Party Management Facility
Specification

Version 1.0
February 2001

Copyright 1999, Concept Five Technologies, Inc.
Copyright 1999, Cyborg Systems, Inc.

Copyright 1999, Electronic Data Systems (EDS)
Copyright 1999, Hitachi, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF

TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7028r@dMG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers

to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm

Contents

Preface 1
1. Domain Model and Design Objectives. 1-1
1.1 Service OVEIVIEW oot e 1-2
1.2 Common ObjectModel 1-3
1.3 CompositionModel 1-4
1.4 Definition of Terms and Assumptions 1-4
1.5 Role Aware Composition Model 1-5
1.6 Party and Contact Information...................... 1-7
1.7 Party Relationships as First Class Objects 1-8
1.8 High Level Comparison with CosRelationships......... 1-8
1.9 Manager and Object Factory Model. 1-9
1.10 Locating Existing Party Information 1-12
2. Party Management Facility Interfaces. 2-1
2.1 OVEIVIEW . oot 2-2
2.2 CosFinance Module Declaration 2-2
2.3 General Type Information 2-4
2.4 Manager. e 2-6
2.5 Date and Time Sensitive Objects 2-7
26 CommonObject......... i 2-8
2.6.1 CommonObiject (Inherited Interfaces) 2-8
2.6.2 CommonObject (Local Attributes and Methods) 2-11
27 CommonContainer, 2-12
2.7.1 CommonContainer (Inherited Interfaces). 2-13

Party Management, v1.0 i

Contents

2.7.2 CommonContainer (Local behavior) 2-13
2.8 Template Manager, 2-14
2.9 LoCator. . . . 2-15
2.10 lterator SUPPOIt oo 2-17
2.11 PMF Module Declaration. 2-22
2.12 General Type Information 2-23
213 ROlE .. 2-24
214 NOE. . .. 2-26
2. 05 Py . 2-27
216 PartyRole 2-27
2.17 Party Relationship 2-29
218 PersON. 2-29
2.19 Organization. 2-29
220 Node Manageruuiiieneii i, 2-29
221 PartyManager 2-30
2.22 RoleManager. 2-30
2.23 PartyRoleManagerc. i 2-31
2.24 Relationship Manager 2-31
2.25 PartyRelationship Manager 2-33
226 Group Manager 2-33
2.27 ContactinformationFactory 2-33
2.28 SUMMAIY . ot e 2-33
3. Compliance, Conformance, and Known Issues. 3-1
3.1 Compliance with Existing Specifications. 3-1
3.1.1 Transaction Service (OTS) 3-1
3.1.2 Relationship Service. 3-1
3.1.3 SecurityService i 3-2
3.1.4 Persistent Object Service (POS)............ 3-2
3.1.5 QueryService. ... 3-2
3.1.6 NameService.............couiiiiinin. 3-2
3.1.7 TraderService 3-2
3.1.8 EventService 3-2
3.1.9 Externalization Service. 3-2
3.2 LevelsofConformance 3-3
3.3 Knownlssues. 3-3
3.3.1 Notification Support. 3-3

Party Management, v1.0

Contents

4. Security and Party Management 4-1
4.1 SeCUnty ISSUES v i e 4-1
Appendix A - Complete OMGIDL. A-1
Appendix B - Collaboration Diagrams B-1
Appendix C - Wrapping Cos Relationships C-1
Appendix D - References D-1

Party Management, v1.0 iii

Contents

Party Management, v1.0

Preface

About the Object Management Group

February 2001

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

Party Management, v1.0 1

Party Management Overview

A key requirement for financial service organizations is to effectively manage the
parties, people, and organizations that relate to their business. They must have efficient
and consistent access to party related information including relationship and contact
information. The vast majority of organizations have many different computer systems
operating their daily business processes that all need access to “name and address”
information. Unfortunately, this information is generally embedded within each system
in a proprietary manner resulting in an environment that is very expensive and difficult
to maintain. As a result, redundant, inconsistent information is often proliferated
throughout the organization. The Party Management Facility (PMF) defines a standard
set of interfaces that will enable a consistent integration strategy for consumers
whether they are software vendors, other systems, or end users.

This document provides a high level view of where the Party Management Facility
(PMF) fits into the OMA and into the Financial Industry vertical domain
(“CORBAFinancials”). It then illustrates how the proposed interface definitions satisfy
the mandatory and optional requirements of the RFP while providing an extensible
foundation for commercial products to adhere to and for end users to customize for
their specific needs. The interfaces have been supplemented with textual descriptions
and scenario diagrams to further illustrate their use in practice. The remainder of the
document outlines how the PMF complies with existing OMG standards and closes
with topics of discussion as outlined in the RFP.

The Object Management Architecture (OMA) is the basic framework for organizing
OMG efforts. The OMA Reference Model is illustrated below.

2 Party Management, v1.0 February 2001

February 2001

Non-standardized Application Horizontal

app-specific interfaces domain-specific interfaces facility interfaces
pplication Interiaccj Domain Interfaces Common Facilities

Object Request Broker

b I 3 3

Object Services

General service interfaces

Figure 1. OMG Object Management Architecture (OMA) Reference Model

Within the context of the OMA, the Party Management Facility is clearly a Domain
Interface.

The following figure, although not an official OMG diagram, depicts a view of the
OMA in more detail with a specific focus on the domain interfaces.

Party Management, v1.0 3

Business Applications

Mfg.

Health Care

Finance

Energy
Retall
Other

Telecomm.
Gov't

Common Business Objects

Business Object Facility

CORBA Infrastructure

Figure 2.Business Object Domain Task Force (BODTF) view of OMA

The architectural boundaries can be further exploded to depict the focus of the Finance
Domain Task Force (FDTF). In the FDTF architectural view the Common Business
Objects layer is further specialized with Common Financial Services (objects) and the
vertical financial markets can be illustrated as: insurance, banking, brokerage, and
securities. Although this response has leveraged work that was put into the Person
Identification System (PIDS) created within the healthcare arena, its primary focus is
to satisfy the requirements of the FDTF and the finance industry. The Party
Management Facility is intended to serve as a Common Financial Service.

“Party” is a general concept that can be used in an endless array of roles depending on
the context of its surroundings. The intent of this specification is to provide a core
definition of Party that assumes many of the technology characteristics necessary to
live in a distributed system. Further, it is intended that vendors will specialize the
interface(s) into the specific roles, along with specific attribution and behavior, for

their respective lines of business. Figure 3 shows that the bulk of this specification lies
in the component category.

Party Management, v1.0 February 2001

Process

Highest level business processes (e.g., Process New Business).

System

Higher level collection of components (e.g., Policy

Component

The Party Management Facility Interface Definitions reside

Object

Specific entity level interfaces are defined here that often
provide

Figure 3. Component Category Interfaces

This specification illustrates how the Party Management Facility serves as a focal point
for all party related information with the understanding that the PMF is one small
component in a much larger picture. The other facilities that have been identified for
future standardization include: Product, Agreement, and Investment Management.
Many higher level services will be built upon these basic concepts.

Party Management

Financial Agreement
Management

|
|
Y

Investment
Management

Financial Product
Management

February 2001

Figure 4. Facilities identified for future standardization

Party Management, v1.0 5

Associated OMG Documents

The CORBA documentation set includes the following:

Object Management Architecture Guidefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecaun#@ Specificatiorcontains
the architecture and specifications for the Object Request Broker.

CORBA Language Mappinga collection of language mapping specifications. See
the individual language mapping specifications.

CORBAservices: Common Object Services Specificatimmains specifications for
OMG's Object Services.

CORBAfacilities: Common FacilitieSpecificationis a collection of services that
many applications may share, but which are not as fundamental as the Object
Services. For instance, a system management or electronic mail facility could be
classified as a common facility.

CORBA ManufacturingContains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

CORBA MedComprised of specifications that relate to the healthcare industry and
represents vendors, healthcare providers, payers, and end users.

CORBA FinanceTargets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

CORBA TelecomsComprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail i®bject Management
Architecture Guide

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

6 Party Management, v1.0 February 2001

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:
e 2AB, Inc.
e Concept Five Technologies, Inc.
¢ Cyborg Systems, Inc.
e Data Access Technologies
¢ Electronic Data Systems (EDS)
 Hitachi, Ltd.
 International Business Machines Corporation
* Open Engineering, Inc.
* System Software Associated, Inc.

February 2001 Party Management, v1.0 7

Party Management, v1.0 February 2001

February 2001

Domain Model and Design
Objectives 1

Contents

This chapter contains the following topics.

Topic Page
“Service Overview” 1-2
“Common Object Model” 1-3
“Composition Model” 1-4
“Definition of Terms and Assumptions” 1-4
“Role Aware Composition Model” 1-5
“Party and Contact Information” 1-7
“Party Relationships as First Class Objects” 1-8
“High Level Comparison with CosRelationships” 1-8
“Manager and Object Factory Model” 1-9
“Locating Existing Party Information” 1-12

This specification defines specific interfaces for Party Management that each of the other
(future) finance related components will request information from. The goal of this
specification and the Party Management Facility (PMF) in general is to define these
interfaces at a level where, for example, an insurance company can easily replace their
current OMG compliant PMF component with a new one in a seamless manner. That is,
since both products conform to the OMG standard, then interoperability at an interface
level is assured. And, since OMG IDL promotes a distinct separation between interface
and implementation, the remainder of the insurance application remains completely
intact, unaware of the new PMF implementation.

Party Management, v1.0 1-1

The interfaces presented in this specification represent a solution to a well-understood
problem, the management of involved party information. This specification does not
attempt to addredsow a Party Management Facility is to be implemented (e.g., in terms
of access to persistent storage or collection management). Rather, it provides a higher
level interface that allows external users (people, application programmers, or other
systems) to access and manipulate party related information in a consistent and well-
defined manner.

1.1 Service Overview

Party Profile Party Lifecycle Party Effectivity
S 7 A 7
/ o | P -
RN
/ — | ~
L .~ <<client>>
Functionally provided PME Client
by PartyManager
.
e [™~
- ~
~ ’ ™~
L v N
Party Retrieval Party Elements Party Associations

Figure 1-1 Services that comprise the Party Management Facility

Figure 1-1 illustrates the different types of services that comprise the Party Management
Facility. The Party Management Facility defines similar types of services as the General
Ledger Facility. There are interfaces that support data extraction, party lifecycle
management, location services, effective dating, along with services specific to managing
and creating parties and their relationships.

This section describes the core aspects of the Party Management Facility by illustrating
the interface hierarchy in UML. The models have been broken into small, manageable
packages in an effort to succinctly communicate the design, intent, and justification of
each logical entity. This section does not explain individual methods or attributes but
rather focuses on the overall design. Each IDL interface is described in detail in the next
section.

The facility must allow for dynamic attribution and provide the ability to internalize and
externalize party information in a well-defined format. This specification has chosen to
capture this behavior, and other general services, by making extensive use of pre-existing
Common Object Services. Further, it consolidates this behavior into a single interface
from which most other Party Management interfaces derive from. Figure 1-2 illustrates
this abstract interface entitl&@ommonObiject .

Party Management, v1.0 February 2001

1.2 Common Object Model

CosTransactions :TransactionalObject

CosLifecycle:LifeCycleObject

Cos Stream::Streamable

Cos PropertyService::PropertySetDef

DateEffectiveObject

CommonObject
identity : QualifiedObje ctide ntity|

Figure 1-2 Common Object Interface Model

This abstracCommonObject interface represents the core behavior that most Party
Management interfaces will inherit. To provide for dynamic, although constrained,
attributionCommonObject derives from theCosPropertyService 's

PropertySetDef interface. In order for thEommonObject to potentially be involved

in distributed transactions it derives fradosTransactions::TransactionalObject

Note that this interface may not be necessary in the future, as transactional semantics
become more quality of service oriented. By inheriting from Streamable, each object
inherits the ability to internalize and externalize its state into user supplied data streams
(e.g., into pre-existing EDI standard formaShmmonObject also derives from
LifeCycleObject so clients may remove a particular instance from the facility. Finally,
CommonObject derives fromDateEffectiveObject so that every aspect of the

facility has the ability to be date and time stamped. This ability is important to provide
point-in-time representation. Each of the specific methods and their applicability to party
management is outlined in the IDL listing contained in Section 2.6, “Common Object,”
on page 2-8.

1.3 Composition Model

February 2001

The first extension this specification makeCiommonObject is fundamental to the
manner in which object aggregation is managed throughout the facility. The PMF has
been positioned as an extensible service that effectively manages not only party
information but also party relationships to other entities. Parties may be related to other
parties, financial agreements, assets, or in general to most anything. To satisfy the

Common Object Model 1-3

requirement of managing these associations, this specification has incorporated the use of
the Composite design pattern as documented by Gamma, Helm, Johnson, and Vlissides
[1]. The following diagram illustrates this very important extension to the base
CommonObject into aCommonContainer .

