August 16, 2003

Online Upgrades

Draft Adopted Specification

Eternal Systems, Inc.
Objective Interface Systems, Inc.
Vertel Corporation

With support and collaboration from:
Cacheon, Inc.
University of California, Santa Barbara

OMG Document ptc/2003-08-07
Amended with change bars by the finalization task force
August16, 2003

August 16, 2003

Copyright 2002 by Cacheon, Inc.

Copyright 2002 by Eternal Systems, Inc.

Copyright 2002 by Objective Interface Systems, Inc.
Copyright 2002 by Vertel Corporation

The companies listed above hereby grant a royalty-free license to the Object Management
Group, Inc. (OMG) for worldwide distribution of this document or any derivative works thereof,
so long as the OM G reproduces the copyright notices and the below paragraphs on all distributed
copies.

The materia in this document is submitted to the OMG for evaluation. Submission of this
document does not represent a commitment to implement any portion of this specification in the
products of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The companies listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.
The information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved.
Except as otherwise provided herein, no part of this work may be reproduced or used in any
form or by any means—graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems— without the permission of one of the
copyright owners. All copies of this document must include the copyright and other information
contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited
number of copies of this document (up to fifty copies) for their internal use as part of the OMG
evaluation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.

CORBA and Object Request Broker are trademarks of Object Management Group.

OMG is atrademark of Object Management Group.

ptc/2003-08-07: Online Upgrades

Table of Contents
LoINtroduCtiont 3
1.1 Submitting ComMPanieS . . . oo o vttt 3
1.2 Statusof theDocumentot e 3
1.3Guidetothe SUDMISSION oo 3
LA Proof of CoNCEPti it e 4
1.5Submission Contact POINESot 5
2. Design Rationale 6
2L MOLIVALION ... 6
2. 2 O ECtIVES ottt 7
23 LIMITAIONS . . oot 7
2.4 Overview of the Online Upgrade Specifications 8
2.5 Successive Stagesof anupgrade 9
2.6 Object Referencesand Message Forwardingt 12
2.70nlineUpgrade SCENArioso ittt 14
2.8 Extensibility of the Specification i, 16
2.9 Platform Independent Model and aMappingto CORBA 17
3. Group Management 26
B L VIV B .ttt e 26
3.2PortableGroup Module e 27
3.3 Properties of UpgradeableObjects 46
34 GroupManager Interfacec 47
4. UpgradeManagementt 53
AL OVEIVIEIW ettt et e e e e e e e e e e e 53
4.2 UpgradeManager Interfacec. i 53
5. Upgradeable Applications 60
D L OVEIVI BV . .ttt e e 60
5.2 PortableState Module e 61
5.3UpgradeableInterface e 63
6. Usageof the Specifications i, 69
6.1 EXampPlelUse Case v 69
7. Responsesto RFP Requirements, 76
7.1 Resolution of RFP Mandatory Requirements 76
7.2 Resolution of RFP Optional Requirements 78
7.3RepONSEStORFPISSUES ... oo e 80
8. Complianceand Conformance............... ..., 81
8.1 Mandatory and Optional Interfacescc .. 81
8.2 Proposed Compliance PoiNntst 8l
8.3 Changesto Existing Specificationsc ... 81
9. Consolidated IDLo 82

August 16, 2003 ptc/2003-08-07: Online Upgrades

August 16, 2003

ptc/2003-08-07: Online Upgrades

Introduction 1

1.1 Submitting Companies

The following companies are pleased to submit this specification in response to the
Online Upgrades RFP (Document orbos/2001-09-10).

Eternal Systems, Inc.

Objective Interface Systems, Inc.

Vertel Corporation

The following organizations are pleased to support this proposal.
Cacheon, Inc.

University of California, Santa Barbara

1.2 Satusof the Document

This document is a revised submission produced for the OMG Technical Committee
meeting to be held in Orlando, Florida, in June 2002.

1.3 Guidetothe Submission

August 16, 2003

This submission presents specifications for CORBA IDL interfaces and also a Platform
Independent Model to support Online Upgrades of CORBA object implementations.

Chapter 1 contains the Introduction to this Online Upgrades proposal, and Chapter 2
provides the Design Rationale. Chapter 3 defines the specification of the
PortableGroup module and the GroupM anager interface, Chapter 4 defines the
specification of the UpgradeM anager interface, and Chapter 5 defines the
PortableState module and the Upgradeable interface that an application object that is
to be upgraded must inherit. Chapter 6 provides an Example Use Case of the

ptc/2003-08-07: Online Upgrades 1-3

1.4 Proof of Concept

August 16, 2003

specification. Chapter 7 contains the Responses to the RFP Requirements and Issues,
and Chapter 8 provides the Compliance and Conformance points of the proposal. The
Appendix contains the Consolidated IDL for the proposed specification.

The proposed specifications is based, in part, on prototype implementations developed
at Eternal Systems, Inc., and at the University of California, Santa Barbara.

ptc/2003-08-07: Online Upgrades 1-4

1.5 Submission Contact Points

David Sringer

Cacheon, Inc.

785 Market Street, 10th Floor

San Fransciso, CA 94103

phone: +1 415 777-2555

fax: +1 415 777-5666

email: david.stringer @cacheon.com

L ouise M oser

Eternal Systems, Inc.

5290 Overpass Road, Building D
Santa Barbara, CA 93111

phone: +1 805 448-8249

fax: +1 805 696-9083

email: moser @eter nal-systems.com

Bill Beckwith

Objective Interface Systems, Inc.
13873 Park Center Road, Suite 360
Herndon, VA 20171

phone: +1 703 295-6500

fax: +1 703 295-6501

email: bill .beckwith@ois.com

Shahzad Aslam-Mir

Vertel Corporation

5741 Pacific Center Boulevard
San Diego, CA 92121

phone: +1 858 824-4128

fax: +1 858 824-4110

email: sam-aslam-mir @vertel.com

Michael Melliar-Smith

University of California, Santa Barbara
Department of Electrical and Computer Engineering
Santa Barbara, CA 93106

phone: +1 805 448-8250

fax: +1 805 893-3262

email: pmms@ece.ucsb.edu

| August 16,2003 ptc/2003-08-07: Online Upgrades

2.1 Motivation

August 16, 2003

DesignRationale 2

Many large complex systems, and also many embedded systems, are required to
provide continuous service to their users without interruption or suspension of service.
To achieve continuous service, despite growth and evolution, it must be possible to
upgrade such a system by replacing individual software and hardware components with
new and upgraded components. Many systems cannot be taken out of service to
perform an upgrade, and it is often difficult to take part of a system out of service for
upgrading while other parts of the system continue to operate.

In the current state-of-the-art, most systems are halted for upgrading, resulting in aloss
of service. Even when upgrades are performed while the system continues to provide
service, the current practice is poor. Existing mechanisms are proprietary, difficult to
use, prone to fiascos, and certainly not portable or interoperable.

Global financial systems, operating 24 X 7, are examples of computer systems that
cannot be shut down for upgrading. Automated global supply chain applications have
similar characteristics. Loss of service provided by such a system, whether
unintentionally caused by a fault or deliberately caused to facilitate an upgrade, is
undesirable because it disrupts not only the operation of that system but also the
computer systems of many customers, suppliers and partners. Moreover, the rate at
which changes and enhancements are introduced into such systems is accelerating,
increasing the frequency with which service must be suspended for upgrades.

Embedded elecommunications, transportation, industrial control, defense and
aerospace applications must also operate continuously for long periods of time, and
must be upgraded without suspension of service. Portability and interoperability are
important for embedded systems because many of them are built from subsystems
supplied by different vendors. Existing proprietary upgrade strategies might work
adequately in a single-vendor system, but can disrupt the operation of other subsystems
in a multi-vendor system. Consequently, a common standard for online upgrades,
shared by all vendors, is important.

ptc/2003-08-07: Online Upgrades 2-6

2.2 Objectives

2.3 Limitations

August 16,2003

The main objective of this proposed specification for Online Upgrades is to facilitate
the safe and orderly upgrading of objects in a manner that is portable across systems
and that is interoperable between systems.

The proposed specification for Online Upgrades is a first step towards a more general
online upgrade capability. The specification aims to provide the ability to:

* Upgrade individual objects, where such upgrades change the implementation of
the object but do not change the external interfaces of the object

« Pause an object, so that it can be upgraded, while allowing the object the
opportunity to reach a safe and quiescent state

e Transfer state from an instance of the old implementation of the object to an
instance of the new implementation of the object, with provision for such state
transfers where the representations of the old state and the new state are different

* Resume service using an instance of the new implementation of the object without
risk that messages will be lost, misordered or processed twice

« Allow client objects to continue to use a server object while remaining unaware
that the server has been upgraded, and allow server objects to continue to serve a
middle-tier client object that also acts as a server while remaining unaware that the
client has been upgraded

e Address objects in such a way that a client can continue to use its existing object
reference to access a server after it has been upgraded

* Rollback an upgrade, prior to the instance of the new implementation becoming
operational, if some part of the upgrade fails

e Revert from an instance of the new implementation to an instance of the old
implementation, if operation with the instance of the new implementation proves to
be unsatisfactory

« Perform upgrades on small collections of objects by means of allowing the
application to commit and rollback the upgrades explicitly.

The proposed specification for Online Upgrades does not provide interfaces or
mechanisms to:

e Upgrade external interfaces of an object
e Allow an object to initiate its own upgrading

e Operate instances of both the old implementation and the new implementation
concurrently

* Revert to an instance of a prior implementation other than an instance of the
immediately preceding implementation

e Test new implementations

ptc/2003-08-07: Online Upgrades 2-7

» Define version numbers for implementations

« Determine when an upgrade is available and when it should be applied to an object

Allow the user to modify the values of variables of the instance of the upgraded
implementation (which might be corrupt) when transforming the state and reverting
to the old implementation of the object

e Determine the security or validity of an upgrade.

It is envisaged that the above services would be provided by higher level application
software that would exploit the Online Upgrade infrastructure to perform the
upgrading of individual objects. It is also envisaged that additional CORBA
specifications might be developed to define some of these higher level capabilities.

2.4 Overview of the Online Upgrade Specifications

This proposal defines an OnlineUpgrades module that contains two interfaces: the
UpgradeM anager interface and the GroupM anager interface, as shown in Figure 2-1.
The proposal aso defines a PortableGroup module that contains the PropertyM anager,
ObjectGroupManager and GenericFactory interfaces, which the GroupM anager
interface inherits. It also defines a PortableState module that contains the
Checkpointable interface.

The UpgradeManager interface, which the Upgrade Manager object implements, is the
principal interface that a user, or higher level management software, uses to achieve an
online upgrade. The user, or higher level management software, invokes the methods of
the Upgrade Manager to initiate, control, commit and revert online upgrades.

The GroupManager interface, which the Group Manager object implements, provides a
significant part of the functionality of the online upgrade architecture. Alternatively, the
Upgrade Manager, or another object such as the Replication Manager of a Fault Tolerant
CORBA implementation, might inherit and implement the interfaces of the
PortableGroup module. The methods of the Group Manager are invoked by the
Upgrade Manager, or by a user who is exercising precise application control over group
management.

An object that isto be upgraded must inherit the Upgradeable interface. The methods of
this interface concern reporting that an object instance is in a safe and quiescent state so
that it can be paused for upgrading, and for transferring the state from an instance of the
old implementation of the object to an instance of the new implementation of the object.
The methods are invoked by the Upgrade Manager.

| August 16, 2003 ptc/2003-08-07: Online Upgrades 2-8

|

|

|
I/r'.'a"'i{ri:ﬂfw I(E::’]'.l;-\'l

PoriableGroup moduls PorfatleStale madile

||
el Fropariyianagar imtaftace
L[~ OhiaciGrouphanaasn Intaras (I Checkpoiniabis inftaraoa

[GenericFeciony nleface

Dnlinelipgrades moduss

——————————— L UpgradeiManager irtarizsca

—————— -{:h Groupharagar nleface

r=={A Uppradeable inteface

Figure2-1 Online upgrade modules, interfaces and objects

The methods of the Upgradeable interface are programmed by the application
programmer, and must be programmed for each class of objects, because they depend on
the internal data structures of the particular class of objects. For simple classes, a vendor
might provide a preprocessor that takes, as input, the source code of the class and
generates, as output, source code for the methods of this interface.

2.5 Successive Sagesof an Upgrade

August 16,2003

Figure 2-2 shows the successive stages of an upgrade. In Stage 1, an instance of the old
implementation of the object is operating. The object must inherit the Upgradeable
interface but, otherwise, has no specia characterisitics. We assume that the instance of
the object-to-be-upgraded is not already a member of an object group, as indicated by its
being addressed by an Interoperable Reference (IOR), rather than an Interoperable Group
Reference (IOGR). If the object-to-be-upgraded is already a member of an object group,
which is addressed by an IOGR, the existing object group containing that member is
used and there is no need to create a new group.

ptc/2003-08-07: Online Upgrades 2-9

August 16, 2003

The legacy objecl is K

ot upgrad esbls because
1 dies rol g e
e Lingra pobie | nboriace

Sags 1. The obisct inhefits
T Upgmdesh s interiacs
Thi Groep Marager craaias
sn objec] group cordanng
Fm instance of Te okl
mpleEmerfabon &8 & single mashef
Erage I Tha Upgrads Managar
creates & insanoe ol e -.'f
the new impleeneratian _& 2

that is not yet opembonal mincel instancs
ard irvmbes Thid Grodn Manager o
iy anded i B thie cbyset grous -

an_ymd_neady | I_rllll_-'-iil'!l,1 i

wdd_memiben |

Slage 3 Thei Upgrade Manager "qa""ﬁ'
requests the inssnos of he = P
ald i el lon i madh '_ll"'-'ﬂ?

B aale ared guisssen] Sl :
i owiichs i an B8 upgraded pouss_membes |
el elabs | Taradonm_and st ESin)

Tha Lipgiade spdhan s
Tansher shila 0 T PRants
ol e new imp lsmertaion
snd queus messages o the

.- md '1. i*.Tn- 1
NEENCE instaroe

e remw’ implementafion, and
dfvar Queilisd Misasgs

0 s new inslanos

metance of e ad implemenmlion 25 ——
TeglaTia_ramiben] |
Siage 4 The Upgrade mechanisms :_f"-"q‘ 3
=dd 5
siart thas irsharce of Tnamned

g

FEMD&E i amitesn |

Sage 5 Tha Upgrade Masagar
involes T Group Nensoer
1o memave e ireianc e af
& old i mplem enfabicn
The CF Bs mnn e Sressages
10 T ingancs of the res
m plermenzation

Figure2-2 Successive Stages of an Upgrade

In Stage 2, first we check that the object inherits the Upgradeable interface. If the
membership style is infrastructure controlled, the higher level application software
invokes the upgrade_object() method of the Upgrade Manager. The Upgrade Manager
then forms an object group with no members, using the create_object() method of the
GenericFactory interface of the Group Manager. The Upgrade Manager then includes
the existing object in that group using the add_member () method of the Group Manager.
Next, the Upgrade Manager creates an instance of the new implementation of the object,
using the create_member () method of the Group Manager, checking that the IDL
interface of the new implementation is identical to that of the old implementation. The
Upgrade Mechanisms (which are vendor-specific) 1og messages for the new member of
the group, but do not yet deliver messages to it.

