
Person Identification Service
Specification

New Edition: June 2000
Version 1.0

oyalty-
pies of

inged the
 herein

y
ch a
 of
e users

tails an
ocument

ted
ages,

 above
Copyright 1998, 2AB
Copyright 1998, Ardent Software, Inc.
Copyright 1998, Care Data Systems, Inc.
Copyright 1998, CareFlow/Net, Inc.
Copyright 1998, FUJITSU LIMITED
Copyright 1998, HBO & Company
Copyright 1998, HealthMagic, Inc.
Copyright 1998, HUBlink, Inc.
Copyright 1998, IBM Corporation
Copyright 1998, IDX Systems Corporation
Copyright 1998, INPRISE Corporation
Copyright 1998, IONA Technologies PLC
Copyright 1998, Oacis Healthcare Systems
Copyright 1998, Object Design, Inc.
Copyright 1998, Objectivity, Inc.
Copyright 1998, Oracle Corporation
Copyright 1998, Persistence Software, Inc.
Copyright 1998, Protocol Systems, Inc.
Copyright 1998, Secant Technologies, Inc.
Copyright 1998, Sholink Corporation
Copyright 1998, Sun Microsystems, Inc.
Copyright 1998, Versant Object Technology Corporation

The copyright holders listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, r
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute co
the modified version. Each copyright holder listed above has agreed that no person shall be deemed to have infr
copyright in the included material of any such copyright holder by reason of having used the specification set forth
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for whi
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospectiv
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document de
Object Management Group specification in accordance with the license and notices set forth on this page. This d
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies lis
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover dam
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed

 the sole
arks or
 is pro-

used in
ation

orth in

G IDL,
Inc.

readers
 at
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, tradem
other special designations to indicate compliance with these materials. This document contains information which
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or inform
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set f
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OM
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group,
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form
http://www.omg.org/library/issuerpt.htm.

Contents
1
1

1

2

3

1-1

1-1

1-2
1-3

1-5
1-6

1-7

-8

-1

2-2
2-4

-15

16
19

-21
-23

25
28

2

Preface .
About the Object Management Group .

What is CORBA?.

Associated OMG Documents .

Acknowledgments .

1. Service Description .

1.1 Introduction .

1.1.1 Problems Being Addressed
1.1.2 Problems Not Being Addressed

1.2 Domain Reference Model .
1.2.1 Scope .

1.3 PIDS Conceptual Model. .

1.4 PIDS Identification Model . 1

2. Modules and Interfaces. 2

2.1 PersonIdentificationService Module
2.1.1 Basic Types. .

2.2 IdentificationComponent Interface. 2

2.2.1 IdentificationComponent Interface 2-
2.2.2 IdentifyPerson Interface 2-

2.2.3 ProfileAccess Interface. 2
2.2.4 SequentialAccess Interface 2

2.2.5 IdentityAccess Interface 2-
2.2.6 IdMgr Interface. 2-

2.2.7 CorrelationMgr Interface 2-3
Person Identification Service June 2000 i

Contents

33
-39

39

-39
-40

40
42

44

-45
-45

-46
47

2-48

1

-1

1

1

1

2.3 NamingAuthority Module . 2-
2.3.1 Exceptions . 2

2.3.2 TranslationLibrary interface 2-

2.4 Traits . 2
2.4.1 References . 2

2.4.2 PersonIdTraits Module 2-
2.4.3 HL7Version2_3 Module 2-

2.4.4 vCardTraits Module . 2-

2.5 .
Naming/Trader Interoperation . 2

2.5.1 Naming Service . 2

2.5.2 Trader Service . 2
2.5.3 IdentificationComponent Service 2-

2.6 Conformance Classes .

Glossary .

Appendix A - OMG IDL . A-1

Appendix B - Use Case Examples. B

Appendix C - Interaction Patterns. C-

Appendix D - Event Descriptions . D-

Appendix E - Security Guidelines . E-
ii Person Identification Service June 2000

Preface
rted
 and
nted

ide a
,
ous
p a

ed.

ted,
ey
bject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
Person Identification Service V1.0 June 2000 1

n

 are
ides
 are

aces

nd

d

 so

d,
dards

 (The

mat.
ons,
Associated OMG Documents

In addition to the CORBA Transportation specifications, the CORBA documentatio
set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language emapping specifications.

• CORBAservices: Common Object Services Specification, a collection of OMG’s
Object Services specifications.

• CORBAfacilities: Common Facilities Specification, a collection of OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interf
between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry a
represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services an
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:
2 Person Identification Service V1.0 June 2000

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• 2AB

• 3M Health Information Systems

• Ardent Software, Inc.

• Care Data Systems, Inc.

• CareFlow/Net, Inc.

• FUJITSU LIMITED

• HBO & Company

• HealthMagic, Inc.

• HUBlink, Inc.

• IBM Corporation

• IDX Systems Corporation

• INPRISE Corporation

• IONA Technologies PLC

• Oacis Healthcare Systems

• Object Design, Inc.

• Objectivity, Inc.

• Oracle Corporation

• Persistence Software, Inc.

• Protocol Systems, Inc.

• Secant Technologies, Inc.

• Sholink Corporation

• Sun Microsystems, Inc.

• Versant Object Technology Corporation
PIDS V1.0 Acknowledgments June 2000 3

4 Person Identification Service V1.0 June 2000

Service Description 1
ozens
ining
 IDs
ult

e
n or

r a

ds
rson
Contents

This chapter contains the following topics.

1.1 Introduction

Throughout a person's lifetime he or she may have episodes of care provided by d
or hundreds of health-care providers, most of whom may be assigning and mainta
patient IDs autonomously. In this arrangement, each organization simply assigns
that uniquely identify patients within its local ID Domain of ID values, with the res
that these ID values are meaningless outside that system or organization. These
autonomously managed IDs suit the purposes of recording and retrieval of servic
records for the local organization. However, there is no basis for efficient collectio
correlation of health records among multiple venues.

A typical healthcare information system will permit the user to submit a search fo
person’s record using some combination of identifying parameters for the person.
When the user must collect a patient's healthcare information from a different
organization or from a disparately-keyed system in the same organization, s/he
typically must perform a new search in that other system - or ask a medical recor
person in the other organization to perform the search - in order to identify the pe
and retrieve the needed information.

Topic Page

“Introduction” 1-1

“Domain Reference Model” 1-5

“PIDS Conceptual Model” 1-7

“PIDS Identification Model” 1-8
Person Identification Service V1.0 June 2000 1-1

1

ingly
re
ade

f

s

eds.

sage-

st

and

ted

and
ng
ith
 PIDS
ose

a

In recent years, changes in the business of healthcare have made it both increas
important and increasingly difficult to access the continuum-complete record of ca
for an individual. Risk-shared and capitation-based reimbursement policies have m
it absolutely necessary to avoid redundant treatments. Increased specialization o
providers has caused increased fragmentation and distribution of patient records.

Finally, organizational consolidation, growth and flux are exacerbating the problem
associated with managing IDs. Most large integrated delivery systems are now
competing on the basis of population share.

This specification defines the interfaces of a CORBA Person Identification Service
(PIDS) that organizes person ID management functionality to meet healthcare ne
The PIDS is designed to:

• support both the assignment of IDs within a particular ID Domain and the
correlation of IDs among multiple ID Domain.

• support searching and matching of people in both attended-interactive and mes
driven-unattended modes, independent of matching algorithm.

• support federation of PIDS services in a topology-independent fashion.

• permit PIDS implementations to protect person confidentiality under the broade
variety of confidentiality policies and security mechanisms.

• enable plug-and-play PIDS interoperability by means of a "core" set of profile
elements, yet still support site-specific and implementation-specific extensions
customization of profile elements.

• define the appropriate meaningful compliance levels for several degrees of
sophistication, ranging from small, query-only single ID Domains to large federa
correlating ID Domains.

1.1.1 Problems Being Addressed

The PIDS functionality is under severe demands for integration with other clinical
financial information systems, but it must integrate with these systems without coupli
with them. Therefore it is critical that the functional scope of the PIDS be drawn w
extreme care. This section and the section that follows delineate the scope of the
by explicitly distinguishing those problems that are addressed by the PIDS from th
that are not. The PIDS addresses the following specific problems.

1.1.1.1 Identification

The PIDS directly supports the identification of people currently receiving care in
specific venue and ID Domain, and will support identification in the face of highly
incomplete identifying information.
1-2 Person Identification Service V1.0 June 2000

1

s, and

s or

tal
r, it

 be

its.
ation
ple

ort

will
ject
1.1.1.2 ID Correlation

The PIDS supports both manual and automated correlation of IDs and records
associated with healthcare consumers that have received care in different setting
will address the problems of correlating IDs among the ID Domains of highly
autonomous and frequently-reorganizing entities.

1.1.1.3 Patient Confidentiality

While the PIDS itself is not required to enforce confidentiality, its interfaces are
delineated so that "request interceptors" (implemented by CORBA Security Service
otherwise) can enforce any policy that is defined in terms of:

• the user's identity,

• the person identity that is the target of the information request,

• the ID Domain(s) involved, and

• the person traits requested.

Thus it will become reasonable to expect and demand that PIDS implementations
compete on the basis of their abilities to enforce complex or individualized
confidentiality policy and to protect person information from inferential analysis.

1.1.2 Problems Not Being Addressed

The following problems are not addressed by this specification.

1.1.2.1 Confidentiality Policy

In the face of various and evolving confidentiality policy at private and governmen
levels, the PIDS must not make any assumptions on confidentiality policy. Rathe
must, wherever possible, permit and support the broadest range of policies. See
Appendix D for a discussion of how the OMA specifications, such as CORBA
Security, can be used to implement some of the common characteristics that may
needed by security policies for PIDS implementations.

1.1.2.2 Locating Episodic Patient Data (limited support)

The PIDS will support retrieval of any information that has been recorded in it as tra
However, its interfaces do not attempt to support the set-query and instance navig
paths that are needed in a serious CPR application. The PIDS IDL will support sim
searches of directly recorded person attributes, but no attempt was made to supp
complex retrievals of visits or treatment and observation structures.

Since the PIDS is an ID management service rather than a clinical application, it
support CPR information retrieval only to the extent of recording and retrieving ob
references to storage locations. It is then the sole prerogative of those objects to
support retrieval operations and to enforce their respective security policies.
PIDS V1.0 Introduction June 2000 1-3

1

r

is

ent

 and

 all

 the
ional
clude

e

nd

ey

s
ir

nd

The practical impact of this distinction is that useful commercial applications will
combine the PIDS functionality for ID management and profile retrieval with riche
content support that is external to the PIDS - such as insurance, visit histories,
observations, and treatments.

1.1.2.3 HIPAA PL 104-191 (formerly Kassebaum-Kennedy Bill) and
National Healthcare Identifiers

Some nations already have national healthcare IDs. At the time of this writing, it
clear that the following conditions will likely apply to U.S. national healthcare IDs:

• ID assignment will require humans-in-the-loop, possibly for both initial assignm
and eventual certification.

• The ID will be more than a simple assigned next-sequence value.

• There must be provisions for designations of permanent vs. temporary values,
support for correction operations (merging and unmerging).

• The ID will need to coexist and correlate with numerous legacy ID Domains in
but the newest organizations and systems.

None of these requirements is in any way unique to national healthcare IDs. Any
legally mandated ID, even though it has far reaching systemic and organizational
impacts, is still an ID. As such, it carries no unique functionality or IDL requirements;
furthermore, the PIDS solution must be generally applicable well beyond the U.S.
Therefore, such new ID Domains could be treated as "just another ID Domain" to
PIDS. On the basis of the importance and anticipated frequency of access to nat
healthcare IDs (such as to support government program claim processing), we in
an explicit trait NationalHealthId to make it trivial to access these IDs, subject to
security mechanisms.

While the issuance of the policy for national healthcare IDs is unlikely to affect th
PIDS IDL, it is very likely to drive vendor implementations and applications to
compete on the basis of:

• How effectively they can interface with related government deployed systems a
administrative processes for ID assignment and certification.

• How well they exploit the trustworthiness of digital certificates. For example, th
may support the configuration of one or more certification authorities as ID
Domains or support matching on certificates as Trait values.

• Their abilities to protect information integrity and patient confidentiality as the
nationally-registered patient base grows and as private organizations merge. A
patient empowerment grows in public awareness, vendors may compete by the
abilities to support extreme cases of patient-administered access rights.

• How soon their products bring these strengths to the marketplace.

To summarize, the requirements of U.S. national healthcare IDs have served as a
completeness check for IDL definition, and will raise the standard for scalability a
flexibility of PIDS implementations. The only PIDS IDL artifact is a predefined but
optional trait to carry the national healthcare ID.
1-4 Person Identification Service V1.0 June 2000

1

ation.
 this

y.

d

 data

ID

s to
 to

ted
ain.

 labs.

ID
1.2 Domain Reference Model

Figure 1-1 Domain Reference Model for PIDS

Figure 1-1 represents a reference model for healthcare as it relates to this specific
This is not an attempt to define a globally useful reference model for healthcare as
model was chosen to highlight the aspects of healthcare related to person identit

A hospital is likely to have one primary ID Domain which would typically be define
by the Healthcare Information System (HIS) or Admit Discharge Transfer (ADT)
system. Many ancillary or departmental systems would be binding person-related
(demographic, clinical, financial) to IDs in that ID Domain. There may be other
ancillary systems that use their own identification to make them each a separate
Domain. The hospital may manually mirror these ID Domains against a “main” ID
Domain or electronically connect these systems to a common registration proces
actually consolidate them into a single ID Domain. Today they use an MPI system
do this.

Today Healthcare Provider Organizations may consist of multiple hospitals and
multiple clinics forming an Integrated Delivery System. Each clinic that is automa
will likely have one practice management system, which manages its own ID Dom

A Healthcare Provider Organization also has contract services such as reference
Each contract service would have its own ID Domain. The Healthcare Provider
Organization may need a higher level of correlation that consolidates the various
Domains.

Heal thcare Provider Organizat ion

Hospi ta ls

HIS ID Domain

Anci l lary Systems

Cl in ics & Group Pract ices

Single ID Domain

Contract Serv ices

Single ID Domain

Anci l lary Systems with
own ID Domains

Corre lat ing ID Domain

Corre lat ing ID Domain
PIDS V1.0 Domain Reference Model June 2000 1-5

1

er
 be

SN,
od

ch

traits
m is
erson

me.

ly
nd

ch

an
hem.
is
ot

the
There could be yet higher levels of correlation among Healthcare Provider
Organizations. These do not add new relationships as they are just correlating ov
correlating ID Domains as we have here. Their population sizes would potentially
much larger. Even though it is not shown in Figure 1-1, an ID Domain could have
multiple correlating ID Domains that correlate its IDs with other ID Domains.

1.2.1 Scope

When identifying a person there is a variety of identifying information that may be
used including demographics (address, place of birth, etc.), biometric information
(finger print, photograph, blood type) and IDs they may have from other sources (S
drivers license number, insurance number). Some biometric information (e.g., blo
type or weight) may also be considered clinical information.

Question: Can’t PIDS be used for accessing clinical information about a patient su
as electronic medical records?

Answer: No. There is a fuzzy line between biometric information and clinical
information but the distinguishing trait is their stability over time. The predefined
names of traits do not cover clinical information and PIDS is not meant to store
clinical information.

The information about a patient that is useful for identification purposes are those
that remain constant or change very slowly over time. The expectation in using the
that they have not changed so they can be stored and then used to identify the p
the next time they are encountered. The information being gathered as part of the
clinical diagnosis is expected to have changed and is, in general, unstable over ti

The key word in Patient Identification Service is “Identification.” Identity is definite
not unique to patients. When looking at the need for identification in many fields a
looking at the interfaces being proposed, we envision this being applicable to mu
broader entities than just patients.

Question: Should the thing being identified in this specification be “patients,”
“persons,” or “subjects”?

Answer: Persons

The concept of identifying a subject by its characteristics is applicable to more th
just persons but there are a couple problems proposing this specification to cover t
We need to define a default set of identifying information that can be used with th
service for identifying patients. This information is specific to identifying persons (n
just patients) but not general entities or subjects.

Applying this specification to general entities that need to be identified is beyond
scope of this specification and even the CORBAmed DTF.

Question: Isn’t a Person Identification Service needed in other domains than just
healthcare? Why is CORBAmed standardizing it?
1-6 Person Identification Service V1.0 June 2000

1

as

ther
hen
rd

.

S
son.
S.
Answer: Yes, it is needed in other domains - but as an ancillary part of work flow
their real area of concern is finance, telecommunications, manufacturing, etc. In
healthcare, the person (we call them patients) is what the business is all about.

Other domains need to identify a person to make sure a financial transaction or o
business contract is applied to the correct person. In healthcare, it is important w
diagnosing a problem that you have the same “physical” being that a patient reco
refers to; otherwise, a person could be incorrectly identified, resulting in severe
consequences.

For these reasons it makes sense that CORBAmed standardize interfaces for
identifying persons. These interfaces should be useful outside healthcare as well

1.3 PIDS Conceptual Model

Figure 1-2 PIDS Conceptual Model

The PIDS Conceptual Model in Figure 1-2 shows the core data elements that PID
implementations must deal with. It also shows how these relate to a real world per
The following sections will describe this data and show how they are used by PID

1..*

1..1

1..1

0..*
T ra it
V alue

1..*

T ra itT ype
N am e
M andatory
S earchable
R eadO nly

1..1

0..*1 ..1

0..*

1 ..1

ID D om ain
D om ainN am e

1..*

1..1 S upports

1..1

 P rofile

1..*

1 ..1

1..1

0..*

0 ..*

0 ..1

Q ualifiedID
ID V alue
S tate

0..*

1 ..1

1..1

1..1

0..*

0 ..*
C orre la ted

0..1

0..*

M erged

0..*
PIDS V1.0 PIDS Conceptual Model June 2000 1-7

1

and

ould

 ID
 be
ain.

r it
al
D

ple,
llary
 Our

tly

be
cess
nd to
ues

cess

e

new
In PIDS implementations, the QualifiedID associations might carry administrative
auditing attributes such as time stamp, user stamp, source system, and specific
operation types for merge and correlation. For example, specific operation types c
be added to correspond to the HL7 2.3 merge and link events.

1.4 PIDS Identification Model

Figure 1-3 provides the basic structural elements of our identification model:

Figure 1-3 Basic Structural Elements of the PIDS Identification Model

The ID Domain is the basic building block of our PIDS model. An ID Domain
maintains a unique Identifier (ID) for each person identity to be represented in the
Domain. Ideally there is one and only one ID per person, but in reality there may
duplicates where a person has been assigned an additional ID in the same ID Dom
For internal consistency, the ID Domain cannot assign two persons the same ID o
would have no means to distinguish between the two entries. The ID is an intern
control mechanism and may or may not be used externally. Thus the ID and its I
Domain together create a unique ID for the person.

The ID Domain provides a framework for representing existing systems. For exam
the MPI in a registration system is an ID Domain as is the patient index in an anci
system. In other words, ID Domains already exist in any patient-oriented system.
terminology simply provides descriptive units for existing identification processes.

Within the PIDS specification, several interfaces are detailed. The two most direc
used with an ID Domain are: 1) IdentifyPerson interface and 2) ProfileAccess
interface. The IdentifyPerson interface is basically a query used to send traits to
matched in the ID Domain and to receive the matching candidate(s). The ProfileAc
interface can be a query or an update used to send an ID for a specific person a
receive that person’s profile. A profile is a set of traits containing the person’s val
for their respective traits. Two additional interfaces are specialized forms of the
ProfileAccess interface, namely the SequentialAccess interface and the IdentityAc
interface.

The coordinating structural unit for the PIDS model is the Correlating Domain. Th
Correlating Domain allows access to the correlated profiles of the IDs in all of the
participating ID Domains. This building block provides the framework for cross-
referencing IDs across the participating ID Domains. The Correlating Domain is a
building block which complements existing ID Domains.

ID Domain ID Domain ID Domain

Correlating Domain
1-8 Person Identification Service V1.0 June 2000

1

ed
ross-

g
stem
he
 the
ltiple

 of
 and
ain,

or
 both
late
uilt

For

uld

 be
ly

nd

ross-
Two interfaces illustrate the role of the Correlating Domain. First, profiles are add
and correlated via the CorrelationMgr interface (PersonIdSeq register). Second, c
referenced IDs are obtained by the CorrelationMgr interface (UniquePersonIdSeq
get_corresponding_ids).

Integrity of each domain is maintained by their respective managers: the IDMgr
interface and the CorrelationMgr interface.

To illustrate the use of this model in actual implementations, consider the followin
examples. The MPI in a registration system or the patient index in an ancillary sy
is an ID Domain. When a registration system is interfaced to ancillary systems, t
registration system’s MPI would be an ID Domain and the ancillary systems using
ID assigned by the registration system would be codependent domains. When mu
provider systems are interfaced, such as for an integrated delivery system, the
enterprise MPI would be the Correlating Domain for the participating ID Domains
the provider systems. If the enterprise were to issue the IdentifyPerson interface
the ProfileAccess interface to the Correlating Domain rather than to each ID Dom
then the enterprise MPI would be both a Correlating Domain and an ID Domain.

The PIDS model provides a tool to manage identification that provides flexibility f
existing systems and future business requirements. The PIDS model also allows
hierarchical and peer structures to evolve. Since a Correlating Domain can corre
both ID Domains and other Correlating Domains, hierarchical structures can be b
for enterprises. In addition, an ID Domain can participate in multiple Correlating
Domains, allowing peer structures to be built.

Peer structures offer significant potential for identification outside of enterprises.
example, any need to track a particular population could fund its own Correlating
Domain and establish relationships with the appropriate ID Domains. The cost wo
be minimal for the Correlating Domain since it could take advantage of the
accessibility to other Correlating and ID Domains. Furthermore, accessibility would
determined by the participating Domain (e.g., each participating Domain would on
allow access by authenticated, authorized requesters).

One additional point involves the likelihood of a National Healthcare ID. The PIDS
model views the National Healthcare ID as its own ID Domain since assignment a
control would not be under the control of local ID Domains. Thus this national ID
would be a trait in ID Domains (and Correlating Domains) creating an automatic c
reference for searches.
PIDS V1.0 PIDS Identification Model June 2000 1-9

1

1-10 Person Identification Service V1.0 June 2000

Modules and Interfaces 2
Contents

This chapter contains the following topics.

Topic Page

“PersonIdentificationService Module” 2-2

“IdentificationComponent Interface” 2-15

“NamingAuthority Module” 2-33

“Traits” 2-39

“Naming/Trader Interoperation” 2-45

“Conformance Classes” 2-48
Person Identification Service V1.0 June 2000 2-1

2

lso
s and
2.1 PersonIdentificationService Module

Figure 2-1 PIDS Components and Inheritance Diagram

Figure 2-1 shows the interfaces defined in the PersonIdService module. The main
functional interfaces inherit from the IdentificationComponent interface. They are a
referenced by the IdentificationComponent. This section describes these interface
their data types in detail.

