
Modules and Interfaces 2
Contents

This chapter contains the following sections.

2.1 The Activity Service Modules

2.1.1 Overview

The set of CORBA services which support the Activity Service Model presented earlier
are supported in the CosActivity, CosActivityAdministration, and
CosActivityCoordination modules. This chapter shall describe the datatypes,
exceptions, and interfaces provided by these different modules.

2.1.2 Datatypes

The CosActivity module defines the following datatypes:

Section Title Page

“The Activity Service Modules” 2-1

“Activity Service Interfaces” 2-10

“Distributing Context Information” 2-38

“The User’s View” 2-40

“The Implementor’s View” 2-46
September 2003 Additional Structuring Mechanisms for the OTS: The Activity Service Modules 2-1

2

2.1.2.1 GlobalId

This sequence of octets is used to uniquely identify the Activity. It is implementation
dependent as to the information that may be contained within GlobalId.

typedef sequence<octet> GlobalId;

2.1.2.2 Status

During the existence of the activity its status will either be running, completing, or
completed.

enum Status
{

StatusActive,
StatusCompleting,
StatusCompleted,
StatusError,
StatusNoActivity,
StatusUnknown

};

The meaning of each of the above values is given below:

• StatusActive: An Activity is associated with the target object and the Activity is
in the active state. An implementation returns this status after an Activity has been
started and prior to its beginning completion.

• StatusCompleting: An Activity is associated with the target object and it is in the
process of completing. An implementation returns this status if it has started to
complete, but has not yet finished the process. This value indicates that the activity
may be performing activity specific work required to determine its final completion
status. An activity must enter this state prior to completion, even if this state does
nothing.

• StatusCompleted: An Activity is associated with the target object and it has
completed. The actual outcome of the completed Activity will depend upon the type
of Activity (e.g., a transactional Activity may complete in a Committed, or
RolledBack state). Obtaining such states will be application specific.

• StatusError: An Activity is associated with the target object but it is unable to
proceed as one or more of its entities are not available. The Activity may be in an
inconsistent state.

• StatusNoActivity: No Activity is currently associated with the target object. This
will occur after an Activity has completed, or before the first Activity is created.

• StatusUnknown: An Activity is associated with the target object, but the Activity
Service cannot determine its current status. This is a transient condition, and a
subsequent invocation will ultimately return a different status.

Figure 2-1 indicates the transitions that an Activity can undergo.
2-2 Additional Structuring Mechanisms for the OTS: The Activity Service Modules September 2003

2

Figure 2-1 Activity UML state diagram

2.1.2.3 CompletionStatus

enum CompletionStatus
{
 CompletionStatusSuccess,
 CompletionStatusFail,
 CompletionStatusFailOnly
};

When an Activity completes, it does so in one of two states, either success or failure.
During its lifetime, the completion state of the Activity (i.e., the state it would have if it
completed at that point) may change from success to failure, and back again many times.
This is represented by the CompletionStatus enumeration, whose values are:

• CompletionStatusSuccess: the Activity has successfully performed its work
and can complete accordingly. When in this state, the Activity completion status can
be changed.

• CompletionStatusFail: some (application specific) error has occurred which has
meant that the Activity has not performed all of its work, and should be driven
during completion accordingly. When in this state, the Activity completion status
can be changed.

• CompletionStatusFailOnly: some (application specific) error has occurred which
has meant that the Activity has not performed all of its work, and should be driven
during completion accordingly. Once in this state, the completion status of the
Activity cannot be changed (i.e., the only possible outcome for the Activity is for it
to fail).

The interpretation of the completion status outcome to drive specific Signals and Activity
specific work is up to the actual Activity.

2.1.3 Structures

2.1.3.1 ActivityInformation

struct ActivityInformation
{
 GlobalId activityId;
 CompletionStatus status;

Outcome final_outcome;

Active Completing Completed
September 2001 Additional Structuring Mechanisms for the OTS: The Activity Service Modules 2-3

2

};

The ActivityInformation structure is encoded within the application_specific_data
field of the Signals sent by the ChildLifetime and Synchronization SignalSets.

2.1.3.2 Signal

struct Signal
{
 string signal_name;
 string signal_set_name;
 any application_specific_data;
};

An Activity may enable Signal objects to be transmitted to entities to inform them about
activity specific events. Activity specific information (e.g., about how the Activity
terminated) is encoded within the Signal.

signal_name is an identifier for the Signal, and can be used to determine the meaning
of the Signal. It is invalid for this field to be nil. This name must be unique within the
context of the SignalSet.

signal_set_name is the name of the SignalSet this Signal is associated with. It is
invalid for this field to be nil. These names must be unique, and adhere to the following
naming convention: <domain>.<company>.<…>; so, for example,
“com.ibm.fred.otssignals”.

The application_specific_data field may be used to encode additional application
specific information.

Predefined signal types include:

• preCompletion: the recipient is informed that the Activity is about to complete. This
Signal will only be called if the Activity’s completion status is
CompletionStatusSuccess. The Activity’s completion status and its identity is
encoded within the Signal via the ActivityInformation structure. The
ActivityInformation final_outcome is nil for this Signal.

• postCompletion: the recipient is informed that the Activity has completed.
Information about the Activity’s completion status, which may have changed since
preCompletion, is encoded within the Signal. The Activity’s completion status, final
Outcome, and its identity is encoded within the Signal via the
ActivityInformation structure.

• childBegin: the recipient is informed that the Activity has begun. The Activity’s
completion status and its identity is encoded within the Signal via the
ActivityInformation structure.The ActivityInformation final_outcome is nil
for this Signal.

An Activity Service implementation will not modify the application_specific_data
field of any Signal.
2-4 Additional Structuring Mechanisms for the OTS: The Activity Service Modules September 2003

2

2.1.3.3 Outcome

struct Outcome
{
 string outcome_name;
 any application_specific_data;
};

When an Action receives a specific Signal it returns an Outcome that represents the result
of its having dealt with the Signal. When an Activity completes, an Outcome may be
returned to the application in order for it to determine the final status of the Activity.

outcome_name is an identifier for the Outcome, and can be used to determine the
meaning of the Outcome. It is invalid for this field to be nil.

The application_specific_data field may be used to encode additional application
specific information.

Actions are required to use the ActionError exception to indicate that some failure
occurred during Signal processing. This exception is mapped onto the pre-defined
Outcome “ActionError.” Other system exceptions (such as the failure of an Action to
respond to a given Signal), are mapped onto the pre-defined Outcome
“ActionSystemException,” and information about the exception is encoded within the
application_specific_data field.

2.1.3.4 ActivityIdentity and ActivityContext

struct ActivityIdentity
{
 unsigned long type;
 long timeout;
 ActivityCoordinator coord;
 sequence <octet> ctxId;
 sequence <PropertyGroupIdentity> pgCtx;
 any activity_specific_data;
};

struct ActivityContext
{
 sequence <ActivityIdentity> hierarchy;
 any invocation_specific_data;
};

Activities may be composed of other Activities. If an activity is started within the scope
of an already running Activity, then it will automatically be nested within that Activity
(i.e., it will be a child Activity). Thus, the execution of a series of Activities may form a
hierarchy. When entities within an Activity invoke objects in other address spaces,
information about the context in which these invocations are made must flow with the
invocation.
September 2001 Additional Structuring Mechanisms for the OTS: The Activity Service Modules 2-5

2

Each activity may have an arbitrary number of transactions running within it (or none),
and the top entities within such a hierarchy may be transactions. A receiving execution
domain may be required to recreate the imported activity context such that recreated
activities are running within the right (recreated) transaction scopes. Transaction context
propagation issues are dealt with by the Object Transaction Service specification and will
not be discussed here. However, sufficient information needs to be shipped by the
exporting Activity Service to enable importing environments to recreate the sent Activity
context, such that recreated Activities and transactions are nested in the importing
environment in the same way they are in the exporting environment.

If an activity context is sent on an outward request, a context may be returned on the
response. This returned context need not be the same as was originally sent, e.g., low-
cost interposition information may be encoded within the context and piggybacked on the
response. For a remote request that completes without exception, the absence of an
Activity service context on a response should be taken to mean that the context has not
been changed by the target domain. This should be true even in the case where a
transaction context is present on both request and response.

The objects using a particular Activity Service implementation in a system form an
Activity Service domain. Within the domain, the structure and meaning of the activity
context information can be private to the implementation. When leaving the domain, this
information must be translated to a common form if it is to be understood by the target
Activity Service domain. Therefore, an Activity context (hierarchy) is represented by the
ActivityContext, which is an ordered sequence of ActivityIdentitys. The first
element in the sequence represents the current Activity/transaction, and the last
represents the root of the hierarchy.

The type field, which must be a positive, non-zero value, is used to indicate the type of
the element for which the information is being maintained. Currently supported values
are:

• 1: the element in the hierarchy is a transaction.

• 2: the element in the hierarchy is an Activity.

An element within the hierarchy is uniquely identified by an instance of
ActivityIdentity. If the type field indicates that the element is an Activity, then the
coord field will be set, and ctxId will be the Activity’s unique identifier. If the type field
indicates that the element is a transaction, then the coord field will be nil, and the ctxId
will be the tid portion of the CosTransactions::otid_t representation for the OTS
transaction at this level in the hierarchy.

Although the ActivityIdentity contains a field for the tid portion of the transaction’s
CosTransactions::otid_t, this is merely so that the position of any transaction context
can be recorded relative to the Activity context (if any) within which it was started. Each
nested transaction is represented by exactly one ActivityIdentity, which marks the sub-
transaction’s position within the hierarchy.

In order to reduce the amount of context information which is transmitted between
execution domains where nested transactions are used, the ActivityContext structure
need only contain information on an activity’s most deeply nested transaction, since this
is sufficient to be able to recreate the entire activity/transaction hierarchy.
2-6 Additional Structuring Mechanisms for the OTS: The Activity Service Modules September 2003

2

The Activity Service uses the PropertyGroupManagers to fill in the pgCtx field.

The timeout field indicates the application specific timeout associated with the activity or
transaction when it was created. (If this instance represents a subtransaction, then this
field will be -1.) If the activity or transaction has not completed within this time period,
then it will be completed with CompletionStatusFail.

