
PersistentObjectService
Specification

Version1.0
Newedition -April 2000

paid up,
ed ver-
pyright in
g con-

ire use
y be
at are
r protect-

 an
ent does

ble for
f profit
e Object
ze devel
 to indi-

raphic,
thout

n sub-

RB,
n is a
Copyright 1994 International Business Machines Corporation
Copyright 1994 Objectivity, Inc.
Copyright 1994 Ontos, Inc.
Copyright 1994 Persistence Software, Inc.
Copyright 1994 SunSoft, Inc.
Copyright 1994 Versant Object Technology Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modifi
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the co
the included material of any such copyright holder by reason of having used the specification set forth herein or havin
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be lia
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss os,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that th
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authori-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--g
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--wi
permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth i
division (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and Object
Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, O
CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc. X/Ope
trademark of X/Open Company Ltd.

ders to
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage rea
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii

iii
iii

 iv

 iv

1-1

1-1

1-3
-3

1-3
-4

1-5
-5
-6
1-6
1-6

2-1

2-2

2-3
-4
-5

2-6
2-7
-8
Preface .

About the Object Management Group
What is CORBA? .

Associated OMG Documents. .

Acknowledgments .

1. Service Description .

1.1 Overview .

1.2 Goals and Properties .
1.2.1 Basic Capabilities . 1
1.2.2 Object-oriented Storage
1.2.3 Open Architecture . 1

1.3 Views of Service.
1.3.1 Client . 1
1.3.2 Object Implementation 1
1.3.3 Persistent Data Service
1.3.4 Datastore .

2. Persistent Service Modules .

2.1 Service Structure .

2.2 The CosPersistencePID Module
2.2.1 PID Interface . 2
2.2.2 Example PIDFactory Interface 2

2.3 The CosPersistencePO Module .
2.3.1 The PO Interface .
2.3.2 The POFactory Interface 2
Persistent Object Service V1.0 April 2000 i

Contents

2-9

-10

-13

2-14

-15

-16
18
18
19
19
19
20
22
23

-24

-24

-26

2-27

2-28
-30
-31
-31
-32
-32
32
-33

2-36

2-37

-1
2.3.3 The SD Interface .

2.4 The CosPersistencePOM Module 2

2.5 Persistent Data Service (PDS) Overview 2

2.6 The CosPersistencePDS Module .

2.7 The Direct Access (PDS_DA) Protocol 2

2.8 The CosPersistencePDS_DA Module 2
2.8.1 The PID_DA Interface 2-
2.8.2 The Generic DAObject Interface 2-
2.8.3 The DAObjectFactory Interface 2-
2.8.4 The DAObjectFactoryFinder Interface 2-
2.8.5 The PDS_DA Interface 2-
2.8.6 Defining and Using DA Data Objects 2-
2.8.7 The DynamicAttributeAccess Interface 2-
2.8.8 The PDS_ClusteredDA Interface 2-

2.9 The ODMG-93 Protocol . 2

2.10 The Dynamic Data Object (DDO) Protocol 2

2.11 The CosPersistenceDDO Module 2

2.12 Other Protocols .

2.13 Datastores: CosPersistenceDS_CLI Module
2.13.1 The UserEnvironment Interface 2
2.13.2 The Connection Interface 2
2.13.3 The ConnectionFactory Interface 2
2.13.4 The Cursor Interface . 2
2.13.5 The CursorFactory Interface 2
2.13.6 The PID_CLI Interface 2-
2.13.7 The Datastore_CLI Interface 2

2.14 Other Datastores.

2.15 Standards Conformance .

Appendix A - References . A
ii Persistent Object Service V1.0 April 2000

Preface
ent
nd
td
s.

s at
l
by
and

rted
and
nted

ide a
,
ous
p a

d.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification a
later as a full CAE Specification. The collaboration between OMG and X/Open Co L
ensures joint review and cohesive support for emerging object-based specification

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to ful
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base
Persistent Object Service V1.0 April 2000 iii

ted,
y
ject
nd

ing

st of

the

ed

lpful

sists

ive

o
n

,
tem
y.
What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Ne
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is he
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described inCORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicatio
domains.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sys
management or electronic mail facility could be classified as a common facilit
iv Persistent Object Service V1.0 April 2000

s, an
antic

en
es,
s
t

the

The
es a

are
des
are

ct-

y

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
subscribers. Meaningful, productive communication depends on additional interfac
protocols, and policies that are agreed upon outside the telephone system, such a
telephones, modems and directory services. This is equivalent to the role of Objec
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to theObject Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guidedefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also provi
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services,a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities,a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized obje
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industr
and represents vendors, healthcare providers, payers, and end users.
Persistent Object Service V1.0 Associated OMG Documents April 2000 v

n

t

d,
dards
(The

ns,

of

P-
.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important applicatio
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-complian
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10)
vi Persistent Object Service V1.0 April 2000

ey
y
rful

ay
eal

lient
ent
cally

that
rver
on

es
ple,

ces
rules

ts.

rent
s

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, b
virtue of their structuring as objects, be combined together in interesting and powe
ways.

For example, the event and life cycle services, plus a future relationship service, m
play together to support graphs of objects. Object graphs commonly occur in the r
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the c
object nor, in general, on the type of data passed in requests. For example, the ev
channel interfaces accept event data of any type. Clients of the service can dynami
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote se
styles of implementations. This allows considerable flexibility as regards the locati
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approach
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfa
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other componen

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service i
composed ofPushConsumer, PullSupplierandEventChannelinterfaces. This
simplifies the way in which a particular client uses a service.
Persistent Object Service V1.0 Service Design Principles April 2000 vii

gle

to
cts

ents

aces

g
th an

uest
e

ent

a

o a

n

ext.

within
A particular service implementation can support the constituent interfaces as a sin
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obje
conspireto provide the complete service.