DomainName
ComponentName
TraitSpecSeq
NamingContext
TraderComponents
ProfileAccess
SequentialAccess
IdentityAccess
IdMgr
CorrelationMgr
EventMgr

IdentificationComponent

TraitSelector
TraitSelectorSeq
Candidate
CandidateSeq

find_candidates

IdentifyPerson

get_ traits_known
get_profile
get_profile_list
get_deactivated_profile_lis
get_id _nfo
update_and_clear_trait

ProfileAccess

id_count_per_state
get_all_ids_by_stat
get_first_ids
get_last_ids
get_next_ids
get_previous_ids

SequentialAccess

IdentificationComponen
IdInfo
TraitNameSeq
trait_value_count

get_trait
get_profile
get_deactivated_profil
update_and_clear

Identity

PIDS Components and Inheritence Diagram

CandidateIterator

max_left

next_n

IdMgr

MergeStruct
MergeStructSeq

register_new_ ids
find_or_register_ids
register_these_ ids
create_temporary_ids
make_ids_permanent
merge_ids
unmerge_ids
deactivate_ids

CorrelationMgr

UniqueTaggedProfile
UniqueTaggedProfileSeq

load_profiles
get_corresponding_id

IdentityAccess

get_identity_object
2-2 Person Identification Service V1.0 June 2000

2

d

h of

d, in
must

s,
ies.

ith

s
 also

n
//File: PersonIdService.idl

#ifndef _PERSON_ID_SERVICE_IDL_
#define _PERSON_ID_SERVICE_IDL_

#include <orb.idl>
#include <NamingAuthority.idl>
#include <Naming.idl>
#include <Trading.idl>
#include <Notification.idl>

#pragma prefix "omg.org"

module PersonIdService
{

// . . .
};

#endif // _PERSON_ID_SERVICE_IDL_

The core Person Identification Service (PIDS) consists of the type declarations an
interfaces in this module. PIDS is structured as a component that has multiple
interfaces that may be implemented by any particular instance of the service. Eac
the interfaces represent a particular piece of functionality and are optional. Even
though an implementation of PIDS is free to implement which interfaces they nee
the conformance section of this specification specific interfaces are called out that
be implemented to claim conformance to the various conformance classes.

#include "NamingAuthority.idl"

The types declared within the NamingAuthority module are used for defining the
names of ID Domains, IDs, components, and traits. The names of ID Domains, ID
and components must be defined by implementations of the service or other part
This specification defines some of the names for traits but they may be added
independently by other parties. The global uniqueness properties of the
NamingAuthority provides a mechanism for names to be created independently w
low likelihood of name clashing.

#include "CosNaming.idl"

The CosNaming module is used for a couple of reasons. This specification define
some standard names for PIDS to use within a naming service. PIDS components
include a NamingContext that is used to provide federation.

#include "CosTrading.idl"

The CosTrading module is used by PIDS in various ways. This PIDS specificatio
defines Trader Service types that PIDS components must use when offered to a
PIDS V1.0 PersonIdentificationService Module June 2000 2-3

2

der

f the
service. This specification also uses many of the design patterns found in the Tra
specification. In addition PIDS components include a TraderComponents that is
used to provide federation.

#include “Notification.idl”

The Notification module is used for defining change event notifications on the
component.

#pragma prefix "org/omg"

To prevent name pollution and name clashing of IDL types, this module (and all
modules defined in this specification) uses the pragma prefix that is the reverse o
OMG’s DNS name.

2.1.1 Basic Types

// ---
// Common Data Types
//
typedef NamingAuthority::AuthorityId DomainName;
typedef sequence< DomainName > DomainNameSeq;

typedef NamingAuthority::LocalName PersonId;
typedef sequence< PersonId > PersonIdSeq;

struct QualifiedPersonId {
DomainName domain;
PersonId id;

};
typedef sequence< QualifiedPersonId > QualifiedPersonIdSeq;

typedef NamingAuthority::QualifiedNameStr TraitName;
typedef sequence< TraitName > TraitNameSeq;
typedef any TraitValue;
struct Trait {

TraitName name;
TraitValue value;

};
typedef sequence< Trait > TraitSeq;
typedef TraitSeq Profile;
typedef sequence< Profile > ProfileSeq;

enum IdState { UNKNOWN, INVALID, TEMPORARY, PERMANENT, DEACTIVATED };
typedef sequence<IdState> IdStateSeq;
struct IdInfo {

PersonId id;
IdState state;
PersonId preferred_id;

};
typedef sequence<IdInfo> IdInfoSeq;

// --
2-4 Person Identification Service V1.0 June 2000

2

// Miscellaneous Data Types
//

typedef string ComponentVersion;
struct ComponentName {

NamingAuthority::QualifiedName name;
ComponentVersion version;

};

struct TraitSpec {
TraitName trait;
boolean mandatory;
boolean read_only;
boolean searchable;

};
typedef sequence< TraitSpec > TraitSpecSeq;

enum HowManyTraits { NO_TRAITS, SOME_TRAITS, ALL_TRAITS };
union SpecifiedTraits switch (HowManyTraits)
{

case SOME_TRAITS: TraitNameSeq traits;

 struct TaggedProfile {
 PersonId id;
 Profile profile;
 };
 typedef sequence<TaggedProfile> TaggedProfileSeq;

 struct QualifiedTaggedProfile {
 QualifiedPersonId id;
 Profile profile;
 };
 typedef sequence<QualifiedTaggedProfile> QualifiedTaggedProfileSeq;

 struct ProfileUpdate {
 PersonId id;
 TraitNameSeq del_list;
 TraitSeq modify_list;
 };
 typedef sequence< ProfileUpdate > ProfileUpdateSeq;

 struct MergeStruct {
 PersonId id;
 PersonId preferred_id;
 };
 typedef sequence< MergeStruct > MergeStructSeq;

 struct TraitSelector {
 Trait trait;
 float weight;
 };
 typedef sequence<TraitSelector> TraitSelectorSeq;

 struct Candidate {
PIDS V1.0 PersonIdentificationService Module June 2000 2-5

2

 PersonId id;
 float confidence;
 Profile profile;
 };
 typedef sequence<Candidate> CandidateSeq;

 interface CandidateIterator {
 unsigned long max_left();

 boolean next_n(
 in unsigned long n,
 out CandidateSeq ids);

 void destroy();
 };

 typedef unsigned long Index;
 typedef sequence< Index > IndexSeq;

 enum ExceptionReason {
 UNKNOWN_TRAITS,
 DUPLICATE_TRAITS,
 WRONG_TRAIT_FORMAT,
 REQUIRED_TRAITS,
 READONLY_TRAITS,
 CANNOT_REMOVE,
 MODIFY_OR_DELETE
 };

 struct MultipleFailure {
 Index the_index;
 ExceptionReason reason;
 TraitNameSeq traits;
 };
 typedef sequence< MultipleFailure > MultipleFailureSeq;

 interface Identity;
 typedef sequence< Identity > IdentitySeq;

 // ---
 // Exceptions
 //

 exception InvalidId { IdInfo id_info; };
 exception InvalidIds { IdInfoSeq id_info; };
 exception DuplicateIds { PersonIdSeq ids; };
 exception UnknownTraits { TraitNameSeq traits; };
 exception DuplicateTraits { TraitNameSeq traits; };
 exception WrongTraitFormat { TraitNameSeq traits; };
 exception InvalidStates {};
 exception TooMany { unsigned long estimated_max; };
 exception MultipleTraits { MultipleFailureSeq failures; };

 exception ReadOnlyTraits { TraitNameSeq traits; };
2-6 Person Identification Service V1.0 June 2000

2

t of

can

ame
n

tion
 IDs

e
 exception CannotRemove { TraitNameSeq traits; };
 exception ModifyOrDelete { MultipleFailureSeq failures; };
 exception NotImplemented {};

 exception InvalidWeight {};
 exception CannotSearchOn { TraitNameSeq traits; };

 exception IdsExist { IndexSeq indices; };
 exception RequiredTraits { TraitNameSeq traits; };
 exception ProfilesExist { IndexSeq indices; };
 exception DuplicateProfiles { IndexSeq indices; };
 exception CannotMerge {IndexSeq indices; };

 exception DomainsNotKnown { DomainNameSeq domain_names; };
 exception IdsNotKnown { QualifiedPersonIdSeq ids; };

There are a number of structured types used widely throughout the PersonIdService
module. These characterize ID Domains, IDs, traits of a person, etc.

2.1.1.1 Common Data Types

DomainName, DomainNameSeq

The DomainName, DomainNameSeq structure can be used to identify a fully
qualified ID Domain name following the specified rules of the NamingAuthority
module.

IDs for people are always relative to some ID Domain. An ID Domain is the exten
meaningfulness of the IDs within that ID Domain. The DomainName is an
AuthorityId which makes it possible to define these independently without two ID
Domains being named the same.

The DomainNameSeq is a sequence of DomainNames .

PersonId, PersonIdSeq

The PersonId is the simplest representation of an ID and is defined as a string. It
only be used in contexts where the ID Domain of the ID is either specified or is
already known. The ID for a person relative to an ID Domain is represented as a n
within that naming authority. A PersonId can only be interpreted in the context of a
ID Domain.

A PersonId is the concrete representation of ID in an ID Domain. The representa
of characters forming an ID is dependent on the specifics of the ID Domain. Given
from different ID Domains it is not possible to tell reliably what ID Domain they cam
from solely based on the syntax.

The PersonIdSeq is a sequence of PersonIds .
PIDS V1.0 PersonIdentificationService Module June 2000 2-7

2

the

r

ny”

rm

some

rate
d

not
ot
ly

If a
he
QualifiedPersonId, QualifiedPersonIdSeq

The QualifiedPersonId is a fully qualified ID since it contains the name of the ID
Domain and the PersonId itself. If two QualifiedPersonIds are found to be
identical, they can reasonably be assumed to represent the same person (within
limits of the NamingEntity algorithms of the NamingAuthority module if they are
followed).

TraitName, TraitNameSeq

The names given to the traits of a person are characterized by the TraitName type.
The trait name is a string in the form of the QualifiedNameStr so that additional
traits can be created by users of the specification without having name clashes o
having to register their trait names with a centralized authority.

The TraitNameSeq is a sequence of TraitNames . It is very useful for specifying the
set of traits a client is interested in.

TraitValue

The TraitValue represents the value of a person’s trait. Since the set of traits is
virtually endless and could be of any type imaginable (including multimedia) the “a
data type is used.

Trait, TraitSeq, Profile, ProfileSeq

The characterization of a specific trait is given as a name value pair and is called
“Trait.” A sequence of these can be put together to create a TraitSeq .

A Profile is used when referring to the traits stored by a PIDS and bound to a
PersonId . It is also used in the matching process for looking up persons. The te
“Profile” is given to these sequences of traits since they are used a lot. At times a
sequence of Profiles is needed (ProfileSeq).

IdState, IdStateSeq, IdInfo, IdInfoSeq

The IdState represents the set of states that an ID may take on. Each state has
well defined semantics. The IdState is a characteristic of an ID ; whereas, traits are
characteristics of the person represented by an ID. For this reason there is a sepa
operation to access it. The IdState can also be used for change event audit trails an
change event notification. The operations on the IdMgr interface affect the state of an
ID.

The clients to the interface see a different behavior for each ID state:

• UNKNOWN - This state indicates the service does not know if the ID exists or
and if so what the actual state might be. This is used by components that do n
manage an ID Domain, but are a resident of an ID Domain where they may on
know about a small subset of the IDs that exist.

• INVALID - An ID in this state can only be used in operations that create an ID.
PIDS component knows all IDs in its ID Domain, every other possible ID has t
Invalid IdState .
2-8 Person Identification Service V1.0 June 2000

2

o a
rary

not

t be
ary.

es.
e by

, an
ll

he

irst
hen
ntly,
r
es,

fore.

ce

re is

it
d on.

• TEMPORARY - An ID can be created as temporary without indicating any
mandatory traits. A common usage is to create an ID that data can be bound t
patient before that patient is identified with an appropriate confidence. A tempo
ID can be made permanent, merged, or deprecated. A temporary ID is made
permanent explicitly - just updating the profile to contain all required traits does
change the state.

• PERMANENT - When an ID is created as permanent all mandatory traits mus
provided. A permanent ID can be merged or deprecated but not made tempor

• DEACTIVATED - Once an ID is expected not to be needed any more it can be
deactivated (merged or deprecated) which keeps it around for historical purpos
A deactivated ID is in its final state and cannot be transitioned to any other stat
PIDS operations, except unmerging.

The IdStateSeq is used for passing in the states of interest in a query. In a query
IdStateSeq having a value of zero length should be interpreted to mean, return a
valid states for the operation except UNKNOWN and INVALID .

The IdInfo structure contains the ID and the state of the ID. It also contains a
preferred ID that is blank if in any state other than DEACTIVATED , or may contain
the ID this ID has been superseded by (merged with) if the state is deactivated. T
IdInfoSeq is a sequence of IdInfo structures.

ComponentVersion, ComponentName

The ComponentVersion is a numeric string with major and minor version
indications. The part of the string up to the first period (“.”) is the major version
indication, which must contain only numeric digits. The rest of the string after the f
period is the minor version indication that may contain any printable characters. W
a component is changed significantly enough that clients may need to react differe
the major version should be rolled. The minor version part of the string is used fo
vendor specific purposes. If only the minor version number of a component chang
clients can assume behavior from the service that is compatible with what came be
For example, a change to the ID Domain name, supported traits, or supported
interfaces would require changing the major version number for a component sin
they are considered static over time.

The ComponentName includes a globally unique name and the version for a
component. The name is used to uniquely identify instances of components. The
no inherent meaning implied by the component name.

2.1.1.2 Miscellaneous Data Types

TraitSpec, TraitSpecSeq

The TraitSpec characterizes a supported trait by listing its name and indicating if
can be changed, whether it is required for permanent IDs, and if it can be searche

• If the read_only field is true, then operations that attempt to modify it will throw
an exception.
PIDS V1.0 PersonIdentificationService Module June 2000 2-9

2

nent
its
n
t a

g the

ed

le

.

e to

rch.

y the
• If the mandatory field is true, then it can be assumed that any IDs in the Perma
ID state will have a value for that trait. This may be helpful in knowing what tra
to ask for. In addition, if the IdMgr interface is implemented by the component, a
exception may be raised if there is an attempt to create a permanent ID withou
value supplied for the trait. Also an attempt to clear the value of the trait on a
permanent ID raises an exception.

• If the searchable field is true, then this trait can be used for searches, assumin
component implements the IdentifyPerson interface. The find_candidates()
operation will raise an exception for traits that have this field set to false.

A TraitSpecSeq is a sequence of TraitSpec structures and is used for specifying a
complete set of traits supported by a component.

HowManyTraits, SpecifiedTraits

The SpecifedTraits union is used by clients to indicate the traits they are interest
in obtaining values for. The selector being HowManyTraits could indicate all of them
or just some. If it indicates some, the union body has a list of the ones they are
interested in.

TaggedProfile, TaggedProfileSeq

A TaggedProfile structure includes a profile and the ID associated with it. The
TaggedProfileSeq is a sequence of TaggedProfiles .

QualifiedTaggedProfile, QualifiedTaggedProfileSeq

A QualifiedTaggedProfile contains the globally unique ID for a person and a profi
for that ID. The QualifiedTaggedProfileSeq is a sequence of
QualifiedTaggedProfiles .

ProfileUpdate, ProfileUpdateSeq

The ProfileUpdateSeq is used to update (modify) a list of profiles in a single call
Each entry (ProfileUpdate) contains the ID, the names of traits that need to be
cleared, and the set of new trait values that need to be modified.

MergeStruct, MergeStructSeq

The MergeStruct is used to represent a request to deprecate one ID in preferenc
another one. The MergedStructSeq is used to batch a group of merges in a single
call. The preferred_id field contains the ID that the merged_id is merged to.

TraitSelector, TraitSelectorSeq

The TraitSelector is the matching parameter used to tell the service identifying
information about a person (or persons) that a client is interested in during a sea
The structure contains a Trait plus the weight field as an indication of the relative
weights to put on the trait. Since the matching engine is not being standardized b
PIDS, this weighting hint may be ignored by the service.
2-10 Person Identification Service V1.0 June 2000

2

at
The
ation
at

le

n.

a

a

less.
es on
Index, IndexSeq

The IndexSeq is needed for some exceptions to return the indices of passed-in
sequences that caused the exception.

ExceptionReason, MultipleFailure, MultipleFailuerSeq

The ExceptionReason enumeration is used to specify what the cause of the
exception is in a MultipleFailure structure.

The MultipleFailure structure is used to report information back in an exception th
can have problems with multiple traits each on multiple IDs or profiles passed in.
“the_index” field contains the index from the original sequence passed to the oper
that contained profiles or IDs. The “traits” field contains the names of the traits th
had a problem at the index.

The MultipleFailureSeq is used to pass back problems that were found on multip
passed-in profiles or IDs.

IdentitySeq

The IdentitySeq contains a sequence of object references to the Identity interface. It
is used for retrieving multiple Identity object references from the IdentityAccess
interface with one call.

Candidate, CandidateSeq

The Candidate is returned after searching for persons when there may be partial
matches. It contains the ID of the person, a confidence of how well that person’s
profile matches the profile selector, and the set of traits requested in the operatio

CandidateSeq is a sequence of candidates. These are returned from looking up
person in the service.

2.1.1.3 CandidateIterator Interface

CandidateIterator is an iterator for candidates. It is used when more IDs match
look up request than the client wants at one time.

max_left()

Returns the count of candidates left on the iterator.

next_n()

Returns the number of candidates asked for or all left on the iterator, whichever is
Removes the returned candidates from the iterator before returning. If all candidat
the iterator are returned, the object is deleted upon returning the results.
PIDS V1.0 PersonIdentificationService Module June 2000 2-11

2

ts

elete

is

 but
ur:

 for

that
he
own

e
ust
ing

calls).

e in

re
he
e
ing

ed
urned.
destroy()

Destroys the iterator instance while there are still candidates on the iterator. Clien
must always call this operation if they are finished accessing candidates from the
iterator when more are left. It is a server implementation decision when to auto d
the iterator if the destroy is not called for a long time.

2.1.1.4 Exceptions

The following exceptions are generally useful by most or all of the interfaces of th
module.

InvalidId

The InvalidId exception is generated when a single ID is passed into an operation
the ID is not valid for the operation. There are a number of reasons this may occ

• The ID may not exist in the ID Domain that a service exists in.

• The operation being called may require the ID to be in a particular state.

The IdInfo for the ID is passed back to the caller so they may inspect the reason
the exception.

If the service knows of all IDs in an ID Domain (e.g., manages the IDs) then IDs
don’t exist are returned as Invalid. This exception is not raised for UnknownIds. T
difference in semantics to the client is that if they receive the exception with Unkn
IDs they could try the manager of the ID Domain to see if the ID exists.

InvalidIds

The InvalidIds exception is similar to InvalidId but is used with operations that tak
more than one ID as part of the parameter(s). The complete set of violating IDs m
be returned. A client could remove the violating IDs and repeat the operation know
this exception will not be thrown again (unless the server state changed between

DuplicateIds

The DuplicateIds exception is raised when the same ID is passed more than onc
a sequence. The complete set of duplicate IDs are returned.

UnknownTraits

The UnknownTraits exception may be thrown for operations that take one or mo
trait names or traits as parameters (typically as sequences). The service throws t
exception for traits it does not support. The complete set of violating traits must b
returned. A client could remove the violating traits and repeat the operation know
this exception will not be thrown again.

DuplicateTraits

The DuplicateTraits exception is raised when the same trait or trait name is pass
more than once in a sequence. The complete set of duplicate trait names are ret
2-12 Person Identification Service V1.0 June 2000

2

tion if
e

ing

e

arger
ill
by

es not

ce
 the

 only
 traits
e

iles
he
t the

t
may

 try
WrongTraitFormat

The WrongTraitFormat exception may be thrown for operations that take one or
more traits as parameters (typically as sequences). The service throws the excep
the TraitValue is of the wrong IDL type. The complete set of violating traits must b
returned. A client could remove the violating traits and repeat the operation know
this exception will not be thrown again.

InvalidStates

The InvalidStates exception is thrown when duplicate states are passed in, or th
states are passed in to operations that are not allowed.

TooMany

Many operations return a sequence of data that could be very large. If the size is l
than is feasible for the service to return (and the service can detect the fact), it w
throw this exception. Typically the size of the returned result is determined partly
passed-in parameters. The service may return the estimated maximum size for a
passed-in sequence. If that does not make sense for an operation or the service do
know what the maximum size would be, it can return zero. Alternatively, the servi
could return a size that it is confident will work even though it may not be close to
maximum. In either case, the client should be able to pass in a sequence of the
estimated_max and this exception would not be thrown again.

Note the actual maximum size for a request may be a complex function based not
on the number of results requested, but also on which traits are requested, which
have values on which IDs, the free memory on the server, etc. For this reason, th
maximum size may not be known a piori.

MultipleTraits

The MultipleTraits exception is similar to the DuplicateTraits exception except that
it applies to operations that could have problems with traits on multiple IDs or prof
that were passed in. Each entry in the sequence returned contains the index of t
original profile or ID that had a problem and the trait names that had a problem a
index.

ReadOnlyTraits

The ReadOnlyTraits exception is thrown if a client tries to modify or set a trait tha
is read-only. The complete set of violating traits is returned to the client so they
remove them from the list and try again.

CannotRemove

The CannotRemove exception is raised when a client tries to clear a trait that is
read-only or mandatory and the ID is in the Permanent IdState . The complete set of
violating traits is returned to the client so they may remove them from the list and
again.
PIDS V1.0 PersonIdentificationService Module June 2000 2-13

2

ing
e

 not

at

e

t

ond

nows
ld not
ModifyOrDelete

The ModifyOrDelete exception may be raised on operations that allow both clear
of traits and modifying/setting other traits. If a client passes in the same trait to b
cleared and modified, this exception is raised.

NotImplemented

The NotImplemented exception is raised by the few optional operations on the
interfaces. The operations that may raise this exception are logically grouped with
other operations on the same interface. That is why these optional operations are
separate interfaces on IdentificationComponent .

InvalidWeight

The InvalidWeight exception is thrown if a weight is passed in for a trait selector th
is less than 0.0 or greater than 1.0.

CannotSearchOn

The CannotSearchOn exception is raised if traits are passed in to be matched
against when their searchable field is false.

IdsExist

If a client tries to create new IDs and they already exist, the IdsExist exception will
be raised. The sequence indices for all violating IDs are returned.

RequiredTraits

If a client tries to create a permanent ID without giving all the mandatory traits, th
service raises the RequiredTraits exception or returns a temporary ID instead.

ProfilesExist

If a client tries to create new IDs and the profiles passed in correspond to IDs tha
exist, the ProfilesExist exception will be raised. The sequence indices for all
violating profiles are returned.

