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Preface 
About This Document

Under the terms of the collaboration between OMG and The Open Group, this 
document is a candidate for adoption by The Open Group, as an Open Group Technical 
Standard.  The collaboration between OMG and The Open Group ensures joint review 
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported 
by over 600 members, including information system vendors, software developers and 
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented 
technology in software development. The organization's charter includes the 
establishment of industry guidelines and object management specifications to provide a 
common framework for application development. Primary goals are the reusability, 
portability, and interoperability of object-based software in distributed, heterogeneous 
environments. Conformance to these specifications will make it possible to develop a 
heterogeneous applications environment across all major hardware platforms and 
operating systems. 

OMG’s objectives are to foster the growth of object technology and influence its 
direction by establishing the Object Management Architecture (OMA). The OMA 
provides the conceptual infrastructure upon which all OMG specifications are based. 
More information is available at http://www.omg.org/.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to 
delivering greater business efficiency by bringing together buyers and suppliers of 
information technology to lower the time, cost, and risks associated with integrating 
new technology across the enterprise.
September 2002 Public Key Infrastructure, v1.0 i



The mission of The Open Group is to drive the creation of boundaryless information 
flow achieved by:

• Working with customers to capture, understand and address current and emerging 
requirements, establish policies, and share best practices; 

• Working with suppliers, consortia and standards bodies to develop consensus and 
facilitate interoperability, to evolve and integrate specifications and open source 
technologies; 

• Offering a comprehensive set of services to enhance the operational efficiency of 
consortia; and 

• Developing and operating the industry’s premier certification service and 
encouraging procurement of certified products. 

The Open Group has over 15 years experience in developing and operating certification 
programs and has extensive experience developing and facilitating industry adoption of 
test suites used to validate conformance to an open standard or specification. The Open 
Group portfolio of test suites includes tests for CORBA,  the Single UNIX 
Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime, 
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential 
for proper development and maintenance of standards-based products, ensuring 
conformance of products to industry-standard APIs, applications portability, and 
interoperability. In-depth testing identifies defects at the earliest possible point in the 
development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

Intended Audience

The specifications described in this manual are aimed at software designers and 
developers who want to produce applications that comply with OMG standards for 
object services; the benefits of compliance are outlined in the following section, “Need 
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is helpful 
to understand their context within OMG’s vision of object management. The key to 
understanding the structure of the architecture is the Reference Model, which consists 
of the following components:

• Object Request Broker, which enables objects to transparently make and receive 
requests and responses in a distributed environment. It is the foundation for 
building applications from distributed objects and for interoperability between 
applications in hetero- and homogeneous environments. The architecture and 
specifications of the Object Request Broker are described in CORBA: Common 
Object Request Broker Architecture and Specification. 
ii Public Key Infrastructure, v1.0 September 2002



• Object Services, a collection of services (interfaces and objects) that support 
basic functions for using and implementing objects. Services are necessary to 
construct any distributed application and are always independent of application 
domains. 

• Common Facilities, a collection of services that many applications may share, 
but which are not as fundamental as the Object Services. For instance, a system 
management or electronic mail facility could be classified as a common facility. 

The Object Request Broker, then, is the core of the Reference Model. Nevertheless, an 
Object Request Broker alone cannot enable interoperability at the application semantic 
level. An ORB is like a telephone exchange: it provides the basic mechanism for 
making and receiving calls but does not ensure meaningful communication between 
subscribers. Meaningful, productive communication depends on additional interfaces, 
protocols, and policies that are agreed upon outside the telephone system, such as 
telephones, modems and directory services. This is equivalent to the role of Object 
Services. 

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a 
description of the service’s behavior. The syntax used to specify the interfaces is the 
OMG Interface Definition Language (OMG IDL). The semantics that specify a 
services’s behavior are, in general, expressed in terms of the OMG Object Model. The 
OMG Object Model is based on objects, operations, types, and subtyping. It provides a 
standard, commonly understood set of terms with which to describe a service’s 
behavior. 

(For detailed information about the OMG Reference Model and the OMG Object 
Model, refer to the Object Management Architecture Guide). 

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and 
terminology and describes the conceptual models upon which OMG standards are 
based. It defines the umbrella architecture for the OMG standards. It also provides 
information about the policies and procedures of OMG, such as how standards are 
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specification contains 
the architecture and specifications for the Object Request Broker. 

• CORBA Languages, a collection of language mapping specifications. See the 
individual language mapping specifications.

• CORBA Services, a collection of specifications for OMG’s Object Services. See 
the individual service specifications.

• CORBA Facilities, a collection of specifications for OMG’s Common Facilities. 
See the individual facility specifications. 
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• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the 
manufacturing industry. This group of specifications defines standardized object-
oriented interfaces between related services and functions. 

• CORBA Healthcare, a collection of specifications that relate to the healthcare 
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance, a collection of specifications that target a vitally important 
vertical market: financial services and accounting. These important application 
areas are present in virtually all organizations: including all forms of monetary 
transactions, payroll, billing, and so forth. 

• CORBA Telecoms, a collection of specifications that relate to the OMG-compliant 
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing 
Requests for Information, Requests for Proposals, and Requests for Comment and, 
with its membership, evaluating the responses. Specifications are adopted as standards 
only when representatives of the OMG membership accept them as such by vote. (The 
policies and procedures of the OMG are described in detail in the Object Management 
Architecture Guide.) 

You may contact the Object Management Group, Inc. at: 

OMG Headquarters
250 First Avenue

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:
iv Public Key Infrastructure, v1.0 September 2002



• Assume good ORB and Object Services implementations. Specifically, it is 
assumed that CORBA-compliant ORB implementations are being built that 
support efficient local and remote access to “fine-grain” objects and have 
performance characteristics that place no major barriers to the pervasive use of 
distributed objects for virtually all service and application elements. 

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the HP-
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10).

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as they 
need to be. Individual services are by themselves relatively simple yet they can, by 
virtue of their structuring as objects, be combined together in interesting and powerful 
ways.

For example, the event and life cycle services, plus a future relationship service, may 
play together to support graphs of objects. Object graphs commonly occur in the real 
world and must be supported in many applications. A functionally-rich Folder 
compound object, for example, may be constructed using the life cycle, naming, 
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the client 
object nor, in general, on the type of data passed in requests. For example, the event 
channel interfaces accept event data of any type. Clients of the service can dynamically 
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces that 
can be accessed locally or remotely and which can have local library or remote server 
styles of implementations. This allows considerable flexibility as regards the location 
of participating objects. So, for example, if the performance requirements of a 
particular application dictate it, objects can be implemented to work with a Library 
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approaches 
depending on the quality of service required in a particular environment. For example, 
in the Event Service, an event channel can be implemented to provide fast but 
unreliable delivery of events or slower but guaranteed delivery. However, the interfaces 
to the event channel are the same for all implementations and all clients. Because rules 
are not wired into a complex type hierarchy, developers can select particular 
implementations as building blocks and easily combine them with other components.
September 2002 Public Key Infrastructure: Service Design Principles v



Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide different 
views for different kinds of clients of the service. For example, the Event Service is 
composed of PushConsumer, PullSupplier and EventChannel interfaces. This 
simplifies the way in which a particular client uses a service.

A particular service implementation can support the constituent interfaces as a single 
CORBA object or as a collection of distinct objects. This allows considerable 
implementation flexibility. A client of a service may use a different object reference to 
communicate with each distinct service function. Conceptually, these “internal” objects 
conspire to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer 
and EventChannel interfaces for use by different kinds of client. A particular client 
sends a request not to a single “event channel” object but to an object that implements 
either the PushConsumer and EventChannel interface. Hidden to all the clients, these 
objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces 
as the means to distinguish and coordinate different clients without relying on the 
existence of an object equality test or some special way of identifying clients. Using 
the event service again as an example, when an event consumer is connected with an 
event channel, a new object is created that supports the PullSupplier interface. An 
object reference to this object is returned to the event consumer which can then request 
events by invoking the appropriate operation on the new “supplier” object. Because 
each client uses a different object reference to interact with the event channel, the event 
channel can keep track of and manage multiple simultaneous clients. An event channel 
as a collection of objects conspiring to manage multiple simultaneous consumer 
clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that a 
client object is required to support to enable a service to call back to it to invoke some 
operation. The callback may be, for example, to pass back data asynchronously to a 
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operation 
invocation (object reference) mechanisms.
vi Public Key Infrastructure, v1.0 September 2002



Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The 
service designs do not assume or rely on any global identifier service or global id 
spaces in order to function. The scope of identifiers is always limited to some context. 
For example, in the naming service, the scope of names is the particular naming 
context object.

In the case where a service generates ids, clients can assume that an id is unique within 
its scope but should not make any other assumption.

Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These services 
do not dictate a particular approach. They do not, for example, mandate that all 
services must be found via the naming service. Because services are structured as 
objects there does not need to be a special way of finding objects associated with 
services - general purpose finding services can be used. Solutions are anticipated to be 
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptional 
conditions such as error returns. Normal return codes are passed back via output 
parameters. An example of this is the use of a DONE return code to indicate iteration 
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a parameter 
value to some “umbrella” operation). In other words, there is always a distinct 
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client code 
should depend on less functionality than the full interface. Services are often 
partitioned into several unrelated interfaces when it is possible to partition the clients 
into different roles. For example, an administrative interface is often unrelated and 
distinct in the type system from the interface used by “normal” clients.
September 2002 Public Key Infrastructure: Interface Style Consistency vii



Acknowledgments

The following companies submitted and/or supported parts of this specification:

• DSTC Pty Ltd (Cooperative Research Centre for Enterprise Distributed Systems 
Technology)

• Baltimore Technologies PLC
viii Public Key Infrastructure, v1.0 September 2002



Overview 1
Contents

This chapter contains the following topics. 