As an example, in the Event Service an event channel can provide bothPushConsumer
andEventChannelinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either thePushConsumerandEventChannelinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interf
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usin
the event service again as an example, when an event consumer is connected wi
event channel, a new object is created that supports thePullSupplierinterface. An
object reference to this object is returned to the event consumer which can then req
events by invoking the appropriate operation on the new “supplier” object. Becaus
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. An ev
channel as a collection of objects conspiring to manage multiple simultaneous
consumer clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service tocall backto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously t
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some cont
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.
viii Persistent Object Service V1.0 April 2000

ices

s

to be

l

tion

eter

de

nts
Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These serv
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured a
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate itera
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a param
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted parts of thePersistent Servicespecification:

• International Business Machines Corporation

• Objectivity, Inc.

• Ontos, Inc.

• Oracle Corporation

• Persistence Software

• SunSoft, Inc.

• Versant Object Technology Corporation
Persistent Object Service V1.0 Interface Style Consistency April 2000 ix

x Persistent Object Service V1.0 April 2000

ServiceDescription 1
the

or
nt
cts,
Contents

This chapter contains the following topics.

1.1 Overview

The goal of the Persistent Object Service (POS) is to provide common interfaces to
mechanisms used for retaining and managing the persistent state of objects. The
Persistent Object Service will be used in conjunction with other object services. F
example, naming, relationships, transactions, life cycle, and so forth. The Persiste
Object Service has the primary responsibility for storing the persistent state of obje
with other services providing other capabilities.

Topic Page

“Overview” 1-1

“Goals and Properties” 1-3

“Views of Service” 1-5
Persistent Service V1.0 April 2000 1-1

1

e

t

ent
te its
be
seful

he
.,

f this

istent
are

t the
Figure 1-1 Roles in the Persistent Object Service

Figure 1-1 shows the participants in the Persistent Object Service. The state of th
object can be considered in two parts: thedynamic state, which is typically in memory
and is not likely to exist for the whole lifetime of the object (for example, it would no
be preserved in the event of a system failure), and thepersistent state, which the object
could use to reconstruct the dynamic state.

Although the ORB provides the ability for an object reference to be persistent, it
cannot ensure that the state of the object will be available just because the object
reference is still valid.

The object ultimately has the responsibility of managing its state, but can use or
delegate to the Persistent Object Service for the actual work. There is no requirem
that any object use any particular persistence mechanism. For example, it may wri
data to files using non-CORBA interfaces, or a single-level-store mechanism may
used. However, the Persistent Object Service provides capabilities that should be u
to a wide variety of objects.

Whether or not the client of an object is aware of the persistent state is a choice t
object has. CORBA already provides a persistent reference handling interface (i.e
object_to_string, string_to_object, release). We expect that this will be
sufficient for most clients to manage persistence of their referenced objects. But,
because certain kinds of flexibility require the client to manage reference objects’
persistence, the Persistent Object Service defines object interfaces for doing so. I
flexibility is not required, then these interfaces need not be supported or used.

The size, structure, access patterns and other properties of the dynamic and pers
state of the object varies tremendously. For many objects, their primary semantics
the efficient storage and access of its state for particular purposes. It is critical tha
Persistent Object Service be able to support greatly different styles of usage and
implementation in order to be useful to as many objects as possible.

Client

Object

Persistent Object Service

Dynamic state

Persistent state

Object Reference
1-2 Persistent Service V1.0 April 2000

1

e

o

ll in

e
ed
des

ced
ties

ake

of the
ect
o be
ject
that

t can
t
eed

not

ecific

r of
As usual for object services, the primary task of this persistence specification is to
define the interfaces that are needed to use the Persistent Object Service, and th
conventions for how objects can work together using it.

The architecture of the Persistent Object Service defines multiple components and
interfaces. In a particular situation, different parts of the service may be used. In n
case does this specification assume the use of a particular implementation of a
component, and it is expected that different implementations of the components wi
fact work together.

1.2 Goals and Properties

The Persistent Object Service plays a key role in structuring the object system. Th
model of how many objects work is critically dependent on consistent and integrat
use of persistence. Like other object services, the Persistent Object Service provi
interfaces that can support different implementations in order to obtain different
qualities of service. Those interfaces allow different components to work together.

The overall persistence architecture has multiple components. Each will be introdu
in turn in this section, following presentation of some basic capabilities and proper
provided by the overall architecture.

1.2.1 Basic Capabilities

The principle requirement to be supported is the need for an object to be able to m
all or part of its state be persistent. Although the CORBA system defines object
references as persistent (that is, they are usable until they are released regardless
life time of their containing address space), it defined no particular way for the obj
to make its state persistent. The Persistent Object Service is intended ultimately t
the most common way to implement this. Therefore, there must be a way for the ob
to decide what state needs to be made persistent, and ways to store and retrieve
state.

It is often necessary to expose the persistent state from an object, so that the clien
control the object’s persistence to achieve certain types of flexibility. The Persisten
Object Service defines a convention for doing this. Clients of objects sometimes n
ways to refer to the persistent state, and request various operations on it. It is often
necessary to expose the persistent state from an object, so that the object
implementation itself determines its persistence. In these cases, no persistence-sp
object interfaces need be supported.

