents any name that is not a reserved keyword.

[A] unreservedSimpleNameCS ::= simpleNameCS
[B] unreservedSimpleNameCS ::= restrictedKeywordCS

Abstract syntax mapping

unreservedSimpleNameCS.ast : String

Synthesized attributes

[A] unreservedSimpleNameCS.ast = simpleNameCS.ast
[B] unreservedSimpleNameCS.ast = restrictedKeywordCS.ast

Inherited attributes

-- none

Disambiguating rules

-- none

9.3.7 pathNameCS

This rule represents a path name, which is held in its ast as a sequence of Strings.
[A] pathNameCS ::= simpleNameCS
[B] pathNameCS ::= pathNameCS ‘::’ unreservedSimpleNameCS

Abstract syntax mapping

pathNameCS.ast : Sequence(String)

Synthesized attributes

[A] pathNameCS.ast = Sequence{simpleNameCS .ast}
[B] pathNameCS.ast = pathNameCS.ast->append(unreservedSimpleNameCS.ast) 

Inherited attributes

-- none
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Disambiguating rules

-- none

9.3.8 LiteralExpCS

This rule represents literal expressions.

[A] LiteralExpCS ::= EnumLiteralExpCS
[B] LiteralExpCS ::= CollectionLiteralExpCS
[C] LiteralExpCS ::= TupleLiteralExpCS
[D] LiteralExpCS ::= PrimitiveLiteralExpCS
[E] LiteralExpCS ::= TypeLiteralExpCS

Abstract syntax mapping

LiteralExpCS.ast : LiteralExp

Synthesized attributes

[A] LiteralExpCS.ast = EnumLiteralExpCS.ast
[B] LiteralExpCS.ast = CollectionLiteralExpCS.ast
[C] LiteralExpCS.ast = TupleLiteralExpCS.ast
[D] LiteralExpCS.ast = PrimitiveLiteralExpCS.ast
[E] LiteralExpCS.ast = TypeLiteralExpCS.ast

Inherited attributes

[A] EnumLiteralExpCS.env = LiteralExpCS.env
[B] CollectionLiteralExpCS.env = LiteralExpCS.env
[C] TupleLiteralExpCS.env = LiteralExpCS.env
[D] PrimitiveLiteralExpCS.env  = LiteralExpCS.env
[E] TypeLiteralExpCS.env  = LiteralExpCS.env

Disambiguating rules

-- none

9.3.9 EnumLiteralExpCS

The rule represents Enumeration Literal expressions.

EnumLiteralExpCS ::= pathNameCS ‘::’ simpleNameCS

Abstract syntax mapping

EnumLiteralExpCS.ast : EnumLiteralExp

Synthesized attributes

EnumLiteralExpCS.ast.type = 
           env.lookupPathName (pathNameCS.ast).referredElement.oclAsType (Classifier)

EnumLiteralExpCS.ast.referredEnumLiteral = 
           EnumLiteralExpCS.ast.type.oclAsType (Enumeration).literal->
                                         select (l  | l.name = simpleNameCS.ast )->any(true)
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Inherited attributes

-- none

Disambiguating rules

[1] The specified name must indeed reference an enumeration:

not EnumLiteralExpCS.ast.type.oclIsUndefined() and 
    EnumLiteralExpCS.ast.type.oclIsKindOf (Enumeration)

9.3.10 CollectionLiteralExpCS

This rule represents a collection literal expression.

CollectionLiteralExpCS ::= CollectionTypeIdentifierCS 
                           ‘{‘ CollectionLiteralPartsCS? ‘}’

Abstract syntax mapping

CollectionLiteralExpCS.ast : CollectionLiteralExp

Synthesized attributes

CollectionLiteralExpCS.ast.parts = CollectionLiteralPartsCS.ast
CollectionLiteralExpCS.ast.kind  = CollectionTypeIdentifierCS.ast 

Inherited attributes

CollectionTypeIdentifierCS.env = CollectionLiteralExpCS.env
CollectionLiteralPartsCS.env   = CollectionLiteralExpCS.env

Disambiguating rules

[1] In a literal the collection type may not be Collection.

CollectionTypeIdentifierCS.ast <> ‘Collection’

9.3.11 CollectionTypeIdentifierCS

This rule represents the type identifier in a collection literal expression. The Collection type is an abstract type on M1 
level, so it has no corresponding literals.

[A] CollectionTypeIdentifierCS ::= ‘Set’

[B] CollectionTypeIdentifierCS ::= ‘Bag’

[C] CollectionTypeIdentifierCS ::= ‘Sequence’

[D] CollectionTypeIdentifierCS ::= ‘Collection’

[E] CollectionTypeIdentifierCS ::= ‘OrderedSet’

Abstract syntax mapping

CollectionTypeIdentifierCS.ast : CollectionKind
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Synthesized attributes
[A] CollectionTypeIdentifierCS.ast = CollectionKind::Set
[B] CollectionTypeIdentifierCS.ast = CollectionKind::Bag
[C] CollectionTypeIdentifierCS.ast = CollectionKind::Sequence
[D] CollectionTypeIdentifierCS.ast = CollectionKind::Collection
[E] CollectionTypeIdentifierCS.ast = CollectionKind::OrderedSet

Inherited attributes

-- none

Disambiguating rules

-- none

9.3.12 CollectionLiteralPartsCS 

This production rule describes a sequence of items that are the contents of a collection literal.

CollectionLiteralPartsCS[1] = CollectionLiteralPartCS
                              ( ’,’ CollectionLiteralPartsCS[2] )?

Abstract syntax mapping

CollectionLiteralPartsCS[1].ast : Sequence(CollectionLiteralPart)

Synthesized attributes

CollectionLiteralPartsCS[1].ast = 
            Sequence{CollectionLiteralPartCS.ast}->union(CollectionLiteralPartsCS[2].ast)

Inherited attributes

CollectionLiteralPartCS.env = CollectionLiteralPartsCS[1].env
CollectionLiteralPartSCS[2].env = CollectionLiteralPartsCS[1].env

Disambiguating rules

-- none

9.3.13 CollectionLiteralPartCS

[A] CollectionLiteralPartCS ::= CollectionRangeCS

[B] CollectionLiteralPartCS ::= OclExpressionCS

Abstract syntax mapping

 CollectionLiteralPartCS.ast : CollectionLiteralPart

Synthesized attributes

[A] CollectionLiteralPartCS.ast = CollectionRange.ast
[B] CollectionLiteralPartCS.ast.oclIsKindOf(CollectionItem) and
      CollectionLiteralPartCS.ast.oclAsType(CollectionItem).OclExpression =  OclExpressionCS.ast
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Inherited attributes

[A] CollectionRangeCS.env = CollectionLiteralPartCS.env
[B] OclExpressionCS.env   = CollectionLiteralPartCS.env

Disambiguating rules

-- none

9.3.14 CollectionRangeCS

CollectionRangeCS ::= OclExpressionCS[1] ‘..’ OclExpressionCS[2]

Abstract syntax mapping

CollectionRangeCS.ast : CollectionRange

Synthesized attributes

CollectionRangeCS.ast.first = OclExpressionCS[1].ast
CollectionRangeCS.ast.last  = OclExpressionCS[2].ast

Inherited attributes

OclExpressionCS[1].env = CollectionRangeCS.env
OclExpressionCS[2].env = CollectionRangeCS.env

Disambiguating rules

-- none

9.3.15 PrimitiveLiteralExpCS

This includes Real, Boolean, UnlimitedNatural, Integer, and String literals. Especially String literals must take 
internationalization into account and might need to remain undefined in this specification.

[A] PrimitiveLiteralExpCS ::= IntegerLiteralExpCS

[B] PrimitiveLiteralExpCS ::= RealLiteralExpCS

[C] PrimitiveLiteralExpCS ::= StringLiteralExpCS

[D] PrimitiveLiteralExpCS ::= BooleanLiteralExpCS

[E] PrimitiveLiteralExpCS ::= UnlimitedNaturalLiteralExpCS

[F] PrimitiveLiteralExpCS ::= NullLiteralExpCS

[G] PrimitiveLiteralExpCS ::= InvalidLiteralExpCS

Abstract syntax mapping

PrimitiveLiteralExpCS.ast : PrimitiveLiteralExp

Synthesized attributes

[A] PrimitiveLiteralExpCS.ast = IntegerLiteralExpCS.ast
[B] PrimitiveLiteralExpCS.ast = RealLiteralExpCS.ast
[C] PrimitiveLiteralExpCS.ast = StringLiteralExpCS.ast
[D] PrimitiveLiteralExpCS.ast = BooleanLiteralExpCS.ast
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[E] PrimitiveLiteralExpCS.ast = UnlimitedNaturalLiteralExpCS.ast

[F] PrimitiveLiteralExpCS.ast = NullLiteralExpCS.ast

[G] PrimitiveLiteralExpCS.ast = InvalidLiteralExpCS.ast

Inherited attributes
-- none

Disambiguating rules

-- none

9.3.16 TupleLiteralExpCS

This rule represents tuple literal expressions.

TupleLiteralExpCS ::= ‘Tuple’ ‘{‘ variableDeclarationListCS ‘}’

Abstract syntax mapping

TupleLiteralExpCS.ast : TupleLiteralExp

Synthesized attributes

TupleLiteralExpCS.tuplePart = variableDeclarationListCS.ast

Inherited attributes

variableDeclarationListCS[1].env = TupleLiteralExpCS.env

Disambiguating rules

[1] The initExpression and type of all VariableDeclarations must exist.

TupleLiteralExpCS.tuplePart->forAll( varDecl |
    varDecl.initExpression->notEmpty() and not varDecl.type.oclIsUndefined() )

9.3.17 UnlimitedNaturalLiteralExpCS

This rule represents unlimited natural literal expressions. The lexical representation is either the lexical representation of an 
integer value or the single character * that represents the unlimited value. The -1 representation of the unlimited value is only 
visible in the abstract systax and its serialization..

[A] UnlimitedNaturalLiteralExpCS ::= <Integer Lexical Representation>
[B] UnlimitedNaturalLiteralExpCS ::= ‘*’

Abstract syntax mapping

UnlimitedNaturalLiteralExpCS.ast : UnlimitedNaturalLiteralExp

Synthesized attributes

UnlimitedNaturalLiteralExpCS.ast.unlimitedNaturalSymbol = <IntegerValue>
UnlimitedNaturalLiteralExpCS.ast.unlimitedNaturalSymbol = -1

Inherited attributes

-- none
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Disambiguating rules

-- none

9.3.18 IntegerLiteralExpCS

This rule represents integer literal expressions. The lexical representation of an integer is a sequence of at least one of the 
decimal digit characters, without a leading zero; except that a single leading zero character is required for the zero value.

IntegerLiteralExpCS ::= <Integer Lexical Representation>

Abstract syntax mapping

IntegerLiteralExpCS.ast : IntegerLiteralExp

Synthesized attributes

IntegerLiteralExpCS.ast.integerSymbol = <Integer Value>

Inherited attributes

-- none

Disambiguating rules

-- none

9.3.19 RealLiteralExpCS

This rule represents real literal expressions. A real literal consists of an integer part, a fractional part, and an exponent 
part. The exponent part consists of either the letter 'e' or 'E', followed optionally by a '+' or '-' letter followed by an  
exponent integer part. Each integer part consists of a sequence of at least one of the decimal digit characters. The 
fractional part consists of the letter '.' followed by a sequence of at least one of the decimal digit characters. Either the 
fraction part or the exponent part may be missing but not both.

RealLiteralExpCS ::= <Real Lexical Representation>

Abstract syntax mapping

RealLiteralExpCS.ast : RealLiteralExp

Synthesized attributes

RealLiteralExpCS.ast.realSymbol = <Real Value>

Inherited attributes

-- none

Disambiguating rules

-- none
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9.3.20 StringLiteralExpCS

This rule represents string literal expressions. The concrete syntax comprises a sequence of zero or more characters or 
escape sequences surrounded by single quote characters.  The [B] form with adjacent strings allows a long string literal to 
be split into fragments or to be written across multiple lines.

[A] StringLiteralExpCS ::= #x27 StringChar* #x27
[B] StringLiteralExpCS[1] ::= StringLiteralExpCS[2] WhiteSpaceChar* #x27 StringChar* #x27 

where

StringChar ::= Char | EscapeSequence
WhiteSpaceChar ::= #x09 | #x0a | #x0c | #x0d | #x20
Char ::= [#x20-#x26] | [#x28-#x5B] | [#x5D-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF] 
EscapeSequence ::=  '\' 'b'                                     -- #x08: backspace BS
                                | '\' 't'                                      -- #x09: horizontal tab HT
                                | '\' 'n'                                     -- #x0a: linefeed LF
                                | '\' 'f'                                     -- #x0c: form feed FF 
                                | '\' 'r'                                     -- #x0d: carriage return CR
                                | '\' '"'                                     -- #x22: double quote " 
                                | '\' '''                                      -- #x27: single quote '
                                | '\' '\'                                      -- #x5c: backslash \
                                | '\' 'x'  Hex Hex                    -- #x00 to #xFF
                                | '\' 'u'  Hex Hex Hex Hex     -- #x0000 to #xFFFF
Hex ::= [0-9] | [A-F] | [a-f]

Abstract syntax mapping

StringLiteralExpCS.ast : StringLiteralExp

Synthesized attributes

[A] StringLiteralExpCS.ast.symbol = <CodePoints of StringChar*>
[B] StringLiteralExpCS.ast.symbol = StringLiteralExpCS[2] + <CodePoints of StringChar*>

Inherited attributes

-- none

Disambiguating rules

-- none

9.3.21 BooleanLiteralExpCS

This rule represents Boolean literal expressions.

[A] BooleanLiteralExpCS ::= ‘true’

[B] BooleanLiteralExpCS ::= ‘false’

Abstract syntax mapping

BooleanLiteralExpCS.ast : BooleanLiteralExp
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Synthesized attributes

[A] BooleanLiteralExpCS.ast.booleanSymbol = true
[B] BooleanLiteralExpCS.ast.booleanSymbol = false

Inherited attributes

-- none

Disambiguating rules

-- none

9.3.22 TypeLiteralExpCS

This production rule references a type name.

Abstract syntax mapping

TypeLiteralExpCS ::= typeCS

Synthesized attributes

TypeLiteralExpCS.ast = typeCS.ast

Inherited attributes

typeCS.env =  TypeLiteralExpCS.env

Disambiguating rules

-- none

9.3.23 CallExpCS

This rule represents property call expressions.

[A] CallExpCS ::= FeatureCallExpCS

[B] CallExpCS ::= LoopExpCS

Abstract syntax mapping

CallExpCS.ast : CallExp

Synthesized attributes

[A] CallExpCS.ast = ModelPropertyCallCS.ast
[B] CallExpCS.ast = LoopExpCS.ast

Inherited attributes

[A] ModelPropertyCallCS.env  = CallExpCS.env
[B] LoopExpCS.env = CallExpCS.env

Disambiguating rules

The disambiguating rules are defined in the children.
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9.3.24 LoopExpCS

This rule represents loop expressions.

[A] LoopExpCS ::= IteratorExpCS

[B] LoopExpCS ::= IterateExpCS

Abstract syntax mapping

LoopExpCS.ast : LoopExp

Synthesized attributes

[A] LoopExpCS.ast = IteratorExpCS.ast
[B] LoopExpCS.ast = IterateExpCS.ast

Inherited attributes

[A] IteratorExpCS.env  = LoopExpCS.env
[B] IterateExpCS.env   = LoopExpCS.env

Disambiguating rules

-- none

9.3.25 IteratorExpCS

The first alternative is a straightforward Iterator expression, with optional iterator variable. The second and third 
alternatives are so-called implicit collect iterators. B is for operations and C for attributes, D for navigations, and E for 
associationclasses.

[A] IteratorExpCS ::= OclExpressionCS[1] ‘->’ simpleNameCS

                     ‘(‘ (VariableDeclarationCS[1],

                          (‘,’ VariableDeclarationCS[2])? ‘|’ )? 

                         OclExpressionCS[2]

                     ‘)’

[B] IteratorExpCS ::= OclExpressionCS ‘.’ simpleNameCS ‘(‘argumentsCS?’)’

[C] IteratorExpCS ::= OclExpressionCS ‘.’ simpleNameCS

[D] IteratorExpCS ::= OclExpressionCS ‘.’ simpleNameCS

                                                         (‘[‘ argumentsCS ‘]’)?

[E] IteratorExpCS ::= OclExpressionCS ‘.’ simpleNameCS

                                                         (‘[‘ argumentsCS ‘]’)?

Abstract syntax mapping

IteratorExpCS.ast : IteratorExp

Synthesized attributes

-- the ast needs to be determined bit by bit, first the source association of IteratorExp

[A] IteratorExpCS.ast.source = OclExpressionCS[1].ast 

-- next the iterator association of IteratorExp
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-- when the variable declaration is present, its ast is the iterator of this iteratorExp      

-- when the variable declaration is not present, the iterator has a default name and 

-- type 

-- In any case, the iterator does not have an init expression

[A] IteratorExpCS.ast.iterators->at(1).name = if VariableDeclarationCS[1]->isEmpty()

                                  then íí

                                  else VariableDeclarationCS[1].ast.name

                                  endif

[A] IteratorExpCS.ast.iterator->at(1).type = 

 if VariableDeclarationCS[1]->isEmpty() or 

 (VariableDeclarationCS[1]->notEmpty() and

 VariableDeclarationCS[1].ast.type.oclIsUndefined() )

then

OclExpressionCS[1].type.oclAsType (CollectionType).elementType

else

VariableDeclarationCS[1].ast.type

endif

- The optional second iterator

[A] if VariableDeclarationCS[2]->isEmpty() then

IteratorExpCS.ast.iterators->size() = 1

else 

IteratorExpCS.ast.iterators->at(2).name = VariableDeclarationCS[2].ast.name

and

IteratorExpCS.ast.iterators->at(2).type = 

if VariableDeclarationCS[2]->isEmpty() or 

(VariableDeclarationCS[2]->notEmpty() and

 VariableDeclarationCS[2].ast.type.oclIsUndefined() )

then

OclExpressionCS[1].type.oclAsType (CollectionType).elementType

else

VariableDeclarationCS[2].ast.type

endif

endif

[A] IteratorExpCS.ast.iterators->forAll(initExpression->isEmpty())

-- next the name attribute and body association of the IteratorExp

[A] IteratorExpCS.ast.name   = simpleNameCS.ast and

[A] IteratorExpCS.ast.body   = OclExpressionCS[2].ast 

-- Alternative B is an implicit collect of an operation over a collection 

[B] IteratorExpCS.ast.iterator.type 

OclExpressionCS.ast.type.oclAsType (CollectionType).elementType

[B] IteratorExpCS.ast.source  = OclExpressionCS.ast

[B] IteratorExpCS.ast.name    = ícollectí

[B] -- the body of the implicit collect is the operation call referred to by ínameí

IteratorExpCS.ast.body.oclIsKindOf (OperationCallExp) and

let body : OperationCallExp = IteratorExpCS.ast.body.oclAsType(OperationCallExp)

in

body.arguments = argumentsCS.ast
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and

body.source.oclIsKindOf(VariableExp)

and

body.source.oclAsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator

and

body.referredOperation = 

OclExpressionCS.ast.type.oclAsType (CollectionType ).elementType

lookupOperation( simpleNameCS.ast,

if (argumentsCS->notEmpty()) 

then arguments.ast->collect(type)

else Sequence{} endif)

-- Alternative C/D is an implicit collect of an association or attribute over a collection 

[C, D] IteratorExpCS.ast.iterator.type =

OclExpressionCS.ast.type.oclAsType (CollectionType).elementType

[C, D] IteratorExpCS.ast.source  = OclExpressionCS.ast

[C, D] IteratorExpCS.ast.name    = ‘collect’

[C] -- the body of the implicit collect is the attribute referred to by ‘name’

let refAtt : Attribute = OclExpressionCS.ast.type.oclAsType (CollectionType).

elementType.lookupAttribute( simpleNameCS.ast),

  in

    IteratorExpCS.ast.body.oclIsKindOf (AttributeCallExp) and

   let body : AttributeCallExp = IteratorExpCS.ast.body.oclAsType(AttributeCallExp)

   in

body.source.oclIsKindOf(VariableExp)

and

body.source.oclAsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator

and

body.referredAttribute = refAtt

[D] -- the body of the implicit collect is the navigation call referred to by ‘name’

let  refNav : AssociationEnd = OclExpressionCS.ast.type.oclAsType (CollectionType).

elementType.lookupAssociationEnd(simpleNameCS.ast)

in

IteratorExpCS.ast.body.oclIsKindOf (AssociationEndCallExp) and

let body : AssociationEndCallExp =

IteratorExpCS.ast.body.oclAsType(AssociationEndCallExp)

in

body.source.oclIsKindOf(VariableExp)

and

body.source.oclAsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator

and

body.referredAssociationEnd = refNav

and

body.ast.qualifiers = argumentsCS.ast

[E] -- the body of the implicit collect is the navigation to the association class

-- referred to by ínameí

let  refClass : AssociationClass =

OclExpressionCS.ast.type.oclAsType (CollectionType).
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elementType.lookupAssociationClass(simpleNameCS.ast)

in

IteratorExpCS.ast.body.oclIsKindOf (AssociationClassCallExp) and

let body : AssociationClassCallExp =

IteratorExpCS.ast.body.oclAsType(AssociationClassCallExp)

in

body.source.oclIsKindOf(VariableExp)

and

body.source.oclAsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator

and

body.referredAssociationClass = refNav

and

body.ast.qualifiers = argumentsCS.ast

Inherited attributes
[A] OclExpressionCS[1].env    = IteratorExpCS.env

[A] VariableDeclarationCS.env = IteratorExpCS.env

-- inside an iterator expression the body is evaluated with a new environment that

-- includes the iterator variable.

[A] OclExpressionCS[2].env    =                       

IteratorExpCS.env.nestedEnvironment().addElement(VariableDeclarationCS.ast.varName,

VariableDeclarationCS.ast,

true)

[B] OclExpressionCS.env    = IteratorExpCS.env

[B] argumentsCS.env          = IteratorExpCS.env

[C] OclExpressionCS.env    = IteratorExpCS.env

[D] OclExpressionCS.env    = IteratorExpCS.env

Disambiguating rules

[1] [A] When the variable declaration is present, it may not have an init expression.
VariableDeclarationCS->notEmpty() implies

VariableDeclarationCS.ast.initExpression->isEmpty()

[2] [B] The source must be of a collection type.
OclExpressionCS.ast.type.oclIsKindOf(CollectionType)

[3] [C] The source must be of a collection type.
OclExpressionCS.ast.type.oclIsKindOf(CollectionType)

[4] [C] The referred attribute must be present.
refAtt->notEmpty()

[5] [D] The referred navigation must be present.
refNav->notEmpty()
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9.3.26 IterateExpCS

IterateExpCS ::= OclExpressionCS[1] ‘->’ ‘iterate’ 
                 ‘(‘ (VariableDeclarationCS[1] ‘;’)? 
                      VariableDeclarationCS[2] ‘|’ 
                      OclExpressionCS[2]
                 ‘)’

Abstract syntax mapping
IterateExpCS.ast : IterateExp

Synthesized attributes
-- the ast needs to be determined bit by bit, first the source association of IterateExp

IterateExpCS.ast.source   = OclExpressionCS[1].ast

-- next the iterator association of IterateExp

-- when the first variable declaration is present, its ast is the iterator of this

-- iterateExp, when the variable declaration is not present, the iterator has a default

-- name and type, 

-- in any case, the iterator has an empty init expression.

IterateExpCS.ast.iterator.name = if VariableDeclarationCS[1]->isEmpty() then ‘’

                                 else VariableDeclarationCS[1].ast.name

                                 endif

IterateExpCS.ast.iterator.type = 

if VariableDeclarationCS[1]->isEmpty() or 

(VariableDeclarationCS[1]->notEmpty() and 

VariableDeclarationCS[1].ast.type.oclIsUndefined() )

then

OclExpressionCS[1].type.oclAsType (CollectionType).elementType

else

VariableDeclarationCS[1].ast.type

endif

IterateExpCS.ast.iterator.initExpression->isEmpty()

-- next the name attribute and body and result association of the IterateExp

IterateExpCS.ast.result   = VariableDeclarationCS[2].ast 

IterateExpCS.ast.name   = ‘iterate’

IterateExpCS.ast.body    = OclExpressionCS[2].ast

Inherited attributes
OclExpressionCS[1].env  = IteratorExpCS.env

VariableDeclarationCS[1].env = IteratorExpCS.env

VariableDeclarationCS[2].env = IteratorExpCS.env

-- Inside an iterate expression the body is evaluated with a new environment that includes

-- the iterator variable and the result variable.

OclExpressionCS[2].env       =                       

IteratorExpCS.env.nestedEnvironment().addElement

(VariableDeclarationCS[1].ast.varName,

VariableDeclarationCS[1].ast, 
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true).addElement

(VariableDeclarationCS[2].ast.varName,

VariableDeclarationCS[2].ast, 

true)

Disambiguating rules

[1] A result variable declaration must have a type and an initial value.
not VariableDeclarationCS[2].ast.type.oclIsUndefined() VariableDeclarationCS[2].ast.initExpression->notEmpty()

[2] When the first variable declaration is present, it may not have an init expression.
VariableDeclarationCS[1]->notEmpty() implies 

VariableDeclarationCS[1].ast.initExpression->isEmpty()

9.3.27 VariableDeclarationCS

In the variable declaration, the type and init expression are optional. When these are required, this is defined in the 
production rule where the variable declaration is used.

VariableDeclarationCS ::= simpleNameCS (‘:’ typeCS)?

                          ( ‘=’ OclExpressionCS )?

Abstract syntax mapping
VariableDeclarationCS.ast : VariableDeclaration

Synthesized attributes
VariableDeclarationCS.ast.name = simpleNameCS.ast

VariableDeclarationCS.ast.initExpression = OclExpressionCS.ast

-- A well-formed VariableDeclaration must have a type according to the abstract syntax.

-- The value null is used when no type has been given in the concrete syntax.

-- Production rules that use this need to check on this type.

VariableDeclarationCS.ast.type = if typeCS->notEmpty() then

typeCS.ast

else

if OclExpressionCS.ast.type->notEmpty() then

OclExpressionCS.ast.type

else

null

endif

endif

Inherited attributes

OclExpressionCS.env = VariableDeclarationCS.env

typeCS.env = VariableDeclarationCS.env

Disambiguating rules
-- none
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9.3.28 TypeCS

A typename is either a Classifier, or a collection of some type.

[A] typeCS ::= pathNameCS
[B] typeCS ::= collectionTypeCS
[C] typeCS ::= tupleTypeCS
[D] typeCS ::= primitiveTypeCS
[E] typeCS ::= oclTypeCS

Abstract syntax mapping
typeCS.ast : Classifier

Synthesized attributes

[A] typeCS.ast = typeCS.env.lookupPathName(pathNameCS.ast).referredElement.oclAsType(Classifier)
[B] typeCS.ast = CollectionTypeCS.ast
[C] typeCS.ast = tupleTypeCS.ast
[D] typeCS.ast = primitiveTypeCS.ast
[E] typeCS.ast = oclTypeCS.ast

Inherited attributes

[B] collectionTypeCS.env = typeCS.env
[C] tupleTypeCS.env      = typeCS.env

Disambiguating rules

[1] [A] pathName must be a name of a Classifier in current environment.
typeCS.env.lookupPathName(pathNameCS.ast).referredElement.oclIsKindOf (Classifier)

9.3.29 primitiveTypeCS

This production rule denotes a primitive type.

Abstract syntax mapping

[A] primitiveTypeCS ::= 'Boolean'
[B] primitiveTypeCS ::= 'Integer'
[C] primitiveTypeCS ::= 'Real'
[D] primitiveTypeCS ::= 'String'
[E] primitiveTypeCS ::= 'UnlimitedNatural'

Synthesized attributes

[A] primitiveTypeCS.ast = Boolean
[B] primitiveTypeCS.ast = Integer
[C] primitiveTypeCS.ast = Real
[D] primitiveTypeCS.ast = String
[E] primitiveTypeCS.ast = UnlimitedNatural

Inherited attributes

-- none
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Disambiguating rules

-- none

9.3.30 oclTypeCS

This production rule denotes a built-in OCL type.

Abstract syntax mapping

[A] oclTypeCS ::= 'OclAny'
[B] oclTypeCS ::= 'OclInvalid'
[C] oclTypeCS ::= 'OclMessage'
[D] oclTypeCS ::= 'OclVoid'

Synthesized attributes

[A] oclTypeCS.ast = OclAny
[B] oclTypeCS.ast = OclInvalid
[C] oclTypeCS.ast = OclMessage
[D] oclTypeCS.ast = OclVoid

Inherited attributes

-- none

Disambiguating rules

-- none

9.3.31 collectionTypeCS

A typename is either a Classifier, or a collection of some type.

collectionTypeCS ::= collectionTypeIdentifierCS ‘(‘ typeCS ‘)’

Abstract syntax mapping
typeCS.ast : CollectionType

Synthesized attributes
collectionTypeCS.ast.elementType = typeCS.ast

-- We know that the ‘ast’ is a collectiontype, all we need to state now is which

-- specific collection type it is.

kind = CollectionKind::Set  implies collectionTypeCS.ast.oclIsKindOf (SetType)

kind = CollectionKind::Sequence implies collectionTypeCS.ast.oclIsKindOf (SequenceType)

kind = CollectionKind::Bag  implies collectionTypeCS.ast.oclIsKindOf (BagType)

kind = CollectionKind::Collection implies collectionTypeCS.ast.oclIsKindOf (CollectionType)

kind = CollectionKind::OrderedSetimplies collectionTypeCS.ast.oclIsKindOf (OrderedSetType)

Inherited attributes
typeCS.env = collectionTypeCS.env
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Disambiguating rules
-- none

9.3.32 tupleTypeCS

This represents a tuple type declaration.

tupleTypeCS ::= ‘Tuple’ ‘(‘ variableDeclarationListCS? ‘)’

Abstract syntax mapping
typeCS.ast : TupleType

Synthesized attributes
typeCS.ast =  TupleType::make( variableDeclarationListCS->collect( v | v.asAttribute() ))

Inherited attributes
variableDeclarationListCS.env = tupleTypeCS.env

Disambiguating rules

[1] Of all VariableDeclarations the initExpression must be empty and the type must exist.
variableDeclarationListCS.ast->forAll( varDecl |

varDecl.initExpression->notEmpty() and varDecl.type->notEmpty() )

9.3.33 variableDeclarationListCS

This production rule represents the formal parameters of a tuple or attribute definition.

variableDeclarationListCS[1] = VariableDeclarationCS  

                                (‘,’variableDeclarationListCS[2] )?

Abstract syntax mapping
variableDeclarationListCS[1].ast : Sequence( VariableDeclaration )

Synthesized attributes
variableDeclarationListCS[1].ast = Sequence{VariableDeclarationCS.ast}

->union(variableDeclarationListCS[2].ast)

Inherited attributes
VariableDeclarationCS.env = variableDeclarationListCS[1].env

variableDeclarationListCS[2].env  = variableDeclarationListCS[1].env

Disambiguating rules
-- none

9.3.34 FeatureCallExpCS

A FeatureCallExp expression may have three different productions. Which one is chosen depends on the disambiguating 
rules defined in each of the alternatives.
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[A] FeatureCallExpCS ::= OperationCallExpCS

[B] FeatureCallExpCS ::= PropertyCallExpCS

[C] FeatureCallExpCS ::= NavigationCallExpCS

Abstract syntax mapping
FeatureCallExpCS.ast : FeatureCallExp

Synthesized attributes

The value of this production is the value of its child production.

[A] FeatureCallExpCS.ast = OperationCallExpCS.ast
[B] FeatureCallExpCS.ast = PropertyCallExpCS.ast
[C] FeatureCallExpCS.ast = NavigationCallExpCS.ast

Inherited attributes

[A] OperationCallExpCS.env  = FeatureCallExpCS.env
[B] PropertyCallExpCS.env  = FeatureCallExpCS.env
[C] NavigationCallExpCS.env = FeatureCallExpCS.env

Disambiguating rules

These are defined in the children.

9.3.35 OperationCallExpCS

An operation call has many different forms. A is used for infix, B for using an object as an implicit collection. C is a 
straightforward operation call, while D has an implicit source expression. E, F and J are like C, D, and I, with the @pre 
addition. G covers the static operation call. Rule H is for unary prefix expressions. I and J use pathNameCS to permit 
qualification of operation names in access to redefined operations.
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[A] OperationCallExpCS ::= OclExpressionCS[1]  simpleNameCS OclExpressionCS[2]

[B] OperationCallExpCS ::= OclExpressionCS ‘->’ simpleNameCS ‘(‘ argumentsCS? ‘)’

[C] OperationCallExpCS ::= OclExpressionCS ‘.’ simpleNameCS ‘(‘ argumentsCS? ‘)’

[D] OperationCallExpCS ::= simpleNameCS  ‘(‘ argumentsCS? ‘)’

[E] OperationCallExpCS ::= OclExpressionCS ‘.’ simpleNameCS  isMarkedPreCS ‘(‘ argumentsCS? ‘)’

[F] OperationCallExpCS ::= simpleNameCS isMarkedPreCS ‘(‘ argumentsCS? ‘)’

[G] OperationCallExpCS ::= pathNameCS  ‘(‘ argumentsCS? ‘)’

[H] OperationCallExpCS ::= simpleNameCS OclExpressionCS

[I] OperationCallExpCS ::= OclExpressionCS '.' pathNameCS '::' simpleNameCS  '(' argumentsCS? ')' 

[J] OperationCallExpCS ::= OclExpressionCS '.' pathNameCS  '::' simpleNameCS  isMarkedPreCS '(' argumentsCS? ')' 

Abstract syntax mapping
OperationCallExpCS.ast  : OperationCallExp

Synthesized attributes
-- this rule is for binary operators as ‘+,’ ‘-,’ ‘*,’ etc. It has only one argument.

[A] OperationCallExpCS.ast.arguments  = Sequence{OclExpression2[2].ast}

OperationCallExpCS.ast.source     = OclExpressionCS[1].ast

OperationCallExpCS.ast.referredOperation = 

OclExpressionCS.ast.type.lookupOperation ( 

simpleNameCS.ast,

Sequence{OclExpression[2].ast.type} )

-- The source is either a collection or a single object used as a collection.

