
Person Identification Service (PIDS)
Specification

April 2001
Version 1.1

ee, paid
e mod-

nged the
 herein

y
ch a
 of
e users

tails an
ocument

ted
ages,

 above
 the sole
arks or
 is pro-

used in
ation
Copyright 1997-1998, 2AB
Copyright 1997-1998, Care Data Systems, Inc.
Copyright 1997-1998, CareFlow/Net, Inc.
Copyright 1997-1998, HBO & Company
Copyright 1997-1998, HealthMagic, Inc.
Copyright 1997-1998, HUBlink, Inc.
Copyright 1997-1998, IDX Systems Corporation
Copyright 1997-1998, IONA Technologies PLC
Copyright 1997-1998, Oacis Healthcare Systems
Copyright 1997-1998, Protocol Systems, Inc.
Copyright 1997-1998, Sholink Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-fr
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of th
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infri
copyright in the included material of any such copyright holder by reason of having used the specification set forth
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for whi
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospectiv
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document de
Object Management Group specification in accordance with the license and notices set forth on this page. This d
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies lis
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover dam
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, tradem
other special designations to indicate compliance with these materials. This document contains information which
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or inform
storage and retrieval systems--without permission of the copyright owner.

orth in

G IDL,
Inc.

readers
 at
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set f
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OM
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group,
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form
http://www.omg.org/library/issuerpt.htm.

Contents
iii

1-1

1-1

1-2

1-3

1-4

1-5

-5

1

2-4
2-7

2-9
-11

-12

-15
17

-20

-22

2-24

-26
28

-29

32
Preface .

1. Overview .

1.1 Introduction .

1.2 Scope .

1.3 Design Goals .

1.4 Domain Reference Model .

1.5 PIDS Conceptual Model. .

1.6 PIDS Identification Model . 1

2. Person IdentificationService Module 2-

2.1 Basic Types .
2.1.1 Common Data Types .

2.1.2 Miscellaneous Data Types
2.1.3 CandidateIterator Interface 2

2.1.4 Exceptions . 2

2.2 IdentificationComponent Interface. 2
2.2.1 IdentificationComponent Interface 2-

2.3 IdentifyPerson Interface . 2

2.4 ProfileAccess Interface. 2

2.5 SequentialAccess Interface. .

2.6 IdentityAccess Interface . 2
2.6.1 Identity Interface . 2-

2.7 IdMgr Interface . 2

2.8 CorrelationMgr Interface . 2-
April 2001 Person Identification Service i

Contents

1

-1

3-6

3-7

4-1

4-2

4-4
-6

4-6

1

5-1

5-2
-3

6-1

-1

-1

1

1

1

1

3. NamingAuthority Module . 3-

3.1 NamingAuthority IDL . 3

3.2 Exceptions .

3.3 TranslationLibrary Interface. .

4. Traits .

4.1 PersonIdTraits Module .

4.2 HL7Version2_3 Module .
4.2.1 HL7 Link and Unlink Events 4

4.3 vCardTraits Module .

5. Naming/Trader Interoperation. 5-

5.1 Naming Service .

5.2 Trader Service .
5.2.1 IdentificationComponent Service 5

6. Conformance Classes .

Appendix A - References. A

Appendix B - Complete OMG IDL B-1

Appendix C - Use Case Examples . C

Appendix D - Interaction Patterns. D-

Appendix E - Event Descriptions . E-

Appendix F - Security Guidelines . F-

Glossary .
ii Person Identification Service April 2001

Preface
d by
sers.

ment

and
.
s
.

tion

ent
r of

ho
up

cific
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and u
Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the establish
of industry guidelines and object management specifications to provide a common
framework for application development. Primary goals are the reusability, portability,
interoperability of object-based software in distributed, heterogeneous environments
Conformance to these specifications will make it possible to develop a heterogeneou
applications environment across all major hardware platforms and operating systems

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numbe
hardware and software products available today. Simply stated, CORBA allows
applications to communicate with one another no matter where they are located or w
has designed them. CORBA 1.1 was introduced in 1991 by Object Management Gro
(OMG) and defined the Interface Definition Language (IDL) and the Application
Programming Interfaces (API) that enable client/server object interaction within a spe
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
April 2001 Person Identification Service, v1.1 iii

r
ct
is

ML

eir
A-
enable
ing

of
oth
ata

tial
f the

s the

nd
.

jects.
t.
ent.
loper’s
 has

a,
OMG Documents

In addition to the CORBA Core Specification, OMG’s document set includes the
following publications.

OMG Modeling

The Unified Modeling Language (UML) Specification defines a graphical language fo
visualizing, specifying, constructing, and documenting the artifacts of distributed obje
systems. The specification includes the formal definition of a common Object Analys
and Design (OA&D) metamodel, a graphic notation, and a CORBA IDL facility that
supports model interchange between OA&D tools and metadata repositories. The U
provides the foundation for specifying and sharing CORBA-based distributed object
models.

The Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and th
corresponding models. The MOF provides the infrastructure for implementing CORB
based design and reuse repositories. The MOF specifies precise mapping rules that
the CORBA interfaces for metamodels to be automatically generated, thus encourag
consistency in manipulating metadata in all phases of the distributed application
development cycle.

The OMG XML Metadata Interchange (XMI) Specification supports the interchange
any kind of metadata that can be expressed using the MOF specification, including b
model and metamodel information. The specification supports the encoding of metad
consisting of both complete models and model fragments, as well as tool-specific
extension metadata. XMI has optional support for interchange of metadata in differen
form, and for metadata interchange with tools that have incomplete understanding o
metadata.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describe
conceptual models upon which OMG standards are based. It defines the umbrella
architecture for the OMG standards. It also provides information about the policies a
procedures of OMG, such as how standards are proposed, evaluated, and accepted

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA ob
The IDL definition is the contract between the implementor of an object and the clien
IDL is a strongly typed declarative language that is programming language-independ
Language mappings enable objects to be implemented and sent requests in the deve
programming language of choice in a style that is natural to that language. The OMG
an expanding set of language mappings, including Ada, C, C++, COBOL, IDL to Jav
Java to IDL, Lisp, and Smalltalk.
iv Person Identification Service, v1.1 April 2001

ping

liant

rks

fe

 to
ies

t

main
oms,

tions

oints

,

tion
e
CORBAservices

Object Services are general purpose services that are either fundamental for develo
useful CORBA-based applications composed of distributed objects, or that provide a
universal-application domain-independent basis for application interoperability.

These services are the basic building blocks for distributed object applications. Comp
objects can be combined in many different ways and put to many different uses in
applications. They can be used to construct higher level facilities and object framewo
that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
Collection, Concurrency, Event, Externalization, Interoperable Naming, Licensing, Li
Cycle, Notification, Persistent Object, Property, Query, Relationship, Security, Time,
Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable
most domains. Adopted OMG Common Facilities are collectively called CORBAfacilit
and include Internationalization and Time, and Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direc
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include Do
Interfaces for application domains such as Finance, Healthcare, Manufacturing, Telec
E-Commerce, and Transportation.

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the specifica
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users aren’t required to implement these p
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if a vendor supports C++
their ORB must comply with the OMG IDL to C++ binding.

Interoperability and Interworking are separate compliance points. For detailed informa
about Interworking compliance, refer to the Common Object Request Broker: Architectur
and Specification, Interworking Architecture chapter.
April 2001 PIDS, v1.1 Definition of CORBA Compliance v

ith its
y when
 and
Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, w
membership, evaluating the responses. Specifications are adopted as standards onl
representatives of the OMG membership accept them as such by vote. (The policies
procedures of the OMG are described in detail in the Object Management Architecture
Guide.)

OMG formal (published) specifications are available from the OMG website
http://www.omg.org/technology/documents/formal/index.htm. To obtain print-on-demand
books in the documentation set or other OMG publications, contact the Object
Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• 2AB

• 3M Health Information Systems

• Ardent Software, Inc.

• Care Data Systems, Inc.

• CareFlow/Net, Inc.

• FUJITSU LIMITED

• HBO & Company

• HealthMagic, Inc.

• HUBlink, Inc.

• IBM Corporation

• IDX Systems Corporation

• INPRISE Corporation

• IONA Technologies PLC

• Oacis Healthcare Systems

• Object Design, Inc.

• Objectivity, Inc.

• Oracle Corporation

• Persistence Software, Inc.

• Protocol Systems, Inc.
vi Person Identification Service, v1.1 April 2001

• Secant Technologies, Inc.

• Sholink Corporation

• Sun Microsystems, Inc.

• Versant Object Technology Corporation
April 2001 PIDS, v1.1 Acknowledgments vii

viii Person Identification Service, v1.1 April 2001

Overview 1
ens or
atient

ously
cal

th

hen
or
m a
zation
Contents

This chapter contains the following topics.

1.1 Introduction

Throughout a person's lifetime he or she may have episodes of care provided by doz
hundreds of healthcare providers, most of whom may be assigning and maintaining p
IDs autonomously. In this arrangement, each organization simply assigns IDs that
uniquely identify patients within its local ID Domain of ID values, with the result that
these ID values are meaningless outside that system or organization. These autonom
managed IDs suit the purposes of recording and retrieval of service records for the lo
organization. However, there is no basis for efficient collection or correlation of heal
records among multiple venues.

A typical healthcare information system will permit the user to submit a search for a
person’s record using some combination of identifying parameters for the person. W
the user must collect a patient's healthcare information from a different organization
from a disparately-keyed system in the same organization, s/he typically must perfor
new search in that other system - or ask a medical records person in the other organi

Topic Page

“Introduction” 1-1

“Scope” 1-2

“Design Goals” 1-3

“Domain Reference Model” 1-4

“PIDS Conceptual Model” 1-5

“PIDS Identification Model” 1-5
April 2001 Person Identification Service, v1.1 1-1

1

ation.

ly
 for
it
viders

eting

ed
rint,
ense
 may

 as

on
o

its
 is
n the
l

ot
king

or

ust
 We
e for
ts)

to perform the search - in order to identify the person and retrieve the needed inform

In recent years, changes in the business of healthcare have made it both increasing
important and increasingly difficult to access the continuum-complete record of care
an individual. Risk-shared and capitation-based reimbursement policies have made
absolutely necessary to avoid redundant treatments. Increased specialization of pro
has caused increased fragmentation and distribution of patient records.

Finally, organizational consolidation, growth and flux are exacerbating the problems
associated with managing IDs. Most large integrated delivery systems are now comp
on the basis of population share.

1.2 Scope

When identifying a person there is a variety of identifying information that may be us
including demographics (address, place of birth, etc.), biometric information (finger p
photograph, blood type) and IDs they may have from other sources (SSN, drivers lic
number, insurance number). Some biometric information (e.g., blood type or weight)
also be considered clinical information.

Question: Can’t PIDS be used for accessing clinical information about a patient such
electronic medical records?

Answer: No. There is a fuzzy line between biometric information and clinical informati
but the distinguishing trait is their stability over time. The predefined names of traits d
not cover clinical information and PIDS is not meant to store clinical information.

The information about a patient that is useful for identification purposes are those tra
that remain constant or change very slowly over time. The expectation in using them
that they have not changed so they can be stored and then used to identify the perso
next time they are encountered. The information being gathered as part of the clinica
diagnosis is expected to have changed and is, in general, unstable over time.

The key word in Patient Identification Service is “Identification.” Identity is definitely n
unique to patients. When looking at the need for identification in many fields and loo
at the interfaces being proposed, we envision this being applicable to much broader
entities than just patients.

Question: Should the thing being identified in this specification be patients, persons,
subjects?

Answer: Persons

The concept of identifying a subject by its characteristics is applicable to more than j
persons but there are a couple problems proposing this specification to cover them.
need to define a default set of identifying information that can be used with this servic
identifying patients. This information is specific to identifying persons (not just patien
but not general entities or subjects.

Applying this specification to general entities that need to be identified is beyond the
scope of this specification and even the CORBA Healthcare DomainTask Force.
1-2 Person Identification Service, v1.1 April 2001

1

heir
e, the

r

efers
.

r

IDS)
IDS is

sage-

est

and

ted
Question: Isn’t a Person Identification Service needed in other domains than just
healthcare? Why is CORBA Healthcare standardizing it?

Answer: Yes, it is needed in other domains - but as an ancillary part of work flow as t
real area of concern is finance, telecommunications, manufacturing, etc. In healthcar
person (we call them patients) is what the business is all about.

Other domains need to identify a person to make sure a financial transaction or othe
business contract is applied to the correct person. In healthcare, it is important when
diagnosing a problem that you have the same “physical” being that a patient record r
to. Therefore, incorrectly identifying the person can have more severe consequences

For these reasons it makes sense that CORBA Healthcare standardize interfaces fo
identifying persons. These interfaces should be useful outside healthcare as well.

1.3 Design Goals

This specification defines the interfaces of a CORBA Person Identification Service (P
that organizes person ID management functionality to meet healthcare needs. The P
designed to:

• Support both the assignment of IDs within a particular ID Domain and the
correlation of IDs among multiple ID Domain.

• Support searching and matching of people in both attended-interactive and mes
driven-unattended modes, independent of matching algorithm.

• Support federation of PIDS services in a topology-independent fashion.

• Permit PIDS implementations to protect person confidentiality under the broad
variety of confidentiality policies and security mechanisms.

• Enable plug-and-play PIDS interoperbility by means of a “core” set of profile
elements, yet still support site-specific and implementation-specific extensions
customization of profile elements.

• Define the appropriate meaningful compliance levels for several degrees of
sophistication, ranging from small, query-only single ID Domains to large federa
correlating ID Domains.
April 2001 PIDS, v1.1 Design Goals 1-3

1

ion.
is

by
.

ary
The

iple
ly

s.

ions.

ven

1.4 Domain Reference Model

Figure 1-1 Domain Reference Model for PIDS

Figure 1-1 represents a reference model for healthcare as it relates to this specificat
This is not an attempt to define a globally useful reference model for healthcare as th
model was chosen to highlight the aspects of healthcare related to person identity.

A hospital is likely to have one primary ID Domain, which would typically be defined
the Healthcare Information System (HIS) or Admit Discharge Transfer (ADT) system
Many ancillary or departmental systems would be binding person-related data
(demographic, clinical, financial) to IDs in that ID Domain. There may be other ancill
systems that use their own identification to make them each a separate ID Domain.
hospital may manually mirror these ID Domains against a “main” ID Domain or
electronically connect these systems to a common registration process to actually
consolidate them into a single ID Domain. Today they use an MPI system to do this.

Today Healthcare Provider Organizations may consist of multiple hospitals and mult
clinics forming an Integrated Delivery System. Each clinic that is automated will like
have one practice management system, which manages its own ID Domain.

A Healthcare Provider Organization also has contract services such as reference lab
Each contract service would have its own ID Domain. The Healthcare Provider
Organization may need a higher level of correlation that consolidates the various ID
Domains.

There could be yet higher levels of correlation among Healthcare Provider Organizat
These do not add new relationships as they are just correlating over correlating ID
Domains as we have here. Their population sizes would potentially be much larger. E
though it is not shown in Figure 1-1, an ID Domain could have multiple correlating ID
Domains that correlate its IDs with other ID Domains.

Heal thcare Provider Organizat ion

Hospi ta ls

HIS ID Domain

Anci l lary Systems

Cl in ics & Group Pract ices

Single ID Domain

Contract Serv ices

Single ID Domain

Anci l lary Systems with
own ID Domains

Corre lat ing ID Domain

Corre lat ing ID Domain
1-4 Person Identification Service, v1.1 April 2001

1

ns

d
ration
d to

l:
1.5 PIDS Conceptual Model

Figure 1-2 PIDS Conceptual Model Diagram

The PIDS Conceptual Model shows the core data elements that PIDS implementatio
must deal with. It also shows how these relate to a real world person. The following
sections will describe this data and show how they are used by PIDS.

In PIDS implementations, the QualifiedID associations might carry administrative an
auditing attributes such as, time stamp, user stamp, source system, and specific ope
types for merge and correlation. For example, specific operation types could be adde
correspond to the HL7 2.3 merge and link events.

1.6 PIDS Identification Model

The following figure provides the basic structural elements of our identification mode

1 . .*

1 . .1

1 . .1

0 . .*
T r a it
V a lu e

1 . .*

T r a itT y p e

N a m e
M a n d a to r y
S e a rc h a b le
R e a d O n ly

1 . .1

0 . .*1 . .1

0 . .*

1 . .1

ID D o m a in
D o m a in N a m e

1 . .*

1 . .1 S u p p o r ts

1 . .1

 P r o f i le

1 . .*

1 . .1

1 . .1

0 . .*

0 . .*

0 . .1

Q u a lif ie d ID
ID V a lu e
S ta te

0 . .*

1 . .1

1 . .1

1 . .1

0 . .*

0 . .*
C o r re la te d

0 . .1

0 . .*

M e rg e d

0 . .*
April 2001 PIDS, v1.1 PIDS Conceptual Model 1-5

1

s a
ally
 a
l

 no
 and

, the
tem.
logy

sed

e ID

n’s
its.

w

and
Figure 1-3 PIDS Identification Model Diagram

The ID Domain is the basic building block of our PIDS model. An ID Domain maintain
unique Identifier (ID) for each person identity to be represented in the ID Domain. Ide
there is one and only one ID per person, but in reality there may be duplicates where
given person has been assigned an additional ID in the same ID Domain. For interna
consistency, the ID Domain cannot assign two persons the same ID or it would have
means to distinguish between the two entries. The ID is an internal control mechanism
may or may not be used externally. Thus the ID and its ID Domain together create a
unique ID for the person.

The ID Domain provides a framework for representing existing systems. For example
MPI in a registration system is an ID Domain as is the patient index in an ancillary sys
In other words, ID Domains already exist in any patient oriented system. Our termino
simply provides descriptive unit for existing identification processes.

Within the PIDS specification, several interfaces are detailed. The two most directly u
with an ID Domain are IdentifyPerson interface and ProfileAccess interface. The
IdentifyPerson interface is basically a query used to send traits to be matched in th
Domain and to receive the matching candidate(s). The ProfileAccess interface can be a
query or an update used to send an ID for a specific person and to receive that perso
profile. A profile is a set of traits containing the person’s values for their respective tra
Two additional interfaces are specialized forms of the ProfileAccess interface, namely
the SequentialAccess interface and the IdentityAccess interface.

The coordinating structural unit for the PIDS model is the Correlating Domain. The
Correlating Domain allows access to the correlated profiles of the IDs in all of the
participating ID Domains. This building block provides the framework for cross-
referencing IDs across the participating ID Domains. The Correlating Domain is a ne
building block which complements existing ID Domains.

Two interfaces illustrate the role of the Correlating Domain. First, profiles are added
correlated via the CorrelationMgr interface (PersonIdSeq register). Second, cross-
referenced IDs are obtained by the CorrelationMgr interface (UniquePersonIdSeq
get_corresponding_ids).

Integrity of each domain is maintained by their respective managers – the IDMgr interface
and the CorrelationMgr interface.

Correlating Domain

ID Domain ID Domain ID Domain
1-6 Person Identification Service, v1.1 April 2001

1

n
d by
tems
e the

uld

r

ctures

n ID
e

ain
mal

ss

del
l
trait
To illustrate the use of this model in actual implementations, consider the following
examples.

The MPI in a registration system or the patient index in an ancillary system is an ID
Domain. When a registration system is interfaced to ancillary systems, the registratio
systems MPI would be an ID Domain and the ancillary systems using the ID assigne
the registration system would be codependent domains. When multiple provider sys
are interfaced, such as for an integrated delivery system, the enterprise MPI would b
Correlating Domain for the participating ID Domains of the provider systems. If the
enterprise were to issue the IdentifyPerson interface and the ProfileAccess interface
to the Correlating Domain instead of to each ID Domain, then the enterprise MPI wo
be both a Correlating Domain and an ID Domain.

The PIDS model provides a tool to manage identification, which provides flexibility fo
both the short-term (existing systems) and for the long-term (quickly accommodate
business requirements). The PIDS model also allows both hierarchical and peer stru
to evolve. Since a Correlating Domain can correlate both ID Domains and other
Correlating Domains, hierarchical structures can be built for enterprises. In addition, a
Domain can participate in multiple Correlating Domains, allowing peer structures to b
built.

Peer structures offer significant potential for identification outside of enterprises. For
example, any need to track a particular population could fund its own Correlating Dom
and establish relationships with the appropriate ID Domains. The cost would be mini
for the Correlating Domain since it could take advantage of the accessibility to other
Correlating and ID Domains. Furthermore, accessibility would be determined by the
participating Domain. For example, each participating Domain would only allow acce
by authenticated, authorized requesters.

One additional point involves the likelihood of a National Healthcare ID. The PIDS mo
views the National Healthcare ID as its own ID Domain since assignment and contro
would not be under the control of local ID Domains. Thus this national ID would be a
in ID Domains (and Correlating Domains) creating an automatic cross-reference for
searches.
April 2001 PIDS, v1.1 PIDS Identification Model 1-7

1

1-8 Person Identification Service, v1.1 April 2001

Person IdentificationService Module 2
Contents

This chapter contains the following topics.

2.1 Overview

Figure 2-1 on page 2-2 shows the interfaces defined in the PersonIdService module.
The main functional interfaces inherit from the IdentificationComponent interface.
They are also referenced by the IdentificationComponent .

Topic Page

“Overview” 2-1

“Basic Types” 2-4

“IdentificationComponent Interface” 2-15

“IdentifyPerson Interface” 2-19

“ProfileAccess Interface” 2-21

“SequentialAccess Interface” 2-24

“IdentityAccess Interface” 2-26

“IdMgr Interface” 2-28

“CorrelationMgr Interface” 2-32
April 2001 Person Identification Service, v1.1 2-1

2

Figure 2-1 PIDS Components and Inheritance Diagram

DomainName
ComponentName
TraitSpecSeq
NamingContext
TraderComponents
ProfileAccess
SequentialAccess
IdentityAccess
IdMgr
C orrelationMgr
EventMgr

IdentificationComponen t

TraitSelector
TraitSelectorSeq
Candidate
CandidateSeq
find_candidates

IdentifyPerson

get_ traits_known
get_profile
get_profile_list
get_deactivated_profile_lis
get_id _nfo
update_and_clear_trait

ProfileAccess

id_count_per_state
get_all_ids_by_stat
get_first_ids
get_last_ids
get_next_ids
get_previous_ids

SequentialAccess

IdentificationComponen
IdInfo
TraitNameSeq
trait_value_count
get_trait
get_profile
get_deactivated_profil
update_and_clear

i

Identity

PIDS Components and Inheritence Diagram

CandidateIterator

max_left

next_n

IdMgr

MergeStruct
MergeStructSeq

register_new_ ids
find_or_register_ids
register_these_ ids
create_temporary_ids
make_ids_permanent
merge_ids
unmerge_ids
deactivate_ids

CorrelationMgr

UniqueTaggedProfile
UniqueTaggedProfileSeq

load_profiles
get_corresponding_id

IdentityAccess

get_identity_object
2-2 Person Identification Service, v1.1 April 2001

2

ces
aces

us
n).

and

tly by

ing.

ome
lude a

vice.
ation.
//File: PersonIdService.idl

#ifndef _PERSON_ID_SERVICE_IDL_
#define _PERSON_ID_SERVICE_IDL_

#include <orb.idl>
#include <NamingAuthority.idl>
#include <Naming.idl>
#include <Trading.idl>
#include <Notification.idl>
#include <CosPropertyService.idl>

#pragma prefix "omg.org"

module PersonIdService
{
// . . .
};

#endif // _PERSON_ID_SERVICE_IDL_

The core Person Identification Service (PIDS) consists of the type declarations and
interfaces in this module. PIDS is structured as a component that has multiple interfa
that may be implemented by any particular instance of the service. Each of the interf
represent a particular piece of functionality and are optional. Even though an
implementation of PIDS is free to implement which interfaces they need, specific
interfaces are called out that must be implemented to claim conformance to the vario
conformance classes (see Chapter 6, Conformance Classes for additional informatio

#include "NamingAuthority.idl"

The types declared within the NamingAuthority module are used for defining the
names of ID Domains, IDs, components, and traits. The names of ID Domains, IDs,
components must be defined by implementations of the service or other parties. This
specification defines some of the names for traits but they may be added independen
other parties. The global uniqueness properties of the NamingAuthority provides a
mechanism for names to be created independently with low likelihood of name clash

#include "Naming.idl"

The CosNaming module is used for a couple of reasons. This specification defines s
standard names for PIDS to use within a naming service. PIDS components also inc
NamingContext that is used to provide federation.

