Additional Structuring Mechanismsfor
theOT SSpecification

January 2005
Version 1.1
formal/05-01-01

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

An Adopted Specification of theObj ect M anagement Group, I nc.

Copyright © 2002, Objective Interface Systems, Inc.
Copyright © 2002, Real-Time Innovations, Inc.
Copyright © 2002, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. Thislimited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OM G specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY
WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN

ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and I1OP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnNet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM ™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA ™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize devel opers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers

to report any ambiguities, inconsistencies, or inaccuracies they may find by compl eting the I ssue Reporting Form listed on
the main web page http://mww.omg.org, under Documents & Specifications, Report a Bug/lssue.

OMG’sIssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://mmw.omg.org,
under Documents, Report a Bug/l ssue (http://www.omg.org/technol ogy/agreement.htm).

Contents

1 Introduction 1-1
11 Introduction i, 1-1
1.1.1 Activity Service Interfaces and Implementation 1-2

1.1.2 Application Framework 1-2

1.1.3 ApplicationComponent 1-3

1.14 ActionsandSignal Sets 1-3

1.1.5 Underlying Implementation Platform 1-4

12 Activity ServiceModel oL 1-4
121 Overviewiiiiii i 1-4

1.2.2 Coupling Transactions and Activities........ 1-16

2. ModulesandInterfaces........................... 2-1
2.1 The Activity ServiceModules 2-1
211 OVEIVIEW ... e 2-1

212 Datatypes 2-1

213 Structures.......... i 2-3

214 EXCEptions 2-8

2.2 Activity Servicelnterfaces 2-10
221 SignalSetinterface...................... 2-10

2.2.2 SubordinateSignalSet Interface 2-15

223 Actioninterface 2-16

2.2.4 ActivityTokenlInterface 2-16

2.25 ActivityCoordinator Interface 2-17

226 PropertyGroup ... 2-22

2.2.7 PropertyGroupAttributes 2-24

2.2.8 PropertyGroupManager 2-25

January 2005 Additional Sructuring Mechanismsfor the OTS, v1.1 1

229 CosActivity::Current 2-26

2.2.10 CosActivityAdministration::Current 2-33

2.2.11 CosActivityCoordination::Current 2-34

2.2.12 Interposition, 2-37

2.3 Distributing Context Information 2-38

2.3.1 Adctivity Service POA Attributes 2-39

2.4 TheUser'sView 2-40

241 ExamplesofUse 2-41

25 The Implementor'sView 2-45

25.1 Suspending Transactions 2-45

252 ObtainingCurrent 2-45

253 FailureAssumptions 2-45

2.5.4 Normal Activity Completion 2-45

A. References A-1

B OMGIDL .. e e B-1

C SpecificModels C-1
GloSsary ..o Glossary-1

INdeX .. Index-1

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

Preface

Obj ect Management Group

OMG Documents

January 2005

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technol ogy/documents/spec _catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.

Additional Sructuring Mechanismsfor the OTS, v1.1 il

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and | nterface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)) OMG formal documents are available from our web site in
PostScript and PDF format. Contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
€lements.

Couri er bol d - Programming language elements.
Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

iv Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

Acknowledgments

The following companies submitted and/or supported parts of this specification:
* International Business Machines

IONA Technologies Incorporated

Vertel/Expersoft

Alcatel

University of Newcastle upon Tyne

» Bank of America

INRIA and BULL

January 2005 Data Distribution Service: Acknowledgments

vi

Additional Sructuring Mechanismsfor the OTS, v1.1

January 2005

| ntroduction 1

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 1-1
“Activity Service Model” 1-4

1.1 Introduction

A very high level view of the role of the Activity Service is shown in Figure 1-1. An
explanation of the terms used in this figure and some rationale underlying the
specification’s design choices follow.

January 2005 Additional Sructuring Mechanismsfor the OTS, v1.1

1-2

Application Framework

Application Signal Set
Component
A

v Activity Service Interfaces
Action Signal Set Activity etc.
Coordinator

Activity Service Implementation

Underlying Implementation Platform

Persistence Logging ORB
Service Service

Figure1-1 Role of the Activity Service

€tc.

1.1.1 Activity Service Interfaces and Implementation

The behavior required of an Activity Service Implementation that offers the operationsin
the Activity Service Interfaces is the subject matter of this document. However, it will be
useful to understand what an Activity Service Implementation is not expected to do by
describing the responsibilities and expected behavior of the applications that reguire it.

1.1.2 Application Framework

It is not expected that the operations in the Activity Services interfaces will be used
directly by end-user application programmers. When we talk about application
programmers in this document it is really those who write, for example, workflow
managers or component management systems or who are extending the functionality of
the Containers of Enterprise Java Beans (EJBs). Extended transactions like the Sagas and
Compensations described below have a complex structure and are intended to last over
quite long intervals. Therefore a significant amount of middleware is required to manage
the progress and recovery of an extended transaction and is not in the domain of an
application programmer who is being employed to write business software rather than
middleware.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

January 2005

In this document we have used the term Application Framework to describe the
middleware required and to distinguish it from the business application logic of an
Activity Component.

It is not the purpose of this document to propose the precise behavior of such workflow
management or component management systems -- indeed the OMG has aready adopted
two related specifications -- rather the purpose is to introduce an Activity Service that is
needed to allow such Application Frameworks to manage complex business transactions
that will extend the concept of transaction from the well-understood, short-duration
atomic transaction of the OMG'’s Object Transaction service (OTS).

There are expected to be several Application Service Implementations that interoperate
in the manner of this specification and thus will allow extended transactions to span a
network of transaction systems connected indirectly by an ORB.

It is one of the responsibilities of an Application Framework implementation to manage
the persistent state of its applications; as opposed to the Application Service
Implementation’s responsibility to manage the persistent state of its Activity
Coordinators and other public and private objects.

1.1.3 Application Component

If the Application Framework is that middleware supplied by specialist vendors required
to manage the progress of workflows and long-running business transactions in a variety
of business domains, then the term Application Component describes the components
that “plug in” to such a framework. The Workflow Management Coalition (WfMC) and
the OMG’s Workflow Management Facility use the term Activity to describe astep in a
path through a workflow digraph. An Application Component -- if it is to be reusable --
has to maintain a degree of independence from the Application Framework in which it
runs. Thus a workflow manager might associate one or more Activities with asingle
Application Component each time giving it different properties that will serve to
parameterize the enactment of the workflow [3]. For example, an Application
Component that holds a conversation with a graphical user interface (GUI) may be
associated with two Activities, one of which has a property “the end-user language is
French,” the other which has “the end-user language is English,” or again, the
Application Component could be composed into a larger Activity that must run as a
business transaction whose effects can be undone in some situations, whereas it could
also be composed into another, or used stand-alone where no transactional behavior is
involved at al.

1.1.4 Actions and Sgnal Sets

Thisisaspecification for an Activity Service that is sufficiently general in its behavior to
support a large variety of extended transaction types. As middleware vendors and their
customers gain experience in developing and using extended transactions, so more types
of extended transactions will emerge.

Additional Sructuring Mechanismsfor the OTS: Introduction 1-3

One of the keys to such extensibility is the Signal Set interface (described in detail
below) whose implemented behavior is peculiar to the kind of extended transaction.
Similarly, the behavior of an Action will be peculiar to the Application Framework of
which it isapart. So as new types of extended transaction emerge, so will new Signal Set
instances and associated Actions.

This allows a single Activity Service Implementation to serve alarge variety of
Application Frameworks, each with its own idea of extended transactions, each with its
own Action and Signal Set implementations.

An Activity Service Implementation will not need to know what behavior is encapsul ated
in the Actions and Signal Sets it is given, merely interacting with their opaque interfaces
in an entirely uniform and transparent way.

1.1.5 Underlying Implementation Platform

Different Activity Service Implementations will choose to use different combinations of
the operating system and transaction services available to them. Although all
implementations rely upon the existence of an ORB and an OTS, some implementations
will have available to them a transaction system Logging Service and will choose to use
it in preference to an Object Persistence Service in order to meet its obligation to recover
the state of Activities that persist through failure and restart.

Any dependencies on the functionality of the ORB or Object Services are described
bel ow.

1.2 Activity Service Model

1.2.1 Overview

Asshown in Figure 1-2, an application activity (shown by the dotted ellipse) is to be split
into many different, coordinated, short-duration top-level transactions, to form a“logical
long-running transaction.”

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

January 2005

Application
activity

failure

Figure1-2 An example of alogical long-running “transaction,” without failure

Let us assume that the application activity is concerned with booking a taxi (t1),
reserving atable at arestaurant (t2), reserving a seat at the theatre (t3), and then booking
aroom at a hotel (t4).

Application
activity

Figure1-3 An example of alogical long-running “transaction,” with failure

The reason for structuring the application activity asa“logical long-running transaction”
rather than as a single top-level transaction is to prevent certain acquired resources from
being held for the entire duration of the application. It is assumed that the application’s
implementors have segmented the transactional activities within the application into
smaller transactions, each such transaction being responsible for acquiring (and
releasing) only those resources it requires.

However, if failures and concurrent access occur during the lifetime of these
transactional activities, then the behavior of the entire “logical long-running transaction”
may not possess ACID properties. Therefore, some form of (application specific)
compensation may be required to attempt to return the state of the system to (application
specific) consistency. For example, consider the above diagrams and let us assume that t4
has failed (rolls back). Further assume that the application can continue to make forward

Additional Sructuring Mechanismsfor the OTS: Activity Service Model 1-5

1-6

progress, but in order to do so must now undo some state changes made prior to the start
of t4 (by t1, t2 or t3); since t4 is a transaction, its state changes will be undone
automatically by the transaction system, so no form of compensation is required.
Therefore, new activities are started; tc1 which is a compensation activity that will
attempt to undo state changes performed, by say t2, and t3 which will continue the
application once tcl has completed. tc5' and tc6' are new activities that continue after
compensation (for example, since it was not possible to reserve the theatre, restaurant,
and hotel, it is decided to book tickets at the cinema). Obviously other forms of
transaction composition are possible (for example, t5' could execute in parallel to tcl).

Much research on structuring applications out of transactions has been influenced by the
ideas of spheres of control [2]. There are several ways in which some or all of the
application requirements outlined above could be met. However, it is unredlistic to
believe that the “one-sizefitsall” paradigm will suffice; that is, asingle high-level model
approach to extended transactions is unlikely to be sufficient for all (or even the majority
of) applications. Therefore, we propose a low-level infrastructure to support the
coordination and control of abstract, application specific entities. As we shall show, these
entities (activities) may be transactional, they may use weaker forms of serializability, or
they may not be transactional at all; the important point is that we are only concerned
with their control and coordination, leaving the semantics of such activities to the
application programmer.

As we shall show, this distributed coordinator tree will support OTS strict two-phase
commit transactions, nested transactions, as well as a variety of different kinds of
“transactional behavior” including long-running transactions similar to Sagas with
Compensation, Flexible Transactions, and Versioning Schemes. Any activity can be
associated with issuing demarcation signals (for example, the end of the saga, the
beginning of a compensation group). These signals (or a subset of them) are
communicated to any entities that have chosen to register for involvement in the activity
context.

An activity is a unit of (distributed) work that may, or may not be transactional. During
its lifetime an activity may have transactional and non-transactional periods. Every entity
including other Activities can be parts of an Activity, although an activity need not be
composed of other activities. An Activity is used to carry transactional and other
essential specifications of the application’s contract with its middleware.

Each activity is represented by an activity object. An Activity is created, made to run,
and then completed. The result of a completed activity is its outcome, which can be used
to determine subsequent flow of control to other activities. Activities can run over long
periods of time and can thus be suspended and then resumed later.

Demarcation signals of any kind are communicated to any registered entities (actions)
through signals. For example, the termination of one activity may initiate the start/restart
of other activities in a workflow-like environment. Signals can be used to infer a flow of
control during the execution of an application. Actions allow an Activity to be
independent of the specific work it is required to do for signals.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

This specification describes basic interfaces that can be used to construct extended
transaction models such as long running transactions. These may be used by, for
example, workflow engines and applications to do compensation, activity demarcation,
etc. by sending specific signal information through the Action/Activity structure
constructed through the proposed interfaces.

1.2.1.1 Activitiesand transactions

Note, in the rest of this document when we talk about “transactional activities” we
simply mean activities that use (are using, or have used) transactions.

An activity may run for an arbitrary length of time, and may use transactions (and
subtransactions) supplied by the Object Transaction Service implementations at arbitrary
points during its lifetime. For example, consider Figure 1-4, which shows a series of
connected activities co-operating during the lifetime of an application. The solid ellipses
represent transaction boundaries, whereas the dotted ellipses are activity boundaries.
Activity Al uses two top-level transactions during its execution, whereas A2 uses none.
Additionally, transactional activity A3 has another transactional activity, A3' nested
within it.

‘‘‘‘‘‘‘‘

~ - -

~a -

time

Figure1-4 Activity and transaction relationship

Just as a thread of control may require transactional and non-transactional periods and
can suspend and resume its transactionality, so too may it require periods of non-activity
related work. Thus, it is possible for an activity thread to perform some work outside the
scope of the activity before returning to activity related work. In the example diagram
above, if the thread performing activity A3’ decided to perform some non-activity related
work, it could do so outside the scope of A3 and A3. It is not possible to suspend an
activity without suspending all of its enclosed transactions. It is desirable that suspending
atransaction that has enclosed activities will also suspend those activities. However, this
would require that the transaction service has knowledge of activities, and would require

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Model 1-7

1-8

1212

1213

a change to the Object Transaction Service, which is outside the scope of this
specification. A possible implementation that does not require changes to the OTS is
briefly described in Section 1.2.2, “Coupling Transactions and Activities,” on page 1-16.

To ensure application integrity, suspending and resuming of activities implicitly worksin
conjunction with any transactions that may also be in flight within the activities.

Activity Outcome

An activity, which contains component activities, may impose a requirement on the
Activity Service implementation for managing these component activities. It must be
determined whether the nested Activities worked as specified or failed and how to map
their completion (or non-completion) to the enclosing Activity’s outcome. This is true
whether the nested Activities are strictly parallel, strictly sequential, or a complex
structure. In general, an Activity (or some entity acting on its behalf) that needs to co-
ordinate the outcomes of component Activities has to know what state each component
activity isin:

® which are active.

® which have completed and what their outcomes were.

® which activities failed to complete.

This knowledge needs to be related to its own eventual outcome. A responsible entity
may be required to handle the sub-activity outcomes; this specification does not mandate
how this occurs, but it could be modeled as another Activity so that control flows can be
made explicit. The activity determines the collective outcome of the component activity
in the light of the various failure and success situations its component activities present it
with.

It is outside the scope of this specification to provide interfaces for the outcome manager
or to describe how such an entity should be constructed. In the case of complex activity
applications, suitable scripting languages may be required to assist the application
programmer to define the roles of outcome manager and activities.

Activity Failures

The failure of an individual Activity may produce application specific inconsistencies
depending upon the type of activity, and how the application depends upon it.

® |f the Activity was involved within a transaction, then any state changes it may
have been making when the failure occurred will eventually be recovered by the
transaction service implementation.

® |f the Activity was not involved within a transaction, then application specific
compensation may be required.

® An application that consisted of the (possibly parallel) execution of many activities
(transactional or not) may still require some form of compensation to “recover”
committed state changes made by prior activities. For example, the application
shown in Figure 1-3 on page 1-5.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

This specification considers that the compensation of the state changes made by an
activity is simply the role of another activity; we do not distinguish between
compensating and non-compensating activities. A compensating activity is simply
performing further work on behalf of the application. Just as application programmers
are expected to write “normal” activities, they will therefore also be required to write
“compensating” activities, if such are needed. In general, it is only application
programmers who possess sufficient information about the role of data within the
application and how it has been manipulated over time to be able to compensate for the
failure of activities. Automatic compensation of activities may be provided by systems
and tools that use the activity framework presented in this specification.

1.2.1.4 Activity Integrity

Activity service implementations must impose constraints on the use of activity
interfaces to guarantee integrity. Thisis similar to the checked transaction behavior of the
Object Transaction Service, and an implementation may use similar algorithms to those
presented within that specification. Implementations must ensure that all computations
acting on behalf of the activity have completed prior to its termination to prevent loss of
application integrity. Any enclosed transactions will be responsible for their own
integrity checks; hence an Activity Service implementation need only be concerned with
imposing checking constraints on work conducted outside the scope of transactions.

1.2.1.5 Sgnals, Sgnal Sets, and Actions

Activities interact with each other and the rest of the distributed system through Sgnals
and Actions. An Activity may decide to transmit activity specific data (Signals) to any
number of other Activities at specific times during its lifetime (for example, when it
terminates); each signal may be used to represent the requested outcome of the Activity.
The receiving Activities may either have been running and are waiting for a specific
Signal, or started by the receipt of the Signals.

To alow Activities to be independent of the other activities, and to allow the insertion of
coordination and control points within an application that are outside of the domain of an
Activity, Signals are sent to Actions, rather than Activities. (The role of an Action is
similar to that of the CosTransactions::Resource in the OTS.) An Action may then
use the information encoded within the Signal in an application specific manner. When
the Action has finished it may return an application specific indication of the outcome of
its having dealt with the Signal. An Action may be considered as an entry/exit point
into/from an Activity. However, this specification does not restrict the role of the Action
and this should be considered as an example of usage only.

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Model 1-9

1-10

0.* 0.1
Activity
1 0.*
0.* 0.*
Action 0.* L Signal
Set

1
0.*
Signal

Figure1-5 Relationship of SignalSets, Signals, Actions and Activities.

To allow Actions to be selectively signaled, Signals are associated with Signhal Sets, and
Actions are implicitly associated with SignalSets. When a Signal is raised it does so
within the context of a specific SignalSet, and only those Actions registered with that
SignalSet will receive the Signal. An Action may register interest in more than one
SignalSet and an Activity may use more than one SignalSet during its lifetime.

An activity coordinator may be implicitly associated with each activity, and is used to
drive the Signal and Action interactions: if an Activity has no associated Actions, then it
need not have an activity coordinator. Activities that require to be informed when another
Activity sends a specific Signal can register an appropriate Action with that Activity’s
coordinator. When the Activity sends a Signal (for example, at termination time), the
coordinator’s role is to forward this to all registered Actions and to deal with the
outcomes generated by the Actions by passing them to the SignalSet; it is the
SignalSet’s responsibility to collate the many individual outcomes into a single
outcome for the Activity.

With the exception of some predefined Signals and SignalSets, the magjority of Signals
and SignalSets will be defined and provided by the higher-level applications that make
use of this Activity Service framework. To use the generic framework provided within
this specification it is necessary for these higher-level applications to impose application
specific meanings upon Signals and SignhalSets (that is, to impose a structure on their
abstract form). A Signal with the name “foobar” can mean one thing when used within
one application, but the same name may have a completely different meaning when used
elsewhere.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

1

January 2005

A SignalSet isresponsible for determining which Signals should be sent to registered
Actions. The set of Signals a given SignalSet can generate may change from one use to
another, and the actual set of Signals it sends may be a subset of these Signals. The
intelligence about which Signal to send to an Action is hidden within a SignalSet and
may be as complex or as simple as is required by the activity implementation. When a
Signal is sent to an Action, the SignalSet isinformed of the Outcome generated by that
Action to receiving and acting upon that Signal; the SignalSet may then use that
information when determining the nature of the next Signal to send. When a given Signal
has been sent to all registered Actions the SignalSet will be asked for the next Signal to
send by the Activity Coordinator. It is possible for the outcome of an Action to cause the
premature fetching of a new Signal from a SignalSet such that not every registered
Action will see all of the Signals the SignalSet produced.

When all Signals have been generated by the SignalSet, the Activity’s final Outcome
can be obtained from the SignalSet. Since all of the Outcomes returned by each Action
(including failure Outcomes) have been passed to the SignalSet, it has the
responsibility for determining the final Outcome for the Activity. Only the SignalSet
has the necessary semantic information to interpret each Outcome in order to make this
determination.

