
Property Service Specification

Version 1.0
New Edition: April 2000

 paid up,
ified
 copyright
ving

ire use
y be
at are
r

 an
ent does

 or c
s listed
s be the
marks or
rotected
form or
nd

 in

IDL,
, Inc.
Copyright 1999, FUJITSU LIMITED
Copyright 1999, INPRISE Corporation
Copyright 1999, IONA Technologies PLC
Copyright 1999, Objectivity Inc.
Copyright 1991, 1992, 1995, 1996, 1999 Object Management Group, Inc.
Copyright 1999, Oracle Corporation
Copyright 1999, Persistence Software Inc.
Copyright 1999, Secant Technologies Inc.
Copyright 1999, Sun Microsystems Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, relianceover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holder
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all time
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trade
other special designations to indicate compliance with these materials. This document contains information which is p
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage a
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group
X/Open is a trademark of X/Open Company Ltd.

ers to
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii
iii

 iii

 iv

 iv

1-1
1-1
-2
-2
-3

1-4

-1
2-1
2-2

2-5
-6

-10
-11
2

-13

-15
-15
15

-16
Preface .
About the Object Management Group

What is CORBA?.

Associated OMG Documents .

Acknowledgments .

1. Service Description .
1.1 Overview .

1.1.1 Client’s Model of Properties 1
1.1.2 Object’s Model of Properties 1
1.1.3 OMG IDL Interface Summary 1

1.2 Summary of Key Features .

2. Property Service Interfaces . 2
2.1 CosPropertyService Module .

2.1.1 Data Types .

2.2 PropertySet Interface .
2.2.1 Defining and Modifying Properties 2

2.3 PropertySetDef Interface . 2
2.3.1 Retrieval of PropertySet Constraints. 2
2.3.2 Defining and Modifying Properties with Modes 2-1
2.3.3 Getting and Setting Property Modes 2

2.4 PropertiesIterator Interface . 2
2.4.1 Resetting the Position in an Iterator 2
2.4.2 Destroying the Iterator 2-

2.5 PropertyNamesIterator Interface . 2
Property Service V1.0 April 2000 i

Contents

-16
16

-16

-17
2.5.1 Resetting the Position in an Iterator 2
2.5.2 Destroying the Iterator 2-

2.6 PropertySetFactory Interface . 2

2.7 PropertySetDefFactory Interface . 2

 Appendix A - OMG IDL . A-1
ii Property Service V1.0 April 2000

Preface
rted
 and
nted

ide a
,
ous
p a

ed.

ted,
ey
bject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
Property Service V1.0 April 2000 iii

ards
o

only
e

mat.
ons,

y
Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It defines the umbrella architecture for the OMG standards. It als
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards
when representatives of the OMG membership accept them as such by vote. (Th
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320
pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of the CORBA Services
specifications:

• AT&T/Lucent Technologies, Inc.

• AT&T/NCR

• BNR Europe Limited

• Cooperative Research Centre for Distributed Systems Technology (DSTC Pt
Ltd).

• Digital Equipment Corporation
iv Property Service V1.0 April 2000

• Gradient Technologies, Inc.

• Groupe Bull

• Hewlett-Packard Company

• HyperDesk Corporation

• ICL plc

• Ing. C. Olivetti & C.Sp

• International Business Machines Corporation

• International Computers Limited

• Iona Technologies Ltd.

• Itasca Systems, Inc.

• Nortel Limited

• Novell, Inc.

• 02 Technologies

• Object Design, Inc.

• Object Management Group, Inc.

• Objectivity, Inc.

• Ontos, Inc.

• Oracle Corporation

• Persistence Software

• Servio, Corp.

• Siemens Nixdorf Informationssysteme AG

• Sun Microsystems, Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Taligent, Inc.

• Tandem Computers, Inc.

• Teknekron Software Systems, Inc.

• Tivoli Systems, Inc.

• Transarc Corporation

• Versant Object Technology Corporation
Property Service V1.0 Acknowledgments April 2000 v

vi Property Service V1.0 April 2000

Service Description 1
. The
y

e of

t
; it

 part

iated

Contents

This chapter contains the following topics.

1.1 Overview

An object supports an interface. An interface consists of operations and attributes
interface is statically defined in OMG IDL. Two objects are of the same type if the
support the same interface.

Properties are typed, named values dynamically associated with an object, outsid
the type system. There are many useful cases for properties. For example:

• Object Classification -- A particular document may be classified as important; i
must be read by the end of the day. Another document is marginally important
must be read by the end of the month. Yet another document is not marked
important. The classification of the document was invented by the user. It is not
of the document’s type. However, a user may use a standard utility to find all
documents marked important.

• Object Usage Count -- An on-line service download utility increments a counter
every time an object has been downloaded by a user. The information is assoc
with the object but it is not part of the object’s type.

The property service implements objects supporting the PropertySet interface or the
PropertySetDef interface. The PropertySet interface supports a set of properties. A
property is two tuple of: <property_name , property_value> .

Topic Page

“Overview” 1-1

“Summary of Key Features” 1-4
Property Service V1.0 April 2000 1-1

1

donly

ail.

ith an
ce of

ode.

ber
tions

ence

s

ch,
e

• property_name is a string that names the property.

• property_value is of type any and carries the value assigned to the property.