1.2.2 Object-oriented Storage

In existing non-object-oriented systems, persistence is accomplished by a numbe
data storage mechanisms. Generally, such mechanisms do not provide the key
properties that object systems provide—uniform interfaces, self-description, and
abstraction. The Persistent Object Service brings these properties to storage by
applying object technology and principles.
Persistent Service V1.0 Goals and Properties April 2000 1-3

1

fined
ed,
ing
e a

d in a
ort

tation
ata

ssed

hat
t a
sible

the
up,
ate is

rove
sire
jects
the

end

in a

nd
is is
1.2.2.1 Interfaces to Data

To manage object persistence, the POS defines an architecture with interfaces de
using the CORBA IDL type system. Whether detailing the particular data to be stor
describing the protocol for accessing the state, or defining the convention for mak
state visible for client control, the same “language” is used. This makes persistenc
natural part of the software environment. These interfaces are designed to be use
wide variety of situations, creating uniformity by encouraging most objects to supp
them, while allowing optimization and evolution.

By accessing data through an interface, many problems of data manipulation and
exchange can be avoided. For example, programs always see data in the represen
that is appropriate for the machine and programming language, of the application. D
can be translated as needed to facilitate use in different object types and
implementations and for different storage formats or underlying persistent storage
mechanisms (e.g., stream files, record files, or various databases) when it is acce
through the interface.

1.2.2.2 Self-description

A powerful characteristic of object-oriented systems is that the elements are self-
describing. It is possible to determine from an object what kind of object it is and w
interfaces it supports. In the persistence architecture this means, for example, tha
client can determine whether or not an object wishes to make its persistent state vi
by checking to see if the object supports the interface for doing so.

It also means that the data can be manipulated to some degree independently of
objects whose state they represent. This can allow generic facilities such as back
migration and storage accounting, to be done independent of the objects whose st
being stored.

1.2.2.3 Abstraction

In order to support a wide and evolving set of uses, a service must be able to imp
and replace its implementations without affecting the clients of that service. The de
for reuse of objects requires that those objects not depend too strictly on other ob
and services, but rather be willing to work with any other components that support
required interface.

A variety of value-added products are also possible assuming that the objects dep
only on the defined interfaces. By interposing unexpected implementations, for
example, it may be possible to support features such as replication or versioning
transparent way.

1.2.3 Open Architecture

A major feature of the Persistent Object Service (and the OMG architecture) is its
openness. In this case, that means that there can be a variety of different clients a
implementations of the Persistent Object Service, and they can work together. Th
1-4 Persistent Service V1.0 April 2000

1

ents
for

,
ture
when

of a
ght

Name
ey
cts,
and

d
ent

pect

to be
pport

yet

only

, are
its

data
ct

e

particularly important for storage, where the mechanisms that are useful for docum
may not be appropriate for employee databases, or the mechanisms appropriate
mobile computers may not be appropriate for mainframes.

Implementations can be lightweight, consisting of mostly library code, or powerful
leveraging decades of experience with database systems. Of course, the architec
specifies several interfaces, but also shows how new interfaces can be introduced
needed while still exploiting the rest of the architecture.

As with other object services, the Persistent Object Service is intended to be part
collection of services. As a result, it does not attempt to solve all problems that mi
relate to storage. Rather, it assumes other services will provide the solutions. For
example, the Persistent Object Service does not do naming, but assumes that the
Service will perform that function; it does not do transactions, but assumes that th
will be added as appropriate; it does not handle issues of general compound obje
but assumes that there will be a scheme that spans persistence, lifecycle, printing
other services.

A key idea in object systems that is critical for persistence is the ability for new an
existing storage services to be able to integrate into the architecture. The requirem
for such components to “plug and play” together is paramount, since one cannot ex
all data to be maintained in a particular kind of file or database system. Thus, the
architecture has features to allow existing databases or other storage mechanisms
used for persistence, and for new storage mechanisms to be developed that can su
both Persistent Object Service clients and other kinds of clients.

The POS architecture is open with respect to PersistentDataService, Datastore,
Protocol, and PID interfaces. Although we define some minimum requirements for
these in some cases, many alternatives are allowed, including ones that have not
been defined.

1.3 Views of Service

There are multiple views of the service, and each participant may need to consider
a part of the architecture.

1.3.1 Client

It is common for clients of objects to need to control or to assist in managing
persistence. In particular, the timing of when the persistent state is preserved or
restored, and the identification of which persistent state is to be used for an object
two aspects often of interest to clients. The ability of a client to see the object and
data separately allows different object implementations to be used with the same
and allows different files or databases and formats to be used with the same obje
implementation.

However, the client need only deal with such complexity when this type of
functionality is necessary. The client of the object can be completely ignorant of th
persistence mechanism, if the object chooses to hide it.
Persistent Service V1.0 Views of Service April 2000 1-5

1

want
ndon

t

t is
s is
ice in

a to

of
to be

ate

data
ay

e.

rage
e
f a

are
ince

een
The Persistent Object Service provides an interface for objects to use when they
to expose their persistence to their clients. The interface does not completely aba
encapsulation, but gives the client visibility to those functions it needs. In fact, the
client is generally unaware of how or if the object uses other parts of the Persisten
Object Service.

1.3.2 Object Implementation

The object has the most involvement with the persistence, and the most options in
deciding how to use it. Defining and manipulating the persistent state of the objec
often the most crucial part of its implementation. The first decision the object make
what interface to its data it needs. The Persistent Object Service captures that cho
the selection of the Protocol used by the object. Some Protocols provide simple
interfaces and limited functionality, others may provide more control and more
powerful operations.

The object also has the choice of delegating the management of its persistent dat
other services, or maintaining fine-grained control over it. The Persistent Object
Service defines a Persistent Object Manager that handles much of the complexity
establishing connections between objects and storage, allowing new components
introduced without affecting the objects or their clients.

The object may also provide the ability for its clients to manipulate its persistent st
in various ways. This is important for creating a uniform view of persistence in the
system.

1.3.3 Persistent Data Service

The Persistent Data Service (PDS) actually implements the mechanism for making
persistent and manipulating it. A particular PDS supports a Protocol defining the w
data is moved in and out of the object, and an interface to an underlying Datastor

The PDS has the responsibility of translating from the object world above it to the
storage world below it. It plays critical roles in identifying the storage as well as
providing convenient and efficient access to it.