If the MembershipStyle is application controlled, the higher level application software
forms an object group with no members, using the create _object() method of the
GenericFactory interface of the Group Manager. The higher level application software
then includes the existing object in the group using the add_member () method of the

ptc/2003-08-07: Online Upgrades 2-10

2

August 16,2003

Group Manager. Next, the higher level application software creates an instance of the
new implementation of the object, using the create_member () method of the Group
Manager, checking that the IDL interface of the new implementation isidentical to that
of the old implementation. The higher level application software then invokes the
upgrade_object() method of the Upgrade Manager. The Upgrade Mechanisms log
messages for the new member of the group, but do not yet deliver messages to it.

In Stage 3 (regardless of which MembershipStyle is used), the Upgrade Manager queries
the object being upgraded to determine whether it isin a safe and quiescent state by
invoking the are_you_ready() method of the Upgradeable interface of an instance of
the old implementation. A safe state may be determined by the internal state of the
implementation and, possibly, by the state of other objects or of physical equipment
being controlled by the abject. A quiescent state is a state in which the object is not
executing any method that has been invoked on it.

The Upgrade Mechanisms do not deliver any further method invocations to the instance
of the old implementation (except for the invocation of get_state() described below);
instead, they queue all such request messages and deliver them in due course to the
instance of the new implementation of the object (assuming that the QuiescenceStyle
property defined in Section 3.7 has the value false).

When the object is ready to be upgraded, i.e., isin a safe and quiescent state, it invokes
thei_am_ready() method of the Upgrade Manager, with the ready parameter set to true,
which allows the upgrade to proceed. If the object invokesthei_am_ready() method,
with the ready parameter set to false, then the Upgrade Manager rolls back the upgrade.
The instance of the old implementation may delay its reply until it has reached a safe and
quiescent state.

If the object invokesi_am_ready() method, with the ready parameter set to true, the
Upgrade Mechanisms invoke the get_state() method of the

Upgradeable:: Checkpointable interface of the instance of the old implementation. The
instance of the new implementation is started by invoking the
transform_and_set_state() method of the Upgradeable interface of the instance of the
new implementation. The parameter of this method invocation is the state returned by
the get_state() invocation of the instance of the old implementation transformed into the
state of the instance of the new implementation, including appropriate values for new
attributes, etc. No other request messages are delivered to the instance of the new
implementation yet.

At this point, if the upgrade object() method is invoked with a value of false for its
app_ctrl_commit parameter, the Upgrade Manager proceeds directly to Stage 4.
Alternatively, if the upgrade_object() method is invoked with a value of true for its
app_ctrl_commit parameter, Stage 4 is entered when the application invokes the
commit_upgrade() method of the Upgrade Manager.

The app_ctrl_commit parameter is used, when its value is set to true, to alow a
collection of objects to be upgraded together. Initially, the upgrade object() method is
invoked to upgrade each object in the collection. Each such object is paused, but not
committed because the app_ctrl_commit parameter is set to true. If all of the upgrades
of the objects in the collection are successful, then the commit_upgrade() method is

ptc/2003-08-07: Online Upgrades 2-11

invoked for each object in the collection to commit the upgrade of that object. If any of
the upgrades fails, then the rollback_upgrade() method is used to undo the upgrade for
each of the objects that had been upgraded but not committed.

In Stage 4, the Upgrade Mechanisms now apply the queued messages to the instance of
the new implementation, and direct all future messages to the instance of the new
implementation. For infrastructure (application) controlled MembershipStyle, the
Upgrade Manager (application level software) removes the instance of the old
implementation from the object group by use of the remove_member () method of the
Group Manager. The upgrade has now reached Stage 5 of Figure 2-2.

Alternatively, if the application level software invokes the rollback_upgrade() method
of the Upgrade Manager, the instance of the old implementation resumes normal
operation. For the infrastructure (application) controlled MembershipStyle, the Upgrade
Manager (application level software) removes the instance of the new implementation
from the object group by use of the remove_member () method of the Group Manager.

Implementers of this specification may take appropriate steps to ensure that a rollback
can be accomplished whether requested explicitly, triggered implicitly by way of an
exception condition during the upgrade process, or caused by system or network failure
during the upgrade process. How recovery and rollback are facilitated is
implementation-specific. For example, a copy of the message queue may be stored at a
remote processor or may be persisted to disk (so that, in the event of a fault, the queue
can be reconstituted).

2.6 Object References and Message Forwarding

August 16, 2003

The proposed Online Upgrade specification exploits the Interoperable Group Reference
(IOGR), introduced in the Fault Tolerant CORBA standard and since used by the
Unreliable Multicast, Data Parallel CORBA and Load Balancing specifications.

The advantage of the IOGR is that it can contain multiple profiles, in particular the
profile for the old implementation of an object and the profile for the new
implementation of the object. The IOGR also allows the use of the
LOCATION_FORWARD_PERMANENT reply, which provides a client with a new
IOGR containing the address of the instance of the new implementation and directs a
client to use that IOGR for al future invocations of the object.

If the instance of the new implementation of an object is colocated with the instance of
the old implementation, i.e., in the same process and supported by the same POA, the
upgrade can be performed without the use of the IOGR. However, the proposed
specifications are intended for use where an instance of the new implementation is not
colocated with an instance of the old implementation, such as when an upgrade is
performed from old hardware to new hardware.

If the instance of the new implementation and the instance of the old implementation are
not colocated, we consider two alternatives:

e The Group Manager is supported by a multicast protocol that delivers messages to
all members of the group.

ptc/2003-08-07: Online Upgrades 2-12

2

e The object being upgraded communicates with other objects via [lOP using point-
to-point communication.

If the QuiescenceStyle property defined in Section 3.7 has the value false, when the
Upgrade Manager invokes the are_you_ready() method, the Upgrade Mechanisms stop
delivering request messages to the instance of the old implementation but, rather, start
gueuing such messages.

« If the instance of the old implementation and the instance of the new
implementation are col ocated, they share Upgrade M echanisms that queue messages
at that location.

 If the instance of the old implementation and the instance of the new
implementation are not colocated and multicast group communication is used, the
Upgrade Mechanisms multicast the messages to both instances and queue the
request messages at both instances but deliver them to neither.

« If the instance of the old implementation and the instance of the new
implementation are not colocated and I10OP is used, the Upgrade Mechanisms route
messages to the instance of the old implementation and queue the request messages
there, and do not route the messages to the instance of the new implementation yet.

Next, the Upgrade Manager switches over from the instance of the old implementation to
the instance of the new implementation.

 If the instance of the old implementation and the instance of the new
implementation are colocated, the Upgrade Mechanisms can deliver the queued
messages directly to the instance of the new implementation.

e If multicast communication is used, the Upgrade Mechanisms have queued those
messages at the instances of both implementations, and can deliver the messages to
the instance of the new implementation.

« If the instance of the old implementation and the instance of the new
implementation are not colocated and 11OP is used then, as shown in Figure 2-3, for
each of the messages queued at the instance of the old implementation, the Upgrade
Mechanisms return a LOCATION_FORWARD reply to the client that originated the
gueued message. The client ORB retransmits the message to the instance of the new
implementation. For the last message queued from any one client, the reply
contains a LOCATION_FORWARD_PERMANENT, instead of a
LOCATION_FORWARD. The LOCATION_FORWARD_PERMANENT reply
carries with it the new 1OGR for the object group, which contains the profile of the
new implementation of the object, and causes the ORB to update the client’s object
reference so that future messages are sent to the instance of the new
implementation.

| August 16,2003 ptc/2003-08-07: Online Upgrades 2-13

Figure2-3 Object References and Message Forwarding

2.7 OnlineUpgrade Scenarios

Three upgrade scenarios are discussed below and shown in Figure 2-4.

2.7.1 Pushed Upgrade

In this scenario a selected server object is upgraded under the control of a distinct
software system external to the object-to-be-upgraded. This distinct piece of software
is responsible for driving the upgrade process and pushing the upgrade to the object-to-
be-upgraded.

| August 16, 2003 ptc/2003-08-07: Online Upgrades 2-14

August 16,2003

Srvrdren
M R AR B
B E PRy

=0 ! e Wi g
“F] 1 Cpra ey B B

Pushed Upgrade Pulied Upgrade Smad Client

Figure2-4 Online Upgrade Scenarios

The proposal supports this scenario outright with an Upgrade Manager (the distinct
external subsystem) that is responsible for driving an upgrade process. It is expected
that a third piece of software (part of the application) will command the Upgrade
Manager to begin the upgrade process and push the upgrade.

Thisis not to say that the object-to-be-upgraded has no control in the process. In fact,
the object-to-be-upgraded must accept a message sent by the Upgrade Manager
requesting that it prepare itself for upgrade and respond when it is ready. The
remainder of the process is then conducted by the Upgrade Manager.

2.7.2 Pulled Upgrade

In this scenario a server object-to-be-upgraded is responsible for initiating its own
upgrade. For example, a server object may, when idle or at scheduled times, make a
call to an external upgrade repository to determine if an upgrade is available for it or
when such an upgrade is expected to be available. On successful discovery of an
available upgrade, the object-to-be-upgraded can initiate the upgrade process,
effectively pulling the upgrade to it.

The current proposal supports a pulled upgrade, but considers an upgrade repository to
be orthogonal to the switchover process. If an upgrade repository is available, an
object-to-be-upgraded can determine the availability of an upgrade as described above
and then make a call to the Upgrade Manager to initiate the upgrade. From that point
on, the process is identical to the pushed upgrade process. An object-to-be-upgraded
can utilize the same set of interfaces of the Upgrade Manager to accomplish an
upgrade as would any other application code that initiates an upgrade.

2.7.3 Upgrades in the Presence of Smart Clients and System Management

Clients that invoke methods of an object-to-be-upgraded are typically expected to be
functionally unaware of the upgrade process, but this does not always hold. Advanced

systems may make use of smart clients, which have more say in how their requests are
handled than a typical client.

ptc/2003-08-07: Online Upgrades 2-15

For example, a smart client might monitor the response time, possibly backing out of
an interaction with a server object and choosing a different server object, if the
response time is too long. In such a case, a smart client must be able to determine
when one of its target server objects is being upgraded, monitor the progress of the
upgrade, and potentially cancel itsinvocation of that server or redirecting its request to
another server.

In addition, a system management program might have the need to monitor upgrade
processes, potentially postponing or even killing an upgrade process process if it
conflicts with other system and application management priorities.

The proposal supports both smart clients and system management by providing
interfaces of the Upgrade Manager for the purposes of monitoring the upgrade process
phase-by-phase and also supporting an upgrade with explicit commit and rollback
commands.

2.8 Extensibility of the Specification

August 16, 2003

The proposed Online Upgrade specification is designed to provide a basic online upgrade
capability, primarily the upgrading of an instance of the implementation of a single
object with no change to the interface of the object. However, the specification is
designed to provide a building block, on top of which a wide variety of more
sophisticated software systems can be constructed.

For example, more sophisticated software upgrade systems, that are capable of upgrading
object interfaces including method signatures, use a strategy of performing a complex
upgrade as a sequence of simple upgrades, each of which is implemented by the basic
upgrade operation defined in the proposed specification.

Fault Tolerant CORBA, with its objective of continuous service despite faults, might be
enhanced with online upgrades to ensure that the continuous service objective is
maintained even while the software is being upgraded.

Load balancing systems based on the proposed CORBA Load Balancing specifications
are limited to stateless objects. Such systems could be augmented with the ability to
migrate a stateful object by upgrading an object located on one processor to another
functionally identical object located on a different processor.

Hardware and software configuration management software can use the basic online
upgrade capability to integrate new software into a system, or to populate new hardware
with already operating software, possibly adapting that software to the new platform on
which it will operate.

Some of these capabilities may require an implementation that is at least partly integrated
with the implementation of Online Upgrades. For example, providing Online Upgrades
for Fault Tolerant CORBA will require mechanisms that can maintain the desired degree
of replication during an upgrade. Other users of the PortableGroup interface may
construct heterogeneous object groups, and the Upgrade Mechanisms must be able to
select the appropriate member of such a group for upgrading.

ptc/2003-08-07: Online Upgrades 2-16

2.9 PlatformIndependent Model and a Mapping to CORBA

It is our goal that the Online Upgrade process advocated in the current proposa be
applicable to multiple technology platforms, including CORBA, Java, J2EE, .NET,
EDOC, and others as appropriate. For example, the Java Community Process is
concurrently developing a specification of Continuous Availability JSR-117, which
aims to support online upgrades for EJB/J2EE enterprise applications. Likewise, the
Service Availability Forum (SAF) is developing a specification of Service Availability
for embedded applications, in particular telecommunications and data communications
applications. We intend the process specified here, suitably abstracted as regards
technology specifics, to be applicable to JSR-117 and the SAF specifications. To
achieve this end, we embrace the notions introduced by the OMG’s Model Driven
Architecture (MDA). MDA introduced the concepts of PIM, PSM, and mapping, which
we apply below.

PIM, which stands for Platform Independent Model, is a representation of a system or
application structure, behavior and function in a form that is independent of the
concerns and details of the specific technology platform employed in an
implementation, such as CORBA, Java, J2EE, or .NET.

PSM, standing for Platform Specific Model, is a representation of a system or
application structure, behavior and function in a form that specifically addresses the
concerns and details of a selected technology platform.

Both PIM and PSM approaches can address a variety of levels of abstraction, but a
PIM is more abstract than a PSM (as it abstracts out platform-specific details).
Interrelating models - across various levels of abstraction, between platform-
independent and platform-specific, and across system roles and subsystems - is the job
of inter-model mappings.

At the time of the current proposal, MDA isjust over one year old (based on the public
introduction of the MDA label), with the consequence that it is in an early formative
stage. It is expected that PIMs, PSMs, and inter-model mappings will al be expressed
using UML 1.x in the short term, ultimately yielding to the UML 2.0 work currently in
process.