The PropertySetDef interface is a specialization (subclass) of the PropertySet
interface that exposes the characteristics (or metadata) of each property (e.g., rea
or read/write access). In general, this specification will use the term PropertySet to
refer to the collection of properties and will only use the term PropertySetDef when
explicitly referring to operations related to property metadata.

The association of properties with an object is considered an implementation det
This property service specification allows for the creation of PropertySets or
PropertySetDefs via factory interfaces, or an object may inherit the PropertySet or
PropertySetDef interfaces.

1.1.1 Client’s Model of Properties

As with CORBA attributes, clients can get and set property values. However, with
properties, clients can also dynamically create and delete properties associated w
object. Clients can manipulate properties individually or in batches using a sequen
the Property data type called Properties.

In addition, when using objects that support the PropertySetDef interface, clients can
create and manipulate properties and their characteristics, such as the property m
The PropertySetDef interface also provides operations for clients to retrieve
constraint information about a PropertySet , such as allowed property types.

To aid in the client’s view of properties associated with an object, the client may
request a list of property names (PropertyNames) or the number of properties.

Iterators are used by the property service to return lists of properties when the num
of properties exceeds that which is expected by the client. Iterators contain opera
that allow clients fine-grained control over the enumeration of properties.

1.1.2 Object’s Model of Properties

Every object that wishes to provide a property service must support either the
PropertySet or PropertySetDef interface. PropertySet is the interface that
provides operations for defining, deleting, enumerating and checking for the exist
of properties. The PropertySetDef interface is a subclass of PropertySet that
provides operations to retrieve PropertySet constraints, define, and modify propertie
with modes, and to get and set property modes.

Subclasses of PropertySet or PropertySetDef may impose restrictions on some or
all of the properties they store.

Properties are intended to be the dynamic equivalent of CORBA attributes. As su
the PropertySet interface provides exceptions to allow implementors to support th
concepts of a readonly property and a fixed property (i.e., a property that cannot be
deleted). In addition, the PropertySetDef interface provides operations for
1-2 Property Service V1.0 April 2000

1

ty
implementors to declare their PropertySet constraints to clients. This mechanism is
for those implementations that need the dynamics of properties, yet want the interface
control of CORBA attributes.

A PropertySet object may support the storage of property data types itself, or there
may be a “generic” PropertySet implementation that handles the parsing of proper
data types and the memory management associated with storing properties. This is
considered an implementation detail.

When a PropertySet object receives a define_p roperty request from a client, it
must ensure there are no property_name conflicts and then retain the property
information such that the object can later respond to get_property, delete_p roperty,
and is_p roperty_def ined requests from clients.

When a PropertySet object receives a define_p roperty request to an existing
property from a client, it must ensure that the any TypeCode of the property_value
of the request matches the existing property’s any TypeCode .

Use of property modes within a PropertySet is an implementation issue, as clients
can neither access nor modify a property mode. For example, an implementation may
define some initial readonly properties at create time and raise the
ReadOnlyProperty exception if a client attempts to define a new property value.

1.1.3 OMG IDL Interface Summary

The property service defines interfaces to support functionality described in the
previous sections. The following table gives a high-level description of the property
service interfaces.

Table 1-1 Property Service Interfaces

In ter face Purpose

PropertySet Supports operations for defining, deleting, enumerating
and checking for the existence of properties.

PropertySetDef Supports operations for retrieving PropertySet
constraints and getting and setting property modes.

PropertiesIterator Supports operations to allow clients fine-grained
control over the enumeration of properties.

PropertyNamesIterator Supports operations to allow clients fine-grained
control over the enumeration of property names.

PropertySetFactory Creates PropertySets.

PropertySetDefFactory Creates PropertySetDefs.
Property Service V1.0 Overview April 2000 1-3

1

 the

value-
L

-

aling

1.2 Summary of Key Features

The following are key features of the Property Service:

• Provides the ability to dynamically associate named values with objects outside
static IDL-type system.

• Defines operations to create and manipulate sets of name-value pairs or name-
mode tuples. The names are simple OMG IDL strings. The values are OMG ID
anys. The use of type any is significant in that it allows a property service
implementation to deal with any value that can be represented in the OMG IDL
type system. The modes are similar to those defined in the Interface Repository
AttributeDef interface.

• Designed to be a basic building block, yet robust enough to be applicable for a
broad set of applications.

• Provides “batch” operations to deal with sets of properties as a whole.

The use of “batch” operations is significant in that the systems and network
management (SNMP, CMIP, ...) communities have proven such a need when de
with “attribute” manipulation in a distributed environment.

• Provides exceptions such that PropertySet implementors may exercise control of
(or apply constraints to) the names and types of properties associated with an
object, similar in nature to the control one would have with CORBA attributes.

• Allows PropertySet implementors to restrict modification, addition and/or
deletion of properties (readonly, fixed) similar in nature to the restrictions one
would have with CORBA attributes.

• Provides client access and control of constraints and property modes.

• Does not rely on any other object services.
1-4 Property Service V1.0 April 2000

 Property Service Interfaces 2
ts
Contents

This chapter contains the following topics.

