
Party Management Facility
Specification

Version 1.0
February 2001

Copyright 1999, Concept Five Technologies, Inc.
Copyright 1999, Cyborg Systems, Inc.
Copyright 1999, Electronic Data Systems (EDS)
Copyright 1999, Hitachi, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm.

Contents
1

-1

1-2

1-3

1-4

1-4

-5

1-7

1-8

-8

1-9

12

1

2-2

2-2

2-4

2-6

2-7

2-8

-8
1

-12

13
Preface .

1. Domain Model and Design Objectives 1

1.1 Service Overview .

1.2 Common Object Model .

1.3 Composition Model .

1.4 Definition of Terms and Assumptions

1.5 Role Aware Composition Model . 1

1.6 Party and Contact Information .

1.7 Party Relationships as First Class Objects

1.8 High Level Comparison with CosRelationships 1

1.9 Manager and Object Factory Model

1.10 Locating Existing Party Information 1-

2. Party Management Facility Interfaces. 2-

2.1 Overview .

2.2 CosFinance Module Declaration .

2.3 General Type Information .

2.4 Manager .

2.5 Date and Time Sensitive Objects .

2.6 Common Object .

2.6.1 CommonObject (Inherited Interfaces) 2
2.6.2 CommonObject (Local Attributes and Methods) 2-1

2.7 Common Container . 2

2.7.1 CommonContainer (Inherited Interfaces) 2-
Party Management, v1.0 i

Contents

13

-14

-15

-17

-22

-23

2-24

2-26

2-27

2-27

-29

2-29

-29

2-29

2-30

2-30

2-31

-31

-33

-33

-33

2-33

1

-1
-1

-1
3-2

3-2
3-2

3-2

3-2
3-2

-2

3-3

3-3

-3
2.7.2 CommonContainer (Local behavior) 2-

2.8 Template Manager . 2

2.9 Locator . 2

2.10 Iterator Support . 2

2.11 PMF Module Declaration . 2

2.12 General Type Information . 2

2.13 Role .

2.14 Node. .

2.15 Party .

2.16 PartyRole .

2.17 Party Relationship . 2

2.18 Person. .

2.19 Organization. 2

2.20 Node Manager .

2.21 Party Manager .

2.22 Role Manager .

2.23 PartyRoleManager .

2.24 Relationship Manager . 2

2.25 PartyRelationship Manager . 2

2.26 Group Manager . 2

2.27 ContactInformationFactory . 2

2.28 Summary .

3. Compliance, Conformance, and Known Issues 3-

3.1 Compliance with Existing Specifications 3
3.1.1 Transaction Service (OTS) 3

3.1.2 Relationship Service . 3
3.1.3 Security Service .

3.1.4 Persistent Object Service (POS)
3.1.5 Query Service .

3.1.6 Name Service .

3.1.7 Trader Service .
3.1.8 Event Service .

3.1.9 Externalization Service. 3

3.2 Levels of Conformance .

3.3 Known Issues .

3.3.1 Notification Support . 3
ii Party Management, v1.0

Contents

-1

4-1

-1
4. Security and Party Management . 4

4.1 Security Issues .

 Appendix A - Complete OMG IDL A-1

 Appendix B - Collaboration Diagrams B-1

 Appendix C - Wrapping Cos Relationships C-1

 Appendix D - References . D
Party Management, v1.0 iii

Contents
iv Party Management, v1.0

Preface
rted
 and
nted

ide a
,
ous
p a

ed.

ted,
ey
bject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
February 2001 Party Management, v1.0 1

icient
act
ems
ss”

tem
icult

dard

sfy
e
or
tions
 the
s

g
Party Management Overview

A key requirement for financial service organizations is to effectively manage the
parties, people, and organizations that relate to their business. They must have eff
and consistent access to party related information including relationship and cont
information. The vast majority of organizations have many different computer syst
operating their daily business processes that all need access to “name and addre
information. Unfortunately, this information is generally embedded within each sys
in a proprietary manner resulting in an environment that is very expensive and diff
to maintain. As a result, redundant, inconsistent information is often proliferated
throughout the organization. The Party Management Facility (PMF) defines a stan
set of interfaces that will enable a consistent integration strategy for consumers
whether they are software vendors, other systems, or end users.

This document provides a high level view of where the Party Management Facility
(PMF) fits into the OMA and into the Financial Industry vertical domain
(“CORBAFinancials”). It then illustrates how the proposed interface definitions sati
the mandatory and optional requirements of the RFP while providing an extensibl
foundation for commercial products to adhere to and for end users to customize f
their specific needs. The interfaces have been supplemented with textual descrip
and scenario diagrams to further illustrate their use in practice. The remainder of
document outlines how the PMF complies with existing OMG standards and close
with topics of discussion as outlined in the RFP.

The Object Management Architecture (OMA) is the basic framework for organizin
OMG efforts. The OMA Reference Model is illustrated below.
2 Party Management, v1.0 February 2001

Figure 1. OMG Object Management Architecture (OMA) Reference Model

Within the context of the OMA, the Party Management Facility is clearly a Domain
Interface.

The following figure, although not an official OMG diagram, depicts a view of the
OMA in more detail with a specific focus on the domain interfaces.
February 2001 Party Management, v1.0 3

ance
s
 the
d
n

s is

ing on

 to

 lies
Figure 2. Business Object Domain Task Force (BODTF) view of OMA

The architectural boundaries can be further exploded to depict the focus of the Fin
Domain Task Force (FDTF). In the FDTF architectural view the Common Busines
Objects layer is further specialized with Common Financial Services (objects) and
vertical financial markets can be illustrated as: insurance, banking, brokerage, an
securities. Although this response has leveraged work that was put into the Perso
Identification System (PIDS) created within the healthcare arena, its primary focu
to satisfy the requirements of the FDTF and the finance industry. The Party
Management Facility is intended to serve as a Common Financial Service.

“Party” is a general concept that can be used in an endless array of roles depend
the context of its surroundings. The intent of this specification is to provide a core
definition of Party that assumes many of the technology characteristics necessary
live in a distributed system. Further, it is intended that vendors will specialize the
interface(s) into the specific roles, along with specific attribution and behavior, for
their respective lines of business. Figure 3 shows that the bulk of this specification
in the component category.

Common Business Objects

Business Object Facility

CORBA Infrastructure

M
fg

.

F
in

an
ce

H
ea

lth
 C

ar
e

T
el

ec
om

m
.

G
ov

’t.

E
ne

rg
y

R
et

a
il

Business Applications

O
th

er
4 Party Management, v1.0 February 2001

oint

for
.

s).
Figure 3. Component Category Interfaces

This specification illustrates how the Party Management Facility serves as a focal p
for all party related information with the understanding that the PMF is one small
component in a much larger picture. The other facilities that have been identified
future standardization include: Product, Agreement, and Investment Management
Many higher level services will be built upon these basic concepts.

Figure 4. Facilities identified for future standardization

Highest level business processes (e.g., Process New Busines

Higher level collection of components (e.g., Policy

The Party Management Facility Interface Definitions reside

Specific entity level interfaces are defined here that often
provide

Process

System

Component

Object

Party Management
Financial Agreement
Management

Investment
Management

Financial Product
Management
February 2001 Party Management, v1.0 5

 are
ides
 are

e

be

aces

nd

d

 so

d,
dards

 (The

mat.
ons,
Associated OMG Documents

The CORBA documentation set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Language Mappings, a collection of language mapping specifications. Se
the individual language mapping specifications.

• CORBAservices: Common Object Services Specification contains specifications for
OMG’s Object Services.

• CORBAfacilities: Common Facilities Specification is a collection of services that
many applications may share, but which are not as fundamental as the Object
Services. For instance, a system management or electronic mail facility could
classified as a common facility.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interf
between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry a
represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services an
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:
6 Party Management, v1.0 February 2001

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• 2AB, Inc.

• Concept Five Technologies, Inc.

• Cyborg Systems, Inc.

• Data Access Technologies

• Electronic Data Systems (EDS)

• Hitachi, Ltd.

• International Business Machines Corporation

• Open Engineering, Inc.

• System Software Associated, Inc.
February 2001 Party Management, v1.0 7

8 Party Management, v1.0 February 2001

Domain Model and Design
Objectives 1
other

their
at is,
ace
rface

Contents

This chapter contains the following topics.

This specification defines specific interfaces for Party Management that each of the
(future) finance related components will request information from. The goal of this
specification and the Party Management Facility (PMF) in general is to define these
interfaces at a level where, for example, an insurance company can easily replace
current OMG compliant PMF component with a new one in a seamless manner. Th
since both products conform to the OMG standard, then interoperability at an interf
level is assured. And, since OMG IDL promotes a distinct separation between inte
and implementation, the remainder of the insurance application remains completely
intact, unaware of the new PMF implementation.

Topic Page

“Service Overview” 1-2

“Common Object Model” 1-3

“Composition Model” 1-4

“Definition of Terms and Assumptions” 1-4

“Role Aware Composition Model” 1-5

“Party and Contact Information” 1-7

“Party Relationships as First Class Objects” 1-8

“High Level Comparison with CosRelationships” 1-8

“Manager and Object Factory Model” 1-9

“Locating Existing Party Information” 1-12
February 2001 Party Management, v1.0 1-1

1

od

ms
her
r
ll-

ment
eral

ging

ting
ble
 of
t

 next

nd
 to
isting
ce

tes
The interfaces presented in this specification represent a solution to a well-understo
problem, the management of involved party information. This specification does not
attempt to address how a Party Management Facility is to be implemented (e.g., in ter
of access to persistent storage or collection management). Rather, it provides a hig
level interface that allows external users (people, application programmers, or othe
systems) to access and manipulate party related information in a consistent and we
defined manner.

1.1 Service Overview

Figure 1-1 Services that comprise the Party Management Facility

Figure 1-1 illustrates the different types of services that comprise the Party Manage
Facility. The Party Management Facility defines similar types of services as the Gen
Ledger Facility. There are interfaces that support data extraction, party lifecycle
management, location services, effective dating, along with services specific to mana
and creating parties and their relationships.

This section describes the core aspects of the Party Management Facility by illustra
the interface hierarchy in UML. The models have been broken into small, managea
packages in an effort to succinctly communicate the design, intent, and justification
each logical entity. This section does not explain individual methods or attributes bu
rather focuses on the overall design. Each IDL interface is described in detail in the
section.

The facility must allow for dynamic attribution and provide the ability to internalize a
externalize party information in a well-defined format. This specification has chosen
capture this behavior, and other general services, by making extensive use of pre-ex
Common Object Services. Further, it consolidates this behavior into a single interfa
from which most other Party Management interfaces derive from. Figure 1-2 illustra
this abstract interface entitled CommonObject .

P arty P rofi le P arty Li fec ycle P arty Effec ti vity

P MF C lien t

<<cl ien t>>

Pa rty R etrie val Pa rty E le m ents P arty As s ociation s

Fu nction ally provid ed

by Pa rtyMa nag er
1-2 Party Management, v1.0 February 2001

1

tics
t
ams

ly,

de
arty
t,”

as

ther
1.2 Common Object Model

Figure 1-2 Common Object Interface Model

This abstract CommonObject interface represents the core behavior that most Party
Management interfaces will inherit. To provide for dynamic, although constrained,
attribution CommonObject derives from the CosPropertyService ’s
PropertySetDef interface. In order for the CommonObject to potentially be involved
in distributed transactions it derives from CosTransactions::TransactionalObject .
Note that this interface may not be necessary in the future, as transactional seman
become more quality of service oriented. By inheriting from Streamable, each objec
inherits the ability to internalize and externalize its state into user supplied data stre
(e.g., into pre-existing EDI standard formats). CommonObject also derives from
LifeCycleObject so clients may remove a particular instance from the facility. Final
CommonObject derives from DateEffectiveObject so that every aspect of the
facility has the ability to be date and time stamped. This ability is important to provi
point-in-time representation. Each of the specific methods and their applicability to p
management is outlined in the IDL listing contained in Section 2.6, “Common Objec
on page 2-8.

1.3 Composition Model

The first extension this specification makes to CommonObject is fundamental to the
manner in which object aggregation is managed throughout the facility. The PMF h
been positioned as an extensible service that effectively manages not only party
information but also party relationships to other entities. Parties may be related to o
parties, financial agreements, assets, or in general to most anything. To satisfy the

CommonObject

identity : QualifiedObjectIdentity

CosPropertyService::PropertySetDef

CosTransactions ::TransactionalObject

CosStream::Streamable

CosLifecycle::LifeCycleObject

DateEffectiveObject
February 2001 Common Object Model 1-3

1

use of
sides

s of
lly
p

 fact
een

a

s to

lear by
requirement of managing these associations, this specification has incorporated the
the Composite design pattern as documented by Gamma, Helm, Johnson, and Vlis
[1]. The following diagram illustrates this very important extension to the base
CommonObject into a CommonContainer .

Figure 1-3 Composite Design Pattern

This design pattern is very powerful in terms of creating and managing aggregation
objects that can be referenced through a simple and consistent interface. Generica
these interfaces and their unique relationship to each other define the ability to grou
objects together. In reference to the Composite design pattern, the CommonObject is a
component and the CommonContainer is a composite. Quite simply, this construct
provides the foundation for grouping objects together into compositions that may in
be recursive. The next few paragraphs describe how these core capabilities have b
extended to understand roles, relationships, and specific domain types that will be
introduced as mandatory extensions as well as a few illustrative examples.