1.1 Introduction

A Public Key Infrastructure (PKI) is a collection of components or entities for the 
issuance, management, and revocation of digital certificates. Public key technology, 
although not new, does have promise as a basis for a flexible method of providing 
security in an online and distributed environment. For public key technology to reach 
this potential it must be possible to bind an identity to that of a public/private key pair 
(digital certificates) and then subsequently manage these using a PKI.

This document provides interfaces and operations in CORBA IDL to support the 
functionality of a PKI. It describes a generic interface that allows standards to be 
implemented behind these interfaces and operations. The specification also takes into 
consideration the possibility of specific CORBA extensions being designed at a later 
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1

date that utilize specific technology within the CORBA framework. The interfaces 
provided in this document describe a standard method of interacting with PKI entities 
in a CORBA environment.

1.2 PKI Definitions

The following sections describe major components of a PKI. These are not specific to 
this specification nor to any specific existing standard, but are common PKI terms and 
components.

1.2.1 PKI User

A PKI user refers to human users as well as applications and hosts that may also use a 
PKI functionality.

1.2.2 Certificate

A certificate is a structured electronic document that binds some information to a 
public/private key pair and is digitally signed by a trusted third party called a 
Certification Authority or commonly referred to as a CA. This document will use the 
term CA throughout.

1.2.3 Certificate Revocation List (CRL)

A Certificate Revocation List (CRL) is a structured electronic document signed by a 
CA that lists any certificates previously issued by that CA that are now revoked. A 
certificate may be revoked for reasons that may include, but is not limited to, an entity 
or person changing or leaving a particular role or a private key being compromised. A 
CRL is issued on a periodic basis with the period determined by policy of the CA. A 
revoked certificate will remain on a CRL until the validity period of the certificate 
expires.

1.2.4 Certificate and CRL Repository

A repository is a service provided for the storage and retrieval of certificates and 
CRLs.

1.2.5 Certification Authority (CA)

A Certification Authority (CA) performs a number of functions relating to the issuance 
and management of public key certificates. These include:

• Accepting and verifying requests for certificates

• Revoking certificates and issuing CRLs

• Servicing requests for certificate status information

• Key management issues such as re-keying and re-certification
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The CA may also certify the keys of other CAs so that the PKI can scale to multiple 
domains.

1.2.6 Registration Authority (RA)

A Registration Authority (RA) accepts requests for certificates on behalf of a CA and 
verifies the binding between the public/private key pair and the attributes being 
certified. Typically one or more RAs exist to provide a means for scaling a PKI within 
a single management domain. The relationship between the RAs and the CA is similar 
to the relationship between bank branches and the bank. While the branches are the 
“face” of the organization, the bank has the ultimate authority for the granting of 
transactions. So a request for a certificate may be made on a particular RA, the RA 
may verify Proof Of Possession (POP) of the private key and then request the 
certificate from the CA. The certificate obtained is from the CA but the RA provides 
the point of contact and may perform functions such as POP and checking 
authentication based on policy.

1.2.7 Online Certificate Status Service

This is a service used to determine the status of a certificate without the use of CRLs. 
Since CRLs can only be issued periodically, any revocation during this period is not 
known until the next issue of the CRL. Essentially this provides an online service to 
check the validity of a particular certificate and hence a more timely method of 
obtaining status information.

1.3 Specification Overview

This specification describes interfaces, constants, and constructs for interacting with a 
PKI through CORBA objects. The general design fits around existing standards and 
implementations and defines generic interfaces for the interaction with PKI 
components. This allows (but is not limited to) the wrapping of existing 
implementations. The major interfaces of this specification are shown (in rectangular 
boxes) in Figure 1-1 on page 1-4.
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Figure 1-1 PKI Overview

There are other interfaces defined that are used to assist in the interaction with the 
above interfaces and allow for asynchronous messaging. These interfaces are described 
later in more detail. The functions of the major interfaces relate to the corresponding  
descriptions in Section 1.2, “PKI Definitions,” on page 1-2.

1.3.1 PKI Module

This module describes common type definitions and constants that are used by the 
other modules.

1.3.2 PKIAuthority

This module outlines 14 interfaces for interacting with PKI authorities through the 
management of certificates. The major interfaces are CertificateAuthority, 
RegistrationAuthority, and CertificateStatusResponder. The rest are employed to 
maintain the interactive and asynchronous behavior that is typical using a PKI.

1.3.3 PKIRepository

This module provides interfaces and operations to store and retrieve certificates and 
CRLs.
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1.4 General PKI Usage Overview

This section describes some typical usage scenarios for interaction with the interfaces 
described in this specification. As mentioned earlier there is the potential for 
communication between PKI users to have an interactive and asynchronous nature. The 
asynchronicity comes from the fact that an authority will have policy regarding the 
issuance and management of certificates that may involve some out of band process 
(e.g., a phone call or email message). Complicating this even further is that the CA 
may need to interact with the clients to obtain more information and so a single 
invocation may not be sufficient to complete a particular request. For example a 
certificate request to an authority may require that POP is performed using a challenge 
response mechanism. This requires that the client decrypts a challenge and returns the 
result to the authority. 

In addressing the interactive nature of PKI messaging additional interfaces have been 
added. These are the RequestManager interfaces. A RequestManager object is 
created by the authority. This is then used for any subsequent operations and status 
enquiries for a particular request. Asynchronous behavior can be addressed by using 
Asynchronous Method Invocation (AMI) described in CORBA/IIOP 2.4.2 document 
2001-02-33, Chapter 22 CORBA Messaging.

1.4.1 Overall View

Typical operations that are expected from the set of specified interfaces are shown in 
Figure 1-2 on page 1-6. This diagram is included to show an overall structure of the 
specified interfaces.
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Figure 1-2 Interface Structure

1.4.2 Provider Information

Before a client makes requests to an authority it can obtain general details about what 
the authority provides. This may include general details such as version and vendor as 
well as specifics about supported types including whether an authority can handle 
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1.4.3 Certificate Request

The following example is that of a client making a request to have a certificate issued 
by a CA or RA.

• After constructing a certificate request message, using a supported standard, the 
message can be encapsulated and invoked through the request_certificate 
operation. This returns a reference to a RequestCertificateManager object.

• The client can then call either status or get_certificate_request_result 
operations. If using the status operation, then the results will have to be obtained 
through an extra get result operation. Results can then be processed.

• After processing, if more interaction is required (for example, proving possession of 
the private key through a challenge response), then this is made through the 
manager object using the continue_request_certificate operation until a success 
(or failure) is reached.

1.5 General Repository Usage Overview

The PKI repository is defined as a service provided for the storage and retrieval of 
certificates, CRL’s, and certificate pairs (collectively termed PKI values herein). Such 
PKI values are bound within the repository to a PKI principal, or user of PKI services. 
A PKI principal has some form of identifying name that distinguishes that principal 
within the repository. For example, there may be multiple certificates bound to the 
principal “Bob” within the repository. The PKI repository is designed to be conformant 
with respect to existing standards (specifically X.500 and LDAP), yet flexible enough 
to allow implementation using other services (e.g., databases, flat files).

An entry for a principal in the repository is assumed to have a number of attributes 
attached to it, where such attributes contain one or more values. Attributes are given a 
name, which facilitates the efficient search of the repository for specific values of a 
principal matching a particular attribute. For example, the CRL for the principal 
“BobCA” may be stored under an attribute with a name of “crl;binary”. Thus, the 
attribute with the name “crl;binary” is used when finding CRLs for “BobCA.” 

In most cases, the repository implementor will have default attribute names for storing 
and retrieving PKI values, and clients should not have to specify exactly which 
attribute names are to be used when storing and retrieving PKI values in the repository. 
In the above example, the repository implementator may specify that the default 
attribute to use for storing CRLs for a principal is the attribute with the name 
“crl;binary”. In such cases, the client only needs to provide the principal and the CRL 
to the repository. It is assumed that this will suffice for most clients and repository 
implementations (in particular, those implementations that use LDAP). Provision has 
been made for repository operations that allow the client to specify the particular 
attribute under which a given PKI value may be bound to a principal, and for 
determining the default attribute the repository implementor will use in specific cases.
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1.6 Design Rationale

The design describes interfaces that have generic functionality that can support 
different underlying PKI standards. The wrapping of existing standards is an important 
issue with regard to this submission. There is also a reliance on other CORBA services 
for some functionality, primarily for security. Our goal was to consider functionality 
requirements to meet those of the RFP but also to meet those of Internet X.509 PKI 
Certificate Management Protocols IETF RFC 2510 and Internet X.509 PKI Online 
Certificate Status Protocol IETF RFC 2560.

1.6.1 Encoding to Representation Granularity

In this design a significant decision was made as to how best to represent certain data 
structures in CORBA. This is significant in this case because there are standards 
already defined and implemented that must be considered. Integrating to handle these 
standards is a significant issue being addressed by this specification. As a result, 
existing standards have different methods of encoding these structures so that they can 
be transported between entities. Encoding of these in the general case is encoding rules 
of ASN.1. This means that these types of structures can be represented as 
PKI::Opaque (i.e., a sequence of bytes).