CommonObject
identity : QualifiedObjectldentity

CommonContainer

Figure 1-3 Composite Design Pattern

This design pattern is very powerful in terms of creating and managing aggregations of
objects that can be referenced through a simple and consistent interface. Generically
these interfaces and their unique relationship to each other define the ability to group
objects together. In reference to the Composite design patte@pthmonObject is a
componentind theCommonContainer is acomposite Quite simply, this construct
provides the foundation for grouping objects together into compositions that may in fact
be recursive. The next few paragraphs describe how these core capabilities have been
extended to understand roles, relationships, and specific domain types that will be
introduced as mandatory extensions as well as a few illustrative examples.

1.4 Definition of Terms and Assumptions

The basic behavior that is made possible vidmmonObject and

CommonContainer lacks role information. For example, assume that Person was a

kind of CommonObject and a user wished to relate an instance of person as a
‘husband’ with another person who happened to be his ‘wife.’ The general interfaces to
create an association between the person and his/her family exist within these base
interfaces; however, if role information is necessary, then these interfaces must be
extended to become role aware. This concept and the design approach becomes clear by
first providing a few basic assumptions.

1-4 Party Management, v1.0 February 2001

1

1. Basic person and organizational information is maintained and implemented as
specific derivations of Party (they aPersonandOrganizationrespectively). That
is, a person can exist independently in a system without being associated to an
insurance policy, annuity, or other customer relationship information. By definition
then, aPersonor Organizationhas a lifecycle of its own, has state that can be
externalized, has date aware behavior, and can participate in distributed
transactions.

2. Party is defined as a base interface over Person and Organization. The term Party
implies that the Person or Organization can, and often does, play many Roles
relative to the business for which it is being maintained. As a result, this base
interface, through Node, has methods that allow for the traversal from Person and
Organization to those Roles. The Roles themselves use a form of aggregation to tie
a Person or Organization to the related entity they are associated with. A specific
Role, PartyRole, has been introduced for those Roles that only Parties can play. For
example, an Insured entity would inherit from PartyRole allowing a Person or
Organization to participate in a relationship with an Insurance Agreement.

3. This specification takes the position that an instancerefaionshipbetween two
or more entities does not always dictate the existence of a first class relationship
(link) object. To expand upon the previous husband and wife example, depending
upon the nature of the system the user may not be interested in spexifiage
behavior or state. That is, the simple association between two person objects with
limited role information attached to each may be sufficient for some systems
without creating a first clagnarriageobject that represents the association between
the two parties. On the other hand, a system may be keenly interested in the
marriageitself as a first class entity to provide specific behavior, such as divorce().
In particular, first class relationships are indicated by derivations of
PartyRelationship that can maintain role constraints per type of relationship. For
example marriagecould be a specialization of PartyRelationship that constrains the
roles to being ‘husband’ and ‘wife.’ This specification recognizes the usefulness of
both scenarios and supports both.

1.5 Role Aware Composition Model

Having an understanding of these fundamental concepts described above, Figure 1-4
introduces two new extensions to the modsle andNode.

February 2001 Role Aware Composition Model 1-5

1-6

CommonContainer

CommonObject

I

identity : QualifiedObjectldentity

7

Role

Node

primary_object:CommonObject
role_name

get_related_objects()
get_all_related_objects_by_role()
add_related_object()
remove_related_object()

get_all_roles ()
add _role()
rem ove_role()

PartyRole

get_contact_inform ation()
set_contact_information()
get_related_party_role()
get_all_related_party_roles()
add_related_party_role()

rem ove_related_party_role ()

get_roles()

Party

get_contact_inform ation ()
set_contact_inform ation ()

\ &

Person Organization

Figure 1-4 Role and Node Interfaces

To reflect back upon the three fundamental concepts provided above, this model shows
specifically how Person, Party, and Organization are introduced as unique extensions of
Node and therefor€ommonObject . TheNode andRole interfaces are introduced

here to provide a richer level of support for aggregations and relationship traversal.

The Node interface specializes the core behavioCoimmonObject providing the

user with the ability to obtain all of the roles that a particular object is playing. Parties
can also play many roles. For example, if a person were the father in one relationship,
possibly with his son, and the insured in another relationship with an insurer, then the
get_all _roles method would return references to a ‘Father’ and an ‘Insured’, where
both are likely derivations d?artyRole .

The Role interface has three purposes:

1. Adds role knowledge to otherwise generic object aggregations.

Party Management, v1.0 February 2001

1

2. Supports and constrains the unique aggregation between the primary object (i.e.,
Person) and the role (e.g., Insured) object that adds specific state and behavior to
the Person in the context of a relationship.

3. Acts as a base interface f@artyRole and subsequently all roles Parties might
play, (e.g., Producer or Agent).

PartyRole derives fromRole. PartyRole provides a mechanism from which the
fundamental notion of Rarty can be augmented, through aggregation, with role specific
behavior. The specification supplies a user-friendly interfad@astyRole such that its
related parties or other related objects can be accessed directly without having to direct
messages to the more abstract base interfaBmlef. Figure 1-5 shows a more detailed
view of Party along with itsContactIinformation

1.6 Party and Contact Information

Role

D ateEffectiveObject

role_name

primary_object: CommonObject

Bkseffective_start
Beffective_end

%is_effective_now() CosPropertyService::PropertySetD ef

1

Party

get_contact_inform ation()
get current_contact_information () Contactinformation
get related_party()
get all_related_parties()
add_related_party()
remove_related_party()

O——— | Bhtype

Q>Ioca|e

February 2001

Person Organization

Figure 1-5 Party and Contact Information

A Party can have a business address, a home address, a fax number, and other types o
contact information. While avoiding the general notionamfationthe specification

attempts to encapsulate general forms of people related contact information into a single
point of reference. Th€ontactinformation interface is date sensitive enabling the

client to request all contact information as-of a specific point-in-timBaky can have

any number of different types of contact information (for example, multiple phone
numbers representing various ways of contacting the p&uoytactinformation also

inherits from thePropertySetDef allowing for dynamic attribution. Dynamic

Party and Contact Information 1-7

attribution onContactinformation can help with issues such as Internationalization
where the fields may differ by locale. It can also allow for customization (for example, a
business address that not only needs street information but also a suite, room, or building
number). Note that contact information is available from IRatityRole and theParty

object that it is representing. This provides BagtyRole with the option to either

delegate a request for contact information to the primary object (Party) or to potentially
handle the request itself. Under some circumstances it may be desirable to specialize
contact information per relationship.

1.7 Party Relationships as First Class Objects

In an instance where a first class object that represents the relationship itself is required,
as in our marriage example above, the specification introducéxathgRelationship

interface. In general, thReartyRelationship interface provides constrained behavior to
aRole. That is, it explicitly specifies the roles that may exist in the relationship and does
not allow non-supported roles to participate. For example, a user could not add an
‘insured’ object to anarriage relationship.

The interface is illustrated in Figure 1-6. These constraints can be further enforced by the
manager interface associated with the relationship type.

Role

i

Relationship

get_related_objects ()

7

PartyRelations hip

get_related_parties|()

Figure 1-6 PartyRelationship Interface

1.8 High Level Comparison with CosRelationships

Many of these concepts are functionally in synch with the cu@esRelationship
Service specification. There are two (2) fundamental reasons why this specification has
chosen not to explicitly extend or otherwise @#sRelationships .

1. This specification recognizes that every association between two objects should not
result in the creation of a first class relationship (link) object. The overhead of this
requirement inCosRelationships could prove to be unmanageable. For example,
if a very simple system chose to group people into user-defined groups and there
wasn't any specific state or behavior introduced as a result of that association, then

Party Management, v1.0 February 2001

1

it should not be required to create this third object. If this group contained 1000
people the use dfosRelationships would result in 1000 people objects, 2000

role objects, and 1000 relationship objects. Each of these has an identity, is most
likely persistent, may have to be managed as part of a distributed transaction, and in
general consumes unnecessary resources. This character@tisRélationships

also introduces additional overhead in traversal. For example, in a 1:m relationship
if the user wished to obtain individual object references for the many (from the 1)
they must first traverse each of the relationship objeygs (elationships) to get

to the role object on the other side. The role object would then need to be queried
(get_related_object) to obtain the primary object.

2. The interface exposed to the user of a system explicitly based upon
CosRelationships is somewhat low-level and complex. For example, to relate two
objects together the client must invoke operations on a role factory, create
sequences of named roles, and invoke a third set of operations on a relationship
factory that results in the creation of a relationship object that has a unique identity
and must be managed.

As an alternative, this specification exposes a somewhat higher level interface and
positions the use dfosRelationship s as an implementation decision that the PMF
vendor must make. Appendix B provides a set of scenario diagrams that illustrate how
these PMF interfaces could be used to wrap an implementatiGositelationships
specifically for Party Management. For more information on the position taken in regard
to CosRelationships refer to the “Compliance, Conformance, and Known Issues”
chapter.

1.9 Manager and Object Factory Model

February 2001

The following sections define a series of management level interfaces that in general are
used to create parties, primary objects, and first class relationship objects along with their
respective state and behavior. Figure 1-7 shows the hierarchy for these management leve
interfaces.

Manager and Object Factory Model 1-9

CosNotifyfComm ::SequencePushSupplier Cos Stream ::Stream ableFactory

V\ Manager /7

get _supported_types()
get _supported_properties ()
get_locator()

create()
Relations hipManager RoleManager
NodeManager
get_supported_relationships() get_supported_roles()
get_supported_roles_for_relationship() create_role() get_supported_nodes()
create _relationship() create_from _tem plate()
create_many_relationship()
Z} PartyManager
PartyRoleManager get_supported_parties ()
PartyRelationshipManager create_multiple_parties()
get_supported_party_roles() create_party()

Figure 1-7 Management Level Interfaces Hierarchy

For the most part these interfaces provide the factory behavior and a level of meta
information that is often associated with any CORBA based system. The term ‘Manager
has been used in the specification to indicate a higher level of functionality than
generally appears in a traditiorfactory type interface. This additional knowledge is
geared toward exposing the kinds (types) of information that the PMF has been
configured to support.

1

The Manager interface is responsible to act as a base abstraction for communicating
supported type and attribution. The methgds supported_types and
get_supported_properties offer this level of support respectively. This allows a
graphical client to easily display the facility’s options for object creation. It also provides
the ability to dynamically generate user interface logic that reflects the properties
associated with a specific type. Thianager also contains thereate method to create

a CommonObiject .

1-10 Party Management, v1.0 February 2001

February 2001

Note —The Manager derives from the Notification Service’s
SequencePushSupplier interface providing th&lanager the ability to broadcast
type level creation notices. AlsManager derives fromStreamableFactory so that
it can work in conjunction with th€ommonObject s inherited
internalize_from_stream method.

The PartyRelationshipManager interface provides the ability to create
PartyRelationship objects. As discussed previously these relationship objects are not a
mandatory aspect of associating objects to one another but do provide a mechanism for
additional state and behavior specific to the association of two objects. The
PartyRelationshipManager also exposes methods to communicate the types of
relationships it has the ability to create as well as the valid roles that can participate in
each of those relationships.

The RoleManager inherits fromManager and therefore inherits trereate and
create_from_template methods. At thé&koleManager level, the client will need to
narrow the returne€ommonObject into aRole object.RoleManager createsRole
objects by accepting the primary object and the requested role in the form of a string. It
has the ability to create specific derivationdRafle s and can communicate the types of
derivations that it can create.

The PartyRoleManager inherits fromRoleManager and therefore inherits the

create andcreate_from_template methods. At théartyRoleManager level, the
client will need to narrow the returnétle into aPartyRole object.
PartyRoleManager createPartyRole objects by accepting the primary object (Party)
and the requested role in the form of a string. It has the ability to create specific
derivations ofPartyRole and can communicate the types of derivations that it can
create.

The NodeManager andPartyManager interfaces are capable of creating types of
objects derived fronNode andParty such afPerson andOrganization . These have

been segregated, as other aspects of the interface hierarchy, to allow for future expansion
beyond Party Management.

This next set of management level interfaces do not derive Mtanager but simply
provide base level factory behavior for their respective types.

GroupManager TemplateManager Contactinform ationFactory

create_group() add_template() create()

remove_template()
get template()
list_tem plates()

Figure 1-8 Template and Group Management Interfaces

Manager and Object Factory Model 1-11

Templates andGroups are the final two management interfaces that must be
discussed. Alemplate defines a container that contains specific types. For example, in
conjunction with theRole’s generic ability to group objects the template not only
specifies the exact types that will comprise the container but initializes the container with
those typesTemplate support is optional.

A Group is simply a user-defined, named container of parties.