[B] OperationCallExpCS.ast.arguments = argumentsCS.ast

-- if the OclExpressionCS is a collectiontype, then the source is this OclExpressionCS.

-- Otherwise, the source must be build up by defining a singleton set containing

-- the OclExpressionCS. This is done though inserting a call to the standard

-- operation "asSet()"

OperationCallExpCS.ast.source =

if OclExpressionCS.ast.type.oclIsKindOf(CollectionType) 

then OclExpressionCS.ast

else OclExpressionCS.ast.withAsSet()

endif

---- The referred operation:

OperationCallExpCS.ast.referredOperation = 

if OclExpressionCS.ast.type.oclIsKindOf (CollectionType) 

then  -- this is a collection operation called on a collection

OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,

if (argumentsCS->notEmpty()) 

then argumentsCS.ast->collect(type)

else Sequence{} endif )
94                 Object Constraint Language, v2.4



else

-- this is a set operation called on an object => implicit Set with one element

SetType.allInstances()->any (st | st.elementType = OclExpressionCS.ast.type).lookupOperation (

simpleNameCS.ast,

if (argumentsCS->notEmpty()) 

then argumentsCS.ast->collect(type)

else Sequence{} endif ) 

endif

[C] OperationCallExpCS.ast.referredOperation = 

OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,

if argumentsCS->notEmpty() 

then arguments.ast->collect(type)

else Sequence{} endif)

OperationCallExpCS.ast.arguments = argumentsCS.ast

OperationCallExpCS.ast.source = OclExpressionCS.ast

[D] OperationCallExpCS.ast.arguments  = argumentsCS.ast and

OperationCallExpCS.ast.referredOperation =

env.lookupImplicitOperation(simpleName.ast, 

if argumentsCS->notEmpty() 

then arguments.ast->collect(type)

else Sequence{} endif)

OperationCallExpCS.ast.source = env.lookupImplicitSourceForOperation(

simpleName.ast, 

if argumentsCS->notEmpty() 

then arguments.ast->collect(type)

else Sequence{} endif)

[E] -- incorporate the isPre() operation.

OperationCallExpCS.ast.referredOperation = 

OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,

if argumentsCS->notEmpty() 

then arguments.ast->collect(type)

else Sequence{} endif)

OperationCallExpCS.ast.arguments = argumentsCS.ast

OperationCallExpCS.ast.source  = OclExpressionCS.ast.isPre = true

[F] -- incorporate atPre() operation with the implicit source 

OperationCallExpCS.ast.arguments  = argumentsCS.ast and

OperationCallExpCS.ast.referredOperation =

env.lookupImplicitOperation(simpleName.ast, 

if argumentsCS->notEmpty() 

then arguments.ast->collect(type)

else Sequence{} endif)

)

OperationCallExpCS.ast.source =  

env.lookupImplicitSourceForOperation(simpleName.ast, 

if argumentsCS->notEmpty() 

then arguments.ast->collect(type)

else Sequence{} endif)
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 ).isPre = true

[G] OperationCallExpCS.ast.arguments  = argumentsCS.ast and

OperationCallExpCS.ast.referredOperation = 

env.lookupPathName(pathName.ast, 

e{} endif)

OperationCallExpCS.ast.source->isEmpty() 

-- this rule is for unary operators as ‘-’ and ‘not’ etc. It has no argument.

[H] OperationCallExpCS.ast.arguments->isEmpty()

OperationCallExpCS.ast.source     = OclExpressionCS.ast

OperationCallExpCS.ast.referredOperation = 

OclExpressionCS.ast.type.lookupOperation ( 

simpleNameCS.ast,

Sequence{} )

[I] let owner : Classifier = pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.oclAsType(Classifier) in 

OperationCallExpCS.ast.referredOperation = 

owner.lookupOperation (simpleNameCS.ast, 

if argumentsCS->notEmpty() 

then arguments.ast->collect(type) 

else Sequence{} endif) 

OperationCallExpCS.ast.arguments = argumentsCS.ast 

OperationCallExpCS.ast.source = OclExpressionCS.ast 

[J] -- incorporate the isPre() operation. 

let owner : Classifier = 

pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.oclAsType(Classifier) 

in OperationCallExpCS.ast.referredOperation = 

owner.lookupOperation (simpleNameCS.ast, 

if argumentsCS->notEmpty() 

then arguments.ast->collect(type) 

else Sequence{} endif) 

OperationCallExpCS.ast.arguments = argumentsCS.ast 

OperationCallExpCS.ast.source = OclExpressionCS.ast.isPre = true

Inherited attributes

[A] OclExpressionCS[1].env= OperationCallExpCS.env
[A] OclExpressionCS[2].env= OperationCallExpCS.env
[B] OclExpressionCS.env= OperationCallExpCS.env
[B] argumentsCS.env = OperationCallExpCS.env
[C] OclExpressionCS.env= OperationCallExpCS.env
[C] argumentsCS.env = OperationCallExpCS.env
[D] argumentsCS.env = OperationCallExpCS.env
[E] OclExpressionCS.env= OperationCallExpCS.env
[E] argumentsCS.env = OperationCallExpCS.env
[F] argumentsCS.env = OperationCallExpCS.env
[I] OclExpressionCS.env= OperationCallExpCS.env 
[I] argumentsCS.env = OperationCallExpCS.env 
[J] OclExpressionCS.env= OperationCallExpCS.env 
[J] argumentsCS.env = OperationCallExpCS.env 
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Disambiguating rules

[1] [A] The name of the referred Operation must be an operator.
Set{‘+’,’-’,’*’,’/’,’and’,’or’,’xor’,’=’,’<=’,’>=’,’<‘,’>’}->includes(simpleNameCS.ast)

[2] [A,B,C,D,E,F] The referred Operation must be defined for the type of source.
not OperationCallExpCS.ast.referredOperation.oclIsUndefined()

[3] [I,J] pathNameCS must be a name of a Classifier in current environment. 
OperationCallExpCS.env.lookupPathName(pathNameCS.ast).referredElement.oclIsKindOf(Classifier)

[4] [I,J] The type of the source expression must conform to the owner type of the referenced operation.
let owner : Classifier = pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.oclAsType(Classifier) in 
OclExpressionCS.ast.type.conformsTo(owner)

9.3.36 PropertyCallExpCS

This production rule results in a PropertyCallExp. In production [A] the source is explicit, while production [B] is used 
for an implicit source. Alternative C covers the use of a static attribute. Alternative D uses pathNameCS to permit 
qualification of attribute names in access to redefined attributes.

[A] PropertyCallExpCS ::= OclExpressionCS ‘.’ simpleNameCS isMarkedPreCS?

[B] PropertyCallExpCS ::= simpleNameCS isMarkedPreCS?

[C] PropertyCallExpCS ::= pathNameCS

[D] PropertyCallExpCS ::= OclExpressionCS '.' pathNameCS '::' simpleNameCS isMarkedPreCS?

Abstract syntax mapping
PropertyCallExpCS.ast : PropertyCallExp

Synthesized attributes
[A] PropertyCallExpCS.ast.referredAttribute =

OclExpressionCS.ast.type.lookupAttribute(simpleNameCS.ast)

[A] PropertyCallExpCS.ast.source = if isMarkedPreCS->isEmpty() 

then  OclExpressionCS.ast

else  OclExpressionCS.ast.isPre = true    

endif  

[B] PropertyCallExpCS.ast.referredAttribute =   

env.lookupImplicitAttribute(simpleNameCS.ast)

[B] PropertyCallExpCS.ast.source = 

if isMarkedPreCS->isEmpty()

then env.findImplicitSourceForAttribute(simpleNameCS.ast)

else env.findImplicitSourceForAttribute(simpleNameCS.ast).isPre = true

endif

[C] PropertyCallExpCS.ast.referredAttribute =   

env.lookupPathName(pathNameCS.ast).oclAsType(Attribute)

[D] let owner : Classifier = pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.oclAsType(Classifier) in

PropertyCallExpCS.ast.referredAttribute = owner.lookupAttribute(simpleNameCS.ast) 

[D] PropertyCallExpCS.ast.source = if isMarkedPreCS->isEmpty() 

then  OclExpressionCS.ast 
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else  OclExpressionCS.ast.isPre = true endif   

Inherited attributes
[A] OclExpressionCS.env = PropertyCallExpCS.env

[D] OclExpressionCS.env = PropertyCallExpCS.env 

Disambiguating rules

[1] [A, B] ‘simpleName’ is name of a Property of the type of source or if source is empty the name of an attribute of ‘self’ or 
any of the iterator variables in (nested) scope. In OCL: 

not PropertyCallExpCS.ast.referredAttribute.oclIsUndefined()

[2] [C] The pathName refers to a class attribute. 
env.lookupPathName(pathNameCS.ast).oclIsKindOf(Attribute)

and

PropertyCallExpCS.ast.referredAttribute.ownerscope = ScopeKind::instance  

[3] [D] pathNameCS must be a name of a Classifier in current environment. 
PropertyCallExpCS.env.lookupPathName(pathNameCS.ast).referredElement.oclIsKindOf(Classifier) 

[4] [D] The type of the source expression must conform to the owner type of the referenced attribute.
let owner : Classifier = pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.oclAsType(Classifier) in 

OclExpressionCS.ast.type.conformsTo(owner)

9.3.37 NavigationCallExpCS

This production rule represents a navigation call expression.

[A] NavigationCallExpCS ::= PropertyCallExpCS

[B] NavigationCallExpCS ::= AssociationClassCallExpCS

Abstract syntax mapping
NavigationCallExpCS.ast : NavigationCallExp

Synthesized attributes

The value of this production is the value of its child production.

[A] NavigationCallExpCS.ast = PropertyCallExpCS.ast
[B] NavigationCallExpCS.ast = AssociationClassCallExpCS.ast

Inherited attributes

[A] PropertyCallExpCS.env    = NavigationCallExpCS.env
[B] AssociationClassCallExpCS.env  = NavigationCallExpCS.env

Disambiguating rules

These are defined in the children.
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9.3.38 AssociationClassCallExpCS

This production rule represents a navigation to an association class.

[A] AssociationClassCallExpCS ::= OclExpressionCS ‘.’ simpleNameCS (‘[‘ argumentsCS ‘]’)? isMarkedPreCS?

[B] AssociationClassCallExpCS ::= simpleNameCS (‘[‘ argumentsCS ‘]’)? isMarkedPreCS?

Abstract syntax mapping
AssociationClassCallExpCS.ast : AssociationClassCallExp

Synthesized attributes
[A] AssociationClassCallExpCS.ast.referredAssociationClass =

OclExpressionCS.ast.type.lookupAssociationClass(simpleNameCS.ast)

AssociationClassCallExpCS.ast.source = if isMarkedPreCS->isEmpty() 

then  OclExpressionCS.ast

else  OclExpressionCS.ast.isPre = true    

endif  

[A] AssociationClassCallExpCS.ast.qualifiers = argumentsCS.ast

[B] AssociationClassCallExpCS.ast.referredAssociationClass =   

env.lookupImplicitAssociationClass(simpleNameCS.ast)

AssociationClassCallExpCS.ast.source = 

if isMarkedPreCS->isEmpty()

then env.findImplicitSourceForAssociationClass(simpleNameCS.ast)

else env.findImplicitSourceForAssociationClass(simpleNameCS.ast).isPre = true

endif

[B] AssociationClassCallExpCS.ast.qualifiers = argumentsCS.ast

Inherited attributes
[A] OclExpressionCS.env = AssociationClassCallExpCS.env

[A, B] argumentsCS.env  = AssociationClassCallExpCS.env

Disambiguating rules

[1] ‘simpleName’ is name of an AssociationClass of the type of source. 
not AssociationClassCallExpCS.ast.referredAssociationClass.oclIsUndefined()

9.3.39 isMarkedPreCS

This production rule represents the marking @pre in an ocl expression.

isMarkedPreCS ::= ‘@’ ‘pre’

Abstract syntax mapping
isMarkedPreCS.ast : Boolean

Synthesized attributes
self.ast = true
Object Constraint Language, v2.4        99



Inherited attributes
-- none

Disambiguating rules
-- none

9.3.40 argumentsCS

This production rule represents a sequence of arguments.

argumentsCS[1] ::= OclExpressionCS ( ‘,’ argumentsCS[2] )?

Abstract syntax mapping
argumentsCS[1].ast : Sequence(OclExpression)

Synthesized attributes
argumentsCS[1].ast = Sequence{OclExpressionCS.ast}->union(argumentsCS[2].ast)

Inherited attributes
OclExpressionCS.env = argumentsCS[1].env

argumentsCS[2].env  = argumentsCS[1].env

Disambiguating rules
-- none

9.3.41 LetExpCS

This production rule represents a let expression. The LetExpSubCS nonterminal has the purpose of allowing directly 
nested let expressions with the shorthand syntax, i.e., ending with one ‘in’ keyword.

LetExpCS ::= ‘let’ VariableDeclarationCS 

                   LetExpSubCS  

Abstract syntax mapping
LetExpCS.ast : LetExp

Synthesized attributes
LetExpCS.ast.variable = VariableDeclarationCS.ast

LetExpCS.ast.in = LetExpSubCS.ast

Inherited attributes
LetExpSubCS.env = LetExpCS.env.nestedEnvironment().addElement(

VariableDeclarationCS.ast.varName, 

VariableDeclarationCS.ast, 

false) 
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Disambiguating rules

[1] The variable name must be unique in the current scope.
LetExpCS.env.lookup (VariableDeclarationCS.ast.varName).oclIsUndefined()

[2] A variable declaration inside a let must have a declared type and an initial value.
not VariableDeclarationCS.ast.type.oclIsUndefined() and

VariableDeclarationCS.ast.initExpression->notEmpty()

9.3.42 LetExpSubCS

[A] LetExpSubCS[1] ::= ‘,’ VariableDeclarationCS LetExpSubCS[2]

[B] LetExpSubCS    ::= ‘in’ OclExpressionCS

Abstract syntax mapping
LetExpSubCS.ast : OclExpression

Synthesized attributes
[A] LetExpSubCS[1].ast.oclAsType(LetExp).variable      = VariableDeclarationCS.ast

[A] LetExpSubCS[1].ast.oclAsType(LetExp).OClExpression = LetExpSubCS[2].ast

[B] LetExpSubCS.ast = OclExpressionCS.ast

Inherited attributes
[A] VariableDeclarationCS.env = LetExpSubCS[1].env

[A] LetExpSubCS[2].env = LetExpSubCS[1].env.nestedEnvironment().addElement(

VariableDeclarationCS.ast.varName, 

VariableDeclarationCS.ast, 

false) 

[B] OClExpressionCS.env = LetExpSubCS.env

Disambiguating rules

[A] The variable name must be unique in the current scope.
LetExpSubCS[1].env.lookup (VariableDeclarationCS.ast.varName).oclIsUndefined()

[A] A variable declaration inside a let must have a declared type and an initial value.
not VariableDeclarationCS.ast.type.oclIsUndefined() and

VariableDeclarationCS.ast.initExpression->notEmpty()

9.3.43 OclMessageExpCS

The message Name must either be the name of a Signal, or the name of an Operation belonging to the target object(s).
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[A] OclMessageExpCS ::= OclExpressionCS ‘^^’  simpleNameCS ‘(‘ OclMessageArgumentsCS? ‘)’

[B] OclMessageExpCS ::= OclExpressionCS ‘^’   simpleNameCS ‘(‘ OclMessageArgumentsCS? ‘)’

Abstract syntax mapping
[A] OclMessageExpCS.ast : OclMessageExp
[B] OclMessageExpCS.ast : OclMessageExp

Synthesized attributes
[A] OclMessageExpCS.ast.target    = OclExpressionCS.ast 

[A] OclMessageExpCS.ast.arguments = OclMessageArgumentsCS.ast

-- first, find the sequence of types of the operation/signal parameters

[A] let params : Sequence(Classifier) = OclMessageArguments.ast->collect(messArg |

messArg.getType() ),

-- try to find either the called operation or the sent signal

[A] operation : Operation = OclMessageExpCS.ast.target.type.

lookupOperation(simpleNameCS.ast, params),     

signal : Signal = OclMessageExpCS.ast.target.type.

lookupSignal(simpleNameCS.ast, params)

in

OclMessageExpCS.ast.calledOperation = if operation->isEmpty()

then invalid

else = operation

endif

OclMessageExpCS.ast.sentSignal = if signal->isEmpty()

then invalid

else signal

endif

[B]

-- OclExpression^simpleNameCS(OclMessageArguments) is identical to

-- OclExpression^^simpleNameCS(OclMessageArguments)->size() = 1

-- actual mapping: straigthforward, TBD...

Inherited attributes
OclExpressionCS.env = OclMessageExpCS.env

OclMessageArgumentsCS.env = OclMessageExpCS.env

Disambiguating rules
-- none

9.3.44 OclMessageArgumentsCS

OclMessageArgumentsCS[1] ::= OclMessageArgCS

                          ( ‘,’ OclMessageArgumentsCS[2] )? 

Abstract syntax mapping
OclMessageArgumentsCS[1].ast : Sequence(OclMessageArg)
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Synthesized attributes
OclMessageArgumentsCS[1].ast = 

Sequence{OclMessageArgCS.ast}->union(OclMessageArgumentsCS[2].ast)

Inherited attributes
OclMessageArgCS.env = OclMessageArgumentsCS[1].env

OclMessageArgumentsCS[2].env = OclMessageArgumentsCS[1].env

Disambiguating rules
-- none

9.3.45 OclMessageArgCS

[A] OclMessageArgCS ::= ‘?’ (‘:’ typeCS)?

[B] OclMessageArgCS ::= OclExpressionCS 

Abstract syntax mapping
OclMessageArgCS.ast : OclMessageArg

Synthesized attributes
[A] OclMessageArgCS.ast.expression->isEmpty()

[A] OclMessageArgCS.ast.unspecified->notEmpty()

[A] OclMessageArgCS.ast.type = typeCS.ast

[B] OclMessageArgCS.ast.unspecified->isEmpty()

[B] OclMessageArgCS.ast.expression = OclExpressionCS.ast

Inherited attributes
OclExpressionCS.env = OclMessageArgCS.env

Disambiguating rules
-- none

9.3.46 IfExpCS

IfExpCS ::= ‘if’ OclExpression[1]

            ‘then’ OclExpression[2]

            ‘else’ OclExpression[3]

            ‘endif’

Abstract syntax mapping
IfExpCS.ast : IfExp

Synthesized attributes
IfExpCS.ast.condition = OclExpression[1].ast

IfExpCS.ast.thenExpression = OclExpression[2].ast

IfExpCS.ast.elseExpression = OclExpression[3].ast
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Inherited attributes
OclExpression[1].env = IfExpCS.env

OclExpression[2].env = IfExpCS.env

OclExpression[3].env = IfExpCS.env

Disambiguating rules
-- none

9.3.47 NullLiteralExpCS 

This production rule results in a NullLiteralExp. 

[A] NullLiteralExpCS ::= 'null'

Abstract syntax mapping 
NullLiteralExpCS.ast : NullLiteralExp

Synthesized attributes 
-- none 

Inherited attributes 
-- none 

Disambiguating rules 
-- none  

9.3.48 InvalidLiteralExpCS 

This production rule results in an InvalidLiteralExp. 

[A] InvalidLiteralExpCS ::= 'invalid'

Abstract syntax mapping 
InvalidLiteralExpCS.ast : InvalidLiteralExp

Synthesized attributes 
-- none 

Inherited attributes 
-- none 

Disambiguating rules 
-- none  
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9.3.49 Comments

It is possible to include comments anywhere in a text composed according to the above concrete syntax. There will be no 
mapping of any comments to the abstract syntax. Comments are simply skipped when the text is being parsed. There are 
two forms of comments, a line comment, and a paragraph comment. The line comment starts with the string ‘--’ and ends 
with the next newline. The paragraph comment starts with the string ‘/*’ and ends with the string ‘*/.’ Paragraph 
comments may be nested. 

9.4 Environment Definition

The Environment type used in the rules for the concrete syntax is defined according to the following invariants and 
additional operations. A diagrammatic view can be found in Figure 9.1. Environments can be nested, denoted by the 
existence of a parent environment. Each environment keeps a list of named elements, that have a name a reference to a 
ModelElement. 

9.4.1 Environment

The definition of Environment has the following invariants and specifications of its operations.

[1]  The attribute EMPTY_ENV is really just a helper to avoid having to say new Environment (...).

context Environment
inv EMPTY_ENV_Definition: EMPTY_ENV.namedElements->isEmpty()

[2] Find a named element in the current environment, not in its parents, based on a single name.

context Environment::lookupLocal(name : String) : NamedElement
post: result = namedElements->any(v | v.name = name)

[3] Find a named element in the current environment or recursively in its parent environment, based on a single name.

context Environment::lookup(name: String) : ModelElement
post: result = if not lookupLocal(name).oclIsUndefined() then
                  lookupLocal(name).referredElement
               else
                  parent.lookup(name)
               endif

[4] Find a named element in the current environment or recursively in its parent environment, based on a path name.

context Environment::lookupPathName(names: Sequence(String)) : ModelElement
post: let firstNamespace : ModelElement = lookupLocal( names->first() ).referredElement
in
      if firstNamespace.oclIsKindOf(Namespace)
          -- indicates a sub namespace of the namespace in which self is present
      then 
          result = self.nestedEnvironment().addNamespace( 
                               firstNamespace ).lookupPathName( names->subSequence(2, names->size()) )
      else
          -- search in surrounding namespace 
          result = parent.lookupPathName( names )
      endif

[5] Add a new named element to the environment. Note that this operation is defined as a query operation so that it can be 
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used in OCL constraints.

context Environment::addElement (name : String,
                                 elem : ModelElement, imp : Boolean) : Environment
pre : -- the name must not clash with names already existing in this environment
      self.lookupLocal(name).oclIsUndefined()
post: result.parent = self.parent and
      result.namedElements->includesAll (self.namedElements) and
      result.namedElements->count (v | v.oclIsNew()) = 1 and
      result.namedElements->forAll (v | v.oclIsNew() implies
                                             v.name = name and v.referredElement = elem)
                                             and
                                             v.mayBeImplicit = imp )

[6] Combine two environments resulting in a new environment. Note that this operation is defined as a query operation so 
that it can be used in OCL constraints.

context Environment::addEnvironment(env : Environment) : Environment
pre : -- the names must not clash with names already existing in this environment
      enf.namedElements->forAll(nm | self.lookupLocal(nm).oclIsUndefined() )
post: result.parent = self.parent and
      result.namedElements = self.namedElements->union(env.namedElements)

[7] Add all elements in the namespace to the environment.

context Environment::addNamespace(ns: Namespace) : Environment
post: result.namedElements = ns.getEnvironmentWithoutParents().namedElements->union(
                                                                  self.namedElements)
post: result.parent = self.parent

[8] This operation results in a new environment that has the current one as its parent.

context Environment::nestedEnvironment() : Environment
post: result.namedElements->isEmpty()
post: result.parent = self
post: result.oclIsNew()

[9] Lookup a given attribute name of an implicitly named element in the current environment, including its parents.

context Environment::lookupImplicitAttribute(name: String) : Attribute
pre: -- none
post: result =
               lookupImplicitSourceForAttribute(name).referredElement.oclAsType(Attribute)

[10]  Lookup the implicit source belonging to a given attribute name in the current environment, including the parents.

context Environment::lookupImplicitSourceForAttribute(name: String) : NamedElement
pre: -- none
post: let foundElement : NamedElement =
        namedElements->select(mayBeImplicit)
            ->any( ne | not ne.getType().lookupAttribute(name).oclIsUndefined() ) in
      result = if foundElement.oclIsUndefined() then
                  self.parent.lookupImplicitSource ForAttribute(name)
               else
                  foundElement
               end
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[11]  Lookup a given association end name of an implicitly named element in the current environment, including its parents.

context Environment::lookupImplicitAssociationEnd(name: String) : AssociationEnd
pre: -- none
post: let foundAssociationEnd : AssociationEnd =
        namedElements->select(mayBeImplicit)
             ->any( ne | not ne.getType().lookupAssociationEnd(name).oclIsUndefined() ) in
      result = if foundAssociationEnd.oclIsUndefined() then
                  self.parent.lookupImplicitAssociationEnd(name)
               else
                  foundAssociationEnd
               end

[12] Lookup an operation of an implicitly named element with given name and parameter types in the current environment, 
including its parents.

context Environment::lookupImplicitOperation(name: String,
                                             params : Sequence(Classifier)) : Operation
pre: -- none
post: let foundOperation : Operation =
        namedElements->select(mayBeImplicit)
          ->any( ne | not ne.getType().lookupOperation(name, params).oclIsUndefined() ) in
      result = if foundOperation.oclIsUndefined() then
                  self.parent.lookupImplicitOperation(name)
               else
                  foundOperation
               end

In OCL 2.0 and 2.2 a reserved word could be used as a name after prefixing it with an underscore. Therefore, for 
compatibility, a lookup of simpleNameCS[A] name with a leading underscore may need to be looked up twice. The 
symbol is first looked up in the metamodel with the underscore prefix, and if no value is found, the symbol is looked up 
gain without the underscore prefix.

A double lookup is not required for a simpleNameCS[B] or [C] name (an underscore-prefixed singly quoted string).

The second lookup after removing the underscore prefix was deprecated in OCL 2.3 and will be discontinued in OCL 3.0. 
Tool implementors should provide a warning message for this deprecated usage.

9.4.2 NamedElement

A named element is a modelelement that is referred to by a name. A modelelement itself has a name, but this is not 
always the name that is used to refer to it.

The operation getType() returns the type of the referred modelelement.

context NamedElement::getType() : Classifier
pre: -- none
post: referredElement.oclIsKindOf(VariableDeclaration) implies 
                    result = referredElement.oclAsType(VariableDeclaration).type    
post: referredElement.oclIsKindOf(Classifier) implies 
                    result = referredElement    
post: referredElement.oclIsKindOf(State) implies 
                    result = -- TBD: when aligning with UML 2.0 Infrastructure 
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9.4.3 Namespace

The following additional operation returns the information of the contents of the namespace in the form of an 
Environment object, where Environment is the class defined in this clause. Note that the parent association of 
Environment is not filled.

Because the definition of this operation is completely dependent on the UML metamodel, and this model will be 
considerably different in the 2.0 version, the definition is left to be done.

context Namespace::getEnvironmentWithoutParents() : Environment
post: self.isTypeOf(Classifier)  implies -- TBD when aligning with UML 2.0 Infrastructure
      -- include all class features and contained classifiers 
post: self.isTypeOf(Package)  implies -- TBD when aligning with UML 2.0 Infrastructure 
      -- include all classifiers and subpackages
post: self.isTypeOf(StateMachine)  implies -- TBD when aligning with UML 2.0 Infrastructure
      -- include all states
post: self.isTypeOf(Subsystem)   implies -- TBD when aligning with UML 2.0 Infrastructure
      -- include all classifiers and subpackages 

The following operation returns an Environment that contains a reference to its parent environment, which is itself created 
by this operation by means of a recursive call, and therefore contains a parent environment too.

context Namespace::getEnvironmentWithParents() : Environment
post: result.NamedElements = self.getEnvironmentWithoutParents()
post: if self.namespace->notEmpty() -- this namespace has an owning namespace
      then result.parent = self.namespace.getEnvironmentWithParents()
      else result.parent = invalid
      endif

9.5 Concrete to Abstract Syntax Mapping

The mapping from concrete to abstract syntax is described as part of the grammar. It is described by adding a synthesized 
attribute ast to each production that has the corresponding metaclass from the abstract syntax as its type. This allows the 
mapping to be fully formalized within the attribute grammar formalism.

9.6 Abstract Syntax to Concrete Syntax Mapping

It is often useful to have a defined mapping from the abstract syntax to the concrete syntax. This mapping can be defined 
by applying the production rules in sub clause 9.3 from left to right. As a general guideline nothing will be implicit (for 
example, implicit collect, implicit use of object as set) and all iterator variables will be filled in completely. The mapping 
is not formally defined in this document but should be obvious.
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10 Semantics Described Using UML

This clause describes the semantics of the OCL using the UML itself to describe the semantic domain and the mapping 
between semantic domain and abstract syntax.

10.1 Introduction

In sub clause 8.3, The Expressions Package an OCL expression is defined as: “an expression that can be evaluated in a 
given environment,” and in sub clause 8.2, The Types Package it is stated that an “evaluation of the expression yields a 
value.” The ‘meaning’ (semantics) of an OCL expression, therefore, can be defined as the value yielded by its evaluation 
in a given environment. 

To specify the semantics of OCL expressions we need to define two things: (1) the set of possible values that evaluations 
of expressions may yield, and (2) evaluations and their environment. The set of possible values is called the semantic 
domain. The set of evaluations together with their associations with the concepts from the abstract syntax represent the 
mapping from OCL expressions to values from the semantic domain. Together the semantic domain and the evaluations 
with their environment will be called domain in this clause.

The semantic domain is described in the form of a UML package, containing a UML class diagram, classes, associations, 
and attributes. The real semantic domain is the (infinite) set of instances that can be created according to this class 
diagram. To represent the evaluation of the OCL expressions in the semantic domain a second UML package is used. In 
it, a set of so-called evaluation classes is defined (in short eval). Each evaluation class is associated with a value (its result 
value), and a name space environment that binds names to values. Note that the UML model comprising both packages, 
resides on layer 1 of the OMG 4-layered architecture, while the abstract syntax defined in Clause 8 (“Abstract Syntax”), 
resides on layer 2.

The semantics of an OCL expression is given by association: each value defined in the semantic domain is associated 
with a type defined in the abstract syntax, each evaluation is associated with an expression from the abstract syntax. The 
value yielded by an OCL expression in a given environment, its ‘meaning’ is the result value of its evaluation within a 
certain name space environment. The semantics are also described in the form of a UML package called “AS-Domain-
Mapping.” Note that this package links the domain on layer 1 of a 4-layered metamodel architecture with the abstract 
syntax on layer 2. The AS-Domain-Mapping package itself cannot be positioned in one of the layers of the OMG 4-
layered architecture. Note also that this package contains associations only, no new classes are defined.

Figure 10.1 shows how the packages defined in this clause relate to each other, and to the packages from the abstract 
syntax.
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Figure 10.1  - Overview of Packages in the UML-based Semantics

• The Domain package describes the values and evaluations. It is subdivided into two subpackages: 

• The Values package describes the semantic domain. It shows the values OCL expressions may yield as result.

• The Evaluations package describes the evaluations of OCL expressions. It contains the rules that determine the 
result value for a given expression. 

• The AS-Domain-Mapping package describes the associations of the values and evaluations with elements from the 
abstract syntax. It is subdivided into two subpackages: 

• The Type-Value package contains the associations between the instances in the semantics domain and the types in 
the abstract syntax.

• The Expression-Evaluation package contains the associations between the evaluation classes and the expressions 
in the abstract syntax.

10.2 The Values Package

OCL is an object language. A value can be either an object, which can change its state in time, or a data type, which can 
not change its state. The model in Figure 10.2 shows the values that form the semantic domain of an OCL expression. The 
basic type is the Value, which includes both objects and data values. There is a special subtype of Value called 
UndefinedValue, which is used to represent the undefined value for any Type in the abstract syntax. 
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Figure 10.3 shows a number of special data values, the collection and tuple values. To distinguish between instances of 
the Set, Bag, and Sequence types defined in the standard library, and the classes in this package that represent instances 
in the semantic domain, the names SetTypeValue, BagTypeValue, and SequenceTypeValue are used, instead of SetValue, 
BagValue, and SequenceValue.  

Figure 10.2  - The kernel values in the semantic domain

The value resulting from an ocl message expression is shown in Figure 10.4. It links an ocl message value to the snapshot 
of an object.

10.2.1 Definitions of Concepts for the Values Package

The sub clause lists the definitions of concepts in the Values package in alphabetical order.

BagTypeValue

A bag type value is a collection value that is a multiset of values, where each value may occur multiple times in the bag. 
The values are unordered. In the metamodel, this list of values is shown as an association from CollectionValue (a 
generalization of BagTypeValue) to Element.

CollectionValue

A collection value is a list of values. In the metamodel, this list of values is shown as an association from CollectionValue 
to Element.

Associations

DomainElement

A domain element is an element of the domain of OCL expressions. It is the generic superclass of all classes defined in 
this clause, including Value and OclExpEval. It serves the same purpose as ModelElement in the UML metamodel.

elements The values of the elements in a collection.
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Figure 10.3  - The collection and tuple values in the semantic domain

Element

An element represents a single component of a tuple value, or collection value. An element has an index number and a 
value. The purpose of the index number is to identify uniquely the position of each element within the enclosing value, 
when it is used as an element of a SequenceValue.

LocalSnapshot

A local snapshot is a domain element that holds for one point in time the subvalues of an object value. It is always part 
of an ordered list of local snapshots of an object value, which is represented in the metamodel by the associations pred, 
succ, and history. An object value may also hold a sequence of OclMessageValues, which the object value has sent, and a 
sequence of OclMessageValues, which the object value has received. Both sequences can change in time, therefore they 
are included in a local snapshot. This is represented by the associations in the metamodel called inputQ, and outputQ.

A local snapshot has two attributes, isPost and isPre, that indicate whether this snapshot is taken at postcondition or 
precondition time of an operation execution. Within the history of an object value it is always possible to find the local 
snapshot at precondition time that corresponds with a given snapshot at postcondition time. The association pre (shown in 
Figure 10.3) is redundant, but added for convenience.
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Associations

NameValueBinding

A name value binding is a domain element that binds a name to a value.

ObjectValue

An object value is a value that has an identity, and a certain structure of subvalues. Its subvalues may change over time, 
although the structure remains the same. Its identity may not change over time. In the metamodel, the structure is shown 
as a set of NameValueBindings. Because these bindings may change over time, the ObjectValue is associated with a 
sequence of LocalSnapshots that hold a set of NameValueBindings at a certain point in time. 