2.1 CosPropertyService Module

The CosPropertyService module defines the entire property service, which consis
of data types, exceptions and the following interfaces:

• PropertySet

• PropertySetDef

• PropertySetFactory

• PropertySetDefFactory

• PropertiesIterator

• PropertyNamesIterator

Topic Page

“CosPropertyService Module” 2-1

“PropertySet Interface” 2-5

“PropertySetDef Interface” 2-10

“PropertiesIterator Interface” 2-15

“PropertyNamesIterator Interface” 2-16

“PropertySetFactory Interface” 2-16

“PropertySetDefFactory Interface” 2-17
Property Service V1.0 April 2000 2-1

2

ata

sed

the
2.1.1 Data Types

The CosPropertyService module provides a number of structure and sequence d
types to manipulate PropertySet and PropertySetDef information.

/***/
/* Data Types */
/***/

typedef string PropertyName;
struct Property {
PropertyName property_name;
any property_value;

};

enum PropertyModeType {
normal,
read_only,
fixed_normal,
fixed_readonly,
undefined
};

struct PropertyDef {
PropertyName property_name;
any property_value;
PropertyModeType property_mode;
};

struct PropertyMode {
PropertyName property_name;
PropertyModeType property_mode;

};

typedef sequence<PropertyName> PropertyNames;
typedef sequence<Property> Properties;
typedef sequence<PropertyDef> PropertyDefs;
typedef sequence<PropertyMode> PropertyModes;
typedef sequence<TypeCode> PropertyTypes;

A property is a two tuple of: <property_name , property_value> .

• property_name is a string, which names the property.

• property_value is of type any and carries the value assigned to the property.

This data type is considered the base type for dealing with property data and is u
throughout the PropertySet interface.

Clients can manipulate properties individually or in batches using a sequence of
Property data type called Properties or, when appropriate, a sequence of the
PropertyName data type called PropertyNames .
2-2 Property Service V1.0 April 2000

2

ata

rty

ence

ce of

w

nly

 to

t the

.,
A PropertyDef is a three tuple of: <property_name , property_value ,
property_mode_type> .

• property_name is a string, which names the property.

• property_value is of type any and carries the value assigned to the property.

• property_mode_type is an enumeration that defines the characteristics of the
property.

A property definition combines property characteristics (metadata) and property d
information and is used in the PropertySetDefFactory and PropertySetDef
interfaces. The PropertyDef data type provides clients access and control of prope
metadata.

Clients can manipulate property definitions individually or in batches using a sequ
of the PropertyDef data type called PropertyDefs .

A PropertyMode is a two tuple of: <property_name , property_mode_type> .

• property_name is a string, which names the property.

• property_mode_type is an enumeration that defines the characteristics of the
property.

The PropertyMode data type is used in the PropertySetDef interface and provides
clients access and control of property metadata.

Clients can manipulate property modes individually or in batches using a sequen
the PropertyMode data type called PropertyModes .

There are five mutually exclusive property mode types defined:

1. Normal means there are no restrictions to the property. A client may define ne
values to an existing property or delete this property.

2. Readonly means clients can only get the property information. However, a reado
property may be deleted.

3. Fixed_Normal means the property cannot be deleted. However, clients are free
define new values to an existing property.

4. Fixed_Readonly means the property cannot be deleted and clients can only ge
property information.

5. Undefined is used to signify PropertyNotFound when requesting a multiple get
mode request. Using this on an operation that sets the mode of a property (e.g
set_mode or define_property_with_mode) will raise the UnsupportedMode
exception.

Restrictions on the property_mode_type field is an implementation issue. For
example, a PropertySetDef implementation may choose to not support a client
setting a property to the fixed_readonly mode.
Property V1.0 CosPropertyService Module April 2000 2-3

2

2.1.1.1 Exceptions

The PropertySet interface supports the following exceptions.

/***/
/* Exceptions */
/***/

exception ConstraintNotSupported{};
exception InvalidPropertyName {};
exception ConflictingProperty {};
exception PropertyNotFound {};
exception UnsupportedTypeCode {};
exception UnsupportedProperty {};
exception UnsupportedMode {};
exception FixedProperty {};
exception ReadOnlyProperty {};

enum ExceptionReason {
invalid_property_name,
conflicting_property,
property_not_found,
unsupported_type_code,
unsupported_property,
unsupported_mode,
fixed_property,
read_only_property

};

struct PropertyException {
ExceptionReason reason;
PropertyName failing_property_name;

};

typedef sequence<PropertyException> PropertyExceptions;

exception MultipleExceptions {
PropertyExceptions exceptions;

};

• ConstraintNotSupported

Indicates that either the allowed_property_types , allowed_properties , or
allowed_property_defs parameter could not be properly supported by this
PropertySet or PropertySetDef .

• InvalidPropertyName

Indicates that the supplied property_name is not valid. For example, a
property_name of length 0 is invalid. Implementations may place other
restrictions on property_name .

• ConflictingProperty
2-4 Property Service V1.0 April 2000

2

he

t

e

Indicates that the user is trying to modify an existing property_name with an any
TypeCode in a property_value that is different from the current.

• PropertyNotFound

Indicates that the supplied property_name is not in the PropertySet .

• UnsupportedTypeCode

Indicates that a user is trying to define a property having an any TypeCode that is
not supported by this PropertySet .

• UnsupportedProperty

Indicates that a user is trying to define a property not supported by this
PropertySet .

• FixedProperty

Indicates that a user is trying to delete a property that the PropertySet considers
undeletable.

• ReadOnlyProperty

This indicates that a user is trying to modify a property that the PropertySet
considers to be readonly .