Additional information may be encoded within the activity_specific_data and
invocation_specific_data fields. It is legal for these fields to contain an empty any.
An implementation must not rely on the data that was sent with an outbound context
being available on the reply context. The invocation_specific_data is meant to carry
information which is required for a specific implementation of the service. Because this
information is specific to a given implementation of the Activity Service it is illegal for
an importing domain that is different from the exporting domain to use this field. To
ensure integrity of the application (specifically in the case of loop-backs between foreign
and native domains), a domain which does not understand the
invocation_specific_data within an activity context must replace it with an empty
any. Such a domain is free, however, to replace the data with data specific to itself. The
activity_specific_data is meant to carry information which is required for an
implementation of a specific extended transaction model. If an importing domain
implements a different extended transaction model than the exporting domain, i.e., it
does not understand the activity_specific_data, then it must not use the context, and
should throw BAD_CONTEXT.

Type values for Activities supporting specific extended transaction models will be
defined in the future. Each specific type will also define the format of the
activity_specific_data that may be propagated as part of the ActivityIdentity structure
in the service context.

2.1.3.5 PropertyGroupIdentity

struct PropertyGroupIdentity
{
 string property_group_name;
 any context_data;
};

PropertyGroups form part of the Activity Service context. It is dependent upon the
implementations of each PropertyGroup how information about them flows in the
context. Therefore, it is up to the PropertyGroupManager to marshal and unmarshal
PropertyGroups appropriately. The PropertyGroupIdentity structure is used to
encapsulate this marshaled form of the PropertyGroup.

property_group_name is the name of the PropertyGroup. Implementations must
ensure that such names are unique within the required domain.

context_data represents the marshaled form of the PropertyGroup.
September 2001 Additional Structuring Mechanisms for the OTS: The Activity Service Modules 2-7

2

2.1.4 Exceptions

The CosActivity and CosActivityAdministration modules define the following
exceptions that can be raised by an operation.

NoActivity Exception

The NoActivity exception is raised by methods on the Current interface where an
Activity is required to be active on the thread but none is.

ActivityPending Exception

The ActivityPending exception is raised if an attempt is made to complete the Activity
when it is active on a thread other than the calling thread.

ActivityNotProcessed

The ActivityNotProcessed exception is raised to indicate that it was not possible to
complete the processing of signals from a completion or broadcast SignalSet.

InvalidToken Exception

The InvalidToken exception is raised by Current::resume if the specified
ActivityContext is not valid or is nil.

AttributeAlreadyExists Exception

The AttributeAlreadyExists exception is raised by
PropertyGroupAttributes::set_attribute if the specified attribute is already set.

NoSuchAttribute Exception

The NoSuchAttribute exception is raised by
PropertyGroupAttributes::get_attribute if the specified attribute does not exist.

ActionError Exception

The ActionError exception is raised by the Action during signal processing if it
encounters an error it cannot handle.

AlreadyDestroyed Exception

The AlreadyDestroyed exception is raised by an interface if there are multiple attempts
to destroy it.

ActionNotFound Exception

The ActionNotFound exception is raised by the ActivityCoordinator if an attempt is
made to remove an Action it has no information about.
2-8 Additional Structuring Mechanisms for the OTS: The Activity Service Modules September 2003

2

SignalSetUnknown Exception

The SignalSetUnknown exception is raised by the ActivityCoordinator if it is
instructed to use a specified SignalSet it does not know about.

SignalSetAlreadyRegistered Exception

The SignalSetAlreadyRegistered exception is raised by the ActivityCoordinator if
multiple attempts to register a SignalSet are made.

SignalSetActive Exception

The SignalSetActive exception is raised by the SignalSet when an attempt is made to
obtain its final status before the SignalSet has completed producing Signals.

SignalSetInactive Exception

The SignalSetInactive exception is raised by the SignalSet if an attempt is made to
use the SignalSet without having first called get_signal or set_signal.

PropertyGroupUnknown Exception

The PropertyGroupUnknown exception is raised if an attempt it made to obtain an
unknown PropertyGroup.

PropertyGroupAlreadyRegistered Exception

The PropertyGroupAlreadyRegistered exception is raised if multiple attempts to
register a PropertyGroup are made.

PropertyGroupNotRegistered Exception

The PropertyGroupNotRegistered exception is raised if an attempt is made to
unregister a PropertyGroup that has not previously been registered.

ChildContextPending Exception

The ChildContextPending exception is raised if an attempt is made to successfully
complete an Activity when it still has active child Activities.

InvalidState Exception

The InvalidState exception is raised to indicate that the completion status of the Activity
is incompatible with the attempted invocation.

InvalidParentContext Exception

The InvalidParentContext exception is raised either if an attempt is made to resume a
suspended context within a different hierarchy than that which it was originally
suspended from, or an attempt is made to call CosActivity::suspend on an Activity
that is nested within a transaction.
September 2001 Additional Structuring Mechanisms for the OTS: The Activity Service Modules 2-9

2

TimeoutOutOfRange Exception

The TimeoutOutOfRange exception is raised if an attempt it made to associated an
invalid timeout with a newly created Activity.

InvalidContext Exception

The InvalidContext exception is raised to indicate that a context could not be correctly
imported.

INVALID_ACTIVITY Exception

The INVALID_ACTIVITY system exception may be raised on the Activity or
Transaction services’ resume methods if a transaction or Activity is resumed in a context
different to that from which it was suspended. It is also raised when an attempted
invocation is made that is incompatible with the Activity’s current state.

ACTIVITY_COMPLETED Exception

The ACTIVITY_COMPLETED system exception may be raised on any method for
which Activity context is accessed. It indicates that the Activity context in which the
method call was made has been completed due to a timeout of either the Activity itself or
a transaction that encompasses the Activity, or that the Activity completed in a manner
other than that originally requested.

ACTIVITY_REQUIRED Exception

The ACTIVITY_REQUIRED system exception may be raised on any method for which
an Activity context is required. It indicates that an Activity context was necessary to
perform the invoked operation, but one was not found associated with the calling thread.

2.2 Activity Service Interfaces

2.2.1 SignalSet Interface

interface SignalSet
{
 readonly attribute string signal_set_name;

 Signal get_signal(inout boolean lastSignal);

 boolean set_response(in Outcome response, out boolean nextSignal)
 raises(SignalSetInactive);

 Outcome get_outcome () raises(SignalSetActive);

 void set_completion_status (in CompletionStatus cs);
2-10 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

 CompletionStatus get_completion_status ();

void set_activity_coordinator (in ActivityCoordinator coord)
raises(SignalSetActive);

 void destroy() raises(AlreadyDestroyed);
};

The SignalSet is used to define the individual signals that are broadcast to the Action
objects. Actions that have been registered as being interested in a specific SignalSet are
sent Signals from that SignalSet. Typically once all Actions have received a given
Signal, the SignalSet is asked for the next Signal to be sent to all of the Actions, if any.

If a SignalSet fails to produce Signals (e.g., it is physically remote from the
ActivityCoordinator and fails to respond to invocations), then the completion status of
the Activity is set to CompletionStatusFailOnly, and the ActivityCoordinator should
act accordingly.

If a SignalSet fails to produce Signals (e.g., it is physically remote from the
ActivityCoordinator and fails to respond to invocations), then the pre-defined
org.omg.CosActivity.Failure SignalSet should be used instead. All pre-defined
SignalSet are restricted to being located in the same domain as the
ActivityCoordinator using them. Any Actions registered with an interest in the
unreachable SignalSet will be sent Signals produced from the Failure SignalSet.

Once the Activity has begun to complete (the ActivityCoordinator has retrieved the
first Signal from a SignalSet), the status of the Activity is under the control of the
SignalSets, and cannot be changed directly by any other entity.

Signals are specified as members of SignalSets. As mentioned previously, it is
envisioned that the majority of Signals and SignalSets will be defined by the higher-
level extended transaction systems that use this Activity framework. Only such systems
have the necessary application and activity specific knowledge to impose structure on the
meaning of specific Signals and SignalSets. However, there are a small set of pre-
defined signal sets and their associated signals, which are provided by implementations
of the Activity Service:

• org.omg.CosActivity.ChildLifetime: childBegin

• org.omg.CosActivity.Synchronization: preCompletion, postCompletion

• org.omg.CosActivity.Failure: initialFailure, finalFailure

These pre-defined SignalSets are implicitly associated with every Activity when it is
created, and an application need not register them itself (i.e., no call to
ActivityCoordinator::add_signal_set is required).

org.omg.CosActivity.ChildLifetime

The ChildLifetime SignalSet is invoked by the parent when a sub-Activity is begun.
There are no pre-defined Outcomes introduced by this SignalSet. If an Action error
occurs during childBegin (e.g., the ActionError exception is thrown), then the child’s
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-11

2

Activity completion status will be set to CompletionStatusFailOnly; it is up to the
parent activity (or the application) to determine whether such a failure should cause the
parent activity’s completion status to be changed.

ChildLifetime signals are distributed from the environment in which the child activity is
started. If the parent of a sub-Activity is not a root Activity (i.e., it is an interposed
subordinate), then any Actions registered with the (upstream) superior
ActivityCoordinator do not receive these signals and are unaware of the child activity.

If an indication of the termination of an activity is required, then the
org.omg.CosActivity.Synchronization SignalSet should be used on the respective
activity.

The child activity is active on the thread when childBegin is issued.

org.omg.CosActivity.Synchronization

The Synchronization SignalSet has a similar role to that of Synchronization objects
within the OTS (i.e., it is invoked before and after completion of the Activity). Likewise,
the completion status of an Activity may be changed by the Actions registered with this
SignalSet, such that the Activity’s outcome when postCompletion is called may be
different to that when preCompletion was invoked. If an Action error occurs during
preCompletion (e.g., the ActionError exception is thrown), then the Activity completion
status will be set to CompletionStatusFailOnly. There is no effect on the completed
Activity if a failure occurs during postCompletion.

The preCompletion SignalSet is only sent if the Activity’s completion status is
CompletionStatusSuccess. In the event of no crash failures that prevent the
ActivityCoordinator from completing its work, postCompletion is sent regardless of
the Activity's completion status.

If there are any Actions registered with it, then the Synchronization SignalSet will be
called prior to using any application specific SignalSet. The pre-defined Outcomes
“preCompletionSuccess” and “preCompletionFailed” may be produced by an Action in
response to the preCompletion signal. If an Action fails to respond to preCompletion or a
failure occurs, or the Synchronization SignalSet receives the preCompletionFailed
Outcome from an Action and the completion status of the Activity is changed to
CompletionStatusFailOnly.

The following pre-defined Outcomes may also be produced by this SignalSet, typically
when the SignalSet is invoked in the environment of a subordinate
ActivityCoordinator:

• “preCompletionActivityPending”. This Outcome is returned if the Activity is
concurrently active on another thread when the preCompletion signal is received.