The specification also allows for the possible future use of CORBA valuetypes. The 
use of valuetypes for representing types including a specific CORBA certificate 
would be useful. This specification allows for this by using an any type for the actual 
representation. The following IDL snippets demonstrate the design for encapsulating 
an outside encoded representation as well as a specific CORBA representation in a 
typesafe manner.

    struct RepresentationType {
        EncodingType encoding_type;
        Opaque data;
    };

    struct Certificate {
        CertificateType certificate_type;
        any representation_type;
    };

This specification defines and recommends the use of the RepresentationType for 
cases where it is logical that the representation is an encoded sequence of bytes. The 
RepresentationType allows for the tagging of the specific encoding type. The above 
sample IDL shows the PKI::Certificate type where the actual representation is 
implied to be that of the RepresentationType type, but it could be a valuetype for a 
case where a specific CORBA representation was defined. Similar situations to this 
example occur throughout the PKI module of the specification.
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1.6.2 Asynchronous and Interactive Messaging

A significant design decision for this specification was in addressing the potential for 
asynchronous behavior combined with the potential for a level of interactivity between 
client and target entities. Each certification domain will have its own policy with which 
to manage certificate functionality. Depending on this policy it is possible for 
significant delays to occur between an initial request and a returned result due to the 
possible need for an out of band exchange. For example, a CA may require that a 
phone call or some interaction via email is made as part of the authentication process 
adding a significant delay. A synchronous invocation may block during this delay. This 
can be handled using an AMI aware ORB or simply ignored and wait for the 
invocation to be returned.

The potential for interactivity between an authority (CA or RA) and a client is also 
possible. An example of this interactivity might be where a certificate request has been 
made using a public key, the authority requires assurance that the client is in 
possession of the associated private key and policy dictates the use of a challenge 
response. This will require an extra exchange of messages and that the client may also 
be directly involved (by needing to supply a passphrase to unlock the private key). This 
interactivity for a request is addressed using the RequestManager interfaces. When a 
request is initiated a RequestManager object reference is returned, and this is used 
to perform further interaction, status checking, or to return results for that particular 
request. 

The interaction of client and authority entities in a PKI domain is typically a 
combination of both an interactive dialogue, with state being maintained on the server 
side, combined with asynchronous messaging behavior. The RequestManager 
interface is created by the authority and encapsulates everything that relates to a 
particular request. The client entity receives a reference to this interface after an initial 
request and continues to use it for as long as the request is outstanding.

Resources related to RequestManagers can be reclaimed by the CertificateAuthority 
or RegistrationAuthority after either a status of either PKISuccess, 
PKISuccessWithWarning or PKIFailed. For a status of PKISuccessAfterConfirm 
the resources can be reclaimed after the confirm_content() operation has been 
invoked.

1.6.3 Repository

The repository is a service where information can be stored and retrieved. Primarily 
this is used for storage and retrieval of principal information such as certificates. It is 
also commonly used to store information such as Certificate Revocation Lists (CRLs). 
Effectively there are 2 definitions of repository interfaces in this specification. There is 
a simple interface described in PKIRepository and also a more intricate interface that is 
designed to be able to interact with repositories that are based around X500 and LDAP 
implementations. The simplified version is hoped to be the more commonly used 
interface allowing implementors and clients to interact with ease. However since the 
backend could well be LDAP or X500 in existing services that may be wrapped by 
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these interfaces the PKIExtension module allows for this interaction. The operations in 
PKIRepository are simple and self explanatory but the PKIExtension module contains 
a more detailed approach.

The PKIExtension module describes a data storage service which generally has a 
schema that mandates the form and the content of the data stored therein. As much as 
possible, the type of repository implementation, and the exact details of the schema 
that oversees the data storage service, should be hidden from the client of the PKI 
repository service. In general, when a client wishes to publish information in the 
repository, it is assumed that the repository implementation has enough information to 
create the appropriate entry in the underlying data storage service according to the 
back-end schema. However, it may be the case that a repository implementation cannot 
gather the required information in order to create an entry for a principal when a 
request is made by the client to store information in the repository. For example, a 
database implementation of the PKI repository may require that all entries contain a 
value for the “favorite milkshake” field. In such cases, the repository implementation 
may ask for further information from the client. The PKIPrincipal type in the IDL 
allows the client to pass additional attribute information as required.

    struct PKIPrincipal {
        PKIName name;
        PKIAttributeList attributes;
    };

In most cases, the client will pass a PKIPrincipal construct to the repository with no 
attribute information. This is based on the assumption that there is already an entry for 
the given principal in the repository, or that the repository can create such an entry if 
this is the case. Clients should only pass attribute information within the Principal 
type if the repository has requested such information due to schema problems.

The PKI repository design allows the client to obtain the schema of the repository in 
order to present any additional attribute information required by the repository 
implementation. The Schema type is used to provide the client with two classes of 
information: information on attributes (OID, name, description, syntax, etc.) and 
information on syntaxes (OID, description). Given such a schema, a client may deduce 
the necessary values for attributes that are missing or incorrectly supplied. For 
example, if the repository notifies the client that a value for the “favorite milkshake” 
attribute is required, then the client may inspect the schema to lookup the attribute 
definition for “favorite milkshake,” find the syntax definition to see how a “favorite 
milkshake” value should be presented, and present that attribute information back to 
the repository within the PKIPrincipal structure. Each information class is represented 
within the schema as a collection of attributes (name-to-value bindings). A name is 
defined to be a string, while a value can be any type (including another collection of 
attributes). 

The attribute list provided within the schema for attribute definitions is assumed to 
contain the name of each attribute used by the repository back-end. The value attached 
to each name is itself an attribute list, with names as defined in IETF RFC2252 for 
AttributeTypeDescriptions (“OID,” “NAME,” “DESCR,” “SYNTAX,” etc.). The value 
attached to each name is a string whose value is interpreted as defined by IETF 
RFC2252 (for example, the string attached to “OID” would represent an object 
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identifier value such as “1.2.3”). The choice of which AttributeTypeDescription names 
to provide within the attribute list is up to the repository implementor, although they 
should provide at least the names “NAME,” “DESCR,” and “SYNTAX.”

The attribute list provided within the schema for syntax definitions is assumed to 
contain names that represent the object identifier of each syntax used within the 
attribute type definitions. The value attached to each name is itself an attribute list, 
with names defined in IETF RFC2252 for SyntaxDescriptions (“OID” and “DESCR”). 
The value attached to each of these names is a string whose value is interpreted as 
defined by IETF RFC2252. The choice of which SyntaxDescription names to provide 
within the attribute list is up to the repository implementor, although they SHOULD 
provide at least the name “DESCR.”

1.6.4 Provider Details

There are operations added to the interfaces that provide details about a particular 
implementation. This design decision was based around the fact that different 
underlying implementations may support different type formats and encodings. For 
example a particular CA may only support ASN.1 DER encoded X.509 certificates and 
so a client entity will need to query the CA and determine this detail. This is pertinent 
in the case of a PKI, as a CA is often authoritative in a particular domain and so a 
client may not have the choice to be able to choose its own CA based solely on 
supported types but be directed to use a particular one.

1.7 Proof of Concept

At the time of submission this design is currently being prototyped. The current status 
of this prototype demonstrates that the IDL is usable and can be implemented. The IDL 
is known to be parsed by at least one IDL compiler.
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PKI Interfaces 2
Contents

This chapter contains the following topics. 

2.1 Introduction

This chapter describes the basic interfaces and some important constructs and type 
definitions that are relevant to the specification.

2.2 Module PKI

This module declares type definitions used by both the PKIAuthority and 
PKIRepository modules. This section describes some of the particularly important 
constructs for clarity in understanding the interface operations in the rest of this 
chapter. The complete IDL is included in Appendix A.

2.2.1 PKIStatus Constants

Status constants are returned indicating the current status of a request.
typedef unsigned long PKIStatus;
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2.2.1.1 PKISuccess

const PKIStatus PKISuccess = 0;

PKISuccess indicates that the current transaction is now complete without any more 
invocations required.

2.2.1.2 PKISuccessWithWarning

const PKIStatus PKISuccessWithWarning = 1;

PKISuccessWithWarning indicates that the client has received something similar to 
what was asked for. It is up to the client to ascertain the differences. This may for 
example be a certificate that varies in some way from the request such as the validity 
period may be different to that requested.

2.2.1.3 PKIContinueNeeded

const PKIStatus PKIContinueNeeded = 2;

PKIContinueNeeded indicates that the current part of the transaction is complete but 
the actual end result has not yet been reached. This means that another invocation is 
required most likely requiring some additional information.

2.2.1.4 PKIFailed

const PKIStatus PKIFailed = 3;

PKIFailed indicates that a failure has occurred and the transaction should be 
terminated.

2.2.1.5 PKIPending

const PKIStatus PKIPending = 4;

PKIPending indicates that the transaction is in a transitional period pending some 
result.  This state occurs during the period before either a transaction is complete or a 
continue is required.

2.2.1.6 PKISuccessAfterConfirm

const PKIStatus PKISuccessAfterConfirm = 5;

PKISuccessAfterConfirm indicates that the transaction is complete but the 
PKIAuthority requires that a confirmation message is sent using 
RequestManager.confirm_content() operation.  For example this might occur in the 
case where the CA may revoke the issued certificate if a confirm is not made as the CA 
may presume that the client could not decrypt the message as a way of providing proof 
of possession (POP) of the private key.
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2.2.2 EncodingType

typedef unsigned long EncodingType;
    const EncodingType UnknownEncoding = 0;
    const EncodingType DEREncoding = 1;
    const EncodingType BEREncoding = 2;
    const EncodingType Base64Encoding = 3;
    const EncodingType SExprEncoding = 4;
    const EncodingType CustomEncoding = 0x8000;

The EncodingType is a type used to describe the method of encoding used to encode 
the original PKI structure to an Opaque type. The general case will be ASN.1 DER 
(Distinguished Encoding Rules).

2.2.3 Opaque

    typedef sequence <octet> Opaque;

The Opaque type is used to represent encoded structures as a sequence of bytes. 