1.4 Definition of Terms and Assumptions

The basic behavior that is made possible with CommonObject and
CommonContainer lacks role information. For example, assume that Person was
kind of CommonObject and a user wished to relate an instance of person as a
‘husband’ with another person who happened to be his ‘wife.’ The general interface
create an association between the person and his/her family exist within these base
interfaces; however, if role information is necessary, then these interfaces must be
extended to become role aware. This concept and the design approach becomes c
first providing a few basic assumptions.

Co m m onC onta ine r

C om m on Ob jec t

ide ntity : Qua li fi edObjectIdentity

**
1-4 Party Management, v1.0 February 2001

1

s

n
ion

arty

and
to tie
ific
. For

ip
ing

with

en

e().

r
the
s of

-4
1. Basic person and organizational information is maintained and implemented a
specific derivations of Party (they are Person and Organization respectively). That
is, a person can exist independently in a system without being associated to a
insurance policy, annuity, or other customer relationship information. By definit
then, a Person or Organization has a lifecycle of its own, has state that can be
externalized, has date aware behavior, and can participate in distributed
transactions.

2. Party is defined as a base interface over Person and Organization. The term P
implies that the Person or Organization can, and often does, play many Roles
relative to the business for which it is being maintained. As a result, this base
interface, through Node, has methods that allow for the traversal from Person
Organization to those Roles. The Roles themselves use a form of aggregation
a Person or Organization to the related entity they are associated with. A spec
Role, PartyRole, has been introduced for those Roles that only Parties can play
example, an Insured entity would inherit from PartyRole allowing a Person or
Organization to participate in a relationship with an Insurance Agreement.

3. This specification takes the position that an instance of a relationship between two
or more entities does not always dictate the existence of a first class relationsh
(link) object. To expand upon the previous husband and wife example, depend
upon the nature of the system the user may not be interested in specific marriage
behavior or state. That is, the simple association between two person objects
limited role information attached to each may be sufficient for some systems
without creating a first class marriage object that represents the association betwe
the two parties. On the other hand, a system may be keenly interested in the
marriage itself as a first class entity to provide specific behavior, such as divorc
In particular, first class relationships are indicated by derivations of
PartyRelationship that can maintain role constraints per type of relationship. Fo
example, marriage could be a specialization of PartyRelationship that constrains
roles to being ‘husband’ and ‘wife.’ This specification recognizes the usefulnes
both scenarios and supports both.

1.5 Role Aware Composition Model

Having an understanding of these fundamental concepts described above, Figure 1
introduces two new extensions to the model: Role and Node .
February 2001 Role Aware Composition Model 1-5

1

ows
ns of

es
hip,
he

Figure 1-4 Role and Node Interfaces

To reflect back upon the three fundamental concepts provided above, this model sh
specifically how Person, Party, and Organization are introduced as unique extensio
Node and therefore CommonObject . The Node and Role interfaces are introduced
here to provide a richer level of support for aggregations and relationship traversal.

The Node interface specializes the core behavior of CommonObject providing the
user with the ability to obtain all of the roles that a particular object is playing. Parti
can also play many roles. For example, if a person were the father in one relations
possibly with his son, and the insured in another relationship with an insurer, then t
get_all_roles method would return references to a ‘Father’ and an ‘Insured’, where
both are likely derivations of PartyRole .

The Role interface has three purposes:

1. Adds role knowledge to otherwise generic object aggregations.

R o le

p r i m a ry_ o b je c t : C o m m o n O b j e c t

ro l e _ n a m e

g e t_ re la te d _ o b je c ts ()

g e t_ a ll _ re l a te d _ o b je c ts _ b y_ ro le ()

a d d _ re l a te d _ o b je c t()

re m o ve _ r e la te d _ o b je c t()

P a rty

g e t_ c o n ta c t_ in fo rm a tio n ()

s e t_ c o n ta c t_ in fo rm a tio n ()
P a rtyR o le

g e t_ co n ta c t_ in fo rm a t io n ()

s e t_ co n ta c t_ in fo rm a t io n ()

g e t_ re l a te d _ p a r ty_ r o le ()

g e t_ a l l _ re la te d _ p a r ty_ ro l e s ()

a d d _ re la te d _ p a rty_ ro l e ()

rem o ve _ re la te d _ p a r ty_ ro le ()

C o m m o n C o n ta in e r
C o m m o n Ob je c t

id e n tity : Qu a li fi e dO b j e c tId e n ti ty

N o d e

g e t_ a l l _ ro l es ()

a d d _ ro le ()

rem o ve _ ro le ()

g e t_ ro l e s ()

P e r s o n O rg a n i za t io n
1-6 Party Management, v1.0 February 2001

1

.e.,
r to

ific

irect

pes of

ingle
2. Supports and constrains the unique aggregation between the primary object (i
Person) and the role (e.g., Insured) object that adds specific state and behavio
the Person in the context of a relationship.

3. Acts as a base interface for PartyRole and subsequently all roles Parties might
play, (e.g., Producer or Agent).

PartyRole derives from Role . PartyRole provides a mechanism from which the
fundamental notion of a Party can be augmented, through aggregation, with role spec
behavior. The specification supplies a user-friendly interface on PartyRole such that its
related parties or other related objects can be accessed directly without having to d
messages to the more abstract base interface of Role . Figure 1-5 shows a more detailed
view of Party along with its ContactInformation .

1.6 Party and Contact Information

Figure 1-5 Party and Contact Information

A Party can have a business address, a home address, a fax number, and other ty
contact information. While avoiding the general notion of location the specification
attempts to encapsulate general forms of people related contact information into a s
point of reference. The ContactInformation interface is date sensitive enabling the
client to request all contact information as-of a specific point-in-time. A Party can have
any number of different types of contact information (for example, multiple phone
numbers representing various ways of contacting the party). ContactInformation also
inherits from the PropertySetDef allowing for dynamic attribution. Dynamic

R ole

prim ary_o bje ct : C om m on Ob je ct
role _nam e

D ateEffectiveO bject

effective_s tart
effective_end

is _ effe cti ve_n ow () C os P ropertySe rvice::P ro pertySetD ef

Pa rty

ge t_c ontact_in fo rm ation()
ge t_c urre nt_ contac t_inform ation ()

ge t_re lated_ party()

ge t_a ll_related_p arties ()

ad d_related_p arty()

rem ove_ rela te d_p arty()

P ers on Organ izatio n

C ontactIn form a tion

type
locale
February 2001 Party and Contact Information 1-7

1

e, a
ilding

ially
lize

uired,

o
oes

y the

 has

d not
this
e,
ere
 then
attribution on ContactInformation can help with issues such as Internationalization
where the fields may differ by locale. It can also allow for customization (for exampl
business address that not only needs street information but also a suite, room, or bu
number). Note that contact information is available from both PartyRole and the Party
object that it is representing. This provides the PartyRole with the option to either
delegate a request for contact information to the primary object (Party) or to potent
handle the request itself. Under some circumstances it may be desirable to specia
contact information per relationship.

1.7 Party Relationships as First Class Objects

In an instance where a first class object that represents the relationship itself is req
as in our marriage example above, the specification introduces the PartyRelationship
interface. In general, the PartyRelationship interface provides constrained behavior t
a Role . That is, it explicitly specifies the roles that may exist in the relationship and d
not allow non-supported roles to participate. For example, a user could not add an
‘insured’ object to a marriage relationship.

The interface is illustrated in Figure 1-6. These constraints can be further enforced b
manager interface associated with the relationship type.

Figure 1-6 PartyRelationship Interface

1.8 High Level Comparison with CosRelationships

Many of these concepts are functionally in synch with the current CosRelationship
Service specification. There are two (2) fundamental reasons why this specification
chosen not to explicitly extend or otherwise use CosRelationships .

1. This specification recognizes that every association between two objects shoul
result in the creation of a first class relationship (link) object. The overhead of
requirement in CosRelationships could prove to be unmanageable. For exampl
if a very simple system chose to group people into user-defined groups and th
wasn’t any specific state or behavior introduced as a result of that association,

R o le

Pa rtyR e la tio ns h ip

ge t_ re la te d _ pa rtie s ()

R e la tion s h ip

ge t_ re la te d_o b je cts ()
1-8 Party Management, v1.0 February 2001

1

0

ost
nd in

ship
 1)

ried

o

ip
ntity

ow

ard

al are
 their
t level
it should not be required to create this third object. If this group contained 100
people the use of CosRelationships would result in 1000 people objects, 2000
role objects, and 1000 relationship objects. Each of these has an identity, is m
likely persistent, may have to be managed as part of a distributed transaction, a
general consumes unnecessary resources. This characteristic of CosRelationships
also introduces additional overhead in traversal. For example, in a 1:m relation
if the user wished to obtain individual object references for the many (from the
they must first traverse each of the relationship objects (get_relationships) to get
to the role object on the other side. The role object would then need to be que
(get_related_object) to obtain the primary object.

2. The interface exposed to the user of a system explicitly based upon
CosRelationships is somewhat low-level and complex. For example, to relate tw
objects together the client must invoke operations on a role factory, create
sequences of named roles, and invoke a third set of operations on a relationsh
factory that results in the creation of a relationship object that has a unique ide
and must be managed.

As an alternative, this specification exposes a somewhat higher level interface and
positions the use of CosRelationship s as an implementation decision that the PMF
vendor must make. Appendix B provides a set of scenario diagrams that illustrate h
these PMF interfaces could be used to wrap an implementation of CosRelationships
specifically for Party Management. For more information on the position taken in reg
to CosRelationships refer to the “Compliance, Conformance, and Known Issues”
chapter.

1.9 Manager and Object Factory Model

The following sections define a series of management level interfaces that in gener
used to create parties, primary objects, and first class relationship objects along with
respective state and behavior. Figure 1-7 shows the hierarchy for these managemen
interfaces.
February 2001 Manager and Object Factory Model 1-9

1

ger’

g

des
Figure 1-7 Management Level Interfaces Hierarchy

For the most part these interfaces provide the factory behavior and a level of meta
information that is often associated with any CORBA based system. The term ‘Mana
has been used in the specification to indicate a higher level of functionality than
generally appears in a traditional factory type interface. This additional knowledge is
geared toward exposing the kinds (types) of information that the PMF has been
configured to support.

The Manager interface is responsible to act as a base abstraction for communicatin
supported type and attribution. The methods get_supported_types and
get_supported_properties offer this level of support respectively. This allows a
graphical client to easily display the facility’s options for object creation. It also provi
the ability to dynamically generate user interface logic that reflects the properties
associated with a specific type. The Manager also contains the create method to create
a CommonObject .

Co s N otifyCo m m ::Se que nceP us h Sup plier Cos Stream ::S trea m ableF actory

Mana ger

g et_ s up porte d_ type s ()

g et_ s up porte d_p ro perties ()

g et_ loc ato r()

crea te()

Pa rtyR ela tions h ip Ma nag er

PartyR ole Man ager

get_s u pported_ party_ role s ()

P artyMana ger

g et_s u pported_ parties ()
c re ate _m u ltip le_ parties ()

c re ate _pa rty()

RoleMan age r

get_s u pported_ ro le s ()

cre ate _ role()

cre ate _ fro m _tem plate()

Re la tions hip Ma nage r

g et_s u pported_ rela tio ns h ips ()

g et_s u pported_ role s _for_re lations h ip()

c re ate _relations h ip()

c re ate _m an y_re lations h ip()

N od eMana ger

ge t_s upp orted _no des ()
1-10 Party Management, v1.0 February 2001

1

ot a
m for

e in

g. It
f

)

nsion
Note – The Manager derives from the Notification Service’s
SequencePushSupplier interface providing the Manager the ability to broadcast
type level creation notices. Also, Manager derives from StreamableFactory so that
it can work in conjunction with the CommonObject ’s inherited
internalize_from_stream method.

The PartyRelationshipManager interface provides the ability to create
PartyRelationship objects. As discussed previously these relationship objects are n
mandatory aspect of associating objects to one another but do provide a mechanis
additional state and behavior specific to the association of two objects. The
PartyRelationshipManager also exposes methods to communicate the types of
relationships it has the ability to create as well as the valid roles that can participat
each of those relationships.

The RoleManager inherits from Manager and therefore inherits the create and
create_from_template methods. At the RoleManager level, the client will need to
narrow the returned CommonObject into a Role object. RoleManager creates Role
objects by accepting the primary object and the requested role in the form of a strin
has the ability to create specific derivations of Role s and can communicate the types o
derivations that it can create.

The PartyRoleManager inherits from RoleManager and therefore inherits the
create and create_from_template methods. At the PartyRoleManager level, the
client will need to narrow the returned Role into a PartyRole object.
PartyRoleManager creates PartyRole objects by accepting the primary object (Party
and the requested role in the form of a string. It has the ability to create specific
derivations of PartyRole and can communicate the types of derivations that it can
create.

The NodeManager and PartyManager interfaces are capable of creating types of
objects derived from Node and Party such as Person and Organization . These have
been segregated, as other aspects of the interface hierarchy, to allow for future expa
beyond Party Management.

This next set of management level interfaces do not derive from Manager but simply
provide base level factory behavior for their respective types.