• “preCompletionChildContextPending”. This Outcome is returned if there is an
outstanding child Activity, or a transaction context encompassed within the Activity,
when the preCompletion signal is received.
2-12 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

These outcomes indicate that there is work outstanding that needs to be completed before
the preCompletion signal can be processed. These outcomes must be processed by an
ActivityCoordinator in such a way that the application which requested the completion
of the Activity receives an ActivityPending or ChildContextPending exception.

If the SignalSet decides that the next Signal (postCompletion) is required or normal
processing of preCompletion has finished, then the implementation of the Activity
Service must first invoke the application specific SignalSet (if any) with the (potentially
new) completion status obtained from get_completion_status of the Synchronization
SignalSet (i.e., postCompletion is not called immediately). When the application
SignalSet has finished producing Signals the postCompletion Signal should be sent to
the registered Actions. Errors during postCompletion have no effect on the outcome of
the Activity.

The completing activity is active on the thread when preCompletion is sent. However, it
is inactive on the thread when postCompletion is generated by the SignalSet.

org.omg.CosActivity.Failure

The Failure SignalSet is used by the ActivityCoordinator if an application
SignalSet cannot be reached during signaling. The Failure SignalSet produces two
signals - initialFailure and finalFailure.

initialFailure indicates that the application SignalSet could not be contacted but that the
problem may be transient. An Action that receives the initialFailure Signal should
respond with one of two pre-defined Outcomes “Failed” or “FailureRetry”. Any Action
that responds with Failed will not receive any further Signals. Any Action that responds
with FailureRetry is indicating that it wishes the ActivityCoordinator to continue to
retry contacting the application SignalSet. If contact is subsequently made, signaling
with the application SignalSet may continue.

An Activity service implementation may chose at which point, if any, to abandon its
attempt to contact the application SignalSet. At this point the Failure SignalSet is
asked to produce the finalFailure Signal which is distributed to any remaining Actions
for them to perform whatever processing is appropriate to them in this situation. The
Failure SignalSet ignores any Outcome returned in response to this Signal. The
Activity service changes the Activity status to StatusUnknown prior to distributing the
initialFailure signal. The Activity service changes the Activity status to StatusError
prior to distributing the initialFailure signal. If the application SignalSet does not
complete its signaling, the ActivityCoordinator raises the
org.omg.CosActivity.ActvityNotProcessed exception on the complete_activity or
process_signal_set method that triggered the signaling and this exception is returned
to the application through the Current complete, complete_with_status or
broadcast methods.

Both initialFailure and finalFailure Signals have the name of the failed SignalSet as
their signal_set_name field, inorder that recipients can determine which SignalSet
the failure corresponds to.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-13

2

set_completion_status

This method is used to provide the Activity’s completion status to the SignalSet during
its generation of Signals, such that it can use the status to determine whether or not the
Activity is completing when it produces Signals.

get_completion_status

This returns the Activity’s completion status as the SignalSet has recorded it (and as it
may have been modified during Signal processing). If the SignalSet has not generated
any Signals (i.e., is inactive), then SignalSetInactive is thrown.

signal_set_name

Returns the name of this SignalSet. These names must be unique, and adhere to the
following naming convention: <domain>.<company>.<module>.<…>; so, for example,
“com.ibm.fred.otssignals”.

get_ signal

Returns the Signal to be sent to the Action objects registered for this signal set. The
Signal returned may depend upon the responses received from Actions that have been
sent previous signals. If nil is returned, or the boolean output parameter lastSignal is true,
then this indicates that no other signals are to be sent and the SignalSet will not be
asked for further Signals. It is therefore valid for a SignalSet to indicate no further
Signals are available either through lastSignal or returning nil. Whenever either of these
conditions is encountered, the coordinator must not call the SignalSet again.

set_response

This method is called to notify the SignalSet of the response (the Outcome) from the
Action object. It is valid for the Outcome parameter to be nil. The SignalSet returns a
boolean to indicate whether or not the Action that returned the response should be
informed of any further signals from this signal set; if the value is true then the Action
continues to receive Signals for this SignalSet, otherwise the Action is disassociated
from the SignalSet, i.e., this is equivalent to it being removed. If nextSignal is true
then no further work with the current Signal should be performed and the registered
Actions should be sent the next Signal belonging to this SignalSet. For example, if an
Action returns a failure condition on some Signal (say “prepare”), which indicates that it
is pointless to send further signals of this type to other Actions, nextSignal would be
set to true. The next signal obtained from get_signal may then be different from that
which would have been obtained if no failure condition had been observed. If
get_signal has not yet been called, then SignalSetInactive will be thrown.

get_outcome

Returns the final outcome of the SignalSet; it is valid for this value to be nil. If the
SignalSet has start producing Signals but not finished producing then, then the
SignalSetActive exception will be thrown.
2-14 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

set_activity_coordinator

This method is used by the ActivityCoordinator to pass a reference to itself to the
SignalSet. The SignalSet can then use this to obtain references to all registered
Actions in order to satisfy persistence requirements, for example, and optimisations such
as one-phase commit. For example, consider the case of a two-phase commit SignalSet:
once prepare Signals have been sent and acknowledged successfully by Actions, the
service needs to make those Action references persistent (c.f. the transaction service
intentions list). If the SignalSet has already been asked for its first Signal, then the
SignalSetActive exception will be thrown, and the coordinator reference will be
ignored.

destroy

This method is invoked when the SignalSet is no longer required by the Activity
service. If the SignalSet has already been destroyed, or is being destroyed, then the
AlreadyDestroyed exception will be thrown. Any exception thrown will not affect the
outcome of the activity.

2.2.2 SubordinateSignalSet Interface

interface SubordinateSignalSet : SignalSet
{

void set_signal (in Signal sig);
Outcome get_current_outcome () raises(SignalSetInactive);

};

A domain that contains an interposed subordinate ActivityCoordinator can support
Actions registering at that subordinate ActivityCoordinator with an interest in, say,
SignalSet “X”. The subordinate ActivityCoordinator must use a specialised
implementation of X that supports a SubordinateSignalSet interface.

set_signal

Sets the Signal to be sent to the Action objects registered for this SubordinateSignalSet.
This method is called by a subordinate ActivityCoordinator when it receives a Signal
from its superior. The subordinate ActivityCoordinator distributes this Signal to each
appropriate Action and passes each Action Outcome back to the SubodinateSignalSet via
the set_response method. The SubordinateSignalSet produces a combined Outcome for
the set Signal and this is returned by the subordinate ActivityCoordinator to its superior.
Any system exceptions raised by the SubordinateSignalSet should be converted to an
ActionError by the subordinate ActivityCoordinator.

get_current_outcome

Returns an intermediate outcome of the SubordinateSignalSet. This may be called after
the processing of each Signal and is used by a subordinate ActivityCoordinator to obtain
an Outcome to return to its superior in response to a received Signal. If the SignalSet has
not been initialized, for example by a call to set_signal, then the SignalSetInactive
exception will be thrown.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-15

2

2.2.3 Action Interface

interface Action
{
 Outcome process_signal(in Signal sig) raises(ActionError);

 void destroy() raises(AlreadyDestroyed);
};

Instances of the Action interface may be registered with running Activities, such that
when the Activities require Signal processing, the registered Actions will be invoked.
When an Action is invoked, it is passed a Signal object that can be used to do application
specific work.

An Action may receive many different Signals from different SignalSets.

process_signal

This method is invoked by the Activity service during signal processing. The Action
returns an Outcome to indicate the outcome of the processing operation.

destroy

This method is invoked when the Action is no longer required by the Activity service,
e.g., because the Activity it is registered with has completed. This method is only called
on Actions that did not register with the org.omg.CosActivity.Synchronization SignalSet.
An Action may determine that it is no longer required by the activity is has been
registered with before destroy is called. It is therefore legal for an Action to remove itself
before this method has been invoked by the activity. As a result, the service
implementation will ignore OBJECT_NOT_EXIST. It is implementation dependant as to
the result of receiving other system exceptions, but they can have no affect on the
completed activity.

2.2.4 ActivityToken Interface

interface ActivityToken
{
 ActivityContext get_context ();
 void destroy() raises(AlreadyDestroyed);
};

In order to allow for efficient implementations of inter- and intra- process Activity
coordination and control, the Activity Service provides two different representations for
the ActivityContext. When an Activity is suspended from an active thread, an
ActivityToken is returned which is a handle to the activity context and is only valid
within the obtaining execution domain. This can later be used to resume the Activity on
the same, or other thread. The ActivityToken is implicitly associated with a single
Activity, and thus the context it represents can be obtained from it. This is preferable to
having to deal with the entire ActivityContext when suspending and resuming in a
local environment.
2-16 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

get_context

Returns the ActivityContext represented by this ActivityToken. If the token was
obtained by a call to CosActivity::suspend_all, then the entire hierarchy context will
be returned, otherwise only the current context.

destroy

This method is invoked when the ActivityToken is no longer required by the Activity
service. If the ActivityToken has already been destroyed, or is being destroyed, the
AlreadyDestroyed exception will be thrown. Any exception thrown will have no affect
on the activity’s outcome.

2.2.5 ActivityCoordinator Interface

interface ActivityCoordinator
{
 Outcome complete_activity(in string signal_set_name,

in CompletionStatus cs)
 raises(ActivityPending, ChildContextPending,

SignalSetUnknown, ActivityNotProcessed);
 Outcome process_signal_set(in string signal_set_name,

in CompletionStatus cs)
 raises(SignalSetUnknown, ActivityNotProcessed);

 void add_signal_set (in SignalSet signal_set)
 raises(SignalSetAlreadyRegistered);
 void remove_signal_set (in string signal_set_name)
 raises(SignalSetUnknown);

 void add_action(in Action act, in string signal_set_name,
 in long priority) raises(SignalSetUnknown);
 void remove_action(in Action act, in string signal_set_name)

raises(ActionNotFound);

 void add_actions(in ActionSeq acts, in string signal_set_name,
 in long priority) raises(SignalSetUnknown);
 ActionSeq remove_actions(in ActionSeq acts, in string signal_set_name);

 void add_global_action(in Action act, in long priority);
 void remove_global_action(in Action act) raises(ActionNotFound);

 long get_number_registered_actions(in string signal_set_name)
 raises(SignalSetUnknown);
 ActionSeq get_actions(in string signal_set_name)

raises(SignalSetUnknown);

 ActivityCoordinator get_parent_coordinator ();

 GlobalId get_global_id ();
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-17

2

 Status get_status ();
 Status get_parent_status ();
 string get_activity_name ();

 boolean is_same_activity (in ActivityCoordinator ac);

 unsigned long hash_activity ();

 void destroy() raises(AlreadyDestroyed);
};

The ActivityCoordinator is responsible for coordinating the interactions between
Activities through Signals, SignalSets, and Actions (i.e., in the model presented earlier it
“ties” up the Actions of Activities).

