
Additional Structuring Mechanisms for
the OTS

This OMG document replaces the draft adopted specification (ptc/01-05-01). It is an OMG Final
Adopted Specification, which has been approved by the OMG board and technical plenaries, and is
currently in the finalization phase. Comments on the content of this document are welcomed, and
should be directed to issues@omg.org by November 5, 2001.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on January 24, 2002.
If you are reading this after that date, please download the available specification from the OMG
formal specifications web page.

OMG Adopted Specification

Additional Structuring Mechanisms for
the OTS

Final Adopted Specification
September 2001

Copyright 2001, Alcatel
Copyright 2001, Bank of America
Copyright 2001, IBM
Copyright 2001, INRIA and BULL
Copyright 2001, IONA Technologies Incorporated
Copyright 2001, Object Management Group
Copyright 2001, University of Newcastle upon Tyne
Copyright 2001, Vertel/Expersoft

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE
The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
Preface . iii

1. Introduction . 1-1
1.1 Introduction . 1-1

1.1.1 Activity Service Interfaces and Implementation 1-2
1.1.2 Application Framework 1-2

1.1.3 Application Component 1-3
1.1.4 Actions and Signal Sets 1-3

1.1.5 Underlying Implementation Platform 1-4

1.2 Activity Service Model . 1-4

1.2.1 Overview . 1-4
1.2.1.1Activities and transactions 1-7
1.2.1.2Activity Outcome 1-8
1.2.1.3Activity Failures 1-8
1.2.1.4Activity Integrity 1-9
1.2.1.5Signals, SignalSets, and Actions . . . 1-9
1.2.1.6Contexts . 1-13
1.2.1.7Properties . 1-13
1.2.1.8Recovery . 1-14

1.2.2 Coupling Transactions and Activities 1-16

2. Modules and Interfaces . 2-1

2.1 The Activity Service Modules . 2-1
2.1.1 Overview . 2-1

2.1.2 Datatypes . 2-1
2.1.2.1GlobalId . 2-2
2.1.2.2Status . 2-2
2.1.2.3CompletionStatus 2-3

2.1.3 Structures . 2-3
2.1.3.1ActivityInformation 2-3
September 2001 Additional Structuring Mechanisms for the OTS i

2.1.3.2Signal . 2-4
2.1.3.3Outcome . 2-5
2.1.3.4ActivityIdentity and ActivityContext 2-5
2.1.3.5PropertyGroupIdentity 2-7

2.1.4 Exceptions . 2-7

2.2 Activity Service Interfaces . 2-10

2.2.1 SignalSet Interface . 2-10
2.2.1.1Action Interface 2-12

2.2.2 ActivityToken Interface 2-13

2.2.3 ActivityCoordinator Interface 2-14
2.2.4 PropertyGroup . 2-18

2.2.5 PropertyGroupAttributes 2-20
2.2.6 PropertyGroupManager 2-21

2.2.7 CosActivity::Current . 2-22
2.2.8 CosActivityAdministration::Current 2-29

2.2.9 CosActivityCoordination::Current 2-29
2.2.10 Interposition . 2-32

2.3 Distributing Context Information 2-33

2.3.1 Activity Service POA Attributes 2-33

2.4 The User’s View . 2-36

2.4.1 Examples of Use . 2-37
2.4.1.1Workflow-like Coordination 2-38
2.4.1.2Compensating Activities 2-39
2.4.1.3Two-phase Commit 2-40

2.5 The Implementor’s View . 2-42

2.5.1 Suspending Transactions 2-42
2.5.2 Obtaining Current . 2-42

Appendix A - References . A-1

 Appendix B - OMG IDL . B-1

 Appendix C - Glossary . C-1

 Appendix D - Specific Models . D-1
ii Additional Structuring Mechanisms for the OTS September 2001

Preface
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this document
is a candidate for endorsement by X/Open, initially as a Preliminary Specification and
later as a full CAE Specification. The collaboration between OMG and X/Open Co Ltd
ensures joint review and cohesive support for emerging object-based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
September 2001 Additional Structuring Mechanisms for the OTS: About This Document iii

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Need
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is helpful
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which consists
of the following components:

• Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains.

• Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
iv Additional Structuring Mechanisms for the OTS: Intended Audience September 2001

The Object Request Broker, then, is the core of the Reference Model. Nevertheless, an
Object Request Broker alone cannot enable interoperability at the application semantic
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication between
subscribers. Meaningful, productive communication depends on additional interfaces,
protocols, and policies that are agreed upon outside the telephone system, such as
telephones, modems and directory services. This is equivalent to the role of Object
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is the
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model. The
OMG Object Model is based on objects, operations, types, and subtyping. It provides a
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to the Object Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services, a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities, a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized object-
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industry
and represents vendors, healthcare providers, payers, and end users.
September 2001 Additional Structuring Mechanisms for the OTS: Associated OMG Documents v

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important application
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Service Description

An increasingly large number of distributed applications are constructed by composing
existing applications. The resulting applications can be very complex in structure, and
with complex relationships between their constituent applications. Furthermore, the
execution of such an application may take a long time to complete, and may contain long
periods of inactivity, often due to the constituent applications requiring user interactions.
In a distributed environment, it is inevitable that long running applications will require
support for fault-tolerance, because machines may fail or services may be moved or
withdrawn.

If an application is structured as a collection of transactions, then when executed the
application is frequently required to possess some or all of the ACID properties of the
individual transactions. However, currently the application programmer has to build
application specific mechanisms to do this (such as creating mechanisms for saving
application state, creating ad-hoc locking mechanisms, creating mechanisms for
compensating transactions and so forth). Therefore, functionality is required for
supporting flexible ways of composing an application using transactions, with the
support for enabling the application to possess some or all ACID properties. Such
support should include facilities for supporting business rules, programming rules, and
data usage patterns.
vi Additional Structuring Mechanisms for the OTS: Service Description September 2001

Long-running applications and activities can be structured as many independent, short-
duration top-level transactions, to form a “logical” long-running transaction. This
structuring allows an activity to acquire and use resources for only the required duration
rather than the entire duration of this long-running transactional activity. In the event of
failures, to obtain transactional semantics for the entire long-running transaction may
require compensation transactions which can perform forward or backward recovery. A
transactional workflow system can be used to provide scripting facilities for expressing
the composition of these transactions with specific compensation activities where
required.

This document attempts to address the above problems with current transaction
structuring mechanisms by proposing a low-level architecture for Workflow Engines,
Component Management Middleware, and other systems to use to created advanced
transaction implementations.

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• International Business Machines

• IONA Technologies Incorporated

• Vertel/Expersoft

• Alcatel

• University of Newcastle upon Tyne

• Bank of America

• INRIA and BULL
September 2001 Additional Structuring Mechanisms for the OTS: Acknowledgments vii

viii Additional Structuring Mechanisms for the OTS: Acknowledgments September 2001

Introduction 1
Contents

This chapter contains the following sections.

1.1 Introduction

A very high level view of the role of the Activity Service is shown in Figure 1-1. An
explanation of the terms used in this figure and some rationale underlying the
specification’s design choices follow.

Section Title Page

“Introduction” 1-1

“Activity Service Model” 1-4
September 2001 Additional Structuring Mechanisms for the OTS: Introduction 1-1

1

Figure 1-1 Role of the Activity Service

1.1.1 Activity Service Interfaces and Implementation

The behavior required of an Activity Service Implementation which offers the operations
in the Activity Service Interfaces is the subject matter of this document. However, it will
be useful to understand what an Activity Service Implementation is not expected to do by
describing the responsibilities and expected behavior of the applications that require it.

1.1.2 Application Framework

It is not expected that the operations in the Activity Services interfaces will be used
directly by end-user application programmers. When we talk about application
programmers in this document it is really those who write for example, workflow
managers or component management systems or who are extending the functionality of
the Containers of Enterprise Java Beans (EJBs). Extended transactions like the Sagas and
Compensations described below have a complex structure and are intended to last over
quite long intervals. Therefore a significant amount of middleware is required to manage
the progress and recovery of an extended transaction and is not in the domain of an
application programmer who is being employed to write business software rather than
middleware.

Action Signal Set

Application Framework

Activity Service Interfaces

Activity Service Implementation

Persistence
Service

Logging
Service

etc.

Underlying Implementation Platform

Application
Component

ORB

Action

OTS

Signal Set Activity
Coordinator

etc.
1-2 Additional Structuring Mechanisms for the OTS: Introduction September 2001

1

In this document we have used the term Application Framework to describe the
middleware required and to distinguish it from the business application logic of an
Activity Component.

It is not the purpose of this document to propose the precise behavior of such workflow
management or component management systems -- indeed the OMG has already adopted
two related specifications -- rather the purpose is to propose an Activity Service that is
needed to allow such Application Frameworks to manage complex business transactions
that will extend the concept of transaction from the well-understood, short-duration
atomic transaction of the OMG's Object Transaction service (OTS).

There are expected to be several Application Service Implementations that interoperate in
the manner of this proposal and thus will allow extended transactions to span a network
of transaction systems connected indirectly by an ORB.

It is one of the responsibilities of an Application Framework implementation to manage
the persistent state of its applications; as opposed to the Application Service
Implementation'’ responsibility to manage the persistent state of its Activity Coordinators
and other public and private objects.

1.1.3 Application Component

If the Application Framework is that middleware supplied by specialist vendors required
to manage the progress of workflows and long-running business transactions in a variety
of business domains, then the term Application Component describes the components
that “plug in” to such a framework. The Workflow Management Coalition (WfMC) and
the OMG's Workflow Management Facility use the term Activity to describe a step in a
path through a workflow digraph. An Application Component -- if it is to be reusable --
has to maintain a degree of independence from the Application Framework in which it
runs. Thus a workflow manager might associate one or more Activities with a single
Application Component each time giving it different properties that will serve to
parameterize the enactment of the workflow [3]. For example, an Application
Component that holds a conversation with a graphical user interface (GUI) may be
associated with two Activities, one of which has a property “the end-user language is
French”, the other which has “the end-user language is English,” or again, the
Application Component could be composed into a larger Activity that must run as a
business transactions whose effects can be undone in some situations, whereas it could
also be composed into another, or used stand-alone where no transactional behavior is
involved at all.

1.1.4 Actions and Signal Sets

This is a specification for an Activity Service that is sufficiently general in its behavior to
support a large variety of extended transaction types. As middleware vendors and their
customers gain experience in developing and using extended transactions, so more types
of extended transactions will emerge.
September 2001 Additional Structuring Mechanisms for the OTS: Introduction 1-3

1

One of the keys to such extensibility is the Signal Set interface (described in detail
below) whose implemented behavior is peculiar to the kind of extended transaction.
Similarly, the behavior of an Action will be peculiar to the Application Framework of
which it is a part. So as new types of extended transaction emerge, so will new Signal Set
instances and associated Actions.

This allows a single Activity Service Implementation to serve a large variety of
Application Frameworks, each with its own idea of extended transactions, each with its
own Action and Signal Set implementations.

An Activity Service Implementation will not need to know what behavior is encapsulated
in the Actions and SignalSets it is given, merely interacting with their opaque interfaces
in an entirely uniform and transparent way.

1.1.5 Underlying Implementation Platform

Different Activity Service Implementations will choose to use different combinations of
the operating system and transaction services available to them. Although all
implementations rely upon the existence of an ORB and an OTS, some implementations
will have available to them a transaction system Logging Service and will choose to use
it in preference to an Object Persistence Service in order to meet its obligation to recover
the state of Activities that persist through failure and restart.

Any dependencies on the functionality of the ORB or Object Services are described
below.

1.2 Activity Service Model

1.2.1 Overview

As shown in Figur e1-2, an application activity (shown by the dotted ellipse) is to be split
into many different, coordinated, short-duration top-level transactions, to form a “logical
long-running transaction.”
1-4 Additional Structuring Mechanisms for the OTS: Activity Service Model September 2001

1

Figure 1-2 An example of a logical long-running “transaction,” without failure.

Let us assume that the application activity is concerned with booking a taxi (t1),
reserving a table at a restaurant (t2), reserving a seat at the theatre (t3), and then booking
a room at a hotel (t4).

Figure 1-3 An example of a logical long-running “transaction,” with failure.

The reason for structuring the application activity as a “logical long-running transaction”
rather than as a single top-level transaction is to prevent certain acquired resources from
being held for the entire duration of the application. It is assumed that the application’s
implementors have segmented the transactional activities within the application into
smaller transactions, each such transaction being responsible for acquiring (and
releasing) only those resources it requires.

However, if failures and concurrent access occur during the lifetime of these transactional
activities, then the behavior of the entire “logical long-running transaction” may not
possess ACID properties. Therefore, some form of (application specific) compensation
may be required to attempt to return the state of the system to (application specific)
consistency. For example, consider the above diagrams and let us assume that t4 has
failed (rolls back). Further assume that the application can continue to make forward

t1

t2

t3

t4 t6’

time

Application
activity

tc1 t5’

failure

t1

t2

t3

t4

time

Application
activity

t5 t6
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Model 1-5

1

progress, but in order to do so must now undo some state changes made prior to the start
of t4 (by t1, t2 or t3); since t4 is a transaction, its state changes will be undone
automatically by the transaction system, so no form of compensation is required.
Therefore, new activities are started; tc1 which is a compensation activity that will
attempt to undo state changes performed, by say t2, and t3 which will continue the
application once tc1 has completed. tc5' and tc6' are new activities that continue after
compensation (e.g., since it was not possible to reserve the theatre, restaurant and hotel,
it is decided to book tickets at the cinema). Obviously other forms of transaction
composition are possible (e.g., t5' could execute in parallel to tc1).

Much research on structuring applications out of transactions has been influenced by the
ideas of spheres of control [2]. There are several ways in which some or all of the
application requirements outlined above could be met. However, it is unrealistic to
believe that the “one-size fits all” paradigm will suffice, i.e., a single high-level model
approach to extended transactions is unlikely to be sufficient for all (or even the majority
of) applications. Therefore, we propose a low-level infrastructure to support the
coordination and control of abstract, application specific entities. As we shall show, these
entities (activities) may be transactional, they may use weaker forms of serializability, or
they may not be transactional at all; the important point is that we are only concerned
with their control and coordination, leaving the semantics of such activities to the
application programmer.

As we shall show, this distributed coordinator tree will support OTS strict two-phase
commit transactions, nested transactions, as well as a variety of different kinds of
“transactional behavior” including long-running transactions similar to Sagas with
Compensation, Flexible Transactions and Versioning Schemes. Any activity can be
associated with issuing demarcation signals (e.g., the end of the saga, the beginning of a
compensation group). These signals (or a subset of them) are communicated to any
entities that have chosen to register for involvement in the activity context.

An activity is a unit of (distributed) work that may, or may not be transactional. During
its lifetime an activity may have transactional and non-transactional periods. Every entity
including other Activities can be parts of an Activity, although an activity need not be
composed of other activities. An Activity is used to carry transactional and other
essential specifications of the application’s contract with its middleware.

Each activity is represented by an activity object. An Activity is created, made to run,
and then completed. The result of a completed activity is its outcome, which can be used
to determine subsequent flow of control to other activities. Activities can run over long
periods of time and can thus be suspended and then resumed later.

Demarcation signals of any kind are communicated to any registered entities (actions)
through signals. For example, the termination of one activity may initiate the start/restart
of other activities in a workflow-like environment. Signals can be used to infer a flow of
control during the execution of an application. Actions allow an Activity to be
independent of to the specific work it is required to do for signals.
1-6 Additional Structuring Mechanisms for the OTS: Activity Service Model September 2001

1

This specification describes basic interfaces that can be used to construct extended
transaction models such as long running transactions. These may be used by, for
example, workflow engines and applications to do compensation, activity demarcation
etc. by sending specific signal information through the Action/Activity structure
constructed through the proposed interfaces.

1.2.1.1 Activities and transactions

Note, in the rest of this document when we talk about “transactional activities” we
simply mean activities that use (are using, or have used) transactions.

An activity may run for an arbitrary length of time, and may use transactions (and
subtransactions) supplied by the Object Transaction Service implementations at arbitrary
points during its lifetime. For example, consider Figure 1-4, which shows a series of
connected activities co-operating during the lifetime of an application. The solid ellipses
represent transaction boundaries, whereas the dotted ellipses are activity boundaries.
Activity A1 uses two top-level transactions during its execution, whereas A2 uses none.
Additionally, transactional activity A3 has another transactional activity, A3' nested
within it.

Figure 1-4 Activity and transaction relationship.

Just as a thread of control may require transactional and non-transactional periods and
can suspend and resume its transactionality, so too may it require periods of non-activity
related work. Thus, it is possible for an activity thread to perform some work outside the
scope of the activity before returning to activity related work. In the example diagram
above, if the thread performing activity A3' decided to perform some non-activity related
work, it could do so outside the scope of A3' and A3. It is not possible to suspend an
activity without suspending all of its enclosed transactions. It is desirable that suspending
a transaction which has enclosed activities will also suspend those activities. However,
this would require that the transaction service has knowledge of activities, and would

A1 A2

A3

A4

A5

time

A3’
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Model 1-7

1

require a change to the Object Transaction Service, which is outside the scope of this
specification. A possible implementation which does not require changes to the OTS is
briefly described in Section 1.2.2, “Coupling Transactions and Activities,” on page 1-16.

To ensure application integrity, suspending and resuming of activities implicitly works in
conjunction with any transactions that may also be in flight within the activities.

1.2.1.2 Activity Outcome

An activity, which contains component activities, may impose a requirement on the
Activity Service implementation for managing these component activities. It must be
determined whether the nested Activities worked as specified or failed and how to map
their completion (or non-completion) to the enclosing Activity’s outcome. This is true
whether the nested Activities are strictly parallel, strictly sequential, or a complex
structure. In general, an Activity (or some entity acting on its behalf) that needs to co-
ordinate the outcomes of component Activities has to know what state each component
activity is in:

• which are active

• which have completed and what their outcomes were

• which activities failed to complete

This knowledge needs to be related to its own eventual outcome. A responsible entity
may be required to handle the sub-activity outcomes; this specification does not mandate
how this occurs, but it could be modeled as another Activity so that control flows can be
made explicit. The activity determines the collective outcome of the component activity
in the light of the various failure and success situations its component activities present it
with.

It is outside the scope of this specification to provide interfaces for the outcome manager
or to describe how such an entity should be constructed. In the case of complex activity
applications, suitable scripting languages may be required to assist the application
programmer to define the roles of outcome manager and activities.

1.2.1.3 Activity Failures

The failure of an individual Activity may produce application specific inconsistencies
depending upon the type of activity, and how the application depends upon it.

• If the Activity was involved within a transaction, then any state changes it may have
been making when the failure occurred will eventually be recovered by the
transaction service implementation.

• If the Activity was not involved within a transaction, then application specific
compensation may be required.

• An application that consisted of the (possibly parallel) execution of many activities
(transactional or not) may still require some form of compensation to “recover”
committed state changes made by prior activities. For example, the application
shown in Figure 1-3 on page 1-5.
1-8 Additional Structuring Mechanisms for the OTS: Activity Service Model September 2001

1

This specification considers that the compensation of the state changes made by an
activity is simply the role of another activity; we do not distinguish between
compensating and non-compensating activities. A compensating activity is simply
performing further work on behalf of the application. Just as application programmers
are expected to write “normal” activities, they will therefore also be required to write
“compensating” activities, if such are needed. In general, it is only application
programmers who possess sufficient information about the role of data within the
application and how it has been manipulated over time to be able to compensate for the
failure of activities. Automatic compensation of activities may be provided by systems
and tools which use the activity framework presented in this specification.

1.2.1.4 Activity Integrity

Activity service implementations must impose constraints on the use of activity
interfaces to guarantee integrity. This is similar to the checked transaction behavior of the
Object Transaction Service, and an implementation may use similar algorithms to those
presented within that specification. Implementations must ensure that all computations
acting on behalf of the activity have completed prior to its termination to prevent loss of
application integrity. Any enclosed transactions will be responsible for their own integrity
checks; hence an Activity Service implementation need only be concerned with imposing
checking constraints on work conducted outside the scope of transactions.