As shown below, a given SignalSet is assumed to implement a state machine, whereby
it starts off in the Waiting state until it is required by the Activity Coordinator to send its
first Signal, when it then either enters the Get Signal state or the End state if it has no
Signals to send. Once in the End state the SignalSet cannot provide any further Signals
and will not be reused. Once in the Get Signal state the SignalSet will be asked for a
new Signal until it enters the End state. A new Signal is only requested from the
SignalSet when all registered Actions have been sent the current Signal, or an
exceptional outcome is generated by an Action.

Waiting

Get Signal

Figure1-6 Signal Set state transition diagram

For example, suppose we have a TwoPhaseCommit SignalSet to represent the
termination protocol for a transaction, and register Actions with the Activity as the
transactional resources; as with the OTS, it is up to the users of the Activity Service to
ensure that appropriate Actions are registered at appropriate times.

Additional Sructuring Mechanismsfor the OTS: Activity Service Model 1-11

activity coordinator

transmit signal

ion action action

set

signal

1-12

Figure1-7 Activity coordinator signaling actions

When the activity is told to complete, it will be in either a“success’ or “failure” state,
and this will be communicated to the SignalSet associated with it. If the state is
“failure,” then the SignalSet would generate a “rollback” Signal, whereas if “success,”
the SignalSet would generate the “prepare” Signal to be sent to the registered Actions,
as shown in Figure 1-7. The Activity Coordinator would then send this Signal to each
Action, and inform the SignalSet of the result. Assuming none of the Actions returns an
exceptional response to this Signal, then when all Actions have received the “prepare”
Signal, and the Activity Coordinator asks the SignalSet for the next Signal, it will
return the “commit” Signal. However, if during the “prepare” phase, an Action returns a
response, which indicates that there is no point in sending the “prepare” Signal to further
Actions, the Activity Coordinator will be required to obtain a new Signal from the
SignalSet (the “rollback” Signal in this case), and send thisto all registered Actions. As
stated previoudly, the intelligence about which Signal to send, and about interpreting
outcomes from Actions, resides within the SignalSet, alowing implementations of the
framework presented within this specification to be highly configurable, to match
application requirements.

The desired delivery semantics for Signals are at least once, although implementations
are free to provide better deliver guarantees. This means that an Action may receive the
same Signal from an Activity multiple times, and must ensure that such invocations are
idempotent (that is, that multiple invocations of the same Signal to an Action are the
same as a single invocation).

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

January 2005

1216

1217

Contexts

Whenever an entity within an Activity performs an operation it does so within that
Activity’s context. Since Activities may be nested, the context may form a hierarchy.
Because it is important that any operation executes within the correct context, whenever
an entity invokes a remote operation on another entity it is necessary to transmit this
context information between distributed entities.

Therefore, as part of the environment of each ORB-aware thread, the ORB maintains an
activity context; if the activity is transactional, then this activity context will have
knowledge of the relevant transaction context. The activity context is either null
(indicating that the thread has no associated activity) or it refers to a specific activity. It
is permitted for multiple threads to be associated with the same activity at the same time,
in the same execution environment or in multiple execution environments.

This specification implicitly assumes that transaction context information will be
propagated implicitly between execution environments. Although it is assumed that
Portable Interceptor technology will be used to accomplish this, thisis not mandated, and
any similar mechanism may be used; a subsequent section will describe in detail the role
required from an interceptor or its equivalent. However, it is assumed that for inter-
operability purposes such mechanisms will work with implementations that do use
Portable Interceptors. Additional POA attributes have been declared to provide a flexible
way in which the activity context may flow between execution environment. These
attributes will be described later in the specification.

Properties

The programmer possesses application specific knowledge about how the application
will use data; for example, how locks on data should be obtained (optimistic pessimistic,
for example) and how activities should deal with failures. An encompassed activity that
needed to perform an update could override this. This configuration information may
change during the lifetime of the application, as user requirements change. If such
information were hard-wired into the application, each time a change to the configuration
is made, the application would have to be rebuilt.

Therefore, what is required is a way to store this information as data, which can be
modified without requiring changes to the applications and activities that use it. In
addition, such data may be required to be shared between distributed activities. However,
how this data is stored and accessed may also depend upon the application requirements.
Therefore, rather than mandate a specific implementation for managing such properties,
we simply provide a mechanism for applications to obtain their own “property store”
implementations. This is the role of the PropertyGroup. A PropertyGroup
represents properties as a tuple-space of attribute-value pairs.

A PropertyGroup may be associated with each (distributed) Activity. A
PropertyGroup manages a group of properties and defines their behavior with respect
to:

® The visibility of changes made to properties in a nested Activity.

® The visibility of changes made to properties in “downstream” nodes.

Additional Sructuring Mechanismsfor the OTS: Activity Service Model 1-13

1-14

1218

® The manner in which property values are accessed in “downstream” nodes; that is,
whether properties are propagated by value or by reference.

An Activity can support any number of registered PropertyGroups, each with its own
set of behavior. In general it is desirable for al PropertyGroups to display the same
behavior with respect to nested Activities, although this is not required. That behavior
should be that, when a nested Activity is begun, all of the parent’s properties are still
available and may be updated, but that updates are scoped to the Activity in whose scope
they are made. Thus, when a nested Activity is completed, the parent PropertyGroup
is restored to the state it had prior to the nested Activity starting.

Different PropertyGroup implementations may have different behaviors with respect
to nested Activities. For example, one type of PropertyGroup may allow updated to
properties to be transmitted within nested contexts, while another may not. There are
obviously scenarios where both types of PropertyGroup could be used at the same
time. For example, PG1 could represent “client environment” information such as locale
or codepage; overriding of thisinformation within nested contexts would make no sense;
PG2 may represent application context, certain parts of which may require to be
available only for the specific context in which they were set.

Any number of named PropertyGroups may be registered with the Activity Service.
When an Activity is begun, an instance of each registered PropertyGroup is created
and initialized.

Note, an implementation of a PropertyGroup may use an implementation of the
OMG's Property Service specification.

Recovery

Recovering applications after failures, such as machine crashes or network partitions, is
an inherently complex problem: the states of objectsin use prior to the failure may be
corrupt, and the references to objects held by remote clients may be invalid. At a
minimum, restoring an application after a failure may require making object states
consistent. The advantage of using transactions to control operations on persistent objects
is that the transactions ensure the consistency of the objects, regardless of whether or not
failures occur. A transaction system (for example, one based upon the Object Transaction
Service), will guarantee that in the event of failures, any transactions that were in flight
will either be committed or rolled back, making permanent or undoing any changes to
objects that had occurred (that is, it will be as though the transactions either did not start,
or completed as required).

Rather than mandate a particular means by which objects should make themselves
persistent, many transaction systems simply state the requirements they place on such
objects if they are to be made recoverable, and leave it up to the object implementors to
determine the best strategy for their object’s persistence. The transaction system itself
will have to make sufficient information persistent such that, in the event of a failure and
subsequent recovery, it can tell these objects whether to commit any state changes or roll
them back. However, it is typically not responsible for the application object’s
persistence.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

In asimilar way, we do not want to mandate a specific persistence and recovery
mechanism for the Activity Service. Rather we wish to state what the requirements are
on such a service in the event of afailure, and leave it to individual implementorsto
determine their own recovery mechanisms. As far as end-users of the Activity Service
and its applications are concerned, recovery is something that happens after a failure:
how it happens is rarely of concern. In a distributed application, where an individual
activity may run on different implementations of the Activity Service during its lifetime,
recovery is the responsibility of these different implementations. Each implementation
may perform recovery in a completely different manner, forming recovery domains.
Therefore, we are more concerned with the requirements that the Activity Service places
on recovery, rather than how such recovery occurs.

Unlike in a traditional transactional system, where crash recovery mechanisms are
responsible for guaranteeing consistency of object data, the types of extended transaction
applications we envision using this service will typically also require the ability to
recover the activity structure that was present at the time of the failure. This will enable
the activity application to then progress onwards. However, it is not possible for the
Activity Service to perform such complete recovery on its own; it will require the co-
operation of the Transaction Service, the Activity Service, and the application. Sinceitis
the application logic that imposes meaning on Actions, Signals, and SignalSets in
order to drive the activities to completion during normal (non-failure) execution, it is
predominately this logic that is required to drive recovery and ensure activity
components become consistent.

The recovery requirements imposed on the Activity Service and the applications that use
it can be itemized as follows:

® application logic: the logic required to drive the activities during normal runtime
will be required during recovery in order to drive any in-flight activities to
application specific consistency. Since it is the application level that imposes
meaning on Actions, Signals, and SignalSets, it is predominately the
application that is responsible for driving recovery.

® rebinding of the activity structure: any references to objects within the activity
structure, which existed prior to the failure must be made valid after recovery.

® application object consistency: the states of all application objects must be returned
to some form of application specific consistency after a failure.

® recover actions and signal sets: any Actions and SignalSets used to drive the
activity application must be recovered.

If Activities and transactions co-operate within a given application, then the respective
recovery mechanisms will also be required to co-operate. Obvioudly it is not necessary
for auser of the Activity Service implementation to use transactions at all, in which case
only Activity recovery will be required in the event of afailure (that is, it is possible to
have recovery domains that do not require a transaction service implementation at all).

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Model 1-15

1-16

1.2.2 Coupling Transactions and Activities

It is possible for an Activity Service implementation to terminate (or mark for
termination) both Activities and transactions because it has sufficient knowledge of both
entities. However, without modifying the Object Transaction Service specification, the
information about Activities executing within a transaction is not available to a
terminating transaction; hence such a transaction cannot force the termination of any sub-
activities, only sub-transactions.

It isimportant to enable the termination of atransaction to affect any enclosed Activities.
This specification therefore requires that there be a uniform architectural model, whereby
Activities and transactions can cause the termination of any enclosing Activities and
transactions. Although some implementations of the Object Transaction Service may do
this through proprietary extensionsto their implementations, thisis not strictly necessary.
Activities may register a suitable CosTransactions::Resource to act on their behalf
with any enclosing transaction upon creation; this Resource will be informed whenever
the transaction terminates, and the Activity can then behave accordingly (for example,
force the transaction to rollback if the state of the Activity is not consistent).

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

Modulesand I nterfaces

Contents

This chapter contains the following sections.

Section Title Page
“The Activity Service Modules” 2-1
“Activity Service Interfaces’ 2-10
“Distributing Context Information” 2-38
“The User’s View” 2-40
“The Implementor’s View” 2-45

2.1 TheActivity Service Modules

2.1.1 Overview

The set of CORBA services which support the Activity Service Model presented earlier

are supported in the CosActivity, CosActivityAdministration, and
CosActivityCoordination modules. This chapter shall describe the datatypes,
exceptions, and interfaces provided by these different modules.

2.1.2 Datatypes

The CosActivity module defines the following datatypes:

January 2005 Additional Sructuring Mechanismsfor the OTS, v1.1

2-1

2-2

2121

2122

Globalld

This sequence of octets is used to uniquely identify the Activity. It is implementation
dependent as to the information that may be contained within Globalld.

typedef sequence<octet> Globalld;

Satus

During the existence of the activity its status will either be running, completing, or
compl eted.

enum Status

{
StatusActive,
StatusCompleting,
StatusCompleted,
StatusError,
StatusNoActivity,
StatusUnknown

h
The meaning of each of the above values is given below:

® StatusActive: An Activity is associated with the target object and the Activity is
in the active state. An implementation returns this status after an Activity has been
started and prior to its beginning compl etion.

® StatusCompleting: An Activity is associated with the target object and it isin the
process of completing. An implementation returns this status if it has started to
complete, but has not yet finished the process. This value indicates that the activity
may be performing activity specific work required to determine its final completion
status. An activity must enter this state prior to completion, even if this state does
nothing.

® StatusCompleted: An Activity is associated with the target object and it has
completed. The actual outcome of the completed Activity will depend upon the type
of Activity (e.g., a transactional Activity may complete in a Committed, or
RolledBack state). Obtaining such states will be application specific.

® StatusError: An Activity is associated with the target object but it is unable to
proceed as one or more of its entities are not available. The Activity may be in an
inconsistent state.

® StatusNoActivity: No Activity is currently associated with the target object. This
will occur after an Activity has completed, or before the first Activity is created.

® StatusUnknown: An Activity is associated with the target object, but the Activity
Service cannot determine its current status. This is a transient condition, and a
subsequent invocation will ultimately return a different status.

Figure 2-1 indicates the transitions that an Activity can undergo.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

January 2005

Completing Completed (@)

Figure2-1 Activity UML state diagram

2.1.2.3 CompletionSatus

enum CompletionStatus

{

b

CompletionStatusSuccess,
CompletionStatusFail,
CompletionStatusFailOnly

When an Activity completes, it does so in one of two states, either success or failure.
During its lifetime, the completion state of the Activity (i.e., the state it would have if it
completed at that point) may change from success to failure, and back again many times.
This is represented by the CompletionStatus enumeration, whose values are;

CompletionStatusSuccess: the Activity has successfully performed its work
and can complete accordingly. When in this state, the Activity completion status
can be changed.

CompletionStatusFail: some (application specific) error has occurred, which has
meant that the Activity has not performed al of its work and should be driven
during completion accordingly. When in this state, the Activity completion status
can be changed.

CompletionStatusFailOnly: some (application specific) error has occurred,
which has meant that the Activity has not performed all of its work and should be
driven during completion accordingly. Once in this state, the completion status of
the Activity cannot be changed (i.e., the only possible outcome for the Activity is
for it to fail).

The interpretation of the completion status outcome to drive specific Signals and Activity
specific work is up to the actual Activity.

2.1.3 Sructures

2.1.3.1 Activitylnformation

struct Activitylnformation

b

Globalld activityld;
CompletionStatus status;
Outcome final_outcome;

Additional Sructuring Mechanismsfor the OTS: The Activity Service Modules 2-3

2-4

2132

The Activitylnformation structureis encoded within the application_specific_data
field of the Signals sent by the ChildLifetime and Synchronization Signal Sets.

Sgnal

struct Signal

{
string signal_name;
string signal_set_name;
any application_specific_data;

An Activity may enable Signal objects to be transmitted to entities to inform them about
activity specific events. Activity specific information (e.g., about how the Activity
terminated) is encoded within the Signal.

signal_name is an identifier for the Signal, and can be used to determine the meaning
of the Signal. It isinvalid for this field to be nil. This name must be unique within the
context of the SignalSet.

sighal_set_name is the name of the SignalSet this Signal is associated with. It is
invalid for this field to be nil. These names must be unique, and adhere to the following
naming convention: <domain>.<company>.<...>; so, for example,
“com.ibm.fred.otssignals.”

The application_specific_data field may be used to encode additional application
specific information.

Predefined signal types include:

® preCompletion: the recipient isinformed that the Activity is about to complete. This
Signal will only be called if the Activity’s completion status is
CompletionStatusSuccess. The Activity’s completion status and its identity is
encoded within the Signal via the Activitylnformation structure. The
ActivityInformation final_outcome is nil for this Signal.

® postCompletion: the recipient is informed that the Activity has completed.
Information about the Activity’s completion status, which may have changed since
preCompletion, is encoded within the Signal. The Activity’s completion status, final
Outcome, and its identity is encoded within the Signal via the
Activitylnformation structure.

® childBegin: the recipient is informed that the Activity has begun. The Activity’s
completion status and its identity is encoded within the Signal via the
Activitylnformation structure.The Activitylnformation final_outcome is nil
for this Signal.

An Activity Service implementation will not modify the application_specific_data
field of any Signal.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

2.1.3.3 Outcome

struct Outcome
{
string outcome_name;
any application_specific_data;

When an Action receives a specific Signal it returns an Outcome that represents the
result of its having dealt with the Signal. When an Activity completes, an Outcome may
be returned to the application in order for it to determine the final status of the Activity.

outcome_name is an identifier for the Outcome, and can be used to determine the
meaning of the Outcome. It isinvalid for thisfield to be nil.

The application_specific_data field may be used to encode additional application
specific information.

Actions are required to use the ActionError exception to indicate that some failure
occurred during Signal processing. This exception is mapped onto the pre-defined
Outcome “ActionError.” Other system exceptions (such as the failure of an Action to
respond to a given Signal), are mapped onto the pre-defined Outcome

“ ActionSystemException,” and information about the exception is encoded within the
application_specific_data field.

2.1.3.4 Activityldentity and ActivityContext

struct Activityldentity
{
unsigned long type;
long timeout;
ActivityCoordinator coord;
sequence <octet> ctxld;
sequence <PropertyGroupldentity> pgCtx;
any activity_specific_data;

h

struct ActivityContext

{

sequence <Activityldentity> hierarchy;
any invocation_specific_data;

h

Activities may be composed of other Activities. If an activity is started within the scope
of an aready running Activity, then it will automatically be nested within that Activity
(i.e., it will be achild Activity). Thus, the execution of a series of Activities may form a
hierarchy. When entities within an Activity invoke objects in other address spaces,
information about the context in which these invocations are made must flow with the
invocation.

January 2005 Additional Sructuring Mechanismsfor the OTS: The Activity Service Modules 2-5

2-6

Each activity may have an arbitrary number of transactions running within it (or none),
and the top entities within such a hierarchy may be transactions. A receiving execution
domain may be required to recreate the imported activity context such that recreated
activities are running within the right (recreated) transaction scopes. Transaction context
propagation issues are dealt with by the Object Transaction Service specification and will
not be discussed here. However, sufficient information needs to be shipped by the
exporting Activity Service to enable importing environments to recreate the sent Activity
context, such that recreated Activities and transactions are nested in the importing
environment in the same way they are in the exporting environment.

If an activity context is sent on an outward request, a context may be returned on the
response. This returned context need not be the same as was originaly sent (e.g., low-
cost interposition information may be encoded within the context and piggybacked on
the response). For a remote request that compl etes without exception, the absence of an
Activity service context on a response should be taken to mean that the context has not
been changed by the target domain. This should be true even in the case where a
transaction context is present on both request and response.

The objects using a particular Activity Service implementation in a system form an
Activity Service domain. Within the domain, the structure and meaning of the activity
context information can be private to the implementation. When leaving the domain, this
information must be translated to a common form if it is to be understood by the target
Activity Service domain. Therefore, an Activity context (hierarchy) is represented by the
ActivityContext, which is an ordered sequence of Activityldentitys. The first
element in the sequence represents the current Activity/transaction, and the last
represents the root of the hierarchy.

The type field, which must be a positive, non-zero value, is used to indicate the type of
the element for which the information is being maintained. Currently supported values
are:

® 1: The element in the hierarchy is a transaction.

® 2: The element in the hierarchy is an Activity.

An element within the hierarchy is uniquely identified by an instance of
Activityldentity. If the type field indicates that the element is an Activity, then the
coord field will be set, and ctxld will be the Activity’s unique identifier. If the type field
indicates that the element is a transaction, then the coord field will be nil, and the ctxld
will be the tid portion of the CosTransactions::otid_t representation for the OTS
transaction at this level in the hierarchy.

Although the Activityldentity contains a field for the tid portion of the transaction’s
CosTransactions::otid_t, thisismerely so that the position of any transaction context
can be recorded relative to the Activity context (if any) within which it was started. Each
nested transaction is represented by exactly one Activityldentity, which marks the sub-
transaction’s position within the hierarchy.

In order to reduce the amount of context information that is transmitted between
execution domains where nested transactions are used, the ActivityContext structure
need only contain information on an activity’s most deeply nested transaction, since this
is sufficient to be able to recreate the entire activity/transaction hierarchy.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

The Activity Service uses the PropertyGroupManagers to fill in the pgCtx field.

The timeout field indicates the application specific timeout associated with the activity or
transaction when it was created. (If this instance represents a subtransaction, then this
field will be -1.) If the activity or transaction has not completed within this time period,
then it will be completed with CompletionStatusFail.