• MultipleExceptions

This exception is used to return a sequence of exceptions when dealing with t
“batch” operations of define_properties and delete_all_properties in the
PropertySet interface, define_properties_with_modes , and
set_property_modes in the PropertySetDef interface,
create_initial_propertyset in the PropertySetFactory interface, and
create_initial_propertysetdef in the PropertySetDefFactory interface. Each
operation defines the valid entries that may occur in the sequence.

A PropertyException is a two tuple of: <reason , failing_property_name> .

• reason is an enumeration reflecting one of the exceptions defined above.

• failing_property_name is a string, which names the property.

The sequence of property exceptions returned as MultipleExceptions is the
PropertyExceptions data type.

2.2 PropertySet Interface

The PropertySet interface provides operations to define and modify properties, lis
and get properties, and delete properties.

The PropertySet interface also provides “batch” operations, such as
define_properties , to deal with sets of properties as a whole. The execution of th
“batch” operations is considered best effort (i.e., not an atomic set) in that not all
suboperations need succeed for any suboperation to succeed.
Property V1.0 PropertySet Interface April 2000 2-5

2

e to

ired

ty

not
For define_properties and delete_properties , if any suboperation fails, a
MultipleExceptions exception is returned to identify which property name had
which exception.

For example, a client may invoke define_properties using three property structures.
The first property could be accepted (added or modified), the second could fail du
an InvalidPropertyName, and the third could fail due to a ConflictingProperty. In
this case a property is either added or modified in the PropertySet , and a
MultipleExceptions is raised with two items in the PropertyExceptions sequence.

The get_properties and delete_all_properties “batch” operations utilize a boolean
flag to identify that mixed results occurred and additional processing may be requ
to fully analyze the exceptions.

Making “batch” operations behave in an atomic manner is considered an
implementation issue that could be accomplished via specialization of this proper
service.

2.2.1 Defining and Modifying Properties

This set of operations is used to define new properties to a PropertySet or set new
values on existing properties.

 /* Support for defining and modifying properties */
 void define_property(
 in PropertyName property_name,
 in any property_value)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 ReadOnlyProperty);

 void define_properties(
 in Properties nproperties)
 raises(MultipleExceptions);

2.2.1.1 define_property

Will modify or add a property to the PropertySet . If the property already exists, then
the property type is checked before the value is overwritten. If the property does
exist, then the property is added to the PropertySet .

To change the any TypeCode portion of the property_value of a property, a client
must first delete_property , then invoke the define_property .
2-6 Property Service V1.0 April 2000

2

ist,
2.2.1.2 define_properties

Will modify or add each of the properties in Properties parameter to the
PropertySet . For each property in the list, if the property already exists, then the
property type is checked before overwriting the value. If the property does not ex
then the property is added to the PropertySet .

This is a batch operation that returns the MultipleExceptions exception if any define
operation failed.

Table 2-1 Exceptions Raised by Define Operations

2.2.1.3 Listing and Getting Properties

This set of operations is used to retrieve property names and values from a
PropertySe t.

/* Support for Getting Properties and their Names */
 unsigned long get_number_of_properties();

 void get_all_property_names(
 in unsigned long how_many,
 out PropertyNames property_names,
 out PropertyNamesIterator rest);

 any get_property_value(
 in PropertyName property_name)
 raises(PropertyNotFound,

Exception Raised Description

InvalidPropertyName Indicates that the property name is invalid. (A
property name of length 0 is invalid; implementations
may place other restrictions on property names.)

ConflictingProperty Indicates that the property indicated created a conflict
in the type or value provided.

UnsupportedTypeCode Indicates that the any TypeCode of the
property_value field is not supported in this
PropertySet.

UnsupportedProperty Indicates that the supplied property is not supported
in this PropertySet, either due to PropertyName
restrictions or specific name-value pair restrictions.

ReadOnlyProperty Indicates that the property does not support client
modification of the property_value field.

MultipleExceptions The PropertyExceptions sequence may contain any of
the exceptions listed above, multiple times and in any
order.
Property V1.0 PropertySet Interface April 2000 2-7

2

l

ixed
 InvalidPropertyName);

 boolean get_properties(
 in PropertyNames property_names,
 out Properties nproperties);

 void get_all_properties(
 in unsigned long how_many,
 out Properties nproperties,
 out PropertiesIterator rest);

2.2.1.4 get_number_of_properties

Returns the current number of properties associated with this PropertySet .

2.2.1.5 get_all_property_names

Returns all of the property names currently defined in the PropertySet . If the
PropertySet contains more than how_many property names, then the remaining
property names are put into the PropertyNamesIterator .

2.2.1.6 get_property_value

Returns the value of a property in the PropertySet .

2.2.1.7 get_properties

Returns the values of the properties listed in property_names .

When the boolean flag is true, the Properties parameter contains valid values for al
requested property names. If false, then all properties with a value of type tk_void
may have failed due to PropertyNotFound or InvalidPropertyName.

A separate invocation of get_property for each such property name is necessary to
determine the specific exception or to verify that tk_void is the correct any
TypeCode for that property name.

This approach was taken to avoid a complex, hard to program structure to carry m
results.

2.2.1.8 get_all_properties

Returns all of the properties defined in the PropertySet . If more than how_many
properties are found, then the remaining properties are returned in
2-8 Property Service V1.0 April 2000

2

 all
erties
Table 2-2 Exceptions Raised by List and Get Properties Operations

2.2.1.9 Deleting Properties

This set of operations can be used to delete one or more properties from a
PropertySet .