Duplicate Profiles

If a client tries to create new IDs and two or more of the profiles passed in corresp
to each other, this exception will be raised. The sequence indices for all violating
profiles are returned.

CannotMerge

This exception is raised when a client requests merging two IDs that the server k
cannot be merged. The indices returned correspond to each MergeStruct that cou
be merged.
2-14 Person Identification Service V1.0 June 2000

2

t is

 are

t to
m a

ssible
 be
ose
DomainsNotKnown

The DomainsNotKnown exception is thrown when an operation on the
CorrelationMgr interface receives a parameter specifying an ID Domain name tha
not part of the source domains it knows about. All violating DomainNames are
returned.

IdsNotKnown

The IDs referenced are not known by the service. A complete list of violating IDs
returned.

2.2 IdentificationComponent Interface

// --
// IdentificationComponent
//

interface ProfileAccess;
interface SequentialAccess;
interface IdentityAccess;
interface IdentifyPerson;
interface IdMgr;
interface CorrelationMgr;

interface IdentificationComponent
{

readonly attribute DomainName domain_name;
readonly attribute ComponentName component_name;
readonly attribute TraitSpecSeq supported_traits;

readonly attribute IdentifyPerson identify_person;
readonly attribute ProfileAccess profile_access;
readonly attribute SequentialAccess sequential_access;
readonly attribute IdentityAccess identity_access;

readonly attribute IdMgr id_mgr;

readonly attribute CorrelationMgr correlation_mgr;
readonly attribute Notification::EventComponent event_component;
readonly attribute CosNaming::NamingContext naming_context;
readonly attribute CosTrading::TraderComponents trader_components;

};

The Person Identification Service is based on a component model similar in effec
the pattern used by the Trader Service. All identification interfaces are inherited fro
core IdentificationComponent . The IdentificationComponent also has
references to each of the other interfaces that are implemented. This makes it po
for a client to obtain an object reference to any of the identification interfaces and
able to easily find out what other functionality is implemented and to navigate to th
interfaces.
PIDS V1.0 IdentificationComponent Interface June 2000 2-15

2

le to

e ID

 the

e a
ough

and

 the

he
ight

l the
for
tion
l
s on

set of
the

ains

of
ould
 and
ld be

out
 of
The IdentificationComponent service encapsulates a logical table with person
characteristics (traits) that is keyed by an ID, a matching engine that uses that tab
map traits back to their ID, and a table of ID information (e.g., ID states).

This component can also be used by systems and applications (such as ancillary
systems) that use IDs from an ID Domain but are not the manager of the IDs in th
Domain. The IDs known by a system implementing this interface are likely to be a
subset (possibly very small subset) of the IDs that exist for that ID Domain. Due to
fact that they may only be dealing with a few patient’s data at any one time, the
sequential access operations can be useful for systems with only a few IDs wher
client application can request a page of data at a time and allow a user to scroll thr
the data.

Multiple systems in an ID Domain may implement the PIDS component interface
be binding identifying data (as well as other information beyond the scope of this
specification) to IDs in that ID Domain. These may (or may not) also be exposed in
naming context and Trader Service of the ID Domain manager.

2.2.1 IdentificationComponent Interface

An IdentificationComponent has a number of optional interfaces that it may
implement. There are a variety of systems and applications that may implement t
interface for different reasons. They may pick and choose the functionality that is r
for them. A component may be implemented by a single object (e.g., inheriting al
interfaces into one implementation-dependent interface), a different actual object
each interface supported (potentially distributed from each other), or any combina
of the two. If multiple objects are used to implement the component, they must al
maintain consistency so the client can treat them as one. That is, all the attribute
the component must return functionally identical results.

The interfaces implemented by a single component must operate over the same
person IDs. Also the trait values must be consistent. Semantically they are using
same data base. If they are actually using separate data bases, it is up to the
implementation to maintain consistency.

There are a wide variety of ways an IdentificationComponent can be used. The
following list demonstrates the wide variety of possible uses:

• Master Patient Index Systems - These systems correlate over multiple ID Dom
and represent the fullest use of the various interfaces.

• Registration Systems - These may manage a single ID Domain and not know
other ID Domains. The registration, identification, and demographics services c
be created as a single component even though they may be separate systems
possibly from separate vendors. Alternatively, the three separate services cou
implemented as separate components.

• Ancillary Systems - Some ancillary systems may use IDs from the registration
system and not manage an ID Domain at all. They would typically only know ab
a small population of the IDs in the ID Domain at any point in time. Examples
these could be Laboratory Information Systems (LIS), Radiology Information
Systems (RIS), scheduling systems, monitoring systems, financial systems,
2-16 Person Identification Service V1.0 June 2000

2

type
e
eir

tion

 date.

 IDs

re not

tems
s
ned

s

he
names
nents
not

licas
ncy
d
pharmacy systems, etc. This represents the largest number of systems in a
healthcare enterprise as they are doing specific functions that use the IDs as
opposed to managing the IDs and ID information.

The first four interfaces (ProfilesAccess , SequentialAccess , IdentityAccess ,
IdentifyPerson) on this component are of general use and may be found on any
of component. They are the only interfaces that an ancillary system (that uses th
medical record number) would typically implement (i.e., unless they maintained th
own ID Domain). These basic interfaces give query access to lookup persons by
matching against a passed-in profile, and query access to find the profile informa
about persons, given an ID.

There is, at most, one component per ID Domain that implements the IdMgr interface.
Other components in the ID Domain use notification events from the ID Domain
manager to keep their cached values of the traits they are interested in kept up to

A PIDS implementation may implement security restrictions that prevent access to
and/or certain traits for an ID by not returning information on it. This can make it
appear the person is not known by the service or certain traits about the person a
known to the service. Alternatively, the service may raise security restriction
exceptions.

domain_name

This is the name of the ID Domain the component resides in. Even stand-alone sys
that implement their own ID Domain must create an ID Domain name and set thi
value. The entity responsible for naming the ID Domain must follow the rules defi
in the NamingAuthority module for selecting names uniquely for each ID Domain
created. The DomainName is invariant over time.

This is a globally unique, permanent name over the space of PIDS instances. It i
expected that over time organizations will need to federate in ways they do not
presently anticipate. It must never be necessary to modify a DomainName once it has
been put into service.

component_name

Each implementation instance of the component must create a unique name for t
component. The name chosen does not need any particular meaning. The unique
make it possible for clients traversing a graph of components to recognize compo
they have encountered before. This way they can detect cycles in the graph and
visit a component multiple times when they don’t need to. This part of the
component_name is invariant over time. The version within the component name
can change over time according to the rules set out by the ComponentVersion
definition.

If there are two or more objects with the same component name they must be rep
of each other with identical functionality. The mechanism used to maintain consiste
between the replicas is implementation-dependent and is not exposed as standar
interfaces.
PIDS V1.0 IdentificationComponent Interface June 2000 2-17

2

its

or

its

e set
 that

 ID

ing
supported_traits

This indicates the set of traits supported by a component. Each trait is indicated
whether it is mandatory, read-only, or searchable. There is no ordering of the tra
assumed. The set of traits are static over time (see ComponentVersion).

naming_context, trader_components

These attributes are used to provide federation of PIDS components. Either one
both may be NULL as they are optional capabilities for any PIDS component. See
Section 2.5, “Naming/Trader Interoperation,” on page 2-45 for more details.

identify_person

This interface provides a way to identify a person (find a potential ID) from the tra
known about them.

profile_access

This is the main interface for accessing the traits associated with an ID.

sequential_access

This interface provides mechanisms for scrolling forward and backward through th
of IDs the component knows about. This interface is mostly useful for components
have a small number of IDs that can easily be scanned by a person.

identity_access

This interface provides access similar to profile_access but with the client first
accessing a separate object per ID. This is needed to simplify certain security
constraints by some implementations.

id_mgr

Only one component within an ID Domain implements this interface. If there are
multiple actual systems implementing this interface, they should look like a single
component. This is the interface implemented by a registration system. Other
components within an ID Domain set this attribute to point to the ID manager of the
Domain, if one exists and they have a reference to it.

correlation_mgr

This interface is only implemented by components that correlate over other ID
Domains.

event_component

The event component gives the ability to connect components together such that
changes on one component are communicated to the other. For example, IDs be
created or deprecated and modifications of profiles.
2-18 Person Identification Service V1.0 June 2000

2

em

vice
t are

in the
n

 they
2.2.2 IdentifyPerson Interface

// --
// IdentifyPerson
//

interface IdentifyPerson :
IdentificationComponent

{
void find_candidates(

in TraitSelectorSeq profile_selector,
in IdStateSeq states_of_interest,
in float confidence_threshold,
in unsigned long sequence_max,
in unsigned long iterator_max,
in SpecifiedTraits traits_requested,
out CandidateSeq returned_sequence,
out CandidateIterator returned_iterator)

raises (
TooMany,
UnknownTraits,
WrongTraitFormat,
CannotSearchOn,
DuplicateTraits,
InvalidStates,
InvalidWeight);

};

This service defines the functionality for querying an ID Domain or individual syst
with a specified set of trait values and their weights.

find_candidates()

Knowing some identifying information about a person (or group of people with
common traits), a client can ask the service to find the candidate persons the ser
thinks may match those traits. The valid states that can be passed in by the clien
Temporary, Permanent, and Deprecated.

The client can indicate the maximum number of candidates it wants passed back
call using the sequence_max parameter. If the service matches more than that, a
iterator is created containing the rest. It is the responsibility of the client to either
retrieve all candidates from the iterator or to call the destroy() method. The client can
also specify the maximum number that should be returned in the iterator via the
iterator_max parameter.

Candidate iterators require transient objects that could have significant memory
management impact on a server. If a server does not support candidate iterators,
return a NULL object reference for every invocation and clients can only obtain
candidates that are returned as a sequence.
PIDS V1.0 IdentificationComponent Interface June 2000 2-19

2

larger

ence
ow

hms

er
ined

e two
hich

, then
vice
value
es

om.
s or

ty)

t
ntain
o
he

ntics

rver
y be

h that
nce
Using the sequence_max and iterator_max a client has the flexibility to do things
like:

• get all candidates as a sequence,

• get all candidates via an iterator,

• get up to 30 candidates as a sequence and the rest up to 50 on an iterator,

• get up to 15 candidates as a sequence and all the rest via an iterator.

The candidates returned by the operation have a confidence indication where the
the number the better the match. No candidate is returned that has a confidence
indicator that is less than the confidence threshold. The interpretation of the confid
threshold value is consistent with that of the confidence indicator. This indicates h
well the stored profile for that person matched the passed-in profile selector. The
number of candidates returned could be zero if the matching engine does not find
anything it feels matches close enough to return. Since there are so many algorit
this becomes a quality of service issue that is not standardized.

The range of values for the confidence indicator is 0.0-1.0 with 1.0 being the high
confidence (e.g., 100%). The exact semantics of the confidence indicator is determ
by the service but some guidelines may help. The client should be able to compar
returned candidates and determine if they are of equal confidence or determine w
is a higher confidence. If the returned candidates have different confidence values
they are returned in confidence order with the highest being returned first. If a ser
does not provide confidence determination, they may return 0.0 as the confidence
the same for all candidates. In this way, a client can know whether the service us
confidence values by whether the first candidate has a confidence of 0.0 or not.

The confidence value only has meaning relative to the single call it was returned fr
There is no standard way to compare confidences returned from different service
from multiple calls to the same service.

Some matching engines may use discrete matching (such as the UNIX 'grep' utili
and others may use fuzzy matching (such as spell checkers or the use of phonic
similarities). Even for discrete matching it is difficult to define exact semantics tha
could be applied to confidences since there are multiple traits and some traits co
multiple fields. Furthermore, the definitions would have to take into account how t
combine the results from each field and the results from each trait to determine t
confidence.

Matching engines map their matching capabilities to the defined confidence sema
as they see fit. How close they meet the expectations of the user is determined a
Quality of Service (QoS) issue that is not standardized.

The 'weight' field is a hint from the client on how much preference it thinks the se
should give to each profile passed in for determining matching confidences. It ma
thought of as the confidence the client has in each trait of the profile selector.

The weight must be between 0.0 and 1.0. The weights are relative measures suc
an exact match on a trait with weight = 0.5 results in twice the increase in confide
than an exact match on a trait with weight = 0.25.
2-20 Person Identification Service V1.0 June 2000

2

tics
tions
.

A server implementation can ignore the weight field hint if it chooses. Using it is
considered a Quality of Service (QOS) issue that is not standardized. The seman
here are just a way to define the measuring stick but does not require implementa
to prove adherence. This is in part because fuzzy semantics cannot be measured

The traits_requested parameter indicates the traits to be returned for every
candidate if the candidate has values for that trait.

2.2.3 ProfileAccess Interface

// --
// ProfileAccess
//

interface ProfileAccess :

IdentificationComponent
{

TraitNameSeq get_traits_known(
in PersonId id)

raises (
InvalidId);

Profile get_profile(

in PersonId id,
in SpecifiedTraits traits_requested)

raises (
InvalidId,
UnknownTraits,
DuplicateTraits);

TaggedProfileSeq get_profile_list(
in PersonIdSeq ids,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidIds,
DuplicateIds,
UnknownTraits,
DuplicateTraits);

TaggedProfileSeq get_deactivated_profile_list(
in PersonIdSeq ids,
in SpecifiedTraits traits_requested)

raises (
NotImplemented,
InvalidIds,
DuplicateIds,
UnknownTraits,
DuplicateTraits);
PIDS V1.0 IdentificationComponent Interface June 2000 2-21

2

ice.

f the

D

 user

must
ption
 they
ue
void update_and_clear_traits(
in ProfileUpdateSeq profile_update_spec)

raises (
InvalidIds,
DuplicateIds,
NotImplemented,
MultipleTraits);

IdInfoSeq get_id_info(

in PersonIdSeq ids)
raises (

TooMany,
DuplicateIds);

};

ProfilesAccess is the most basic interface used to get identity information for
persons. This service provides the simplest set of functionality for any PIDS serv

get_traits_known()

This operation returns the set of Traits known about a person by the service.

get_profile(), get_profile_list()

The get_profile() operation returns the profile or subset of the profile that the
component knows about the person. The passed-in traits indicate what subset o
profile that is being sought by the client.

The get_profile_list() is a shorthand mechanism for getting profiles for more than
one ID at a time. This can be much more efficient than get_profile() for getting
profiles on a lot of IDs since only one network round trip is required for all IDs as
opposed to one per ID. The results are returned with exactly one value for each I
passed in. The results are tagged with the ID.

Both operations raise the InvalidId(s) exceptions if the IDs are not Permanent or
Temporary.

Access rights to profiles are determined by the CORBAsec mechanisms (i.e., the
may not be able to access them).

get_deprecated_profile()

This is a special operation to get the profile of deprecated IDs. The ID passed in
be in the Deprecated state and known by the component or else the InvalidId exce
is raised. A service may choose to not keep the old profiles around in which case
raise the NotImplemented exception. The results are returned with exactly one val
for each ID passed in. The results are tagged with the ID.
2-22 Person Identification Service V1.0 June 2000

2

add.
 the

use

h the
update_and_clear_traits()

This operation is used to modify the profile of already existing IDs. The structures
passed in specify which traits in the profile to be cleared and which to change or
Traits not mentioned to be cleared or changed remain the value they were before
call.

• If a PIDS component logs an audit trail of profile changes, this operation will ca
an event to be logged.

• If a trait for an ID is listed to be cleared and changed, the ModifyOrDelete
exception is raised.

• If the passed-in ID is not in the Temporary or Permanent IdState, the InvalidIds
exception is raised.

• If all supported traits are read-only, the service raises the NotImplemented
exception.

get_id_info()

This operation returns the current IdStateInfo for each ID passed in. The results are
returned with exactly one value for each ID passed in. The results are tagged wit
ID.

2.2.4 SequentialAccess Interface

// ---
// SequentialAccess
//

interface SequentialAccess :
IdentificationComponent

{
 unsigned long id_count_per_state(

in IdStateSeq states_of_interest)
raises (

InvalidStates);

TaggedProfileSeq get_all_ids_by_state(
in SpecifiedTraits traits_requested,
in IdStateSeq states_of_interest)

raises (
TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_first_ids(
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)
PIDS V1.0 IdentificationComponent Interface June 2000 2-23

2

, that
be
 to a
ry,
raises (
TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_last_ids(
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_next_ids(
in PersonId reference_id,
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidId,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_previous_ids(
in PersonId reference_id,
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidId,
UnknownTraits,
DuplicateTraits,
InvalidStates);

};

id_count_per_state()

This operation indicates the number of IDs, having one of the ID states passed in
the component knows of. The value could be zero at any point in time or it could
very large. Hospital ancillary systems would likely have from less than a dozen up
hundred or many thousands. The valid states that can be passed in are Tempora
Permanent, and Deprecated.
2-24 Person Identification Service V1.0 June 2000

2

 one
he
in are

he
ering
its,

 can

d of

cular

,
aller
at
get_all_ids_by_state()

This operation returns profiles for all patients the service knows about that match
of the states passed in. The returned profiles only contain the traits indicated by t
passed-in parameter, if they exist for the ID. The valid states that can be passed
Temporary, Permanent, and Deprecated.

get_first_ids(), get_last_ids(), get_next_ids(), get_previous_ids()

These are the operations that provide sequential access to all the IDs known by t
system/service. The service must have a consistent way to order the IDs. The ord
may be different for each set of traits asked for; however, for a particular set of tra
the ordering is the same for all these operations. The ordering mechanism is
implementation-dependent and hidden behind the interface. The valid states that
be passed in are Temporary, Permanent, and Deprecated.

A client can request the profiles for a number of persons at the beginning and en
the ordered list by using the get_first_ids() and get_last_ids() respectively. The
client passes in the number of IDs and profiles wanted.

A client can also request a number of profiles that are either after or before a parti
ID via the get_next_ids() and get_previous_ids() . The ID and profile for the ID
passed in is not returned.

Using these four operations: get_first_ids() , get_last_ids() , get_next_ids() , and
get_previous_ids() a client can scroll forward or backward through the set of IDs
known by the service, a page at a time. The number of profiles returned may be sm
than that requested if the number of profiles held by the service is smaller than th
requested.

2.2.5 IdentityAccess Interface

// ---
// IdentityAccess
//

interface IdentityAccess :
IdentificationComponent

{
Identity get_identity_object(

in PersonId id)
raises (

InvalidId);

IdentitySeq get_identity_objects(
in PersonIdSeq ids)

raises (
InvalidIds);

};

interface Identity
PIDS V1.0 IdentificationComponent Interface June 2000 2-25

2

.
he
 the

rols
{
readonly attribute IdentificationComponent source_component;
readonly attribute IdInfo id_info;
readonly attribute TraitNameSeq traits_with_values;
readonly attribute long trait_value_count;

Trait get_trait(

in TraitName trait_requested)
raises (

UnknownTraits);

Profile get_profile(
in SpecifiedTraits traits_requested)

raises (
UnknownTraits,
DuplicateTraits);

Profile get_deactivated_profile(

in SpecifiedTraits traits_requested)
raises (

NotImplemented,
UnknownTraits,
DuplicateTraits);

void update_and_clear_traits(
in ProfileUpdate profile_update_spec)

raises (
NotImplemented,
UnknownTraits,
WrongTraitFormat,
ModifyOrDelete,
ReadOnlyTraits,
CannotRemove,
DuplicateTraits);

void done();
};

The Identity object can provide individual ID level access control via CORBA
Security. Specific access control parameters might be available in some security
policies applied to an Identity object with the specific object being security-unaware
These policies can be set up to prevent access on an operation/attribute basis. T
service must be security-aware in order to implement security policies that vary by
parameters passed in (e.g., separate access control for each trait).

Policies governing access to the interfaces are determined by administrative cont
beyond the scope of this specification.
2-26 Person Identification Service V1.0 June 2000

2

 ID

.

get to

 of

ID.

f the

 the
get_identity_object()

Returns an identity object that represents the ID passed in, assuming it is a valid
and known by the component.

get_identity_objects()

Returns an identity object for each ID passed in, assuming they are valid IDs and
known by the component.

2.2.5.1 Identity Interface

The Identity interfaces provide a way that access control can be applied at the ID
Instances of Identities are accessed from the IdentityAccess interface.

source_component

This is an object reference back to the component that created the Identity object.
This may be useful if the reference was passed to a third party that may need to
other functionality of the component.

id_info

The id_info attribute contains the ID by which this person is known. This consists
the PersonId (simple name) and the IdState of the ID. If it has been merged, it has
the preferred ID as well.

traits_with_values

This read-only attribute returns the list of trait names for traits with values for the

trait_value_count

This attribute is the count of the number of traits with values for the ID.

get_trait()

This operation returns the value set on the specified trait or raises an exception i
trait is not known.

get_profile()

This operation returns the traits requested that have values set.

get_deactivated_profile()

This is a special operation to get the profile of deprecated IDs. The ID must be in
Deprecated state or the InvalidId exception is raised. A service may choose to not
keep the old profiles around in which case they raise the NotImplemented
exception.
PIDS V1.0 IdentificationComponent Interface June 2000 2-27

2

 and
 the

uld be

elete

y for

tation
update_and_clear_traits()

This operation updates the profile by clearing (deleting the values) for some traits
setting the values for others. The ones not mentioned are left the same as before
call. If all supported traits are read-only, the service raises the NotImplemented
exception.

done()

This is called when the client no longer needs to access the object. Since there co
many Identity objects created for a single PIDS component the proper use of this
operation can help the service in its own memory management. The server may d
the object reference if the object is transient or may delete the object from memor
persistent objects. This does not preclude Identity objects from being implemented
persistently but it does not guarantee they are persistent. It is a service implemen
issue as to when transient Identity objects are deleted if done() is not called. Clients
should be prepared to get another object reference from the IdentityAccess interface
if the Identity object is no longer valid while they still need to use it.

2.2.6 IdMgr Interface

// --
// IdMgr
//

interface IdMgr :
IdentificationComponent

{
PersonIdSeq register_new_ids(

in ProfileSeq profiles_to_register)
raises (

ProfilesExist,
DuplicateProfiles,
MultipleTraits);

PersonIdSeq find_or_register_ids(
in ProfileSeq profiles_to_register)

raises (
DuplicateProfiles,
MultipleTraits);

void register_these_ids(
in TaggedProfileSeq profiles_to_register)

raises (
NotImplemented,
IdsExist,
DuplicateIds,
ProfilesExist,
DuplicateProfiles,
MultipleTraits);
2-28 Person Identification Service V1.0 June 2000

2

l
or
es.
ation
PersonIdSeq create_temporary_ids(
in ProfileSeq profiles_to_register)

raises (
MultipleTraits);

PersonIdSeq make_ids_permanent(

in PersonIdSeq ids_to_modify)
raises (

InvalidIds,
DuplicateIds,
RequiredTraits);

IdInfoSeq merge_ids(
in MergeStructSeq ids_to_merge)

raises (
InvalidIds,
DuplicateIds);

IdInfoSeq unmerge_ids(
in PersonIdSeq ids_to_unmerge)

raises (
InvalidIds,
DuplicateIds);

IdInfoSeq deprecate_ids(
in PersonIdSeq ids_to_deprecate)

raises (
InvalidIds,
DuplicateIds);

};

IdMgr is an interface providing the core set of functionality for managing IDs in a
single ID Domain. Specifically it can allocate a unique ID to a specific profile. Al
the operations on IdMgr are “write” commands as opposed to “read” commands. F
this reason, there may be more secure access control to prevent unwanted chang
The access control is managed by the CORBA security service and the implement
of the IdMgr service.
PIDS V1.0 IdentificationComponent Interface June 2000 2-29

2

e
nly
 calls
hould
ew

ntee
orary

m.

s
e
dard

Figure 2-2 Transitions between IDStates

Figure 2-2 shows the transitions between IdStates which are defined by operations on
the IdMgr interface. Using the IdState as the values for a state machine pulls thes
operations together into a coherent set of semantics. The transitions shown are o
suggestive as the policies of the service are implementation-dependent. If a client
a particular operation, they are suggesting to the service that certain transitions s
occur. The service may make the transition immediately, may wait for human revi
before making the transition, or possibly never make the transition.