As shown in Figure 2-5, the PIM consists of one Class diagram and seven Activity
diagrams, one of which serves as a master that ranges over al five stages of the
upgrade process and six that serve to represent the stages in greater detail. The class
diagram represents the major responsible parties and subsystems involved in an Online
Upgrade and their associations. The multiplicities shown in this class diagram are
normative. The Activity diagrams use swim lanes to segregate activities by the
responsible party or subsystem.

| August 16,2003 ptc/2003-08-07: Online Upgrades 2-17

August 16, 2003

1
Portable Group

mﬂummm

_ i
Owllne Up-.gI- Mordule]

Poriable Slats
FprEr———

_Gheckpolmiabis |

U jpgride = [rybrincas s
|_Manager [_ Upgradaable
! : x
—
L.
Maw Qb
1
Class Diagram
01-08-2002

Online Upgrade PIM v 0.51

ptc/2003-08-07: Online Upgrades

Wihan Onllne
Upgrads is ussd
with Taul
tolerance thars
will ba multiple
rafplicas of ald
and W

2-18

August 16,2003

Application Lipgrade Manager mm
L illprats .
I_ Olgect Oudent | |
S L .
/I et Clgnct- wih | . Gl
L e Sy Speckmd = Upgam
_
X [y | iTimsie
i i T
ERTT [
ol
- ‘_\l> ILhndlEﬂlm" L
i T 1|n tia b chme Crdielid
R |t Impkic i Carramdd snd
|h1|"l‘F!ulll-ck
||B weemkiers Covimien
| i Espiicit Commi and

~EEREET
| mecmmryResommes |

S

online Upgrade PIM v 0.51

Top Lavel
o

ptc/2003-08-07: Online Upgrades

i Exmeil RedBiaek

|| Agptication & orfmlied
|| st Expeicil Commitand
Expeici] Al tiack

! & irFankchrs Canlreied
| mghck Carmame| s
| mphn ik Ralback

2-19

August 16, 2003

Online Upg
Stage 0.
Upgrade Ma
HECEH

ptc/2003-08-07:

v —
Upgrade Manager
L]
-_ﬂTnl_l:pfurlnmphil Y
| Ujpgiede dogeims Rellheck) |

-

o mews

rade PIM v 0.51

llgut Onkine

Online Upgrades

g, e ety

h?mu'.lph'l'wmge.r;
Oid & NMew Objects

2-20

August 16,2003

Anglcaiizn

I L L
impa +
TRl vy Oy
LI Y

]
<Pl Wk

G P e e G e g S
Froveqe fpey b bl

T Tl
.- T 1

-I'.r-i-
e mi iy
k
ETT

L. [amd mieiw C e
oy (vt o P = oy

sl L
=

Canoip Mdan ages,
Oid & Wew Obgscls

&
il T g
LT

[T

e W Dt | 4 SR
sy e W b Ling. | Pl b
= _ =

L

Syl]

Cnline Lpgrads PIK v 3351
Shage T Seé-up Upg rads
LI o]

e mi e

L
Frnmi L

.

ptc/2003-08-07: Online Upgrades

2-21

[TEEOER T— s BT T8 B e Cen
Applicetion | Upgrsa Group Manager,
Manzgar il & Mew Dbjects
L

L
Chach for Otjct
Grean Ewwie ree

1 L]

N e

¥ g GimacT Frr

Cre b 0k 1 VR
Croup.Log

X
#dd 018 Dbjuct
MR L

+
CRack ferDriginal Dt st

i D et Gesa
1 4
Crmie Hew Dhject
hlnnrl..l.l i &:-.c: e,
i
Lins: Origirl Objeci am
g [T
& A
Cnlirg U:&nrrtjda Pt w051
Sage 2 Seup Logads : aesi-ucione
A a5 DO ooy
-8 R

| August 16, 2003 ptc/2003-08-07: Online Upgrades 2-22

August 16,2003

| -
Application

Chnaline U
Btage 3: Tr
01 0 FEF

| —
Upgrade
Manager

SRR
Group Manager,
Oid & New Objects

. < dvail biama ok Od
'._ [F S ¥

PiM v 0.51
fer State

ptc/2003-08-07: Online Upgrades

2-23

August 16, 2003

; e
Frazech
7 Husdwad Masckage Ows
e . [M Cilgest Lug J
| PsEsasck "
X
G Phaiteira |
Lowera Masmewal 1f Did dhjmd
i b o O |
Fndliidi s
L A Sueomstit Lag.
Online Upgrade PIM v 8.51

Stage 4: Issus Commi
01002

ptc/2003-08-07: Online Upgrades

2-24

August 16,2003

Apphication Uipgrade Manager Group anager,
™ Oid & New Ohjects
g VR
! : w]
Fiwir sisa) oChl ngusal Bctady |
T s g e
1 Bl b Lo i Wi g
o D8 Ot
I Bwwrwwped i Dy G
Bl p oy b g
[Py s
| Compite |
Oniline Upgrade PIM v 0.5
Rolback
- .

ptc/2003-08-07: Online Upgrades

2-25

3.1 Overview

August 16, 2003

Group Management 3

This chapter defines the GroupM anager interface. The Group Manager is responsible
for managing object groups. For Online Upgrades, object groups are heterogeneous in
that the members of the group are an instance of the old implementation of the object
and the corresponding instance of the new implementation of the object. For Fault
Tolerant CORBA, object groups are homogeneous in that the members of the group are
the replicas of an object. If online upgrades are combined with fault tolerance, an
object group may contains replicas of the instance of the old implemenation and
replicas of the instance of the new implementation and, thus, the object groups are
heterogeneous.

The GroupManager interface extends the PortableGroup module, which is aso
defined in this chapter. The PortableGroup module contains three interfaces:
PropertyM anager, GenericFactory and ObjectGroupM anager. The intention of the
PortableGroup module is provide a single module with group management methods
that might be used by Fault Tolerant CORBA, Unreliable Multicast, Data Parallel
CORBA, Load Balancing, Online Upgrades and perhaps other future OMG
specifications.

The PropertyManager interface allows properties of the object groups to be set,
namely, the MembershipStyle and the Factories. The properties may be set statically
as defaults for the particular application or for a particular type, or may be set or
changed dynamically while the application is executing.

The GenericFactory interface is used by the application to create object groups. It is
also used by the Group Manager to create individual members of an object group.

For the infrastructure-controlled MembershipStyle, the application uses the
GenericFactory interface of the Group Manager to create an object group. The Group
Manager, in turn, invokes the individual factories, for the appropriate locations, to

ptc/2003-08-07: Online Upgrades 3-26

3

create the members of the object group. The Group Manager adds the members to the
object group and creates the object group reference. Subsequently, the Group Manager
removes members, if necessary.

For the application-controlled MembershipStyle, the application uses the
ObjectGroupM anager interface of the Group Manager to create a member of an
object group, to add an existing object to an object group, or to remove a member from
an object group, citing the location of the member to be created, added or removed. It
also allows the application to query the locations of the members of an object group.

3.2 PortableGroup Module

August 16,2003

3.2.1 Properties of Portable Group

Each object group has an associated set of properties that are set as defaults for the
particular application, that are set for the type of the object, that are set when the object
group is created, or that are set subsequently while the application executes. The
names and values of the specified properties are given below..

3.21.1 MembershipSyle

Name org.omg.pg.MembershipStyle
Value PG::MEMB_APP_CTRL
PG::MEMB_INF_CTRL

If the value of the MembershipStyleis MEMB_APP_CTRL, the application may
create an object itself and then invoke the add_member () method of the
ObjectGroupManager interface to cause the Group Manager to add the object to the
object group. Alternatively, the application may invoke the create_member () method
of the ObjectGroupM anager interface to cause the Group Manager to create the
member and add it to the object group.

If the value of the MembershipStyle is MEMB_INF_CTRL, the Group Manager
invokes the individual factories, for the appropriate locations, to create the members of
the object group.

3.2.1.2 Factories

Name org.omg.pg.Factories

Value Factorylnfos
A factory is an object, the purpose of which is to create other objects. Factorylnfosis
a sequence of Factorylnfo, where Factorylnfo contains the reference to the factory, the

location at which the factory is to create a member of the object group and criteria that
the factory is to use to create the member.

ptc/2003-08-07: Online Upgrades 3-27

3.2.2 Common Types
module PortableGroup {

/I Specification of I nteroperable Object Group Reference
typedef string Domainld,;
typedef unsigned long long ObjectGroupl d;
typedef unsigned long ObjectGroupRefVersion;
struct TagGroupTaggedComponent { // tag = TAG_GROUP
GIOP::Version version;
Domainld domain_id;
ObjectGroupRefVersion object_group_ref version;

b

/I Specification of Common Types and Exceptions for Group M anagement
interface GenericFactory;

typedef CORBA::Repositoryld Typeld;
typedef Object ObjectGroup;

| typedef string Name;
typedef any Value;
struct Property {
Name nam;
Valueval;
3
typedef sequence<Property> Properties,

| typedef CosNaming::Name L ocation;
typedef sequence<L ocation> L ocations;
typedef Properties Criteria;
struct Factorylnfo {
GenericFactory the factory;
L ocation the location;
Criteriathe criteria;
h
typedef sequence<Factorylnfo> Factorylnfos;

typedef unsigned short M ember shipStyleValue;
const Member shipStyleValue MEMB_APP_CTRL =0;
const Member shipStyleValue MEMB_INF_CTRL =1,

typedef Factoryl nfos FactoriesValue;

exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception Member NotFound {};
exception ObjectNotFound {};
exception Member AlreadyPresent {};
exception ObjectNotCreated {};

| August 16, 2003 ptc/2003-08-07: Online Upgrades 3-28

exception ObjectNotAdded {};
exception UnsupportedProperty {

Name nam;
Valueval;
h
exception InvalidPropertyValue{
Name nam;
Valueval;
h

exception NoFactory {
L ocation the location;
Typeld type id;

¥

exception InvalidCriteria {
Criteriainvalid_criteria;

¥

exception CannotMeetCriteria {
Criteriaunmet_criteria;

¥

¥

3.22.1 Identifiers
typedef Object ObjectGroup;
A reference to an abject group.
| typedef string Name;
The name of a property.
typedef any Value;
The value of a property.
struct Property {

Name nam;
Valueval;

| The name-value pair for a property.
typedef sequence<Property> Properties;
A sequence of properties.
| typedef CosNaming::Name L ocation;

The name for ahost, device, cluster of hosts, etc., which may be
| hierarchical. For example, for avariable loc of the type location,

| August 16,2003 ptc/2003-08-07: Online Upgrades 3-29

August 16, 2003

loc[0].kind might be “HostIP”, loc[0].id might be an IP address,
loc[1].kind might be “ProcessID” and loc[1].id might be a process
identifier.
typedef sequence<L ocation> L ocations;
A sequence of locations of the members of an object group.
typedef Properties Criteria;
Criteriais a sequence of property, i.e., name-value pair. Examples
of criteriaare initialization values, constraints on an object,
preferred location of the object.
struct Factorylnfo {
GenericFactory factory;
L ocation the location;
Criteriathe criteria;
h
A structure that contains the reference to a factory, the location at
which the factory is to create an object and the criteria, such as
initialization values, constraints on the object, etc., which the
factory isto useto create the object.
typedef sequence<Factorylnfo> Factorylnfos;
A sequence of Factorylnfos.
typedef unsigned short M ember shipStyleValue;

const Member shipStyleValue MEMB_APP_CTRL =0;
const Member shipStyleValue MEMB_INF_CTRL =1,

The values of the MembershipStyle property.
typedef Factorylnfos FactoriesValue;

The value of the Factories property.

3.2.2.2 Exceptions
exception InterfaceNotFound {};
The object with the given interfaceis not found.
exception ObjectGroupNotFound {};

The object group with the given identifier is not found.

ptc/2003-08-07: Online Upgrades 3-30

exception Member NotFound {};

No member of the object group exists at the given location.
exception ObjectNotFound {};

The object is not found.
exception Member AlreadyPresent {};

A member of the object group already exists at the given location.
exception ObjectNotCreated {};

The object was not created.
exception ObjectNotAdded {};

The object was not added to the object group.

exception UnsupportedProperty {
Name nam,;

¥
A property named in the property sequence is not supported.

exception InvalidPropertyValue {
Name nam;
Valueval;

A value of a property in the property sequence isnot valid either in
itself (for example, because theinitial number of membersis
negative) or because it conflicts with another value of a property in
the sequence or with other property values already in effect that are
not overridden.

exception NoFactory {
L ocation the location;
Typeld type id;

Thefactory that isto create an object at the given location with the
given repository identifier does not exist.

exception InvalidCriteria {
Criteriainvalid_criteria;

b

The factory does not understand the given criteria.

| August 16,2003 ptc/2003-08-07: Online Upgrades 331

exception CannotMeetCriteria {
Criteriaunmet_criteriag;

b

The factory understands the given criteria, but cannot satisfy the
criteria.

3.2.3 PropertyManager

The PropertyManager interface of the PortableGroup module provides methods that
allow the user to set properties of object groups, which for online upgrades are the
MembershipStyle and the Factories. It may set the properties statically as defaults for
a particular application or for a particular type, or may set or change the properties
dynamically while the application is executing.

| August 16, 2003 ptc/2003-08-07: Online Upgrades 3-32

August 16,2003

module PortableGroup {

Il Specification of the Property Manager interface
interface PropertyM anager {

void set_default_properties
(in Properties props)

raises
(InvalidPropertyValue,
UnsupportedProperty);

Properties get_default_properties();

void remove_default_properties
(in Properties props)

raises
(InvalidPropertyValue,
UnsupportedProperty);

void set_type properties
(in Typeld type id,
in Propertiesoverrides)
raises
(InvalidPropertyValue,
UnsupportedProperty);

Properties get_type properties
(in Typeld type id);

void remove type properties
(in Typeld type id,
in Properties props)
raises
(InvalidPropertyValue,
UnsupportedProperty);

void set_properties_ dynamically
(in ObjectGroup object_group,
in Propertiesoverrides)

raises
(ObjectGroupNotFound,
InvalidPropertyValue,
UnsupportedProperty);

Properties get_properties

(in ObjectGroup object_group)
raises

(ObjectGroupNotFound);

ptc/2003-08-07: Online Upgrades

3-33

August 16, 2003

3.2.3.1 Operations

set_default_properties

The method sets the default properties for all object groups that are to be created
within the application.

void set_default_properties
(in Properties props)

raises
(InvalidPropertyValue,
UnsupportedProperty);
Parameters
props The propertiesto be set for all newly created object groups within

the application.
Raises

InvalidPropertyValueif one or more of the values of the
properties in the sequence is not valid.

UnsupportedProperty if one or more of the propertiesin the
seguence is not supported.

get_default_properties

The method returns the default properties for the object groups within the particular
application.

Properties get_default_properties();

Return Value
The default properties that have been set for the object groups.

remove_default_properties
The method removes the given default properties.

void remove _default_properties
(in Properties props)

raises
(InvalidPropertyValue,
UnsupportedProperty);

Parameters
props The properties to be removed.
Raises

InvalidPropertyValue if one or more of the values of the
properties in the sequence is not valid.

ptc/2003-08-07: Online Upgrades 3-34

August 16,2003

UnsupportedProperty if one or more of the propertiesin the
seguence is not supported.

set_type properties

The method sets the properties that override the default properties of the object groups,
with the given type identifier, that are created in the future.

void set_type properties
(in Typeld type id,
in Properties overrides)
raises
(InvalidPropertyValue,
UnsupportedProperty);

Parameters

type id Therepository id for which the properties, that are to override the
existing properties, are set.

overrides The overriding properties.
Raises

InvalidPropertyValue if one or more of the values of the
properties in the sequence is not valid.