2.2.4 EncodedData 

    struct EncodedData {
        EncodingType encoding_type;
        Opaque data;
    };

This construct is defined to be able to represent encoded structures in a type safe 
manner. This is recommended for implementations that are currently defined and 
represent structures using ASN.1 encoding rules.

2.2.5 CertificateType

typedef unsigned long CertificateType;
    const CertificateType UnknownCertificate = 0;
    const CertificateType X509v1Certificate = 1;
    const CertificateType X509v2Certificate = 2;
    const CertificateType X509v3Certificate = 3;
    const CertificateType PGPCertificate = 4;
    const CertificateType SPKICertificate = 5;
    const CertificateType X509v1AttributeCertificate = 6;
    const CertificateType CustomCertificate = 0x8000;

The CertificateType is used to explicitly describe the type of certificate that has been 
encoded. Some examples of certificate types are the X509 versions of certificate 
(version 3 being the most common in use), Pretty Good Privacy (PGP) certificates or 
Simple Public Key Infrastructure (SPKI) certificates.
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2.2.6 EncodingType

typedef unsigned long EncodingType;
    const EncodingType UnknownEncoding = 0;
    const EncodingType DEREncoding = 1;
    const EncodingType BEREncoding = 2;
    const EncodingType Base64Encoding = 3;
    const EncodingType SExprEncoding = 4;
    const EncodingType CustomEncoding = 0x8000;

The EncodingType describes the way in which the byte representation is encoded. This 
is used to explicitly name the encoding method used. Some examples are ASN.1 
Distinguished Encoding Rules (DER), ASN.1 Basic Encoding Rules (BER) ar perhaps 
Base 64 encoding.

2.2.7 AuthorityInfoType

typedef unsigned long AuthorityInfoType;
    const AuthorityInfoType UnknownMessage = 0;
    const AuthorityInfoType PKIXCMPGeneralMessage = 1;
    const AuthorityInfoType CustomMessage = 0x8000;

The AuthorityInfoType is used to describe the type of a message that is being 
sent/received by an authority. An example type for this is a PKIX Certificate 
Management Protocol (CMP) general message format.

2.2.8 Certificate

valuetype Certificate {
        private CertificateType certificate_type;
        private EncodedData data;
    };

This is the construct defined to represent a certificate in CORBA.

Fields

certificate_type Describes the certificate type used, such as X509V1, 
X509V2, X509V3, PGP, SPKI.

data This field contains a representation of the Certificate 
held in an EncodedData structure.
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2.2.9 CRL

This construct is the representation of a Certificate Revocation List.

valuetype  CRL {
        private CRLType crl_type;
        private EncodedData data;
    };

Fields

2.2.10 CertificateRequest

The construct used to represent an encoded certificate request message.

valuetype CertificateRequest {
        private CertificateRequestType cert_request_type;
        private EncodedData data;
    };

Fields

2.2.11 CertificateStatusRequest

valuetype CertificateStatusRequest {
        private CertificateStatusRequestType type;
        private EncodedData data;
    };

crl_type The type of CRL such as X509V1CRL, X509V2CRL, 
X509V1ARL.

data This field contains a representation of the CRL held in 
an EncodedData structure.

cert_request_type The type of certificate request message such as 
PKCS10, PKIXCRMF, PKIXCMC.

data This field contains a representation of the 
CertificateRequest held in an EncodedData structure.
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Fields

2.2.12 CertificateStatusResponse

valuetype CertificateStatusResponse {
        private CertificateStatusResponseType type;
        private EncodedData data;
    };

Fields

2.2.13 Exceptions

2.2.13.1 UnsupportedTypeException

exception UnsupportedTypeException {
    string description;
};

Exception reporting either the Certificate, CertificateRequest, CertificateStatusRequest, 
etc. supplied is not a supported type by the PKIAuthority interface.

2.2.13.2 UnsupportedEncodingException

exception UnsupportedEncodingException {
    string description;
};

Exception reporting either the Certificate, CertificateRequest, CertificateStatusRequest, 
etc. supplied is using an unsupported encoding type.

2.2.13.3 MalformedDataException

exception MalformedDataException {
    string description;
};

Exception reporting either the Certificate, CertificateRequest, CertificateStatusRequest, 
etc. supplied is in some way malformed and cannot be interpreted.

type The type of certificate status request such as OCSP.

data This field contains a representation of the CertificateStatusRequest 
held in an EncodedData structure.

type The type of certificate status response such as OCSP.

data This field contains a representation of the 
CertificateStatusResponse held in an EncodedData structure.
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2.2.13.4 UnexpectedContinueException

exception UnexpectedContinueException {
     string description;
};

Exception reporting either the Certificate, CertificateRequest, CertificateStatusRequest, 
etc. supplied is attempting an unnecessary continue operation.

2.3 Module PKIAuthority

2.3.1 Interface RegistrationAuthority

2.3.1.1 get_provider_info

Used to obtain a standard set of types supported by this authority.

AuthorityProviderInfo get_provider_info();

Return Value

AuthorityProviderInfo structure holding descriptions of supported types.

2.3.1.2 get_authority_info

Used for passing general messages between client entity and authority. For example 
this may provide a method for a client to determine the authentication policy of the 
authority.

PKI::PKIStatus get_authority_info(
            in PKI::AuthorityInfo  in_authority_info,
            out PKI::AuthorityInfo out_authority_info
            )
            raises(UnsupportedTypeException,UnsupportedEncodingException,
                   MalformedDataException);

Parameters

Return Value

Status value

in_authority_info The encoded message input to authority.

out_authority_info The encoded returned message from authority.
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2.3.1.3 request_certificate

Called to make a request for a certificate from an authority such as a Certificate 
Authority (CA) or Registration Authority (RA).

 RequestCertificateManager request_certificate
            (in PKI::CertificateRequest certificate_request)
            raises(UnsupportedTypeException,UnsupportedEncodingException,
                   MalformedDataException);

Parameters

Return Value

RequestCertificateManager object reference to extract details regarding the 
particular request, continue interaction, and obtain results.

2.3.1.4 request_revocation

Called to request revocation of a certificate from a (CA) or (RA).

RequestRevocationManager request_revocation
            (in PKI::CertRevRequest      cert_rev_request)
            raises(UnsupportedTypeException,UnsupportedEncodingException,
                   MalformedDataException);

Parameters

Return Value

RequestRevocationManager object reference used to extract details pertaining to 
the request continue interaction, and obtain results.

2.3.1.5  request_key_update

Called to request key update of a certificate from a (CA) or (RA).

 RequestKeyUpdateManager request_key_update
            (in PKI::CertificateRequest   key_request)
            raises(UnsupportedTypeException,UnsupportedEncodingException,
                   MalformedDataException);

certificate_request PKI::CertificateRequest structure containing details 
of the clients request.

cert_rev_request PKI::CertRevRequest structure containing details of 
the client’s request for certificate revocation.
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Parameters

Return Value

RequestKeyUpdateManager object reference used to extract details pertaining to 
the request, continue interaction, and obtain results.

2.3.1.6 request_key_recovery

RequestKeyRecoveryManager request_key_recovery
            (in PKI::CertificateRequest   key_request)
            raises(UnsupportedTypeException,UnsupportedEncodingException,
                   MalformedDataException);

Parameters

Return Value

RequestKeyRecoveryManager object reference that can be used to extract details 
pertaining to the request, continue interaction, and obtain results.

2.3.2 Interface CertificateAuthority 

Interface defining operations that can be performed on a CertificateAuthority object. 
There is IDL inheritance of the RegistrationAuthority interface.

2.3.2.1 get_ca_certificate

Returns the certificates of the CertificateAuthority.

PKI::PKIStatus get_ca_certificate(
            out PKI::CertificateList certificate_list)
            raises (UnsupportedTypeException,UnsupportedEncodingException,
                    MalformedDataException);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

key_request PKI::CertificateRequest structure containing details 
of the client’s request for key update.

key_request PKI::CertificateRequest structure containing details 
of the client’s request for key recovery.

certificate_list List of certificates for CA.
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2.3.2.2 get_CRL

Return the current CRL of the CertificateAuthority.

 PKI::PKIStatus get_crl (out PKI::CRL crl);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.2.3 get_certificate_status_responder

Return a reference to certificate status responder.

CertificateStatusResponder get_certificate_status_responder();

Return Value

Reference to CertificateStatusResponder object for the CA.

2.3.2.4 get_repository

Return a reference to the repository that the CA uses to store certificates, CRLs, etc.

PKIRepository::Repository get_repository()
            raises(PKIRepository::RepositoryError);

Return Value

PKIRepository::Repository object reference.

2.3.3 Interface RequestManager

Generic base interface for a manager object. A manager object is a target side object 
that is used by the client to extract details, continue interaction, and to obtain results 
for a particular request.

2.3.3.1 status

A read only attribute representing the status of the transaction associated with this 
poller object.

readonly attribute PKI::PKIStatus status;

crl The CRL published by the CertificateAuthority.
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2.3.3.2 transaction_ID

readonly attribute long transaction_ID;

A read only attribute representing an identifier for a particular transaction. This 
attribute relates directly to existing PKI entities. Currently a transaction will be given 
some unique identifier that relates to a particular transaction with an authority. In the 
case of using CORBA the unique identifier is not directly required due to the use of a 
RequestManager object for each transaction. This attribute is supplied so that the 
identifier provided by the back end authority can be obtained by a CORBA client.