#include "Trading.idl"

The CosTrading module is used by PIDS in various ways. This PIDS specification
defines Trader Service types that PIDS components must use when offered to a ser
This specification also uses many of the design patterns found in the Trader specific
April 2001 PIDS, v1.1 Overview 2-3

2

ules
DNS
In addition PIDS components include a TraderComponents that is used to provide
federation.

#include “Notification.idl”

The Notification module is used for defining change event notifications on the
component.

#pragma prefix "omg.org"

To prevent name pollution and name clashing of IDL types, this module (and all mod
defined in this specification) uses the pragma prefix that is the reverse of the OMG’s
name.

2.2 Basic Types

// ---
// Common Data Types
//
typedef NamingAuthority::AuthorityId DomainName;
typedef sequence< DomainName > DomainNameSeq;

typedef NamingAuthority::LocalName PersonId;
typedef sequence< PersonId > PersonIdSeq;

struct QualifiedPersonId {
DomainName domain;
PersonId id;

};
typedef sequence< QualifiedPersonId > QualifiedPersonIdSeq;

typedef NamingAuthority::QualifiedNameStr TraitName;
typedef sequence< TraitName > TraitNameSeq;
typedef any TraitValue;
struct Trait {

TraitName name;
TraitValue value;

};
typedef sequence< Trait > TraitSeq;
typedef TraitSeq Profile;
typedef sequence< Profile > ProfileSeq;

enum IdState { UNKNOWN, INVALID, TEMPORARY, PERMANENT, DEACTIVATED };
typedef sequence<IdState> IdStateSeq;
struct IdInfo {

PersonId id;
IdState state;
PersonId preferred_id;

};
typedef sequence<IdInfo> IdInfoSeq;

// --
// Miscellaneous Data Types
2-4 Person Identification Service, v1.1 April 2001

2

//

typedef string ComponentVersion;
struct ComponentName {

NamingAuthority::QualifiedName name;
ComponentVersion version;

};

struct TraitSpec {
TraitName trait;
boolean mandatory;
boolean read_only;
boolean searchable;

};
typedef sequence< TraitSpec > TraitSpecSeq;

enum HowManyTraits { NO_TRAITS, SOME_TRAITS, ALL_TRAITS };
union SpecifiedTraits switch (HowManyTraits)
{

case SOME_TRAITS: TraitNameSeq traits;

struct TaggedProfile {
PersonId id;
PersonIdService::Profile profile;

};
typedef sequence<TaggedProfile> TaggedProfileSeq;

struct QualifiedTaggedProfile {

QualifiedPersonId id;
PersonIdService::Profile profile;

};
typedef sequence<QualifiedTaggedProfile> QualifiedTaggedProfileSeq;

struct ProfileUpdate {
PersonId id;
TraitNameSeq del_list;
TraitSeq modify_list;

};
typedef sequence< ProfileUpdate > ProfileUpdateSeq;

struct MergeStruct {
PersonId id;
PersonId preferred_id;

};
typedef sequence< MergeStruct > MergeStructSeq;

struct TraitSelector {

PersonIdService::Trait trait;
float weight;

};
typedef sequence<TraitSelector> TraitSelectorSeq;

struct Candidate {
PersonId id;
April 2001 PIDS, v1.1 Basic Types 2-5

2

float confidence;
PersonIdService::Profile profile;

};
typedef sequence<Candidate> CandidateSeq;

interface CandidateIterator {
unsigned long max_left();

boolean next_n(
in unsigned long n,
out CandidateSeq ids);

void destroy();
};

typedef unsigned long Index;
typedef sequence< Index > IndexSeq;

enum ExceptionReason {
UNKNOWN_TRAITS,
DUPLICATE_TRAITS,
WRONG_TRAIT_FORMAT,
REQUIRED_TRAITS,
READONLY_TRAITS,
CANNOT_REMOVE,
MODIFY_OR_DELETE

};

struct MultipleFailure {
Index the_index;
ExceptionReason reason;
TraitNameSeq traits;

};
typedef sequence< MultipleFailure > MultipleFailureSeq;

interface Identity;
typedef sequence< Identity > IdentitySeq;

// ---
// Exceptions
//

exception InvalidId { IdInfo id_info; };
exception InvalidIds { IdInfoSeq id_info; };
exception DuplicateIds { PersonIdSeq ids; };
exception UnknownTraits { TraitNameSeq traits; };
exception DuplicateTraits { TraitNameSeq traits; };
exception WrongTraitFormat { TraitNameSeq traits; };
exception InvalidStates {};
exception TooMany { unsigned long estimated_max; };
exception MultipleTraits { MultipleFailureSeq failures; };

exception ReadOnlyTraits { TraitNameSeq traits; };
exception CannotRemove { TraitNameSeq traits; };
2-6 Person Identification Service, v1.1 April 2001

2

n
dy
 that

n of
from

he
exception ModifyOrDelete { MultipleFailureSeq failures; };
exception NotImplemented {};

exception InvalidWeight {};
exception CannotSearchOn { TraitNameSeq traits; };

exception IdsExist { IndexSeq indices; };
exception RequiredTraits { TraitNameSeq traits; };
exception ProfilesExist { IndexSeq indices; };
exception DuplicateProfiles { IndexSeq indices; };
exception CannotMerge {IndexSeq indices; };

exception DomainsNotKnown { DomainNameSeq domain_names; };
exception IdsNotKnown { QualifiedPersonIdSeq ids; };

There are a number of structured types used widely throughout the PersonIdService
module. These characterize ID Domains, IDs, traits of a person, etc.

2.2.1 Common Data Types

DomainName, DomainNameSeq

The DomainName, DomainNameSeq structure can be used to identify a fully
qualified ID Domain name following the specified rules of the NamingAuthority
module.

IDs for people are always relative to some ID Domain. An ID Domain is the extent of
meaningfulness of the IDs within that ID Domain. The DomainName is an
AuthorityId which makes it possible to define these independently without two ID
Domains being named the same.

The DomainNameSeq is a sequence of DomainNames .

PersonId, PersonIdSeq

The PersonId is the simplest representation of an ID and is defined as a string. It ca
only be used in contexts where the ID Domain of the ID is either specified or is alrea
known. The ID for a person relative to an ID Domain is represented as a name within
naming authority. A PersonId can only be interpreted in the context of an ID Domain.

A PersonId is the concrete representation of ID in an ID Domain. The representatio
characters forming an ID is dependent on the specifics of the ID Domain. Given IDs
different ID Domains it is not possible to tell reliably what ID Domain they came from
solely based on the syntax.

The PersonIdSeq is a sequence of PersonIds .

QualifiedPersonId, QualifiedPersonIdSeq

The QualifiedPersonId is a fully qualified ID since it contains the name of the ID
Domain and the PersonId itself. If two QualifiedPersonId s are found to be identical,
they can reasonably be assumed to represent the same person (within the limits of t
NamingEntity algorithms of the NamingAuthority module if they are followed).
April 2001 PIDS, v1.1 Basic Types 2-7

2

gister

lly
pe is

it.” A

iven

e well

.

not
ot
ly

If a
he

o a
rary

not

t be
ry.
TraitName, TraitNameSeq

The names given to the traits of a person are characterized by the TraitName type. The
trait name is a string in the form of the QualifiedNameStr so that additional traits can
be created by users of the specification without having name clashes or having to re
their trait names with a centralized authority.

The TraitNameSeq is a sequence of TraitNames . It is very useful for specifying the set
of traits a client is interested in.

TraitValue

The TraitValue represents the value of a person’s trait. Since the set of traits is virtua
endless and could be of any type imaginable (including multimedia) the “any” data ty
used.

Trait, TraitSeq, Profile, ProfileSeq

The characterization of a specific trait is given as a name value pair and is called “Tra
sequence of these can be put together to create a TraitSeq .

A Profile is used when referring to the traits stored by a PIDS and bound to a PersonId .
It is also used in the matching process for looking up persons. The term “Profile” is g
to these sequences of traits since they are used a lot. At times a sequence of Profiles is
needed (ProfileSeq).

IdState, IdStateSeq, IdInfo, IdInfoSeq

The IdState represents the set of states that an ID may take on. Each state has som
defined semantics. The IdState is a characteristic of an ID ; whereas, traits are
characteristics of the person represented by an ID. For this reason there is a separate
operation to access it. The IdState can also be used for change event audit trails and
change event notification. The operations on the IdMgr interface affect the state of an ID

The clients to the interface see a different behavior for each ID state:

• UNKNOWN - This state indicates the service does not know if the ID exists or
and if so what the actual state might be. This is used by components that do n
manage an ID Domain, but are a resident of an ID Domain where they may on
know about a small subset of the IDs that exist.

• INVALID - An ID in this state can only be used in operations that create an ID.
PIDS component knows all IDs in its ID Domain, every other possible ID has t
Invalid IdState .

• TEMPORARY - An ID can be created as temporary without indicating any
mandatory traits. A common usage is to create an ID that data can be bound t
patient before that patient is identified with an appropriate confidence. A tempo
ID can be made permanent, merged, or deprecated. A temporary ID is made
permanent explicitly - just updating the profile to contain all required traits does
change the state.

• PERMANENT - When an ID is created as permanent all mandatory traits mus
provided. A permanent ID can be merged or deprecated but not made tempora
2-8 Person Identification Service, v1.1 April 2001

2

ses.
e by

alid

red

.
ust
sion

ld be
y the
e

major

s no

an

nent
its
n
t a

g the
• DEACTIVATED - Once an ID is expected not to be needed any more it can be
deactivated (merged or deprecated), which keeps it around for historical purpo
A deactivated ID is in its final state and cannot be transitioned to any other stat
PIDS operations, except unmerging.

The IdStateSeq is used for passing in the states of interest in a query. In a query, an
IdStateSeq having a value of zero length should be interpreted to mean, return all v
states for the operation except UNKNOWN and INVALID .

The IdInfo structure contains the ID and the state of the ID. It also contains a prefer
ID that is blank if in any state other than DEACTIVATED , or may contain the ID this ID
has been superseded by (merged with) if the state is deactivated. The IdInfoSeq is a
sequence of IdInfo structures.

ComponentVersion, ComponentName

The ComponentVersion is a numeric string with major and minor version indications
The part of the string up to the first period (“.”) is the major version indication, which m
contain only numeric digits. The rest of the string after the first period is the minor ver
indication that may contain any printable characters. When a component is changed
significantly enough that clients may need to react differently, the major version shou
rolled. The minor version part of the string is used for vendor specific purposes. If onl
minor version number of a component changes, clients can assume behavior from th
service that is compatible with what came before. For example, a change to the ID
Domain name, supported traits, or supported interfaces would require changing the
version number for a component since they are considered static over time.

The ComponentName includes a globally unique name and the version for a
component. The name is used to uniquely identify instances of components. There i
inherent meaning implied by the component name.

2.2.2 Miscellaneous Data Types

TraitSpec, TraitSpecSeq

The TraitSpec characterizes a supported trait by listing its name and indicating if it c
be changed, whether it is required for permanent IDs, and if it can be searched on.

• If the read_only field is true, then operations that attempt to modify it will throw
an exception.

• If the mandatory field is true, then it can be assumed that any IDs in the Perma
ID state will have a value for that trait. This may be helpful in knowing what tra
to ask for. In addition, if the IdMgr interface is implemented by the component, a
exception may be raised if there is an attempt to create a permanent ID withou
value supplied for the trait. Also an attempt to clear the value of the trait on a
permanent ID raises an exception.

• If the searchable field is true, then this trait can be used for searches, assumin
component implements the IdentifyPerson interface. The find_candidates()
operation will raise an exception for traits that have this field set to false.
April 2001 PIDS, v1.1 Basic Types 2-9

2

 in

ed in.

ch
d

o
ll.

 The

is

nces

ion

can
A TraitSpecSeq is a sequence of TraitSpec structures and is used for specifying a
complete set of traits supported by a component.

HowManyTraits, SpecifiedTraits

The SpecifiedTraits union is used by clients to indicate the traits they are interested
obtaining values for. The selector being HowManyTraits could indicate all of them or
just some. If it indicates some, the union body has a list of the ones they are interest

TaggedProfile, TaggedProfileSeq

A TaggedProfile structure includes a profile and the ID associated with it. The
TaggedProfileSeq is a sequence of TaggedProfiles .

QualifiedTaggedProfile, QualifiedTaggedProfileSeq

A QualifiedTaggedProfile contains the globally unique ID for a person and a profile
for that ID. The QualifiedTaggedProfileSeq is a sequence of
QualifiedTaggedProfiles .

ProfileUpdate, ProfileUpdateSeq

The ProfileUpdateSeq is used to update (modify) a list of profiles in a single call. Ea
entry (ProfileUpdate) contains the ID, the names of traits that need to be cleared, an
the set of new trait values that need to be modified.

MergeStruct, MergeStructSeq

The MergeStruct is used to represent a request to deprecate one ID in preference t
another one. The MergedStructSeq is used to batch a group of merges in a single ca
The preferred_id field contains the ID that the merged_id is merged to.

TraitSelector, TraitSelectorSeq

The TraitSelector is the matching parameter used to tell the service identifying
information about a person (or persons) that a client is interested in during a search.
structure contains a Trait plus the weight field as an indication of the relative weights to
put on the trait. Since the matching engine is not being standardized by the PIDS, th
weighting hint may be ignored by the service.

Index, IndexSeq

The IndexSeq is needed for some exceptions to return the indices of passed-in seque
that caused the exception.

ExceptionReason, MultipleFailure, MultipleFailuerSeq

The ExceptionReason enumeration is used to specify what the cause of the except
is in a MultipleFailure structure.

The MultipleFailure structure is used to report information back in an exception that
have problems with multiple traits each on multiple IDs or profiles passed in. The
2-10 Person Identification Service, v1.1 April 2001

2

tion
ad a

file

rson

ok

s.
 on

must
hen

if the
“ the_index ” field contains the index from the original sequence passed to the opera
that contained profiles or IDs. The “traits” field contains the names of the traits that h
problem at the index.

The MultipleFailureSeq is used to pass back problems that were found on multiple
passed-in profiles or IDs.

IdentitySeq

The IdentitySeq contains a sequence of object references to the Identity interface. It is
used for retrieving multiple Identity object references from the IdentityAccess
interface with one call.

Candidate, CandidateSeq

The Candidate is returned after searching for persons when there may be partial
matches. It contains the ID of the person, a confidence of how well that person’s pro
matches the profile selector, and the set of traits requested in the operation.

CandidateSeq is a sequence of candidates. These are returned from looking up a pe
in the service.

2.2.3 CandidateIterator Interface

CandidateIterator is an iterator for candidates. It is used when more IDs match a lo
up request than the client wants at one time.

max_left()

Returns the count of candidates left on the iterator.

next_n()

Returns the number of candidates asked for or all left on the iterator, whichever is les
Removes the returned candidates from the iterator before returning. If all candidates
the iterator are returned, the object is deleted upon returning the results.

destroy()

Destroys the iterator instance while there are still candidates on the iterator. Clients
always call this operation if they are finished accessing candidates from the iterator w
more are left. It is a server implementation decision when to auto delete the iterator
destroy is not called for a long time.

2.2.4 Exceptions

The following exceptions are generally useful by most or all of the interfaces of this
module.
April 2001 PIDS, v1.1 Basic Types 2-11

2

t the

the

t

 IDs

t be
his

n a

rait
ption

on

ore

re

 this

tates
InvalidId

The InvalidId exception is generated when a single ID is passed into an operation bu
ID is not valid for the operation. There are a number of reasons this may occur:

• The ID may not exist in the ID Domain that a service exists in.

• The operation being called may require the ID to be in a particular state.

The IdInfo for the ID is passed back to the caller so they may inspect the reason for
exception.

If the service knows of all IDs in an ID Domain (e.g., manages the IDs), then IDs tha
don’t exist are returned as Invalid. This exception is not raised for UnknownIds. The
difference in semantics to the client is that if they receive the exception with Unknown
they could try the manager of the ID Domain to see if the ID exists.

InvalidIds

The InvalidIds exception is similar to InvalidId but is used with operations that take
more than one ID as part of the parameter(s). The complete set of violating IDs mus
returned. A client could remove the violating IDs and repeat the operation knowing t
exception will not be thrown again (unless the server state changed between calls).

DuplicateIds

The DuplicateIds exception is raised when the same ID is passed more than once i
sequence. The complete set of duplicate IDs are returned.

UnknownTraits

The UnknownTraits exception may be thrown for operations that take one or more t
names or traits as parameters (typically as sequences). The service throws the exce
for traits it does not support. The complete set of violating traits must be returned. A
client could remove the violating traits and repeat the operation knowing this excepti
will not be thrown again.

DuplicateTraits

The DuplicateTraits exception is raised when the same trait or trait name is passed m
than once in a sequence. The complete set of duplicate trait names are returned.

WrongTraitFormat

The WrongTraitFormat exception may be thrown for operations that take one or mo
traits as parameters (typically as sequences). The service throws the exception if the
TraitValue is of the wrong IDL type. The complete set of violating traits must be
returned. A client could remove the violating traits and repeat the operation knowing
exception will not be thrown again.

InvalidStates

The InvalidStates exception is thrown when duplicate states are passed in, or the s
2-12 Person Identification Service, v1.1 April 2001

2

er
row
d-in
uence.

ize
r

ly on
have
um

that
nal

ove

d-

 of
ed

her
rate
are passed in to operations that are not allowed.

TooMany

Many operations return a sequence of data that could be very large. If the size is larg
than is feasible for the service to return (and the service can detect the fact), it will th
this exception. Typically the size of the returned result is determined partly by passe
parameters. The service may return the estimated maximum size for a passed-in seq
If that does not make sense for an operation or the service does not know what the
maximum size would be, it can return zero. Alternatively, the service could return a s
that it is confident will work even though it may not be close to the maximum. In eithe
case, the client should be able to pass in a sequence of the estimated_max and this
exception would not be thrown again.

Note the actual maximum size for a request may be a complex function based not on
the number of results requested, but also on which traits are requested, which traits
values on which IDs, the free memory on the server, etc. For this reason, the maxim
size may not be known a piori.

MultipleTraits

The MultipleTraits exception is similar to the DuplicateTraits exception except that it
applies to operations that could have problems with traits on multiple IDs or profiles
were passed in. Each entry in the sequence returned contains the index of the origi
profile or ID that had a problem and the trait names that had a problem at the index.

ReadOnlyTraits

The ReadOnlyTraits exception is thrown if a client tries to modify or set a trait that is
read-only. The complete set of violating traits is returned to the client so they may rem
them from the list and try again.

CannotRemove

The CannotRemove exception is raised when a client tries to clear a trait that is rea
only or mandatory and the ID is in the Permanent IdState . The complete set of violating
traits is returned to the client so they may remove them from the list and try again.

ModifyOrDelete

The ModifyOrDelete exception may be raised on operations that allow both clearing
traits and modifying/setting other traits. If a client passes in the same trait to be clear
and modified, this exception is raised.

NotImplemented

The NotImplemented exception is raised by the few optional operations on the
interfaces. The operations that may raise this exception are logically grouped with ot
operations on the same interface. That is why these optional operations are not sepa
interfaces on IdentificationComponent .
April 2001 PIDS, v1.1 Basic Types 2-13

2

t is

nst

rvice

y in

t, the
are

d to

InvalidWeight

The InvalidWeight exception is thrown if a weight is passed in for a trait selector tha
less than 0.0 or greater than 1.0.

CannotSearchOn

The CannotSearchOn exception is raised if traits are passed in to be matched agai
when their searchable field is false.

IdsExist

If a client tries to create new IDs and they already exist, the IdsExist exception will be
raised. The sequence indices for all violating IDs are returned.

RequiredTraits

If a client tries to create a permanent ID without giving all the mandatory traits, the se
raises the RequiredTraits exception or returns a temporary ID instead.

Note that since a “trait” includes both a trait name and trait value, the Required Traits
exception denotes the fact that the operation’s inputs may have been lacking not onl
“which traits had values,” but in the values themselves. In both cases, the
RequiredTraits exception would be thrown. However, in the former case the reason
would be “RequiredTraits” and in the latter case the reason would be
“InsufficientConfidence.”

These specific reasons for failure are represented in the second element of the
MultiplefailureSeq structure.

ProfilesExist

If a client tries to create new IDs and the profiles passed in correspond to IDs that exis
ProfilesExist exception will be raised. The sequence indices for all violating profiles
returned.

Duplicate Profiles

If a client tries to create new IDs and two or more of the profiles passed in correspon

the_index Identifies the entry that this structure responds to.

ExceptionReason Indicates the specific reason for failure of this entry.

TraitNameSeq If the input failed due to lack of some required traits,
then this structure names the specific traits that were
missing for this entry.

InsufficientConfidence The specification of InsufficientConfidence as a failure
reason in a make_ids_permanent operation indicates
that the underlying logic has rejected the profile’s
confidence by virtue of trait values.
2-14 Person Identification Service, v1.1 April 2001

2

s are

s
not be

is

each other, this exception will be raised. The sequence indices for all violating profile
returned.

CannotMerge

This exception is raised when a client requests merging two IDs that the server know
cannot be merged. The indices returned correspond to each MergeStruct that could
merged.

DomainsNotKnown

The DomainsNotKnown exception is thrown when an operation on the
CorrelationMgr interface receives a parameter specifying an ID Domain name that
not part of the source domains it knows about. All violating DomainNames are
returned.

IdsNotKnown

The IDs referenced are not known by the service. A complete list of violating IDs are
returned.