/* Support for Deleting Properties */
 void delete_property(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName,
 FixedProperty);

 void delete_properties(
 in PropertyNames property_names)
 raises(MultipleExceptions);

 boolean delete_all_properties();

2.2.1.10 delete_property

Deletes the specified property if it exists from a PropertySet .

2.2.1.11 delete_properties

Deletes the properties defined in the property_names parameter. This is a batch
operation that returns the MultipleExceptions exception if any delete failed.

2.2.1.12 delete_all_properties

Variation of delete_properties . Applies to all properties.

Since some properties may be defined as fixed property types, it may be that not
properties are deleted. The boolean flag is set to false to indicate that not all prop
were deleted.

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined
for this PropertySet.

InvalidPropertyName Indicates the property name is invalid. (A property
name of length 0 is invalid; implementations may
place other restrictions on property names.)

MultipleExceptions The PropertyExceptions sequence may contain any of
the exceptions listed above, multiple times and in any
order.
Property V1.0 PropertySet Interface April 2000 2-9

2

fore

e

odes.

the
A client could invoke get_number_of_properties to determine how many
properties remain. Then invoke get_all_property_names to extract the property
names remaining. A separate invocation of delete_property for each such property
name is necessary to determine the specific exception.

Note – If the property is in a PropertySetDef , then the set_mode operation could be
invoked to attempt to change the property mode to something other than fixed be
using delete_property .

This approach was taken to avoid the use of an iterator to return an indeterminat
number of exceptions.

Table 2-3 Exceptions Raised by delete_properties Operations

2.2.1.13 Determining If a Property Is Already Defined

The is_property_defined operation returns true if the property is defined in the
PropertySet , and returns false otherwise.

boolean is_property_defined(
 in PropertyName property_name)
 raises(InvalidPropertyName);

2.3 PropertySetDef Interface

The PropertySetDef interface is a specialization (subclass) of the PropertySet
interface. The PropertySetDef interface provides operations to retrieve PropertySet
constraints, define and modify properties with modes, and to get or set property m

It should be noted that a PropertySetDef is still considered a PropertySet . The
specialization operations are simply to provide more client access and control of
characteristics (metadata) of a PropertySet .

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined.

InvalidPropertyName Indicates that the property name is invalid. (A
property name of length 0 is invalid; implementations
may place other restrictions on property names.)

FixedProperty Indicates that the PropertySet does not support the
deletion of the specified property.

MultipleExceptions The PropertyExceptions sequence may contain any of
the exceptions listed above, multiple times and in any
order.
2-10 Property Service V1.0 April 2000

2

an

 the

ty

 on a

The PropertySetDef interface also provides “batch” operations, such as
define_properties_with_modes , to deal with sets of property definitions as a
whole. The execution of the “batch” operations is considered best effort (i.e., not
atomic set) in that not all suboperations need to succeed for any suboperation to
succeed.

For define_properties_with_modes and set_property_modes , if any
suboperation fails, a MultipleExceptions exception is returned to identify which
property name had which exception.

For example, a client may invoke define_properties_with_modes using four
property definition structures. The first property could be accepted (added or
modified), the second could fail due to an UnsupportedMode , the third could fail
due to a ConflictingProperty , and the fourth could fail due to ReadOnlyProperty .
In this case a property is either added or modified in the PropertySetDef and a
MultipleExceptions exception is raised with three items in the
PropertyExceptions sequence.

The get_property_modes “batch” operation utilizes a boolean flag to signal that
mixed results occurred and additional processing may be required to fully analyze
exceptions.

Making “batch” operations behave in an atomic manner is considered an
implementation issue that could be accomplished via specialization of this proper
service.

2.3.1 Retrieval of PropertySet Constraints

This set of operations is used to retrieve information related to constraints placed
PropertySet .

 /* Support for retrieval of PropertySet constraints*/
 void get_allowed_property_types(
 out PropertyTypes property_types);

 void get_allowed_properties(
 out PropertyDefs property_defs);
get_allowed_property_types

Indicates which types of properties are supported by this PropertySet . If the output
sequence is empty, then there is no restriction on the any TypeCode portion of the
property_value field of a Property in this PropertySet , unless the
get_allowed_properties output sequence is not empty.

For example, a PropertySet implementation could decide to only accept properties
that had any TypeCodes of tk_string and tk_ushort to simplify storage processing
and retrieval.
Property V1.0 PropertySetDef Interface April 2000 2-11

2

The
erty

n
lso
n the
2.3.1.1 get_allowed_properties

Indicates which properties are supported by this PropertySet . If the output sequence
is empty, then there is no restriction on the properties that can be in this PropertySet ,
unless the get_allowed_property_types output sequence is not empty.

2.3.2 Defining and Modifying Properties with Modes

This set of operations is used to define new properties to a PropertySet or set new
values on existing properties.

 /* Support for defining and modifying properties */
 void define_property_with_mode(
 in PropertyName property_name,
 in any property_value,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 UnsupportedMode,
 ReadOnlyProperty);

 void define_properties_with_modes(
 in PropertyDefs property_defs)
 raises(MultipleExceptions);

2.3.2.1 define_property_with_mode

This operation will modify or add a property to the PropertySet . If the property
already exists, then the property type is checked before the value is overwritten.
property mode is also checked to be sure a new value may be written. If the prop
does not exist, then the property is added to the PropertySet .