Associations

bindings The set of name value bindings that hold the changes in time of the subvalues of the associated 
object value.

outputQ The sequence of OclMessageValues that the associated ObjectValue at the certain point in time has 
sent, and are not yet put through to their targets.

inputQ The sequence of OclMessageValues that the associated ObjectValue at the certain point in time has 
received, but not yet dealt with.

pred The predecessor of this local snapshot in the history of an object value.

succ The successor of this local snapshot in the history of an object value.

pre If this snapshot is a snapshot at postcondition time of a certain operation execution, then pre is the 
associated snapshot at precondition time of the same operation in the history of an object value.

history The sequence of local snapshots that hold the changes in time of the subvalues of this object value.
Object Constraint Language, v2.4        113



Figure 10.4  - The message values in the semantic domain

OclMessageValue

An ocl message value is a value that has as target and as source an object value. An ocl message value has a number of 
attributes. The name attribute corresponds to the name of the operation called, or signal sent. The isSyncOperation, 
isAsyncOperation, and isSignal attributes indicate respectively whether the message corresponds to a synchronous 
operation, an asynchronous operation, or a signal.

Associations

OclVoidValue

An undefined value is a value that represents void or undefined for any type.

PrimitiveValue

A primitive value is a predefined static value, without any relevant substructure (i.e., it has no parts). 

arguments A sequence of name value bindings that hold the arguments of the message from the source 
to the target.

source The object value that has sent this signal.

target The object value for which this signal has been intended.

returnMessage The ocl message value that holds the values of the result and out parameters of a 
synchronous operation call in its arguments. Is only present if this message represents a 
synchronous operation call.
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SequenceTypeValue

A sequence type value is a collection value that is a list of values where each value may occur multiple times in the 
sequence. The values are ordered by their position in the sequence. In the metamodel, this list of values is shown as an 
association from CollectionValue (a generalization of SequenceTypeValue) to Element. The position of an element in the 
list is represented by the attribute indexNr of Element.

SetTypeValue

A set type value is a collection value that is a set of elements where each distinct element occurs only once in the set. The 
elements are not ordered. In the metamodel, this list of values is shown as an association from CollectionValue (a 
generalization of SetTypeValue) to Element.

StaticValue

A static value is a value that will not change over time.1

TupleValue

A tuple value (also known as record value) combines values of different types into a single aggregate value. The 
components of a tuple value are described by tuple parts each having a name and a value. In the metamodel, this is shown 
as an association from TupleValue to NameValueBinding.

Associations

Value

A part of the semantic domain.

10.2.2 Well-formedness Rules for the Values Package

BagTypeValue

No additional well-formedness rules. 

CollectionValue

No additional well-formedness rules. 

DomainElement

No additional well-formedness rules. 

Element

No additional well-formedness rules.  

1. As StaticValue is the counterpart of the DataType concept in the abstract syntax, the name DataValue would be preferable. Stat-
icValue is used for historical reasons concerning past versions of UML.

elements The names and values of the elements in a tuple value.
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EnumValue

No additional well-formedness rules. 

LocalSnapshot

[1] Only one of the attributes isPost and isPre may be true at the same time.
context LocalSnapshot

inv: isPost implies isPre = false

inv: isPre implies isPost = false

[2] Only if a snapshot is a postcondition snapshot does it have an associated precondition snapshot.
context LocalSnapshot

inv: isPost implies pre->size() = 1

inv: not isPost implies pre->size() = 0

inv: self.pre->size() = 1 implies self.pre.isPre = true

NameValueBinding

No additional well-formedness rules. 

ObjectValue

[1] The history of an object is ordered. The first element does not have a predecessor, the last does not have a successor.
context ObjectValue 

inv: history->oclIsTypeOf( Sequence(LocalSnapShot) )

inv: history->last().succ->size() = 0

inv: history->first().pre->size() = 0

OclMessageValue

[1] Only one of the attributes isSyncOperation, isAsyncOperation, and isSignal may be true at the same time.
context OclMessageValue

inv: isSyncOperation implies isAsyncOperation = false and isSignal = false

inv: isAsyncOperation implies isSyncOperation = false and isSignal = false

inv: isSignal implies isSyncOperation = false and isAsyncOperation = false

[2] The return message is only present if, and only if, the ocl message value is a synchronous operation call.
context OclMessageValue

inv: isSyncOperation implies returnMessage->size() = 1

inv: not isSyncOperation implies returnMessage->size() = 0

OclVoidValue

No additional well-formedness rules. 

PrimitiveValue

No additional well-formedness rules. 
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SequenceTypeValue

[1] All elements belonging to a sequence value have unique index numbers.
context SequenceTypeValue

inv: self.elements->isUnique(e : Element | e.indexNr)

SetTypeValue

[1] All elements belonging to a set value have unique values. 
context SetTypeValue

inv: self.elements->isUnique(e : Element | e.value)

StaticValue

No additional well-formedness rules. 

TupleValue

[1] All elements belonging to a tuple value have unique names.
context TupleValue

inv: self.elements->isUnique(e : NameValueBinding | e.name)

Value

No additional well-formedness rules. 

10.2.3 Additional Operations for the Values Package

LocalSnapshot

[1] The operation allPredecessors returns the collection of all snapshots before a snapshot, allSuccessors returns the 
 collection of all snapshots after a snapshot. 
context LocalSnapshot 

def: allPredecessors() : Sequence(LocalSnapshot) =

if pred->notEmpty() then

  pred->union(pred.allPredecessors())

else

Sequence {}

endif

def: allSuccessors() : Sequence(LocalSnapshot) =

if succ->notEmpty() then

succ->union(succ.allSuccessors())

else

Sequence {}

endif 

ObjectValue

[1] The operation getCurrentValueOf results in the value that is bound to the name parameter in the bindings of the latest 
snapshot in the history of an object value. Note that the value may be the UndefinedValue.
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context ObjectValue::getCurrentValueOf(n: String): Value
pre: -- none
post: result = history->last().bindings->any(name = n).value

[2] The operation outgoingMessages results in the sequence of OclMessageValues that have been in the output queue of the 
object between the last postcondition snapshot and its associated precondition snapshot.
context OclExpEval::outgoingMessages() : Sequence( OclMessageValue )

pre: -- none

post:

let end: LocalSnapshot =

history->last().allPredecessors()->select( isPost = true )->first() in

let start: LocalSnapshot = end.pre  in

let inBetween: Sequence( LocalSnapshot ) = 

start.allSuccessors()->excluding( end.allSuccessors())->including( start ) in

result = inBetween.outputQ->iterate ( 

-- creating a sequence with all elements present once

m : oclMessageValue; 

res: Sequence( OclMessageValue ) = Sequence{}

| if not res->includes( m )

then res->append( m )

else res

endif )

endif

TupleValue

[1] The operation getValueOf results in the value that is bound to the name parameter in the tuple value.
context TupleValue::getValueOf(n: String): Value

pre: -- none

post: result = elements->any(name = n).value
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10.2.4 Overview of the Values Package

Figure 10.5 shows an overview of the inheritance relationships between the classes in the Values package.

Figure 10.5  - The inheritance tree of classes in the Values package

10.3 The Evaluations Package

This sub clause defines the evaluations of OCL expressions. The evaluations package is a mirror image of the expressions 
package from the abstract syntax. Figure 10.6 shows how the environment of an OCL expression evaluation is structured. 
The environment is determined by the placement of the expression within the UML model as discussed in Clause 12 
(“The Use of Ocl Expressions in UML Models”). The calculation of the environment is done in the ExpressionInOclEval, 
which will be left undefined here.

DomainElement

BagTypeValue

CollectionValue

EnumValue

LocalSnapshot

ObjectValue OclMessageValue OclVoidValue

PrimitiveValue

SequenceTypeValue

SetTypeValue

StaticValue

StringValue

TupleValue

NameValueBinding Value Element
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Figure 10.6  - The environment for ocl evaluations

Figure 10.6 shows the core part of the Evaluations package. In Figure 10.7 the various subtypes of OclExpEval are defined. 
An OclExpEval always has a result value, and a name space that binds names to values.

Figure 10.7 -  Domain model for ocl evaluations
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Most of the OCL expressions can be simply evaluated, i.e., their value can be determined based on a non-changing set of 
name value bindings. Operation call expressions, however, need the execution of the called operation. The semantics of 
the execution of an operation will be defined in the UML infrastructure. For our purposes it is enough to assume that an 
operation execution will add to the environment of an OCL expression the name ‘result’ bound to a certain value. In order 
not to become tangled in a mix of terms, the term evaluation is used in the following to denote both the ‘normal’ OCL 
evaluations and the executions of operation call expressions.

In 10.3.1.1 to 10.3.1.5 special subclasses of OclExpEval will be defined.

10.3.1 Definitions of Concepts for the Evaluations Package

This sub clause lists the definitions of concepts in the Evaluations package in alphabetical order.

EvalEnvironment

An EvalEnvironment is a set of NameValueBindings that form the environment in which an OCL expression is evaluated. 
An EvalEnvironment has three operations that are defined in “Additional Operations of the Evaluations Package.”

Associations

IterateExpEval

An IterateExpEval is an expression evaluation that evaluates its body expression for each element of a collection value, 
and accumulates a value in a result variable. It evaluates an IterateExp.

IteratorExpEval

An IteratorExp is an expression evaluation that evaluates its body expression for each element of a collection.  

ExpressionInOclEval

An ExpressionInOclEval is an evaluation of the context of an OCL expression. It is the counterpart in the domain of the 
ExpressionInOcl metaclass defined in Clause 12 (“The Use of Ocl Expressions in UML Models”). It is merely included 
here to be able to determine the environment of an OCL expression.

LiteralExpEval

A Literal expression evaluation is an evaluation of a Literal expression.

LoopExpEval

A loop expression evaluation is an evaluation of a Loop expression.

bindings The NameValueBindings that are the elements of this name space.
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Associations

ModelPropertyCallExpEval

A model property call expression evaluation is an evaluation of a ModelPropertyCallExp. In Figure 10.8 the various 
subclasses of ModelPropertyCallExpEval are shown.

Operations

OclExpEval

An ocl expression evaluation is an evaluation of an OclExpression. It has a result value, and it is associated with a set of 
name-value bindings called environment. These bindings represent the values that are visible for this evaluation, and the 
names by which they can be referenced. A second set of name-value bindings is used to evaluate any sub expression for 
which the operation atPre returns true, called beforeEnvironment.

Note that as explained in Clauses 9 (“Concrete Syntax”) and 12 (“The Use of Ocl Expressions in UML Models”) these 
bindings need to be established, based on the placement of the OCL expression within the UML model. A binding for an 
invariant will not need the beforeEnvironment, and it will be different from a binding of the same expression when used 
as precondition.

Associations

OclMessageExpEval

An ocl message expression evaluation is defined in sub clause 10.3.1.3, but included in this diagram for completeness.

PropertyCallExpEval

A property call expression evaluation is an evaluation of a PropertyCallExp.

bodyEvals The oclExpEvaluations that represent the evaluation of the body expression for each 
element in the source collection.

iterators The names of the iterator variables in the loop expression.

atPre The atPre operation returns true if the property call is marked as being evaluated at pre-
condition time.

environment The set of name value bindings that is the context for this evaluation of an ocl expression.

beforeEnvironment The set of name value bindings at the precondition time of an operation, to evaluate any sub 
expressions of type ModelPropertyCallExp for which the operation atPre returns true.

resultValue The value that is the result of evaluating the OclExpression.
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Associations

VariableDeclEval

A variable declaration evaluation represents the evaluation of a variable declaration. Note that this is not a subtype of 
OclExpEval, therefore it has no resultValue.

Associations

VariableExpEval

A variable expression evaluation is an evaluation of a VariableExp, which in effect is the search of the value that is bound 
to the variable name within the environment of the expression.

Associations

10.3.1.1 Model PropertyCall Evaluations

The subtypes of ModelPropertyCallExpEval are shown in Figure 10.8, and are defined in this sub clause in alphabetical 
order.

source The result value of the source expression evaluation is the instance that performs the 
property call.

name The name of the variable.

initExp The value that will be initially bound to the name of this evaluation.

variable The name that refers to the value that is the result of this evaluation.
Object Constraint Language, v2.4        123



Figure 10.8 - Domain model for ModelPropertyCallExpEval and subtypes
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An association end call expression evaluation is an evaluation of an AssociationClassCallExp, which in effect is the 
search of the value that is bound to the associationClass name within the expression environment.
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An association end call expression evaluation is an evaluation of an AssociationEndCallExp, which in effect is the search 
of the value that is bound to the associationEnd name within the expression environment.
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is a reference.
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Associations

AttributeCallExpEval

An attribute call expression evaluation is an evaluation of an AttributeCallExp, which in effect is the search of the value 
that is bound to the attribute name within the expression environment.

Associations

NavigationCallExpEval

A navigation call expression evaluation is an evaluation of a NavigationCallExp.

Associations

OperationCallExpEval

An operation call expression evaluation is an evaluation of an OperationCallExp.

Associations

10.3.1.2 If Expression Evaluations

If expression evaluations are shown in Figure 10.9 and defined in this sub clause.

referredAssociationEnd The name of the AssociationEnd to which the corresponding NavigationCallExp is a 
reference.

referredAttribute The name of the Attribute to which the corresponding AttributeCallExp is a reference.

navigationSource The name of the AssociationEnd of which the corresponding NavigationCallExp is the 
source.

arguments The arguments denote the arguments to the operation call. This is only useful when the 
operation call is related to an Operation that takes parameters.

referredOperation The name of the Operation to which this OperationCallExp is a reference. This is an 
Operation of a Classifier that is defined in the UML model.

OclExpEval

IfExpEval

1
+condition

1
1

+elseExpression

11
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1
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Figure 10.9 - Domain model for if expression

IfExpEval

An IfExpEval is an evaluation of an IfExp.

Associations

10.3.1.3 Ocl Message Expression Evaluations

Ocl message expressions are used to specify the fact that an object has, or will send some message to another object at 
some moment in time. Ocl message expression evaluations are shown in Figure 10.10, and defined in this sub clause.

Figure 10.10 - Domain model for message evaluation
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An ocl message argument evaluation is an evaluation of an OclMessageArg. It represents the evaluation of the actual 
parameters to the Operation or Signal. An argument of a message expression is either an ocl expression, or a variable 
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Associations

OclMessageExpEval

An ocl message expression evaluation is an evaluation of an OclMessageExp. The only demand we can put on the ocl 
message expression is that the OclMessageValue it represents (either an operation call, or a UML signal), has been at 
some time between ‘now’ and a reference point in time in the output queue of the sending instance. The ‘now’ timepoint 
is the point in time at which this evaluation is performed. This point is represented by the environment link of the 
OclMessageExpEval (inherited from OclExpEval).

Associations

UnspecifiedValueExpEval

An unspecified value expression evaluation is an evaluation of an UnSpecifiedValueExp. It results in a randomly picked 
instance of the type of the expression.

10.3.1.4 Literal Expression Evaluations

This sub clause defines the different types of literal expression evaluations in OCL, as shown in Figure 10.11. Again it is 
a complete mirror image of the abstract syntax.

variable The OclExpEval that represents the evaluation of the argument, in case the argument is 
a VariableDeclaration.

expression The OclExpEval that represents the evaluation of the argument, in case the argument is 
an OclExpression.

target The OclExpEval that represents the evaluation of the target instance or instances on 
which the action is performed.

arguments The OclMessageArgEvals that represent the evaluation of the actual parameters to the 
Operation or Message.
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Figure 10.11 - Domain model for literal expressions

BooleanLiteralExpEval

A Boolean literal expression evaluation represents the evaluation of a Boolean literal expression.

CollectionItemEval

A collection item evaluation represents the evaluation of a collection item.

CollectionLiteralExpEval

A collection literal expression evaluation represents the evaluation of a collection literal expression.

CollectionLiteralPartEval

A collection literal part evaluation represents the evaluation of a collection literal part.

CollectionRangeEval

A collection range evaluation represents the evaluation of a collection range.
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EnumLiteralExpEval

An enumeration literal expression evaluation represents the evaluation of an enumeration literal expression.

IntegerLiteralExpEval

A integer literal expression evaluation represents the evaluation of an integer literal expression.

NumericLiteralExpEval

A numeric literal expression evaluation represents the evaluation of a numeric literal expression.

PrimitiveLiteralExpEval

A primitive literal expression evaluation represents the evaluation of a primitive literal expression.

RealLiteralExpEval

A real literal expression evaluation represents the evaluation of a real literal expression.

StringLiteralExpEval

A string literal expression evaluation represents the evaluation of a string literal expression.

TupleLiteralExpEval

A tuple literal expression evaluation represents the evaluation of a tuple literal expression.

TupleLiteralExpPartEval

A tuple literal expression part evaluation represents the evaluation of a tuple literal expression part.

UnlimitedNaturalLiteralExpEval

An unlimited natural literal expression evaluation represents the evaluation of an unlimited natural literal expression.

10.3.1.5 Let Expressions

Let expressions define new variables. The structure of the let expression evaluation is shown in Figure 10.12.

Figure 10.12  - Domain model for let expression
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LetExpEval

A Let expression evaluation is an evaluation of a Let expression that defines a new variable with an initial value. A Let 
expression evaluation changes the environment of the in expression evaluation.

Associations

10.3.2 Well-formedness Rules of the Evaluations Package

The metaclasses defined in the evaluations package have the following well-formedness rules. These rules state how the 
result value is determined. This defines the semantics of the OCL expressions.

AssociationClassCallExpEval

[1] The result value of an association class call expression is the value bound to the name of the association class to which it 
refers. Note that the determination of the result value when qualifiers are present is specified in 10.4.2.1, Well-formedness 
rules for the AS-Domain-Mapping.exp-eval Package. The operation getCurrentValueOf is an operation defined on 
ObjectValue in 10.2.3, Additional Operations for the Values Package.

context AssociationClassCallExpEval inv: 

qualifiers->size = 0 implies

     resultValue =   

              source.resultValue.getCurrentValueOf(referredAssociationClass.name)

AssociationEndCallExpEval

[1] The result value of an association end call expression is the value bound to the name of the association end to which it 
refers. Note that the determination of the result value when qualifiers are present is specified in 10.4.2.1, Well-formedness 
rules for the AS-Domain-Mapping.exp-eval Package.

context  AssociationEndCallExpEval inv: 

qualifiers->size = 0 implies

     resultValue =

source.resultValue.getCurrentValueOf(referredAssociationEnd.name)

AttributeCallExpEval

[1] The result value of an attribute call expression is the value bound to the name of the attribute to which it refers.

context AttributeCallExpEval inv: 

resultValue = if source.resultValue->oclIsTypeOf( ObjectValue) then

                 source.resultValue->oclAsType( ObjectValue )

                                    .getCurrentValueOf(referredAttribute.value)

             else -- must be a tuple value

                    source.resultValue->oclAsType( TupleValue )

                                    .getValueOf(referredAttribute.value)

variable The name of the variable that is defined.

in The expression in whose environment the defined variable is visible.

initExpression The expression that represents the initial value of the defined variable.
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              endif

BooleanLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.2.1, Well-formedness 
rules for the AS-Domain-Mapping.exp-eval Package.

 CollectionItemEval

[1] The value of a collection item is the result value of its item expression. The environment of this item expression is equal to 
the environment of the collection item evaluation.

context CollectionItemEval 

inv: element = item.resultValue

inv: item.environment = self.environment

CollectionLiteralExpEval

[1]  The environment of its parts is equal to the environment of the collection literal expression evaluation.

context CollectionLiteralExpEval 

inv: parts->forAll( p | p.environment = self.environment )

[2] The result value of a collection literal expression evaluation is a collection literal value, or one of its subtypes.

context CollectionLiteralExpEval inv:

resultValue.oclIsKindOf( CollectionValue )

[3] The number of elements in the result value is equal to the number of elements in the collection literal parts, taking into 
account that a collection range can result in many elements.

context CollectionLiteralExpEval inv:

resultValue.elements->size() = parts->collect( element )->size()->sum()

[4] The elements in the result value are the elements in the collection literal parts, taking into account that a collection range 
can result in many elements.

context CollectionLiteralExpEval inv:

let allElements = parts->collect( element )->flatten() in

    Sequence{1..allElements->size()}->forAll( i: Integer |

                resultValue.elements->at(i).name = íí and

                resultValue.elements->at(i).value = allElements->at(i) and

                self.kind = CollectionKind::Sequence implies

                     resultValue.elements->at(i).indexNr = i )

CollectionLiteralPartEval

No extra well-formedness rules. The manner in which its value is determined is given by its subtypes.

CollectionRangeEval

[1] The value of a collection range is the range of integer numbers between the result value of its first expression and its last 
expression. 

context CollectionRangeEval 
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inv: element.oclIsTypeOf( Sequence(Integer) ) and

     element = getRange( first->oclAsType(Integer), last->oclAsType(Integer) )

EnumLiteralExpEval

No extra well-formedness rules.

EvalEnvironment

[1] All names in a name space must be unique.

context EvalEnvironment inv:

bindings->collect(name)->forAll( name: String | bindings->collect(name)->isUnique(name))

ExpressionInOclEval

No extra well-formedness rules.

IfExpEval

[1] The result value of an if expression is the result of the thenExpression if the condition is true, otherwise it is the result of 
the elseExpression if the condition is false, otherwise the result is invalid.

context IfExpEval inv:

resultValue = if condition then thenExpression.resultValue else elseExpression.resultValue endif

[2] The environment of the condition, thenExpression and elseExpression are equal to the environment of the if expression.

context IfExpEval 

inv: condition.environment = environment

inv: thenExpression.environment = environment

inv: elseExpression.environment = environment

IntegerLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.2.1, Well-formedness 
rules for the AS-Domain-Mapping.exp-eval Package.

IterateExpEval

[1] All sub evaluations have a different environment. The first sub evaluation will start with an environment in which all 
iterator variables are bound to the first element of the source, plus the result variable that is bound to the init expression of 
the variable declaration in which it is defined.

context IterateExpEval

inv: let bindings: Sequence( NameValueBinding ) =

         iterators->collect( i | 

              NameValueBinding( i.value, source->asSequence()->first() )

     in

        bodyEvals->at(1).environment = self.environment->addAll( bindings )

   ->add( NameValueBinding( result.name, result.initExp.resultValue ))

[2] The environment of any sub evaluation is the same environment as the one from its previous sub evaluation, taking 
into account the bindings of the iterator variables, plus the result variable which is bound to the result value of the last 
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sub evaluation.

inv: let SS: Integer = source.value->size() 

in if iterators->size() = 1 then

         Sequence{2..SS}->forAll( i: Integer |

             bodyEvals->at(i).environment = bodyEvals->at(i-1).environment

 ->replace( NameValueBinding( iterators->at(1).varName,

                                                source.value->asSequence()->at(i)))

                   ->replace( NameValueBinding( result.varName, 

                                                bodyEvals->at(i-1).resultValue ))) 

   else -- iterators->size() = 2              

         Sequence{2..SS*SS}->forAll( i: Integer |

 bodyEvals->at(i).environment = bodyEvals->at(i-1).environment

 ->replace( NameValueBinding( iterators->at(1).varName, 

                        source->asSequence()->at(i.div(SS) + 1) ))

->replace( NameValueBinding( iterators->at(2).varName, 

                        source.value->asSequence()->at(i.mod(SS))))

                   ->replace( NameValueBinding( result.varName, 

                                                bodyEvals->at(i-1).resultValue )))

   endif

[3] The result value of an IteratorExpEval is the result of the last of its body evaluations.

context IteratorExpEval 

inv: resultValue = bodyEvals->last().resultValue

IteratorExpEval

The IteratorExp in the abstract syntax is merely a placeholder for the occurrence of one of the predefined iterator 
expressions in the standard library (see Clause 11 “The OCL Standard Library”). These predefined iterator expressions 
are all defined in terms of an iterate expression. The semantics defined for the iterate expression are sufficient to define 
the iterator expression. No well-formedness rules for IteratorExpEval are defined.

LetExpEval

[1] A let expression results in the value of its in expression.

context LetExpEval inv:

resultValue = in.resultValue

[2] A let expression evaluation adds a name value binding that binds the variable to the value of its initExpression, to the 
environment of its in expression.

context LetExpEval

inv: in.environment = self.environment

->add( NameValueBinding( variable.varName, variable.initExpression.resultValue ))

[3] The environment of the initExpression is equal to the environment of this Let expression evaluation.

context LetExpEval

inv: initExpression.environment = self.environment
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LiteralExpEval

No extra well-formedness rules.

LoopExpEval

The result value of a loop expression evaluation is determined by its subtypes.

[1] There is an OclExpEval (a sub evaluation) for combination of values for the iterator variables. Each iterator variable 
 will run through every element of the source collection.

context LoopExpEval

inv: bodyEvals->size() = 

                   if iterators->size() = 1 then

                         source.value->size() 

                   else -- iterators->size() = 2 

                         source.value->size() * source.value->size()

                   endif

[2] All sub evaluations (in the sequence bodyEvals) have a different environment. The first sub evaluation will start with 
an environment in which all iterator variables are bound to the first element of the source. Note that this is an 
arbitrary choice, one could easily start with the last element of the source, or any other combination.

context LoopExpEval

inv: let bindings: Sequence( NameValueBindings ) =

         iterators->collect( i | 

              NameValueBinding( i.varName, source->asSequence()->first() ) )

     in

        bodyEvals->at(1).environment = self.environment->addAll( bindings )

[3] All sub evaluations (in the sequence bodyEvals) have a different environment. The environment is the same 
environment as the one from the previous bodyEval, where the iterator variable or variables are bound to the 
subsequent elements of the source. 

context LoopExpEval

inv: 

let SS: Integer = source.value->size() 

in if iterators->size() = 1 then

Sequence{2..SS}->forAll( i: Integer |

             bodyEvals->at(i).environment = bodyEvals->at(i-1).environment

->replace( NameValueBinding( iterators->at(1).varName, 

                          source.value->asSequence()->at(i) ))) 

   else -- iterators->size() = 2              

         Sequence{2..SS*SS}->forAll( i: Integer |

 bodyEvals->at(i).environment = bodyEvals->at(i-1).environment

 ->replace( NameValueBinding( iterators->at(1).varName, 

source->asSequence()->at(i.div(SS) + 1) ))

 ->replace( NameValueBinding( iterators->at(2).varName, 

source.value->asSequence()->at(i.mod(SS)) )) )

endif
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ModelPropertyCallExpEval

Result value is determined by its subtypes.

[1] The environment of a ModelPropertyCall expression is equal to the environment of its source.

context ModelPropertyCallExpEval inv: 

environment = source.environment

NavigationCallExpEval

[1] When the navigation call expression has qualifiers, the result value is limited to those elements for which the 
qualifier value equals the value of the attribute.
-- To be done.

NumericLiteralExpEval

No extra well-formedness rules. Result value is determined by its subtypes.

OclExpEval

The result value of an ocl expression is determined by its subtypes.

[1] The environment of an OclExpEval is determined by its context, i.e., the ExpressionInOclEval.

context OclExpEval

inv: environment = context.environment

[2] Every OclExpEval has an environment in which at most one self instance is known.

context OclExpEval

inv: environment->select( name = ‘self’ )->size() = 1

OclMessageExpEval

[1] The result value of an ocl message expression is an ocl message value.

context OclMessageExpEval

inv: resultValue->isTypeOf( OclMessageValue )

[2] The result value of an ocl message expression is the sequence of the outgoing messages of the ‘self’ object that 
 matches the expression. Note that this may result in an empty sequence when the expression does not match any 
 of the outgoing messages.

context OclMessageExpEval

inv: resultValue = 

        environment.getValueOf( ‘self’ ).outgoingMessages->select( m |

            m.target = target.resultValue and

             m.name = self.name and

             self.arguments->forAll( expArg: OclMessageArgEval | 

                not expArg.resultValue.oclIsUndefined() implies

                   m.arguments->exists( messArg | messArg.value = expArg.value )))
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[3] The source of the resulting ocl message value is equal to the ‘self’ object of the ocl message expression.

context OclMessageExpEval
inv: resultValue.source = environment.getValueOf( ‘self’ )

[4] The isSent attribute of the resulting ocl message value is true only if the message value is in the outgoing messages 
 of the ‘self’ object.

context OclMessageExpEval

inv: 

if resultValue.oclIsUndefined() then

       resultValue.isSent = false

else

       resultValue.isSent = true

endif

[5] The target of an ocl message expression is an object value.

context OclMessageExpEval

inv: target.resultValue->isTypeOf( ObjectValue )

[6] The environment of all arguments, and the environment of the target expression are equal to the environment of 
this ocl message value.

context OclMessageExpEval

inv: arguments->forAll( a | a.environment = self.environment )

inv: target.environment = self.environment

OclMessageArgEval

[1] An ocl message argument evaluation has either an ocl expression evaluation, or an unspecified value expression 
evaluation, not both.

context OclMessageArgEval

inv: expression->size() = 1 implies unspecified->size() = 0

inv: expression->size() = 0 implies unspecified->size() = 1

[2] The result value of an ocl message argument is determined by the result value of its expression, or its unspecified 
 value expression. 

context OclMessageArgEval inv:

if expression->size() = 1 

then resultValue = expression.resultValue

else resultValue = unspecified.resultValue

endif

[3] The environment of the expression and unspecified value are equal to the environment of this ocl message argument.

context OclMessageArgEval

inv: expression.environment = self.environment

inv: unspecified.environment = self.environment
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OperationCallExpEval

The definition of the semantics of the operation call expression depends on the definition of operation call execution in 
the UML semantics. This is part of the UML infrastructure specification, and will not be defined here. For the semantics 
of the OperationCallExp it suffices to know that the execution of an operation call will produce a result of the correct 
type, as specified in 10.4, The AS-Domain-Mapping Package.

[1] The environments of the arguments of an operation call expression are equal to the environment of this call.

context  OperationCallExpEval inv: 

arguments->forall( a | a.environment = self.environment )

PropertyCallExpEval

The result value and environment are determined by its subtypes.

[1] The environment of the source of a property call expression is equal to the environment of this call.

context  PropertyCallExpEval inv: 

source.environment = self.environment

PrimitiveLiteralExpEval

No extra well-formedness rules. The result value is determined by its subtypes.

RealLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.2.1, Well-formedness 
rules for the AS-Domain-Mapping.exp-eval Package.

StringLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.2.1, Well-formedness 
rules for the AS-Domain-Mapping.exp-eval Package.

TupleLiteralExpEval

[1] The result value of a tuple literal expression evaluation is a tuple value whose elements correspond to the parts of the 
tuple literal expression evaluation.

context TupleLiteralExpEval inv:

resultValue.oclIsTypeOf( TupleValue ) and

tuplePart->size() = resultValue.elements->size() and

Sequence{1..tuplePart->size()}->forAll( i: Integer |

                resultValue.elements->at(i).name = tuplePart.name and

                resultValue.elements->at(i).value = tuplePart.initExpression.resultValue )

UnlimitedNaturalLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.2.1, Well-formedness 
rules for the AS-Domain-Mapping.exp-eval Package.
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UnspecifiedValueExpEval

The result of an unspecified value expression is a randomly picked instance of the type of the expression. This rule will 
be defined in 10.4.2.1, Well-formedness rules for the AS-Domain-Mapping.exp-eval Package.

VariableDeclEval

No extra well-formedness rules.

VariableExpEval

[1] The result of a VariableExpEval is the value bound to the name of the variable to which it refers.

context VariableExpEval inv: 

resultValue = environment.getValueOf(referredVariable.varName)

10.3.3 Additional Operations of the Evaluations Package

EvalEnvironment

[1] The operation getValueOf results in the value that is bound to the name parameter in the bindings of a name space. 
Note that the value may be the UndefinedValue.

context EvalEnvironment::getValueOf(n: String): Value

pre: -- none

post: result = bindings->any(name = n).value

[2] The operation replace replaces the value of a name, by the value given in the nvb parameter.

context EvalEnvironment::replace(nvb: NameValueBinding): EvalEnvironment

pre: -- none

post: result.bindings = self.bindings

->excluding( self.bindings->any( name = nvb.name) )->including( nvb )

[3] The operation add adds the name and value indicated by the NameValueBinding given by the nvb parameter.

context EvalEnvironment::add(nvb: NameValueBinding): EvalEnvironment

pre: -- none

post: result.bindings = self.bindings->including( nvb )

[4] The operation addAll adds all NameValueBindings in the nvbs parameter.

context EvalEnvironment::add(nvbs: Collection(NameValueBinding)): EvalEnvironment

pre: -- none

post: result.bindings = self.bindings->union( nvbs )

CollectionRangeEval

[1] The operation getRange() returns a sequence of integers that contains all integer in the collection range.
context CollectionRangeEval::getRange(first, last: Integer): Sequence(Integer)

pre: -- none
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post: result = if first = last then
                  first->asSequence()
               else
                  first->asSequence()->union(getRange(first + 1, last))
               endif

10.3.4 Overview of the Values Package

Figure 10.13 shows an overview of the inheritance relationships between the classes in the Values package.

Figure 10.13 - The inheritance tree of classes in the Evaluations package  

10.4 The AS-Domain-Mapping Package

Figure 10.14 shows the associations between the abstract syntax concepts and the domain concepts defined in this clause. 
Each domain concept has a counterpart called model in the abstract syntax. Each model has one or more instances in the 
semantic domain. Note that in particular every OCL expression can have more than one evaluation. Still every evaluation 
has only one value. For example, the “asSequence” applied to a Set may have n! evaluations, which each give a different 
permutation of the elements in the set, but each evaluation has exactly one result value.
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Figure 10.14 - Associations between values and the types defined in the abstract syntax
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Figure 10.15 - Associations between Evaluation and Abstact Syntax Types
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10.4.1 Well-formedness rules for the AS-Domain-Mapping.type-value Package

CollectionValue

[1] All elements in a collection value must have a type that conforms to the elementType of its corresponding CollectionType.

context CollectionValue inv:

elements->forAll( e: Element | e.value.model.conformsTo( model.elementType ) )

DomainElement

No additional well-formedness rules.

Element

No additional well-formedness rules.

EnumValue

No additional well-formedness rules.

ObjectValue

[1] All bindings in an object value must correspond to attributes or associations defined in the object’s Classifier.

context ObjectValue inv:

history->forAll( snapshot | snapshot.bindings->forAll( b |

          self.model.allAttributes()->exists (attr | b.name = attr.name)

          or

           self.model.allAssociationEnds()->exists ( role | b.name = role.name) ) )

OclMessageValue

No additional well-formedness rules.

PrimitiveValue

No additional well-formedness rules.

SequenceTypeValue

No additional well-formedness rules.