Additional information may be encoded within the activity specific_data and
invocation_specific_data fields. It is legal for these fields to contain an empty any.
An implementation must not rely on the data that was sent with an outbound context
being available on the reply context. Theinvocation_specific_data is meant to carry
information that is required for a specific implementation of the service. Because this
information is specific to a given implementation of the Activity Serviceit isillegal for
an importing domain that is different from the exporting domain to use this field. To
ensure integrity of the application (specifically in the case of loop-backs between foreign
and native domains), a domain that does not understand theinvocation_specific_data
within an activity context must replace it with an empty any. Such a domain is free,
however, to replace the data with data specific to itself. The activity_specific_data is
meant to carry information that is required for an implementation of a specific extended
transaction model. If an importing domain implements a different extended transaction
model than the exporting domain (i.e., it does not understand the
activity_specific_data), then it must not use the context, and should throw
BAD_CONTEXT.

Type values for Activities supporting specific extended transaction models will be
defined in the future. Each specific type will also define the format of the
activity_specific_data that may be propagated as part of the Activityldentity
structure in the service context.

2.1.3.5 PropertyGroupldentity

struct PropertyGroupldentity
{

string property_group_name;
any context_data;

h

PropertyGroups form part of the Activity Service context. It is dependent upon the
implementations of each PropertyGroup how information about them flows in the
context. Therefore, it is up to the PropertyGroupManager to marshal and unmarshal
PropertyGroups appropriately. The PropertyGroupldentity structure is used to
encapsulate this marshaled form of the PropertyGroup.

property_group_name is the name of the PropertyGroup. Implementations must
ensure that such names are unique within the required domain.

context_data represents the marshaled form of the PropertyGroup.

January 2005 Additional Sructuring Mechanismsfor the OTS: The Activity Service Modules 2-7

2-8

2.1.4 Exceptions

The CosActivity and CosActivityAdministration modules define the following
exceptions that can be raised by an operation.

NoOActivity Exception

The NoActivity exception is raised by methods on the Current interface where an
Activity is required to be active on the thread but none is.

ActivityPending Exception

The ActivityPending exception israised if an attempt is made to complete the Activity
when it is active on a thread other than the calling thread.

ActivityNotProcessed

The ActivityNotProcessed exception is raised to indicate that it was not possible to
complete the processing of signals from a completion or broadcast SignalSet.

InvalidToken Exception

The InvalidToken exception is raised by Current::resume if the specified
ActivityContext is not valid or is nil.

AttributeAlreadyEXists Exception

The AttributeAlreadyEXists exception is raised by
PropertyGroupAttributes::set_attribute if the specified attribute is already set.

NoSuchAttribute Exception

The NoSuchAttribute exception is raised by
PropertyGroupAttributes::get_attribute if the specified attribute does not exist.

ActionError Exception

The ActionError exception is raised by the Action during signal processing if it
encounters an error it cannot handle.

AlreadyDestroyed Exception

The AlreadyDestroyed exception is raised by an interface if there are multiple
attempts to destroy it.

ActionNotFound Exception

The ActionNotFound exception is raised by the ActivityCoordinator if an attempt
is made to remove an Action it has no information about.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

Signal SetUnknown Exception

The SignalSetUnknown exception is raised by the ActivityCoordinator if it is
instructed to use a specified SignalSet it does not know about.

Signal SetAlreadyRegistered Exception

The SignalSetAlreadyRegistered exceptionis raised by the ActivityCoordinator
if multiple attempts to register a SignalSet are made.

Signal SetActive Exception

The SignalSetActive exception is raised by the SignalSet when an attempt is made
to obtain its final status before the SignalSet has completed producing Signals.

Signal Setl nactive Exception

The SignalSetlnactive exception is raised by the SignalSet if an attempt is made to
use the SignalSet without having first called get_signal or set_signal.

PropertyGroupUnknown Exception

The PropertyGroupUnknown exception is raised if an attempt it made to obtain an
unknown PropertyGroup.

PropertyGroupAlreadyRegistered Exception

The PropertyGroupAlreadyRegistered exception is raised if multiple attempts to
register a PropertyGroup are made.

PropertyGroupNotRegistered Exception

The PropertyGroupNotRegistered exception is raised if an attempt is made to
unregister a PropertyGroup that has not previously been registered.

ChildContextPending Exception

The ChildContextPending exception is raised if an attempt is made to successfully
complete an Activity when it still has active child Activities.

I nvalidState Exception

The InvalidState exception is raised to indicate that the completion status of the
Activity is incompatible with the attempted invocation.

I nvalidParentContext Exception

The InvalidParentContext exception is raised either if an attempt is made to resume
a suspended context within a different hierarchy than that which it was originally
suspended from, or an attempt is made to call CosActivity::suspend on an Activity
that is nested within a transaction.

January 2005 Additional Sructuring Mechanismsfor the OTS: The Activity Service Modules 2-9

TimeoutOutOf Range Exception

The TimeoutOutOfRange exception is raised if an attempt it made to associated an
invalid timeout with a newly created Activity.

I nvalidContext Exception

The InvalidContext exception is raised to indicate that a context could not be correctly
imported.

INVALID_ACTIVITY Exception

The INVALID_ACTIVITY system exception may be raised on the Activity or
Transaction services' resume methods if atransaction or Activity is resumed in a context
different to that from which it was suspended. It is also raised when an attempted
invocation is made that is incompatible with the Activity’s current state.

ACTIVITY_COMPLETED Exception

The ACTIVITY_COMPLETED system exception may be raised on any method for
which Activity context is accessed. It indicates that the Activity context in which the
method call was made has been completed due to atimeout of either the Activity itself or
a transaction that encompasses the Activity, or that the Activity completed in a manner
other than that originally requested.

ACTIVITY_REQUIRED Exception

The ACTIVITY_REQUIRED system exception may be raised on any method for
which an Activity context is required. It indicates that an Activity context was necessary
to perform the invoked operation, but one was not found associated with the calling
thread.

2.2 Activity Servicelnterfaces

2-10

2.2.1 SgnalSet Interface

interface SignalSet

{
readonly attribute string signal_set_name;
Signal get_signal(inout boolean lastSignal);

boolean set_response(in Outcome response, out boolean nextSignal)
raises(SignalSetlnactive);

Outcome get_outcome () raises(SignalSetActive);

void set_completion_status (in CompletionStatus cs);

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

January 2005

CompletionStatus get_completion_status ();

void set_activity_coordinator (in ActivityCoordinator coord)
raises(SignalSetActive);

void destroy() raises(AlreadyDestroyed);
h

The SignalSet is used to define the individual signals that are broadcast to the Action
objects. Actions that have been registered as being interested in a specific SignalSet are
sent Signals from that SignalSet. Typically once al Actions have received a given
Signal, the SignalSet is asked for the next Signal to be sent to all of the Actions, if any.

If aSignalSet fails to produce Signals (e.g., it is physically remote from the
ActivityCoordinator and failsto respond to invocations), then the completion status of
the Activity is set to CompletionStatusFailOnly, and the ActivityCoordinator
should act accordingly.

If aSignalSet fails to produce Signals (e.g., it is physically remote from the
ActivityCoordinator and fails to respond to invocations), then the pre-defined
org.omg.CosActivity.Failure SignalSet should be used instead. All pre-defined
SignalSet are restricted to being located in the same domain as the
ActivityCoordinator using them. Any Actions registered with an interest in the
unreachable SignalSet will be sent Signals produced from the Failure SignalSet.

Once the Activity has begun to complete (the ActivityCoordinator has retrieved the
first Signal from a SignalSet), the status of the Activity is under the control of the
SignalSets, and cannot be changed directly by any other entity.

Signals are specified as members of SignalSets. As mentioned previoudly, it is
envisioned that the majority of Signals and SignalSets will be defined by the higher-
level extended transaction systems that use this Activity framework. Only such systems
have the necessary application and activity specific knowledge to impose structure on the
meaning of specific Signals and SignalSets. However, there are a small set of pre-
defined signal sets and their associated signals, which are provided by implementations
of the Activity Service:

® org.omg.CosActivity.ChildLifetime: childBegin
® org.omg.CosActivity.Synchronization: preCompletion, postCompletion
® org.omg.CosActivity.Failure: initialFailure, finalFailure

These pre-defined SignalSets are implicitly associated with every Activity when it is
created, and an application need not register them itself (i.e., no call to
ActivityCoordinator::add_signal_set isrequired).

org.omg.CosActivity.ChildLifetime

The ChildLifetime SignalSet is invoked by the parent when a sub-Activity is begun.
There are no pre-defined Outcomes introduced by this SignalSet. If an Action error
occurs during childBegin (e.g., the ActionError exception is thrown), then the child's

Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-11

Activity completion status will be set to CompletionStatusFailOnly. It is up to the
parent activity (or the application) to determine whether such a failure should cause the
parent activity’s completion status to be changed.

ChildLifetime signals are distributed from the environment in which the child activity is
started. If the parent of a sub-Activity is not a root Activity (i.e, it is an interposed
subordinate), then any Actions registered with the (upstream) superior
ActivityCoordinator do not receive these signals and are unaware of the child activity.

If an indication of the termination of an activity is required, then the
org.omg.CosActivity.Synchronization SighalSet should be used on the respective
activity.

The child activity is active on the thread when childBegin is issued.

org.omg.CosActivity.Synchronization

The Synchronization SignalSet has a similar role to that of Synchronization objects
within the OTS (i.e,, it isinvoked before and after completion of the Activity). Likewise,
the completion status of an Activity may be changed by the Actions registered with this
SignalSet, such that the Activity’s outcome when postCompletion is called may be
different to that when preCompletion was invoked. If an Action error occurs during
preCompletion (e.g., the ActionError exception is thrown), then the Activity
completion status will be set to CompletionStatusFailOnly. Thereis no effect on the
completed Activity if afailure occurs during postCompletion.

The preCompletion SignalSet is only sent if the Activity’s completion status is
CompletionStatusSuccess. In the event of no crash failures that prevent the
ActivityCoordinator from completing its work, postCompletion is sent regardless of
the Activity's completion status.

If there are any Actions registered with it, then the Synchronization SignalSet will be
called prior to using any application specific SignalSet. The pre-defined Outcomes
“preCompletionSuccess’ and “preCompletionFailed” may be produced by an Action in
response to the preCompletion signal. If an Action fails to respond to preCompletion or a
failure occurs, or the Synchronization SignalSet receives the preCompl etionFailed
Outcome from an Action and the completion status of the Activity is changed to
CompletionStatusFailOnly.

The following pre-defined Outcomes may also be produced by this SignalSet,
typically when the SignalSet is invoked in the environment of a subordinate
ActivityCoordinator:

* “preCompletionActivityPending” - this Outcome isreturned if the Activity is
concurrently active on another thread when the preCompletion signal is received.

* “preCompletionChildContextPending” - this Outcome is returned if there is an
outstanding child Activity, or a transaction context encompassed within the
Activity, when the preCompletion signal is received.

2-12 Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

2

These outcomes indicate that there is work outstanding that needs to be completed before
the preCompletion signal can be processed. These outcomes must be processed by an
ActivityCoordinator in such a way that the application that requested the completion
of the Activity receives an ActivityPending or ChildContextPending exception.

If the SignalSet decides that the next Signal (postCompletion) is required or normal
processing of preCompletion has finished, then the implementation of the Activity
Service must first invoke the application specific SignalSet (if any) with the
(potentially new) completion status obtained from get_completion_status of the
Synchronization SignalSet (i.e., postCompletion is not called immediately). When the
application SignalSet has finished producing Signals the postCompletion Signal should
be sent to the registered Actions. Errors during postCompletion have no effect on the
outcome of the Activity.

The completing activity is active on the thread when preCompletion is sent. However, it
is inactive on the thread when postCompletion is generated by the SignalSet.

org.omg.CosActivity.Failure

The Failure SignalSet is used by the ActivityCoordinator if an application
SignalSet cannot be reached during signaling. The Failure SignalSet produces two
signals - initialFailure and finalFailure.

initialFailure indicates that the application SignalSet could not be contacted but that
the problem may be transient. An Action that receives the initialFailure Signal should
respond with one of two pre-defined Outcomes “Failed” or “FailureRetry”. Any Action
that responds with Failed will not receive any further Signals. Any Action that responds
with FailureRetry is indicating that it wishes the ActivityCoordinator to continue to
retry contacting the application SignalSet. If contact is subsequently made, signaling
with the application SignalSet may continue.

An Activity service implementation may chose at which point, if any, to abandon its
attempt to contact the application SignalSet. At this point the Failure SignalSet is
asked to produce the finalFailure Signal, which is distributed to any remaining Actions
for them to perform whatever processing is appropriate to them in this situation. The
Failure SignhalSet ignores any Outcome returned in response to this Signal. The
Activity service changes the Activity statusto StatusUnknown prior to distributing the
initialFailure signal. The Activity service changes the Activity status to StatusError
prior to distributing the initial Failure signal. If the application SignalSet does not
complete its signaling, the ActivityCoordinator raises the
org.omg.CosActivity.ActvityNotProcessed exception on the
complete_activity or process_signal_set method that triggered the signaling and
this exception is returned to the application through the Current complete,
complete_with_status, or broadcast methods.

Both initialFailure and finalFailure Signals have the name of the failed SignalSet as
their signal_set_name field so that recipients can determine which SignalSet the
failure corresponds to.

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-13

2-14

set_completion_status

This method is used to provide the Activity’s completion status to the SignalSet during
its generation of Signals, such that it can use the status to determine whether or not the
Activity is completing when it produces Signals.

get_completion_status

This returns the Activity’s completion status as the SignalSet has recorded it (and as it
may have been modified during Signal processing). If the SignalSet has not generated
any Signals (i.e., isinactive), then SignalSetlnactive is thrown.

signal_set name

Returns the name of this SignalSet. These names must be unique, and adhere to the
following naming convention; <domain>.<company>.<module>.<...>; so, for example,
“com.ibm.fred.otssignals.”

get_signal

Returns the Signal to be sent to the Action objects registered for this signal set. The
Signal returned may depend upon the responses received from Actions that have been
sent previous signals. If nil isreturned, or the boolean output parameter lastSignal is true,
then this indicates that no other signals are to be sent and the Signal Set will not be
asked for further Signals. It is therefore valid for a SignalSet to indicate no further
Signals are available either through lastSignal or returning nil. Whenever either of these
conditions is encountered, the coordinator must not call the SignalSet again.

set_response

This method is called to notify the SignalSet of the response (the Outcome) from the
Action object. It is valid for the Outcome parameter to be nil. The SignalSet returns a
boolean to indicate whether or not the Action that returned the response should be
informed of any further signals from this signal set; if the value is true, then the Action
continues to receive Signals for this SignalSet, otherwise the Action is disassociated
from the SignalSet (i.e., thisis equivalent to it being removed). If nextSignal istrue,
then no further work with the current Signal should be performed and the registered
Actions should be sent the next Signal belonging to this Signal Set. For example, if an
Action returns a failure condition on some Signal (say “prepare”), which indicates that it
is pointless to send further signals of this type to other Actions, nextSignal would be
set to true. The next signal obtained from get_signal may then be different from that
which would have been obtained if no failure condition had been observed. If
get_signal has not yet been called, then SignalSetinactive will be thrown.

get_outcome

Returns the final outcome of the SignalSet; it is vaid for this value to be nil. If the
SignalSet has started producing Signals but not finished producing them, then the
SignalSetActive exception will be thrown.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

set_activity _coordinator

This method is used by the ActivityCoordinator to pass a reference to itself to the
SignalSet. The SignalSet can then use this to obtain references to all registered
Actionsin order to satisfy persistence requirements, for example, and optimizations such
as one-phase commit. For example, consider the case of atwo-phase commit SighalSet:
once prepare Signals have been sent and acknowledged successfully by Actions, the
service needs to make those Action references persistent (c.f., the transaction service
intentions list). If the SignalSet has aready been asked for its first Signal, then the
SignalSetActive exception will be thrown, and the coordinator reference will be
ignored.

destroy

This method is invoked when the SignalSet is no longer required by the Activity
service. If the SignalSet has aready been destroyed, or is being destroyed, then the
AlreadyDestroyed exception will be thrown. Any exception thrown will not affect
the outcome of the activity.

2.2.2 SubordinateSgnal Set Interface

interface SubordinateSignalSet : SighalSet

{
void set_signal (in Signal sig);
Outcome get_current_outcome () raises(SignalSetinactive);

b

A domain that contains an interposed subordinate ActivityCoordinator can support
Actions registering at that subordinate ActivityCoordinator with an interest in, say,
SignalSet “X.” The subordinate ActivityCoordinator must use a specialized
implementation of X that supports a SubordinateSignalSet interface.

set_signal

Sets the Signal to be sent to the Action objects registered for this
SubordinateSignalSet. This method is called by a subordinate ActivityCoordinator
when it receives a Signal from its superior. The subordinate ActivityCoordinator
distributes this Signal to each appropriate Action and passes each Action Outcome back
to the SubodinateSignalSet viathe set_response method. The
SubordinateSignalSet produces a combined Outcome for the set Signal and thisis
returned by the subordinate ActivityCoordinator to its superior. Any system
exceptions raised by the SubordinateSignalSet should be converted to an
ActionError by the subordinate ActivityCoordinator.

get_current_outcome

Returns an intermediate outcome of the SubordinateSignalSet. This may be called
after the processing of each Signal and is used by a subordinate ActivityCoordinator
to obtain an Outcome to return to its superior in response to a received Signal. If the
SignalSet has not been initialized, for example by a call to set_signal, then the
SignalSetlnactive exception will be thrown.

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-15

2-16

2.2.3 Action Interface

interface Action

{

Outcome process_signal(in Signal sig) raises(ActionError);

void destroy() raises(AlreadyDestroyed);
h

Instances of the Action interface may be registered with running Activities, such that
when the Activities require Signal processing, the registered Actions will be invoked.
When an Action isinvoked, it is passed a Signal object that can be used to do application
specific work.

An Action may receive many different Signals from different SignalSets.

process signal

This method is invoked by the Activity service during signal processing. The Action
returns an Outcome to indicate the outcome of the processing operation.

destroy

This method is invoked when the Action is no longer required by the Activity service
(e.g., because the Activity it is registered with has completed). This method is only called
on Actions that did not register with the org.omg.CosActivity.Synchronization
SignhalSet. An Action may determine that it is no longer required by the activity it has
been registered with before destroy is called. It is therefore legal for an Action to remove
itself before this method has been invoked by the activity. As a result, the service
implementation will ignore OBJECT_NOT_EXIST. It is implementation dependant
as to the result of receiving other system exceptions, but they can have no affect on the
completed activity.

2.2.4 ActivityToken Interface

interface ActivityToken
{
ActivityContext get_context ();
void destroy() raises(AlreadyDestroyed);

|3

In order to alow for efficient implementations of inter- and intra- process Activity
coordination and control, the Activity Service provides two different representations for
the ActivityContext. When an Activity is suspended from an active thread, an
ActivityToken is returned which is a handle to the activity context and is only valid
within the obtaining execution domain. This can later be used to resume the Activity on
the same, or other thread. The ActivityToken isimplicitly associated with a single
Activity, and thus the context it represents can be obtained from it. Thisis preferable to
having to deal with the entire ActivityContext when suspending and resuming in a
local environment.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

get_context

Returns the ActivityContext represented by this ActivityToken. If the token was
obtained by acall to CosActivity::suspend_all, then the entire hierarchy context will
be returned, otherwise only the current context.

destroy

This method is invoked when the ActivityToken is no longer required by the Activity
service. If the ActivityToken has already been destroyed, or is being destroyed, the
AlreadyDestroyed exception will be thrown. Any exception thrown will have no
affect on the activity’s outcome.