When a client needs to create a new ID, the service returns it but does not guara
whether it is Temporary or Permanent. Services are not required to use the Temp
ID state.

register_new_ids()

This generates new IDs in this ID Domain and binds the passed-in profiles to the
The register_new_ids() operation establishes an association between IDs and
profiles making them available for other component operations. This also Create
distinct, new IDs according to the rules and conventions for the ID Domain. Thes
rules and conventions are implicit to the ID Domain and are not accessible via stan
CORBA IDL.

By calling this operation, the client is indicating it needs the IDs generated
immediately and they are expected to become permanent. It is up to the service
whether they are returned as permanent or as temporary IDs and require human
interaction before becoming permanent.

active states
Inval id

Permanent

Temporary

Deact ivated

register_new_ids()
find_or_register_ids()
register_these_ids()

create_temporary_ids() make_ids_permanent()

deprecate_ids()

Unknown

merge_ids()

unmerge_ids()
2-30 Person Identification Service V1.0 June 2000

2

ld a

y be
es
by a

den
 the

nt ID
This
sed

ed in.
ry IDs
 may

 can
find_or_register_ids()

This operation is used for generating IDs in unattended operation. An internal
(hidden) value may indicate the confidence threshold that matching must attain in
order to consider the person already has an ID in this Domain. Below this thresho
new ID is generated and the profile is bound to it.

This operation could produce two different resulting IdStates . It only changes the
state of an ID if it creates a new ID. The resulting state of a newly created ID ma
Temporary or Permanent which is implementation- and site-dependent. Some sit
may choose to only produce temporary IDs automatically so they may be verified
person before making them permanent.

register_these_ids()

This operation works similar to register_new_ids() except the client also indicates
the value for the created IDs. The policy for generating the ID values may be hid
within the service and it would not allow clients to set the ID values. In this case,
service raises the NotImplemented exception.

create_temporary_ids()

The create_temporary_ids() operation creates new IDs and indicates the client
needs IDs that may be Temporary. A PIDS implementation may return a Permane
or Temporary ID. The mandatory traits are not required to create a temporary ID.
operation will still create a new ID even if an existing profile matches the one pas
in.

make_ids_permanent()

Temporary IDs may be made permanent by the make_ids_permanent() operation.
For some services the permanent IDs returned may be the same as the one pass
Other services may want to use a separate part of the ID name space for tempora
so they can tell the IDs are temporary by looking at them. For example, a service
precede every temporary ID by the letters TEMP-.

merge_ids()

If a person is found to have more than one ID in an ID Domain, all but one of them
be merged into the preferred ID by calling the merge_ids() operation with each
duplicate ID. The preferred ID will be unchanged except if it supports the
PersonIdTraits::MergedIds trait, it will be modified to reference the ID being
merged to it. The merged ID will have its IdState set to Deactivated (possibly after
human review) and have the preferred_id field on its IdInfo set to the preferred ID.
The preferred ID will have its MergedIds trait set with the merged ID in it.

The IdInfoSeq returned has the IdInfo for each of the target IDs passed in to the
operation.
PIDS V1.0 IdentificationComponent Interface June 2000 2-31

2

 ID.

the

unmerge_ids()

If an ID that has been merged with another is found later to represent a different
person, it may be unmerged with this operation. If the MergedIds trait is supported,
the profile for the ID this was merged with is changed to no longer reference this

If the passed-in ID(s) is(are) not merged (in the Deactivated state and preferred_id
set to something other than (““) the InvalidIds exception is raised.

The IdInfoSeq returned has the IdInfo for each of the target IDs passed in to the
operation.

deprecate_ids()

Once an ID is expected to never be used again it may be retired from service by
deprecate_ids() operation which is a request to change the IdState to Deactivated.
A service may either remove the profile for the ID or leave it intact for historical
purposes, but it can never be changed. The profile can be accessed only with the
special operation get_deprecated_profiles() .

The IdInfoSeq returned has the IdInfo for each of the target IDs passed in to the
operation.

2.2.7 CorrelationMgr Interface

// ---
// CorrelationMgr
//

interface CorrelationMgr :
IdentificationComponent

{
readonly attribute DomainNameSeq source_domains;

void load_profiles(
in QualifiedTaggedProfileSeq tagged_profiles)

raises (
UnknownTraits,
WrongTraitFormat,
DomainsNotKnown);

QualifiedPersonIdSeq get_corresponding_ids(
in QualifiedPersonId from_id,
in DomainNameSeq to_domains)

raises (
DomainsNotKnown,
IdsNotKnown);

};
2-32 Person Identification Service V1.0 June 2000

2

he

s

om
tion

can

e ID

ting
ain
The PersonIdTraits::CorrelatedIds trait is a special trait that is only used by
components that implement the CorrelationMgr interface. The CorrelationMgr is
responsible for setting this trait to reference all source IDs that are correlated to t
same ID in the correlation Domain. This must be consistent with the information
obtained via the get_corresponding_ids() operation.

The CorrelationMgr interface does not provide operations to support manual
correlation or retrospective verification of unattended correlation. These capabilitie
may be addressed in a later RFP.

source_domains

This read-only attribute contains a list of source ID Domains that profiles may be
loaded from and IDs may be mapped to or from.

load_profiles()

This operation causes the profiles to be loaded into the Correlating ID Domain, fr
the specified source ID Domains. It is an implementation decision whether correla
is performed immediately.

Note – The use of the UnknownTraits and WrongTraitFormat exceptions has been
deprecated for servers to raise. They remain on the interface so that new clients
still receive the old exceptions from old servers.

get_corresponding_ids()

This operation returns the IDs in the destination ID Domains that correspond to th
passed in.

find_or_register_ids()

If this operation is implemented, it causes the profiles to be loaded into the Correla
ID Domain, from the specified source domains. IDs from the Correlationg ID dom
for each profile are returned.

2.3 NamingAuthority Module

//File: NamingAuthority.idl

#ifndef _NAMING_AUTHORITY_IDL_
#define _NAMING_AUTHORITY_IDL_

#include <orb.idl>

#pragma prefix "omg.org "

module NamingAuthority
{

PIDS V1.0 NamingAuthority Module June 2000 2-33

2

enum RegistrationAuthority {
OTHER,
ISO,
DNS,
IDL,
DCE };

typedef string NamingEntity;

struct AuthorityId {
RegistrationAuthority authority;
NamingEntity naming_entity;

};
typedef string AuthorityIdStr;

typedef string LocalName;
struct QualifiedName {

AuthorityId authority_id;
LocalName local_name;

};
typedef string QualifiedNameStr;

exception InvalidInput {};

interface translation_library
{

AuthorityIdStr authority_to_str(
in AuthorityId authority)

raises(
InvalidInput);

AuthorityId str_to_authority(
in AuthorityIdStr authority_str)

raises(
InvalidInput);

QualifiedNameStr qualified_name_to_str(
in QualifiedName qualified_name)

raises(
InvalidInput);

QualifiedName str_to_qualified_name(
in QualifiedNameStr qualified_name_str)

raises(
InvalidInput);

};
};

#endif // _NAMING_AUTHORITY_IDL_
2-34 Person Identification Service V1.0 June 2000

2

 to
need is

tities

s not

, the
alities

f the

tion)
e to
e same

ble to
 one

 of
lves,
s that
ther

g
ISO

ing
r

in the
The NamingAuthority module provides a means of giving globally unique names
name spaces and hence the names within those name spaces. The fundamental
the ability to compare two names for equality. If they are equal, they are known to
represent the same entity, concept, or thing. This is needed when independent en
are generating names that may get compared for equality; however, the reverse i
guaranteed to be true (that is, an entity may have several names).

The authority for the name space may derive from several different types of roots
choice of which depends upon the user requirements as each root has different qu
of management and uniqueness. The various root types are defined below.

#pragma prefix "org/omg"

To prevent name pollution and name clashing of IDL types this module (and all
modules defined in this specification) uses the pragma prefix that is the reverse o
OMG’s DNS name.

RegistrationAuthority

Identifies the root of the name space authority. An entity (e.g., person or organiza
may be registered with multiple different roots (RegistrationAuthorities) and be abl
assign names and other name spaces within each root. These may be used for th
or for different needs. For this reason, there is no guarantee of any equality in the
different name spaces managed by an entity. There are currently no means availa
determine whether a given authority in an ISO hierarchy is the same authority as
specified in a DNS hierarchy.

• OTHER : This form of a naming authority should be used sparingly, and only in
experimental or localized situations or special purposes. It is the responsibility
the implementing institution to guarantee uniqueness within the names themse
and there is no uniqueness guarantee outside of the source institution. Service
define default naming authorities (and possibly also names) may also use the O
root to forego long AuthorityIds . In this case, the specification of the service
must name AuthorityIds that may be expected with the Other root and still
maintain name space integrity for that service.

• ISO: International Standards Organization1. The ISO specifies a registration
hierarchy identified by a series of named/numbered nodes. Many of the codin
schemes used in the medical environment are or can be registered within the
naming tree. The ISO root form is one of the recommended forms when the nam
authority is internationally recognized, such as international coding schemes, o
when the authority is to be used across two or more different enterprises. ISO
provides for the recording of a responsible person and address for each node
authority hierarchy.

1. ISO/IEC 8824-1 (1994) Information Technology - Abstract Syntax Notation One (ASN.1) -
Specification of Basic Notation.
PIDS V1.0 NamingAuthority Module June 2000 2-35

2

al

d as
s
n

e
y. It is
, not

 the

e

ity
lue
tly

sible

space

ithin

bally

t

t of
tions

tax of
• DNS: Domain Name Services2. Internet domains are recorded with a central, glob
registration authority. Subhierarchies within the domains are then maintained
locally by the registered organization or person. The DNS form is recommende
an alternative to the ISO naming tree when the specific naming authority need
identity and uniqueness, but is not in an ISO registration. By using this commo
characteristic of many organizations it gives the ability to create globally uniqu
name spaces and names without the need to register as an ISO name authorit
up to the organization itself to maintain the integrity of the name space(s) (e.g.
reusing names or name spaces).

• IDL : The OMG Interface Repository3. The CORBA Architecture specifies a
means of identifying entities as being unique within the interface repository, via
use of a RepositoryId. CORBA repository ids may be in either the OMG IDL
format, the DCE UUID format, or the LOCAL format. Within this specification, th
“IDL” root refers only to the IDL format. The DCE format may be represented
within the DCE root and the Local format within the Other root. The IDL author
may prove very useful when registering CORBA/IDL specific objects such as va
sets, interface specifications, etc. It should be noted that OMG does not curren
manage the repository name space in any rigorous fashion, and it is quite pos
that two different developers may arrive at exactly the same repository ID for
entirely different entities. For this reason, some people give the repository ID a
prefix that consists of their reverse DNS that is “/” separated instead of “.”
separated. This root type may be very useful when the names within the name
are defined in IDL. For example, it could be the RepositoryId for an enumerated
type or a module that has constant integers or strings defined for each name w
the name space.

• DCE: The Distributed Computing Environment4. While they don’t actually register
coding schemes or other entities, they do provide a means of generating a glo
unique 128-bit ID, called a Universally Unique ID (UUID). This UUID may be
used to guarantee the uniqueness of a name space in situations where it is no
necessary for the identity of the authority to be known outside of the specific
implementation.

NamingEntity

Identifies a specific name in the syntax and format specified by the corresponding
registration authority. The various naming authorities tend to provide a fair amoun
leeway as far as the actual format of the registered names. As there may be situa
where the full semantics of a specific authority’s name comparison will not be
available to an application, we have chosen to select a specific subset of the syn

2.P. Mockapetris, " Domain Names - Concepts and Facilities", RFC 1034, Information Sci-
ences Institute, November 1987.

3. OMG’s The Common Object Request Broker: Architecture and Specification.

4. DCE 1.1 : Remote Procedure Call. OpenGroup Document Number C706, August 1997.
2-36 Person Identification Service V1.0 June 2000

2

red
cific

ice

me

h
 Since
h that
 use

or:

 A-F.

re

cific
each representation. The intention is to be able to determine whether two registe
entities are identical, or not, solely through the use of string comparison. The spe
name formats are described below:

• OTHER : An arbitrary string, syntax undefined except locally by a specific serv
specification and/or by particular implementations and installations. The “/”
character is illegal to use as it is reserved as a separator of components in the
stringified version of QualifiedName.

• ISO: The name should be represented using the NameForm of the
ObjectIdentifierValue as specified in ISO/IEC Recommendation 8824-1. Each na
component should be separated by a single space.

Example: “joint-iso-ccitt specification characterString”

• DNS: The domain name and path in the form mandated in RFC 1034. The pat
name is represented as a dot separated tree which traverses up the hierarchy.
DNS names are not case-sensitive, only lower case letters should be used suc
simple string comparisons can determine equality. However, it is permissible to
case insensitive comparisons as well.

Example: “pidsserv.slc.mmm.com”

• IDL : The OMG RepositoryId format specified in The Common Object Request
Broker: Architecture and Specification, in the form: “<node>/<node>/…/<node>.”
The IDL: prefix and the version number suffix should NOT be used for the
NamingEntity . The IDL: prefix is prepended to create the AuthorityIdStr .

Example:“CosNaming/NamingContext/NotFoundReason” is the NamingEntity f

module CosNaming {
…
interface NamingContext {

…
enum NotFoundReason { … };
…

};
};

• DCE: The UUID in the external form <nnnnnnnn-nnnn-nnnn-nnnn-
nnnnnnnnnnnn>, where <n> represents one of the digits 0-9 and the characters
The alpha characters should all be upper case.

Example: “6132A880-9A34-1182-A20A-AF30CF7A0000”

AuthorityId, AuthorityIdStr

The combination of a Registration Authority and Naming Entity, which identifies a
specific naming authority. In situations where a given naming entity may have mo
than one naming authority, it should be agreed upon in advance which of the spe
PIDS V1.0 NamingAuthority Module June 2000 2-37

2

t the
 to

s

a

e

names for the entity is to be used. This specification makes no guarantees abou
ability to recognize, for example, that an authority in the ISO structure is identical
an authority within the IDL structure.

The string version (AuthorityIdStr) is useful for situations where unique names are
required in a string format. The string is created as <stringified
RegistrationAuthority >:<NamingEntity >.

LocalName, QualifiedName, QualifiedNameStr

A local name is a name within (relative to) a namespace. It is simply a string
representation.

A QualifiedName is a globally unique name for an entity by the fact that it carrie
the naming AuthorityId of the name space and the LocalName within that name
space.

The QualifiedNameStr is a stringified version of the QualifiedName . The format
of the string is <stringified RegistrationAuthority >:
<NamingEntity >/<LocalName >. Notice that even though the slash character “/”
cannot be used within the name of a NamingEntity it can be used within the
LocalName . Table 2-1 summarizes the format for QualifiedNameStr . Columns 1-3
give the format for an AuthorityIdStr .

The definitions for type OTHER are defined to allow using a QualifiedNameStr
format in contexts where an IDL “string” is currently used. A normal IDL string is
QualifiedNameStr with no RegistrationAuthority and no NamingEntity . The
limitation is that any normal IDL strings that start with one of the
RegistrationAuthority strings cannot be mapped into the QualifiedNameStr since
they would be interpreted by the rules in this module.

The string for the “OTHER” type of RegistrationAuthority being a blank string (““)
makes it easier for locally defined names to be usable with no requirements on th
format except they cannot start with one of the strings reserved for the other
RegistrationAuthority types. The “:” delimiter is optional for type OTHER. If the
NamingEntity is ““ for type OTHER, then the “/” delimiter is also optional.

Table 2-1 Summary of QualifiedNameStr Format

Registration
Authority

(1)
Stringified

Registration
Authority

(2)
RA-NE

Delimiter

(3)
NamingEntity

Format

(4)
NE-LN

Delimiter

(5)
LocalName

Format

OTHER “” “:” optional <no ‘/’> “/” optional <no ‘/’>

ISO “ISO” “:” <use ISO rules> “/” <any characters>

DNS “DNS” “:” <use DNS rules> “/” <any characters>

IDL “IDL” “:” <use IDL rules> “/” <no ‘/’>

DCE “DCE” “:” <use DCE rules> “/” <any characters>
2-38 Person Identification Service V1.0 June 2000

2

 type
. Only

h

 to

es. In
like a

ats
aits
ferent
hey

mat

se.
as
he

uld be
erable
to be
2.3.1 Exceptions

InvalidInput

The InvalidInput exception is raised when the input parameter for the
TranslationLibrary interface operations is determined to be of an invalid format.

2.3.2 TranslationLibrary interface

This interface is meant to be a local library for translating between the structured
version and stringified version of AuthorityIds and QualifiedNames .

authority_to_str,
str_to_authority,
qualified_name_to_str,
 str_to_qualified_name()

Each of these operations take either a structured version or stringified version of a
and return the opposite. The data content returned is the same as that passed in
the representation of the data is changed.

2.4 Traits

The definitions in the PersonIdService module define traits as name/value pairs wit
the name being a string (in the QualifiedNameStr format) and the value being an
“any.” This is done to provide complete flexibility in defining traits. The traits used
help identify a person may be of many types and formats. Many of them are
represented as strings but others can be structured types and even multimedia typ
addition there are many inconsistent standards even for the more common traits
person’s name.

This specification was written to allow the use of different traits and different form
of traits to be used as needed. A specific implementation of PIDS may use the tr
that meet these needs. The formats of even the common traits may need to be dif
depending on the technical and political environment in which they are deployed. T
may need to work with other information services that have a predefined data for
that the implementation decides to use. The data formats used for traits may be
required by legal means as well.

While this specification does not limit what traits can be used with PIDS it does
specify a set that can be well-known and used by clients and servers if they choo
The set consists of data formats from a couple of well-known industry standards
well as some special traits defined just for PIDS. The well known standards are t
Health Level Seven (HL7) and vCardTM.

If there are environments where other standard sets of traits are needed, they co
standardized via the OMG’s processes. These could be areas that require interop
solutions to existing standards or legacy systems for which PIDS interfaces need
provided.
PIDS V1.0 Traits June 2000 2-39

2

its

r 18,

rd
ient

ion,
The following sections define the three modules that contain the default set of tra
defined by PIDS:

• PersonIdTraits Module

• HL7Version 2_3 Module

• vCardTraits Module

2.4.1 References

Health Level Seven (HL7) Standard, version 2.3, 1997.

Versit Consortium. VCard - The Electronic Business Card, version 2.1, Septembe
1996.

American Dental Association, "Proposed ANSI/ADA Specification No 1000 Standa
Clinical Data Architecture for the Structure and Content of a Computer-based Pat
Record. Part 1000.1 Individual Identification", ASC MD156, August 1997.

ASTM E1239, Standard Guide for Description of Reservation/Registration-Admiss
Discharge, Transfer (R-ADT) Systems for Automated Patient Care Information
Systems, Committee E-31 on Computerized Systems, Subcommittee E31.19 on
Vocabulary for Computer-Based Patient Records-Content and Structure, West
Conshohocken, PA: ASTM, January 15, 1994.

ASTM E1714. Guide for the Properties of a Universal Healthcare Identifier.
Committee E-31 on Computerized Systems, Subcommittee E31.12 on Medical
Records. West Conshohocken, PA: ASTM, Aug. 15, 1995.

ASTM E1385. Guide for global environments for RADT.

ASTM E1715. RADT data model.

CPRI, 1996a. Action Plan for Implementing a Universal Patient Identifier, Draft
Version 1.0. Schaumburg, IL: Computer-based Patient Record Institute, May.

ICSI, 1995. Data Communication Standard: Patient Identifier, September 1995.

HIN, 1997. The Essential Medical Data Set (EMDS), January 8, 1997.

UK National Health System Common Data Model.

2.4.2 PersonIdTraits Module

//File: PersonIdTraits.idl

#ifndef _PERSON_ID_TRAITS_IDL_
#define _PERSON_ID_TRAITS_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"
2-40 Person Identification Service V1.0 June 2000

2

not
e for
e

value

r

on.

 the
t the
module PersonIdTraits
{

const PersonIdService::TraitName NULL_TRAIT = "";
typedef any NullTraitType; // set to tk_null

const PersonIdService::TraitName INTERNAL_ID = "PIDS/InternalId";
typedef PersonIdService::PersonId InternalIdType;

const PersonIdService::TraitName MERGED_IDS = "PIDS/MergedIds";
typedef PersonIdService::PersonIdSeq MergedIdsType;

const PersonIdService::TraitName DUPLICATE_IDS = "PIDS/DuplicateIds";
typedef PersonIdService::PersonIdSeq DuplicateIdsType;
const PersonIdService::TraitName CORRELATED_IDS = "PIDS/CorrelatedIds";
typedef PersonIdService::QualifiedPersonIdSeq CorrelatedIdsType;

const PersonIdService::TraitName EXTERNAL_IDS = "PIDS/ExternalIds";
typedef PersonIdService::QualifiedPersonIdSeq ExternalIdsType;

const PersonIdService::TraitName NATIONAL_HEALTH_IDS = "PIDS/NationalHealthId";
struct NationalHealthIdStruct {

string country_code;
PersonIdService::PersonId id;

};
typedef sequence< NationalHealthIdStruct > NationalHealthIdStructSeq;
typedef NationalHealthIdStructSeq NationalHealthIdsType;

};

#endif // _PERSON_ID_TRAITS_IDL_

The PersonIdTraits module contains definitions for traits that are needed but are
defined by the HL7 Version 2.3 or vCard Version 2.1 standards. Most of these ar
defining other IDs a person may have where these IDs can be characterized in th
format of this specification.

NULL_TRAIT, NullTraitType

This trait is used in places where a trait or trait name must be passed but no valid
exists.