2.3 IdentificationComponent Interface

// --
// IdentificationComponent
//

interface ProfileAccess;
interface SequentialAccess;
interface IdentityAccess;
interface IdentifyPerson;
interface IdMgr;
interface CorrelationMgr;

interface IdentificationComponent
{
readonly attribute DomainName domain_name;
readonly attribute ComponentName component_name;
readonly attribute TraitSpecSeq supported_traits;

readonly attribute IdentifyPerson identify_person;
readonly attribute ProfileAccess profile_access;
readonly attribute SequentialAccess sequential_access;
readonly attribute IdentityAccess identity_access;

readonly attribute IdMgr id_mgr;

readonly attribute CorrelationMgr correlation_mgr;
readonly attribute Notification::EventComponent event_component;
readonly attribute CosNaming::NamingContext naming_context;
April 2001 PIDS, v1.1 IdentificationComponent Interface 2-15

2

 the
ore

 to
 find

o map

stems)
 The
 very
nly
s can
ge of

 be

he

t for

 each
e

onent

of
 same
ion to
readonly attribute CosTrading::TraderComponents trader_components;
void get_supported properties(

in TraitName name,
out CosPropertyService::Properties trait_defs)

raises(
UnknownTraits

};
};

The Person Identification Service is based on a component model similar in effect to
pattern used by the Trader Service. All identification interfaces are inherited from a c
IdentificationComponent . The IdentificationComponent also has references to
each of the other interfaces that are implemented. This makes it possible for a client
obtain an object reference to any of the identification interfaces and be able to easily
out what other functionality is implemented and to navigate to those interfaces.

The IdentificationComponent service encapsulates a logical table with person
characteristics (traits) that is keyed by an ID, a matching engine that uses that table t
traits back to their ID, and a table of ID information (e.g., ID states).

This component can also be used by systems and applications (such as ancillary sy
that use IDs from an ID Domain but are not the manager of the IDs in the ID Domain.
IDs known by a system implementing this interface are likely to be a subset (possibly
small subset) of the IDs that exist for that ID Domain. Due to the fact that they may o
be dealing with a few patient’s data at any one time, the sequential access operation
be useful for systems with only a few IDs where a client application can request a pa
data at a time and allow a user to scroll through the data.

Multiple systems in an ID Domain may implement the PIDS component interface and
binding identifying data (as well as other information beyond the scope of this
specification) to IDs in that ID Domain. These may (or may not) also be exposed in t
naming context and Trader Service of the ID Domain manager.

2.3.1 IdentificationComponent Interface

An IdentificationComponent has a number of optional interfaces that it may
implement. There are a variety of systems and applications that may implement the
interface for different reasons. They may pick and choose the functionality that is righ
them. A component may be implemented by a single object (e.g., inheriting all the
interfaces into one implementation-dependent interface), a different actual object for
interface supported (potentially distributed from each other), or any combination of th
two. If multiple objects are used to implement the component, they must all maintain
consistency so the client can treat them as one. That is, all the attributes on the comp
must return functionally identical results.

The interfaces implemented by a single component must operate over the same set
person IDs. Also the trait values must be consistent. Semantically they are using the
data base. If they are actually using separate data bases, it is up to the implementat
maintain consistency.

There are a wide variety of ways an IdentificationComponent can be used. The
2-16 Person Identification Service, v1.1 April 2001

2

s

ould
 and
d be

out
 of

e of
ical

gainst
iven

ager

s
ear
n to

tems
lue.

.

ected
pate.

mes
following list demonstrates the wide variety of possible uses:

• Master Patient Index Systems - These systems correlate over multiple ID Domain
and represent the fullest use of the various interfaces.

• Registration Systems - These may manage a single ID Domain and not know of
other ID Domains. The registration, identification, and demographics services c
be created as a single component even though they may be separate systems
possibly from separate vendors. Alternatively, the three separate services coul
implemented as separate components.

• Ancillary Systems - Some ancillary systems may use IDs from the registration
system and not manage an ID Domain at all. They would typically only know ab
a small population of the IDs in the ID Domain at any point in time. Examples
these could be Laboratory Information Systems (LIS), Radiology Information
Systems (RIS), scheduling systems, monitoring systems, financial systems,
pharmacy systems, etc. This represents the largest number of systems in a
healthcare enterprise as they are doing specific functions that use the IDs as
opposed to managing the IDs and ID information.

The first four interfaces (ProfilesAccess , SequentialAccess , IdentityAccess ,
IdentifyPerson) on this component are of general use and may be found on any typ
component. They are the only interfaces that an ancillary system (that uses the med
record number) would typically implement (i.e., unless they maintained their own ID
Domain). These basic interfaces give query access to lookup persons by matching a
a passed-in profile, and query access to find the profile information about persons, g
an ID.

There is, at most, one component per ID Domain that implements the IdMgr interface.
Other components in the ID Domain use notification events from the ID Domain man
to keep their cached values of the traits they are interested in kept up to date.

A PIDS implementation may implement security restrictions that prevent access to ID
and/or certain traits for an ID by not returning information on it. This can make it app
the person is not known by the service or certain traits about the person are not know
the service. Alternatively, the service may raise security restriction exceptions.

domain_name

This is the name of the ID Domain the component resides in. Even stand-alone sys
that implement their own ID Domain must create an ID Domain name and set this va
The entity responsible for naming the ID Domain must follow the rules defined in the
NamingAuthority module for selecting names uniquely for each ID Domain created
The DomainName is invariant over time.

This is a globally unique, permanent name over the space of PIDS instances. It is exp
that over time organizations will need to federate in ways they do not presently antici
It must never be necessary to modify a DomainName once it has been put into service.

component_name

Each implementation instance of the component must create a unique name for the
component. The name chosen does not need any particular meaning. The unique na
April 2001 PIDS, v1.1 IdentificationComponent Interface 2-17

2

nts
 visit a

s of

ther it
he set

oth
r 5

et of
 have

aints

iple
 This

nd
make it possible for clients traversing a graph of components to recognize compone
they have encountered before. This way they can detect cycles in the graph and not
component multiple times when they don’t need to. This part of the component_name
is invariant over time. The version within the component name can change over time
according to the rules set out by the ComponentVersion definition.

If there are two or more objects with the same component name they must be replica
each other with identical functionality. The mechanism used to maintain consistency
between the replicas is implementation-dependent and is not exposed as standard
interfaces.

supported_traits

This indicates the set of traits supported by a component. Each trait is indicated whe
is mandatory, read-only, or searchable. There is no ordering of the traits assumed. T
of traits are static over time (see ComponentVersion).

naming_context, trader_components

These attributes are used to provide federation of PIDS components. Either one or b
may be NULL as they are optional capabilities for any PIDS component. See Chapte
“Naming/Trader Interoperation” for more details.

identify_person

This interface provides a way to identify a person (find a potential ID) from the traits
known about them.

profile_access

This is the main interface for accessing the traits associated with an ID.

sequential_access

This interface provides mechanisms for scrolling forward and backward through the s
IDs the component knows about. This interface is mostly useful for components that
a small number of IDs that can easily be scanned by a person.

identity_access

This interface provides access similar to profile_access but with the client first
accessing a separate object per ID. This is needed to simplify certain security constr
by some implementations.

id_mgr

Only one component within an ID Domain implements this interface. If there are mult
actual systems implementing this interface, they should look like a single component.
is the interface implemented by a registration system. Other components within an ID
Domain set this attribute to point to the ID manager of the ID Domain, if one exists a
they have a reference to it.
2-18 Person Identification Service, v1.1 April 2001

2

ins.

nges
r

e
a
rties
ed on
nded
d

rty
ows:

s) are
correlation_mgr

This interface is only implemented by components that correlate over other ID Doma

event_component

The event component gives the ability to connect components together such that cha
on one component are communicated to the other. For example, IDs being created o
deprecated and modifications of profiles.

get_supported_properties()

Descriptive information of a trait can be obtained by this method. For a given trait nam
one can get back a sequence of Property (Properties). The value of a Trait might be
coded string (with HL7 and vCard traits being supported examples). One of the prope
could be the coding scheme used in the trait so that the value could be properly decod
the client side. It also might be descriptive labels to be used by a client. It is recomme
that the PropertyName returned by an identifiable coding scheme that could be looke
up in the TerminologyService if desired.

PIDS clients and servers may compare trait definitions based on the combined prope
name and value. Trait definitions may also be mapped through and LQS/TQS as foll

• The Property.property_name maps to the TQS QualifiedCodeStr , making the
property itself unambiguous in its definition.

• The Property.property.property_value maps to the TQS local code.

The property names and values for the predefined traits (HL7 2.3 and vCard element
standardized in their respective modules of this specification.

2.4 IdentifyPerson Interface

// --
// IdentifyPerson
//

interface IdentifyPerson :
IdentificationComponent
{
void find_candidates(

in TraitSelectorSeq profile_selector,
in IdStateSeq states_of_interest,
in float confidence_threshold,
in unsigned long sequence_max,
in unsigned long iterator_max,
in SpecifiedTraits traits_requested,
out CandidateSeq returned_sequence,
out CandidateIterator returned_iterator)

raises (
TooMany,
UnknownTraits,
April 2001 PIDS, v1.1 IdentifyPerson Interface 2-19

2

on
ay
y,

e call
r is

y

er the
or that
value

tes
 close
ice

ed by

h is a
they
WrongTraitFormat,
CannotSearchOn,
DuplicateTraits,
InvalidStates,
InvalidWeight);

};

This service defines the functionality for querying an ID Domain or individual system
with a specified set of trait values and their weights.

find_candidates()

Knowing some identifying information about a person (or group of people with comm
traits), a client can ask the service to find the candidate persons the service thinks m
match those traits. The valid states that can be passed in by the client are Temporar
Permanent, and Deprecated.

The client can indicate the maximum number of candidates it wants passed back in th
using the sequence_max parameter. If the service matches more than that, an iterato
created containing the rest. It is the responsibility of the client to either retrieve all
candidates from the iterator or to call the destroy() method. The client can also specify
the maximum number that should be returned in the iterator via the iterator_max
parameter.

Candidate iterators require transient objects that could have significant memory
management impact on a server. If a server does not support candidate iterators, the
return a NULL object reference for every invocation and clients can only obtain
candidates that are returned as a sequence.

Using the sequence_max and iterator_max a client has the flexibility to do things
like:

• get all candidates as a sequence,

• get all candidates via an iterator,

• get up to 30 candidates as a sequence and the rest up to 50 on an iterator,

• get up to 15 candidates as a sequence and all the rest via an iterator.

The candidates returned by the operation have a confidence indication where the larg
number the better the match. No candidate is returned that has a confidence indicat
is less than the confidence threshold. The interpretation of the confidence threshold
is consistent with that of the confidence indicator. This indicates how well the stored
profile for that person matched the passed-in profile selector. The number of candida
returned could be zero if the matching engine does not find anything it feels matches
enough to return. Since there are so many algorithms this becomes a quality of serv
issue that is not standardized.

The range of values for the confidence indicator is 0.0-1.0 with 1.0 being the higher
confidence (e.g., 100%). The exact semantics of the confidence indicator is determin
the service but some guidelines may help. The client should be able to compare two
returned candidates and determine if they are of equal confidence or determine whic
higher confidence. If the returned candidates have different confidence values, then
2-20 Person Identification Service, v1.1 April 2001

2

s not
ame

.
 from

and
ties).
d to

ults

cs as
y of

r
e

at an
n an

 here
prove

te if
are returned in confidence order with the highest being returned first. If a service doe
provide confidence determination, they may return 0.0 as the confidence value the s
for all candidates. In this way, a client can know whether the service uses confidence
values by whether the first candidate has a confidence of 0.0 or not.

The confidence value only has meaning relative to the single call it was returned from
There is no standard way to compare confidences returned from different services or
multiple calls to the same service.

Some matching engines may use discrete matching (such as the UNIX ‘grep’ utility)
others may use fuzzy matching (such as spell checkers or the use of phonic similari
Even for discrete matching it is difficult to define exact semantics that could be applie
confidences since there are multiple traits and some traits contain multiple fields.
Furthermore, the definitions would have to take into account how to combine the res
from each field and the results from each trait to determine the confidence.

Matching engines map their matching capabilities to the defined confidence semanti
they see fit. How close they meet the expectations of the user is determined a Qualit
Service (QoS) issue that is not standardized.

The ‘weight’ field is a hint from the client on how much preference it thinks the serve
should give to each profile passed in for determining matching confidences. It may b
thought of as the confidence the client has in each trait of the profile selector.

The weight must be between 0.0 and 1.0. The weights are relative measures such th
exact match on a trait with weight = 0.5 results in twice the increase in confidence tha
exact match on a trait with weight = 0.25.

A server implementation can ignore the weight field hint if it chooses. Using it is
considered a Quality of Service (QOS) issue that is not standardized. The semantics
are just a way to define the measuring stick but does not require implementations to
adherence. This is in part because fuzzy semantics cannot be measured.

The traits_requested parameter indicates the traits to be returned for every candida
the candidate has values for that trait.

2.5 ProfileAccess Interface

// --
// ProfileAccess
//

interface ProfileAccess :
IdentificationComponent
{
TraitNameSeq get_traits_known(

in PersonId id)
raises (

InvalidId);

Profile get_profile(
April 2001 PIDS, v1.1 ProfileAccess Interface 2-21

2

ns.
in PersonId id,
in SpecifiedTraits traits_requested)

raises (
InvalidId,
UnknownTraits,
DuplicateTraits);

TaggedProfileSeq get_profile_list(
in PersonIdSeq ids,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidIds,
DuplicateIds,
UnknownTraits,
DuplicateTraits);

TaggedProfileSeq get_deactivated_profile_list(
in PersonIdSeq ids,
in SpecifiedTraits traits_requested)

raises (
NotImplemented,
InvalidIds,
DuplicateIds,
UnknownTraits,
DuplicateTraits);

void update_and_clear_traits(
in ProfileUpdateSeq profile_update_spec)

raises (
InvalidIds,
DuplicateIds,
NotImplemented,
MultipleTraits);

IdInfoSeq get_id_info(

in PersonIdSeq ids)
raises (

TooMany,
DuplicateIds);

};

ProfilesAccess is the most basic interface used to get identity information for perso
This service provides the simplest set of functionality for any PIDS service.

get_traits_known()

This operation returns the set of Traits known about a person by the service.
2-22 Person Identification Service, v1.1 April 2001

2

ent
 is

ne

per
s are

r may

 be in

raise

ssed
 not

use

e ID.
get_profile(), get_profile_list()

The get_profile() operation returns the profile or subset of the profile that the compon
knows about the person. The passed-in traits indicate what subset of the profile that
being sought by the client.

The get_profile_list() is a shorthand mechanism for getting profiles for more than o
ID at a time. This can be much more efficient than get_profile() for getting profiles on a
lot of IDs since only one network round trip is required for all IDs as opposed to one
ID. The results are returned with exactly one value for each ID passed in. The result
tagged with the ID.

Both operations raise the InvalidId(s) exceptions if the IDs are not Permanent or
Temporary.

Access rights to profiles are determined by the CORBAsec mechanisms (i.e., the use
not be able to access them).

get_deprecated_profile()

This is a special operation to get the profile of deprecated IDs. The ID passed in must
the Deprecated state and known by the component or else the InvalidId exception is
raised. A service may choose to not keep the old profiles around in which case they
the NotImplemented exception. The results are returned with exactly one value for
each ID passed in. The results are tagged with the ID.

update_and_clear_traits()

This operation is used to modify the profile of already existing IDs. The structures pa
in specify which traits in the profile to be cleared, and which to change or add. Traits
mentioned to be cleared or changed remain the value they were before the call.

• If a PIDS component logs an audit trail of profile changes, this operation will ca
an event to be logged.

• If a trait for an ID is listed to be cleared and changed, the ModifyOrDelete
exception is raised.

• If the passed-in ID is not in the Temporary or Permanent IdState, the InvalidIds
exception is raised.

• If all supported traits are read-only, the service raises the NotImplemented
exception.

get_id_info()

This operation returns the current IdStateInfo for each ID passed in. The results are
returned with exactly one value for each ID passed in. The results are tagged with th
April 2001 PIDS, v1.1 ProfileAccess Interface 2-23

2

2.6 SequentialAccess Interface

// ---
// SequentialAccess
//

interface SequentialAccess :
IdentificationComponent

{
unsigned long id_count_per_state(

in IdStateSeq states_of_interest)
raises (

InvalidStates);

TaggedProfileSeq get_all_ids_by_state(
in SpecifiedTraits traits_requested,
in IdStateSeq states_of_interest)
raises (

TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_first_ids(
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_last_ids(
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_next_ids(
in PersonId reference_id,
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
2-24 Person Identification Service, v1.1 April 2001

2

at the

dred

nt, and

e of
sed-in
ary,

ng
 the
ation-
re

 the

lar ID

InvalidId,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_previous_ids(
in PersonId reference_id,
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidId,
UnknownTraits,
DuplicateTraits,
InvalidStates);

};

id_count_per_state()

This operation indicates the number of IDs, having one of the ID states passed in, th
component knows of. The value could be zero at any point in time or it could be very
large. Hospital ancillary systems would likely have from less than a dozen up to a hun
or many thousands. The valid states that can be passed in are Temporary, Permane
Deprecated.

get_all_ids_by_state()

This operation returns profiles for all patients the service knows about that match on
the states passed in. The returned profiles only contain the traits indicated by the pas
parameter, if they exist for the ID. The valid states that can be passed in are Tempor
Permanent, and Deprecated.

get_first_ids(), get_last_ids(), get_next_ids(), get_previous_ids()

These are the operations that provide sequential access to all the IDs known by the
system/service. The service must have a consistent way to order the IDs. The orderi
may be different for each set of traits asked for; however, for a particular set of traits,
ordering is the same for all these operations. The ordering mechanism is implement
dependent and hidden behind the interface. The valid states that can be passed in a
Temporary, Permanent, and Deprecated.

A client can request the profiles for a number of persons at the beginning and end of
ordered list by using the get_first_ids() and get_last_ids() respectively. The client
passes in the number of IDs and profiles wanted.

A client can also request a number of profiles that are either after or before a particu
via the get_next_ids() and get_previous_ids() . The ID and profile for the ID passed
in is not returned.

Using these four operations: get_first_ids() , get_last_ids() , get_next_ids() , and
get_previous_ids() a client can scroll forward or backward through the set of IDs,
April 2001 PIDS, v1.1 SequentialAccess Interface 2-25

2

ller
known by the service, a page at a time. The number of profiles returned may be sma
than that requested if the number of profiles held by the service is smaller than that
requested.

2.7 IdentityAccess Interface

// ---
// IdentityAccess
//

interface IdentityAccess :
IdentificationComponent

{
Identity get_identity_object(

in PersonId id)
raises (

InvalidId);

IdentitySeq get_identity_objects(
in PersonIdSeq ids)

raises (
InvalidIds);

};

interface Identity
{

readonly attribute IdentificationComponent source_component;
readonly attribute IdInfo id_info;
readonly attribute TraitNameSeq traits_with_values;
readonly attribute long trait_value_count;

Trait get_trait(

in TraitName trait_requested)
raises (

UnknownTraits);

Profile get_profile(
in SpecifiedTraits traits_requested)

raises (
UnknownTraits,
DuplicateTraits);

Profile get_deactivated_profile(

in SpecifiedTraits traits_requested)
raises (

NotImplemented,
UnknownTraits,
DuplicateTraits);

void update_and_clear_traits(
2-26 Person Identification Service, v1.1 April 2001

2

ty.
ied to
 be
-aware
parate

and

own

her

the
in ProfileUpdate profile_update_spec)
raises (

NotImplemented,
UnknownTraits,
WrongTraitFormat,
ModifyOrDelete,
ReadOnlyTraits,
CannotRemove,
DuplicateTraits);

void done();
};

The Identity object can provide individual ID level access control via CORBA Securi
Specific access control parameters might be available in some security policies appl
an Identity object with the specific object being security-unaware. These policies can
set up to prevent access on an operation/attribute basis. The service must be security
in order to implement security policies that vary by the parameters passed in (e.g., se
access control for each trait).

Policies governing access to the interfaces are determined by administrative controls
beyond the scope of this specification.

get_identity_object()

Returns an identity object that represents the ID passed in, assuming it is a valid ID
known by the component.

get_identity_objects()

Returns an identity object for each ID passed in, assuming they are valid IDs and kn
by the component.

2.7.1 Identity Interface

The Identity interfaces provide a way that access control can be applied at the ID.
Instances of Identities are accessed from the IdentityAccess interface.

source_component

This is an object reference back to the component that created the Identity object. This
may be useful if the reference was passed to a third party that may need to get to ot
functionality of the component.

id_info

The id_info attribute contains the ID by which this person is known. This consists of
PersonId (simple name) and the IdState of the ID. If it has been merged, it has the
preferred ID as well.
April 2001 PIDS, v1.1 IdentityAccess Interface 2-27

2

 trait

e
p

d
 call. If

d be

te the

ion
traits_with_values

This read-only attribute returns the list of trait names for traits with values for the ID.

trait_value_count

This attribute is the count of the number of traits with values for the ID.

get_trait()

This operation returns the value set on the specified trait or raises an exception if the
is not known.

get_profile()

This operation returns the traits requested that have values set.

get_deactivated_profile()

This is a special operation to get the profile of deprecated IDs. The ID must be in th
Deprecated state or the InvalidId exception is raised. A service may choose to not kee
the old profiles around in which case they raise the NotImplemented exception.

update_and_clear_traits()

This operation updates the profile by clearing (deleting the values) for some traits an
setting the values for others. The ones not mentioned are left the same as before the
all supported traits are read-only, the service raises the NotImplemented exception.

done()

This is called when the client no longer needs to access the object. Since there coul
many Identity objects created for a single PIDS component the proper use of this
operation can help the service in its own memory management. The server may dele
object reference if the object is transient or may delete the object from memory for
persistent objects. This does not preclude Identity objects from being implemented
persistently but it does not guarantee they are persistent. It is a service implementat
issue as to when transient Identity objects are deleted if done() is not called. Clients
should be prepared to get another object reference from the IdentityAccess interface if
the Identity object is no longer valid while they still need to use it.

2.8 IdMgr Interface

// --
// IdMgr
//

interface IdMgr :
IdentificationComponent

{
PersonIdSeq register_new_ids(
2-28 Person Identification Service, v1.1 April 2001

2

in ProfileSeq profiles_to_register)
raises (

ProfilesExist,
DuplicateProfiles,
MultipleTraits);

PersonIdSeq find_or_register_ids(
in ProfileSeq profiles_to_register)

raises (
DuplicateProfiles,
MultipleTraits);

void register_these_ids(
in TaggedProfileSeq profiles_to_register)

raises (
NotImplemented,
IdsExist,
DuplicateIds,
ProfilesExist,
DuplicateProfiles,
MultipleTraits);

PersonIdSeq create_temporary_ids(
in ProfileSeq profiles_to_register)

raises (
MultipleTraits);

PersonIdSeq make_ids_permanent(

in PersonIdSeq ids_to_modify)
raises (

InvalidIds,
DuplicateIds,
RequiredTraits);

IdInfoSeq merge_ids(
in MergeStructSeq ids_to_merge)

raises (
InvalidIds,
DuplicateIds);

IdInfoSeq unmerge_ids(
in PersonIdSeq ids_to_unmerge)

raises (
InvalidIds,
DuplicateIds);

IdInfoSeq deprecate_ids(
in PersonIdSeq ids_to_deprecate)

raises (
April 2001 PIDS, v1.1 IdMgr Interface 2-29

2

gle

 access

lls a

e
ry ID

The
InvalidIds,
DuplicateIds);

};

IdMgr is an interface providing the core set of functionality for managing IDs in a sin
ID Domain. Specifically it can allocate a unique ID to a specific profile. All the
operations on IdMgr are “write” commands as opposed to “read” commands. For this
reason, there may be more secure access control to prevent unwanted changes. The
control is managed by the CORBA security service and the implementation of the IdMgr
service.