1.10 Locating Existing Party Information

The final three interfaces presented in the specification reflect the ability to locate parties
using a variety of mechanisms. The primary interface i4 tieator . A reference to the
Locator can be obtained from thdanager interfaces described above or could be
directly resolved from a Naming or Trader Service. Figure 1-9 shows the relationship
between thé_ocator , Iterator , andTable interfaces. In general, dterator is the

result of a query issued in one of two ways onltbeator (evaluate or query). The
optionalTable interface provides high level access to the data returned btethtor

through its methods that ultimately provide access to a multi-dimensional list of values.

Locator lterator Table
naming_context number_of_rows
trader_components next_object() number_of_columns

next_n_objects() column_property_types
resolve () next_values() column_names
evaluate() next_n_values()
query() reset() get_row ()

count() set_row ()

object_at() get_cell()

values_at() set_cell()

Figure 1-9 Locator, Iterator, and Table Interfaces

Note that the resolve method on therator provides the ability to specify an as-of-date
that enables theocator to return a specifi®arty as it existed on a specific date. Also,

if a client has a reference tdLacator and still cannot locate thearty they are

searching for, they have a direct link to the local naming and or trader service through
read-only attributes. For additional locator support the Iterator interface provides a
mechanism to traverdearty objects or data associated with Parties, or both. Using this
approach, the PMF vendor has the ability to support the lazy activatPergf objects.

1-12 Party Management, v1.0 February 2001

Party Management Facility
Interfaces

Contents

This chapter contains the following topics.

Topic Page
“Overview” 2-2
“CosFinance Module Declaration” 2-2
“General Type Information” 2-4
“Manager” 2-6
“Date and Time Sensitive Objects” 2-7
“Common Object” 2-8
“Common Container” 2-12
“Template Manager” 2-14
“Locator” 2-15
“Iterator Support” 2-17
“PMF Module Declaration” 2-22
“General Type Information” 2-23
“Role” 2-24
“Node” 2-26
“Party” 2-27
“PartyRole” 2-27
“Party Relationship” 2-29
“Person” 2-29

February 2001 Party Management, v1.0

2-2

Topic Page
“Organization” 2-29
“Node Manager” 2-29
“Party Manager” 2-30
“Role Manager” 2-30
“PartyRoleManager” 2-31
“Relationship Manager” 2-31
“PartyRelationship Manager” 2-33
“Group Manager” 2-33
“ContactinformationFactory” 2-33
“Summary” 2-33

2.1 Overview

The interface hierarchy is scoped within two modules. ChsFinance module

provides base level interfaces from which the PMF module inherits from or otherwise
makes use of. The modules have been segregated in an effort to isolate some of the core
behavior that is anticipated to be used in subsequent finance related specifications. Since
much of the technology related characteristics such as externalization, lifecycle, and

transactional behavior will likely be required for most finance-related initiatives, this
specification has taken an extra step to make them easily available and extensible.
Collectively, the interfaces can be broken down into the following functional areas:
aggregation (composition), attribution, location (query), lifecycle management, and

iterator support.

A complete OMG IDL is included in Appendix A. The next portion of this document

breaks out each individual interface definition, per module, and provides a description of

its use and role.

2.2 CosFinance Module Declaration

#ifndef CosFinance_idl
#define CosFinance_id|

#include “CosProperties.idl”
#include “CosLifeCycle.idl"
#include “CosExternalization.idl”
#include “CosTransactions.idl”
#include “CosTime.idl"

#include “CosNotifyComm.idl”
#include “NamingAuthority.idl”
#include “CosNaming.idl”
#include “CosTrader.idl”

Party Management, v1.0

February 2001

#pragma prefix “omg.org”

module CosFinance

{

...
h
#endif

#include "CosProperties.idl"

This file contains all of the type declarations for @@sProperty service.

#include "CosLifeCycle.idl"

This file contains all of the type declarations for @esLifeCycle service.

#include "CosExternalization.idl"

This file contains all of the type declarations for @esExternalization service.

#include "CosTransactions.idl"

This file contains all of the type declarations for @esTransactions service. Note,
only theTransactionalObject interface is used indicating that if an OTS is present,
then the base financial interfaces are transactional in nature.

#include "CosTime.idl"

This file contains all of the type declarations for @esTime service.

#include "CosNotifyComm.idI"

This file contains all of the type declarations for the Supplier capability described in the
Notification Service.

#include "NamingAuthority.idl"

Since this specification makes use of the qualified identity defined in the Person
Identification Service we includdamingAuthority.idl for domain information.

#include "CosNaming.idl"

Since this specification references thamingContext from CosNaming
CosNaming.idl must be included.

#include "CosTrader.idl"

Since this specification referenc@saderComponents from CosTrader
CosTrader.idl must be included.

February 2001 CosFinance Module Declaration 2-3

#pragma prefix "omg.org"

In order to prevent name pollution and name clashing of IDL types this module uses the
pragma prefix that is the reverse of the OMG's DNS name.

Each of the following type declarations and interfaces exists in the module defined
above.

2.3 General Type Information

/l[forward declarations

/Imanagement

interface Table;

interface Manager;
interface TemplateManager;
interface lterator;

interface Locator;

/[core

interface CommonObject;
interface CommonContainer;
interface DateEffectiveObiject;

[Itypedef
typedef string Type;
typedef sequence<string> Types;

struct Template

{

string name;

Types types;
b
typedef string QueryExpression;
typedef CosTime::UTO Date;
typedef any PropertyValue;
typedef sequence<PropertyValue> PropertyValues;
typedef sequence<Template> Templates;
typedef sequence<CommonObject> CommonObijects;

typedef sequence<CommonContainer> CommonContainers;

/lenumerators
enum ModificationState { Update, Correction };

2-4 Party Management, v1.0 February 2001

February 2001

struct QualifiedObjectldentity

{
NamingAuthority::Authorityld domain;
Type type;
NamingAuthority::LocalName id;

h

Type, Types

Type is simply an alias for string that is used byNenager interface to determine
what specific type of object to create (e.g., ‘IndividualPerson’ or ‘Employer’). It is also
used to publish all the types that tMsinager can create.

Template

A structure representing the name of the template (pre-defined collection) and the many
types it contains.

QueryExpression

QueryExpression is a string that represents how to locate a set of objects or data
within the local domain. The vendor must supply the exact syntax of the query. It is
suggested that the syntax be a derivation of ODMG OQL or SQL.

Date

Date is an alias foCosTime::UTO (Universal Time Object). The vendor may wish to
extend this low-level abstraction to a more user-friendly date and time structure that
allows locale formatting.

PropertyValue, PropertyValues

PropertyValues is a sequence of tyferopteryValue , which is a CORBA type any.

This typedef extend€osPropertyService . It has been introduced as an efficiency
mechanism to pass all names at once then all data associated with those names. Instea
of always passing both name and valu€asPropertyService suggests. See Table
interface declaration below.

Templates

A sequence of many templates.

CommonObjects

This typedef is an alias for a sequence&€ommonObjects .

CommonContainers

This typedef is an alias for a sequenc&€ommonContainers .

General Type Information 2-5

2.4 Manager

ModificationState

Any date and time sensitive object needs to be aware of its update state while accessor
methods are being invoked. This provides the vendor to automatically monitor and keep
track of effective and expiration dates. It also provides the user of the PMF to not imply
a real state changed by switching the flag to ‘Correction.” SebdteEffectiveObject
interface for more detail.

QualifiedObjectldentity

This structure has been, for the most part, borrowed from the Person Identification
Service (PIDS) defined by CORBAmed. PIDS defind&aaingAuthority that realizes

that an identity is only valid within the context of a domain.Anhorityld is the
combination of &RegistrationAuthority , such as ISO, DNS, IDL, and a

NamingEntity that is a string. TheocalName is a string that contains the value of

the domain dependent identification, such as a social security number. This specification
has explicitly added th&ype attribute to differentiate between entity types that may

exist on the backend, such as the roles ‘Employee’ or ‘Claimant.’

interface Manager : CosStream::StreamableFactory, CosNotifyComm::SequencePushSupplier

{

exception
exception
exception
exception

TypeNotSupported {};
DuplicateObject {};
InvalidinitializationType {};
InvalidinitializationValue {};

struct InitCommonObject {

J

QualifiedObjectldentity identity;
CosPropertyService::Properties data;

typedef sequence<InitCommonObject> InitCommonObjects;

Types

get_supported_types();

CommonObiject create(in InitCommonObject data)

void

Locator

raises (
TypeNotSupported,
InvalidinitializationType,
InvalidinitializationValue,
DuplicateObiject);

get_supported_properties(
in Type type,
out CosPropertyService::PropertyDefs property_defs)
raises (
TypeNotSupported);

get_locator();

Party Management, v1.0 February 2001

InitCommonObject struct

A structure to maintain combinations of types and properties. This structure is using as a
parameter to the create methods allowing initial values to be streamed into a new object.
Note, QualifiedObjectldentity is described above.

create ()

This method performs the creation of a f@ammonObject or CommonContainer

or derivation thereof, that represents the type requested (within the
QualifiedObjectldentity structure). If the facility is asked to create a type of object

that it does not support, it throws tligpeNotSupported exception. Recognize that
identity information is not always available at object creation time. As a result, the value
of the identity passed in may be null. Quite often, legacy systems have an internal
mechanism to generate uniqueness per type. In this situation, the complete identity would
not be available until after completion.

2.5 Date and Time Sensitive Objects

February 2001

interface DateEffectiveObject

{
attribute ModificationState update_state;
attribute Date effective_start;
attribute Date effective_end;
boolean is_effective_now();
8

This interface is used as a base@@mmonObjects that often require effectivity
constraints. For example, roles that parties play in the context of relationships come and
go and the system must be able to portray a valid picture of the state at a specific point in
time. Also, Agreements that Parties participate in also tend to be relatively dynamic and
must be date and time stamped to effectively manage history and audit requirements.

update_state

Any object that inherits this interface will need to be aware afptfate_state while
accessory methods are being invoked. This provides the vendor to automatically monitor
and keep track of effective and expiration dates. Note the user of the PMF can set the
value to ‘Correction’ to indicate the difference between a valid change in state vs. a data
entry error.

effective_start()

The date that the state of the derived type (agreement or role) was committed.

effective_end()

The date that the state of the derived type was modified, in a sense marking the beginning
of a new start-to-end duration.

Date and Time Sensitive Objects 2-7

is_effective_now()

Simply returns true or false if the current system date falls bete#ective_start()
and effective_end() inclusive.

2.6 Common Object

interface CommonObject : CosLifecycle::LifecycleObject,
CosStream::Streamable,
CosPropertyService::PropertySetDef,
CosTransactions:: TransactionalObject,
DateEffectiveObject

exception ContainerNotFound {};
exception CannotRemove {};

readonly attribute Objectldentity identity;

boolean is_dependent_object();

boolean is_date_sensitive();

CommonContainers get_containers();

void add_container(in CommonContainer container);

void remove_from_container(in CommonContainer container)
raises (ContainerNotFound,
CannotRemove);

2.6.1 CommonObject (Inherited Interfaces)

CosPropertyService::PropertySetDef

The ability to obtain, define (potentially) and set state on a specific object
implementation is through thHeropertySetDef interface. Valid attribution is also

exposed to the client through tReopertySetDef interface defined within
CosPropertyService . According to the PMF vendor’s implementation technique, they
may then allow the consumer to further customize the attribution set. The PMF vendor
may supply a set of supported attribution templates. For example, if the PMF is being
installed at an insurance company, then they may choose to attribute their Person type
with the standard ACORD characteristics. The names and types of this attribution set
may appear to the consumer as packaged constraints.

CosLifeCycle::LifeCycleObject

CommonObiject inherits frorhifeCycleObject to allow instance level administration
on the target object.

Party Management, v1.0 February 2001

February 2001

CosLifeCycle::LifeCycleObject::copy (optional)

This method allows the data associated with @asnmonObject to be copied from

one address space to another, possibly on a different host. The factory finder parameter to
this method should in fact point taPartyManagementFacility::Manager reference.

If the vendor chooses not to implement this method they can simply throw the predefined
exceptionNotCopyable.

CoslLifeCycle::LifeCycleObject::move (optional)

The PMF vendor may implement this method in the same manner as copy (see above).

CosLifeCycle::LifeCycleObject::remove

This method effectively removes the object from the system, including its persistent state.
This may include removing a reference from a Name service and/or other repositories.
The details on what actually gets removed are implementation specific.

CosStream::Streamable

The CommonObiject interface inherits fronCosStream::Streamable primarily to
implement theexternalize_to_stream method. Using this approach one of many
specializations oStreamlO could be passed to@GommonObject allowing its state to
be externalized to a specific format - such as existing EDI standard formats. This
interface inherits fronCosObjectldentity::IdentifiableObject . It is assumed that the
Party Management Facility wilot implementldentifiableObject - as a simple
unsigned long is not enough information to uniquely identify objects across multiple
domains. RatheCommonObject will use theQualifiedObjectldentity described
above.