INTERNAL_ID, InternalIdType

The InternalId , if used, is always set to the PersonID itself. It is specified in the
supported_traits as read-only and searchable but not mandatory. The reason fo
including it as a trait is to allow matching on it. This is the only way the ID can be
matched on when only part of the ID is known. For example, this could occur if a
person’s ID card has a tear or only part of the digits are remembered by the pers

MERGED_IDS, MergedIdsType

This trait indicates the set of other IDs a person may have. The IDs listed are from
same ID Domain as the ID this trait is bound to. It has the special semantics tha
IDs listed are in the Deprecated IdState and the preferred_id on their IdInfo
PIDS V1.0 Traits June 2000 2-41

2

om

 the
n

m a
as

S.

from
 is

rd
 that

nce
t
references the ID this trait is bound to. The setting of this trait is controlled by the
PIDS implementation in order to maintain consistency with the back references fr
the IDs listed; therefore, this trait is always read-only when supported by a PIDS.

DUPLICATE_IDS, DuplicateIdsType

This trait indicates the set of other IDs a person may have. The IDs listed are from
same ID Domain as the ID this trait is bound to. This is more general purpose tha
MergedIds . The IDs listed in this trait do not have to be deprecated or merged.

CORRELATED_IDS, CorrelatedIdsType

This trait indicates the set of other IDs a person may have. The IDs listed are fro
different ID Domain than the ID Domain of the ID this trait is bound to. This trait h
special semantics in that it refers to IDs that have been correlated by the
CorrelationMgr ; therefore, this trait is always read-only when supported by a PID

EXTERNAL_IDS, ExternalIdsType

This trait indicates the set of other IDs a person may have. The IDs listed may be
a different ID Domain than the ID Domain of the ID this trait is bound to. This trait
more general purpose than CorrelatedIds . The IDs listed in this trait may be set by
mechanisms other than automatic correlation.

NATIONAL_HEALTH_IDS, NationalHealthIdsType

The NationalHeathlId trait is added in this module because the HL7 2.3 and vCa
2.1 standards do not have a corresponding trait. This trait is important in countries
have a national healthcare ID. The “country_code” field indicates the name of the
country issuing the IDs. The ISO 3166 two-letter country codes or the telephone
numeric country codes are to be used. The value for this trait consists of a seque
since it is possible for a person to have IDs in multiple countries or accidently ge
multiple IDs in the same country.

2.4.3 HL7Version2_3 Module

//File: HL7Version2_3.idl

#ifndef _HL7_VERSION_2_3_IDL_
#define _HL7_VERSION_2_3_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module HL7Version2_3
{

typedef PersonIdService::TraitName PIDFieldName;
typedef string PIDFieldValue;
2-42 Person Identification Service V1.0 June 2000

2

ding
e is
 with

D

is
 to

 ones

f
const PIDFieldName PATIENT_NAME = "HL7/PatientName";
const PIDFieldName MOTHERS_MAIDEN_NAME = "HL7/MothersMaidenName";
const PIDFieldName DATE_TIME_OF_BIRTH = "HL7/DateTimeofBirth";
const PIDFieldName SEX = "HL7/Sex";
const PIDFieldName PATIENT_ALIAS = "HL7/PatientAlias";
const PIDFieldName RACE = "HL7/Race";
const PIDFieldName PATIENT_ADDRESS = "HL7/PatientAddress";
const PIDFieldName COUNTY_CODE = "HL7/CountyCode";
const PIDFieldName PHONE_NUMER_HOME = "HL7/PhoneNum-ber_Home";
const PIDFieldName PHONE_NUMBER_BUSINESS = "HL7/PhoneNum-ber_Business";
const PIDFieldName PRIMARY_LANGUAGE = "HL7/PrimaryLanguage";
const PIDFieldName MARITAL_STATUS = "HL7/MaritalStatus";
const PIDFieldName RELIGION = "HL7/Religion";
const PIDFieldName PATIENT_ACCOUNT_NUMBER = "HL7/PatientAccountNumber";
const PIDFieldName SSN_NUMBER = "HL7/SSNNumber";
const PIDFieldName DRIVERS_LICENSE_NUMBER = "HL7/DriversLicenseNumber";
const PIDFieldName MOTHERS_IDENTIFIER = "HL7/MothersIdentifier";
const PIDFieldName ETHNIC_GROUP = "HL7/EthnicGroup";
const PIDFieldName BIRTH_PLACE = "HL7/BirthPlace";
const PIDFieldName MULTIPLE_BIRTH_INDICATOR = "HL7/MultipleBirthIndicator";
const PIDFieldName BIRTH_ORDER = "HL7/BirthOrder";
const PIDFieldName CITIZENSHIP = "HL7/Citizenship";
const PIDFieldName VETERANS_MILITARY_STATUS = "HL7/VeteransMilitaryStatus";
const PIDFieldName NATIONALITY = "HL7/Nationality";
const PIDFieldName PATIENT_DEATH_DATE_AND_TIME= "HL7/PatientDeathDateandTime";
const PIDFieldName PATIENT_DEATH_INDICATOR = "HL7/PatientDeathIndicator";

};
#endif //_HL7_VERSION_2_3_IDL_

The HL7Version2_3 module defines the standard trait names for using trait
information from the Health Level Seven (HL7) standard. The traits correspond to
fields 5-30 in the PID segment as defined in Version 2.3 of the HL7 standard. The
values for the traits are strings (HL7Version2_3::PIDFieldValue) formatted
according to the rules specified by the HL7 standard.

The values for these HL7 PID traits contain the exact semantics as the correspon
fields in the HL7 Version 2.3 PID segment. For example, where the “CE” data typ
used any HL7 recommended value sets are also recommended when using them
PIDS.

The trait names (HL7Version2_3::PIDFieldName) include the complete
QualifiedNameStr which has a registration authority of OTHER and the authority I
of “HL7.”

Many of these traits from the HL7 PID segment are demographic traits instead of
identifying traits. The difference between demographic traits and identifying traits
often dependent on the environment in which they are being used. It was decided
include all of these PID segment traits and let the PIDS implementors choose the
that are considered identifying traits for their service.

Note – HL7 is working on version 3.0 of its standard. Once it is finished the list o
traits may be updated or a new list created via the standard OMG processes.
PIDS V1.0 Traits June 2000 2-43

2

2.4.4 vCardTraits Module

//File: vCardVersion2_1.idl

#ifndef _V_CARD_VERSION_2_1_IDL_
#define _V_CARD_VERSION_2_1_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module vCardVersion2_1
{

typedef PersonIdService::TraitName PropertyName;
typedef string PropertyValue;

const PropertyName FORMATTED_NAME = "vCard/FN";
const PropertyName NAME = "vCard/N";
const PropertyName PHOTOGRAPH = "vCard/PHOTO";
const PropertyName BIRTHDAY = "vCard/BDAY";
const PropertyName ADDRESS = "vCard/ADR";
const PropertyName HOME_ADDRESS = "vCard/ADR;HOME";
const PropertyName WORK_ADDRESS = "vCard/ADR;WORK";
const PropertyName TELEPHONE = "vCard/TEL";
const PropertyName PREFERRED_TELEPHONE = "vCard/TEL;PREF";
const PropertyName HOME_TELEPHONE = "vCard/TEL;HOME";
const PropertyName WORK_TELEPHONE = "vCard/TEL;WORK";
const PropertyName VOICE_TELEPHONE = "vCard/TEL;VOICE";
const PropertyName FAX_TELEPHONE = "vCard/TEL;FAX";
const PropertyName MESSAGE_TELEPHONE = "vCard/TEL;MSG";
const PropertyName CELLULAR_TELEPHONE = "vCard/TEL;CELL";
const PropertyName BULLETIN_BOARD_TELEPHONE =” vCard/TEL;BBS";
const PropertyName MODEM_TELEPHONE ="vCard/TEL;MODEM";
const PropertyName CAR_TELEPHONE = "vCard/TEL;CAR";
const PropertyName ELECTRONIC_MAIL = "vCard/EMAIL";
const PropertyName GEOGRAPHIC_POSITION = "vCard/GEO";
const PropertyName TITLE = "vCard/TITLE";
const PropertyName ORGANIZATION = "vCard/ORG";
const PropertyName SOUND_ANNOTATION = "vCard/SOUND";
const PropertyName UNIFORM_RESOURCE_LOCATOR = "vCard/URL";

};

#endif //_V_CARD_VERSION_2_1_IDL_

The vCardVersion2_1 module defines the standard trait names for using trait
information from the vCard standard. The traits correspond to the properties as
defined in Version 2.1 of the vCard standard. The values for the traits are strings
(vCardVersion2_1::PropertyValue) formatted according to the rules specified by
the vCard standard.

Only the properties in vCard that relate to this specification are included. The
appropriate properties with parameters are also included.
2-44 Person Identification Service V1.0 June 2000

2

D

tion.

s the

me

ss

 of

the

e
ming

ree
ther

the
mes

s (if
ced
D
ed by

ctory.
The trait names (vCardVersion2_1::PropertyName) include the complete
QualifiedNameStr which has a registration authority of OTHER and the authority I
of “vCard.”

2.5 Naming/Trader Interoperation

The Naming and Trader Services are used in multiple ways by the PIDS specifica
One way is to define Trader Service Types explicitly for PIDS and some naming
conventions for PIDS-related objects. The other is that every PIDS component ha
ability to expose Naming and Trader services that are local to the component to
provide explicate federation of PIDS implementations.

2.5.1 Naming Service

The following names are to be used for the “kind” field in
CosNaming::NameComponent .

• “IdentificationComponent” - Generic type for a PIDS component.

• “Simple PIDS” - A PIDS component that meets the conformance class of the sa
name.

• “Sequential Access PIDS” - A PIDS component that meets the conformance cla
of the same name.

• “Identity Access PIDS” - A PIDS component that meets the conformance class
the same name.

• “ID Domain Manager PIDS” - A PIDS component that meets the conformance
class of the same name.

• “Correlation PIDS” - A PIDS component that meets the conformance class of
same name.

Naming contexts are freestanding nodes in the directory hierarchy unless they ar
associated with a particular system or component in some way. The use of the na
context, as referenced from an IdentificationComponent , has specific semantics.
The naming context referenced from a PIDS component is the root of a naming t
relative to that component. It is a way for the component to publish references to o
objects it is associated with or knows about. The naming directory for which it is
root can be used as a general naming service as well. The following directory na
have special meaning for PIDS components.

• “Source ID Domains” - Components that do correlation over other ID Domains
will have object references to PIDS components that manage those ID Domain
they exist) in this directory. It is suggested that the sub ID Domains be referen
by their stringified ID Domain name as it provides a simple way to search for I
Domains when a trader component is not available. They may also be referenc
a logical name for easier identification by users and by their component name.

• “Correlating ID Domains” - Components that are being correlated by other
components can publish references to these correlating components in this dire
PIDS V1.0 Naming/Trader Interoperation June 2000 2-45

2

ry.

r
r

es

DS

t as

he
. The
er

by

r all

e of
rties

 user-
• “ID Domain Components” - PIDS components that manage an ID Domain will
have references to other PIDS components within the ID Domain in this directo
It is suggested that the ID Domain residents be referenced by their stringified
component name as it provides a simple way to search for them when a trade
component is not available. They may also be referenced by a logical name fo
easier identification by users.

• “ID Using Services” - This directory is a place for a component to have referenc
to services it provides that use IDs from its ID Domain.

The following names for objects located in the root of the tree referenced by a PI
component are also reserved.

• “Trait Information” - If this object exists, it is an implementation of the Lexicon
Query Service (LQS) that contains the traits supported by this PIDS componen
concepts.

Trader components are typically stand-alone services installed in an enterprise. T
reference to the trader component from a PIDS component has special semantics
trader component is used for searching for other PIDS components as well as oth
object services. The Trader referenced by a PIDS component knows of the PIDS
service types defined in this specification.

2.5.2 Trader Service

The following definitions are Service Types defined for PIDS components for use
the Trader Service.

service IdentificationComponent {
interface IdentificationComponent;
mandatory readonly property string domain_name;
mandatory readonly property StringSeq interfaces_implemented;
mandatory readonly property StringSeq conformance_classes;
mandatory readonly property string component_name;
mandatory readonly property string component_version;
mandatory readonly property StringSeq supported_traits;
mandatory readonly property StringSeq read_only_traits;
mandatory readonly property StringSeq mandatory_traits;
mandatory readonly property StringSeq searchable_traits;
readonly property StringSeq source_domains;

};

Since all PIDS implement the IdentificationComponent only one Trader Service
type is needed, which is also called “IdentificationComponent .” The
IdentificationComponent interface has attributes for the common characteristics fo
PIDS. These are used as properties for the IdentificationComponent service type.
One additional property is specified as well which comes from an attribute from on
the derived interfaces. The stringified versions of the attributes are used for prope
since the standard Trader constraint language does not provide a way to filter on
defined types.
2-46 Person Identification Service V1.0 June 2000

2

s to.

he
f the
2.5.3 IdentificationComponent Service

The interface type returned from the Trader Service for this service type is an
IdentificationComponent . All except one of the properties are mandatory. These
are found on all IdentificationComponent interface implementations.

domain_name

The domain_name property contains the information from the domain_name
attribute of the IdentificationComponent interface. It is formatted as specified for
NamingAuthority::AuthorityIdStr .

interfaces_implemented

This sequence contains the names of the interfaces the component has reference
This includes PIDS-specific interfaces such as “PersonIdService::ProfileAccess ”
and other interfaces such as “CosNaming::NamingContext .” The names are fully
qualified names which include the module name.

conformance_classes

This sequence contains the conformance classes the implementation supports. T
strings are identical to the way they are spelled and capitalized in the definition o
conformance classes for PIDS.

component_name

This property contains the “the_name ” field of the component_name attribute. It
is a stringified version of the name in the format as a
NamingAuthority::QualifiedNameStr .

component_version

This property contains the “the_version ” field from the component_name
attribute.

supported_traits

This property contains a sequence with all of the TraitNames that are in the
supported_traits attribute.

read_only_traits

This property contains a sequence with all of the TraitNames that are in the
supported_traits attribute that have the read_only field set to true.

mandatory_traits

This property contains a sequence with all of the TraitNames that are in the
supported_traits attribute that have the mandatory field set to true.
PIDS V1.0 Naming/Trader Interoperation June 2000 2-47

2

ce.

e

ns

ice
es

ay
 one

ir
searchable_traits

This property contains a sequence with all of the TraitNames that are in the
supported_traits attribute that have the searchable field set to true.

source_domains

This is the only optional property. It only applies to PIDS that implement the
CorrelationMgr interface. The property contains the stringified DomainName for
the source ID Domains being correlated.

2.6 Conformance Classes

The following interfaces are programmatic reference points for testing conforman
Conformance indicates implementing all of the attributes and operations for those
interfaces and the specified behavior, and raising exceptions as specified. For th
operations that may raise the PersonIdService::NotImplemented exception, a
valid implementation of the operation may raise this exception. All other operatio
must perform as specified within this specification.

• IdentificationComponent

• ProfileAccess

• IdentityAccess

• SequentialAccess

• IdentifyPerson

• IdMgr

• CorrelationMgr

• EventComponent

The following taxonomy is defined for specific conformance classes of PIDS serv
implementations. An implementation claiming conformance to any of these class
must conform to all of the interfaces specified for that class. An implementation m
claim conformance to multiple conformance classes as long as it conforms to each
it claims.

An implementation claiming conformance must also follow the rules in the
NamingAuthority module for creating names that derive from those types.

All conforming implementations must support at least one trait as specified on the
supported_traits attribute.

Implementations that use the traits defined in the PersonIdTraits , HL7Version2_3
and vCardVersion2_1 modules must maintain the semantics defined in those
modules to be considered conforming.
2-48 Person Identification Service V1.0 June 2000

2

for

 on

 The

d to

es

e

by
nal
An implementation claiming conformance must implement the semantics defined
IdentificationComponent such as consistency between all the interfaces
implemented. They must also maintain the semantic mapping between attributes
the IdentificationComponent and the other interfaces implemented.

Each row in Table 2-2 includes the specification for a different conformance class.
columns represent the interfaces on the IdentificationComponent . A star “*” in a
column indicates the conformance class in that row includes the interface of that
column.

• “Simple PIDS” - Provides the basic operations to access profiles from an ID an
match potential IDs given some traits.

• “Sequential Access PIDS” - Adds the ability to scroll through the set of IDs
sequentially.

• “ID Domain Mgr PIDS” - Adds the ability to create new IDs and modify the stat
of IDs that were already created.

• “Identity Access PIDS” - An alternative to the Simple PIDS in that it provides th
same functionality but uses the IdentityAccess interface instead of the
ProfileAccess . It is intended for implementations that have different access
policies for each ID, for example allowing people to control access to their own
profile.

• “Correlation PIDS ” - The supported_traits attribute contains at least the
following three traits: HL7:PatientName ; HL7:DateTimeOfBirth ; HL7:Sex .
This conformance class contains a single interface as it provides functionality
itself; however, it can be mixed in with the other conformance classes for additio
functionality.

Table 2-2 Conformance Class Specifications

Conformance Class Identify
Person

Profile
Access

Sequential
Access

IDMgr. Identity
Access

CorrelationMg
r

Simple PIDS * *

Sequential Access
PIDS

* * *

ID Domain Mgr PIDS * * *

Identity Access PIDS * *

Correlation PIDS *
PIDS V1.0 Conformance Classes June 2000 2-49

2

2-50 Person Identification Service V1.0 June 2000

PIDS Glossary
n

ll

e to

a.
d
ore
he
Terminology

Ancillary System A subordinate, secondary, or auxiliary system within an organization. A
ancillary system could have its own simple PIDS and/or be sending
requests to other PIDS. Examples: Vital Signs Monitoring Systems,
Laboratory Information Systems (LIS), Scheduling Systems, Pharmacy
Systems, Radiology Information Systems (RIS), etc.

Attended Matching Matching - Matching that occurs as a result of human interaction. See
Matching.

Bind To logically attach or associate information about a person to an ID.
Within an ID Domain, it can be said that an ID is a shorthand
representation of a real person or a key to more information about a
person. For example, if a person is admitted to a hospital for the first
time, a registration clerk enters identifying information into a system. A
or part of this information is used to build a profile for the person. The
system assigns an ID for the person and associates, or binds the profil
the ID.

Candidate A person returned in the matching process that meets matching criteri
For example, if a clerk enters identifying information about a person an
searches a PIDS system for a match, the PIDS system returns one or m
candidates along with indications of how well each candidate matches t
entered information.
Person Identification Service v1.0 June 2000 Glossary-1

son

s.
g

h

hin
S
al's

.

lso:
Client Any system or application that accesses or requests service from a Per
Identification Service.

Collision Within an ID Domain, a situation in which an ID is suspected to have
been used by more than one person. Contrast with Duplicate.

Component A cohesive set of software services. In this specification, a PIDS
implementation is referred to as a component. A PIDS component
implements varying PIDS interfaces as defined by PIDS conformance
levels. For example, a Simple PIDS supports IdentifyPerson and
ProfileAccess interfaces.

Confidence or
Confidence Level

A matching algorithm's measure of probability that a candidate is a
match. When a matching process returns a list of candidates it also
returns a confidence level value with each entry in the list of candidate
The range of values for the confidence indicator is 0.0-1.0 with 1.0 bein
the higher confidence (e.g., 100%).

Correlating ID
Domain

An ID Domain that correlates one or more other ID Domains. For
example, a PIDS in a healthcare setting can be set up to correlate IDs
from multiple providers (hospitals, clinics, Physicians offices, etc.) and
multiple ancillary systems (lab, pharmacy, registration, etc.), where eac
participating system implements a different ID Domain.

Correlation The creation of a cross-reference or mapping between Person IDs wit
a single ID Domain or across multiple ID Domains. For example, a PID
set up to correlate IDs from a hospital and a lab stores both the hospit
ID and the lab's ID for any person with an ID in both ID Domains.

CPR Computerized Patient Record

Deprecate To indicate that an ID is not valid any more, within an ID Domain.

Deactivate To deactivate an ID. No new information may be recorded under a
deactivated ID, but it is allowed and accepted that some already exists
For example, when merging duplicate IDs in a PIDS, one of the IDs
remains active. The other is deactivated, or marked as inactive. See a
deprecate. Contrast with Collision.

Domain See ID Domain.
Glossary-2 Person Identification Service v1.0 June 2000

re

s

 and

n all

the

use

an

at

e
Domain Name The name of an ID Domain in which an ID has meaning. That is, IDs a
only relevant in a particular ID Domain. Each ID Domain has a Domain
Name that is unique and different from all other ID Domain Names.

Duplicate or
Duplicate ID

An ID is deemed to be a duplicate when it refers to the same person a
one or more other IDs within an ID Domain. This results in the person
"being in the ID Domain more than once." IDs that are known to be
duplicates should be merged such that the associated person has one
only one unique ID and profile in the corresponding ID Domain.

Federation As it relates to PIDS federation, is the ability to structure ID Domains
into hierarchies where the higher-level ID Domains contain IDs for a
superset of the persons with IDs in the lower-level ID Domains.
Operations such as searches for persons can be performed the same o
levels but applies only to the IDs known at that level and below. PIDS
implementations can manage each of these ID Domains in which case
PIDS is said to be federated. PIDS provides a CorrelationMgr ,
NamingContext , TraderComponents , and EventComponent
specifically to facilitate federation.

ID or Identifier A sequence of characters that one or more systems in an ID Domain
to represent a person and bind related information. This could be
numeric, alpha, and may include punctuation, etc.

Identity The distinct real-world person an ID and profile represents. In a PIDS,
ID is established that represents a person's identity where each ID
corresponds with one real-world person. As an IDL interface, 'Identity'
instances correspond one for one with a particular real world person th
has been represented by an ID in the ID Domain.

Identification The process of assigning an ID or finding an ID based on knowing som
traits about the person.
PIDS v1.0 June 2000 Glossary-3

le
D

 a

 to

on
ll
s

ess
re
ID Domain or Domain A set of person IDs among which there is to be one unique person ID
value per person or entity represented. For example, a hospital
Admission, Discharge & Transfer computer system creates IDs for peop
as they are entered into the system. The set of IDs it manages is an I
Domain. ID Domains have a Domain Name which uniquely identifies it
from other ID Domains.

People can have an ID from many ID Domains. Therefore, a person ID
value has meaning for identification only if the correct ID Domain
qualifies the ID value. For example, in the USA, the ID value 123-45-
6789 can be used to identify a person if it is prefaced with the Social
Security Number acronym, SSN, and it was assigned by the Social
Security Administration.

Multiple systems can 'reside' in an ID Domain if they utilize/reference
person IDs from the same ID Domain. For example, a lab system and
billing system can use the same medical record numbers to identify
people. Each system can be said to 'reside' in the same ID Domain.

MPI and EMPI Master Patient Index and Enterprise Master Patient Index.

Matching The process that determines from a set of traits whether a person may
already be known to a PIDS. The matching operation may return zero
many persons depending on the algorithm, weights on traits, and
threshold parameters used in the matching process.