1.2.1.5 Signals, SignalSets, and Actions

Activities interact with each other and the rest of the distributed system through Signals
and Actions. An Activity may decide to transmit activity specific data (Signals) to any
number of other Activities at specific times during its lifetime (e.g., when it terminates);
each signal may be used to represent the requested outcome of the Activity. The
receiving Activities may either have been running and are waiting for a specific Signal,
or started by the receipt of the Signals.

To allow Activities to be independent of the other activities, and to allow the insertion of
coordination and control points within an application which are outside of the domain of
an Activity, Signals are sent to Actions, rather than Activities. (The role of an Action is
similar that of the CosTransactions::Resource in the OTS.) An Action may then use
the information encoded within the Signal in an application specific manner. When the
Action has finished it may return an application specific indication of the outcome of its
having dealt with the Signal. An Action may be considered as an entry/exit point
into/from an Activity. However, this specification does not restrict the role of the Action
and this should be considered as an example of usage only.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Model 1-9

1

Figure 1-5 Relationship of SignalSets, Signals, Actions and Activities.

To allow Actions to be selectively signaled, Signals are associated with SignalSets, and
Actions are implicitly associated with SignalSets. When a Signal is raised it does so
within the context of a specific SignalSet, and only those Actions registered with that
SignalSet will receive the Signal. An Action may register interest in more than one
SignalSet and an Activity may use more than one SignalSet during its lifetime.

An activity coordinator may be implicitly associated with each activity, and is used to
drive the Signal and Action interactions: if an Activity has no associated Actions, then it
need not have an activity coordinator. Activities that require to be informed when another
Activity sends a specific Signal can register an appropriate Action with that Activity’s
coordinator. When the Activity sends a Signal (e.g., at termination time), the
coordinator’s role is to forward this to all registered Actions and to deal with the
outcomes generated by the Actions by passing them to the SignalSet; it is the SignalSet’s
responsibility to collate the many individual outcomes into a single outcome for the
Activity.

With the exception of some predefined Signals and SignalSets, the majority of Signals
and SignalSets will be defined and provided by the higher-level applications that make
use of this Activity Service framework. To use the generic framework provided within
this specification it is necessary for these higher-level applications to impose application
specific meanings upon Signals and SignalSets (i.e., to impose a structure on their
abstract form). A Signal with the name “foobar” can mean one thing when used within
one application, but the same name may have a completely different meaning when used
elsewhere.

Activity
0..* 0..1

Action
0..*

1

Signal
Set

0..*
1..*

0..*

0..*

Signal

1

0..*
1-10 Additional Structuring Mechanisms for the OTS: Activity Service Model September 2001

1

A SignalSet is responsible for determining which Signals should be sent to registered
Actions. The set of Signals a given SignalSet can generate may change from one use to
another, and the actual set of Signals it sends may be a subset of these Signals. The
intelligence about which Signal to send to an Action is hidden within a SignalSet and
may be as complex or as simple as is required by the activity implementation. When a
Signal is sent to an Action, the SignalSet is informed of the Outcome generated by that
Action to receiving and acting upon that Signal; the SignalSet may then use that
information when determining the nature of the next Signal to send. When a given Signal
has been sent to all registered Actions the SignalSet will be asked for the next Signal to
send by the Activity Coordinator. It is possible for the outcome of an Action to cause the
premature fetching of a new Signal from a SignalSet such that not every registered
Action will see all of the Signals the SignalSet produced.

When all Signals have been generated by the SignalSet, the Activity’s final Outcome can
be obtained from the SignalSet. Since all of the Outcomes returned by each Action
(including failure Outcomes) have been passed to the SignalSet, it has the responsibility
for determining the final Outcome for the Activity. Only the SignalSet has the necessary
semantic information to interpret each Outcome in order to make this determination.

As shown below, a given SignalSet is assumed to implement a state machine, whereby it
starts off in the Waiting state until it is required by the Activity Coordinator to send its
first Signal, when it then either enters the Get Signal state or the End state if it has no
Signals to send. Once in the End state the SignalSet cannot provide any further Signals
and will not be reused. Once in the Get Signal state the SignalSet will be asked for a new
Signal until it enters the End state. A new Signal is only requested from the SignalSet
when all registered Actions have been sent the current Signal, or an exceptional outcome
is generated by an Action.

Figure 1-6 SignalSet state transition diagram.

For example, suppose we have a TwoPhaseCommit SignalSet to represent the termination
protcool for a transaction, and register Actions with the Activity as the transactional
resources; as with the OTS, it is up to the users of the Activity Service to ensure that
appropriate Actions are registered at appropriate times.

Waiting

Get Signal
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Model 1-11

1

Figure 1-7 Activity coordinator signaling actions.

When the activity is told to complete, it will be in either a “success” or “failure” state,
and this will be communicated to the SignalSet associated with it. If the state is “failure”,
then the SignalSet would generate a “rollback” Signal, whereas if “success” the
SignalSet would generate the “prepare” Signal to be sent to the registered Actions, as
shown in Figure 1-7. The Activity Coordinator would then send this Signal to each
Action, and inform the SignalSet of the result. Assuming none of the Actions returns an
exceptional response to this Signal, then when all Actions have received the “prepare”
Signal, and the Activity Coordinator asks the SignalSet for the next Signal, it will return
the “commit” Signal. However, if during the “prepare” phase, an Action returns a
response which indicates that there is no point in sending the “prepare” Signal to further
Actions, the Activity Coordinator will be required to obtain a new Signal from the
SignalSet (the “rollback” Signal in this case), and send this to all registered Actions. As
stated previously, the intelligence about which Signal to send, and about interpreting
outcomes from Actions, resides within the SignalSet, allowing implementations of the
framework presented within this specification to be highly configurable, to match
application requirements.

The desired delivery semantics for Signals are at least once, although implementations
are free to provide better deliver guarantees. This means that an Action may receive the
same Signal from an Activity multiple times, and must ensure that such invocations are
idempotent (i.e., that multiple invocations of the same Signal to an Action are the same
as a single invocation).

action action action action

activity coordinator

signal
set

get
signal

transmit signal
1-12 Additional Structuring Mechanisms for the OTS: Activity Service Model September 2001

1

1.2.1.6 Contexts

Whenever an entity within an Activity performs an operation it does so within that
Activity’s context. Since Activities may be nested, the context may form a hierarchy.
Because it is important that any operation executes within the correct context, whenever
an entity invokes a remote operation on another entity it is necessary to transmit this
context information between distributed entities.

Therefore, as part of the environment of each ORB-aware thread, the ORB maintains an
activity context; if the activity is transactional then this activity context will have
knowledge of the relevant transaction context. The activity context is either null
(indicating that the thread has no associated activity) or it refers to a specific activity. It
is permitted for multiple threads to be associated with the same activity at the same time,
in the same execution environment or in multiple execution environments.

This specification implicitly assumes that transaction context information will be
propagated implicitly between execution environments. Although it is assumed that
Portable Interceptor technology will be used to accomplish this, this is not mandated, and
any similar mechanism may be used; a subsequent section will describe in detail the role
required from an interceptor or its equivalent. However, it is assumed that for inter-
operability purposes such mechanisms will work with implementations that do use
Portable Interceptors. Additional POA attributes have been declared to provide a flexible
way in which the activity context may flow between execution environment. These
attributes will be described later in the specification.

1.2.1.7 Properties

The programmer possesses application specific knowledge about how the application will
use data (e.g., how locks on data should be obtained (optimistic pessimistic, for
example)) and how activities should deal with failures. An encompassed activity that
needed to perform an update could override this. This configuration information may
change during the lifetime of the application, as user requirements change. If such
information were hard-wired into the application, each time a change to the configuration
is made, the application would have to be rebuilt.

Therefore, what is required is a way to store this information as data, which can be
modified without requiring changes to the applications and activities that use it. In
addition, such data may be required to be shared between distributed activities. However,
how this data is stored and accessed may also depend upon the application requirements.
Therefore, rather than mandate a specific implementation for managing such properties,
we simply provide a mechanism for applications to obtain their own “property store”
implementations. This is the role of the PropertyGroup. A PropertyGroup represents
properties as a tuple-space of attribute-value pairs.

A PropertyGroup may be associated with each (distributed) Activity. A PropertyGroup
manages a group of properties and defines their behavior with respect to:

• the visibility of changes made to properties in a nested Activity.

• the visibility of changes made to properties in “downstream” nodes.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Model 1-13

1

• the manner in which property values are accessed in “downstream” nodes, i.e.,
whether properties are propagated by value or by reference.

An Activity can support any number of registered PropertyGroups, each with its own set
of behavior. In general it is desirable for all PropertyGroups to display the same behavior
with respect to nested Activities, although this is not required. That behavior should be
that, when a nested Activity is begun, all of the parent's properties are still available and
may be updated, but that updates are scoped to the Activity in whose scope they are
made. Thus, when a nested Activity is completed, the parent PropertyGroup is restored to
the state it had prior to the nested Activity starting.

Different PropertyGroup implementations may have different behaviors with respect to
nested Activities. For example, one type of PropertyGroup may allow updated to
properties to be transmitted within nested contexts, while another may not. There are
obviously scenarios where both types of PropertyGroup could be used at the same time.
For example, PG1 could represent “client environment” information such as locale or
codepage; overriding of this information within nested contexts would make no sense;
PG2 may represent application context, certain parts of which may require to be available
only for the specific context in which they were set.

Any number of named PropertyGroups may be registered with the Activity Service.
When an Activity is begun, an instance of each registered PropertyGroup is created and
initialized.

Note, an implementation of a PropertyGroup may use an implementation of the OMG's
Property Service specification.

1.2.1.8 Recovery

Recovering applications after failures, such as machine crashes or network partitions, is
an inherently complex problem: the states of objects in use prior to the failure may be
corrupt, and the references to objects held by remote clients may be invalid. At a
minimum, restoring an application after a failure may require making object states
consistent. The advantage of using transactions to control operations on persistent objects
is that the transactions ensure the consistency of the objects, regardless of whether or not
failures occur. A transaction system (e.g., one based upon the Object Transaction
Service), will guarantee that in the event of failures, any transactions that were in flight
will either be committed or rolled back, making permanent or undoing any changes to
objects that had occurred (i.e., it will be as though the transactions either did not start, or
completed as required).

Rather than mandate a particular means by which objects should make themselves
persistent, many transaction systems simply state the requirements they place on such
objects if they are to be made recoverable, and leave it up to the object implementors to
determine the best strategy for their object’s persistence. The transaction system itself
will have to make sufficient information persistent such that, in the event of a failure and
subsequent recovery, it can tell these objects whether to commit any state changes or roll
them back. However, it is typically not responsible for the application object’s
persistence.
1-14 Additional Structuring Mechanisms for the OTS: Activity Service Model September 2001

1

In a similar way, we do not want to mandate a specific persistence and recovery
mechanism for the Activity Service. Rather we wish to state what the requirements are
on such a service in the event of a failure, and leave it to individual implementors to
determine their own recovery mechanisms. As far as end-users of the Activity Service
and its applications are concerned, recovery is something that happens after a failure:
how it happens is rarely of concern. In a distributed application, where an individual
activity may run on different implementations of the Activity Service during its lifetime,
recovery is the responsibility of these different implementations. Each implementation
may perform recovery in a completely different manner, forming recovery domains.
Therefore, we are more concerned with the requirements that the Activity Service places
on recovery, rather than how such recovery occurs.

Unlike in a traditional transactional system, where crash recovery mechanisms are
responsible for guaranteeing consistency of object data, the types of extended transaction
applications we envision using this service will typically also require the ability to
recover the activity structure that was present at the time of the failure. This will then
enable the activity application to then progress onwards. However, it is not possible for
the Activity Service to perform such complete recovery on its own; it will require the co-
operation of the Transaction Service, the Activity Service and the application. Since it is
the application logic that imposes meaning on Actions, Signals, and SignalSets in order
to drive the activities to completion during normal (non-failure) execution, it is
predominately this logic that is required to drive recovery and ensure activity components
become consistent.

The recovery requirements imposed on the Activity Service and the applications that use
it can be itemized as follows:

• application logic: the logic required to drive the activities during normal runtime
will be required during recovery in order to drive any in-flight activities to
application specific consistency. Since it is the application level that imposes
meaning on Actions, Signals, and SignalSets, it is predominately the application
that is responsible for driving recovery.

• rebinding of the activity structure: any references to objects within the activity
structure which existed prior to the failure must be made valid after recovery.

• application object consistency: the states of all application objects must be returned
to some form of application specific consistency after a failure.

• recover actions and signal sets: any Actions and SignalSets used to drive the
activity application must be recovered.

If Activities and transactions co-operate within a given application, then the respective
recovery mechanisms will also be required to co-operate. Obviously it is not necessary
for a user of the Activity Service implementation to use transactions at all, in which case
only Activity recovery will be required in the event of a failure (i.e., it is possible to have
recovery domains that do not require a transaction service implementation at all).
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Model 1-15

1

1.2.2 Coupling Transactions and Activities

It is possible for an Activity Service implementation to terminate (or mark for
termination) both Activities and transactions because it has sufficient knowledge of both
entities. However, without modifying the Object Transaction Service specification, the
information about Activities executing within a transaction is not available to a
terminating transaction; hence such a transaction cannot force the termination of any sub-
activities, only sub-transactions.

It is important to enable the termination of a transaction to affect any enclosed Activities.
This specification therefore requires that there be a uniform architectural model, whereby
Activities and transactions can cause the termination of any enclosing Activities and
transactions. Although some implementations of the Object Transaction Service may do
this through proprietary extensions to their implementations, this is not strictly necessary.
Activities may register a suitable CosTransactions::Resource to act on their behalf
with any enclosing transaction upon creation; this Resource will be informed whenever
the transaction terminates, and the Activity can then behave accordingly (e.g., force the
transaction to rollback if the state of the Activity is not consistent).
1-16 Additional Structuring Mechanisms for the OTS: Activity Service Model September 2001

Modules and Interfaces 2
Contents

This chapter contains the following sections.

2.1 The Activity Service Modules

2.1.1 Overview

The set of CORBA services which support the Activity Service Model presented earlier
are supported in the CosActivity, CosActivityAdministration, and
CosActivityCoordination modules. This chapter shall describe the datatypes,
exceptions, and interfaces provided by these different modules.

2.1.2 Datatypes

The CosActivity module defines the following datatypes:

Section Title Page

“The Activity Service Modules” 2-1

“Activity Service Interfaces” 2-10

“Distributing Context Information” 2-37

“The User’s View” 2-39

“The Implementor’s View” 2-45
September 2001 Additional Structuring Mechanisms for the OTS: The Activity Service Modules 2-1

2

2.1.2.1 GlobalId

This sequence of octets is used to uniquely identify the Activity. It is implementation
dependent as to the information that may be contained within GlobalId.

typedef sequence<octet> GlobalId;

2.1.2.2 Status

During the existence of the activity its status will either be running, completing, or
completed.

enum Status
{

StatusActive,
StatusCompleting,
StatusCompleted,
StatusError,
StatusNoActivity,
StatusUnknown

};

The meaning of each of the above values is given below:

• StatusActive: An Activity is associated with the target object and the Activity is
in the active state. An implementation returns this status after an Activity has been
started and prior to its beginning completion.

• StatusCompleting: An Activity is associated with the target object and it is in the
process of completing. An implementation returns this status if it has started to
complete, but has not yet finished the process. This value indicates that the activity
may be performing activity specific work required to determine its final completion
status. An activity must enter this state prior to completion, even if this state does
nothing.

• StatusCompleted: An Activity is associated with the target object and it has
completed. The actual outcome of the completed Activity will depend upon the type
of Activity (e.g., a transactional Activity may complete in a Committed, or
RolledBack state). Obtaining such states will be application specific.

• StatusError: An Activity is associated with the target object but it is unable to
proceed as one or more of its entities are not available. The Activity may be in an
inconsistent state.

• StatusNoActivity: No Activity is currently associated with the target object. This
will occur after an Activity has completed, or before the first Activity is created.

• StatusUnknown: An Activity is associated with the target object, but the Activity
Service cannot determine its current status. This is a transient condition, and a
subsequent invocation will ultimately return a different status.

Figure 2-1 indicates the transitions that an Activity can undergo.
2-2 Additional Structuring Mechanisms for the OTS: The Activity Service Modules September 2001

2

Figure 2-1 Activity UML state diagram

2.1.2.3 CompletionStatus

enum CompletionStatus
{
 CompletionStatusSuccess,
 CompletionStatusFail,
 CompletionStatusFailOnly
};

When an Activity completes, it does so in one of two states, either success or failure.
During its lifetime, the completion state of the Activity (i.e., the state it would have if it
completed at that point) may change from success to failure, and back again many times.
This is represented by the CompletionStatus enumeration, whose values are:

• CompletionStatusSuccess: the Activity has successfully performed its work
and can complete accordingly. When in this state, the Activity completion status can
be changed.

• CompletionStatusFail: some (application specific) error has occurred which has
meant that the Activity has not performed all of its work, and should be driven
during completion accordingly. When in this state, the Activity completion status
can be changed.

• CompletionStatusFailOnly: some (application specific) error has occurred which
has meant that the Activity has not performed all of its work, and should be driven
during completion accordingly. Once in this state, the completion status of the
Activity cannot be changed (i.e., the only possible outcome for the Activity is for it
to fail).

The interpretation of the completion status outcome to drive specific Signals and Activity
specific work is up to the actual Activity.

2.1.3 Structures

2.1.3.1 ActivityInformation

struct ActivityInformation
{
 GlobalId activityId;
 CompletionStatus status;

Outcome final_outcome;

Active Completing Completed
September 2001 Additional Structuring Mechanisms for the OTS: The Activity Service Modules 2-3

2

};

The ActivityInformation structure is encoded within the application_specific_data
field of the Signals sent by the ChildLifetime and Synchronization SignalSets.

2.1.3.2 Signal

struct Signal
{
 string signal_name;
 string signal_set_name;
 any application_specific_data;
};

An Activity may enable Signal objects to be transmitted to entities to inform them about
activity specific events. Activity specific information (e.g., about how the Activity
terminated) is encoded within the Signal.

signal_name is an identifier for the Signal, and can be used to determine the meaning
of the Signal. It is invalid for this field to be nil. This name must be unique within the
context of the SignalSet.

signal_set_name is the name of the SignalSet this Signal is associated with. It is
invalid for this field to be nil. These names must be unique, and adhere to the following
naming convention: <domain>.<company>.<…>; so, for example,
“com.ibm.fred.otssignals”.

The application_specific_data field may be used to encode additional application
specific information.

Predefined signal types include:

• preCompletion: the recipient is informed that the Activity is about to complete. This
Signal will only be called if the Activity’s completion status is
CompletionStatusSuccess. The Activity’s completion status and its identity is
encoded within the Signal via the ActivityInformation structure. The
ActivityInformation final_outcome is nil for this Signal.

• postCompletion: the recipient is informed that the Activity has completed.
Information about the Activity’s completion status, which may have changed since
preCompletion, is encoded within the Signal. The Activity’s completion status, final
Outcome, and its identity is encoded within the Signal via the
ActivityInformation structure.

• childBegin: the recipient is informed that the Activity has begun. The Activity’s
completion status and its identity is encoded within the Signal via the
ActivityInformation structure.The ActivityInformation final_outcome is nil
for this Signal.

An Activity Service implementation will not modify the application_specific_data
field of any Signal.
2-4 Additional Structuring Mechanisms for the OTS: The Activity Service Modules September 2001

2

2.1.3.3 Outcome

struct Outcome
{
 string outcome_name;
 any application_specific_data;
};

When an Action receives a specific Signal it returns an Outcome that represents the result
of its having dealt with the Signal. When an Activity completes, an Outcome may be
returned to the application in order for it to determine the final status of the Activity.

outcome_name is an identifier for the Outcome, and can be used to determine the
meaning of the Outcome. It is invalid for this field to be nil.

The application_specific_data field may be used to encode additional application
specific information.