CosStream::Streamable::externalize_to_stream()

It is expected that the vendor will supply this generic streaming capability to stream Party
data out to external sources and/or legacy environments. For example, the stream object
could format the data encapsulated within @@nmmonObject (Person) into the ANSI

X12 standard 275 for patient information.

CosStream::Streamable::internalize_from_stream()

This method can be used to stream data into an object, (e.g., from an EDI input stream).

CosPropertyService::PropertySetDef

The PropertySetDef interface, a constrained specializationPobpertySet , is

inherited primarily to provide generic attribution on @dmmonObject s. This

interface provides for dynamic customization. The inherited behavior listed here provides
a quick reference to the requirements. For a more complete explanation refer to the
CosPropertyService specification.

CosPropertyService::PropertySet::define_property()

This method adds or changes an existing property oRahty object.

Common Object 2-9

2-10

CosPropertyService::PropertySet::define_properties()

This method will add or change all of the properties in the list té#rey object.

CosPropertyService::PropertySet::get_number_of properties()

Returns the total number of properties currently defined orPdnity object.

CosPropertyService::PropertySet::get_all_property _names()

Returns all the properties, by name, currently associated witPanig object.

CosPropertyService::PropertySet::get_property_value()

Gets the value of an attribute from its name.

CosPropertyService::PropertySet::get_properties()

Gets multiple values of attributes from a list of names.

CosPropertyService::PropertySet::get_all_properties()

Returns all of the properties defined (name and value). If morehihanmany
properties are present the remainder are returned in an iterator.

CosPropertyService::PropertySet::delete_property()

Deletes the property from thHeropertySet if it exists.

CosPropertyService::PropertySet::delete_properties()

Deletes all of the properties listed in theperty names paramater.

CosPropertyService::PropertySet::delete_all_properties()

Blindly deletes all properties.

CosPropertyService::PropertySet::is_property_defined()

Returns true if the property name passed in exists irPtiojgertySet .

CosPropertyService::PropertySetDef::get_allowed_property_types ()

Provides a mechanism for the PMF vendor to communicate to a client explicitly which
property types are valid for this type of object. For example, the vendor may not limit the
attribution by name only by type and may state that talgtring is allowed.

CosPropertyService::PropertySetDef::get_allowed_properties ()

Allows the vendor to communicate exactly which properties are supported. Note, this
method returns a sequenceRybpertyDef ’s which contain name, value, and mode.

Party Management, v1.0 February 2001

CosPropertyService::PropertySetDef::define_property_with_mode ()

Allows the client to provide, or customize, the attribution associated with this object.
The vendor could choose to disallow this feature by throwing one of the unsupported
exceptions.

CosPropertyService::PropertySetDef::define_properties_with_modes()

Allows the client to provide, or customize, the attribution associated with this object.
The vendor could choose to disallow this feature by throwing one of the unsupported
exceptions.

CosPropertyService::PropertySetDef::get_property_mode()

Returns the mode of the specified property. Note, the valid modes ineladeonly ,
normal , fixed_normal , fixed_readonly , andundefined .

CosPropertyService::PropertySetDef::get_property_modes ()

Returns a list of modes respective to the names passed in.

CosPropertyService::PropertySetDef::set_property_mode()

Sets the mode on a specific property, provided the property name and mode are valid,;
otherwise, an exception is thrown.

CosPropertyService::PropertySetDef::set_property_modes ()

Sets the modes on a set of properties, provided the property names and modes are valid
otherwise, an exception is thrown.

CosTransactions:: TransactionalObject

This interface does not necessarily require any additional behavior from the PMF vendor.
It simply implies that the object may be transactional and that the thread’s transaction
context should be initialized. If an OTS is being used, it is likely the PMF vendor will
wish to register a synchronization interface for@mmmonObject s so they receive the
before_completion message prior to transaction preparation.

DateEffectiveObject

As defined above, allo\SommonObject 's to be date and time aware. This provision
allows for the point-in-time representation.

2.6.2 CommonObject (Local Attributes and Methods)

identity

The domain that it lives in (as suggested in PIDS) qualifies the unique identity of the
CommonObject . SeeQualifiedObjectldentity description above.

February 2001 Common Object 2-11

is_dependent_object()

In some instances an object may be fully contained (by value) within another object.
Often this implies that the containing object controls the lifecycle of the embedded object
as well as its identity. For example, individual Diaries (comments) associated with a
Party may not require a fully scoped, self-sufficient identity. In this case this method
would return TRUE and the identity method would return the identity of the containing
object.

is_date_sensitive()

Not all CommonObiject s, or their potential derivations, will require data sensitivity.
The client can query whether or not the implementation supports effectivity for this
specific type.

get_containers()

This method allows for bi-directional communication betwe&@pemmonObject and

the container that may have contained it. For example, if a client holds a reference to a
CommonObject that represents a specific Person, then it could invoke this method to
determine whickCommonContainers (typically roles) have referenced it.

add_container()

This method allows for aggregation to be initiated by the contained object. It is also
intended to be called implicitly as a result of invokamdd contained_object on a
container.

2.7 Common Container

2-12

interface CommonContainer : CommonObiject
{

exception ObjectNotFound {};

exception IsDuplicate {};

exception InvalidAggregation {};

exception MaximumCardinalityExceeded {};

void add_contained_object(in CommonObject object,
in Date as_of date);

void add_contained_objects(in CommonObjects objects,
in Date as_of date);

CommonObject get_contained_object_by id(in QualifiedObjectldentity id,
in Date as_of date)
raises (ObjectNotFound);

void remove_contained_object(in CommonObject object

in Date effective_date)
raises (ObjectNotFound);

Party Management, v1.0 February 2001

boolean has_contained_object(in CommonObject object,|
in Date as_of_date);

void get_all_contained_objects(in Date as_of date,
out CommonObjects sequence);

void add_from_template(in Template template);

Templates list_templates();

%

2.7.1 CommonContainer (Inherited Interfaces)

A CommonContainer is a specialization ocfommonObject and represents a
composition of manyCommonObject s or in fact otheCommonContainer s. This
unique relationship offers generic aggregation capabilities.

2.7.2 CommonContainer (Local behavior)

add_contained_object()

Adds anotheCommonObject , or due to inheritance anotheommonContainer , to
its collection as of the date specified.

add_contained_objects()

Adds manyCommonObiject s, or due to inheritance oth€ommonContainer s, to its
collection as of the date specified.

get_contained_object_by id()

Returns the embedded object that matches the characteristics of
QualifiedObjectldentity . Otherwise, throws an exception stating that the object
represented by the identity is not embedded in this container. For example, assume that
“Diary” is a valid type supported by the facility and its identity is comprised of the date,
user id of the creator, and a sequence number. The client could retrieve the full object
state of the diary entry by supplying this instance level information through this method.

remove_contained_objects()

The client can remove a containEdmmonObject from theCommonContainer
(aggregation) by passing it to this method. It is likely the vendor will use the inherited
is_identical() method to locate the object in the container.

February 2001 Common Container 2-13

has_contained_objects()

This method will likely use the inheritad_identical() method to determine whether or
not the passed i@ommonObject has been contained within this container. For
example, a client could query an Employer to ask whether or not a specific Employee
worked for them on the date specified.

get_all_contained_objects()

This method returns all contained object as of a specific date regardless of role.

add_from_template()

This method allows other types to be contained by this container as specified in the
template. Since templates in general are optional this method is also optional.

list_templates()

This method returns all the templates that were used to construct the object. Since
templates in general are optional this method is also optional.

2.8 Template Manager

Struct Template

{
string name;
Types types;
h
interface TemplateManager
{
exception TemplateNotFound {};
void add_template(in Template template);
void remove_template(in Template template);
Template get_template(in string template_name)
Raises(TemplateNotFound);
Templates list_templates();
h

[OPTIONAL INTERFACES]

The TemplateManager interface and those lifecycle methods that reference

Templates , (e.g.,create_from_template) are specified as optional interfaces. That is,
they provide an ease of use quality that although desirable is not required to satisfy the
basic PMF behavior.

2-14 Party Management, v1.0 February 2001

add_template()

Adds a new template to the repository. Note, sifeaplates are simple structures they
can be fully created on the client and passed in to this method.

remove_template()

Removes a template from the repository.

get_template()

Obtains a pre-constructed template for the repository for use in object creation.

list_templates()

Provides a list of all defined and available template definitions.

2.9 Locator

interface Locator

{
typedef sequence<string> CriteriaBasis;
typedef sequence<string> SearchType;

exception InvalidQuerySyntax {};
exception Notimplemented {};
exception SearchTypeNotSupported {};
exception CriteriaBasisNotSupported {};
exception NotFound {};

exception Invalididentifier {};

exception InvalidAsOfDate {};

exception TypeNotSupported {};

readonly attribute NamingAuthority::Authorityld domain_name;
readonly attribute CosNaming::NamingContext naming_context;
readonly attribute CosTrading::TraderComponents trader_components;

CommonObiject resolve(
in QualifiedObjectldentity identifier,
in Date as_of date)
raises (
NotFound,
Invalididentifier,
InvalidAsOfDate);

Iterator evaluate(
in QueryExpression query)
raises (
InvalidQuerySyntax,
Notimplemented);

February 2001 Locator 2-15

Iterator query(
in Type object_type,
in string criteria,
in CriteriaBasis criteria_basis,
in SearchType type_of search)
raises (
TypeNotSupported,
Notimplemented,
SearchTypeNotSupported,
CriteriaBasisNotSupported);

h

This interface provides a variety of mechanisms to find party related information based
on a specified search criteria. A reference toltbeator can be obtained from the
Manager, a Naming or Trader Service, or ultimately and®agtylL ocator . This

location capability becomes federated by providing references to other location services
such as Naming or Trader.

resolve()

The resolve method returns a reference Ragty object as of a specific point-in-time.

The method accepts a named identity, as defined in PIDS, as well as a date parameter
indicating the effective date they would like to use from a state perspective. For example,
if the Party had recently changed their last name a request could be made to view the
Party as it existed last week or last year. This method is a take-off of the resolve method
described infCosNaming but adds an intuitive aspect of time.

evaluate()

The evaluate method performCasQuery like evaluation over a domain centric
QueryableCollection . That is, this method itself when implemented is directed at a
specific domain and is not intended to cross architectural boundaries. The query could in
fact be issued over a series of CORB#rty objects or redirected to a persistent storage
device such as an RDBMS.

query()

This method is a simple, most likely highly used, intuitive mechanism to quickly locate a
set of Party related objects that match the criteria providedCriteriaBasis and
SearchType values are vendor supplied and can be retrieved by calling their respective
accessory methods. Examples include:

® CriteriaBasis values may include; lastName, firstName, and SSN.

® SearchType values may include; soundsLike, spelledLike, and spelledExactlyLike.
For example, this method can be used to quickly locate aPanty objects whose
last name begins with “Swi” by invoking query (“Party,” “Swi,” “lastName,”
“spelledLike”). The Iterator that is returned is described below.

2-16 Party Management, v1.0 February 2001

2.10 lIterator Support

interface Iterator

{
exception OutOfBounds {};

boolean next_object(
out CommonObject object);

boolean previous_object(
out CommonObject object);

boolean next_n_objects(
in unsigned long how_many,
out CommonObjects objects);

boolean object_at(

in unsigned long at,

out CommonObiject object)
raises (

OutOfBounds);

void destroy();
unsigned long count();
void reset();

boolean next_values(
out PropertyValues data);

boolean previous_values(
out PropertyValues data);

boolean next_n_values(
in unsigned long how_many,
out Table data);

boolean values_at(

in unsigned long at,

out PropertyValues data)
raises (

OutOfBounds);

h
interface Table {
struct Cellld {

unsigned long row;
unsigned long column;

February 2001 Iterator Support 2-17

h
typedef sequence<Cellld> Celllds;

struct TableCell {
Cellld cell;
any value;

typedef sequence<TableCell> TableCells;

enum ExceptionType {
read_only,
type_mismatch,
constraint_mismatch,
invalid_row_column

h

struct TableException {
Cellld cell;
ExceptionType type;
h

typedef sequence<TableException> TableExceptions;

exception InvalidRow;

exception InvalidColumn;

exception IncompleteRow;

exception TypeMismatch;

exception ReadOnly;

exception MultipleExceptions { TableExceptions exceptions; };

readonly attribute unsigned long number_of_rows;

readonly attribute unsigned long number_of_columns;

readonly attribute unsigned long max_number_of_rows;

readonly attribute CosPropertyService::PropertyTypes
column_property_types;

readonly attribute CosPropertyService::PropertyNames column_names;

void describe_table(out unsigned long number_of rows,
out CosPropertyService::PropertyNames
column_property_names;
out CosPropertyService::PropertyTypes column_types);

void get_row(in unsigned long row_number, out PropertyValues values)
raises (InvalidRow);

void set_row(in unsigned long row_number, in PropertyValues values)
raises (MultipleExceptions, IncompleteRow, InvalidRow);

any get_cell(in unsigned long row, in unsigned long column)

2-18 Party Management, v1.0 February 2001

February 2001

raises (InvalidRow, InvalidColumn);

void set_cell(in unsigned long row, in unsigned long column, in any
value)
raises (InvalidRow, InvalidColumn, TypeMismatch,
ReadOnly);

void get_cells(in Celllds list, out TableCells cells)
raises (MultipleExceptions);

void set_cells(in TableCells cells)
raises (MultipleExceptions);

2.10.0.1 Iterator Description

The iterator described above is the primary result of a query (faator interface).