To change the any TypeCode portion of the property_value of a property, a client
must first delete_property , then invoke the define_property_with_mode .

2.3.2.2 define_properties_with_modes

This operation will modify or add each of the properties in the Properties parameter
to the PropertySet . For each property in the list, if the property already exists, the
the property type is checked before overwriting the value. The property mode is a
checked to be sure a new value may be written. If the property does not exist, the
property is added to the PropertySet .

This is a batch operation that returns the MultipleExceptions exception if any define
operation failed.
2-12 Property Service V1.0 April 2000

2

ne or
Table 2-4 Exceptions Raised by define Operations

2.3.3 Getting and Setting Property Modes

This set of operations is used to get and set the property mode associated with o
more properties.

/* Support for Getting and Setting Property Modes */
 PropertyModeType get_property_mode(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_property_modes(
 in PropertyNames property_names,
 out PropertyModes property_modes);

 void set_property_mode(
 in PropertyName property_name,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 PropertyNotFound,
 UnsupportedMode);

 void set_property_modes(

Exception Raised Description

InvalidPropertyName Indicates that the property name is invalid. (A
property name of length 0 is invalid; implementations
may place other restrictions on property names.)

ConflictingProperty Indicates that the property indicated created a conflict
in the type or value provided.

UnsupportedTypeCode Indicates that the any TypeCode of the
property_value field is not supported in this
PropertySet.

UnsupportedProperty Indicates that the supplied property is not supported
in this PropertySet, either due to PropertyName
restrictions or specific name-value pair restrictions.

UnsupportedMode Indicates that the mode supplied is not supported in
this PropertySet.

ReadOnlyProperty Indicates that the property does not support client
modification of the property_value field.

MultipleExceptions The PropertyExceptions sequence may contain any of
the exceptions listed above, multiple times and in any
order.
Property V1.0 PropertySetDef Interface April 2000 2-13

2

erty

ixed
 in PropertyModes property_modes)
 raises(MultipleExceptions);
 };

2.3.3.1 get_property_mode

Returns the mode of the property in the PropertySet .

2.3.3.2 get_property_modes

Returns the modes of the properties listed in property_names .

When the boolean flag is true, the property_modes parameter contains valid values
for all requested property names. If false, then all properties with a
property_mode_type of undefined failed due to PropertyNotFound or
InvalidPropertyName. A separate invocation of get_property_mode for each
such property name is necessary to determine the specific exception for that prop
name.

This approach was taken to avoid a complex, hard to program structure to carry m
results.

2.3.3.3 set_property_mode

Sets the mode of a property in the PropertySet .

Protection of the mode of a property is considered an implementation issue. For
example, an implementation could raise the UnsupportedMode when a client
attempts to change a fixed_normal property to normal.

2.3.3.4 set_property_modes

Sets the mode for each property in the property_modes parameter. This is a batch
operation that returns the MultipleExceptions exception if any set failed.

Table 2-5 Exceptions Raised by Get and Set Mode Operations

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined.

InvalidPropertyName Indicates that the property name is invalid. (A
property name of length 0 is invalid; implementations
may place other restrictions on property names.)

UnsupportedMode Indicates that the mode supplied (set operations only)
is not supported in this PropertySet.
2-14 Property Service V1.0 April 2000

2

ists.

alse
2.4 PropertiesIterator Interface

A PropertySet maintains a set of name-value pairs. The get_all_properties
operation of the PropertySet interface returns a sequence of Property structures
(Properties). If there are additional properties, the get_all_properties operation
returns an object supporting the PropertiesIterator interface with the additional
properties.

The PropertiesIterator interface allows a client to iterate through the name-value
pairs using the next_one or next_n operations.

2.4.1 Resetting the Position in an Iterator

The reset operation resets the position in an iterator to the first property, if one ex

void reset();

2.4.1.1 next_one, next_n

The next_one operation returns true if an item exists at the current position in the
iterator with an output parameter of a property. A return of false signifies no more
items in the iterator.

The next_n operation returns true if an item exists at the current position in the
iterator and the how_many parameter was set greater than zero. The output is a
properties sequence with at most the how_many number of properties. A return of f
signifies no more items in the iterator.

boolean next_one(out Property aproperty);
 boolean next_n(
 in unsigned long how_many,
 out Properties nproperties);

2.4.2 Destroying the Iterator

The destroy operation destroys the iterator.

MultipleExceptions The PropertyExceptions sequence may contain any of
the exceptions listed above, multiple times and in any
order.

Exception Raised Description
Property V1.0 PropertiesIterator Interface April 2000 2-15

2

one

o

void destroy();

2.5 PropertyNamesIterator Interface

A PropertySet maintains a set of name-value pairs. The get_all_property_names
operation returns a sequence of names (PropertyNames). If there are additional
names, the get_all_property_names operation returns an object supporting the
PropertyNamesIterator interface with the additional names.

The PropertyNamesIterator interface allows a client to iterate through the names
using the next_one or next_n operations.

2.5.1 Resetting the Position in an Iterator

The reset operation resets the position in an iterator to the first property name, if
exists.

void reset();

2.5.1.1 next_one, next_n

The next_one operation returns true if an item exists at the current position in the
iterator with an output parameter of a property name. A return of false signifies n
more items in the iterator.