It is not strictly necessary for an implementation of the Activity Service to create an
ActivityCoordinator prior to distributing a context between execution environments in
which it was begun. Implementations of the Activity Service may restrict the use of the
ActivityCoordinator in certain environments, such as a light-weight client.

Each Activity may be managed by at most one ActivityCoordinator.

Implementations of the Activity Service may use interposition to reduce the number of
network messages required to complete an activity.

Once the ActivityCoordinator has used all of the Signals generated by the SignalSet,
it may invoke the destroy operation on all registered Actions, including those that may
have been registered with other SignalSets and hence not received Signals during
Activity termination.

complete_activity

This instructs the ActivityCoordinator to complete the Activity using the specified
SignalSet when sending signals to registered Actions, with the provided completion
status. If the SignalSet is unknown, the SignalSetUnknown exception will be raised;
it is valid for the specified SignalSet to be null.

If an Action throws the ActionError or System exception, then it is dependent upon the
SignalSet implementation as to whether the ActivityCoordinator stops sending
signals to other registered Actions; this may depend upon the type of Signal that was
being processed at the time the exception occurred.

If the Action throws ActionError or any system exception, then this may be mapped into
either the pre-defined Outcomes “ActionError” or “ActionSystemException” respectively
and passed to the SignalSet; for system exceptions, the exception is also passed in the
application_specific_data portion of the Outcome.

If the ActivityCoordinator is currently processing Signals when complete_activity
is invoked, or has already completed, the INVALID_ACTIVITY exception is thrown.
Successful completion of this method causes the Outcome, if any, of the SignalSet
processing to be returned. It is valid for this return value to be nil. It is invalid to attempt
to explicitly use the Synchronization or ChildLifetime SignalSets, and
2-18 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

BAD_OPERATION will be thrown under these circumstances. The pre-defined
SignalSets Synchronization and ChildLifetime will be automatically invoked during
Activity completion if Actions have registered in them.

If there are any encompassed active or suspended Activities or transactions, and the
completion status is CompletionStatusSuccess, then ChildContextPending is
raised. If the completion status is CompletionStatusFail or
CompletionStatusFailOnly, any encompassed active or suspended Activities will
have their completion status set to CompletionStatusFailOnly and transactions will
be marked as rollback_only.

If the thread from which the complete_activity call is made is not the only thread on
which the Activity is active, then the ActivityPending exception is raised. It is
recommended that this operation not be called directly.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced.

process_signal_set

This instructs the ActivityCoordinator to use the specified SignalSet when sending
signals to registered Actions, with the provided completion status; this method cannot be
used to complete the Activity, and complete_activity should be used instead. If the
SignalSet is unknown the SignalSetUnknown exception will be raised; it is valid for
the specified SignalSet to be null.

If an Action throws the ActionError or a System Exception, then it is dependent upon
the SignalSet implementation as to whether the ActivityCoordinator stops sending
signals to other registered Actions; this may depend upon the type of Signal that was
being processed at the time the exception occurred.

If the Action throws ActionError or any system exception, then this may be mapped into
either the pre-defined Outcomes “ActionError” or “ActionSystemException” respectively
and passed to the SignalSet; for system exceptions, the exception is also passed in the
application_specific_data portion of the Outcome.

If the ActivityCoordinator is currently processing Signals when
process_signal_set is invoked, or has already completed, the INVALID_ACTIVITY
exception is thrown. Successful completion of this method causes the Outcome, if any, of
the SignalSet processing to be returned. It is valid for this return value to be nil. It is
invalid to attempt to explicitly use the Synchronization or ChildLifetime SignalSets,
and BAD_OPERATION will be thrown under these circumstances. It is recommended
that this operation not be called directly.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-19

2

add_signal_set

This method registers the specified SignalSet with the ActivityCoordinator. If the
SignalSet has already been registered then the SignalSetAlreadyRegistered
exception will be raised. If the ActivityCoordinator is in use (i.e., is processing
Signals or has completed), then the INVALID_ACTIVITY exception is thrown.

remove_signal_set

This method removes the specified SignalSet from the ActivityCoordinator. If the
Activity has begun completion, has completed, or is in the process of using the specified
SignalSet, then the INVALID_ACTIVITY exception is thrown. If the SignalSet is not
known, then SignalSetUnknown will be raised. It is invalid to attempt to remove the
pre-defined SignalSets org.omg.CosActivity.Synchronization and
org.omg.CosActivity.ChildLifetime, and BAD_OPERATION will be thrown.

add_action

This method registers the specified Action with the ActivityCoordinator and
SignalSet such that when a Signal which is a member of the SignalSet is sent, the
Action will be invoked with that Signal. If multiple Actions are registered, then priority
may be used to place an order on how they will be invoked when signals are sent: higher
priority Actions will occur first in the Action list, and hence be invoked before other,
lower priority, Actions. The priority value must be a positive value; a value of zero means
that the Activity Service implementation is free to place the Action at any point in the
Action list. If the SignalSet is not known about, then the SignalSetUnknown
exception is thrown. If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown. If the specified Action is registered multiple
times for the same SignalSet then it will be invoked multiple times with the Signals from
that SignalSet.

add_actions

This method registers a number of Actions with the ActivityCoordinator; such Actions
are assumed to be already prioritized within the sequence. If multiple Actions are
registered, then priority may be used to place an order on how they will be invoked:
higher priority numbers will be invoked before lower priority numbers. The priority value
must be a positive value; a value of zero means that the Activity Service implementation
is free to place the Action at any point in the Action list. If the SignalSet is not known
about, then the SignalSetUnknown exception is thrown. If the Activity has begun
completion, or has completed, then the INVALID_ACTIVITY exception is thrown. If the
specified Action is registered multiple times for the same SignalSet then it will be
invoked multiple times with the Signals from that SignalSet.

add_global_action

This method registers the specified Action with the ActivityCoordinator such that
when any Signal is sent, the Action will be invoked with that Signal (i.e., the Action is
effectively registering interest in all possible SignalSets). If multiple Actions are
registered, then priority may be used to place an order on how they will be invoked:
higher priority numbers will be invoked before lower priority numbers. The priority value
2-20 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

must be a positive value; a value of zero means that the Activity Service implementation
is free to place the Action at any point in the Action list. If the Activity has begun
completion, or has completed, then the INVALID_ACTIVITY exception is thrown.

remove_action

Removes the interest relationship between the specified Action and the named SignalSet.
No further Signals from the named SignalSet will be sent to the specified Action. If
signal_set_name is specified as an empty string, then the Action will be sent no
further Signals from any SignalSet. If the Action has not previously been registered with
the coordinator, then the ActionNotFound exception will be thrown. If the Activity has
begun completion, or has completed, then the INVALID_ACTIVITY exception is thrown.

remove_actions

Removes the interest relationship between the specified Actions and the named
SignalSet. No further Signals from the named SignalSet will be sent to the specified
Actions. If signal_set_name is specified as an empty string, then the Actions will be sent
no further Signals from any SignalSet. If any of the Actions have not previously been
registered with the coordinator, then it will return references to them after removing all
other Actions in the sequence. Otherwise nil will be returned. If the Activity has begun
completion, or has completed, then the INVALID_ACTIVITY exception is thrown.

remove_global_action

This method removes the specified Action from the ActivityCoordinator. If the Action
has not previously been registered with the coordinator, then it will throw the
ActionNotFound exception. If the Activity has begun completion, or has completed,
then the INVALID_ACTIVITY exception is thrown.

get_number_registered_actions

Returns the number of Actions that have been registered with the specified SignalSet.

get_actions

Returns all the Actions that have been registered with the specified SignalSet.

get_parent_coordinator

Returns a reference to the ActivityCoordinator’s parent, or null if this coordinator has
no parent (i.e., is at the root of the Activity hierarchy).

get_global_id

Returns the GlobalId for the Activity.

get_status

Returns the current status of the associated Activity.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-21

2

get_parent_status

Either returns the status of the target objects’ parent Activity, or the target object’s status
if it is top-level (i.e., has no parent).

get_activity_name

This operation returns a printable string describing the activity. This value should only be
used for debugging or tracing purposes.

hash_activity

Returns a hash code for the activity associated with the target object. Each
ActivityCoordinator has a single hash code. Hash codes for Activities should be
uniformly distributed.

is_same_activity

Returns true if, and only if, the target object and the parameter object both refer to the
same activity.

destroy

This method is invoked when the ActivityCoordinator is no longer required by the
Activity service. If the ActivityCoordinator has already been destroyed, or is being
destroyed, then the AlreadyDestroyed exception will be thrown. Any exception thrown
by destroy will not affect the outcome of the activity.

2.2.6 PropertyGroup

interface PropertyGroup
{
 readonly attribute property_group_name;

 void completed();
 void suspended();
 void resumed();

 void destroy() raises(AlreadyDestroyed);
};

The PropertyGroup interface has the same consideration as the general Activity
Service interfaces, in that it attempts to be a framework from which concrete
implementations can be derived. Typically a PropertyGroup implementation will be a
mechanism for an application to distribute context information that can affect the
execution of that application in the distributed environment. The distributed environment
throughout which the application executes needs to have an implementation of the
required PropertyGroup in order for the application properties to be accessed. This is
a requirement that must be resolved at application deployment time, and is outside the
scope of this specification.
2-22 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

If the Activity Service has several PropertyGroupManagers registered with it, then a
PropertyGroup will be created for each one when an Activity is begun. The
PropertyGroups need to be informed when the Activity completes so they can perform
any necessary clean-up before the Activity Service deletes them.

They may, for example, pass objects by reference rather than by value and so may need
to clean up those objects. If an Activity is suspended while a client has a reference to one
or more of its PropertyGroups, then these PropertyGroups should be informed that
they no longer represent the currently active Activity. The behavior of the
PropertyGroup implementation under these circumstances has to be defined by the
PropertyGroup implementation.

The implementations of PropertyGroups may restrict the ability for the properties to
be transmitted to or used in other execution environments; at a minimum, it can be used
within the creating thread.