This smart iterator can then be used to traverse the results of the query. In most cases it
is desirable to not have a query actually create instances of objects when executed. Quite
often a query is executed in an effort to locate a specific instance. For this reason, this
interface supports the notion of lazy activation. For example, an application may invoke a
guery to obtain all Customers whose last name starts with “Sm.” The programmer may
then display this result in a GUI using thext_n_values method, (i.e., data only).

Once the user has successfully found John Smith the application may abjeke at

method to get an actual reference to the John Smith object, represented through the
CommonObiject interface.

next_object()

Returns the nextommonObject reference in the sequence (result set). If there are no
more objects to traverse, the method returns false, otherwise it returns true.

previous_object()

Returns the previouServiceLevelObject reference in the sequence (result set). If
there are no more objects to traverse, the method returns false, otherwise it returns true.

next_n_objects()

Returns the nexhow_many ' CommonObject references in the sequence (result set).
If there are no more objects to traverselmw_many ' exceeds the number available,
the method returns false, otherwise it returns true.

object_at()

Returns theCommonObject object reference at a specific location in the sequence
(result set). If the index passed in exceeds the boundary of the sequence, then an
exception is thrown.

Iterator Support 2-19

2-20

destroy()

The user of this iterator must call the destroy method when finished for the server to
effectively manage the memory associated with each result set.

reset()

This method resets the implicit cursor on the iterator back to zero. Note, the use of the
iterator is exclusive to the client whom requested it; therefore, concurrency is not an
issue.

count()

This method reruns the number of elements in the result set.

next_values()

Returns the next set of data in the sequence (result set). If there is no more data to
traverse, the method returns false, otherwise it returns true.

previous_values()

Returns the previous set of data in the sequence (result set). If there is no more data to
traverse, the method returns false, otherwise it returns true.

next_n_values()

Returns the nexthow_many ’ sets of data in the sequence (result set) in the form of a
Table (described below). If there is no more data to traverdeoar many ' exceeds
the number available, the method returns false, otherwise it returns true.

values_at()

Returns the set of data at a specific location in the sequence (result set). If the index
passed in exceeds the boundary of the sequence, then an exception is thrown.

2.10.0.2 Generic Table Description

Cellld

Cellld is a reference to a particular element of a table identified by the row number and
column number. The use of the column number rather than column name enables more
rapid access than access by row number and column name. Accessing by column name:
of the table support ad hoc table interactions is supported using the
CosPropertyService::PropertyNames column_names attribute followed by

accessing byellld .

Celllds

Celllds is a sequence aellld.

Party Management, v1.0 February 2001

TableCell

TableCell is a structure containing tigellld of an element of a table and its value in a
CORBA any.

TableCells

TableCells is a sequence dfableCell .

number_of rows

Attribute number_of_rows represents the total number of rows in the table.

Number_of_columns

Attribute number_of columns represents the total number of columns in the table.

max_number_of rows

Attribute max_number_of _rows represents the highest number of rows that a
particular table instance is permitted to support.

column_property_types

Attribute column_property_types is a sequence dfropertyTypes ordered by

column number representing the CORBA type of the any contained in the cells of that
column. This value borrows from Cos Property Service
CosPropertyService::PropertyTypes

column_names

Attribute column_names supports identification of the contents of a particular table
column by name. A client side library function can be constructed to access and update
by cells name around the column number interfaces supported by the table interaction
calls described below. The type is borrowed from Cos Property Service

PropertyNames .

describe_table()

Attribute describe_table() supports table description including the number of rows in
the table and the types and names of each column.

get_row()

Supports accessing the values of a specified row. The row number is specified as
row_number . The returned values are typPeopertyValues . ThePropertyValues
are ordered per theropertyNames specified by thelescribe_table() operation.

February 2001 Iterator Support 2-21

set_row()

Supports setting the values of a specified row. The row number is specified as
row_number . The input values areropertyValues . The types of the property values
must correspond element by element to the types as reported dgsitrébe_table()
operation.

get_cell()

Supports getting the value of a particular element of a table. The element is specified by
the row and columnThe return value contains the contents of the element.

set_cell()

Supports the setting of a single element of a table. The element is specified by the row
and column and the new contents are specified by the value.

get_cells()

Supports the getting of multiple element contents. The elements are specified by the list
of Celllds and the contents of the cells are returned in a list of cells.

set_cells()

Supports setting elements of a table. The elements and the corresponding new values for
the specified elements are contained in the asfiat.

2.11 PMF Module Declaration

2-22

#ifndef PartyManagementFacility_idl
#define PartyManagementFacility_idl

#include "CosFinance.idl"
#pragma prefix "omg.org"

module PMF
{

h
#include "CosFinance.idl"

This file contains all of the type declarations defined above fronCtst-inance
module.

#pragma prefix “omg.org”

To prevent name pollution and name clashing of IDL types this module uses the pragma
prefix that is the reverse of the OMG’s DNS name.

Party Management, v1.0 February 2001

2.12 General Type Information

February 2001

/[forward declarations

//management

interface GroupManager;

interface RoleManager;

interface PartyRoleManager;
interface NodeManager;

interface PartyManager;

interface RelationshipManager;
interface PartyRelationshipManager;
interface ContactinformationFactory;

/laggregation
interface Role;
interface Node;

llcore

interface Party;

interface Relationship;
interface PartyRelationship;
interface PartyRole;
interface Person;

interface Organization;

/lcontact information
interface Contactinformation;

[ltypedefs

typedef string RoleName;
typedef sequence<Role> Roles;
typedef sequence<RoleName> RoleNames;
typedef string ContactType;
typedef sequence<string> ContactTypes;

typedef sequence<Contactinformation> ContactinformationSeq;

Forward Declarations

These are all the types represented in this module.

Role, Roles

Role is an alias for Role. It represents a primary object (person or organization) in the
context of a relationship. For example, ‘husband,” ‘spouse,’ ‘programmer,’ ‘dad, and
‘hacker’ could all be Roles of a single prim@grsonobject. Roles have the ability to
extend the attribution and behavior of the primary object they represent.

RoleName, RoleNames

RoleName is a string representation generally used to describele object.

General Type Information 2-23

2.13 Role

2-24

ContactType, ContactTypes

ContactType is an alias for string that is used by ©entactinformation interface to
specify the type of contact information. Examples of different types of contact
information are: home_address, ” “business_address, email_address, " and
“home_phone .”

ContactinformationSeq

A sequence of contact information used to set various contact information at once.

interface Role : CommonContainer

{
exception MoreThanOneContained {};
exception InvalidContainedRole {};
exception InvalidRole {};
exception InvalidAggregation {};
exception MaximumCardinalityExceeded {};
exception ObjectNotFound {};

readonly attribute RoleName role_name;
attribute CommonObject primary_object;

CommonObject get_related_object(in RoleName contained_role,
in Date as_of date)
raises (MoreThanOneContained, InvalidRole);

void get_all_related_objects_by role(in RoleName contained_role,
in unsigned long how_many,
in Date as_of date,
out CommonObijects sequence,
out Iterator)
raises (InvalidRole);

void add_related_object(in Role object,
in Date effective_date)
raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumcCardinalityExceeded);

void add_related_objects(in Roles objects,
in Date effective_date)
raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumcCardinalityExceeded);

Party Management, v1.0 February 2001

February 2001

Void remove_related_object(in Role object,
in Date effective_date)
raises (ObjectNotFound);

8
role_name

Since the specification dictates that first class role objects must be present in the context
of a relationship, the role name and the role object are synonymous. For the most part
this attribute simply provides quick stringified access to the type name.

primary_object

The specification specifies an aggregation approach to role behavior. This interface
represents the base interface for all roles and therefore provides reference back to the
primary object that it is representing in the relationship. The role object may in fact
expose methods that are implemented on the primary object. In the context of this
specification, the primary object must always be of type Person or Organization.

get_related_object()

This method provides a mechanism to obtain a contained object based on the role of the
contained object and the date that it was actually contained. For example, a client could
invoke get_contained_object_by role() passing “wife” and “12/12/97" to obtain a
reference to £ommonObject that represents thieersonhe was married to at that

time. Note the signature of this method implies 1:1 types of aggregation. As the example
indicates, a party generally does not have more than one active wife at a time. If for
example, th&CommonObject was representing an Employer and this method was
invoked to obtain all of the Employees that worked there as of 1/1/82 then, assuming
there was more than one, this method would thronMioge ThanOneContained
exception. Likewise, if this method was invoked to obtain the “wife” for an individual

and they did not have a wife, then timvalidContainedRole exception would be

thrown.

get_all_related_objects_by_role()

This method returns all contain@bmmonObjects based on the role and as of date
passed in. If the number of contained objects exceedsdiivemany parameter, then

the remainders are returned in the form of an Iterator. An example use of this method is
where theCommonObject represents an Employer and the client requests all contained
“Employee” objects as of 1/1/82. The signature of this method implies support for 1:m
aggregations. However, it may be invoked for 1:1 associations where the result would
likely be a sequence of one (1), assuming tfeat_many was not specified as zero (0).

add_related_object()

This method allows for the containment of ddemmonObject into another
CommonObject , or Container .

Role 2-25

2.14 Node

2-26

add_related_objects()

This method allows for the containment of ma&ymmonObjects into another
CommonObject , or Container .

remove_related_object()

This method allows for removing an object from its container.

interface Node : CommonObiject

{

exception UnknownRole {};
exception RoleNotFound {};
exception NotSupported {};

Roles get_all_roles()
raises (NotSupported);

RoleNames get_all_role_names()
raises (NotSupported);

void add_role(in Role role)
raises (NotSupported);

void remove_role(in Role role)
raises (RoleNotFound,
NotSupported);

Roles get_roles(in RoleName role_name,
Raises(UnknownRoleName,
NotSupported);
h

get_all_roles()

This method returns a list of all the roles a spe@fienmonObject plays. This is a
reflection of the relationships created by using the aggregation methods described in
CommonContainer , a subtype oCommonObject . For example, if the
CommonObject represents a Person, then this method may rétusband Claimant
Lienholder and/orAttorney Note, some roles introduce role specific attribution and/or
behavior that may only be accessible by issuing a subsesaite() invocation on

the Manager interface for the specific role type, (e.gGlaimaint)

get_all_role_names()

This method returns a sequence of strings that represents all of the roles this object
currently plays. This information is indirectly a result of an aggregation.

Party Management, v1.0 February 2001

add_role()

This method is called implicitly by th€ommonContaine r to inform this primary
object of its new relationship.

remove_role()

This method is called implicitly by théommonContainer to inform this primary
object that a previously established relationship is being broken.

get_roles()

This method returns the roles associated with the string role name passed in. For
example get_roles (“Employee”) would return a single or Employee reference or
potentially many Employee references if the person worked for multiple companies.

2.15 Party

interface Party : Node

{

Contactinformation get_contact_information(in ContactType type, in Date as_of_date);
void set_contact_information(in Contactinformation, in Date as_of_date);

get_contact_information()

Returns a reference to t@ontactinformation for the specified type (i.e., “home” or
“business”) as it existed on the date provided.

set_contact_information()

Sets or adds a new set of contact information.

2.16 PartyRole

typedef sequence<Party> Parties;
typedef sequence<PartyRole> PartyRoles;

interface PartyRole : Role

{
Contactinformation get_contact_information(in ContactType type, in Date as_of_date);
void set_contact_information(in Contactinformation, in Date as_of_date);

PartyRole get_related_party_role(in RoleName other_role,
in Date as_of_date)
Raises(MoreThanOneContained,
InvalidRole);

void get_all_related_party_roles(in RoleName contained_role,
in unsigned long how_many,
in Date as_of_date,
out PartyRoles related_parties,
out Iterator iter)

February 2001 Party 2-27

2-28

void

void

void

Raises(InvalidRole);

add_related_party(in PartyRole other_party,
in Date as_of_date)
Raises(IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

add_related_party_roles(in PartyRoles other_parties,
in Date as_of_date)
Raises(IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

remove_related_party(in Party object,
in Date as_of_date)
Raises(ObjectNotFound);

A PartyRole represents Rarty (person or an organization) in a relationship.This
interface simplifies th&®ole interface by providing some higher level wrappers to its
base functionality.

get_contact_information()

Returns a reference to t@ontactinformation for the specified type (i.e., “home” or
“business”) as it existed on the date provided.

set_contact_information()

Sets or adds a new set of contact information.

get_related_party_role()

Convenience method to gain access to related party role object given its role relative to
this object.

get_all_related_party_roles()

Returns all party role objects that play a particular role as of a particular date. For
example, a user could ask of an employer reference - provide me with all of the
employee objects as of 1/1/98.

add_related_party_role()

Associates another party role with this party role.

add_related_party_roles()

Associates many other party roles with this party role and each assumes their respective
roles.