Figure 1-8 Template and Group Management Interfaces

GroupMan age r

crea te_ grou p()

T em plateMa nage r

a dd_ tem p la te()
rem o ve _tem plate()

g et_ tem p la te ()

l is t_ tem pla tes ()

Co nta ctInfo rm atio nFac tory

crea te()
February 2001 Manager and Object Factory Model 1-11

1

, in

 with

rties

ip

es.

,

gh

his
Templates and Groups are the final two management interfaces that must be
discussed. A Template defines a container that contains specific types. For example
conjunction with the Role ’s generic ability to group objects the template not only
specifies the exact types that will comprise the container but initializes the container
those types. Template support is optional.

A Group is simply a user-defined, named container of parties.

1.10 Locating Existing Party Information

The final three interfaces presented in the specification reflect the ability to locate pa
using a variety of mechanisms. The primary interface is the Locator . A reference to the
Locator can be obtained from the Manager interfaces described above or could be
directly resolved from a Naming or Trader Service. Figure 1-9 shows the relationsh
between the Locator , Iterator , and Table interfaces. In general, an Iterator is the
result of a query issued in one of two ways on the Locator (evaluate or query). The
optional Table interface provides high level access to the data returned by the Iterator
through its methods that ultimately provide access to a multi-dimensional list of valu

Figure 1-9 Locator, Iterator, and Table Interfaces

Note that the resolve method on the Locator provides the ability to specify an as-of-date
that enables the Locator to return a specific Party as it existed on a specific date. Also
if a client has a reference to a Locator and still cannot locate the Party they are
searching for, they have a direct link to the local naming and or trader service throu
read-only attributes. For additional locator support the Iterator interface provides a
mechanism to traverse Party objects or data associated with Parties, or both. Using t
approach, the PMF vendor has the ability to support the lazy activation of Party objects.

L o c a to r

n a m i n g _ co n te xt

tr a d e r_ co m p o n e n ts

re s o l ve ()

e va lu a te ()

q u e ry()

Ta b le

n u m b e r_ o f_ ro w s
n u m b e r_ o f_ co lu m n s

co lu m n _ p ro p e r ty_ typ e s

co lu m n _ n a m e s

g e t_ ro w ()

s e t_ ro w ()

g e t_ c e ll ()

s e t_ c e ll ()

Ite ra to r

n e xt_ o b j e c t()

n e xt_ n _ o b je c ts ()

n e xt_ va l u e s ()

n e xt_ n _ va l u e s ()
re s e t()

co u n t()

o b je c t_ a t()

va lu e s _ a t()
1-12 Party Management, v1.0 February 2001

Party Management Facility
Interfaces 2
Contents

This chapter contains the following topics.

Topic Page

“Overview” 2-2

“CosFinance Module Declaration” 2-2

“General Type Information” 2-4

“Manager” 2-6

“Date and Time Sensitive Objects” 2-7

“Common Object” 2-8

“Common Container” 2-12

“Template Manager” 2-14

“Locator” 2-15

“Iterator Support” 2-17

“PMF Module Declaration” 2-22

“General Type Information” 2-23

“Role” 2-24

“Node” 2-26

“Party” 2-27

“PartyRole” 2-27

“Party Relationship” 2-29

“Person” 2-29
February 2001 Party Management, v1.0 2-1

2

e
e core
 Since
d

n of
2.1 Overview

The interface hierarchy is scoped within two modules. The CosFinance module
provides base level interfaces from which the PMF module inherits from or otherwis
makes use of. The modules have been segregated in an effort to isolate some of th
behavior that is anticipated to be used in subsequent finance related specifications.
much of the technology related characteristics such as externalization, lifecycle, an
transactional behavior will likely be required for most finance-related initiatives, this
specification has taken an extra step to make them easily available and extensible.
Collectively, the interfaces can be broken down into the following functional areas:
aggregation (composition), attribution, location (query), lifecycle management, and
iterator support.

A complete OMG IDL is included in Appendix A. The next portion of this document
breaks out each individual interface definition, per module, and provides a descriptio
its use and role.

2.2 CosFinance Module Declaration

#ifndef CosFinance_idl
#define CosFinance_idl

#include “CosProperties.idl”
#include “CosLifeCycle.idl”
#include “CosExternalization.idl”
#include “CosTransactions.idl”
#include “CosTime.idl”
#include “CosNotifyComm.idl”
#include “NamingAuthority.idl”
#include “CosNaming.idl”
#include “CosTrader.idl”

“Organization” 2-29

“Node Manager” 2-29

“Party Manager” 2-30

“Role Manager” 2-30

“PartyRoleManager” 2-31

“Relationship Manager” 2-31

“PartyRelationship Manager” 2-33

“Group Manager” 2-33

“ContactInformationFactory” 2-33

“Summary” 2-33

Topic Page
2-2 Party Management, v1.0 February 2001

2

 the
#pragma prefix “omg.org”

module CosFinance
{

// …
};

#endif

#include "CosProperties.idl"

This file contains all of the type declarations for the CosProperty service.

#include "CosLifeCycle.idl"

This file contains all of the type declarations for the CosLifeCycle service.

#include "CosExternalization.idl"

This file contains all of the type declarations for the CosExternalization service.

#include "CosTransactions.idl"

This file contains all of the type declarations for the CosTransactions service. Note,
only the TransactionalObject interface is used indicating that if an OTS is present,
then the base financial interfaces are transactional in nature.

#include "CosTime.idl"

This file contains all of the type declarations for the CosTime service.

#include "CosNotifyComm.idl"

This file contains all of the type declarations for the Supplier capability described in
Notification Service.

#include "NamingAuthority.idl"

Since this specification makes use of the qualified identity defined in the Person
Identification Service we include NamingAuthority.idl for domain information.

#include "CosNaming.idl"

Since this specification references the NamingContext from CosNaming
CosNaming.idl must be included.

#include "CosTrader.idl"

Since this specification references TraderComponents from CosTrader
CosTrader.idl must be included.
February 2001 CosFinance Module Declaration 2-3

2

s the
#pragma prefix "omg.org"

In order to prevent name pollution and name clashing of IDL types this module use
pragma prefix that is the reverse of the OMG's DNS name.

Each of the following type declarations and interfaces exists in the module defined
above.

2.3 General Type Information

//forward declarations

//management
interface Table;
interface Manager;
interface TemplateManager;
interface Iterator;
interface Locator;

//core
interface CommonObject;
interface CommonContainer;
interface DateEffectiveObject;

//typedef
typedef string Type;
typedef sequence<string> Types;

struct Template
{

string name;
Types types;

};

typedef string QueryExpression;
typedef CosTime::UTO Date;
typedef any PropertyValue;
typedef sequence<PropertyValue> PropertyValues;
typedef sequence<Template> Templates;
typedef sequence<CommonObject> CommonObjects;
typedef sequence<CommonContainer> CommonContainers;

//enumerators
enum ModificationState { Update, Correction };
2-4 Party Management, v1.0 February 2001

2

so

any

t

Instead
struct QualifiedObjectIdentity
{

NamingAuthority::AuthorityId domain;
Type type;
NamingAuthority::LocalName id;

};

Type, Types

Type is simply an alias for string that is used by the Manager interface to determine
what specific type of object to create (e.g., ‘IndividualPerson’ or ‘Employer’). It is al
used to publish all the types that this Manager can create.

Template

A structure representing the name of the template (pre-defined collection) and the m
types it contains.

QueryExpression

QueryExpression is a string that represents how to locate a set of objects or data
within the local domain. The vendor must supply the exact syntax of the query. It is
suggested that the syntax be a derivation of ODMG OQL or SQL.

Date

Date is an alias for CosTime::UTO (Universal Time Object). The vendor may wish to
extend this low-level abstraction to a more user-friendly date and time structure tha
allows locale formatting.

PropertyValue, PropertyValues

PropertyValues is a sequence of type PropteryValue , which is a CORBA type any.
This typedef extends CosPropertyService . It has been introduced as an efficiency
mechanism to pass all names at once then all data associated with those names.
of always passing both name and value as CosPropertyService suggests. See Table
interface declaration below.

Templates

A sequence of many templates.

CommonObjects

This typedef is an alias for a sequence of CommonObjects .

CommonContainers

This typedef is an alias for a sequence of CommonContainers .
February 2001 General Type Information 2-5

2

ssor
keep

ply

ation
ModificationState

Any date and time sensitive object needs to be aware of its update state while acce
methods are being invoked. This provides the vendor to automatically monitor and
track of effective and expiration dates. It also provides the user of the PMF to not im
a real state changed by switching the flag to ‘Correction.’ See the DateEffectiveObject
interface for more detail.

QualifiedObjectIdentity

This structure has been, for the most part, borrowed from the Person Identification
Service (PIDS) defined by CORBAmed. PIDS defines a NamingAuthority that realizes
that an identity is only valid within the context of a domain. An AuthorityId is the
combination of a RegistrationAuthority , such as ISO, DNS, IDL, and a
NamingEntity that is a string. The LocalName is a string that contains the value of
the domain dependent identification, such as a social security number. This specific
has explicitly added the Type attribute to differentiate between entity types that may
exist on the backend, such as the roles ‘Employee’ or ‘Claimant.’

2.4 Manager

interface Manager : CosStream::StreamableFactory, CosNotifyComm::SequencePushSupplier
{

exception TypeNotSupported {};
exception DuplicateObject {};
exception InvalidInitializationType {};
exception InvalidInitializationValue {};

struct InitCommonObject {
QualifiedObjectIdentity identity;
CosPropertyService::Properties data;

};

typedef sequence<InitCommonObject> InitCommonObjects;

Types get_supported_types();

CommonObject create(in InitCommonObject data)
raises (

TypeNotSupported,
InvalidInitializationType,
InvalidInitializationValue,
DuplicateObject);

void get_supported_properties(
 in Type type,
 out CosPropertyService::PropertyDefs property_defs)

raises (
TypeNotSupported);

Locator get_locator();
};
2-6 Party Management, v1.0 February 2001

2

 as a
bject.

alue

ould

 and
int in
 and
ts.

nitor
the
 data

inning
InitCommonObject struct

A structure to maintain combinations of types and properties. This structure is using
parameter to the create methods allowing initial values to be streamed into a new o
Note, QualifiedObjectIdentity is described above.

create ()

This method performs the creation of a new CommonObject or CommonContainer ,
or derivation thereof, that represents the type requested (within the
QualifiedObjectIdentity structure). If the facility is asked to create a type of object
that it does not support, it throws the TypeNotSupported exception. Recognize that
identity information is not always available at object creation time. As a result, the v
of the identity passed in may be null. Quite often, legacy systems have an internal
mechanism to generate uniqueness per type. In this situation, the complete identity w
not be available until after completion.

2.5 Date and Time Sensitive Objects

interface DateEffectiveObject
{

attribute ModificationState update_state;

attribute Date effective_start;
attribute Date effective_end;

boolean is_effective_now();
};

This interface is used as a base for CommonObjects that often require effectivity
constraints. For example, roles that parties play in the context of relationships come
go and the system must be able to portray a valid picture of the state at a specific po
time. Also, Agreements that Parties participate in also tend to be relatively dynamic
must be date and time stamped to effectively manage history and audit requiremen

update_state

Any object that inherits this interface will need to be aware of its update_state while
accessory methods are being invoked. This provides the vendor to automatically mo
and keep track of effective and expiration dates. Note the user of the PMF can set
value to ‘Correction’ to indicate the difference between a valid change in state vs. a
entry error.

effective_start()

The date that the state of the derived type (agreement or role) was committed.

effective_end()

The date that the state of the derived type was modified, in a sense marking the beg
of a new start-to-end duration.
February 2001 Date and Time Sensitive Objects 2-7

2

ey
dor
ng
ype
et
is_effective_now()

Simply returns true or false if the current system date falls between effective_start()
and effective_end() inclusive.

2.6 Common Object

interface CommonObject : CosLifecycle::LifecycleObject,
 CosStream::Streamable,

 CosPropertyService::PropertySetDef,
 CosTransactions::TransactionalObject,
 DateEffectiveObject

{
exception ContainerNotFound {};
exception CannotRemove {};

readonly attribute ObjectIdentity identity;

boolean is_dependent_object();

boolean is_date_sensitive();

CommonContainers get_containers();

void add_container(in CommonContainer container);

void remove_from_container(in CommonContainer container)
 raises (ContainerNotFound,
 CannotRemove);
};

2.6.1 CommonObject (Inherited Interfaces)

CosPropertyService::PropertySetDef

The ability to obtain, define (potentially) and set state on a specific object
implementation is through the PropertySetDef interface. Valid attribution is also
exposed to the client through the PropertySetDef interface defined within
CosPropertyService . According to the PMF vendor’s implementation technique, th
may then allow the consumer to further customize the attribution set. The PMF ven
may supply a set of supported attribution templates. For example, if the PMF is bei
installed at an insurance company, then they may choose to attribute their Person t
with the standard ACORD characteristics. The names and types of this attribution s
may appear to the consumer as packaged constraints.

CosLifeCycle::LifeCycleObject

CommonObject inherits from LifeCycleObject to allow instance level administration
on the target object.
2-8 Party Management, v1.0 February 2001

2

ter to

fined

ove).

tate.
ies.

arty
object

eam).

ides

CosLifeCycle::LifeCycleObject::copy (optional)

This method allows the data associated with this CommonObject to be copied from
one address space to another, possibly on a different host. The factory finder parame
this method should in fact point to a PartyManagementFacility::Manager reference.
If the vendor chooses not to implement this method they can simply throw the prede
exception NotCopyable.