Actions are required to use the ActionError exception to indicate that some failure
occurred during Signal processing. This exception is mapped onto the pre-defined
Outcome “ActionError.” Other system exceptions (such as the failure of an Action to
respond to a given Signal), are mapped onto the pre-defined Outcome
“ActionSystemException,” and information about the exception is encoded within the
application_specific_data field.

2.1.3.4 ActivityIdentity and ActivityContext

struct ActivityIdentity
{
 unsigned long type;
 long timeout;
 ActivityCoordinator coord;
 sequence <octet> ctxId;
 sequence <PropertyGroupIdentity> pgCtx;
 any activity_specific_data;
};

struct ActivityContext
{
 sequence <ActivityIdentity> hierarchy;
 any invocation_specific_data;
};

Activities may be composed of other Activities. If an activity is started within the scope
of an already running Activity, then it will automatically be nested within that Activity
(i.e., it will be a child Activity). Thus, the execution of a series of Activities may form a
hierarchy. When entities within an Activity invoke objects in other address spaces,
information about the context in which these invocations are made must flow with the
invocation.
September 2001 Additional Structuring Mechanisms for the OTS: The Activity Service Modules 2-5

2

Each activity may have an arbitrary number of transactions running within it (or none),
and the top entities within such a hierarchy may be transactions. A receiving execution
domain may be required to recreate the imported activity context such that recreated
activities are running within the right (recreated) transaction scopes. Transaction context
propagation issues are dealt with by the Object Transaction Service specification and will
not be discussed here. However, sufficient information needs to be shipped by the
exporting Activity Service to enable importing environments to recreate the sent Activity
context, such that recreated Activities and transactions are nested in the importing
environment in the same way they are in the exporting environment.

If an activity context is sent on an outward request, a context may be returned on the
response. This returned context need not be the same as was originally sent, e.g., low-
cost interposition information may be encoded within the context and piggybacked on the
response. For a remote request that completes without exception, the absence of an
Activity service context on a response should be taken to mean that the context has not
been changed by the target domain. This should be true even in the case where a
transaction context is present on both request and response.

The objects using a particular Activity Service implementation in a system form an
Activity Service domain. Within the domain, the structure and meaning of the activity
context information can be private to the implementation. When leaving the domain, this
information must be translated to a common form if it is to be understood by the target
Activity Service domain. Therefore, an Activity context (hierarchy) is represented by the
ActivityContext, which is an ordered sequence of ActivityIdentitys. The first
element in the sequence represents the current Activity/transaction, and the last
represents the root of the hierarchy.

The type field, which must be a positive, non-zero value, is used to indicate the type of
the element for which the information is being maintained. Currently supported values
are:

• 1: the element in the hierarchy is a transaction.

• 2: the element in the hierarchy is an Activity.

An element within the hierarchy is uniquely identified by an instance of
ActivityIdentity. If the type field indicates that the element is an Activity, then the
coord field will be set, and ctxId will be the Activity’s unique identifier. If the type field
indicates that the element is a transaction, then the coord field will be nil, and the ctxId
will be the tid portion of the CosTransactions::otid_t representation for the OTS
transaction at this level in the hierarchy.

Although the ActivityIdentity contains a field for the tid portion of the transaction’s
CosTransactions::otid_t, this is merely so that the position of any transaction context
can be recorded relative to the Activity context (if any) within which it was started. Each
nested transaction is represented by exactly one ActivityIdentity, which marks the sub-
transaction’s position within the hierarchy.

In order to reduce the amount of context information which is transmitted between
execution domains where nested transactions are used, the ActivityContext structure
need only contain information on an activity’s most deeply nested transaction, since this
is sufficient to be able to recreate the entire activity/transaction hierarchy.
2-6 Additional Structuring Mechanisms for the OTS: The Activity Service Modules September 2001

2

The Activity Service uses the PropertyGroupManagers to fill in the pgCtx field.

The timeout field indicates the application specific timeout associated with the activity or
transaction when it was created. (If this instance represents a subtransaction, then this
field will be -1.) If the activity or transaction has not completed within this time period,
then it will be completed with CompletionStatusFail.

Additional information may be encoded within the activity_specific_data and
invocation_specific_data fields. It is legal for these fields to contain an empty any.
An implementation must not rely on the data that was sent with an outbound context
being available on the reply context. The invocation_specific_data is meant to carry
information which is required for a specific implementation of the service. Because this
information is specific to a given implementation of the Activity Service it is illegal for
an importing domain that is different from the exporting domain to use this field. To
ensure integrity of the application (specifically in the case of loop-backs between foreign
and native domains), a domain which does not understand the
invocation_specific_data within an activity context must replace it with an empty
any. Such a domain is free, however, to replace the data with data specific to itself. The
activity_specific_data is meant to carry information which is required for an
implementation of a specific extended transaction model. If an importing domain
implements a different extended transaction model than the exporting domain, i.e., it
does not understand the activity_specific_data, then it must not use the context, and
should throw BAD_CONTEXT.

2.1.3.5 PropertyGroupIdentity

struct PropertyGroupIdentity
{
 string property_group_name;
 any context_data;
};

PropertyGroups form part of the Activity Service context. It is dependent upon the
implementations of each PropertyGroup how information about them flows in the
context. Therefore, it is up to the PropertyGroupManager to marshal and unmarshal
PropertyGroups appropriately. The PropertyGroupIdentity structure is used to
encapsulate this marshaled form of the PropertyGroup.

property_group_name is the name of the PropertyGroup. Implementations must
ensure that such names are unique within the required domain.

context_data represents the marshaled form of the PropertyGroup.

2.1.4 Exceptions

The CosActivity and CosActivityAdministration modules define the following
exceptions that can be raised by an operation.
September 2001 Additional Structuring Mechanisms for the OTS: The Activity Service Modules 2-7

2

NoActivity Exception

The NoActivity exception is raised by methods on the Current interface where an
Activity is required to be active on the thread but none is.

ActivityPending Exception

The ActivityPending exception is raised if an attempt is made to complete the Activity
when it is active on a thread other than the calling thread.

ActivityNotProcessed

The ActivityNotProcessed exception is raised to indicate that it was not possible to
complete the processing of signals from a completion or broadcast SignalSet.

InvalidToken Exception

The InvalidToken exception is raised by Current::resume if the specified
ActivityContext is not valid or is nil.

AttributeAlreadyExists Exception

The AttributeAlreadyExists exception is raised by
PropertyGroupAttributes::set_attribute if the specified attribute is already set.

NoSuchAttribute Exception

The NoSuchAttribute exception is raised by
PropertyGroupAttributes::get_attribute if the specified attribute does not exist.

ActionError Exception

The ActionError exception is raised by the Action during signal processing if it
encounters an error it cannot handle.

AlreadyDestroyed Exception

The AlreadyDestroyed exception is raised by an interface if there are multiple attempts
to destroy it.

ActionNotFound Exception

The ActionNotFound exception is raised by the ActivityCoordinator if an attempt is
made to remove an Action it has no information about.

SignalSetUnknown Exception

The SignalSetUnknown exception is raised by the ActivityCoordinator if it is
instructed to use a specified SignalSet it does not know about.
2-8 Additional Structuring Mechanisms for the OTS: The Activity Service Modules September 2001

2

SignalSetAlreadyRegistered Exception

The SignalSetAlreadyRegistered exception is raised by the ActivityCoordinator if
multiple attempts to register a SignalSet are made.

SignalSetActive Exception

The SignalSetActive exception is raised by the SignalSet when an attempt is made to
obtain its final status before the SignalSet has completed producing Signals.

SignalSetInactive Exception

The SignalSetInactive exception is raised by the SignalSet if an attempt is made to
use the SignalSet without having first called get_signal or set_signal.

PropertyGroupUnknown Exception

The PropertyGroupUnknown exception is raised if an attempt it made to obtain an
unknown PropertyGroup.

PropertyGroupAlreadyRegistered Exception

The PropertyGroupAlreadyRegistered exception is raised if multiple attempts to
register a PropertyGroup are made.

PropertyGroupNotRegistered Exception

The PropertyGroupNotRegistered exception is raised if an attempt is made to
unregister a PropertyGroup that has not previously been registered.

ChildContextPending Exception

The ChildContextPending exception is raised if an attempt is made to successfully
complete an Activity when it still has active child Activities.

InvalidState Exception

The InvalidState exception is raised to indicate that the completion status of the Activity
is incompatible with the attempted invocation.

InvalidParentContext Exception

The InvalidParentContext exception is raised either if an attempt is made to resume a
suspended context within a different hierarchy than that which it was originally
suspended from, or an attempt is made to call CosActivity::suspend on an Activity
that is nested within a transaction.

TimeoutOutOfRange Exception

The TimeoutOutOfRange exception is raised if an attempt it made to associated an
invalid timeout with a newly created Activity.
September 2001 Additional Structuring Mechanisms for the OTS: The Activity Service Modules 2-9

2

InvalidContext Exception

The InvalidContext exception is raised to indicate that a context could not be correctly
imported.

INVALID_ACTIVITY Exception

The INVALID_ACTIVITY system exception may be raised on the Activity or
Transaction services’ resume methods if a transaction or Activity is resumed in a context
different to that from which it was suspended. It is also raised when an attempted
invocation is made that is incompatible with the Activity’s current state.

ACTIVITY_COMPLETED Exception

The ACTIVITY_COMPLETED system exception may be raised on any method for
which Activity context is accessed. It indicates that the Activity context in which the
method call was made has been completed due to a timeout of either the Activity itself or
a transaction that encompasses the Activity, or that the Activity completed in a manner
other than that originally requested.

ACTIVITY_REQUIRED Exception

The ACTIVITY_REQUIRED system exception may be raised on any method for which
an Activity context is required. It indicates that an Activity context was necessary to
perform the invoked operation, but one was not found associated with the calling thread.

2.2 Activity Service Interfaces

2.2.1 SignalSet Interface

interface SignalSet
{
 readonly attribute string signal_set_name;

 Signal get_signal(inout boolean lastSignal);

 boolean set_response(in Outcome response, out boolean nextSignal)
 raises(SignalSetInactive);

 Outcome get_outcome () raises(SignalSetActive);

 void set_completion_status (in CompletionStatus cs);
 CompletionStatus get_completion_status ();

void set_activity_coordinator (in ActivityCoordinator coord)
raises(SignalSetActive);

 void destroy() raises(AlreadyDestroyed);
};
2-10 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

The SignalSet is used to define the individual signals that are broadcast to the Action
objects. Actions that have been registered as being interested in a specific SignalSet are
sent Signals from that SignalSet. Typically once all Actions have received a given
Signal, the SignalSet is asked for the next Signal to be sent to all of the Actions, if any.

If a SignalSet fails to produce Signals (e.g., it is physically remote from the
ActivityCoordinator and fails to respond to invocations), then the completion status of
the Activity is set to CompletionStatusFailOnly, and the ActivityCoordinator should
act accordingly.

If a SignalSet fails to produce Signals (e.g., it is physically remote from the
ActivityCoordinator and fails to respond to invocations), then the pre-defined
org.omg.CosActivity.Failure SignalSet should be used instead. All pre-defined
SignalSet are restricted to being located in the same domain as the
ActivityCoordinator using them. Any Actions registered with an interest in the
unreachable SignalSet will be sent Signals produced from the Failure SignalSet.

Once the Activity has begun to complete (the ActivityCoordinator has retrieved the
first Signal from a SignalSet), the status of the Activity is under the control of the
SignalSets, and cannot be changed directly by any other entity.

Signals are specified as members of SignalSets. As mentioned previously, it is
envisioned that the majority of Signals and SignalSets will be defined by the higher-
level extended transaction systems that use this Activity framework. Only such systems
have the necessary application and activity specific knowledge to impose structure on the
meaning of specific Signals and SignalSets. However, there are a small set of pre-
defined signal sets and their associated signals, which are provided by implementations
of the Activity Service:

• org.omg.CosActivity.ChildLifetime: childBegin

• org.omg.CosActivity.Synchronization: preCompletion, postCompletion

• org.omg.CosActivity.Failure: initialFailure, finalFailure

These pre-defined SignalSets are implicitly associated with every Activity when it is
created, and an application need not register them itself (i.e., no call to
ActivityCoordinator::add_signal_set is required).

org.omg.CosActivity.ChildLifetime

The ChildLifetime SignalSet is invoked by the parent when a sub-Activity is begun.
There are no pre-defined Outcomes introduced by this SignalSet. If an Action error
occurs during childBegin (e.g., the ActionError exception is thrown), then the child’s
Activity completion status will be set to CompletionStatusFailOnly; it is up to the
parent activity (or the application) to determine whether such a failure should cause the
parent activity’s completion status to be changed.

If the parent of a sub-Activity is not a root Activity (i.e., it is an interposed subordinate)
then the distribution of the ChildLifetime signals is delegated upstream to the superior
ActivityCoordinator.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-11

2

If an indication of the termination of an activity is required, then the
org.omg.CosActivity.Synchronization SignalSet should be used on the respective
activity.

The child activity is active on the thread when childBegin is issued.

org.omg.CosActivity.Synchronization

The Synchronization SignalSet has a similar role to that of Synchronization objects
within the OTS (i.e., it is invoked before and after completion of the Activity). Likewise,
the completion status of an Activity may be changed by the Actions registered with this
SignalSet, such that the Activity’s outcome when postCompletion is called may be
different to that when preCompletion was invoked. If an Action error occurs during
preCompletion (e.g., the ActionError exception is thrown), then the Activity completion
status will be set to CompletionStatusFailOnly. There is no effect on the completed
Activity if a failure occurs during postCompletion.

The preCompletion SignalSet is only sent if the Activity’s completion status is
CompletionStatusSuccess. In the event of no crash failures that prevent the
ActivityCoordinator from completing its work, postCompletion is sent regardless of
the Activity's completion status.

If there are any Actions registered with it, then the Synchronization SignalSet will be
called prior to using any application specific SignalSet. The pre-defined Outcomes
“preCompletionSuccess” and “preCompletionFailed” may be produced by an Action in
response to the preCompletion signal. If an Action fails to respond to preCompletion or a
failure occurs, or the Synchronization SignalSet receives the preCompletionFailed
Outcome from an Action and the completion status of the Activity is changed to
CompletionStatusFailOnly.

If the SignalSet decides that the next Signal (postCompletion) is required or normal
processing of preCompletion has finished, then the implementation of the Activity
Service must first invoke the application specific SignalSet (if any) with the (potentially
new) completion status obtained from get_completion_status of the Synchronization
SignalSet (i.e., postCompletion is not called immediately). When the application
SignalSet has finished producing Signals the postCompletion Signal should be sent to
the registered Actions. Errors during postCompletion have no effect on the outcome of
the Activity.

The completing activity is active on the thread when preCompletion is sent. However, it
is inactive on the thread when postCompletion is generated by the SignalSet.

org.omg.CosActivity.Failure

The Failure SignalSet is used by the ActivityCoordinator if an application
SignalSet cannot be reached during signaling. The Failure SignalSet produces two
signals - initialFailure and finalFailure.

initialFailure indicates that the application SignalSet could not be contacted but that the
problem may be transient. An Action that receives the initialFailure Signal should
respond with one of two pre-defined Outcomes “Failed” or “FailureRetry”. Any Action
that responds with Failed will not receive any further Signals. Any Action that responds
2-12 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

with FailureRetry is indicating that it wishes the ActivityCoordinator to continue to
retry contacting the application SignalSet. If contact is subsequently made, signaling
with the application SignalSet may continue.

An Activity service implementation may chose at which point, if any, to abandon its
attempt to contact the application SignalSet. At this point the Failure SignalSet is
asked to produce the finalFailure Signal which is distributed to any remaining Actions
for them to perform whatever processing is appropriate to them in this situation. The
Failure SignalSet ignores any Outcome returned in response to this Signal. The
Activity service changes the Activity status to StatusUnknown prior to distributing the
initialFailure signal. The Activity service changes the Activity status to StatusError
prior to distributing the initialFailure signal. If the application SignalSet does not
complete its signaling, the ActivityCoordinator raises the
org.omg.CosActivity.ActvityNotProcessed exception on the complete_activity or
process_signal_set method that triggered the signaling and this exception is returned
to the application through the Current complete, complete_with_status or
broadcast methods.

Both initialFailure and finalFailure Signals have the name of the failed SignalSet as
their signal_set_name field, inorder that recipients can determine which SignalSet
the failure corresponds to.

set_completion_status

This method is used to provide the Activity’s completion status to the SignalSet during
its generation of Signals, such that it can use the status to determine whether or not the
Activity is completing when it produces Signals.

get_completion_status

This returns the Activity’s completion status as the SignalSet has recorded it (and as it
may have been modified during Signal processing). If the SignalSet has not generated
any Signals (i.e., is inactive), then SignalSetInactive is thrown.

signal_set_name

Returns the name of this SignalSet. These names must be unique, and adhere to the
following naming convention: <domain>.<company>.<module>.<…>; so, for example,
“com.ibm.fred.otssignals”.

get_ signal

Returns the Signal to be sent to the Action objects registered for this signal set. The
Signal returned may depend upon the responses received from Actions that have been
sent previous signals. If nil is returned, or the boolean output parameter lastSignal is true,
then this indicates that no other signals are to be sent and the SignalSet will not be
asked for further Signals. It is therefore valid for a SignalSet to indicate no further
Signals are available either through lastSignal or returning nil. Whenever either of these
conditions is encountered, the coordinator must not call the SignalSet again.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-13

2

set_response

This method is called to notify the SignalSet of the response (the Outcome) from the
Action object. It is valid for the Outcome parameter to be nil. The SignalSet returns a
boolean to indicate whether or not the Action that returned the response should be
informed of any further signals from this signal set; if the value is true then the Action
continues to receive Signals for this SignalSet, otherwise the Action is disassociated
from the SignalSet, i.e., this is equivalent to it being removed. If nextSignal is true
then no further work with the current Signal should be performed and the registered
Actions should be sent the next Signal belonging to this SignalSet. For example, if an
Action returns a failure condition on some Signal (say “prepare”), which indicates that it
is pointless to send further signals of this type to other Actions, nextSignal would be
set to true. The next signal obtained from get_signal may then be different from that
which would have been obtained if no failure condition had been observed. If
get_signal has not yet been called, then SignalSetInactive will be thrown.

get_outcome

Returns the final outcome of the SignalSet; it is valid for this value to be nil. If the
SignalSet has start producing Signals but not finished producing then, then the
SignalSetActive exception will be thrown.

set_activity_coordinator

This method is used by the ActivityCoordinator to pass a reference to itself to the
SignalSet. The SignalSet can then use this to obtain references to all registered
Actions in order to satisfy persistence requirements, for example, and optimisations such
as one-phase commit. For example, consider the case of a two-phase commit SignalSet:
once prepare Signals have been sent and acknowledged successfully by Actions, the
service needs to make those Action references persistent (c.f. the transaction service
intentions list). If the SignalSet has already been asked for its first Signal, then the
SignalSetActive exception will be thrown, and the coordinator reference will be
ignored.

destroy

This method is invoked when the SignalSet is no longer required by the Activity
service. If the SignalSet has already been destroyed, or is being destroyed, then the
AlreadyDestroyed exception will be thrown. Any exception thrown will not affect the
outcome of the activity.

2.2.2 SubordinateSignalSet Interface

interface SubordinateSignalSet : SignalSet
{

void set_signal (in Signal sig);
Outcome get_current_outcome () raises(SignalSetInactive);

};
2-14 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

A domain that contains an interposed subordinate ActivityCoordinator can support
Actions registering at that subordinate ActivityCoordinator with an interest in, say,
SignalSet “X”. The subordinate ActivityCoordinator must use a specialised
implementation of X that supports a SubordinateSignalSet interface.

set_signal

Sets the Signal to be sent to the Action objects registered for this SubordinateSignalSet.
This method is called by a subordinate ActivityCoordinator when it receives a Signal
from its superior. The subordinate ActivityCoordinator distributes this Signal to each
appropriate Action and passes each Action Outcome back to the SubodinateSignalSet via
the set_response method. The SubordinateSignalSet produces a combined Outcome for
the set Signal and this is returned by the subordinate ActivityCoordinator to its superior.
Any system exceptions raised by the SubordinateSignalSet should be converted to an
ActionError by the subordinate ActivityCoordinator.

get_current_outcome

Returns an intermediate outcome of the SubordinateSignalSet. This may be called after
the processing of each Signal and is used by a subordinate ActivityCoordinator to obtain
an Outcome to return to its superior in response to a received Signal. If the SignalSet has
not been initialized, for example by a call to set_signal, then the SignalSetInactive
exception will be thrown.