Merge To apply an operation on two or more IDs representing the same pers
in an ID Domain, which then results in one active ID for that person. A
except one of the IDs are deactivated. In other words, Merge operation
are used to rectify the discovery of Duplicate ID's. Contrast with
Correlation, where IDs are not deactivated.

Naming Authority Any organization that assigns names determines the scope of uniquen
of the names and takes the responsibility for making sure the names a
unique within its name space. In the same way that ID values are
meaningful only within the context of their ID Domains, names are
unique only within the context of their naming authority.

PersonID or Person
ID

Same as ID or Identifier.
Glossary-4 Person Identification Service v1.0 June 2000

r.

nd
es

into
1

ct
s
l

n.
e,

n

PIDS The term PIDS is used in two ways: 1) to represent this Person
Identification Service specification; and 2) to represent conforming
implementations to this specification.

Profile A set of information about a person that can be used to identify him/he
A profile consists of one or more Traits.

Unmerge To take a person ID that has been merged with one or more other IDs a
undo the merge, resulting in two or more person IDs. The person profil
are bound back to their original IDs before the merge. For example,
suppose Person A has ID 1 and Person B with ID 2 had been merged
ID 1. A successful unmerge operation would restore Person A with ID
and Person B with ID 2.

Subdomain If an ID Domain is being correlated over by a Correlating ID Domain,
then it can be called a Subdomain of the Correlating ID Domain.

System An application or set of applications that interact with each other, intera
with the PIDS or implement PIDS. System in this context is synonymou
with application. Examples of systems might include a hospital or clinica
information system, an ancillary system such as a lab or radiology
system, or a financial/administrative system such as an ADT.

Trait An attribute (i.e., information) that can be used to help identify a perso
Traits are grouped to create a profile. Examples of a trait include nam
date of birth, sex, address, etc.

Unattended Matching A matching process that occurs without human intervention. See
Matching. For example, an automated process may be configured to ru
once a night to scan an ID Domain, searching for potential duplicate
person entries. Also when profiles are added to an ID Domain and the
PIDS automatically determines if an ID already exists for the person.
PIDS v1.0 June 2000 Glossary-5

Glossary-6 Person Identification Service v1.0 June 2000

OMG IDL A
A.1 Full IDL

//File: PersonIdService.idl

#ifndef _PERSON_ID_SERVICE_IDL_
#define _PERSON_ID_SERVICE_IDL_

#include <orb.idl>
#include <NamingAuthority.idl>
#include <Naming.idl>
#include <Trading.idl>

#pragma prefix "omg.org"

module PersonIdService
{

// ---
// Common Data Types
//
typedef NamingAuthority::AuthorityId DomainName;
typedef sequence< DomainName > DomainNameSeq;

typedef NamingAuthority::LocalName PersonId;
typedef sequence< PersonId > PersonIdSeq;

struct QualifiedPersonId {
DomainName domain;
PersonId id;

};
typedef sequence< QualifiedPersonId > QualifiedPersonIdSeq;

typedef NamingAuthority::QualifiedNameStr TraitName;
typedef sequence< TraitName > TraitNameSeq;
typedef any TraitValue;
Person Identification Service V1.0 June 2000 A-1

struct Trait {
TraitName name;
TraitValue value;

};
typedef sequence< Trait > TraitSeq;
typedef TraitSeq Profile;
typedef sequence< Profile > ProfileSeq;

enum IdState { UNKNOWN, INVALID, TEMPORARY, PERMANENT, DEACTIVATED };
typedef sequence<IdState> IdStateSeq;
struct IdInfo {

PersonId id;
IdState state;
PersonId preferred_id;

};
typedef sequence<IdInfo> IdInfoSeq;

// ---
// Miscellaneous Data Types
//

typedef string ComponentVersion;
struct ComponentName {

NamingAuthority::QualifiedName name;
ComponentVersion version;

};

struct TraitSpec {
TraitName trait;
boolean mandatory;
boolean read_only;
boolean searchable;

};
typedef sequence< TraitSpec > TraitSpecSeq;

enum HowManyTraits { NO_TRAITS, SOME_TRAITS, ALL_TRAITS };
union SpecifiedTraits switch (HowManyTraits)
{

case SOME_TRAITS: TraitNameSeq traits;
};

struct TaggedProfile {
PersonId id;
Profile profile;

};
typedef sequence<TaggedProfile> TaggedProfileSeq;

struct QualifiedTaggedProfile {
QualifiedPersonId id;
Profile profile;

};
typedef sequence<QualifiedTaggedProfile> QualifiedTaggedProfileSeq;
A-2 Person Identification Service V1.0 June 2000

struct ProfileUpdate {
PersonId id;
TraitNameSeq del_list;
TraitSeq modify_list;

};
typedef sequence< ProfileUpdate > ProfileUpdateSeq;

struct MergeStruct {
PersonId id;
PersonId preferred_id;

};
typedef sequence< MergeStruct > MergeStructSeq;

struct TraitSelector {
Trait trait;
float weight;

};
typedef sequence<TraitSelector> TraitSelectorSeq;

struct Candidate {
PersonId id;
float confidence;
Profile profile;

};
typedef sequence<Candidate> CandidateSeq;

interface CandidateIterator {
unsigned long max_left();

boolean next_n(
in unsigned long n,
out CandidateSeq ids);

void destroy();
};

typedef unsigned long Index;
typedef sequence< Index > IndexSeq;

enum ExceptionReason {

UNKNOWN_TRAITS,
DUPLICATE_TRAITS,
WRONG_TRAIT_FORMAT,
REQUIRED_TRAITS,
READONLY_TRAITS,
CANNOT_REMOVE,
MODIFY_OR_DELETE

};

struct MultipleFailure {
Index the_index;
ExceptionReason reason;
TraitNameSeq traits;

};
typedef sequence< MultipleFailure > MultipleFailureSeq;
PIDS V1.0 June 2000 A-3

interface Identity;
typedef sequence< Identity > IdentitySeq;

// ---
// Exceptions
//

exception InvalidId { IdInfo id_info; };
exception InvalidIds { IdInfoSeq id_info; };
exception DuplicateIds { PersonIdSeq ids; };
exception UnknownTraits { TraitNameSeq traits; };
exception DuplicateTraits { TraitNameSeq traits; };
exception WrongTraitFormat { TraitNameSeq traits; };
exception InvalidStates {};
exception TooMany { unsigned long estimated_max; };
exception MultipleTraits { MultipleFailureSeq failures; };

exception ReadOnlyTraits { TraitNameSeq traits; };
exception CannotRemove { TraitNameSeq traits; };
exception ModifyOrDelete { MultipleFailureSeq failures; };
exception NotImplemented {};

exception InvalidWeight {};
exception CannotSearchOn { TraitNameSeq traits; };

exception IdsExist { IndexSeq indices; };
exception RequiredTraits { TraitNameSeq traits; };
exception ProfilesExist { IndexSeq indices; };
exception DuplicateProfiles { IndexSeq indices; };

exception DomainsNotKnown { DomainNameSeq domain_names; };
exception IdsNotKnown { QualifiedPersonIdSeq ids; };

// ---
// IdentificationComponent
//

interface ProfileAccess;
interface SequentialAccess;
interface IdentityAccess;
interface IdentifyPerson;
interface IdMgr;
interface CorrelationMgr;

interface IdentificationComponent
{

readonly attribute DomainName domain_name;
readonly attribute ComponentName component_name;
readonly attribute TraitSpecSeq supported_traits;

readonly attribute IdentifyPerson identify_person;
readonly attribute ProfileAccess profile_access;
A-4 Person Identification Service V1.0 June 2000

readonly attribute SequentialAccess sequential_access;
readonly attribute IdentityAccess identity_access;

readonly attribute IdMgr id_mgr;

readonly attribute CorrelationMgr correlation_mgr;
readonly attribute CosNaming::NamingContext naming_context;
readonly attribute CosTrading::TraderComponents trader_components;

};

// ---
// IdentifyPerson
//

interface IdentifyPerson :
IdentificationComponent
{

void find_candidates(
in TraitSelectorSeq profile_selector,
in IdStateSeq states_of_interest,
in float confidence_threshold,
in unsigned long sequence_max,
in unsigned long iterator_max,
in SpecifiedTraits traits_requested,
out CandidateSeq returned_sequence,
out CandidateIterator returned_iterator)

raises (
TooMany,
UnknownTraits,
WrongTraitFormat,
CannotSearchOn,
DuplicateTraits,
InvalidStates,
InvalidWeight);

};

// ---
// ProfileAccess
//

interface ProfileAccess :

IdentificationComponent
{

TraitNameSeq get_traits_known(
in PersonId id)

raises (
InvalidId);

Profile get_profile(

in PersonId id,
in SpecifiedTraits traits_requested)

raises (
InvalidId,
PIDS V1.0 June 2000 A-5

UnknownTraits,
DuplicateTraits);

TaggedProfileSeq get_profile_list(
in PersonIdSeq ids,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidIds,
DuplicateIds,
UnknownTraits,
DuplicateTraits);

TaggedProfileSeq get_deactivated_profile_list(
in PersonIdSeq ids,
in SpecifiedTraits traits_requested)

raises (
NotImplemented,
InvalidIds,
DuplicateIds,
UnknownTraits,
DuplicateTraits);

void update_and_clear_traits(
in ProfileUpdateSeq profile_update_spec)

raises (
InvalidIds,
DuplicateIds,
NotImplemented,
MultipleTraits);

IdInfoSeq get_id_info(

in PersonIdSeq ids)
raises (

TooMany,
DuplicateIds);

};

// ---
// SequentialAccess
//

interface SequentialAccess :
IdentificationComponent

{
unsigned long id_count_per_state(

in IdStateSeq states_of_interest)
raises (

InvalidStates);

TaggedProfileSeq get_all_ids_by_state(
in SpecifiedTraits traits_requested,
in IdStateSeq states_of_interest)

raises (
A-6 Person Identification Service V1.0 June 2000

TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_first_ids(
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_last_ids(
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_next_ids(
in PersonId reference_id,
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidId,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_previous_ids(
in PersonId reference_id,

in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidId,
UnknownTraits,
DuplicateTraits,
InvalidStates);

};

// ---
// IdentityAccess
//
PIDS V1.0 June 2000 A-7

interface IdentityAccess :
IdentificationComponent

{
Identity get_identity_object(

in PersonId id)
raises (

InvalidId);

IdentitySeq get_identity_objects(
in PersonIdSeq ids)

raises (
InvalidIds);

};

interface Identity
{

readonly attribute IdentificationComponent source_component;
readonly attribute IdInfo id_info;
readonly attribute TraitNameSeq traits_with_values;
readonly attribute long trait_value_count;

Trait get_trait(
in TraitName trait_requested)

raises (
UnknownTraits);

Profile get_profile(
in SpecifiedTraits traits_requested)

raises (
UnknownTraits,
DuplicateTraits);

Profile get_deactivated_profile(
in SpecifiedTraits traits_requested)

raises (
NotImplemented,
UnknownTraits,
DuplicateTraits);

void update_and_clear_traits(
in ProfileUpdate profile_update_spec)

raises (
NotImplemented,
UnknownTraits,
WrongTraitFormat,
ModifyOrDelete,
ReadOnlyTraits,
CannotRemove,
DuplicateTraits);

void done();
};

// ---
A-8 Person Identification Service V1.0 June 2000

// IdMgr
//

interface IdMgr :
IdentificationComponent

{
PersonIdSeq register_new_ids(

in ProfileSeq profiles_to_register)
raises (

ProfilesExist,
DuplicateProfiles,
MultipleTraits);

PersonIdSeq find_or_register_ids(
in ProfileSeq profiles_to_register)

raises (
DuplicateProfiles,
MultipleTraits);

void register_these_ids(
in TaggedProfileSeq profiles_to_register)

raises (
NotImplemented,
IdsExist,
DuplicateIds,
ProfilesExist,
DuplicateProfiles,
MultipleTraits);

PersonIdSeq create_temporary_ids(
in ProfileSeq profiles_to_register)

raises (
MultipleTraits);

PersonIdSeq make_ids_permanent(
in PersonIdSeq ids_to_modify)

raises (
InvalidIds,
DuplicateIds,
RequiredTraits);

IdInfoSeq merge_ids(

in MergeStructSeq ids_to_merge)
raises (

InvalidIds,
DuplicateIds);

IdInfoSeq unmerge_ids(
in PersonIdSeq ids_to_unmerge)

raises (
InvalidIds,
DuplicateIds);

IdInfoSeq deprecate_ids(
in PersonIdSeq ids_to_deprecate)
PIDS V1.0 June 2000 A-9

raises (
InvalidIds,
DuplicateIds);

};

// ---
// CorrelationMgr
//

interface CorrelationMgr :
IdentificationComponent

{
readonly attribute DomainNameSeq source_domains;

void load_profiles(
in QualifiedTaggedProfileSeq tagged_profiles)

raises (
UnknownTraits,
WrongTraitFormat,
DomainsNotKnown);

QualifiedPersonIdSeq get_corresponding_ids(
in QualifiedPersonId from_id,
in DomainNameSeq to_domains)

raises (
DomainsNotKnown,
IdsNotKnown);

};

PersonIdSeq find_or_register_ids(
in QualifiedTaggedProfileSeq tagged_profiles)

raises (
MultipleTraits,
DomainsNotKnown,
NotImplemented);

};
};

#endif // _PERSON_ID_SERVICE_IDL_

//File: NamingAuthority.idl

#ifndef _NAMING_AUTHORITY_IDL_
#define _NAMING_AUTHORITY_IDL_

#include <orb.idl>

#pragma prefix "omg.org "

module NamingAuthority
A-10 Person Identification Service V1.0 June 2000

{
enum RegistrationAuthority {

OTHER,
ISO,
DNS,
IDL,
DCE };

typedef string NamingEntity;

struct AuthorityId {
RegistrationAuthority authority;
NamingEntity naming_entity;

};
typedef string AuthorityIdStr;

typedef string LocalName;
struct QualifiedName {

AuthorityId authority_id;
LocalName local_name;

};
typedef string QualifiedNameStr;

exception InvalidInput {};

interface translation_library
{

AuthorityIdStr authority_to_str(
in AuthorityId authority)

raises(
InvalidInput);

AuthorityId str_to_authority(
in AuthorityIdStr authority_str)

raises(
InvalidInput);

QualifiedNameStr qualified_name_to_str(
in QualifiedName qualified_name)

raises(
InvalidInput);

QualifiedName str_to_qualified_name(
in QualifiedNameStr qualified_name_str)

raises(
InvalidInput);

};
};

#endif // _NAMING_AUTHORITY_IDL_
PIDS V1.0 June 2000 A-11

//File: PersonIdTraits.idl

#ifndef _PERSON_ID_TRAITS_IDL_
#define _PERSON_ID_TRAITS_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module PersonIdTraits
{

const PersonIdService::TraitName NULL_TRAIT = "";
typedef any NullTraitType; // set to tk_null

const PersonIdService::TraitName INTERNAL_ID = "PIDS/InternalId";
typedef PersonIdService::PersonId InternalIdType;

const PersonIdService::TraitName MERGED_IDS = "PIDS/MergedIds";
typedef PersonIdService::PersonIdSeq MergedIdsType;

const PersonIdService::TraitName DUPLICATE_IDS = "PIDS/DuplicateIds";
typedef PersonIdService::PersonIdSeq DuplicateIdsType;

const PersonIdService::TraitName CORRELATED_IDS = "PIDS/CorrelatedIds";
typedef PersonIdService::QualifiedPersonIdSeq CorrelatedIdsType;

const PersonIdService::TraitName EXTERNAL_IDS = "PIDS/ExternalIds";
typedef PersonIdService::QualifiedPersonIdSeq ExternalIdsType;

const PersonIdService::TraitName NATIONAL_HEALTH_IDS = "PIDS/NationalHealthId";
struct NationalHealthIdStruct {

string country_code;
PersonIdService::PersonId id;

};
typedef sequence< NationalHealthIdStruct > NationalHealthIdStructSeq;
typedef NationalHealthIdStructSeq NationalHealthIdsType;

};

#endif // _PERSON_ID_TRAITS_IDL_

//File: HL7Version2_3.idl

#ifndef _HL7_VERSION_2_3_IDL_
#define _HL7_VERSION_2_3_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module HL7Version2_3
{

A-12 Person Identification Service V1.0 June 2000

typedef PersonIdService::TraitName PIDFieldName;
typedef string PIDFieldValue;

const PIDFieldName PATIENT_NAME = "HL7/PatientName";
const PIDFieldName MOTHERS_MAIDEN_NAME = "HL7/MothersMaidenName";
const PIDFieldName DATE_TIME_OF_BIRTH = "HL7/DateTimeofBirth";
const PIDFieldName SEX = "HL7/Sex";
const PIDFieldName PATIENT_ALIAS = "HL7/PatientAlias";
const PIDFieldName RACE = "HL7/Race";
const PIDFieldName PATIENT_ADDRESS = "HL7/PatientAddress";
const PIDFieldName COUNTY_CODE = "HL7/CountyCode";
const PIDFieldName PHONE_NUMER_HOME. = "HL7/PhoneNumber_Home";
const PIDFieldName PHONE_NUMBER_BUSINESS = "HL7/PhoneNumber_Business";
const PIDFieldName PRIMARY_LANGUAGE ="HL7/PrimaryLanguage";
const PIDFieldName MARITAL_STATUS = "HL7/MaritalStatus";
const PIDFieldName RELIGION = "HL7/Religion";
const PIDFieldName PATIENT_ACCOUNT_NUMBER = "HL7/PatientAcountnumber";
const PIDFieldName SSN_NUMBER = "HL7/SSNNumber";
const PIDFieldName DRIVERS_LICENSE_NUMBER = "HL7/DriversLicenseNumber";
const PIDFieldName MOTHERS_IDENTIFIER = "HL7/MothersIdentifier";
const PIDFieldName ETHNIC_GROUP = "HL7/EthnicGroup";
const PIDFieldName BIRTH_PLACE = "HL7/BirthPlace";
const PIDFieldName MULTIPLE_BIRTH_INDICATOR = "HL7/MultipleBirthIndicator";
const PIDFieldName BIRTH_ORDER = "HL7/BirthOrder";
const PIDFieldName CITIZENSHIP = "HL7/Citizenship";
const PIDFieldName VETERANS_MILITARY_STATUS = "HL7/VeteransMilitaryStatus";
const PIDFieldName NATIONALITY = "HL7/Nationality";
const PIDFieldName PATIENT_DEATH_DATE_AND_TIME = "HL7/PatientDeathDateandTime";
const PIDFieldName PATIENT_DEATH_INDICATOR ="HL7/PatientDeathIndicator";

};

#endif //_HL7_VERSION_2_3_IDL_

//File: vCardVersion2_1.idl

#ifndef _V_CARD_VERSION_2_1_IDL_
#define _V_CARD_VERSION_2_1_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module vCardVersion2_1
{

typedef PersonIdService::TraitName PropertyName;
typedef string PropertyValue;

const PropertyName FORMATTED_NAME = "vCard/FN";
const PropertyName NAME = "vCard/N";
const PropertyName PHOTOGRAPH = "vCard/PHOTO";
const PropertyName BIRTHDAY = "vCard/BDAY";
const PropertyName ADDRESS = "vCard/ADR";
const PropertyName HOME_ADDRESS = "vCard/ADR;HOME";
PIDS V1.0 June 2000 A-13

const PropertyName WORK_ADDRESS = "vCard/ADR;WORK";
const PropertyName TELEPHONE = "vCard/TEL";
const PropertyName PREFERRED_TELEPHONE = "vCard/TEL;PREF";
const PropertyName HOME_TELEPHONE = "vCard/TEL;HOME";
const PropertyName WORK_TELEPHONE = "vCard/TEL;WORK";
const PropertyName VOICE_TELEPHONE = "vCard/TEL;VOICE";
const PropertyName FAX_TELEPHONE = "vCard/TEL;FAX";
const PropertyName MESSAGE_TELEPHONE = "vCard/TEL;MSG";
const PropertyName CELLULAR_TELEPHONE = "vCard/TEL;CELL";
const PropertyName BULLETIN_BOARD_TELEPHONE = "vCard/TEL;BBS";
const PropertyName MODEM_TELEPHONE = "vCard/TEL;MODEM";
const PropertyName CAR_TELEPHONE = "vCard/TEL;CAR";
const PropertyName ELECTRONIC_MAIL = "vCard/EMAIL";
const PropertyName GEOGRAPHIC_POSITION = "vCard/GEO";
const PropertyName TITLE = "vCard/TITLE";
const PropertyName ORGANIZATION = "vCard/ORG";
const PropertyName SOUND_ANNOTATION = "vCard/SOUND";
const PropertyName UNIFORM_RESOURCE_LOCATOR = "vCard/URL";

};

#endif //_V_CARD_VERSION_2_1_IDL_

A-14 Person Identification Service V1.0 June 2000

Use Case Examples B
This appendix contains Use Case Examples, as follows:

• Figure 1 - Find Candidates and Register New IDs

• Figure 2 - Find Candidate and Get Candidate Profile

• Figure 3 - Merge IDs

• Figure 4 - Unmerge IDs

• Figure 5 - Update Person Traits and Notify Subscribed Parties

• Figure 6 - Potential Merge Person in a Single ID Domain

• Figure 7 - Merge Person without a Correlating Manager

• Figure 8 - Correlate Person Profile When Person Does Not Exist

• Figure 9 - Correlate Profile When Person Already Exists
Person Identification Service V1.0 June 2000 B-1

Figure B-1 Find Candidates and Register New IDs

an Identify Person :
Identify Person

aRegistrar :
Registrar

a Registration :
System

3: FindCandidates

4: DetermineCandidateList

5: ReturnAnEmptyCandidateList

1: GatherPersonInformation

2: IdentifyPerson

6: AddNewPerson

8: ContinueWithRegistration

The Use Case represents an
example of creating a new
person when one IdMgr
exists.

an IdManager :
IdManager

7: RegisterNewIds
B-2 Person Identification Service V1.0 June 2000

Figure B-2 Find Candidate and Get Candidate Profile

aNurse : Nurse
a Monitor :

System
an Identify Person :

Identify Person
a Profile Access
: Profile Access

1: GatherPersonInformation

2: IdentifyPerson

3: Find Candidates

4: DetermineCandidateList

5: ReturnACandidateList

6: SelectPersonFromList

8: ContinueMonitorHookup

This use case includes an additional
request for Person Profile information.
The Monitor system may or may not
pass a person Id assigned by the
Monitor system.