CosLifeCycle::LifeCycleObject::move (optional)

The PMF vendor may implement this method in the same manner as copy (see ab

CosLifeCycle::LifeCycleObject::remove

This method effectively removes the object from the system, including its persistent s
This may include removing a reference from a Name service and/or other repositor
The details on what actually gets removed are implementation specific.

CosStream::Streamable

The CommonObject interface inherits from CosStream::Streamable primarily to
implement the externalize_to_stream method. Using this approach one of many
specializations of StreamIO could be passed to a CommonObject allowing its state to
be externalized to a specific format - such as existing EDI standard formats. This
interface inherits from CosObjectIdentity::IdentifiableObject . It is assumed that the
Party Management Facility will not implement IdentifiableObject - as a simple
unsigned long is not enough information to uniquely identify objects across multiple
domains. Rather, CommonObject will use the QualifiedObjectIdentity described
above.

CosStream::Streamable::externalize_to_stream()

It is expected that the vendor will supply this generic streaming capability to stream P
data out to external sources and/or legacy environments. For example, the stream
could format the data encapsulated within the CommonObject (Person) into the ANSI
X12 standard 275 for patient information.

CosStream::Streamable::internalize_from_stream()

This method can be used to stream data into an object, (e.g., from an EDI input str

CosPropertyService::PropertySetDef

The PropertySetDef interface, a constrained specialization of PropertySet , is
inherited primarily to provide generic attribution on all CommonObject s. This
interface provides for dynamic customization. The inherited behavior listed here prov
a quick reference to the requirements. For a more complete explanation refer to the
CosPropertyService specification.

CosPropertyService::PropertySet::define_property()

This method adds or changes an existing property on the Party object.
February 2001 Common Object 2-9

2

ich
t the

is
CosPropertyService::PropertySet::define_properties()

This method will add or change all of the properties in the list to the Party object.

CosPropertyService::PropertySet::get_number_of_properties()

Returns the total number of properties currently defined on this Party object.

CosPropertyService::PropertySet::get_all_property_names()

Returns all the properties, by name, currently associated with this Party object.

CosPropertyService::PropertySet::get_property_value()

Gets the value of an attribute from its name.

CosPropertyService::PropertySet::get_properties()

Gets multiple values of attributes from a list of names.

CosPropertyService::PropertySet::get_all_properties()

Returns all of the properties defined (name and value). If more than how_many
properties are present the remainder are returned in an iterator.

CosPropertyService::PropertySet::delete_property()

Deletes the property from the PropertySet if it exists.

CosPropertyService::PropertySet::delete_properties()

Deletes all of the properties listed in the property_names paramater.

CosPropertyService::PropertySet::delete_all_properties()

Blindly deletes all properties.

CosPropertyService::PropertySet::is_property_defined()

Returns true if the property name passed in exists in this PropertySet .

CosPropertyService::PropertySetDef::get_allowed_property_types ()

Provides a mechanism for the PMF vendor to communicate to a client explicitly wh
property types are valid for this type of object. For example, the vendor may not limi
attribution by name only by type and may state that only tk_string is allowed.

CosPropertyService::PropertySetDef::get_allowed_properties ()

Allows the vendor to communicate exactly which properties are supported. Note, th
method returns a sequence of PropertyDef ’s which contain name, value, and mode.
2-10 Party Management, v1.0 February 2001

2

.
d

.
d

lid;

 valid;

ndor.
on
ll

n

e
CosPropertyService::PropertySetDef::define_property_with_mode ()

Allows the client to provide, or customize, the attribution associated with this object
The vendor could choose to disallow this feature by throwing one of the unsupporte
exceptions.

CosPropertyService::PropertySetDef::define_properties_with_modes()

Allows the client to provide, or customize, the attribution associated with this object
The vendor could choose to disallow this feature by throwing one of the unsupporte
exceptions.

CosPropertyService::PropertySetDef::get_property_mode()

Returns the mode of the specified property. Note, the valid modes include read_only ,
normal , fixed_normal , fixed_readonly , and undefined .

CosPropertyService::PropertySetDef::get_property_modes ()

Returns a list of modes respective to the names passed in.

CosPropertyService::PropertySetDef::set_property_mode()

Sets the mode on a specific property, provided the property name and mode are va
otherwise, an exception is thrown.

CosPropertyService::PropertySetDef::set_property_modes ()

Sets the modes on a set of properties, provided the property names and modes are
otherwise, an exception is thrown.

CosTransactions::TransactionalObject

This interface does not necessarily require any additional behavior from the PMF ve
It simply implies that the object may be transactional and that the thread’s transacti
context should be initialized. If an OTS is being used, it is likely the PMF vendor wi
wish to register a synchronization interface for the CommonObject s so they receive the
before_completion message prior to transaction preparation.

DateEffectiveObject

As defined above, allows CommonObject ’s to be date and time aware. This provisio
allows for the point-in-time representation.

2.6.2 CommonObject (Local Attributes and Methods)

identity

The domain that it lives in (as suggested in PIDS) qualifies the unique identity of th
CommonObject . See QualifiedObjectIdentity description above.
February 2001 Common Object 2-11

2

t.
bject

d
ing

 to a
 to

is_dependent_object()

In some instances an object may be fully contained (by value) within another objec
Often this implies that the containing object controls the lifecycle of the embedded o
as well as its identity. For example, individual Diaries (comments) associated with a
Party may not require a fully scoped, self-sufficient identity. In this case this metho
would return TRUE and the identity method would return the identity of the contain
object.

is_date_sensitive()

Not all CommonObject s, or their potential derivations, will require data sensitivity.
The client can query whether or not the implementation supports effectivity for this
specific type.

get_containers()

This method allows for bi-directional communication between a CommonObject and
the container that may have contained it. For example, if a client holds a reference
CommonObject that represents a specific Person, then it could invoke this method
determine which CommonContainers (typically roles) have referenced it.

add_container()

This method allows for aggregation to be initiated by the contained object. It is also
intended to be called implicitly as a result of invoking add_contained_object on a
container.

2.7 Common Container

interface CommonContainer : CommonObject
{

exception ObjectNotFound {};
exception IsDuplicate {};
exception InvalidAggregation {};
exception MaximumCardinalityExceeded {};

void add_contained_object(in CommonObject object,
in Date as_of_date);

void add_contained_objects(in CommonObjects objects,
in Date as_of_date);

CommonObject get_contained_object_by_id(in QualifiedObjectIdentity id,
in Date as_of_date)
raises (ObjectNotFound);

void remove_contained_object(in CommonObject object
in Date effective_date)
raises (ObjectNotFound);
2-12 Party Management, v1.0 February 2001

2

 that
te,
ect
hod.

d
boolean has_contained_object(in CommonObject object,I
in Date as_of_date);

void get_all_contained_objects(in Date as_of_date,
out CommonObjects sequence);

void add_from_template(in Template template);

Templates list_templates();
};

2.7.1 CommonContainer (Inherited Interfaces)

A CommonContainer is a specialization of CommonObject and represents a
composition of many CommonObject s or in fact other CommonContainer s. This
unique relationship offers generic aggregation capabilities.

2.7.2 CommonContainer (Local behavior)

add_contained_object()

Adds another CommonObject , or due to inheritance another CommonContainer , to
its collection as of the date specified.

add_contained_objects()

Adds many CommonObject s, or due to inheritance other CommonContainer s, to its
collection as of the date specified.

get_contained_object_by_id()

Returns the embedded object that matches the characteristics of
QualifiedObjectIdentity . Otherwise, throws an exception stating that the object
represented by the identity is not embedded in this container. For example, assume
“Diary” is a valid type supported by the facility and its identity is comprised of the da
user id of the creator, and a sequence number. The client could retrieve the full obj
state of the diary entry by supplying this instance level information through this met

remove_contained_objects()

The client can remove a contained CommonObject from the CommonContainer
(aggregation) by passing it to this method. It is likely the vendor will use the inherite
is_identical() method to locate the object in the container.
February 2001 Common Container 2-13

2

ee

s,
 the
has_contained_objects()

This method will likely use the inherited is_identical() method to determine whether or
not the passed in CommonObject has been contained within this container. For
example, a client could query an Employer to ask whether or not a specific Employ
worked for them on the date specified.

get_all_contained_objects()

This method returns all contained object as of a specific date regardless of role.

add_from_template()

This method allows other types to be contained by this container as specified in the
template. Since templates in general are optional this method is also optional.

list_templates()

This method returns all the templates that were used to construct the object. Since
templates in general are optional this method is also optional.

2.8 Template Manager

Struct Template
{
 string name;
 Types types;
};

interface TemplateManager
{

exception TemplateNotFound {};

void add_template(in Template template);

void remove_template(in Template template);

Template get_template(in string template_name)
Raises(TemplateNotFound);

Templates list_templates();
};

[OPTIONAL INTERFACES]

The TemplateManager interface and those lifecycle methods that reference
Templates , (e.g., create_from_template) are specified as optional interfaces. That i
they provide an ease of use quality that although desirable is not required to satisfy
basic PMF behavior.
2-14 Party Management, v1.0 February 2001

2

add_template()

Adds a new template to the repository. Note, since Templates are simple structures they
can be fully created on the client and passed in to this method.

remove_template()

Removes a template from the repository.

get_template()

Obtains a pre-constructed template for the repository for use in object creation.

list_templates()

Provides a list of all defined and available template definitions.

2.9 Locator

interface Locator
{

typedef sequence<string> CriteriaBasis;
typedef sequence<string> SearchType;

exception InvalidQuerySyntax {};
exception NotImplemented {};
exception SearchTypeNotSupported {};
exception CriteriaBasisNotSupported {};
exception NotFound {};
exception InvalidIdentifier {};
exception InvalidAsOfDate {};
exception TypeNotSupported {};

readonly attribute NamingAuthority::AuthorityId domain_name;
readonly attribute CosNaming::NamingContext naming_context;
readonly attribute CosTrading::TraderComponents trader_components;

CommonObject resolve(
in QualifiedObjectIdentity identifier,
in Date as_of_date)

raises (
NotFound,
InvalidIdentifier,
InvalidAsOfDate);

Iterator evaluate(
in QueryExpression query)

raises (
InvalidQuerySyntax,
NotImplemented);
February 2001 Locator 2-15

2

sed

vices

eter
ple,

the
thod

uld in
e

te a

ctive

e.
Iterator query(
in Type object_type,
in string criteria,
in CriteriaBasis criteria_basis,
in SearchType type_of_search)

raises (
TypeNotSupported,
NotImplemented,
SearchTypeNotSupported,
CriteriaBasisNotSupported);

};

This interface provides a variety of mechanisms to find party related information ba
on a specified search criteria. A reference to the Locator can be obtained from the
Manager, a Naming or Trader Service, or ultimately another PartyLocator . This
location capability becomes federated by providing references to other location ser
such as Naming or Trader.

resolve()

The resolve method returns a reference to a Party object as of a specific point-in-time.
The method accepts a named identity, as defined in PIDS, as well as a date param
indicating the effective date they would like to use from a state perspective. For exam
if the Party had recently changed their last name a request could be made to view
Party as it existed last week or last year. This method is a take-off of the resolve me
described in CosNaming but adds an intuitive aspect of time.

evaluate()

The evaluate method performs a CosQuery like evaluation over a domain centric
QueryableCollection . That is, this method itself when implemented is directed at a
specific domain and is not intended to cross architectural boundaries. The query co
fact be issued over a series of CORBA Party objects or redirected to a persistent storag
device such as an RDBMS.

query()

This method is a simple, most likely highly used, intuitive mechanism to quickly loca
set of Party related objects that match the criteria provided. The CriteriaBasis and
SearchType values are vendor supplied and can be retrieved by calling their respe
accessory methods. Examples include:

• CriteriaBasis values may include; lastName, firstName, and SSN.

• SearchType values may include; soundsLike, spelledLike, and spelledExactlyLik
For example, this method can be used to quickly locate all the Party objects whose
last name begins with “Swi” by invoking query (“Party,” “Swi,” “lastName,”
“spelledLike”). The Iterator that is returned is described below.
2-16 Party Management, v1.0 February 2001

2

2.10 Iterator Support

interface Iterator
{

exception OutOfBounds {};

boolean next_object(
out CommonObject object);

boolean previous_object(
out CommonObject object);

boolean next_n_objects(
in unsigned long how_many,
out CommonObjects objects);

boolean object_at(
in unsigned long at,
out CommonObject object)

raises (
OutOfBounds);

void destroy();

unsigned long count();

void reset();

boolean next_values(
out PropertyValues data);

boolean previous_values(
out PropertyValues data);

boolean next_n_values(
in unsigned long how_many,
out Table data);

boolean values_at(
in unsigned long at,
out PropertyValues data)

raises (
OutOfBounds);

};

interface Table {

struct CellId {
unsigned long row;
unsigned long column;
February 2001 Iterator Support 2-17

2

};

typedef sequence<CellId> CellIds;

struct TableCell {
CellId cell;
any value;

};

typedef sequence<TableCell> TableCells;

enum ExceptionType {
read_only,
type_mismatch,
constraint_mismatch,
invalid_row_column

};

struct TableException {
CellId cell;
ExceptionType type;

};

typedef sequence<TableException> TableExceptions;

exception InvalidRow;
exception InvalidColumn;
exception IncompleteRow;
exception TypeMismatch;
exception ReadOnly;
exception MultipleExceptions { TableExceptions exceptions; };

readonly attribute unsigned long number_of_rows;
readonly attribute unsigned long number_of_columns;
readonly attribute unsigned long max_number_of_rows;
readonly attribute CosPropertyService::PropertyTypes

column_property_types;
readonly attribute CosPropertyService::PropertyNames column_names;

void describe_table(out unsigned long number_of_rows,
out CosPropertyService::PropertyNames

column_property_names;
out CosPropertyService::PropertyTypes column_types);

void get_row(in unsigned long row_number, out PropertyValues values)
raises (InvalidRow);

void set_row(in unsigned long row_number, in PropertyValues values)
raises (MultipleExceptions, IncompleteRow, InvalidRow);

any get_cell(in unsigned long row, in unsigned long column)
2-18 Party Management, v1.0 February 2001

2

ses it
 Quite
 this
ke a
ay

e

no

 true.