2.2.3 Action Interface

interface Action
{
 Outcome process_signal(in Signal sig) raises(ActionError);

 void destroy() raises(AlreadyDestroyed);
};

Instances of the Action interface may be registered with running Activities, such that
when the Activities require Signal processing, the registered Actions will be invoked.
When an Action is invoked, it is passed a Signal object that can be used to do application
specific work.

An Action may receive many different Signals from different SignalSets.

process_signal

This method is invoked by the Activity service during signal processing. The Action
returns an Outcome to indicate the outcome of the processing operation.

destroy

This method is invoked when the Action is no longer required by the Activity service,
e.g., because the Activity it is registered with has completed. This method is only called
on Actions that did not register with the org.omg.CosActivity.Synchronization SignalSet.
An Action may determine that it is no longer required by the activity is has been
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-15

2

registered with before destroy is called. It is therefore legal for an Action to remove itself
before this method has been invoked by the activity. As a result, the service
implementation will ignore OBJECT_NOT_EXIST. It is implementation dependant as to
the result of receiving other system exceptions, but they can have no affect on the
completed activity.

2.2.4 ActivityToken Interface

interface ActivityToken
{
 ActivityContext get_context ();
 void destroy() raises(AlreadyDestroyed);
};

In order to allow for efficient implementations of inter- and intra- process Activity
coordination and control, the Activity Service provides two different representations for
the ActivityContext. When an Activity is suspended from an active thread, an
ActivityToken is returned which is a handle to the activity context and is only valid
within the obtaining execution domain. This can later be used to resume the Activity on
the same, or other thread. The ActivityToken is implicitly associated with a single
Activity, and thus the context it represents can be obtained from it. This is preferable to
having to deal with the entire ActivityContext when suspending and resuming in a
local environment.

get_context

Returns the ActivityContext represented by this ActivityToken. If the token was
obtained by a call to CosActivity::suspend_all, then the entire hierarchy context will
be returned, otherwise only the current context.

destroy

This method is invoked when the ActivityToken is no longer required by the Activity
service. If the ActivityToken has already been destroyed, or is being destroyed, the
AlreadyDestroyed exception will be thrown. Any exception thrown will have no affect
on the activity’s outcome.

2.2.5 ActivityCoordinator Interface

interface ActivityCoordinator
{
 Outcome complete_activity(in string signal_set_name,

in CompletionStatus cs)
 raises(ActivityPending, ChildContextPending,

SignalSetUnknown, ActivityNotProcessed);
 Outcome process_signal_set(in string signal_set_name,

in CompletionStatus cs)
 raises(SignalSetUnknown, ActivityNotProcessed);

 void add_signal_set (in SignalSet signal_set)
2-16 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

 raises(SignalSetAlreadyRegistered);
 void remove_signal_set (in string signal_set_name)
 raises(SignalSetUnknown);

 void add_action(in Action act, in string signal_set_name,
 in long priority) raises(SignalSetUnknown);
 void remove_action(in Action act, in string signal_set_name)

raises(ActionNotFound);

 void add_actions(in ActionSeq acts, in string signal_set_name,
 in long priority) raises(SignalSetUnknown);
 ActionSeq remove_actions(in ActionSeq acts, in string signal_set_name);

 void add_global_action(in Action act, in long priority);
 void remove_global_action(in Action act) raises(ActionNotFound);

 long get_number_registered_actions(in string signal_set_name)
 raises(SignalSetUnknown);
 ActionSeq get_actions(in string signal_set_name)

raises(SignalSetUnknown);

 ActivityCoordinator get_parent_coordinator ();

 GlobalId get_global_id ();

 Status get_status ();
 Status get_parent_status ();
 string get_activity_name ();

 boolean is_same_activity (in ActivityCoordinator ac);

 unsigned long hash_activity ();

 void destroy() raises(AlreadyDestroyed);
};

The ActivityCoordinator is responsible for coordinating the interactions between
Activities through Signals, SignalSets, and Actions (i.e., in the model presented earlier it
“ties” up the Actions of Activities).

It is not strictly necessary for an implementation of the Activity Service to create an
ActivityCoordinator prior to distributing a context between execution environments in
which it was begun. Implementations of the Activity Service may restrict the use of the
ActivityCoordinator in certain environments, such as a light-weight client.

Each Activity may be managed by at most one ActivityCoordinator.

Implementations of the Activity Service may use interposition to reduce the number of
network messages required to complete an activity.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-17

2

Once the ActivityCoordinator has used all of the Signals generated by the SignalSet,
it may invoke the destroy operation on all registered Actions, including those that may
have been registered with other SignalSets and hence not received Signals during
Activity termination.

complete_activity

This instructs the ActivityCoordinator to complete the Activity using the specified
SignalSet when sending signals to registered Actions, with the provided completion
status. If the SignalSet is unknown, the SignalSetUnknown exception will be raised;
it is valid for the specified SignalSet to be null.

If an Action throws the ActionError or System exception, then it is dependent upon the
SignalSet implementation as to whether the ActivityCoordinator stops sending
signals to other registered Actions; this may depend upon the type of Signal that was
being processed at the time the exception occurred.

If the Action throws ActionError or any system exception, then this may be mapped into
either the pre-defined Outcomes “ActionError” or “ActionSystemException” respectively
and passed to the SignalSet; for system exceptions, the exception is also passed in the
application_specific_data portion of the Outcome.

If the ActivityCoordinator is currently processing Signals when complete_activity
is invoked, or has already completed, the INVALID_ACTIVITY exception is thrown.
Successful completion of this method causes the Outcome, if any, of the SignalSet
processing to be returned. It is valid for this return value to be nil. It is invalid to attempt
to explicitly use the Synchronization or ChildLifetime SignalSets, and
BAD_OPERATION will be thrown under these circumstances. The pre-defined
SignalSets Synchronization and ChildLifetime will be automatically invoked during
Activity completion if Actions have registered in them.

If there are any encompassed active or suspended Activities or transactions, and the
completion status is CompletionStatusSuccess, then ChildContextPending is
raised. If the completion status is CompletionStatusFail or
CompletionStatusFailOnly, any encompassed active or suspended Activities will
have their completion status set to CompletionStatusFailOnly and transactions will
be marked as rollback_only.

If the thread from which the complete_activity call is made is not the only thread on
which the Activity is active, then the ActivityPending exception is raised. It is
recommended that this operation not be called directly.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced.

process_signal_set

This instructs the ActivityCoordinator to use the specified SignalSet when sending
signals to registered Actions, with the provided completion status; this method cannot be
used to complete the Activity, and complete_activity should be used instead. If the
SignalSet is unknown the SignalSetUnknown exception will be raised; it is valid for
the specified SignalSet to be null.
2-18 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

If an Action throws the ActionError or a System Exception, then it is dependent upon
the SignalSet implementation as to whether the ActivityCoordinator stops sending
signals to other registered Actions; this may depend upon the type of Signal that was
being processed at the time the exception occurred.

If the Action throws ActionError or any system exception, then this may be mapped into
either the pre-defined Outcomes “ActionError” or “ActionSystemException” respectively
and passed to the SignalSet; for system exceptions, the exception is also passed in the
application_specific_data portion of the Outcome.

If the ActivityCoordinator is currently processing Signals when
process_signal_set is invoked, or has already completed, the INVALID_ACTIVITY
exception is thrown. Successful completion of this method causes the Outcome, if any, of
the SignalSet processing to be returned. It is valid for this return value to be nil. It is
invalid to attempt to explicitly use the Synchronization or ChildLifetime SignalSets,
and BAD_OPERATION will be thrown under these circumstances. It is recommended
that this operation not be called directly.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced.

add_signal_set

This method registers the specified SignalSet with the ActivityCoordinator. If the
SignalSet has already been registered then the SignalSetAlreadyRegistered
exception will be raised. If the ActivityCoordinator is in use (i.e., is processing
Signals or has completed), then the INVALID_ACTIVITY exception is thrown.

remove_signal_set

This method removes the specified SignalSet from the ActivityCoordinator. If the
Activity has begun completion, has completed, or is in the process of using the specified
SignalSet, then the INVALID_ACTIVITY exception is thrown. If the SignalSet is not
known, then SignalSetUnknown will be raised. It is invalid to attempt to remove the
pre-defined SignalSets org.omg.CosActivity.Synchronization and
org.omg.CosActivity.ChildLifetime, and BAD_OPERATION will be thrown.

add_action

This method registers the specified Action with the ActivityCoordinator and
SignalSet such that when a Signal which is a member of the SignalSet is sent, the
Action will be invoked with that Signal. If multiple Actions are registered, then priority
may be used to place an order on how they will be invoked when signals are sent: higher
priority Actions will occur first in the Action list, and hence be invoked before other,
lower priority, Actions. The priority value must be a positive value; a value of zero means
that the Activity Service implementation is free to place the Action at any point in the
Action list. If the SignalSet is not known about, then the SignalSetUnknown
exception is thrown. If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown. If the specified Action is registered multiple
times for the same SignalSet then it will be invoked multiple times with the Signals from
that SignalSet.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-19

2

add_actions

This method registers a number of Actions with the ActivityCoordinator; such Actions
are assumed to be already prioritized within the sequence. If multiple Actions are
registered, then priority may be used to place an order on how they will be invoked:
higher priority numbers will be invoked before lower priority numbers. The priority value
must be a positive value; a value of zero means that the Activity Service implementation
is free to place the Action at any point in the Action list. If the SignalSet is not known
about, then the SignalSetUnknown exception is thrown. If the Activity has begun
completion, or has completed, then the INVALID_ACTIVITY exception is thrown. If the
specified Action is registered multiple times for the same SignalSet then it will be
invoked multiple times with the Signals from that SignalSet.

add_global_action

This method registers the specified Action with the ActivityCoordinator such that
when any Signal is sent, the Action will be invoked with that Signal (i.e., the Action is
effectively registering interest in all possible SignalSets). If multiple Actions are
registered, then priority may be used to place an order on how they will be invoked:
higher priority numbers will be invoked before lower priority numbers. The priority value
must be a positive value; a value of zero means that the Activity Service implementation
is free to place the Action at any point in the Action list. If the Activity has begun
completion, or has completed, then the INVALID_ACTIVITY exception is thrown.

remove_action

Removes the interest relationship between the specified Action and the named SignalSet.
No further Signals from the named SignalSet will be sent to the specified Action. If
signal_set_name is specified as an empty string, then the Action will be sent no
further Signals from any SignalSet. If the Action has not previously been registered with
the coordinator, then the ActionNotFound exception will be thrown. If the Activity has
begun completion, or has completed, then the INVALID_ACTIVITY exception is thrown.

remove_actions

Removes the interest relationship between the specified Actions and the named
SignalSet. No further Signals from the named SignalSet will be sent to the specified
Actions. If signal_set_name is specified as an empty string, then the Actions will be sent
no further Signals from any SignalSet. If any of the Actions have not previously been
registered with the coordinator, then it will return references to them after removing all
other Actions in the sequence. Otherwise nil will be returned. If the Activity has begun
completion, or has completed, then the INVALID_ACTIVITY exception is thrown.

remove_global_action

This method removes the specified Action from the ActivityCoordinator. If the Action
has not previously been registered with the coordinator, then it will throw the
ActionNotFound exception. If the Activity has begun completion, or has completed,
then the INVALID_ACTIVITY exception is thrown.
2-20 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

get_number_registered_actions

Returns the number of Actions that have been registered with the specified SignalSet.

get_actions

Returns all the Actions that have been registered with the specified SignalSet.

get_parent_coordinator

Returns a reference to the ActivityCoordinator’s parent, or null if this coordinator has
no parent (i.e., is at the root of the Activity hierarchy).

get_global_id

Returns the GlobalId for the Activity.

get_status

Returns the current status of the associated Activity.

get_parent_status

Either returns the status of the target objects’ parent Activity, or the target object’s status
if it is top-level (i.e., has no parent).

get_activity_name

This operation returns a printable string describing the activity. This value should only be
used for debugging or tracing purposes.

hash_activity

Returns a hash code for the activity associated with the target object. Each
ActivityCoordinator has a single hash code. Hash codes for Activities should be
uniformly distributed.

is_same_activity

Returns true if, and only if, the target object and the parameter object both refer to the
same activity.

destroy

This method is invoked when the ActivityCoordinator is no longer required by the
Activity service. If the ActivityCoordinator has already been destroyed, or is being
destroyed, then the AlreadyDestroyed exception will be thrown. Any exception thrown
by destroy will not affect the outcome of the activity.

2.2.6 PropertyGroup

interface PropertyGroup
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-21

2

{
 readonly attribute property_group_name;

 void completed();
 void suspended();
 void resumed();

 void destroy() raises(AlreadyDestroyed);
};

The PropertyGroup interface has the same consideration as the general Activity
Service interfaces, in that it attempts to be a framework from which concrete
implementations can be derived. Typically a PropertyGroup implementation will be a
mechanism for an application to distribute context information that can affect the
execution of that application in the distributed environment. The distributed environment
throughout which the application executes needs to have an implementation of the
required PropertyGroup in order for the application properties to be accessed. This is
a requirement that must be resolved at application deployment time, and is outside the
scope of this specification.

If the Activity Service has several PropertyGroupManagers registered with it, then a
PropertyGroup will be created for each one when an Activity is begun. The
PropertyGroups need to be informed when the Activity completes so they can perform
any necessary clean-up before the Activity Service deletes them.

They may, for example, pass objects by reference rather than by value and so may need
to clean up those objects. If an Activity is suspended while a client has a reference to one
or more of its PropertyGroups, then these PropertyGroups should be informed that
they no longer represent the currently active Activity. The behavior of the
PropertyGroup implementation under these circumstances has to be defined by the
PropertyGroup implementation.

The implementations of PropertyGroups may restrict the ability for the properties to
be transmitted to or used in other execution environments; at a minimum, it can be used
within the creating thread.

A PropertyGroup represents properties as a tuple-space of attribute-value pairs.

property_group_name

This is the name of the PropertyGroup.

completed

This method is called by the Activity as part of its completion process to give the
PropertyGroup the opportunity to perform any necessary clean-up work. The Activity
with which this PropertyGroup is associated is not active on the thread when this call
is made. Any parent Activity will then become active.
2-22 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

suspended

This method is called to inform the PropertyGroup that the Activity it represents has
been suspended. The Activity with which this PropertyGroup is associated is still
active on the thread when this call is made, but will be removed immediately after all
suspended methods of registered PropertyGroups have been called. Any parent
Activity will then become active.

resumed

This method is called to inform the PropertyGroup that the Activity it represents has
been resumed. The Activity with which this PropertyGroup is associated is already
resumed on the thread when this call is made.

destroy

This method is invoked when the PropertyGroup is no longer required by the Activity
service. If the PropertyGroup has already been destroyed, or is being destroyed, then
the AlreadyDestroyed exception will be thrown. Exceptions thrown by destroy have no
affect on the outcome of an activity.

2.2.7 PropertyGroupAttributes

interface PropertyGroupAttributes
{
 string get_attribute (in string name) raises(NoSuchAttribute);
 void set_attribute (in string name, in string value)
 raises(AttibuteAlreadyExists);
 void replace_attribute (in string name, in string value);
};

An instance of the PropertyGroupAttributes is passed as a parameter to the
register_property_group method of CosActivityAdministration::Current to
set/query the behavior of the registered PropertyGroup for the duration of its
registration.

Pre-defined attribute names and their associated values include:

• cacheable: on input, if set to true, then this informs the Activity Service of the
intention of the PropertyGroup implementation to cache objects in downstream
servers.

• max_send_size and max_receive_size: on output this defines the maximum
size of the context data the Activity Service will send or receive on behalf of the
PropertyGroup. The PropertyGroupManager is not required to use this
information.

• marshal_response_update: indicates whether or not the PropertyGroupManager
should be called when an outbound response is marshalled. A value of true
indicates that the context for the managed PropertyGroup should be updated on a
response. A value of false indicates that the context for the managed PropertyGroup
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-23

2

is not updated on a response so the PropertyGroupManager is not called. The
default value is false. It may be preferable from either a security or a performance
point of view not to transmit server context back to a client with a response.

• unmarshal_response_update: indicates whether or not the
PropertyGroupManager should be called when an inbound response is
unmarshalled. A value of true indicates that the context for the managed
PropertyGroup should be updated by the response. A value of false indicates that
the context for the managed PropertyGroup is not updated by the response so the
PropertyGroupManager is not called. The default value is false. It may be preferable
from either a security or a performance point of view not to allow the local context
to be updated by changed made in a downstream node.

Note, an implementation of PropertyGroupAttributes may use an implementation of
the OMG’s Property Service specification.

get_attribute

If the specified attribute exists, then its value is returned. This value may be nil. If the
attribute does not exist then the NoSuchAttribute exception is thrown.

set_attribute

If the specified attribute does not exist, then it is created with the specified value, which
may be nil. Otherwise the AttributeAlreadyExists exception is thrown.

replace_attribute

If the specified attribute does not exist, then it is created with the specified value, which
may be nil. If the attribute already exists, its current value is set to that provided.

2.2.8 PropertyGroupManager

interface PropertyGroupManager
{
 PropertyGroup create(in CosActivity::PropertyGroup parent,
 in CosActivity::GlobalId gid);

 PropertyGroupIdentity marshal_request(in CosActivity::PropertyGroup pg);
 PropertyGroupIdentity marshal_response(in CosActivity::PropertyGroup pg);

 PropertyGroup unmarshal_request(in CosActivity::PropertyGroupIdentity mpg,
 in CosActivity::PropertyGroup pg,
 in CosActivity::PropertyGroup parent,
 in CosActivity::GlobalId gid);
 void unmarshal_response(in CosActivity::PropertyGroupIdentity mpg,
 in CosActivity::PropertyGroup pg);

 void destroy() raises(CosActivity::AlreadyDestroyed);
};
2-24 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

A PropertyGroup implementation registers a named PropertyGroupManager with
the Activity Service. The registered manager understands how to create a specialized
instance of the PropertyGroup and how to marshal/unmarshal its context, which is
propagated as part of the Activity service context. A PropertyGroupManager must be
registered with the Activity service in each domain for each type of PropertyGroup
that is accessed via the get_property_group method of the Current interface.

create

Returns a reference to a new instance of the PropertyGroup specialization. This
method is called by the Activity Service when a new Activity is started. A parent of nil
indicates that this is the top most Activity. The gid is that of the ActivityGroup that is
being begun. It is implementation dependent as to whether or not the Activity active on
the thread when the create() method is called.

marshal_request

Returns a serialized form of the PropertyGroup appropriate for propagating within the
Activity service context on a request. It is invalid for the parameter to be nil.

marshal_response

Returns a serialized form of the PropertyGroup appropriate for propagating within the
Activity service context on a response. It is invalid for the parameter to be nil.

unmarshal_request

Returns a reference to a PropertyGroup specialization created from the specified
serialized form. It is invalid for the parameter to be nil. If the PropertyGroup is not
known by the importing domain then it is ignored. pg is a reference to the
PropertyGroup context already held by the Activity if it has visited the server
previously (in which case the PropertyGroup context is being updated rather than
created). parent is a reference to the PropertyGroup parent (if any) so that the
PropertyGroupManager can ensure correct chaining of nested contexts. The Activity
is identified by the gid parameter.

unmarshal_response

This method updates the specified PropertyGroup with the specified serialized form
received on a response. It is invalid for this parameter to be nil.

destroy

This method is invoked when the PropertyGroupManager is no longer required by
the Activity service. If the PropertyGroupManager has already been destroyed, or is
being destroyed, then the CosActivity::AlreadyDestroyed exception will be thrown.
Exceptions thrown by destroy have no affect on the outcome of an activity.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-25

2

2.2.9 CosActivity::Current

interface Current : CORBA::Current
{
 void begin(in long timeout) raises(InvalidState, TimeoutOutOfRange);
 Outcome complete() raises (NoActivity,

ActivityPending, ChildContextPending, ActivityNotProcessed);
 Outcome complete_with_status(in CompletionStatus cs)
 raises (NoActivity, ActivityPending, ChildContextPending,
 InvalidState, ActivityNotProcessed);

 void set_completion_status (in CompletionStatus cs)
 raises (NoActivity, InvalidState);
 CompletionStatus get_completion_status () raises(NoActivity);

 void set_completion_signal_set (in string signal_set_name)
 raises (NoActivity, SignalSetUnknown);
 string get_completion_signal_set () raises(NoActivity);

 ActivityToken suspend() raises(InvalidParentContext);
 void resume(in ActivityToken at)
 raises (InvalidToken, InvalidParentContext);

 ActivityToken suspend_all();
 void resume_all(in ActivityToken at)
 raises (InvalidToken, InvalidParentContext);

 GlobalId get_global_id ();

 Status get_status();
 string get_activity_name ();

 void set_timeout (in long seconds) raises(TimeoutOutOfRange);
 long get_timeout ();

 ActivityContext get_context();
 void recreate_context(in ActivityContext ctx) raises(InvalidContext);

 ActivityCoordinator get_coordinator();
 ActivityCoordinator get_parent_coordinator();

 ActivityIdentity get_identity ();
 ActivityToken get_token ();

 PropertyGroup get_property_group(in string name)
 raises(PropertyGroupUnknown, NoActivity);
};

The Activity Current interface provides operations which allow the demarcation of
Activity scope. In addition, it provides interfaces for coordinating the Actions of the
current Activity. Once an Activity begins to complete, references to it, or information
2-26 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

about it, is no longer available through Current. The Activity Service specific Current
object may be obtained via resolve_initial_references with the name
“ActivityCurrent.” As can be seen from the IDL, there are 3 different Current
implementations: CosActivity’s Current is the base Current;
CosActivityAdministration’s Current inherits from this;
CosActivityCoordination’s Current inherits from CosActivityAdministration’s
Current. The call to resolve_initial_references returns a reference to
CosActivity::Current, and the application must narrow appropriately to the other
Current implementations.