A PropertyGroup represents properties as a tuple-space of attribute-value pairs.

property_group_name

This is the name of the PropertyGroup.

completed

This method is called by the Activity as part of its completion process to give the
PropertyGroup the opportunity to perform any necessary clean-up work. The Activity
with which this PropertyGroup is associated is not active on the thread when this call
is made. Any parent Activity will then become active.

suspended

This method is called to inform the PropertyGroup that the Activity it represents has
been suspended. The Activity with which this PropertyGroup is associated is still
active on the thread when this call is made, but will be removed immediately after all
suspended methods of registered PropertyGroups have been called. Any parent
Activity will then become active.

resumed

This method is called to inform the PropertyGroup that the Activity it represents has
been resumed. The Activity with which this PropertyGroup is associated is already
resumed on the thread when this call is made.

destroy

This method is invoked when the PropertyGroup is no longer required by the Activity
service. If the PropertyGroup has already been destroyed, or is being destroyed, then
the AlreadyDestroyed exception will be thrown. Exceptions thrown by destroy have no
affect on the outcome of an activity.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-23

2

2.2.7 PropertyGroupAttributes

interface PropertyGroupAttributes
{
 string get_attribute (in string name) raises(NoSuchAttribute);
 void set_attribute (in string name, in string value)
 raises(AttibuteAlreadyExists);
 void replace_attribute (in string name, in string value);
};

An instance of the PropertyGroupAttributes is passed as a parameter to the
register_property_group method of CosActivityAdministration::Current to
set/query the behavior of the registered PropertyGroup for the duration of its
registration.

Pre-defined attribute names and their associated values include:

• cacheable: on input, if set to true, then this informs the Activity Service of the
intention of the PropertyGroup implementation to cache objects in downstream
servers.

• max_send_size and max_receive_size: on output this defines the maximum
size of the context data the Activity Service will send or receive on behalf of the
PropertyGroup. The PropertyGroupManager is not required to use this
information.

• marshal_response_update: indicates whether or not the PropertyGroupManager
should be called when an outbound response is marshalled. A value of true
indicates that the context for the managed PropertyGroup should be updated on a
response. A value of false indicates that the context for the managed PropertyGroup
is not updated on a response so the PropertyGroupManager is not called. The
default value is false. It may be preferable from either a security or a performance
point of view not to transmit server context back to a client with a response.

• unmarshal_response_update: indicates whether or not the
PropertyGroupManager should be called when an inbound response is
unmarshalled. A value of true indicates that the context for the managed
PropertyGroup should be updated by the response. A value of false indicates that
the context for the managed PropertyGroup is not updated by the response so the
PropertyGroupManager is not called. The default value is false. It may be preferable
from either a security or a performance point of view not to allow the local context
to be updated by changed made in a downstream node.

Note, an implementation of PropertyGroupAttributes may use an implementation of
the OMG’s Property Service specification.

get_attribute

If the specified attribute exists, then its value is returned. This value may be nil. If the
attribute does not exist then the NoSuchAttribute exception is thrown.
2-24 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

set_attribute

If the specified attribute does not exist, then it is created with the specified value, which
may be nil. Otherwise the AttributeAlreadyExists exception is thrown.

replace_attribute

If the specified attribute does not exist, then it is created with the specified value, which
may be nil. If the attribute already exists, its current value is set to that provided.

2.2.8 PropertyGroupManager

interface PropertyGroupManager
{
 PropertyGroup create(in CosActivity::PropertyGroup parent,
 in CosActivity::GlobalId gid);

 PropertyGroupIdentity marshal_request(in CosActivity::PropertyGroup pg);
 PropertyGroupIdentity marshal_response(in CosActivity::PropertyGroup pg);

 PropertyGroup unmarshal_request(in CosActivity::PropertyGroupIdentity mpg,
 in CosActivity::PropertyGroup pg,
 in CosActivity::PropertyGroup parent,
 in CosActivity::GlobalId gid);
 void unmarshal_response(in CosActivity::PropertyGroupIdentity mpg,
 in CosActivity::PropertyGroup pg);

 void destroy() raises(CosActivity::AlreadyDestroyed);
};

A PropertyGroup implementation registers a named PropertyGroupManager with
the Activity Service. The registered manager understands how to create a specialized
instance of the PropertyGroup and how to marshal/unmarshal its context, which is
propagated as part of the Activity service context. A PropertyGroupManager must be
registered with the Activity service in each domain for each type of PropertyGroup
that is accessed via the get_property_group method of the Current interface.

create

Returns a reference to a new instance of the PropertyGroup specialization. This
method is called by the Activity Service when a new Activity is started. A parent of nil
indicates that this is the top most Activity. The gid is that of the ActivityGroup that is
being begun. It is implementation dependent as to whether or not the Activity active on
the thread when the create() method is called.

marshal_request

Returns a serialized form of the PropertyGroup appropriate for propagating within the
Activity service context on a request. It is invalid for the parameter to be nil.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-25

2

marshal_response

Returns a serialized form of the PropertyGroup appropriate for propagating within the
Activity service context on a response. It is invalid for the parameter to be nil.

unmarshal_request

Returns a reference to a PropertyGroup specialization created from the specified
serialized form. It is invalid for the parameter to be nil. If the PropertyGroup is not
known by the importing domain then it is ignored. pg is a reference to the
PropertyGroup context already held by the Activity if it has visited the server
previously (in which case the PropertyGroup context is being updated rather than
created). parent is a reference to the PropertyGroup parent (if any) so that the
PropertyGroupManager can ensure correct chaining of nested contexts. The Activity
is identified by the gid parameter.

unmarshal_response

This method updates the specified PropertyGroup with the specified serialized form
received on a response. It is invalid for this parameter to be nil.

destroy

This method is invoked when the PropertyGroupManager is no longer required by
the Activity service. If the PropertyGroupManager has already been destroyed, or is
being destroyed, then the CosActivity::AlreadyDestroyed exception will be thrown.
Exceptions thrown by destroy have no affect on the outcome of an activity.

2.2.9 CosActivity::Current

interface Current : CORBA::Current
{
 void begin(in long timeout) raises(InvalidState, TimeoutOutOfRange);
 Outcome complete() raises (NoActivity,

ActivityPending, ChildContextPending, ActivityNotProcessed);
 Outcome complete_with_status(in CompletionStatus cs)
 raises (NoActivity, ActivityPending, ChildContextPending,
 InvalidState, ActivityNotProcessed);

 void set_completion_status (in CompletionStatus cs)
 raises (NoActivity, InvalidState);
 CompletionStatus get_completion_status () raises(NoActivity);

 void set_completion_signal_set (in string signal_set_name)
 raises (NoActivity, SignalSetUnknown);
 string get_completion_signal_set () raises(NoActivity);

 ActivityToken suspend() raises(InvalidParentContext);
 void resume(in ActivityToken at)
 raises (InvalidToken, InvalidParentContext);
2-26 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

 ActivityToken suspend_all();
 void resume_all(in ActivityToken at)
 raises (InvalidToken, InvalidParentContext);

 GlobalId get_global_id ();

 Status get_status();
 string get_activity_name ();

 void set_timeout (in long seconds) raises(TimeoutOutOfRange);
 long get_timeout ();

 ActivityContext get_context();
 void recreate_context(in ActivityContext ctx) raises(InvalidContext);

 ActivityCoordinator get_coordinator();
 ActivityCoordinator get_parent_coordinator();

 ActivityIdentity get_identity ();
 ActivityToken get_token ();

 PropertyGroup get_property_group(in string name)
 raises(PropertyGroupUnknown, NoActivity);
};

The Activity Current interface provides operations which allow the demarcation of
Activity scope. In addition, it provides interfaces for coordinating the Actions of the
current Activity. Once an Activity begins to complete, references to it, or information
about it, is no longer available through Current. The Activity Service specific Current
object may be obtained via resolve_initial_references with the name
“ActivityCurrent.” As can be seen from the IDL, there are 3 different Current
implementations: CosActivity’s Current is the base Current;
CosActivityAdministration’s Current inherits from this;
CosActivityCoordination’s Current inherits from CosActivityAdministration’s
Current. The call to resolve_initial_references returns a reference to
CosActivity::Current, and the application must narrow appropriately to the other
Current implementations.

Note: some implementations of the service may wish to restrict which implementations
of Current are available. For example, in a pure client environment, only the
CosActivity::Current implementation makes sense. Therefore, an implementation
need not make all such objects available in all environments and
resolve_initial_references will behave accordingly.

begin

Creates a new Activity and associates it with the current thread. An instance of a new
PropertyGroup is also created. If the current thread is already associated with an
Activity, the newly created Activity will be nested within it. Otherwise, the Activity
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-27

2

exists at the top level. If the parent Activity has been marked as
CompletionStatusFailOnly, then the InvalidState exception will be thrown. If it is
completing, or has completed, the INVALID_ACTIVITY exception will be thrown.

The timeout parameter is used to control the lifetime of the Activity. If the Activity has
not completed by the time timeout seconds elapses then it is subject to being completed
with the CompletionStatusFail status. The timeout can have the following possible
values:

• any positive value: the Activity must complete within this number of seconds.

• -1: the Activity will never be completed automatically by the Activity Service
implementation (i.e., it will never be considered to have timed out).

• 0: the last value specified using the set_timeout method is used. If no prior call to
set_timeout has occurred for this thread, or the value returned is 0, then it is
implementation dependent as to the timeout value associated with this Activity.

Any other value results in the TimeoutOutOfRange exception being thrown.

complete

Causes the Activity associated with the current thread to complete with its current
CompletionStatus, or CompletionStatusFail if none has been specified using
set_completion_status. If a registered SignalSet has been provided then it will be
used for any registered Actions, and they will be invoked appropriately by the Activity’s
coordinator. If the Activity is nested within a parent, then that parent Activity becomes
associated with the thread. If there are any encompassed active or suspended Activities or
transactions, and the completion status is CompletionStatusSuccess, then
ChildContextPending is raised; the application must then either complete the
outstanding nested contexts or force the Activity to end by setting the
CompletionStatus to either CompletionStatusFail, CompletionStatusFailOnly
and then calling complete again.

If the completion status is CompletionStatusFail, or CompletionStatusFailOnly,
any encompassed active or suspended Activities will they have their completion status set
to CompletionStatusFailOnly and transactions will be marked rollback_only.

If there is no Activity associated with the current thread, the NoActivity exception is
raised and no other action is taken. Only the Activity originator may call complete().
The originator is defined as the execution environment in which the Activity is rooted.

If a call to complete the Activity is made from an execution environment into which the
Activity was imported, the NO_PERMISSION exception is raised.

If the thread from which the complete() call is made is not the only thread on which the
Activity is active, then the ActivityPending exception is raised. The application response
should be to try again later when any asynchronous work on other threads has been
suspended. This method returns an Outcome (or null) which can be used to interpret the
final outcome of the Activity.
2-28 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

If no completion SignalSet has been set by the application, then the Outcome returned
will be null. If the Activity cannot complete in the status required, then the
ACTIVITY_COMPLETED exception will be thrown.