We define multiple kinds of PDSs, each tuned to a particular protocol and data sto
mechanism, since the range of requirements for performance, cost, and qualitativ
features is so large. Multiple PDSs must work together to create the impression o
uniform persistence mechanism. The Persistent Object Manager provides the
framework for PDSs to cooperate this way.

1.3.4 Datastore

The lowest-level interface we define is a Datastore. Although Datastore interfaces
the least visible part of the persistence architecture, it may be the most valuable, s
there are so many different Datastores offering a wide spectrum of tradeoffs betw
availability, data integrity, resource consumption, performance and cost, and it is
1-6 Persistent Service V1.0 April 2000

1

cts
ctly

he

or
expected that more will be created. By having an interface that is hidden from obje
and their clients, a Datastore can provide service to any and all objects that indire
use the Datastore interface.

The Datastore plays a key role in interoperating with other storage services. It is t
manifestation in the object world of the various means of storing data that are not
objects. Generally, standards for Datastore interfaces have already been defined f
different kinds of data repositories—relational, object-oriented, and file systems.
Persistent Service V1.0 Views of Service April 2000 1-7

1

1-8 Persistent Service V1.0 April 2000

PersistentServiceModules 2
Contents

This chapter contains the following sections.

Section Title Page

“Service Structure” 2-2

“The CosPersistencePID Module” 2-3

“The CosPersistencePO Module” 2-6

“The CosPersistencePOM Module” 2-10

“Persistent Data Service (PDS) Overview” 2-13

“The CosPersistencePDS Module” 2-14

“The Direct Access (PDS_DA) Protocol” 2-15

“The CosPersistencePDS_DA Module” 2-16

“The ODMG-93 Protocol” 2-24

“The Dynamic Data Object (DDO) Protocol” 2-24

“The CosPersistenceDDO Module” 2-26

“Other Protocols” 2-27

“Datastores: CosPersistenceDS_CLI Module” 2-28

“Other Datastores” 2-36

“Standards Conformance” 2-37
Persistent Service V1.0 April 2000 2-1

2

hich

1 on

ata

ally

e
ngle
d

or
nce

f an

ata
2.1 Service Structure

This section presents an overview of each of the major components and how they
interrelate. Subsequent sections present the OMG IDL as divided into modules, w
correspond closely (but not exactly) to these components, as noted below.

The major components of the Persistent Object Service are illustrated in Figure 2-
page 2-3. They are:

• Persistent Identifier (PID) - This describes the location of an object’s persistent d
in some Datastore and generates a string identifier for that data.

• Persistent Object (PO) - This is an object whose persistence is controlled extern
by its clients.

• Persistent Object Manager (POM) - This component provides a uniform interfac
for the implementation of an object’s persistence operations. An object has a si
POM to which it routes its high-level persistence operations to achieve plug an
play.

• Persistent Data Service (PDS) - This component provides a uniform interface f
any combination of Datastore and Protocol, and coordinates the basic persiste
operations for a single object.

• Protocol - This component provides one of several ways to get data in and out o
object.

• Datastore - This component provides one of several ways to store an object’s d
independently of the address space containing the object.
2-2 Persistent Service V1.0 April 2000

2

by
PO

r

Figure 2-1 Major Components of the POS and their Interactions

The term “persistent object” is used to refer both to objects whose persistence is
controlled internally or externally. Either kind of persistent object can be supported
the Persistent Object Service’s POM, PDS, Protocol and Datastore interfaces. The
interface supports externally controlled persistence.

2.2 The CosPersistencePID Module

The CosPersistencePID module contains the PID Interface, the basic interface fo
retrieving a PID.

This section describes this interface, plus an example factory interface, and their
operations in detail.

The CosPersistencePID Module is shown below.

module CosPersistencePID {

interface PID {
attribute string datastore_type;
string get_PIDString();

};

};

Client

PersistentObjectManager

PersistentDataService

Datastore

Protocol

Persistent Object PO

PDS

POM

PID Persistent Identifier
Persistent Service V1.0 The CosPersistencePID Module April 2000 2-3

2

ct
,

e
d or
t the
s

rDoc
nd
ame
d
ee a

e

t
g

The PID identifies one or more locations within a Datastore that represent the
persistent data of an object and generates a string identifier for that data. An obje
must have a PID in order to store its data persistently. The client can create a PID
initialize its attributes, and connect it to the object. A persistent object’s
implementation uses the POM interface by passing the object and the PID as
parameters.

The PID should not be confused with the CORBA object reference (OID). They ar
similar in that both have an operation that produces a string form that can be store
communicated in whatever ways strings may be manipulated and later used to ge
original PID or OID. They differ in that the PID identifies data while the OID identifie
a CORBA object.

For example, assume mySpreadSheet object is referenced by both myDoc and you
objects. If mySpreadSheet’s OID is stored persistently with myDoc and yourDoc a
then all three are brought into memory, then both documents will always see the s
spreadsheet object. If mySpreadSheet’s PID is stored persistently with myDoc an
yourDoc and then all three objects are brought into memory, each document will s
different spreadsheet object whose states will be the same initially but will diverge
over time.

2.2.1 PID Interface

The OMG IDL definition for the PID is as follows:

interface PID {
attribute string datastore_type;
string get_PIDString();

 };

The PID contains at least one attribute:

• attribute stringdatastore_type - This identifies the interface of a Datastore.
Exampledatastore_types might be “DB2”, “ PosixFS” and “ObjectStore”. The
PDS hides the Datastore’s interface from the client, the persistent object and th
POM, but PDS implementations are dependent on the Datastore’s interface.