Note: some implementations of the service may wish to restrict which implementations
of Current are available. For example, in a pure client environment, only the
CosActivity::Current implementation makes sense. Therefore, an implementation
need not make all such objects available in all environments.

begin

Creates a new Activity and associates it with the current thread. An instance of a new
PropertyGroup is also created. If the current thread is already associated with an
Activity, the newly created Activity will be nested within it. Otherwise, the Activity
exists at the top level. If the parent Activity has been marked as
CompletionStatusFailOnly, then the InvalidState exception will be thrown. If it is
completing, or has completed, the INVALID_ACTIVITY exception will be thrown.

The timeout parameter is used to control the lifetime of the Activity. If the Activity has
not completed by the time timeout seconds elapses then it is subject to being completed
with the CompletionStatusFail status. The timeout can have the following possible
values:

• any positive value: the Activity must complete within this number of seconds.

• -1: the Activity will never be completed automatically by the Activity Service
implementation (i.e., it will never be considered to have timed out).

• 0: the last value specified using the set_timeout method is used. If no prior call to
set_timeout has occurred for this thread, or the value returned is 0, then it is
implementation dependent as to the timeout value associated with this Activity.

Any other value results in the TimeoutOutOfRange exception being thrown.

complete

Causes the Activity associated with the current thread to complete with its current
CompletionStatus, or CompletionStatusFail if none has been specified using
set_completion_status. If a registered SignalSet has been provided then it will be
used for any registered Actions, and they will be invoked appropriately by the Activity’s
coordinator. If the Activity is nested within a parent, then that parent Activity becomes
associated with the thread. If there are any encompassed active or suspended Activities or
transactions, and the completion status is CompletionStatusSuccess, then
ChildContextPending is raised; the application must then either complete the
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-27

2

outstanding nested contexts or force the Activity to end by setting the
CompletionStatus to either CompletionStatusFail, CompletionStatusFailOnly
and then calling complete again.

If the completion status is CompletionStatusFail, or CompletionStatusFailOnly,
any encompassed active or suspended Activities will they have their completion status set
to CompletionStatusFailOnly and transactions will be marked rollback_only.

If there is no Activity associated with the current thread, the NoActivity exception is
raised and no other action is taken. Only the Activity originator may call complete().
The originator is defined as the execution environment in which the Activity is rooted.

If a call to complete the Activity is made from an execution environment into which the
Activity was imported, the NO_PERMISSION exception is raised.

If the thread from which the complete() call is made is not the only thread on which the
Activity is active, then the ActivityPending exception is raised. The application response
should be to try again later when any asynchronous work on other threads has been
suspended. This method returns an Outcome (or null) which can be used to interpret the
final outcome of the Activity.

If no completion SignalSet has been set by the application, then the Outcome returned
will be null. If the Activity cannot complete in the status required, then the
ACTIVITY_COMPLETED exception will be thrown.

If the Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced, and the Activity’s final completion status
is StatusError.

complete_with_status

Causes the Activity associated with the current thread to complete and use the
CompletionStatus provided if this does not conflict with any that has previously been
set using set_completion_status; this is logically equivalent to calling
set_completion_status followed by the complete() method.

If a registered SignalSet has been provided, then it will be used for any registered
Actions, and they will be invoked appropriately by the Activity’s coordinator.

If the Activity is nested within a parent, then that parent Activity becomes associated
with the thread.

If there are any encompassed active or suspended Activities or transactions, and the
completion status is CompletionStatusSuccess, then ChildContextPending is
raised; the application must then either complete the outstanding nested contexts or force
the Activity to end by setting the CompletionStatus to either
CompletionStatusFail, CompletionStatusFailOnly.
2-28 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

If the completion status is CompletionStatusFail or CompletionStatusFailOnly,
any encompassed active or suspended Activities will they have their completion status set
to CompletionStatusFailOnly and transactions will be marked rollback_only.

If there is no Activity associated with the current thread, the NoActivity exception is
raised and no other action is taken. Only the Activity originator may call complete().
The originator is defined as the execution environment in which the Activity is rooted.

If a call to complete the Activity is made from an execution environment into which the
Activity was imported, the NO_PERMISSION exception is raised.

If the thread from which the complete_with_status() call is made is not the only
thread on which the Activity is active, then the ActivityPending exception is raised. The
application response should be to try again later when any asynchronous work on other
threads has been suspended. This method returns an Outcome (or null) which can be
used to interpret the final outcome of the Activity.

If no completion SignalSet has been set by the application, then the Outcome returned
will be null.

If the Activity cannot complete in the status required, then the
ACTIVITY_COMPLETED exception will be thrown.

If the Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced, and the Activity’s final completion status
is StatusError.

set_completion_status

This method can be used to set the CompletionStatus that will be used when the
Activity completes. This method may be called many times during the lifetime of an
Activity in order to reflect changes in its completion status as it executes.

If this method is not called during the Activity’s lifetime, the default status is
CompletionStatusFail. When the Activity completes, the CompletionStatus is
given to the registered SignalSet (if any) so that it can determine the sequence of
Signals to produce.

If the CompletionStatus is CompletionStatusFailOnly and an attempt is made to
change the status to anything other than CompletionStatusFailOnly, the InvalidState
exception will be thrown. If the Activity has begun completion, or has completed, then
the INVALID_ACTIVITY exception is thrown.

get_completion_status

Returns the completion status currently associated with the target Activity. This is the last
valid value to set_completion_status, or CompletionStatusFail if none has been
provided.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-29

2

set_completion_signal_set

This method can be used to set the SignalSet that will be used when the Activity
completes. If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown.

get_completion_signal_set

Returns the SignalSet currently associated with the target Activity that will be used
when it completes. This will be the last valid SignalSet given to
set_completion_signal_set, or an empty string if one has not been provided.

suspend

Suspends the Activity associated with the current thread (and any related transactions)
and any nested child scopes. An ActivityToken representing the Activity that was
associated with the current thread prior to this call is returned. The context the handle
represents has knowledge of the nested scopes that were active (and also suspended)
when the Activity was suspended.

If the current thread is not associated with an Activity or a transaction, then nil is
returned from this operation.

If the current thread is only associated with a transaction, then the ActivityContext will
reflect this.

If the Activity is nested within a parent Activity, then the parent Activity is associated
with the current thread, otherwise the current thread has no Activity associated with it.

If the Activity contains transactions and is also nested within another transaction, then
the InvalidParentContext exception will be thrown, since it is not possible to suspend
only parts of an OTS transaction hierarchy (i.e., the entire transaction hierarchy will be
suspended from the invoking thread’s context with the result that previously transactional
Activities will no longer have transactions within them). The returned ActivityToken
may be used to resume the suspended Activity on any thread but may not be used to
resume_all.

resume

Resumes the Activity and any nested scopes represented by the ActivityToken. The
current thread becomes associated with the Activity (or transaction) represented by the
token. If the ActivityToken does not represent a valid Activity (or is nil), then the
InvalidToken exception is raised and no new association is made on the thread. The
context into which an Activity is resumed must be the same as the context from which it
was suspended, otherwise an InvalidParentContext exception is raised.

suspend_all

Suspends all the scopes (transaction and Activity) associated with the current thread. An
ActivityToken, representing the entire thread scope structure that was associated with
the current thread prior to this call is returned. On completion of this method no Activity
2-30 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

or transaction is associated with the thread. The ActivityToken returned may be
subsequently used on a resume_all operation but it may not be used to simply
resume.

resume_all

Resumes the scopes represented by the ActivityToken that must have been previously
obtained from a suspend_all operation. If the ActivityToken does not represent a
valid set of scopes (or is nil), then the InvalidToken exception is raised and no new
association is made on the thread. If there is currently an Activity or transaction
associated with the invoking thread, then the InvalidParentContext exception is raised.

get_token

Returns the ActivityToken for the Activity currently associated with the calling thread,
or null if there is no associated Activity. This operation returns the token that would be
returned if suspend had been called (i.e., this token can only be used in a resume
operation).

get_global_id

Returns the GlobalId for the Activity, or nil if there is no Activity associated with the
invoking thread.

get_status

Returns the current status of the Activity. If there is no Activity associated with the
calling thread, the StatusNoActivity value is returned. The effect of this is equivalent
to performing the get_status operation on the corresponding ActivityCoordinator
object.

get_activity_name

If there is no activity associated with the calling thread, an empty string is returned.
Otherwise, this operation returns a printable string describing the activity. The effect of
this request is equivalent to performing the get_activity_name operation on the
corresponding ActivityCoordinator object.

set_timeout

This operation modifies a state variable associated with the target object that affects the
time-out period associated with the activities created by subsequent invocations of the
begin operation which have 0 specified as their timeout value. If the parameter has a non-
zero value n, then activities created by subsequent invocations of begin will be subject to
being completed if they do not complete before n seconds after their creation. The
timeout can have the following possible values:

• any positive value: the Activity must complete within this number of seconds.

• -1: the Activity will never be completed automatically by the Activity Service
implementation (i.e., it will never be considered to have timed out).

• 0: it is implementation dependent as to the meaning of passing 0 as the value.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-31

2

Any other value results in the TimeoutOutOfRange exception being thrown.

get_timeout

This operation returns the state variable associated with the target object that affects the
time-out period associated with activities created by calls to begin. This need not be the
time-out period associated with the current Activity, however.

get_context

Returns the ActivityContext of the Activity associated with the current thread. Returns
null if no Activity is associated with the current thread. The context represents the entire
Activity hierarchy (i.e., this operation is equivalent to calling get_context on an
ActivityToken returned by suspend_all).

recreate_context

This method can be used by a domain to import from another domain a previously
received Activity context. An implementation of the Activity Service which supports
interposition uses recreate_context to create a new representation of the activity
context being imported, subordinate to the representation in ctx. If the context cannot be
recreated in its entirety (e.g., necessary transaction context information was not
propagated as well), or some other failure occurs, then InvalidContext will be thrown.

get_coordinator

Returns a reference to the current Activity’s ActivityCoordinator. Returns nil of no
Activity is associated with the current thread. If an ActivityCoordinator is not supported
in this domain then NO_IMPLEMENT will be thrown by the service implementation.

get_parent_coordinator

Returns a reference to the current Activity’s parent ActivityCoordinator. Returns nil if
the current Activity is top-level or no Activity is associated with the current thread.

get_identity

Returns the ActivityIdentity for the current Activity, or nil if no Activity is associated
with the current thread.

get_property_group

Returns the named PropertyGroup for this Activity. If the PropertyGroup is
unknown, then the PropertyGroupUnknown exception will be thrown. If there is no
Activity associated with the calling thread, then the NoActivity exception will be thrown.

2.2.10 CosActivityAdministration::Current

interface Current : CosActivity::Current
{
 void register_property_group(in string property_group_name,
2-32 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

 in PropertyGroupManager manager,
 in PropertyGroupAttributes attributes)
 raises(PropertyGroupAlreadyRegistered);
 void unregister_property_group(in string property_group_name)
 raises(PropertyGroupNotRegistered);
};

register_property_group

Registers the specified PropertyGoupManager with the specified name. The Activity
Service uses the named PropertyGroupManager to create, marshal, and unmarshal
PropertyGroups. Any top-level Activity started by the invoking thread after this call
has succeeded will create an instance of the registered PropertyGroup. If the
PropertyGroupManager has already been registered, then the
PropertyGroupAlreadyRegistered exception is thrown.

unregister_property_group

Unregisters the PropertyGroupManager with the specified name. Any new top-level
Activities started by this thread after the PropertyGroup has been unregistered will not
create PropertyGroups of this type. Existing Activities, or new Activities created as
children of existing Activities, are unaffected. If the named PropertyGroup is not
known, then the PropertyGroupNotRegistered exception is thrown.
PropertyGroupManagers must continue to function after they have been unregistered
to support Activities that are still using them.

2.2.11 CosActivityCoordination::Current

CosActivityCoordination::Current : CosActivityAdministration::Current
{
 CosActivity::Outcome broadcast(in string signal_set_name)

raises(CosActivity::SignalSetUnknown,
CosActivity::NoActivity, CosActivity::ActivityNotProcessed);

 void add_signal_set (in CosActivity::SignalSet signal_set)
 raises(CosActivity::SignalSetAlreadyRegistered,
 CosActivity::NoActivity);
 void remove_signal_set (in string signal_set_name)
 raises(CosActivity::SignalSetUnknown,
 CosActivity::NoActivity);

 void add_action(in CosActivity::Action act, in string signal_set_name,
 in long priority) raises(CosActivity::SignalSetUnknown,
 CosActivity::NoActivity);
 void remove_action(in CosActivity::Action act, in signal signal_set_name)
 raises(CosActivity::ActionNotFound, CosActivity::NoActivity);

 void add_actions(in CosActivity::ActionSeq acts, in string
signal_set_name,
 in long priority) raises(CosActivity::SignalSetUnknown,
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-33

2

 CosActivity::NoActivity);
 CosActivity::ActionSeq remove_actions(in CosActivity::ActionSeq acts,

in string signal_set_name)
 raises(CosActivity::NoActivity);

 void add_global_action(in CosActivity::Action act, in long priority)
 raises(CosActivity::NoActivity);
 void remove_global_action(in CosActivity::Action act)
 raises(CosActivity::ActionNotFound, CosActivity::NoActivity);

 long get_number_registered_actions(in string signal_set_name)
 raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
 ActionSeq get_actions(in string signal_set_name)
 raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
};

add_signal_set

This method registers the specified SignalSet with the ActivityCoordinator. If the
SignalSet has already been registered, then the SignalSetAlreadyRegistered
exception will be raised. If the ActivityCoordinator is in use (i.e., is processing
Signals), or has completed, then the INVALID_ACTIVITY exception is thrown. If there
is no Activity associated with the current thread, then the NoActivity exception will be
thrown.

remove_signal_set

This method removes the specified SignalSet from the ActivityCoordinator. If the
Activity has begun completion, has completed, or is in the process of using the specified
SignalSet, then the INVALID_ACTIVITY exception is thrown. If the SignalSet is not
known, then SignalSetUnknown will be raised. If there is no Activity associated with
the current thread, then the NoActivity exception will be thrown. It is invalid to attempt
to remove any of the pre-defined SignalSets, and BAD_OPERATION will be thrown.

add_action

Registers the specified Action with the ActivityCoordinator such that when the
Activity decides to send the specified Signal, the Action will be invoked with that Signal.
If multiple Actions are registered, then priority may be used to place an order on how
they will be invoked: higher priority numbers will be invoked before lower priority
numbers. The priority value must be a positive value; a value of zero means that the
Activity Service implementation is free to place the Action at any point in the Action list.
If the SignalSet is not known about, then the SignalSetUnknown exception is thrown.
If there is no Activity associated with the current thread, then the NoActivity exception
will be thrown. If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown. If the specified Action is registered multiple
times for the same SignalSet then it will be invoked multiple times with the Signals from
that SignalSet.
2-34 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

add_actions

Registers a number of Actions with the ActivityCoordinator; such Actions are
assumed to be already prioritized within the sequence. If multiple Actions are registered,
then priority may be used to place an order on how they will be invoked: higher priority
numbers will be invoked before lower priority numbers. The priority value must be a
positive value; a value of zero means that the Activity Service implementation is free to
place the Action at any point in the Action list. If the SignalSet is not known about,
then the SignalSetUnknown exception is thrown. If there is no Activity associated with
the current thread, then the NoActivity exception will be thrown. If the Activity has
begun completion, or has completed, then the INVALID_ACTIVITY exception is thrown.
If the specified Action is registered multiple times for the same SignalSet then it will be
invoked multiple times with the Signals from that SignalSet.

add_global_action

This method registers the specified Action with the ActivityCoordinator such that
when any Signal is sent, the Action will be invoked with that Signal (i.e., the Action is
effectively registering interest in all possible SignalSets). If multiple Actions are
registered, then priority may be used to place an order on how they will be invoked:
higher priority numbers will be invoked before lower priority numbers. The priority value
must be a positive value; a value of zero means that the Activity Service implementation
is free to place the Action at any point in the Action list. If there is no Activity associated
with the current thread, then the NoActivity exception will be thrown. If the Activity has
begun completion, or has completed, then the INVALID_ACTIVITY exception is thrown.

remove_action

Removes the interest relationship between the specified Action and the named SignalSet.
No further Signals from the named SignalSet will be sent to the specified Action. If
signal_set_name is specified as an empty string, then the Action will be sent no
further Signals from any SignalSet. If the Action has not previously been registered with
the coordinator, then the ActionNotFound exception will be thrown. If there is no
Activity associated with the current thread, then the NoActivity exception will be thrown.
If the Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

remove_actions

Removes the interest relationship between the specified Actions and the named
SignalSet. No further Signals from the named SignalSet will be sent to the specified
Actions. If signal_set_name is specified as an empty string, then the Actions will be sent
no further Signals from any SignalSet. If any of the Actions have not previously been
registered with the coordinator, then it will return references to them after removing all
other Actions in the sequence. Otherwise nil will be returned. If there is no Activity
associated with the current thread, then the NoActivity exception will be thrown. If the
Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-35

2

remove_global_action

This method removes the specified Action from the ActivityCoordinator. If the Action
has not previously been registered with the coordinator, then it will throw the
ActionNotFound exception. If there is no Activity associated with the current thread,
then the NoActivity exception will be thrown. If the Activity has begun completion, or
has completed, then the INVALID_ACTIVITY exception is thrown.

get_number_registered_actions

Returns the total number of Actions that have been registered with the
ActivityCoordinator. If there is no Activity associated with the current thread, then the
NoActivity exception will be thrown.

get_actions

Returns all the Actions that have been registered with the ActivityCoordinator. If there
is no Activity associated with the current thread, then the NoActivity exception will be
thrown.

broadcast

Instructs the ActivityCoordinator to send the specified SignalSet to all of the
registered Actions. Once the Actions have processed the signal and returned outcome
Signals, it is up to the ActivityCoordinator to consolidate these individual outcomes
into a single outcome to return.