2.2.5 ActivityCoordinator Interface

interface ActivityCoordinator
{
Outcome complete_activity(in string signal_set_name,
in CompletionStatus cs)
raises(ActivityPending, ChildContextPending,
SignalSetUnknown, ActivityNotProcessed);
Outcome process_signal_set(in string signal_set_name,
in CompletionStatus cs)
raises(SignalSetUnknown, ActivityNotProcessed);

void add_signal_set (in SignalSet signal_set)
raises(SignalSetAlreadyRegistered);

void remove_signal_set (in string sighal_set_name)
raises(SignalSetUnknown);

void add_action(in Action act, in string signal_set_name,
in long priority) raises(SignalSetUnknown);
void remove_action(in Action act, in string signal_set_name)
raises(ActionNotFound);

void add_actions(in ActionSeq acts, in string signal_set_name,
in long priority) raises(SignalSetUnknown);
ActionSeq remove_actions(in ActionSeq acts, in string signal_set_name);

void add_global_action(in Action act, in long priority);
void remove_global_action(in Action act) raises(ActionNotFound);

long get_number_registered_actions(in string signal_set_name)
raises(SignalSetUnknown);
ActionSeq get_actions(in string signal_set_name)
raises(SignalSetUnknown);
ActivityCoordinator get_parent_coordinator ();
Globalld get_global_id ();
Status get_status ();

Status get_parent_status ();
string get_activity_name ();

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-17

2-18

boolean is_same_activity (in ActivityCoordinator ac);
unsigned long hash_activity ();

void destroy() raises(AlreadyDestroyed);

h

The ActivityCoordinator is responsible for coordinating the interactions between
Activities through Signals, Signal Sets, and Actions (i.e., in the model presented earlier it
“ties’” up the Actions of Activities).

It is not strictly necessary for an implementation of the Activity Service to create an
ActivityCoordinator prior to distributing a context between execution environmentsin
which it was begun. Implementations of the Activity Service may restrict the use of the
ActivityCoordinator in certain environments, such as a light-weight client.

Each Activity may be managed by at most one ActivityCoordinator.

Implementations of the Activity Service may use interposition to reduce the number of
network messages required to complete an activity.

Once the ActivityCoordinator has used al of the Signals generated by the SignalSet,
it may invoke the destroy operation on all registered Actions, including those that may
have been registered with other SignalSets and hence not received Signals during
Activity termination.

complete_activity

Thisinstructs the ActivityCoordinator to complete the Activity using the specified
SignalSet when sending signals to registered Actions, with the provided completion
status. If the SignalSet is unknown, the SignalSetUnknown exception will be
raised; it is valid for the specified SignalSet to be null.

If an Action throws the ActionError or System exception, then it is dependent upon the
SignalSet implementation as to whether the ActivityCoordinator stops sending
signals to other registered Actions; this may depend upon the type of Signal that was
being processed at the time the exception occurred.

If the Action throws ActionError or any system exception, then this may be mapped
into either the pre-defined Outcomes “ ActionError” or “ ActionSystemException”
respectively and passed to the SignalSet. For system exceptions, the exception is also
passed in the application_specific_data portion of the Outcome.

If the ActivityCoordinator is currently processing Signals when complete_activity
isinvoked, or has already completed, the INVALID_ACTIVITY exception is thrown.
Successful completion of this method causes the Outcome, if any, of the SignalSet
processing to be returned. It is valid for this return value to be nil. It isinvalid to attempt
to explicitly use the Synchronization or ChildLifetime SignalSets, and
BAD_OPERATION will be thrown under these circumstances. The pre-defined
SignalSets Synchronization and ChildLifetime will be automatically invoked during
Activity completion if Actions have registered in them.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

If there are any encompassed active or suspended Activities or transactions, and the
completion status is CompletionStatusSuccess, then ChildContextPending is
raised. If the completion status is CompletionStatusFail or
CompletionStatusFailOnly, any encompassed active or suspended Activities will
have their completion status set to CompletionStatusFailOnly and transactions will
be marked as rollback_only.

If the thread from which the complete_activity call is made is not the only thread on
which the Activity is active, then the ActivityPending exception is raised. It is
recommended that this operation not be called directly.

The ActivityNotProcessed exception is raised in the event that the signals required
to complete this operation could not be produced.

process signal_set

This instructs the ActivityCoordinator to use the specified SignalSet when sending
signals to registered Actions, with the provided completion status; this method cannot be
used to complete the Activity, and complete_activity should be used instead. If the
SignalSet is unknown the SignalSetUnknown exception will be raised; it is valid
for the specified SignalSet to be null.

If an Action throws the ActionError or a System Exception, then it is dependent upon
the SignalSet implementation as to whether the ActivityCoordinator stops sending
signals to other registered Actions. This may depend upon the type of Signal that was
being processed at the time the exception occurred.

If the Action throws ActionError or any system exception, then this may be mapped
into either the pre-defined Outcomes “ ActionError” or “ ActionSystemException”
respectively and passed to the SignhalSet; for system exceptions, the exception is also
passed in the application_specific_data portion of the Outcome.

If the ActivityCoordinator is currently processing Signals when
process_signal_set isinvoked, or has already completed, the
INVALID_ACTIVITY exception is thrown. Successful completion of this method
causes the Outcome, if any, of the SignalSet processing to be returned. It is valid for
this return value to be nil. It isinvalid to attempt to explicitly use the Synchronization or
ChildLifetime SignalSets, and BAD_OPERATION will be thrown under these
circumstances. It is recommended that this operation not be called directly.

The ActivityNotProcessed exception is raised in the event that the signals required
to complete this operation could not be produced.

add_signal_set

This method registers the specified SignalSet with the ActivityCoordinator. If the
SignalSet has already been registered, then the SighalSetAlreadyRegistered
exception will be raised. If the ActivityCoordinator isin use (i.e., is processing
Signals or has completed), then the INVALID_ACTIVITY exception is thrown.

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-19

2-20

remove _signal_set

This method removes the specified SignalSet from the ActivityCoordinator. If the
Activity has begun completion, has completed, or is in the process of using the specified
SignalSet, then the INVALID_ACTIVITY exception is thrown. If the SignalSet is
not known, then SignalSetUnknown will be raised. It isinvalid to attempt to remove
the pre-defined SignalSets org.omg.CosActivity.Synchronization and
org.omg.CosActivity.ChildLifetime, and BAD_OPERATION will be thrown.

add_action

This method registers the specified Action with the ActivityCoordinator and
SignalSet such that when a Signal that is a member of the SignalSet is sent, the
Action will be invoked with that Signal. If multiple Actions are registered, then priority
may be used to place an order on how they will be invoked when signals are sent: higher
priority Actions will occur first in the Action list, and hence be invoked before other,
lower priority, Actions. The priority value must be a positive value; a value of zero
means that the Activity Service implementation is free to place the Action at any point in
the Action list. If the SignalSet is not known about, then the SignalSetUnknown
exception is thrown. If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown. If the specified Action is registered
multiple times for the same SignalSet, then it will be invoked multiple times with the
Signals from that SignalSet.

add_actions

This method registers a number of Actions with the ActivityCoordinator; such
Actions are assumed to be already prioritized within the sequence. If multiple Actions
are registered, then priority may be used to place an order on how they will be invoked:
higher priority numbers will be invoked before lower priority numbers. The priority
value must be a positive value; a value of zero means that the Activity Service
implementation is free to place the Action at any point in the Action list. If the
SignalSet is not known about, then the SighalSetUnknown exception is thrown. If
the Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown. If the specified Action is registered multiple times for the same
SignalSet, then it will be invoked multiple times with the Signals from that Signal Set.

add_global_action

This method registers the specified Action with the ActivityCoordinator such that
when any Signal is sent, the Action will be invoked with that Signal (i.e, the Action is
effectively registering interest in all possible SignalSets). If multiple Actions are
registered, then priority may be used to place an order on how they will be invoked:
higher priority numbers will be invoked before lower priority numbers. The priority
value must be a positive value; a value of zero means that the Activity Service
implementation is free to place the Action at any point in the Action list. If the Activity
has begun completion, or has completed, then the INVALID_ACTIVITY exception is
thrown.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

remove_action

Removes the interest relationship between the specified Action and the named
SignalSet. No further Signals from the named SignalSet will be sent to the specified
Action. If signal_set_name is specified as an empty string, then the Action will be
sent no further Signals from any SignalSet. If the Action has not previously been
registered with the coordinator, then the ActionNotFound exception will be thrown. I
the Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

remove_actions

Removes the interest relationship between the specified Actions and the named
SignalSet. No further Signals from the named SignalSet will be sent to the specified
Actions. If signal_set_name is specified as an empty string, then the Actions will be
sent no further Signals from any SignalSet. If any of the Actions have not previously
been registered with the coordinator, then it will return references to them after removing
all other Actions in the sequence; otherwise, nil will be returned. If the Activity has
begun completion, or has completed, then the INVALID_ACTIVITY exception is
thrown.

remove _global _action

This method removes the specified Action from the ActivityCoordinator. If the Action
has not previously been registered with the coordinator, then it will throw the
ActionNotFound exception. If the Activity has begun completion, or has completed,
then the INVALID_ACTIVITY exception is thrown.

get_number_registered_actions
Returns the number of Actions that have been registered with the specified SignalSet.

get_actions
Returns all the Actions that have been registered with the specified SignalSet.

get_parent_coordinator
Returns areference to the ActivityCoordinator’s parent, or null if this coordinator has

no parent (i.e., is at the root of the Activity hierarchy).

get_global_id
Returns the Globalld for the Activity.

get_status
Returns the current status of the associated Activity.

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-21

2-22

get_parent_status

Either returns the status of the target objects parent Activity, or the target object’s status
if it istop-level (i.e., has no parent).

get_activity_name

This operation returns a printable string describing the activity. This value should only be
used for debugging or tracing purposes.

hash_activity

Returns a hash code for the activity associated with the target object. Each
ActivityCoordinator has a single hash code. Hash codes for Activities should be
uniformly distributed.

is same_activity

Returns true if, and only if, the target object and the parameter object both refer to the
same activity.

destroy

This method is invoked when the ActivityCoordinator is no longer required by the
Activity service. If the ActivityCoordinator has aready been destroyed, or is being
destroyed, then the AlreadyDestroyed exception will be thrown. Any exception
thrown by destroy will not affect the outcome of the activity.

2.2.6 PropertyGroup

interface PropertyGroup

{

readonly attribute property_group_name;

void completed();
void suspended();
void resumed();

void destroy() raises(AlreadyDestroyed);
b

The PropertyGroup interface has the same consideration as the general Activity
Service interfaces, in that it attempts to be a framework from which concrete
implementations can be derived. Typically a PropertyGroup implementation will be a
mechanism for an application to distribute context information that can affect the
execution of that application in the distributed environment. The distributed environment
throughout which the application executes needs to have an implementation of the
required PropertyGroup in order for the application properties to be accessed. Thisis
a requirement that must be resolved at application deployment time, and is outside the
scope of this specification.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

2

January 2005

If the Activity Service has several PropertyGroupManagers registered with it, then a
PropertyGroup will be created for each one when an Activity is begun. The
PropertyGroups need to be informed when the Activity completes so they can perform
any necessary clean-up before the Activity Service deletes them.

They may, for example, pass objects by reference rather than by value and so may need
to clean up those objects. If an Activity is suspended while a client has a reference to one
or more of its PropertyGroups, then these PropertyGroups should be informed that
they no longer represent the currently active Activity. The behavior of the
PropertyGroup implementation under these circumstances has to be defined by the
PropertyGroup implementation.

The implementations of PropertyGroups may restrict the ability for the properties to
be transmitted to or used in other execution environments; at a minimum, it can be used
within the creating thread.

A PropertyGroup represents properties as a tuple-space of attribute-value pairs.

property_group_name
This is the name of the PropertyGroup.

completed

This method is called by the Activity as part of its completion process to give the
PropertyGroup the opportunity to perform any necessary clean-up work. The Activity
with which this PropertyGroup is associated is not active on the thread when this call
is made. Any parent Activity will then become active.

suspended

This method is called to inform the PropertyGroup that the Activity it represents has
been suspended. The Activity with which this PropertyGroup is associated is still
active on the thread when this call is made, but will be removed immediately after all
suspended methods of registered PropertyGroups have been called. Any parent
Activity will then become active.

resumed

This method is called to inform the PropertyGroup that the Activity it represents has
been resumed. The Activity with which this PropertyGroup is associated is already
resumed on the thread when this call is made.

destroy

This method is invoked when the PropertyGroup is no longer required by the Activity
service. If the PropertyGroup has already been destroyed, or is being destroyed, then
the AlreadyDestroyed exception will be thrown. Exceptions thrown by destroy have
no affect on the outcome of an activity.

Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-23

2-24

2.2.7 PropertyGroupAttributes

interface PropertyGroupAttributes
{
string get_attribute (in string name) raises(NoSuchAttribute);
void set_attribute (in string name, in string value)
raises(AttibuteAlreadyExists);
void replace_attribute (in string name, in string value);

b

An instance of the PropertyGroupAttributes is passed as a parameter to the
register_property_group method of CosActivityAdministration::Current to
set/query the behavior of the registered PropertyGroup for the duration of its
registration.

Pre-defined attribute names and their associated values include:

® cacheable: on input, if set to true, then this informs the Activity Service of the
intention of the PropertyGroup implementation to cache objects in downstream
servers.

® max_send_size and max_receive_size: on output this defines the maximum
size of the context data the Activity Service will send or receive on behalf of the
PropertyGroup. The PropertyGroupManager is not required to use this
information.

®* marshal_response_update: indicates whether or not the
PropertyGroupManager should be called when an outbound response is
marshalled. A value of true indicates that the context for the managed
PropertyGroup should be updated on a response. A value of false indicates that
the context for the managed PropertyGroup is not updated on a response so the
PropertyGroupManager is not called. The default value is false. It may be
preferable from either a security or a performance point of view not to transmit
server context back to a client with a response.

®* unmarshal_response_update: indicates whether or not the
PropertyGroupManager should be called when an inbound response is
unmarshalled. A value of true indicates that the context for the managed
PropertyGroup should be updated by the response. A value of false indicates that
the context for the managed PropertyGroup is not updated by the response so the
PropertyGroupManager is not called. The default value is false. It may be
preferable from either a security or a performance point of view not to allow the
local context to be updated by changes made in a downstream node.

Note — An implementation of PropertyGroupAttributes may use an implementation
of the OMG's Property Service specification.

get_attribute

If the specified attribute exists, then its value is returned. This value may be nil. If the
attribute does not exist, then the NoSuchAttribute exception is thrown.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

set_attribute

If the specified attribute does not exist, then it is created with the specified value, which
may be nil. Otherwise the AttributeAlreadyEXists exception is thrown.

replace_attribute

If the specified attribute does not exist, then it is created with the specified value, which
may be nil. If the attribute already exists, its current value is set to that provided.

2.2.8 PropertyGroupManager

interface PropertyGroupManager

{
PropertyGroup create(in CosActivity::PropertyGroup parent,
in CosActivity::Globalld gid);

PropertyGroupldentity marshal_request(in CosActivity::PropertyGroup pg);
PropertyGroupldentity marshal_response(in CosActivity::PropertyGroup pg);

PropertyGroup unmarshal_request(in CosActivity::PropertyGroupldentity mpg,
in CosActivity::PropertyGroup pg,
in CosActivity::PropertyGroup parent,
in CosActivity::Globalld gid);
void unmarshal_response(in CosActivity::PropertyGroupldentity mpg,
in CosActivity::PropertyGroup pg);

void destroy() raises(CosActivity::AlreadyDestroyed);
h

A PropertyGroup implementation registers a named PropertyGroupManager with
the Activity Service. The registered manager understands how to create a specialized
instance of the PropertyGroup and how to marshal/unmarshal its context, which is
propagated as part of the Activity service context. A PropertyGroupManager must be
registered with the Activity service in each domain for each type of PropertyGroup
that is accessed viathe get_property_group method of the Current interface.

create

Returns a reference to a new instance of the PropertyGroup speciaization. This
method is called by the Activity Service when a new Activity is started. A parent of nil
indicates that this is the top most Activity. The gid is that of the ActivityGroup that is
being begun. It is implementation dependent as to whether or not the Activity active on
the thread when the create() method is called.

marshal_request

Returns a serialized form of the PropertyGroup appropriate for propagating within the
Activity service context on a request. It isinvalid for the parameter to be nil.

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-25

2-26

marshal_response

Returns a serialized form of the PropertyGroup appropriate for propagating within the
Activity service context on a response. It is invalid for the parameter to be nil.

unmarshal_request

Returns a reference to a PropertyGroup specialization created from the specified
seridlized form. It isinvalid for the parameter to be nil. If the PropertyGroup is not
known by the importing domain, then it is ignored.

® pgisareference to the PropertyGroup context already held by the Activity if it
has visited the server previously (in which case the PropertyGroup context is
being updated rather than created).

® parent is areference to the PropertyGroup parent (if any) so that the
PropertyGroupManager can ensure correct chaining of nested contexts. The
Activity is identified by the gid parameter.

unmarshal_response

This method updates the specified PropertyGroup with the specified serialized form
received on aresponse. It isinvalid for this parameter to be nil.

destroy

This method is invoked when the PropertyGroupManager is no longer required by
the Activity service. If the PropertyGroupManager has already been destroyed, or is
being destroyed, then the CosActivity::AlreadyDestroyed exception will be thrown.
Exceptions thrown by destroy have no affect on the outcome of an activity.

2.2.9 CosActivity::Current

interface Current : CORBA::Current
{
void begin(in long timeout) raises(InvalidState, TimeoutOutOfRange);
Outcome complete() raises (NoActivity,
ActivityPending, ChildContextPending, ActivityNotProcessed);
Outcome complete_with_status(in CompletionStatus cs)
raises (NoActivity, ActivityPending, ChildContextPending,
InvalidState, ActivityNotProcessed);

void set_completion_status (in CompletionStatus cs)
raises (NoActivity, InvalidState);
CompletionStatus get_completion_status () raises(NoActivity);

void set_completion_signal_set (in string signal_set_name)
raises (NoActivity, SignalSetUnknown);
string get_completion_signal_set () raises(NoActivity);

ActivityToken suspend() raises(InvalidParentContext);

void resume(in ActivityToken at)
raises (InvalidToken, InvalidParentContext);

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

ActivityToken suspend_all();
void resume_all(in ActivityToken at)
raises (InvalidToken, InvalidParentContext);

Globalld get_global_id ();

Status get_status();
string get_activity_name ();

void set_timeout (in long seconds) raises(TimeoutOutOfRange);
long get_timeout ();

ActivityContext get_context();
void recreate_context(in ActivityContext ctx) raises(InvalidContext);

ActivityCoordinator get_coordinator();
ActivityCoordinator get_parent_coordinator();

Activityldentity get_identity ();
ActivityToken get_token ();

PropertyGroup get_property_group(in string name)
raises(PropertyGroupUnknown, NoActivity);

h

The Activity Current interface provides operations that allow the demarcation of
Activity scope. In addition, it provides interfaces for coordinating the Actions of the
current Activity. Once an Activity begins to complete, references to it, or information
about it, is no longer available through Current. The Activity Service specific Current
object may be obtained viaresolve_initial_references with the name
“ActivityCurrent.” As can be seen from the IDL, there are 3 different Current
implementations. CosActivity’s Current is the base Current;
CosActivityAdministration’s Current inherits from this;
CosActivityCoordination’s Current inherits from CosActivityAdministration’s
Current. The call to resolve_initial_references returns a reference to
CosActivity::Current, and the application must narrow appropriately to the other
Current implementations.

Note — Some implementations of the service may wish to restrict which
implementations of Current are available. For example, in a pure client environment,
only the CosActivity::Current implementation makes sense. Therefore, an
implementation need not make all such objects available in all environments and
resolve_initial_references will behave accordingly.

begin

Creates a new Activity and associates it with the current thread. An instance of a new
PropertyGroup is also created. If the current thread is already associated with an
Activity, the newly created Activity will be nested within it. Otherwise, the Activity

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-27

2-28

exists at the top level. If the parent Activity has been marked as
CompletionStatusFailOnly, then the InvalidState exception will be thrown. If it is
completing, or has completed, the INVALID_ACTIVITY exception will be thrown.