Other attributes can be added via subtyping the PID base type to reflect more
specialized PIDs. Unless thedatastore_type contains only a single object’s persisten
data, there is a need for more specific location information in the PID. The followin
example PID subtypes illustrate this:

#include "CosPersistencePID.idl"

interface PID_DB : CosPersistencePID::PID {
attribute string database_name; // name of a database

};

interface PID_SQLDB : PID_DB {
attribute string sql_statement; // SQL statement

};
2-4 Persistent Service V1.0 April 2000

2

urn a

es
ores.

n
h a
y

interface PID_OODB : PID_DB {
attribute string segment_name;// segment within database
attribute unsigned long oid; //object id within a segment

};

The PID provides a single operation:

string get_PIDString();

This operation returns a string version of the PID called thePIDString . A client
should only obtain thePIDString using theget_PIDString operation. This allows the
PID implementation to decide the form of thePIDString .

Some implementations may simply concatenate the PID attributes. Others may ret
more compact form specialized for specific Datastores or even databases within a
Datastore. Still others may return a universally unique identifier (UUID) that facilitat
movement of its persistent data either within a single Datastore or between Datast
A UUID-based PID might be implemented by overriding the get and set attribute
operations and theget_PIDString operation to bind and lookup the mapping betwee
UUID and location information in a special context in the Name Service. Using suc
UUID-based PID, when an object is moved, the new location would be changed b
setting the attributes to indicate the new location, and the PID would make the
modification in the Name Service. ThePIDString would contain the UUID that does
not change when an object’s data is moved, so that references remain intact.

Some applications need to be able to restore an object given a PID but without
knowing which type or implementation to use. The PID can be subtyped to
accommodate this by adding the type or implementation as a PID attribute.

2.2.2 Example PIDFactory Interface

The OMG IDL definition for an examplePIDFactory is as follows (others are also
possible):

interface PIDFactory {
CosPersistencePID::PID create_PID_from_key(in string key);
CosPersistencePID:: PID create_PID_from_string(

in string pid_string);
CosPersistencePID::PID create_PID_from_string_and_key(

in string pid_string, in string key);
};

This examplePIDFactory provides three ways of creating a PID:

CosPersistencePID::PID create_PID_from_key(in string key);

This creates an instance of a PID given a key that identifies a particular PID
implementation.
Persistent Service V1.0 The CosPersistencePID Module April 2000 2-5

2

at

the

s

nt

orne
CosPersistencePID::PID create_PID_from_string(in string pid_string);

This creates an instance of a PID given aPIDString . ThePIDString must include
some way to identify a particular PID implementation (the PID’s key) in some way th
allows this operation to extract the PID’s key from thePIDString . This key identifies
the PID implementation for the newly created PID.

CosPersistencePID::PID create_PID_from_string_and_key(in string
pid_string, in string key);

This creates an instance of a PID whose implementation is identified by the key in
input parameter instead of the key in thePIDString , and whose value is determined by
the PIDString . This is useful for when persistent data is moved between Datastore
that require different PID interfaces.

2.3 The CosPersistencePO Module

TheCosPersistencePO Module collects the interfaces that are borne by a persiste
object to allow its clients and the POM to control the PO’s relationship with its
persistent data. This module includes two interfaces:

• The PO Interface

• The SD Interface

plus an example factory interface.

The PO interface is borne by the PO and used by the client. The SD interface is b
by the PO and used by the POM.

This section describes these interfaces and their operations in detail.

The CosPersistencePO Module is shown below:

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePO {

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);
};

interface SD {
void pre_store();
void post_restore();
2-6 Persistent Service V1.0 April 2000

2

rol

nd

e in
An

nd
n

hen
tions
ay

or

n
or

is
};
};

2.3.1 The PO Interface

The PO interface provides two mechanisms for allowing a client to externally cont
the PO’s relationship with its persistent data:

• Connection: This mechanism establishes a close relationship between the PO a
its Datastore where the two data representations can be viewed as one for the
duration of the connection. When the connection is ended, the data is the sam
the PO and the Datastore, and the relationship between them no longer exists.
object can have only one connection at a time.

• Store/restore: These operations allow the client to move data between the PO a
its Datastore in each direction separately, with each movement in each directio
explicitly initiated by the client.

The PO interface operations allow client control of a single PO’s persistent data. W
one of these operations is performed on a PO, what data is included in these opera
is up to that PO’s implementation. For example, only part of the PO’s private data m
be included. Other POs may be included based on any criteria. If other POs are
included, the target PO’s implementation becomes their client and is responsible f
controlling their persistence.

A PO client is responsible for the following:

• Creating a PID for the PO and initializing the PID. For storage, whatever locatio
information is not specified will be determined by the Datastore. For a retrieval
delete operation, the location information must be complete.

• Controlling the relationship between the data in the PO and the Datastore. This
done by asking the PO toconnect() , disconnect() , store() , restore() , or
delete() itself.

The OMG IDL definition for a PO is as follows:

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

};

The PO interface has the following operations:
Persistent Service V1.0 The CosPersistencePO Module April 2000 2-7

2

rmed
those

cated

tore

e

he

the

out
CosPersistencePDS::PDS connect (in CosPersistencePID::PID p);

This begins a connection between the data in the PO and the Datastore location
indicated by the PID. The persistent state may be updated as operations are perfo
on the object. This operation returns the PDS that handles persistence for use by
Protocols that require the PO to call the PDS.

void disconnect (in CosPersistencePID::PID p);

This ends a connection between the data in the PO and the Datastore location indi
by the PID. It is undefined whether or not the object is usable if not connected to
persistent state. The PID can be nil.

void store (in CosPersistencePID::PID p);

This copies the persistent data out of the object in memory and puts it in the Datas
location indicated by the PID. The PID can be nil.

void restore (in CosPersistencePID::PID p);

This copies the object’s persistent data from the Datastore location indicated by th
PID and inserts it into the object in memory. The PID can be nil.

void delete (in CosPersistencePID::PID p);

This deletes the object’s persistent data from the Datastore location indicated by t
PID. The PID can be nil.