If there is no Activity associated with the current thread, then the NoActivity exception
will be thrown. This can be used to cause Signals to be sent to Actions at times other
than when the Activity completes. As such, the implementation of the Activity Service
must ensure that such Signals clearly identify that the Activity is not completing, and that
pre-defined SignalSets such as Synchronization, are not used. The result of using the
SignalSet is returned.

If an attempt is made to use the Synchronization or ChildLifetime SignalSets, then
BAD_OPERATION will be thrown and the ActivityCoordinator will not be called.

If the Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced.

2.2.12 Interposition

When an activity context is propagated, it can be imported by another Activity Service
implementation to create a proxy context within the new domain which refers to the
exporting domain. This interposition technique (supported by the
Current::recreate_context operation) allows the proxy domain to handle the
functions of an Activity Coordinator in the importing domain. These coordinators act as
subordinate coordinators.
2-36 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2001

2

Interposition allows cooperating Activity Services to share the responsibility for
completing an activity and can be used to minimize the number of network messages
sent during the completion process. An interposed coordinator registers as a participant
in the activity with the ActivityCoordinator identified in the ActivityContext of the
received request; it either registers as an Action, or registers an Action which can then
forward Signals to it. The relationships between coordinators in the activity form a tree.
The root coordinator is responsible for completing the activity.

A subordinate ActivityCoordinator registers itself with its parent as an Action, with
an interest in the Synchronization SignalSet. An Action may be subsequently registered
with the subordinate ActivityCoordinator with an interest in a particular SignalSet that is
available to the root ActivityCoordinator. The subordinate ActivityCoordinator must have
a SubordinateSignalSet implementation available to it and should register an Action
with an interest in a SignalSet of the same name with its superior ActivityCoordinator.
When the subordinate ActivityCoordinator receives a Signal from its superior it calls the
set_signal method on the SubordinateSignalSet passing the Signal as a parameter. The
subordinate must then forward the Signal to any appropriate Action that registered with it
(including other subordinate ActivityCoordinators) and pass each Outcome received to
the SubordinateSignalSet.

The role of the SubordinateSignalSet is to combine the Outcomes produced into a single
Outcome that can be returned to the superior by the subordinate ActivityCoordinator.
Once a subordinate ActivityCoordinator has completed distributing a received Signal, it
should ask the SubordinateSignalSet for the next signal in case the SubordinateSignalSet
is able to produce another Signal, independently of any superior SignalSet, which the
subordinate ActivityCoordinator should distribute to any appropriate Actions. Any such
Signals are produced as a performance optimization by the SubordinateSignalSet and
must not change the Outcome that was produced as a result of the Signal received from
the superior.

2.3 Distributing Context Information

The CORE specification must add to the IOP module the following new ServiceId:

module IOP
{ // IDL

const ServiceId ActivityService = 16;
}

It is assumed that an appropriate Portable Interceptor will be used to deal with sending
and receiving activity context information; this will require the interceptor to un/marshal
the context from/into the correct position in the Service Context structure. If Portable
Interceptors are not used, then similar mechanisms must be used in order to ensure that
context information flows implicitly between execution environments. To ensure
interoperability between Activity Service implementations, mechanisms which do not
rely upon Portable Interceptors should behave in a similar way to an interceptor and
encode the context information appropriately.

It is the responsibility of the Activity Service implementation to register a client and
server side interceptor. This is achieved by calling:
September 2001 Additional Structuring Mechanisms for the OTS: Distributing Context Information 2-37

2

• PortableInterceptor::ORBInitInfo::add_client_request_interceptor(in
ClientRequestInterceptor)

• PortableInterceptor::ORBInitInfo::add_server_request_interceptor(in
ServerRequestInterceptor)

The interceptor is responsible for marshalling/unmarshalling any Activity context
information at the appropriate interception points.

Policing the sending/receiving of Activity context information is dependent on the POA
attributes described in the next section.

2.3.1 Activity Service POA Attributes

The Activity Service utilizes a POA policy to define characteristics related to activities.
This policy is encoded in the IOR as a tag component and exported to the client when an
object reference is created. This enables validation that a particular object is capable of
supporting the activity characteristics expected by the client.

typedef unsigned short ActivityPolicyValue;

const ActivityPolicyValue REQUIRES = 1;
const ActivityPolicyValue FORBIDS = 2;
const ActivityPolicyValue ADAPTS = 3;
const ActivityPolicyValue INTERNAL = 4;

const CORBA::PolicyType ActivityPolicyType = 58;

interface ActivityPolicy : CORBA::Policy
{
 readonly attribute ActivityPolicyValue apv;
}

const IOP::ComponentId TAG_ACTIVITY_POLICY = 37;

ActivityPolicy values are encoded in the TAG_ACTIVITY_POLICY component of the
IOR.

The semantics of these policies will now be described (in the following section the term
apv is the ActivityPolicyValue in the Activity component of the target object IOR).
Note that an apv of ADAPTS should always be treated by a client in the same way as an
IOR with no Activity component, in order to work with non-activity aware environments.

Client-side
• If apv is REQUIRES, then a method request must be sent with an Activity context.

If there is no Activity context, then the client-side Activity service interceptor must
raise the ACTIVITY_REQUIRED system exception and must not send the request.
2-38 Additional Structuring Mechanisms for the OTS: Distributing Context Information September

2

• If apv is FORBIDS, then no Activity context is allowed to be sent. If there is an
Activity context active on the thread, then the client-side Activity service
interceptor must raise the INVALID_ACTIVITY system exception and must not
send the request.

• If apv is ADAPTS, or if there is no ActivityPolicy, then an Activity context must be
sent if and only if an Activity context is associated with the thread of the caller.
This would include any requests to objects on a non-Activity aware ORB.

• If apv is INTERNAL then a method request must be sent without an Activity
context regardless of whether it is made within the scope of an Activityor not.
Activity service implementation objects use this policy.

Server-side

The server-side Activity service interceptor should behave as follows when processing
inbound requests:

• If apv is REQUIRES, then any received Activity context must be associated with
the thread of execution. If no Activity context is received, the server-side Activity
service interceptor must throw the ACTIVITY_REQUIRED system exception,
thereby preventing the request from being dispatched.

• If apv is FORBIDS, then the server-side Activity service interceptor is required to
check that no Activity context has been flowed with the request and to throw the
INVALID_ACTIVITY system exception if it has, thereby preventing the request
from being dispatched.

• If apv is ADAPTS, or if there is no ActivityPolicy, then any received Activity
context must be associated with the thread of execution.

• If apv is INTERNAL, any Activity context must be ignored. The client-side
behavior above means that the server should never have to deal with this situation.
Given that this situation constitutes a client-side error, an implementation may
throw a system exception if this happens.

2.4 The User’s View

The following UML diagram briefly illustrates the interactions between the various
participants within an Activity during completion.
September 2001 Additional Structuring Mechanisms for the OTS: The User’s View 2-39

2

Figure 2-2 Completing an Activity using SignalSets and Actions.

2.4.1 Examples of Use

Using the Activity framework presented previously we wish to provide support for at
least the following types of transaction models:

• Workflow-like activities.

• Compensating Activity (Compensating Sphere) with nesting of Activities (spheres)
to give recovery behaviour via compensation at all levels of nesting. Support for
Sagas as defined in the major section below.

complete_with_status

SignalSet High-level
service

CosActivity::Cu
rrent

complete_activity()

 Action Activity
Coordinator

set_completion_status()

get_signal()

process_signal()

set_response()

get_signal()

process_signal()

set_response()

get_outcome()
return outcome

return outcome
2-40 Additional Structuring Mechanisms for the OTS: The User’s View September 2001

2

In this section we shall give some brief examples of how these extended forms of
transactional activity can be supported. These are meant only as examples, and
implementors of the Activity Service framework presented within this specification are
not expected to provide them. The Signals and SignalSets described are also meant
only as examples.

Concrete examples of specific extended transaction models are provided within
Appendix D.

2.4.1.1 Workflow-like Coordination

The signal set required to coordinate the “workflow style” activities contains four signals
“start,” “start_ack,” “outcome,” and “outcome_ack.”

• start: signal is sent from a “parent” activity to a “child” activity (via an Action), to
indicate that the “child” activity should start. The application_specific_data part
of the signal contains the information required to parameterize the starting of the
activity. This information is encoded in XML. As noted above, the recipient Action
is responsible for starting the activity.

• start_ack: signal is sent from a “child” activity to a “parent” activity, as the return
part of a “start” signal, to acknowledge that the “child” activity has started.

• outcome: signal is sent from a “child” activity to a “parent” activity, to indicate that
the “child” activity has completed. The application_specific_data part of the
signal contains the information about the outcome of the activity. This information
is encoded in XML.

• outcome_ack: signal is sent from a “parent” activity to a “child” activity, as the
return part of an “outcome” signal, to acknowledge that the “parent” activity has
completed.

Figure 2-3 Example “Workflow style” activities.

a:Activity c:Activity d:Activityb:Activity

“start”

“start”

“start”

“outcome”

“outcome”

“outcome”

“start_ack”

“start_ack”

“start_ack”

“outcome_ack”

“outcome_ack”

“outcome_ack”
September 2001 Additional Structuring Mechanisms for the OTS: The User’s View 2-41

2

The interaction in Figure 2-3, is activity a coordinating the parallel execution of b and c
followed by d. For space considerations, the Actions that control the starting of activities
b, c and d are not shown, and should be assumed to be implicit in the above diagram.

2.4.1.2 Compensating Activities

In this section we shall illustrate how coordination of transactional activities with
compensation for failures can be provided using the framework described. Consider the
sequence of transactions shown in Figure 1-3 on page 1-5, and assume that each
transaction boundary also represents a different activity. The termination of one
transaction is used as the driver to start another (perhaps compensating) transaction. We
shall assume the existence of a high-level scripting language with which long-running
applications can be constructed from short-duration transactions. The signal types
required are:

• start: a signal is sent from the terminating activity to the next activity to indicate
that it can begin execution. The application_specific_data part of the signal
contains the information required to parameterize the starting of the activity, such as
the state in which this activity has terminated (e.g., committed or rolled back). This
information is encoded in XML.

• start_ack: signal is sent from a starting activity to the terminating activity, as the
return part of a “start” signal, to acknowledge that the activity has started.

Each activity/transaction may be started by an appropriate Action. Where necessary, the
application programmer will be required to implement compensating activities. For
example the application programmer must have the necessary knowledge to implement
t5(c) which compensates for t2. The application (or some high-level scripting language)
will tie together the individual transactional activities such that the ending of one causes
the start of another. It is this scripting that will drive the different start signal states in the
case of activity failures. For example, if t4 fails then a Signal(start:rolledback) may be
sent to t5(c), whereas if t4 completed successfully a Signal(start:ok) may be sent from it
to t6.

Sub-activities (sub-transactions) (i.e., activities nested within other activities), would be
controlled in a similar manner to the workflow-like scheme presented previously.
Compensation would either be left to the enclosing activity or could be handled as
described above. If sub-activities are present, then additional signals will be required:

• outcome: signal is sent from a “child” activity to a “parent” activity, to indicate that
the “child” activity has completed. The application_specific_data part of the
signal contains the information about the outcome of the activity. This information
is encoded in XML.

• outcome_ack: signal is sent from a “parent” activity to a “child” activity, as the
return part of an “outcome” signal, to acknowledge that the “parent” activity has
completed.
2-42 Additional Structuring Mechanisms for the OTS: The User’s View September 2001

2

2.4.1.3 Two-phase Commit

The UML diagram below illustrates how the Activity Service could be used to implement
a two-phase commit protocol, as briefly described in Section 1.2, “Activity Service
Model,” on page 1-4. It is assumed that the process_signal_set method has been
invoked on the ActivityCoordinator:
September 2001 Additional Structuring Mechanisms for the OTS: The User’s View 2-43

2

Figure 2-4 Two-phase commit protocol with Signals, SignalSets and Actions.

set_completion_status()

 Action

get_signal()

 2PC SignalSet

“preComplete”

 ActionActivity
Coordinator

Synchronization
SignalSet

set_response()

get_signal()

 Action

“prepare”

set_response()

“prepare”

set_response()

get_signal()

“commit”

set_response()

“commit”

set_response()

get_completion_status()

set_completion_status()

get_outcome()

get_signal()

“postComplete”

set_response()
2-44 Additional Structuring Mechanisms for the OTS: The User’s View September 2001

2

2.5 The Implementor’s View

2.5.1 Suspending Transactions

If CosTransactions::Current::suspend is used to suspend a transaction that has
nested Activities, then those Activities will not be suspended, since the OTS has no
knowledge of Activities. Therefore, we recommend that if such behavior is required,
transaction suspending and resuming is performed using the CosActivity::Current
methods. An implementation of the Object Transaction Service may be made aware of
Activities and thus make CosTransactions::Current methods respond appropriately.
However, this may result in non-portable applications.

2.5.2 Obtaining Current

In order for an application to be able to obtain and use any of the Activity Service
Currents it is necessary for an Activity Service to register it with the ORB. The Activity
Service implementation is responsible for registering an implementation of the
CosActivityCoordination::Current as the “ActivityCurrent” returned by
resolve_initial_references. This is achieved by calling
ORB::register_initial_reference(in ObjectId id, in Object obj) where ObjectId
is “ActivityCurrent.” Other Current implementations may be obtained by suitable
narrowing of this object.

2.5.3 Failure Assumptions

Many commercial transaction systems use a presumed abort protocol to simply the
requirements on failure recovery: if a participant enquires as to the status of a transaction
and the system definitely has no record about the transaction, then it is assumed to have
aborted (rolled back), and the participant can act accordingly. This means that a
transaction coordinator need not keep persistent records of participants until after it has
decided to commit. Therefore, Activity Service implementations are also required to use
a presumed abort (presumed failed) protocol.

The Activity Service also assumes that IORs for participants (Actions) and coordinators
are persistent, such that upon recovery from failure, an end-point for an IOR remains
valid as long as the object it refers to remains in existance. Therefore, a client receiving
an OBJECT_NOT_EXIST exception can be guaranteed that the object has ceased to exist
because it has successfully completed its job.

2.5.4 Normal Activity Completion

In order to write a portable application or application framework that uses the Activity
service, and in order for Activity service implementations to fully interoperate, the
ordering and semantics of completion processing of an Activity are described in detail in
this section.

1. Current::complete_with_status(comp_status) is called.
September 2001 Additional Structuring Mechanisms for the OTS: The Implementor’s View 2-45

2

2. This drives ActivityCoordinator::complete_activity(comp_ss_name,
comp_status). If this is a remote call then no Activity service is marshalled
since the target ActivityCoordinator has an ActivityPolicyValue of INTERNAL.

3. The preComplete synchronization signal is distributed. The Activity context
must be available on the thread when the Actions process this signal.

4. The completion signals are distributed to registered Actions. The Activity
context must be available on the thread when the completion signals are
distributed.

5. The context is logically suspended. Any PropertyGroups are called with
suspended() and then with completed().

6. The postComplete synchronization signal is sent.

7. Any remaining Activity service objects for the completing Activity are
cleaned up.

8. The call returns to the client.
2-46 Additional Structuring Mechanisms for the OTS: The Implementor’s View September 2001

 References A
A.1 List of References

1. R. Soley (ed.), Object Management Architecture Guide, Third Edition, Wiley, June
1995.

2. C. T. Davies, "Data processing spheres of control", IBM Systems Journal, Vol. 17,
No. 2, 1978, pp. 179-198.

3. J. J. Halliday, S. K. Shrivastava, and S. M. Wheater, "Implementing Support for
Work Activity Coordination within a Distributed Workflow System", Proceedings of
the Third International Conference on Enterprise Distributed Object Computing
(EDOC '99), September 1999, pp. 116-123.
September 2001 Additional Structuring Mechanisms for the OTS: List of References A-1

A

A-2 Additional Structuring Mechanisms for the OTS: List of References September 2001

 OMG IDL B
B.1 Complete IDL Listing
// File: CosActivity

#ifndef COSACTIVITY_IDL_
#define COSACTIVITY_IDL_

#include <orb.idl>

#pragma prefix "omg.org"

module CosActivity
{
 exception NoActivity {};
 exception ActivityPending {};

exception ActivityNotProcessed {};
 exception InvalidToken {};
 exception InvalidState {};

exception InvalidContext {};
 exception ActionError {};
 exception AlreadyDestroyed {};
 exception ActionNotFound {};
 exception ChildContextPending {};
 exception InvalidParentContext {};
 exception SignalSetUnknown {};
 exception SignalSetAlreadyRegistered {};
 exception SignalSetActive {};
 exception SignalSetInactive {};
 exception TimeoutOutOfRange {};
 exception PropertyGroupUnknown {};

 interface ActivityCoordinator;
September 2001 Additional Structuring Mechanisms for the OTS: Complete IDL Listing B-1

B

// The following system exceptions are added to support the Activity
// service

// INVALID_ACTIVITY
// ACTIVITY_COMPLETED
// ACTIVITY_REQUIRED

typedef unsigned short ActivityPolicyValue;
const ActivityPolicyValue REQUIRES = 1;
const ActivityPolicyValue FORBIDS = 2;
const ActivityPolicyValue ADAPTS = 3;
const ActivityPolicyValue INTERNAL = 4;

const CORBA::PolicyType ActivityPolicyType = 58;

interface ActivityPolicy : CORBA::Policy
{
 readonly attribute ActivityPolicyValue apv;
}

const IOP::ComponentId TAG_ACTIVITY_POLICY = 37;

 typedef sequence<octet> GlobalId;

 enum Status
 {
 StatusActive,
 StatusCompleting,
 StatusCompleted,

 StatusError,
 StatusNoActivity,
 StatusUnknown
 };

 enum CompletionStatus
 {
 CompletionStatusSuccess,
 CompletionStatusFail,
 CompletionStatusFailOnly
 };

struct Signal
 {
 string signal_name;
 string signal_set_name;
 any application_specific_data;
 };

 struct Outcome
 {
 string outcome_name;
B-2 Additional Structuring Mechanisms for the OTS: Complete IDL Listing September 2001

B

 any application_specific_data;
 };

struct ActivityInformation
 {
 GlobalId activityId;
 CompletionStatus status;

 Outcome final_outcome;
 };

 struct PropertyGroupIdentity
 {
 string property_group_name;
 any context_data;
 };

 struct ActivityIdentity
 {
 unsigned long type;
 long timeout;
 ActivityCoordinator coord;
 sequence <octet> ctxId;
 sequence <PropertyGroupIdentity> pgCtx;
 any activity_specific_data;
 };

 struct ActivityContext
 {
 sequence <ActivityIdentity> hierarchy;
 any invocation_specific_data;
 };

 interface PropertyGroup
 {
 readonly attribute string property_group_name;

 void completed();
 void suspended();
 void resumed();

 void destroy() raises(AlreadyDestroyed);
 };

 interface SignalSet
 {
 readonly attribute string signal_set_name;

 Signal get_signal (inout boolean lastSignal);
 Outcome get_outcome () raises(SignalSetActive);

 boolean set_response (in Outcome response, out boolean nextSignal)
September 2001 OMG Template: Complete IDL Listing B-3

B

 raises (SignalSetInactive);

 void set_completion_status (in CompletionStatus cs);
 CompletionStatus get_completion_status ();

void set_activity_coordinator (in ActivityCoordinator coord)
raises(SignalSetActive);

 void destroy() raises(AlreadyDestroyed);
 };

interface SubordinateSignalSet : SignalSet
{

void set_signal (in Signal sig);
Outcome get_current_outcome () raises(SignalSetInactive);