Figure 2-2 Transitions between IDStates

Figure 2-2 shows the transitions between IdStates that are defined by operations on the
IdMgr interface. Using the IdState as the values for a state machine pulls these
operations together into a coherent set of semantics. The transitions shown are only
suggestive as the policies of the service are implementation-dependent. If a client ca
particular operation, they are suggesting to the service that certain transitions should
occur. The service may make the transition immediately, may wait for human review
before making the transition, or possibly never make the transition.

When a client needs to create a new ID, the service returns it but does not guarante
whether it is Temporary or Permanent. Services are not required to use the Tempora
state.

register_new_ids()

This generates new IDs in this ID Domain and binds the passed-in profiles to them.

active states
Inval id

Permanent

Temporary

Deact ivated

register_new_ids()
find_or_register_ids()
register_these_ids()

create_temporary_ids() make_ids_permanent()

deprecate_ids()

Unknown

merge_ids()

unmerge_ids()
2-30 Person Identification Service, v1.1 April 2001

2

w IDs
ns are

ely

n)
sider

ated

rary
 to

e

in

e

ds

 in.

ther
 they
de

n be

d
register_new_ids() operation establishes an association between IDs and profiles
making them available for other component operations. This also Creates distinct, ne
according to the rules and conventions for the ID Domain. These rules and conventio
implicit to the ID Domain and are not accessible via standard CORBA IDL.

By calling this operation, the client is indicating it needs the IDs generated immediat
and they are expected to become permanent. It is up to the service whether they are
returned as permanent or as temporary IDs and require human interaction before
becoming permanent.

find_or_register_ids()

This operation is used for generating IDs in unattended operation. An internal (hidde
value may indicate the confidence threshold that matching must attain in order to con
the person already has an ID in this Domain. Below this threshold a new ID is gener
and the profile is bound to it.

This operation could produce two different resulting IdStates . It only changes the state
of an ID if it creates a new ID. The resulting state of a newly created ID may be Tempo
or Permanent which is implementation- and site-dependent. Some sites may choose
only produce temporary IDs automatically so they may be verified by a person befor
making them permanent.

register_these_ids()

This operation works similar to register_new_ids() except the client also indicates the
value for the created IDs. The policy for generating the ID values may be hidden with
the service and it would not allow clients to set the ID values. In this case, the servic
raises the NotImplemented exception.

create_temporary_ids()

The create_temporary_ids() operation creates new IDs and indicates the client nee
IDs that may be Temporary. A PIDS implementation may return a Permanent ID or
Temporary ID. The mandatory traits are not required to create a temporary ID. This
operation will still create a new ID even if an existing profile matches the one passed

make_ids_permanent()

Temporary IDs may be made permanent by the make_ids_permanent() operation. For
some services the permanent IDs returned may be the same as the one passed in. O
services may want to use a separate part of the ID name space for temporary IDs so
can tell the IDs are temporary by looking at them. For example, a service may prece
every temporary ID by the letters TEMP-.

merge_ids()

If a person is found to have more than one ID in an ID Domain, all but one of them ca
merged into the preferred ID by calling the merge_ids() operation with each duplicate
ID. The preferred ID will be unchanged except if it supports the
PersonIdTraits::MergedIds trait, it will be modified to reference the ID being merge
April 2001 PIDS, v1.1 IdMgr Interface 2-31

2

on, it

es,
tion
to it. The merged ID will have its IdState set to Deactivated (possibly after human
review) and have the preferred_id field on its IdInfo set to the preferred ID. The
preferred ID will have its MergedIds trait set with the merged ID in it.

The IdInfoSeq returned has the IdInfo for each of the target IDs passed in to the
operation.

unmerge_ids()

If an ID that has been merged with another is found later to represent a different pers
may be unmerged with this operation. If the MergedIds trait is supported, the profile for
the ID this was merged with is changed to no longer reference this ID.

If the passed-in ID(s) is(are) not merged (in the Deactivated state and preferred_id set to
something other than (““), the InvalidIds exception is raised.

The IdInfoSeq returned has the IdInfo for each of the target IDs passed in to the
operation.

deprecate_ids()

Once an ID is expected to never be used again it may be retired from service by the
deprecate_ids() operation which is a request to change the IdState to Deactivated. A
service may either remove the profile for the ID or leave it intact for historical purpos
but it can never be changed. The profile can be accessed only with the special opera
get_deprecated_profiles() .

The IdInfoSeq returned has the IdInfo for each of the target IDs passed in to the
operation.

2.9 CorrelationMgr Interface

// ---
// CorrelationMgr
//

interface CorrelationMgr :
IdentificationComponent

{
readonly attribute DomainNameSeq source_domains;

void load_profiles(
in QualifiedTaggedProfileSeq tagged_profiles)

raises (
UnknownTraits,
WrongTraitFormat,
DomainsNotKnown);

QualifiedPersonIdSeq get_corresponding_ids(
in QualifiedPersonId from_id,
in DomainNameSeq to_domains)
2-32 Person Identification Service, v1.1 April 2001

2

same
ia

tion

ded

 the

can

D

g ID
ach
raises (
DomainsNotKnown,
IdsNotKnown);

};

The PersonIdTraits::CorrelatedIds trait is a special trait that is only used by
components that implement the CorrelationMgr interface. The CorrelationMgr is
responsible for setting this trait to reference all source IDs that are correlated to the
ID in the correlation Domain. This must be consistent with the information obtained v
the get_corresponding_ids() operation.

The CorrelationMgr interface does not provide operations to support manual correla
or retrospective verification of unattended correlation. These capabilities may be
addressed in a later RFP.

source_domains

This read-only attribute contains a list of source ID Domains that profiles may be loa
from and IDs may be mapped to or from.

load_profiles()

This operation causes the profiles to be loaded into the Correlating ID Domain, from
specified source ID Domains. It is an implementation decision whether correlation is
performed immediately.

Note – The use of the UnknownTraits and WrongTraitFormat exceptions has been
deprecated for servers to raise. They remain on the interface so that new clients
still receive the old exceptions from old servers.

get_corresponding_ids()

This operation returns the IDs in the destination ID Domains that correspond to the I
passed in.

find_or_register_ids()

If this operation is implemented, it causes the profiles to be loaded into the Correlatin
Domain, from the specified source domains. IDs from the Correlating ID domain for e
profile are returned.
April 2001 PIDS, v1.1 CorrelationMgr Interface 2-33

2

2-34 Person Identification Service, v1.1 April 2001

NamingAuthority Module 3
Contents

This chapter contains the following topics.

3.1 NamingAuthority IDL

//File: NamingAuthority.idl

#ifndef _NAMING_AUTHORITY_IDL_
#define _NAMING_AUTHORITY_IDL_

#include <orb.idl>

#pragma prefix "omg.org"

module NamingAuthority
{

enum RegistrationAuthority {
OTHER,
ISO,
DNS,
IDL,
DCE };

Topic Page

“NamingAuthority IDL” 3-1

“Exceptions” 3-6

“TranslationLibrary Interface” 3-7
April 2001 Person Identification Service, v1.1 3-1

3

ed is the
ent
rating

o be
typedef string NamingEntity;

struct AuthorityId {
RegistrationAuthority authority;
NamingEntity naming_entity;

};
typedef string AuthorityIdStr;

typedef string LocalName;
struct QualifiedName {

AuthorityId authority_id;
LocalName local_name;

};
typedef string QualifiedNameStr;

exception InvalidInput {};

interface translation_library
{

AuthorityIdStr authority_to_str(
in AuthorityId authority)

raises(
InvalidInput);

AuthorityId str_to_authority(
in AuthorityIdStr authority_str)

raises(
InvalidInput);

QualifiedNameStr qualified_name_to_str(
in QualifiedName qualified_name)

raises(
InvalidInput);

QualifiedName str_to_qualified_name(
in QualifiedNameStr qualified_name_str)

raises(
InvalidInput);

};
};

#endif // _NAMING_AUTHORITY_IDL_

The NamingAuthority module provides a means of giving globally unique names to
name spaces and hence the names within those name spaces. The fundamental ne
ability to compare two names for equality. If they are equal, they are known to repres
the same entity, concept, or thing. This is needed when independent entities are gene
names that may get compared for equality; however, the reverse is not guaranteed t
true (that is, an entity may have several names).
3-2 Person Identification Service, v1.1 April 2001

3

e
ties of

les
DNS

)
o
ame or
ent
mine
 in a

of
lves,
s that
ther

st

ISO

ing
r

in the
The authority for the name space may derive from several different types of roots, th
choice of which depends upon the user requirements as each root has different quali
management and uniqueness. The various root types are defined below.

#pragma prefix "omg.org"

To prevent name pollution and name clashing of IDL types this module (and all modu
defined in this specification) uses the pragma prefix that is the reverse of the OMG’s
name.

RegistrationAuthority

Identifies the root of the name space authority. An entity (e.g., person or organization
may be registered with multiple different roots (RegistrationAuthorities) and be able t
assign names and other name spaces within each root. These may be used for the s
for different needs. For this reason, there is no guarantee of any equality in the differ
name spaces managed by an entity. There are currently no means available to deter
whether a given authority in an ISO hierarchy is the same authority as one specified
DNS hierarchy.

• OTHER : This form of a naming authority should be used sparingly, and only in
experimental or localized situations or special purposes. It is the responsibility
the implementing institution to guarantee uniqueness within the names themse
and there is no uniqueness guarantee outside of the source institution. Service
define default naming authorities (and possibly also names) may also use the O
root to forego long AuthorityId s. In this case, the specification of the service mu
name AuthorityId s that may be expected with the Other root and still maintain
name space integrity for that service.

• ISO (International Standards Organization1): The ISO specifies a registration
hierarchy identified by a series of named/numbered nodes. Many of the coding
schemes used in the medical environment are or can be registered within the
naming tree. The ISO root form is one of the recommended forms when the nam
authority is internationally recognized, such as international coding schemes, o
when the authority is to be used across two or more different enterprises. ISO
provides for the recording of a responsible person and address for each node
authority hierarchy.

1. ISO/IEC 8824-1 (1994) Information Technology - Abstract Syntax Notation One (ASN.1) -
Specification of Basic Notation.
April 2001 PIDS, v1.1 NamingAuthority IDL 3-3

3

al

d as
s
n

e
. It is

, not

 the

e

ity
lue
tly

sible

space

ithin

bally

t

f
ns
le to

s are
ats
• DNS: Domain Name Services2. Internet domains are recorded with a central, glob
registration authority. Subhierarchies within the domains are then maintained
locally by the registered organization or person. The DNS form is recommende
an alternative to the ISO naming tree when the specific naming authority need
identity and uniqueness, but is not in an ISO registration. By using this commo
characteristic of many organizations it gives the ability to create globally uniqu
name spaces and names without the need to register as an ISO name authority
up to the organization itself to maintain the integrity of the name space(s) (e.g.
reusing names or name spaces).

• IDL : The OMG Interface Repository3. The CORBA Architecture specifies a
means of identifying entities as being unique within the interface repository, via
use of a RepositoryId. CORBA repository ids may be in either the OMG IDL
format, the DCE UUID format, or the LOCAL format. Within this specification, th
“IDL” root refers only to the IDL format. The DCE format may be represented
within the DCE root and the Local format within the Other root. The IDL author
may prove very useful when registering CORBA/IDL specific objects such as va
sets, interface specifications, etc. It should be noted that OMG does not curren
manage the repository name space in any rigorous fashion, and it is quite pos
that two different developers may arrive at exactly the same repository ID for
entirely different entities. For this reason, some people give the repository ID a
prefix that consists of their reverse DNS that is “/” separated instead of “.”
separated. This root type may be very useful when the names within the name
are defined in IDL. For example, it could be the RepositoryId for an enumerated
type or a module that has constant integers or strings defined for each name w
the name space.

• DCE: The Distributed Computing Environment4. While they don’t actually register
coding schemes or other entities, they do provide a means of generating a glo
unique 128-bit ID, called a Universally Unique ID (UUID). This UUID may be
used to guarantee the uniqueness of a name space in situations where it is no
necessary for the identity of the authority to be known outside of the specific
implementation.

NamingEntity

Identifies a specific name in the syntax and format specified by the corresponding
registration authority. The various naming authorities tend to provide a fair amount o
leeway as far as the actual format of the registered names. As there may be situatio
where the full semantics of a specific authority’s name comparison will not be availab
an application, we have chosen to select a specific subset of the syntax of each
representation. The intention is to be able to determine whether two registered entitie
identical, or not, solely through the use of string comparison. The specific name form

2.P. Mockapetris, " Domain Names - Concepts and Facilities", RFC 1034, Information
Sciences Institute, November 1987.

3. OMG’s The Common Object Request Broker: Architecture and Specification.

4. DCE 1.1 : Remote Procedure Call. OpenGroup Document Number C706, August 1997.
3-4 Person Identification Service, v1.1 April 2001

3

ice

me

h
 Since
h that
 use

or:

 A-F.

than
s for

rity
are described below:

• OTHER : An arbitrary string, syntax undefined except locally by a specific serv
specification and/or by particular implementations and installations. The “/”
character is illegal to use as it is reserved as a separator of components in the
stringified version of QualifiedName.

• ISO: The name should be represented using the NameForm of the
ObjectIdentifierValue as specified in ISO/IEC Recommendation 8824-1. Each na
component should be separated by a single space.

Example: “joint-iso-ccitt specification characterString”

• DNS: The domain name and path in the form mandated in RFC 1034. The pat
name is represented as a dot separated tree which traverses up the hierarchy.
DNS names are not case-sensitive, only lower case letters should be used suc
simple string comparisons can determine equality. However, it is permissible to
case insensitive comparisons as well.

Example: “pidsserv.slc.mmm.com”

• IDL : The OMG RepositoryId format specified in The Common Object Request
Broker: Architecture and Specification, in the form: “<node>/<node>/…/<node>.”
The IDL: prefix and the version number suffix should NOT be used for the
NamingEntity . The IDL: prefix is prepended to create the AuthorityIdStr .

Example:“CosNaming/NamingContext/NotFoundReason” is the NamingEntity f

module CosNaming {
…
interface NamingContext {

…
enum NotFoundReason { … };
…

};
};

• DCE: The UUID in the external form <nnnnnnnn-nnnn-nnnn-nnnn-
nnnnnnnnnnnn>, where <n> represents one of the digits 0-9 and the characters
The alpha characters should all be upper case.

Example: “6132A880-9A34-1182-A20A-AF30CF7A0000”

AuthorityId, AuthorityIdStr

The combination of a Registration Authority and Naming Entity, which identifies a
specific naming authority. In situations where a given naming entity may have more
one naming authority, it should be agreed upon in advance which of the specific name
the entity is to be used. This specification makes no guarantees about the ability to
recognize, for example, that an authority in the ISO structure is identical to an autho
within the IDL structure.
April 2001 PIDS, v1.1 NamingAuthority IDL 3-5

3

e

rmat
The string version (AuthorityIdStr) is useful for situations where unique names are
required in a string format. The string is created as <stringified
RegistrationAuthority >:<NamingEntity >.

LocalName, QualifiedName, QualifiedNameStr

A local name is a name within (relative to) a namespace. It is simply a string
representation.

A QualifiedName is a globally unique name for an entity by the fact that it carries th
naming AuthorityId of the name space and the LocalName within that name space.

The QualifiedNameStr is a stringified version of the QualifiedName . The format of
the string is <stringified RegistrationAuthority >:
<NamingEntity >/<LocalName >. Notice that even though the slash character “/”
cannot be used within the name of a NamingEntity it can be used within the
LocalName . The following table summarizes the format for QualifiedNameStr .
Columns 1-3 give the format for an AuthorityIdStr .

The definitions for type OTHER are defined to allow using a QualifiedNameStr format
in contexts where an IDL “string” is currently used. A normal IDL string is a
QualifiedNameStr with no RegistrationAuthority and no NamingEntity . The
limitation is that any normal IDL strings that start with one of the
RegistrationAuthority strings cannot be mapped into the QualifiedNameStr since
they would be interpreted by the rules in this module.

The string for the “OTHER” type of RegistrationAuthority being a blank string (““)
makes it easier for locally defined names to be usable with no requirements on the fo
except they cannot start with one of the strings reserved for the other
RegistrationAuthority types. The “:” delimiter is optional for type OTHER. If the
NamingEntity is ““ for type OTHER, then the “/” delimiter is also optional.

3.2 Exceptions

InvalidInput

The InvalidInput exception is raised when the input parameter for the
TranslationLibrary interface operations is determined to be of an invalid format.

Registration
Authority

(1)
Stringified

Registration
Authority

(2)
RA-NE

Delimiter

(3)
NamingEntity

Format

(4)
NE-LN

Delimiter

(5)
LocalName

Format

OTHER “” “:” optional <no ‘/’> “/” optional <no ‘/’>

ISO “ISO” “:” <use ISO rules> “/” <any characters>

DNS “DNS” “:” <use DNS rules> “/” <any characters>

IDL “IDL” “:” <use IDL rules> “/” <no ‘/’>

DCE “DCE” “:” <use DCE rules> “/” <any characters>
3-6 Person Identification Service, v1.1 April 2001

3

sion

pe
ly the
3.3 TranslationLibrary Interface

This interface is meant to be a local library for translating between the structured ver
and stringified version of AuthorityIds and QualifiedNames .

authority_to_str,
str_to_authority,
qualified_name_to_str,
str_to_qualified_name()

Each of these operations take either a structured version or stringified version of a ty
and return the opposite. The data content returned is the same as that passed in. On
representation of the data is changed.
April 2001 PIDS, v1.1 TranslationLibrary Interface 3-7

3

3-8 Person Identification Service, v1.1 April 2001

Traits 4

 as
re are

 of
t meet
ing on

o

legal

ify a
onsists
cial
L7)
Contents

This chapter contains the following topics.

The definitions in the PersonIdService module define traits as name/value pairs with
the name being a string (in the QualifiedNameStr format) and the value being an “any.”
This is done to provide complete flexibility in defining traits. The traits used to help
identify a person may be of many types and formats. Many of them are represented
strings but others can be structured types and even multimedia types. In addition the
many inconsistent standards even for the more common traits like a person’s name.

This specification was written to allow the use of different traits and different formats
traits to be used as needed. A specific implementation of PIDS may use the traits tha
these needs. The formats of even the common traits may need to be different depend
the technical and political environment in which they are deployed. They may need t
work with other information services that have a predefined data format that the
implementation decides to use. The data formats used for traits may be required by
means as well.

While this specification does not limit what traits can be used with PIDS it does spec
set that can be well known and used by clients and servers if they choose. The set c
of data formats from a couple of well-known industry standards as well as some spe
traits defined just for PIDS. The well-known standards are the Health Level Seven (H

and vCardTM.

Topic Page

“PersonIdTraits Module” 4-2

“HL7Version2_3 Module” 4-4

“vCardTraits Module” 4-6
April 2001 Person Identification Service, v1.1 4-1

4

be
ble
e

e

, for

he
If there are environments where other standard sets of traits are needed, they could
standardized via the OMG’s processes. These could be areas that require interopera
solutions to existing standards or legacy systems for which PIDS interfaces need to b
provided.

Within the IDL RegistrationAuthority , LocalName can have any characters. Also, th
IdentificationComponent has a string, QualifiedNameStr component_name , to
name the particular PIDS service. In order to create and manage unique IDs, it is
acceptable to include the component_name in the LocalName of the Qualified
PersonId to further delimit the name space.

Thus, QualifiedPersonIds could have information in them, which allows one

• to determine the specifics of the server (accessible through the NamingService
example).

• to locate the id of the person, to record types of identifiers, or even to qualify t
identifier domain itself as a namesapce for its Ids.

The following sections define the three modules that contain the default set of traits
defined by PIDS:

• PersonIdTraits Module

• HL7Version 2_3 Module

• vCardTraits Module

4.1 PersonIdTraits Module

//File: PersonIdTraits.idl

#ifndef _PERSON_ID_TRAITS_IDL_
#define _PERSON_ID_TRAITS_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module PersonIdTraits
{

const PersonIdService::TraitName NULL_TRAIT = "";
typedef any NullTraitType; // set to tk_null

const PersonIdService::TraitName INTERNAL_ID = "PIDS/InternalId";
typedef PersonIdService::PersonId InternalIdType;

const PersonIdService::TraitName MERGED_IDS = "PIDS/MergedIds";
typedef PersonIdService::PersonIdSeq MergedIdsType;

const PersonIdService::TraitName DUPLICATE_IDS = "PIDS/DuplicateIds";
typedef PersonIdService::PersonIdSeq DuplicateIdsType;
const PersonIdService::TraitName CORRELATED_IDS = "PIDS/CorrelatedIds";
typedef PersonIdService::QualifiedPersonIdSeq CorrelatedIdsType;
4-2 Person Identification Service, v1.1 April 2001

4

t
r
rmat

lue

hed
ard

he
 IDs

tion
const PersonIdService::TraitName EXTERNAL_IDS = "PIDS/ExternalIds";
typedef PersonIdService::QualifiedPersonIdSeq ExternalIdsType;

const PersonIdService::TraitName NATIONAL_HEALTH_IDS = "PIDS/NationalHealthId";
struct NationalHealthIdStruct {

string country_code;
PersonIdService::PersonId id;

};
typedef sequence< NationalHealthIdStruct > NationalHealthIdStructSeq;
typedef NationalHealthIdStructSeq NationalHealthIdsType;
};

typedef sequence<QualifiedPersonIdInfo> QualifiedPersonInfoSeq;
const PersonIdService::TraitName EXTERNAL_CODED_IDS = “PIDS/ExternalCodedIds”;
typedef PersonIdService::QualifiedPersonIdInfoSeq ExternalCodedIdsType;

typedef NamingAuthority::AuthorityId CodingSchemeId;
struct qualifiedCode {

CodingSchemeId coding_scheme_id;
ConceptCode a_code;

};
struct QualifiedPersonIdInfo {

QualifiedCode a_qualified_code;
QualifiedPersonId id;

}

#endif // _PERSON_ID_TRAITS_IDL_

The PersonIdTraits module contains definitions for traits that are needed but are no
defined by the HL7 Version 2.3 or vCard Version 2.1 standards. Most of these are fo
defining other IDs a person may have where these IDs can be characterized in the fo
of this specification.

NULL_TRAIT, NullTraitType

This trait is used in places where a trait or trait name must be passed but no valid va
exists.

INTERNAL_ID, InternalIdType

The InternalId , if used, is always set to the PersonID itself. It is specified in the
supported_traits as read-only and searchable but not mandatory. The reason for
including it as a trait is to allow matching on it. This is the only way the ID can be matc
on when only part of the ID is known. For example, this could occur if a person’s ID c
has a tear or only part of the digits are remembered by the person.

MERGED_IDS, MergedIdsType

This trait indicates the set of other IDs a person may have. The IDs listed are from t
same ID Domain as the ID this trait is bound to. It has the special semantics that the
listed are in the Deprecated IdState and the preferred_id on their IdInfo references the
ID this trait is bound to. The setting of this trait is controlled by the PIDS implementa
April 2001 PIDS, v1.1 PersonIdTraits Module 4-3

4

re,

e

m a
re

2.1
ave a
uing
des
a
in order to maintain consistency with the back references from the IDs listed; therefo
this trait is always read-only when supported by a PIDS.