To adhere to the plug and play philosophy, objects pass these requests through to
POM, so that the interface for PO parallels that of the POM. This delegation to the
POM allows objects to change PDSs (combination of Datastore and Protocol) with
changing their implementation.

2.3.2 The POFactory Interface

The OMG IDL definition for an example POFactory is as follows (others are also
possible):

#include "CosPersistencePO.idl"
// CosPersistencePO.idl #includes CosPersistencePDS.idl
// CosPersistencePDS.idl #includes CosPersistencePID.idl

interface POFactory {
CosPersistencePO::PO create_PO (

in CosPersistencePID::PID p,
in string pom_id);

};

The examplePOFactory provides the following operation:
2-8 Persistent Service V1.0 April 2000

2

such
rface
.

ight
ta:

hen
that

y

te
CosPersistencePO::PO create_PO(in CosPersistencePID::PID p, in string
pom_id);

This creates an instance of a PO that knows which POM to use and with its pid
attribute already assigned.

2.3.3 The SD Interface

Some objects may be implemented knowing they are going to be persistent. Many
objects have both transient and persistent data. The Synchronized Data (SD) Inte
is provided to allow such objects to synchronize their transient and persistent data
Operations on the SD are invoked only by the POM. Persistent objects whose
persistence is controlled either internally or externally (PO) can support the SD
interface.

The OMG IDL definition for SD is as follows:

interface SD {
void pre_store();
void post_restore();

};

The interface for SD provides two operations:

void pre_store();

This ensures that the persistent data are synchronized with the transient data.

void post_restore();

This ensures that the transient data are synchronized with the persistent data.

A word processing document provides a good example of how these operations m
be implemented. Suppose the document type is implemented with the following da

• text buffer (persistent)

• attributes (persistent)

• text cache (transient)

• cursor location (transient)

The document could be implemented such that all work is done in the text cache. T
at store time, the text buffer needs to be updated, since it contains the actual data
will be stored. As such, thepre_store operation should be implemented such that an
updates in the text cache are propagated to the text buffer. Thepost_restore
operation should be implemented such that the text cache is inititialized with a sta
consistent with the text buffer.
Persistent Service V1.0 The CosPersistencePO Module April 2000 2-9

2

lly

col)
2.4 The CosPersistencePOM Module

TheCosPersistencePOM module contains the interface which is borne by the POM
and used by the PO. It contains a single interface, the POM Interface.

This section describes this interface and its operations in detail. The
CosPersistencePOM module is shown below:

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePOM {

interface Object;
interface POM {

CosPersistencePDS::PDS connect (
in Object obj,
in CosPersistencePID::PID p);

void disconnect (
in Object obj,
in CosPersistencePID::PID p);

void store (
in Object obj,
in CosPersistencePID::PID p);

void restore (
in Object obj,
in CosPersistencePID::PID p);

void delete (
in Object obj,
in CosPersistencePID::PID p);

};
};

Clients of a PO will see the operations of thePOM interface indirectly through thePO
interface. The implementation of a persistent object with either externally or interna
controlled persistence can use thePOM interface. ThePOM provides a uniform
interface across all PDSs, so different PDSs (combination of Datastore and Proto
can be used without changing the object’s implementation.

The OMG IDL definition of thePOM is as follows:

interface POM {
CosPersistencePDS::PDS connect (

in Object obj,
in CosPersistencePID::PID p);

void disconnect (
in Object obj,
in CosPersistencePID::PID p);

void store (
in Object obj,
in CosPersistencePID::PID p);
2-10 Persistent Service V1.0 April 2000

2

rmed
use

ore

PID

he

, the

an

et
ted
void restore (
in Object obj,
in CosPersistencePID::PID p);

void delete (
in Object obj,
in CosPersistencePID::PID p);

};

The POM interface has the following operations:

CosPersistencePDS::PDS connect (in Object obj, in CosPersistencePID::PID p);

This begins a connection between data in the object and the Datastore location
indicated by the PID. The persistent state may be updated as operations are perfo
on the object. This operation returns the PDS that is assigned the object’s PID for
by those Protocols that require the PO to call the PDS.

void disconnect (in Object obj, in CosPersistencePID::PID p);

This ends a connection between the data in the object and the Datastore location
indicated by the PID. It is undefined whether or not the object is usable if not
connected to persistent state. The PID can be nil.

void store (in Object obj, in CosPersistencePID::PID p);

This gets the persistent data out of the object in memory and puts it in the Datast
location indicated by the PID. The PID can be nil.

void restore (in Object obj, in CosPersistencePID::PID p);

This gets the object’s persistent data from the Datastore location indicated by the
and inserts it into the object in memory. The PID can be nil.

void delete (in Object obj, in CosPersistencePID::PID p);

This deletes the object’s persistent data from the Datastore location indicated by t
PID. The PID can be nil.

The major function of the POM is to route requests to a PDS that can support the
combination of Protocol and Datastore needed by the persistent object. To do this
POM must know which PDSs are available and which Protocol and Datastore
combinations they support. There are several possible ways that this information c
be made available to a POM:

• How a Protocol is associated with an object. One possibility is for the client to s
the Protocol for that object. Another possibility is for the Protocol to be associa
with the object’s type or implementation.
Persistent Service V1.0 The CosPersistencePOM Module April 2000 2-11

2

pe)
ion
to
y

POM

e

e

ext

OM,

2

• How a POM finds out the set of available PDSs and which Protocol (or object ty
and Datastores they support. One possibility is for the POM to find the informat
in a configuration file or a registry. Another possibility is to provide an interface
the POM for registering the information. The best or most natural technique ma
depend on the environment.