The next_n operation returns true if an item exists at the current position in the
iterator and the how_many parameter was set greater than zero. The output is a
PropertyNames sequence with at most the how_many number of names. A return of
false signifies no more items in the iterator.

boolean next_one(out PropertyName property_name);
 boolean next_n(
 in unsigned long how_many,
 out PropertyNames property_names);

2.5.2 Destroying the Iterator

The destroy operation destroys the iterator.

void destroy();

2.6 PropertySetFactory Interface

The create_propertyset operation returns a new PropertySet . It is considered an
implementation issue as to whether the PropertySet contains any initial properties or
has constraints.
2-16 Property Service V1.0 April 2000

2

The create_constrained_propertyset operation allows a client to create a new
PropertySet with specific constraints. The modes associated with the allowed
properties is considered an implementation issue.

The create_initial_propertyset operation allows a client to create a new
PropertySet with specific initial properties. The modes associated with the initial
properties is considered an implementation issue.

 interface PropertySetFactory
 {
 PropertySet create_propertyset();
 PropertySet create_constrained_propertyset(
 in PropertyTypes allowed_property_types,
 in Properties allowed_properties)
 raises(ConstraintNotSupported);
 PropertySet create_initial_propertyset(
 in Properties initial_properties)
 raises(MultipleExceptions);
 };

Deletion of any initial properties is an implementation concern. For example, an
implementation may choose to initialize the PropertySet with a set of
fixed_readonly properties for create_propertyset or choose to initialize all
allowed_properties to be fixed_normal for create_constrained_propertyset .

The relationship of a PropertySet to a specific object is an implementation issue.

2.7 PropertySetDefFactory Interface

The create_propertysetdef operation returns a new PropertySetDef . It is
considered an implementation issue as to whether the PropertySetDef contains any
initial properties or has constraints.

The create_constrained_propertysetdef operation allows a client to create a new
PropertySetDef with specific constraints, including property modes.

The create_initial_propertysetdef operation allows a client to create a new
PropertySetDef with specific initial properties, including property modes.

interface PropertySetDefFactory
 {
 PropertySetDef create_propertysetdef();
 PropertySetDef create_constrained_propertysetdef(
 in PropertyTypes allowed_property_types,
 in PropertyDefs allowed_property_defs)
 raises(ConstraintNotSupported);
 PropertySetDef create_initial_propertysetdef(
 in PropertyDefs initial_property_defs)
 raises(MultipleExceptions);
 };
Property V1.0 PropertySetDefFactory Interface April 2000 2-17

2

ty

It should be noted that deletion of intial or allowed properties is tied to the proper
mode setting for that property. In other words, initial or allowed properties are not
inherently safe from deletion.
2-18 Property Service V1.0 April 2000

 OMG IDL A

The CosPropertySer vice module defines the entire property service, consisting of
data types, exceptions, and interfaces described in previous chapters.

module CosP ropertyService
{
/***/
/* Data Types */
/***/

 typedef string P ropertyName;
 st ruct Property {
 PropertyName p roperty_name;
 any property_value;
 };

 enum P ropertyMode Type {
 normal,
 read_on ly,
 fixed_normal,
 fixed_readon ly,
 undef ined
 };

 st ruct PropertyDef {
 PropertyName p roperty_name;
 any property_value;
 PropertyMode Type p roperty_mode;
 };

 struct P ropertyMode {
 PropertyName p roperty_name;
 PropertyMode Type p roperty_mode;
Property Service V1.0 April 2000 A-1

A

 };

 typedef sequence<P ropertyName> P ropertyNames;
 typedef sequence<P roperty> Properties;
 typedef sequence<P ropertyDef> PropertyDefs;
 typedef sequence<P ropertyMode> P ropertyModes;
 typedef sequence< TypeCode> P ropertyTypes;

 interf ace PropertyNamesIter ator;
 interf ace PropertiesIterator;
 interf ace PropertySetFactory;
 interface PropertySetDef;
 int erface PropertySet;

/***/
/* Exception s */
/***/
 exceptio n ConstraintNotSuppo rted{};
 except ion InvalidPropertyName {};
 exception ConflictingP roperty {};
 exceptio n PropertyNotFou nd {};
 exception Unsuppo rtedTypeCode {};
 exception Unsuppo rtedProperty {};
 exception Unsuppo rtedMode {};
 exceptio n FixedProperty {};
 exception ReadOnlyProperty {};

 enum Exception Reason {
 invalid_p roperty_name,
 conflicting_p roperty,
 property_not_ found,
 unsuppo rted_type_cod e,
 unsuppo rted_property,
 unsuppo rted_mo de,
 fixed_property,
 read_on ly_property
 };

 struct P ropertyException {
 ExceptionReason reason;
 PropertyName failing_p roperty_name;
 };

 typedef sequence<P ropertyException> P ropertyExceptions;

 exception MultipleExceptions {
 PropertyExceptions exceptions;
 };

/***/
/* Interface Definition s */
A-2 Property Service V1.0 April 2000

A

/***/
 int erface PropertySetFactory
 {
 PropertySet cr eate_propertyset();
 PropertySet create_const rained_propertyset(
 in PropertyTypes allowed_p roperty_types,
 in Properties all owed_p roperties)
 raises(ConstraintNotSuppo rted);
 PropertySet cr eate_initial_propertys et(
 in Properties initial_properties)
 raises(MultipleExceptions);
 };