DUPLICATE_IDS, DuplicateIdsType

This trait indicates the set of other IDs a person may have. The IDs listed are from th
same ID Domain as the ID this trait is bound to. This is more general purpose than
MergedIds . The IDs listed in this trait do not have to be deprecated or merged.

CORRELATED_IDS, CorrelatedIdsType

This trait indicates the set of other IDs a person may have. The IDs listed are from a
different ID Domain than the ID Domain of the ID this trait is bound to. This trait has
special semantics in that it refers to IDs that have been correlated by the
CorrelationMgr ; therefore, this trait is always read-only when supported by a PIDS.

EXTERNAL_IDS, ExternalIdsType

This trait indicates the set of other IDs a person may have. The IDs listed may be fro
different ID Domain than the ID Domain of the ID this trait is bound to. This trait is mo
general purpose than CorrelatedIds . The IDs listed in this trait may be set by
mechanisms other than automatic correlation.

NATIONAL_HEALTH_IDS, NationalHealthIdsType

The NationalHeathlId trait is added in this module because the HL7 2.3 and vCard
standards do not have a corresponding trait. This trait is important in countries that h
national healthcare ID. The “country_code” field indicates the name of the country iss
the IDs. The ISO 3166 two-letter country codes or the telephone numeric country co
are to be used. The value for this trait consists of a sequence since it is possible for
person to have IDs in multiple countries or accidently get multiple IDs in the same
country.

4.2 HL7Version2_3 Module

//File: HL7Version2_3.idl

#ifndef _HL7_VERSION_2_3_IDL_
#define _HL7_VERSION _HL7_VERSION_2_3_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module HL7Version2_3
{

typedef PersonIdService::TraitName PIDFieldName;
typedef PersonIdService::TraitName RepPIDFieldName
typedef string PIDFieldValue;

const RepPIDFieldName PATIENT_NAME = "HL7/PatientName";
4-4 Person Identification Service, v1.1 April 2001

4

ion
he
 are

g
used
S.

of

the
ve to

ften
e all

const PIDFieldName MOTHERS_MAIDEN_NAME = "HL7/MothersMaidenName";
const PIDFieldName DATE_TIME_OF_BIRTH = "HL7/DateTimeofBirth";
const PIDFieldName SEX = "HL7/Sex";
const RepPIDFieldName PATIENT_ALIAS = "HL7/PatientAlias";
const PIDFieldName RACE = "HL7/Race";
const RepPIDFieldName PATIENT_ADDRESS = "HL7/PatientAddress";
const PIDFieldName COUNTY_CODE = "HL7/CountyCode";
const RepPIDFieldName PHONE_NUMBER_HOME = "HL7/PhoneNumber_Home";
const RepPIDFieldName PHONE_NUMBER_BUSINESS = "HL7/PhoneNumber_Business";
const PIDFieldName PRIMARY_LANGUAGE = "HL7/PrimaryLanguage";
const PIDFieldName MARITAL_STATUS = "HL7/MaritalStatus";
const PIDFieldName RELIGION = "HL7/Religion";
const PIDFieldName PATIENT_ACCOUNT_NUMBER = "HL7/PatientAccountNumber";
const PIDFieldName SSN_NUMBER = "HL7/SSNNumber";
const PIDFieldName DRIVERS_LICENSE_NUMBER = "HL7/DriversLicenseNumber";
const RepPIDFieldName MOTHERS_IDENTIFIER = "HL7/MothersIdentifier";
const PIDFieldName ETHNIC_GROUP = "HL7/EthnicGroup";
const PIDFieldName BIRTH_PLACE = "HL7/BirthPlace";
const PIDFieldName MULTIPLE_BIRTH_INDICATOR = "HL7/MultipleBirthIndicator";
const PIDFieldName BIRTH_ORDER = "HL7/BirthOrder";
const RepPIDFieldName CITIZENSHIP = "HL7/Citizenship";
const PIDFieldName VETERANS_MILITARY_STATUS = "HL7/VeteransMilitaryStatus";
const PIDFieldName NATIONALITY = "HL7/Nationality";
const PIDFieldName PATIENT_DEATH_DATE_AND_TIME = "HL7/PatientDeathDateandTime";
const PIDFieldName PATIENT_DEATH_INDICATOR = "HL7/PatientDeathIndicator";

};

#endif //_HL7_VERSION_2_3_IDL_

The HL7Version2_3 module defines the standard trait names for using trait informat
from the Health Level Seven (HL7) standard. The traits correspond to fields 5-30 in t
PID segment as defined in Version 2.3 of the HL7 standard. The values for the traits
strings (HL7Version2_3::PIDFieldValue) formatted according to the rules specified
by the HL7 standard.

The values for these HL7 PID traits contain the exact semantics as the correspondin
fields in the HL7 Version 2.3 PID segment. For example, where the “CE” data type is
any HL7 recommended value sets are also recommended when using them with PID

The trait names (HL7Version2_3::PIDFieldName) include the complete
QualifiedNameStr which has a registration authority of OTHER and the authority ID
“HL7.”

Since the PIDS specification recommends to use the data types and the formats for
traits in the PID segment to conform to the HL7 formats and data types, we do not ha
add a new data type of sequence of string.

Many of these traits from the HL7 PID segment are demographic traits instead of
identifying traits. The difference between demographic traits and identifying traits is o
dependent on the environment in which they are being used. It was decided to includ
of these PID segment traits and let the PIDS implementors choose the ones that are
considered identifying traits for their service.
April 2001 PIDS, v1.1 HL7Version2_3 Module 4-5

4

k

.”

e

Note – HL7 is working on version 3.0 of its standard. Once it is finished the list of
traits may be updated or a new list created via the standard OMG processes.

4.2.1 HL7 Link and Unlink Events

The HL7 standard defines distinct “trigger events” for merge and unmerge, and for lin
and unlink. The distinction between the two pairs is as follows: While “merge”
deactivates one identifier in favor of another, link simply asserts that the identifiers
involved represent the same real-world person - commonly referred to as “duplicates

In this specification, the merge_ids and unmerge_ids operations are semantically
equivalent to their HL7 counterparts, but there are no explicit PIDS operations
corresponding to the HL7 link and unlink events. However, the PIDS fully supports th
link and unlink semantics by means of the ProfileAccess: update_and_clear_traits
operation. The client simply asserts or clears values for the DuplicateIds trait. Note that
an IdMgr implementation should clear DuplicateIDs not only when a client clears them
explicitly using update_and_clear_traits , but also when a merge is performed on a
pair of identifiers that is on record as being duplicates.

4.3 vCardTraits Module

//File: vCardVersion2_1.idl

#ifndef _V_CARD_VERSION_2_1_IDL_
#define _V_CARD_VERSION_2_1_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module vCardVersion2_1
{

typedef PersonIdService::TraitName PropertyName;
typedef string PropertyValue;

const PropertyName FORMATTED_NAME = "vCard/FN";
const PropertyName NAME = "vCard/N";
const PropertyName PHOTOGRAPH = "vCard/PHOTO";
const PropertyName BIRTHDAY = "vCard/BDAY";
const PropertyName ADDRESS = "vCard/ADR";
const PropertyName HOME_ADDRESS = "vCard/ADR;HOME";
const PropertyName WORK_ADDRESS = "vCard/ADR;WORK";
const PropertyName TELEPHONE = "vCard/TEL";
const PropertyName PREFERRED_TELEPHONE = "vCard/TEL;PREF";
const PropertyName HOME_TELEPHONE = "vCard/TEL;HOME";
const PropertyName WORK_TELEPHONE = "vCard/TEL;WORK";
const PropertyName VOICE_TELEPHONE = "vCard/TEL;VOICE";
const PropertyName FAX_TELEPHONE = "vCard/TEL;FAX";
const PropertyName MESSAGE_TELEPHONE = "vCard/TEL;MSG";
4-6 Person Identification Service, v1.1 April 2001

4

ed in

e

riate

of
const PropertyName CELLULAR_TELEPHONE = "vCard/TEL;CELL";
const PropertyName BULLETIN_BOARD_TELEPHONE =” vCard/TEL;BBS";
const PropertyName MODEM_TELEPHONE ="vCard/TEL;MODEM";
const PropertyName CAR_TELEPHONE = "vCard/TEL;CAR";
const PropertyName ELECTRONIC_MAIL = "vCard/EMAIL";
const PropertyName GEOGRAPHIC_POSITION = "vCard/GEO";
const PropertyName TITLE = "vCard/TITLE";
const PropertyName ORGANIZATION = "vCard/ORG";
const PropertyName SOUND_ANNOTATION = "vCard/SOUND";
const PropertyName UNIFORM_RESOURCE_LOCATOR = "vCard/URL";

};

#endif //_V_CARD_VERSION_2_1_IDL_

The vCardVersion2_1 module defines the standard trait names for using trait
information from the vCard standard. The traits correspond to the properties as defin
Version 2.1 of the vCard standard. The values for the traits are strings
(vCardVersion2_1::PropertyValue) formatted according to the rules specified by th
vCard standard.

Only the properties in vCard that relate to this specification are included. The approp
properties with parameters are also included.

The trait names (vCardVersion2_1::PropertyName) include the complete
QualifiedNameStr which has a registration authority of OTHER and the authority ID
“vCard.”
April 2001 PIDS, v1.1 vCardTraits Module 4-7

4

4-8 Person Identification Service, v1.1 April 2001

Naming/Trader Interoperation 5
n.

the
ide

me

ss

 of
Contents

This chapter contains the following topics.

The Naming and Trader Services are used in multiple ways by the PIDS specificatio
One way is to define Trader Service Types explicitly for PIDS and some naming
conventions for PIDS-related objects. The other is that every PIDS component has
ability to expose Naming and Trader services that are local to the component to prov
explicate federation of PIDS implementations.

5.1 Naming Service

The following names are to be used for the “kind” field in
CosNaming::NameComponent .

• “IdentificationComponent” - Generic type for a PIDS component.

• “Simple PIDS” - A PIDS component that meets the conformance class of the sa
name.

• “Sequential Access PIDS” - A PIDS component that meets the conformance cla
of the same name.

• “Identity Access PIDS” - A PIDS component that meets the conformance class
the same name.

Topic Page

“Naming Service” 5-1

“Trader Service” 5-2
April 2001 Person Identification Service, v1.1 5-1

5

the

ng

ive to
it is
used

ill
 they
y

ed by

ctory.

e
t is
nent

is not
n by

 to

t as

. The
tics.
ll as
the

the
• “ID Domain Manager PIDS” - A PIDS component that meets the conformance
class of the same name.

• “Correlation PIDS” - A PIDS component that meets the conformance class of
same name.

Naming contexts are freestanding nodes in the directory hierarchy unless they are
associated with a particular system or component in some way. The use of the nami
context, as referenced from an IdentificationComponent , has specific semantics. The
naming context referenced from a PIDS component is the root of a naming tree relat
that component. It is a way for the component to publish references to other objects
associated with or knows about. The naming directory for which it is the root can be
as a general naming service as well.

The following directory names have special meaning for PIDS components:

• Source ID Domains - Components that do correlation over other ID Domains w
have object references to PIDS components that manage those ID Domains (if
exist) in this directory. It is suggested that the sub ID Domains be referenced b
their stringified ID Domain name as it provides a simple way to search for ID
Domains when a trader component is not available. They may also be referenc
a logical name for easier identification by users and by their component name.

• Correlating ID Domains - Components that are being correlated by other
components can publish references to these correlating components in this dire

• ID Domain Components - PIDS components that manage an ID Domain will hav
references to other PIDS components within the ID Domain in this directory. I
suggested that the ID Domain residents be referenced by their stringified compo
name as it provides a simple way to search for them when a trader component
available. They may also be referenced by a logical name for easier identificatio
users.

• ID Using Services - This directory is a place for a component to have references
services it provides that use IDs from its ID Domain.

The following names for objects located in the root of the tree referenced by a PIDS
component are also reserved.

• Trait Information - If this object exists, it is an implementation of the Lexicon
Query Service (LQS) that contains the traits supported by this PIDS componen
concepts.

• Trader components are typically stand-alone services installed in an enterprise
reference to the trader component from a PIDS component has special seman
The trader component is used for searching for other PIDS components as we
other object services. The Trader referenced by a PIDS component knows of
PIDS service types defined in this specification.

5.2 Trader Service

The following definitions are Service Types defined for PIDS components for use by
Trader Service.
5-2 Person Identification Service, v1.1 April 2001

5

r

f the
ince
ned

re

o. This

strings
service IdentificationComponent {
interface IdentificationComponent;
mandatory readonly property string domain_name;
mandatory readonly property StringSeq interfaces_implemented;
mandatory readonly property StringSeq conformance_classes;
mandatory readonly property string component_name;
mandatory readonly property string component_version;
mandatory readonly property StringSeq supported_traits;
mandatory readonly property StringSeq read_only_traits;
mandatory readonly property StringSeq mandatory_traits;
mandatory readonly property StringSeq searchable_traits;
readonly property StringSeq source_domains;

};

Since all PIDS implement the IdentificationComponent only one Trader Service type
is needed, which is also called “IdentificationComponent .” The
IdentificationComponent interface has attributes for the common characteristics fo
all PIDS. These are used as properties for the IdentificationComponent service type.
One additional property is specified as well which comes from an attribute from one o
derived interfaces. The stringified versions of the attributes are used for properties s
the standard Trader constraint language does not provide a way to filter on user-defi
types.

5.2.1 IdentificationComponent Service

The interface type returned from the Trader Service for this service type is an
IdentificationComponent . All except one of the properties are mandatory. These a
found on all IdentificationComponent interface implementations.

domain_name

The domain_name property contains the information from the domain_name
attribute of the IdentificationComponent interface. It is formatted as specified for
NamingAuthority::AuthorityIdStr .

interfaces_implemented

This sequence contains the names of the interfaces the component has references t
includes PIDS-specific interfaces such as “PersonIdService::ProfileAccess ” and
other interfaces such as “CosNaming::NamingContext .” The names are fully
qualified names which include the module name.

conformance_classes

This sequence contains the conformance classes the implementation supports. The
are identical to the way they are spelled and capitalized in the definition of the
conformance classes for PIDS.

component_name

This property contains the “the_name ” field of the component_name attribute. It is a
April 2001 PIDS, v1.1 Trader Service 5-3

5

stringified version of the name in the format as a
NamingAuthority::QualifiedNameStr .

component_version

This property contains the “the_version ” field from the component_name attribute.

supported_traits

This property contains a sequence with all of the TraitNames that are in the
supported_traits attribute.

read_only_traits

This property contains a sequence with all of the TraitNames that are in the
supported_traits attribute that have the read_only field set to true.

mandatory_traits

This property contains a sequence with all of the TraitNames that are in the
supported_traits attribute that have the mandatory field set to true.

searchable_traits

This property contains a sequence with all of the TraitNames that are in the
supported_traits attribute that have the searchable field set to true.

source_domains

This is the only optional property. It only applies to PIDS that implement the
CorrelationMgr interface. The property contains the stringified DomainName for the
source ID Domains being correlated.
5-4 Person Identification Service, v1.1 April 2001

Conformance Classes 6

must

laims.

o be
The following interfaces are programmatic reference points for testing conformance.
Conformance indicates implementing all of the attributes and operations for those
interfaces and the specified behavior, and raising exceptions as specified. For the
operations that may raise the PersonIdService::NotImplemented exception, a valid
implementation of the operation may raise this exception. All other operations must
perform as specified within this specification.

• IdentificationComponent

• ProfileAccess

• IdentityAccess

• SequentialAccess

• IdentifyPerson

• IdMgr

• CorrelationMgr

• EventComponent

The following taxonomy is defined for specific conformance classes of PIDS service
implementations. An implementation claiming conformance to any of these classes
conform to all of the interfaces specified for that class. An implementation may claim
conformance to multiple conformance classes as long as it conforms to each one it c

An implementation claiming conformance must also follow the rules in the
NamingAuthority module for creating names that derive from those types.

All conforming implementations must support at least one trait as specified on their
supported_traits attribute.

Implementations that use the traits defined in the PersonIdTraits , HL7Version2_3 and
vCardVersion2_1 modules must maintain the semantics defined in those modules t
considered conforming.
April 2001 Person Identification Service, v1.1 6-1

6

 the

ss.

t

d to

es

e

by
nal
An implementation claiming conformance must implement the semantics defined for
IdentificationComponent such as consistency between all the interfaces
implemented. They must also maintain the semantic mapping between attributes on
IdentificationComponent and the other interfaces implemented.

Each row in the table below includes the specification for a different conformance cla
The columns represent the interfaces on the IdentificationComponent . A “*” symbol
in a column indicates the conformance class in that row includes the interface of tha
column.

• “Simple PIDS” - Provides the basic operations to access profiles from an ID an
match potential IDs given some traits.

• “Sequential Access PIDS” - Adds the ability to scroll through the set of IDs
sequentially.

• “ID Domain Mgr PIDS” - Adds the ability to create new IDs and modify the stat
of IDs that were already created.

• “Identity Access PIDS” - An alternative to the Simple PIDS in that it provides th
same functionality but uses the IdentityAccess interface instead of the
ProfileAccess . It is intended for implementations that have different access
policies for each ID, for example allowing people to control access to their own
profile.

• “Correlation PIDS ” - The supported_traits attribute contains at least the
following three traits: HL7:PatientName ; HL7:DateTimeOfBirth ; HL7:Sex .
This conformance class contains a single interface as it provides functionality
itself; however, it can be mixed in with the other conformance classes for additio
functionality.

Conformance Class Identify
Person

Profile
Access

Sequential
Access

IDMgr. Identity
Access

CorrelationMgr

Simple PIDS * *

Sequential Access
PIDS

* * *

ID Domain Mgr PIDS * * *

Identity Access PIDS * *

Correlation PIDS *
6-2 Person Identification Service, v1.1 April 2001

References A
,

t

n,
ms,
r

e E-

n
A.1 List of References

Health Level Seven (HL7) Standard, version 2.3, 1997.

Versit Consortium. VCard - The Electronic Business Card, version 2.1, September 18
1996.

American Dental Association, "Proposed ANSI/ADA Specification No 1000 Standard
Clinical Data Architecture for the Structure and Content of a Computer-based Patien
Record. Part 1000.1 Individual Identification", ASC MD156, August 1997.

ASTM E1239, Standard Guide for Description of Reservation/Registration-Admissio
Discharge, Transfer (R-ADT) Systems for Automated Patient Care Information Syste
Committee E-31 on Computerized Systems, Subcommittee E31.19 on Vocabulary fo
Computer-Based Patient Records-Content and Structure, West Conshohocken, PA:
ASTM, January 15, 1994.

ASTM E1714. Guide for the Properties of a Universal Healthcare Identifier. Committe
31 on Computerized Systems, Subcommittee E31.12 on Medical Records. West
Conshohocken, PA: ASTM, Aug. 15, 1995.

ASTM E1385. Guide for global environments for RADT.

ASTM E1715. RADT data model.

CPRI, 1996a. Action Plan for Implementing a Universal Patient Identifier, Draft Versio
1.0. Schaumburg, IL: Computer-based Patient Record Institute, May.

ICSI, 1995. Data Communication Standard: Patient Identifier, September 1995.

HIN, 1997. The Essential Medical Data Set (EMDS), January 8, 1997.

UK National Health System Common Data Model.
April 2001 Person Identification Service, v1.1 A-1

A

A-2 Person Identification Service, v1.1 April 2001

Complete OMG IDL B
B.1 Complete IDL Listing

//File: PersonIdService.idl

#ifndef _PERSON_ID_SERVICE_IDL_
#define _PERSON_ID_SERVICE_IDL_

#include <orb.idl>
#include <NamingAuthority.idl>
#include <Naming.idl>
#include <Trading.idl>

#pragma prefix "omg.org"

module PersonIdService
{
pragma version Person Identification Service 1.1

// ---
// Common Data Types
//
typedef NamingAuthority::AuthorityId DomainName;
typedef sequence< DomainName > DomainNameSeq;

typedef NamingAuthority::LocalName PersonId;
typedef sequence< PersonId > PersonIdSeq;

struct QualifiedPersonId {
DomainName domain;
PersonId id;

};
typedef sequence< QualifiedPersonId > QualifiedPersonIdSeq;

typedef NamingAuthority::QualifiedNameStr TraitName;
typedef sequence< TraitName > TraitNameSeq;
April 2001 Person Identification Service, v1.1 B-1

B

typedef any TraitValue;
struct Trait {

TraitName name;
TraitValue value;

};
typedef sequence< Trait > TraitSeq;
typedef TraitSeq Profile;
typedef sequence< Profile > ProfileSeq;

enum IdState { UNKNOWN, INVALID, TEMPORARY, PERMANENT, DEACTIVATED };
typedef sequence<IdState> IdStateSeq;
struct IdInfo {

PersonId id;
IdState state;
PersonId preferred_id;

};
typedef sequence<IdInfo> IdInfoSeq;

// ---
// Miscellaneous Data Types
//

typedef string ComponentVersion;
struct ComponentName {

NamingAuthority::QualifiedName name;
ComponentVersion version;

};

struct TraitSpec {
TraitName trait;
boolean mandatory;
boolean read_only;
boolean searchable;

};
typedef sequence< TraitSpec > TraitSpecSeq;

enum HowManyTraits { NO_TRAITS, SOME_TRAITS, ALL_TRAITS };
union SpecifiedTraits switch (HowManyTraits)
{

case SOME_TRAITS: TraitNameSeq traits;
};

struct TaggedProfile {
PersonId id;
PersonIdService::Profile profile;

};
typedef sequence<TaggedProfile> TaggedProfileSeq;

struct QualifiedTaggedProfile {
QualifiedPersonId id;
PersonIdService::Profile profile;

};
typedef sequence<QualifiedTaggedProfile> QualifiedTaggedProfileSeq;
B-2 Person Identification Service, v1.1 April 2001

B

struct ProfileUpdate {
PersonId id;
TraitNameSeq del_list;
TraitSeq modify_list;

};
typedef sequence< ProfileUpdate > ProfileUpdateSeq;

struct MergeStruct {
PersonId id;
PersonId preferred_id;

};
typedef sequence< MergeStruct > MergeStructSeq;

struct TraitSelector {
PersonIdService::Trait trait;
float weight;

};
typedef sequence<TraitSelector> TraitSelectorSeq;

struct Candidate {
PersonId id;
float confidence;
PersonIdService::Profile profile;

};
typedef sequence<Candidate> CandidateSeq;

interface CandidateIterator {
unsigned long max_left();

boolean next_n(
in unsigned long n,
out CandidateSeq ids);

void destroy();
};

typedef unsigned long Index;
typedef sequence< Index > IndexSeq;

enum ExceptionReason {

UNKNOWN_TRAITS,
DUPLICATE_TRAITS,
WRONG_TRAIT_FORMAT,
REQUIRED_TRAITS,
READONLY_TRAITS,
CANNOT_REMOVE,
MODIFY_OR_DELETE

};

struct MultipleFailure {
Index the_index;
ExceptionReason reason;
TraitNameSeq traits;

};
typedef sequence< MultipleFailure > MultipleFailureSeq;
April 2001 PIDS, v1.1 B-3

B

interface Identity;
typedef sequence< Identity > IdentitySeq;