The timeout parameter is used to control the lifetime of the Activity. If the Activity has
not completed by the time timeout seconds elapses, then it is subject to being completed
with the CompletionStatusFail status. The timeout can have the following possible
values:

® any positive value: the Activity must complete within this number of seconds.

® -1: the Activity will never be completed automatically by the Activity Service
implementation (i.e., it will never be considered to have timed out).

® 0: thelast value specified using the set_timeout method is used. If no prior cal to
set_timeout has occurred for this thread, or the value returned is O, then it is
implementation dependent as to the timeout value associated with this Activity.

Any other value results in the TimeoutOutOfRange exception being thrown.

complete

Causes the Activity associated with the current thread to complete with its current
CompletionStatus, or CompletionStatusFail if none has been specified using
set_completion_status. If aregistered SignalSet has been provided, then it will be
used for any registered Actions, and they will be invoked appropriately by the Activity’s
coordinator. If the Activity is nested within a parent, then that parent Activity becomes
associated with the thread. If there are any encompassed active or suspended Activities
or transactions, and the completion status is CompletionStatusSuccess, then
ChildContextPending is raised; the application must then either complete the
outstanding nested contexts or force the Activity to end by setting the
CompletionStatus to either CompletionStatusFail, CompletionStatusFailOnly,
and then calling complete again.

If the completion status is CompletionStatusFail, or CompletionStatusFailOnly,
any encompassed active or suspended Activities will they have their completion status
set to CompletionStatusFailOnly and transactions will be marked rollback_only.

If there is no Activity associated with the current thread, the NoActivity exception is
raised and no other action is taken. Only the Activity originator may call complete().
The originator is defined as the execution environment in which the Activity is rooted.

If acall to complete the Activity is made from an execution environment into which the
Activity was imported, the NO_PERMISSION exception is raised.

If the thread from which the complete() call is made is not the only thread on which the
Activity is active, then the ActivityPending exception is raised. The application
response should be to try again later when any asynchronous work on other threads has
been suspended. This method returns an Outcome (or null), which can be used to
interpret the final outcome of the Activity.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

2

If no completion SignalSet has been set by the application, then the Outcome returned
will be null. If the Activity cannot complete in the status required, then the
ACTIVITY_COMPLETED exception will be thrown.

If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown.

The ActivityNotProcessed exception is raised in the event that the signals required
to complete this operation could not be produced, and the Activity’s final completion
status is StatusError.

complete_with_status

Causes the Activity associated with the current thread to complete and use the
CompletionStatus provided if this does not conflict with any that have previously
been set using set_completion_status; thisislogically equivalent to calling
set_completion_status followed by the complete() method.

If aregistered SignalSet has been provided, then it will be used for any registered
Actions, and they will be invoked appropriately by the Activity’s coordinator.

If the Activity is nested within a parent, then that parent Activity becomes associated
with the thread.

If there are any encompassed active or suspended Activities or transactions, and the
completion status is CompletionStatusSuccess, then ChildContextPending is
raised; the application must then either complete the outstanding nested contexts or force
the Activity to end by setting the CompletionStatus to either
CompletionStatusFail, CompletionStatusFailOnly.

If the completion status is CompletionStatusFail or CompletionStatusFailOnly,
any encompassed active or suspended Activities will they have their completion status
set to CompletionStatusFailOnly and transactions will be marked rollback_only.

If there is no Activity associated with the current thread, the NoActivity exception is
raised and no other action is taken. Only the Activity originator may call complete().
The originator is defined as the execution environment in which the Activity is rooted.

If acal to complete the Activity is made from an execution environment into which the
Activity was imported, the NO_PERMISSION exception is raised.

If the thread from which the complete_with_status() call is made is not the only
thread on which the Activity is active, then the ActivityPending exception is raised.
The application response should be to try again later when any asynchronous work on
other threads has been suspended. This method returns an Outcome (or null) which can
be used to interpret the final outcome of the Activity.

If no completion SignalSet has been set by the application, then the Outcome returned
will be null.

If the Activity cannot complete in the status required, then the
ACTIVITY_COMPLETED exception will be thrown.

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-29

2-30

If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown.

The ActivityNotProcessed exception is raised in the event that the signals required to
complete this operation could not be produced, and the Activity’s final completion status
is StatusError.

set_completion_status

This method can be used to set the CompletionStatus that will be used when the
Activity completes. This method may be called many times during the lifetime of an
Activity in order to reflect changes in its completion status as it executes.

If this method is not called during the Activity’s lifetime, the default statusis
CompletionStatusFail. When the Activity completes, the CompletionStatus is
given to the registered SignalSet (if any) so that it can determine the sequence of
Signals to produce.

If the CompletionStatus is CompletionStatusFailOnly and an attempt is made to
change the status to anything other than CompletionStatusFailOnly, the
InvalidState exception will be thrown. If the Activity has begun completion, or has
completed, then the INVALID_ACTIVITY exception is thrown.

get_completion_status
Returns the completion status currently associated with the target Activity. Thisis the

last valid value to set_completion_status, or CompletionStatusFail if none has
been provided.

set_completion_signal_set
This method can be used to set the SignalSet that will be used when the Activity

completes. If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown.

get_completion_signal_set
Returns the Signhal Set currently associated with the target Activity that will be used

when it completes. This will be the last valid SignalSet given to
set_completion_signal_set, or an empty string if one has not been provided.

suspend

Suspends the Activity associated with the current thread (and any related transactions)
and any nested child scopes. An ActivityToken representing the Activity that was
associated with the current thread prior to this cal is returned. The context the handle
represents has knowledge of the nested scopes that were active (and also suspended)
when the Activity was suspended.

If the current thread is not associated with an Activity or a transaction, then nil is
returned from this operation.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

2

If the current thread is only associated with atransaction, then the ActivityContext will
reflect this.

If the Activity is nested within a parent Activity, then the parent Activity is associated
with the current thread, otherwise the current thread has no Activity associated with it.

If the Activity contains transactions and is also nested within another transaction, then
the InvalidParentContext exception will be thrown, since it is not possible to
suspend only parts of an OTS transaction hierarchy (i.e., the entire transaction hierarchy
will be suspended from the invoking thread’s context with the result that previously
transactional Activities will no longer have transactions within them). The returned
ActivityToken may be used to resume the suspended Activity on any thread but may
not be used to resume all.

resume

Resumes the Activity and any nested scopes represented by the ActivityToken. The
current thread becomes associated with the Activity (or transaction) represented by the
token. If the ActivityToken does not represent a valid Activity (or is nil), then the
InvalidToken exception is raised and no new association is made on the thread. The
context into which an Activity is resumed must be the same as the context from which it
was suspended, otherwise an InvalidParentContext exception is raised.

suspend_all

Suspends all the scopes (transaction and Activity) associated with the current thread. An
ActivityToken, representing the entire thread scope structure that was associated with
the current thread prior to this call is returned. On completion of this method no Activity
or transaction is associated with the thread. The ActivityToken returned may be
subsequently used on aresume_all operation but it may not be used to simply
resume.

resume_all

Resumes the scopes represented by the ActivityToken that must have been previously
obtained from asuspend_all operation. If the ActivityToken does not represent a
valid set of scopes (or is nil), then the InvalidToken exception is raised and no new
association is made on the thread. If there is currently an Activity or transaction
associated with the invoking thread, then the InvalidParentContext exception is
raised.

get_token

Returns the Activity Token for the Activity currently associated with the calling thread,
or null if there is no associated Activity. This operation returns the token that would be
returned if suspend had been called (i.e., this token can only be used in a resume
operation).

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-31

2-32

get_global_id

Returns the Globalld for the Activity, or nil if there is no Activity associated with the
invoking thread.

get_status

Returns the current status of the Activity. If there is no Activity associated with the
calling thread, the StatusNoActivity value is returned. The effect of thisis equivalent
to performing the get_status operation on the corresponding ActivityCoordinator
object.

get_activity_name

If there is no activity associated with the calling thread, an empty string is returned.
Otherwise, this operation returns a printable string describing the activity. The effect of
this request is equivalent to performing the get_activity_name operation on the
corresponding ActivityCoordinator object.

set_timeout

This operation modifies a state variable associated with the target object that affects the
time-out period associated with the activities created by subsequent invocations of the
begin operation which have 0 specified as their timeout value. If the parameter has a non-
zero value n, then activities created by subsequent invacations of begin will be subject to
being completed if they do not complete before n seconds after their creation. The
timeout can have the following possible values:

® any positive value: the Activity must complete within this number of seconds.

® -1: the Activity will never be completed automatically by the Activity Service
implementation (i.e., it will never be considered to have timed out).

® 0: it isimplementation dependent as to the meaning of passing O as the value.

Any other value results in the TimeoutOutOfRange exception being thrown.

get_timeout

This operation returns the state variable associated with the target object that affects the
time-out period associated with activities created by calls to begin. This need not be the
time-out period associated with the current Activity, however.

get_context

Returns the ActivityContext of the Activity associated with the current thread. Returns
null if no Activity is associated with the current thread. The context represents the entire
Activity hierarchy (i.e., this operation is equivalent to calling get_context on an
ActivityToken returned by suspend_all).

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

January 2005

recreate_context

This method can be used by a domain to import from another domain a previously
received Activity context. An implementation of the Activity Service that supports
interposition uses recreate_context to create a new representation of the activity
context being imported, subordinate to the representation in ctx. If the context cannot be
recreated in its entirety (e.g., necessary transaction context information was not
propagated as well), or some other failure occurs, then InvalidContext will be thrown.

get_coordinator

Returns a reference to the current Activity’s ActivityCoordinator. Returns nil of no
Activity is associated with the current thread. If an ActivityCoordinator is not
supported in this domain, then NO_IMPLEMENT will be thrown by the service
implementation.

get_parent_coordinator

Returns a reference to the current Activity’s parent ActivityCoordinator. Returns nil if
the current Activity is top-level or no Activity is associated with the current thread.

get_identity

Returns the Activityldentity for the current Activity, or nil if no Activity is associated
with the current thread.

get_property_group

Returns the named PropertyGroup for this Activity. If the PropertyGroup is
unknown, then the PropertyGroupUnknown exception will be thrown. If thereis no
Activity associated with the calling thread, then the NoActivity exception will be
thrown.

2.2.10 CosActivityAdministration:: Current

interface Current : CosActivity::Current

{

void register_property_group(in string property_group_name,
in PropertyGroupManager manager,
in PropertyGroupAttributes attributes)
raises(PropertyGroupAlreadyRegistered);
void unregister_property_group(in string property_group_name)
raises(PropertyGroupNotRegistered);

register_property_group

Registers the specified PropertyGroupManager with the specified name. The Activity
Service uses the named PropertyGroupManager to create, marshal, and unmarshal
PropertyGroups. Any top-level Activity started by the invoking thread after this call

Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-33

2-34

has succeeded will create an instance of the registered PropertyGroup. If the
PropertyGroupManager has already been registered, then the
PropertyGroupAlreadyRegistered exception is thrown.

unregister_property_group

Unregisters the PropertyGroupManager with the specified name. Any new top-level
Activities started by this thread after the PropertyGroup has been unregistered will not
create PropertyGroups of this type. Existing Activities, or new Activities created as
children of existing Activities, are unaffected. If the named PropertyGroup is not
known, then the PropertyGroupNotRegistered exception is thrown.
PropertyGroupManagers must continue to function after they have been unregistered
to support Activities that are still using them.

2.2.11 CosActivityCoordination:: Current

CosActivityCoordination::Current : CosActivityAdministration::Current
{
CosActivity::Outcome broadcast(in string signal_set_name)
raises(CosActivity::SignalSetUnknown,
CosActivity::NoActivity, CosActivity::ActivityNotProcessed);

void add_signal_set (in CosActivity::SignalSet signal_set)
raises(CosActivity::SignalSetAlreadyRegistered,
CosActivity::NoActivity);
void remove_signal_set (in string signal_set_name)
raises(CosActivity::SignalSetUnknown,
CosActivity::NoActivity);

void add_action(in CosActivity::Action act, in string signal_set_name,
in long priority) raises(CosActivity::SignalSetUnknown,
CosActivity::NoActivity);
void remove_action(in CosActivity::Action act, in signal signal_set_name)
raises(CosActivity::ActionNotFound, CosActivity::NoActivity);

void add_actions(in CosActivity::ActionSeq acts, in string signal_set_name,
in long priority) raises(CosActivity::SignalSetUnknown,
CosActivity::NoActivity);
CosActivity::ActionSeq remove_actions(in CosActivity::ActionSeq acts,
in string signal_set_name)
raises(CosActivity::NoActivity);

void add_global_action(in CosActivity::Action act, in long priority)
raises(CosActivity::NoActivity);
void remove_global_action(in CosActivity::Action act)
raises(CosActivity::ActionNotFound, CosActivity::NoActivity);

long get_number_registered_actions(in string signal_set_name)
raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
ActionSeq get_actions(in string signal_set_name)
raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

January 2005

add_signal_set

This method registers the specified SignalSet with the ActivityCoordinator. If the
SignalSet has already been registered, then the SighalSetAlreadyRegistered
exception will be raised. If the ActivityCoordinator isin use (i.e., is processing
Signals), or has completed, then the INVALID_ACTIVITY exception is thrown. If
there is no Activity associated with the current thread, then the NoActivity exception
will be thrown.

remove_signal_set

This method removes the specified SignalSet from the ActivityCoordinator. If the
Activity has begun completion, has completed, or is in the process of using the specified
SignalSet, then the INVALID_ACTIVITY exception is thrown. If the SignalSet is
not known, then SignalSetUnknown will be raised. If there is no Activity associated
with the current thread, then the NoActivity exception will be thrown. It isinvalid to
attempt to remove any of the pre-defined SignalSets, and BAD_OPERATION will
be thrown.

add_action

Registers the specified Action with the ActivityCoordinator such that when the
Activity decides to send the specified Signal, the Action will be invoked with that Signal.
If multiple Actions are registered, then priority may be used to place an order on how
they will be invoked: higher priority numbers will be invoked before lower priority
numbers. The priority value must be a positive value; a value of zero means that the
Activity Service implementation is free to place the Action at any point in the Action list.
If the SignalSet is not known about, then the SignalSetUnknown exception is
thrown. If there is no Activity associated with the current thread, then the NoActivity
exception will be thrown. If the Activity has begun completion, or has completed, then
the INVALID_ACTIVITY exception is thrown. If the specified Action is registered
multiple times for the same SignalSet, then it will be invoked multiple times with the
Signals from that SignalSet.

add_actions

Registers a number of Actions with the ActivityCoordinator; such Actions are
assumed to be already prioritized within the sequence. If multiple Actions are registered,
then priority may be used to place an order on how they will be invoked: higher priority
numbers will be invoked before lower priority numbers. The priority value must be a
positive value; a value of zero means that the Activity Service implementation is free to
place the Action at any point in the Action list. If the SignalSet is not known about,
then the SignalSetUnknown exception is thrown. If there is no Activity associated
with the current thread, then the NoActivity exception will be thrown. If the Activity
has begun completion, or has completed, then the INVALID_ACTIVITY exception is
thrown. If the specified Action is registered multiple times for the same SignalSet, then
it will be invoked multiple times with the Signals from that SignalSet.

Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-35

2-36

add_global_action

This method registers the specified Action with the ActivityCoordinator such that
when any Signal is sent, the Action will be invoked with that Signal (i.e., the Action is
effectively registering interest in all possible SignalSets). If multiple Actions are
registered, then priority may be used to place an order on how they will be invoked:
higher priority numbers will be invoked before lower priority numbers. The priority
value must be a positive value; a value of zero means that the Activity Service
implementation is free to place the Action at any point in the Action list. If there is no
Activity associated with the current thread, then the NoActivity exception will be
thrown. If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown.

remove_action

Removes the interest relationship between the specified Action and the named
SignalSet. No further Signals from the named SignalSet will be sent to the specified
Action. If signal_set_name is specified as an empty string, then the Action will be
sent no further Signals from any SignalSet. If the Action has not previously been
registered with the coordinator, then the ActionNotFound exception will be thrown. If
there is no Activity associated with the current thread, then the NoActivity exception
will be thrown. If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown.

remove_actions

Removes the interest relationship between the specified Actions and the named
SignalSet. No further Signals from the named SignalSet will be sent to the specified
Actions. If signal_set_name is specified as an empty string, then the Actions will be
sent no further Signals from any SignalSet. If any of the Actions have not previously
been registered with the coordinator, then it will return references to them after removing
all other Actions in the sequence. Otherwise nil will be returned. If there is no Activity
associated with the current thread, then the NoActivity exception will be thrown. If the
Activity has begun completion, or has completed, then the INVALID_ACTIVITY
exception is thrown.

remove_global_action

This method removes the specified Action from the ActivityCoordinator. If the Action
has not previously been registered with the coordinator, then it will throw the
ActionNotFound exception. If there is no Activity associated with the current thread,
then the NoActivity exception will be thrown. If the Activity has begun completion, or
has completed, then the INVALID _ACTIVITY exception is thrown.

get_number_registered_actions

Returns the total number of Actions that have been registered with the
ActivityCoordinator. If there is no Activity associated with the current thread, then the
NoActivity exception will be thrown.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

get_actions

Returns all the Actions that have been registered with the ActivityCoordinator. If there
is no Activity associated with the current thread, then the NoActivity exception will be
thrown.

broadcast

Instructs the ActivityCoordinator to send the specified SignalSet to al of the
registered Actions. Once the Actions have processed the signal and returned outcome
Signals, it is up to the ActivityCoordinator to consolidate these individual outcomes
into a single outcome to return.

If there is no Activity associated with the current thread, then the NoActivity exception
will be thrown. This can be used to cause Signals to be sent to Actions at times other
than when the Activity completes. As such, the implementation of the Activity Service
must ensure that such Signals clearly identify that the Activity is not completing, and that
pre-defined SignalSets such as Synchronization, are not used. The result of using the
SignalSet is returned.

If an attempt is made to use the Synchronization or ChildLifetime SignalSets, then
BAD_OPERATION will be thrown and the ActivityCoordinator will not be called.

If the Activity has begun completion, or has completed, then the
INVALID_ACTIVITY exception is thrown.

The ActivityNotProcessed exception is raised in the event that the signals required
to complete this operation could not be produced.

2.2.12 Interposition

When an activity context is propagated, it can be imported by another Activity Service
implementation to create a proxy context within the new domain which refers to the
exporting domain. This interposition technique (supported by the
Current::recreate_context operation) allows the proxy domain to handle the
functions of an Activity Coordinator in the importing domain. These coordinators act as
subordinate coordinators.

Interposition allows cooperating Activity Services to share the responsibility for
completing an activity and can be used to minimize the number of network messages
sent during the completion process. An interposed coordinator registers as a participant
in the activity with the ActivityCoordinator identified in the ActivityContext of the
received request; it either registers as an Action, or registers an Action which can then
forward Signals to it. The relationships between coordinators in the activity form atree.
The root coordinator is responsible for completing the activity.

A subordinate ActivityCoordinator registers itself with its parent as an Action, with
an interest in the Synchronization SignalSet. An Action may be subsequently registered
with the subordinate ActivityCoordinator with an interest in a particular SignalSet
that is available to the root ActivityCoordinator. The subordinate
ActivityCoordinator must have a SubordinateSignalSet implementation available
to it and should register an Action with an interest in a SignalSet of the same name

January 2005 Additional Sructuring Mechanismsfor the OTS: Activity Service Interfaces 2-37

with its superior ActivityCoordinator. When the subordinate ActivityCoordinator
receives a Signal from its superior it calls the set_signal method on the
SubordinateSignalSet passing the Signal as a parameter. The subordinate must then
forward the Signal to any appropriate Action that registered with it (including other
subordinate ActivityCoordinators) and pass each Outcome received to the
SubordinateSignalSet.