Party Management, v1.0 February 2001

remove_related_party_role()

Tears down a relationship between two party roles.

2.17 Party Relationship

2.18 Person

2.19 Organization

Interface PartyRelationship : Relationship

{
h

PartyRoles get_related_party roles();

get_related_party_roles()

Given a relationship (e.g., Marriage) provides the spePiidy objects involved in the
relationship.

interface Person : Party

{
h

Person is a specific derivation Barty.

interface Organization : Party

{
h

Organization is a specific derivation Barty.

2.20 Node Manager

February 2001

interface NodeManager : CosFinance::Manager

{
h

Note object creation of base types has been moved to the CosFinance::Manager. Since
Node does not add information to the creation process a Node can simply be created by
using the inherited create method.

CosFinance::Types get_supported_nodes();

get_supported_nodes()

This method returns the types of the objects this manager is capable of creating.

Party Relationship 2-29

2.21 Party Manager

interface PartyManager : NodeManager

{
interface PartyManager : NodeManager
{
CosFinance:: Types get_supported_parties();
Party create_party (in CosFinance::Manager::InitCommonObject data,
in ContactinformationSeq contact_information)
raises (
TypeNotSupported,
InvalidinitializationType,
InvalidinitializationValue,
DuplicateObject);
Parties create_multiple_parties(
in CosFinance::Manager::InitCommonObjects data)
raises (
TypeNotSupported,
InvalidinitializationType,
InvalidinitializationValue);
h

get_supported_parties()
This method returns the types of Parties that this manager is capable of creating.
create_party()

This method simply adds the ability to initialiZ®ntactinformation on the Party
since the generic create method onGlosFinance::Manager interface does not allow
for this.

create_multiple_parties()

This method creates many parties in batch mode. If any creation fails, then an exception
is thrown and it can be assumed that the entire batch has been rolled back.

2.22 Role Manager

interface RoleManager : CosFinance::Manager

{
RoleNames get_supported_roles();
Role create_role(

in CosFinance::Type role_type,
in Cosfinance::CommonObject primary_object)

2-30 Party Management, v1.0 February 2001

raises (
DuplicateObject,
TypeNotSupported);

Role create_from_template(
in CosFinance:: Templates templates)
raises (
TypeNotSupported);

h
get_supported_roles()

Returns all role types in the form of a string that this manager is capable of creating.

create_role()

Given a primary object and the requested type creafmamonObject object and
associates it with the primary. If the client is creating a specialized type of
CommonObject (i.e., a Party or Role), then they will need to perform a narrow to the
appropriate type.

create_from_template()

Creates &ommonObject object from the specified template(s). Templates can trigger
other elements to be added to the object automatically at creation time. Clients will need
to perform a narrow if creating a specialized typ&€ofmmonObject . Note since

templates in general are optional this method is also optional.

2.23 PartyRoleManager

interface PartyRoleManager : RoleManager

{
h

RoleNames get_supported_party_roles();

get_supported_party_roles()

Returns all types in the form of a string that this manager is capable of creating.

2.24 Relationship Manager

February 2001

interface RelationshipManager : CosFinance::Manager

{
exception RoleTypeError {};
exception UnknownRole {};
CosFinance::Types get_supported_relationships();
RoleNames get_supported_roles_for_relationship(
in CosFinance::Type relationship_type);
PartyRoleManager 2-31

2-32

Relationship create_relationship (
in CosFinance::Type relationship_type,
in Role role_a,
in Role role_b,
in Cosfinance::Date as_of_date)
raises (
RoleTypeError,
UnknownRole);

Relationship create_many_relationship(
in CosFinance::Type relationship_type,
in Role role,
in Roles roles,
in CosFinance::Date as_of date)
raises (
RoleTypeError,
UnknownRole);

Relationship create_many_relationship(
in CosFinance::Type relationship_type,
in Role role,
in Roles roles,
in CosFinance::Date as_of date)
raises (
RoleTypeError,
UnknownRole);

h
get_supported_relationships()

This method returns all of the types of relationships that this manager is capable of
creating.

get_supported_roles_for_relationship()

Given a specific relationship provides the roles that are allowed on that relationship.
Note this factory constrains construction of a new relationship to comply with the role
rules for that relationship.

create_relationship()

Given two role objects a relationship type and an effective date creates a new first class
relationship object.

create_many_relationship()

Given a role object and many others along with a relationship type and an effective date
creates a new first class relationship object.

Party Management, v1.0 February 2001

2.25 PartyRelationship Manager

Interface PartyRelationshipManager : RelationshipManager
{
h

This specific derivation oRelationshipManager is currently an empty interface. It is
assumed that specific constraints could be enforced at this level that are unique for
‘Party’ relationships.

2.26 Group Manager

Interface Group : CommonContainer

{
attribute string group_name;
h
interface GroupManager
{
Group create(in string group_name);
h
create()

Groups are fairly simple collections without any notion of role — or relational context.
For example, a group may be the “Fortune 100 Companies.”

2.27 ContactinformationFactory

interface ContactinformationFactory

{

Contactinformation create(in ContactType type);
h
create()

Creates &ontactinformation object of the appropriate type.

2.28 Summary

The high level interfaces are relatively generic and offer flexibility in terms of
implementation techniques. The interfaces offer type, behavior, and attribution
extensibility without invalidating the model. They are also readily capable of wrapping a
legacy party management system or could be used as the public interface to a new party
management system that implements the recommended domain model.

February 2001 PartyRelationship Manager 2-33

2-34 Party Management, v1.0 February 2001

Compliance, Conformance, and
Known Issues 3

Contents

This chapter contains the following topics.

Topic Page
“Compliance with Existing Specifications” 3-1
“Levels of Conformance” 3-3
“Known Issues” 3-3

3.1 Compliance with Existing Specifications

February 2001

3.1.1 Transaction Service (OTS)

This specification addresses the integration of an OTS and does not require any
modifications to the current OTS specification. T@mmonObject interface derives

from TransactionalObject simply to allow for the implicit propagation of context
information in a transactional system. As an implementation choice the PMF vendor may
choose to use the Coordinator reference to register the Party reference as a
synchronization point and thus make the Party persistent doefioge_completion .

3.1.2 Relationship Service

This specification positions the use of the relationship service as an implementation
decision. The fundamental reason for this direction is based on the overhead that
CosRelationships introduces. This and other justification has been documented in the
“Domain Model and Design Objectives” chapter. In addition, direction has been given
toward using the PMF interfaces as a wrappe€ogRelationships in Appendix C-
“Wrapping CosRelationships.”

Party Management, v1.0 3-1

3.1.3 Security Service

The PMF does not expose any security specific interfaces, and instead relies on the
underlying CORBA infrastructure and services to provide the security mechanisms
needed.

CORBA sec will be used as the underlying mechanism for distributed security and
handling access to the IDL-based interfaces of the facility.

For more information see the “Security and Party Management” chapter.

3.1.4 Persistent Object Service (POS)

It is assumed that this specification can make use of either the existing OMG Persistent

Object Service or the new PSS that is being defined. This specification places persistence
as an implementation issue that is masked behind an OTS transaction. For example, the
business objects presented in this document suppoRebeurce interface and will

make themselves persistent as they receive the ‘prepare’ message. They do not explicitly
publish any other interfaces specifically for persistence needs.

3.1.5 Query Service

This specification does not directly use any of the interfaces suggested in the Query
Service. ThePartyLocator interface does offer agvaluate() method similar to Query
Service. But includes other value-added methods to support the federation of finding
Party objects that adhere to a certain set of criteria.

3.1.6 Name Service

This specification references use of the Name Service and does not require any
modifications to the existing service.

3.1.7 Trader Service
This specification references use of the Trader Service and does not require any
modifications to the existing service.

3.1.8 Event Service

This specification does not require any modification to the existing Event Service. But
this is currently a known issue that must be resolved (i.e., use of Event, Natification,
Publish-Subscribe, BOF).

3.1.9 Externalization Service

Specific interfaces from th€osExternalizationService have been leveraged. This
specification does not require any modifications to the existing service.

Party Management, v1.0 February 2001

3.2 Levels of Conformance

There currently is only one level of conformance.

3.3 Known Issues

3.3.1 Notification Support

The new Notification Service interfaces have been integrated indddhager interface
to represent type level notification. There is an outstanding question regarding the
consumer registration according to the Notification Service and the requirement
regarding support for instance level naotification.

Contact Information

The specification currently does not provide a mechanism to locate and retrieve existing
references to contact information. This is an issue because many parties may share the
same contact information and there needs to be a way to obtain an existing reference anc
reuse it.

February 2001 Levels of Conformance 3-3

Party Management, v1.0

February 2001

Security and Party Management 4

4.1 Security Issues

February 2001

At a minimum, the PMF party and relationship interfaces are security sensitive. These
objects will have access control requirements to constrain who may view the data
(confidentiality) as well as who may modify the data (integrity). Depending on the
environment, transmitted requests may also need to be protected from attacks over the
network (both passive monitoring and active intrusions).

CORBA sec will be used as the underlying mechanism for distributed security and
handling access to the IDL-based interfaces of the facility.

Since the facility allows parties to be externalized, there is an issue relating to security
and externalization.

There is a need for storage of the security information and also for encryption of the
externalized data. Because of these issues this specification recommends that any
application handling externalized objects must be security-aware and trusted to protect
the object contents in a way that is consistent with the CORBA security policy for the
object. If the application does not adequately protect the data in memory, in persistent
store, and on the wire, then CORBA security policy for the object could be subverted.
Additionally when the externalized object is internalized, it is the responsibility of a
security-aware object factory to assign the appropriate CORBA security policy domain to
the newly generated object reference.

There is a need for party management components to register and administer domain
information. Examples of this could be payroll/HR department and access to salary
information vs. other admin staff and employees. Also, considering a customer service
(call center) financial example, it is often the case when calling a credit card company,
that for security reasons, the representative on the other side knows only part of the
account information. However, when PIN numbers are involved (like changing, verifying,
and creating) the customer is transferred to a supervisor so that a single person there doe:
not have all the information.

Party Management, v1.0 4-1

4-2

To address these needs, the party management components will use the CORBA Security
Level 2 security policy domain manager and associated policy interfaces to define and
administer security policies for party management objects. Security policy domains will
be used to maintain separation of sensitive data.

Party management makes heavy use of roles (insurer, insured, husband, and wife).
Depending on the roles, there may be a need to limit who can create certain relationships.
Also, walking down the tree of relationships and discovering that certain ones exist, and
being allowed to play a particular role are additional restrictions that may require security
above standard CORBA security. Party management can support design-time and
dynamic run-time relationships and role definition. In the case of "slow-changing," or
design-time relationships, a party management application could extract party
management role information and use that information to set the CORBASec user
attribute information. For example, a CORBAsec security attribute called "wife-of" to tie
party management and CORBAsec together may be defined. Let's assume that the party
management container for Bob is related to another container for Mary by the party
management role "wife." (Mary is Bob's wife.) When Mary authenticates (logs in) using
CORBASec PrincipalAuthenticator, it could call a party management interface that
determines that Mary is Bob's wife, and so creates a CORBASec user credential for Mary
that includes the "wife-of" user attribute with the value "Bob." An access policy could be
created that only permitted access to clients who have the "wife-of" user attribute set to
Bob (i.e., Bob's wife) is allowed to access this information. This capability is utilizing
CORBASec Level 2 interfaces. If, however, there is a need to dynamically discover a
user's attributes at invocation time (not just at log-in time), when there may be too many
attributes used for access control to pass around in the credentials (say, more than 50), if
the attributes are changing frequently (say, every few minutes), or if they are data
dependent (role or wife changing often), there is a need for application level security and
possibly parameter filtering.