// ---
// Exceptions
//

exception InvalidId { IdInfo id_info; };
exception InvalidIds { IdInfoSeq id_info; };
exception DuplicateIds { PersonIdSeq ids; };
exception UnknownTraits { TraitNameSeq traits; };
exception DuplicateTraits { TraitNameSeq traits; };
exception WrongTraitFormat { TraitNameSeq traits; };
exception InvalidStates {};
exception TooMany { unsigned long estimated_max; };
exception MultipleTraits { MultipleFailureSeq failures; };

exception ReadOnlyTraits { TraitNameSeq traits; };
exception CannotRemove { TraitNameSeq traits; };
exception ModifyOrDelete { MultipleFailureSeq failures; };
exception NotImplemented {};

exception InvalidWeight {};
exception CannotSearchOn { TraitNameSeq traits; };

exception IdsExist { IndexSeq indices; };
exception RequiredTraits { TraitNameSeq traits; };
exception ProfilesExist { IndexSeq indices; };
exception DuplicateProfiles { IndexSeq indices; };

exception DomainsNotKnown { DomainNameSeq domain_names; };
exception IdsNotKnown { QualifiedPersonIdSeq ids; };

// ---
// IdentificationComponent
//

interface ProfileAccess;
interface SequentialAccess;
interface IdentityAccess;
interface IdentifyPerson;
interface IdMgr;
interface CorrelationMgr;

interface IdentificationComponent
{

readonly attribute DomainName domain_name;
readonly attribute ComponentName component_name;
readonly attribute TraitSpecSeq supported_traits;

readonly attribute IdentifyPerson identify_person;
readonly attribute ProfileAccess profile_access;
B-4 Person Identification Service, v1.1 April 2001

B

readonly attribute SequentialAccess sequential_access;
readonly attribute IdentityAccess identity_access;

readonly attribute IdMgr id_mgr;

readonly attribute CorrelationMgr correlation_mgr;
readonly attribute CosNaming::NamingContext naming_context;
readonly attribute CosTrading::TraderComponents trader_components;

void get_supported properties(
in TraitName name,
out CosPropertyService::Properties trait_defs)
raises(
UnknownTraits

};
};

// ---
// IdentifyPerson
//

interface IdentifyPerson :
IdentificationComponent
{

void find_candidates(
in TraitSelectorSeq profile_selector,
in IdStateSeq states_of_interest,
in float confidence_threshold,
in unsigned long sequence_max,
in unsigned long iterator_max,
in SpecifiedTraits traits_requested,
out CandidateSeq returned_sequence,
out CandidateIterator returned_iterator)

raises (
TooMany,
UnknownTraits,
WrongTraitFormat,
CannotSearchOn,
DuplicateTraits,
InvalidStates,
InvalidWeight);

};

// ---
// ProfileAccess
//

interface ProfileAccess :

IdentificationComponent
{

TraitNameSeq get_traits_known(
in PersonId id)

raises (
InvalidId);

April 2001 PIDS, v1.1 B-5

B

Profile get_profile(
in PersonId id,
in SpecifiedTraits traits_requested)

raises (
InvalidId,
UnknownTraits,
DuplicateTraits);

TaggedProfileSeq get_profile_list(
in PersonIdSeq ids,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidIds,
DuplicateIds,
UnknownTraits,
DuplicateTraits);

TaggedProfileSeq get_deactivated_profile_list(
in PersonIdSeq ids,
in SpecifiedTraits traits_requested)

raises (
NotImplemented,
InvalidIds,
DuplicateIds,
UnknownTraits,
DuplicateTraits);

void update_and_clear_traits(
in ProfileUpdateSeq profile_update_spec)

raises (
InvalidIds,
DuplicateIds,
NotImplemented,
MultipleTraits);

IdInfoSeq get_id_info(

in PersonIdSeq ids)
raises (

TooMany,
DuplicateIds);

};

// ---
// SequentialAccess
//

interface SequentialAccess :
IdentificationComponent

{
unsigned long id_count_per_state(

in IdStateSeq states_of_interest)
raises (

InvalidStates);
B-6 Person Identification Service, v1.1 April 2001

B

TaggedProfileSeq get_all_ids_by_state(
in SpecifiedTraits traits_requested,
in IdStateSeq states_of_interest)

raises (
TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_first_ids(
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_last_ids(
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_next_ids(
in PersonId reference_id,
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidId,
UnknownTraits,
DuplicateTraits,
InvalidStates);

TaggedProfileSeq get_previous_ids(
in PersonId reference_id,
in unsigned long how_many,
in IdStateSeq states_of_interest,
in SpecifiedTraits traits_requested)

raises (
TooMany,
InvalidId,
UnknownTraits,
DuplicateTraits,
InvalidStates);

};
April 2001 PIDS, v1.1 B-7

B

// ---
// IdentityAccess
//

interface IdentityAccess :
IdentificationComponent

{
Identity get_identity_object(

in PersonId id)
raises (

InvalidId);

IdentitySeq get_identity_objects(
in PersonIdSeq ids)

raises (
InvalidIds);

};

interface Identity
{

readonly attribute IdentificationComponent source_component;
readonly attribute IdInfo id_info;
readonly attribute TraitNameSeq traits_with_values;
readonly attribute long trait_value_count;

Trait get_trait(
in TraitName trait_requested)

raises (
UnknownTraits);

Profile get_profile(
in SpecifiedTraits traits_requested)

raises (
UnknownTraits,
DuplicateTraits);

Profile get_deactivated_profile(
in SpecifiedTraits traits_requested)

raises (
NotImplemented,
UnknownTraits,
DuplicateTraits);

void update_and_clear_traits(
in ProfileUpdate profile_update_spec)

raises (
NotImplemented,
UnknownTraits,
WrongTraitFormat,
ModifyOrDelete,
ReadOnlyTraits,
CannotRemove,
DuplicateTraits);
B-8 Person Identification Service, v1.1 April 2001

B

void done();
};

// ---
// IdMgr
//

interface IdMgr :
IdentificationComponent

{
PersonIdSeq register_new_ids(

in ProfileSeq profiles_to_register)
raises (

ProfilesExist,
DuplicateProfiles,
MultipleTraits);

PersonIdSeq find_or_register_ids(
in ProfileSeq profiles_to_register)

raises (
DuplicateProfiles,
MultipleTraits);

void register_these_ids(
in TaggedProfileSeq profiles_to_register)

raises (
NotImplemented,
IdsExist,
DuplicateIds,
ProfilesExist,
DuplicateProfiles,
MultipleTraits);

PersonIdSeq create_temporary_ids(
in ProfileSeq profiles_to_register)

raises (
MultipleTraits);

PersonIdSeq make_ids_permanent(
in PersonIdSeq ids_to_modify)

raises (
InvalidIds,
DuplicateIds,
RequiredTraits);

IdInfoSeq merge_ids(

in MergeStructSeq ids_to_merge)
raises (

InvalidIds,
DuplicateIds);

IdInfoSeq unmerge_ids(
in PersonIdSeq ids_to_unmerge)

raises (
InvalidIds,
April 2001 PIDS, v1.1 B-9

B

DuplicateIds);

IdInfoSeq deprecate_ids(
in PersonIdSeq ids_to_deprecate)

raises (
InvalidIds,
DuplicateIds);

};

// ---
// CorrelationMgr
//

interface CorrelationMgr :
IdentificationComponent

{
readonly attribute DomainNameSeq source_domains;

void load_profiles(
in QualifiedTaggedProfileSeq tagged_profiles)

raises (
UnknownTraits,
WrongTraitFormat,
DomainsNotKnown);

QualifiedPersonIdSeq get_corresponding_ids(
in QualifiedPersonId from_id,
in DomainNameSeq to_domains)

raises (
DomainsNotKnown,
IdsNotKnown);

};

PersonIdSeq find_or_register_ids(
in QualifiedTaggedProfileSeq tagged_profiles)

raises (
MultipleTraits,
DomainsNotKnown,
NotImplemented);

};
};

#endif // _PERSON_ID_SERVICE_IDL_

//File: NamingAuthority.idl

#ifndef _NAMING_AUTHORITY_IDL_
#define _NAMING_AUTHORITY_IDL_

#include <orb.idl>
B-10 Person Identification Service, v1.1 April 2001

B

#pragma prefix "omg.org "

module NamingAuthority
{

enum RegistrationAuthority {
OTHER,
ISO,
DNS,
IDL,
DCE };

typedef string NamingEntity;

struct AuthorityId {
RegistrationAuthority authority;
NamingEntity naming_entity;

};
typedef string AuthorityIdStr;

typedef string LocalName;
struct QualifiedName {

AuthorityId authority_id;
LocalName local_name;

};
typedef string QualifiedNameStr;

exception InvalidInput {};

interface translation_library
{

AuthorityIdStr authority_to_str(
in AuthorityId authority)

raises(
InvalidInput);

AuthorityId str_to_authority(
in AuthorityIdStr authority_str)

raises(
InvalidInput);

QualifiedNameStr qualified_name_to_str(
in QualifiedName qualified_name)

raises(
InvalidInput);

QualifiedName str_to_qualified_name(
in QualifiedNameStr qualified_name_str)

raises(
InvalidInput);

};
};

#endif // _NAMING_AUTHORITY_IDL_
April 2001 PIDS, v1.1 B-11

B

//File: PersonIdTraits.idl

#ifndef _PERSON_ID_TRAITS_IDL_
#define _PERSON_ID_TRAITS_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module PersonIdTraits
{

const PersonIdService::TraitName NULL_TRAIT = "";
typedef any NullTraitType; // set to tk_null

const PersonIdService::TraitName INTERNAL_ID = "PIDS/InternalId";
typedef PersonIdService::PersonId InternalIdType;

const PersonIdService::TraitName MERGED_IDS = "PIDS/MergedIds";
typedef PersonIdService::PersonIdSeq MergedIdsType;

const PersonIdService::TraitName DUPLICATE_IDS = "PIDS/DuplicateIds";
typedef PersonIdService::PersonIdSeq DuplicateIdsType;

const PersonIdService::TraitName CORRELATED_IDS = "PIDS/CorrelatedIds";
typedef PersonIdService::QualifiedPersonIdSeq CorrelatedIdsType;

const PersonIdService::TraitName EXTERNAL_IDS = "PIDS/ExternalIds";
typedef PersonIdService::QualifiedPersonIdSeq ExternalIdsType;

const PersonIdService::TraitName NATIONAL_HEALTH_IDS = "PIDS/NationalHealthId";
struct NationalHealthIdStruct {

string country_code;
PersonIdService::PersonId id;

};
typedef sequence< NationalHealthIdStruct > NationalHealthIdStructSeq;
typedef NationalHealthIdStructSeq NationalHealthIdsType;

};

#endif // _PERSON_ID_TRAITS_IDL_

//File: HL7Version2_3.idl

#ifndef _HL7_VERSION_2_3_IDL_
#define _HL7_VERSION_2_3_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module HL7Version2_3
{

B-12 Person Identification Service, v1.1 April 2001

B

typedef PersonIdService::TraitName PIDFieldName;
typedef string PIDFieldValue;

const PIDFieldName PATIENT_NAME = "HL7/PatientName";
const PIDFieldName MOTHERS_MAIDEN_NAME = "HL7/MothersMaidenName";
const PIDFieldName DATE_TIME_OF_BIRTH = "HL7/DateTimeofBirth";
const PIDFieldName SEX = "HL7/Sex";
const PIDFieldName PATIENT_ALIAS = "HL7/PatientAlias";
const PIDFieldName RACE = "HL7/Race";
const PIDFieldName PATIENT_ADDRESS = "HL7/PatientAddress";
const PIDFieldName COUNTY_CODE = "HL7/CountyCode";
const PIDFieldName PHONE_NUMBER_HOME. = "HL7/PhoneNumber_Home";
const PIDFieldName PHONE_NUMBER_BUSINESS = "HL7/PhoneNumber_Business";
const PIDFieldName PRIMARY_LANGUAGE = "HL7/PrimaryLanguage";
const PIDFieldName MARITAL_STATUS = "HL7/MaritalStatus";
const PIDFieldName RELIGION = "HL7/Religion";
const PIDFieldName PATIENT_ACCOUNT_NUMBER = "HL7/PatientAcountnumber";
const PIDFieldName SSN_NUMBER = "HL7/SSNNumber";
const PIDFieldName DRIVERS_LICENSE_NUMBER = "HL7/DriversLicenseNumber";
const PIDFieldName MOTHERS_IDENTIFIER = "HL7/MothersIdentifier";
const PIDFieldName ETHNIC_GROUP = "HL7/EthnicGroup";
const PIDFieldName BIRTH_PLACE = "HL7/BirthPlace";
const PIDFieldName MULTIPLE_BIRTH_INDICATOR = "HL7/MultipleBirthIndicator";
const PIDFieldName BIRTH_ORDER = "HL7/BirthOrder";
const PIDFieldName CITIZENSHIP = "HL7/Citizenship";
const PIDFieldName VETERANS_MILITARY_STATUS = "HL7/VeteransMilitaryStatus";
const PIDFieldName NATIONALITY = "HL7/Nationality";
const PIDFieldName PATIENT_DEATH_DATE_AND_TIME= "HL7/PatientDeathDateandTime";
const PIDFieldName PATIENT_DEATH_INDICATOR = "HL7/PatientDeathIndicator";

};

#endif //_HL7_VERSION_2_3_IDL_

//File: vCardVersion2_1.idl

#ifndef _V_CARD_VERSION_2_1_IDL_
#define _V_CARD_VERSION_2_1_IDL_

#include <orb.idl>
#include <PersonIdService.idl>

#pragma prefix "omg.org"

module vCardVersion2_1
{

typedef PersonIdService::TraitName PropertyName;
typedef string PropertyValue;

const PropertyName FORMATTED_NAME = "vCard/FN";
const PropertyName NAME = "vCard/N";
const PropertyName PHOTOGRAPH = "vCard/PHOTO";
const PropertyName BIRTHDAY = "vCard/BDAY";
const PropertyName ADDRESS = "vCard/ADR";
const PropertyName HOME_ADDRESS = "vCard/ADR;HOME";
April 2001 PIDS, v1.1 B-13

B

const PropertyName WORK_ADDRESS = "vCard/ADR;WORK";
const PropertyName TELEPHONE = "vCard/TEL";
const PropertyName PREFERRED_TELEPHONE = "vCard/TEL;PREF";
const PropertyName HOME_TELEPHONE = "vCard/TEL;HOME";
const PropertyName WORK_TELEPHONE = "vCard/TEL;WORK";
const PropertyName VOICE_TELEPHONE = "vCard/TEL;VOICE";
const PropertyName FAX_TELEPHONE = "vCard/TEL;FAX";
const PropertyName MESSAGE_TELEPHONE = "vCard/TEL;MSG";
const PropertyName CELLULAR_TELEPHONE = "vCard/TEL;CELL";
const PropertyName BULLETIN_BOARD_TELEPHONE = "vCard/TEL;BBS";
const PropertyName MODEM_TELEPHONE = "vCard/TEL;MODEM";
const PropertyName CAR_TELEPHONE = "vCard/TEL;CAR";
const PropertyName ELECTRONIC_MAIL = "vCard/EMAIL";
const PropertyName GEOGRAPHIC_POSITION = "vCard/GEO";
const PropertyName TITLE = "vCard/TITLE";
const PropertyName ORGANIZATION = "vCard/ORG";
const PropertyName SOUND_ANNOTATION = "vCard/SOUND";
const PropertyName UNIFORM_RESOURCE_LOCATOR = "vCard/URL";

};

#endif //_V_CARD_VERSION_2_1_IDL_
B-14 Person Identification Service, v1.1 April 2001

Use Case Examples C
C.1 Examples

The following diagrams illustrate UseCase examples.
April 2001 Person Identification Service, v1.1 C-1

C

Example1 Find Candidates and Register New IDs

an Identify Person :
Identify Person

aRegistrar :
Registrar

a Registration :
System

3: FindCandidates

4: DetermineCandidateList

5: ReturnAnEmptyCandidateList

1: GatherPersonInformation

2: IdentifyPerson

6: AddNewPerson

8: ContinueWithRegistration

The Use Case represents an
example of creating a new
person when one IdMgr
exists.

an IdManager :
IdManager

7: RegisterNewIds
C-2 Person Identification Service, v1.1 April 2001

C

Example2 Find Candidate and Get Candidate Profile

aNurse : Nurse
a Monitor :

System
an Identify Person :

Identify Person
a Profile Access
: Profile Access

1: GatherPersonInformation

2: IdentifyPerson

3: Find Candidates

4: DetermineCandidateList

5: ReturnACandidateList

6: SelectPersonFromList

8: ContinueMonitorHookup

This use case includes an additional
request for Person Profile information.
The Monitor system may or may not
pass a person Id assigned by the
Monitor system.

7: Get Profile
April 2001 PIDS, v1.1 C-3

C

Example3 Merge IDs

This use case starts from the point
where the 'Find Candidates' request
returns an empty list of candidates.

a System
Administrator :

an IdManager :
IdManager

a Registration :
System : Registrar

3: IdentiyAsDuplicatePerson

7: ReportDuplicate

9: Merge IDs

10: MergeTwoPersons

6: ReconcileProfiles

4: CrossReferenceSurvivor'sIdToNonsurvivor'sId

2: Register New IDs

5: MarkNonsurvivor'sIdAsInactive

8: DetermineIsADuplicate

1: AddNewPerson
C-4 Person Identification Service, v1.1 April 2001

C

Example4 Unmerge IDs

This use case starts from the
point where the 'Find Candidates'
request returns an empty list of
candidates.

a Registrar :
Registrar

a Registration :
System

an IdManager :
IdManager a System

Administrator :

2: Register New Ids

3: IdentifyasPotentialDuplicate

4: AssignNewPersonIdentifier

5: MakeAnAssociationToOtherPerson

6: ReportAPotentialDuplicate

7: DetermineNotADuplicate

8: UnMerge IDs

1: AddNewPerson
April 2001 PIDS, v1.1 C-5

C

Example5 Update Person Traits and Notify Subscribed Parties

This use case assumes
that the person is
already identified.

a Registrar :
Registrar

a ProfileAccess :
Profile Access

an Ancillary :
System

an Event Manager
: Event Manager

a Registration :
System

4: PublishPersonTraitUpdate

5: NotifySubscriberOfPersonTraitUpdate

2: ChangePersonTraits

3: UpdateAndClearTraits

1: SubscribeToAnEvent

6: GetUpdatedTraits
C-6 Person Identification Service, v1.1 April 2001

C

Example6 Potential Merge Person in a Single ID Domain

an IdManager : Id
Manager : (System

Administrator)

a Registration :
System a Registrar :

Registrar

2: Register New IDs

3: IdentifyAsPotentialDuplicate

4: AssignNewPersonIdentifier

5: MakeAssociationToOtherPerson

6: ReportPotentialDuplicate

8: MergeDuplicatePerson

9: MergePerson

7: DetermineIsADuplicate

1: AddNewPerson

10: Merge IDs

This use case starts from the point
where the 'Find Candidates' request
returns an empty list of candidates.
April 2001 PIDS, v1.1 C-7

C

Example7 Merge Person without a Correlating Manager

12: Merge IDs

 : (System
Administrator)

a Registration :
System

an IdManager :
IdManager

a Registration :
System

2: Register New IDs.

4: CompleteAddNewPerson

5: Register New IDs

3: DetermineANewPerson

6: IdentifyAsPotentialDuplicatePerson

7: AssignNewPersonId

8: MakeAssociationToOtherPerson

10: ReportPotentialDuplicate

11: DetermineIsADuplicate

a Registrar :
Registrar

1: AddNewPerson

This use case assumes a
Correlation Manager does not
exist.

9: CompleteAddNewPerson
C-8 Person Identification Service, v1.1 April 2001

C

Example8 Correlate Person Profile When Person Does Not Exist

an IdManager :
IdManager

a Correlation Manager :
Correlation Manager

an Identify Person :
Identify Person

2: Find Candidates

3: ReturnAnEmptyCandidateList

5: BuildCrossReference This use case assumes the
registration system has registered
the person and this is a new person
to Correlation Manager.

aRegistrationSystem :
System

1: Load Profiles

4: Create Permanent Id
April 2001 PIDS, v1.1 C-9

C

Example9 Correlate Profile When Person Already Exists

a Correlation Manager
: Correlation Manager

a Registration :
System

an Identify Person
: Identify Person

a Registration :
System

1: Load Profiles

4: Load Profiles

5: Find Candidates

6: CorrelateProfile

This use case assumes one
person is returned in the
candidate list.

7: Find Corresponding IDs

3: CorrelateProfile

8: Find Corresponding IDs

2: Find Candidates
C-10 Person Identification Service, v1.1 April 2001

Interaction Patterns D
this
into
The following diagrams indicate a variety of ways that PIDS can be used. Obviously
is not a complete list, but it does show there is extreme flexibility in the way it can fit
an enterprise’s architecture.

D.1 Usage Diagrams

Pharmacy System

Sim ple P IDS

Pharm acyO rders

D rugs_R _Us

Pharmacy System

D rugs_R _Us

Sim ple P IDS

Pharm acyO rders

Im plem enting s tandard and
proprietary inte rfaces separately
that are independently used.

M ixing two standard interfaces
into a proprietary one via
m ultip le inheritance .

Pharmacy System

Sim ple P IDS

Pharm acyO rders

D rugs_R _Us

Separate interfaces pulled
together (crea ted) via a factory
interface.

D R UG _fac tory

cr
ea
te

There are m ultip le w ays to integrate the P IDS
IdentificationC om ponen t with other interfaces
im plem en ted by the sam e system as shown in the
exam ples below .
April 2001 Person Identification Service, v1.1 D-1

D

Lab System

Simple PIDS

Observations

CORBA

HL7 and
proprietary
protocols

ADT and Other
Systems

The simplest application (and possibly most common
initially) for PIDS is for a single system to implement

the Simple PIDS conformance class. In this example
the Lab System may have its own ID Domain (such

as a reference lab) or use the medical record
numbers of a hospital.

Patient Care
Application and

Other Clients

The Lab System in this
example also implements an
interface for getting its
Observation values. A Lab
System may implement an
interface for Orders too (not
shown).

The client systems and
apps for the Lab System
can use its CORBA
interface and still use
proprietary and legacy
protocols for other
systems.
D-2 Person Identification Service, v1.1 April 2001

D

ADT System

ID Mgr PIDS

ADT

Legacy Clinical
Systems

Patient Care
Application

Monitor System

Simple PIDS

Observations

CORBA

CORBA

HL7

HL7

HL7

CORBA

Monitoring
Devices

proprietary

Legacy systems can
continue to use
previous interface
mechanisms with no
change.

New application
interfaces can utilize

CORBA where
available but use other

mechanisms for
legacy interfaces.

BalloonCallout

PIDS interfaces can
be wrapped around
legacy systems that
may continue to use
legacy and proprietary
interfaces.
April 2001 PIDS, v1.1 D-3

D

Hospital Domain Lab Domain

ADT or MPI

Correlation PIDS

Client Aplications
and Systems

get_corresponding_ids()

A system that uses IDs from a
different domain can use a
CorrelatingMgr to get the ID for
the patient in the other domain.