};

 interface Action
 {
 Outcome process_signal(in Signal sig) raises(ActionError);

 void destroy() raises(AlreadyDestroyed);
 };
 typedef sequence<Action> ActionSeq;

 interface ActivityCoordinator
 {
 Outcome complete_activity(in string signal_set_name,

in CompletionStatus cs)
 raises(ActivityPending, ChildContextPending,

SignalSetUnknown, ActivityNotProcessed);
 Outcome process_signal_set(in string signal_set_name,

in CompletionStatus cs)
 raises(SignalSetUnknown, ActivityNotProcessed);

 void add_signal_set (in SignalSet signal_set)
 raises(SignalSetAlreadyRegistered);
 void remove_signal_set (in string signal_set_name)
 raises(SignalSetUnknown);

 void add_action(in Action act, in string signal_set_name,
 in long priority) raises(SignalSetUnknown);
 void remove_action(in Action act) raises(ActionNotFound);

 void add_actions(in ActionSeq acts, in string signal_set_name,
 in long priority) raises(SignalSetUnknown);
 ActionSeq remove_actions(in ActionSeq acts);

 void add_global_action(in Action act, in long priority);
 void remove_global_action(in Action act) raises(ActionNotFound);
B-4 Additional Structuring Mechanisms for the OTS: Complete IDL Listing September 2001

B

 long get_number_registered_actions(in string signal_set_name)
 raises(SignalSetUnknown);
 ActionSeq get_actions(in string signal_set_name) raises(SignalSetUn-
known);

 ActivityCoordinator get_parent_coordinator ();

 GlobalId get_global_id ();

 Status get_status ();
 Status get_parent_status ();
 string get_activity_name ();

 boolean is_same_activity (in ActivityCoordinator ac);

 unsigned long hash_activity ();

 void destroy() raises(AlreadyDestroyed);
 };

 interface ActivityToken
 {
 ActivityContext get_context ();
 void destroy() raises(AlreadyDestroyed);
 };

 interface Current : CORBA::Current
 {
 void begin(in long timeout) raises(InvalidState, TimeoutOutOfRange);
 Outcome complete() raises (NoActivity,

ActivityPending, ChildContextPending, ActivityNotProcessed);
 Outcome complete_with_status(in CompletionStatus cs)
 raises (NoActivity, ActivityPending, ChildContextPending,
 InvalidState, ActivityNotProcessed);

 void set_completion_status (in CompletionStatus cs)
 raises (NoActivity, InvalidState);
 CompletionStatus get_completion_status () raises(NoActivity);

 void set_completion_signal_set (in string signal_set_name)
 raises (NoActivity, SignalSetUnknown, InvalidState);
 string get_completion_signal_set () raises(NoActivity);

 ActivityToken suspend() raises(InvalidParentContext);
 void resume(in ActivityToken at)
 raises (InvalidToken, InvalidParentContext);

 ActivityToken suspend_all();
 void resume_all(in ActivityToken at)
 raises (InvalidToken, InvalidParentContext);
September 2001 OMG Template: Complete IDL Listing B-5

B

 GlobalId get_global_id ();

 Status get_status();
 string get_activity_name ();

 void set_timeout (in long seconds) raises(TimeoutOutOfRange);
 long get_timeout ();

 ActivityContext get_context();
 void recreate_context(in ActivityContext ctx) raises(InvalidContext);

 ActivityCoordinator get_coordinator();
 ActivityCoordinator get_parent_coordinator();

 ActivityIdentity get_identity ();
 ActivityToken get_token ();

 PropertyGroup get_property_group(in string name)
 raises(PropertyGroupUnknown, NoActivity);
 };
};

module CosActivityAdministration
{
 exception PropertyGroupAlreadyRegistered {};
 exception PropertyGroupNotRegistered {};
 exception AttributeAlreadyExists {};
 exception NoSuchAttribute {};

 interface PropertyGroupAttributes
 {
 string get_attribute (in string name) raises(NoSuchAttribute);
 void set_attribute (in string name, in string value)
 raises(AttributeAlreadyExists);
 void replace_attribute (in string name, in string value);
 };

 interface PropertyGroupManager
 {
 CosActivity::PropertyGroup create(in CosActivity::PropertyGroup par-
ent,

 in CosActivity::GlobalId gid);

 CosActivity::PropertyGroupIdentity marshal_request
 (in CosActivity::PropertyGroup pg);
 CosActivity::PropertyGroupIdentity marshal_response
 (in CosActivity::PropertyGroup pg);

 CosActivity::PropertyGroup unmarshal_request
 (in CosActivity::PropertyGroupIdentity mpg,

in CosActivity::PropertyGroup pg,
B-6 Additional Structuring Mechanisms for the OTS: Complete IDL Listing September 2001

B

in CosActivity::PropertyGroup parent,
in CosActivity::GlobalId gid);

 void unmarshal_response(in CosActivity::PropertyGroupIdentity mpg,
 in CosActivity::PropertyGroup pg);

 void destroy() raises(CosActivity::AlreadyDestroyed);
 };

 interface Current : CosActivity::Current
 {
 void register_property_group(in string property_group_name,
 in PropertyGroupManager manager,
 in PropertyGroupAttributes attributes)
 raises(PropertyGroupAlreadyRegistered);

 void unregister_property_group(in string property_group_name)
 raises(PropertyGroupNotRegistered);
 };
};

module CosActivityCoordination
{
 interface Current : CosActivityAdministration::Current
 {

CosActivity::Outcome broadcast(in string signal_set_name)
 raises(CosActivity::SignalSetUnknown,

 CosActivity::NoActivity, CosActivity::ActivityNotProcessed);

 void add_signal_set(in CosActivity::SignalSet signal_set)
 raises(CosActivity::SignalSetAlreadyRegistered, CosActivity::NoActiv-
ity);
 void remove_signal_set (in string signal_set_name)
 raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);

 void add_action(in CosActivity::Action act, in string signal_set_name,
 in long priority) raises(CosActivity::SignalSetUnknown,
 CosActivity::NoActivity);
 void remove_action(in CosActivity::Action act)
 raises(CosActivity::ActionNotFound, CosActivity::NoActivity);

 void add_actions(in CosActivity::ActionSeq acts,
 in string signal_set_name, in long priority)

 raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
 CosActivity::ActionSeq remove_actions(in CosActivity::ActionSeq
acts)
 raises(CosActivity::NoActivity);

void add_global_action(in CosActivity::Action act, in long priority)
 raises(CosActivity::NoActivity);
 void remove_global_action(in CosActivity::Action act)
 raises(CosActivity::ActionNotFound, CosActivity::NoActivity);
September 2001 OMG Template: Complete IDL Listing B-7

B

 long get_number_registered_actions(in string signal_set_name)
 raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
 CosActivity::ActionSeq get_actions(in string signal_set_name)
 raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
 };
};

#endif
B-8 Additional Structuring Mechanisms for the OTS: Complete IDL Listing September 2001

 Glossary C
C.1 Activity Service Terms

Action. When an Activity require Signal processing, Actions will be invoked with the specified
Signal.

Activity. An activity is a unit of (distributed) work that may, or may not be transactional. During its
lifetime an activity may have transactional and non-transactional periods.

ActivityCoordinator. The coordinator is responsible for coordinating the interactions between Activities
through Signals and Actions.

Activity Context. The activity information associated with a specific thread.

Child activity. An activity that has been created within the scope of another activity.

Compensation. An activity that can be used to return the state of the system to application specific consis-
tency.

Current. This interface provides operations which allow the demarcation of Activity scope. In addi-
tion, it provides interfaces for coordinating the Actions of the current Activity.

Parent activity. An activity that has child activities.

PropertyGroup. A tuple-space for specifying application specific logic for coordinating and controlling the
behavior of activities.

Recovery. A series of actions for restoring the state of the system to application specific consistency.

Root activity. An activity that does not occur within the scope of another activity.

Sibling. A child activity.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Terms C-1

C

Signal. An Activity may enable Signal objects to be transmitted to other Activities to inform them
about application specific events. Application specific information (e.g., about how the
Activity terminated) is encoded within the Signal.

SignalSet. Each Signal is associated with a specific SignalSet. A SignalSet represents the set of Sig-
nals that are required to achieve some goal. For example, an OTS SignalSet may contain
prepare/commit/rollback/forget/commit_one_phase Signals. Actions register interest in
receiving Signals from a given SignalSet.

Transaction. An Object Transaction Service transaction.
C-2 Additional Structuring Mechanisms for the OTS: Activity Service Terms September 2001

 Specific Models D
D.1 Examples of Extended Transaction Models

In the first part of this document we presented a general framework for the construction
of arbitrary extended transaction models. By itself this framework does not present a
specific type of extended transaction, and is not intended to be used directly: as previous
sections have attempted to explain, it is envisioned that this layer can be provided for,
and used by, specific extended transaction models and their implementations.

In this appendix we present some of these extended transaction models, with their own
IDL, and illustrate how implementations of these models use the underlying generic
framework presented earlier. Note, these extended transaction models are presented as
illustration only, and an implementation of this specification need not provide
implementations of these models. They are neither mandatory nor optional for a
conformant implementation of the Activity Service.

D.1.1 The Open Nested Transactions Model

The concept of a transaction has been developed to permit management of activities and
resources in a reliable computing environment. Indeed, transactions are useful to
guarantee consistency of applications even in case of failure and in the case of conflicting
concurrent applications. The traditional or flat transaction model, implied by the OMG
(Object Management Group) Object Transaction Service (OTS), although suitable for
applications using short transactions, may not provide enough flexibility and
performance when used for more complex applications, such as CAD applications,
connection establishment in telecommunication or business travel including several
servers on different sites and need access to many resources involved within a relatively
long-lived transaction.

Typically, the two-phase commit (2PC) protocol is combined with the strict two-phase
locking protocol, as the means for ensuring atomicity and the serializability of
transactions. The implication of this combination on the length of time a transaction may
holding locks on various data items might be severe. At each site, and for each
Sept. 2001 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models D-1

D

transaction locks must be held until either a commit or an abort message is received from
the coordinator of the 2PC protocol. Since the 2PC protocol is a blocking protocol, the
length of time these locks are held can be unbounded.

There are certain classes of application where it is known that resources acquired within
a transaction can be “released early,” rather than having to wait until the transaction
terminates. These applications share a common feature that application-level consistency
is maintained, despite any non-ACID behavior they may exhibit. For some applications,
failures do not result in application-level inconsistency, and no form of compensation is
required. However, for other applications, some form of compensation may be required
to restore the system to a consistent state from which it can then continue to operate.

In this section we describe how the “Open Nested Transaction Model” (ONT), or the
Nested top-level transactions with compensation may be provided using the Activity
Service Framework. The Open Nested Model improves greatly transaction parallelism by
releasing the nested transaction locks at the nested transaction commit time. That is, open
nested transactions relax the isolation property by allowing the effects of the committed
nested transaction to be visible to concurrent transactions, thus waiving the lock transfer
rule of closed nested transactions.

Since the Activity Service proposed by this specification proposes a low-level
architecture to create an advanced transaction model, it appears judicious to provide for
end-users wishing to use a particular advanced model a high level API which hides the
way the Activity Service is used to provide that advanced model. For this aim we
provide, in this submission, an API which allows users to develop transactional activities
structured in a hierarchically way reflecting the Open nested transaction model.

The Transactional Model

In this model an Activity may contain any number of nested activities, which may
recursively contain other nested activities organized into a hierarchical tree of nested
activities or an Activity family. In the earlier part of this specification the notion of an
Activity was defined in a loose manner, to enable specific extended transaction models to
refine what they mean by Activity. The notion of Activity used within this section is
therefore specific to this model, and should not be confused with any other Activity
definition used by other extended transaction models.

Each activity or nested activity represents an atomic unit of work to be done; that is an
OTS transaction. The creation of an activity or nested activity implies the creation of an
associated top-level, or flat transaction, which may possibly contain nested transactions,
if the provided Object Transaction Service supports nested transactions. That is, from the
application point of view, an activity is implicitly transactional. Therefore, unless
otherwise stated, in the rest of this section we shall use the term Activity to refer to the
Activity and its associated transaction; operations which are applied to the Activity are
likewise assumed to be applied to the transaction where appropriate, in order to guarantee
consistency.

The transaction model respects the following rules:
D-2 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models Sept. 2001

D

• Sub-activities are strictly nested. An Activity or Sub-activity cannot complete with
Success unless all of its children have completed. Since an activity is implicitly
transactional, completing with Success means that the associated transaction is
committed.

• When an Activity or Sub-activity completes with Failure, all of its children in an
active state are completed with Failure. Since an Activity is implicitly transactional,
completing with Failure means that the associated transaction is rolled back.

• When an Activity or Sub-activity complete with Failure or rolls back, all of its
children which have completed with Success or committed shall be compensated if
compensating actions have been defined. The behavior of the compensation action
is defined by the application since it is only the application that possesses sufficient
information to do compensation.

The end-user programming interface

To avoid using more than one interface to manage an Activity and a transaction within an
activity, the interface provided for end-users to create ONT transactional activities relies
on a new Current interface. This interface invokes the appropriate interfaces provided by
the underlying Transaction Service and Activity Service, respectively, to manage
transactions and to manage activities.

For simplicity, the intermediate mechanism allowing to manage Open Nested
transactions and located between the end-user applications and the Activity Service is
referred to as the OpenNested Service.

Although a high level Current interface is added to hide those provided by the Activity
Service and the Transaction Service, we do not mandate a new context to be propagated
among participants within a same transactional activity. The context to be propagated
relies on the policy defined by the invoked object as explained in Section 1.2.1.6,
“Contexts,” on page 1-13.

Datatypes

enum Activity_Status {
StatusActive,
StatusNoActivity,
StatusMarkedRollback,
StatusRollingBack,
StatusCommitting,
StatusRolledBack,
StatusCommitted,
StatusToCompensate,
StatusUnknown

};

The meaning of each of the above values is given below:

• StatusActive: An Activity is associated with the target object. The Activity and its
associated transaction is in the active state.
Sept. 2001 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models D-3

D

• StatusNoActivity: No Activity is currently associated with the target object. This
will occur after an Activity has completed, or before the first Activity is created.

• StatusMarkedRolledback: The transaction associated with the target object or
the target activity has been marked for rollback. The activity will complete with the
CompletionStatusFail.

• StatusRollingBack : A transaction is associated with the target object and it is in
the process of rolling back. An implementation returns this status if it has decided
to rollback, but has not yet completed the process because it is waiting for responses
from the Transaction Service.

• StatusCommitting: The transaction or Activity associated with the target object is
in the process of committing. An implementation returns this status if it has decided
to commit, but has not yet completed the process because it is waiting for responses
from the Transaction Service.

• StatusRolledback: An Activity is associated with the target object and it has
completed with the status CompletionStatusFail or CompletionStatusFailOnly and
its associated transaction has rolled back.

• StatusCommitted: An Activity is associated with the target object, it has
completed with the status CompletionStatusSuccess and its associated transaction
has committed. There is no Compensation defined for that activity.

• StatusToCompensate: An Activity is associated with the target object, it has
completed with the status CompletionStatusSuccess and its associated transaction
has committed. A Compensation has been defined for that activity and is waiting
for its ancestors’ outcome.

• StatusCompleted: An Activity is associated with the target object and it has
completed. That is either it has committed and a compensation has not been
defined, or it has rolled back, or it has been compensated.

• StatusUnknown: An Activity is associated with the target object, but the Activity
Service cannot determine its current status. This is a transient condition, and a
subsequent invocation will ultimately return a different status.

The diagram below indicates the transitions a transactional Activity can undergo.
Because the interfaces described in the first part of this specification are meant to define
a generic framework for many extended transaction models, the Activity statues
described in Section 2.1.2.2, “Status,” on page2-2 do not convey fine-grained knowledge
about the application-level progress of an Activity; such information is not available at
the level of those interfaces since the concept of an Activity depends somewhat upon the
application semantics. However, at the level of the ONT interfaces, the notion of an
Activity is tied to the ONT model, and finer granularity statuses can be given to the
application to indicate the transactional Activity’s progress. Obviously the low-level
statuses provided by the general framework are available to the application if it requires
them.
D-4 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models Sept. 2001

D

Figure D-1 Transactional Activity and UML state diagram.

Exceptions

We define the following exceptions:

exception Heuristic_Compensate {};
exception Heuristic_No_Compensate {};
exception Activity_RolledBack {};

Heuristic_Compensate Exception

The Heuristic_Compensate exception is raised to report that a compensation has been
performed while the entire activity has been requested to commit.

Heuristic_No_Compensate Exception

The Heuristic_No_Compensate exception is raised to report that after several attempts
the Compensator object has not been reached to perform the compensation while the
current activity has been rolled back.

Activity_RolledBack Exception

The Activity_RolledBack exception is raised to report that the transactional activity has
been rolled back.

Current interface

The Current interface defines operations that allow the client to manage the Activity
(begin and end activities and to obtain information about the current Activity/Nested
activity). Most operations provided by this Current interface are mainly based on those
provided by the CosTransactions::Current interface; by this way end-users can reuse
similar transactional operations which now take benefit from the Activity Service.

Committing RollingBack

Completed
ToCompensate

Active
Sept. 2001 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models D-5

D

Since this Current interface aims to be layered on both OTS and the Activity Service,
we assume that exceptions raised by those services are caught by this Current and re-
raised to the end-user application.

How the Open Nested Transaction Current is obtained is not mandated by this
specification, but could be provided using a resolve initial
references(“OpenNestedTransactionCurrent”) operation on the CORBA::ORB
interface.

The Current supports the following operations:

interface Current : CORBA::Current {

void activity_begin(in long timeout)
raises(CosActivity::InvalidState, CosActivity::TimeoutOutOfRange);
void activity_commit(in Compensator compensator_object,
 in any compensating_data)
raises(CosActivity::NoActivity, CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard, CosActivity::ActivityPending,
 CosActivity::ChildContextPending, Activity_RolledBack,
 Heuristic_Compensate, Heuristic_No_Compensate);

void activity_rollback() raises(CosActivity::NoActivity);
void activity_rollback_only() raises(CosActivity::NoActivity);

void activity_set_timeout(in long seconds) raises(CosActivity::Timeout-
OutOfRange);

Activity_Status activity_get_status();

CosActivity::ActivityToken suspend();
void resume(in CosActivity::ActivityToken)
 raises(CosActivity::InvalidToken, CosActivity::InvalidParentContext);

string get_activity_name () ;
string get_transaction_name();

CosActivity::ActivityContext get_context();
CosActivity::ActivityCoordinator get_coordinator();

// Operations to access to the Transaction Service
CosTransactions::Control get_control();

// Operations to create and terminate nested transactions
void begin()
 raises(CosActivity::NoActivity, CosTransactions::NoTransaction,
 CosTransactions::SubtransactionsUnavailable);
void commit()
 raises(CosTransactions::NotSubtransaction);
void rollback()
 raises(CosTransactions::NotSubtransaction);
D-6 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models Sept. 2001

D

void rollback_only()
 raises(CosTransactions::NotSubtransaction);
};

activity_begin

A new Activity is created. If the invoking thread already has an active Activity associated
with it then the newly created Activity will be nested within it. Regardless of whether or
not the Activity is nested, a top-level transaction is created using the Transaction Service
and associated with the newly created Activity. The invoking thread’s notion of the
current Activity will be changed to this Activity. If the current Activity associated with
the invoking thread has completed, is completing, or has been marked as
CosActivity::CompletionStatusFailOnly, then the INVALID_ACTIVITY exception
will be thrown and the invoking threads notion of the current Activity will not be
modified.

The timeout parameter is used to control the lifetime of the transactional Activity. If the
Activity has not completed by the time timeout seconds elapses, then it is subject to
being rolled back. The timeout defined by the Open Nested Current interface is not
controlled by the Open Nested Service which rather relies on the underlying Activity
Service to manage it. Values the timeout can have are those defined by the Activity
Service.

activity_commit

The transactional Activity associated with the client thread is committed; this implicitly
causes the commit of the associated transaction.

If there is no Activity associated with the calling thread, then the
CosActivity::NoActivity exception will be thrown. If the Activity was begun by a thread
(invoking begin) in the same execution environment, then the thread’s Activity context is
restored to its state prior to the begin request. Otherwise, it is set to null. If there are any
encompassed active or suspended transactional, then
CosActivity::ChildContextPending is raised. Only the Activity originator may call
activity_commit(). If a call to commit the Activity is made from an execution
environment into which the Activity was imported, the NO_PERMISSION exception is
raised. If the thread from which the activity_commit() call is made is not the only
thread on which the Activity is active, then the CosActivity::ActivityPending exception
is raised.