Party Management, v1.0 February 2001

February 2001

Complete OMG IDL

#ifndef CosFinance_idl
#define CosFinance_idl

#include "CosProperties.idl"
#include "CosLifeCycle.idl"
#include "CosExternalization.idl"
#include "CosTransactions.idl"
#include "CosTime.idl"

#include "CosNotifyComm.idI"
#include "NamingAuthority.idl"
#include "CosNaming.idl"
#include "CosTrader.idl"

#pragma prefix "omg.org"

module CosFinance

{

[/lforward declarations

/I/management

interface Table;

interface Manager;
interface TemplateManager;
interface Iterator;

interface Locator;

/[core

interface CommonObiject;
interface CommonContainer;
interface DateEffectiveObject;

lltypedef
typedef string Type;
typedef sequence<string> Types;

/ldefined here for forward declaration purposes

Party Management, v1.0

struct Template

{

string name;

Types types;
h
typedef string QueryExpression;
typedef CosTime::UTO Date;
typedef any PropertyValue;
typedef sequence<PropertyValue> PropertyValues;
typedef sequence<Template> Templates;
/lenumerators

enum ModificationState { Update, Correction };

/linterfaces
interface Table {

struct Cellld {
unsigned long row;
unsigned long column;

h
typedef sequence<Cellld> Celllds;

struct TableCell {
Cellld cell;
any value;

h
typedef sequence<TableCell> TableCells;

enum ExceptionType {
read_only,
type_mismatch,
constraint_mismatch,
invalid_row_column

J

struct TableException {
Cellld cell;
ExceptionType type;
h

typedef sequence<TableException> TableExceptions;

exception InvalidRow {};

exception InvalidColumn {};

exception IncompleteRow {};

exception TypeMismatch {};

exception ReadOnly {};

exception MultipleExceptions { TableExceptions exceptions; };

readonly attribute unsigned long number_of_rows;
readonly attribute unsigned long number_of_columns;

Party Management, v1.0

February 2001

readonly attribute unsigned long max_number_of_rows;
readonly attribute CosPropertyService::PropertyTypes column_property_types;
readonly attribute CosPropertyService::PropertyNames column_names;

void describe_table(out unsigned long number_of_rows,
out CosPropertyService::PropertyNames column_property_names,
out CosPropertyService::PropertyTypes column_types);

void get_row(in unsigned long row_number, out PropertyValues values)
raises (InvalidRow);

void set_row(in unsigned long row_number, in PropertyValues values)
raises (MultipleExceptions, IncompleteRow, InvalidRow);

any get_cell(in unsigned long row, in unsigned long column)
raises (InvalidRow, InvalidColumn);

void set_cell(in unsigned long row, in unsigned long column, in any value)
raises (InvalidRow, InvalidColumn, TypeMismatch, ReadOnly);

void get_cells(in Celllds list, out TableCells cells)
raises (MultipleExceptions);

void set_cells(in TableCells cells)
raises (MultipleExceptions);

b

interface DateEffectiveObject

{
attribute ModificationState update_state;
attribute Date effective_start;
attribute Date effective_end;
boolean is_effective_now();

h

struct QualifiedObjectldentity

{
NamingAuthority::Authorityld domain;
Type type;
NamingAuthority::LocalName id;

b

typedef sequence<CommonObject> CommonObjects;
typedef sequence<CommonContainer> CommonContainers;

interface CommonObiject : CosLifecycle::LifecycleObject,
CosStream::Streamable,
CosPropertyService::PropertySetDef,
CosTransactions::TransactionalObject,
DateEffectiveObject

exception ContainerNotFound {};

February 2001 Party Management, v1.0 A-3

J

exception CannotRemove {};

readonly attribute QualifiedObjectidentity identity;

boolean is_dependent_object();

boolean is_date_sensitive();

CommonContainers get_containers();

void add_container(in CommonContainer container);

void remove_from_container(in CommonContainer container)

raises (ContainerNotFound,
CannotRemove);

interface CommonContainer : CommonObject

{

J

exception ObjectNotFound {};

exception IsDuplicate {};

exception InvalidAggregation {};

exception MaximumCardinalityExceeded {};

void add_contained_object(in CommonObject object,
in Date as_of_date);

void add_contained_objects(in CommonObjects objects,
in Date as_of_date);

CommonObject get_contained_object_by_id(in QualifiedObjectldentity id,
in Date as_of_date)
raises (ObjectNotFound);
void remove_contained_object(in CommonObject object,
in Date effective_date)
raises (ObjectNotFound);

boolean has_contained_object(in CommonObject object,
in Date as_of_date);

void get_all_contained_objects(in Date as_of_date,
out CommonObijects objects);

void add_from_template(in Template template);

Templates list_templates();

interface Manager : CosStream::StreamableFactory, CosNotifyComm::SequencePushSupplier

{

exception TypeNotSupported {};
exception DuplicateObject {};
exception InvalidinitializationType {};
exception InvalidinitializationValue {};

Party Management, v1.0 February 2001

February 2001

J

struct InitCommonObject {
QualifiedObjectldentity identity;
CosPropertyService::Properties data;

b
typedef sequence<InitCommonObject> InitCommonObjects;
Types get_supported_types();

CommonObiject create(in InitCommonObject data)
raises (
TypeNotSupported,
InvalidinitializationType,
InvalidinitializationValue,
DuplicateObiject);

void get_supported_properties(
in Type type,
out CosPropertyService::PropertyDefs property_defs)
raises (
TypeNotSupported);

Locator get_locator();

interface TemplateManager

{

J

exception TemplateNotFound {};

void add_template(
in Template template);

void remove_template(
in string name)
raises (
TemplateNotFound);

Template get_template(
in string name)
raises (
TemplateNotFound);

Templates list_templates();

interface lterator

{

exception OutOfBounds {};
boolean next_object(

out CommonObiject object)
raises (

Party Management, v1.0

J

OutOfBounds);

boolean previous_object(
out CommonObject object)
raises (
OutOfBounds);

boolean next_n_objects(
in unsigned long how_many,
out CommonObijects objects);

boolean object_at(
in unsigned long at,
out CommonObiject object)
raises (
OutOfBounds);

void destroy();
void reset();
unsigned long count();

boolean next_values(
out PropertyValues data)
raises (
OutOfBounds);

boolean previous_values(
out PropertyValues data)
raises (
OutOfBounds);

boolean next_n_values(
in unsigned long how_many,
out Table data);

boolean values_at(
in unsigned long at,
out PropertyValues data)
raises (
OutOfBounds);

interface Locator

{

typedef sequence<string> CriteriaBasis;
typedef sequence<string> SearchType;

exception InvalidQuerySyntax {};
exception Notimplemented {};
exception SearchTypeNotSupported {};
exception CriteriaBasisNotSupported {};
exception NotFound {};

Party Management, v1.0

February 2001

exception Invalididentifier {};
exception InvalidAsOfDate {};
exception TypeNotSupported {};

readonly attribute NamingAuthority::Authorityld domain_name;
readonly attribute CosNaming::NamingContext naming_context;
readonly attribute CosTrading::TraderComponents trader_components;

CommonObiject resolve(
in QualifiedObjectldentity identifier,
in Date as_of_date)
raises (
NotFound,
Invalididentifier,
InvalidAsOfDate);

Iterator evaluate(
in QueryExpression query)
raises (
InvalidQuerySyntax,
Notimplemented);

CriteriaBasis get_supported_search_criteria();
SearchType get_supported_search_types();

Iterator query(
in Type object_type,
in string criteria,
in CriteriaBasis criteria_basis,
in SearchType type_of_search)

raises (

TypeNotSupported,
Notimplemented,
SearchTypeNotSupported,
CriteriaBasisNotSupported);

#ifndef PartyManagementFacility_idl
#define PartyManagementFacility_idl

#include "CosFinance.idl"
#pragma prefix "omg.org"

module PMF

February 2001 Party Management, v1.0

[/lforward declarations

/I/management

interface GroupManager;

interface RoleManager;

interface PartyRoleManager;
interface NodeManager;

interface PartyManager;

interface RelationshipManager;
interface PartyRelationshipManager;
interface ContactinformationFactory;

/laggregation
interface Role;
interface Node;

/lcore

interface Party;

interface Relationship;
interface PartyRelationship;
interface PartyRole;
interface Person;

interface Organization;

/[contact information
interface Contactinformation;

Illtypedefs

typedef string RoleName;
typedef sequence<Role> Roles;
typedef sequence<RoleName> RoleNames;
typedef string ContactType;
typedef sequence<string> ContactTypes;

typedef sequence<Contactinformation> ContactinformationSeq;

/linterfaces
interface Role : CosFinance::CommonContainer

{

exception MoreThanOneContained {};
exception InvalidContainedRole {};
exception InvalidRole {};

exception InvalidAggregation {};

exception MaximumCardinalityExceeded {};
exception ObjectNotFound {};

readonly attribute RoleName role_name;
attribute CosFinance::CommonObject primary_object;

CosFinance::CommonObject get_related_object(in RoleName contained_role,
in CosFinance::Date as_of_date)
raises (MoreThanOneContained,
InvalidRole);

Party Management, v1.0 February 2001

void get_all_related_objects_by_role(in RoleName contained_role,
in unsigned long how_many,
in CosFinance::Date as_of_date,
out CosFinance::CommonObjects objects,
out CosFinance::lterator iter)
raises (InvalidRole);

void add_related_object(in Role object,
in CosFinance::Date effective_date)
raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

void add_related_objects(in Roles objects,
in CosFinance::Date effective_date)
raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

void remove_related_object(in Role object,
in CosFinance::Date effective_date)
raises (ObjectNotFound);

J

typedef sequence<Party> Parties;
typedef sequence<PartyRole> PartyRoles;

interface PartyRole : Role

{

Contactinformation get_contact_information(in ContactType type,

in CosFinance::Date as_of _ d ate);

void set_contact_information(in Contactinformation info,

in CosFinance::Date as_of _ d ate);

PartyRole get_related_party_role(in RoleName other_role,

in CosFinance::Date as_of_date)

raises (MoreThanOneContained,
InvalidRole);

void get_all_related_party_roles(in RoleName contained_role,
in unsigned long how_many,
in CosFinance::Date as_of_date,
out PartyRoles related_parties,
out CosFinance::lterator iter)
raises (InvalidRole);

void add_related_party_role(in PartyRole other_party,

in CosFinance::Date effective_date)

raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

February 2001 Party Management, v1.0

void add_related_party_roles(in PartyRoles other_parties,
in CosFinance::Date effective_date)
raises (IsDuplicate,
InvalidRole,
InvalidAggregation,
MaximumCardinalityExceeded);

void remove_related_party_role(in PartyRole other_party,
in CosFinance::Date effective_date)
raises (ObjectNotFound);

h
interface Relationship : Role
{
CosFinance::CommonObijects get_related_objects();
h
interface PartyRelationship : Relationship
{
PartyRoles get_related_party_roles();
h
interface Node : CosFinance::CommonObject
{
exception UnknownRoleName {};
exception RoleNotFound {};
exception NotSupported {};
Roles get_all_roles()
raises (NotSupported);
RoleNames get_all_role_names()
raises (NotSupported);
void add_role(in Role role)
raises (NotSupported);
void remove_role(in Role role)
raises (RoleNotFound,
NotSupported);
Roles get_roles(in RoleName role_name)
raises (UnknownRoleName,
NotSupported);
h
interface Party : Node
{
Contactinformation get_contact_information(in ContactType type,
in CosFinance::Date as_of_date);
void set_contact_information(in Contactinformation info,
in CosFinance::Date as_of_date);
h

interface Organization : Party

A-10 Party Management, v1.0 February 2001

February 2001

{
h
interface Person : Party
{
h
interface Contactinformation : CosFinance::DateEffectiveObject,CosPropertyService
{
attribute ContactType type;
attribute string locale;
h
interface NodeManager : CosFinance::Manager
{
CosFinance::Types get_supported_nodes();
h
interface PartyManager : NodeManager
{
CosFinance::Types get_supported_parties();
Party create_party (in CosFinance::Manager::InitCommonObject data,
in ContactinformationSeq contact_information)
raises (
TypeNotSupported,
InvalidinitializationType,
InvalidinitializationValue,
DuplicateObject);
Parties create_multiple_parties(
in CosFinance::Manager::InitCommonObijects data)
raises (
TypeNotSupported,
InvalidinitializationType,
InvalidinitializationValue);
h
interface RoleManager : CosFinance::Manager
{
RoleNames get_supported_roles();
Role create_role (
in CosFinance::Type role_type,
in CosFinance::CommonObject primary_object)
raises (
DuplicateObject,
TypeNotSupported);
Role create_from_template(
in CosFinance:: Templates templates)
raises (
TypeNotSupported);
h

Party Management, v1.0

:PropertySetDef

A-11

A-12

interface PartyRoleManager : RoleManager

{
RoleNames get_supported_party_roles();
h
interface RelationshipManager : CosFinance::Manager
faxception RoleTypeError {};
exception UnknownRole {};

CosFinance::Types get_supported_relationships();

RoleNames get_supported_roles_for_relationship(

in CosFinance::Type relationship_type);

Relationship create_relationship (

in CosFinance::Type relationship_type,
in Role role_a,

in Role role_b,

in CosFinance::Date as_of_date)

raises (
RoleTypeError,
UnknownRole);

Relationship create_many_relationship(
in CosFinance::Type relationship_type,
in Role role,
in Roles roles,
in CosFinance::Date as_of_date)
raises (
RoleTypeError,
UnknownRole);

J

interface PartyRelationshipManager : RelationshipManager

{

h

interface ContactinformationFactory

{ Contactinformation create();

b

interface Group : CosFinance::CommonContainer
{ attribute string name;

b

interface GroupManager

{

Party Management, v1.0

February 2001

Group create_group(in string group_name);

#endif

February 2001 Party Management, v1.0 A-13

A-14 Party Management, v1.0 February 2001

Collaboration Diagrams B

B.1 Usage Models

This appendix illustrates a few usage models to illustrate the anticipated interaction
between the interfaces presented.