2.3.3.3 confirm_content

Operation to acknowledge negotiation is complete.

void confirm_content(in PKI::ConfirmData     confirm_data)
            raises (UnsupportedTypeException,UnsupportedEncodingException,
                    MalformedDataException);

Parameters

2.3.4 Interface RequestCertificateManager

Interface to extract details, continue interaction and extract results pertaining to a 
particular certificate request. Inherits operations and attributes from 
RequestManager interface.

2.3.4.1 continue_request_certificate

Used for continuing a certificate request that has already been initiated but requires 
more interaction to complete the request. An example of the use of this operation is for 
Proof Of Possession (POP) of the private key.

void continue_request_certificate
            (in PKI::RequestData request_data,
             in PKI::CertificateList certificates)
            raises (UnsupportedTypeException,UnsupportedEncodingException,
                    MalformedDataException);

confirm_data Message to confirm content is correct and received.
September 2002 Public Key Infrastructure: Module PKIAuthority 2-11



2

Parameters

2.3.4.2 get_certificate_request_result

Obtains final or interim results of a particular request.

PKI::PKIStatus get_certificate_request_result
            (out  PKI::CertificateList    certificates,
             out PKI::ResponseData        response_data)
            raises (UnsupportedTypeException,UnsupportedEncodingException,
                    MalformedDataException);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.5 Interface RequestRevocationManager

Interface to extract details, continue interaction and extract results pertaining to a 
particular revocation request. Inherits operations and attributes from 
RequestManager interface.

2.3.5.1 continue_request_revocation

Used for continuing a revocation request that has already been initiated but requires 
more interaction to complete the request.

 void continue_request_revocation
            (in PKI::RequestData     request_data)
            raises (UnsupportedTypeException,UnsupportedEncodingException,
                    MalformedDataException);

request_data PKI::RequestData structure containing details for the 
continuation of the initial request.

certificates List of certificates, possibly partially formed.

certificates A list of certificates.

response_data PKI::ResponseData structure containing details of the 
request thus far.
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Parameters

2.3.5.2 get_request_revocation_result

Obtains final or interim results of a particular request.

 PKI::PKIStatus get_request_revocation_result
            (out PKI::CertRevResponse     cert_rev_response,
             out PKI::ResponseData        response_data)
            raises (UnsupportedTypeException,UnsupportedEncodingException,
                    MalformedDataException);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.6 Interface RequestKeyUpdateManager

Interface to extract details, continue interaction, and extract results pertaining to a 
particular key update request. Inherits attributes and operations from 
RequestManager interface.

2.3.6.1 continue_key_update

Used for continuing a key recovery request that has already been initiated but requires 
more interaction to complete the request.

void continue_key_update
            (in PKI::RequestData request_data,
             in PKI::Certificate certificate)
            raises (UnsupportedTypeException,UnsupportedEncodingException,
                    MalformedDataException);

request_data PKI::RequestData structure containing details for the 
continuation of the initial request.

cert_rev_response PKI::CertRevResponse structure containing details 
of the response of the the revocation request.

response_data PKI::ResponseData structure containing details of 
the request thus far for continuing the request.
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Parameters

2.3.6.2 get_request_key_update_result

Obtains final or interim results of a particular request.

 PKI::PKIStatus get_request_key_update_result
            (out PKI::Certificate       certificate,
             out PKI::ResponseData         response_data)
            raises (UnsupportedTypeException,UnsupportedEncodingException,
                    MalformedDataException);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.7 Interface RequestKeyRecoveryManager

Interface to extract details, continue interaction and extract results pertaining to a 
particular key recovery request. Inherits attributes and operations from 
RequestManager interface.

2.3.7.1 continue_key_recovery

Used for continuing a key recovery request that has already been initiated but requires 
more interaction to complete the request.

void continue_key_recovery
            (in PKI::RequestData      request_data)
             raises 
(UnsupportedTypeException,UnsupportedEncodingException,
                     MalformedDataException);

request_data PKI::RequestData structure containing details for 
the continuation of the initial request.

certificate PKI::Certificate

certificate The new certificate after key update.

response_data PKI::ResponseData structure containing details of 
the request thus far.
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Parameters

2.3.7.2 get_request_key_recovery_result

Obtains final or interim results of a particular request.

PKI::PKIStatus get_request_key_recovery_result
            (out PKI::ResponseData         response_data)
            raises (UnsupportedTypeException,UnsupportedEncodingException,
                    MalformedDataException);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.8 Interface CertificateStatusResponder

Interface for an online certificate status responder.

2.3.8.1 request_certificate_status

Obtains details for the request of a certificate status from an online certificate status 
server.

PKI::PKIStatus request_certificate_status(
            in PKI::CertificateStatusRequest request,
            out PKI::CertificateStatusResponse response)
            raises (UnsupportedTypeException,UnsupportedEncodingException,
                    MalformedDataException);

request_data PKI::RequestData structure containing details for the 
continuation of the initial request.

response_data PKI::ResponseData structure containing details of the 
request thus far.
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Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.4 Module PKIRepository

2.4.1 PKIPrincipalValue

Valuetype supporting fields containing relevant information related to a particular 
principal.

valuetype PKIPrincipalValue {
      private string name;
      private PKI::CertificateList certificates;
      private PKI::CertificatePairList;
      private PKI::CRL crl;
      private PKI::CRL delta;
      private PKI::CRL arl;
    };

2.4.2 Interface Repository

Interface for storage and retrieval of certificates and CRLs.

2.4.2.1 RepositoryProviderInfo info

Attribute to return a valuetype containing information pertaining to this particular 
repository implementation.

2.4.2.2 publish

Enter a new PKIPrincipalValue into the repository.

void publish( in PKIPrincipalValue principal )
        raises ( DuplicatePrincipal, RepositoryError );

request PKI::CertificateStatusRequest structure containing details 
of the request.

response PKI::CertificateStatusResponse structure containing 
details of the return response.
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Parameters

2.4.2.3 locate

Get a PKIPrincipalValue for a particular name.

PKIPrincipalValue locate ( in string name )
        raises ( UnknownPrincipal, RepositoryError );

Parameters

Return Value

PKIPrincipalValue of the specified name.

2.4.2.4 delete

Deletes a principal in the repository using name as the lookup key.

void delete ( in string name )
        raises ( UnknownPrincipal, RepositoryError );

Parameters

2.4.2.5 update

Replaces an existing principal in the repository with the supplied PKIPrincipalValue 
object.

void update ( in PKIPrincipalValue principal )
        raises ( UnknownPrincipal, RepositoryError);

Parameters

principal PKIPrincipalValue to be entered.

name String name of desired principal to be located.

name String name of desired principal to be deleted

principal PKIPrincipalValue to be updated.
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2.5 Module PKIExtension

2.5.1 Interface LDAPRepository

Interface for a repository for the storage and retrieval of certificates and CRLs.

2.5.1.1 get_provider_info

Get the provider info for this PKI repository.

RepositoryProviderInfo get_provider_info();

Return Value

RepositoryInfo construct containing general details relating the provider 
implemented repository.

2.5.1.2 get_schema

Called to retrieve details of the schema used for the particular repository.

Schema get_schema();

Return Value

Schema construct containing lists of attribute and syntax definitions.

2.5.1.3 publish_certificate

Publish a certificate for the given principal, under the attribute specified by the given 
attribute name.

void publish_certificate(
            in PKIPrincipal principal,
            in PKI::Certificate certificate, in string attr_name)
            raises (PKIRepository::UnknownPrincipal,
            PrincipalAttributeError,
            PKIRepository::RepositoryError);

Parameters

principal The principal to which the certificate is to be bound.

certificate The certificate to be published.

attr_name The name of the attribute under which this certificate is to be 
stored in the repository entry of the principal.
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2.5.1.4 get_certificate

Get the certificate(s) associated with a given principal, under the attribute specified by 
the given attribute name. If there are no certificates bound to the given principal (i.e., 
the given attribute does not exist, or that attribute exists but has no certificate values), 
then a list of length 0 is returned.

PKI::CertificateList get_certificate(
            in PKIPrincipal principal, in string attr_name)
            raises (PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

Parameters

Return Value

The (possibly empty) list of certificates bound to the entry in the repository for the 
given principal, where such certificates (if any) are stored as values of the given 
attribute.

2.5.1.5 delete_certificate

Deletes the given certificate stored against the given principal under the attribute 
specified by the given name. How the given certificate is matched against stored 
certificates is implementation-dependent.

void delete_certificate(
            in PKIPrincipal principal,
            in PKI::Certificate certificate, in string attr_name)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

Parameters

2.5.1.6 publish_crl

Publish the given certificate revocation list for the given principal under the attribute 
specified by the given name.

principle The principal whose certificates are to be returned.

attr_name The name of the attribute containing the certificate(s) in the 
repository entry of the given principal.

principal The principal whose certificate is to be deleted.

certificate The certificate to be deleted.

attr_name The name of the attribute containing the certificate in the 
repository entry of the given principal.
September 2002 Public Key Infrastructure: Module PKIExtension 2-19



2

void publish_crl(in PKIPrincipal principal, in PKI::CRL crl,
                                  in string attr_name)
            raises(PKIRepository::UnknownPrincipal,
            PrincipalAttributeError,
            PKIRepository::RepositoryError);

Parameters

2.5.1.7 get_crl

Get the CRL associated with a given principal, under the attribute specified by the 
given name.

PKI::CRL get_crl(in PKIPrincipal principal, in string attr_name)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

Parameters

Return Value

PKI::CRL structure containing the CRL.