7: Get Profile
PIDS V1.0 June 2000 B-3

Figure B-3 Merge IDs

This use case starts from the point
where the 'Find Candidates' request
returns an empty list of candidates.

a System
Administrator :

an IdManager :
IdManager

a Registration :
System : Registrar

3: IdentiyAsDuplicatePerson

7: ReportDuplicate

9: Merge IDs

10: MergeTwoPersons

6: ReconcileProfiles

4: CrossReferenceSurvivor'sIdToNonsurvivor'sId

2: Register New IDs

5: MarkNonsurvivor'sIdAsInactive

8: DetermineIsADuplicate

1: AddNewPerson
B-4 Person Identification Service V1.0 June 2000

Figure B-4 Unmerge IDs

This use case starts from the
point where the 'Find Candidates'
request returns an empty list of
candidates.

a Registrar :
Registrar

a Registration :
System

an IdManager :
IdManager a System

Administrator :

2: Register New Ids

3: IdentifyasPotentialDuplicate

4: AssignNewPersonIdentifier

5: MakeAnAssociationToOtherPerson

6: ReportAPotentialDuplicate

7: DetermineNotADuplicate

8: UnMerge IDs

1: AddNewPerson
PIDS V1.0 June 2000 B-5

Figure B-5 Update Person Traits and Notify Subscribed Parties

This use case assumes
that the person is
already identified.

a Registrar :
Registrar

a ProfileAccess :
Profile Access

an Ancillary :
System

an Event Manager
: Event Manager

a Registration :
System

4: PublishPersonTraitUpdate

5: NotifySubscriberOfPersonTraitUpdate

2: ChangePersonTraits

3: UpdateAndClearTraits

1: SubscribeToAnEvent

6: GetUpdatedTraits
B-6 Person Identification Service V1.0 June 2000

Figure B-6 Potential Merge Person in a Single ID Domain

an IdManager : Id
Manager : (System

Administrator)

a Registration :
System a Registrar :

Registrar

2: Register New IDs

3: IdentifyAsPotentialDuplicate

4: AssignNewPersonIdentifier

5: MakeAssociationToOtherPerson

6: ReportPotentialDuplicate

8: MergeDuplicatePerson

9: MergePerson

7: DetermineIsADuplicate

1: AddNewPerson

10: Merge IDs

This use case starts from the point
where the 'Find Candidates' request
returns an empty list of candidates.
PIDS V1.0 June 2000 B-7

Figure B-7 Merge Person without a Correlating Manager

12: Merge IDs

 : (System
Administrator)

a Registration :
System

an IdManager :
IdManager

a Registration :
System

2: Register New IDs.

4: CompleteAddNewPerson

5: Register New IDs

3: DetermineANewPerson

6: IdentifyAsPotentialDuplicatePerson

7: AssignNewPersonId

8: MakeAssociationToOtherPerson

10: ReportPotentialDuplicate

11: DetermineIsADuplicate

a Registrar :
Registrar

1: AddNewPerson

This use case assumes a
Correlation Manager does not
exist.

9: CompleteAddNewPerson
B-8 Person Identification Service V1.0 June 2000

Figure B-8 Correlate Person Profile When Person Does Not Exist

an IdManager :
IdManager

a Correlation Manager :
Correlation Manager

an Identify Person :
Identify Person

2: Find Candidates

3: ReturnAnEmptyCandidateList

5: BuildCrossReference This use case assumes the
registration system has registered
the person and this is a new person
to Correlation Manager.

aRegistrationSystem :
System

1: Load Profiles

4: Create Permanent Id
PIDS V1.0 June 2000 B-9

Figure B-9 Correlate Profile When Person Already Exists

a Correlation Manager
: Correlation Manager

a Registration :
System

an Identify Person
: Identify Person

a Registration :
System

1: Load Profiles

4: Load Profiles

5: Find Candidates

6: CorrelateProfile

This use case assumes one
person is returned in the
candidate list.

7: Find Corresponding IDs

3: CorrelateProfile

8: Find Corresponding IDs

2: Find Candidates
B-10 Person Identification Service V1.0 June 2000

PIDS V1.0 June 2000 B-11

B-12 Person Identification Service V1.0 June 2000

Interaction Patterns C
sly
can
The following diagrams indicate a variety of ways that PIDS can be used. Obviou
this is not a complete list, but it does show there is extreme flexibility in the way it
fit into an enterprise’s architecture.

C.1 Usage Diagrams

Pharmacy System

Sim ple PIDS

PharmacyOrders

Drugs_R_Us

Pharmacy System

Drugs_R_Us

Sim ple PIDS

PharmacyOrders

Implem enting standard and
proprietary interfaces separately
that are independently used.

Mixing two standard interfaces
into a proprietary one via
multiple inheritance.

Pharmacy System

Sim ple PIDS

PharmacyOrders

Drugs_R_Us

Separate interfaces pulled
together (created) via a factory
interface.

DRUG_factory

cr
ea
te

There are multiple ways to integrate the PIDS
IdentificationComponent with other interfaces
implem ented by the same system as shown in the
examples below.
Person Identification Service V1.0 June 2000 C-1

Lab System

Simple PIDS

Observations

CORBA

HL7 and
proprietary
protocols

ADT and Other
Systems

The simplest application (and possibly most common
initially) for PIDS is for a single system to implement

the Simple PIDS conformance class. In this example
the Lab System may have its own ID Domain (such

as a reference lab) or use the medical record
numbers of a hospital.

Patient Care
Application and

Other Clients

The Lab System in this
example also implements an
interface for getting its
Observation values. A Lab
System may implement an
interface for Orders too (not
shown).

The client systems and
apps for the Lab System
can use its CORBA
interface and still use
proprietary and legacy
protocols for other
systems.
C-2 Person Identification Service V1.0 June 2000

ADT System

ID Mgr PIDS

ADT

Legacy Clinical
Systems

Patient Care
Application

Monitor System

Simple PIDS

Observations

CORBA

CORBA

HL7

HL7

HL7

CORBA

Monitoring
Devices

proprietary

Legacy systems can
continue to use
previous interface
mechanisms with no
change.

New application
interfaces can utilize

CORBA where
available but use other

mechanisms for
legacy interfaces.

BalloonCallout

PIDS interfaces can
be wrapped around
legacy systems that
may continue to use
legacy and proprietary
interfaces.
PIDS V1.0 June 2000 C-3

Hospital Domain Lab Domain

ADT or MPI

Correlation PIDS

Client Aplications
and Systems

get_corresponding_ids()

A system that uses IDs from a
different domain can use a
CorrelatingMgr to get the ID for
the patient in the other domain.

Laborartory
System

ID Mgr PIDS
Observations

get data using ID
obtained from MPI

Hospital Domain Clinic Domain

Reference Laboratory

Simple PIDS Simple PIDS

Client Apps and
Systems

Client Apps and
Systems

A system that binds to ids
from multiple domains
maintains separate object
references for each
domain.
C-4 Person Identification Service V1.0 June 2000

Id Domain

Pharmacy

ADT System

ID Mgr PIDS

Naming ' ID Domain
Components'

Simple PIDS

Lab

Simple PIDS

OR_Schedu le

Schedule

Housekeep ing

BedStatus

Radio logy

Simple PIDS
'Pharm'

' Inhouse
Lab'

'Schedul ing'

'HouseKeepers '

Some systems within
the ID Domain may

not be exposed in the
NameContext of the ID

Mgr PIDS

Other interfaces besides
PIDS may also be put into
the NameContext of the ID
Mgr PIDS. They would be
pu in the 'ID Using
Services' subdirectory.

A manager of an ID Domain
can use the Naming and/or
Trader Services to expose
references to other systems
within their domain.
PIDS V1.0 June 2000 C-5

Id Domain

ADT System

ID Mgr PIDS

PushSupplierFactory

The manager of IDs within a
domain may support the ability
to update other systems that use
those IDs, when a profile or ID
state changes. This is done via
the EventComponent.

Radiology (RIS)

Simple PIDS
PushConsumer

Decision Support

Simple PIDS
PushConsumer

ER Med. Record

PushConsumer

Some systems may want to
recieve the ID and profile
change events but not
expose their data via PIDS.

Many ancillary systems
in the healthcare
provider enterprise may
cache traits about a
patient, for example the
patient's name.

connect DS

connect ER

System
Management

connect RIS

It is possible for consumers and
suppliers to be connected by
some third party that has a
reference to each.

connect ADT
C-6 Person Identification Service V1.0 June 2000

ID Domain
(super domain)

Domain

Domain

Domain

MPI System

Correlation PIDS or
ID Mgr PIDS

Naming 'Source ID Domains'

Cl inic HIS

ID Mgr PIDS

Pract iceMgmtSys

ID Mgr PIDS

Pract iceMgmtSys

Off iceMgr

Hospi ta l ADT
Correlation

P IDS
'NW Doctors '

'SE Doctors'

Some hospitals may have
their own CorrelationMgr.

'Communi ty
General '

Other systems can be put into
the NameContext besides those
implementing PIDS. These
would probably be using ids
from the MPI System (ID
Domain).

The NamingContext
(shown) and/or
TraderComponents can be
used to publish references
to source ID Domains.

Not all subdomains
are required to be put
into the NameContext
PIDS V1.0 June 2000 C-7

ID Domain
(super domain)

Domain

Domain

Domain

MPI System

Correlation PIDS

Clinic HIS

ID Mgr PIDS

PracticeMgmtSys

ID Mgr PIDS

PracticeMgmtSys

OfficeMgr

Hospital ADT
Correlation

PIDS

Some hospitals may have
their own CorrelationMgr
that loads its profiles to an
even larger correlation ID
Domain.

Hospital ADT HL7 messages

Other systems may use the ID
mapping capabilites of the
CorrelationMgr without loading
profiles from their ID Domain.

load_profi les()

load_profi les()
get_corresponding_ids()

load_profi les()

The MPI may still
be using legacy

interfaces for
some systems.

The managers in the
source ID Domains will

be adding profiles to
the superdomain.

Some source ID
Domains will also be

using the mapping
capabilities.

get_corresponding_ids()
C-8 Person Identification Service V1.0 June 2000

Id Domain
(super domain)

Domain

Domain

Domain

MPI System

ID Mgr PIDS

PushConsumer

It is possible for a system to get
automatic profile updates and do
correlation by implementing the
PushConsumer interface instead
of the CorrelationMgr interface.

Hospital ADT

Correlation PIDS
PushSupplier

Clinic HIS

ID Mgr PIDS
PushSupplier

PracticeMgmtSys

ID Mgr PIDS
PushSupplier

The managers in the
subdomains implement the
PushSupplier interface and
forwards all profile changes
to the super domain.

The subdomains may
be an ID Mgr PIDS or
Correlation PIDS
PIDS V1.0 June 2000 C-9

ID Domain
(super domain)

Domain

Domain

Domain

MPI System

ID Mgr PIDS

It is possible for a system to do
correlation without implementing
the CorrelationMgr interface.
They can delegate some calls to
the subdomains and use its
own rules to integrate (correlate)
the results.

Hospital ADT

Correlation
PIDS

Clinic HIS

ID Mgr PIDS

PracticeMgmtSys

ID Mgr PIDS

find_candidates()

Client Application

find_candidates()

find_candidates()

find_candidates()
C-10 Person Identification Service V1.0 June 2000

Event Descriptions D
ould

ent
se
 to

ames

from
d by
of

L

ibed
they
The information in this appendix is informative and is not a normative part of the
specification. It was prepared by the submitters under the expectation that there w
be an adopted Notification Service.

Two of the initial submissions to the Notification Service propose the creation of ev
types similar to the service types defined by the Trader Service. They also propo
using the constraint mechanism for event consumers to specify the filters to apply
event channels. The aspects of service types that apply to events are the type n
and property descriptions as described below.

• Event Type - Event types have a name and a definition. The event may inherit
previously defined events. An inherited event has all the same properties define
the parent plus any new type adds. The definition of the type consists of a set
properties.

• Properties - A property is a name/value pair where the value has a specific ID
type. The property is also characterized by a boolean attribute indicating if it is
mandatory.

The event types and associated property descriptions needed for PIDS are descr
below. The syntax used is similar to the Trader service type descriptions except
do not include an interface name or have the concept of “readonly” properties.

D.1 Event Types

event PersonIdChange {
mandatory property string qualified_person_id;

};

event PersonIdStateChange : PersonIdChange {
mandatory property octet new_state;
property octet old_state;

};
Person Identification Service V1.0 June 2000 D-1

event PersonIdStateMerged : PersonIdStateChange {
mandatory property string preferred_id;

};

event PersonIdStateUnmerged : PersonIdStateChange {
mandatory property string old_preferred_id;

};

event PersonIdProfileChange : PersonIdChange {
mandatory property StringSeq trait_names_changed;
mandatory property string component_name;
property string component_version;
property PersonIdService::TraitSeq changed_traits;
property PersonIdService::TraitSeq new_profile;

};

event PersonIdDuplicate {
mandatory property StringSeq qualified_person_ids;

};

event PersonIdCollision {
mandatory property String qualified_person_id;

};

event IdentificationComponentChange {
mandatory property string domain_name;
mandatory property string component_name;

};

event IdentificationComponentVersionChange : IdentificationComponentChange {
mandatory property string new_version;
property string old_version;

};

event IdentificationComponentTraitChange : IdentificationComponentChange {
property StringSeq new_trait_names;
property StringSeq old_trait_names;
property boolean trait_spec_changed;

};

event CorrelationSourceChange : IdentificationComponentChange {
property StringSeq new_source_domain_names;
property StringSeq old_source_domain_names;

};

PersonIdChange Event

This is a general event for any changes on an ID.
D-2 Person Identification Service V1.0 June 2000

qualified_person_id

This is the ID that had something change on it. It is a stringified version of the
QualifiedPersonId . The stringification is per the rules defined in the
NamingAuthority for QualifiedNameStr .

PersonIdStateChange Event

This event type is a subtype of the general PersonIdChange event. It applies only to
state changes on the ID.

new_state

The new_state is a mandatory property which has the new IdState for the ID. The
IdState enum values are coded into the octet starting with 0 and increasing
sequentially in the order they are defined in the IDL.

old_state

The old_state is optional and represents the IdState value before the change.

PersonIdStateMerged Event

This event is a special case of a PersonIdStateChange event where the new state is
Deactivated and the ID has a preferred ID set (e.g., the merge_ids() operation was
called).

preferred_id

This is the ID that the qualified_person_id is merged into.

PersonIdStateUnmerged Event

This event is a special case of a PersonIdStateChange event where the old state is
Deactivated and had a preferred ID. The ID has been reactivated (e.g., the
unmerge_ids() operation was called).

old_prefered_id

This is the ID that the qualified_person_id was merged with.

PersonIdProfileChange Event

This event is a specialization of the PersonIdChange event where the ID profile
bound to the qualified_person_id has changed.

trait_names_changed

This mandatory property indicates the TraitName for each trait that has changed in
the profile.
PIDS V1.0 June 2000 D-3

ular

trait
to

the

s two

n.
component_name

This property contains “the_name ” part of the ComponentName where the change
occurred. This may be used by a client to filter events except those from a partic
component.

component_version

This property contains “the_version ” part of the ComponentName where the
change occurred.

changed_traits

This property contains the traits (including values) that changed. It is an optional
since some trait values may be large (e.g., photographs) and the client will have
query for their value.

new_profile

This property contains the whole new profile. It contains a superset compared to
changed_traits property.

PersonIdDuplicate Event

This event indicates the PIDS has detected suspected duplicate IDs for the same
person.

qualified_person_ids

These are the set of IDs the service thinks may represent the same person.

PersonIdCollision Event

This event indicates the PIDS has detected a suspected collision on an ID. That i
or more people may be represented by (or be using) the same ID.

qualified_person_id

This is the stringified QualifiedPersonId that a suspected collision has occurred o

IdentificationComponentChange Event

This is a general event indicating some of the pseudo-static information on an
IdentificationComponent has changed.

domain_name

This is the stringified ID DomainName in which the component resides.
D-4 Person Identification Service V1.0 June 2000

have

by the

rted

 still

er,

d
component_name

This is the_name from the ComponentName on the component that changed.

IdentificationComponentVersionChange Event

This event indicates that the component’s version has changed (component may
had a configuration change, software update, etc.). Whether there is any outward
functionality change on the component cannot be determined for this event.

new_version

This is the new the_version from the ComponentName on the component that
changed.

old_version

This is the old the_version from the ComponentName on the component that
changed.

IdentificationComponentTraitChange Event

This event indicates that some aspect of the supported_traits attribute has changed
on the component.

new_trait_names

This sequence contains the trait names for any new traits that are now supported
component.

old_trait_names

This sequence contains the trait names for any old traits that are no longer suppo
by the component.

trait_spec_changed

This boolean attribute indicates that some of the values on the TraitSpec (mandatory,
read_only , and/or searchable) have changed on some of the traits that were and
are supported.

CorrelationSourceChange Event

This event occurs when the source ID Domain, for which a PIDS is correlating ov
changes.

new_domain_name

These are the DomainNames for any new source ID Domains that is being correlate
over.
PIDS V1.0 June 2000 D-5

g
old_domain_name

These are the DomainNames for any old source ID Domains that are no longer bein
correlated over.
D-6 Person Identification Service V1.0 June 2000

Security Guidelines E
ing
ason

f
er

f
ss of

ns.
tion,
,

ware
ed

 to
 the
rom
E.1 Security Overview

The PIDS interfaces may be used in many different environments with widely vary
security requirements that range from no security to extreme security. For this re
the PIDS interfaces do not expose any security information. PIDS relies on the
underlying CORBA infrastructure and services which provides all the security
mechanisms needed without exposing it in the interfaces.

An attribute of security that concerns many people is maintaining confidentiality o
certain (sensitive) information about them. For PIDS, this implies being able to filt
requests by:

• who is accessing the information,

• who the information is about,

• what information is being accessed.

Other common security concerns could be preventing unauthorized modification o
data, tapping into communications to acquire sensitive information, and causing lo
service by over-burdening a service.

CORBA Security provides robust mechanisms to address these and other concer
Some of the security properties it does deal with includes authentication, authoriza
encryption, audit trails, non-repudiation, etc. CORBA Security, in its default mode
allows these security concerns to be addressed without the client and server soft
being aware of it. This is a powerful notion, allowing security policies to be creat
and enforced after applications and systems have been created and installed.

Other CORBA and CORBA Security features provide mechanisms for applications
extend these security capabilities. For example, they can obtain credentials from
ORB and implement filters that can look at specific data passed to and returned f
operations.
Person Identification Service V1.0 June 2000 E-1

ed
l on

:

s -

ing

is

e can

e
ay
BA

ent

ere is

e

?”

rity-
the
y to
It is a requirement of the PIDS to provide confidentiality of information that is stor
about an individual. This requirement fuels the need for fine-grained access contro
trait information that is associated with a PIDS ID.

PIDS provides two interfaces to access information about a person, given their ID
1) ProfileAccess and 2) IdentityAccess . The functional capabilities of these two
interfaces are identical, but they have different strengths. The IdentityAccess
interface can simplify the internal implementation of some types of security policie
those where there is a different policy for each ID. The ProfileAccess interface’s
strength is that it only requires a single call to access data for multiple IDs. The
IdentityAccess requires separate calls for each ID information.

The IdentityAccess interface allows a client to acquire an object reference to an
Identity interface, containing information pertaining to only one particular ID. Creat
a CORBA object reference as a single access to the information yields benefits in
controlling the access to that information. It is a single point to which access of th
information must flow. Since CORBA Security Services can automatically deny
requests as a result of an access policy, access to information behind this interfac
be controlled by that mechanism.

E.2 Security Requirements

For the PIDS to be secure in its possible dissemination of information it needs to
adhere to these requirements:

• The PIDS needs to authenticate a client's principal identity, role, and sensitivity
level.

• The PIDS needs to transmit information confidentially and with integrity.

The first requirement states that the entire PIDS interface implementations must b
able to identify a potential client. If it cannot authenticate a client, then the client m
be severely limited in the particular requests that the PIDS can service. The COR
Security Service provides the mechanisms for a server to authenticate a client.

The second requirement provides for the confidentiality of the information. The cli
must communicate with the PIDS using not only encryption to protect data, but
signature as well, so as not to have data tampered with during communication. Th
no sense in putting a Sensitivity level of "OwnerOnly" on a trait and have its value
transmitted to the owner in the clear. The CORBA Security Service provides thes
capabilities, including SSL.

The question is, “How does one get CORBA to support this access policy model

E.3 CORBA Security

In an effort to keep the PIDS interfaces security unaware (i.e., no extra visible secu
relevant parameters in methods), access policy must be adhered to from behind
interfaces. The CORBA security model offers several ways to apply security polic
method invocations.
E-2 Person Identification Service V1.0 June 2000

BA
rs
he

n

ware
ORB
IDS.

gh
ough

, and
 to

 with
the
s in

o

pose

S
 and

l.

an
ns.

.

t for
d the

)
med

for
SI
The CORBA Security Specification (CORBAsec) is not a cookbook for using COR
security in building applications. It is a general framework with which ORB vendo
and application vendors can build a multitude of different security policy models. T
CORBAsec also gives the interfaces for which implementations of applications ca
access those security services that are supplied with a secure ORB.

A secure PIDS implementation that can control access to specific traits must be a
of the security services offered by the ORB. This caveat also means that a client’s
may have to know the kind of ORB and the security services that is used by the P

The CORBA security specification outlines a general security policy model. Althou
the specification is vague about which approach should be taken, it is specific en
to be able to choose from a couple of models that can be supported.

The CORBA security model bases itself on credentials and security domains.
Credentials are data objects that contain attributes such as privileges, capabilities
sensitivity levels, among others. Security domains are mappings from credentials
access rights. Credentials can be encrypted and signed to prevent tampering and
achieve a level of trust between client and server. CORBA credentials get passed
requests beneath the visible level of the interface. CORBA security services give
clients and servers the ability to authenticate/verify credentials to implement policie
security domains.

Many different schemes, algorithms, services, and vendor implementations exist t
provide implementation of security policy, and many different implementations of
those schemes may be integrated into a CORBA compliant ORB. It is not the pur
of this specification to dictate the specific implementation of an ORB and security
services that should be used, but to outline the external requirements for the PID
implementation. These requirements and guidelines aid in selecting a secure ORB
the level security functionality needed to implement the PIDS access policy mode

E.4 Secure Interoperability Concerns

CORBA has built the communication bridge between distributed objects creating
interoperable environment that spans heterogeneous platforms and implementatio
However, security adds another layer of complexity to the issue of interoperability
ORB implementations are not required to include security services nor provide an
interoperable mechanism of security services. However, a specification does exis
the target object to advertise, via the IOR, the security services that it supports an
services it requires from the client. Both the client and server ORBs must use
compatible mechanisms of the same security technology.

The CORBA Common Secure Interoperability (CSI) Specification (orbos/96-06-20
defines 3 levels of security functionality that ORBs may support. The levels are na
CSI Level 0, CSI Level 1, and CSI Level 2. Each level has increasing degrees of
security functionality.

The CSI Level 0 supports identity-based policies only and provides mechanisms
identity authentication and message protection with no privilege delegation. The C
Level 1 adds unrestricted delegation. The CSI Level 2 can implement the entire
CORBA Security Specification at Security Level 2.
PIDS V1.0 June 2000 E-3

urity
S

 each

or
tical
at a

port
an

that
 the

lient's
ates

y use

 be
 trust

 is

 and
plish
t the

 map
 this
Each CSI level is parameterized by mechanisms that can support the level of sec
functionality, such as SPKM for CSI Level 0, GSS Kerberos for CIS Level 0 or CI
Level 1, and CSI_ECMA for CSI Level 2. Future developments in security
functionality and mechanisms are not restricted, and mechanisms can be added to
level.