Laborartory
System

ID Mgr PIDS
Observations

get data using ID
obtained from MPI

Hospital Domain Clinic Domain

Reference Laboratory

Simple PIDS Simple PIDS

Client Apps and
Systems

Client Apps and
Systems

A system that binds to ids
from multiple domains
maintains separate object
references for each
domain.
D-4 Person Identification Service, v1.1 April 2001

D

Id Domain

Pharmacy

ADT System

ID Mgr PIDS

Naming ' ID Domain
Components'

Simple PIDS

Lab

Simple PIDS

OR_Schedu le

Schedule

Housekeep ing

BedStatus

Radio logy

Simple PIDS
'Pharm'

' Inhouse
Lab'

'Schedul ing'

'HouseKeepers '

Some systems within
the ID Domain may

not be exposed in the
NameContext of the ID

Mgr PIDS

Other interfaces besides
PIDS may also be put into
the NameContext of the ID
Mgr PIDS. They would be
pu in the 'ID Using
Services' subdirectory.

A manager of an ID Domain
can use the Naming and/or
Trader Services to expose
references to other systems
within their domain.
April 2001 PIDS, v1.1 D-5

D

Id Domain

ADT System

ID Mgr PIDS

PushSupplierFactory

The manager of IDs within a
domain may support the ability
to update other systems that use
those IDs, when a profile or ID
state changes. This is done via
the EventComponent.

Radiology (RIS)

Simple PIDS
PushConsumer

Decision Support

Simple PIDS
PushConsumer

ER Med. Record

PushConsumer

Some systems may want to
receive the ID and profile
change events but not
expose their data via PIDS.

Many ancillary systems
in the healthcare
provider enterprise may
cache traits about a
patient, for example the
patient's name.

connect DS

connect ER

System
Management

connect RIS

It is possible for consumers and
suppliers to be connected by
some third party that has a
reference to each.

connect ADT
D-6 Person Identification Service, v1.1 April 2001

D

ID Domain
(super domain)

Domain

Domain

Domain

MPI System

Correlation PIDS or
ID Mgr PIDS

Naming 'Source ID Domains'

Cl inic HIS

ID Mgr PIDS

Pract iceMgmtSys

ID Mgr PIDS

Pract iceMgmtSys

Off iceMgr

Hospi ta l ADT
Correlation

P IDS
'NW Doctors '

'SE Doctors'

Some hospitals may have
their own CorrelationMgr.

'Communi ty
General '

Other systems can be put into
the NameContext besides those
implementing PIDS. These
would probably be using ids
from the MPI System (ID
Domain).

The NamingContext
(shown) and/or
TraderComponents can be
used to publish references
to source ID Domains.

Not all subdomains
are required to be put
into the NameContext
April 2001 PIDS, v1.1 D-7

D

ID Domain
(super domain)

Domain

Domain

Domain

MPI System

Correlation PIDS

Clinic HIS

ID Mgr PIDS

PracticeMgmtSys

ID Mgr PIDS

PracticeMgmtSys

OfficeMgr

Hospital ADT
Correlation

PIDS

Some hospitals may have
their own CorrelationMgr
that loads its profiles to an
even larger correlation ID
Domain.

Hospital ADT HL7 messages

Other systems may use the ID
mapping capabilites of the
CorrelationMgr without loading
profiles from their ID Domain.

load_profi les()

load_profi les()
get_corresponding_ids()

load_profi les()

The MPI may still
be using legacy

interfaces for
some systems.

The managers in the
source ID Domains will

be adding profiles to
the superdomain.

Some source ID
Domains will also be

using the mapping
capabilities.

get_corresponding_ids()
D-8 Person Identification Service, v1.1 April 2001

D

Id Domain
(super domain)

Domain

Domain

Domain

MPI System

ID Mgr PIDS

PushConsumer

It is possible for a system to get
automatic profile updates and do
correlation by implementing the
PushConsumer interface instead
of the CorrelationMgr interface.

Hospital ADT

Correlation PIDS
PushSupplier

Clinic HIS

ID Mgr PIDS
PushSupplier

PracticeMgmtSys

ID Mgr PIDS
PushSupplier

The managers in the
subdomains implement the
PushSupplier interface and
forwards all profile changes
to the super domain.

The subdomains may
be an ID Mgr PIDS or
Correlation PIDS
April 2001 PIDS, v1.1 D-9

D

ID Domain
(super domain)

Domain

Domain

Domain

MPI System

ID Mgr PIDS

It is possible for a system to do
correlation without implementing
the CorrelationMgr interface.
They can delegate some calls to
the subdomains and use its
own rules to integrate (correlate)
the results.

Hospital ADT

Correlation
PIDS

Clinic HIS

ID Mgr PIDS

PracticeMgmtSys

ID Mgr PIDS

find_candidates()

Client Application

find_candidates()

find_candidates()

find_candidates()
D-10 Person Identification Service, v1.1 April 2001

Event Descriptions E
ld be

t
using

from
d by
of

L

d
 do
The information in this appendix is informative and is not a normative part of the
specification. It was prepared by the submitters under the expectation that there wou
an adopted Notification Service.

Two of the initial submissions to the Notification Service propose the creation of even
types similar to the service types defined by the Trader Service. They also propose
the constraint mechanism for event consumers to specify the filters to apply to event
channels. The aspects of service types that apply to events are the type names and
property descriptions as described below.

• Event Type - Event types have a name and a definition. The event may inherit
previously defined events. An inherited event has all the same properties define
the parent plus any new type adds. The definition of the type consists of a set
properties.

• Properties - A property is a name/value pair where the value has a specific ID
type. The property is also characterized by a boolean attribute indicating if it is
mandatory.

The event types and associated property descriptions needed for PIDS are describe
below. The syntax used is similar to the Trader service type descriptions except they
not include an interface name or have the concept of “readonly” properties.

E.1 Event Types

event PersonIdChange {
mandatory property string qualified_person_id;

};

event PersonIdStateChange : PersonIdChange {
mandatory property octet new_state;
property octet old_state;

};
April 2001 Person Identification Service, v1.1 E-1

E

event PersonIdStateMerged : PersonIdStateChange {
mandatory property string preferred_id;

};

event PersonIdStateUnmerged : PersonIdStateChange {
mandatory property string old_preferred_id;

};

event PersonIdProfileChange : PersonIdChange {
mandatory property StringSeq trait_names_changed;
mandatory property string component_name;
property string component_version;
property PersonIdService::TraitSeq changed_traits;
property PersonIdService::TraitSeq new_profile;

};

event PersonIdDuplicate {
mandatory property StringSeq qualified_person_ids;

};

event PersonIdCollision {
mandatory property String qualified_person_id;

};

event IdentificationComponentChange {
mandatory property string domain_name;
mandatory property string component_name;

};

event IdentificationComponentVersionChange : IdentificationComponentChange {
mandatory property string new_version;
property string old_version;

};

event IdentificationComponentTraitChange : IdentificationComponentChange {
property StringSeq new_trait_names;
property StringSeq old_trait_names;
property boolean trait_spec_changed;

};

event CorrelationSourceChange : IdentificationComponentChange {
property StringSeq new_source_domain_names;
property StringSeq old_source_domain_names;

};

E.2 PersonIdChange Event

This is a general event for any changes on an ID.
E-2 Person Identification Service, v1.1 April 2001

E

ially

qualified_person_id

This is the ID that had something change on it. It is a stringified version of the
QualifiedPersonId . The stringification is per the rules defined in the
NamingAuthority for QualifiedNameStr .

E.3 PersonIdStateChange Event

This event type is a subtype of the general PersonIdChange event. It applies only to
state changes on the ID.

new_state

The new_state is a mandatory property which has the new IdState for the ID. The
IdState enum values are coded into the octet starting with 0 and increasing sequent
in the order they are defined in the IDL.

old_state

The old_state is optional and represents the IdState value before the change.

E.4 PersonIdStateMerged Event

This event is a special case of a PersonIdStateChange event where the new state is
Deactivated and the ID has a preferred ID set (e.g., the merge_ids() operation was
called).

preferred_id

This is the ID that the qualified_person_id is merged into.

E.5 PersonIdStateUnmerged Event

This event is a special case of a PersonIdStateChange event where the old state is
Deactivated and had a preferred ID. The ID has been reactivated (e.g., the
unmerge_ids() operation was called).

old_prefered_id

This is the ID that the qualified_person_id was merged with.

E.6 PersonIdProfileChange Event

This event is a specialization of the PersonIdChange event where the ID profile bound
to the qualified_person_id has changed.

trait_names_changed

This mandatory property indicates the TraitName for each trait that has changed in the
April 2001 PIDS, v1.1 E-3

E

it
uery

rson.

o or
profile.

component_name

This property contains “the_name ” part of the ComponentName where the change
occurred. This may be used by a client to filter events except those from a particular
component.

component_version

This property contains “the_version ” part of the ComponentName where the change
occurred.

changed_traits

This property contains the traits (including values) that changed. It is an optional tra
since some trait values may be large (e.g., photographs) and the client will have to q
for their value.

new_profile

This property contains the whole new profile. It contains a superset compared to the
changed_traits property.

E.7 PersonIdDuplicate Event

This event indicates the PIDS has detected suspected duplicate IDs for the same pe

qualified_person_ids

These are the set of IDs the service thinks may represent the same person.

E.8 PersonIdCollision Event

This event indicates the PIDS has detected a suspected collision on an ID. That is tw
more people may be represented by (or be using) the same ID.

qualified_person_id

This is the stringified QualifiedPersonId that a suspected collision has occurred on.

E.9 IdentificationComponentChange Event

This is a general event indicating some of the pseudo-static information on an
IdentificationComponent has changed.

domain_name

This is the stringified ID DomainName in which the component resides.
E-4 Person Identification Service, v1.1 April 2001

E

e had
nality

 the

d by

ll are

component_name

This is the_name from the ComponentName on the component that changed.

E.10 IdentificationComponentVersionChange Event

This event indicates that the component’s version has changed (component may hav
a configuration change, software update, etc.). Whether there is any outward functio
change on the component cannot be determined for this event.

new_version

This is the new the_version from the ComponentName on the component that
changed.

old_version

This is the old the_version from the ComponentName on the component that
changed.

E.11 IdentificationComponentTraitChange Event

This event indicates that some aspect of the supported_traits attribute has changed on
the component.

new_trait_names

This sequence contains the trait names for any new traits that are now supported by
component.

old_trait_names

This sequence contains the trait names for any old traits that are no longer supporte
the component.

trait_spec_changed

This boolean attribute indicates that some of the values on the TraitSpec (mandatory,
read_only , and/or searchable) have changed on some of the traits that were and sti
supported.

E.12 CorrelationSourceChange Event

This event occurs when the source ID Domain, for which a PIDS is correlating over,
changes.

new_domain_name

These are the DomainNames for any new source ID Domains that is being correlated
over.
April 2001 PIDS, v1.1 E-5

E

old_domain_name

These are the DomainNames for any old source ID Domains that are no longer being
correlated over.
E-6 Person Identification Service, v1.1 April 2001

Security Guidelines F

n the

ng
ed

tain
 by:

ata,
rvice

 Some

ows
 aware
fter

 ORB
tions.

n
F.1 Security Overview

The PIDS interfaces may be used in many different environments with widely varying
security requirements that range from no security to extreme security. For this reaso
PIDS interfaces do not expose any security information. PIDS relies on the underlyi
CORBA infrastructure and services which provides all the security mechanisms need
without exposing it in the interfaces.

An attribute of security that concerns many people is maintaining confidentiality of cer
(sensitive) information about them. For PIDS, this implies being able to filter requests

• who is accessing the information,

• who the information is about,

• what information is being accessed.

Other common security concerns could be preventing unauthorized modification of d
tapping into communications to acquire sensitive information, and causing loss of se
by over-burdening a service.

CORBA Security provides robust mechanisms to address these and other concerns.
of the security properties it does deal with includes authentication, authorization,
encryption, audit trails, non-repudiation, etc. CORBA Security, in its default mode, all
these security concerns to be addressed without the client and server software being
of it. This is a powerful notion, allowing security policies to be created and enforced a
applications and systems have been created and installed.

Other CORBA and CORBA Security features provide mechanisms for applications to
extend these security capabilities. For example, they can obtain credentials from the
and implement filters that can look at specific data passed to and returned from opera

It is a requirement of the PIDS to provide confidentiality of information that is stored
about an individual. This requirement fuels the need for fine-grained access control o
trait information that is associated with a PIDS ID.
April 2001 Person Identification Service, v1.1 F-1

F

ere

g a

sts
trolled

ere to

ble to
rely

rvice

ture
se in

the
ng

ty-

nd

ccess
PIDS provides two interfaces to access information about a person, given their ID:
1) ProfileAccess and 2) IdentityAccess . The functional capabilities of these two
interfaces are identical, but they have different strengths. The IdentityAccess interface
can simplify the internal implementation of some types of security policies - those wh
there is a different policy for each ID. The ProfileAccess interface’s strength is that it
only requires a single call to access data for multiple IDs. The IdentityAccess requires
separate calls for each ID information.

The IdentityAccess interface allows a client to acquire an object reference to an
Identity interface, containing information pertaining to only one particular ID. Creatin
CORBA object reference as a single access to the information yields benefits in
controlling the access to that information. It is a single point to which access of this
information must flow. Since CORBA Security Services can automatically deny reque
as a result of an access policy, access to information behind this interface can be con
by that mechanism.

F.2 Security Requirements

For the PIDS to be secure in its possible dissemination of information it needs to adh
these requirements:

• The PIDS needs to authenticate a client's principal identity, role, and sensitivity
level.

• The PIDS needs to transmit information confidentially and with integrity.

The first requirement states that the entire PIDS interface implementations must be a
identify a potential client. If it cannot authenticate a client, then the client may be seve
limited in the particular requests that the PIDS can service. The CORBA Security Se
provides the mechanisms for a server to authenticate a client.

The second requirement provides for the confidentiality of the information. The client
must communicate with the PIDS using not only encryption to protect data, but signa
as well, so as not to have data tampered with during communication. There is no sen
putting a Sensitivity level of "OwnerOnly" on a trait and have its value transmitted to
owner in the clear. The CORBA Security Service provides these capabilities, includi
SSL.

The question is, “How does one get CORBA to support this access policy model?”

F.3 CORBA Security

In an effort to keep the PIDS interfaces security unaware (i.e., no extra visible securi
relevant parameters in methods), access policy must be adhered to from behind the
interfaces. The CORBA security model offers several ways to apply security policy to
method invocations.

The CORBA Security Specification (CORBAsec) is not a cookbook for using CORBA
security in building applications. It is a general framework with which ORB vendors a
application vendors can build a multitude of different security policy models. The
CORBAsec also gives the interfaces for which implementations of applications can a
F-2 Person Identification Service, v1.1 April 2001

F

re of
 may

 the
 be

ntials

hts.
f trust
e
e

se
is

that
.
rity

.
RB
rable
ect to
es
f the

d
urity

BA

y
vel

d
those security services that are supplied with a secure ORB.

A secure PIDS implementation that can control access to specific traits must be awa
the security services offered by the ORB. This caveat also means that a client’s ORB
have to know the kind of ORB and the security services that is used by the PIDS.

The CORBA security specification outlines a general security policy model. Although
specification is vague about which approach should be taken, it is specific enough to
able to choose from a couple of models that can be supported.

The CORBA security model bases itself on credentials and security domains. Crede
are data objects that contain attributes such as privileges, capabilities, and sensitivity
levels, among others. Security domains are mappings from credentials to access rig
Credentials can be encrypted and signed to prevent tampering and achieve a level o
between client and server. CORBA credentials get passed with requests beneath th
visible level of the interface. CORBA security services give the clients and servers th
ability to authenticate/verify credentials to implement policies in security domains.

Many different schemes, algorithms, services, and vendor implementations exist to
provide implementation of security policy, and many different implementations of tho
schemes may be integrated into a CORBA compliant ORB. It is not the purpose of th
specification to dictate the specific implementation of an ORB and security services
should be used, but to outline the external requirements for the PIDS implementation
These requirements and guidelines aid in selecting a secure ORB and the level secu
functionality needed to implement the PIDS access policy model.

F.4 Secure Interoperability Concerns

CORBA has built the communication bridge between distributed objects creating an
interoperable environment that spans heterogeneous platforms and implementations
However, security adds another layer of complexity to the issue of interoperability. O
implementations are not required to include security services nor provide an interope
mechanism of security services. However, a specification does exist for the target obj
advertise, via the IOR, the security services that it supports and the services it requir
from the client. Both the client and server ORBs must use compatible mechanisms o
same security technology.

The CORBA Common Secure Interoperability (CSI) Specification (orbos/96-06-20)
defines 3 levels of security functionality that ORBs may support. The levels are name
CSI Level 0, CSI Level 1, and CSI Level 2. Each level has increasing degrees of sec
functionality.

The CSI Level 0 supports identity-based policies only and provides mechanisms for
identity authentication and message protection with no privilege delegation. The CSI
Level 1 adds unrestricted delegation. The CSI Level 2 can implement the entire COR
Security Specification at Security Level 2.

Each CSI level is parameterized by mechanisms that can support the level of securit
functionality, such as SPKM for CSI Level 0, GSS Kerberos for CIS Level 0 or CIS Le
1, and CSI_ECMA for CSI Level 2. Future developments in security functionality an
mechanisms are not restricted, and mechanisms can be added to each level.
April 2001 PIDS, v1.1 F-3

F

other

cure

ate

ly

t can
t

tions
gation
 for a

nted
If a
:

 is

d
lish
e
nism.

ap of
trust

es
IDS
nts it

ire its
sition
 such
The ORB implementations may use different security technology with differing
capabilities and underlying mechanisms, such as SSL, DCE, Kerberos, Sesame, or
standards. Choosing the ORB and its underlying security services will be critical to
protecting PIDS, and it will influence the implementation of the access policy that a se
PIDS implementation must support.

For example, an ORB that only supports SPKM (i.e., CSI Level 0) can only authentic
clients and provide confidentiality and integrity of communication. It cannot support
definition and use of security attributes beyond an access ID. Support for security
attributes beyond an access ID require CSI Level 2. Therefore, using an ORB that on
provides CSI Level 0 will require the PIDS to maintain its own information on the
credentials of clients.

Even if an ORB's security technology supports the definition of security attributes tha
be delivered to the PIDS (i.e., CSI Level 2), there are still concerns involving the trus
between the client and the PIDS.

F.5 Trust Models

The available trust models for the PIDS is simplistic. Since the PIDS is a communica
end point and does not require requests on other services on a client's behalf, a dele
trust model is not needed. This simplifies the model and eliminates an absolute need
CSI Level 1 or CSI Level 2 secure ORB (although they may use them).

There are two basic trust models for the PIDS. If the PIDS and its client are impleme
using CSI Level 0 or CSI Level 1 ORBs, only the first trust model can be supported.
CSI Level 2 ORB is used, both trust models can be supported. The trust models are

1. The client's identity can and is trusted to be authenticated. However, the client
unable or not trusted to deliver the valid credentials.

2. The client is trusted to deliver the correct credentials.

In the first model, the client ORB is required to authenticate its principal (the user) an
provide authentication information to the server ORB. The methods used to accomp
principal authentication is specific to the mechanisms (e.g., DCE or Kerberos) that th
selected ORB supports. Management of those identities is also specific to the mecha
The server ORB must have a compatible mechanism that verifies the authentication
information and carries out mutual authentication of the client.

With this trust model, a secure PIDS implementation must maintain and manage a m
identities to privilege attributes. CSI Level 0, 1, and 2 ORBs are able to support this
model.

Even if the ORB has CSI Level 2 functionality, it may be a local policy that a PIDS do
not trust the credentials brought forth from an authenticated client. In that case, the P
must maintain the map or use a default set of security attributes for requests from clie
does not trust.

In the second model, the client ORB is required to authenticate its principal and acqu
valid credentials. The methods used to accomplish principal authentication and acqui
of privilege attributes are specific to the mechanism that the selected ORB supports,
F-4 Person Identification Service, v1.1 April 2001

F

nism-
 that
nario,
tials

 PIDS

tities

 in
ch

sent
nd
ed so

the

f
.
curity
DS ID

as DCE and Sesame. Management of those identities and attributes are also mecha
specific. A secure PIDS installation using this trust model must take a careful look at
management scheme and operation, evaluate it, and decide to trust it. In such a sce
the server ORB, which has CSI Level 2 functionality, automatically verifies the creden
on invocation.

A secure PIDS built to the second model leaves management of identities and their
attributes to the security services policy management system used by the ORB. The
may manage security attributes for the data itself.

A secure PIDS built to the first model will have some scheme to manage trusted iden
and their credentials. There is no interface or plan in the PIDS to specify this kind of
management.

F.6 CORBA Credentials

To adhere to the credential model that supports trait-specific access policy, a set of
credentials must contain privilege attributes such as the identity of the client, the role
which the client is actively represented, and the sensitivity level of information to whi
the client is allowed access. It will be the responsibility of a PIDS implementation to
advertise to potential client vendors the specifics of these attributes and how to repre
them externally. A client ORB needs to ascertain certain credentials about the user a
must pass them to the PIDS. An external representation of those credentials is need
that credentials can be passed between client and server within the CORBA security
services. The CORBA Security module defines the structure for this representation.

module Security {

const SecurityAttributeType AccessId = 2;
const SecurityAttributeType Role = 5;
const SecurityAttributeType Clearance = 7;

struct SecAttribute {
AttributeType attribute_type;
Opaque defining_authority;
Opaque value;

};
typedef sequence<SecAttribute> AttributeList;
}

Listed above are the relevant pieces of the specification from the Security module that
apply to externalizing credential information.

The Security::AccessId security attribute type could represent the person for which
ID and hence Identity object reference relates to. In constructing the value of a
Security::SecAttribute of this type, the defining authority part could be the name o
the PIDS ID Domain manager, and the value part could be the ID within that domain
However, if the ORB uses an underlying scheme where the value of the AccessId se
attribute is supplied by some security services, such as a DCE name, a map to the PI
may be needed.

The Security::Role security attribute type should represent the mandatory role. The
April 2001 PIDS, v1.1 F-5

F

role,

vity

rpose
licy
IDS.
ds of

in
ns
l

ty

 client

 that
s that
es
dard

nts.

in

.

ply to
 each
n the
defining authority part could take the name of the PIDS ID Domain that specifies the
and the value can be the ID within that domain.

The Security::Clearance security attribute type can be used to represent the Sensiti
Level. For example, the values could be represented by the strings, "OwnerOnly,"
"LevelA," "LevelB," "LevelC," "None," and "Undefined."

F.7 CORBA Security Domain Access Policy

In addition to a credential based scheme, CORBA defines security domains. The pu
of this section is to explain and illustrate the use of the standard CORBA security po
domain and the way in which it may be used to implement a security policy for the P
This section offers a recommendation to a PIDS implementor to give a feel for the kin
security policy a PIDS implementation may need to support. It should also guide the
implementor in evaluating a secure ORB and available security services.

A security domain governs security (access) policy for objects that are managed with
that domain. In order to make scalable administration of security policy, these domai
map sets of security credentials to certain sets of rights. A right is a sort of an interna
security credential.

CORBA defines a standard set of rights that are granted to principals within a securi
domain. A security domain administrator manages that map through the
SecurityAdministration module's DomainAccessPolicy interface. Access
decisions can then be based on a set of required rights and the rights granted to the
by the domain access policy, by virtue of the client's credentials.