SetTypeValue

No additional well-formedness rules.

StaticValue

No additional well-formedness rules.
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TupleValue

[1] The elements in a tuple value must have a type that conforms to the type of the corresponding tuple parts.

context TupleValue inv:

elements->forAll( elem | 

let correspondingPart: Attribute = 

self.model.allAttributes()->any( part | part.name = elem.name ) in

elem.value.model.conformsTo( correspondingPart.type ) )

UndefinedValue

No additional well-formedness rules.

Value

No additional well-formedness rules.

10.4.2 Additional Operations for the AS-Domain-Mapping.type-value Package

Value

[1] The additional operation isInstanceOf returns true if this value is an instance of the parameter classifier.

context Value::isInstanceOf( c: Classifier ): Boolean

pre: -- none

post: result = self.model.conformsTo( c )

10.4.2.1 Well-formedness rules for the AS-Domain-Mapping.exp-eval Package

AssociationClassCallExpEval  

[1] The string that represents the referredAssociationClass in the evaluation must be equal to the name of the 
referredAssociationClass in the corresponding expression.

context AssociationClassCallExpEval inv:

referredAssociationClass = model.referredAssociationClass.name

[2] The result value of an association class call expression evaluation that has qualifiers, is determined according to the 
following rule. The ‘normal’ determination of result value is already given in 10.3.2, Well-formedness Rules of the 
Evaluations Package.

let 

-- the attributes that are the formal qualifiers. Because and association class has two or

-- more association ends, we must select the qualifiers from the other end(s), not from

-- the source of this expression. We allow only 2-ary associations.

   formalQualifiers : Sequence(Attribute) =       

              self.model.referredAssociationClass.connection->any( c | 

c <> self.navigationSource).qualifier.asSequence() ,  

-- the attributes of the class at the qualified end. Here we already assume that an

-- AssociationEnd will be owned by a Classifier, as will most likely be the case in the 

-- UML 2.0 Infrastructure.
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   objectAttributes: Sequence(Attribute) =

              self.model.referredAssociationClass.connection->any( c | 

                    c <> self.navigationSource).owner.feature->select( f | 

                           f.oclIsTypeOf( Attribute ).asSequence() ,  

-- the rolename of the qualified association end

qualifiedEnd: String = self.model.referredAssociationClass.connection->any( c | 

c <> self.navigationSource).name ,  

-- the values for the qualifiers given in the ocl expression

qualifierValues : Sequence( Value ) = self.qualifiers.asSequence() 

-- the objects from which a subset must be selected through the qualifiers

normalResult =   

              source.resultValue.getCurrentValueOf(referredAssociationClass.name)

in  

-- if name of attribute of object at qualified end equals name of formal qualifier then

-- if value of attribute of object at qualified end equals the value given in the exp

-- then select this object and put it in the resultValue of this expression.

qualifiers->size <> 0 implies

normalResult->select( obj | 

     Sequence{1..formalQualifiers->size()}->forAll( i |     

          objectAttributes->at(i).name = formalQualifiers->at(i).name and

          obj.qualifiedEnd.getCurrentValueOf( objectAttributes->at(i).name ) = 

                                                     qualifiersValues->at(i) ))

AssociationEndCallExpEval  

[1] The string that represents the referredAssociationEnd in the evaluation must be equal to the name of the 
referredAssociationEnd in the corresponding expression.

context AssociationEndCallExpEval inv:

referredAssociationEnd = model.referredAssociationEnd.name

[2] The result value of an association end call expression evaluation that has qualifiers, is determined according to the 
following rule. The ‘normal’ determination of result value is already given in 10.3.2, Well-formedness Rules of the 
Evaluations Package.

let 

-- the attributes that are the formal qualifiers 

   formalQualifiers : Sequence(Attribute) = self.model.referredAssociationEnd.qualifier ,  

-- the attributes of the class at the qualified end
   objectAttributes: Sequence(Attribute) =

      (if self.resultValue.model.oclIsKindOf( Collection ) implies
      then self.resultValue.model.oclAsType( Collection ).elementType->
                                         collect( feature->oclAsType( Attribute ) )
      else self.resultValue.model->collect( feature->oclAsType( Attribute ) )
      endif).asSequence() ,
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-- the values for the qualifiers given in the ocl expression

   qualifierValues : Sequence( Value ) = self.qualifiers.asSequence() 

-- the objects from which a subset must be selected through the qualifiers

normalResult =   

              source.resultValue.getCurrentValueOf(referredAssociationEnd.name)

in 

-- if name of attribute of object at qualified end equals name of formal qualifier then

-- if value of attribute of object at qualified end equals the value given in the exp

-- then select this object and put it in the resultValue of this expression.

qualifiers->size <> 0 implies

normalResult->select( obj |

     Sequence{1..formalQualifiers->size()}->forAll( i |     

          objectAttributes->at(i).name = formalQualifiers->at(i).name and

          obj.getCurrentValueOf( objectAttributes->at(i).name ) = 

                                                     qualifiersValues->at(i) ))

AttributeCallExpEval  

[1] The string that represents the referredAttribute in the evaluation must be equal to the name of the referredAttribute in the 
corresponding expression.

context AttributeCallExpEval inv:

referredAttribute = model.referredAttribute.name

BooleanLiteralExpEval

[1] The result value of a Boolean literal expression is equal to the literal expression itself (‘true’ or ‘false’). Because the 
booleanSymbol attribute in the abstract syntax is of type Boolean as defined in the MOF, and resultValue is of type 
Primitive as defined in this clause, a conversion is necessary. For the moment, we assume the additional operation 
MOFbooleanToOCLboolean() exists. This will need to be re-examined when the MOF and/or UML Infrastructure 
submissions are finalized.

context BooleanLiteralExpEval inv:

resultValue = model.booleanSymbol.MOFbooleanToOCLboolean()

CollectionItemEval

No extra well-formedness rules.

CollectionLiteralExpEval

No extra well-formedness rules.

CollectionLiteralPartEval

No extra well-formedness rules.
Object Constraint Language, v2.4        145



CollectionRangeEval

No extra well-formedness rules.

EvalEnvironment 

Because there is no mapping of name space to an abstract syntax concept, there are no extra well-formedness rules.

LiteralExpEval  

No extra well-formedness rules.

LoopExpEval

No extra well-formedness rules.

EnumLiteralExpEval  

[1] The result value of an EnumLiteralExpEval must be equal to one of the literals defined in its type.

context EnumLiteralExpEval inv:

model.type->includes( self.resultValue )

IfExpEval

[1] The condition evaluation corresponds with the condition of the expression, and likewise for the thenExpression and the 
else Expression.

context IfExpEval

inv: condition.model = model.condition

inv: thenExpression.model = model.thenExpression

inv: elseExpression.model = model.elseExpression

IntegerLiteralExpEval
context IntegerLiteralExpEval inv:

resultValue = model.integerSymbol

IterateExpEval

[1] The model of the result of an iterate expression evaluation is equal to the model of the result of the associated IterateExp.

context IterateExpEval

inv: result.model = model.result 

IteratorExpEval

No extra well-formedness rules.

LetExpEval  

[1] All parts of a let expression evaluation correspond to the parts of its associated LetExp.

context LetExpEval inv:
in.model = model.in and
initExpression.model = model.initExpression and
variable = model.variable.varName
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LoopExpEval

[1] All sub evaluations have the same model, which is the body of the associated LoopExp.

context LoopExpEval

inv: bodyEvals->forAll( model = self.model )

ModelPropertyCallExpEval  

No extra well-formedness rules.

NumericLiteralExpEval

No extra well-formedness rules.

NavigationCallExpEval  

[1] The string that represents the navigation source in the evaluation must be equal to the name of the navigationSource in the 
corresponding expression.

context NavigationCallExpEval inv:

navigationSource = model.navigationSource.name

[2] The qualifiers of a navigation call expression evaluation must correspond with the qualifiers of the associated expression.

context NavigationCallExpEval inv:

Sequence{1..qualifiers->size()}->forAll( i |

         qualifiers->at(i).model = model.qualifiers->at(i).type )

OclExpEval  

[1] The result value of the evaluation of an ocl expression must be an instance of the type of that expression.

context OclExpEval

inv: resultValue.isInstanceOf( model.type )

OclMessageExpEval

[1] An ocl message expression evaluation must correspond with its message expression.

context OclMessageExpEval

inv: target.model = model.target

inv: Set{1..arguments->size()}->forall (i | arguments->at(i) = model.arguments->at(i) ) 

[2] The name of the resulting ocl message value must be equal to the name of the operation or signal indicated in the message 
expression.

context OclMessageExpEval inv: 

if model.operation->size() = 1 

then resultValue.name = model.operation.name

else resultValue.name = model.signal.name

endif

[3] The isSignal, isSyncOperation, and isAsyncOperation attributes of the result value of an ocl message expression 
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evaluation must correspond to the operation indicated in the ocl message expression.

context OclMessageExpEval inv: 

if model.calledOperation->size() = 1 

then model.calledOperation.isAsynchronous = true implies

resultValue.isAsyncOperation = true

else -- message represents sending a signal

resultValue.isSignal = true

endif

[4] The arguments of an ocl message expression evaluation must correspond to the formal input parameters of the operation, 
or the attributes of the signal indicated in the ocl message expression.

context OclMessageExpEval 

inv: model.calledOperation->size() = 1 implies

       Sequence{1.. arguments->size()} ->forAll( i |

          arguments->at(i).variable->size() = 1 implies

               model.calledOperation.operation.parameter->

                    select( kind = ParameterDirectionKind::in )->at(i).name = 

                                                        arguments->at(i).variable

          and  

          arguments->at(i).expression->size() = 1 implies 

              model.calledOperation.operation.parameter->

                    select( kind = ParameterDirectionKind::in )->at(i).type = 

                                                         arguments->at(i).expression.model )

inv: model.sentSignal->size() = 1 implies

       Sequence{1.. arguments->size()} ->forAll( i |

          arguments->at(i).variable->size() = 1 implies

             model.sentSignal.signal.feature->select( 

                                               arguments->at(i).variable )->notEmpty()

          and  

          arguments->at(i).expression->size() = 1 implies 

               model.sentSignal.signal.feature.oclAsType(StructuralFeature).type = 

                                         arguments->at(i).expression.model  ) 

[5] The arguments of the return message of an ocl message expression evaluation must correspond to the names given by the 
formal output parameters, and the result type of the operation indicated in the ocl message expression. Note that the 
Parameter type is defined in the UML metamodel.

context OclMessageExpEval 

inv: let returnArguments: Sequence( NameValueBindings ) =                       

                                        resultValue.returnMessage.arguments ,

         formalParameters: Sequence( Parameter ) =

                                           model.calledOperation.operation.parameter 

in

     resultValue.returnMessage->size() = 1 and model.calledOperation->size() = 1 implies

     -- ‘result’ must be present and have correct type
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          returnArguments->any( name = ‘result’ ).value.model =

           formalParameters->select( kind = ParameterDirectionKind::return ).type 

     and 

     -- all ‘out’ parameters must be present and have correct type      

    Sequence{1.. returnArguments->size()} ->forAll( i |

          returnArguments->at(i).name = 

             formalParameters->select( kind = ParameterDirectionKind::out )->at(i).name 

          and

         returnArguments->at(i).value.model = 

              formalParameters->select( kind = ParameterDirectionKind::out )->at(i).type )   

OclMessageArgEval

[1] An ocl message argument evaluation must correspond with its argument expression.

context OclMessageArgEval

inv: model.variable->size() = 1

implies variable->size() = 1 and variable.symbol = model.variable.name

inv: model.expression->size() = 1 

implies expression and expression.model = model.expression

OperationCallExpEval  

[1] The result value of an operation call expression will have the type given by the Operation being called, if the operation has 
no out or in/out parameters, else the type will be a tuple containing all out, in/out parameters and the result value.

context  OperationCallEval inv: 

let outparameters : Set( Parameter ) = referredOperation.parameter->select( p | 

                                  p.kind = ParameterDirectionKind::in/out or 

                                  p.kind = ParameterDirectionKind::out)

in

   if outparameters->isEmpty()

   then resultValue.model = model.referredOperation.parameter

                                  ->select( kind = ParameterDirectionKind::result ).type

   else resultValue.model.oclIsType( TupleType ) and

        outparameters->forAll( p |

             resultValue.model.attribute->exist( a | a.name = p.name and a.type = p.type ))     

  endif

[2] The string that represents the referred operation in the evaluation must be equal to the name of the referredOperation in 
the corresponding expression.

context OperationCallExpEval inv:

referredOperation = model.referredOperation.name

[3] The arguments of an operation call expression evaluation must correspond to the arguments of its associated expression.

context OperationCallExpEval inv:

Sequence{1..arguments->size}->forAll( i |

         arguments->at(i).model = model.arguments->at(i) )
Object Constraint Language, v2.4        149



PropertyCallExpEval  

[1] The source of the evaluation of a property call corresponds to the source of its associated expression.

context PropertyCallExpEval inv:

source.model = model.source

PrimitiveLiteralExpEval

No extra well-formedness rules.

RealLiteralExpEval
context RealLiteralExpEval inv:

resultValue = model.realSymbol

StringLiteralExpEval
context StringLiteralExpEval inv:

resultValue = model.stringSymbol

TupleLiteralExpEval
context TupleLiteralExpEval inv: 

model.tuplePart = tuplePart.model

UnlimitedNaturalLiteralExpEval
context UnlimitedNaturalLiteralExpEval inv:

resultValue = model.unlimitedNaturalSymbol

UnspecifiedValueExpEval

[1] The result of an unspecified value expression is a randomly picked instance of the type of the expression.

context UnspecifiedValueExpEval

inv: resultValue = model.type.allInstances()->any( true )

inv: resultValue.model = model.type

VariableDeclEval
context VariableDeclEval inv: 

model.initExpression = initExpression.model

VariableExpEval  

No extra well-formedness rules.
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11 OCL Standard Library

This clause describes the OCL Standard Library of predefined types, their operations, and predefined expression 
templates in the OCL. This sub clause contains all standard types defined within OCL, including all the operations 
defined on those types. For each operation the signature and a description of the semantics is given. Within the 
description, the reserved word ‘result’ is used to refer to the value that results from evaluating the operation. In several 
places, post conditions are used to describe properties of the result. When there is more than one postcondition, all 
postconditions must be true. A similar thing is true for multiple preconditions. If these are used, the operation is only 
defined if all preconditions evaluate to true.

11.1 Introduction

The structure, syntax, and semantics of the OCL is defined in Clauses 8 (“Abstract Syntax”), 9 (“Concrete Syntax”), and 
10 (“Semantics Described using UML”). This sub clause adds another part to the OCL definition: a library of predefined 
types and operations. Any implementation of OCL must include this library package. This approach has also been taken 
by e.g., the Java definition, where the language definition and the standard libraries are both mandatory parts of the 
complete language definition.

The OCL standard library defines a number of types. It includes several primitive types: UnlimitedNatural, Integer, Real, 
String, and Boolean. These are familiar from many other languages. The second part of the standard library consists of the 
collection types. They are Bag, Set, Sequence, and Collection where Collection is an abstract type. Note that all types 
defined in the OCL standard library are instances of an abstract syntax class. The OCL standard library exists at the 
modeling level, also referred to as the M1 level, where the abstract syntax is the metalevel or M2 level.

Next to definitions of types the OCL standard library defines a number of template expressions. Many operations defined 
on collections map not on the abstract syntax metaclass FeatureCallExp, but on the IteratorExp. For each of these a 
template expression that defines the name and format of the expression is defined in 11.8, Predefined Iterator Expressions.

The Standard Library may be extended with new types, new operations, and new iterators. In particular new operations 
can be defined for collections.

Certain String operations depend on the prevailing locale to ensure that Strings are collated and characters are case-
converted in an appropriate fashion. A locale is defined as a concatenation of up to three character sequences separated by 
underscores, with the first sequence identifying the language and the second sequence identifying the country. The third 
sequence is empty but may encode an implementation-specific variant. Trailing empty strings and separators may be 
omitted.

The character sequences for languages are defined by ISO 639.

The character sequences for countries are defined by ISO 3166.

'fr_CA' therefore identifies the locale for the French language in the Canada country.

Comparison of strings and consequently the collation order of Collection::sortedBy() conforms to the Unicode Collation 
algorithm defined by Unicode Technical Standard#10.

The locale is 'en_us' by default but may be configured by a property constraint on OclAny::oclLocale.

The prevailing locale is defined by the prevailing value of oclLocale within the current environment; it may therefore be 
changed temporarily by using a Let expression.

let oclLocale : String = 'fr_CA' in aString.toUpperCase()
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11.2 The OclAny, OclVoid, OclInvalid, and OclMessage Types

11.2.1 OclAny

All types in the UML model and the primitive and collection types in the OCL standard library conforms to the type 
OclAny. Conceptually, OclAny behaves as a supertype for all the types. Features of OclAny are available on each object 
in all OCL expressions. OclAny is itself an instance of the metatype AnyType.

All classes in a UML model inherit all operations defined on OclAny. To avoid name conflicts between properties in the 
model and the properties inherited from OclAny, all names on the properties of OclAny start with ‘ocl.’  Although 
theoretically there may still be name conflicts, they can be avoided.  One can also use qualification by OclAny (name of 
the type) to explicitly refer to the OclAny properties.

11.2.2 OclMessage

This sub clause contains the definition of the standard type OclMessage. As defined in this sub clause, each ocl message 
type is actually a template type with one parameter. ‘T’ denotes the parameter. A concrete ocl message type is created by 
substituting an operation or signal for the T.

The predefined type OclMessage is an instance of MessageType. Every OclMessage is fully determined by either the 
operation, or signal given as parameter. Note that there is conceptually an undefined (infinite) number of these types, as 
each is determined by a different operation or signal. These types are unnamed. Every type has as attributes the name of 
the operation or signal, and either all formal parameters of the operation, or all attributes of the signal. OclMessage is 
itself an instance of the metatype MessageType.

OclMessage has a number of predefined operations, as shown in the OCL Standard Library.

11.2.3 OclVoid

The type OclVoid is a type that conforms to all other types except OclInvalid. It has one single instance, identified as null, 
that corresponds with the UML LiteralNull value specification. Any property call applied on null results in invalid. Any 
operation call applied on null results in invalid, except for the operations specified in 11.3.2 (=, <>, oclAsType, oclIsInState, 
oclIsKindOf, oclIsTypeOf, oclIsInvalid, oclIsNew, oclIsUndefined, oclType) and 11.5.4 (and, implies, not, or, xor). 
However, by virtue of the implicit conversion to a collection literal, an expression evaluating to null can be used as source 
of collection operations (such as ‘isEmpty’). If the source is the null literal, it is implicitly converted to an empty Set by 
invoking oclAsSet(). 

OclVoid is itself an instance of the metatype VoidType.

11.2.4 OclInvalid

The type OclInvalid is a type that conforms to all other types. It has one single instance, identified as  invalid. Any 
property call applied on invalid results in invalid. Any operation call applied on invalid results in invalid, except for the 
operations specified in 11.3.3 (=, <>, oclAsType, oclIsInState, oclIsKindOf, oclIsTypeOf, oclIsInvalid, oclIsNew, 
oclIsUndefined, oclType) and 11.5.4 (and, implies, not, or, xor).  OclInvalid is itself an instance of the metatype 
InvalidType.
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11.3 Operations and Well-formedness Rules

11.3.1 OclAny

=(object2 : OclAny) : Boolean

Evaluates to invalid if object2 is invalid.
Evaluates to true if self is the same object as object2.
Evaluates to true if self and object2 are instances of the same DataType and have the same value.
Evaluates to false otherwise.

Infix operator. 
post: result = (self = object2)

<> (object2 : OclAny) : Boolean

Evaluates to invalid if object2 is invalid.
Evaluates to false if self is the same object as object2.
Evaluates to false if self and object2 are instances of the same DataType and have the same value.
Evaluates to true otherwise.

Infix operator. 
post: result = not (self = object2)

oclAsSet() : Set(T) 

The oclAsSet() operation is used to perform the implicit set conversion of a non-collection to a collection value. 

Evaluates to a Set containing the source object.
post: result = Set{self} 

oclIsNew() : Boolean

Can only be used in a postcondition. Evaluates to true if the self is created during performing the operation (for instance, 
it didn’t exist at precondition time). 

post: self@pre.oclIsUndefined()

oclIsUndefined() : Boolean

Evaluates to true if the self is equal to invalid or equal to null. 
post: result = self.isTypeOf( OclVoid )  or self.isTypeOf(OclInvalid)

oclIsInvalid() : Boolean

Evaluates to true if the self is equal to OclInvalid.
post: result = self.isTypeOf( OclInvalid) 

oclAsType(type : Classifier) : T 

Evaluates to self, where self is of the type identified by T. The type T may be any classifier defined in the UML model; 
if the actual type of self at evaluation time does not conform to T, then the oclAsType operation evaluates to invalid.
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In the case of feature redefinition, casting an object to a supertype of its actual type does not access the supertype's 
definition of the feature; according to the semantics of redefinition, the redefined feature simply does not exist for the 
object.  However, when casting to a supertype, any features additionally defined by the subtype are suppressed.

post: (result = self) and result.oclIsKindOf( type ) 

oclIsTypeOf(type : Classifier) : Boolean 

Evaluates to true if self is of the type t but not a subtype of t.
post: self.oclType() = type

oclIsKindOf(type : Classifier) : Boolean 

Evaluates to true if the type of self conforms to t.  That is, self is of type t or a subtype of t. 
post: self.oclType().conformsTo(type)

oclIsInState(statespec : OclState) : Boolean

Evaluates to true if the self is in the state indentified by statespec. 
post: -- TBD

oclType() : Classifier

Evaluates to the type of which self is an instance.
post: self.oclIsTypeOf(result)

oclLocale : String

Defines the default locale for local-dependent library operations such as String::toUpperCase().

11.3.2 OclVoid

Evaluation using null and other values for and, implies, not, or, and xor operations is defined in 11.5.4 and for exists and 
forAll iterations in 11.9.1. 

= (object2 : OclAny) : Boolean

Evaluates to invalid if object2 is invalid. Evaluates to true if object2 is the null object. Evaluates to false otherwise. 
post: result = object2.oclIsTypeOf(OclVoid)

<> (object2 : OclAny) : Boolean 

Evaluates to invalid if object2 is invalid. Evaluates to false if object2 is the null object. Evaluates to true otherwise. 

oclAsSet() : Set(T) 

Evaluates to an empty Set.
post: result = Set{} 

oclAsType(type : Classifier) : T 

Evaluates to self. 

oclIsInState(statespec : OclState) : Boolean 

Evaluates to false. 
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oclIsInvalid() : Boolean 

Evaluates to false. 

oclIsKindOf(type : Classifier) : Boolean 

Evaluates to invalid. 

oclIsNew() : Boolean 

Evaluates to false. 

oclIsTypeOf(type : Classifier) : Boolean 

Evaluates to invalid.

oclIsUndefined() : Boolean 

Evaluates to true. 

oclType() : Classifier 

Evaluates to OclVoid. 

11.3.3 OclInvalid

Evaluation using invalid and other values for and, implies, not, or and xor operations is defined in 11.5.4 and for exists and 
forAll iterations in 11.9.1. 

= (object : OclAny) : Boolean 

Evaluates to invalid. 

<> (object : OclAny) : Boolean 

Evaluates to invalid. 

oclAsSet() : Set(T) 

Evaluates to invalid.

oclAsType(type : Classifier) : T 

Evaluates to invalid. 

oclIsInState(statespec : OclState) : Boolean 

Evaluates to invalid. 

oclIsInvalid() : Boolean 

Evaluates to true. 

oclIsKindOf(type : Classifier) : Boolean 

Evaluates to invalid. 
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oclIsNew() : Boolean 

Evaluates to invalid. 

oclIsTypeOf(type : Classifier) : Boolean 

Evaluates to invalid. 

oclIsUndefined() : Boolean 

Evaluates to true. 

oclType() : Classifier 

Evaluates to OclInvalid. 

11.3.4 OclMessage

hasReturned() : Boolean

True if type of template parameter is an operation call, and the called operation has returned a value. This implies the fact 
that the message has been sent. False in all other cases.

post: -- 

result() : <<The return type of the called operation>>

Returns the result of the called operation, if type of template parameter is an operation call, and the called operation has 
returned a value. Otherwise the invalid value is returned. 

pre: hasReturned()

isSignalSent() : Boolean

Returns true if the OclMessage represents the sending of a UML Signal. 

isOperationCall() : Boolean

Returns true if the OclMessage represents the sending of a UML Operation call. 

11.4 Primitive Types

The primitive types defined in the OCL standard library are UnlimitedNatural, Integer, Real, String, and Boolean. They 
are all instances of the metaclass Primitive from the UML core package.

11.4.1 Real

The standard type Real represents the mathematical concept of real. Note that UnlimitedNatural is a subclass of Integer 
and that Integer is a subclass of Real, so for each parameter of type Real, you can use an unlimited natural or an integer 
as the actual parameter. Real is itself an instance of the metatype PrimitiveType (from UML).
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11.4.2 Integer

The standard type Integer represents the mathematical concept of integer. Note that UnlimitedNatural is a subclass of 
Integer, so for each parameter of type Integer, you can use an unlimited natural as the actual parameter. Integer is itself an 
instance of the metatype PrimitiveType (from UML).

11.4.3 String

The standard type String represents string. A string is a sequence of characters in some suitable character set used to 
display information about the model. Character sets may include non-Roman alphabets and characters. String is itself an 
instance of the metatype PrimitiveType (from UML).

11.4.4 Boolean

The standard type Boolean represents the common true/false values. Boolean is itself an instance of the metatype 
PrimitiveType (from UML).

11.4.5 UnlimitedNatural

The standard type UnlimitedNatural is used to encode the non-negative values of a multiplicity specification. This includes a 
special unlimited value (*) that encodes the upper value of  a multiplicity specification. UnlimitedNatural is itself an instance 
of the metatype UnlimitedNaturalType.
Note that although UnlimitedNatural is a subclass of Integer, the unlimited value cannot be represented as an Integer. Any use 
of the unlimited value as an integer or real is replaced by the invalid value.

11.5 Operations and Well-formedness Rules

This sub clause contains the operations and well-formedness rules of the primitive types.

11.5.1 Real

Note that UnlimitedNatural is a subclass of Integer and that Integer is a subclass of Real, so for each parameter of type 
Real, you can use an unlimited natural or an integer as the actual parameter.

+ (r : Real) : Real

The value of the addition of self and r.

- (r : Real) : Real

The value of the subtraction of r from self.

* (r : Real) : Real

The value of the multiplication of self and r.

- : Real

The negative value of self.
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/ (r : Real) : Real

The value of self divided by r. Evaluates to invalid if r is equal to zero.

abs() : Real

The absolute value of self.
post: if self < 0 then result = - self else result = self endif

floor() : Integer

The largest integer that is less than or equal to self.
post: (result <= self) and (result + 1 > self)

round() : Integer

The integer that is closest to self. When there are two such integers, the largest one.
post: ((self - result).abs() < 0.5) or ((self - result).abs() = 0.5 and (result > self))

max(r : Real) : Real

The maximum of self and r.
post: if self >= r then result = self else result = r endif

min(r : Real) : Real

The minimum of self and r.
post: if self <= r then result = self else result = r endif

< (r : Real) : Boolean

True if self is less than r.

> (r : Real) : Boolean

True if self is greater than r.
post: result = not (self <= r)

<= (r : Real) : Boolean

True if self is less than or equal to r.
post: result = ((self = r) or (self < r))

>= (r : Real) : Boolean

True if self is greater than or equal to r.
post: result = ((self = r) or (self > r))

toString() : String

Converts self to a string value.
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11.5.2 Integer

Note that UnlimitedNatural is a subclass of Integer, so for each parameter of type Integer, you can use an unlimited 
natural as the actual parameter.

- : Integer

The negative value of self.

+ (i : Integer) : Integer

The value of the addition of self and i.

- (i : Integer) : Integer

The value of the subtraction of i from self.

* (i : Integer) : Integer

The value of the multiplication of self and i.

/ (i : Integer) : Real

The value of self divided by i.Evaluates to invalid if r is equal to zero.

abs() : Integer

The absolute value of self.
post: if self < 0 then result = - self else result = self endif

div( i : Integer) : Integer

The number of times that i fits completely within self.
pre : i <> 0
post: if self / i >= 0 then result = (self / i).floor() 
                       else result = -((-self/i).floor()) 
      endif

mod( i : Integer) : Integer

The result is self modulo i.
post: result = self - (self.div(i) * i)

max(i : Integer) : Integer

The maximum of self an i.
post: if self >= i then result = self else result = i endif

min(i : Integer) : Integer

The minimum of self an i.
post: if self <= i then result = self else result = i endif

toString() : String

Converts self to a string value.
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11.5.3 String

+ (s : String) : String

The concatenation of self and s.
post: result = self.concat(s)

size() : Integer

The number of characters in self.

concat(s : String) : String

The concatenation of self and s.
post: result.size() = self.size() + string.size()
post: result.substring(1, self.size() ) = self
post: result.substring(self.size() + 1, result.size() ) = s

substring(lower : Integer, upper : Integer) : String

The sub-string of self starting at character number lower, up to and including character number upper. Character numbers 
run from 1 to self.size().

pre: 1 <= lower
pre: lower <= upper
pre: upper <= self.size()

toInteger() : Integer

Converts self to an Integer value.

toReal() : Real

Converts self to a Real value.

toUpperCase() : String 

Converts self to upper case, using the locale defined by looking up oclLocale in the current environment. Otherwise, 
returns the same string as self. 

toLowerCase() : String

Converts self to lower case, using the locale defined by looking up oclLocale in the current environment.  Otherwise, 
returns the same string as self. 

indexOf(s : String) : Integer 

Queries the index in self at which s is a substring of self, or zero if s is not a substring of self. The empty string is a 
substring of every string at index 1 (and also at all other indexes).

post: self.size() = 0 implies result = 0
post: s.size() = 0 implies result = 1
post: s.size() > 0 and result > 0 implies self.substring(result, result + s.size() - 1) = s
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equalsIgnoreCase(s : String) : Boolean 

Queries whether s and self are equivalent under case-insensitive collation.
post: result = (self.toUpperCase() = s.toUpperCase())

at(i : Integer) : String 

Queries the character at position i in self.
pre: i > 0
pre: i <= self.size()
post: result = self.substring(i, i)

characters() : Sequence(String) 

Obtains the characters of self as a sequence.
post: result = 
           if self.size() = 0 then
              Sequence{}
           else
              Sequence{1..self.size()}->iterate(i; acc : Sequence(String) = Sequence{} |
                  acc->append(self.at(i)))
           endif

toBoolean() : Boolean

Converts self to a Boolean value.
post: result = (self = 'true')

< (s : String) : Boolean

True if self is less than s, using the locale defined by looking up oclLocale in the current environment.

> (s : String) : Boolean

True if self is greater than s, using the locale defined by looking up oclLocale in the current environment.
post: result = not (self <= s)

<= (s : String) : Boolean

True if self is less than or equal to s, using the locale defined by looking up oclLocale in the current environment.
post: result = ((self = s) or (self < s))

>= (s : String) : Boolean

True if self is greater than or equal to s, using the locale defined by looking up oclLocale in the current environment.
post: result = ((self = s) or (self > s)) 
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11.5.4 Boolean

or (b : Boolean) : Boolean

True if either self or b is true.
Otherwise invalid if either self or b is invalid.
Otherwise null if either self or b is null.
Otherwise false.

xor (b : Boolean) : Boolean

True if self is true and b is false, or if self is false and b is true.
False if self is true and b is true, or if self is false and b is false.
Otherwise invalid if either self or b is invalid.
Otherwise null.

post: (self or b) and not (self = b)

and (b : Boolean) : Boolean

False if either self or b is false.
Otherwise invalid if either self or b is invalid .
Otherwise null if either self or b is null.
Otherwise true. 

not : Boolean

True if self is false.
False if self is true.
null if self is null.
Otherwise invalid. 

post: if self = null then result = null
         else if self then result = false
                else result = true
         endif
endif 

implies (b : Boolean) : Boolean

True if self is false, or if b is true.
Otherwise invalid if either self or b is invalid.
Otherwise null if either self or b is null.
Otherwise false. 

post: (not self) or b

toString() : String

Converts self to a string value.

11.5.5 UnlimitedNatural

+ (u : UnlimitedNatural) : UnlimitedNatural

The value of the addition of self and u. Evaluates to invalid if self or u is unlimited.
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* (u : UnlimitedNatural) : UnlimitedNatural

The value of the multiplication of self and u. Evaluates to invalid if self or u is unlimited.

/ (u : UnlimitedNatural) : Real

The value of self divided by u. Evaluates to invalid if u is equal to zero or unlimited, or if self is unlimited.

div(u : UnlimitedNatural) : UnlimitedNatural

The number of times that u fits completely within self. Evaluates to invalid if u is equal to zero or unlimited, or if self is 
unlimited.

post: result = (self / u).floor()

mod(u : UnlimitedNatural) : UnlimitedNatural

The result is self modulo u. Evaluates to invalid if u is equal to zero or unlimited, or if self is unlimited.
post: result = self - (self.div(u) * u)

max(u : UnlimitedNatural) : UnlimitedNatural

The maximum of self and u.
post: if self = * or u = * then result = *
else if self >= u then result = self else result = u endif endif

min(u : UnlimitedNatural) : UnlimitedNatural

The minimum of self and u.
post: if self = * then result = u
else if u = * then result = self
else if self <= u then result = self else result = u endif endif endif

< (u : UnlimitedNatural) : Boolean

True if self is less than u.
post: if self = * then result = false
else if u = * then result = true
else result = self.toInteger() < u.toInteger() endif endif

> (u : UnlimitedNatural) : Boolean

True if self is greater than u.
post: if u = * then result = false
else if self = * then result = true
else result = self.toInteger() > u.toInteger() endif endif

<= (u : UnlimitedNatural) : Boolean

True if self is less than or equal to u.
post: if u = * then result = true
else if self = * then result = false
else result = self.toInteger() <= u.toInteger() endif endif
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>= (u : UnlimitedNatural) : Boolean

True if self is greater than or equal to u.
post: if self = * then result = true
else if u = * then result = false
else result = self.toInteger() >= u.toInteger() endif endif

toInteger() : Integer

Converts self to an integer value. If self is unlimited the result is invalid.
post: if self = * then result = invalid
else result = self.oclAsType(Integer) endif

toString() : String

Converts self to a string value, using the canonical form as defined by http://www.w3.org/TR/xmlschema-2/
#nonNegativeInteger. If self is unlimited the result is '*'.