UnsupportedProperty if one or more of the propertiesin the
seguence is not supported.

get_type properties

The method returns the properties of the object groups, with the given type identifier,
that are created in the future. These properties include the properties determined by
set_type properties(), as well as the default properties that are not overridden by

set_type properties().

Properties get_type properties
(in Typeld type id);
Parameters

type id Therepository id for which the properties, that are to override the
existing properties, are set.

Return Value

The effective properties for the given type identifier.

remove_type properties
The method removes the given properties, with the given type identifier.

ptc/2003-08-07: Online Upgrades 335

August 16, 2003

void remove_type properties
(in Typeld type id,
in Properties props)
raises
(InvalidPropertyValue,
UnsupportedProperty);

Parameters
type id Therepository id for which the given properties are to be removed.

props The properties to be removed.
Raises

InvalidPropertyValue if one or more of the values of the
properties in the sequence is not valid.

UnsupportedProperty if one or more of the propertiesin the
seguence is not supported.

set_properties dynamically

The method sets the properties for the object group with the given reference
dynamically while the application executes. The properties given as a parameter
override the properties for the object when it was created which, in turn, override the
properties for the given type which, in turn, override the default properties.

void set_properties dynamically
(in ObjectGroup object_group,
in Propertiesoverrides)
raises
(ObjectGroupNotFound,
InvalidPropertyValue,

UnsupportedProperty);

Parameters

object_group The reference of the object group for which the overriding
properties are set.

overrides The overriding properties.

Raises
InvalidPropertyValue if one or more of the values of the
properties in the sequence is not valid.
UnsupportedProperty if one or more of the propertiesin the
seguence is not supported.

get_properties

The method returns the current properties of the given object group. These properties
include those that are set dynamically, those that are set when the object group was
created but are not overridden by set_properties dynamically(), those that are set as

ptc/2003-08-07: Online Upgrades 3-36

properties of a type but are not overridden by create object() and
set_properties_dynamically(), and those that are set as defaults but are not overridden
by set_type properties(), create _object() and set_properties dynamically().

Properties get_properties
(in ObjectGroup object_group)
raises
(ObjectGroupNotFound)
Parameters

object_group The reference of the object group for which the properties areto be
returned.

Return Value

The set of current properties for the object group with the given
reference.

Raises

ObjectGroupNotFound if the object group is not found.

| August 16,2003 ptc/2003-08-07: Online Upgrades 3-37

3.2.4 ObjectGroupManager

The ObjectGroupManager interface provides methods that allow an application to
exercise control over the addition, removal and locations of members of an object
group and to obtain the current reference and identifier for an object group.

module PortableGroup {

/I Specification of the Object Group Manager interface
interface ObjectGroupM anager {

ObjectGroup create_ member
(in ObjectGroup object_group,
in Location the location,
in Typeld type_id,
in Criteriathe criteria)

raises
(ObjectGroupNotFound,
Member AlreadyPr esent,
NoFactory,
ObjectNotCreated,
InvalidCriteria,
CannotMeetCriteria);

ObjectGroup add_member
(in ObjectGroup object_group,
in Location the location,
in Object member)

raises
(ObjectGroupNotFound,
Member AlreadyPr esent,
ObjectNotAdded);

ObjectGroup remove_member
(in ObjectGroup object_group,
in Location the location)
raises
(ObjectGroupNotFound,
Member NotFound);

Locationslocations of members

(in ObjectGroup object_group)
raises

(ObjectGroupNotFound);
ObjectGroupld get_object_group_id

(in ObjectGroup object_group)
raises

(ObjectGroupNotFound);

| August 16, 2003 ptc/2003-08-07: Online Upgrades 3-38

ObjectGroup get_object_group_ref
(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Object get_member_ref
(in ObjectGroup object_group,
in Location the location)

raises
(ObjectGroupNotFound,
Member NotFound);

¥
¥

3.24.1 Operations

create_member

The create_member () method allows the application to exercise explicit control over
the creation of a member of an object group, and to determine where the member is
created.

ObjectGroup create_ member
(in ObjectGroup object_group,
in Location the location,
in Typeld type id,
in Criteriathe criteria)

raises
(ObjectGroupNotFound,
Member AlreadyPresent,

NoFactory,
ObjectNotCreated,
InvalidCriteria,
CannotMeetCriteria);
Parameters
object_group The object group reference for the object group to which the
member is to be added.
the_location The physical location, i.e., ahost, cluster of hosts, etc., at which the
new member isto be created. Thereisat most one member of an
object group at each location.
type_id Therepository identifier for the type of the object.
the_criteria Parameters to be passed to the factory, which the factory evaluates

before creating the object. The criteria are implementation-specific
and are not defined in this specification. Examples of criteriaare
initialization values, constraints on the member, etc. The criteria
passed in as a parameter to create_member (), if any, override the
criteria set in the Factorylnfos property of the given object group
for the given location.

| August 16,2003 ptc/2003-08-07: Online Upgrades 3-39

August 16, 2003

Return Value

The object group reference of the abject group with the member
added. Thisreference may be the same asthat passed in as a
parameter.

Raises
ObjectGroupNotFound if the object group is not found.

Member AlreadyPresent if amember of the object group already
exists at the given location.

NoFactory if afactory that is capable of creating a member of the
object group with the given type_id and at the given location cannot
be found.

ObjectNotCreated if the factory cannot create the member and
add it to the object group.

InvalidCriteria if the factory does not understand the criteria

CannotMeetCriteria if the factory understands the criteria but
cannot satisfy it.

add_member

The add_member () method allows an application to exercise explicit control over the
addition of an existing object to an object group at a particular location.

ObjectGroup add_member
(in ObjectGroup object_group,
in Location the location,
in Object member)

raises
(ObjectGroupNotFound,
Member AlreadyPr esent,

ObjectNotAdded);

Parameters

object_group The object group reference of the object group to which the existing
object is to be added.

the_location The physical location, i.e., ahost, cluster of hosts, etc., of the object
to be added. Thereisat most one member of an object group at
each location.

member The reference of the object to be added.

Return Value
The object group reference for the object group with the object
added. Thisreference may be the same asthat passed in as a
parameter.

Raises
ObjectGroupNotFound if the object group is not found.

ptc/2003-08-07: Online Upgrades 3-40

3

Member AlreadyPresent if amember of the object group already
exists at the given location.

ObjectNotAdded if the object is not added to the object group.

remove_member

The remove_member () method allows an application to exercise explicit control over
the removal of a member from an object group at a particular location.

If the application invoked the create object() method of the GenericFactory interface
to create the member object and used the add_member () method to add the object to
the object group, when the application invokes remove_member (), the member is
removed from the group but is not deleted. Deletion of the object is the responsibility
of the application.

If the application invoked the create_member () method to create the member object,
when the application invokes the remove_member () method to remove the member
from the object group, the member is first removed from the object group and then the
delete_object() method of the GenericFactory interface is invoked to delete the
object.

If the member was created by the create object() method of the GenericFactory
interface, when the application invokes the remove_member () method to remove the
member, the member is first removed from the group and then the delete_object()
method of the GenericFactory interface is invoked to delete the object.

ObjectGroup remove_member
(in ObjectGroup object_group,
in Location the location)

raises
(ObjectGroupNotFound,
Member NotFound};
Parameters
object_group The object group reference for the object group from which the
member is to be removed.
the_location The physical location, i.e., ahost, cluster of hosts, etc., of the
member to be removed.
Return Value

The object group reference for the object group with the member
removed. This reference may be the same asthat passedinasa
parameter.

Raises
ObjectGroupNotFound if the object group is not found.

MemberNotFound if the member of the object group is not found
at the given location.

| August 16,2003 ptc/2003-08-07: Online Upgrades 341

August 16, 2003

locations_of _members

The locations_of_members() method allows the application to determine the locations
of the members of the given object group.

Locationslocations of members
(in ObjectGroup object_group)
raises
(ObjectGroupNotFound);
Parameters

object_group The object group reference of the object group.

Return Value

A sequence of locations at which the members of the object group
currently exist.

Raises

ObjectGroupNotFound if the object group is not found.

get_object_group_id

The get_object_group_id() method takes a reference for an object group asan in
parameter, and returns the identifier of the object group.

ObjectGroupld get_object_group_id
(in ObjectGroup object_group)
raises
(ObjectGroupNotFound);
Parameters

object_group An object group reference for the object group.
Return Value
The object group identifier for the object group.
Raises
ObjectGroupNotFound if the object group is not found.

get_object_group ref

The get_object_group_ref() method takes a reference for an object group as an in
parameter, and returns the current reference for the object group.

ObjectGroup get_object_group_ref
(in ObjectGroup object_group)
raises
(ObjectGroupNotFound);

Parameters
object_group An object group reference for the object group.
ptc/2003-08-07: Online Upgrades 3-42

Return Value
The current object group reference for the object group. The
returned reference may be the same as the reference passed in asa
parameter.

Raises

ObjectGroupNotFound if the object group is not found.

get_member_ref

The get_member_ref() method takes a reference for an object group and alocation as
in parameters, and returns a reference for the member.

Object get_member_ref
(in ObjectGroup object_group,
in L ocation the location)
raises
(ObjectGroupNotFound,
Member NotFound);

Parameters
object_group An object group reference for an object group.

the location The location of the member.

Return Value
The reference for the member.
Raises
ObjectGroupNotFound if the object group is not found.

M ember NotFound if the member is not found.

| August 16,2003 ptc/2003-08-07: Online Upgrades 3-43

August 16, 2003

3.2.5 GenericFactory

The GenericFactory interface is generic in that it allows the creation of object groups,
members of object groups, and individual objects (that are not members of object
groups).

module PortableGroup {

/I Specification of the GenericFactory interface
interface GenericFactory {
typedef any FactoryCreationl d;

Object create_object

(in Typeld type id,

in Criteriathe criteria,

out FactoryCreationld factory creation_id)
raises

(NoFactory,

ObjectNotCreated,

InvalidCriteria,

InvalidPropertyValue,

CannotMeetCriteria);

void delete_object
(in FactoryCreationld factory_creation_id)
raises
(ObjectNotFound);
h
h

The create_object() method takes a type id as an in parameter. It also takes
the_criteria as an in parameter, which allows a user to specify additional criteria, such
asinitialization values for the object implementation, constraints on the object, or
preferred location of the object. The type_id and the criteria in parameters of the
create_object() method contribute to the genericity and the flexibility of the
GenericFactory interface.

The create_object() method has an out parameter, factory creation_id, that is retained
by the entity that invoked the method so that it can later invoke the delete_object()
method of the factory using the factory creation_id as an in parameter, to cause the
factory to delete the object. The factory must also retain this identification information
so that it can actually delete the object.

Each implementation of the GenericFactory interface may create objects of one or
more types at one or more locations.

3.25.1 Identifiers

typedef any FactoryCreationl d;
An identifer that is assigned to an object by the factory that creates

ptc/2003-08-07: Online Upgrades 3-44

the object and that is used by the factory to delete the object
subsequently.

3.2.5.2 Operations

create_object

The method creates an object, using the type_id parameter to determine which type of
object to create and the_criteria parameter to determine restrictions on how and where
to create the object. The out parameter, factory creation _id, allows the entity that
invoked the factory, and the factory itself, to identify the object for subsequent
deletion.

Object create object

(in Typeld type id,

in Criteriathe criteria,

out FactoryCreationld factory creation_id)
raises

(NoFactory,

ObjectNotCreated,

InvalidCriteria,

InvalidPropertyValue,

CannotMeetCriteria);

Parameters
type_id Therepository identifier of the object to be created by the factory.
the _criteria Information passed to the factory, which the factory evaluates

before creating the object. Examples of criteria are initialization
values, constraints on the object, preferred location of the object,
etc.

factory _creation id Anidentifier that allows the factory to del ete the object
subsequently.

Return Value
The reference to the object created by the GenericFactory.
Raises
NoFactory if the object cannot be created.
ObjectNotCreated if the factory cannot create the object
InvalidCriteria if the factory does not understand the criteria

InvalidPropertyValue if the value of a property passed in as
criteriaisnot valid

CannotMeetCriteria if the factory understands the criteria but
cannot satisfy it.

| August 16,2003 ptc/2003-08-07: Online Upgrades 3-45

delete_object
The method deletes the object with the given identifier.

void delete_object
(in FactoryCreationld factory_creation_id)
raises
(ObjectNotFound);
Parameters
factory_creation_id Anidentifier for the object that isto be deleted.
Raises
ObjectNotFound if the object cannot be found.

3.3 Propertiesof Upgradeable Objects

August 16, 2003

Each object group for an Upgradeable object has three properties beyond the properties
defined by the PortableGroup module, namely, Quiescence, Pauselnterval and
Removallnterval.

3.3.1 Quiescence

Name org.omg.ou.Quiescence

Value boolean QuiescenceStyleVaue

If the value of the QuiescenceStyle property is false, the Upgradeable object uses no
callbacks and the are_you_ready() method operates as described below, with queuing
of request messages when are_you_ready() isinvoked. If the Upgradeable object uses
callbacks, this strategy could result in a deadlock. Thus, if the value of the
QuiescenceStyle property is true, the Upgradeable object uses callbacks and the
gueuing of request messages starts only when the object invokes thei_am_ready()
method with the ready parameter set to true. It is the responsibility of the Upgrade
Mechanisms to ensure that no request messages are delivered to the object after the
object has invoked i_am_ready() with the ready parameter equal to true.

3.3.2 Pauselnterval

Name org.omg.ou.Pauselnterval
Value long

If the object being upgraded invokes i_am_ready() with the value of ready equal to
false, the Upgrade Manager may wait for an interval and then reinvoke

are you_ready(). The Pauselnterval defines the length of the interval, in seconds, that
the Upgrade Manager waits before invoking are_you_ready() again. If the object
being upgraded invokesi_am_ready() with the ready parameter equal to false and the
Pauselnterval is 0, the Upgrade Manager does not reinvoke are_you_ready(), but
immediately rolls back the upgrade.

ptc/2003-08-07: Online Upgrades 3-46

3.3.3 Removallnterval

Name org.omg.ou.Removallnterval

Value long

When an object is upgraded successfully, the instance of the old implementation of the
object is removed by the Upgrade Manager. The user, having observed unsatisfactory
behavior from the instance of the new implementation of the object, may decide to
invoke revert_upgrade() in order to restore the instance of the old implementation of
the object. Conseguently, the Upgrade Manager may delay the removal of the old
implementation for a short period so that, if the user does invoke revert_upgrade(),
the reversion can be performed more quickly. The Removallnterval defines the length
of the interval, in seconds, for which the instance of the old implementation is retained
before it is removed.