2.5.1.8 delete_crl

Deletes the given CRL stored against the given principal under the attribute specified 
by the given name. How the given CRL is matched against stored CRL is 
implementation-dependent.

void delete_crl(in PKIPrincipal principal,
                                 in PKI::CRL crl,in string attr_name)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

principal The principal to which the CRL is bound.

crl The certificate revocation list to be published.

attr_name The name of the attribute under which this crl is to be stored in 
the repository entry of the principal.

principal The principal to which the CRL is bound.

attr_name The name of the attribute under which this crl is to be stored in 
the repository entry of the principal.
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Parameters

2.5.1.9 publish_certificate_pair

Publish the given certificate pair for the given principal under the attribute specified by 
the given name.

void publish_certificate_pair(
            in PKIPrincipal principal, in PKI::CertificatePair certPair,
            in string attr_name)
            raises(PKIRepository::UnknownPrincipal,
            PrincipalAttributeError,
            PKIRepository::RepositoryError);

Parameters

2.5.1.10 get_certificate_pair

Get the certificate pair(s) associated with a given principal, under the attribute 
specified by the given name. If there are no certificate pair(s) bound to the given 
principal (i.e., the given attribute does not exist, or that attribute exists but has no 
certificate pair values), then a list of length 0 is returned.

PKI::CertificatePairList get_certificate_pair(
            in PKIPrincipal principal, in string attr_name)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

principal The principal to which the CRL is bound.

crl The certificate revocation list to be deleted.

attr_name The name of the attribute under which this crl is stored in the 
repository entry of the principal.

principal The principal to which the certificate pair is bound.

certPair The certificate pair to be published.

attr_name The name of the attribute under which this certificate pair is to 
be stored in the repository entry of the principal.
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Parameters

Return Value

PKI::CertificatePairList containing the requested certificate pairs.

2.5.1.11 delete_certificate_pair

Deletes the given certificate pair stored against the given principal under the attribute 
specified by the given name. How the given certificate is matched against stored 
certificate pairs is provider implementation-dependent.

void delete_certificate_pair(
            in PKIPrincipal principal,
            in PKI::CertificatePair certificate_pair,
            in string attr_name)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

Parameters

2.5.1.12 publish_user_certificate

Publish a given certificate for the given principal under the attribute specified by the 
repository implementator as the default attribute for storing certificates to be 
interpreted as user certificates.

void publish_user_certificate(in PKIPrincipal principal,
                                      in PKI::Certificate certificate)
            raises(PKIRepository::UnknownPrincipal,
            PrincipalAttributeError,
            PKIRepository::RepositoryError);

principal The principal to which the certificate pair is bound.

attr_name The name of the attribute under which this certificate pair is 
stored in the repository entry of the principal.

principal The principal to which the certificate pair is bound.

certificate_pair The certificate pair to be deleted.

attr_name The name of the attribute under which this certificate pair is 
stored in the repository entry of the principal.
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Parameters

2.5.1.13 get_user_certificate

Get the certificate(s) for the given principal under the attribute specified by the 
repository implementator as the default attribute for storing certificates to be 
interpreted as user certificates.

PKI::CertificateList get_user_certificate(in PKIPrincipal principal)
            raises(UnknownPrincipal,RepositoryError);

Parameters

Return Value

PKI::CertificateList containing the list of requested user certificates.

2.5.1.14 delete_user_certificate

Delete the given certificate bound to the given principal under the attribute specified by 
the repository implementator as the default attribute for storing certificates to be 
interpreted as user certificates.

void delete_user_certificate(in PKIPrincipal principal,
                                     in PKI::Certificate certificate)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

Parameters

2.5.1.15 publish_ca_certificate

Publish a given certificate for the given principal under the attribute specified by the 
repository implementator as the default attribute for storing certificates to be 
interpreted as CA certificates.

void publish_ca_certificate(
            in PKIPrincipal principal,
            in PKI::Certificate certificate)

principal The principal to which the certificate is bound.

certificate The user certificate to be published.

principal The principal to which the certificate is bound.

principal The principal to which the certificate is bound.

certificate The user certificate to be deleted. 
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            raises(PKIRepository::UnknownPrincipal,
            PrincipalAttributeError,
            PKIRepository::RepositoryError);

Parameters

2.5.1.16 get_ca_certificates

Get the certificate(s) bound to the given principal under the attribute specified by the 
repository implementor as the default attribute for storing certificates to be interpreted 
as CA certificates.

PKI::CertificateList get_ca_certificates(in PKIPrincipal principal)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

Parameters

Return Value

PKI::CertificateList containing requested CA certificates.

2.5.1.17 delete_ca_certificate

Delete the given certificate bound to the given principal under the attribute specified by 
the repository implementator as the default attribute for storing certificates to be 
interpreted as CA certificates.

void delete_ca_certificate(in PKIPrincipal principal,
                                   in PKI::Certificate certificate)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);;

Parameters

2.5.1.18 publish_default_crl

Publish the given CRL for the given principal under the attribute specified by the 
repository implementor as the default attribute for storing CRLs.

principal The principal to which the CA certificate is bound.

certificate The certificate to be published. 

principal The principal to which the CA certificates are bound.

principal The principal to which the CA certificate is bound.

certificate The certificate to be deleted. 
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void publish_default_crl(in PKIPrincipal principal, in PKI::CRL crl)
         raises(PKIRepository::UnknownPrincipal,
         PrincipalAttributeError,
         PKIRepository::RepositoryError);

Parameters

2.5.1.19 get_default_crl

Get the CRL bound to the given principal under the attribute specified by the 
repository implementor as the default attribute for storing CRLs.

PKI::CRL get_default_crl(in PKIPrincipal principal)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

Parameters

Return Value

The PKI::CRL containing the requested CRL.

2.5.1.20 delete_default_crl

Delete the specified CRL bound to the given principal under the attribute specified by 
the repository implementor as the default attribute for storing CRLs. How the given 
CRL is matched against stored CRLs is provider implementation-dependent.

void delete_default_crl(in PKIPrincipal principal, in PKI::CRL crl)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

Parameters

2.5.1.21 publish_default_certificate_pair

Publish the given certificate pair for the given principal under the attribute specified by 
the repository implementor as the default attribute for storing certificate pairs.

principal The principal to which the CRL is bound.

crl The certificate revocation list to be published. 

principal The principal to which the CRL is bound.

principal The principal to which the CRL is bound.

crl The certificate revocation list to be deleted. 
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void publish_default_certificate_pair(in PKIPrincipal principal,
                                      in PKI::CertificatePair certificate_pair)
            raises(PKIRepository::UnknownPrincipal,
            PrincipalAttributeError,
            PKIRepository::RepositoryError);

Parameters

2.5.1.22 get_default_certificate_pair

Get the certificate pair(s) bound to the given principal under the attribute specified by 
the repository implementor as the default attribute for storing certificate pairs.

PKI::CertificatePairList get_default_certificate_pair
                           (in PKIPrincipal principal)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

Parameters

Return Value

PKI::CertificatePairList containing requested certificate pairs.

2.5.1.23 delete_default_certificate_pair

Delete the specified certificate pair bound to the given principal under the attribute 
specified by the repository implementor as the default attribute for storing certificate 
pairs. How the given certificate pair is matched against stored certificate pairs is 
provider implementation-dependent.

void delete_default_certificate_pair(in PKIPrincipal principal,
                                     in PKI::CertificatePair certificate_pair)
            raises(PKIRepository::UnknownPrincipal,
            PKIRepository::RepositoryError);

principal The principal to which the certificate pair is bound.

certificate_pair The certificate pair to be published. 

principal The principal to which the certificate pairs are bound.
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Parameters

2.5.1.24 publish_delta_crl

Publish the given delta CRL for the given principal under the attribute specified by the 
repository implementor as the default attribute for storing delta CRLs

void publish_delta_crl(in PKIPrincipal principal, in PKI::CRL delta_crl);

Parameters

2.5.1.25 get_delta_crl

Get the delta CRL bound to the given principal under the attribute specified by the 
repository implementor as the default attribute for storing delta CRLs.

PKI::CRL get_delta_crl(in PKIPrincipal principal)
          raises(PKIRepository::UnknownPrincipal, PrincipalAttributeError,
          PKIRepository::RepositoryError);

Parameters

Return Value

PKI::CRL containing the requested delta CRL.

2.5.1.26 delete_delta_crl

Delete the specified delta CRL bound to the given principal under the attribute 
specified by the repository implementor as the default attribute for storing delta CRLs. 
How the given CRL is matched against stored CRLs is provider implementation-
dependent.

void delete_delta_crl(in PKIPrincipal principal, in PKI::CRL delta_crl)
          raises(PKIRepository::UnknownPrincipal,
          PKIRepository::RepositoryError);

principal The principal to which the certificate pairs are bound.

certificate_pair The certificate pair to be deleted.

principal The principal to which the delta CRL is bound.

delta_crl The delta CRL to be published.

principal The principal to which the delta CRL is bound.
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Parameters

2.5.1.27 publish_arl

Publish the given ARL for the given principal under the attribute specified by the 
repository implementor as the default attribute for storing ARLs.

void publish_arl(in PKIPrincipal principal, in PKI::CRL arl)
          raises(PKIRepository::UnknownPrincipal,
          PrincipalAttributeError,
          PKIRepository::RepositoryError);;

Parameters

2.5.1.28 get_arl

Get the ARL bound to the given principal under the attribute specified by the 
repository implementor as the default attribute for storing ARLs.

PKI::CRL get_arl(in PKIPrincipal principal)
          raises(PKIRepository::UnknownPrincipal,
          PKIRepository::RepositoryError);;

Parameters

Return Value

PKI::CRL containing the requested ARL.