11.6 Collection-Related Types

This sub clause defines the collection types and their operations. As defined in this sub clause, each collection type is 
actually a template type with one parameter. ‘T’ denotes the parameter. A concrete collection type is created by 
substituting a type for the T. So Set (Integer) and Bag (Person) are collection types.

11.6.1 Collection

Collection is the abstract supertype of all collection types in the OCL Standard Library. Each occurrence of an object in a 
collection is called an element. If an object occurs twice in a collection, there are two elements. This sub clause defines 
the properties on Collections that have identical semantics for all collection subtypes. Some operations may be defined 
within the subtype as well, which means that there is an additional postcondition or a more specialized return value. 
Collection is itself an instance of the metatype CollectionType.

The definition of several common operations is different for each subtype. These operations are not mentioned in this sub 
clause.

The semantics of the collection operations is given in the form of a postcondition that uses the IterateExp of the 
IteratorExp construct. The semantics of those constructs is defined in Clause 10 (“Semantics Described using UML”). In 
several cases the postcondition refers to other collection operations, which in turn are defined in terms of the IterateExp 
or IteratorExp constructs.

11.6.2 Set

The Set is the mathematical set. It contains elements without duplicates. Set is itself an instance of the metatype SetType.

11.6.3 OrderedSet

The OrderedSet is a Set, the elements of which are ordered. It contains no duplicates. OrderedSet is itself an instance of 
the metatype OrderedSetType.

An OrderedSet is not a subtype of Set, neither a subtype of Sequence. The common supertype of Sets and OrderedSets is 
Collection.
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11.6.4 Bag

A bag is a collection with duplicates allowed. That is, one object can be an element of a bag many times. There is no 
ordering defined on the elements in a bag. Bag is itself an instance of the metatype BagType.

11.6.5 Sequence

A sequence is a collection where the elements are ordered. An element may be part of a sequence more than once. 
Sequence is itself an instance of the metatype SequenceType.

Sequence is not a subtype of Bag. The common supertype of Sequence and Bag is Collection.

11.7 Operations and Well-formedness Rules

This sub clause contains the operations and well-formedness rules of the collection types.

11.7.1 Collection

= (c : Collection(T)) : Boolean

True if c is a collection of the same kind as self and contains the same elements in the same quantities and in the same 
order, in the case of an ordered collection type.

<> (c : Collection(T)) : Boolean

True if c is not equal to self.
post: result = not (self = c)

size() : Integer

The number of elements in the collection self.
post: result = self->iterate(elem; acc : Integer = 0 | acc + 1)

includes(object : T) : Boolean

True if object is an element of self, false otherwise.
post: result = (self->count(object) > 0)

excludes(object : T) : Boolean

True if object is not an element of self, false otherwise.
post: result = (self->count(object) = 0)

count(object : T) : Integer

The number of times that object occurs in the collection self.
post: result = self->iterate( elem; acc : Integer = 0 |
             if elem = object then acc + 1 else acc endif)

includesAll(c2 : Collection(T)) : Boolean

Does self contain all the elements of c2 ?
post: result = c2->forAll(elem | self->includes(elem))
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excludesAll(c2 : Collection(T)) : Boolean

Does self contain none of the elements of c2 ?
post: result = c2->forAll(elem | self->excludes(elem))

isEmpty() : Boolean

Is self the empty collection?
post: result = ( self->size() = 0 )

Note: null->isEmpty() returns 'true' in virtue of the implicit casting from null to Bag{}

notEmpty() : Boolean

Is self not the empty collection?
post: result = ( self->size() <> 0 )

null->notEmpty() returns 'false' in virtue of the implicit casting from null to Bag{}.

max() : T

The element with the maximum value of all elements in self. Elements must be of a type supporting the max operation. 
The max operation - supported by the elements - must take one parameter of type T and be both associative and 
commutative. UnlimitedNatural, Integer, and Real fulfill this condition.

post: result = self->iterate( elem; acc : T = self->any(true)  | acc.max(elem) )

min() : T

The element with the minimum value of all elements in self. Elements must be of a type supporting the min operation. 
The min operation - supported by the elements - must take one parameter of type T and be both associative and 
commutative. UnlimitedNatural, Integer, and Real fulfill this condition.

post: result = self->iterate( elem; acc : T = self->any(true) | acc.min(elem) )

sum() : T

The addition of all elements in self. Elements must be of a type supporting the + operation. The + operation must take one 
parameter of type T and be both associative: (a+b)+c = a+(b+c), and commutative: a+b = b+a. UnlimitedNatural, Integer, 
and Real fulfill this condition.

post: result = self->iterate( elem; acc : T = 0 | acc + elem )

If the + operation is not both associative and commutative, the sum expression is not well-formed, which may result in 
unpredictable results during evaluation. If an implementation is able to detect a lack of associativity or commutativity, the 
implementation may bypass the evaluation and return an invalid result.

product(c2: Collection(T2)) : Set( Tuple( first: T, second: T2) )

The cartesian product operation of self and c2.
post: result = self->iterate (e1; acc: Set(Tuple(first: T, second: T2)) = Set{} | 
                       c2->iterate (e2; acc2: Set(Tuple(first: T, second: T2)) = acc | 
                           acc2->including (Tuple{first = e1, second = e2}) ) )

selectByKind(type : Classifier) : Collection(T) 

Returns the sub-Collection containing the non-null elements of self whose type is type or a subtype of type. 
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The returned Collection element type T is the type specified as type. 
post: result = self ->collect(if oclIsKindOf(type) then oclAsType(type) else null endif) ->excluding(null) 

selectByType(type : Classifier) : Collection(T) 

Returns the sub-Collection containing the non-null elements of self whose type is type but which are not a subtype of type. 

The returned Collection element type T is the type specified as type. 
post: result = self ->collect(if oclIsTypeOf(type) then oclAsType(type) else null endif) ->excluding(null) 

asSet() : Set(T)

The Set containing all the elements from self, with duplicates removed.
post: result->forAll(elem | self  ->includes(elem))
post: self  ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T) 

An OrderedSet that contains all the elements from self, with duplicates removed, in an order dependent on the particular 
concrete collection type.

post: result->forAll(elem | self->includes(elem)) 
post: self  ->forAll(elem | result->includes(elem)) 

asSequence() : Sequence(T) 

A Sequence that contains all the elements from self, in an order dependent on the particular concrete collection type. 
post: result->forAll(elem | self->includes(elem)) 
post: self  ->forAll(elem | result->includes(elem)) 

asBag() : Bag(T) 

The Bag that contains all the elements from self. 
post: result->forAll(elem | self->includes(elem)) 
post: self  ->forAll(elem | result->includes(elem)) 

flatten() : Collection(T2) 

If the element type is not a collection type, this results in the same collection as self.  If the element type is a collection 
type, the result is a collection containing all the elements of all the recursively flattened elements of self.

Well-formedness rules

[1] A collection cannot contain invalid values.
context Collection
inv: self->forAll(not oclIsInvalid())

11.7.2 Set

union(s : Set(T)) : Set(T)

The union of self and s.
post: result->forAll(elem | self->includes(elem) or s->includes(elem))
post: self  ->forAll(elem | result->includes(elem))
post: s     ->forAll(elem | result->includes(elem))
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union(bag : Bag(T)) : Bag(T)

The union of self and bag. 
post: result->forAll(elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: self->forAll(elem | result->includes(elem))
post: bag ->forAll(elem | result->includes(elem))

= (s : Set(T)) : Boolean

Evaluates to true if self and s contain the same elements.
post: result = (self->forAll(elem | s->includes(elem)) and 
                                    s->forAll(elem | self->includes(elem)) )

intersection(s : Set(T)) : Set(T)

The intersection of self and s (i.e., the set of all elements that are in both self and s).
post: result->forAll(elem | self->includes(elem) and s->includes(elem))
post: self->forAll(elem | s   ->includes(elem) = result->includes(elem))
post: s   ->forAll(elem | self->includes(elem) = result->includes(elem))

intersection(bag : Bag(T)) : Set(T)

The intersection of self and bag.
post: result = self->intersection( bag->asSet )

- (s : Set(T)) : Set(T)

The elements of self, which are not in s.
post: result->forAll(elem | self->includes(elem) and s->excludes(elem))
post: self  ->forAll(elem | result->includes(elem) = s->excludes(elem))

including(object : T) : Set(T)

The set containing all elements of self plus object.
post: result->forAll(elem | self->includes(elem) or (elem = object))
post: self-  >forAll(elem | result->includes(elem))
post: result->includes(object)

excluding(object : T) : Set(T)

The set containing all elements of self without object.
post: result->forAll(elem | self->includes(elem) and (elem <> object))
post: self-  >forAll(elem | result->includes(elem) = (object <> elem))
post: result->excludes(object)

symmetricDifference(s : Set(T)) : Set(T)

The sets containing all the elements that are in self or s, but not in both.
post: result->forAll(elem | self->includes(elem) xor s->includes(elem))
post: self->forAll(elem | result->includes(elem) = s   ->excludes(elem))
post: s   ->forAll(elem | result->includes(elem) = self->excludes(elem))
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count(object : T) : Integer

The number of occurrences of object in self.
post: result <= 1

flatten() : Set(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same set as self.  If the 
element type is a collection type, the result is the set containing all the elements of all the recursively flattened elements 
of self.

post: result = if self.oclType().elementType.oclIsKindOf(CollectionType) then 
                  self->iterate(c; acc : Set(T2) = Set{} | 
                       acc->union(c->flatten()->asSet() ) ) 
               else 
                  self 
               endif

selectByKind(type : Classifier) : Set(T) 

Returns the sub-Set containing the non-null elements of self whose type is type or a subtype of type.

selectByType(type : Classifier) : Set(T) 

Returns the sub-Set containing the non-null elements of self whose type is type but which are not a subtype of type. 

asSet() : Set(T)

Redefines the Collection operation. A Set identical to self. This operation exists for convenience reasons.
post: result = self

asOrderedSet() : OrderedSet(T)

Redefines the Collection operation. An OrderedSet that contains all the elements from self, in undefined order.
post: result->forAll(elem | self->includes(elem))

asSequence() : Sequence(T)

Redefines the Collection operation. A Sequence that contains all the elements from self, in undefined order.
post: result->forAll(elem | self->includes(elem))
post: self->forAll(elem | result->count(elem) = 1)

asBag() : Bag(T)

Redefines the Collection operation. The Bag that contains all the elements from self.
post: result->forAll(elem | self->includes(elem))
post: self->forAll(elem | result->count(elem) = 1)

11.7.3 OrderedSet

append (object: T) : OrderedSet(T)

The set of elements, consisting of all elements of self, followed by object.
post: result->size() = self->size() + 1
post: result->at(result->size() ) = object
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post:   Sequence{1..self->size() }->forAll(index : Integer |
         result->at(index) = self ->at(index))

prepend(object : T) : OrderedSet(T)

The sequence consisting of object, followed by all elements in self.
post: result->size = self->size() + 1
post: result->at(1) = object
post:   Sequence{1..self->size()}->forAll(index : Integer |
        self->at(index) = result->at(index + 1))

insertAt(index : Integer, object : T) : OrderedSet(T)

The set consisting of self with object inserted at position index.
post: result->size = self->size() + 1
post: result->at(index) = object
post: Sequence{1..(index - 1)}->forAll(i : Integer |
        self->at(i) = result->at(i))
post: Sequence{(index + 1)..self->size()}->forAll(i : Integer |
        self->at(i) = result->at(i + 1))

subOrderedSet(lower : Integer, upper : Integer) : OrderedSet(T)

The sub-set of self starting at number lower, up to and including element number upper.
pre : 1 <= lower
pre : lower <= upper
pre : upper <= self->size()
post: result->size() = upper -lower + 1
post: Sequence{lower..upper}->forAll( index |
         result->at(index - lower + 1) =
                          self->at(index))

at(i : Integer) : T

The i-th element of self.
pre : i >= 1 and i <= self->size()

indexOf(obj : T) : Integer

The index of object obj in the sequence.
pre  : self->includes(obj)
post : self->at(i) = obj

first() : T

The first element in self.
post: result = self->at(1)

last() : T

The last element in self.
post: result = self->at(self->size() )
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reverse() : OrderedSet(T)

The ordered set of elements with same elements but with the opposite order.
post: result->size() = self->size()

sum() : T

Redefines the Collection operation to remove the requirement for the + operation to be associative and/or commutative, 
since the order of evaluation is well-defined by the iteration over an ordered collection.

selectByKind(type : Classifier) : OrderedSet(T) 

Returns the sub-OrderedSet containing the non-null elements of self whose type is type or a subtype of type.

selectByType(type : Classifier) : OrderedSet(T) 

Returns the sub-OrderedSet containing the non-null elements of self whose type is type but which are not a subtype of 
type. 

asSet() : Set(T) 

Redefines the Set operation. Returns a Set containing all of the elements of self, in undefined order. 

asOrderedSet() : OrderedSet(T) 

Redefines the Set operation. An OrderedSet identical to self. 
post: result = self 
post: Sequence{1..self.size()}->forAll(i | result->at(i) = self->at(i)) 

asSequence() : Sequence(T) 

Redefines the Set operation. A Sequence that contains all the elements from self, in the same order. 
post: Sequence{1..self.size()}->forAll(i | result->at(i) = self->at(i)) 

asBag() : Bag(T) 

Redefines the Set operation. The Bag that contains all the elements from self, in undefined order. 

11.7.4 Bag

= (bag : Bag(T)) : Boolean

True if self and bag contain the same elements, the same number of times.
post: result = (self->forAll(elem | self->count(elem) = bag->count(elem)) and 
                bag->forAll(elem | bag->count(elem) = self->count(elem)) )

union(bag : Bag(T)) : Bag(T)

The union of self and bag.
post: result->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: self  ->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: bag   ->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem))
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union(set : Set(T)) : Bag(T)

The union of self and set.
post: result->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))
post: self  ->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))
post: set   ->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))

intersection(bag : Bag(T)) : Bag(T)

The intersection of self and bag.
post: result->forAll(elem | 
      result->count(elem) = self->count(elem).min(bag->count(elem)) )
post: self->forAll(elem |
      result->count(elem) = self->count(elem).min(bag->count(elem)) )
post: bag->forAll(elem |
      result->count(elem) = self->count(elem).min(bag->count(elem)) )

intersection(set : Set(T)) : Set(T)

The intersection of self and set.
post: result->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) )
post: self  ->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) )
post: set   ->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) )

including(object : T) : Bag(T)

The bag containing all elements of self plus object.
post: result->forAll(elem | 
        if elem = object then
           result->count(elem) = self->count(elem) + 1
        else
           result->count(elem) = self->count(elem)
        endif)
post: self->forAll(elem | 
        if elem = object then
           result->count(elem) = self->count(elem) + 1
        else
           result->count(elem) = self->count(elem)
        endif)

excluding(object : T) : Bag(T)

The bag containing all elements of self apart from all occurrences of object.
post: result->forAll(elem | 
        if elem = object then
           result->count(elem) = 0
        else
           result->count(elem) = self->count(elem)
        endif)
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post: self->forAll(elem | 
        if elem = object then
           result->count(elem) = 0
        else
           result->count(elem) = self->count(elem)
        endif)

count(object : T) : Integer

The number of occurrences of object in self.

flatten() : Bag(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same bag as self. If the 
element type is a collection type, the result is the bag containing all the elements of all the recursively flattened elements 
of self. 

post: result = if self.oclType().elementType.oclIsKindOf(CollectionType) then 
                  self->iterate(c; acc : Bag(T2) = Bag{} | 
                       acc->union(c->flatten()->asBag() ) ) 
               else 
                  self 
               endif 

selectByKind(type : Classifier) : Bag(T) 

Returns the sub-Bag containing the non-null elements of self whose type is type or a subtype of type.

selectByType(type : Classifier) : Bag(T) 

Returns the sub-Bag containing the non-null elements of self whose type is type but which are not a subtype of type. 

asBag() : Bag(T)

Redefines the Collection operation. A Bag identical to self. This operation exists for convenience reasons.
post: result = self

asSequence() : Sequence(T)

Redefines the Collection operation. A Sequence that contains all the elements from self, in undefined order.
post: result->forAll(elem | self->count(elem) = result->count(elem))
post: self  ->forAll(elem | self->count(elem) = result->count(elem))

asSet() : Set(T)

Redefines the Collection operation. The Set containing all the elements from self, with duplicates removed.
post: result->forAll(elem | self  ->includes(elem))
post: self  ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T)

Redefines the Collection operation. An OrderedSet that contains all the elements from self, in undefined order, with 
duplicates removed.

post: result->forAll(elem | self  ->includes(elem))
post: self  ->forAll(elem | result->includes(elem))
post: self  ->forAll(elem | result->count(elem) = 1)
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11.7.5 Sequence

count(object : T) : Integer

The number of occurrences of object in self.

= (s : Sequence(T)) : Boolean

True if self contains the same elements as s in the same order.
post: result = Sequence{1..self->size()}->forAll(index : Integer |
                                 self->at(index) = s->at(index))
                                 and
                                 self->size() = s->size()

union (s : Sequence(T)) : Sequence(T)

The sequence consisting of all elements in self, followed by all elements in s.
post: result->size() = self->size() + s->size()
post: Sequence{1..self->size()}->forAll(index : Integer |
                                                          self->at(index) = result->at(index))
post: Sequence{1..s->size()}->forAll(index : Integer |
                                           s->at(index) =  result->at(index + self->size() )))

flatten() : Sequence(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same sequence as self. 
If the element type is a collection type, the result is the sequence containing all the elements of all the recursively 
flattened elements of self. The order of the elements is partial. 

post: result = if self.oclType().elementType.oclIsKindOf(CollectionType) then 
                  self->iterate(c; acc : Sequence(T2) = Sequence{} | 
                       acc->union(c->flatten()->asSequence() ) ) 
               else 
                  self 
               endif 

append (object: T) : Sequence(T)

The sequence of elements, consisting of all elements of self, followed by object.
post: result->size() = self->size() + 1
post: result->at(result->size() ) = object
post:   Sequence{1..self->size() }->forAll(index : Integer |
         result->at(index) = self ->at(index))

prepend(object : T) : Sequence(T)

The sequence consisting of object, followed by all elements in self.
post: result->size = self->size() + 1
post: result->at(1) = object
post:   Sequence{1..self->size()}->forAll(index : Integer |
        self->at(index) = result->at(index + 1))
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insertAt(index : Integer, object : T) : Sequence(T)

The sequence consisting of self with object inserted at position index.
post: result->size = self->size() + 1
post: result->at(index) = object
post: Sequence{1..(index - 1)}->forAll(i : Integer |
        self->at(i) = result->at(i))
post: Sequence{(index + 1)..self->size()}->forAll(i : Integer |
        self->at(i) = result->at(i + 1))

subSequence(lower : Integer, upper : Integer) : Sequence(T)

The sub-sequence of self starting at number lower, up to and including element number upper.
pre : 1 <= lower
pre : lower <= upper
pre : upper <= self->size()
post: result->size() = upper -lower + 1
post: Sequence{lower..upper}->forAll( index |
         result->at(index - lower + 1) =
                          self->at(index))

at(i : Integer) : T

The i-th element of sequence.
pre : i >= 1 and i <= self->size()

indexOf(obj : T) : Integer

The index of object obj in the sequence.
pre  : self->includes(obj)
post : self->at(i) = obj

first() : T

The first element in self.
post: result = self->at(1)

last() : T

The last element in self.
post: result = self->at(self->size() )

including(object : T) : Sequence(T)

The sequence containing all elements of self plus object added as the last element.
post: result = self.append(object)

excluding(object : T) : Sequence(T)

The sequence containing all elements of self apart from all occurrences of object.

The order of the remaining elements is not changed.
post:result->includes(object) = false
post: result->size() = self->size() - self->count(object)
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post: result = self->iterate(elem; acc : Sequence(T)
     = Sequence{}|
         if elem = object then acc else acc->append(elem) endif )

reverse() : Sequence(T)

The sequence containing the same elements but with the opposite order.
post: result->size() = self->size()

sum() : T

Redefines the Collection operation to remove the requirement for the + operation to be associative and/or commutative, 
since the order of evaluation is well-defined by the iteration over an ordered collection.

selectByKind(type : Classifier) : Sequence(T) 

Returns the sub-Sequence containing the non-null elements of self whose type is type or a subtype of type.

selectByType(type : Classifier) : Sequence(T) 

Returns the sub-Sequence containing the non-null elements of self whose type is type but which are not a subtype of type. 

asBag() : Bag(T)

Redefines the Collection operation. The Bag containing all the elements from self, including duplicates.
post: result->forAll(elem | self->count(elem) = result->count(elem) )
post: self->forAll(elem | self->count(elem) = result->count(elem) )

asSequence() : Sequence(T)

Redefines the Collection operation. The Sequence identical to the object itself. This operation exists for convenience 
reasons.

post: result = self

asSet() : Set(T)

Redefines the Collection operation. The Set containing all the elements from self, with duplicates removed.
post: result->forAll(elem | self  ->includes(elem))
post: self  ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T)

Redefines the Collection operation. An OrderedSet that contains all the elements from self, in the same order, with 
duplicates removed.

post: result->forAll(elem | self  ->includes(elem))
post: self  ->forAll(elem | result->includes(elem))
post: self  ->forAll(elem | result->count(elem) = 1)
post: self  ->forAll(elem1, elem2 | 
                         self->indexOf(elem1) < self->indexOf(elem2) 
                               implies result->indexOf(elem1) < result->indexOf(elem2) )
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11.8 Predefined Iterator Expressions

This sub clause defines the standard OCL iterator expressions. In the abstract syntax these are all instances of IteratorExp. 
These iterator expressions always have a collection expression as their source, as is defined in the well-formedness rules 
in Clause 8 (“Abstract Syntax”). The defined iterator expressions are shown per source collection type. The semantics of 
each iterator expression is defined through a mapping from the iterator to the ‘iterate’ construct. This means that the 
semantics of the iterator expressions do not need to be defined separately in the semantics sub clauses. 

In all of the following OCL expressions, the lefthand side of the equals sign is the IteratorExp to be defined, and the 
righthand side of the equals sign is the equivalent as an IterateExp. The names source, body, and iterator refer to the role 
names in the abstract syntax:

11.8.1 Extending the Standard Library with Iterator Expressions

It is possible to add new iterator expressions in the standard library. If this is done the semantics of a new iterator should 
be defined by mapping it to existing constructs, in the same way the semantics of pre-defined iterators is done (see sub 
clause 11.9)

11.9 Mapping Rules for Predefined Iterator Expressions

This sub clause contains the operations and well-formedness rules of the collection types.

11.9.1 Collection

any

Returns any element in the source collection for which body evaluates to true. Returns invalid if any body evaluates to 
invalid for any element, otherwise if there are one or more elements for which body is true, an indeterminate choice of one 
of them is returned, otherwise the result is invalid.

source->any(iterator | body) =
       source->select(iterator | body)->asSequence()->first()

any may have at most one iterator variable.

closure

The closure of the source elements and all elements reached by applying body transitively to every distinct element of the 
source collection.

source->closure(iterator | body) =
                 anonRecurse(source, Result{})

source The source expression of the IteratorExp.

body The body expression of the IteratorExp.

iterator The iterator variable of the IteratorExp.

result The result variable of the IterateExp.
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where:

anonRecurse is an invocation-site-specific helper function synthesized by lexical substitution of iterator, body, add, and 
Result in: 

context OclAny
def: anonRecurse(anonSources : Collection(T), anonInit : Result(T)) : Result(T) =
   anonSources->iterate(iterator : T; anonAcc : Result(T) = anonInit |
       if anonAcc->includes(iterator)
       then anonAcc
       else let anonBody : OclAny = body in
              let anonResults : Result(T) = anonAcc->add(iterator) in
              if anonBody.oclIsKindOf(CollectionType)
              then anonRecurse(anonBody.oclAsType(Collection(T)), anonResults)
              else anonRecurse(anonBody.oclAsType(T)->asSet(), anonResults)
              endif
       endif)

where:

T is the element type of the source collection.
Result is 'OrderedSet' if the source collection is ordered, 'Set' otherwise.
add is 'append' if the source collection is ordered, 'including' otherwise.

The anonymous variables 'anonRecurse', 'anonAcc', 'anonInit', 'anonResults', and 'anonSources' are named for exposition 
purposes; they do not form part of the evaluation environment for body.

collect

The Collection of elements that results from applying body to every member of the source set. The result is flattened. 
Notice that this is based on collectNested, which can be of different type depending on the type of source. collectNested 
is defined individually for each subclass of CollectionType.

source->collect (iterator | body) = source->collectNested (iterator | body)->flatten()

collect may have at most one iterator variable.

collectNested 

The Bag of elements which results from applying body to every member of the source collection. The collection specific 
details are described as part of the corresponding collection type. 

collectNested  may have at most one iterator variable.

exists

Results in true if body evaluates to true for any element in the source collection.,
otherwise invalid if body evaluates to invalid for any element in the source collection,
otherwise null if body evaluates to null for any element in the source collection,
otherwise result is false.

source->exists(iterators | body) =
                     source->iterate(iterators; result : Boolean = false | result or body)
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forAll

Results in false if body evaluates to false for any element in the source collection;
otherwise invalid if body evaluates to invalid for any element in the source collection;
otherwise null if body evaluates to null for any element in the source collection;
otherwise result is true.

source->forAll(iterators | body ) = 
                   source->iterate(iterators; result : Boolean = true | result and body)

isUnique

Results in invalid if if body evaluates to invalid for any element in the source collection,
otherwise true if body evaluates to a different, possibly null, value for each element in the source collection;
otherwise result is false.

source->isUnique (iterator | body) = 
    source->collect (iterator | Tuple{iter = Tuple{iterator}, value = body}) 
          ->forAll (x, y | (x.iter <> y.iter) implies (x.value <> y.value))

isUnique may have at most one iterator variable.

one

Results in invalid if there is any element in the source collection for which body is invalid,
otherwise true if there is exactly one element in the source collection for which body is true,
otherwise result is false.

source->one(iterator | body) =
      source->select(iterator | body)->size() = 1

one may have at most one iterator variable.

reject

The subcollection of the source collection for which body is false. The collection specific details are described as part of 
the corresponding collection type.

reject may have at most one iterator variable.

select

The subcollection of the source collection for which body is true. The collection specific details are described as part of 
the corresponding collection type.

select may have at most one iterator variable.

sortedBy

Results in a collection sorted by the value of body values containing all elements of the source collection. The collection 
specific details are described as part of the corresponding collection type. 

sortedBy  may have at most one iterator variable.

11.9.2 Set

The standard iterator expressions with source of type Set(T) are:
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select

The subset of set for which expr is true.
source->select(iterator | body) =
         source->iterate(iterator; result : Set(T) = Set{} |
                          if body then result->including(iterator)
                                  else result
                           endif)

select may have at most one iterator variable.

reject

The subset of the source set for which body is false.

source->reject(iterator | body) =
        source->select(iterator | not body)

reject may have at most one iterator variable.

collectNested

The Bag of elements which results from applying body to every member of the source set.

source->collectNested(iterator | body) =
        source->iterate(iterator; result : Bag(body.type) = Bag{} |
                        result->including(body ) )

collectNested may have at most one iterator variable.

sortedBy

Results in the OrderedSet containing all elements of the source collection. The element for which body has the lowest 
value comes first, and so on. The type of the body expression must have the < operation defined. The < operation must 
return a Boolean value and must be transitive (i.e., if a < b and b < c then a < c).

source->sortedBy(iterator | body) =
    iterate( iterator ; result : OrderedSet(T) : OrderedSet {} |
         if result->isEmpty() then
           result.append(iterator)
         else
           let position : Integer = result->indexOf ( 
                        result->select (item | body (item) > body (iterator)) ->first() )
           in
             result.insertAt(position, iterator)
         endif

sortedBy may have at most one iterator variable.

11.9.3 Bag

The standard iterator expressions with source of type Bag(T) are:

select

The sub-bag of the source bag for which body is true.
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source->select(iterator | body) =
        source->iterate(iterator; result : Bag(T) = Bag{} |
                        if body then result->including(iterator)
                                else result
                        endif)

select may have at most one iterator variable.

reject

The sub-bag of the source bag for which body is false.
source->reject(iterator | body) =
        source->select(iterator | not body)

reject may have at most one iterator variable.

collectNested

The Bag of elements which results from applying body to every member of the source bag.

source->collectNested(iterator | body) =
        source->iterate(iterator; result : Bag(body.type) = Bag{} |
                        result->including(body ) )

collectNested may have at most one iterator variable.

sortedBy

Results in the Sequence containing all elements of the source collection. The element for which body has the lowest value 
comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a 
Boolean value and must be transitive (i.e., if a < b and b < c then a < c).

source->sortedBy(iterator | body) =
    iterate( iterator ; result : Sequence(T) : Sequence {} |
         if result->isEmpty() then
           result.append(iterator)
         else
           let position : Integer = result->indexOf ( 
                        result->select (item | body (item) > body (iterator)) ->first() )
           in
             result.insertAt(position, iterator)
         endif

sortedBy may have at most one iterator variable.

11.9.4 Sequence

The standard iterator expressions with source of type Sequence(T) are:

select(expression : OclExpression) : Sequence(T)

The subsequence of the source sequence for which body is true.
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source->select(iterator | body) =
        source->iterate(iterator; result : Sequence(T) = Sequence{} |
                        if body then result->including(iterator)
                                else result
                        endif)

select may have at most one iterator variable.

reject

The subsequence of the source sequence for which body is false.

source->reject(iterator | body) =
        source->select(iterator | not body)

reject may have at most one iterator variable.

collectNested

The Sequence of elements that results from applying body to every member of the source sequence.

source->collectNested(iterator | body) = 
        source->iterate(iterator; result : Sequence(body.type) = Sequence{} |
                        result->append(body ) )

collectNested may have at most one iterator variable.

sortedBy

Results in the Sequence containing all elements of the source collection. The element for which body has the lowest value 
comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a 
Boolean value and must be transitive (i.e., if a < b and b < c then a < c).

source->sortedBy(iterator | body) =
    iterate( iterator ; result : Sequence(T) : Sequence {} |
         if result->isEmpty() then
           result.append(iterator)
         else
           let position : Integer = result->indexOf ( 
                        result->select (item | body (item) > body (iterator)) ->first() )
           in
             result.insertAt(position, iterator)
         endif

sortedBy may have at most one iterator variable.

11.9.5 OrderedSet

The standard iterator expressions with source of type OrderedSet(T) are:

select(expression : OclExpression) : OrderedSet(T)

The ordered set of the source ordered set for which body is true.
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source->select(iterator | body) =
        source->iterate(iterator; result : OrderedSet(T) = OrderedSet{} |
             if body then result->including(iterator)
                else result
             endif)

select may have at most one iterator variable.

reject (expression : OclExpression) : OrderedSet(T)

The ordered set of the source ordered set for which body is false.
source->reject(iterator | body) =
        source->select(iterator | not body)

reject may have at most one iterator variable.

collectNested (expression : OclExpression) : Sequence(T)

The sequence of elements that results from applying body to every member of the source ordered set.
source->collectNested(iterator | body) =
        source->iterate(iterator; result : Sequence(body.type) = Sequence{} |
            result->append(body ) )

collectNested may have at most one iterator variable.

sortedBy  (expression : OclExpression) : OrderedSet(T)

Results in the ordered set containing all elements of the source collection. The element for which body has the lowest 
value comes first, and so on. The type of the body expression must have the < operation defined. The < operation must 
return a Boolean value and must be transitive (i.e., if a < b and b < c, then a < c).

source->sortedBy(iterator | body) =
    iterate( iterator ; result : OrderedSet(T) : OrderedSet {} |
        if result->isEmpty() then
            result.append(iterator)
       else
           let position : Integer = result->indexOf (
                result->select (item | body (item) > body (iterator)) ->first() )
                in  result.insertAt(position, iterator)
       endif)

sortedBy may have at most one iterator variable.
Object Constraint Language, v2.4        183



184                 Object Constraint Language, v2.4



12 The Use of OCL Expressions in UML Models

This clause describes the various manners in which OCL expressions can be used in UML models. 

12.1 Introduction

In principle, everywhere in the UML specification where the term expression is used, an OCL expression can be used 
(e.g., for invariants, preconditions, and postconditions), but other placements are possible too. The meaning of the value, 
which results from the evaluation of the OCL expression, depends on its placement within the UML model. 

In this specification the structure of an expression, and its evaluation are separated from the usage of the expression. 
Clause 8 (“Abstract Syntax”) defines the structure of an expression. In Clause 9 (“Concrete Syntax”) it was already noted 
that the contents of the name space environment of an OCL expression are fully determined by the placement of the OCL 
expression in the model. In that clause an inherited attribute env was introduced for every production rule in the attribute 
grammar to represent this name space environment.  

This sub clause specifies a number of predefined places where OCL expressions can be used, their associated meaning, 
and the contents of the name space environment. The modeler has to define his/her own meaning if OCL is used at a 
place in the UML model that is not defined in this sub clause.

For every occurrence of an OCL expression three things need to be separated: the placement, the contextual classifier, and 
the self instance of an OCL expression. 

• The placement is the position where the OCL expression is used in the UML model (e.g., as invariant connected to 
class Person). 

• The contextual classifier defines the namespace in which the expression is evaluated. For example, the contextual 
classifier of a precondition is the classifier that is the owner of the operation for which the precondition is defined. 
Visible within the precondition are all model elements that are visible in the contextual classifier. 

• The self instance is the reference to the object that evaluates the expression. It is always an instance of the contextual 
classifier. Note that evaluation of an OCL expression may result in a different value for every instance of the contextual 
classifier.

In the next sub clause a number of placements are stated explicitly. For each, the contextual classifier is defined and well-
formedness rules are given that exactly define the place where the OCL expression is attached to the UML model.