3.4 GroupManager Interface

The GroupManager interface, defined below, is one of the interfaces of the
OnlineUpgrades module. The other two interfaces, the UpgradeM anager interface
and the Upgradeable interface, are defined in subsequent chapters.

The GroupManager interface extends the PortableGroup module and inherits the
methods of the PropertyManager, ObjectGroupManager and GenericFactory
interfaces. The methods of the PropertyManager interface allow definition of
properties associated with object groups that the Group Manager creates. The methods
of the ObjectGroupM anager interface allow an application to exercise control over
the addition, removal and location of members of an object group. The methods of the
GenericFactory interface allow the Group Manager to create and del ete object groups.

| August 16,2003 ptc/2003-08-07: Online Upgrades 3-47

module OnlineUpgrades {

/I Specification of Typesfor Upgrade Management Properties
typedef boolean QuiescenceXtyleValue;

typedef long Pausel ntervalValue;

typedef long RemovallntervalValue;

/I Specification of the GroupM anager interface

interface GroupManager :
PortableGroup::PropertyM anager,
PortableGroup::ObjectGroupM anager,
PortableGroup::GenericFactory {

void pause_member
(in ObjectGroup object_group,
in L ocation the_location)
raises
(MemberNotFound);

ObjectGroup resume_member
(in ObjectGroup object_group,
in L ocation the_location)
raises
(MemberNotFound);

3.4.1 |dentifiers

typedef boolean QuiescenceStyleValue;

If the value of the QuiescenceStyle property isfalse, the
Upgradeabl e object uses no callbacks and the are_you_ready()
method operates with queuing of request messages when
are_you_ready() isinvoked. If the value of the QuiescenceStyle
property is true, the Upgradeabl e object uses callbacks and the
queuing of request messages starts only when the object invokes
thei_am_ready() method with the ready parameter set to true.

typedef long Pausel ntervalValue;

The value of the Pauselnterval property. The value isthe length of
the interval, in seconds, between successive invocations of
are_you_ready() by the Upgrade Manager, if the object invokes
i_am_ready() with the ready parameter equal to false.

typedef long RemovallntervalValue;

The value of the RemovalInterval property. Thevalueisthe length
of theinterval, in seconds, for which the instance of the old
implementation is retained before the Upgrade Manager removesiit.

| August 16, 2003 ptc/2003-08-07: Online Upgrades 3-48

August 16,2003

3.4.2 Operations

3.4.21 pause member

The method takes the object group reference for the object being upgraded, and the
location of the instance of the old implementation, as in parameters. It is invoked by
the Upgrade Manager on the Group Manager, when the instance of the old
implementation invokes i_am_ready() with the ready parameter equal to true.

void pause_member
(in ObjectGroup object_group,
in Location the location)

raises
(M ember NotFound);
Parameters
object_group An object group reference for the object being upgraded.
the_location Thelocation of the member of the object group that corresponds to

the instance of the old implementation.
Raises

M ember NotFound if the member is not found.

3.4.2.2 resume_member

The method takes an object group reference for the object being upgraded, and the
location of the instance of the new upgraded implementation, as in parameters, and
returns an object group reference containing a profile for the instance of the new
implementation. It isinvoked by the Upgrade Manager on the Group Manager to start
the instance of the new implementation processing reguests.

ObjectGroup resume_member
(in ObjectGroup object_group,
in L ocation the location)

raises
(M ember NotFound);
Parameters
object_group An object group reference for the object being upgraded.
the_location Thelocation of the member of the object group that corresponds to

the instance of the new upgraded implementation.

Return Value

An object group reference that contains a profile for the instance of
the new upgraded implementation.

Raises

M ember NotFound if the member is not found.

ptc/2003-08-07: Online Upgrades 3-49

3.4.3 Usage

The GroupManager interface inherits the GenericFactory interface to allow the
application to invoke the Group Manager to create object groups. The application’s
local factory objects implement the GenericFactory interface to allow the Group
Manager to invoke the methods of that interface to create individual members of an
object group and also to create individual objects. The Group Manager is programmed
by the vendor of the Upgrade infrastructure, and the application’s local factory objects
are programmed by the application programmer.

If the MembershipStyle is MEMB_INF_CTRL, the Upgrade Manager invokes the
create_object() method of the GenericFactory interface of the Group Manager, which
creates an object group and returns an object group reference.

If the MembershipStyle is MEMB_APP_CTRL, the application invokes the
create_object() method of the GenericFactory interface of the Group Manager, which
creates an object group with no members and returns an object group reference. In this
case, the object group reference contains a TAG_MULTIPLE_COMPONENTS profile
withaTAG_PG_GROUP component in it, rather than TAG_INTERNET _IOP profiles.

If the Membership Styleis MEMB_INF_CTRL, the Upgrade Manager invokes the
create_member () method of the Group Manager which, in turn, invokes the
create_object() method of the GenericFactory interface of the application’s local
factories to create a member of the object group and then adds the member to the
group, as shown in Figure 3-1. It uses the locations to choose a factory from the
Factories sequence and uses the factory reference to invoke the method.

| August 16, 2003 ptc/2003-08-07: Online Upgrades 3-50

August 16,2003

Upgrade
Manager

Cieabe_mermnibearn)

Graup -
Manager:

o

Upgradsa
Manager

remave_mamben)

Group
Manager ;

&

Figure3-1 Infrastructure-controlled Membership Style

If the Membership Styleis MEMB_APP_CTRL, the application may invoke the
create_member () method of the Group Manager which, in turn, invokes the
create_object() method of the GenericFactory interface of the application’s local
factory and then adds the member to the group. Alternatively, the application may
invoke the create_object() method of the GenericFactory interface of the
application’s local factory to create the object and may then invoke the add_member ()
method of the Group Manager to add the object to the group, as shown in Figure 3-2.

The create_object() method of the application’s local factory accepts a criterion with
the name org.omg.pg.ObjectL ocation (which is reserved for specifying the location at
which the factory is to create the object). The value of this criterion instructs the
factory where to create the object. The create _object() method of the Group Manager
accepts properties within the_criteria parameter. These properties are contained in a
single criterion with the reserved name org.omg.pg.PGProperties. Such properties, if
any, override the corresponding properties that are specified as defaults or based on the
type of the object. The Group Manager removes the org.omg.pg.PGProperties
criterion from the_criteria parameter, adds the org.omg.pg.ObjectLocation criterion,
and appends any location-specific criteria (specified in the Factories property for the
particular location) to the criteria parameter before it invokes create_object() on the
application’s local factory.

ptc/2003-08-07: Online Upgrades 351

The create_object() method may raise the NoFactory exception. For the application’s
local factory object, the raised exception indicates that the factory cannot create an
individua object of the type id at the location. For the Group Manager, the raised
exception indicates that the Group Manager cannot create the object group because it
cannot find afactory that is capable of constructing a member of the object group of the
type_id at the location.

The delete_object() method may be invoked by the application or the Group Manager.
on the application’s local factory. In this case, the application’s local factory deletes a
single object.

ppicatan ar
Higher Lawval
Managar

Appicaton cragles
instance of new
implementatan

f phject
Group s
Manager

Application o
Highar Lol
Manager

add_membes)

o

Figure3-2 Application-controlled Membership Style

| August 16, 2003 ptc/2003-08-07: Online Upgrades 3-52

4.1 Overview

UpgradeManagement 4

The UpgradeM anager interface, defined in this chapter, is the principal management
interface for online upgrades of objects. It provides methods to prepare an object for
upgrading, to perform the upgrades of one or more objects, to rollback upgrades of

objects, and to revert an object from its new implementation to its old implementation.

The Upgrade Manager object, which implements this interface, uses the methods of the
GroupManager interface to create new instances of, and to manipulate, the object that
is being upgraded. The Group Manager object, which implements the interfaces of
the PortableGroup module, can also be used to exercise more precise application
control over the instantiation of new implementations of the object that is being
upgraded.

The Upgrade Manager also invokes the get_state() method of the
Upgradeable::Checkpointable interface and the are_you_ready() and
transform_and_set_state() methods of the Upgradeable interface, which the object
being upgraded must implement. These methods allow the Upgrade Manager to
establish that the object is in a safe and quiescent state before being upgraded, and to
transfer the state of an instance of the old implementation of the object to an instance
of the new implementation of the object.

4.2 UpgradeManager Interface

August 16, 2003

The UpgradeM anager interface provides five methods: upgrade_object(),
commit_upgrade(), rollback _upgrade(), revert_upgrade() and i_am_ready().

The most important of these methods is the upgrade_object() method, which initiates
the upgrading of an object. The parameters of the method allow the user to define the
object-to-be-upgraded, its type, the location at which to create the instance of the new
implementation, and criteriato be used in its creation, including the factory to be used.

The Upgrade Manager creates the instance of the new implementation and pauses the

ptc/2003-08-07: Online Upgrades 4-53

August 16, 2003

instance of the old implementation. The Upgrade Mechanisms retrieve the state from
the instance of the new implementation, transform in into the state of the instance of
the new implementation, and assign it to the instance of the new implementation.
Another parameter determines whether the upgrade is committed automatically or
whether it must wait until the user invokes the commit_upgrade() method of the
UpgradeM anager interface.

The commit_upgrade() method allows the user to prepare several objects for
upgrading and then to upgrade all of them together. The method commits all of the
objects for which it has been invoked but for which the commit or rollback actions
have not yet been performed..

The rollback _upgrade() method might be invoked by the user if the user issued
upgrade_object() for severa objects in a collection and would prefer to upgrade none
of the objects in the collection, if al of them cannot be upgraded. The method allows
an instance of an old implementation to resume processing messages.

Therevert_upgrade() method is used after a commit to revert an instance of the new
implementation of an object to an instance of the old implementation..The Upgrade
Mechanisms transfer the transformed state of the instance of the new implementation
to the instance of the old implementation.

i]

Lz rowctes Uporads
machanmms Ao har i
TS [= mEsenge =
(11 2 T)

e 1 EECE] W LFREE Iy
! LA PO TP IR T

Figure4-1 The Online Upgrade infrastructure

ptc/2003-08-07: Online Upgrades 4-54

August 16,2003

module OnlineUpgrades {

interface UpgradeM anager {

exception Invalidlnterface{};
exception UnknownUpgradeld {};

void upgrade_object
(in PortableGroup::ObjectGroup object_group,
in PortableGroup:: Typeld type id,
in PortableGroup::L ocation the location,
in PortableGroup::Factorylnfo the factory,
in boolean app_ctrl_commit)

raises
(PortableGroup:: ObjectGroupNotFound,
Invalidl nterface,
PortableGroup::NoFactory,
PortableGroup::ObjectNotCreated);

void commit_upgrade

(in PortableGroup::ObjectGroup object_group)
raises

(PortableGroup:: ObjectGroupNotFound);

void rollback_upgrade

(in PortableGroup::ObjectGroup object_group)
raises

(PortableGroup:: ObjectGroupNotFound);

void revert_upgrade
(in PortableGroup::ObjectGroup object_group,
in PortableGroup:: Typeld type_id,
in PortableGroup::L ocation the location,
in PortableGroup::Factorylnfo the factory)
raises
(PortableGroup::ObjectGroupNotFound,
Invalidl nterface,
PortableGroup::NoFactory,
PortableGroup::ObjectNotCreated);

void i_am_ready

(in upgradeld,

in boolean ready)
raises

(UnknownUpgradel d);

ptc/2003-08-07: Online Upgrades

4-55

4.2.1 Exception
exception Invalidlnterface{};

The old implementation of the object and the upgraded
implementation of the object do not have the same IDL interface.

4.2.2 Operations

4.2.2.1 upgrade object

The method upgrades the instances of the old implementation of an object and
instantiates the new implementation at the location specified. The method allows the
application to commit the upgrade explicitly or to delegate that responsibility to the
Upgrade Manager, depending on whether the value of the app_ctrl_commit parameter
is true or false.

void upgrade_object
(in PortableGroup::ObjectGroup object_group,
in PortableGroup:: Typeld type id,
in PortableGroup::L ocation the location,
in PortableGroup::Factorylnfo the factory,
in boolean app_ctrl_commit)

raises
(PortableGroup::ObjectNotFound,
Invalidl nterface,
PortableGroup::NoFactory,
PortableGroup::ObjectNotCreated);

Parameters

object_group The object group reference of the object-to-be-upgraded.

type id The type of the object-to-be-upgraded.

the_location Thelocation at which the upgraded implementation isto be
instantiated.

the factory Thefactory that isto be used to create the instance of the upgraded

implementation at the given location.

app_ctrl_commit A boolean that allows the application to commit the upgrade
explicitly or to delegate that responsibility to the Upgrade Manager.

Raises

PortableGroup::ObjectGroupNotFound if the object group for
the object-to-be-upgraded is not found.

Invalidlnterface if the current implementation and the upgraded
implementation do not have the same IDL interface.

PortableGroup::No Factory if the factory that isto be used to

| August 16, 2003 ptc/2003-08-07: Online Upgrades 4-56

4

August 16,2003

create the upgraded implementation of the object isnot found, or is
not capabl e of creating an instance of the upgraded implementation.

PortableGroup::ObjectNotCreated if an instance of the upgraded
implementation is not created.

4.2.2.2 commit_upgrade

The method allows the application to commit the upgrade explicitly.

void commit_upgrade

(in PortableGroup::ObjectGroup object_group)
raises

(PortableGroup:: ObjectGroupNotFound);

Parameter
object_group The object group reference for the object to be committed.

Raises

PortableGroup::ObjectGroupNotFound if the object group for
the object to be committed is not found.

4.2.2.3 rollback upgrade

The method allows the application to rollback the upgrade before it is committed.

void rollback_upgrade

(in PortableGroup::ObjectGroup object_group)
raises

(PortableGroup:: ObjectGroupNotFound);

Parameter

object_group The object group reference for the object for which the upgradeis
to berolled back.

Raises

PortableGroup::ObjectGroupNotFound if the object group for
the object for which the upgrade isto be rolled back is not found.

4.2.2.4 revert_upgrade

The method allows the application to revert the upgraded implementation to the old
implementation after it is committed. An object can be reverted only to the
immediately preceding implementation, i.e., the implementation from which the
upgrade_object() method was applied to reach the current implementation.

ptc/2003-08-07: Online Upgrades 4-57

August 16, 2003

void revert_upgrade
(in PortableGroup::ObjectGroup object_group,
in PortableGroup::Typeld type id,
in PortableGroup::L ocation the location,
in PortableGroup::Factorylnfo the factory)
raises
(PortableGroup::ObjectGroupNotFound,
Invalidlnterface,
PortableGroup::NoFactory,
PortableGroup::ObjectNotCreated);

Parameter

object_group The object group reference for the object to be reverted.

type_id The type of the object to be reverted.

the_location Thelocation at which the instance of the old implementation of the
object is to be instantiated.

the_factory Thefactory that isto be used to create the instance of the old
implementation at the given location.

Raises

PortableGroup::ObjectGroupNotFound if the object group for
the object to be reverted is not found.