Heuristic exceptions, CosTransactions::HeuristicMixed and
CosTransactions::HeuristicHazard, raised by the underlying Transaction Service, are
thrown by the Open Nested Service to the end-user.

If the Compensator object parameter is not null, and the Activity/transaction can commit,
the Open Nested Service will register an Action with the parent activity to receive the
parent outcome; failure to register the Compensator will cause the Activity to rollback.

If the top-level transactional activity has committed with its related transaction and
compensation of a nested transactional activity has been performed the
Heuristic_Compensate exception is raised.
Sept. 2001 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models D-7

D

If the transactional activity and a Compensator object responsible to compensate effect of
a committed nested activity, the Heuristic_No_Compensate exception is raised.

activity_rollback

The Activity/Sub-activity associated with the client thread is rolled back. If there is no
Activity associated with the calling thread then the CosActivity::NoActivity exception
will be thrown. If the Activity was begun by a thread (invoking begin) in the same
execution environment, then the thread’s Activity context is restored to its state prior to
the begin request. Otherwise, it is set to null. Any nested transactional activities are rolled
back.

activity_rollback_only

If there is no Activity or Sub-activity associated with the client thread, the
CosActivity::NoActivity exception is raised. Otherwise, the Activity associated with the
client thread is modified so that the only possible outcome is to rollback the current
Activity. Likewise, the associated transaction is also marked as rollback only.

suspend

Suspends the transactional Activity associated with the current thread with its related
transaction, and any nested child scopes. A CosActivity::ActivityToken representing
the Activity that was associated with the current thread prior to this call is returned. If the
current thread is not associated with an Activity or a transaction, then nil is returned from
this operation.

resume

Resumes the Activity and any nested scopes represented by the
CosActivity::ActivityToken. The current thread becomes associated with the Activity
(or transaction) represented by the token. If the CosActivity::ActivityToken does not
represent a valid Activity (or is nil), then the CosActivity::InvalidToken exception is
raised and no new association is made on the thread.

activity_set_timeout

This operation applies only to the top-level Activity. It modifies a state variable
associated with the target object and affects the time-out period associated with the
Activity and its associated transaction and with all nested activities created by subsequent
invocations of the activity_begin operation. If the parameter has a nonzero value n,
then top-level transactions created by subsequent invocations of activity_begin will be
subject to being rolled back if they do not complete before n seconds after their creation.
If the parameter is zero, then no application specified time-out is established.

The timeout associated with a top-level Activity is specified only at its creation and
cannot be modified by subsequent Sub-activity creations. If this operation is called on a
Sub-Activity the standard exception NO_PERMISSION.
D-8 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models Sept. 2001

D

get_timeout

This operation returns the state variable associated with the target object that affects the
time-out period associated with activities created by calls to activity_begin.

get_activity_name

If there is no activity associated with the calling thread, an empty string is returned.
Otherwise, this operation returns a printable string describing the activity.

activity_get_status

If there is no activity associated with the client thread, the StatusNoActivity value is
returned. Otherwise, this operation returns the status of the activity associated with the
client thread.

get_transaction_name

If there is no activity or transaction associated with the invoking thread, an empty string
is returned. Otherwise, this operation returns a printable string describing the associated
transaction.

get_control

If the client thread is not associated with an Activity, a null object reference is returned.
Otherwise, a CosTransactions::Control object, created by the underlying Transaction
Service, is returned that represents the transaction context currently associated with the
current sub-activity. This object can be used to retrieve the transaction context associated
with the current Activity.

get_context

Returns the CosActivity::ActivityContext of the Activity associated with the current
thread. Returns null if no Activity is associated with the current thread.

get_coordinator

Returns a reference to the current Activity’s CosActvity::ActivityCoordinator. This
may be nil if no coordinator has yet been created.

begin

This operation is made available to create a nested transaction within a created
transactional activity under the conditions that a previous activity_begin has started a
transaction and that the nested transaction is supported by the underlying Transaction
Service.

commit

Once invoked this operation will request the Transaction Service to commit the current
nested transaction. If there is no nested transaction context associated with the current
thread, the exception CosTransactions::NotSubtransaction is raised.
Sept. 2001 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models D-9

D

The client thread transaction context is modified as follows: If the nested transaction was
begun by a thread (invoking begin) in the same execution environment, then the thread’s
transaction context is restored to its state prior to the begin request. Otherwise, the
thread’s transaction context is set to the top-level transaction context managed by the
current Activity.

rollback

Once invoked this operation will request the Transaction Service to rollback the current
nested transaction. If there is no nested transaction context associated with the current
thread, the exception CosTransactions::NotSubtransaction is raised.

The client thread transaction context is modified as follows: If the nested transaction was
begun by a thread (invoking begin) in the same execution environment, then the thread’s
transaction context is restored to its state prior to the begin request. Otherwise, the
thread’s transaction context is set to the top-level transaction context managed by the
current Activity.

rollback_only

With this operation, the client thread is modified so that the only possible outcome is to
rollback the current nested transaction. If there is no nested transaction context associated
with the current thread, the exception CosTransactions::NotSubtransaction is raised.

Once invoked this operation will request the Transaction Service to mark the current sub-
transaction as rollback only.

Compensator interface

The Compensator interface is provided to define a generic mechanism to manage the
compensating action of a committed Sub-activity if one of its ancestors has rolled back.

interface Compensator {
void compensate(in any compensating_data);
void forget();
}

compensate

The compensate operation, defined by the application, is invoked to compensate the
effects of a previously committed Sub-activity. The compensating_data, if not nil,
may be used to perform the compensation. compensating_data are given at the
commitment decision. The application may define a method which starts a transaction, or
another Activity in order to perform the compensation.

forget

The forget operation is defined by the application. The application may define a method
which releases the Compensator object.
D-10 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models Sept. 2001

D

The Open Nested Service invokes forget when it receives an activity_committed from
a top-level Activity, in order to inform the Compensator object that the entire Activity
has committed.

The Implementor’s View

The Activity Service defined in the earlier part of this specification enables the
development of an advanced transaction model by the definition of appropriate
SignalSets, Signals and Actions for that transaction model. Therefore, in this section we
describe how these entities are defined to implement the Open Nested Transaction Model
requested by end-users.

Figure D-2 illustrates the relationship between an activity which may define a
compensating action and the provider of the Open Nested Transaction (ONT) model.

Figure D-2 Activity and ONT relationship.

Since the ONT provider is responsible for coordinating nested activities according to
their final outcomes, it must have the knowledge of the outcomes of their associated
transactions in the case of failure. To this aim, the ONT provider participates in the
completion of the top level transaction associated with the Activity/Sub-Activity. That is,

T ra n sa c tio n
 C o n te x t

T ra n sa c tio n S erv ice

B eg in /E n d
T ran sac tio n

O N T P r o v id e r

b e g in /e n d a c tiv ity

C o m p en sa to r
o b jec t

R O

R e so u rc e
Sept. 2001 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models D-11

D

it registers as a Resource object with the Coordinator of the transaction. Registering a
Resource is a way for the ONT provider to determine if the reference of the Compensator
object must logged to be retrieved in case of failure.

Once a Sub-activity has committed, its Compensator object must be maintained
reachable in the case where either an ancestor Activity rolls back. The ONT provider and
the underlying Activity Service Provider are responsible for maintaining access to
Compensator objects. ONT providers who have registered a non nil Compensator object
are maintained alive after their activity commitment. The path maintained to reach
compensating actions is referred to as the Compensating tree.

The SignalSet family_outcome

Let us now describe how the Activity Service is used to coordinate a set of nested
activities and how the compensating tree is maintained. In order to accomplish this we
define the SignalSet family_outcome which contains the signals:

• activity_rolledback

• activity_committed

Defined Outcomes

The following identifiers define the Outcome structures used by the ONT protocol:

• success_with_parent

• parent_does_not_exist

• failure_to_invoke_parent

• success_with_compensator

• failure_to_invoke_compensator

• heuristic_compensate_decision

• heuristic_cannot_compensate

Role of the ONT provider

Upon receipt of an activity_begin, the Open Nested Service:

• invokes the Activity Service to create an activity

• adds a family_outcome SignalSet object with the created activity

• invokes OTS to create a transaction.

Upon receipt of an activity_commit, the Open Nested Service:

• invokes the OTS to commit the associated transaction

If the transaction commits
D-12 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models Sept. 2001

D

• if a no-null Compensator object was given in the activity_commit, and the
commitment is related to a nested activity, the Open Nested Service adds an Action
object, responsible for compensation, to the family_outcome SignalSet. If the
adding operation fails, the Open Nested Service invokes the Compensator object to
compensate the committed transaction using the compensate operation.

• invokes the Activity Service to complete the activity with the completion status
CompletionStatusSuccess using the family_outcome SignalSet.

• If the Open Nested Service receives the heuristic_compensate_decision
Outcome on the CosActivity::Current’s complete operation, it throws for the
end-user application Heuristic_Compensate exception.

• A nil outcome returned by the complete operation on the CosActivity::Current
interface is interpreted as an acknowledgment to the completion with success
decision.

If the transaction rolls back

• invokes the Activity Service to complete the activity with the completion status
CompletionStatusFail using the family_outcome SignalSet.

• If the Open Nested Service receives the heuristic_can_not_compensate
Outcome, it raises for the end-user application Heuristic_No_Compensate
exception.

• A nil outcome returned by the complete operation on the CosActivity::Current
interface is interpreted as an acknowledgment to the completion with failure
decision. The Open Nested Service throws the Activity_RolledBack exception to
the end-user.

Upon receipt of an activity_rollback, the Open Nested Service:

• invokes the OTS to rollback the associated transaction,

• invokes the Activity Service to complete the activity with the completion status
CompletionStatusFail using the family_outcome SignalSet. Any enclosed
transactional activity is marked to rollback.

• If the Open Nested Service receives the heuristic_can_not_compensate
Outcome, it raises for the end-user application Heuristic_No_Compensate
exception.

• A nil outcome returned by the complete operation on the CosActivity::Current
interface is interpreted as an acknowledgment to the completion with failure
decision.

Role of the family_outcome SignalSet

Once created and added with the ActivityCoordinator a family_outcome SignalSet
object asks its associated ActivityCoordinator to obtain the reference of its parent
ActivityCoordinator using the operation get_parent_coordinator(), a nil object is
returned if there is no parent.
Sept. 2001 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models D-13

D

According to the activity CompletionStatus it receives from its associated
ActivityCoordinator with the set_completion_status operation, a
family_outcome SignalSet object provides to the ActivityCoordinator when request
with get_signal, either

• the activity_rollback Signal (with no additional data given in the
application_specific_data parameter), if the completion status is
CompletionStatusSuccess, or

• the activity_committed Signal (with the parent ActivityCoordinator given in
the application_specific_data parameter, or nil if there is no parent) if the
completion status is CompletionStatusFail.

After providing the signal activity_committed, if the family SignalSet related to a
nested activity receives an outcome response:

• parent_does_not_exist with set_response indicating that an Action fails to be
registered with the parent ActivityCoordinator because it does not exist, the
SignalSet indicates to the ActivityCoordinator that a subsequent signal shall be
sent to that Action. This next signal is activity_rollback.

• failure_to_invoke_parent with set_response indicating that an Action fails to
be registered with the parent ActivityCoordinator due to a transient failure or a
communication failure, the SignalSet indicates to the ActivityCoordinator that the
same signal, activity_committed shall be sent to that Action. However, if the
SignalSet receives the same Outcome failure_to_invoke_parent several times it
can decide to issue the activity_rolledback signal.

After providing the Signal activity_committed, if the family_outcome SignalSet
related to the top-level activity receives

• the outcome response failure_to_invoke_compensator with set_response
indicating that an Action fails to invoke forget on the Compensator object due to a
transient failure or a communication failure, the SignalSet indicates to the
ActivityCoordinator that the same signal, activity_committed shall be sent to
that Action. family_outcome.

• an Outcome indicating that the top-level ActivityCoordinator fails to invoke an
Action with the signal activity_commited because it does not longer exist, it
informs the SignalSet. Once requested to obtain the final outcome with
get_outcome, the family_outcome SignalSet will return the outcome
heuristic_compensate_decision.

After providing the signal activity_rolledback, if a family_outcome SignalSet
receives

• the Outcome response failure_to_invoke_compensator with set_response
indicating that an Action fails to invoke compensate on the Compensator object due
to a transient failure or a communication failure, the SignalSet indicates to the
ActivityCoordinator that the same signal, activity_rolledback shall be sent to
that Action. However, after several retrying, the SignalSet can decide to abandon the
compensation. Once requested to obtain the final outcome with get_outcome, the
family_outcome SignalSet will return the outcome
heuristic_can_not_compensate.
D-14 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models Sept. 2001

D

• an Outcome indicating that the ActivityCoordinator fails to invoke an Action with
the signal activity_rolledback due a communication failure exception, it informs
the SignalSet. The family_outcome SignalSet ignores that Action, there is no
additional signal or retrying. After a timeout, or once restarted, the ONT provider
can ask the ActivityCoordinator to obtain the status of the activity; if the
OBJECT_DOES_NOT_EXIST is returned indicating that the activity does not
exist, the ONT provider will presume that it has rolled back and it invokes
compensate on the Compensator object.

Role of the Action registered with the family_outcome SignalSet

If an Action registered to the family_outcome signalSet receives the
activity_committed signal with a non-nil parent ActivityCoordinator, it registers
with that parent so that it can be informed about its outcome. The Action has knowledge
that it represents an Activity that has, nominally, completed successfully, but which may
need to be compensated later. The Action then returns the Outcome
success_with_parent. If the registration with the parent fails because it does not
exist, it return the Outcome parent_does_not_exist. If the registration with the parent
fails due to a transient or communication failure, it return the Outcome
failure_to_invoke_parent.

This recursively ends up in having all Compensator objects listed in the “family Actions”
and having the family Actions registered to the top-level family_outcome signalSet as
illustrated in Figure D-3.

Figure D-3 Transactional Activity commitment and Compensation registrations

Activity ServiceONT Framework

Compensator
Family Action
to compensate n

1 - get_signal

3- add_action(FAn,ss_FOn-1)

Transaction
committed

Nested
Activity 3 (n)

Family_outcome
 signalSet n

Activity_Coordinator n

2 - process_signal
(activity_committed)

Nested
Activity2 (n-1)

Transaction
Activity_Coordinator n-1Family_outcome

 signalSet n-1

Activity_Coordinator 1
Top-Level
Activity1 Transaction

Family_outcome signalSet 1
 - activity_committed,
 - activity_rolledback
Sept. 2001 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models D-15

D

If an Action registered to the family_outcome signalSet receives the
activity_committed signal with a nil parent ActivityCoordinator, it invokes a forget
operation on the Compensator object to inform it about the final completion. If the
Action fails to invoke the Compensator object it returns the outcome
failure_to_invoke_compensator.

If an Action registered to the family_outcome signalSet receives the
activity_rollback signal, it invokes the compensate operation on the Compensator
object as described in Figure D-4. If the Action fails to invoke the Compensator object it
returns the outcome failure_to_invoke_compensator.

Figure D-4 Compensation on Activity rollback

After a timeout or once restarted, the Open Nested Service has the responsibility to
inquiry of its associated activity using the get_status operation on the
CosActivity::ActivityCoordinator. If the ActivityCoordinator no longer exists, it
invokes compensate on the Compensator object. It has the responsibility to retry the
compensate method in case of failure.

An application programmer may invoke the creation of a transaction or an activity within
the compensate operation. However if that transaction rolls back or the activity completes
with failure, it is up to application to retry. The Open Nested Service which invokes
compensate is not responsible for its behavior, but only responsible to reach the
Compensator object.

Open Nested Transaction IDL

#ifndef OPEN_NESTED_IDL_

Nested
Activity (i)

Family_outcome
 signalSet i

Act_Coor i

Transaction

Rolled back

Family Action
to compensate n

Family Action
to compensate i+1

Family Action
to compensate i+2

.

.

.

Compensator i+1

Compensator i+2

Compensator n

2 - process_signal
(activity_rolledback)

1 - get_signal
D-16 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models Sept. 2001

D

#define OPEN_NESTED_IDL_

#include <orb.idl>
#include <CosTransactions.idl>
#include <CosActivity.idl>
module OpenNested
{
 enum Activity_Status {
StatusActive,
StatusNoActivity,
StatusMarkedRollback,
StatusRollingBack,
StatusCommitting,
StatusRolledBack,
StatusCommitted,
StatusToCompensate,
StatusUnknown
 };

 exception Heuristic_Compensate {};
 exception Heuristic_No_Compensate {};
 exception Activity_RolledBack {};

 interface Compensator;

 interface Current : CORBA::Current {

 void activity_begin(in long timeout)
 raises(CosActivity::InvalidState, CosActivity::TimeoutOutOfRange);
 void activity_commit(in Compensator compensator_object, in any
compensate_data)
 raises(CosActivity::NoActivity, CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard, CosActivity::ActivityPend-
ing,
 CosActivity::ChildContextPending, Activity_RolleBack,
 Heuristic_Compensate, Heuristic_No_Compensate);

 void activity_rollback() raises(CosActivity::NoActivity);
 void activity_rollback_only() raises(CosActivity::NoActivity);

 void activity_set_timeout(in long seconds) raises(CosActivity::Timeout-
OutOfRange);
 Activity_Status activity_get_status();

 CosActivity::ActivityToken suspend();
 void resume(CosActivity::ActivityToken)
 raises(CosActivity::InvalidToken, CosActivity::InvalidParentContext);

 string get_activity_name ();
 string get_transaction_name();
Sept. 2001 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models D-17

D

 CosActivity::ActivityContext get_context();
 CosActivity::ActivityCoordinator get_coordinator();

 // Operations to access to the Transaction Service
 CosTransactions::Control get_control();

 // Operations to create and terminate nested transactions
 void begin() raises(CosActivity::NoActivity, CosTransactions::NoTrans-
action,
 CosTransactions::SubtransactionsUnavailable);
 void commit() raises(CosTransactions::NotSubtransaction);
 void rollback() raises(CosTransactions::NotSubtransaction);
 void rollback_only() raises(CosTransactions::NotSubtransaction);
 };

 interface Compensator {
void compensate(in any compensating_data);
void forget();
 };
};
#endif
D-18 Additional Structuring Mechanisms for the OTS: Examples of Extended Transaction Models Sept. 2001

	Preface
	1. Introduction
	1.1 Introduction
	1.1.1 Activity Service Interfaces and Implementation
	1.1.2 Application Framework
	1.1.3 Application Component
	1.1.4 Actions and Signal Sets
	1.1.5 Underlying Implementation Platform

	1.2 Activity Service Model
	1.2.1 Overview
	1.2.2 Coupling Transactions and Activities

	2. Modules and Interfaces
	2.1 The Activity Service Modules
	2.1.1 Overview
	2.1.2 Datatypes
	2.1.3 Structures
	2.1.4 Exceptions

	2.2 Activity Service Interfaces
	2.2.1 SignalSet Interface
	2.2.2 SubordinateSignalSet Interface
	2.2.3 Action Interface
	2.2.4 ActivityToken Interface
	2.2.5 ActivityCoordinator Interface
	2.2.6 PropertyGroup
	2.2.7 PropertyGroupAttributes
	2.2.8 PropertyGroupManager
	2.2.9 CosActivity::Current
	2.2.10 CosActivityAdministration::Current
	2.2.11 CosActivityCoordination::Current
	2.2.12 Interposition

	2.3 Distributing Context Information
	2.3.1 Activity Service POA Attributes

	2.4 The User’s View
	2.4.1 Examples of Use

	2.5 The Implementor’s View
	2.5.1 Suspending Transactions
	2.5.2 Obtaining Current
	2.5.3 Failure Assumptions
	2.5.4 Normal Activity Completion

	Appendix A - References
	Appendix B - OMG IDL
	Appendix C - Glossary
	Appendix D - Specific Models