12.2 The ExpressionInOcl Type

Because in the abstract syntax OclExpression is defined recursively, we need a new metaclass to represent the top of the 
abstract syntax tree that represents an OCL expression. This metaclass is called ExpressionInOcl, and it is defined to be a 
subclass of the Expression metaclass from the UML core, as shown in Figure 12.1. In UML  the Expression metaclass has 
an attribute language that may have the value ‘OCL.’ The body attribute contains a text representation of the actual 
expression. The bodyExpression association of ExpressionInOcl is an association to the OCL expression as represented by 
the OCL Abstract syntax metamodel. The body attribute (inherited from Expression) may still be used to store the string 
representation of the OCL expression. The language attribute (also inherited from Expression) has the value ‘OCL.’
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Figure 12.1  - Metaclass ExpressionInOcl added to the UML metamodel

12.2.1 ExpressionInOcl

An expression in OCL is an expression that is written in OCL. The value of the language attribute is therefore always 
equal to ‘OCL.’ 

Associations

12.3 Well-formedness Rules

12.3.1 ExpressionInOcl

[1] This expression is always written in OCL
context ExpressionInOcl
inv: language = ‘OCL’

bodyExpression The bodyExpression is an OclExpression that is the root of the actual OCL expression, 
which is described fully by the OCL abstract syntax metamodel.

contextVariable The ‘self’ variable. The contextual classifier is the type of the ‘self’ variable. 

resultVariable The ‘result’ variable representing the value to be returned by the operation.

parameterVariable The variables representing the owned parameters of the current operation. 

generatedType Types, such as collection types, that are created on demand by OCL to serve as the types of 
OclExpressions in the bodyExpression.
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12.4 Standard Placements of OCL Expressions

This sub clause defines the standard places where OCL expressions may occur, and defines for each case the value for the 
contextual classifier. Note that this list of places is not exhausting, and can be enhanced.

12.4.1 How to Extend the Use of OCL at Other Places

At many places in the UML where an Expression is used, one can write this expression in OCL. To define the use of OCL 
at such a place, the main task is to define what the contextual classifier is. When that is given, the OCL expression is fully 
defined. This sub clause defines a number of often used placements of OCL expressions.

12.5 Definition

A definition constraint is a constraint that is linked to a Classifier. It may only consist of one or more LetExps. The 
variable or function defined by the Let expression can be used in an identical way as an attribute or operation of the 
Classifier. Their visibility is equal to that of a public attribute or operation. The purpose of a definition constraint is to 
define reusable sub-expressions for use in other OCL expressions. 

The placement of a definition constraint in the UML metamodel is shown in Figure 12.2. The following well-formedness 
rule must hold. This rule also defines the value of the contextual Classifier. 

Figure 12.2  - Situation of Ocl expression used as definition or invariant

12.5.1 Well-formedness Rules

 [1] The ExpressionInOcl is a definition constraint if it has the stereotype «definition» (A) and the constraint is attached to 
only one model element (B) and the constraint is attached to a Classifier (C).

context ExpressionInOcl
def: isDefinitionConstraint : Boolean =
                self.constraint.stereotype.name = ‘definition’                         -- A
                and
                self.constraint.constrainedElement->size() = 1                       -- B
                and
                self.constraint.constrainedElement.any(true).oclIsKindOf(Classifier) -- C
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[2] For a definition constraint the contextual classifier is the constrained element.
context ExpressionInOcl
inv: isDefinitionConstraint implies
             contextualClassifier = 
                        self.constraint.constrainedElement.any(true).oclAsType(Classifier)

[3] Inside a definition constraint the use of @pre is not allowed.
context ExpressionInOcl
inv: -- 

12.6 Invariant

An invariant constraint is a constraint that is linked to a Classifier. The purpose of an invariant constraint is to specify 
invariants for the Classifier. An invariant constraint consists of an OCL expression of type Boolean. The expression must 
be true for each instance of the classifier at any moment in time. Only when an instance is executing an operation, this 
does not need to evaluate to true.

The placement of an invariant constraint in the UML metamodel is equal to the placement of a definition constraint, 
which is shown in Figure 12.3. The following well-formedness rule must hold. This rule also defines the value of the 
contextual Classifier.

12.6.1 Well-formedness rules

[1] The constraint has the stereotype «invariant» (A) and the constraint is attached to only one model element (B) the 
constraint is attached to a Classifier (C). The contextual classifier is the constrained element and the type of the OCL 
expression must be Boolean.

context ExpressionInOcl
inv: self.constraint.stereotype.name = ‘invariant’                          -- A
     and
     self.constraint.constrainedElement->size() = 1                         -- B
     and
     self.constraint.constrainedElement.any(true).oclIsKindOf(Classifier)   -- C
     implies
         contextualClassifier =
                   self.constraint.constrainedElement->any(true).oclAsType(Classifier)
         and
         self.bodyExpression.type.name = ‘Boolean’                              

[2] Inside an invariant constraint the use of @pre is not allowed.

context ExpressionInOcl
inv: -- 

12.7 Precondition

A precondition is a constraint that may be linked to an Operation of a Classifier. The purpose of a precondition is to 
specify the conditions that must hold before the operation executes. A precondition consists of an OCL expression of type 
Boolean. The expression must evaluate to true whenever the operation starts executing, but only for the instance that will 
execute the operation.
188                 Object Constraint Language, v2.4



The placement of a precondition in the UML metamodel is shown in Figure 12.4. The following well-formedness rule 
must hold. This rule also defines the value of the contextual Classifier.

Figure 12.3 - An OCL ExpressionInOcl used as a pre- or postcondition

12.7.1 Well-formedness rules

 [1] The Constraint has the stereotype «precondition» (A), and is attached to only one model element (B), and to a 
BehavioralFeature (C), which has an owner (D). The contextual classifier is the owner of the operation to which the 
constraint is attached, and the type of the OCL expression must be Boolean.

context Expression
inv: self.constraint.stereotype.name = ‘precondition’                                 -- A
     and
     self.constraint.constrainedElement->size() = 1                                     -- B
     and
     self.constraint.constrainedElement->any(true).oclIsKindOf(BehavioralFeature)     -- C 
     and
     self.constraint.constrainedElement->any(true)                                     -- D
                                      .oclAsType(BehavioralFeature).owner->size() = 1
     implies
         contextualClassifier =
                          self.constraint.constrainedElement->any(true)
                                                   .oclAsType(BehavioralFeature).owner
         and
         self.bodyExpression.type.name = ‘Boolean’

[2] Inside a precondition constraint the use of @pre is not allowed.

context ExpressionInOcl
inv: -- 

12.7.2 Postcondition

Like a precondition, a postcondition is a constraint that may be linked to an Operation of a Classifier. The purpose of a 
postcondition is to specify the conditions that must hold after the operation executes. A postcondition consists of an OCL 
expression of type Boolean. The expression must evaluate to true at the moment that the operation stops executing, but 
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only for the instance that has just executed the operation. Within an OCL expression used in a postcondition, the "@pre" 
mark can be used to refer to values at precondition time. The variable result refers to the return value of the operation if 
there is any.

The placement of a postcondition in the UML metamodel is equal to the placement of a precondition, which is shown in 
Figure 12.4. The following well-formedness rule must hold. This rule also defines the value of the contextual Classifier.

12.7.3 Well-formedness rules

[1] The Constraint has the stereotype «postcondition» (A), and it is attached to only one model element (B), that is a 
BehavioralFeature (C), which has an owner (D). The contextual classifier is the owner of the operation to which the 
constraint is attached, and the type of the OCL expression must be Boolean.

context Expression
inv: self.constraint.stereotype.name = ‘postcondition’                                -- A
     and
     self.constraint.constrainedElement->size() = 1                                     -- B
     and
     self.constraint.constrainedElement->any(true).oclIsKindOf(BehavioralFeature)     -- C
     and
     self.constraint.constrainedElement->any(true)                                     -- D
                                      .oclAsType(BehavioralFeature).owner->size() = 1
     implies
         contextualClassifier =
              self.constraint.constrainedElement->any().oclAsType(BehavioralFeature).owner
         and
         self.bodyExpression.type.name = ‘Boolean’

12.8 Initial Value Expression

An initial value expression is an expression that may be linked to a Property which may be owned by a Classifier or an 
Association. The type of an OCL expression acting as the initial value of a Property must conform to the OCL type of the 
Property. When the upperbound on the Property multiplicity is one, the OCL type of the Property is the UML type of the 
Property. When the upperbound on the multiplicity is more than one, the OCL type of the Property is a Collection of 
elements whose type is that of the UML type of the Property. The kind of the Collection (Bag, OrderedSet, Sequence, Set) 
is determined by the UML unique and ordered properties of the Property.

The OCL expression is evaluated at the creation time of the instance that owns the attribute for this created instance in the 
case of an initial value for an attribute. In the case of an initial value for an association end, the OCL expression is 
evaluated at the creation time of the instance of the Classifier at the other end(s) of the association.

The placement of an attribute initial value in the UML metamodel is shown in Figure 12.5. The following well-
formedness rule must hold. This rule also defines the value of the contextual Classifier. 

Note - The placement of an initial value of an association end is dependent upon the UML 2.0 metamodel. So are the well-
formedness rules for this case.

12.8.1 Well-formedness rules

[1] The Expression is the initial value of an attribute (A), and the Attribute has an owner (B). The contextual classifier is the 
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owner of the attribute, and the type of the OCL expression must conform to the type of the attribute.

context ExpressionInOcl
inv: self.attribute->notEmpty()                                                      -- A
     and
     self.attribute.owner->size() = 1                                                -- B
     implies
         contextualClassifier = self.attribute.owner
         and
         self.bodyExpression.type.conformsTo(self.attribute.type)

[2] Inside an initial attribute value the use of @pre is not allowed.

context ExpressionInOcl
inv: -- TBD

Figure 12.4  - Expression used to define the initial value of an attribute

12.9 Derived Value Expression

A derived value expression is an expression that may be linked to a Property which may be owned by a Classifier or an 
Association. The type of an OCL expression acting as the derived value of a Property must conform to the OCL type of the 
Property. When the upperbound on the Property multiplicity is one, the OCL type of the Property is the UML type of the 
Property. When the upperbound on the multiplicity is more than one, the OCL type of the Property is a Collection of 
elements whose type is that of the UML type of the Property. The kind of the Collection (Bag, OrderedSet, Sequence, Set) 
is determined by the UML unique and ordered properties of the Property.

A derived value expression is an invariant that states that the value of the attribute or association end must always be 
equal to the value obtained from evaluating the expression.

Note - The placement of a derived value expression is dependent upon the UML 2.0 metamodel. So are the well-formedness 
rules for this case.
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12.10 Operation Body Expression

A body expression is an expression that may be linked to an Operation of a Classifier, that is marked Query operation. An 
OCL expression acting as the body of an operation must conform to the result type of the operation. Evaluating the body 
expression gives the result of the operation at a certain point in time.

Note - The placement of an operation body expression is dependent upon the UML 2.0 metamodel. So are the well-formed-
ness rules for this case.

12.11 Guard

A guard is an expression that may be linked to a Transition in a StateMachine. An OCL expression acting as the guard of 
a transition restricts the transition. An OCL expression acting as value of a guard is of type Boolean. The expression is 
evaluated at the moment that the transition attached to the guard is attempted.

The placement of a guard in the UML metamodel is shown in Figure 12.5. The following well-formedness rule must hold. 
In order to state the rule a number of additional operations are defined. The rule also defines the value of the contextual 
Classifier.

Figure 12.5 - An OCL expression used as a Guard expression

12.11.1 Well-formedness rules

 [1]  The statemachine in which the guard appears must have a context (A), that is a Classifier (B). The contextual classifier is
  the owner of the statemachine, and the type of the OCL expression must be Boolean.

context ExpressionInOcl
inv: not self.guard.transition.getStateMachine().context.oclIsUndefined()         -- A
     and
     self.guard.transition.getStateMachine().context.oclIsKindOf(Classifier)      -- B
     implies
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            self.guard.transition.getStateMachine().context.oclAsType(Classifier) 
       and
       self.bodyExpression.type.name = ‘Boolean’

[2] Inside a guard the use of @pre is not allowed.

context ExpressionInOcl
inv: -- 

12.12 Concrete Syntax of Context Declarations

This sub clause describes the concrete syntax for specifying the context of the different types of usage of OCL 
expressions. It makes use of grammar rules defined in Clause 9 (“Concrete Syntax”). Here too, every production rule is 
associated to the abstract syntax by the type of the attribute ast. However, we must sometimes refer to the abstract syntax 
of the UML to find the right type for each production.

Visibility rules etc. must be defined in the UML metamodel. Here we assume that every classifier has an operation 
visibleElements(), which returns an instance of type Environment, as defined in Clause 9 (“Concrete Syntax”). 

Note - The context declarations as described in this sub clause are not needed when the OCL expressions are attached directly 
to the UML model. This concrete syntax for context declarations is only there to facilitate separate OCL expressions in text 
files.

Because of the assumption that the concrete syntax below is used separate from the UML model, we assume the existence 
of an operation getClassifier() on the UML model that allows us to find a Classifier anywhere in the corresponding 
model. The signature of this operation is defined as follows:

context Model::findClassifier( pathName : Sequence(String) ) : Classifier

The pathName need not be a fully qualified name (it may be), as long as it can uniquely identify the classifier somewhere 
in the UML model. If a classifier name occurs more than once, it needs to be qualified with its owning package 
(recursively) until the qualified name is unique. If more than one classifier is found, the operation returns invalid. The 
variable Model is used to refer to the UML Model. It is used as Model.findClassifier().

Likewise, we assume the existence of an operation getPackage() on the UML model that allows us to find a Package 
anywhere in the corresponding model. The signature of this operation is defined as follows:

context Model::findPackage( pathName : Sequence(String) ) : Package

In this case the pathName needs to be a fully qualified name. 

Note - The rules for the synthesized and inherited attributes associated with the grammar all depend upon the UML 2.0 
metamodel. They cannot be written until this metamodel has been stabilized. Therefore only the grammar rules are given.

12.12.1 packageDeclarationCS

This production rule represents a package declaration.

[A] packageDeclarationCS ::= “package” pathNameCS contextDeclarationCS*
 “endpackage”

[B] packageDeclarationCS ::= contextDeclarationCS*
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12.12.2 contextDeclarationCS

This production rule represents all different context declarations.

[A] contextDeclarationCS ::= propertyContextDeclCS

[B] contextDeclarationCS ::= classifierContextDeclCS

[C] contextDeclarationCS ::= operationContextDeclCS

12.12.3 propertyContextDeclCS

This production rule represents a context declaration for expressions that can be coupled to a property. The path name 
refers to the “owner” of the property, the simple name refers to its name, the type states its type.

propertyContextDeclCS ::= ‘context’ pathNameCS ‘::’ simpleName’:’ typeCS initOrDerValueCS

12.12.4 initOrDerValueCS

This production rule represents an initial or derived value expression.

[A] initOrDerValueCS[1] ::= ‘init’   ‘:’  OclExpression
initOrDerValueCS[2]?

[B] initOrDerValueCS[1] ::= ‘derive’ ‘:’  OclExpression
initOrDerValueCS[2]?

12.12.5 classifierContextDeclCS

This production rule represents a context declaration for expressions that can be coupled to classifiers. The variable 
declaration to the classifier context is 'self' for the A form and explicitly specified for the B form.

[A] classifierContextDeclCS ::= ‘context’ pathNameCS invOrDefCS

[B] classifierContextDeclCS ::= ‘context’ simpleNameCS ':' pathNameCS invOrDefCS

12.12.6 invOrDefCS

This production rule represents an invariant or definition.

[A] invOrDefCS[1] ::= ‘inv’ (simpleNameCS)? ‘:’ OclExpressionCS
invOrDefCS[2]

[B] invOrDefCS[1] ::= (‘static’)? ‘def’ (simpleNameCS)? ‘:’ defExpressionCS
invOrDefCS[2]
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12.12.7 defExpressionCS

This production rule represents a definition expression. The defExpressionCS nonterminal has the purpose of defining 
additional attributes or operations in OCL. They map directly to a UML attribute or operation with a constraint that 
defines the derivation of the attribute or operation result value. Note that VariableDeclarationCS has been defined in 
Clause 9.

[A] defExpressionCS ::= VariableDeclarationCS ‘=’ OclExpression

[B] defExpressionCS ::= operationCS ‘=’ OclExpression

12.12.8 operationContextDeclCS

This production rule represents a context declaration for expressions that can be coupled to an operation.

operationContextDeclCS ::= ‘context’ operationCS prePostOrBodyDeclCS

12.12.9 prePostOrBodyDeclCS

This production rule represents a pre- or postcondition or body expression.

[A] prePostOrBodyDeclCS[1] ::= ‘pre’ (simpleNameCS)? ‘:’ OclExpressionCS
prePostOrBodyDeclCS[2]?

[B] prePostOrBodyDeclCS[1] ::= ‘post’ (simpleNameCS)? ‘:’ OclExpressionCS
prePostOrBodyDeclCS[2]?

[C] prePostOrBodyDeclCS[1] ::= ‘body’ (simpleNameCS)? ‘:’ OclExpressionCS
prePostOrBodyDeclCS[2]?

12.12.10 operationCS

This production rule represents an operation in a context declaration or definition expression.

[A] operationCS ::= pathNameCS ‘::’ simpleNameCS ‘(‘ parametersCS? ‘)’ ‘:’ typeCS? 

[B] operationCS ::= simpleNameCS ‘(‘ parametersCS? ‘)’ ‘:’ typeCS? 

12.12.11 parametersCS

This production rule represents the formal parameters of an operation.

parametersCS[1] ::= VariableDeclarationCS (‘,’ parametersCS[2] )?
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13 The Basic OCL and Essential OCL

This clause describes the connections between the OCL and UML metamodels. 

13.1 Introduction

BasicOCL is the package exposing the minimal OCL required to work with Core::Basic. 

Basic OCL depends on the Core::Basic Package. It references explicitly the following Core::Basic classes: Property, 
Operation, Parameter, TypedElement, Type, Class, DataType, Enumeration, PrimitiveType, and EnumerationLiteral.

EssentialOCL is the package exposing the minimal OCL required to work with EMOF. EssentialOcl depends on the 
EMOF Package. It references explicitly the EMOF classes: Property, Operation, Parameter, TypedElement, Type, Class, 
DataType, Enumeration, PrimitiveType, and EnumerationLiteral. 

EssentialOCL is built from Core::Basic and BasicOcl using package merge with copy semantics in a similar way as 
EMOF is built from Core::Basic. Structurally there is no difference between BasicOCL and EssentialOCL. For this reason 
we provide in this clause a unique set of diagrams that defines the abstract syntax for both packages. 

For convenience, because BasicOCL (respectively EssentialOCL) is - conceptually a subset of the complete OCL 
language for UML superstructure, we will not repeat or redefine here all the class descriptions and the well-formedness 
rules defined in the other clauses. When applicable, all these definitions are to be re-interpreted in the specific context of 
Core::Basic (respectively EMOF). The sub clause “OCL adaptation for meta-modeling” defines specific rules for the re-
interpretation of the “complete” OCL, whereas the “Diagrams” sub clause provides the complete diagrams defining the 
BasicOCL (respectively EssentialOCL) abstract syntax.

13.2 OCL Adaptation for Metamodeling

We provide below a set of rules and conventions that are applied to define BasicOCL (and consequently EssentialOCL) 
from the OCL defined for UML superstructure - called “complete OCL” in this sub clause. 

1. The following metaclasses defined in complete OCL are not part of BasicOCL (and EssentialOCL):

• MessageType

• ElementType

• AssociationClassCallExp

• MessageExp

• StateExp

• UnspecifiedValueExp

Any well-formedness rules defined for these classes are consequently not part of the definition of Basic OCL.

The properties NavigationCallExp::qualifier and NavigationCallExp::navigationSource are suppressed since not
needed in this context.

2. Core::Basic does not contain the intermediate notion of Classifier but uses instead directly the Type notion as the base 
class for the type system. Consequently, any reference to the Classifier class in the complete OCL specification has to 
be re-interpreted as a reference to the Type class. 
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3. The following operations do not form part of Essential OCL:

@pre
^
^^

4. The following names are not reserved or restricted in Essential OCL:

OclMessage
body
context
def
derive
endpackage
init
inv
package
post
pre
static

Note -  It is expected that further revisions of this specification will provide explicitly the complete set of well-formedness 
rules and additional operations that apply to Core::Basic - to replace the lazy re-interpretation statement we are using here.

5. In complete OCL, TupleType has DataType as base type. In BasicOCL Tuple also has Class as base type so that the 
attributes of the tuple can be defined in the same way as in complete OCL - as Property instances.

6. In complete OCL, pre-defined types have pre-defined operations defined in the standard library. However, a 
DataType in Core::Basic cannot define such operations since it inherits from Type (and not from Class). For all data 
types and special types - like VoidType, InvalidType, and AnyType - the following convention is used: in the standard 
library the instance representing the pre-defined type is accompanied with a class instance with the same name that 
holds the operations. An access to an operation of the pre-defined type implies an access to the operation of the 
complementary class instance.

7. The  EMOF Reflection capability is not merged to the metamodel. AnyType plays the role of Object. At instance 
level, reflection is provided by the oclIsKindOf(), oclIsTypeOf(), and oclType() operations.

13.3 Diagrams

The diagrams below completely define the abstract syntax of BasicOCL (respectively EssentialOCL). The classes that are 
not imported from Core::Basic (respectively EMOF) are shown with a transparent fill color.
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Figure 13.1  - Types
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Figure 13.2 - The top container expression

Figure 13.3 - Main Expression Concept
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Figure 13.4 - Feature Property Call expressions

Figure 13.5 - If Expressions

Figure 13.6 - Let Expressions
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Figure 13.7 - Literals

Figure 13.8 - Collection and tuple literals
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Annex A: Semantics

(informative)

This annex formally defines the syntax and semantics of OCL and is organized as follows. Sub clause A.1 defines the 
concept of object models. Object models provide information used as context for OCL expressions and constraints. Sub 
clause A.2 defines the type system of OCL and the set of standard operations. Finally, sub clause A.3 defines the syntax 
and semantics of OCL expressions.

A.1 Object Models

In this sub clause, the notion of an object model is formally defined. An object model provides the context for OCL 
expressions and constraints. A precise understanding of object models is required before a formal definition of OCL 
expressions can be given. Sub clause A.1.1 proceeds with a formal definition of the syntax of object models. The 
semantics of object models is defined in sub clause A.1.2. This sub clause also defines the notion of system states as 
snapshots of a running system.

A.1.1 Syntax of Object Models

In this sub clause, we formally define the syntax of object models. Such a model has the following components:

•  a set of classes

•  a set of attributes for each class

•  a set of operations for each class

•  a set of associations with role names and multiplicities

•  a generalization hierarchy over classes

Additionally, types such as Integer, String, Set(Real) are available for describing types of attributes and operation 
parameters. In the following, each of the model components is considered in detail. The following definitions are 
combined in A.1.1.7, ’Formal Syntax’ to give a complete definition of the syntax of object models. For naming model 
components, we assume in this sub clause an alphabet A and a set of finite, non-empty names N   A+ over alphabet A to 
be given.

A.1.1.1 Types

Types are considered in depth in sub clause A.2. For now, we assume that there is a signature  with T being a 
set of type names, and  being a set of operations over types in T. The set T includes the basic types UnlimitedNatural, 
Integer, Real, Boolean, and String. These are the predefined basic types of OCL. All type domains include an invalid 
value, and ε, a null value, that allow one to operate respectively  with invalid and undefined values. The unlimited natural 
domain includes ∞, the unlimited value. Operations in  include, for example, the usual arithmetic operations +, - , _ , /
, etc. for integers. Furthermore, collection types are available for describing collections of values, for example, 
Set(String), Bag(Integer), and Sequence(Real). Structured values are described by tuple types with named components, for 
example, Tuple(name:String, age:Integer).

 T  =


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A.1.1.2  Classes

The central concept of UML for modeling entities of the problem domain is the class. A class provides a common 
description for a set of objects sharing the same properties.

Definition A.1 (Classes)

The set of classes is a finite set of names  .

Each class   induces an object type tc T having the same name as the class. A value of an object type refers 
to an object of the corresponding class. The main difference between classes and object types is that the interpretation of 
the latter includes a special undefined value and a special invalid value.

Note that for a definition of the semantics of OCL, UML’s distinction between classes and interfaces does not matter. 
OCL specifies constraints for instances of a given interface specification. Whether this specification is stated in the form 
of a class or interface definition makes no difference.

A.1.1.3 Attributes

Attributes are part of a class declaration in UML. Objects are associated with attribute values describing properties of the 
object. An attribute has a name and a type specifying the domain of attribute values.

Definition A.2 (Attributes)

Let  t T be a type. The attributes of a class c  CLASS are defined as a set ATTc of signatures a : tc  t where the 
attribute name a is an element of N , and tc  T is the type of class c. 

All attributes of a class have distinct names. In particular, an attribute name may not be used again to define another 
attribute with a different type.

t, t T : (a : tc tATTc and a : tc  t ATTc) t = t

Attributes with the same name may, however, appear in different classes that are not related by generalization. Details are 
given in sub clause A.1.1.6 where we discuss generalization. The set of attribute names and class names need not be 
disjoint.

A.1.1.4 Operations

Operations are part of a class definition. They are used to describe behavioral properties of objects. The effect of an 
operation may be specified in a declarative way with OCL pre- and postconditions. Sub clause A.3  discusses pre- and 
postconditions in detail. Furthermore, operations performing computations without side effects can be specified with 
OCL. In this case, the computation is determined by an explicit OCL expression. This is also discussed in sub clause A.3. 
Here, we focus on the syntax of operation signatures declaring the interface of user-defined operations. In contrast, other 
kinds of operations which are not explicitly defined by a modeler are, for example, navigation operations derived from 
associations. These are discussed in the next sub clause and in sub clause A.2.

Definition A.3 (Operations)

Let t and t1, . . . , tn be types in T.  Operations of a class c  CLASS with type tc  T are defined by a set OPc of 
signatures  : tc t1· · · tn  t with operation symbols being elements of N.

CLASS N

c CLASS
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The name of an operation is determined by the symbol . The first parameter tc denotes the type of the class instance to 
which the operation is applied. An operation may have any number of parameters but only a single return type. In general, 
UML allows multiple return values. We currently do not support this feature in OCL.

A.1.1.5  Associations

Associations describe structural relationships between classes. Generally, classes may participate in any number of 
associations, and associations may connect two or more classes.

Definition A.4 (Associations)

The set of associations is given by

  i. a finite set of names ASSOC  N, 

The function associates maps each association name as  ASSOC to a finite list c1, . . . , cn of classes participating in 
the association. The number n of participating classes is also called the degree of an association; associations with degree 
n are called n-ary associations. For many problems the use of binary associations is often sufficient. A self-association (or 
recursive association) sa is a binary association where both ends of the association are attached to the same class c such 
that associates (sa) = c, c . The function associates does not have to be injective. Multiple associations over the same set 
of classes are possible.

Role Names

Classes may appear more than once in an association each time playing a different role. For example, in a self-association 
PhoneCall on a class Person we need to distinguish between the person having the role of a caller and another person 
being the callee. Therefore we assign each class participating in an association a unique role name. Role names are also 
important for OCL navigation expressions. A role name of a class is used to determine the navigation path in this kind of 
expression.

Definition A.5 (Role Names)

Let as  ASSOC be an association with associates(as) = c1, . . . , cn. Role names for an association are defined by a 
function

where all role names must be distinct, i.e., 

i, j  {1,. . . ,n} : i  j    ri  rj .

ASSOC CLASS+

 

as  c1, …, cn with (n  2) 
ii. a function associates:

ASSOC N+

 

as  r1, …, rn with (n    2) 
roles :
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The function roles(as) = r1, . . . , rn assigns each class ci for 1 < i < n participating in the association a unique role name 
ri . If role names are omitted in a class diagram, implicit names are constructed in UML by using the name of the class at 
the target end and changing its first letter to lower case. As mentioned above, explicit role names are mandatory for self-
associations.

Additional syntactical constraints are required for ensuring the uniqueness of role names when a class is part of many 
associations. We first define a function participating that gives the set of associations a class participates in.

The following function navends gives the set of all role names reachable (or navigable) from a class over a given 
association.

The set of role names that are reachable from a class along all associations the class participates in can then be 
determined by the following function.

Multiplicities

An association specifies the possible existence of links between objects of associated classes. The number of links that an 
object can be part of is specified with multiplicities. A multiplicity specification in UML can be represented by a set of 
natural numbers.

Definition A.6 (Multiplicities)

Let as ASSOC be an association with associates(as) = c1, . . . , cn. The function multiplicities(as) = M1, . . . , Mn 
assigns each class ci participating in the association a non-empty set Mi  N0 with Mi  {0} for all 1 < i < n. 

The precise meaning of multiplicities is defined as part of the interpretation of object models in sub clause A.1.2.

CLASS P(ASSOC)

 

c  {as | as ASSOC associates(as) = c1, . . . , cn 
participating :

               i . . . , n} : ci = c}

CLASS XASSOC  P(N)

 

     (c, as)  {r | associates(as)  = c1, . . . , cn navends :

                        roles(as) = r1, . . . , rn 
                       i,  j  . . . , n} :(i  j  ci =  crj = r)} 

CLASS P(N)

c  Uasparticipating(c) navends(c, as) 

navends(c) :
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Remark: Aggregation and Composition

Special forms of associations are aggregation and composition. In general, aggregations and compositions impose 
additional restrictions on relationships. An aggregation is a special kind of binary association representing a part-of 
relationship. The aggregate is marked with a hollow diamond at the association end in class diagrams. An aggregation 
implies the constraint that an object cannot be part of itself. Therefore, a link of an aggregation may not connect the same 
object. In case of chained aggregations, the chain may not contain cycles.

An even stronger form of aggregation is composition. The composite is marked with a filled diamond at the association 
end in class diagrams. In addition to the requirements for aggregations, a part may only belong to at most one composite.

These seemingly simple concepts can have quite complex semantic issues [AFGP96, Mot96, Pri97, GR99, HSB99, 
BHS99, BHSOG01]. Here, we are concerned only with syntax. The syntax of aggregations and compositions is very 
similar to associations. Therefore, we do not add an extra concept to our formalism. As a convention, we always use the 
first component in an association for a class playing the role of an aggregate or composite. The semantic restrictions then 
have to be expressed as an explicit constraint. A systematic way for mapping aggregations and compositions to simple 
associations plus OCL constraints is presented in [GR99].

A.1.1.6 Generalization

A generalization is a taxonomic relationship between two classes. This relationship specializes a general class into a more 
specific class. Specialization and generalization are different views of the same concept. Generalization relationships form 
a hierarchy over the set of classes.

Definition A.7 (Generalization Hierarchy)  

Full Descriptor of a Class

A child class implicitly inherits attributes, operations, and associations of its parent classes. The set of properties defined 
in a class together with its inherited properties is called a full descriptor in UML. We can formalize the full descriptor in 
our framework as follows. First, we define a convenience function for collecting all parents of a given class.

The full set of attributes of class c is the set ATT_ c
* containing all inherited attributes and those that are defined directly 

in the class.

              
A generalization hierarchy ≺ is a partial order on the set of classes CLASS.

              
Pairs in ≺ describe generalization relationships between two classes.  For classes c1, c2  CLASS with c1 ≺ c2,     
 the class c1 is called a child class of c2, and c2 is called a parent class of c1.                                 
     
     

CLASS      (CLASS)

 

c  {c  |  c   CLASS   c ≺ c} 



parents :
 

    

ATT* UU
                                      cparents(c)

              ATTc
             c              c              
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We define the set of inherited user-defined operations analogously.

Finally, the set of navigable role names for a class and all of its parents is given as follows.

Definition A.8 (Full Descriptor of a Class)

The full descriptor of a class c  CLASS is a structure FDc = (ATT*
c, OP*

c, navends*(c)) containing all attributes, user-
defined operations, and navigable role names defined for the class and all of its parents.

The UML standard requires that properties of a full descriptor must be distinct. For example, a class may not define an 
attribute that is already defined in one of its parent classes. These constraints are captured more precisely by the following 
well-formedness rules in our framework. Each constraint must hold for each class c  CLASS.

1. Attributes are defined in exactly one class.

2. In a full class descriptor, an operation may only be defined once. The first parameter of an operation signature 
indicates the class in which the operation is defined. The following condition guarantees that each operation in a full 
class descriptor is defined in a single class.

3. Role names are defined in exactly one class.

4. Attribute names and role names must not conflict. This is necessary because in OCL the same notation is used for 
attribute access and navigation by role name. For example, the expression self.x may either be a reference to an 
attribute x or a reference to a role name x.

OP* OPUU
                                  cparents(c)

             OPc
           c          c              

                                                
                                                                       
cparents(c)

         
                                            

         navends*(c) = navends(c)  UUnavends(c) 

 
(a : tc t, a : tc t  ATT*

c) : 

 
      (a = a tctct = t (WF-1)

 
( : tc x x tn t,  :  tc x t1 x x tn t  OP*

c) :  
                                    ( tctc 

(WF-2)

 
c1,c2   parents(c)  U {c}  :

 
      (c1  c2navends(c1) ⋂ navends(c2) = 0) (WF-3)

 
a:  tc t ATT*

c) : r  navends*(c) : :
 
                                                      (a  r 

(WF-4)
208                 Object Constraint Language, v2.4



Note that operations may have the same name as attributes or role names because the concrete syntax of OCL allows us 
to distinguish between these cases. For example, the expression self.age is either an attribute or role name reference, 
but a call to an operation age without parameters is written as self.age().

A.1.1.7 Formal Syntax

We combine the components introduced in the previous sub clause to formally define the syntax of object models.

Definition A.9 (Syntax of Object Models)

The syntax of an object model is a structure.

where

i. CLASS is a set of classes (Definition A.1).

ii. ATTc is a set of operation signatures for functions mapping an object of class c to an associated attribute value 
  (Definition A.2).

iii. OPc is a set of signatures for user-defined operations of a class c (Definition A.3).

iv. ASSOC is a set of association names (Definition A.4).

(a) associates is a function mapping each association name to a list of participating classes (Definition A.4).

(b) roles is a function assigning each end of an association a role name (Definition A.5).

(c) multiplicities is a function assigning each end of an association a multiplicity specification (Definition A.6).

A.1.2 Interpretation of Object Models

In the previous sub clause, the syntax of object models has been defined. An interpretation of object models is presented 
as  follows.