).
raises (InvalidRow, InvalidColumn);

void set_cell(in unsigned long row, in unsigned long column, in any
value)

raises (InvalidRow, InvalidColumn, TypeMismatch,
ReadOnly);

void get_cells(in CellIds list, out TableCells cells)
raises (MultipleExceptions);

void set_cells(in TableCells cells)
raises (MultipleExceptions);

};

2.10.0.1 Iterator Description

The iterator described above is the primary result of a query (from Locator interface).
This smart iterator can then be used to traverse the results of the query. In most ca
is desirable to not have a query actually create instances of objects when executed.
often a query is executed in an effort to locate a specific instance. For this reason,
interface supports the notion of lazy activation. For example, an application may invo
query to obtain all Customers whose last name starts with “Sm.” The programmer m
then display this result in a GUI using the next_n_values method, (i.e., data only).
Once the user has successfully found John Smith the application may invoke object_at
method to get an actual reference to the John Smith object, represented through th
CommonObject interface.

next_object()

Returns the next CommonObject reference in the sequence (result set). If there are
more objects to traverse, the method returns false, otherwise it returns true.

previous_object()

Returns the previous ServiceLevelObject reference in the sequence (result set). If
there are no more objects to traverse, the method returns false, otherwise it returns

next_n_objects()

Returns the next ‘how_many ’ CommonObject references in the sequence (result set
If there are no more objects to traverse or ‘how_many ’ exceeds the number available,
the method returns false, otherwise it returns true.

object_at()

Returns the CommonObject object reference at a specific location in the sequence
(result set). If the index passed in exceeds the boundary of the sequence, then an
exception is thrown.
February 2001 Iterator Support 2-19

2

o

 the
n

ata to

 a

x

 and
more
names
destroy()

The user of this iterator must call the destroy method when finished for the server t
effectively manage the memory associated with each result set.

reset()

This method resets the implicit cursor on the iterator back to zero. Note, the use of
iterator is exclusive to the client whom requested it; therefore, concurrency is not a
issue.

count()

This method reruns the number of elements in the result set.

next_values()

Returns the next set of data in the sequence (result set). If there is no more data to
traverse, the method returns false, otherwise it returns true.

previous_values()

Returns the previous set of data in the sequence (result set). If there is no more d
traverse, the method returns false, otherwise it returns true.

next_n_values()

Returns the next ‘how_many ’ sets of data in the sequence (result set) in the form of
Table (described below). If there is no more data to traverse or ‘how_many ’ exceeds
the number available, the method returns false, otherwise it returns true.

values_at()

Returns the set of data at a specific location in the sequence (result set). If the inde
passed in exceeds the boundary of the sequence, then an exception is thrown.

2.10.0.2 Generic Table Description

CellId

CellId is a reference to a particular element of a table identified by the row number
column number. The use of the column number rather than column name enables
rapid access than access by row number and column name. Accessing by column
of the table support ad hoc table interactions is supported using the
CosPropertyService::PropertyNames column_names attribute followed by
accessing by CellId .

CellIds

CellIds is a sequence of CellId .
2-20 Party Management, v1.0 February 2001

2

a

.

hat

date

tion

in
TableCell

TableCell is a structure containing the CellId of an element of a table and its value in
CORBA any.

TableCells

TableCells is a sequence of TableCell .

number_of_rows

Attribute number_of_rows represents the total number of rows in the table.

Number_of_columns

Attribute number_of_columns represents the total number of columns in the table

max_number_of_rows

Attribute max_number_of_rows represents the highest number of rows that a
particular table instance is permitted to support.

column_property_types

Attribute column_property_types is a sequence of PropertyTypes ordered by
column number representing the CORBA type of the any contained in the cells of t
column. This value borrows from Cos Property Service
CosPropertyService::PropertyTypes .

column_names

Attribute column_names supports identification of the contents of a particular table
column by name. A client side library function can be constructed to access and up
by cells name around the column number interfaces supported by the table interac
calls described below. The type is borrowed from Cos Property Service
PropertyNames .

describe_table()

Attribute describe_table() supports table description including the number of rows
the table and the types and names of each column.

get_row()

Supports accessing the values of a specified row. The row number is specified as
row_number . The returned values are type PropertyValues . The PropertyValues
are ordered per the PropertyNames specified by the describe_table() operation.
February 2001 Iterator Support 2-21

2

d by

 row

e list

es for

gma
set_row()

Supports setting the values of a specified row. The row number is specified as
row_number . The input values are PropertyValues . The types of the property values
must correspond element by element to the types as reported by the describe_table()
operation.

get_cell()

Supports getting the value of a particular element of a table. The element is specifie
the row and column. The return value contains the contents of the element.

set_cell()

Supports the setting of a single element of a table. The element is specified by the
and column and the new contents are specified by the value.

get_cells()

Supports the getting of multiple element contents. The elements are specified by th
of CellIds and the contents of the cells are returned in a list of cells.

set_cells()

Supports setting elements of a table. The elements and the corresponding new valu
the specified elements are contained in the cells input.

2.11 PMF Module Declaration

#ifndef PartyManagementFacility_idl
#define PartyManagementFacility_idl

#include "CosFinance.idl"

#pragma prefix "omg.org"

module PMF
{
...
};

#include "CosFinance.idl"

This file contains all of the type declarations defined above from the CosFinance
module.

#pragma prefix “omg.org”

To prevent name pollution and name clashing of IDL types this module uses the pra
prefix that is the reverse of the OMG’s DNS name.
2-22 Party Management, v1.0 February 2001

2

the

2.12 General Type Information

//forward declarations

//management
interface GroupManager;
interface RoleManager;
interface PartyRoleManager;
interface NodeManager;
interface PartyManager;
interface RelationshipManager;
interface PartyRelationshipManager;
interface ContactInformationFactory;

//aggregation
interface Role;
interface Node;

//core
interface Party;
interface Relationship;
interface PartyRelationship;
interface PartyRole;
interface Person;
interface Organization;

//contact information
interface ContactInformation;

//typedefs
typedef string RoleName;
typedef sequence<Role> Roles;
typedef sequence<RoleName> RoleNames;
typedef string ContactType;
typedef sequence<string> ContactTypes;
typedef sequence<ContactInformation> ContactInformationSeq;

Forward Declarations

These are all the types represented in this module.

Role, Roles

Role is an alias for Role. It represents a primary object (person or organization) in
context of a relationship. For example, ‘husband,’ ‘spouse,’ ‘programmer,’ ‘dad,’ and
‘hacker’ could all be Roles of a single primary Person object. Roles have the ability to
extend the attribution and behavior of the primary object they represent.

RoleName, RoleNames

RoleName is a string representation generally used to describe a Role object.
February 2001 General Type Information 2-23

2

ContactType, ContactTypes

ContactType is an alias for string that is used by the ContactInformation interface to
specify the type of contact information. Examples of different types of contact
information are: “home_address, ” “ business_address, ” “ email_address, ” and
“home_phone .”

ContactInformationSeq

A sequence of contact information used to set various contact information at once.

2.13 Role

interface Role : CommonContainer
{

exception MoreThanOneContained {};
exception InvalidContainedRole {};
exception InvalidRole {};
exception InvalidAggregation {};
exception MaximumCardinalityExceeded {};
exception ObjectNotFound {};

readonly attribute RoleName role_name;

attribute CommonObject primary_object;

CommonObject get_related_object(in RoleName contained_role,
 in Date as_of_date)

raises (MoreThanOneContained, InvalidRole);

void get_all_related_objects_by_role(in RoleName contained_role,
 in unsigned long how_many,
 in Date as_of_date,
 out CommonObjects sequence,
 out Iterator)

raises (InvalidRole);

void add_related_object(in Role object,
 in Date effective_date)

raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

void add_related_objects(in Roles objects,
 in Date effective_date)

raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);
2-24 Party Management, v1.0 February 2001

2

ntext
part

 the

of the
could

mple
r

g

l

od is
ned
:m
ld
.

Void remove_related_object(in Role object,
 in Date effective_date)

raises (ObjectNotFound);
};

role_name

Since the specification dictates that first class role objects must be present in the co
of a relationship, the role name and the role object are synonymous. For the most
this attribute simply provides quick stringified access to the type name.

primary_object

The specification specifies an aggregation approach to role behavior. This interface
represents the base interface for all roles and therefore provides reference back to
primary object that it is representing in the relationship. The role object may in fact
expose methods that are implemented on the primary object. In the context of this
specification, the primary object must always be of type Person or Organization.

get_related_object()

This method provides a mechanism to obtain a contained object based on the role
contained object and the date that it was actually contained. For example, a client
invoke get_contained_object_by_role() passing “wife” and “12/12/97” to obtain a
reference to a CommonObject that represents the Person he was married to at that
time. Note the signature of this method implies 1:1 types of aggregation. As the exa
indicates, a party generally does not have more than one active wife at a time. If fo
example, the CommonObject was representing an Employer and this method was
invoked to obtain all of the Employees that worked there as of 1/1/82 then, assumin
there was more than one, this method would throw the MoreThanOneContained
exception. Likewise, if this method was invoked to obtain the “wife” for an individua
and they did not have a wife, then the InvalidContainedRole exception would be
thrown.

get_all_related_objects_by_role()

This method returns all contained CommonObjects based on the role and as of date
passed in. If the number of contained objects exceeds the how_many parameter, then
the remainders are returned in the form of an Iterator. An example use of this meth
where the CommonObject represents an Employer and the client requests all contai
“Employee” objects as of 1/1/82. The signature of this method implies support for 1
aggregations. However, it may be invoked for 1:1 associations where the result wou
likely be a sequence of one (1), assuming that how_many was not specified as zero (0)

add_related_object()

This method allows for the containment of one CommonObject into another
CommonObject , or Container .
February 2001 Role 2-25

2

in

r

t
add_related_objects()

This method allows for the containment of many CommonObjects into another
CommonObject , or Container .

remove_related_object()

This method allows for removing an object from its container.

2.14 Node

interface Node : CommonObject
{

exception UnknownRole {};
exception RoleNotFound {};
exception NotSupported {};

Roles get_all_roles()
raises (NotSupported);

RoleNames get_all_role_names()
raises (NotSupported);

void add_role(in Role role)
raises (NotSupported);

void remove_role(in Role role)
raises (RoleNotFound,

NotSupported);

Roles get_roles(in RoleName role_name,
Raises(UnknownRoleName,

NotSupported);
};

get_all_roles()

This method returns a list of all the roles a specific CommonObject plays. This is a
reflection of the relationships created by using the aggregation methods described
CommonContainer , a subtype of CommonObject . For example, if the
CommonObject represents a Person, then this method may return Husband, Claimant,
Lienholder, and/or Attorney. Note, some roles introduce role specific attribution and/o
behavior that may only be accessible by issuing a subsequent resolve() invocation on
the Manager interface for the specific role type, (e.g., Claimaint).

get_all_role_names()

This method returns a sequence of strings that represents all of the roles this objec
currently plays. This information is indirectly a result of an aggregation.
2-26 Party Management, v1.0 February 2001

2

.

add_role()

This method is called implicitly by the CommonContaine r to inform this primary
object of its new relationship.

remove_role()

This method is called implicitly by the CommonContainer to inform this primary
object that a previously established relationship is being broken.

get_roles()

This method returns the roles associated with the string role name passed in. For
example, get_roles (“Employee”) would return a single or Employee reference or
potentially many Employee references if the person worked for multiple companies

2.15 Party
interface Party : Node
{

ContactInformation get_contact_information(in ContactType type, in Date as_of_date);
void set_contact_information(in ContactInformation, in Date as_of_date);

};

get_contact_information()

Returns a reference to the ContactInformation for the specified type (i.e., “home” or
“business”) as it existed on the date provided.

set_contact_information()

Sets or adds a new set of contact information.