Because there are multiple ways to accomplish the above and more experience is
needed to better understand whether there is a best way and what that might be, a
interface for registering this information in the POM is not specified at this time.

When the POM is asked to store an object, the following steps logically occur:

1. From the PID, the POM gets thedatastore_type attribute.

2. Regardless of how the Protocol is associated with the object, the POM uses th
combination of Protocol anddatastore_type to determine the PDS.

3. The POM passes the store request through to the PDS.

4. The PDS gets data from the object using a Protocol and stores the data in the
Datastore.

The routing function of the POM serves to shield the client from having to know th
details of how actual data storage/retrieval takes place. A client can change the
repository of an object by changing the PID. The change will result in routing the n
store/restore request to whatever the appropriate PDS is for the new Datastore.

Figure 2-2 illustrates an example of the routing logic for the storage of myDoc in a
DB2 database. This figure and the following example steps assume that, for this P
the Protocol is associated with object type:

1. The POM is asked to perform a store on myDoc with pid1.

2. The POM finds thedatastore_type associated with pid1 (e.g., DB2).

3. The POM finds the object type of myDoc (e.g., document).

4. The POM determines that myDoc will use a particular PDS (e.g., pds1).

5. The POM routes the store/restore to pds1.

6. The PDS gets the persistent data using protocol1 and stores the data in the DB
Datastore at pid1.
2-12 Persistent Service V1.0 April 2000

2

n of

re

2.14.

ta
Ss
t, or
er

ys in
ys in
DS
Figure 2-2 Example to illustrate POMFunctions

2.5 Persistent Data Service (PDS) Overview

The PDS implementation is responsible for the following:

• Interacting with the object to get data in and out of the object using aprotocol.
Protocols are introduced in this section; three example protocols and a discussio
additional protocols are presented in Section 2.7 through Section 2.12.

• Interacting with the Datastore to get data in and out of the object. Datastores a
introduced in this section, and an example datastore plus a discussion of
implementing additional datastores are presented in Section 2.13 and Section

A PDS performs the work for moving data into and out of an object and moving da
into and out of a Datastore. There can be a wide variety of implementations of PD
which provide different performance, robustness, storage efficiency, storage forma
other characteristics, and which are tuned to the size, structure, granularity, or oth
properties of the object’s state.

Because the range of storage requirements is so large, there may be different wa
which the object can best access its persistent data, and there may be different wa
which the PDS can store that data. The way in which the object interacts with the P

POM

mySpreadSheetmyDoc

datastore_type=DB2
...

datastore_type=ObjectStore
...

pid1 pid2

pds2pds1

DB2 ObjectStore

protocol1
protocol2

pds3

FS

yourDoc

datastore_type=FS
...

pid1

protocol2

document,DB2 pds1
spreadSheet,ObjectStore pds2

document,FS pds3

PDS Registry
object_type,datastore_type PDS
Persistent Service V1.0 Persistent Data Service (PDS) Overview April 2000 2-13

2

alls
, or
t to
tent
,
t
ular
”
ol,
lso

can

base
ule

l-

e is
is called the Protocol. A Protocol may consist of calls from the object to the PDS, c
from the PDS to the object, implicit operations implemented with hidden interfaces
some combination. The interaction might be explicit, for example, asking the objec
stream out its data, or implicit, for example, the object might be mapped into persis
virtual memory. The Protocol is initiated when an object’s persistent state is stored
restored, or connected; this may be initiated by a POM or by the object itself. Wha
happens after that depends on the particular Protocol. An object that uses a partic
Protocol can work with any PDS that supports that Protocol. There is no “standard
protocol. This specification defines three Protocols: the Direct Attribute (DA) Protoc
the ODMG Protocol, and the Dynamic Data Object (DDO) Protocol. A PDS might a
use a programming language-specific or runtime environment-specific or other
Protocol.

A PDS may use either a standard or a proprietary interface to its Datastore. A
Datastore might be a file, virtual memory, some kind of database, or anything that
store information. This specification defines one Datastore interface that can be
implemented by a variety of databases (Section 2.13, “Datastores:
CosPersistenceDS_CLI Module,” on page 2-28).

The PDS component interface is specified here as one module containing only the
PDS interface, plus one additional module per protocol. Each protocol-specific mod
inherits from the base module, augmenting the base functionality as needed.

2.6 The CosPersistencePDS Module

The CosPersistencePDS Module contains the base interface upon which protoco
specific interfaces are built. It contains a single interface: the PDS Interface.

This section describes this interface and its operations in detail.

The CosPersistencePDS module is shown below. Some Protocols may require
specialization of the PDS interface. However, no matter what Protocol or Datastor
used, a PDS always supports at least the following interface:

#include "CosPersistencePID.idl"

module CosPersistencePDS {

interface Object;
interface PDS {

PDS connect (in Object obj,
in CosPersistencePID::PID p);

void disconnect (in Object obj,
in CosPersistencePID::PID p);

void store (in Object obj,
in CosPersistencePID::PID p);

void restore (in Object obj,
in CosPersistencePID::PID p);

void delete (in Object obj,
in CosPersistencePID::PID p);
2-14 Persistent Service V1.0 April 2000

2

nd on

on the

t the

less

stent

ore
ribed
ata
data

ed in

sing
iate
};
};

The exact semantics of the connect, disconnect, store, and restore operations depe
the Protocol, since there may be other steps involved in the Protocol. In all four
operations, the persistent state is determined by the PID of the object.