2.5.1.29 delete_arl

Delete the specified ARL bound to the given principal under the attribute specified by 
the repository implementor as the default attribute for storing ARLs. How the given 
ARL is matched against stored ARLs is provider implementation-dependent.

void delete_arl(in PKIPrincipal principal, in PKI::CRL arl)
          raises(PKIRepository::UnknownPrincipal,
          RPKIRepository::epositoryError);

principal The principal to which the delta CRL is bound.

delta_crl The delta CRL to be deleted.

principal The principal to which the ARL is bound.

arl The ARL to be published.

principal The principal to which the ARL is bound.
2-28  Public Key Infrastructure, v1.0 September 2002



2

Parameters

principal The principal to which the ARL is bound.

arl The ARL to be deleted.
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OMG IDL A
A.1 PKI

#ifndef __PKI_IDL
#define __PKI_IDL

#pragma prefix “omg.org”

module PKI {

typedef sequence <octet> Opaque;

//Certificate Types
typedef unsigned long CertificateType;
const CertificateType UnknownCertificate = 0;
const CertificateType X509v1Certificate = 1;
const CertificateType X509v2Certificate = 2;
const CertificateType X509v3Certificate = 3;
const CertificateType PGPCertificate = 4;
const CertificateType SPKICertificate = 5;
const CertificateType X509v1AttributeCertificate = 6;
const CertificateType CustomCertificate = 0x8000;

typedef sequence <CertificateType> CertificateTypeList;

//Certificate Encoding Types
typedef unsigned long EncodingType;
const EncodingType UnknownEncoding = 0;
const EncodingType DEREncoding = 1;
const EncodingType BEREncoding = 2;
const EncodingType Base64Encoding = 3;
const EncodingType SExprEncoding = 4;
const EncodingType CustomEncoding = 0x8000;

// A representation type to deal with current existing PKI implementations
// and standards.
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struct RepresentationType EncodedData {
EncodingType encoding_type;
Opaque data;

};

typedef unsigned long AuthorityInfoType;
const AuthorityInfoType UnkownMessage = 0;
const AuthorityInfoType PKIXCMPGeneralMessage = 1;
const AuthorityInfoType CustomMessage = 0x8000;

struct AuthorityInfo {
AuthorityInfoType authority_info_type;
RepresentationType representation_type;

};

//
// Certificate information - used in both the Certificate definition
// and the PKIAuthority::RegistrationAuthorityProviderInfo definition.
//
struct CertificateInfo {
CertificateType certificate_type;
EncodingType encoding_type;
};
typedef sequence<CertificateInfo> CertificateInfoList;

//Certificate
valuetype Certificate {

private CertificateType certificate_type;
private EncodedData data;

};

typedef sequence <Certificate> CertificateList;

//CRL Types
typedef unsigned long CRLType;
const CRLType UnknownCRL = 0;
const CRLType X509v1CRL = 1;
const CRLType X509v2CRL = 2;
const CRLType X509V1ARL = 3;
const CRLType CustomCRL = 0x8000;

typedef sequence <CRLType> CRLTypeList;

// Information about a CRL
struct CRLInfo {
CRLType crl_type;
EncodingType encoding_type;
};

typedef sequence<CRLInfo> CRLInfoList;

valuetype  CRL {
        private CRLType crl_type;
        private EncodedData data;
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};

//Certificate Request Type
typedef unsigned long CertificateRequestType;
const CertificateRequestType UnknownCertificateRequest = 0;
const CertificateRequestType PKCS10CertificateRequest = 1;
const CertificateRequestType PKIXCRMFCertificateRequest = 2;
const CertificateRequestType PKIXCMCCertificateRequest = 3;
const CertificateRequestType CustomCertificateRequest = 0x8000;

typedef sequence <CertificateRequestType> CertificateRequestTypeList;

// Information about a certificate request
struct CertificateRequestInfo {

CertificateRequestType cert_request_type;
EncodingType encoding_type;

};
typedef sequence<CertificateRequestInfo> CertificateRequestInfoList;

//Certificate Request
struct CertificateRequest {

valuetype CertificateRequest {
      private CertificateRequestType cert_request_type;
      private EncodedData data;
    };

struct CertificatePair {
Certificate forward;
Certificate reverse;

};
typedef sequence<CertificatePair> CertificatePairList;

//ContinueType
typedef unsigned long ContinueType;
const ContinueType UnknownContinue = 0;
const ContinueType PKIXCMPContinue = 1;
const ContinueType PKIXCMCContinue = 2;
const ContinueType PKIXCMPConfirm = 3;
const ContinueType PKIXCMCConfirm = 4;
const ContinueType CustomContinue = 0x8000;

//Continue Structure
valuetype Continue {

private ContinueType continue_type;
        private EncodedData data;

};

//ContinueData
// Request indicates from client to target message exchange
typedef Continue RequestData;

//ContinueResponse
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// Response indicates from target to client message exchange
typedef Continue ResponseData;

// ConfirmData
typedef Continue ConfirmData;

//Certificate Revocation Type
typedef unsigned long CertRevocationType;
const CertRevocationType UnknownCertRevocation = 0;
const CertRevocationType PKIXCMPCertRevocation = 1;
const CertRevocationType PKIXCMCCertRevocation = 2;
const CertRevocationType CustomCertRevocation = 0x8000;

// Information about Certificate revocation
struct CertificateRevocationInfo {

CertRevocationType cert_rev_type;
EncodingType encoding_type;

};
typedef sequence <CertificateRevocationInfo> CertificateRevocationInfoList;

//Certificate Revocation

valuetype CertRevocation {
       private CertRevocationType cert_rev_type;
        private EncodedData data;

};

//Certificate Revocation Respone
typedef CertRevocation CertRevResponse;
typedef CertRevocation CertRevRequest;

//Key Recovery Type
typedef unsigned long KeyRecoveryType;
const KeyRecoveryType UnkownKeyRecovery = 0;
const KeyRecoveryType PKIXCMPKeyRecovery = 1;
const KeyRecoveryType PKIXCMCKeyRecovery = 2;
const KeyRecoveryType CustomKeyRecovery = 0x8000;

// Information about key recovery
struct KeyRecoveryInfo {

KeyRecoveryType key_rec_type;
EncodingType encoding_type;

};
typedef sequence <KeyRecoveryInfo> KeyRecoveryInfoList;

//Key Recovery Response
valuetype KeyRecResponse {

        private KeyRecoveryType key_recovery;
       private EncodedData data;

};

//OCSP
//Certificate status request type
typedef unsigned long CertificateStatusRequestType;
const CertificateStatusRequestType
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UnknownCertificateStatusRequestType = 0;
const CertificateStatusRequestType

OCSPCertificateStatusRequest = 1;
const CertificateStatusRequestType

CustomCertificateStatusRequest = 0x8000;

//Type for certificate status requests
valuetype CertificateStatusRequest {

        private CertificateStatusRequestType type;
        private EncodedData data;

};

//Certificate status response type
typedef unsigned long CertificateStatusResponseType;
const CertificateStatusResponseType

UnknownCertificateStatusResponseType = 0;
const CertificateStatusResponseType

OCSPCertificateStatusResponse = 1;
const CertificateStatusResponseType

CustomCertificateStatusResponse = 0x8000;

//Type for certificate status responses
valuetype CertificateStatusResponse {

        private CertificateStatusResponseType type;
        private EncodedData data;

};

typedef unsigned long PKIStatus;
const PKIStatus PKISuccess = 0;
const PKIStatus PKISuccessWithWarning = 1;
const PKIStatus PKIContinueNeeded = 2;
const PKIStatus PKIFailed = 3;
const PKIStatus PKIPending = 4;
const PKIStatus PKISuccessAfterConfirm = 5;
};

#endif

A.2 PKIAuthority

#ifndef __PKIAUTHORITY_IDL
#define __PKIAUTHORITY_IDL

#include <PKI.idl>
#include <PKIRepository.idl>

#pragma prefix “omg.org”

module PKIAuthority {

// Forward declaration...
interface CertificateStatusResponder;
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interface RequestManager;
interface RequestCertificateManager;
interface RequestRevocationManager;
interface RequestKeyUpdateManager;
interface RequestKeyRecoveryManager;

valuetype AuthorityProviderInfo {
public string standardVersion;
public string standardDescription;
public string productVersion;
public string productDescription;
public string productVendor;
public PKI::CertificateInfoList supportedCertificates;
public PKI::CRLInfoList supportedCRLs;
public PKI::CertificateRequestInfoList supportedCertRequestTypes;
public PKI::CertificateRevocationInfoList supportedCertRevocationTypes;
public PKI::KeyRecoveryInfoList supportedKeyRecoveryTypes; 
public PKI::Certificate publicKey;
public string providerHomeURL;
public string providerPublicKeyURL;

};

exception UnsupportedTypeException {
        string description;

};

exception UnsupportedEncodingException {
        string description;

};

exception MalformedDataException {
        string description;

};

exception UnexpectedContinueException {
string description;

};

interface RegistrationAuthority {

AuthorityProviderInfo get_provider_info();

PKI::PKIStatus get_authority_info(
in PKI::AuthorityInfo authority_info_req,
out PKI::AuthorityInfo authority_info_resp
)
raises(UnsupportedTypeException,UnsupportedEncodingException,

 MalformedDataException);

RequestCertificateManager request_certificate
(in PKI::CertificateRequest certificate_request)
raises(UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);
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RequestRevocationManager request_revocation
(in PKI::CertRevRequest      cert_rev_request)
raises(UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);

RequestKeyUpdateManager request_key_update
(in PKI::CertificateRequest   key_request)
raises(UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);

RequestKeyRecoveryManager request_key_recovery
(in PKI::CertificateRequest   key_request)
raises(UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);
};

interface CertificateAuthority : RegistrationAuthority {

PKI::PKIStatus get_ca_certificate(
out PKI::CertificateList certificate_list)
raises (UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);