The role of the SubordinateSignalSet is to combine the Outcomes produced into a
single Outcome that can be returned to the superior by the subordinate
ActivityCoordinator. Once a subordinate ActivityCoordinator has completed
distributing a received Signal, it should ask the SubordinateSignalSet for the next
signal in case the SubordinateSignalSet is able to produce another Signal,
independently of any superior SignhalSet, which the subordinate ActivityCoordinator
should distribute to any appropriate Actions. Any such Signals are produced as a
performance optimization by the SubordinateSignalSet and must not change the
Outcome that was produced as a result of the Signal received from the superior.

2.3 Distributing Context Information

2-38

The CORE specification must add to the IOP module the following new Serviceld:

module IOP
{ /DL

const Serviceld ActivityService = 16;
}

It is assumed that an appropriate Portable Interceptor will be used to deal with sending
and receiving activity context information; this will require the interceptor to un/marshal
the context from/into the correct position in the Service Context structure. If Portable
Interceptors are not used, then similar mechanisms must be used in order to ensure that
context information flows implicitly between execution environments. To ensure
interoperability between Activity Service implementations, mechanisms that do not rely
upon Portable Interceptors should behave in a similar way to an interceptor and encode
the context information appropriately.

It is the responsibility of the Activity Service implementation to register a client and
server side interceptor. This is achieved by calling:

® Portableinterceptor::ORBInitinfo::add_client_request_interceptor(in
ClientRequestinterceptor)

® Portablelnterceptor::ORBInitinfo::add_server_request_interceptor(in
ServerRequestinterceptor)

The interceptor is responsible for marshalling/lunmarshalling any Activity context
information at the appropriate interception points.

Policing the sending/receiving of Activity context information is dependent on the POA
attributes described in the next section.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

2.3.1 Activity Service POA Attributes

The Activity Service utilizes a POA policy to define characteristics related to activities.
Thispolicy is encoded in the IOR as atag component and exported to the client when an
object reference is created. This enables validation that a particular object is capable of
supporting the activity characteristics expected by the client.

typedef unsigned short ActivityPolicyValue;

const ActivityPolicyValue REQUIRES = 1;
const ActivityPolicyValue FORBIDS = 2;
const ActivityPolicyValue ADAPTS = 3;
const ActivityPolicyValue INTERNAL = 4;

const CORBA::PolicyType ActivityPolicyType = 58;

interface ActivityPolicy : CORBA::Policy
{

readonly attribute ActivityPolicyValue apv;

}

const IOP::Componentld TAG_ACTIVITY_POLICY = 37;

ActivityPolicy values are encoded in the TAG_ACTIVITY_POLICY component of the
IOR.

The semantics of these policies will now be described (in the following section the term
apv is the ActivityPolicyValue in the Activity component of the target object IOR).
Note that an apv of ADAPTS should always be treated by a client in the same way as an
IOR with no Activity component, in order to work with non-activity aware
environments.

Client-side

® |f apv is REQUIRES, then a method request must be sent with an Activity context.
If there is no Activity context, then the client-side Activity service interceptor must
raise the ACTIVITY_REQUIRED system exception and must not send the
request.

® |If apv is FORBIDS, then no Activity context is allowed to be sent. If there is an
Activity context active on the thread, then the client-side Activity service
interceptor must raise the INVALID_ACTIVITY system exception and must not
send the request.

® |If apv is ADAPTS, or if there is no ActivityPolicy, then an Activity context must
be sent if and only if an Activity context is associated with the thread of the caller.
This would include any requests to objects on a non-Activity aware ORB.

® |f apv isINTERNAL then a method request must be sent without an Activity
context regardless of whether it is made within the scope of an Activity or not.
Activity service implementation objects use this policy.

January 2005 Additional Sructuring Mechanismsfor the OTS: Distributing Context Information 2-39

2.4 TheUser's\View

2-40

Server-side

The server-side Activity service interceptor should behave as follows when processing
inbound requests:

* |f apv is REQUIRES, then any received Activity context must be associated with
the thread of execution. If no Activity context is received, the server-side Activity
service interceptor must throw the ACTIVITY_REQUIRED system exception,
thereby preventing the request from being dispatched.

* |f apv is FORBIDS, then the server-side Activity service interceptor is required to
check that no Activity context has been flowed with the request and to throw the
INVALID_ACTIVITY system exception if it has, thereby preventing the request
from being dispatched.

® |f apv is ADAPTS, or if there is no ActivityPolicy, then any received Activity
context must be associated with the thread of execution.

® |f apv isINTERNAL, any Activity context must be ignored. The client-side
behavior above means that the server should never have to deal with this situation.
Given that this situation constitutes a client-side error, an implementation may
throw a system exception if this happens.

The following UML diagram briefly illustrates the interactions between the various
participants within an Activity during completion.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

January 2005

service

High-level CosActivity::Cu Activity
rrent Coordinator

|SiqnalSet|

|
complete with_status

R

complete_activity() '
|

return outcome

>

set_completion_status()

get signd() |

|

>

proceﬁsl_si gnal()

set_response()

get_signal()

VY.V |

process_éi gnal()

T
set_response() i
|
|

\ 4

get_outcome() i
|
|

—>

return outcome

Figure2-2 Completing an Activity using Signal Sets and Actions.

2.4.1 Examples of Use

Using the Activity framework presented previously we wish to provide support for at
least the following types of transaction models:

* Workflow-like activities.

® Compensating Activity (Compensating Sphere) with nesting of Activities (spheres)

to give recovery behavior via compensation at all levels of nesting. Support for

Sagas as defined in the major section below.

Additional Sructuring Mechanismsfor the OTS The User’s View

2-41

In this section we shall give some brief examples of how these extended forms of
transactional activity can be supported. These are meant only as examples, and
implementors of the Activity Service framework presented within this specification are
not expected to provide them. The Signals and SignalSets described are also meant
only as examples.

Concrete examples of specific extended transaction models are provided within
Appendix D.

2.4.1.1 Workflow-like Coordination

The signal set required to coordinate the “workflow style” activities contains four signals
“start,” “start_ack,” “outcome,” and “outcome_ack.”

® dtart: signal is sent from a “parent” activity to a “child” activity (viaan Action), to
indicate that the “child” activity should start. The application_specific_data part
of the signal contains the information required to parameterize the starting of the
activity. Thisinformation is encoded in XML. As noted above, the recipient Action
is responsible for starting the activity.

® dtart_ack: signal is sent from a “child” activity to a “parent” activity, as the return
part of a“start” signal, to acknowledge that the “child” activity has started.

® outcome: signal is sent from a“child” activity to a“parent” activity, to indicate that
the “child” activity has completed. The application_specific_data part of the
signal contains the information about the outcome of the activity. This information
is encoded in XML.

® outcome ack: signa is sent from a “parent” activity to a “child” activity, as the
return part of an “outcome” signal, to acknowledge that the “parent” activity has

completed.
a:Activity | [b:Activity | [c:Activity | [d:Activity
“start”
“start_ack” >
“start”
“start_ack” >
“outcome”

“outcome_ack”

“outcome”
“outcome_ack”

“start”
“start_ack”

“outcome”
“outcome_ack” !

Figure 2-3 Example “Workflow style” activities.

2-42 Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

2

The interaction in Figure 2-3, is activity a coordinating the parallel execution of b and ¢
followed by d. For space considerations, the Actions that control the starting of activities
b, ¢ and d are not shown, and should be assumed to be implicit in the above diagram.

2.4.1.2 Compensating Activities

In this section we shall illustrate how coordination of transactional activities with
compensation for failures can be provided using the framework described. Consider the
sequence of transactions shown in Figure 1-3 on page 1-5, and assume that each
transaction boundary also represents a different activity. The termination of one
transaction is used as the driver to start another (perhaps compensating) transaction. We
shall assume the existence of a high-level scripting language with which long-running
applications can be constructed from short-duration transactions. The signal types
required are:

® dtart: asignal is sent from the terminating activity to the next activity to indicate
that it can begin execution. The application_specific_data part of the signal
contains the information required to parameterize the starting of the activity, such as
the state in which this activity has terminated (e.g., committed or rolled back). This
information is encoded in XML.

® start ack: signal is sent from a starting activity to the terminating activity, as the
return part of a “start” signal, to acknowledge that the activity has started.

Each activity/transaction may be started by an appropriate Action. Where necessary, the
application programmer will be required to implement compensating activities. For
example the application programmer must have the necessary knowledge to implement
t5(c) which compensates for t2. The application (or some high-level scripting language)
will tie together the individual transactional activities such that the ending of one causes
the start of another. It is this scripting that will drive the different start signal statesin the
case of activity failures. For example, if t4 fails then a Signal(start:rolledback) may be
sent to t5(c), whereas if t4 completed successfully a Signal (start:ok) may be sent from it
to t6.

Sub-activities (sub-transactions) (i.e., activities nested within other activities), would be
controlled in a similar manner to the workflow-like scheme presented previoudly.
Compensation would either be left to the enclosing activity or could be handled as
described above. If sub-activities are present, then additional signals will be required:

® outcome: signal is sent from a“child” activity to a“parent” activity, to indicate that
the “child” activity has completed. The application_specific_data part of the
signal contains the information about the outcome of the activity. This information
is encoded in XML.

® outcome _ack: signal is sent from a “parent” activity to a “child” activity, as the
return part of an “outcome” signal, to acknowledge that the “parent” activity has
completed.

January 2005 Additional Sructuring Mechanismsfor the OTS: The User’'sView 2-43

2-44

2.4.1.3 Two-phase Commit

The UML diagram below illustrates how the Activity Service could be used to
implement a two-phase commit protocol, as briefly described in Section 1.2, “Activity
Service Model,” on page 1-4. It is assumed that the process_signal_set method has
been invoked on the ActivityCoordinator:

Activity Synchronization Action 2PC Signal Set |Action | |Action|
Coordinator Signal Set ' '
|
set_completion_status()
get_signal()
“preComplete’
set_response(i
get_signal()
>
“prepare”
Set_response() >
>
“prepare’
>
Set_response()
get_signa() ’
>
“commit”
set_responsey) >
>
“commit”
Set_response() >
get_completion_status() ’
set_completion_status()
|
get sgd() |
“postClompIetef’
T
set_response() |
! get_outcome()
: >

Figure 2-4 Two-phase commit protocol with Signals, SignalSets and Actions.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

2.5 Thelmplementor’sView

2.5.1 Suspending Transactions

If CosTransactions::Current::suspend is used to suspend a transaction that has
nested Activities, then those Activities will not be suspended, since the OTS has no
knowledge of Activities. Therefore, we recommend that if such behavior is required,
transaction suspending and resuming is performed using the CosActivity::Current
methods. An implementation of the Object Transaction Service may be made aware of
Activities and thus make CosTransactions::Current methods respond appropriately.
However, this may result in non-portable applications.

2.5.2 Obtaining Current

In order for an application to be able to obtain and use any of the Activity Service
Currents it is necessary for an Activity Service to register it with the ORB. The Activity
Service implementation is responsible for registering an implementation of the
CosActivityCoordination::Current as the “ActivityCurrent” returned by
resolve_initial_references. Thisis achieved by calling
ORB::register_initial_reference(in Objectld id, in Object obj) where Objectid
is “ActivityCurrent.” Other Current implementations may be obtained by suitable
narrowing of this object.

2.5.3 Failure Assumptions

Many commercial transaction systems use a presumed abort protocol to simply the
requirements on failure recovery: if a participant enquires as to the status of a transaction
and the system definitely has no record about the transaction, then it is assumed to have
aborted (rolled back), and the participant can act accordingly. This means that a
transaction coordinator need not keep persistent records of participants until after it has
decided to commit. Therefore, Activity Service implementations are also required to use
a presumed abort (presumed failed) protocol.

The Activity Service also assumes that IORs for participants (Actions) and coordinators
are persistent, such that upon recovery from failure, an end-point for an IOR remains
valid as long as the object it refers to remains in existance. Therefore, a client receiving
an OBJECT_NOT_EXIST exception can be guaranteed that the object has ceased to
exist because it has successfully completed its job.

2.5.4 Normal Activity Completion

In order to write a portable application or application framework that uses the Activity
service, and in order for Activity service implementations to fully interoperate, the
ordering and semantics of completion processing of an Activity are described in detail in
this section.

1. Current::complete with_status(comp_status) is called.

January 2005 Additional Sructuring Mechanismsfor the OTS: The Implementor’sView 2-45

2-46

. This drives ActivityCoordinator::complete_activity(comp_ss_name,

comp_status). If thisisaremote call, then no Activity service is marshalled since
the target ActivityCoordinator has an ActivityPolicyValue of INTERNAL.

. The preComplete synchronization signal is distributed. The Activity context must

be available on the thread when the Actions process this signal.

. The completion signals are distributed to registered Actions. The Activity context

must be available on the thread when the completion signals are distributed.

. The context is logically suspended. Any PropertyGroups are called with

suspended() and then with completed().

. The postComplete synchronization signal is sent.
. Any remaining Activity service objects for the completing Activity are cleaned up.

. The call returns to the client.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

References A

A1l Listof References

January 2005

1. R. Soley (ed.), Object Management Architecture Guide, Third Edition, Wiley, June
1995.

2. C. T. Davies, "Data processing spheres of control", IBM Systems Journal, Vol. 17,
No. 2, 1978, pp. 179-198.

3. J. J. Halliday, S. K. Shrivastava, and S. M. Wheater, "Implementing Support for
Work Activity Coordination within a Distributed Workflow System," Proceedings
of the Third International Conference on Enterprise Distributed Object Computing
(EDOC '99), September 1999, pp. 116-123.

Additional Sructuring Mechanismsfor the OTS, v1.1 A-1

A-2

Additional Sructuring Mechanismsfor the OTS, v1.1

January 2005

OMGIDL

B.1 CompletelDL Listing

January 2005

/I File: CosActivity

#ifndef COSACTIVITY_IDL_
#define COSACTIVITY_IDL_

#include <orb.idI>
#pragma prefix "omg.org"

module CosActivity

{
exception NoActivity {};
exception ActivityPending {};
exception ActivityNotProcessed {};
exception InvalidToken {};
exception InvalidState {};
exception InvalidContext {};
exception ActionError {};
exception AlreadyDestroyed {};
exception ActionNotFound {};
exception ChildContextPending {};
exception InvalidParentContext {};
exception SignalSetUnknown {};
exception SignalSetAlreadyRegistered {};
exception SignalSetActive {};
exception SignalSetinactive {};
exception TimeoutOutOfRange {};
exception PropertyGroupUnknown {};

interface ActivityCoordinator;

/I The following system exceptions are added to support the Activity
/I service

Additional Sructuring Mechanismsfor the OTS, v1.1

B-1

/I INVALID_ACTIVITY
/I ACTIVITY_COMPLETED
/I ACTIVITY_REQUIRED

typedef unsigned short ActivityPolicyValue;
const ActivityPolicyValue REQUIRES = 1;
const ActivityPolicyValue FORBIDS = 2;
const ActivityPolicyValue ADAPTS = 3;
const ActivityPolicyValue INTERNAL = 4;

const CORBA::PolicyType ActivityPolicyType = 58;

interface ActivityPolicy : CORBA::Policy
{

readonly attribute ActivityPolicyValue apv;

}

const IOP::Componentld TAG_ACTIVITY_POLICY = 37;

typedef sequence<octet> Globalld;

enum Status

{
StatusActive,
StatusCompleting,
StatusCompleted,
StatusError,
StatusNoActivity,
StatusUnknown

h

enum CompletionStatus

{

CompletionStatusSuccess,

CompletionStatusFail,

CompletionStatusFailOnly
k

struct Signal

{
string signal_name;
string signal_set_name;
any application_specific_data;

|3

struct Outcome

{
string outcome_name;
any application_specific_data;

|3

struct Activitylnformation

Globalld activityld;

Additional Sructuring Mechanismsfor the OTS, v1.1

January 2005

CompletionStatus status;
Outcome final_outcome;

h

struct PropertyGroupldentity
{

string property_group_name;
any context_data;

|3

struct Activityldentity
{

unsigned long type;
long timeout;
ActivityCoordinator coord;
sequence <octet> ctxId;
sequence <PropertyGroupldentity> pgCtx;
any activity_specific_data;

h

struct ActivityContext

{

sequence <Activityldentity> hierarchy;
any invocation_specific_data;

|3

interface PropertyGroup

{

readonly attribute string property_group_name;
void completed();

void suspended();

void resumed();

void destroy() raises(AlreadyDestroyed);
|3
interface SignalSet
{

readonly attribute string signal_set_name;

Signal get_signal (inout boolean lastSignal);
Outcome get_outcome () raises(SignalSetActive);

boolean set_response (in Outcome response, out boolean nextSignal)
raises (SignalSetlinactive);

void set_completion_status (in CompletionStatus cs);
CompletionStatus get_completion_status ();

void set_activity_coordinator (in ActivityCoordinator coord)
raises(SignalSetActive);

void destroy() raises(AlreadyDestroyed);

January 2005 Additional Sructuring Mechanismsfor the OTS, v1.1 B-3

3
interface SubordinateSignalSet : SignalSet
{
void set_signal (in Signal sig);
Outcome get_current_outcome () raises(SignalSetinactive);
h

interface Action

{

Outcome process_signal(in Signal sig) raises(ActionError);

void destroy() raises(AlreadyDestroyed);

|3

typedef sequence<Action> ActionSeq;

interface ActivityCoordinator
{
Outcome complete_activity(in string signal_set_name,
in CompletionStatus cs)
raises(ActivityPending, ChildContextPending,
SignalSetUnknown, ActivityNotProcessed);
Outcome process_signal_set(in string signal_set_name,
in CompletionStatus cs)
raises(SignalSetUnknown, ActivityNotProcessed);

void add_signal_set (in SignalSet signal_set)
raises(SignalSetAlreadyRegistered);

void remove_signal_set (in string signal_set_name)
raises(SignalSetUnknown);

void add_action(in Action act, in string signal_set_name,
in long priority) raises(SignalSetUnknown);
void remove_action(in Action act) raises(ActionNotFound);
void add_actions(in ActionSeq acts, in string signal_set_name,
in long priority) raises(SignalSetUnknown);
ActionSeq remove_actions(in ActionSeq acts);

void add_global_action(in Action act, in long priority);
void remove_global_action(in Action act) raises(ActionNotFound);

long get_number_registered_actions(in string signal_set_name)
raises(SignalSetUnknown);
ActionSeq get_actions(in string signal_set_name) raises(SignalSetUnknown);
ActivityCoordinator get_parent_coordinator ();
Globalld get_global_id ();
Status get_status ();
Status get_parent_status ();

string get_activity_name ();

boolean is_same_activity (in ActivityCoordinator ac);

B-4 Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

unsigned long hash_activity ();

void destroy() raises(AlreadyDestroyed);
|3

interface ActivityToken
{
ActivityContext get_context ();
void destroy() raises(AlreadyDestroyed);

|3

interface Current : CORBA::Current
{
void begin(in long timeout) raises(InvalidState, TimeoutOutOfRange);
Outcome complete() raises (NoActivity,
ActivityPending, ChildContextPending, ActivityNotProcessed);
Outcome complete_with_status(in CompletionStatus cs)
raises (NoActivity, ActivityPending, ChildContextPending,
InvalidState, ActivityNotProcessed);

void set_completion_status (in CompletionStatus cs)
raises (NoActivity, InvalidState);
CompletionStatus get_completion_status () raises(NoActivity);

void set_completion_signal_set (in string signal_set_name)

raises (NoActivity, SighalSetUnknown, InvalidState);
string get_completion_signal_set () raises(NoActivity);
ActivityToken suspend() raises(InvalidParentContext);
void resume(in ActivityToken at)

raises (InvalidToken, InvalidParentContext);
ActivityToken suspend_all();
void resume_all(in ActivityToken at)

raises (InvalidToken, InvalidParentContext);

Globalld get_global_id ();

Status get_status();
string get_activity_name ();

void set_timeout (in long seconds) raises(TimeoutOutOfRange);
long get_timeout ();