If the Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced, and the Activity’s final completion status
is StatusError.

complete_with_status

Causes the Activity associated with the current thread to complete and use the
CompletionStatus provided if this does not conflict with any that has previously been
set using set_completion_status; this is logically equivalent to calling
set_completion_status followed by the complete() method.

If a registered SignalSet has been provided, then it will be used for any registered
Actions, and they will be invoked appropriately by the Activity’s coordinator.

If the Activity is nested within a parent, then that parent Activity becomes associated
with the thread.

If there are any encompassed active or suspended Activities or transactions, and the
completion status is CompletionStatusSuccess, then ChildContextPending is
raised; the application must then either complete the outstanding nested contexts or force
the Activity to end by setting the CompletionStatus to either
CompletionStatusFail, CompletionStatusFailOnly.

If the completion status is CompletionStatusFail or CompletionStatusFailOnly,
any encompassed active or suspended Activities will they have their completion status set
to CompletionStatusFailOnly and transactions will be marked rollback_only.

If there is no Activity associated with the current thread, the NoActivity exception is
raised and no other action is taken. Only the Activity originator may call complete().
The originator is defined as the execution environment in which the Activity is rooted.

If a call to complete the Activity is made from an execution environment into which the
Activity was imported, the NO_PERMISSION exception is raised.

If the thread from which the complete_with_status() call is made is not the only
thread on which the Activity is active, then the ActivityPending exception is raised. The
application response should be to try again later when any asynchronous work on other
threads has been suspended. This method returns an Outcome (or null) which can be
used to interpret the final outcome of the Activity.

If no completion SignalSet has been set by the application, then the Outcome returned
will be null.

If the Activity cannot complete in the status required, then the
ACTIVITY_COMPLETED exception will be thrown.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-29

2

If the Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced, and the Activity’s final completion status
is StatusError.

set_completion_status

This method can be used to set the CompletionStatus that will be used when the
Activity completes. This method may be called many times during the lifetime of an
Activity in order to reflect changes in its completion status as it executes.

If this method is not called during the Activity’s lifetime, the default status is
CompletionStatusFail. When the Activity completes, the CompletionStatus is
given to the registered SignalSet (if any) so that it can determine the sequence of
Signals to produce.

If the CompletionStatus is CompletionStatusFailOnly and an attempt is made to
change the status to anything other than CompletionStatusFailOnly, the InvalidState
exception will be thrown. If the Activity has begun completion, or has completed, then
the INVALID_ACTIVITY exception is thrown.

get_completion_status

Returns the completion status currently associated with the target Activity. This is the last
valid value to set_completion_status, or CompletionStatusFail if none has been
provided.

set_completion_signal_set

This method can be used to set the SignalSet that will be used when the Activity
completes. If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown.

get_completion_signal_set

Returns the SignalSet currently associated with the target Activity that will be used
when it completes. This will be the last valid SignalSet given to
set_completion_signal_set, or an empty string if one has not been provided.

suspend

Suspends the Activity associated with the current thread (and any related transactions)
and any nested child scopes. An ActivityToken representing the Activity that was
associated with the current thread prior to this call is returned. The context the handle
represents has knowledge of the nested scopes that were active (and also suspended)
when the Activity was suspended.

If the current thread is not associated with an Activity or a transaction, then nil is
returned from this operation.
2-30 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

If the current thread is only associated with a transaction, then the ActivityContext will
reflect this.

If the Activity is nested within a parent Activity, then the parent Activity is associated
with the current thread, otherwise the current thread has no Activity associated with it.

If the Activity contains transactions and is also nested within another transaction, then
the InvalidParentContext exception will be thrown, since it is not possible to suspend
only parts of an OTS transaction hierarchy (i.e., the entire transaction hierarchy will be
suspended from the invoking thread’s context with the result that previously transactional
Activities will no longer have transactions within them). The returned ActivityToken
may be used to resume the suspended Activity on any thread but may not be used to
resume_all.

resume

Resumes the Activity and any nested scopes represented by the ActivityToken. The
current thread becomes associated with the Activity (or transaction) represented by the
token. If the ActivityToken does not represent a valid Activity (or is nil), then the
InvalidToken exception is raised and no new association is made on the thread. The
context into which an Activity is resumed must be the same as the context from which it
was suspended, otherwise an InvalidParentContext exception is raised.

suspend_all

Suspends all the scopes (transaction and Activity) associated with the current thread. An
ActivityToken, representing the entire thread scope structure that was associated with
the current thread prior to this call is returned. On completion of this method no Activity
or transaction is associated with the thread. The ActivityToken returned may be
subsequently used on a resume_all operation but it may not be used to simply
resume.

resume_all

Resumes the scopes represented by the ActivityToken that must have been previously
obtained from a suspend_all operation. If the ActivityToken does not represent a
valid set of scopes (or is nil), then the InvalidToken exception is raised and no new
association is made on the thread. If there is currently an Activity or transaction
associated with the invoking thread, then the InvalidParentContext exception is raised.

get_token

Returns the ActivityToken for the Activity currently associated with the calling thread,
or null if there is no associated Activity. This operation returns the token that would be
returned if suspend had been called (i.e., this token can only be used in a resume
operation).

get_global_id

Returns the GlobalId for the Activity, or nil if there is no Activity associated with the
invoking thread.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-31

2

get_status

Returns the current status of the Activity. If there is no Activity associated with the
calling thread, the StatusNoActivity value is returned. The effect of this is equivalent
to performing the get_status operation on the corresponding ActivityCoordinator
object.

get_activity_name

If there is no activity associated with the calling thread, an empty string is returned.
Otherwise, this operation returns a printable string describing the activity. The effect of
this request is equivalent to performing the get_activity_name operation on the
corresponding ActivityCoordinator object.

set_timeout

This operation modifies a state variable associated with the target object that affects the
time-out period associated with the activities created by subsequent invocations of the
begin operation which have 0 specified as their timeout value. If the parameter has a non-
zero value n, then activities created by subsequent invocations of begin will be subject to
being completed if they do not complete before n seconds after their creation. The
timeout can have the following possible values:

• any positive value: the Activity must complete within this number of seconds.

• -1: the Activity will never be completed automatically by the Activity Service
implementation (i.e., it will never be considered to have timed out).

• 0: it is implementation dependent as to the meaning of passing 0 as the value.

Any other value results in the TimeoutOutOfRange exception being thrown.

get_timeout

This operation returns the state variable associated with the target object that affects the
time-out period associated with activities created by calls to begin. This need not be the
time-out period associated with the current Activity, however.

get_context

Returns the ActivityContext of the Activity associated with the current thread. Returns
null if no Activity is associated with the current thread. The context represents the entire
Activity hierarchy (i.e., this operation is equivalent to calling get_context on an
ActivityToken returned by suspend_all).

recreate_context

This method can be used by a domain to import from another domain a previously
received Activity context. An implementation of the Activity Service which supports
interposition uses recreate_context to create a new representation of the activity
context being imported, subordinate to the representation in ctx. If the context cannot be
recreated in its entirety (e.g., necessary transaction context information was not
propagated as well), or some other failure occurs, then InvalidContext will be thrown.
2-32 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

get_coordinator

Returns a reference to the current Activity’s ActivityCoordinator. Returns nil of no
Activity is associated with the current thread. If an ActivityCoordinator is not supported
in this domain then NO_IMPLEMENT will be thrown by the service implementation.

get_parent_coordinator

Returns a reference to the current Activity’s parent ActivityCoordinator. Returns nil if
the current Activity is top-level or no Activity is associated with the current thread.

get_identity

Returns the ActivityIdentity for the current Activity, or nil if no Activity is associated
with the current thread.

get_property_group

Returns the named PropertyGroup for this Activity. If the PropertyGroup is
unknown, then the PropertyGroupUnknown exception will be thrown. If there is no
Activity associated with the calling thread, then the NoActivity exception will be thrown.

2.2.10 CosActivityAdministration::Current

interface Current : CosActivity::Current
{
 void register_property_group(in string property_group_name,
 in PropertyGroupManager manager,
 in PropertyGroupAttributes attributes)
 raises(PropertyGroupAlreadyRegistered);
 void unregister_property_group(in string property_group_name)
 raises(PropertyGroupNotRegistered);
};

register_property_group

Registers the specified PropertyGoupManager with the specified name. The Activity
Service uses the named PropertyGroupManager to create, marshal, and unmarshal
PropertyGroups. Any top-level Activity started by the invoking thread after this call
has succeeded will create an instance of the registered PropertyGroup. If the
PropertyGroupManager has already been registered, then the
PropertyGroupAlreadyRegistered exception is thrown.

unregister_property_group

Unregisters the PropertyGroupManager with the specified name. Any new top-level
Activities started by this thread after the PropertyGroup has been unregistered will not
create PropertyGroups of this type. Existing Activities, or new Activities created as
children of existing Activities, are unaffected. If the named PropertyGroup is not
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-33

2

known, then the PropertyGroupNotRegistered exception is thrown.
PropertyGroupManagers must continue to function after they have been unregistered
to support Activities that are still using them.

2.2.11 CosActivityCoordination::Current

CosActivityCoordination::Current : CosActivityAdministration::Current
{
 CosActivity::Outcome broadcast(in string signal_set_name)

raises(CosActivity::SignalSetUnknown,
CosActivity::NoActivity, CosActivity::ActivityNotProcessed);

 void add_signal_set (in CosActivity::SignalSet signal_set)
 raises(CosActivity::SignalSetAlreadyRegistered,
 CosActivity::NoActivity);
 void remove_signal_set (in string signal_set_name)
 raises(CosActivity::SignalSetUnknown,
 CosActivity::NoActivity);

 void add_action(in CosActivity::Action act, in string signal_set_name,
 in long priority) raises(CosActivity::SignalSetUnknown,
 CosActivity::NoActivity);
 void remove_action(in CosActivity::Action act, in signal signal_set_name)
 raises(CosActivity::ActionNotFound, CosActivity::NoActivity);

 void add_actions(in CosActivity::ActionSeq acts, in string
signal_set_name,
 in long priority) raises(CosActivity::SignalSetUnknown,
 CosActivity::NoActivity);
 CosActivity::ActionSeq remove_actions(in CosActivity::ActionSeq acts,

in string signal_set_name)
 raises(CosActivity::NoActivity);

 void add_global_action(in CosActivity::Action act, in long priority)
 raises(CosActivity::NoActivity);
 void remove_global_action(in CosActivity::Action act)
 raises(CosActivity::ActionNotFound, CosActivity::NoActivity);

 long get_number_registered_actions(in string signal_set_name)
 raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
 ActionSeq get_actions(in string signal_set_name)
 raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
};

add_signal_set

This method registers the specified SignalSet with the ActivityCoordinator. If the
SignalSet has already been registered, then the SignalSetAlreadyRegistered
exception will be raised. If the ActivityCoordinator is in use (i.e., is processing
2-34 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