ORB security service vendors will supply a security policy management infrastructure
implements the standard CORBA rights scheme. The PIDS must use security service
can place different required rights on the PIDS interfaces. Some ORB security servic
may allow a security domain to create special rights. However, CORBA defines a stan
set of rights: get, set, and manage. This right set will suffice to handle the PIDS.

In the model just described there is one security domain for all of the PIDS compone
The CORBA rights families scheme within a single security policy domain suffices to
differentiate the security nature of the methods. More generally any number of doma
models can be used, such as a separate security domain for each PIDS component

The PIDS interfaces are divided up so that for most of the interfaces one right can ap
all methods of each interface. The following table recommends the required rights for
of the PIDS interfaces. An asterisk implies that the listed right applies to all methods i
interface that are not listed separately.

Interface Required Rights
PersonIdService module

IdentificationComponent::* corba:g

ProfileAccess::* corba:g

ProfileAccess::update_and_clear_traits() corba:s

IdentityAccess::* corba:g

IdentityAccess:: update_and_clear_traits() corba:s
F-6 Person Identification Service, v1.1 April 2001

F

e
s (i.e.,

lients
s)

rba:m)
in.

s a
licy
e
s in a

n
t be

olicy
Most methods on the IdentificationComponent , its subtypes, and the
EventComponent can be considered "get" methods. The domain access policy for th
security domain should grant authenticated clients with the proper access credential
access ID and role) with the get (corba:g) right.

All the methods in the IdMgr , Filter , and consumer/supplier interfaces as well as the
update_and_clear_traits() and load_profiles() operations can be considered "set"
methods. These “set” methods change information; therefore, they have a different
security function other than the other methods. A client that is granted the right "get"
should not necessarily be allowed access to methods that can change information. C
that are allowed to change information in the PIDS should be granted the set (corba:
right.

The Factory interfaces perform management of event end-points; therefore, it is
recommended that access to these objects should be more limited. The manage (co
right may be sufficient to separate this duty from the others in a single security doma

F.8 Request Content-Based Policy

The CORBA standard domain access policy scheme only protects methods from
invocation at the target and without regard to content of the request. The PIDS need
more fine grained access control in order to implement the content-based access po
required (e.g., access policies for different traits). The PIDS implementations must b
made security-aware to implement an access policy based on the value of argument
request. There are multiple ways to implement this policy using a secure CORBA
implementation.

The CORBA Security Specification supplies two different schemes represented by a
interface hierarchy, which are Security Level 1 and Security Level 2 (these should no
confused with CSI Levels 0, 1, and 2). These interfaces describe the level of security
functionality that is available to security-aware implementations.

Security Level 1

For the PIDS to take advantage of CORBA security in order to implement its access p
model, the ORB must at least implement the CORBA Security Level 1 interfaces. A

SequentialAccess::* corba:g

IdentifyPerson::* corba:g

IdMgr::* corba:s

CorrelationMgr::* corba:g

CorrelationMgr::load_profiles() corba:s

Notification module

Filter::* corba:s

EventComponent::* corba:g

Push/PullSupplier/ConsumerFactory::* corba:m

Push/PullSupplier/Consumer::* corba:s
April 2001 PIDS, v1.1 F-7

F

he
control
e

must
,

t is
lient,
tion

n be
ery
,

y have

he
ed by

ts

ly on
Security Level 1 compliant ORB supplies an interface to access the attributes of the
credentials received from the client.

Using the SecurityLevel1 interfaces, which is simplistic, enables implementation of t
PIDS interfaces to examine the client's credentials and compare them to the access
information that is managed as the access policy; however, the implementation of th
PIDS must be security-aware.

module SecurityLevel1 {

Current get_current();

interface Current {
Security::AttributeList get_attributes(

in Security::AttributeTypeList attributes
);

};
}

Using the Security Level 1 interfaces, each implementation of a PIDS query interface
call the get_attributes() function on the Current pseudo object, examine the attributes
compare to the access policy information, and make the access decision. The
implementation should raise an exception if access is determined to be denied.

It is the responsibility of the client's ORB to acquire the proper credentials securely. I
the responsibility of the server's ORB to authenticate credentials received from the c
extract the security attributes from them, and make them available to the implementa
through the Current::get_attributes() method.

Security Level 2

Using an ORB which supplies the Security Level 2 interfaces, the implementation ca
somewhat free of making the access control decision in the implementation of the qu
interfaces. Having an implementation that is security-unaware is attractive in CORBA
because security policy decisions can be made underneath the functionality, and the
the ability to be changed without retooling the application.

As with any framework, there are several ways in which to use the Security Level 2
interfaces. One approach could be to implement a replaceable security service for t
access decision. Security Level 2 describes a method in which security can be enforc
the creation of an Access Decision object. The AccessDecision object would interact
with a DomainAccessPolicy object to get effective rights and compare those to righ
returned from the RequiredRights interface.

Some secure ORB implementations may allow the installation of specialized Access
Decision objects to be used in conjunction with specialized DomainAccessPolicy
objects. In the Security Level 2 interfaces, the specification implies access control on
the invocation of a method and not the contents of the request.

module SecurityReplaceable {

interface AccessDecision {
F-8 Person Identification Service, v1.1 April 2001

F

n
ration

y

ch as

ORBA
is

e
cess

ng an

ng the
I)
ese

access

rom
, then

t
PIDS
boolean access_allowed (
in SecuirytLvel2::CredentialList red_list,
in CORBA::Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier interface_name

);
};
}

Currently, the AccessDecision object specified in the SecurityReplaceable module
does not take the invocation Request as an argument. It only makes an access decisio
based on the credentials received from the client, the target object reference and ope
name, and the target's interface name. This criteria is insufficient to implement the
content-based access policy, if needed by a PIDS implementation to be automaticall
performed by the ORB.

Since the PIDS requires access control on the contents of the method invocation (su
asking for the value of the HomePhone trait), this scheme of replacing these Security
Level 2 components cannot be used. ORB security services that use the standard C
domain access policy may use third-party implementations for these components. Th
standard domain access policy functionality gives the PIDS a high level of invocation
protection that is orthogonal to the content-based access policy. Some PIDS need th
standard domain access policy functionality in addition to providing content-based ac
policy; therefore, another approach must be taken.

A content-based access policy can be implemented in a Security Level 2 ORB by usi
interceptor. A request level interceptor takes the Request as an argument; therefore, it
can examine the content of the invocation arguments.

module CORBA {

interface Interceptor { ... };
interface RequestLevelInterceptor : Interceptor {

void client_invoke(inout Request request);
void target_invoke(inout Request request);

};
}

Installing an interceptor on an ORB is ORB implementation specific, and each ORB
vendor may have its own flavor of interceptors. The ORB calls the request level
interceptor just before the invocation gets passed to the server implementation by usi
target_invoke() operation. The interceptor uses the Dynamic Skeleton Interface (DS
to examine values of the arguments of the invocation and make access decisions. Th
access decisions are also based on the credentials received from the client and the
policy. The interceptor will deny access to the invocation by raising an exception. The
server's ORB will transmit this exception back to the client.

The use of the interceptor scheme frees the implementation of the PIDS interfaces f
the implementation of the access decision policy. If the access policy model changes
the interceptor can be changed without retooling the PIDS implementation.

As awareness of the need for more powerful and flexible security policy managemen
grows, more tools to create, manage, and analyze policy will come into existence. A
April 2001 PIDS, v1.1 F-9

F

with
ed.
implementation relying on interceptors to implement its security policy may be able,
relative ease, to switch to using more robust policy services as they become develop
F-10 Person Identification Service, v1.1 April 2001

Glossary
n

ll

e to

a.
d
ore
he
Terminology

Ancillary System A subordinate, secondary, or auxiliary system within an organization. A
ancillary system could have its own simple PIDS and/or be sending
requests to other PIDS. Examples: Vital Signs Monitoring Systems,
Laboratory Information Systems (LIS), Scheduling Systems, Pharmacy
Systems, Radiology Information Systems (RIS), etc.

Attended Matching Matching - Matching that occurs as a result of human interaction. See
Matching.

Bind To logically attach or associate information about a person to an ID.
Within an ID Domain, it can be said that an ID is a shorthand
representation of a real person or a key to more information about a
person. For example, if a person is admitted to a hospital for the first
time, a registration clerk enters identifying information into a system. A
or part of this information is used to build a profile for the person. The
system assigns an ID for the person and associates, or binds the profil
the ID.

Candidate A person returned in the matching process that meets matching criteri
For example, if a clerk enters identifying information about a person an
searches a PIDS system for a match, the PIDS system returns one or m
candidates along with indications of how well each candidate matches t
entered information.
April 2001 Person Identification Service, v1.1 1

son

s.
g

h

hin
S
al's

.

lso:
Client Any system or application that accesses or requests service from a Per
Identification Service.

Collision Within an ID Domain, a situation in which an ID is suspected to have
been used by more than one person. Contrast with Duplicate.

Component A cohesive set of software services. In this specification, a PIDS
implementation is referred to as a component. A PIDS component
implements varying PIDS interfaces as defined by PIDS conformance
levels. For example, a Simple PIDS supports IdentifyPerson and
ProfileAccess interfaces.

Confidence or
Confidence Level

A matching algorithm's measure of probability that a candidate is a
match. When a matching process returns a list of candidates it also
returns a confidence level value with each entry in the list of candidate
The range of values for the confidence indicator is 0.0-1.0 with 1.0 bein
the higher confidence (e.g., 100%).

Correlating ID
Domain

An ID Domain that correlates one or more other ID Domains. For
example, a PIDS in a healthcare setting can be set up to correlate IDs
from multiple providers (hospitals, clinics, Physicians offices, etc.) and
multiple ancillary systems (lab, pharmacy, registration, etc.), where eac
participating system implements a different ID Domain.

Correlation The creation of a cross-reference or mapping between Person IDs wit
a single ID Domain or across multiple ID Domains. For example, a PID
set up to correlate IDs from a hospital and a lab stores both the hospit
ID and the lab's ID for any person with an ID in both ID Domains.

CPR Computerized Patient Record

Deprecate To indicate that an ID is not valid any more, within an ID Domain.

Deactivate To deactivate an ID. No new information may be recorded under a
deactivated ID, but it is allowed and accepted that some already exists
For example, when merging duplicate IDs in a PIDS, one of the IDs
remains active. The other is deactivated, or marked as inactive. See a
deprecate. Contrast with Collision.

Domain See ID Domain.
2 Person Identification Service, v1.1 April 2001

re

s

 and

n all

the

use

an

at

e
Domain Name The name of an ID Domain in which an ID has meaning. That is, IDs a
only relevant in a particular ID Domain. Each ID Domain has a Domain
Name that is unique and different from all other ID Domain Names.

Duplicate or
Duplicate ID

An ID is deemed to be a duplicate when it refers to the same person a
one or more other IDs within an ID Domain. This results in the person
"being in the ID Domain more than once." IDs that are known to be
duplicates should be merged such that the associated person has one
only one unique ID and profile in the corresponding ID Domain.

Federation As it relates to PIDS federation, is the ability to structure ID Domains
into hierarchies where the higher-level ID Domains contain IDs for a
superset of the persons with IDs in the lower-level ID Domains.
Operations such as searches for persons can be performed the same o
levels but applies only to the IDs known at that level and below. PIDS
implementations can manage each of these ID Domains in which case
PIDS is said to be federated. PIDS provides a CorrelationMgr ,
NamingContext , TraderComponents , and EventComponent
specifically to facilitate federation.

ID or Identifier A sequence of characters that one or more systems in an ID Domain
to represent a person and bind related information. This could be
numeric, alpha, and may include punctuation, etc.

Identity The distinct real-world person an ID and profile represents. In a PIDS,
ID is established that represents a person's identity where each ID
corresponds with one real-world person. As an IDL interface, 'Identity'
instances correspond one for one with a particular real world person th
has been represented by an ID in the ID Domain.

Identification The process of assigning an ID or finding an ID based on knowing som
traits about the person.
April 2001 Person Identification Service, v1.1 3

le
D

 a

 to

on
ll
s

ess
re
ID Domain or Domain A set of person IDs among which there is to be one unique person ID
value per person or entity represented. For example, a hospital
Admission, Discharge & Transfer computer system creates IDs for peop
as they are entered into the system. The set of IDs it manages is an I
Domain. ID Domains have a Domain Name which uniquely identifies it
from other ID Domains.

People can have an ID from many ID Domains. Therefore, a person ID
value has meaning for identification only if the correct ID Domain
qualifies the ID value. For example, in the USA, the ID value 123-45-
6789 can be used to identify a person if it is prefaced with the Social
Security Number acronym, SSN, and it was assigned by the Social
Security Administration.

Multiple systems can 'reside' in an ID Domain if they utilize/reference
person IDs from the same ID Domain. For example, a lab system and
billing system can use the same medical record numbers to identify
people. Each system can be said to 'reside' in the same ID Domain.

MPI and EMPI Master Patient Index and Enterprise Master Patient Index.

Matching The process that determines from a set of traits whether a person may
already be known to a PIDS. The matching operation may return zero
many persons depending on the algorithm, weights on traits, and
threshold parameters used in the matching process.

Merge To apply an operation on two or more IDs representing the same pers
in an ID Domain, which then results in one active ID for that person. A
except one of the IDs are deactivated. In other words, Merge operation
are used to rectify the discovery of Duplicate ID's. Contrast with
Correlation, where IDs are not deactivated.

Naming Authority Any organization that assigns names determines the scope of uniquen
of the names and takes the responsibility for making sure the names a
unique within its name space. In the same way that ID values are
meaningful only within the context of their ID Domains, names are
unique only within the context of their naming authority.

PersonID or Person
ID

Same as ID or Identifier.
4 Person Identification Service, v1.1 April 2001

r.

nd
es

into
1

ct
s
l

n.
e,

n

PIDS The term PIDS is used in two ways: 1) to represent this Person
Identification Service specification; and 2) to represent conforming
implementations to this specification.

Profile A set of information about a person that can be used to identify him/he
A profile consists of one or more Traits.

Unmerge To take a person ID that has been merged with one or more other IDs a
undo the merge, resulting in two or more person IDs. The person profil
are bound back to their original IDs before the merge. For example,
suppose Person A has ID 1 and Person B with ID 2 had been merged
ID 1. A successful unmerge operation would restore Person A with ID
and Person B with ID 2.

Subdomain If an ID Domain is being correlated over by a Correlating ID Domain,
then it can be called a Subdomain of the Correlating ID Domain.

System An application or set of applications that interact with each other, intera
with the PIDS or implement PIDS. System in this context is synonymou
with application. Examples of systems might include a hospital or clinica
information system, an ancillary system such as a lab or radiology
system, or a financial/administrative system such as an ADT.

Trait An attribute (i.e., information) that can be used to help identify a perso
Traits are grouped to create a profile. Examples of a trait include nam
date of birth, sex, address, etc.

Unattended Matching A matching process that occurs without human intervention. See
Matching. For example, an automated process may be configured to ru
once a night to scan an ID Domain, searching for potential duplicate
person entries. Also when profiles are added to an ID Domain and the
PIDS automatically determines if an ID already exists for the person.
April 2001 Person Identification Service, v1.1 5

6 Person Identification Service, v1.1 April 2001

Index
A
authority_to_str 3-7
AuthorityId 3-5
AuthorityIdStr 3-5

B
Basic Types 2-4

C
Candidate 2-11
CandidateIterator Interface 2-11
CandidateSeq 2-11
CannotRemove 2-13
CannotSearchOn 2-14
changed_traits E-4
Common Data Types 2-7
component_name 5-3, E-4, E-5
component_version 5-4, E-4
ComponentName 2-9
ComponentVersion 2-9
conformance_classes 5-3
CORBA Credentials 11
CORRELATED_IDS 4-4
CorrelatedIdsType 4-4
Correlating ID Domains 5-2
Correlation PIDS 5-2, 6-2
correlation_mgr 2-19
CorrelationMgr Interface 2-32
CorrelationSourceChange Event E-5
CosNaming.idl 2-3
CosTrading.idl 2-4
create_temporary_ids 2-31

D
DCE 3-4, 3-5
deprecate_ids 2-32
destroy 2-11
DNS 3-5
Domain 2, 4
domain_name 5-3, E-4
DomainsNotKnown 2-15
done 2-28
DUPLICATE_IDS 4-4
DuplicateIds 2-12
DuplicateIdsType 4-4
DuplicateTraits 2-12

E
Event Types E-1
event_component 2-19
ExceptionReason 2-11
Exceptions 2-12, 3-6
EXTERNAL_IDS 4-4
ExternalIdsType 4-4

F
find_candidates 2-20
find_or_register_ids 2-31
Full IDL A-1, B-1

G
get_all_ids_by_state 2-25

get_corresponding_ids 2-33
get_deactivated_profile 2-28
get_deprecated_profile 2-23
get_first_ids 2-26
get_identity_object 2-27
get_identity_objects 2-27
get_last_ids 2-26
get_next_ids 2-26
get_previous_ids 2-26
get_profile 2-23, 2-28
get_profile_list 2-23
get_trait 2-28
get_traits_known 2-23

H
HL7Version2_3 Module 4-4
HowManyTraits 2-10

I
ID Domain Components 5-2
ID Domain Manager PIDS 5-2
ID Domain Mgr PIDS 6-2
ID Using Services 5-2
id_count_per_state 2-25
id_info 2-28
id_mgr 2-19
IdentificationComponent 5-1
IdentificationComponent Interface 2-15
IdentificationComponent Service 5-3
IdentificationComponentChange Event E-4
IdentificationComponentTraitChange Event E-5
IdentificationComponentVersionChange Event E-5
identify_person 2-18
IdentifyPerson Interface 2-20
Identity Access PIDS 5-1, 6-2
Identity Interface 2-28
identity_access 2-19
IdentityAccess Interface 2-26
IdentitySeq 2-11
IdInfo 2-8
IdInfoSeq 2-8
IDL 3-4, 3-5
IdMgr Interface 2-29
IdsExist 2-14
IdsNotKnown 2-15
IdState 2-8
IdStateSeq 2-8
Index 2-11
IndexSeq 2-11
interfaces_implemented 5-3
INTERNAL_ID 4-3
InternalIdType 4-3
InvalidId 2-12
InvalidIds 2-12
InvalidInput 3-6
InvalidStates 2-13
InvalidWeight 2-14
ISO 3-3, 3-5

L
load_profiles 2-33
April 2001 Person Identification Service Index-1

Index
LocalName 3-6

M
make_ids_permanent 2-32
mandatory_traits 5-4
max_left 2-11
merge_ids 2-32
MERGED_IDS 4-3
MergedIdsType 4-3
MergeStruct 2-10
MergeStructSeq 2-10
Miscellaneous Data Types 2-9
ModifyOrDelete 2-13
MultipleFailuerSeq 2-11
MultipleFailure 2-11
MultipleTraits 2-13

N
Naming Service 5-1
naming_context 2-18
NamingAuthority.idl 2-3
NamingEntity 3-4
NATIONAL_HEALTH_IDS 4-4
NationalHealthIdsType 4-4
new_domain_name E-5
new_profile E-4
new_state E-3
new_trait_names E-5
new_version E-5
next_n 2-11
Notification.idl 2-4
NotImplemented 2-14
NullTraitType 4-3

O
old_domain_name E-6
old_prefered_id E-3
old_state E-3
old_trait_names E-5
old_version E-5
OTHER 3-3, 3-5

P
PersonId 2-7
PersonIdChange Event E-2
PersonIdCollision Event E-4
PersonIdDuplicate Event E-4
PersonIdProfileChange Event E-3
PersonIdSeq 2-7
PersonIdStateChange Event E-3
PersonIdStateMerged Event E-3
PersonIdStateUnmerged Event E-3
PersonIdTraits Module 4-2
pragma prefix 2-4, 3-3
prefered_id E-3
Profile 2-8, 5
profile_access 2-19
ProfileAccess Interface 2-22
ProfileSeq 2-8
ProfilesExist 2-15
ProfileUpdate 2-10
ProfileUpdateSeq 2-10

Q
qualified_name_to_str 3-7
qualified_person_id E-3, E-4
qualified_person_ids E-4
QualifiedName 3-6
QualifiedNameStr 3-6
QualifiedPersonId 2-8
QualifiedPersonIdSeq 2-8
QualifiedTaggedProfile 2-10
QualifiedTaggedProfileSeq 2-10

R
read_only_traits 5-4
ReadOnlyTraits 2-13
register_new_ids 2-31
register_these_ids 2-31
RegistrationAuthority 3-3
RequiredTraits 2-14

S
searchable_traits 5-4
Sequential Access PIDS 5-1, 6-2
sequential_access 2-19
SequentialAccess Interface 2-24
Simple PIDS 5-1, 6-2
Source ID Domains 5-2
source_component 2-28
source_domains 2-33, 5-4
SpecifiedTraits 2-10
str_to_authority 3-7
str_to_qualified_name 3-7
supported_traits 2-18, 5-4

T
TaggedProfile 2-10
TaggedProfileSeq 2-10
TooMany 2-13
Trader Service 5-2
trader_components 2-18
Trait 2-8
Trait Information 5-2
trait_names_changed E-3
trait_spec_changed E-5
trait_value_count 2-28
TraitName 2-8
TraitNameSeq 2-8
traits_with_values 2-28
TraitSelector 2-10
TraitSelectorSeq 2-10
TraitSeq 2-8
TraitSpec 2-9
TraitSpecSeq 2-9
TraitValue 2-8
TranslationLibrary interface 3-7

U
UnknownTraits 2-12
unmerge_ids 2-32
update_and_clear_traits 2-23, 2-28
Usage Diagrams D-1
Index-2 Person Identification Service February 2001

Index
V
vCardTraits Module 4-6

W
WrongTraitFormat 2-13
April 2001 Person Identification Service Index-3

Index
Index-4 Person Identification Service February 2001

	Preface
	1. Overview
	1.1 Introduction
	1.2 Scope
	1.3 Design Goals
	1.4 Domain Reference Model
	1.5 PIDS Conceptual Model
	1.6 PIDS Identification Model

	2. Person IdentificationService Module
	2.1 Overview
	2.2 Basic Types
	2.2.1 Common Data Types
	2.2.2 Miscellaneous Data Types
	2.2.3 CandidateIterator Interface
	2.2.4 Exceptions

	2.3 IdentificationComponent Interface
	2.3.1 IdentificationComponent Interface

	2.4 IdentifyPerson Interface
	2.5 ProfileAccess Interface
	2.6 SequentialAccess Interface
	2.7 IdentityAccess Interface
	2.7.1 Identity Interface

	2.8 IdMgr Interface
	2.9 CorrelationMgr Interface

	3. NamingAuthority Module
	3.1 NamingAuthority IDL
	3.2 Exceptions
	3.3 TranslationLibrary Interface

	4. Traits
	4.1 PersonIdTraits Module
	4.2 HL7Version2_3 Module
	4.2.1 HL7 Link and Unlink Events

	4.3 vCardTraits Module

	5. Naming/Trader Interoperation
	5.1 Naming Service
	5.2 Trader Service
	5.2.1 IdentificationComponent Service

	6. Conformance Classes
	Appendix A - References
	Appendix B - Complete OMG IDL
	Appendix C - Use Case Examples
	Appendix D - Interaction Patterns
	Appendix E - Event Descriptions
	Appendix F - Security Guidelines