ActivityContext get_context();
void recreate_context(in ActivityContext ctx) raises(InvalidContext);

ActivityCoordinator get_coordinator();
ActivityCoordinator get_parent_coordinator();

Activityldentity get_identity ();
ActivityToken get_token ();

PropertyGroup get_property_group(in string name)

January 2005 Additional Sructuring Mechanismsfor the OTS, v1.1 B-5

raises(PropertyGroupUnknown, NoActivity);
|3
h

module CosActivityAdministration

{
exception PropertyGroupAlreadyRegistered {};
exception PropertyGroupNotRegistered {};
exception AttributeAlreadyExists {};
exception NoSuchAttribute {};

interface PropertyGroupAttributes
{
string get_attribute (in string name) raises(NoSuchAttribute);
void set_attribute (in string name, in string value)
raises(AttributeAlreadyExists);
void replace_attribute (in string name, in string value);

|3

interface PropertyGroupManager
{
CosActivity::PropertyGroup create(in CosActivity::PropertyGroup parent,
in CosActivity::Globalld gid);

CosActivity::PropertyGroupldentity marshal_request
(in CosActivity::PropertyGroup pg);
CosActivity::PropertyGroupldentity marshal_response
(in CosActivity::PropertyGroup pg);

CosActivity::PropertyGroup unmarshal_request
(in CosActivity::PropertyGroupldentity mpg,
in CosActivity::PropertyGroup pg,
in CosActivity::PropertyGroup parent,
in CosActivity::Globalld gid);
void unmarshal_response(in CosActivity::PropertyGroupldentity mpg,
in CosActivity::PropertyGroup pg);

void destroy() raises(CosActivity::AlreadyDestroyed);
|3

interface Current : CosActivity::Current
{
void register_property_group(in string property_group_name,
in PropertyGroupManager manager,
in PropertyGroupAttributes attributes)
raises(PropertyGroupAlreadyRegistered);

void unregister_property_group(in string property_group_name)
raises(PropertyGroupNotRegistered);

h
h

module CosActivityCoordination

{

interface Current : CosActivityAdministration::Current

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

CosActivity::Outcome broadcast(in string signal_set_name)
raises(CosActivity::SignalSetUnknown,
CosActivity::NoActivity, CosActivity::ActivityNotProcessed);

void add_signal_set(in CosActivity::SignalSet signal_set)
raises(CosActivity::SignalSetAlreadyRegistered, CosActivity::NoActivity);

void remove_signal_set (in string signal_set_name)
raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);

void add_action(in CosActivity::Action act, in string signal_set_name,
in long priority) raises(CosActivity::SignalSetUnknown,
CosActivity::NoActivity);
void remove_action(in CosActivity::Action act)
raises(CosActivity::ActionNotFound, CosActivity::NoActivity);

void add_actions(in CosActivity::ActionSeq acts,
in string signal_set_name, in long priority)
raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
CosActivity::ActionSeq remove_actions(in CosActivity::ActionSeq acts)
raises(CosActivity::NoActivity);

void add_global_action(in CosActivity::Action act, in long priority)
raises(CosActivity::NoActivity);
void remove_global_action(in CosActivity::Action act)
raises(CosActivity::ActionNotFound, CosActivity::NoActivity);

long get_number_registered_actions(in string signal_set_name)
raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
CosActivity::ActionSeq get_actions(in string signal_set_name)
raises(CosActivity::SignalSetUnknown, CosActivity::NoActivity);
|3
h

#endif

January 2005 Additional Sructuring Mechanismsfor the OTS, v1.1 B-7

B-8

Additional Sructuring Mechanismsfor the OTS, v1.1

January 2005

SpecificModels C

C.1 Examplesof Extended Transaction Models

January 2005

In the first part of this document we presented a general framework for the construction
of arbitrary extended transaction models. By itself this framework does not present a
specific type of extended transaction, and is not intended to be used directly. As previous
sections have attempted to explain, it is envisioned that this layer can be provided for,
and used by, specific extended transaction models and their implementations.

In this appendix we present some of these extended transaction models, with their own
IDL, and illustrate how implementations of these models use the underlying generic
framework presented earlier. Note, these extended transaction models are presented as
illustration only, and an implementation of this specification need not provide
implementations of these models. They are neither mandatory nor optional for a
conformant implementation of the Activity Service.

C.1.1 The Open Nested Transactions Model

The concept of a transaction has been developed to permit management of activities and
resources in areliable computing environment. Indeed, transactions are useful to
guarantee consistency of applications even in case of failure and in the case of
conflicting concurrent applications. The traditional or flat transaction model, implied by
the OMG (Object Management Group) Object Transaction Service (OTS), although
suitable for applications using short transactions, may not provide enough flexibility and
performance when used for more complex applications, such as CAD applications,
connection establishment in telecommunication or business travel including several
servers on different sites and need access to many resources involved within a relatively
long-lived transaction.

Typicaly, the two-phase commit (2PC) protocol is combined with the strict two-phase
locking protocol, as the means for ensuring atomicity and the serializability of
transactions. The implication of this combination on the length of time a transaction may
hold locks on various data items might be severe. At each site, and for each transaction

Additional Sructuring Mechanismsfor the OTS, v1.1 C-1

locks must be held until either a commit or an abort message is received from the
coordinator of the 2PC protocol. Since the 2PC protocol is a blocking protocoal, the
length of time these locks are held can be unbounded.

There are certain classes of application where it is known that resources acquired within
atransaction can be “released early,” rather than having to wait until the transaction

terminates. These applications share a common feature that application-level consistency
is maintained, despite any non-ACID behavior they may exhibit. For some applications,
failures do not result in application-level inconsistency, and no form of compensation is
required. However, for other applications, some form of compensation may be required
to restore the system to a consistent state from which it can then continue to operate.

In this section we describe how the “Open Nested Transaction Model” (ONT), or the
Nested top-level transactions with compensation may be provided using the Activity
Service Framework. The Open Nested Model improves greatly transaction parallelism by
releasing the nested transaction locks at the nested transaction commit time. That is, open
nested transactions relax the isolation property by allowing the effects of the committed
nested transaction to be visible to concurrent transactions, thus waiving the lock transfer
rule of closed nested transactions.

Since the Activity Service introduced by this specification proposes a low-level
architecture to create an advanced transaction model, it appears judicious to provide for
end-users wishing to use a particular advanced model a high level API, which hides the
way the Activity Service is used to provide that advanced model. For this aim we
provide, in this specification, an API that allows users to develop transactional activities
structured in a hierarchical way reflecting the Open nested transaction model.

The Transactional Model

In this model an Activity may contain any number of nested activities, which may
recursively contain other nested activities organized into a hierarchical tree of nested
activities or an Activity family. In the earlier part of this specification the notion of an
Activity was defined in aloose manner, to enable specific extended transaction models to
refine what they mean by Activity. The notion of Activity used within this section is
therefore specific to this model, and should not be confused with any other Activity
definition used by other extended transaction models.

Each activity or nested activity represents an atomic unit of work to be done; that is an
OTS transaction. The creation of an activity or nested activity implies the creation of an
associated top-level, or flat transaction, which may possibly contain nested transactions,
if the provided Object Transaction Service supports nested transactions. That is, from the
application point of view, an activity is implicitly transactional. Therefore, unless
otherwise stated, in the rest of this section we shall use the term Activity to refer to the
Activity and its associated transaction; operations which are applied to the Activity are
likewise assumed to be applied to the transaction where appropriate, in order to
guarantee consistency.

The transaction model respects the following rules:

Additional Sructuring Mechanismsfor theOTS v1.1 January 2005

C

January 2005

® Sub-activities are strictly nested. An Activity or Sub-activity cannot complete with
Success unless al of its children have completed. Since an activity is implicitly
transactional, completing with Success means that the associated transaction is
committed.

® When an Activity or Sub-activity completes with Failure, all of its children in an
active state are completed with Failure. Since an Activity isimplicitly transactional,
completing with Failure means that the associated transaction is rolled back.

® When an Activity or Sub-activity complete with Failure or rolls back, al of its
children which have completed with Success or committed shall be compensated if
compensating actions have been defined. The behavior of the compensation action
is defined by the application since it is only the application that possesses sufficient
information to do compensation.

Theend-user programming interface

To avoid using more than one interface to manage an Activity and a transaction within an
activity, the interface provided for end-users to create ONT transactional activities relies
on anew Current interface. This interface invokes the appropriate interfaces provided by
the underlying Transaction Service and Activity Service, respectively, to manage
transactions and to manage activities.

For simplicity, the intermediate mechanism allowing to manage Open Nested
transactions and located between the end-user applications and the Activity Serviceis
referred to as the OpenNested Service.

Although a high level Current interface is added to hide those provided by the Activity
Service and the Transaction Service, we do not mandate a new context to be propagated
among participants within a same transactional activity. The context to be propagated
relies on the policy defined by the invoked object as explained in Section 1.2.1.6,
“Contexts,” on page 1-13.

Datatypes

enum Activity_Status {
StatusActive,
StatusNoActivity,
StatusMarkedRollback,
StatusRollingBack,
StatusCommitting,
StatusRolledBack,
StatusCommitted,
StatusToCompensate,
StatusUnknown

h
The meaning of each of the above values is given below:

® StatusActive: An Activity is associated with the target object. The Activity and its
associated transaction is in the active state.

Additional Sructuring Mechanismsfor the OTS, v1.0 C-3

c4

® StatusNoActivity: No Activity is currently associated with the target object. This
will occur after an Activity has completed, or before the first Activity is created.

* StatusMarkedRolledback: The transaction associated with the target object or
the target activity has been marked for rollback. The activity will complete with the
CompletionStatusFail .

® StatusRollingBack : A transaction is associated with the target object and it isin
the process of rolling back. An implementation returns this status if it has decided
to rollback, but has not yet completed the process because it is waiting for
responses from the Transaction Service.

® StatusCommitting: The transaction or Activity associated with the target object is
in the process of committing. An implementation returns this status if it has decided
to commit, but has not yet completed the process because it is waiting for responses
from the Transaction Service.

® StatusRolledback: An Activity is associated with the target object and it has
completed with the status Compl etionStatusFail or CompletionStatusFailOnly and
its associated transaction has rolled back.

® StatusCommitted: An Activity is associated with the target object, it has
completed with the status CompletionStatusSuccess and its associated transaction
has committed. There is no Compensation defined for that activity.

® StatusToCompensate: An Activity is associated with the target object, it has
completed with the status CompletionStatusSuccess and its associated transaction
has committed. A Compensation has been defined for that activity and is waiting
for its ancestors’ outcome.

® StatusCompleted: An Activity is associated with the target object and it has
completed. That is either it has committed and a compensation has not been
defined, or it has rolled back, or it has been compensated.

® StatusUnknown: An Activity is associated with the target object, but the Activity
Service cannot determine its current status. This is a transient condition, and a
subsequent invocation will ultimately return a different status.

The diagram below indicates the transitions a transactional Activity can undergo.
Because the interfaces described in the first part of this specification are meant to define
a generic framework for many extended transaction models, the Activity statues
described in Section 2.1.2.2, “ Status,” on page 2-2 do not convey fine-grained knowledge
about the application-level progress of an Activity; such information is not available at
the level of those interfaces since the concept of an Activity depends somewhat upon the
application semantics. However, at the level of the ONT interfaces, the notion of an
Activity istied to the ONT model, and finer granularity statuses can be given to the
application to indicate the transactional Activity’s progress. Obviously the low-level
statuses provided by the general framework are available to the application if it requires
them.

Additional Sructuring Mechanismsfor theOTS v1.1 January 2005

January 2005

RN

Conrittng ;[RollingBeck]

i

ToConpersate] Copieted]_©

Figure C-1 Transactional Activity and UML state diagram.

Exceptions

We define the following exceptions:

exception Heuristic_Compensate {};
exception Heuristic_No_Compensate {};
exception Activity_RolledBack {};

Heuristic_Compensate Exception

The Heuristic_Compensate exception is raised to report that a compensation has
been performed while the entire activity has been requested to commit.

Heuristic_No_Compensate Exception

The Heuristic_No_Compensate exception is raised to report that after several
attempts the Compensator object has not been reached to perform the compensation
while the current activity has been rolled back.

Activity_RolledBack Exception

The Activity RolledBack exception is raised to report that the transactional activity
has been rolled back.

Current interface

The Current interface defines operations that allow the client to manage the Activity
(begin and end activities and to obtain information about the current Activity/Nested
activity). Most operations provided by this Current interface are mainly based on those
provided by the CosTransactions::Current interface; by this way end-users can reuse
similar transactional operations which now take benefit from the Activity Service.

Additional Sructuring Mechanismsfor the OTS, v1.0 C-5

Since this Current interface aims to be layered on both OTS and the Activity Service,
we assume that exceptions raised by those services are caught by this Current and re-
raised to the end-user application.

How the Open Nested Transaction Current is obtained is not mandated by this
specification, but could be provided using a resolve initial references
(“OpenNestedTransactionCurrent”) operation on the CORBA::ORB interface.

The Current supports the following operations:
interface Current : CORBA::Current {

void activity_begin(in long timeout)

raises(CosActivity::InvalidState, CosActivity::TimeoutOutOfRange);

void activity_commit(in Compensator compensator_object,

in any compensating_data)

raises(CosActivity::NoActivity, CosTransactions::HeuristicMixed,
CosTransactions::HeuristicHazard, CosActivity::ActivityPending,
CosActivity::ChildContextPending, Activity RolledBack,
Heuristic_Compensate, Heuristic_No_Compensate);

void activity_rollback() raises(CosActivity::NoActivity);
void activity_rollback_only() raises(CosActivity::NoActivity);

void activity_set_timeout(in long seconds) raises(CosActivity::TimeoutOutOf-
Range);

Activity _Status activity_get_status();

CosActivity::ActivityToken suspend();
void resume(in CosActivity::ActivityToken)
raises(CosActivity::InvalidToken, CosActivity::InvalidParentContext);

string get_activity_name () ;
string get_transaction_name();

CosActivity::ActivityContext get_context();
CosActivity::ActivityCoordinator get_coordinator();

/I Operations to access to the Transaction Service
CosTransactions::Control get_control();

/I Operations to create and terminate nested transactions
void begin()
raises(CosActivity::NoActivity, CosTransactions::NoTransaction,
CosTransactions::SubtransactionsUnavailable);
void commit()
raises(CosTransactions::NotSubtransaction);
void rollback()
raises(CosTransactions::NotSubtransaction);
void rollback_only()
raises(CosTransactions::NotSubtransaction);

h

Additional Sructuring Mechanismsfor theOTS v1.1 January 2005

January 2005

activity begin

A new Activity is created. If the invoking thread already has an active Activity
associated with it, then the newly created Activity will be nested within it. Regardless of
whether or not the Activity is nested, a top-level transaction is created using the
Transaction Service and associated with the newly created Activity. The invoking
thread's notion of the current Activity will be changed to this Activity. If the current
Activity associated with the invoking thread has completed, is completing, or has been
marked as CosActivity::CompletionStatusFailOnly, then the
INVALID_ACTIVITY exception will be thrown and the invoking threads notion of the
current Activity will not be modified.

The timeout parameter is used to control the lifetime of the transactional Activity. If the
Activity has not completed by the time timeout seconds elapses, then it is subject to
being rolled back. The timeout defined by the Open Nested Current interface is not
controlled by the Open Nested Service, which rather relies on the underlying Activity
Service to manage it. Values the timeout can have are those defined by the Activity
Service.

activity_commit

The transactional Activity associated with the client thread is committed; this implicitly
causes the commit of the associated transaction.

If there is no Activity associated with the calling thread, then the
CosActivity::NoActivity exception will be thrown. If the Activity was begun by a
thread (invoking begin) in the same execution environment, then the thread's Activity
context is restored to its state prior to the begin request, otherwise, it is set to null. If
there are any encompassed active or suspended transactional, then
CosActivity::ChildContextPending is raised. Only the Activity originator may call
activity_commit(). If acall to commit the Activity is made from an execution
environment into which the Activity was imported, the NO_PERMISSION exception
is raised. If the thread from which the activity _commit() call is made is not the only
thread on which the Activity is active, then the CosActivity::ActivityPending
exception is raised.

Heuristic exceptions, CosTransactions::HeuristicMixed and
CosTransactions::HeuristicHazard, raised by the underlying Transaction Service,
are thrown by the Open Nested Service to the end-user.

If the Compensator object parameter is not null, and the Activity/transaction can
commit, the Open Nested Service will register an Action with the parent activity to
receive the parent outcome; failure to register the Compensator will cause the Activity
to rollback.

If the top-level transactional activity has committed with its related transaction and
compensation of a nested transactional activity has been performed the
Heuristic_Compensate exception is raised.

If the transactional activity and a Compensator object responsible to compensate effect of
a committed nested activity, the Heuristic_No_Compensate exception is raised.

Additional Sructuring Mechanismsfor the OTS, v1.0 C-7

C-8

activity _rollback

The Activity/Sub-activity associated with the client thread is rolled back. If there is no
Activity associated with the calling thread then the CosActivity::NoActivity exception
will be thrown. If the Activity was begun by athread (invoking begin) in the same
execution environment, then the thread's Activity context is restored to its state prior to
the begin request. Otherwise, it is set to null. Any nested transactional activities are
rolled back.

activity_rollback_only

If there is no Activity or Sub-activity associated with the client thread, the
CosActivity::NoActivity exception is raised. Otherwise, the Activity associated with
the client thread is modified so that the only possible outcome is to rollback the current
Activity. Likewise, the associated transaction is also marked as rollback only.

suspend

Suspends the transactional Activity associated with the current thread with its related
transaction, and any nested child scopes. A CosActivity::ActivityToken representing
the Activity that was associated with the current thread prior to this call isreturned. If the
current thread is not associated with an Activity or atransaction, then nil is returned from
this operation.

resume

Resumes the Activity and any nested scopes represented by the
CosActivity::ActivityToken. The current thread becomes associated with the Activity
(or transaction) represented by the token. If the CosActivity::ActivityToken does not
represent a valid Activity (or is nil), then the CosActivity::InvalidToken exception is
raised and no new association is made on the thread.

activity_set_timeout

This operation applies only to the top-level Activity. It modifies a state variable
associated with the target object and affects the time-out period associated with the
Activity and its associated transaction and with all nested activities created by
subsequent invocations of the activity begin operation. If the parameter has a nonzero
value n, then top-level transactions created by subsequent invocations of

activity _begin will be subject to being rolled back if they do not complete before n
seconds after their creation. If the parameter is zero, then no application specified time-
out is established.

The timeout associated with a top-level Activity is specified only at its creation and
cannot be modified by subsequent Sub-activity creations. If this operation is called on a
Sub-Activity, the standard exception is NO_PERMISSION.

get_timeout

This operation returns the state variable associated with the target object that affects the
time-out period associated with activities created by calls to activity _begin.

Additional Sructuring Mechanismsfor theOTS v1.1 January 2005

get_activity_name

If there is no activity associated with the calling thread, an empty string is returned.
Otherwise, this operation returns a printable string describing the activity.

activity _get_status

If there is no activity associated with the client thread, the StatusNoActivity valueis
returned. Otherwise, this operation returns the status of the activity associated with the
client thread.

get_transaction_name

If there is no activity or transaction associated with the invoking thread, an empty string
is returned. Otherwise, this operation returns a printable string describing the associated
transaction.

get_control

If the client thread is not associated with an Activity, a null object reference is returned.
Otherwise, aCosTransactions::Control object, created by the underlying Transaction
Service, is returned that represents the transaction context currently associated with the

current sub-activity. This object can be used to retrieve the transaction context associated
with the current Activity.

get_context

Returns the CosActivity::ActivityContext of the Activity associated with the current
thread. Returns null if no Activity is associated with the current thread.

get_coordinator

Returns a reference to the current Activity’s CosActvity::ActivityCoordinator. This
may be nil if no coordinator has yet been created.

begin

This operation is made available to create a nested transaction within a created
transactional activity under the conditions that a previous activity _begin has started a
transaction and that the nested transaction is supported by the underlying Transaction
Service.

commit

Once invoked this operation will request the Transaction Service to commit the current
nested transaction. If there is no nested transaction context associated with the current
thread, the exception CosTransactions::NotSubtransaction is raised.