2.16 PartyRole

typedef sequence<Party> Parties;
typedef sequence<PartyRole> PartyRoles;

interface PartyRole : Role
{

ContactInformation get_contact_information(in ContactType type, in Date as_of_date);
void set_contact_information(in ContactInformation, in Date as_of_date);

PartyRole get_related_party_role(in RoleName other_role,
in Date as_of_date)

Raises(MoreThanOneContained,
InvalidRole);

void get_all_related_party_roles(in RoleName contained_role,
in unsigned long how_many,
in Date as_of_date,
out PartyRoles related_parties,
out Iterator iter)
February 2001 Party 2-27

2

e to

ective
Raises(InvalidRole);

void add_related_party(in PartyRole other_party,
in Date as_of_date)

Raises(IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

void add_related_party_roles(in PartyRoles other_parties,
in Date as_of_date)

Raises(IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

void remove_related_party(in Party object,
in Date as_of_date)

Raises(ObjectNotFound);

};

A PartyRole represents a Party (person or an organization) in a relationship.This
interface simplifies the Role interface by providing some higher level wrappers to its
base functionality.

get_contact_information()

Returns a reference to the ContactInformation for the specified type (i.e., “home” or
“business”) as it existed on the date provided.

set_contact_information()

Sets or adds a new set of contact information.

get_related_party_role()

Convenience method to gain access to related party role object given its role relativ
this object.

get_all_related_party_roles()

Returns all party role objects that play a particular role as of a particular date. For
example, a user could ask of an employer reference - provide me with all of the
employee objects as of 1/1/98.

add_related_party_role()

Associates another party role with this party role.

add_related_party_roles()

Associates many other party roles with this party role and each assumes their resp
roles.
2-28 Party Management, v1.0 February 2001

2

ince
ed by
remove_related_party_role()

Tears down a relationship between two party roles.

2.17 Party Relationship

Interface PartyRelationship : Relationship
{

PartyRoles get_related_party_roles();
};

get_related_party_roles()

Given a relationship (e.g., Marriage) provides the specific Party objects involved in the
relationship.

2.18 Person

interface Person : Party
{
};

Person is a specific derivation of Party .

2.19 Organization

interface Organization : Party
{
};

Organization is a specific derivation of Party .

2.20 Node Manager

interface NodeManager : CosFinance::Manager
{

CosFinance::Types get_supported_nodes();
};

Note object creation of base types has been moved to the CosFinance::Manager. S
Node does not add information to the creation process a Node can simply be creat
using the inherited create method.

get_supported_nodes()

This method returns the types of the objects this manager is capable of creating.
February 2001 Party Relationship 2-29

2

ption
2.21 Party Manager

interface PartyManager : NodeManager
{

interface PartyManager : NodeManager
{

CosFinance::Types get_supported_parties();

Party create_party (in CosFinance::Manager::InitCommonObject data,
 in ContactInformationSeq contact_information)

raises (
TypeNotSupported,
InvalidInitializationType,
InvalidInitializationValue,
DuplicateObject);

Parties create_multiple_parties(
in CosFinance::Manager::InitCommonObjects data)

raises (
TypeNotSupported,
InvalidInitializationType,
InvalidInitializationValue);

};

get_supported_parties()

This method returns the types of Parties that this manager is capable of creating.

create_party()

This method simply adds the ability to initialize ContactInformation on the Party
since the generic create method on the CosFinance::Manager interface does not allow
for this.

create_multiple_parties()

This method creates many parties in batch mode. If any creation fails, then an exce
is thrown and it can be assumed that the entire batch has been rolled back.

2.22 Role Manager

interface RoleManager : CosFinance::Manager
{

RoleNames get_supported_roles();

Role create_role(
in CosFinance::Type role_type,
in Cosfinance::CommonObject primary_object)
2-30 Party Management, v1.0 February 2001

2

g.

he

er
need
raises (
DuplicateObject,
TypeNotSupported);

Role create_from_template(
in CosFinance::Templates templates)

raises (
TypeNotSupported);

};

get_supported_roles()

Returns all role types in the form of a string that this manager is capable of creatin

create_role()

Given a primary object and the requested type creates a CommonObject object and
associates it with the primary. If the client is creating a specialized type of
CommonObject (i.e., a Party or Role), then they will need to perform a narrow to t
appropriate type.

create_from_template()

Creates a CommonObject object from the specified template(s). Templates can trigg
other elements to be added to the object automatically at creation time. Clients will
to perform a narrow if creating a specialized type of CommonObject . Note since
templates in general are optional this method is also optional.

2.23 PartyRoleManager

interface PartyRoleManager : RoleManager
{

RoleNames get_supported_party_roles();
};

get_supported_party_roles()

Returns all types in the form of a string that this manager is capable of creating.

2.24 Relationship Manager

interface RelationshipManager : CosFinance::Manager
{

exception RoleTypeError {};
exception UnknownRole {};

CosFinance::Types get_supported_relationships();

RoleNames get_supported_roles_for_relationship(
in CosFinance::Type relationship_type);
February 2001 PartyRoleManager 2-31

2

f

.
le

class

 date
Relationship create_relationship (
in CosFinance::Type relationship_type,
in Role role_a,
in Role role_b,
in Cosfinance::Date as_of_date)

raises (
RoleTypeError,
UnknownRole);

Relationship create_many_relationship(
in CosFinance::Type relationship_type,
in Role role,
in Roles roles,
in CosFinance::Date as_of_date)

raises (
RoleTypeError,
UnknownRole);

Relationship create_many_relationship(
in CosFinance::Type relationship_type,
in Role role,
in Roles roles,
in CosFinance::Date as_of_date)

raises (
RoleTypeError,
UnknownRole);

};

get_supported_relationships()

This method returns all of the types of relationships that this manager is capable o
creating.

get_supported_roles_for_relationship()

Given a specific relationship provides the roles that are allowed on that relationship
Note this factory constrains construction of a new relationship to comply with the ro
rules for that relationship.

create_relationship()

Given two role objects a relationship type and an effective date creates a new first
relationship object.

create_many_relationship()

Given a role object and many others along with a relationship type and an effective
creates a new first class relationship object.
2-32 Party Management, v1.0 February 2001

2

t.

g a
 party
2.25 PartyRelationship Manager

Interface PartyRelationshipManager : RelationshipManager
{
};

This specific derivation of RelationshipManager is currently an empty interface. It is
assumed that specific constraints could be enforced at this level that are unique for
‘Party’ relationships.

2.26 Group Manager

Interface Group : CommonContainer
{

attribute string group_name;
};

interface GroupManager
{

Group create(in string group_name);
};

create()

Groups are fairly simple collections without any notion of role – or relational contex
For example, a group may be the “Fortune 100 Companies.”

2.27 ContactInformationFactory

interface ContactInformationFactory
{

ContactInformation create(in ContactType type);
};

create()

Creates a ContactInformation object of the appropriate type.

2.28 Summary

The high level interfaces are relatively generic and offer flexibility in terms of
implementation techniques. The interfaces offer type, behavior, and attribution
extensibility without invalidating the model. They are also readily capable of wrappin
legacy party management system or could be used as the public interface to a new
management system that implements the recommended domain model.
February 2001 PartyRelationship Manager 2-33

2

2-34 Party Management, v1.0 February 2001

Compliance, Conformance, and
Known Issues 3
 may

the
n
Contents

This chapter contains the following topics.

3.1 Compliance with Existing Specifications

3.1.1 Transaction Service (OTS)

This specification addresses the integration of an OTS and does not require any
modifications to the current OTS specification. The CommonObject interface derives
from TransactionalObject simply to allow for the implicit propagation of context
information in a transactional system. As an implementation choice the PMF vendor
choose to use the Coordinator reference to register the Party reference as a
synchronization point and thus make the Party persistent during before_completion .

3.1.2 Relationship Service

This specification positions the use of the relationship service as an implementation
decision. The fundamental reason for this direction is based on the overhead that
CosRelationships introduces. This and other justification has been documented in
“Domain Model and Design Objectives” chapter. In addition, direction has been give
toward using the PMF interfaces as a wrapper on CosRelationships in Appendix C-
“Wrapping CosRelationships.”

Topic Page

“Compliance with Existing Specifications” 3-1

“Levels of Conformance” 3-3

“Known Issues” 3-3
February 2001 Party Management, v1.0 3-1

3

e

stent
tence
e, the

plicitly

y

g

ut
,
3.1.3 Security Service

The PMF does not expose any security specific interfaces, and instead relies on th
underlying CORBA infrastructure and services to provide the security mechanisms
needed.

CORBA sec will be used as the underlying mechanism for distributed security and
handling access to the IDL-based interfaces of the facility.

For more information see the “Security and Party Management” chapter.

3.1.4 Persistent Object Service (POS)

It is assumed that this specification can make use of either the existing OMG Persi
Object Service or the new PSS that is being defined. This specification places persis
as an implementation issue that is masked behind an OTS transaction. For exampl
business objects presented in this document support the Resource interface and will
make themselves persistent as they receive the ‘prepare’ message. They do not ex
publish any other interfaces specifically for persistence needs.

3.1.5 Query Service

This specification does not directly use any of the interfaces suggested in the Quer
Service. The PartyLocator interface does offer an evaluate() method similar to Query
Service. But includes other value-added methods to support the federation of findin
Party objects that adhere to a certain set of criteria.

3.1.6 Name Service

This specification references use of the Name Service and does not require any
modifications to the existing service.

3.1.7 Trader Service

This specification references use of the Trader Service and does not require any
modifications to the existing service.

3.1.8 Event Service

This specification does not require any modification to the existing Event Service. B
this is currently a known issue that must be resolved (i.e., use of Event, Notification
Publish-Subscribe, BOF).

3.1.9 Externalization Service

Specific interfaces from the CosExternalizationService have been leveraged. This
specification does not require any modifications to the existing service.
3-2 Party Management, v1.0 February 2001

3

sting
re the
e and
3.2 Levels of Conformance

There currently is only one level of conformance.

3.3 Known Issues

3.3.1 Notification Support

The new Notification Service interfaces have been integrated into the Manager interface
to represent type level notification. There is an outstanding question regarding the
consumer registration according to the Notification Service and the requirement
regarding support for instance level notification.

Contact Information

The specification currently does not provide a mechanism to locate and retrieve exi
references to contact information. This is an issue because many parties may sha
same contact information and there needs to be a way to obtain an existing referenc
reuse it.
February 2001 Levels of Conformance 3-3

3

3-4 Party Management, v1.0 February 2001

Security and Party Management 4
se

 the

rity

e

tect
e

tent
d.

in to

ain

vice
ny,

e
ng,
e does
4.1 Security Issues

At a minimum, the PMF party and relationship interfaces are security sensitive. The
objects will have access control requirements to constrain who may view the data
(confidentiality) as well as who may modify the data (integrity). Depending on the
environment, transmitted requests may also need to be protected from attacks over
network (both passive monitoring and active intrusions).

CORBA sec will be used as the underlying mechanism for distributed security and
handling access to the IDL-based interfaces of the facility.

Since the facility allows parties to be externalized, there is an issue relating to secu
and externalization.

There is a need for storage of the security information and also for encryption of th
externalized data. Because of these issues this specification recommends that any
application handling externalized objects must be security-aware and trusted to pro
the object contents in a way that is consistent with the CORBA security policy for th
object. If the application does not adequately protect the data in memory, in persis
store, and on the wire, then CORBA security policy for the object could be subverte
Additionally when the externalized object is internalized, it is the responsibility of a
security-aware object factory to assign the appropriate CORBA security policy doma
the newly generated object reference.

There is a need for party management components to register and administer dom
information. Examples of this could be payroll/HR department and access to salary
information vs. other admin staff and employees. Also, considering a customer ser
(call center) financial example, it is often the case when calling a credit card compa
that for security reasons, the representative on the other side knows only part of th
account information. However, when PIN numbers are involved (like changing, verifyi
and creating) the customer is transferred to a supervisor so that a single person ther
not have all the information.
February 2001 Party Management, v1.0 4-1

4

ecurity
nd

 will

.
hips.
 and
urity

or

 tie
 party

ing

Mary
 be
et to
g

 a
any

50), if

 and
To address these needs, the party management components will use the CORBA S
Level 2 security policy domain manager and associated policy interfaces to define a
administer security policies for party management objects. Security policy domains
be used to maintain separation of sensitive data.