Signals), or has completed, then the INVALID_ACTIVITY exception is thrown. If there
is no Activity associated with the current thread, then the NoActivity exception will be
thrown.

remove_signal_set

This method removes the specified SignalSet from the ActivityCoordinator. If the
Activity has begun completion, has completed, or is in the process of using the specified
SignalSet, then the INVALID_ACTIVITY exception is thrown. If the SignalSet is not
known, then SignalSetUnknown will be raised. If there is no Activity associated with
the current thread, then the NoActivity exception will be thrown. It is invalid to attempt
to remove any of the pre-defined SignalSets, and BAD_OPERATION will be thrown.

add_action

Registers the specified Action with the ActivityCoordinator such that when the
Activity decides to send the specified Signal, the Action will be invoked with that Signal.
If multiple Actions are registered, then priority may be used to place an order on how
they will be invoked: higher priority numbers will be invoked before lower priority
numbers. The priority value must be a positive value; a value of zero means that the
Activity Service implementation is free to place the Action at any point in the Action list.
If the SignalSet is not known about, then the SignalSetUnknown exception is thrown.
If there is no Activity associated with the current thread, then the NoActivity exception
will be thrown. If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown. If the specified Action is registered multiple
times for the same SignalSet then it will be invoked multiple times with the Signals from
that SignalSet.

add_actions

Registers a number of Actions with the ActivityCoordinator; such Actions are
assumed to be already prioritized within the sequence. If multiple Actions are registered,
then priority may be used to place an order on how they will be invoked: higher priority
numbers will be invoked before lower priority numbers. The priority value must be a
positive value; a value of zero means that the Activity Service implementation is free to
place the Action at any point in the Action list. If the SignalSet is not known about,
then the SignalSetUnknown exception is thrown. If there is no Activity associated with
the current thread, then the NoActivity exception will be thrown. If the Activity has
begun completion, or has completed, then the INVALID_ACTIVITY exception is thrown.
If the specified Action is registered multiple times for the same SignalSet then it will be
invoked multiple times with the Signals from that SignalSet.

add_global_action

This method registers the specified Action with the ActivityCoordinator such that
when any Signal is sent, the Action will be invoked with that Signal (i.e., the Action is
effectively registering interest in all possible SignalSets). If multiple Actions are
registered, then priority may be used to place an order on how they will be invoked:
higher priority numbers will be invoked before lower priority numbers. The priority value
must be a positive value; a value of zero means that the Activity Service implementation
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-35

2

is free to place the Action at any point in the Action list. If there is no Activity associated
with the current thread, then the NoActivity exception will be thrown. If the Activity has
begun completion, or has completed, then the INVALID_ACTIVITY exception is thrown.

remove_action

Removes the interest relationship between the specified Action and the named SignalSet.
No further Signals from the named SignalSet will be sent to the specified Action. If
signal_set_name is specified as an empty string, then the Action will be sent no
further Signals from any SignalSet. If the Action has not previously been registered with
the coordinator, then the ActionNotFound exception will be thrown. If there is no
Activity associated with the current thread, then the NoActivity exception will be thrown.
If the Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

remove_actions

Removes the interest relationship between the specified Actions and the named
SignalSet. No further Signals from the named SignalSet will be sent to the specified
Actions. If signal_set_name is specified as an empty string, then the Actions will be sent
no further Signals from any SignalSet. If any of the Actions have not previously been
registered with the coordinator, then it will return references to them after removing all
other Actions in the sequence. Otherwise nil will be returned. If there is no Activity
associated with the current thread, then the NoActivity exception will be thrown. If the
Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

remove_global_action

This method removes the specified Action from the ActivityCoordinator. If the Action
has not previously been registered with the coordinator, then it will throw the
ActionNotFound exception. If there is no Activity associated with the current thread,
then the NoActivity exception will be thrown. If the Activity has begun completion, or
has completed, then the INVALID_ACTIVITY exception is thrown.

get_number_registered_actions

Returns the total number of Actions that have been registered with the
ActivityCoordinator. If there is no Activity associated with the current thread, then the
NoActivity exception will be thrown.

get_actions

Returns all the Actions that have been registered with the ActivityCoordinator. If there
is no Activity associated with the current thread, then the NoActivity exception will be
thrown.
2-36 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces September 2003

2

broadcast

Instructs the ActivityCoordinator to send the specified SignalSet to all of the
registered Actions. Once the Actions have processed the signal and returned outcome
Signals, it is up to the ActivityCoordinator to consolidate these individual outcomes
into a single outcome to return.

If there is no Activity associated with the current thread, then the NoActivity exception
will be thrown. This can be used to cause Signals to be sent to Actions at times other
than when the Activity completes. As such, the implementation of the Activity Service
must ensure that such Signals clearly identify that the Activity is not completing, and that
pre-defined SignalSets such as Synchronization, are not used. The result of using the
SignalSet is returned.

If an attempt is made to use the Synchronization or ChildLifetime SignalSets, then
BAD_OPERATION will be thrown and the ActivityCoordinator will not be called.

If the Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced.

2.2.12 Interposition

When an activity context is propagated, it can be imported by another Activity Service
implementation to create a proxy context within the new domain which refers to the
exporting domain. This interposition technique (supported by the
Current::recreate_context operation) allows the proxy domain to handle the
functions of an Activity Coordinator in the importing domain. These coordinators act as
subordinate coordinators.

Interposition allows cooperating Activity Services to share the responsibility for
completing an activity and can be used to minimize the number of network messages
sent during the completion process. An interposed coordinator registers as a participant
in the activity with the ActivityCoordinator identified in the ActivityContext of the
received request; it either registers as an Action, or registers an Action which can then
forward Signals to it. The relationships between coordinators in the activity form a tree.
The root coordinator is responsible for completing the activity.

A subordinate ActivityCoordinator registers itself with its parent as an Action, with
an interest in the Synchronization SignalSet. An Action may be subsequently registered
with the subordinate ActivityCoordinator with an interest in a particular SignalSet that is
available to the root ActivityCoordinator. The subordinate ActivityCoordinator must have
a SubordinateSignalSet implementation available to it and should register an Action
with an interest in a SignalSet of the same name with its superior ActivityCoordinator.
When the subordinate ActivityCoordinator receives a Signal from its superior it calls the
set_signal method on the SubordinateSignalSet passing the Signal as a parameter. The
subordinate must then forward the Signal to any appropriate Action that registered with it
(including other subordinate ActivityCoordinators) and pass each Outcome received to
the SubordinateSignalSet.
September 2001 Additional Structuring Mechanisms for the OTS: Activity Service Interfaces 2-37

2

The role of the SubordinateSignalSet is to combine the Outcomes produced into a single
Outcome that can be returned to the superior by the subordinate ActivityCoordinator.
Once a subordinate ActivityCoordinator has completed distributing a received Signal, it
should ask the SubordinateSignalSet for the next signal in case the SubordinateSignalSet
is able to produce another Signal, independently of any superior SignalSet, which the
subordinate ActivityCoordinator should distribute to any appropriate Actions. Any such
Signals are produced as a performance optimization by the SubordinateSignalSet and
must not change the Outcome that was produced as a result of the Signal received from
the superior.

2.3 Distributing Context Information

The CORE specification must add to the IOP module the following new ServiceId:

module IOP
{ // IDL

const ServiceId ActivityService = 16;
}

It is assumed that an appropriate Portable Interceptor will be used to deal with sending
and receiving activity context information; this will require the interceptor to un/marshal
the context from/into the correct position in the Service Context structure. If Portable
Interceptors are not used, then similar mechanisms must be used in order to ensure that
context information flows implicitly between execution environments. To ensure
interoperability between Activity Service implementations, mechanisms which do not
rely upon Portable Interceptors should behave in a similar way to an interceptor and
encode the context information appropriately.

It is the responsibility of the Activity Service implementation to register a client and
server side interceptor. This is achieved by calling:

• PortableInterceptor::ORBInitInfo::add_client_request_interceptor(in
ClientRequestInterceptor)

• PortableInterceptor::ORBInitInfo::add_server_request_interceptor(in
ServerRequestInterceptor)

The interceptor is responsible for marshalling/unmarshalling any Activity context
information at the appropriate interception points.

Policing the sending/receiving of Activity context information is dependent on the POA
attributes described in the next section.

2.3.1 Activity Service POA Attributes

The Activity Service utilizes a POA policy to define characteristics related to activities.
This policy is encoded in the IOR as a tag component and exported to the client when an
object reference is created. This enables validation that a particular object is capable of
supporting the activity characteristics expected by the client.
2-38 Additional Structuring Mechanisms for the OTS: Distributing Context Information September

2

typedef unsigned short ActivityPolicyValue;

const ActivityPolicyValue REQUIRES = 1;
const ActivityPolicyValue FORBIDS = 2;
const ActivityPolicyValue ADAPTS = 3;
const ActivityPolicyValue INTERNAL = 4;

const CORBA::PolicyType ActivityPolicyType = 58;

interface ActivityPolicy : CORBA::Policy
{
 readonly attribute ActivityPolicyValue apv;
}

const IOP::ComponentId TAG_ACTIVITY_POLICY = 37;

ActivityPolicy values are encoded in the TAG_ACTIVITY_POLICY component of the
IOR.

The semantics of these policies will now be described (in the following section the term
apv is the ActivityPolicyValue in the Activity component of the target object IOR).
Note that an apv of ADAPTS should always be treated by a client in the same way as an
IOR with no Activity component, in order to work with non-activity aware environments.

Client-side
• If apv is REQUIRES, then a method request must be sent with an Activity context.

If there is no Activity context, then the client-side Activity service interceptor must
raise the ACTIVITY_REQUIRED system exception and must not send the request.

• If apv is FORBIDS, then no Activity context is allowed to be sent. If there is an
Activity context active on the thread, then the client-side Activity service
interceptor must raise the INVALID_ACTIVITY system exception and must not
send the request.

• If apv is ADAPTS, or if there is no ActivityPolicy, then an Activity context must be
sent if and only if an Activity context is associated with the thread of the caller.
This would include any requests to objects on a non-Activity aware ORB.

• If apv is INTERNAL then a method request must be sent without an Activity
context regardless of whether it is made within the scope of an Activityor not.
Activity service implementation objects use this policy.