Invalidlnterface if the current implementation and the upgraded
implementation do not have identical IDL interfaces.

PortableGroup::No Factory if the factory that isto be used to
create the instance of the upgraded implementation of the object is
not found or is not capable of creating an instance of the upgraded
implementation.

PortableGroup::ObjectNotCreated if the instance of the new
implementation of the object is not created.

4225 |i_am ready

The method allows an upgradeable application object to inform the Upgrade Manager
whether or not it is ready to be upgraded. If the ready parameter is equal to true, then
itisin asafe and quiescent state and can be upgraded. If the ready parameter is equal
to false, then it is not in a safe and quiescent state and so cannot be upgraded. The
application object being upgraded invokes i_am_ready() in response to the Upgrade
Manager’'s invocation of are you_ready().

void i_am_ready
(in unsigned long upgradel d,
in boolean ready)
raises
(UnknownUpgradel d);

Parameter

ptc/2003-08-07: Online Upgrades 4-58

4

upgradeld The upgrade identifier of the instance of the object being upgraded.

ready Trueif theinstance of the object isin a safe and quiescent state and,
thus, ready to be upgraded.

Raises

UnknownUpgradel d if the Upgrade identifier is not found.

| August 16,2003 ptc/2003-08-07: Online Upgrades 4-59

5.1 Overview

August 16, 2003

UpgradeableApplications)

This chapter defines the Upgradeable interface that application objects must
implement if they are to be upgraded. The chapter allows defines the PortableState
module, which contains the Checkpointable interface. The intention in defining the
PortableState moduleisto allow its use for both Fault Tolerance and Online Upgrades
and also for other specifications that require checkpointing, such as Data Parallel
CORBA and Load Balancing. In particular, the Upgradeable interface inherits the
PortableState:: Checkpointable interface.

The Upgradeable interface defines the are_you_ready() method that the Upgrade
Manager invokes on an application object instance that implements this interface.
When the Upgrade Manager invokes this method, the Upgrade Manager is asking that
object instance if it isin a safe and quiescent state and, therefore, is ready to be
upgraded. If the object instance isin a safe and quiescent state, it invokes the
i_am_ready() method of the Upgrade Manager with the value of ready equal to true;
otherwise, it invokesthei_am_ready() method of the Upgrade Manager with the value
of ready equal to false.

In addition to the are you_ready() method, the Upgradeable interface contains the
get_state() and transform_and_set_state() methods.

When an object instance is ready to be upgraded, the Upgrade Mechanisms invoke the
get_state() operation on that instance. They then invoke the
transform_and_set_state() operation on the instance of the new implementation of
the object, using the state retrieved from the instance of the old implementation as the
parameter. The transform_and_set_state() operation transforms the state of the
instance of the old implementation into the state for the instance of the new
implementation, providing values for new variables that are needed by the instance of
the new implementation. The transform_and_set_state() operation then assigns the
transformed state to the instance of the new implementation.

ptc/2003-08-07: Online Upgrades 5-60

5

Similarly, on reverting an upgrade after it is committed, the Upgrade Mechanisms first
invoke the get_state() operation of the instance of the new implementation of the
object to retrieve the state of that instance. They then invoke the
transform_and_set_state() operation on the instance of the old implementation, using
the state retrieved from the instance of the new implementation as the parameter. The
transform_and_set_state() operation transforms the state of the instance of the new
implementation into the state for the instance of the old implementation, omitting any
new variables and providing values for old variables that are needed by the instance of
the old implementation. The transform_and_set_state() operation then assigns the
transformed state to the instance of the old implementation.

The get_state() and transform_and_set_state() methods of the Upgradeable
interface must be programmed by the application programmer or perhaps are generated
by a source code preprocessor tool, with the help of the application programmer.

5.2 PortableSate Module

The PortableState module contains the Checkpointable interface. The
PortableState:: Checkpointable interface provides get_state() and set_state()
methods, which enable the state of an object to be transferred from one member of an
object group to another member of the object group.

The mechanisms invoke the get_state() method on a member of an object group to
retrieve its state from that member. They then invoke the set_state() method on a
member of the object group to assign its state to that member.

module PortableState {
typedef sequence<octet> Sate;

exception NoStateAvailable{};
exception InvalidSate{};

Il Specification of the Checkpointable interface
interface Checkpointable {
Sate get_state()
raises
(NoSateAvailable);
void set_state
(in Sate s)
raises
(Invalidstate);

| August 16,2003 ptc/2003-08-07: Online Upgrades 5-61

August 16, 2003

5.2.1 ldentifiers

typedef sequence<octet> State;
The state of an object.

5.2.2 Exceptions
exception NoStateAvailable {};
This exception is thrown if the state of the object is not available.
exception InvalidState {};

This exception is thrown if the state being supplied to the object is
not avalid state for the object.

5.2.3 Operations

5.2.3.1 (et state

The method obtains the state of the application object on which it is invoked. The
method is invoked by the underlying mechanisms. When the mechanisms invoke
get_state() on the application object, the application object returns its state.

State get_state()
raises
(NoStateAvailable);
Return Value

The state of the application object on which the method isinvoked.
Raises
NoSateAvailable if the state is not available.

5232 set state

The method sets the state of the application object on which it is invoked. The method
isinvoked by the underlying mechanisms. When the mechanisms invoke set_state(),
they assign the state to the application object.

void set_state
(in Sate s)
raises
(InvalidState);

Parameters
s The state to be used to set the state of the application object on
ptc/2003-08-07: Online Upgrades 5-62

which the method is invoked.
Raises

InvalidState if the parameter sisnot avalid state.

5.3 UpgradeablelInterface

August 16,2003

The Upgradeable interface must be inherited by each application object that is to be
upgraded. The Upgradeable interface inherits the PortableState:: Checkpointable
interface, which contains the get_state() method. In addition, the Upgradeable
interface defines the are_you_ready() and transform_and_set_state() methods. The
are you_ready() method is invoked by the Upgrade Manager. The get_state() and
transform_and_set_state() methods are invoked by the Upgrade Mechanisms.

module OnlineUpgrades{

Il Specification of the Upgradeable interface that application objects
// that are to be upgraded must inherit
interface Upgradeable:
PortableXtate:: Checkpointable {
boolean are_you_ready
(unsigned long upgradel d);

void transform_and_set_state
(in Sate s)

raises
(Invalidsate);

h

5.3.1 Operations

5.3.1.1 are you ready

The method is invoked by the Upgrade Manager on the application object. When the
Upgrade Manager issuesthe are_you_ready() invocation, the Upgrade Mechanisms do
not deliver any further method invocations to it (except for the get_state() invocation
described below); instead, they queue such request messages, and deliver them in due
course to the instance of the upgraded implementation. If the object invokes
i_am_ready() with the ready parameter equal to false, the Upgrade Manager
reinvokes are you_ready() after a delay defined by the Pauselnterval property. If the
object invokesi_am_ready() with the value of ready equal to false and the

Pausel nterval property has value 0, the Upgrade Manager rolls back the attempt to
upgrade.

Invocation of the are_you_ready() method queries the instance of the old
implementation about whether it is in a safe and quiescent state. A safe state may be
determined by the internal state of the object and, possibly, by the state of other objects

ptc/2003-08-07: Online Upgrades 5-63

August 16, 2003

or of physical equipment being controlled by the object. A quiescent state is a state in
which the object is not executing any method that has been invoked on it. The
instance of the old implementation may delay the reply until it has reached a safe state.

If the object being upgraded is multithreaded, quiescence requires that all of the
threads of the object are suspended. As shown in Figure 5-1, if the value of the
CallBack Style property for the group is false, when the Upgrade Manager issues the
are you_ready() invocation, the Upgrade Mechanisms deliver no further method
invocations to the old implementation (except for the get_state() invocation described
below). The manner in which the Upgrade Mechanisms determine that all of the
threads of an implementation have suspended is not defined and is vendor-specific.
The manner in which the instance of the old implementation reaches a safe state, and
ensures that all of its threads have suspended, is not defined and is application-specific.
For many objects, the are_you_ready() method can be implemented by immediately
invoking i_am_ready() with aready parameter equal to true.

void are_you_ready(in unsigned long upgradel d);

Parameter

upgradeld The upgrade identifier of the instance of the old implementation
being upgraded.

ptc/2003-08-07: Online Upgrades 5-64

Upgrade

Manager

Lipgrde Manager inwohrs
ang_yoi_raady |

Messages P

Tram Chedals

Cbject Upgrade
CONETLIES Manaager

1o procese

rstance of ok
reqiests
fr;n aerils mplemertaton
and reolies maches a safe

ard guiesssart slale

Irzm. S2rErE

insgiance of old
implermeniation imaokes
I_am_readyi}

willh reedy eqgual 1o frue

Upgrade meshanisms

LU Messses
fmm chants

—_—

Figure5-1 are you_ready() when the QuiescenceStyle property has the value false

If the QuiescenceStyle property for the group has the value true, as shown in Figure 5-
2, the Upgrade Mechanisms continue to deliver request messages to the instance of the
old implementation after the invocation of are you_ready(). When the instance of the
old implementation invokesi_am_ready() with the ready parameter equal to true, the
Upgrade Mechanisms queue all further request messages and do not deliver them to
the instance of the old implementation.

| August 16,2003 ptc/2003-08-07: Online Upgrades 5-65

August 16, 2003

Uppade Manaper imvohes
are you_readish
M\‘:ﬁﬁdgr_':. B
e Glenks
——

.1

Citjad Lpgrade
saflinees |Manager

y [
.:E'Euf’;:& nesanss of old
frem s TR
And reclies . MEaches s sale
{mm servers % SN0 QuisteT slate

Instance of old
Lipgrada mechanisms 'ﬂ'l:ie-me_r!!lal_l_:r MRTINES
SR MESEEDES . |_mm_readyh
fq-:_:—LE.T:h Shvin reacty equal i trug

Figure5-2 are you_ready() when the QuiescenceStyle property has the value true

5.3.1.2 et state

When upgrading an object, the method retrieves the state of an instance of the old
implementation of an object, which is then transformed into the state of an instance of
the new implementation of the object, before it is assigned to that new instance.
Similarly, when reverting an object after the upgrade has been committed, the method
retrieves the state of an instance of the new implementation of an object, which is then
transformed back into the state of an instance of the old old implementation of the
object.

Stateget_state()
raises
(NoSateAvailable);

Return Value
The state of the instance of the implementation of the object on
which the method is invoked.

ptc/2003-08-07: Online Upgrades 5-66

August 16,2003

Raises

NoSateAvailableif the state of the instance of the implementation
of the object is not available.

5.3.1.3 transform and set state

When upgrading from an instance of the old implementation of an object to an instance
of the new implementation of an object, the method transforms the state of an instance
of the old implementation of the object, returned by get_state(), into the state of the
new implementation of the object and assigns the transformed state to an instance of
the new implementation of the object. Similarly, when reverting from an instance of
the new implementation of an object to an instance of the old implementation of an
object, the method transforms the state of an instance of the new implementation of the
object, returned by get_state(), into the state of the old implementation of the object
and assigns the state to an instance of the old implementation of the object.

void transform_and_set_state(in State s)
raises
(Invalidtate);
Parameter
s The state of an instance of the implementation of the object.
Raises
InvalidState if the state of is not valid.

Figure 5-3 shows the transfer of state from an instance of the old implementation to an
instance of the new implementation, and vice versa.

Upgrade

Lipgradefd anages Manager L e aecha W R A (e ifreTkes
i &gl _Eat el 0 e O and_sa_saahsl)
ol ineslarce of oid of irs@anoe of nise
g emerishon M Pl STt on
pi—_ el e)
P e el - T
i 1 I fmnsormed
i rere wlale

Lipgraca
Manager

Lpgraceddanager reaHes
get_state) of inslanoes
o Merde rfaimeiiEm En

LieraciahBnage rrersoess
Ira = ared wel wlalall
of ircalanos o cid

mpemamaton 5y e conminghtiies.

Figure5-3 At the top, transfer of state from an instance of the old implementation to an
instance of the new implementation and, at the bottom, transfer of state from an
instance of the new implementation to an instance of the old implementation

ptc/2003-08-07: Online Upgrades 5-67

During an upgrade, the transform_and_set_state() method is used to transform the
state of an instance of the old implementation of an object into the state of an instance
of the new implementation. During arevert, thetransform_and_set_state() method is
used to transform the state of an instance of the new implementation of an object into
the state of an instance of the old implementation. It cannot be expected that the old
implementation already contains an appropriate transform_and_set_state() method
because the old implementation was, presumably, written before the new
implementation was devised. Consequently, the first stage of an upgrade involves
upgrading the old implementation to a version of the old implementation that contains
the appropriate transform_and_set_state() method. That version of the old
implementation can then be upgraded to the new implementation.

| August 16, 2003 ptc/2003-08-07: Online Upgrades 5-68

Usageof the oecifications 6

6.1 ExampleUseCase

We start with an existing object that has not been upgraded previously and, thus, does
not inherit the Upgradeable interface. We assume that the object is not replicated for
fault tolerance and that the Upgrade infrastructure uses I10P with point-to-point
communication, rather than multicast group communication. The infrastructure
controlled membership style is used.

1. Program the are you_ready(), get_state() and transform_and_set_state()
methods of the Upgradeable interface for the existing object implementation. Note
that it is not possible to perform an online upgrade of an object that does not
implement these methods of the Upgradeable interface.

2. Reload and restart the object, with its Upgradeable interface, as a singleton object
group. (Thisis not an “online upgrade”). Publish the Interoperable Object Group
Reference (IOGR). At this stage, the IOGR has only one profile, that of the old
implementation of the object.

(This setup might be considered to be a simple fault-tolerant system in which the
object group has the Cold Passive Replication Style, where the primary member of
the group executes and the backup members do not execute, and where the Initial
Number of Replicasis one.)

We now have an Upgradeable object that we wish to upgrade.
1. Program the new upgraded implementation of the object, i.e., the application logic.

2. Program the are_you_ready(), get_state() and transform_and_set_state()
methods for the upgraded implementation. Note that the
transform_and_set_state() method contains the code to transform the state of the
instance of the old implementation into the state of the instance of the new
implementation, and vice versa.

| August 16, 2003 ptc/2003-08-07: Online Upgrades 6-69

August 16, 2003

4,

Compile the new implementation of the object and store the compiled code in the
implementation repository. Install a factory for the new implementation at the
location where an instance of the new implementation is to be created.

Perform whatever testing is necessary to validate the new implementation.

As shown in Figure 6-1, higher level application software invokes the
upgrade_object() method of the Upgrade Manager, citing the IOGR and the type of
the existing implementation of the object and also the location and the factory
information for the instance of the new upgraded implementation of the object. In this
example, we assume that the app_ctrl_commit parameter of the upgrade_object()
method invocation has the value true.