Party management makes heavy use of roles (insurer, insured, husband, and wife)
Depending on the roles, there may be a need to limit who can create certain relations
Also, walking down the tree of relationships and discovering that certain ones exist,
being allowed to play a particular role are additional restrictions that may require sec
above standard CORBA security. Party management can support design-time and
dynamic run-time relationships and role definition. In the case of "slow-changing,"
design-time relationships, a party management application could extract party
management role information and use that information to set the CORBASec user
attribute information. For example, a CORBAsec security attribute called "wife-of" to
party management and CORBAsec together may be defined. Let's assume that the
management container for Bob is related to another container for Mary by the party
management role "wife." (Mary is Bob's wife.) When Mary authenticates (logs in) us
CORBASec PrincipalAuthenticator, it could call a party management interface that
determines that Mary is Bob's wife, and so creates a CORBASec user credential for
that includes the "wife-of" user attribute with the value "Bob." An access policy could
created that only permitted access to clients who have the "wife-of" user attribute s
Bob (i.e., Bob's wife) is allowed to access this information. This capability is utilizin
CORBASec Level 2 interfaces. If, however, there is a need to dynamically discover
user's attributes at invocation time (not just at log-in time), when there may be too m
attributes used for access control to pass around in the credentials (say, more than
the attributes are changing frequently (say, every few minutes), or if they are data
dependent (role or wife changing often), there is a need for application level security
possibly parameter filtering.
4-2 Party Management, v1.0 February 2001

 Complete OMG IDL A
#ifndef CosFinance_idl
#define CosFinance_idl

#include "CosProperties.idl"
#include "CosLifeCycle.idl"
#include "CosExternalization.idl"
#include "CosTransactions.idl"
#include "CosTime.idl"
#include "CosNotifyComm.idl"
#include "NamingAuthority.idl"
#include "CosNaming.idl"
#include "CosTrader.idl"

#pragma prefix "omg.org"

module CosFinance
{

//forward declarations

//management
interface Table;
interface Manager;
interface TemplateManager;
interface Iterator;
interface Locator;

//core
interface CommonObject;
interface CommonContainer;
interface DateEffectiveObject;

//typedef
typedef string Type;
typedef sequence<string> Types;

//defined here for forward declaration purposes
February 2001 Party Management, v1.0 A-1

A

struct Template
{

string name;
Types types;

};

typedef string QueryExpression;
typedef CosTime::UTO Date;
typedef any PropertyValue;
typedef sequence<PropertyValue> PropertyValues;
typedef sequence<Template> Templates;

//enumerators
enum ModificationState { Update, Correction };

//interfaces
interface Table {

struct CellId {
unsigned long row;
unsigned long column;

};

typedef sequence<CellId> CellIds;

struct TableCell {
CellId cell;
any value;

};

typedef sequence<TableCell> TableCells;

enum ExceptionType {
read_only,
type_mismatch,
constraint_mismatch,
invalid_row_column

};

struct TableException {
CellId cell;
ExceptionType type;

};

typedef sequence<TableException> TableExceptions;

exception InvalidRow {};
exception InvalidColumn {};
exception IncompleteRow {};
exception TypeMismatch {};
exception ReadOnly {};
exception MultipleExceptions { TableExceptions exceptions; };

readonly attribute unsigned long number_of_rows;
readonly attribute unsigned long number_of_columns;
A-2 Party Management, v1.0 February 2001

A

readonly attribute unsigned long max_number_of_rows;
readonly attribute CosPropertyService::PropertyTypes column_property_types;
readonly attribute CosPropertyService::PropertyNames column_names;

void describe_table(out unsigned long number_of_rows,
out CosPropertyService::PropertyNames column_property_names,
out CosPropertyService::PropertyTypes column_types);

void get_row(in unsigned long row_number, out PropertyValues values)
raises (InvalidRow);

void set_row(in unsigned long row_number, in PropertyValues values)
raises (MultipleExceptions, IncompleteRow, InvalidRow);

any get_cell(in unsigned long row, in unsigned long column)
raises (InvalidRow, InvalidColumn);

void set_cell(in unsigned long row, in unsigned long column, in any value)
raises (InvalidRow, InvalidColumn, TypeMismatch, ReadOnly);

void get_cells(in CellIds list, out TableCells cells)
raises (MultipleExceptions);

void set_cells(in TableCells cells)
raises (MultipleExceptions);

};

interface DateEffectiveObject
{

attribute ModificationState update_state;

attribute Date effective_start;
attribute Date effective_end;

boolean is_effective_now();
};

struct QualifiedObjectIdentity
{

NamingAuthority::AuthorityId domain;
Type type;
NamingAuthority::LocalName id;

};

typedef sequence<CommonObject> CommonObjects;
typedef sequence<CommonContainer> CommonContainers;

interface CommonObject : CosLifecycle::LifecycleObject,
 CosStream::Streamable,

 CosPropertyService::PropertySetDef,
 CosTransactions::TransactionalObject,
 DateEffectiveObject

{
exception ContainerNotFound {};
February 2001 Party Management, v1.0 A-3

A

exception CannotRemove {};

readonly attribute QualifiedObjectIdentity identity;

boolean is_dependent_object();

boolean is_date_sensitive();

CommonContainers get_containers();

void add_container(in CommonContainer container);

void remove_from_container(in CommonContainer container)
raises (ContainerNotFound,

CannotRemove);
};

interface CommonContainer : CommonObject
{

exception ObjectNotFound {};
exception IsDuplicate {};
exception InvalidAggregation {};
exception MaximumCardinalityExceeded {};

void add_contained_object(in CommonObject object,
 in Date as_of_date);

void add_contained_objects(in CommonObjects objects,
 in Date as_of_date);

CommonObject get_contained_object_by_id(in QualifiedObjectIdentity id,
 in Date as_of_date)

raises (ObjectNotFound);

void remove_contained_object(in CommonObject object,
 in Date effective_date)

raises (ObjectNotFound);

boolean has_contained_object(in CommonObject object,
 in Date as_of_date);

void get_all_contained_objects(in Date as_of_date,
 out CommonObjects objects);

void add_from_template(in Template template);

Templates list_templates();
};

interface Manager : CosStream::StreamableFactory, CosNotifyComm::SequencePushSupplier
{

exception TypeNotSupported {};
exception DuplicateObject {};
exception InvalidInitializationType {};
exception InvalidInitializationValue {};
A-4 Party Management, v1.0 February 2001

A

struct InitCommonObject {
QualifiedObjectIdentity identity;
CosPropertyService::Properties data;

};

typedef sequence<InitCommonObject> InitCommonObjects;

Types get_supported_types();

CommonObject create(in InitCommonObject data)
raises (

TypeNotSupported,
InvalidInitializationType,
InvalidInitializationValue,
DuplicateObject);

void get_supported_properties(
in Type type,
out CosPropertyService::PropertyDefs property_defs)

raises (
TypeNotSupported);

Locator get_locator();
};

interface TemplateManager
{

exception TemplateNotFound {};

void add_template(
in Template template);

void remove_template(
in string name)

raises (
TemplateNotFound);

Template get_template(
in string name)

raises (
TemplateNotFound);

Templates list_templates();
};

interface Iterator
{

exception OutOfBounds {};

boolean next_object(
out CommonObject object)

raises (
February 2001 Party Management, v1.0 A-5

A

OutOfBounds);

boolean previous_object(
out CommonObject object)

raises (
OutOfBounds);

boolean next_n_objects(
in unsigned long how_many,
out CommonObjects objects);

boolean object_at(
in unsigned long at,
out CommonObject object)

raises (
OutOfBounds);

void destroy();

void reset();

unsigned long count();

boolean next_values(
out PropertyValues data)

raises (
OutOfBounds);

boolean previous_values(
out PropertyValues data)

raises (
OutOfBounds);

boolean next_n_values(
in unsigned long how_many,
out Table data);

boolean values_at(
in unsigned long at,
out PropertyValues data)

raises (
OutOfBounds);

};

interface Locator
{

typedef sequence<string> CriteriaBasis;
typedef sequence<string> SearchType;

exception InvalidQuerySyntax {};
exception NotImplemented {};
exception SearchTypeNotSupported {};
exception CriteriaBasisNotSupported {};
exception NotFound {};
A-6 Party Management, v1.0 February 2001

A

exception InvalidIdentifier {};
exception InvalidAsOfDate {};
exception TypeNotSupported {};

readonly attribute NamingAuthority::AuthorityId domain_name;
readonly attribute CosNaming::NamingContext naming_context;
readonly attribute CosTrading::TraderComponents trader_components;

CommonObject resolve(
in QualifiedObjectIdentity identifier,
in Date as_of_date)

raises (
NotFound,
InvalidIdentifier,
InvalidAsOfDate);

Iterator evaluate(
in QueryExpression query)

raises (
InvalidQuerySyntax,
NotImplemented);

CriteriaBasis get_supported_search_criteria();

SearchType get_supported_search_types();

Iterator query(
in Type object_type,
in string criteria,
in CriteriaBasis criteria_basis,
in SearchType type_of_search)

raises (
TypeNotSupported,
NotImplemented,
SearchTypeNotSupported,
CriteriaBasisNotSupported);

};

};

#endif

#ifndef PartyManagementFacility_idl
#define PartyManagementFacility_idl

#include "CosFinance.idl"

#pragma prefix "omg.org"

module PMF
February 2001 Party Management, v1.0 A-7

A

{
//forward declarations

//management
interface GroupManager;
interface RoleManager;
interface PartyRoleManager;
interface NodeManager;
interface PartyManager;
interface RelationshipManager;
interface PartyRelationshipManager;
interface ContactInformationFactory;

//aggregation
interface Role;
interface Node;

//core
interface Party;
interface Relationship;
interface PartyRelationship;
interface PartyRole;
interface Person;
interface Organization;

//contact information
interface ContactInformation;

//typedefs
typedef string RoleName;
typedef sequence<Role> Roles;
typedef sequence<RoleName> RoleNames;
typedef string ContactType;
typedef sequence<string> ContactTypes;
typedef sequence<ContactInformation> ContactInformationSeq;

//interfaces
interface Role : CosFinance::CommonContainer
{

exception MoreThanOneContained {};
exception InvalidContainedRole {};
exception InvalidRole {};
exception InvalidAggregation {};
exception MaximumCardinalityExceeded {};
exception ObjectNotFound {};

readonly attribute RoleName role_name;
attribute CosFinance::CommonObject primary_object;

CosFinance::CommonObject get_related_object(in RoleName contained_role,
 in CosFinance::Date as_of_date)

raises (MoreThanOneContained,
 InvalidRole);
A-8 Party Management, v1.0 February 2001

A

void get_all_related_objects_by_role(in RoleName contained_role,
 in unsigned long how_many,
 in CosFinance::Date as_of_date,
 out CosFinance::CommonObjects objects,
 out CosFinance::Iterator iter)

raises (InvalidRole);

void add_related_object(in Role object,
 in CosFinance::Date effective_date)

raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

void add_related_objects(in Roles objects,
 in CosFinance::Date effective_date)

raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

void remove_related_object(in Role object,
 in CosFinance::Date effective_date)

raises (ObjectNotFound);
};

typedef sequence<Party> Parties;
typedef sequence<PartyRole> PartyRoles;

interface PartyRole : Role
{

ContactInformation get_contact_information(in ContactType type,
 in CosFinance::Date as_of_ d ate);

void set_contact_information(in ContactInformation info,
 in CosFinance::Date as_of_ d ate);

PartyRole get_related_party_role(in RoleName other_role,
in CosFinance::Date as_of_date)

raises (MoreThanOneContained,
InvalidRole);

void get_all_related_party_roles(in RoleName contained_role,
 in unsigned long how_many,
 in CosFinance::Date as_of_date,
 out PartyRoles related_parties,
 out CosFinance::Iterator iter)

raises (InvalidRole);

void add_related_party_role(in PartyRole other_party,
 in CosFinance::Date effective_date)

raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);
February 2001 Party Management, v1.0 A-9

A

void add_related_party_roles(in PartyRoles other_parties,
 in CosFinance::Date effective_date)

raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

void remove_related_party_role(in PartyRole other_party,
 in CosFinance::Date effective_date)

raises (ObjectNotFound);

};

interface Relationship : Role
{

CosFinance::CommonObjects get_related_objects();
};
interface PartyRelationship : Relationship
{

PartyRoles get_related_party_roles();
};

interface Node : CosFinance::CommonObject
{

exception UnknownRoleName {};
exception RoleNotFound {};
exception NotSupported {};

Roles get_all_roles()
raises (NotSupported);

RoleNames get_all_role_names()
raises (NotSupported);

void add_role(in Role role)
raises (NotSupported);

void remove_role(in Role role)
raises (RoleNotFound,

NotSupported);

Roles get_roles(in RoleName role_name)
raises (UnknownRoleName,

NotSupported);
};

interface Party : Node
{

ContactInformation get_contact_information(in ContactType type,
in CosFinance::Date as_of_date);

void set_contact_information(in ContactInformation info,
in CosFinance::Date as_of_date);

};

interface Organization : Party
A-10 Party Management, v1.0 February 2001

A

{
};

interface Person : Party
{
};

interface ContactInformation : CosFinance::DateEffectiveObject,CosPropertyService::PropertySetDef
{

attribute ContactType type;
attribute string locale;

};

interface NodeManager : CosFinance::Manager
{

CosFinance::Types get_supported_nodes();
};

interface PartyManager : NodeManager
{

CosFinance::Types get_supported_parties();

Party create_party (in CosFinance::Manager::InitCommonObject data,
 in ContactInformationSeq contact_information)

raises (
TypeNotSupported,
InvalidInitializationType,
InvalidInitializationValue,
DuplicateObject);

Parties create_multiple_parties(
in CosFinance::Manager::InitCommonObjects data)

raises (
TypeNotSupported,
InvalidInitializationType,
InvalidInitializationValue);

};

interface RoleManager : CosFinance::Manager
{

RoleNames get_supported_roles();

Role create_role (
in CosFinance::Type role_type,
in CosFinance::CommonObject primary_object)

raises (
DuplicateObject,
TypeNotSupported);

Role create_from_template(
in CosFinance::Templates templates)

raises (
TypeNotSupported);

};
February 2001 Party Management, v1.0 A-11

A

interface PartyRoleManager : RoleManager
{

RoleNames get_supported_party_roles();

};

interface RelationshipManager : CosFinance::Manager
{

 exception RoleTypeError {};
exception UnknownRole {};

CosFinance::Types get_supported_relationships();

RoleNames get_supported_roles_for_relationship(
in CosFinance::Type relationship_type);

Relationship create_relationship (
in CosFinance::Type relationship_type,
in Role role_a,
in Role role_b,
in CosFinance::Date as_of_date)

raises (
RoleTypeError,
UnknownRole);

Relationship create_many_relationship(
in CosFinance::Type relationship_type,
in Role role,
in Roles roles,
in CosFinance::Date as_of_date)

raises (
RoleTypeError,
UnknownRole);

};

interface PartyRelationshipManager : RelationshipManager
{
};

interface ContactInformationFactory
{

ContactInformation create();
};

interface Group : CosFinance::CommonContainer
{

attribute string name;
};

interface GroupManager
{
A-12 Party Management, v1.0 February 2001

A

Group create_group(in string group_name);

};
};

#endif
February 2001 Party Management, v1.0 A-13

A

A-14 Party Management, v1.0 February 2001

 Collaboration Diagrams B

B.1 Usage Models

This appendix illustrates a few usage models to illustrate the anticipated interaction
between the interfaces presented.