PKI::PKIStatus get_crl (out PKI::CRL crl);

CertificateStatusResponder get_certificate_status_responder();

PKIRepository::Repository get_repository()
raises(PKIRepository::RepositoryError);

};

abstract interface RequestManager {

readonly attribute PKI::PKIStatus status;

readonly attribute long transaction_ID;

void confirm_content(in PKI::ConfirmData     confirm_data)
raises (UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);
};

interface RequestCertificateManager : RequestManager {

void continue_request_certificate
(in PKI::RequestData request_data,
in PKI::CertificateList certificates)
raises (UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);

PKI::PKIStatus get_certificate_request_result
(out  PKI::CertificateList certificates,
out PKI::ResponseData response_data)
raises (UnsupportedTypeException,UnsupportedEncodingException,
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MalformedDataException);
};

interface RequestRevocationManager : RequestManager {

void continue_request_revocation
(in PKI::RequestData request_data)
raises (UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);

PKI::PKIStatus get_request_revocation_result
(out PKI::CertRevResponse cert_rev_response,
out PKI::ResponseData response_data)
raises (UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);
};

interface RequestKeyUpdateManager : RequestManager {

void continue_key_update
(in PKI::RequestData request_data,
in PKI::Certificate certificate)
raises (UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);

PKI::PKIStatus get_request_key_update_result
(out PKI::Certificate certificate,
out PKI::ResponseData response_data)
raises (UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);
};

interface RequestKeyRecoveryManager : RequestManager {

void continue_key_recovery
(in PKI::RequestData request_data)
raises (UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);

PKI::PKIStatus get_request_key_recovery_result
(out PKI::ResponseData response_data)
raises (UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);
};

interface CertificateStatusResponder {

PKI::PKIStatus request_certificate_status(
in PKI::CertificateStatusRequest request,
out PKI::CertificateStatusResponse response)
raises (UnsupportedTypeException,UnsupportedEncodingException,

MalformedDataException);
};

};
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#endif

A.3 PKIRepository
// PKIRepository.idl
#ifndef __PKIREPOSITORY_IDL
#define __PKIREPOSITORY_IDL

#include <PKI.idl>
#pragma prefix "omg.org"

module PKIRepository {

valuetype RepositoryProviderInfo {
public string standardDescription;
public string standardVersion;
public string productDescription;
public string productVersion;
public string productVendor;
public PKI::CertificateInfoList supportedCertificates;
public PKI::CRLInfoList supportedCRLs;
public PKI::CertificateInfoList supportedCrossCertificates;

};

exception UnknownPrincipal {
string name;

};
exception RepositoryError {

string name;
};
exception DuplicatePrincipal {

string name;
};

valuetype PKIPrincipalValue {
private string name;
private PKI::CertificateList certificates;
private PKI::CertificatePairList;
private PKI::CRL crl;
private PKI::CRL delta;
private PKI::CRL arl;

};

interface Repository {

readonly attribute RepositoryProviderInfo info;

void publish( in PKIPrincipalValue principal )
raises ( DuplicatePrincipal, RepositoryError );

PKIPrincipalValue locate ( in string name )
raises ( UnknownPrincipal, RepositoryError );

void delete ( in string name )
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raises ( UnknownPrincipal, RepositoryError );

void update ( in PKIPrincipalValue principal )
raises ( UnknownPrincipal, RepositoryError);

};
};
#endif

A.4 PKIExtension
// PKIExtension.idl
#include<PKI.idl>
#include<PKIRepository.idl>

module PKIExtension {

valuetype RepositoryMappingInfo {
public string user_attribute_name;
public string ca_attribute_name;
public string crl_attribute_name;
public string certificatePair_attribute_name;
public string deltaCRL_attribute_name;
public string arl_attribute_name;
};

typedef string PKIName;
typedef sequence <PKIName> PKINameList;

struct PKIAttribute {
string name;
any value;

};
typedef sequence <PKIAttribute> PKIAttributeList;

struct PKIPrincipal {
PKIName name;
PKIAttributeList attributes;

};

struct Schema {
PKIAttributeList attribute_defs;
PKIAttributeList syntax_defs;

};

enum PrincipalAttributeErrorReason {
MissingPKIAttributes,
InvalidPKIAttributes

};

exception PrincipalAttributeError {
PrincipalAttributeErrorReason reason;
PKIPrincipal principal;
PKINameList attribute_names;

};
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// renamed to LDAPRepository
interface LDAPRepository : PKIRepository::Repository {

// New method
RepositoryMappingInfo mapping();

Schema get_schema();

void publish_certificate(
in PKIPrincipal principal,
in PKI::Certificate certificate, in string attr_name)
raises (PKIRepository::UnknownPrincipal,
PrincipalAttributeError,
PKIRepository::RepositoryError);

PKI::CertificateList get_certificate(
in PKIPrincipal principal, in string attr_name)
raises (PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void delete_certificate(
in PKIPrincipal principal,
in PKI::Certificate certificate, in string attr_name)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void publish_crl(in PKIPrincipal principal, in PKI::CRL crl,
in string attr_name)
raises(PKIRepository::UnknownPrincipal,
PrincipalAttributeError,
PKIRepository::RepositoryError);

PKI::CRL get_crl(in PKIPrincipal principal, in string attr_name)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void delete_crl(in PKIPrincipal principal,
in PKI::CRL crl,in string attr_name)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void publish_certificate_pair(
in PKIPrincipal principal, in PKI::CertificatePair certPair,
in string attr_name)
raises(PKIRepository::UnknownPrincipal,
PrincipalAttributeError,
PKIRepository::RepositoryError);

PKI::CertificatePairList get_certificate_pair(
in PKIPrincipal principal, in string attr_name)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void delete_certificate_pair(
in PKIPrincipal principal,
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in PKI::CertificatePair certificate_pair,
in string attr_name)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void publish_user_certificate(in PKIPrincipal principal,
in PKI::Certificate certificate)
raises(PKIRepository::UnknownPrincipal,
PrincipalAttributeError,
PKIRepository::RepositoryError);

PKI::CertificateList get_user_certificate(in PKIPrincipal principal)
raises(UnknownPrincipal,RepositoryError);

void delete_user_certificate(in PKIPrincipal principal,
in PKI::Certificate certificate)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void publish_ca_certificate(
in PKIPrincipal principal,
in PKI::Certificate certificate)
raises(PKIRepository::UnknownPrincipal,
PrincipalAttributeError,
PKIRepository::RepositoryError);

PKI::CertificateList get_ca_certificates(in PKIPrincipal principal)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void delete_ca_certificate(in PKIPrincipal principal,
in PKI::Certificate certificate)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void publish_default_crl(in PKIPrincipal principal, in PKI::CRL crl)
raises(PKIRepository::UnknownPrincipal,
PrincipalAttributeError,
PKIRepository::RepositoryError);

PKI::CRL get_default_crl(in PKIPrincipal principal)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void delete_default_crl(in PKIPrincipal principal, in PKI::CRL crl)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void publish_default_certificate_pair(in PKIPrincipal principal,
in PKI::CertificatePair certificate_pair)
raises(PKIRepository::UnknownPrincipal,
PrincipalAttributeError,
PKIRepository::RepositoryError);
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PKI::CertificatePairList get_default_certificate_pair(
in PKIPrincipal principal)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void delete_default_certificate_pair(in PKIPrincipal principal,
in PKI::CertificatePair certificate_pair)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void publish_delta_crl(in PKIPrincipal principal,
in PKI::CRL delta_crl)
raises(PKIRepository::UnknownPrincipal, PrincipalAttributeError,
PKIRepository::RepositoryError);

PKI::CRL get_delta_crl(in PKIPrincipal principal)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void delete_delta_crl(in PKIPrincipal principal, in PKI::CRL delta_crl)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void publish_arl(in PKIPrincipal principal, in PKI::CRL arl)
raises(PKIRepository::UnknownPrincipal,
PrincipalAttributeError,
PKIRepository::RepositoryError);

PKI::CRL get_arl(in PKIPrincipal principal)
raises(PKIRepository::UnknownPrincipal,
PKIRepository::RepositoryError);

void delete_arl(in PKIPrincipal principal, in PKI::CRL arl)
raises(PKIRepository::UnknownPrincipal,
RPKIRepository::epositoryError);

};
};
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Conformance Issues B
B.1 Introduction

This appendix specifies the conformance requirements to be met for an implementation 
to be conformant to the CORBA Public Key Infrastructure.

B.2 Conformance

There are 2 defined levels of conformance for the CORBA Public Key Infrastructure.

B.2.1 Level 1 : Polling Only 

The first defined conformance level is for implementations that support polling only. 
For conformance to this level the following must be supported.

• Module PKIAuthority

• Interface RegistrationAuthority

• Interface CertificateAuthority

• Interface RequestManager

• Interface RequestCertificateManager

• Interface RequestRevocationManager

• Interface RequestKeyUpdateManager

• Interface RequestkeyRecoveryManager

• Module PKIRepository

• All specified constructs and interfaces

B.2.2 Level 2 : Polling and Callback

The second defined conformance level is for implementations that support both polling 
and callbacks. For conformance to this level the following must be supported.
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• Module PKI

• All specified constructs must be supported.

• Module PKIAuthority

• Interface RegistrationAuthority_CB

• Interface CertificateAuthority_CB

• Interface RequestManager

• Interface RequestCertificateManager

• Interface RequestRevocationManager

• Interface RequestKeyUpdateManager

• Interface RequestkeyRecoveryManager

• Interface CertificateCallback

• Interface RevocationCallback

• Interface KeyUpdateCallback

• Interface KeyRecoveryCallback

• Module PKIRepository

• All specified constructs and interfaces
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