The ORB implementations may use different security technology with differing
capabilities and underlying mechanisms, such as SSL, DCE, Kerberos, Sesame,
other standards. Choosing the ORB and its underlying security services will be cri
to protecting PIDS, and it will influence the implementation of the access policy th
secure PIDS implementation must support.

For example, an ORB that only supports SPKM (i.e., CSI Level 0) can only
authenticate clients and provide confidentiality and integrity of communication. It
cannot support definition and use of security attributes beyond an access ID. Sup
for security attributes beyond an access ID require CSI Level 2. Therefore, using
ORB that only provides CSI Level 0 will require the PIDS to maintain its own
information on the credentials of clients.

Even if an ORB's security technology supports the definition of security attributes
can be delivered to the PIDS (i.e., CSI Level 2), there are still concerns involving
trust between the client and the PIDS.

E.5 Trust Models

The available trust models for the PIDS is simplistic. Since the PIDS is a
communications end point and does not require requests on other services on a c
behalf, a delegation trust model is not needed. This simplifies the model and elimin
an absolute need for a CSI Level 1 or CSI Level 2 secure ORB (although they ma
them).

There are two basic trust models for the PIDS. If the PIDS and its client are
implemented using CSI Level 0 or CSI Level 1 ORBs, only the first trust model can
supported. If a CSI Level 2 ORB is used, both trust models can be supported. The
models are:

1. The client's identity can and is trusted to be authenticated. However, the client
unable or not trusted to deliver the valid credentials.

2. The client is trusted to deliver the correct credentials.

In the first model, the client ORB is required to authenticate its principal (the user)
provide authentication information to the server ORB. The methods used to accom
principal authentication is specific to the mechanisms (e.g., DCE or Kerberos) tha
selected ORB supports. Management of those identities is also specific to the
mechanism. The server ORB must have a compatible mechanism that verifies the
authentication information and carries out mutual authentication of the client.

With this trust model, a secure PIDS implementation must maintain and manage a
of identities to privilege attributes. CSI Level 0, 1, and 2 ORBs are able to support
trust model.
E-4 Person Identification Service V1.0 June 2000

S
ase,
uests

tion
ted

ate it,

eir
he

 this

of
role
to

utes

tation
nd

 the
Even if the ORB has CSI Level 2 functionality, it may be a local policy that a PID
does not trust the credentials brought forth from an authenticated client. In that c
the PIDS must maintain the map or use a default set of security attributes for req
from clients it does not trust.

In the second model, the client ORB is required to authenticate its principal and
acquire its valid credentials. The methods used to accomplish principal authentica
and acquisition of privilege attributes are specific to the mechanism that the selec
ORB supports, such as DCE and Sesame. Management of those identities and
attributes are also mechanism-specific. A secure PIDS installation using this trust
model must take a careful look at that management scheme and operation, evalu
and decide to trust it. In such a scenario, the server ORB, which has CSI Level 2
functionality, automatically verifies the credentials on invocation.

A secure PIDS built to the second model leaves management of identities and th
attributes to the security services policy management system used by the ORB. T
PIDS may manage security attributes for the data itself.

A secure PIDS built to the first model will have some scheme to manage trusted
identities and their credentials. There is no interface or plan in the PIDS to specify
kind of management.

E.6 CORBA Credentials

To adhere to the credential model that supports trait-specific access policy, a set
credentials must contain privilege attributes such as the identity of the client, the
in which the client is actively represented, and the sensitivity level of information
which the client is allowed access. It will be the responsibility of a PIDS
implementation to advertise to potential client vendors the specifics of these attrib
and how to represent them externally. A client ORB needs to ascertain certain
credentials about the user and must pass them to the PIDS. An external represen
of those credentials is needed so that credentials can be passed between client a
server within the CORBA security services. The CORBA Security module defines
structure for this representation.

module Security {

const SecurityAttributeType AccessId = 2;
const SecurityAttributeType Role = 5;
const SecurityAttributeType Clearance = 7;

struct SecAttribute {
AttributeType attribute_type;
Opaque defining_authority;
Opaque value;

};
typedef sequence<SecAttribute> AttributeList;

}

PIDS V1.0 June 2000 E-5

 that

ch
 a
of
ain.

ap to

he
the

rity
 to
ort.
urity

ithin
ains
rnal

urity

 the

ture
y
B
Listed above are the relevant pieces of the specification from the Security module
apply to externalizing credential information.

The Security::AccessId security attribute type could represent the person for whi
the ID and hence Identity object reference relates to. In constructing the value of
Security::SecAttribute of this type, the defining authority part could be the name
the PIDS ID Domain manager, and the value part could be the ID within that dom
However, if the ORB uses an underlying scheme where the value of the AccessId
security attribute is supplied by some security services, such as a DCE name, a m
the PIDS ID may be needed.

The Security::Role security attribute type should represent the mandatory role. T
defining authority part could take the name of the PIDS ID Domain that specifies
role, and the value can be the ID within that domain.

The Security::Clearance security attribute type can be used to represent the
Sensitivity Level. For example, the values could be represented by the strings,
"OwnerOnly", "LevelA", "LevelB", "LevelC", "None", and "Undefined".

E.7 CORBA Security Domain Access Policy

In addition to a credential based scheme, CORBA defines security domains. The
purpose of this section is to explain and illustrate the use of the standard CORBA
security policy domain and the way in which it may be used to implement a secu
policy for the PIDS. This section offers a recommendation to a PIDS implementer
give a feel for the kinds of security policy a PIDS implementation may need to supp
It should also guide the implementer in evaluating a secure ORB and available sec
services.

A security domain governs security (access) policy for objects that are managed w
that domain. In order to make scalable administration of security policy, these dom
map sets of security credentials to certain sets of rights. A right is a sort of an inte
security credential.

CORBA defines a standard set of rights that are granted to principals within a sec
domain. A security domain administrator manages that map through the
SecurityAdministration module's DomainAccessPolicy interface. Access
decisions can then be based on a set of required rights and the rights granted to
client by the domain access policy, by virtue of the client's credentials.

ORB security service vendors will supply a security policy management infrastruc
that implements the standard CORBA rights scheme. The PIDS must use securit
services that can place different required rights on the PIDS interfaces. Some OR
security services may allow a security domain to create special rights. However,
CORBA defines a standard set of rights: get, set, and manage. This right set will
suffice to handle the PIDS.
E-6 Person Identification Service V1.0 June 2000

 any
ach

n
red
lies

r the
tials

e
"
nt
et"

n.
 set

e
In the model just described there is one security domain for all of the PIDS
components. The CORBA rights families scheme within a single security policy
domain suffices to differentiate the security nature of the methods. More generally
number of domain models can be used, such as a separate security domain for e
PIDS component.

The PIDS interfaces are divided up so that for most of the interfaces one right ca
apply to all methods of each interface. The following table recommends the requi
rights for each of the PIDS interfaces. An asterisk implies that the listed right app
to all methods in the interface that are not listed separately.

Most methods on the IdentificationComponent , its subtypes, and the
EventComponent can be considered "get" methods. The domain access policy fo
security domain should grant authenticated clients with the proper access creden
(i.e., access ID and role) with the get (corba:g) right.

All the methods in the IdMgr , Filter , and consumer/supplier interfaces as well as th
update_and_clear_traits() and load_profiles() operations can be considered "set
methods. These “set” methods change information; therefore, they have a differe
security function other than the other methods. A client that is granted the right "g
should not necessarily be allowed access to methods that can change informatio
Clients that are allowed to change information in the PIDS should be granted the
(corba:s) right.

The Factory interfaces perform management of event end-points; therefore, it is
recommended that access to these objects should be more limited. The manag
(corba:m) right may be sufficient to separate this duty from the others in a single
security domain.

Interface Required Rights

PersonIdService module

IdentificationComponent::* corba:g

ProfileAccess::* corba:g

ProfileAccess::update_and_clear_traits() corba:s

IdentityAccess::* corba:g

IdentityAccess:: update_and_clear_traits() corba:s

SequentialAccess::* corba:g

IdentifyPerson::* corba:g

IdMgr::* corba:s

CorrelationMgr::* corba:g

CorrelationMgr::load_profiles() corba:s

Notification module

Filter::* corba:s

EventComponent::* corba:g

Push/PullSupplier/ConsumerFactory::* corba:m

Push/PullSupplier/Consumer::* corba:s
PIDS V1.0 June 2000 E-7

eds a
policy
t be
nts in
A

 an
 not

ss

f
ccess
ation

face

. The

ly. It
 the
E.8 Request Content-Based Policy

The CORBA standard domain access policy scheme only protects methods from
invocation at the target and without regard to content of the request. The PIDS ne
more fine grained access control in order to implement the content-based access
required (e.g., access policies for different traits). The PIDS implementations mus
made security-aware to implement an access policy based on the value of argume
a request. There are multiple ways to implement this policy using a secure CORB
implementation.

The CORBA Security Specification supplies two different schemes represented by
interface hierarchy, which are Security Level 1 and Security Level 2 (these should
be confused with CSI Levels 0, 1, and 2). These interfaces describe the level of
security functionality that is available to security-aware implementations.

Security Level 1

For the PIDS to take advantage of CORBA security in order to implement its acce
policy model, the ORB must at least implement the CORBA Security Level 1
interfaces. A Security Level 1 compliant ORB supplies an interface to access the
attributes of the credentials received from the client.

Using the SecurityLevel1 interfaces, which is simplistic, enables implementation o
the PIDS interfaces to examine the client's credentials and compare them to the a
control information that is managed as the access policy; however, the implement
of the PIDS must be security-aware.

module SecurityLevel1 {

Current get_current();

interface Current {
Security::AttributeList get_attributes(

in Security::AttributeTypeList attributes
);

};
}

Using the Security Level 1 interfaces, each implementation of a PIDS query inter
must call the get_attributes() function on the Current pseudo object, examine the
attributes, compare to the access policy information, and make the access decision
implementation should raise an exception if access is determined to be denied.

It is the responsibility of the client's ORB to acquire the proper credentials secure
is the responsibility of the server's ORB to authenticate credentials received from
client, extract the security attributes from them, and make them available to the
implementation through the Current::get_attributes() method.
E-8 Person Identification Service V1.0 June 2000

 can
 the
n
ality,

 2
r the

orced

ss

only

ss
nce

to be

(such

e
hese
igh

y.

n.

sing
Security Level 2

Using an ORB which supplies the Security Level 2 interfaces, the implementation
be somewhat free of making the access control decision in the implementation of
query interfaces. Having an implementation that is security-unaware is attractive i
CORBA, because security policy decisions can be made underneath the function
and they have the ability to be changed without retooling the application.

As with any framework, there are several ways in which to use the Security Level
interfaces. One approach could be to implement a replaceable security service fo
access decision. Security Level 2 describes a method in which security can be enf
by the creation of an Access Decision object. The AccessDecision object would
interact with a DomainAccessPolicy object to get effective rights and compare
those to rights returned from the RequiredRights interface.

Some secure ORB implementations may allow the installation of specialized Acce
Decision objects to be used in conjunction with specialized DomainAccessPolicy
objects. In the Security Level 2 interfaces, the specification implies access control
on the invocation of a method and not the contents of the request.

module SecurityReplaceable {

interface AccessDecision {
boolean access_allowed (

in SecuirytLvel2::CredentialList red_list,
in CORBA::Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier interface_name

);
};

}

Currently, the AccessDecision object specified in the SecurityReplaceable
module does not take the invocation Request as an argument. It only makes an acce
decision based on the credentials received from the client, the target object refere
and operation name, and the target's interface name. This criteria is insufficient to
implement the content-based access policy, if needed by a PIDS implementation
automatically performed by the ORB.

Since the PIDS requires access control on the contents of the method invocation
as asking for the value of the HomePhone trait), this scheme of replacing these
Security Level 2 components cannot be used. ORB security services that use th
standard CORBA domain access policy may use third-party implementations for t
components. This standard domain access policy functionality gives the PIDS a h
level of invocation protection that is orthogonal to the content-based access polic
Some PIDS need the standard domain access policy functionality in addition to
providing content-based access policy; therefore, another approach must be take

A content-based access policy can be implemented in a Security Level 2 ORB by u
an interceptor. A request level interceptor takes the Request as an argument;
therefore, it can examine the content of the invocation arguments.
PIDS V1.0 June 2000 E-9

B

using
ce
sions.
t and

s

ent
. A
be
ome
module CORBA {

interface Interceptor { ... };
interface RequestLevelInterceptor : Interceptor {

void client_invoke(inout Request request);
void target_invoke(inout Request request);

};
}

Installing an interceptor on an ORB is ORB implementation specific, and each OR
vendor may have its own flavor of interceptors. The ORB calls the request level
interceptor just before the invocation gets passed to the server implementation by
the target_invoke() operation. The interceptor uses the Dynamic Skeleton Interfa
(DSI) to examine values of the arguments of the invocation and make access deci
These access decisions are also based on the credentials received from the clien
the access policy. The interceptor will deny access to the invocation by raising an
exception. The server's ORB will transmit this exception back to the client.

The use of the interceptor scheme frees the implementation of the PIDS interface
from the implementation of the access decision policy. If the access policy model
changes, then the interceptor can be changed without retooling the PIDS
implementation.

As awareness of the need for more powerful and flexible security policy managem
grows, more tools to create, manage, and analyze policy will come into existence
PIDS implementation relying on interceptors to implement its security policy may
able, with relative ease, to switch to using more robust policy services as they bec
developed.
E-10 Person Identification Service V1.0 June 2000

Index
A
Ancillary System 1
Attended Matching 1
authority_to_str 2-39
AuthorityId 2-37
AuthorityIdStr 2-37

B
Basic Types 2-4
Bind 1

C
Candidate 2-11, 1
CandidateIterator Interface 2-11
CandidateSeq 2-11
CannotRemove 2-13
CannotSearchOn 2-14
changed_traits D-4
Client 2
Collision 2
Common Data Types 2-7
Component 2
component_name 2-47, D-4, D-5
component_version 2-47, D-4
ComponentName 2-9
ComponentVersion 2-9
Confidence 2
Confidence Level 2
Conformance Classes 2-48
conformance_classes 2-47
CORBA

contributors 3
documentation set 2

CORBA Credentials E-5
CORBA Security E-2
CORBA Security Domain Access Policy E-6
CORRELATED_IDS 2-42
CorrelatedIdsType 2-42
Correlating ID Domain 2
Correlating ID Domains 2-45
Correlation 2
Correlation PIDS 2-45, 2-49
correlation_mgr 2-18
CorrelationMgr Interface 2-32
CorrelationSourceChange Event D-5
CosNaming.idl 2-3
CosTrading.idl 2-3
CPR 2
create_temporary_ids 2-31

D
DCE 2-36, 2-37
Deactivate 2
Deprecate 2
deprecate_ids 2-32
destroy 2-12
DNS 2-37
Domain 2, 4
Domain Name 3
Domain Reference Model 1-5
domain_name 2-47, D-4

DomainsNotKnown 2-15
done 2-28
Duplicate 3
Duplicate ID 3
DUPLICATE_IDS 2-42
DuplicateIds 2-12
DuplicateIdsType 2-42
DuplicateTraits 2-12

E
EMPI 4
Event Types D-1
event_component 2-18
ExceptionReason 2-11
Exceptions 2-12, 2-39
EXTERNAL_IDS 2-42
ExternalIdsType 2-42

F
Federation 3
find_candidates 2-19
find_or_register_ids 2-31
Full IDL A-1

G
get_all_ids_by_state 2-25
get_corresponding_ids 2-33
get_deactivated_profile 2-27
get_deprecated_profile 2-22
get_first_ids 2-25
get_identity_object 2-27
get_identity_objects 2-27
get_last_ids 2-25
get_next_ids 2-25
get_previous_ids 2-25
get_profile 2-22, 2-27
get_profile_list 2-22
get_trait 2-27
get_traits_known 2-22

H
HL7Version2_3 Module 2-42
HowManyTraits 2-10

I
ID 3
ID Domain 4
ID Domain Components 2-46
ID Domain Manager PIDS 2-45
ID Domain Mgr PIDS 2-49
ID Using Services 2-46
id_count_per_state 2-24
id_info 2-27
id_mgr 2-18
Identification 3
IdentificationComponent 2-45
IdentificationComponent Interface 2-15
IdentificationComponent Service 2-47
IdentificationComponentChange Event D-4
IdentificationComponentTraitChange Event D-5
IdentificationComponentVersionChange Event D-5
Identifier 3
Person Identification Service June 2000 Index-1

Index
identify_person 2-18
IdentifyPerson Interface 2-19
Identity 3
Identity Access PIDS 2-45, 2-49
Identity Interface 2-27
identity_access 2-18
IdentityAccess Interface 2-25
IdentitySeq 2-11
IdInfo 2-8
IdInfoSeq 2-8
IDL 2-36, 2-37
IdMgr Interface 2-28
IdsExist 2-14
IdsNotKnown 2-15
IdState 2-8
IdStateSeq 2-8
Index 2-11
IndexSeq 2-11
interfaces_implemented 2-47
INTERNAL_ID 2-41
InternalIdType 2-41
InvalidId 2-12
InvalidIds 2-12
InvalidInput 2-39
InvalidStates 2-13
InvalidWeight 2-14
ISO 2-35, 2-37

L
load_profiles 2-33
LocalName 2-38

M
MAF IDL Interfaces A-1, B-1, C-1, D-1, E-1
make_ids_permanent 2-31
mandatory_traits 2-47
Matching 4
max_left 2-11
Merge 4
merge_ids 2-31
MERGED_IDS 2-41
MergedIdsType 2-41
MergeStruct 2-10
MergeStructSeq 2-10
Miscellaneous Data Types 2-9
ModifyOrDelete 2-14
MPI 4
MultipleFailuerSeq 2-11
MultipleFailure 2-11
MultipleTraits 2-13

N
Naming Authority 4
Naming Service 2-45
Naming/Trader Interoperation 2-45
naming_context 2-18
NamingAuthority Module 2-33
NamingAuthority.idl 2-3
NamingEntity 2-36
NATIONAL_HEALTH_IDS 2-42
NationalHealthIdsType 2-42

new_domain_name D-5
new_profile D-4
new_state D-3
new_trait_names D-5
new_version D-5
next_n 2-11
Notification.idl 2-4
NotImplemented 2-14
NullTraitType 2-41

O
Object Management Group 1

address of 2
old_domain_name D-6
old_prefered_id D-3
old_state D-3
old_trait_names D-5
old_version D-5
OTHER 2-35, 2-37

P
Person ID 4
PersonID 4
PersonId 2-7
PersonIdChange Event D-2
PersonIdCollision Event D-4
PersonIdDuplicate Event D-4
PersonIdentificationService Module 2-2
PersonIdProfileChange Event D-3
PersonIdSeq 2-7
PersonIdStateChange Event D-3
PersonIdStateMerged Event D-3
PersonIdStateUnmerged Event D-3
PersonIdTraits Module 2-40
PIDS 5
PIDS Conceptual Model 1-7
PIDS Identification Model 1-8
pragma prefix 2-4, 2-35
prefered_id D-3
Profile 2-8, 5
profile_access 2-18
ProfileAccess Interface 2-21
ProfileSeq 2-8
ProfilesExist 2-14
ProfileUpdate 2-10
ProfileUpdateSeq 2-10

Q
qualified_name_to_str 2-39
qualified_person_id D-3, D-4
qualified_person_ids D-4
QualifiedName 2-38
QualifiedNameStr 2-38
QualifiedPersonId 2-8
QualifiedPersonIdSeq 2-8
QualifiedTaggedProfile 2-10
QualifiedTaggedProfileSeq 2-10

R
read_only_traits 2-47
ReadOnlyTraits 2-13
register_new_ids 2-30
Index-2 Person Identification Service June 2000

Index
register_these_ids 2-31
RegistrationAuthority 2-35
Request Content-Based Policy E-8
RequiredTraits 2-14

S
searchable_traits 2-48
Secure Interoperability Concerns E-3
Security Level 1 E-8
Security Level 2 E-9
Security Requirements E-2
Sequential Access PIDS 2-45, 2-49
sequential_access 2-18
SequentialAccess Interface 2-23
Simple PIDS 2-45, 2-49
Source ID Domains 2-45
source_component 2-27
source_domains 2-33, 2-48
SpecifiedTraits 2-10
str_to_authority 2-39
str_to_qualified_name 2-39
Subdomain 5
supported_traits 2-18, 2-47
System 5

T
TaggedProfile 2-10
TaggedProfileSeq 2-10
TooMany 2-13
Trader Service 2-46
trader_components 2-18

Trait 2-8, 5
Trait Information 2-46
trait_names_changed D-3
trait_spec_changed D-5
trait_value_count 2-27
TraitName 2-8
TraitNameSeq 2-8
Traits 2-39
traits_with_values 2-27
TraitSelector 2-10
TraitSelectorSeq 2-10
TraitSeq 2-8
TraitSpec 2-9
TraitSpecSeq 2-9
TraitValue 2-8
TranslationLibrary interface 2-39
Trust Models E-4

U
Unattended Matching 5
UnknownTraits 2-12
Unmerge 5
unmerge_ids 2-32
update_and_clear_traits 2-23, 2-28
Usage Diagrams C-1

V
vCardTraits Module 2-44

W
WrongTraitFormat 2-13
Person Identification Service June 2000 Index-3

Index
Index-4 Person Identification Service June 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Service Description
	1.1 Introduction
	1.1.1 Problems Being Addressed
	1.1.2 Problems Not Being Addressed

	1.2 Domain Reference Model
	1.2.1 Scope

	1.3 PIDS Conceptual Model
	1.4 PIDS Identification Model

	2. Modules and Interfaces
	2.1 PersonIdentificationService Module
	2.1.1 Basic Types

	2.2 IdentificationComponent Interface
	2.2.1 IdentificationComponent Interface
	2.2.2 IdentifyPerson Interface
	2.2.3 ProfileAccess Interface
	2.2.4 SequentialAccess Interface
	2.2.5 IdentityAccess Interface
	2.2.6 IdMgr Interface
	2.2.7 CorrelationMgr Interface

	2.3 NamingAuthority Module
	2.3.1 Exceptions
	2.3.2 TranslationLibrary interface

	2.4 Traits
	2.4.1 References
	2.4.2 PersonIdTraits Module
	2.4.3 HL7Version2_3 Module
	2.4.4 vCardTraits Module

	2.5 Naming/Trader Interoperation
	2.5.1 Naming Service
	2.5.2 Trader Service
	2.5.3 IdentificationComponent Service

	2.6 Conformance Classes

	PIDS Glossary
	Appendix A - OMG IDL
	Appendix B - Use Case Examples
	Appendix C - Interaction Patterns
	Appendix D - Event Descriptions
	Appendix E - Security Guidelines
	Index