Figure B-1 Aggregate two objects while not creating a first class relationship object

C lien t

R ob :

Pe rs o n

L is a :
Pe rs o n

H us band :

R o le : Pa rty

W ife : R o le

: Pa rty

Manager

Loca to r

1 : res o lve ("R ob")
2 : res o lve ("L is a ")

3 : crea te ("H us ba nd", R ob)
4 : crea te ("W ife ", L is a)

5 : add _con ta ined_obj ect (W ife , da te)

6 : ad d_con ta ined_ob ject(H us b and , da te)

8 : ad d_ro le (H us ban d)

7 : ad d_ro le (W ife)
February 2001 Party Management, v1.0 B-1

B

each

 that
he

ting

hip
Figure B-1 illustrates the ability to aggregate two, otherwise unaware, objects with
other while not creating a first class relationship object. This model allows the
PartyManager interface to create the Husband and Wife role (as first class objects)
use aggregation to extend their primary objects, Person objects Lisa and Rob. As t
roles are related through the add_contained_object method, actually inherited from
Role, the add_role method is called implicitly on the primary objects so they can be
kept up-to-date in regard to the collective roles they are playing.

The following collaboration diagram illustrates how the PMF is also capable of crea
a first class relationship object (e.g., Marriage) if need be.

Figure B-2 Creating a first class relationship object

Figure B-2 illustrates how the PMF is also capable of creating a first class relations
object (e.g., Marriage) if need be.

Client

a Hu sband :

Hu sband

a Wife :
Wife

the Manager : Party

Relation shipManager

the Marriage :

Marr iage

a Person :

Person

another Person

: Person

Note : Th is collaboration diagram ass umes that Marriage is a specialized type of PartyRelati onsh ip

and therefore has a set_contrac t me thod . If not us ing specialization, add_contained_object cou ld

be called with the marriage contract passed in as a CommonObject. Husband and Wife are both

special ized party types in this diagram and at the gener ic level could use set_pr imary_object()

ins tead of set_ person .

1: set_person (a Person)

2: set_person(another Person)

3: cre ate("marriage", Wife , Husband, today)

4: se t_contract(theMarriageContract)

6: add_role(a Husband)

5: add_role(a Wife)
B-2 Party Management, v1.0 February 2001

 Wrapping Cos Relationships C
sign

 could
en
and

be
pper
This specification has introduced a high level interface based on the Composite de
pattern as a means for managing object aggregation. From an implementation
perspective the PMF vendor could choose to manage these collections in process or
use an implementation of CosRelationships for that purpose. This approach has be
taken for reasons outlined in the “Domain Model and Design Objectives” chapter
summarized in the “Compliance, Conformance, and Known Issues” chapter.

This appendix offers a few scenarios to illustrate explicitly how this integration may
implemented. This static model shows how the PMF Role becomes the primary wra
for CosRelationships .
February 2001 Party Management, v1.0 C-1

C

f a
Figure C-1 Wrapping CosRelationships

The following interaction diagrams illustrate the creation and subsequent traversal o
1:m relationship.

Party

Cos Re lations h ip s ::R ole

related_ object

g et_ oth er_related_o bject()

g et_ oth er_role()

g et_ rela tions hips ()

d es troy_relations hips ()

d es troy()

c heck_ m in im um _ cardinal ity()

l ink()
u nlink()

C os Re lations hip s ::R ole Fac tory

cre ate_role()

C os R elatio ns h ips ::Re lations h ip

nam e d_roles

des troy()

C os R elatio ns h ips ::R ela tions h ipFactory

crea te ()

R oleC ontaine r

p rim ary_o bje ct

g et_ relate d_o bje cts ()

g et_al l_ re lated _obje cts _fo r_ro le()

a dd_ re late d_ object()

rem ove_re lated_ object()

u ses

uses

us es

u ses

Ins ured

C om m o nCo nta in er
C-2 Party Management, v1.0 February 2001

C

 past
Figure C-2 Relationship Creation Example

Figure C-2 illustrates how the simple interface exposed to the client can wrap the
somewhat complex task of creating a relationship on CosRelationships . It also
illustrates the addition of date and time information that can be used to reconstruct
and future aggregations.

clien t pa rty1 : Party : Co sRela tion ships ::Role

Factory

 : Co s

Re latio nsh ip s ::Rela tions

r1 : Co s

Re la tions hips ::Role

r2 : Cos

Re lations hip s ::Role

1: add_ re la ted _ob jec t(other_o bje ct, role_ nam e_ a, role_n am e_ b, eff_date)

2: cre ate_role (CORBA::Object)

3: cre ate_role (CORBA::Object)

4 : create_n am ed _role s_s eq()

5: cre ate (N am ed Ro les)

6 : link (Re latio nship , Nam edR oles)

7 : link (R elatio nship, Nam e dR oles)
February 2001 Party Management, v1.0 C-3

C

al of

 be
Figure C-3 Single client interface used to trigger retrieval of all related objects

Figure C-3 illustrates how a single client interface could be used to trigger the retriev
all related objects. That is, in CosRelationships the link with each related object is
hidden behind a relationship instance. In summary, the complexity introduced by
encapsulating the primary object behind both a role and a relationship interface can
masked from the user of the PMF. Similarly the Node interface could interpose the
CosGraphs::Node interface assuming CosGraph::Node ’s had been creating using
the factory.

clien t p arty1 : Pa rty r1 : Cos
Re lations hip s ::R ole

r2 : C os
R elatio ns h ips ::Ro le

1: get_ related_ objects (R oleN am e , int, R elatedObjects , Iterator)

2: loca te_ ro le(s) (role _nam e)

3: g et_ re lations hip s ()

4: g et_ other_related_ object (Re la tions hip, s tring)

5 : get_o the r_ro le ()

6: g et_ related_ object()

7: return (s equenc e o r iterator)

s tep s 4 -6 rep eat for

e ach re lations hip
C-4 Party Management, v1.0 February 2001

C

c l i e n t : N o d e : C o s

G r a p h s : : N o d e

1 : g e t_ a l l _ r o l e s ()

2 : r o l e s _ o f_ n o d e ()
February 2001 Party Management, v1.0 C-5

C

C-6 Party Management, v1.0 February 2001

 References D
[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J. “Design Patterns Elements of
Reusable Object-Oriented Software.” Addison-Wesley Publishing Company, 1995.
February 2001 Party Management, v1.0 D-1

D

D-2 Party Management, v1.0 February 2001

Index
Symbols
#include "CosFinance.idl 2-22

A
add_contained_object() 2-13
add_contained_objects() 2-13
add_container() 2-12
add_from_template() 2-14
add_related_object() 2-25
add_related_objects() 2-26
add_related_party_role() 2-28
add_related_party_roles() 2-28
add_role() 2-27
add_template() 2-15

C
CommonContainer (Inherited Interfaces) 2-13
CommonContainer (Local behavior) 2-13
CommonObject (Inherited Interfaces) 2-8
CommonObject (Local Attributes and Methods) 2-11
Composition Model 1-4
ContactType, ContactTypes 2-24
CosFinanceModule Declaration 2-2
CosLifeCycle

LifeCycleObject 2-8
copy (optional) 2-9
move (optional) 2-9
remove 2-9

CosPropertyService
PropertySet

define_properties() 2-10
define_property() 2-9
delete_all_properties() 2-10
delete_properties() 2-10
delete_property() 2-10
get_all_properties() 2-10
get_all_property_names() 2-10
get_number_of_properties() 2-10
get_properties() 2-10
get_property_value() 2-10
is_property_defined() 2-10

PropertySetDef 2-8, 2-9
define_properties_with_modes() 2-11
define_property_with_mode () 2-11
get_allowed_properties () 2-10
get_allowed_property_types () 2-10
get_property_mode() 2-11
get_property_modes () 2-11
set_property_mode() 2-11
set_property_modes () 2-11

CosStream
Streamable 2-9

externalize_to_stream() 2-9
internalize_from_stream() 2-9

CosTransactions
TransactionalObject 2-11

count() 2-20
create() 2-33
create_from_template() 2-31
create_many_relationship() 2-32
create_relationship() 2-32

create_role() 2-31

D
DateEffectiveObject 2-11
Definition of Terms and Assumptions 1-4
destroy() 2-20

E
effective_end() 2-7
effective_start() 2-7
evaluate() 2-16

F
Forward Declarations 2-23

G
General Type Information 2-4
Generic Table Description 2-20
get_all_contained_objects() 2-14
get_all_related_objects_by_role() 2-25
get_all_related_party_roles() 2-28
get_all_role_names() 2-26
get_all_roles() 2-26
get_contact_information() 2-27, 2-28
get_contained_object_by_id() 2-13
get_containers() 2-12
get_related_object() 2-25
get_related_party_role() 2-28
get_roles() 2-27
get_supported_relationships() 2-32
get_supported_roles() 2-31
get_supported_roles_for_relationship() 2-32
get_template() 2-15

H
has_contained_objects() 2-14
High Level Comparison with CosRelationships 1-8

I
identity 2-11
is_date_sensitive() 2-12
is_dependent_object() 2-12
is_effective_now() 2-8
Iterator Description 2-19

L
list_templates() 2-14, 2-15
Locating Existing Party Information 1-12

M
Manager and Object Factory Model 1-9

N
next_n_objects() 2-19
next_n_values() 2-20
next_object() 2-19
next_values() 2-20
Node 2-26

O
object_at() 2-19
February 2001 Party Management, v1.0 Index-1

Index
P
Party 2-27
Party and Contact Information 1-7
Party Management Facility Interfaces 2-2
Party Manager 2-30
Party Relationships as First Class Objects 1-8
PartyRole 2-27
PMF Module Declaration 2-22
previous_object() 2-19
previous_values() 2-20
primary_object 2-25

Q
query() 2-16

R
remove_contained_objects() 2-13
remove_related_object() 2-26
remove_related_party_role() 2-29
remove_role() 2-27

remove_template() 2-15
reset() 2-20
resolve() 2-16
Role 2-24
Role Aware Composition Model 1-5
Role, Roles 2-23
role_name 2-25
RoleName, RoleNames 2-23

S
set_contact_information() 2-27, 2-28

T
TableCell 2-21

U
update_state 2-7

V
values_at() 2-20
Index-2 Party Management, v1.0 February 2001

	Preface
	About the Object Management Group
	What is CORBA?

	Party Management Overview
	Associated OMG Documents
	Acknowledgments

	1. Domain Model and Design Objectives
	1.1 Service Overview
	1.2 Common Object Model
	1.3 Composition Model
	1.4 Definition of Terms and Assumptions
	1.5 Role Aware Composition Model
	1.6 Party and Contact Information
	1.7 Party Relationships as First Class Objects
	1.8 High Level Comparison with CosRelationships
	1.9 Manager and Object Factory Model
	1.10 Locating Existing Party Information

	2. Party Management Facility Interfaces
	2.1 Overview
	2.2 CosFinance Module Declaration
	2.3 General Type Information
	2.4 Manager
	2.5 Date and Time Sensitive Objects
	2.6 Common Object
	2.6.1 CommonObject (Inherited Interfaces)
	2.6.2 CommonObject (Local Attributes and Methods)

	2.7 Common Container
	2.7.1 CommonContainer (Inherited Interfaces)
	2.7.2 CommonContainer (Local behavior)

	2.8 Template Manager
	2.9 Locator
	2.10 Iterator Support
	2.11 PMF Module Declaration
	2.12 General Type Information
	2.13 Role
	2.14 Node
	2.15 Party
	2.16 PartyRole
	2.17 Party Relationship
	2.18 Person
	2.19 Organization
	2.20 Node Manager
	2.21 Party Manager
	2.22 Role Manager
	2.23 PartyRoleManager
	2.24 Relationship Manager
	2.25 PartyRelationship Manager
	2.26 Group Manager
	2.27 ContactInformationFactory
	2.28 Summary

	3. Compliance, Conformance, and Known Issues
	3.1 Compliance with Existing Specifications
	3.1.1 Transaction Service (OTS)
	3.1.2 Relationship Service
	3.1.3 Security Service
	3.1.4 Persistent Object Service (POS)
	3.1.5 Query Service
	3.1.6 Name Service
	3.1.7 Trader Service
	3.1.8 Event Service
	3.1.9 Externalization Service

	3.2 Levels of Conformance
	3.3 Known Issues
	3.3.1 Notification Support

	4. Security and Party Management
	4.1 Security Issues

	Appendix A - Complete OMG IDL
	Appendix B - Collaboration Diagrams
	Appendix C - Wrapping Cos Relationships
	Appendix D - References
	Index