January 2005 Additional Sructuring Mechanismsfor the OTS, v1.0 Cc-9

C-10

The client thread transaction context is modified as follows: If the nested transaction was
begun by a thread (invoking begin) in the same execution environment, then the thread's
transaction context is restored to its state prior to the begin request. Otherwise, the
thread's transaction context is set to the top-level transaction context managed by the
current Activity.

rollback

Once invoked this operation will request the Transaction Service to rollback the current
nested transaction. If there is no nested transaction context associated with the current
thread, the exception CosTransactions::NotSubtransaction is raised.

The client thread transaction context is modified as follows: If the nested transaction was
begun by a thread (invoking begin) in the same execution environment, then the thread's
transaction context is restored to its state prior to the begin request. Otherwise, the
thread's transaction context is set to the top-level transaction context managed by the
current Activity.

rollback_only

With this operation, the client thread is modified so that the only possible outcome is to
rollback the current nested transaction. If there is no nested transaction context associated
with the current thread, the exception CosTransactions::NotSubtransaction is
raised.

Once invoked this operation will request the Transaction Service to mark the current sub-
transaction as rollback only.

Compensator interface

The Compensator interface is provided to define a generic mechanism to manage the
compensating action of a committed Sub-activity if one of its ancestors has rolled back.

interface Compensator {
void compensate(in any compensating_data);
void forget();

compensate

The compensate operation, defined by the application, is invoked to compensate the
effects of a previously committed Sub-activity. The compensating_data, if not nil,
may be used to perform the compensation. compensating_data are given at the
commitment decision. The application may define a method which starts a transaction, or
another Activity in order to perform the compensation.

forget

The forget operation is defined by the application. The application may define a method
which releases the Compensator object.

Additional Sructuring Mechanismsfor theOTS v1.1 January 2005

C

January 2005

The Open Nested Service invokes forget when it receives an activity _committed from
atop-level Activity, in order to inform the Compensator object that the entire Activity
has committed.

The lmplementor’s View

The Activity Service defined in the earlier part of this specification enables the
development of an advanced transaction model by the definition of appropriate

Signal Sets, Signals, and Actions for that transaction model. Therefore, in this section we
describe how these entities are defined to implement the Open Nested Transaction Model
requested by end-users.

Figure C-2 illustrates the relationship between an activity which may define a
compensating action and the provider of the Open Nested Transaction (ONT) model.

-

begin/end activity

ONT Provider

Begin/End Resource
Transaction

Transaction Service

Figure C-2 Activity and ONT relationship.

Since the ONT provider is responsible for coordinating nested activities according to
their final outcomes, it must have the knowledge of the outcomes of their associated
transactions in the case of failure. To this aim, the ONT provider participates in the
completion of the top level transaction associated with the Activity/Sub-Activity. That is,

Additional Sructuring Mechanismsfor the OTS, v1.0 c-11

C-12

it registers as a Resource object with the Coordinator of the transaction. Registering a
Resource isaway for the ONT provider to determine if the reference of the Compensator
object must be logged to be retrieved in case of failure.

Once a Sub-activity has committed, its Compensator object must be maintained
reachable in the case where either an ancestor Activity rolls back. The ONT provider and
the underlying Activity Service Provider are responsible for maintaining access to
Compensator objects. ONT providers who have registered a non nil Compensator
object are maintained alive after their activity commitment. The path maintained to reach
compensating actions is referred to as the Compensating tree.

The Signal Set family_outcome

Let us now describe how the Activity Service is used to coordinate a set of nested
activities and how the compensating tree is maintained. In order to accomplish this we
define the SignalSet family_outcome that contains the signals:

® activity rolledback

® activity_committed

Defined Outcomes
The following identifiers define the Outcome structures used by the ONT protocol:

® success with_parent

® parent_does not_exist

® failure to_invoke parent

® success with_compensator

® failure to_invoke compensator
® heuristic_compensate decision

® heuristic_cannot_compensate

Roleof the ONT provider
Upon receipt of an activity _begin, the Open Nested Service:

® invokes the Activity Service to create an activity.

® adds afamily_outcome SignalSet object with the created activity.
® invokes OTS to create a transaction.

Upon receipt of an activity_commit, the Open Nested Service:

® invokes the OTS to commit the associated transaction.

If the transaction commits

Additional Sructuring Mechanismsfor theOTS v1.1 January 2005

C

January 2005

If a no-null Compensator object was given in the activity_commit, and the
commitment is related to a nested activity, the Open Nested Service adds an Action
object, responsible for compensation, to the family _outcome SignalSet. If the
adding operation fails, the Open Nested Service invokes the Compensator object to
compensate the committed transaction using the compensate operation.

Invokes the Activity Service to complete the activity with the completion status
CompletionStatusSuccess using the family_outcome SignalSet.

If the Open Nested Service receives the heuristic_compensate_decision
Outcome on the CosActivity::Current’s complete operation, it throws for the
end-user application Heuristic_Compensate exception.

A nil outcome returned by the complete operation on the CosActivity::Current
interface is interpreted as an acknowledgment to the completion with success
decision.

If the transaction rolls back:

Invokes the Activity Service to complete the activity with the completion status
CompletionStatusFail using the family _outcome SignalSet.

If the Open Nested Service receives the heuristic_can_not_compensate
Outcome, it raises for the end-user application Heuristic_No_Compensate
exception.

A nil outcome returned by the complete operation on the CosActivity::Current
interface is interpreted as an acknowledgment to the completion with failure
decision. The Open Nested Service throws the Activity RolledBack exception to
the end-user.

Upon receipt of an activity_rollback, the Open Nested Service:

Invokes the OTS to rollback the associated transaction.

Invokes the Activity Service to complete the activity with the completion status
CompletionStatusFail using the family_outcome SignalSet. Any enclosed
transactional activity is marked to rollback.

If the Open Nested Service receives the heuristic_can_not_compensate
Outcome, it raises for the end-user application Heuristic_ No_Compensate
exception.

A nil outcome returned by the complete operation on the CosActivity::Current
interface is interpreted as an acknowledgment to the completion with failure
decision.

Role of the family_outcome Signal Set

Once created and added with the ActivityCoordinator afamily_outcome
SignalSet object asksits associated ActivityCoordinator to obtain the reference of its
parent ActivityCoordinator using the operation get_parent_coordinator(), anil
object is returned if there is no parent.

Additional Sructuring Mechanismsfor the OTS, v1.0 C-13

According to the activity CompletionStatus it receives from its associated
ActivityCoordinator with the set_completion_status operation, a
family_outcome SignalSet object provides to the ActivityCoordinator when
request with get_signal, either

® the activity_rollback Signal (with no additional data given in the
application_specific_data parameter), if the completion status is
CompletionStatusSuccess, or

® the activity_committed Signal (with the parent ActivityCoordinator given in
the application_specific_data parameter, or nil if there is no parent) if the
completion status is CompletionStatusFail.

After providing the signal activity_committed, if the family SignalSet related to a
nested activity receives an outcome response:

® parent_does_not_exist with set_response indicating that an Action fails to be
registered with the parent ActivityCoordinator because it does not exist. The
SignalSet indicates to the ActivityCoordinator that a subsequent signal shall be
sent to that Action. This next signal is activity _rollback.

¢ failure_to_invoke_ parent with set_response indicating that an Action fails to
be registered with the parent ActivityCoordinator due to a transient failure or a
communication failure. The SignalSet indicates to the ActivityCoordinator that
the same signal, activity_committed shall be sent to that Action. However, if the
SignalSet receives the same Outcome failure_to_invoke_parent several timesit
can decide to issue the activity _rolledback signal.

After providing the Signal activity_committed, if the family_outcome SignalSet
related to the top-level activity receives

® the outcome response failure_to_invoke_compensator with set_response
indicating that an Action fails to invoke forget on the Compensator object due to a
transient failure or a communication failure. The SignalSet indicates to the
ActivityCoordinator that the same signal, activity_committed shall be sent to
that Action.

* family_outcome - an Outcome indicating that the top-level ActivityCoordinator
fails to invoke an Action with the signal activity_commited because it no longer
exists, it informs the SignalSet. Once requested to obtain the final outcome with
get_outcome, the family_outcome SignalSet will return the outcome
heuristic_compensate_decision.

After providing the signal activity_rolledback, if afamily_outcome SignalSet
receives

® the Outcome response failure_to_invoke_compensator with set_response
indicating that an Action fails to invoke compensate on the Compensator object
due to atransient failure or a communication failure, the SignalSet indicates to the
ActivityCoordinator that the same signal, activity_rolledback shall be sent to
that Action. However, after several retrying, the SignalSet can decide to abandon
the compensation. Once requested to obtain the final outcome with get_outcome,
the family_outcome SignalSet will return the outcome
heuristic_can_not_compensate.

C-14 Additional Sructuring Mechanismsfor theOTS v1.1 January 2005

C

January 2005

® an Outcome indicating that the ActivityCoordinator fails to invoke an Action
with the signal activity_rolledback due a communication failure exception, it
informs the SignalSet. The family_outcome SignalSet ignores that Action,
there is no additional signal or retrying. After a timeout, or once restarted, the ONT
provider can ask the ActivityCoordinator to obtain the status of the activity; if the
OBJECT_DOES _NOT_EXIST is returned indicating that the activity does not
exist, the ONT provider will presume that it has rolled back and it invokes
compensate on the Compensator object.

Role of the Action registered with the family_outcome Signal Set

If an Action registered to the family_outcome signalSet receives the
activity_committed signal with a non-nil parent ActivityCoordinator, it registers
with that parent so that it can be informed about its outcome. The Action has knowledge
that it represents an Activity that has, nominally, completed successfully, but which may
need to be compensated later. The Action then returns the Outcome
success_with_parent. If the registration with the parent fails because it does not
exigt, it return the Outcome parent_does_not_exist. If the registration with the parent
fails due to a transient or communication failure, it return the Outcome
failure_to_invoke parent.

Thisrecursively ends up in having all Compensator objects listed in the “family Actions”
and having the family Actions registered to the top-level family_outcome signal Set as
illustrated in Figure C-3.

Top-Leve
Activityl

Nested
Activity2 (n-1)

Nested
Activity 3(n)

Family_outcome signalSet 1

- activity,_rolledback

Family_outcome
sgnalSet n-1

Family_outcome
sgnalSet n

ONT Framework

-activity_committed, 0 e e RN m i m i — =
Transaction

Activity_Coordinator 1

Activity_Coordinator n-1

action(FAn,ss_FOnN-1)

Transaction
committed

Rrocess_signal
OTRAL

Activity_Coordinator n

1 - get_signal

Figure C-3 Transactional Activity commitment and Compensation registrations

Additional Sructuring Mechanismsfor the OTS, v1.0

C-15

If an Action registered to the family _outcome signal Set receives the
activity_committed signal with anil parent ActivityCoordinator, it invokes aforget
operation on the Compensator object to inform it about the final completion. If the
Action fails to invoke the Compensator object it returns the outcome
failure_to_invoke_compensator.

If an Action registered to the family_outcome signal Set receives the

activity _rollback signal, it invokes the compensate operation on the Compensator
object as described in Figure C-4. If the Action failsto invoke the Compensator object it
returns the outcome failure_to_invoke_compensator.

Rolled back

Nested Family_outcome
Adivity (i) Sgnalseti 1 - get_signal

A

Compensatar i+1 14 FamilyAdion ~ \4— |
to compensatei+1

Compensator i+2 |4 Family Action |
tocompensatei+2

Family Adtion
to compmsate n

Figure C-4 Compensation on Activity rollback

Compensatar n <

After atimeout or once restarted, the Open Nested Service has the responsibility to
inquiry of its associated activity using the get_status operation on the
CosActivity::ActivityCoordinator. If the ActivityCoordinator no longer exists, it
invokes compensate on the Compensator object. It has the responsibility to retry the
compensate method in case of failure.

An application programmer may invoke the creation of a transaction or an activity within
the compensate operation. However if that transaction rolls back or the activity
completes with failure, it is up to application to retry. The Open Nested Service that
invokes compensate is not responsible for its behavior, but only responsible to reach the
Compensator object.

C-16 Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

January 2005

Open Nested Transaction IDL

#ifndef OPEN_NESTED_IDL_
#define OPEN_NESTED_IDL_

#include <orb.idI>
#include <CosTransactions.idl>
#include <CosActivity.idl>
module OpenNested
{

enum Activity_Status {
StatusActive,
StatusNoActivity,
StatusMarkedRollback,
StatusRollingBack,
StatusCommitting,
StatusRolledBack,
StatusCommitted,
StatusToCompensate,
StatusUnknown

h

exception Heuristic_Compensate {};
exception Heuristic_No_Compensate {};
exception Activity_RolledBack {};

interface Compensator;

interface Current : CORBA::Current {

void activity_begin(in long timeout)
raises(CosActivity::InvalidState, CosActivity::TimeoutOutOfRange);
void activity_commit(in Compensator compensator_object, in any

compensate_data)

raises(CosActivity::NoActivity, CosTransactions::HeuristicMixed,
CosTransactions::HeuristicHazard, CosActivity::ActivityPending,
CosActivity::ChildContextPending, Activity_RolleBack,

Heuristic_Compensate, Heuristic_No_Compensate);

void activity_rollback() raises(CosActivity::NoActivity);
void activity_rollback_only() raises(CosActivity::NoActivity);

void activity_set_timeout(in long seconds) raises(CosActivity::TimeoutOutOf-

Range);

Activity _Status activity_get_status();

CosActivity::ActivityToken suspend();
void resume(CosActivity::ActivityToken)
raises(CosActivity::InvalidToken, CosActivity::InvalidParentContext);

string get_activity_name ();

string get_transaction_name();

CosActivity::ActivityContext get_context();
CosActivity::ActivityCoordinator get_coordinator();

Additional Sructuring Mechanismsfor the OTS, v1.0

C-17

/I Operations to access to the Transaction Service
CosTransactions::Control get_control();

/I Operations to create and terminate nested transactions

void begin() raises(CosActivity::NoActivity, CosTransactions::NoTransaction,
CosTransactions::SubtransactionsUnavailable);

void commit() raises(CosTransactions::NotSubtransaction);

void rollback() raises(CosTransactions::NotSubtransaction);

void rollback_only() raises(CosTransactions::NotSubtransaction);

h

interface Compensator {
void compensate(in any compensating_data);
void forget();

b
h
#endif

C-18 Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

January 2005

Glossary

Action When an Activity requires Signal processing, Actions will be invoked with
the specified Signal.
Activity An activity is a unit of (distributed) work that may, or may not be

transactional. During its lifetime an activity may have transactiona and
non-transactional periods.

ActivityCoordinator

The coordinator is responsible for coordinating the interactions between
Activities through Signals and Actions.

Activity Context

The activity information associated with a specific thread.

Child activity

An activity that has been created within the scope of another activity.

Compensation

An activity that can be used to return the state of the system to application
specific consistency.

Current

This interface provides operations which allow the demarcation of Activity
scope. In addition, it provides interfaces for coordinating the Actions of the
current Activity.

Parent activity

An activity that has child activities.

PropertyGroup A tuple-space for specifying application specific logic for coordinating and
controlling the behavior of activities.

Recovery A series of actions for restoring the state of the system to application
specific consistency.

Root activity An activity that does not occur within the scope of another activity.

Sibling A child activity.

Additional Sructuring Mechanismsfor the OTS, v1.1

Signal An Activity may enable Signal objects to be transmitted to other Activities
to inform them about application specific events. Application specific
information (e.g., about how the Activity terminated) is encoded within the
Signal.

Signal Set Each Signal is associated with a specific SignalSet. A Signal Set represents
the set of Signals that are required to achieve some goal. For example, an
OTS Signal Set may contain prepare/commit/rollback/forget/
commit_one_phase Signals. Actions register interest in receiving Signals
from a given Signal Set.

Transaction An Object Transaction Service transaction.

Additional Sructuring Mechanismsfor the OTS, v1.1 January 2005

| ndex

A

ACID properties 1-5

Action 1-4

Actions 1-9

actions 1-6

Activity Component 1-3

activity coordinator 1-10

Activity Failures 1-8

Activity Integrity 1-9

activity object 1-6

Activity Outcome 1-8

Activity Service Implementation 1-4
Activity Service Interfaces 1-2
Activity Service Model 1-4
Application Component 1-3
Application Framework 1-2, 1-4
application logic 1-15

application object consistency 1-15

C

completed 1-6

CORBA
contributors 1-v
documentation set 1-iii

@)
Object Management Group 1-iii

January 2005

addressof 1-iv
outcome 1-6

P
Properties 1-13
PropertyGroup 1-13

R

rebinding of the activity structure 1-15
recover actions and signal sets 1-15
Recovery 1-14

recovery domains 1-15

resumed 1-6

S

Security Service A-1, B-1,D-1, C-1
Signal Set interface 1-4

Signals 1-9

signals 1-6

Signa Sets 1-4, 1-10

suspended 1-6

T
transactional activities 1-7

w
Workflow Management Coalition (WfMC) 1-3

Additional Sructuring Mechanisms for the OTS, v1.1 Index-1

| ndex

Index-2 Additional Sructuring Mechanisms for the OTS, v1.1 January 2005

Additional Structuring Mechanisms for the OTS, v1.1
Reference Sheet

Thisisarevised version of the Additional Structuring Mechanisms for the OTS specification.

OMG documents used to create this version:

* Convenience document: ptc/03-08-10

January 6, 2005

January 6, 2005

	Introduction
	1.1 Introduction
	1.1.1 Activity Service Interfaces and Implementation
	1.1.2 Application Framework
	1.1.3 Application Component
	1.1.4 Actions and Signal Sets
	1.1.5 Underlying Implementation Platform

	1.2 Activity Service Model
	1.2.1 Overview
	1.2.1.1 Activities and transactions
	1.2.1.2 Activity Outcome
	1.2.1.3 Activity Failures
	1.2.1.4 Activity Integrity
	1.2.1.5 Signals, SignalSets, and Actions
	1.2.1.6 Contexts
	1.2.1.7 Properties
	1.2.1.8 Recovery

	1.2.2 Coupling Transactions and Activities

	Modules and Interfaces
	2.1 The Activity Service Modules
	2.1.1 Overview
	2.1.2 Datatypes
	2.1.2.1 GlobalId
	2.1.2.2 Status
	2.1.2.3 CompletionStatus

	2.1.3 Structures
	2.1.3.1 ActivityInformation
	2.1.3.2 Signal
	2.1.3.3 Outcome
	2.1.3.4 ActivityIdentity and ActivityContext
	2.1.3.5 PropertyGroupIdentity

	2.1.4 Exceptions

	2.2 Activity Service Interfaces
	2.2.1 SignalSet Interface
	2.2.2 SubordinateSignalSet Interface
	2.2.3 Action Interface
	2.2.4 ActivityToken Interface
	2.2.5 ActivityCoordinator Interface
	2.2.6 PropertyGroup
	2.2.7 PropertyGroupAttributes
	2.2.8 PropertyGroupManager
	2.2.9 CosActivity::Current
	2.2.10 CosActivityAdministration::Current
	2.2.11 CosActivityCoordination::Current
	2.2.12 Interposition

	2.3 Distributing Context Information
	2.3.1 Activity Service POA Attributes

	2.4 The User’s View
	2.4.1 Examples of Use
	2.4.1.1 Workflow-like Coordination
	2.4.1.2 Compensating Activities
	2.4.1.3 Two-phase Commit

	2.5 The Implementor’s View
	2.5.1 Suspending Transactions
	2.5.2 Obtaining Current
	2.5.3 Failure Assumptions
	2.5.4 Normal Activity Completion

	References
	OMG IDL
	Specific Models
	Glossary