A.1.2.1 Objects

The domain of a class c  CLASS is the set of objects that can be created by this class and all of its child classes. Objects 
are referred to by unique object identifiers. In the following, we will make no conceptual distinction between objects and 
their identifiers. Each object is uniquely determined by its identifier and vice versa. Therefore, the actual representation 
of an object is not important for our purposes.

Definition A.10 (Object Identifiers)

i.  The set of object identifiers of a class c  CLASS is defined by an infinite set oid(c) = { c1 , c2, . . .}

ii. The domain of a class c  CLASS is defined as ICLASS(c) =  U{oid(c) | c  CLASS ^ c  ≼ c}

   M = (CLASS, ATTc, OPc, ASSOC, associates, roles, multiplicities, ≺)       

              
v.  ≺ is a partial order on CLASS reflecting the generalization hierarchy of classes (Definitions A.7 and A.8).
Object Constraint Language, v2.4        209



In the following, we will omit the index for a mapping I when the context is obvious. The concrete scheme for naming 
objects is not important as long as every object can be uniquely identified, i.e., there are no different objects having the 
same name. We sometimes use single letters combined with increasing indexes to name objects if it is clear from the 
context to which class these objects belong.

A.1.2.2 Generalization

The above definition implies that a generalization hierarchy induces a subset relation on the semantic domain of classes. 
The set of object identifiers of a child class is a subset of the set of object identifiers of its parent classes. In other words, 
we have

c1,c2   CLASS : c1 ≺  c2      I(c1)  I(c2)  

From the perspective of programming languages this closely corresponds to the domain-inclusion semantics commonly 
associated with subtyping and inheritance [CW85]. Data models for object-oriented databases such as the generic OODB 
model presented in [AHV95] also assume an inclusion semantics for class extensions. This requirement guarantees two 
fundamental properties of generalizations. First, an object of a child class has (inherits) all the properties of its parent 
classes because it is an instance of the parent classes. Second, this implies that an object of a more specialized class can 
be used anywhere where an object of a more general class is expected (principle of substitutability) because it has at least 
all the properties of the parent classes. In general, the interpretation of classes is pairwise disjoint if two classifiers are not 
related by generalization and do not have a common child.

A.1.2.3  Links

An association describes possible connections between objects of the classes participating in the association. A 
connection is also called a link in UML terminology. The interpretation of an association is a relation describing the set 
of all possible links between objects of the associated classes and their children.

Definition A.11 (Links)

Each association  as  ASSOC with associates(as) =  c1, . . . , cn is interpreted as the Cartesian product of the sets of 
object identifiers of the participating classes: IASSOC(as) = ICLASS(c1) ×· · · × ICLASS(cn). A link denoting a connection 
between objects is an element las  IASSOC(as). 

A.1.2.4 System State

Objects, links, and attribute values constitute the state of a system at a particular moment in time. A system is in different 
states as it changes over time. Therefore, a system state is also called a snapshot of a running system. With respect to 
OCL, we can in many cases concentrate on a single system state given at a discrete point in time. For example, a system 
state provides the complete context for the evaluation of OCL invariants. For pre- and postconditions, however, it is 
necessary to consider two consecutive states.

Definition A.12 (System State)

A system state for a model M is a structure ( M ) = (CLASS, ATT, ASSOC).

i. The finite sets CLASS(c) contain all objects of a class c    CLASS existing in the system state:

CLASS(c)  oid(c).

ii. Functions ATT assign attribute values to each object: ATT(a) : CLASS(c)  I(t) for each

a : tc    t  ATT *c .
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iii. The finite sets ASSOC contain links connecting objects. For each as ASSOC: ASSOC(as) IASSOC(as).
      A link set must satisfy all multiplicity specifications defined for an association (the function i(l) projects

      the ith component of a tuple or list l, whereas the function  projects all but the ith component):

A.2 OCL Types and Operations

OCL is a strongly typed language. A type is assigned to every OCL expression and typing rules determine in which ways 
well-formed expressions can be constructed. In addition to those types introduced by UML models, there are a number of 
predefined OCL types and operations available for use with any UML model. This sub clause formally defines the type 
system of OCL. Types and their domains are fixed, and the abstract syntax and semantics of operations is defined.

Our general approach to defining the type system is as follows. Types are associated with a set of operations. These 
operations describe functions combining or operating on values of the type domains. In our approach, we use a data 
signature  = (T, ) to describe the syntax of types and operations. The semantics of types in T and operations in  is 
defined by a mapping that assigns each type a domain and each operation a function. The definition of the syntax and 
semantics of types and operations will be developed and extended in several steps. At the end of this sub clause, the 
complete set of types is defined in a single data signature.

Sub clause A.2.1 defines the basic types UnlimitedNatural, Integer, Real, Boolean, and String. Enumeration types are 
defined in sub clause A.2.3. Sub clause A.2.4 introduces object types that correspond to classes in a model. Collection 
and tuple types are discussed in sub clause A.2.5. The special types OclAny and OclState are considered in sub clause 
A.2.6. Sub clause A.2.7 introduces subtype relationships forming a type hierarchy. All types and operations are finally 
summarized in a data signature defined in sub clause A.2.8.

A.2.1 Basic Types

Basic types are UnlimitedNatural, Integer, Real, Boolean, and String. The syntax of basic types and their operations is 
defined by a signature B = (TB, B). TB is the set of basic types, B is the set of signatures describing operations over 
basic types.

Definition A.13 (Syntax Of Basic Types)

The set of basic types TB is defined as TB = {UnlimitedNatural, Integer, Real, Boolean, String}. Next we define the 
semantics of basic types by mapping each type to a domain.

Definition A.14 (Semantics Of Basic Types)

Let A* be the set of finite sequences of characters from a finite alphabet A . The semantics of a basic type t  TB is a 
function I mapping each type to a set:

•  I(OclInvalid) = {}

•  I(OclVoid) = {ε,}

•  I(Integer) = ℤ U {ε,}

•  I(Real) = ℝ  U  {ε,}

•  I(Boolean) = { true, false}  U  {ε,}

i l 

i 1  n   l ASSOC as  :

l l ASSOC as  i l  i l =   i multiplicities as  
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•  I(String) = A* U  {ε,}

•  I(UnlimitedNatural) = ℕ U {∞,ε,}.
The basic type UnlimitedNatural represents the set of non-negative integers, Integer represents the set of integers, Real 
the set of real numbers, Boolean the truth values true and false, and String all finite strings over a given alphabet. Each 

domain also contains two special values ε and . ε coresponds to the null value, and , pronounced bottom, corresponds 
to the invalid value. These are motivated in the next sub clause. The UnlimitedNatural domain also includes a special 
value to denote the unlimited natural number.

A.2.1.1 Error Handling

Each domain of a basic type t contains two special values ε and . ε  represents a null or undefined value and an invalid 
value These are useful for the following purposes:

1. An undefined or null value may, for example, be assigned to an attribute of an object. In this case the undefined value 
helps to model the situation where the attribute value is not yet known (for example, the email address of a customer 
is unknown at the time of the first contact, but will be added later) or does not apply to this specific object instance 
(e.g., the customer does not have an email address). This usage of undefined values is well-known in database 
modeling and querying with SQL [Dat90, EN94]), in the Extended ER-Model [Gog94], and in the object 
specification language TROLL light [Her95].

2. An invalid value can signal an error in the evaluation of an expression. An example for an expression that is defined 
by a partial function is the division of integers. The result of a division by zero is undefined. The problems with 
partial functions can be eliminated by including an invalid value  into the domains of types. For all operations we 
can then extend their interpretation to total functions. 

The interpretation of operations is considered strict unless there is an explicit statement in the following. Hence, an 
invalid or null argument value causes an invalid operation result. This ensures the propagation of error conditions.

A.2.1.2 Operations

There are a number of predefined operations on basic types. The set B contains the signatures of these operations. An 
operation signature describes the name, the parameter types, and the result type of an operation.

Definition A.15 (Syntax Of Operations)

The syntax of an operation is defined by a signature  : t1 × · · · × tn  t. The signature contains the operation symbol 
, a list of parameter types t1, . . . , tn  T, and a result type t T.

Table A.1 shows a schema defining most predefined operations over basic types. The left column contains partially 
parameterized signatures in B . The right column specifies variations for the operation symbols or types in the left 
column.

The set of predefined operations includes the usual arithmetic operations +, - , _ , /, etc. for integers and real numbers, 
division (div) and modulo (mod) of integers, sign manipulation ( - , abs), conversion of Real values to Integer values 
(floor, round), and comparison operations (<, >, < , > ).

Operations for equality and inequality are presented later in sub clause A.2.2, since they apply to all types. Boolean 
values can be combined in different ways (and, or, xor, implies), and they can be negated (not). For strings the length of 
a string (size) can be determined, a string can be projected to a substring, and two strings can be concatenated (concat). 
Finally, assuming a standard alphabet like ASCII or Unicode, case translations are possible with toUpperCase and 
toLowerCase.
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Some operation symbols (such as + and -) are overloaded, that is there are signatures having the same operation symbol 
but different parameters (concerning number or type) and possibly different result types. Thus in general, the full 
argument list has to be considered in order to identify a signature unambiguously. 

The operations in Table A.1 all have at least one parameter. There is another set of operations in  B that do not have 
parameters. These operations are used to produce constant values of basic types. For example, the integer value 12 can be 
generated by the operation 12 :  Integer. Similar operations exist for the other basic types. For each value, there is an 
operation with no parameters and an operation symbol that corresponds to the common notational representation of this 
value.

Table A.1 - - Schema for operations on basic types

Signature Schema parameters

 : UnlimitedNatural X UnlimitedNatural 
UnlimitedNatural

{+,*,max, min}

 : Integer X t Integer
t X Integer Integer

{+,-,*,max, min}

t  {UnlimitedNatural, Integer}

 : Real X t Real
t X Real Real

{+,-,*,max, min}

t  {UnlimitedNatural, Integer, Real}

 : t X t t {div, mod}
t  {UnlimitedNatural, Integer}

 / : t1  X t2  Real t1, t2  {UnlimitedNatural, Integer, Real}

 - : t  t t  {Integer, Real}

abs: t  t t  {UnlimitedNatural, Integer, Real}

floor: t  Integer t  {UnlimitedNatural, Integer, Real}

round: t  Integer t  {UnlimitedNatural, Integer, Real}

 : t1 X t2  Boolean {<, >, <, >}

t1, t2  {UnlimitedNatural, Integer, Real, String }

 : Boolean X Boolean Boolean {and, or, xor, implies}

not: Boolean Boolean

size: String Integer

concat: String X String String

toUpperCase String String

toLowerCase String String

substring: String X Integer X Integer String

toString t String t  {UnlimitedNatural, Integer, Real, String, 
Boolean}
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A.2.1.3 Semantics of Operations

Definition A.16 (Semantics of Operations)

The semantics of an operation with signature  : t1 × · · · × tn  t is a total function I(: t1 × · · · × tn  t) :
I(t1) × · · · × I(tn)  I(t).

When we refer to an operation, we usually omit the specification of the parameter and result types and only use the 
operation symbol if the full signature can be derived from the context. 

The next example shows the interpretation of the operation + for adding two integers. The operation has two arguments 
i1, i2  I(Integer). This example also demonstrates the strict evaluation semantics for undefined arguments.

We can define the semantics of the other operations in Table A.1 analogously. The usual semantics of the Boolean 
operations and, or, xor, implies, and not, is extended for dealing with undefined argument values. Table A.2 shows the 
interpretation of Boolean operations following the proposal in [CKM+99] based on three-valued logic. Since the 
semantics of the other basic operations for UnlimitedNatural, Integer, Real, and String values is rather obvious, we will 
not further elaborate on them here.      

Table A.2 -  - Semantics of Boolean operations

b1 b2 b1 and b2 b1 or b2 b1 xor b2 b1 implies b2 not b1

false false false false false true true

false true false true true true true

true false false true true false false

true true true true false true false

false ε false ε ε true true

true ε ε true ε ε false

false  false   true true

true   true   false

ε false false ε ε ε ε

ε true ε true ε true ε

ε ε ε ε ε ε ε

ε      ε

 false false    

 true  true  true 

 orε     

i1 + i2     if i1      and i2    ,

 

               otherwise



 
      I(+)(i1, i2) =
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A.2.2 Common Operations On All Types

At this point, we introduce some operations that are defined on all types (including those that are defined in subsequent 
sub clauses). The equality of values of the same type can be checked with the operation =t: t × t  Boolean. Furthermore, 
the semantics of =t is defined to be strict. For two values v1, v2  I(t), we have

A test for inequality t: t × t  Boolean can be defined analogously. It is also useful to have an operation that allows one 
to check whether an arbitrary value is invalid or undefined. This can be done with the operations oclIsInvalidt : t  
Boolean and oclIsUndefinedt : t  Boolean for any type t  T.  The semantics of these operations is given for any v  
I(t) by:

I(oclIsInvalidt)(v) = (v =  )

I(oclIsUndefinedt)(v) = (v = ) ∪  (v = ε)

Table A.3 -  - Additional semantics of unlimited natural comparisons

v1 v2 v1 = v2 v1 <> v2 v1 < v2 v1 < v2 v1 >  v2 v1 > v2

a b a = b a <> b a < b a < b a >  b a > b

a ∞ false true true true false false

∞ b false true false false true true

∞ ∞ true false false true true false

Table A.4 -  - Additional semantics of unlimited natural monadic operations

v abs(v) toInteger(v)

a a a

∞ ∞ 

Table A.5 -  - Additional semantics of unlimited natural diadic operations

v1 v2 v1 + v2 v1 * v2 v1 / v2 mod(v1,v2) max(v1,v2) min(v1,v2)

a b a + b a * b a / b mod(a,b) max(a,b) min(a,b)

a ∞     ∞ 

∞ b     ∞ 

∞ ∞     ∞ ∞

I =t( ) v1 v2( )

true if v1 v2=  and v1   and v2 

 if v1 =  or v2 =

false otherwise








=
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A.2.3 Enumeration Types

Enumeration types are user-defined types. An enumeration type is defined by specifying a name and a set of literals. An 
enumeration value is one of the literals used for its type definition. The syntax of enumeration types and their operations 
is defined by a signature  E = (TE, E). TE is the set of enumeration types and E the set of signatures describing the 
operations on enumeration types.

Definition A.17 (Syntax Of Enumeration Types)

An enumeration type t  TE is associated with a finite non-empty set of enumeration literals by a function literals
(t) = {e1t , . . . , ent}.

An enumeration type is interpreted by the set of literals used for its declaration.

Definition A.18 (Semantics Of Enumeration Types)

The semantics of an enumeration type t  TE is a function I(t) = literals(t) U {ε,}.

A.2.3.1 Operations

There is only a small number of operations defined on enumeration types: the test for equality or inequality of two 
enumeration values. The syntax and semantics of these general operations was defined in sub clause A.2.2 and applies to 
enumeration types as well. 

In addition, the operation allInstancest :  Set(t) is defined for each t  TE to return the set of all literals of the 
enumeration:

t  TE : I(allInstancest()) = literals(t) 

A.2.4 Object Types

A central part of a UML model are classes that describe the structure of objects in a system. For each class, we define a 
corresponding object type describing the set of possible object instances. The syntax of object types and their operations 
is defined by a signature C = (TC, C). TC is the set of object types, and C is the set of signatures describing operations 
on object types.

Definition A.19 (Syntax Of Object Types)

Let M be a model with a set CLASS of class names. The set TC of object types is defined such that for each class c  
CLASS there is a type t  TC having the same name as the class c.

We define the following two functions for mapping a class to its type and vice versa.

typeOf : CLASS  TC

classOf : TC  CLASS

The interpretation of classes is used for defining the semantics of object types. The set of object identifiers ICLASS(c) was 
introduced in “Definition A.10 (Object Identifiers)” on page 209.

Definition A.20 (Semantics Of Object Types)

The semantics of an object type t  TC  with classOf(t) = c is defined as I(t) = ICLASS(c)  U {ε,}.
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In summary, the domain of an object type is the set of object identifiers defined for the class and its children. The 
undefined null value that is only available with the type – not the class – allows us to work with values not referring to 
any existing object. This is useful, for example, when we have a navigation expression pointing to a class with 
multiplicity 0..1. The result of the navigation expression is a value referring to the actual object only if a target object 
exists. Otherwise, the result is the invalid value.

A.2.4.1 Operations

There are four different kinds of operations that are specific to object types:

1. Predefined operations: These are operations that are implicitly defined in OCL for all object types.

2. Attribute operations: An attribute operation allows access to the attribute value of an object in a given system state.

3. Object operations: A class may have operations that do not have side effects. These operations are marked in the 
UML model with the tag isQuery. In general, OCL expressions could be used to define object operations. The 
semantics of an object operation is therefore given by the semantics of the associated OCL expression.

4. Navigation operations: An object may be connected to other objects via association links. A navigation expression 
allows one to follow these links and to retrieve connected objects.

A.2.4.2 Predefined Operations

For all classes c  CLASS with object type tc = typeOf(c) the operations

allInstancestc :  Set(tc)

are in C . The semantics is defined as

I(allInstancestc : Set(tc )) = CLASS(c).

This interpretation of allInstances is safe in the sense that its result is always limited to a finite set. The extension of a 
class is always a finite set of objects.

A.2.4.3 Attribute Operations

Attribute operations are declared in a model specification by the set ATT c for each class c. The set contains signatures 
a : tc  t with a being the name of an attribute defined in the class c. The type of the attribute is t. All attribute operations 
in ATTc are elements of C. The semantics of an attribute operation is a function mapping an object identifier to a value 
of the attribute domain. An attribute value depends on the current system state.

Definition A.21 (Semantics of Attribute Operations)

An attribute signature a : tc  t in C is interpreted by an attribute value function IATT(a : tc  t) : I(tc)  I(t) mapping 
objects of class c to a value of type t.

Note that attribute functions are defined for all possible objects. The attempt to access an attribute of a non-existent object 
results in the invalid value.

 

      otherwise 



 
      IATT(a : tc t)(c) 

     

ATT(a)(c)      if c  CLASS(c), 
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A.2.4.4 Object Operations

Object operations are declared in a model specification. For side-effect free operations the computation can often be 
described with an OCL expression. The semantics of a side-effect free object operation can then be given by the 
semantics of the OCL expression associated with the operation. We give a semantics for object operations in sub clause 
A.3 when OCL expressions are introduced.

A.2.4.5 Navigation Operations

A fundamental concept of OCL is navigation along associations. Navigation operations start from an object of a source 
class and retrieve all connected objects of a target class. In general, every n-ary association induces a total of n  (n - 1) 
directed navigation operations, because OCL navigation operations only consider two classes of an association at a time. 
For defining the set of navigation operations of a given class, we have to consider all associations the class is 
participating in. A corresponding function named participating was defined in “Definition A.5 (Role Names)” on 
page 205.

Definition A.22 (Syntax of Navigation Operations)

Let M be a model

M = (CLASS, ATT c, OPc, ASSOC, associates, roles, multiplicities, ≺ ).

The set nav(c) of navigation operations for a class c  CLASS is defined such that for each association as  
participating(c) with associates(as) = c1, . . . , cn, roles(as) = r1, . . . ,rn, and multiplicities(as) = M1, . . . , Mn the 
following signatures are in nav(c).

For all i, j  {1, . . . , n} with i j, ci = c, tci = typeOf(ci), and tcj = typeOf(cj)

i. if n = 2 and Mj  - {0,1} =  then rj (as;ri) : tci  tcj  nav(c),

ii. if n > 2 or Mj  -  {0,1}  =  then rj (as;ri) : tci Set tcj  nav(c).

All navigation operations are elements of C.

As discussed in sub clause A.1, we use unique role names instead of class names for navigation operations in order to 
avoid ambiguities. The index of the navigation operation name specifies the association to be navigated along as well as 
the source role name of the navigation path. The result type of a navigation over binary associations is the type of the 
target class if the multiplicity of the target is given as 0..1 or 1 (i). All other multiplicities allow an object of the 
source class to be linked with multiple objects of the target class. Therefore, we need a set type to represent the navigation 
result (ii). Non-binary associations always induce set-valued results since a multiplicity at the target end is interpreted in 
terms of all source objects. However, for a navigation operation, only a single source object is considered.

Navigation operations are interpreted by navigation functions. Such a function has the effect of first selecting all those 
links of an association where the source object occurs in the link component corresponding to the role of the source class. 
The resulting links are then projected onto those objects that correspond to the role of the target class.

Definition A.23 (Semantics of Navigation Operations)

The set of objects of class cj linked to an object ci via association as is defined as

L(as)(c i) = {c j |  (c1, . . . , c i, . . . , c j , . . . , c n )  CLASS(c)}
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The semantics of operations in nav(c) is then defined as

          ii.   I(rj (as;ri) : tci  Set(tcj))(ci) = L(as)(ci).

A.2.5 Collection and Tuple Types

We call a type that allows the aggregation of several values into a single value a complex type. OCL provides the 
complex types Set(t), Sequence(t), and Bag(t) for describing collections of values of type t. There is also a supertype 
Collection(t) that describes common properties of these types. The OCL collection types are homogeneous in the sense 
that all elements of a collection must be of the same type t. This restriction is slightly relaxed by the substitution rule for 
subtypes in OCL (see sub clause A.2.7). The rule says that the actual elements of a collection must have a type that is a 
subtype of the declared element type. For example, a Set(Person) may contain elements of type Customer or Employee.

A.2.5.1 Syntax and Semantics

Since complex types are parameterized types, we define their syntax recursively by means of type expressions.

Definition A.24 (Type Expressions)

Let Tˆ be a set of types and l1, . . . , ln  N a set of disjoint names. The set of type expressions TExpr(Tˆ) over ^ T is

defined as follows.

i. If t ^ T then t  TExpr( ^ T).

ii. If t  TExpr( ^ T) then Set(t), Sequence(t), Bag(t)  TExpr( ^ T).

iii.If t  TExpr( ^ T) then Collection(t)  TExpr( ^ T).

iv. If t1, . . . , tn  TExpr( ^ T) then Tuple(l1 : t1, . . . , ln : tn)  TExpr( ^ T).

The definition says that every type t  ^ T can be used as an element type for constructing a set, sequence, bag, or 
collection type. The components of a tuple type are marked with labels l1, . . . , ln . Complex types may again be used as 
element types for constructing other complex types. The recursive definition allows unlimited nesting of type expressions.

For the definition of the semantics of type expressions we make the following conventions. Let F (S) denote the set of all 
finite subsets of a given set S, S* is the set of all finite sequences over S, and B (S) is the set of all finite multisets (bags) 
over S.

Definition A.25 (Semantics of Type Expressions)

Let ^ T be a set of types where the domain of each t ^ T is I(t). The semantics of type expressions TExpr( ^ T) over ^ T 
is defined for all t ^ T as follows.

i. I(t) is defined as given.

ii. I(Set(t)) = F (I(t)) U {
    I(Sequence(t)) = (I(t))* U {

 otherwise 



 
     i.    I(rj(as,ri) : tci tcj)(ci) =

     

(cj)      if cj  L(as)(ci), 
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    I(Bag(t)) = B (I(t)) U {

iii. I(Collection(t)) = I(Set(t)) U I(Sequence(t))  U I(Bag(t)).

iv. I(Tuple(l1 : t1, . . . , ln : tn)) = I(t1) x . . . x I(tn)  U { 

In this definition, we observe that the interpretation of the type Collection(t) subsumes the semantics of the set, sequence, 
and bag type. In OCL, the collection type is described as a supertype of Set(t), Sequence(t), and Bag(t). This construction 
greatly simplifies the definition of operations having a similar semantics for each of the concrete collection types. Instead 
of explicitly repeating these operations for each collection type, they are defined once for Collection(t). Examples for 
operations that are “inherited” in this way are the size and includes operations that determine the number of elements in 
a collection or test for the presence of an element in a collection, respectively.

A.2.5.2 Operations

A.2.5.3 Constructors

The most obvious way to create a collection value is by explicitly enumerating its element values. We therefore define a 
set of generic operations that allow us to construct sets, sequences, and bags from an enumeration of element values. For 
example, the set {1; 2; 5} can be described in OCL by the expression Set {1,2,5}, the list {1; 2; 5} by Sequence 
{1,2,5}, and the bag {{2; 2; 7}} by Bag {2,2,7}. A shorthand notation for collections containing integer intervals 
can be used by specifying lower and upper bounds of the interval. For example, the expression Sequence {3..6} 
denotes the sequence {3; 4; 5; 6}. This is only syntactic sugar because the same collection can be described by explicitly 
enumerating all values of the interval.

Operations for constructing collection values by enumerating their element values are called constructors. For types t  
TExpr( ^ T) constructors in TExpr( ^ T) are defined below. A parameter list t x . . . x t denotes n (n > 0) parameters of the 
same type t. We define constructors mkSett, mkSequencet, and mkBagt not only for any type t but also for any finite 
number n of parameters.

•  mkSett : t x . . . x t  Set(t)

•  mkSequencet : t x . . . x t  Sequence(t)

•  mkBagt : t x . . . x t  Bag(t)

The semantics of constructors is defined for values v1, . . . , vn  I(t) by the following functions.

•  I(mkSett)(v1, . . . , vn) = {v1, . . . , vn}

•  I(mkSequencet) (v1, . . . , vn) = v1, . . . , vn

•  I(mkBagt)(v1, . . . , vn) = {{v1, . . . , vn}}

A tuple constructor in OCL specifies values and labels for all components, for example, Tuple{number:3, 
fruit:’apple’, flag:true}. A constructor for a tuple with component types t1, . . . , tn  TExpr( ^ T) (n > 1) is 
given in abstract syntax by the following operation.

•  mkTuple : l1 : t1 x . . . x  ln : tn  Tuple(l1 : t1, . . . , ln : tn)

The semantics of tuple constructors is defined for values vi  I(ti) with i = 1, . . . , n by the following function.

•  I(mkTuple)(l1 : v1, . . . , ln : vn) = (v1, . . . , vn)
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Note that constructors having element values as arguments are deliberately defined not to be strict. A collection value 
therefore may contain undefined null values while still being well defined.

A.2.5.4 Collection Operations

The definition of operations of collection types comprises the set of all predefined collection operations. Operations 
common to the types Set(t), Sequence(t), and Bag(t) are defined for the supertype Collection(t). Table A.3 shows the 
operation schema for these operations. For all t  TExpr( ^ T), the signatures resulting from instantiating the schema are 
included 
in TExpr( ^ T) . The right column of the table illustrates the intended set-theoretic interpretation. For this purpose, C, C, 
C2 are values of type Collection(t), and v is a value of type t.

The operation schema in Table A.3 can be applied to sets (sequences, bags) by substituting Set(t) (Sequence(t), Bag(t)) for 
all occurrences of type Collection(t). A semantics for the operations in Table A.3 can be easily defined for each of the 
concrete collection types Set(t), Sequence(t), and Bag(t). The semantics for the operations of Collection(t) can then be 
reduced to one of the three cases of the concrete types because every collection type is either a set, a sequence, or a bag. 
Consider, for example, the operation count : Set(t) x t  Integer that counts the number of occurrences of an element v in 
a set s. The semantics of count is:

Note that count is not strict. A set may contain the undefined null value so that the result of count is 1 if the null value is 
passed as the second argument, for example, count({ε}, ε) = 1 and count({1}, ε) = 0.

For bags (and very similar for sequences), the meaning of count is

Table A.6 -  - Operations for type Collection(t)

Signature Semantics

size: Collection(t) Integer |C|

count: Collection(t)  x  t Integer |C  {v} |

includes: Collection(t)  x  t Boolean v C
excludes: Collection(t)  x  t Boolean

includesAll: Collection(t)  x  Collectiont x Boolean C2 C1

excludesAll: Collection(t)  x  Collectiont x Boolean C2 C1 = 

isEmpty Collection(t) Boolean C = 

notEmpty Collection(t) Boolean C  

sum: Collection(t) t   c1

   i=1

 c

1   if v s,

 

2   if    



 

  I(count) : Set(t) x t Integer)(s,v) =     

  if  s  

v s    
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I(count : Bag)(t) x t   Integer)({{v1, . . . , v n}}, v)

As explained before, the semantics of count for values of type Collection(t) can now be defined in terms of the semantics 
of count for sets, sequences, and bags.

I(count : Collection)(t) x t   Integer)(c,v)

A.2.5.5 Set Operations

Operations on sets include the operations listed in Table A.6 -. These are inherited from Collection(t). Operations that are 
specific to sets are shown in Table A.4 where S, S1, S2 are values of type Set(t), B is a value of type Bag(t) and v is a 
value of type t.

Note that the semantics of the operation as Sequence is nondeterministic. Any sequence containing only the elements of 
the source set (in arbitrary order) satisfies the operation specification in OCL.

Table A.7 - - Operations for type Set(t)

Signature Semantics

union: Set(t) x Set(t) Set(t) S1 U S2

union: Set(t) x Bag(t) Bag(t) S U B

intersection: Set(t) x Set(t) Set(t) S1 ∩ S2

intersection: Set(t) x Bag(t) Set(t) S ∩ B

-: Set(t) x Set(t) Set(t) S1 - S2

symmetricDifference: Set(t) x Set(t) Set(t) (S1 U S2) - (S1 ∩ S2)

including: Set(t) x t Set(t) S U {v}

excluding: Set(t) x t Set(t) S - {v}

asSequence: Set(t) x t Sequence(t)

asBag: Set(t) Bag(t)

 

I(count)({{v2, . . ., vn}},v)         if n > 0 and v1   v,



 

     

0                                               if n = 0, 

=

I(count)({{v2, . . ., vn}},v) + 1   if n > 0 and v1  v,

 

 

     

I(count) : Bag(t) x t  Integer)(c,v)                       if c  I(Bag(t)),

otherwise.

=

I(count) : Set(t) x t  Integer)(c,v)                       if c  I(Set(t)),

I(count) : Sequence(t) x t  Integer)(c,v)             if c  I(Sequence(t)),
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A.2.5.6 Bag Operations

Operations for bags are shown in Table A.8 -, the operation asSequence is nondeterministic also for bags. 

A.2.5.7 Sequence Operations

Sequence operations are displayed in Table A.9 -. The intended semantics again is shown in the right column of the table. 
S, S1, S2 are sequences occurring as argument values, v is a value of type t, and i, j are arguments of type Integer. The 
length of sequence S is n. The operator  denotes the concatenation of lists, i(S) projects the ith element of a sequence 
S, and i,j (S) results in a subsequence of S starting with the ith element up to and including the jth element. The result is 
 if an index is out of range. S  - vproduces a sequence equal to S but with all elements equal to v removed. Note that 
the operations append and including are also defined identically in the OCL standard.

Table A.8 - - Operations for type Bag(t)

Signature Semantics

union: Bag(t) x Bag(t) Bag(t) B1 U B2

union: Bag(t) x Set(t) Bag(t) B U S

intersection: Bag(t) x Bag(t) Bag(t) B1 ∩ B2

intersection: Bag(t) x Set(t) Set(t) B ∩ S

including: Bag(t) x t Bag(t) B U {{v}}

excluding: Bag(t) x t Bag(t) B - {{v}}

asSequence: Bag(t) x t Sequence(t)

asSet: Bag(t) Set(t)

Table A.9 - - Operations for type Sequence(t)

Signature Semantics

union: Sequence(t) x Sequence(t) Sequence(t) S1 o S2

append: Sequence(t) x t Sequence(t) S o e

prepend: Sequence(t) x t Sequence(t) eo S 

subSequence: Sequence(t) x Integer x Integer Sequence(t) i,j (S)

at: Sequence(t) x Integer t i (S)

first: Sequence(t) t 1(S)

last: Sequence(t) t n (S)

including: Sequence(t) x t Sequence(t) S o e

excluding: Sequence(t) x t Sequence(t) S - e

asSet: Sequence(t)  Set(t)

asBag: Sequence(t) Bag(t)
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A.2.5.8 Flattening Of Collections

Type expressions as introduced in Definition A.24 allow arbitrarily deep nested collection types. We pursue the following 
approach for giving a precise meaning to collection flattening. First, we keep nested collection types because they not 
only make the type system more orthogonal, but they are also necessary for describing the input of the flattening process. 
Second, we define flattening by means of an explicit function making the effect of the flattening process clear. There may 
be a shorthand notation omitting the flatten operation in concrete syntax that would expand in abstract syntax to an 
expression with an explicit flattening function.

Flattening in OCL does apply to all collection types. We have to consider all possible combinations first. Table A.10 - 
shows all possibilities for combining Set, Bag, and Sequence into a nested collection type. For each of the different cases, 
the collection type resulting from flattening is shown in the right column. Note that the element type t can be any type. In 
particular, if t is also a collection type the indicated rules for flattening can be applied recursively until the element type 
of the result is a non-collection type.

A signature schema for a flatten operation that removes one level of nesting can be defined as

flatten : C1(C2(t))  C1(t)

where C1 and C2 denote any collection type name Set, Sequence, or Bag. The meaning of the flatten operations can be 
defined by the following generic iterate expression. The semantics of OCL iterate expressions is defined in sub clause 
A.3.1.2.

<collection-of-type-C1(C2(t))>->iterate(e1 : C2(t);
acc1 : C1(t) = C1 {} |
e1->iterate(v : t;

acc2 : C1(t) = acc1 |
acc2->including(v)))

The following example shows how this expression schema is instantiated for a bag of sets of integers, that is, C1 = Bag, 
C2 = Set, and t = Integer. The result of flattening the value Bag {Set {3,2}, Set {1,2,4} is Bag {1,2,2,3,4}.

Bag{Set{3,2}, Set{1,2,4} ->iterate(e1 : Set(Integer);
acc1 : Bag(Integer) = Bag {} |
e1->iterate(v : Integer;

acc2 : Bag(Integer) = acc1 |

Table A.10 - - Flattening of nested collections

Nested collection type Type after flattening

Set(Sequence(t)) Set(t)

Set(Set(t)) Set(t)

Set(Bag(t)) Set(t)

Bag(Sequence(t)) Bag(t)

Bag(Set(t)) Bag(t)

Bag(Bag(t)) Bag(t)

Sequence(Sequence(t)) Sequence(t)

Sequence(Set(t)) Sequence(t)

Sequence(Bag(t)) Sequence(t)
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acc2->including(v)))

It is important to note that flattening sequences of sets and bags (see the last two rows in Table A.10 -) is potentially 
nondeterministic. For these two cases, the flatten operation would have to map each element of the (multi-) set to a 
distinct position in the resulting sequence, thus imposing an order on the elements that did not exist in the first place. 
Since there are types (e.g., object types) that do not define an order on their domain elements, there is no obvious 
mapping for these types. Fortunately, these problematic cases do not occur in standard navigation expressions. 
Furthermore, these kinds of collections can be flattened if the criteria for ordering the elements is explicitly specified.