/*---*/
 interface PropertySetDefFactory
 {
 PropertySetDef create _propertysetdef();
 PropertySetDef create_constra ined_p ropertysetdef(
 in PropertyTypes allowed_p roperty_types,
 in PropertyDefs all owed_p roperty_defs)
 raises(ConstraintNotSuppo rted);
 PropertySetDef create_init ial_propertysetdef(
 in PropertyDefs init ial_property_defs)
 raises(MultipleExceptions);
 };

/*---*/
 int erface PropertySet
 {
 /* Suppo rt for defining and modifying p roperties */
 void define_p roperty(
 in PropertyNam e property_name,
 in any property_value)
 raises(I nvalidPropertyName,
 ConflictingP roperty,
 Unsuppo rtedTypeCode,
 Unsuppo rtedProperty,
 ReadOnlyProperty);

 void define_p roperties(
 in Properties np roperties)
 raises(MultipleExceptions);

 /* Support for Getting P roperties and t heir Names */
 unsigned long get_number_of_p roperties();

 void get_all_property_names(
 in unsigned long how_ma ny,
 out P ropertyNames p roperty_names,
 out P ropertyNamesIterator rest);
Property V1.0 April 2000 A-3

A

 any get_property_value(
 in PropertyName p roperty_name)
 raises(P ropertyNotFound,
 InvalidP ropertyName);

 boolean get_properties(
 in PropertyNames p roperty_names,
 out P roperties np roperties);

 void get_all_properties(
 in unsigned long how_ma ny,
 out P roperties np roperties,
 out P ropertiesIterator rest);

 /* Suppo rt for Delet ing Properties */
 void delete_p roperty(
 in PropertyNam e property_name)
 raises(P ropertyNotFound,
 InvalidP ropertyName,
 FixedP roperty);

 void delete_p roperties(
 in PropertyNames p roperty_names)
 raises(MultipleExceptions);

 boolean delete_all_p roperties();

 /* Suppo rt for Existence Check */
 boolean is_p roperty_defined(
 in PropertyNam e property_name)
 raises(I nvalidPropertyName);
 };

/*---*/
 interface PropertySetDef:PropertySet
 {
 /* Suppo rt for retri eval of P ropertySet constraints*/
 void get_allowed_p roperty_types(
 out P ropertyTypes p roperty_types);

 void get_allowed_p roperties(
 out P ropertyDefs p roperty_defs);

 /* Suppo rt for defining and modifying p roperties */
 void define_p roperty_w ith_mode(
 in PropertyNam e property_name,
 in any property_value,
 in PropertyMode Type p roperty_mode)
 raises(I nvalidPropertyName,
 ConflictingP roperty,
 Unsuppo rtedTypeCode,
A-4 Property Service V1.0 April 2000

A

 Unsuppo rtedProperty,
 Unsuppo rtedMode,
 ReadOnlyProperty);

 void define_p roperties_with_modes(
 in PropertyDefs p roperty_defs)
 raises(MultipleExceptions);

 /* Support for Getting and Setting P roperty Modes */
 PropertyMode Type get_property_mode(
 in PropertyName p roperty_name)
 raises(P ropertyNotFound,
 InvalidP ropertyName);

 boolean get_property_modes(
 in PropertyNames p roperty_names,
 out P ropertyModes p roperty_modes);

 void set_p roperty_mode(
 in PropertyNam e property_name,
 in PropertyMode Type p roperty_mode)
 raises(I nvalidPropertyName,
 PropertyNotFound,
 Unsuppo rtedMode);

 void set_p roperty_modes(
 in PropertyMode s property_modes)
 raises(MultipleExceptions);
 };

/*---*/
 interf ace PropertyNamesIter ator
 {
 void reset();
 boolean n ext_one(
 out P ropertyName p roperty_name);
 boolean n ext_n (
 in unsigned long h ow_many,
 out P ropertyNames p roperty_names);
 void dest roy();
 };

/*---*/
 interf ace PropertiesIterator
 {
 void reset();
 boolean n ext_one(
 out P roperty ap roperty);
 boolean n ext_n(
 in unsigned long how_ma ny,
 out P roperties np roperties);
Property V1.0 April 2000 A-5

A

 void dest roy();
 };
};
A-6 Property Service V1.0 April 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Service Description
	1.1 Overview
	1.1.1 Client’s Model of Properties
	1.1.2 Object’s Model of Properties
	1.1.3 OMG IDL Interface Summary

	1.2 Summary of Key Features

	2. Property Service Interfaces
	2.1 CosPropertyService Module
	2.1.1 Data Types

	2.2 PropertySet Interface
	2.2.1 Defining and Modifying Properties

	2.3 PropertySetDef Interface
	2.3.1 Retrieval of PropertySet Constraints
	2.3.2 Defining and Modifying Properties with Modes
	2.3.3 Getting and Setting Property Modes

	2.4 PropertiesIterator Interface
	2.4.1 Resetting the Position in an Iterator
	2.4.2 Destroying the Iterator

	2.5 PropertyNamesIterator Interface
	2.5.1 Resetting the Position in an Iterator
	2.5.2 Destroying the Iterator

	2.6 PropertySetFactory Interface
	2.7 PropertySetDefFactory Interface

	Appendix A - OMG IDL