3:create("Husband", Rob)
4:create("Wife", Lisa)

Lisa :
Client > Manager Person

6:add_contained_object(Husband, date)

7: add_ro/le(Wife)

: add_contaihed_object(\Nife, date)

(4]

l:resolve("Rob")
2:resolve("Lisa")

8:add_role(Husband)

Husband : — > Rob :

Figure B-1 Aggregate two objects while not creating a first class relationship object

February 2001 Party Management, v1.0 B-1

B-2

Figure B-1 illustrates the ability to aggregate two, otherwise unaware, objects with each
other while not creating a first class relationship object. This model allows the
PartyManager interface to create the Husband and Wife role (as first class objects) that
use aggregation to extend their primary objects, Person objects Lisa and Rob. As the
roles are related through theld_contained_object method, actually inherited from

Role, theadd role method is called implicitly on the primary objects so they can be
kept up-to-date in regard to the collective roles they are playing.

The following collaboration diagram illustrates how the PMF is also capable of creating
a first class relationship object (e.g., Marriage) if need be.

6:add_role(a Husband)

aHusband : > aPerson:
Husband Person
1: set_person(a Person)
//7 _—
// 2:set_person(another Person)
lien — —> a Wife :
Client Wife
4:set_contact(theMarriageContract)
\ the Marriage :
3: create("marriage”, Wife, Husband, today) Mariage]
\ W 5:add_role(a Wife)
| /4
\ another Person
the Manager : Party . Person
RelationshipManager

Note: This collaboration diagram assumes that Marriage is a specialized type of PartyRelationship
and therefore has a set_contract method. If not using specialization, add_contained_object could
be called with the marriage contract passed in as a CommonObject. Husband and Wife are both
specialized partytypes in this diagram and atthe generic level could use set_primary_object()
instead of set_person.

Figure B-2 Creating a first class relationship object

Figure B-2 illustrates how the PMF is also capable of creating a first class relationship
object (e.g., Marriage) if need be.

Party Management, v1.0 February 2001

Wrapping Cos Relationships C

This specification has introduced a high level interface based on the Composite design
pattern as a means for managing object aggregation. From an implementation
perspective the PMF vendor could choose to manage these collections in process or coulc
use an implementation of CosRelationships for that purpose. This approach has been
taken for reasons outlined in the “Domain Model and Design Objectives” chapter and
summarized in the “Compliance, Conformance, and Known Issues” chapter.

This appendix offers a few scenarios to illustrate explicitly how this integration may be
implemented. This static model shows how the PMF Role becomes the primary wrapper
for CosRelationships .

February 2001 Party Management, v1.0 C-1

CosRelationships::RelationshipFactory

Wcreate()

N
\

AN
AN

uses

CommonContainer

CosRelationships ::Relationship

&named_roles

Sdestroy()

uses

RoleContainer
%p rimary_object

uses

%get_related_objects ()

%get_all_related_objects_for_role() |
%add_related_object()

%rem ove_related_object()

CosRelations hips::RoleFactory

@create_role()

uses 77
/

Party

CosRelationships:Role

\/\ Erelated_object

Insured

%get_other_related_object()
%get_other_role()
%get_relations hips()
%destroy_relations hips()
%destroy()

®check_minimum _cardinality()
Wlink()

$unlink()

Figure C-1 Wrapping CosRelationships

The following interaction diagrams illustrate the creation and subsequent traversal of a
1:m relationship.

Party Management, v1.0 February 2001

client partyl : Party :CosRelationships::Role :Cos rl1:Cos r2: Cos
Factory Relationships:Relations | | Relationships::Role|| Relationships:Role

| | |
1: add_related_object(other_object, role_name_a,role_name_b, eff_date)

I

| |
2: create_role (CORBA::Object)
| |

I

\ \
3: create_role (CORBA::Object)

4:create_named_roles_seq()

-

]

|
6:link (Relationship,NamedRoles)

K

7:link (Relationship, NamedRoles)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| U
|
|
|

|
ﬂ

\
\
\
\
5: create (l\‘l amedRoles)
\
\
\
\
\
\
\
\
\

Figure C-2 Relationship Creation Example

Figure C-2 illustrates how the simple interface exposed to the client can wrap the
somewhat complex task of creating a relationshifCosRelationships . It also

illustrates the addition of date and time information that can be used to reconstruct past
and future aggregations.

February 2001 Party Management, v1.0 C-3

client partyl : Party rl: Cos r2 :Cos

Relationships::Role Relationships:Role

1:get_related_objects (RoleName, int, ReIatedObje‘cts, Iterator)

P

2:Iocate;role(s)(role_name) ‘
o 3:get_relationships () ‘

4:get_other_related_object (Relations‘hip, string)

L]

1+ o

@

5:get_other_role ()
steps 4-6 repeat for :
each relations hip

|
|
|
g
|
|
|
|
|
|
|

4‘

|

‘ 6:get_related_object() ‘
| g
|

7:return (sequence or iterator)

Figure C-3 Single client interface used to trigger retrieval of all related objects

Figure C-3 illustrates how a single client interface could be used to trigger the retrieval of
all related objects. That is, DosRelationships the link with each related object is
hidden behind aelationshipinstance. In summary, the complexity introduced by
encapsulating the primary object behind both a role and a relationship interface can be
masked from the user of the PMF. Similarly tede interface could interpose the
CosGraphs::Node interface assuminGosGraph::Node 's had been creating using

the factory.

C-4 Party Management, v1.0 February 2001

client :Node :Cos
Graphs ::Node

l:get_all_roles () |

gt

|

ﬁinoesofnode() ‘
|
|
|

February 2001 Party Management, v1.0

C-6

Party Management, v1.0

February 2001

References D

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J. “Design Patterns Elements of
Reusable Object-Oriented Software.” Addison-Wesley Publishing Company, 1995.

February 2001 Party Management, v1.0 D-1

Party Management, v1.0

February 2001

Index

Symbols create_role() 2-31
#include "CosFinance.idl 2-22
D
A) . DateEffectiveObject 2-11
add_contained_object() 2-13 Definition of Terms and Assumptions 1-4
add_contained_objects() 2-13 destroy() 2-20
add_container() 2-12
add_from_template() 2-14 E
add_related_object() 2-25 effective_end() 2-7
add_related_objects() 2-26 effective_start() 2-7
add_related_party_role() 2-28 evaluate() 2-16
add_related_party_roles() 2-28
add_role() 2-27 F)
add_template() 2-15 Forward Declarations 2-23
C G .
CommonContainer (Inherited Interfaces) 2-13 General Type Information 2-4
CommonContainer (Local behavior) 2-13 Generic Table Description 2-20
CommonObject (Inherited Interfaces) 2-8 get_all_contained_objects() 2-14
CommonObiject (Local Attributes and Methods) 2-11 get_all_related_objects_by_role() 2-25
Composition Model 1-4 get_all_related_party_roles() 2-28
ContactType, ContactTypes 2-24 get_all_role_names() 2-26
CosFinanceModule Declaration 2-2 get_all_roles() 2-26
CosLifeCycle get_contact_information() 2-27, 2-28
LifeCycleObject 2-8 get_contained_object_by_id() 2-13
copy (optiona|) 2-9 get_ContalnerSO 2-12
move (optional) 2-9 get_related_object() 2-25
remove 2-9 get_related_party_role() 2-28
CosPropertyService get_roles() 2-27
PropertySet get_supported_relationships() 2-32
define_properties() 2-10 get_supported_roles() 2-31
define_property() 2-9 get_supported_roles_for_relationship() 2-32
delete_all_properties() 2-10 get_template() 2-15
delete_properties() 2-10 H

delete_property() 2-10
get_all_properties() 2-10
get_all_property_names() 2-10
get_number_of_properties() 2-10

has_contained_objects() 2-14
High Level Comparison with CosRelationships 1-8

get_properties() 2-10 ildentity 211
get_property_value() 2-10 is_date_sensitive() 2-12
is_property_defined() 2-10 is_depe_ndent object() 2-12
PropertySetDef 2-8, 2-9 is_effective_now() 2-8
define_properties_with_modes() 2-11 lterator Description 2-19
define_property_with_mode () 2-11
get_allowed_properties () 2-10 L
get_allowed_property_types () 2-10 list_templates() 2-14, 2-15
get_property_mode() 2-11 Locating Existing Party Information 1-12
get_property_modes () 2-11
set_property_mode() 2-11 M
set_property_modes () 2-11 Manager and Object Factory Model 1-9
CosStream
Streamable 2-9 N)
externalize_to_stream() 2-9 next_n_objects() 2-19
internalize_from_stream() 2-9 next_n_values() 2-20
CosTransactions next_object() 2-19
TransactionalObject 2-11 next_values() 2-20
count() 2-20 Node 2-26

create() 2-33
create_from_template() 2-31
create_many_relationship() 2-32
create_relationship() 2-32

6]
object_at() 2-19

February 2001 Party Management, v1.0 Index-1

Index

P
Party 2-27

Party and Contact Information 1-7

Party Management Facility Interfaces 2-2
Party Manager 2-30

Party Relationships as First Class Objects 1-8
PartyRole 2-27

PMF Module Declaration 2-22
previous_object() 2-19

previous_values() 2-20

primary_object 2-25

Q
query() 2-16

R

remove_contained_objects() 2-13
remove_related_object() 2-26
remove_related_party_role() 2-29
remove_role() 2-27

Index-2 Party Management, v1.0

remove_template() 2-15

reset() 2-20

resolve() 2-16

Role 2-24

Role Aware Composition Model 1-5
Role, Roles 2-23

role_name 2-25

RoleName, RoleNames 2-23

S
set_contact_information() 2-27, 2-28

T
TableCell 2-21

U
update_state 2-7

\Y
values_at() 2-20

February 2001

	Preface
	About the Object Management Group
	What is CORBA?

	Party Management Overview
	Associated OMG Documents
	Acknowledgments

	1. Domain Model and Design Objectives
	1.1 Service Overview
	1.2 Common Object Model
	1.3 Composition Model
	1.4 Definition of Terms and Assumptions
	1.5 Role Aware Composition Model
	1.6 Party and Contact Information
	1.7 Party Relationships as First Class Objects
	1.8 High Level Comparison with CosRelationships
	1.9 Manager and Object Factory Model
	1.10 Locating Existing Party Information

	2. Party Management Facility Interfaces
	2.1 Overview
	2.2 CosFinance Module Declaration
	2.3 General Type Information
	2.4 Manager
	2.5 Date and Time Sensitive Objects
	2.6 Common Object
	2.6.1 CommonObject (Inherited Interfaces)
	2.6.2 CommonObject (Local Attributes and Methods)

	2.7 Common Container
	2.7.1 CommonContainer (Inherited Interfaces)
	2.7.2 CommonContainer (Local behavior)

	2.8 Template Manager
	2.9 Locator
	2.10 Iterator Support
	2.11 PMF Module Declaration
	2.12 General Type Information
	2.13 Role
	2.14 Node
	2.15 Party
	2.16 PartyRole
	2.17 Party Relationship
	2.18 Person
	2.19 Organization
	2.20 Node Manager
	2.21 Party Manager
	2.22 Role Manager
	2.23 PartyRoleManager
	2.24 Relationship Manager
	2.25 PartyRelationship Manager
	2.26 Group Manager
	2.27 ContactInformationFactory
	2.28 Summary

	3. Compliance, Conformance, and Known Issues
	3.1 Compliance with Existing Specifications
	3.1.1 Transaction Service (OTS)
	3.1.2 Relationship Service
	3.1.3 Security Service
	3.1.4 Persistent Object Service (POS)
	3.1.5 Query Service
	3.1.6 Name Service
	3.1.7 Trader Service
	3.1.8 Event Service
	3.1.9 Externalization Service

	3.2 Levels of Conformance
	3.3 Known Issues
	3.3.1 Notification Support

	4. Security and Party Management
	4.1 Security Issues

	Appendix A - Complete OMG IDL
	Appendix B - Collaboration Diagrams
	Appendix C - Wrapping Cos Relationships
	Appendix D - References
	Index