A.2.5.9 Tuple Operations

An essential operation for tuple types is the projection of a tuple value onto one of its components. An element of a tuple 
with labeled components can be accessed by specifying its label.

•  elementli : Tuple(l1 : t1, . . . , li : ti, . . . , ln : tn )   ti

•  I(elementli : Tuple(l1 : t1, . . . , li : ti, . . . , ln : tn )  ti)(v1, . . . , vi, . . . , vn) = vi

A.2.6 Special Types

Special types in OCL that do not fit into the categories discussed so far are OclAny, OclState, and OclVoid.

•  OclAny is the supertype of all other types except for the collection types. The exception has been introduced in UML 
because it considerably simplifies the type system [CKM+99]. A simple set inclusion semantics for subtype relation-
ships as described in the next sub section would not be possible due to cyclic domain definitions if OclAny were the 
supertype of Set(OclAny).

•  OclState is a type very similar to an enumeration type. It is only used in the operation oclIsInState for referring to state 
names in a state machine. There are no operations defined on this type. OclState is therefore not treated specially.

•  OclVoid is the subtype of types other than OclVoid and OclInvalid. The only value of this type is null, the undefined 
value. Notice that there is no problem with cyclic domain definitions as ε  is an instance of every type other thanOclIn-
valid.

•  OclInvalid is the subtype of all other types. The only value of this type is invalid, the invalid value. Notice that there is 
no problem with cyclic domain definitions as  is an instance of every type.

Definition A.26 (Special Types)

The set of special types is TS = {OclAny, OclVoid, OclInvalid}.

Let  be the set of basic, enumeration, and object types . The domain of OclAny is given as

.

The domain of OclVoid is I(OclVoid) = {ε,}.

The domain of OclInvalid is I(OclInvalid) = {}.

T̂ T̂ TB TE TC =

I OclAny( ) I t( )

t T̂
 

 
 

 { , }=
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Operations on OclAny include equality (=) and inequality (<>) that already have been defined for all types in sub clause 
A.2.2. The operations oclIsKindOf, oclIsTypeOf, and oclAsType expect a type as argument. We define them as part of the 
OCL expression syntax in the next sub-clause. The operation oclIsNew is only allowed in postconditions and will be 
discussed in sub clause A.3.2.

For OclVoid and OclInvalid, the constant operation oclIsUndefined :  Boolean results in the true value, and for 
OclInvalid, the constant operation oclIsInvalid :  Boolean results in the true value. The semantics is given by I(OclVoid) 
= {ε,} and  I(OclInvalid) = .

A.2.7 Type Hierarchy

The type system of OCL supports inclusion polymorphism by introducing the concept of a type hierarchy. The type 
hierarchy is used to define the notion of type conformance. Type conformance is a relationship between two types, 
expressed by the conformsTo ( ) operation from the abstract syntax metamodel. A valid OCL expression is an expression 
in which all the types conform. The consequence of type conformance can be loosely stated as: a value of a conforming 
type B may be used wherever a value of type A is required.

The type hierarchy reflects the subtype/supertype relationship between types. The following relationships are defined in 
OCL.

1. UnlimitedNatural is a subtype of Integer.

2. Integer is a subtype of Real.

3. All types, except for the collection and tuple types, are subtypes of OclAny.

4. Set(t), Sequence(t), and Bag(t) are subtypes of Collection(t).

5. OclVoid is a subtype of all types other than OclVoid and OclInvalid.

6. OclInvalid is a subtype of all other types.

7. The hierarchy of types introduced by UML model elements mirrors the generalization hierarchy in the UML model.

Type conformance is a relation that is identical to the subtype relation introduced by the type hierarchy. The relation is 
reflexive and transitive.

Definition A.27 (Type Hierarchy)

Let T be a set of types and TC a set of object types with TC _ T.  The relation _ is a partial order on T and is called the 
type hierarchy over T.  The type hierarchy is defined for all t; t0; t00 2 T and all tc; t0 c 2 TC; n; m 2 N as follows:

i. < is (a) reflexive, (b) transitive, and (c) antisymmetric:

(a) t < t

(b) t” < t’ ^ t’ < t   t” < t

(c) t” < t’ ^ t < t   t= t’

ii. UnlimitedNatural < Integer.

iii. Integer < Real.

iv. t < OclAny for all t  (TB U TE U TC).

v. OclVoid < t.
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vi. OclInvalid < OclVoid.

vii. Set(t) < Collection(t),
    Sequence(t) < Collection(t), and
    Bag(t) < Collection(t).

viii. If t’ <  t then Set(t’) < Set(t), Sequence(t’)  <  Sequence(t), Bag(t’) < Bag(t), and
      Collection(t’) < Collection(t).

ix. If t’i < ti for i = 1, . . . , n and n <  m then
       Tuple(l1 : t’1, . . . , ln : t’n, . . . , lm : t’m ) < Tuple(l1 : t1, . . . , ln : tn).

x. If classOf(t’c ) ≺ classOf(tc) then t’c <  tc .

If a type t’ is a subtype of another type t (i.e., t’ < t), we say that t’ conforms to t. Type conformance is associated with 
the principle of substitutability. A value of type t’ may be used wherever a value of type t is expected. This rule is defined 
more formally in sub clause A.3.1, which defines the syntax and semantics of expressions.

The principle of substitutability and the interpretation of types as sets suggest that the type hierarchy should be defined as 
a subset relation on the type domains. Hence, for a type t’ being a subtype of t, we postulate that the interpretation of t’ 
is a subset of the interpretation of t. It follows that every operation  accepting values of type t has the same semantics 
for values of type t’, since I() is already well-defined for values in I(t’):

   If t’ < t then I(t’)  I(t) for all types t’, t  T.

A.2.8 Data Signature

We now have available all elements necessary to define the final data signature for OCL expressions. The signature 
provides the basic set of syntactic elements for building expressions. It defines the syntax and semantics of types, the type 
hierarchy, and the set of operations defined on types.

Definition A.28 (Data Signature)

Let ^ T be the set of non-collection types: ^ T = TB U TE U TC U TS. The syntax of a data signature over an object model 
M is a structure M = (TM, <, M) where

i. T M = TExpr( ^ T),

ii. < is a type hierarchy over T M ,

iii.  M =  TExpr( ^ T) U B  U E U C U S .

The semantics of M is a structure I(M ) = (I(TM), I(<), I( M )) where

i. I(TM ) assigns each t  TM an interpretation I(t).

ii. I(< ) implies for all types t’, t  TM that I(t’)  I(t) if t’ < t.

iii. I(M ) assigns each operation  : t1 x . . . x tn  t   M a total function
     I() : I(t1) x . . . x I(tn)  I(t).
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A.3 OCL Expressions and Constraints

The core of OCL is given by an expression language. Expressions can be used in various contexts, for example, to define 
constraints such as class invariants and pre-/postconditions on operations. In this sub clause, we formally define the 
syntax and semantics of OCL expressions, and give precise meaning to notions like context, invariant, and pre-/
postconditions.

Sub clause A.3.1 defines the abstract syntax and semantics of OCL expressions and shows how other OCL constructs can 
be derived from this language core. The context of expressions and other important concepts such as invariants, queries, 
and shorthand notations are discussed. Sub clause A.3.2 defines the meaning of operation specifications with pre- and 
postconditions.

A.3.1 Expressions

In this sub clause, we define the syntax and semantics of expressions. The definition of expressions is based upon the data 
signature we developed in the previous sub clause. A data signature M = (TM, <, M) provides a set of types TM, a 
relation < on types reflecting the type hierarchy, and a set of operations  M. The signature contains the initial set of 
syntactic elements upon which we build the expression syntax.

A.3.1.1 Syntax of Expressions

We define the syntax of expressions inductively so that more complex expressions are recursively built from simple 
structures. For each expression the set of free occurrences of variables is also defined. Also, each sub clause in the 
definition corresponds to a subclass of OCLExpression in the abstract syntax. The mapping is indicated.

Definition A.29 (Syntax of Expressions)

Let M = (TM, <, M) be a data signature over an object model M. Let Var = {Vart}t TM be a family of variable sets 
where each variable set is indexed by a type t. The syntax of expressions over the signature M is given by a set Expr =  
{Exprt}t  TM and a function free : Expr F (Var) that are defined as follows.

i.  If v   Vart, then v  Exprt and free(v) := {v}. This maps into the VariableExp class in the abstract syntax. 

ii. If v   Vart1, e1  Exprt1 , e2  Exprt2  then let v = e1 in e2 Exprt2  and free (let v = e1 in e2) := free(e2) - {v}. This 

maps into LetExpression in the abstract syntax. v = e1 is the VariableDeclaration referred through the variable associa-

tion; e2 is the OclExpression referred through association end in. e1 is the OclExpression referred from the Vari-

ableDeclaration through the initExpression association. 

iii.  (a) If t  TM  and :t  M  then     Exprt and undefined   ExprOclVoid  and free ( ) := 
and free(undefined) :=  .  This maps into the ConstantExp class and its subclasses from the abstract
syntax. 

 (b) If :  t1 x . . . x tn   t  M  and ei   Exprti  for all i = 1, . . . , n then  (e1, . . . , en)  Exprt and


free( (e1, . . . ,en)) := free(e1) U . . . U free(en). This maps into ModelPropertyCallExp and its 
subclasses, with e1 representing the source and e2 to en the arguments. 

iv. If e1  ExprBoolean and e2, e3  Exprt then if e1 then e2 else e3 endif  Exprt and free(if e1 then e2 else e3 endif)
 := free(e1) U free(e2) U free(e3). This corresponds to the IfExpression in the abstract syntax.  e1 is the 
OclExpression referred through condition, e2 corresponds to the thenExpression association, and e3 maps into
 the OclExpression elseExpression. 
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v.  If e  Exprt and t’  <  t  or t  <  t’ then (e asType t’)  Exprt’  (e isTypeOf t’)  ExprBoolean , (e isKindOf t’) 
 ExprBoolean  and free((e asType t’)) := free(e), free((e isTypeOf  t’))  :=free(e), free((e isKindOf t’ ))  :=free(e).
 This maps into some special instances of OclOperationWithTypeArgument.

vi. If e1  ExprCollection(t1), v1  Vart1, v2  Vart2, and e2, e3  Exprt2  then e1 iterate(v1; v2 = e2 | e3) 
 Exprt2 and free(e1 iterate(v1; v2 = e2 | e3)) := (free(e1) U free(e2) U free(e3)) - {v1, v2}. This is a 
representation of the IterateExp. e1 is the source, v2 = e2 is the VariableDeclaration which is referred to
through the result association in the abstract syntax. v1 corresponds to the iterator VariableDeclaration. Finally,
 e3 is the OclExpression body. Instances of IteratorExp are defined in the OCL Standard Library.

An expression of type t’ is also an expression of a more general type t. For all  t’ < t: if e  Exprt’  then e  Exprt’  .

A variable expression (i) refers to the value of a variable. Variables (including the special variable self) may be 
introduced by the context of an expression, as part of an iterate expression, and by a let expression. Let expressions (ii) 
do not add to the expressiveness of OCL but help to avoid repetitions of common sub-expressions. Constant expressions 
(iiia) refer to a value from the domain of a type. Operation expressions (iiib) apply an operation from M . The set of 
operations includes:

•  predefined data operations: +, -, *, <, >, size, max

•  attribute operations: self.age, e.salary

•  side-effect free operations defined by a class:
b.rentalsForDay(...)

•  navigation by role names: self.employee

As demonstrated by the examples, an operation expression may also be written in OCL path syntax as e1.(e2, . . . , en). 
This notational style is common in many object-oriented languages. It emphasizes the role of the first argument as the 
“receiver” of a “message.” If e1 denotes a collection value, an arrow symbol is used in OCL instead of the period: e1  
(e2, . . . , en). Collections may be bags, sets, or lists.

An if-expression (iv) provides an alternative selection of two expressions depending on the result of a condition given by 
a Boolean expression.

An asType expression (v) can be used in cases where static type information is insufficient. It corresponds to the 
oclAsType operation in OCL and can be understood as a cast of a source expression to an equivalent expression of a 
(usually) more specific target type. The target type must be related to the source type, that is, one must be a subtype of 
the other. The isTypeOf and isKindOf expressions correspond to the oclIsTypeOf and oclIsKindOf operations, 
respectively. An expression (e isTypeOf t’) can be used to test whether the type of the value resulting from the expression 
e has the type t’ given as argument. An isKindOf expression (e isKindOf t’) is not as strict in that it is sufficient for the 
expression to become true if t’ is a supertype of the type of the value of e. Note that in previous OCL versions these type 
casts and tests were defined as operations with parameters of type OclType. Here, we technically define them as first class 
expressions, which has the benefit that we do not need the metatype OclType. Thus the type system is kept simple while 
preserving compatibility with standard OCL syntax. 

An iterate expression (vi) is a general loop construct that evaluates an argument expression e3 repeatedly for all elements 
of a collection that is given by a source expression e1. Each element of the collection is bound in turn to the variable v1 
for each evaluation of the argument expression. The argument expression e3 may contain the variable v1 to refer to the 
current element of the collection. The result variable v2 is initialized with the expression e2 . After each evaluation of the 
argument expression e3 , the result is bound to the variable v2 . The final value of v2 is the result of the whole iterate 
expression.
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The iterate construct is probably the most important kind of expression in OCL. Many other OCL constructs (such as 
select, reject, collect, exists, forAll, and isUnique) can be equivalently defined in terms of an iterate 
expression (see sub clause A.3.1.3).

Following the principle of substitutability, the syntax of expressions is defined such that wherever an expression e  
Exprt is expected as part of another expression, an expression with a more special type t’, (t’ < t) may be used. In 
particular, operation arguments and variable assignments in let and iterate expressions may be given by expressions of 
more special types.

A.3.1.2 Semantics of Expressions

The semantics of expressions is made precise in the following definition. A context for evaluation is given by an 
environment = (, ) consisting of a system state  and a variable assignment  : Vart  I(t). A system state  provides 
access to the set of currently existing objects, their attribute values, and association links between objects. A variable 
assignment  maps variable names to values.

Definition A.30 (Semantics of Expressions)

Let Env be the set of environments  = (, ). The semantics of an expression e  Exprt is a function I[[ e ]] : Env  
I(t) that is defined as follows.

i.    I[[v]](r) = (v).

ii.   I[[let v = e1 in e2]](r) = I[[e2]](, {v / I[[e1]](r)}).

iii.  I[[undefined]] (r) =  and I[[w]](rI(w)

iv.   I[[w(e1, . . . ,en)]](r) = I(w) () (I[[e1]](r), . . . ,I[[en]](r)).

vii.   I[[ e1    iterate(v1;v2 = e2 | e3)]] (r) = I[[e1   iterate (v1 | e3)]] (r) where  r =  (, ) and r” = (, ") are 

 I[[e2]] (r)       if I[[e1]](r) = true,

 

 

 v.  I[[if e1 then e2 else e3 endif]] (r) = 
     

 

                     otherwise. 

    I[[e3]] (r)          if I[[e1]] (r) = false,

 

  vi. I[[e asType t’) ]] (r) =    

     
                       otherwise.  

    

  

I [[e]] (r)          if I[[e]] (r)  I( t’),

      I[[e isType t’) ]] (r) =    

      I[[e asKindOf t’) ]] (r) =    

false otherwise.  

true                  if I[[e]] (r)  I( t’) - Ut”< t’ I(t”),

true                  if I[[e]] (r)  I( t’),

false otherwise.  
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        environments with modified variable assignments

 :=  {v2 / I[[e2]] (r)}

" := {v2 / I[[e3]] (, {v1 / x1})}

and iterate is defined as:  

(a)  If e1  Expr Sequence(t1) then 

(b)  If e1  Expr Set(t1) then 

(c)  If e1  Expr Bag(t1) then 

The semantics of a variable expression (i) is the value assigned to the variable. A let expression (ii) results in the value of 
the sub-expression e2. Free occurrences of the variable v in e2 are bound to the value of the expression e1. An operation 
expression (iv) is interpreted by the function associated with the operation. Each argument expression is evaluated 
separately. The state  is passed to operations whose interpretation depends on the system state. These include, for 
example, attribute and navigation operations as defined in sub clause A.2.4.

The computation of side-effect free operations can often be described with OCL expressions. We can extend the definition 
to allow object operations whose effects are defined in terms of OCL expressions. The semantics of a side-effect free 
operation can then be given by the semantics of the OCL expression associated with the operation. Recall that object 
operations in OPc are declared in a model specification. Let oclexp : OPc  Expr be a partial function mapping object 
operations to OCL expressions. We define the semantics of an operation with an associated OCL expression as

I[[ (p1 : e1, . . . , pn : en) ]](r) = I[[ oclexp() ]](r )

 

 

          I[[e1 iterate v1 | e3)]] (r) =    
     

I[[v2]] (r )     

    

 

 I[[mkSequencet1 (x2, . . . , xn)  iterate(v1 | e3)]] (r”)  

    if I[[e1]] (r) = x1, . . . , xn.  

  
    if I[[e1]] (r) = ,  

 

 

          I[[e1 iterate v1 | e3)]] (r) =    
     

I[[v2]] (r )     

    

 

 I[[mkSett1 (x2, . . . , xn)  iterate(v1 | e3)]] (r”)  

    if I[[e1]] (r) = x1, . . . , xn.  

  
    if I[[e1]] (r) =   

 

 

          I[[e1 iterate v1 | e3)]] (r) =    
     

I[[v2]] (r )     

    

 

 I[[mkBagt1 (x2, . . . , xn)  iterate(v1 | e3)]] (r”)  

    if I[[e1]] (r) = x1, . . . , xn}.  

  
    if I[[e1]] (r) =   
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where p1, . . . pn are parameter names, and r = (, ) denotes an environment with a modified variable assignment 
defined as

 :=  p1/I[[ e1 ]](r), . . . , pn /I[[ en ]](r)}.

Argument expressions are evaluated and assigned to parameters that bind free occurrences of p1, . . . , pn in the 
expression oclexp(). For a well-defined semantics, we need to make sure that there is no infinite recursion resulting 
from an expansion of the operation call. A strict solution that can be statically checked is to forbid any occurrences of  
in oclexp(). However, allowing recursive operation calls considerably adds to the expressiveness of OCL. We therefore 
allow recursive invocations as long as the recursion is finite. Unfortunately, this property is generally undecidable.

The result of an if-expression (v) is given by the then-part if the condition is true. If the condition is false, the else-part is 
the result of the expression. A null or invalid condition makes the whole expression invalid. Note that when an expression 
in one of the alternative branches is null or invalid, the whole expression may still have a well-defined result. For 
example, the result of the following expression is 1.

if true then 1 else 1 div 0 endif

The result of a cast expression (vi) using asType is the value of the expression, if the value lies within the domain of the 
specified target type, otherwise it is invalid. A type test expression with isTypeOf is true if the expression value lies 
exactly within the domain of the specified target type without considering subtypes. An isKindOf type test expression is 
true if the expression value lies within the domain of the specified target type or one of its subtypes. Note that these type 
cast and test expressions also work with null or invalid  values since every value – including a null or invalid one – has a 
well-defined type.

An iterate expression (vii) loops over the elements of a collection and allows the application of a function to each 
collection element. The function results are successively combined into a value that serves as the result of the whole 
iterate expression. This kind of evaluation is also known in functional style programming languages as fold operation 
(see, e.g., [Tho99]).

In Definition A.30, the semantics of iterate expressions is given by a recursive evaluation scheme. Information is passed 
between different levels of recursion by modifying the variable assignment  appropriately in each step. The 
interpretation of iterate starts with the initialization of the accumulator variable. The recursive evaluation following 
thereafter uses a simplified version of iterate, namely an expression iterate where the initialization of the accumulator 
variable is left out, since this sub-expression needs to be evaluated only once. If the source collection is not empty, (1) an 
element from the collection is bound to the iteration variable, (2) the argument expression is evaluated, and (3) the result 
is bound to the accumulator variable. These steps are all part of the definition of the variable assignment ". The 
recursion terminates when there are no more elements in the collection to iterate over. The constructor operations 
mkSequencet ; mkBagt, and mkSett are in M and provide the abstract syntax for collection literals like Set {1,2} in 
concrete OCL syntax. 

The result of an iterate expression applied to a set or bag is deterministic only if the inner expression is both commutative 
and associative.

A.3.1.3 Derived Expressions Based on Iterate

A number of important OCL constructs such as exists, forAll, select, reject, collect, and isUnique are 
defined in terms of iterate expressions. The following schema shows how these expressions can be translated to 
equivalent iterate expressions. A similar translation can be found in [Cla99].

I[[ e1  exists(v1 | e3) ]](r) =
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I[[ e1 iterate(v1; v2 = false | v2 or e3) ]]( r)

I[[ e1  forAll(v1 | e3) ]](r ) =
I[[ e1  iterate(v1; v2 = true | v2 and e3) ]](r )

I[[ e1 select(v1 | e3) ]](r ) =
I[[ e1  iterate(v1; v2 = e1 | 

if e3 then v2 else v2  excluding(v1) endif) ]](r)

I[[ e1  reject(v1 | e3) ]](r ) =
I[[ e1  iterate(v1; v2 = e1 | 

if e3 then v2  excluding(v1) else v2 endif) ]](r)

I[[ e1  collect(v1 | e3) ]](r) =
I[[ e1  iterate(v1; v2 = mkBag type-of-e3 () | v2  including(e3)) ]](r)

I[[ e1  isUnique(v1 | e3) ]](r) =
I[[ e1  iterate(v1; v2 = true | v2 and e1  count(v1) = 1) ]](r )

A.3.1.4 Expression Context

An OCL expression is always written in some syntactical context. Since the primary purpose of OCL is the specification 
of constraints on a UML model, it is obvious that the model itself provides the most general kind of context. In our 
approach, the signature M contains types (e.g., object types) and operations (e.g., attribute operations) that are 
“imported” from a model, thus providing a context for building expressions that depend on the elements of a specific 
model.

On a much smaller scale, there is also a notion of context in OCL that simply introduces variable declarations. This 
notion is closely related to the syntax for constraints written in OCL. A context clause declares variables in invariants, 
and parameters in pre- and postconditions.

A context of an invariant is a declaration of variables. The variable declaration may be implicit or explicit. In the implicit 
form, the context is written as

context C inv:
<expression>

In this case, the <expression> may use the variable self of type C as a free variable. In the explicit form, the 
context is written as

context v1 : C1, . . . , vn : Cn inv:
<expression>

The <expression> may use the variables v1, . . . , vn of types C1, . . . , Cn as free variables.

A context of a pre-/postcondition is a declaration of variables. In this case, the context is written as

context C :: op(p1 : T1, . . . ,  pn : Tn) : T
pre: P
post: Q

This means that the variable self (of type C) and the parameters p1, . . . , pn may be used as free variables in the 
precondition P and the postcondition Q. Additionally, the postcondition may use result (of type T) as a free variable. 
The details are explained in sub clause A.3.2.
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A.3.1.5 Invariants

An invariant is an expression with Boolean result type and a set of (explicitly or implicitly declared) free variables

v1 : C1, . . . , vn : Cn where C1, . . . , Cn are classifier types. An invariant

context v1 : C1, . . . , vn : Cn inv:
<expression>

is equivalent to the following expression without free variables that must be valid in all system states.

C1.allInstances->forAll(v1 : C1 |

...

Cn.allInstances->forAll(vn : Cn |

<expression>

)

...

)

A system state is called valid with respect to an invariant if the invariant evaluates to true. Invariants with null or invalid 
result invalidate a system state.

A.3.2 Pre- and Postconditions

The definition of expressions in the previous sub clause is sufficient for invariants and queries where we have to consider 
only single system states. For pre- and postconditions, there are additional language constructs in OCL that enable 
references to the system state before the execution of an operation and to the system state that results from the operation 
execution. The general syntax of an operation specification with pre- and postconditions is defined as

context C :: op(p1 : T1, . . . , pn : Tn)
pre: P
post: Q

First, the context is determined by giving the signature of the operation for which pre- and postconditions are to be 
specified. The operation op which is defined as part of the classifier C has a set of typed parameters PARAMSop = 
{p1, . . . , pn}. The UML model providing the definition of an operation signature also specifies the direction kind of each 
parameter. We use a function kind : PARAMSop  {in, out, inout, return} to map each parameter to one of these kinds. 
Although UML makes no restriction on the number of return parameters, there is usually only at most one return 
parameter considered in OCL, which is referred to by the keyword result in a postcondition. In this case, the signature 
is also written as C :: op(p1 : T1, . . . , pn-1 : Tn-1) : T with T being the type of the result parameter.

The precondition of the operation is given by an expression P, and the postcondition is specified by an expression Q. P, 
and Q must have a Boolean result type. If the precondition holds, the contract of the operation guarantees that the 
postcondition is satisfied after completion of op. Pre- and postconditions form a pair. A condition defaults to true if it is 
not explicitly specified.
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A.3.2.1 Example

Before we give a formal definition of operation specifications with pre- and postconditions, we demonstrate the 
fundamental concepts by means of an example. Figure A.1 shows a class diagram with two classes A and B that are 
related to each other by an association R. Class A has an operation op() but no attributes. Class B has an attribute c and 
no operations. The implicit role names a and b at the link ends allow navigation in OCL expressions from a B object to 
the associated A object and vice versa.

Figure A.1  - Example class diagram

Figure A.2 shows an example for two consecutive states of a system corresponding to the given class model. The object 
diagrams show instances of classes A and B and links of the association R. The left object diagram shows the state before 
the execution of an operation, whereas the right diagram shows the state after the operation has been executed. The effect 
of the operation can be described by the following changes in the post-state: (1) the value of the attribute c in object b 1 
has been incremented by one, (2) a new object b 2 has been created, (3) the link between a and b 1 has been removed, and 
(4) a new link between a and b 2 has been established.

Figure A.2  - Object diagrams showing a pre- and a post-state

For the following discussion, consider the OCL expression a.b.c where a is a variable denoting the object a. The 
expression navigates to the associated object of class B and results in the value of the attribute c. Therefore, the 
expression evaluates to 1 in the pre-state shown in Figure A.2(a). As an example of how the OCL modifier @pre may 
be used in a postcondition to refer to properties of the previous state, we now look at some variations of the expression 
a.b.c that may appear as part of a postcondition. For each case, the result is given and explained.

•  a.b.c = 0
Because the expression is completely evaluated in the post-state, the navigation from a leads to the b2 object.

    A

 R

    B

op()

c : Integer
* *

b2 : B

c = 0

b1 : B

c = 2
    a : A

    b1 : B

c = 1

 
    a : A

R

R

(a) Pre-state with objects
a and b1.

(b)  Post-state. Object b2 did not
      exist in the pre-state.
Object Constraint Language, v2.4        235



The value of the attribute c of b2 is 0 in Figure A.2(b).

•  a.b@pre.c = 2
This expression refers to both the pre- and the post-state. The previous value of a.b is a reference to
object b1 . However, since the @pre modifier only applies to the expression a.b, the following reference to
the attribute c is evaluated in the post-state of b1, even though b1 is not connected anymore to a. Therefore,
the result is 2.

•  a.b@pre.c@pre = 1
In this case, the value of the attribute c of object b1 is taken from the pre-state. This expression is semantically
equivalent to the expression a.b.c in a precondition.

•  a.b.c@pre =  
The expression a.b evaluated in the post-state yields a reference to object b2 which is now connected to a.
Since b2 has just been created by the operation, there is no previous state of b2. Hence, a reference to the
previous value of attribute c is invalid.

Note that the @pre modifier may only be applied to operations not to arbitrary expressions. An expression such as 
(a.b)@pre is syntactically illegal. 

OCL provides the standard operation oclIsNew for checking whether an object has been created during the execution of 
an operation. This operation may only be used in postconditions. For our example, the following conditions indicate that 
the object b2 has just been created in the post-state and b1 already existed in the pre-state.

•  a.b.oclIsNew = true

•  a.b@pre.oclIsNew = false

A.3.2.2 Syntax and Semantics of Postconditions

All common OCL expressions can be used in a precondition P. Syntax and semantics of preconditions are defined exactly 
like those for plain OCL expressions in sub clause A.3.1. Also, all common OCL expressions can be used in a 
postcondition Q. Additionally, the @pre construct, the special variable result, and the operation oclIsNew may 
appear in a postcondition. In the following, we extend Definition A.29 for the syntax of OCL expressions to provide these 
additional features.

Definition A.31 (Syntax of Expressions In Postconditions)

Let op be an operation with a set of parameters PARAMSop. The set of parameters includes at most one parameter of kind 
“return.” The basic set of expressions in postconditions is defined by repeating Definition A.29 while substituting all 
occurrences of Exprt with Post-Exprt . Furthermore, we define that:

•  Each non-return parameter p  PARAMSop with a declared type t is available as variable: p  Vart .

•  If PARAMSop contains a parameter of kind “return” and type t then result is a variable: result  Vart.

•  The operation oclIsNew : c Boolean is in  M for all object types c  TM.

The syntax of expressions in postconditions is extended by the following rule.

vii. If  : t1 x . . . x tn  t  M and ei  Post-Exprt’ for all i = 1, . . . , n then
      @pre(e1, . . . , en)   Post-Exprt’ .
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All general OCL expressions may be used in a postcondition. Moreover, the basic rules for recursively constructing 
expressions do also apply. Operation parameters are added to the set of variables. For operations with a return type, the 
variable result refers to the operation result. The set of operations is extended by oclIsNew which is defined for all 
object types. Operations @pre  are added for allowing references to the previous state (vii). The rule says that the @pre 
modifier may be applied to all operations, although, in general, not all operations do actually depend on a system state 
(for example, operations on data types). The result of these operations will be the same in all states. Operations that do 
depend on a system state are, e.g., attribute access and navigation operations.

For a definition of the semantics of postconditions, we will refer to environments describing the previous state and the 
state resulting from executing the operation. An environment  = (,   is a pair consisting of a system state  and a 
variable assignment  (see sub clause A.3.1.2). The necessity of including variable assignments into environments will be 
discussed shortly. We call an environment pre = (pre, pre) describing a system state and variable assignments before the 
execution of an operation a pre-environment. Likewise, an environment post = (post, post) after the completion of an 
operation is called a post-environment.

Definition A.32 (Semantics of Postcondition Expressions)

Let Env be the set of environments. The semantics of an expression e  Post-Exprt is a function I[[ e ]] : Env x Env  
I(t). The semantics of the basic set of expressions in postconditions is defined by repeating Definition A.30 while 
substituting all occurrences of Exprt with Post-Exprt. References to I[[ e ]](r) are replaced by I[[ e ]](rpre, rpost) to include 
the pre-environment. Occurrences of r are changed to rpost which is the default environment in a postcondition.

•  For all p  PARAMSop : I[[ p ]](rpre, rpost) = post(p).

• Input parameters may not be modified by an operation:
kind(p) = in implies pre(p) = post(p).

• Output parameters are null on entry:
kind(p) = out implies pre(p) = ε.

•  I[[ result ]](rpre, rpost) = post(result).

vii. I[[ @pre(e1, . . . , en) ]](rpre, rpost) = I()(rpre)(I[[ e1 ]](rpre, rpost), . . . , I[[ en ]](rpre, rpost))

Standard expressions are evaluated as defined in Definition A.30 with the post-environment determining the context of 
evaluation. Input parameters do not change during the execution of the operation. Therefore, their values are equal in the 
pre- and post-environment. The value of the result variable is determined by the variable assignment of the post-
environment. The oclIsNew operation yields true if an object did not exist in the previous system state. Operations 
referring to the previous state are evaluated in context of the pre-environment (vii). Note that the operation arguments 
may still be evaluated in the post-environment. Therefore, in a nested expression, the environment only applies to the 
current operation, whereas deeper nested operations may evaluate in a different environment.

With these preparations, the semantics of an operation specification with pre- and postconditions can be precisely defined 
as follows. We say that a precondition P satisfies a pre-environment rpre – written as rpre |= P – if the expression P 
evaluates to true according to Definition A.30. Similarly, a postcondition Q satisfies a pair of pre-and post-environments, 
if the expression Q evaluates to true according to Definition A.32:

 true        if c   pre(c) and c  post(c),
 

 I[[ oclIsNew ]](rpre, rpost)(c) 

     

 

  false        otherwise.                                                              
.
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             rpre |= P       iff       I[[ P ]](rpre) = true

 (rpre, rpost)  |= Q      iff      I[[ Q]](rpre, rpost) = true

Definition A.33 (Semantics of Operation Specifications)

The semantics of an operation specification is a set R  Env x Env defined as

[[ context C :: op(p1 : T1, . . . , pn : Tn)
pre: P
post: Q ]] = R

where R is the set of all pre- and post-environment pairs such that the pre-environment rpre satisfies the precondition P 
and the pair of both environments satisfies the postcondition Q:

R = {(rpre, rpost) | rpre  |= P ^  (rpre, rpost) |= Q}

The satisfaction relation for Q is defined in terms of both environments since the postcondition may contain references to 
the previous state. The set R defines all legal transitions between two states corresponding to the effect of an operation. It 
therefore provides a framework for a correct implementation.

Definition A.34 (Satisfaction of Operation Specifications)

An operation specification with pre- and postconditions is satisfied by a program S in the sense of total correctness if the 
computation of S is a total function fS : dom(R)  im(R) and graph(fS) R.

In other words, the program S accepts each environment satisfying the precondition as input and produces an environment 
that satisfies the postcondition. The definition of R allows us to make some statements about the specification. In general, 
a reasonable specification implies a non-empty set R allowing one or more different implementations of the operation. If 
R = , then there is obviously no implementation possible. We distinguish two cases: (1) no environment satisfying the 
precondition exists, or (2) there are environments making the precondition true, but no environments do satisfy the 
postcondition. Both cases indicate that the specification is inconsistent with the model. Either the constraint or the model 
providing the context should be changed. A more restrictive definition might even prohibit the second case.
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