1

The Upgrade Manager now invokes the create_member () method of the Group
Manager to create an instance of the new implementation as a member of the object
group. (Essentially, the new member is created as a cold backup member, which
does not execute.) The create_ member () method returns a new |OGR that contains
profiles for both the old implementation and the new implementation.

The Upgrade Manager invokes the are_you_ready() method of the instance of the
old implementation and the Upgrade Mechanisms stop delivering request messages
to the instance of the old implementation and start queuing those messages for the
instance of the new implementation (assuming that the QuiescenceStyle property
has the value false). If the instance of the old implementation determines that it is
in a safe and quiescent state, it invokes the i_am_ready() method of the Upgrade
Manager with the ready parameter equal to true; otherwise, it invokes the
i_am_ready() method of the Upgrade Manager with the ready parameter equal to
false and the Upgrade Manager rolls back the upgrade. The Upgrade Manager tries
again to invoke are_you_ready() after a time determined by the Pauselnterval

property.

If the instance of the old implementation invokes the i_am_ready() method with
the ready parameter equal to true, the Upgrade Manager invokes the
pause_member () method of the Group Manager.

The Upgrade M echanisms determine that the instance of the old implementation has
quiesced with all of its threads suspended.

The Upgrade Mechanisms invoke the get_state() method of the instance of the old
implementation. They record the get_state() message and its reply ahead of the
messages that they queued following the invocation of the are_you_ready()
method.

The Upgrade Mechanisms invoke the transform_and_set_state() method of the
instance of the new implementation of the object, supplying the state of the instance
of the old implementation of the object returned by get_state() as the parameter.
The transform_and_set_state() method transforms the state of the instance of the
old implementation into the state of the instance of the new implementation and
then assigns the transformed state to the instance of the new implementation.

At this point, the upgrade object() method returns.

ptc/2003-08-07: Online Upgrades 6-70

L ElEEN
o droig

EfEI [

- fmen
—puv wmapy
e,

s

(ol sk

upgrade_object() and commit_upgrade()

Figure 6-1

6-71

ptc/2003-08-07: Online Upgrades

August 16,2003

August 16, 2003

Because the app_ctrl_commit parameter is set to true, the higher level application
software now invokes the commit_object() method of the Upgrade Manager.

1

The Upgrade Manager invokes the resume_member () method of the Group
Manager to start the instance of the new implementation processing requests. The
resume_member () method returns a new 1OGR for the instance of the new
implementation.

For each of the messages queued for the instance of the old implementation, the
Upgrade Mechanisms generate a LOCATION_FORWARD or a
LOCATION_FORWARD_PERMANENT reply and transmit that reply back to the
client that originated the message. These replies carry the IOGR for the instance of
the new implementation.

At the client, the ORB retransmits the message to the instance of the new
implementation. For a LOCATION_FORWARD_PERMANENT reply, the ORB
replaces the previous IOGR, that addressed the instance of the old implementation,
with the new |OGR that addresses the instance of the new implementation.

The instance of the new implementation now starts to process messages.

The Upgrade Manager invokes the remove_member () method of the Group
Manager to remove the instance of the old implementation. The
remove_member () method returns a new IOGR for the new implementation that
contains only one profile. Future invocations of the instance of the old
implementation of the object trigger a LOCATION_FORWARD_PERMANENT
reply, carrying that new 10OGR, so that the clients can update their copies of the
IOGR to the new IOGR. The Upgrade Manager may delay the invocation of the
remove_member () method for the time specified by the RemovalInterval property,
against the possibility that the revert_object() method might be invoked. If the
instance of the old implementation has not yet been removed, the revert_object()
method does not create another instance of the old implementation and, thus, can
execute more rapidly.

This completes the upgrade of the object implementation.

As shown in Figure 6-2, the higher level application software now invokes the
revert_object() method of the Upgrade Manager, citing the IOGR and the type of the
instance of the new implementation and also the location and the factory for the
instance of the old implementation. The revert_object() method does not have an
app_ctrl_commit parameter because, on reversion of an upgrade, the Upgrade

M echanisms always perform the commit and, thus, such a parameter would always
have the value false.

ptc/2003-08-07: Online Upgrades 6-72

iaiEUER)
apeibdr

T DTy

Figure6-2 revert_upgrade()

6-73

ptc/2003-08-07: Online Upgrades

August 16,2003

1. The Upgrade Manager invokes the create_member () method of the Group Manager
to create the instance of the old implementation as a member of the object group.
The create_member () method returns a new 1OGR that contains profiles for both
the new implementation and the old implementation.

2. The Upgrade Manager invokes the are_you_ready() method of the instance of the
new implementation. The Upgrade Mechanisms stop delivering request messages
to the instance of the new implementation and, instead, start queuing those
messages (assuming that the QuiescenceStyle property has the value false).

3. If the instance of the new implementation determines that it is in a safe and
quiescent state to perform an upgrade, it invokes the i_am_ready() method of the
Upgrade Manager with the value of ready equal to true. Otherwise, it invokes
i_am_ready() with the value of ready equal to false and the Upgrade Manager rolls
back to the instance of the old implementation and resumes that instance. The
Upgrade Manager tries to invoke are you_ready() again after waiting the time
defined by the Pauselnterval property.

4. The Upgrade Mechanisms determine that the instance of the new implementation
has quiesced with all of its threads suspended.

5. The Upgrade Mechanisms invoke the get_state() method of the instance of the new
implementation. The Upgrade Mechanisms record the message containing the
get_state() invocation and its reply ahead of the messages that they queued when
they received the i_am_ready() invocation with the ready parameter equal to true.

6. The Upgrade Manager invokes the resume_member () method of the Group
Manager to start the instance of the old implementation processing requests. The
resume_member () method returns a new 10OGR for the instance of the old
implementation.

7. The Upgrade Mechanisms invoke the transform_and_set_state() method of the
instance of the new implementation of the object, supplying the state returned by
the get_state() method as a parameter. The transform_and_set_state() method
transforms the state of the instance of the new implementation into the state of the
instance of the old implementation and then assigns the transformed state to the
instance of the old implementation.

8. For each of the request messages queued for the instance of the new
implementation, the Upgrade Mechanisms generate a LOCATION_FORWARD or
LOCATION_FORWARD_PERMANENT reply and transmit that reply back to the
client that originated the message. These replies carry the IOGR for the instance of
the old implementation.

9. At the client, the ORB replaces the previous |OGR, that address the instance of the
new implementation, with the new |OGR that addresses the old implementation,
and retransmits the message to the instance of the old implementation.

10. The instance of the old implementation now starts to process messages.

11. The Upgrade Manager invokes the remove_member () of the Group Manager to
remove the instance of the new implementation. The remove_member () method
returns an IOGR for the old implementation, carrying only one profile. Future

| August 16, 2003 ptc/2003-08-07: Online Upgrades 6-74

invocations of the instance of the new implementation of the object trigger a
LOCATION_FORWARD_PERMANENT reply, carrying the IOGR that addresses
the old implementation, so that the clients can update their copies of the IOGR to
address the instance of the old implementation.

This completes the reversion of an instance of the upgraded implementation to an
instance of the old implementation.

| August 16,2003 ptc/2003-08-07: Online Upgrades 6-75

Responsesto RFP Requirements 4

7.1 Resolution of RFP Mandatory Requirements

August 16, 2003

6.1. Proposals shall specify interfaces to manage the upgrading of the
implementation of one or more CORBA objects.

The proposed specifications for Online Upgrades provide interfaces to manage the
upgrading of the implementation of a single CORBA object instance. The proposed
specifications allow these interfaces to be used to upgrade multiple CORBA object
instances, but provide minimal mechanisms to coordinate the upgrading of multiple
CORBA object instances. Extensions to the proposed specifications could provide
better coordination for the upgrading of multiple object instances.

The proposed specification exploits the notion of object groups, which was introduced
by the Fault Tolerant CORBA standard. For Fault Tolerant CORBA, object groups are
homogeneous in that the members of an object group are replicas. For Online
Upgrades, object groups are heterogeneous in that instances of both the old
implementation of an object and and the new implementation of an object are members
of the object group, while the upgrade is taking place. Heterogeneous object groups
can perhaps also be used to define composite objects that can be upgraded as a unit. In
our opinion, the definition of compositions of multiple objects is a system structuring
topic that should be addressed directly rather than as an incidental consequence of a
specification that addresses primarily a different topic. Consequently, the proposed
specifications do not address fully the upgrading of multiple CORBA objects.

6.2. Proposals shall specify interfaces to form and manage object groups to
facilitate upgrading.

The definition of an object group, containing instances of both the original and the
upgraded implementations of an object, facilitates the upgrading of an object, and also
the addressing of an upgraded object through the use of the Interoperable Object Group
Reference (I0GR), which the Fault Tolerant CORBA standard introduced.

ptc/2003-08-07: Online Upgrades 7-76

August 16,2003

The proposed specifications for Online Upgrades include a PortableGroup module
that provides a consistent basis for the specification of object groups within several
adopted or proposed specifications, including Fault Tolerant CORBA, Unreliable
Multicast, Data Parallel CORBA, Load Balancing and Online Upgrades. Such an
interface has already been defined by the Unreliable Multicast specifications, based on
an earlier version of Fault Tolerant CORBA, rather than on the publicly available Fault
Tolerant CORBA standard on which the PortableGroup module defined here is based.

6.3. Proposals shall address upgradesfor both active and passive object groups.

The proposed specifications for Online Upgrades are orthogonal to active and passive
replication, and permit the upgrading of objects that use either replication style.

6.4. Proposals shall address upgrades for both application-controlled and
infrastructure-controlled object group membership styles.

The proposed specifications for Online Upgrades permit the upgrading of objects that
use either application-controlled or infrastructure-controlled membership styles,
through the PortableGroup module.

6.5.Proposals shall define how an I nteroperable Object Reference, held by a
client, can be used to invoke a method of the old version of the object beforethe
object is upgraded, and of the new version of the object after the object is
upgraded.

The proposed specifications for Online Upgrades exploit the Interoperable Object
Group Reference as a means of addressing an object and invoking a method of the
object before it is upgraded, and of the object after it is upgraded, while allowing the
client object to continue to use the same reference to address the object.

All objects that inherit the Upgradeable interface are accessed by an Interoperable
Object Group Reference. The LOCATION_FORWARD_PERMANENT reply allows
an Interoperable Object Group Reference held by a client object, that addresses an
object being upgraded, to be adjusted to address an instance of the upgraded
implementation of the object rather than an instance of the original implementation of
the object, without requiring any action by the client object.

Version Management is a topic distinct from Online Upgrades. The proposal does not
address Version Management; a future OMG RFP might address Version Management.

6.6. Proposals shall address several redundancy selection strategies for active
object groups, other than first arrival.

The proposed specifications for Online Upgrades are orthogonal to redundancy
selection strategies and, thus, do not define redundancy selection strategies (see
Section 7.2 below).

6.7. Proposals shall specify interfaces to assist with state synchronization
between the old and the new versions of an object during the upgrade process.

The PortableState and Upgradeable interfaces specified in Chapter 5 define methods
for synchronizing the states of an instance of the old implementation and an instance
of the upgraded implementation of an object.

ptc/2003-08-07: Online Upgrades 7-77

7.2 Resolution of RFP Optional Requirements

August 16, 2003

7.1. Proposalsmay specify interfacesto allowthe history of the variousmembers
of an object group to be collected for off-line comparison.

The proposed specifications for Online Upgrades do not define interfaces to support
the collection of a history of messages of the various members of an object group. The
reasons for not including such interfaces in the proposed specifications are discussed in
Section 7.2 below.

7.2. Proposals may specify interfaces to allow one of the members of an object
group to be treated as an object-under-test, whose output isignored, but whose
history isrecorded.

The proposed specifications for Online Upgrades do not specify interfaces to support
the testing of the upgraded implementation of an object.

The scenario that leads to the request for such an interface, as a part of an Online
Upgrades specification, is as follows:

» Operation of the system with only an instance of the old implementation of the
object.

 Introduction of an instance of the new implementation of the object and transfer of
the state of an instance of the old implementation of the object to an instance of the
new implementation of the object.

» Continued operation of the system with an instance of the old implementation of the
object, together with concurrent operation of an instance of the new implementation
of the object as an object-under-test.

e Manual (or automatic) observation of the object-under-test, using a mechanism for
the collection of messages, leading to permission to perform the upgrade.

« Switchover to operation of the system with an instance of the upgraded
implementation of the object.

It is our opinion that this manner of upgrading is inappropriate.

Employing an object-under-test is a useful strategy, and it is important to conduct such
testing before performing an upgrade. But object-under-test presents several
substantial difficulties. The object-under-test is operating "open loop," with its outputs
being ignored. If the object-under-test behaves differently from the operational
implementation, the requests that are invoked on it, and the replies that it receives, are
appropriate for the operational implementation, rather than for the somewhat different
object-under-test. Thus, the object-under-test can accumulate error values and
discrepancies that would not have accumulated during normal operation. Such error
values and discrepancies might be regarded as inevitable and might be disregarded
during testing, but are highly undesirable during real operation.

Consequently, it is our opinion that it is inappropriate to perform an upgrade to an
implementation that has been, potentially, degraded by a period of operation under test.
Rather, we advocate a scenario such as:

ptc/2003-08-07: Online Upgrades 7-78

August 16,2003

» Operation of the system with only an instance of the old implementation of the
object.

 Introduction of an instance of the new implementation of the object and transfer of
state from the instance of the old implementation to an instance of the new
implementation.

» Continued operation of the system with an instance of the old implementation of the
object, together with concurrent operation of an instance of the new implementation
as an object-under-test.

e Manua (or automatic) observation of the object-under-test, possibly using a
mechanism to collect a history of messages. Such observation might lead to
permission to perform the upgrade.

e Termination (or continued operation) of the object-under-test.

 Introduction of a"fresh" new implementation of the object and transfer of state
from an instance of the old implementation of the object to an instance of the
"fresh" new implementation of the object.

« Immediate switchover to the new implementation of the object in the operational
system.

It is our assessment that this scenario allows observation of an object-under-test to
confirm that it can operate correctly while minimizing the risk that the new
implementation has been degraded by "open loop" operation prior to the switchover.

Consequently, it is our opinion that the specification of interfaces for Online Upgrades
and the specification of interfaces for online testing can be separated, although their
implementations might have some common mechanisms. Furthermore, other
individuals are more capable of devising appropriate interfaces for online testing than
we are, and thus, we do not define interfaces for online testing in this proposal.

7.3. Proposals may specify interfacesthat support control over acceptance of an
upgraded object implementation, allowing that implementation to executein the
operational system, or of rejection of an upgrade, causing fallback to the prior
version of the object.

The proposed specifications for Online Upgrades provide control, at two levels, over
the acceptance or rejection of a new implementation of an object.