Server-side

The server-side Activity service interceptor should behave as follows when processing
inbound requests:

• If apv is REQUIRES, then any received Activity context must be associated with
the thread of execution. If no Activity context is received, the server-side Activity
service interceptor must throw the ACTIVITY_REQUIRED system exception,
thereby preventing the request from being dispatched.
September 2001 Additional Structuring Mechanisms for the OTS: Distributing Context Information 2-39

2

• If apv is FORBIDS, then the server-side Activity service interceptor is required to
check that no Activity context has been flowed with the request and to throw the
INVALID_ACTIVITY system exception if it has, thereby preventing the request
from being dispatched.

• If apv is ADAPTS, or if there is no ActivityPolicy, then any received Activity
context must be associated with the thread of execution.

• If apv is INTERNAL, any Activity context must be ignored. The client-side
behavior above means that the server should never have to deal with this situation.
Given that this situation constitutes a client-side error, an implementation may
throw a system exception if this happens.

2.4 The User’s View

The following UML diagram briefly illustrates the interactions between the various
participants within an Activity during completion.
2-40 Additional Structuring Mechanisms for the OTS: The User’s View September 2003

2

Figure 2-2 Completing an Activity using SignalSets and Actions.

2.4.1 Examples of Use

Using the Activity framework presented previously we wish to provide support for at
least the following types of transaction models:

• Workflow-like activities.

• Compensating Activity (Compensating Sphere) with nesting of Activities (spheres)
to give recovery behaviour via compensation at all levels of nesting. Support for
Sagas as defined in the major section below.

complete_with_status

SignalSet High-level
service

CosActivity::Cu
rrent

complete_activity()

 Action Activity
Coordinator

set_completion_status()

get_signal()

process_signal()

set_response()

get_signal()

process_signal()

set_response()

get_outcome()
return outcome

return outcome
September 2001 Additional Structuring Mechanisms for the OTS: The User’s View 2-41

2

In this section we shall give some brief examples of how these extended forms of
transactional activity can be supported. These are meant only as examples, and
implementors of the Activity Service framework presented within this specification are
not expected to provide them. The Signals and SignalSets described are also meant
only as examples.

Concrete examples of specific extended transaction models are provided within
Appendix D.

2.4.1.1 Workflow-like Coordination

The signal set required to coordinate the “workflow style” activities contains four signals
“start,” “start_ack,” “outcome,” and “outcome_ack.”

• start: signal is sent from a “parent” activity to a “child” activity (via an Action), to
indicate that the “child” activity should start. The application_specific_data part
of the signal contains the information required to parameterize the starting of the
activity. This information is encoded in XML. As noted above, the recipient Action
is responsible for starting the activity.

• start_ack: signal is sent from a “child” activity to a “parent” activity, as the return
part of a “start” signal, to acknowledge that the “child” activity has started.

• outcome: signal is sent from a “child” activity to a “parent” activity, to indicate that
the “child” activity has completed. The application_specific_data part of the
signal contains the information about the outcome of the activity. This information
is encoded in XML.

• outcome_ack: signal is sent from a “parent” activity to a “child” activity, as the
return part of an “outcome” signal, to acknowledge that the “parent” activity has
completed.

Figure 2-3 Example “Workflow style” activities.

a:Activity c:Activity d:Activityb:Activity

“start”

“start”

“start”

“outcome”

“outcome”

“outcome”

“start_ack”

“start_ack”

“start_ack”

“outcome_ack”

“outcome_ack”

“outcome_ack”
2-42 Additional Structuring Mechanisms for the OTS: The User’s View September 2003

2

The interaction in Figure 2-3, is activity a coordinating the parallel execution of b and c
followed by d. For space considerations, the Actions that control the starting of activities
b, c and d are not shown, and should be assumed to be implicit in the above diagram.

2.4.1.2 Compensating Activities

In this section we shall illustrate how coordination of transactional activities with
compensation for failures can be provided using the framework described. Consider the
sequence of transactions shown in Figure 1-3 on page 1-5, and assume that each
transaction boundary also represents a different activity. The termination of one
transaction is used as the driver to start another (perhaps compensating) transaction. We
shall assume the existence of a high-level scripting language with which long-running
applications can be constructed from short-duration transactions. The signal types
required are:

• start: a signal is sent from the terminating activity to the next activity to indicate
that it can begin execution. The application_specific_data part of the signal
contains the information required to parameterize the starting of the activity, such as
the state in which this activity has terminated (e.g., committed or rolled back). This
information is encoded in XML.

• start_ack: signal is sent from a starting activity to the terminating activity, as the
return part of a “start” signal, to acknowledge that the activity has started.

Each activity/transaction may be started by an appropriate Action. Where necessary, the
application programmer will be required to implement compensating activities. For
example the application programmer must have the necessary knowledge to implement
t5(c) which compensates for t2. The application (or some high-level scripting language)
will tie together the individual transactional activities such that the ending of one causes
the start of another. It is this scripting that will drive the different start signal states in the
case of activity failures. For example, if t4 fails then a Signal(start:rolledback) may be
sent to t5(c), whereas if t4 completed successfully a Signal(start:ok) may be sent from it
to t6.

Sub-activities (sub-transactions) (i.e., activities nested within other activities), would be
controlled in a similar manner to the workflow-like scheme presented previously.
Compensation would either be left to the enclosing activity or could be handled as
described above. If sub-activities are present, then additional signals will be required:

• outcome: signal is sent from a “child” activity to a “parent” activity, to indicate that
the “child” activity has completed. The application_specific_data part of the
signal contains the information about the outcome of the activity. This information
is encoded in XML.

• outcome_ack: signal is sent from a “parent” activity to a “child” activity, as the
return part of an “outcome” signal, to acknowledge that the “parent” activity has
completed.
September 2001 Additional Structuring Mechanisms for the OTS: The User’s View 2-43

2

2.4.1.3 Two-phase Commit

The UML diagram below illustrates how the Activity Service could be used to implement
a two-phase commit protocol, as briefly described in Section 1.2, “Activity Service
Model,” on page 1-4. It is assumed that the process_signal_set method has been
invoked on the ActivityCoordinator:
2-44 Additional Structuring Mechanisms for the OTS: The User’s View September 2003

2

Figure 2-4 Two-phase commit protocol with Signals, SignalSets and Actions.

set_completion_status()

 Action

get_signal()

 2PC SignalSet

“preComplete”

 ActionActivity
Coordinator

Synchronization
SignalSet

set_response()

get_signal()

 Action

“prepare”

set_response()

“prepare”

set_response()

get_signal()

“commit”

set_response()

“commit”

set_response()

get_completion_status()

set_completion_status()

get_outcome()

get_signal()

“postComplete”

set_response()
September 2001 Additional Structuring Mechanisms for the OTS: The User’s View 2-45

2

2.5 The Implementor’s View

2.5.1 Suspending Transactions

If CosTransactions::Current::suspend is used to suspend a transaction that has
nested Activities, then those Activities will not be suspended, since the OTS has no
knowledge of Activities. Therefore, we recommend that if such behavior is required,
transaction suspending and resuming is performed using the CosActivity::Current
methods. An implementation of the Object Transaction Service may be made aware of
Activities and thus make CosTransactions::Current methods respond appropriately.
However, this may result in non-portable applications.

2.5.2 Obtaining Current

In order for an application to be able to obtain and use any of the Activity Service
Currents it is necessary for an Activity Service to register it with the ORB. The Activity
Service implementation is responsible for registering an implementation of the
CosActivityCoordination::Current as the “ActivityCurrent” returned by
resolve_initial_references. This is achieved by calling
ORB::register_initial_reference(in ObjectId id, in Object obj) where ObjectId
is “ActivityCurrent.” Other Current implementations may be obtained by suitable
narrowing of this object.

2.5.3 Failure Assumptions

Many commercial transaction systems use a presumed abort protocol to simply the
requirements on failure recovery: if a participant enquires as to the status of a transaction
and the system definitely has no record about the transaction, then it is assumed to have
aborted (rolled back), and the participant can act accordingly. This means that a
transaction coordinator need not keep persistent records of participants until after it has
decided to commit. Therefore, Activity Service implementations are also required to use
a presumed abort (presumed failed) protocol.

The Activity Service also assumes that IORs for participants (Actions) and coordinators
are persistent, such that upon recovery from failure, an end-point for an IOR remains
valid as long as the object it refers to remains in existance. Therefore, a client receiving
an OBJECT_NOT_EXIST exception can be guaranteed that the object has ceased to exist
because it has successfully completed its job.

2.5.4 Normal Activity Completion

In order to write a portable application or application framework that uses the Activity
service, and in order for Activity service implementations to fully interoperate, the
ordering and semantics of completion processing of an Activity are described in detail in
this section.

1. Current::complete_with_status(comp_status) is called.
2-46 Additional Structuring Mechanisms for the OTS: The Implementor’s View September 2003

2

2. This drives ActivityCoordinator::complete_activity(comp_ss_name,
comp_status). If this is a remote call then no Activity service is marshalled
since the target ActivityCoordinator has an ActivityPolicyValue of INTERNAL.

3. The preComplete synchronization signal is distributed. The Activity context
must be available on the thread when the Actions process this signal.

4. The completion signals are distributed to registered Actions. The Activity
context must be available on the thread when the completion signals are
distributed.

5. The context is logically suspended. Any PropertyGroups are called with
suspended() and then with completed().

6. The postComplete synchronization signal is sent.

7. Any remaining Activity service objects for the completing Activity are
cleaned up.

8. The call returns to the client.
September 2001 Additional Structuring Mechanisms for the OTS: The Implementor’s View 2-47

2

2-48 Additional Structuring Mechanisms for the OTS: The Implementor’s View September 2003

	Modules and Interfaces
	2.1 The Activity Service Modules
	2.1.1 Overview
	2.1.2 Datatypes
	2.1.3 Structures
	2.1.4 Exceptions

	2.2 Activity Service Interfaces
	2.2.1 SignalSet Interface
	2.2.2 SubordinateSignalSet Interface
	2.2.3 Action Interface
	2.2.4 ActivityToken Interface
	2.2.5 ActivityCoordinator Interface
	2.2.6 PropertyGroup
	2.2.7 PropertyGroupAttributes
	2.2.8 PropertyGroupManager
	2.2.9 CosActivity::Current
	2.2.10 CosActivityAdministration::Current
	2.2.11 CosActivityCoordination::Current
	2.2.12 Interposition

	2.3 Distributing Context Information
	2.3.1 Activity Service POA Attributes

	2.4 The User’s View
	2.4.1 Examples of Use

	2.5 The Implementor’s View
	2.5.1 Suspending Transactions
	2.5.2 Obtaining Current
	2.5.3 Failure Assumptions
	2.5.4 Normal Activity Completion