During the upgrade, after an instance of the new implementation of the object has been
installed but before the switchover from an instance of the old implementation to an
instance of the new implementation, the operator or management software can invoke
"Commit" to perform the switchover, or "Rollback" to resume operation using the
instance of the old implementation of the object. The instance of the old
implementation continues with its current state and processes al of the incoming
messages, incurring only a short pause in operation. The instance of the new
implementation processes no messages. This mechanism is most useful for upgrading
several objects together, where the reason for rolling back the upgrade is that the
request to upgrade one of the objects was rejected with an error reply, for example,
because of a signature inconsistency.

ptc/2003-08-07: Online Upgrades 7-79

After the switchover and during operation of the instance of the new implementation of
the object, the operator or management software can invoke "Revert" to return to using
the old implementation. A "Revert" is essentially equivalent to an "upgrade" from the
new implementation to the old implementation of the object, and involves the same
steps and mechanisms (and overheads) as a normal upgrade. The state from which the
instance of the old implementation resumes operation is the then current state of the
instance of the new implementation of the object transformed into the state of the old
implementation.

7.4. Proposals may addressthe upgrading of theformat of the persistent state of
an object.

The proposed specifications for Online Upgrades do not address the upgrading of the
format of the persistent state of an object.

7.5. Proposals may address the issue of a Platform Independent Model.

A Platform Independent Model for Online Upgrades is provided in Section 2.9.

7.3 Responsesto RFP Issues

August 16, 2003

8.1 Proposals should discuss how the fallback of a new version of an object to
its old version will occur.

The proposed specifications for Online Upgrades address, in Section 4.2, how fallback
(rollback_upgrade() and revert_upgrade()) of an instance of an upgraded
implementation to an instance of the old implementation will occur.

8.2 Proposals should discuss how a reply can be associated with the replying
object, such as version identification and control issues.

The proposed specifications for Online Upgrades address how a reply can be
associated with the replying object in Section 2.6. The proposed specifications do not
provide a version control system. While a basic version control system might involve
only a simple sequential count, sophisticated version control systems are complex and
non-linear. It is our assessment that such a version control system would be
implemented most appropriately as a part of a higher level management system, and
should be defined by a separate specification.

The Interoperable Object Group Reference (IOGR) does contain a simple version
number for the IOGR. Using the IOGR version number, it is possible for a higher
level management function to determine, from its internal databases, the fully
elaborated version designation of an object.

8.3 Proposals should discuss security and access control issues that go beyond
the existing CORBAsecurity model.

The proposed specifications for Online Upgrades do not address security and access
control issues, which we regard as issues orthogonal to these specifications.

ptc/2003-08-07: Online Upgrades 7-80

Complianceand Conformance 8

8.1 Mandatory and Optional Interfaces

The infrastructure-controlled MembershipStyle (MEMB_INF_CTRL) is mandatory.
The application-controlled MembershipStyle (MEMB_APP_CTRL) and the
application-controlled Commit (app_ctrl_commit) are optional. If application control
is not supported, the MembershipStyle must be set to MEMB_INF_CTRL and the
app_ctrl_commit parameter must be set to false. All of the other interfaces defined is
this proposal are mandatory.

8.2 Proposed Compliance Points

Two compliance points are defined. The first compliance point implements the
membership style MEMB_INF_CTRL, but does not implement the membership style
MEMB_APP_CTRL. The second compliance point implements both membership
styles, MEMB_INF_CTRL and MEMB_APP_CTRL.

8.3 Changesto Existing Soecifications

August 16, 2003

The proposed specifications define a PortableGroup module and also a PortableState
module.

The PortableGroup moduleis derived from the publicly available specification for Fault
Tolerant CORBA. It differs dightly from the PortableGroup module that is defined by
the Unreliable Multicast specification, which was based on an earlier version of Fault
Tolerant CORBA. Other adopted and proposed specifications, namely Fault Tolerant
CORBA, Unreliable Multicast, Data Parallel CORBA and Load Balancing, could be
modified to make use of the PortableGroup module defined here.

ptc/2003-08-07: Online Upgrades 8-81

The PortableState module derives from the publicly available specification for Fault
Tolerant CORBA. The Fault Tolerant CORBA specification could be modified to make
use of the PortableState module. Other adopted and proposed specifications, such as

Fault Tolerant CORBA, could be modified to make use of the PortableState module
defined here.

| August 16, 2003 ptc/2003-08-07: Online Upgrades 8-82

Consolidated DL 9

| August 16,2003 ptc/2003-08-07: Online Upgrades 9-83

#ifndef _PortableGroup_IDL _
#define _PortableGroup_IDL _

#include“ CosNaming.idl”
#include*10P.idI”
#include* GIOP.idI”
#include“ CORBA.idI”
#pragma prefix “omg.org”

module PortableGroup {

/[from 98-10-19.idI
/I from 98-03-01.idI
[/l from 98-03-01.idI
/l from 98-03-01.idI

August 16, 2003

/I Specification for Interoperable Object Group References
typedef string Domainld;

typedef unsigned long long ObjectGroupl d;

typedef unsigned long ObjectGroupRefVersion;

struct TagGroupTaggedComponent { // tag= TAG_PG_GROUP;

GIOP::Version version;
Domainld domain_id;
ObjectGroupld object_group_id;

ObjectGroupRefVersion object_group_ref_version;
3

/I Specification of Common Types and Exceptions for Group M anagement
interface GenericFactory;

typedef CORBA::Repositoryld Typeld;
typedef Object ObjectGroup;

typedef string Name;
typedef any Value;

struct Property {
Name nam;
Valueval;
b
typedef sequence<Property> Properties;

typedef CosNaming::Name L ocation;
typedef sequence<L ocation> L ocations;
typedef Properties Criteria;

struct Factorylnfo {
GenericFactory the factory;
L ocation the location;
Criteriathe criteria;
h
typedef sequence<Factorylnfo> Factorylnfos;

typedef unsigned short M ember shipStyleValue;

ptc/2003-08-07: Online Upgrades 9-84

const Member shipSyleValue MEMB_APP_CTRL =0;
const Member shipStyleValueMEMB_INF_CTRL =1,

typedef Factoryl nfos FactoriesValue;

exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception Member NotFound {};
exception ObjectNotFound {};
exception Member AlreadyPresent {};
exception ObjectNotCreated {};
exception ObjectNotAdded {};
exception UnsupportedProperty {

Name nam;

h

exception InvalidPropertyValue{
Name nam;
Valueval;

h

exception NoFactory {
L ocation the location;
Typeld type id;

¥

exception InvalidCriteria{
Criteriainvalid_criteria;

¥

exception CannotMeetCriteria {
Criteriaunmet_criteria;

h

/I Specification of the PropertyManager interface
interface PropertyM anager {

void set_default_properties
(in Properties props)

raises
(InvalidPropertyValue,
UnsupportedProperty);

Properties get_default_properties();

void remove _default_properties
(in Properties props)

raises
(InvalidPropertyValue,
UnsupportedProperty);

void set_type properties

(in Typeld type id,

in Propertiesoverrides)
raises

| August 16,2003 ptc/2003-08-07: Online Upgrades 9-85

August 16, 2003

(InvalidPropertyValue,
UnsupportedProperty);

Properties get_type properties
(in Typeld type_id);

void remove_type properties
(in Typeld type id,
in Properties props)
raises
(InvalidPropertyValue,
UnsupportedProperty);

void set_properties_dynamically
(in ObjectGroup object_group,
in Properties overrides)

raises
(ObjectGroupNotFound,
InvalidPropertyValue,
UnsupportedProperty);

Properties get_properties
(in ObjectGroup object_group)
raises
(ObjectGroupNotFound);
3

/I Specification of the ObjectGroupM anager interface
interface ObjectGroupM anager {

ObjectGroup create_ member
(in ObjectGroup object_group,
in Location the location,
in Typeld type id,
in Criteriathe criteria)

raises
(ObjectGroupNotFound,
Member AlreadyPr esent,
NoFactory,
ObjectNotCreated,
InvalidCriteria,
CannotMeetCriteria);

ObjectGroup add_member
(in ObjectGroup object_group,
in Location the location,
in Object member)

raises
(ObjectGroupNotFound,
Member AlreadyPr esent,
ObjectNotAdded);

ptc/2003-08-07: Online Upgrades 9-86

b

ObjectGroup remove_member
(in ObjectGroup object_group,
in Location the location)
raises
(ObjectGroupNotFound,
Member NotFound);

Locationslocations of members
(in ObjectGroup object_group)
raises
(ObjectGroupNotFound);

ObjectGroupld get_object_group_id
(in ObjectGroup object_group)
raises
(ObjectGroupNotFound);

ObjectGroup get_object_group_ref
(in ObjectGroup object_group)
raises
(ObjectGroupNotFound);

Object get_ member_ref
(in ObjectGroup object_group,
in Location the location)
raises
(ObjectGroupNotFound,
Member NotFound);

Il Specification of the GenericFactory interface
interface GenericFactory {

typedef any FactoryCreationl d;

Object create object

(in Typeld type id,

in Criteriathe criteria,

out FactoryCreationld factory creation_id)
raises

(NoFactory,

ObjectNotCreated,

InvalidCriteria,

InvalidPropertyValue,

CannotMeetCriteria);

void delete_object

(in FactoryCreationld factory_creation_id)
raises

(ObjectNotFound);

August 16,2003 ptc/2003-08-07: Online Upgrades 9-87

|3
#endif /I for #ifndef _PortableGroup_IDL _

| August 16, 2003 ptc/2003-08-07: Online Upgrades 9-88

August 16,2003

#ifndef |

PortableState IDL

#define _PortableState IDL

#include
#include
#include
#include

“CosNaming.idl” /l from 98-10-19.idl
“1OP.idI” // from 98-03-01.idI
“GIOP.idI” // from 98-03-01.idI
“CORBA.idI” // from 98-03-01.idI

#pragma prefix “omg.org”

module PortableState {
typedef sequence<octet> Sate;

exception NoStateAvailable {};
exception InvalidSate{};

Il Specification of the Checkpointable interface
interface Checkpointable {

b
#endif

Sate get_state()
raises
(NoSateAvailable);
void set_state
(in Sates)
raises
(Invalidsate);

I for #ifndef _PortableState |DL_

ptc/2003-08-07: Online Upgrades

9-89

August 16, 2003

#ifndef _OnlineUpgrades IDL _
#define _OnlineUpgrades IDL

#include“ CosNaming.idl” // from 98-10-19.idl
#include“10P.idI"” /l from 98-03-01.idI
#include“ GIOP.idI” /l from 98-03-01.idI
#include“ CORBA.idl" /l from 98-03-01.idI

#pragma prefix “omg.org”

module OnlineUpgrades{
/I Specification of typesfor upgrade properties
typedef boolean QuiescenceStyleValue;
typedef long Pausel ntervalValue;
typedef long RemovallntervalValue;

/I Specification of the GroupM anager interface

interface GroupManager :
PortableGroup::PropertyM anager,
PortableGroup::ObjectGroupM anager,
PortableGroup::GenericFactory {

void pause_member
(in ObjectGroup object_group,
in L ocation the location)
raises
(MemberNotFound);

ObjectGroup resume_member
(in ObjectGroup object_group,
in Location the location)
raises
(MemberNotFound);
h

/I Specification of the UpgradeM anager interface
interface UpgradeM anager {

exception Invalidlnterface{};

exception UnknownUpgradeld {};

void upgrade_object
(in PortableGroup::ObjectGroup object_group,
in PortableGroup::Typeld type id,
in PortableGroup::L ocation the location,
in PortableGroup::Factorylnfo the factory,
in boolean app_ctrl_commit)

raises
(PortableGroup::ObjectNotFound,
Invalidlnterface,
PortableGroup::NoFactory,
PortableGroup::ObjectNotCreated);

ptc/2003-08-07: Online Upgrades 9-90

void commit_upgrade

(in PortableGroup::ObjectGroup object_group)
raises

(PortableGroup:: ObjectGroupNotFound);

void rollback_upgrade

(in PortableGroup::ObjectGroup object_group)
raises

(PortableGroup:: ObjectGroupNotFound);

void revert_upgrade
(in PortableGroup::ObjectGroup object_group,
in PortableGroup:: Typeld type id,
in PortableGroup::L ocation the location,
in PortableGroup::Factorylnfo the factory)
raises
(PortableGroup:: ObjectGroupNotFound,
Invalidl nterface,
PortableGroup::NoFactory,
PortableGroup::ObjectNotCreated);

void i_am_ready
(in unsigned long upgradel d,
in boolean ready)
raises
(UnknownUpgradel d);
¥

/I Specification of the Upgradeable interface that application objects
/l that are to be upgraded must inherit
interface Upgradeable:
PortableState:: Checkpointable {
void are you_ready
(in unsigned long upgradel d);

void transform_and_set_state
(in State s)

raises
(Invalidsate);

b
#endif I for #ifndef _OnlineUpgrades IDL_

| August 16,2003 ptc/2003-08-07: Online Upgrades 9-91

| August 16, 2003 ptc/2003-08-07: Online Upgrades 9-92

	Introduction
	1
	1.1 Submitting Companies
	1.2 Status of the Document
	1.3 Guide to the Submission
	1.4 Proof of Concept
	1.5 Submission Contact Points

	Design Rationale
	2
	2.1 Motivation
	2.2 Objectives
	2.3 Limitations
	2.4 Overview of the Online Upgrade Specifications
	2.5 Successive Stages of an Upgrade
	2.6 Object References and Message Forwarding
	2.7 Online Upgrade Scenarios
	2.7.1 Pushed Upgrade
	2.7.2 Pulled Upgrade
	2.7.3 Upgrades in the Presence of Smart Clients and System Management

	2.8 Extensibility of the Specification
	2.9 Platform Independent Model and a Mapping to CORBA

	Group Management
	3
	3.1 Overview
	3.2 PortableGroup Module
	3.2.1 Properties of Portable Group
	3.2.2 Common Types
	3.2.3 PropertyManager
	3.2.4 ObjectGroupManager
	3.2.5 GenericFactory

	3.3 Properties of Upgradeable Objects
	3.3.1 Quiescence
	3.3.2 PauseInterval
	3.3.3 RemovalInterval

	3.4 GroupManager Interface
	3.4.1 Identifiers
	3.4.2 Operations
	3.4.3 Usage

	Upgrade Management
	4
	4.1 Overview
	4.2 UpgradeManager Interface
	4.2.1 Exception
	4.2.2 Operations

	Upgradeable Applications
	5
	5.1 Overview
	5.2 PortableState Module
	5.2.1 Identifiers
	5.2.2 Exceptions
	5.2.3 Operations

	5.3 Upgradeable Interface
	5.3.1 Operations

	Usage of the Specifications
	6
	6.1 Example Use Case

	Responses to RFP Requirements
	7
	7.1 Resolution of RFP Mandatory Requirements
	7.2 Resolution of RFP Optional Requirements
	7.3 Responses to RFP Issues

	Compliance and Conformance
	8
	8.1 Mandatory and Optional Interfaces
	8.2 Proposed Compliance Points
	8.3 Changes to Existing Specifications

	Consolidated IDL
	9