PDS connect (in Object obj, in CosPersistencePID::PID p);

This connects the object to its persistent state, after disconnecting any previous
persistent state. The persistent state may be updated as operations are performed
object.

void disconnect (in Object obj, in CosPersistencePID::PID p);

This disconnects the object from the persistent state. It is undefined whether or no
object is usable if not connected to persistent state.

void store (in Object obj, in CosPersistencePID::PID p);

This saves the object’s persistent state.

void restore (in Object obj, in CosPersistencePID::PID p);

This loads the object’s persistent state. The persistent state will not be modified un
a store or other mutating operation is performed on the persistent state.

void delete (in Object obj, in CosPersistencePID::PID p);

This disconnects the object from its persistent state and deletes the object’s persi
data from the Datastore location indicated by the PID.

2.7 The Direct Access (PDS_DA) Protocol

The first protocol to be described here is thePDS_DA or Direct Access Protocol. The
Direct Access Protocol supports direct access to persistent data through typed
attributes organized in data objects that are defined in a Data Definition Language
(DDL). An object using this Protocol would represent its persistent data as one or m
interconnected data objects. For uniformity, the persistent data of an object is desc
as a single data object; however, that data object might be the root of a graph of d
objects interconnected by stored data object references. If an object uses multiple
objects, the object traverses the graph by following stored data object references.

An object must define the types of the data objects it uses. Those types are specifi
DDL, which is a subset of the OMG Interface Definition Language (OMG IDL) in
which objects consist solely of attributes. The state of the data object is accessed u
the attribute access operations defined in CORBA in conjunction with the appropr
programming language mapping.
Persistent Service V1.0 The Direct Access (PDS_DA) Protocol April 2000 2-15

2

a
ting

he
Figure 2-3 Direct Access Protocol Interfaces

The PDS_DA Protocol has two parts, as shown in Figure 2-3. When connected to
PDS, the object (which is effectively the client of the PDS) has an object represen
the PDS which supports thePDS_DA interface. The object performs operations
defined in thePDS_DA interface to get references to the data objects in the PDS. T
persistent data is manipulated by performing operations using the data object
references to get and set attributes on the collection of data objects in the PDS.

2.8 The CosPersistencePDS_DA Module

The CosPersistencePDS_DA module is a collection of interfaces which together
define the protocol. This module contains the following interfaces:

• The PID_DA Interface

• The DAObject Interface

• The DAObjectFactory Interface

• The DAObjectFactoryFinder Interface

• The PDS_DA Interface

• The DynamicAttributeAccess Interface

• The PDSClustered_DA Interface

This section describes these interfaces and their operations in detail.

The CosPersistencePDS_DA module is shown below.

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePDS_DA {

Object (Client of PDS)

PDS_DA

data objects

i=1
j=4

i=3 x=1
A B x=5

x=0
y=7
z=9

Data Object References PDS Object Reference
2-16 Persistent Service V1.0 April 2000

2

typedef string DAObjectID;

interface PID_DA : CosPersistencePID::PID {
attribute DAObjectID oid;

};

interface DAObject {
boolean dado_same(in DAObject d);
DAObjectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

};

interface DAObjectFactory {
DAObject create();

};

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

};

interface PDS_DA : CosPersistencePDS::PDS {
DAObject get_data();
void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
PID_DA get_pid();
PID_DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

};

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {

AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

};

typedef string ClusterID;
typedef sequence<ClusterID> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA{

ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterID cluster);
PDS_ClusteredDA copy_cluster(

in PDS_DA source);
};

};
Persistent Service V1.0 The CosPersistencePDS_DA Module April 2000 2-17

2

ion

by
ay

s
ce.

ce to

me

iers
2.8.1 The PID_DA Interface

The Persistent Identifiers (PIDs) used by thePDS_DA contain an object identifier that
is local to the particular PDS. This value may be accessed with the following extens
to theCosPersistencePID interface:

interface PID_DA : CosPersistencePID::PID {
attribute DAObjectID oid;

};

The DAObjectID has the following attribute:

attribute DAObjectID oid();

This returns the data object identifier used by this PDS for the data object specified
the PID.TheDAObjectID type is defined as an unbounded sequence of bytes that m
be vendor-dependent.

2.8.2 The Generic DAObject Interface

The DAObject interface defined below provides operations that many data object
clients need. A Datastore implementation may provide support for these operation
automatically for its data objects. A data object is not required to support this interfa
A client can obtain access to these operations by narrowing a data object referen
the DAObject interface:

interface DAObject {
boolean dado_same(in DAObject d);
DAObjectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

};

The DAObject has the following operations:

boolean dado_same(in DAObject d);

This returns true if the target data object and the parameter data object are the sa
data object. This operation can be used to test data object references for identity.

DataObjectID dado_oid();

This returns the object identifier for the data object. The scope of data object identif
is implementation-specific, but is not guaranteed to be global.

PID_DA dado_pid();

This returns aPID_DA for the data object.
2-18 Persistent Service V1.0 April 2000

2

bject.

e
must

ory
void dado_remove();

This deletes the object from the persistent store and deletes the in-memory data o

void dado_free();

This informs the PDS that the data object is not required for the time being, and th
PDS may move it back to persistent store. The data object must be preserved and
be brought back the next time it is referenced. This operation is only a hint and is
provided to improve performance and resource usage.

2.8.3 The DAObjectFactory Interface

The scheme for factories is consistent with that of the Life Cycle Service. The fact
supports the following interface:

interface DAObjectFactory {
DAObject create();

};

The DAObjectFactory has the following operation:

DAObjectFactory create();

creates a new data object in the PDS.

2.8.4 The DAObjectFactoryFinder Interface

This scheme for factories follows the Life Cycle Services specification. The factory
finder supports the following interface:

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

};

The DAObjectFactoryFinder has the following operation:

DAObjectFactoryFinder find_factory(in string key);

This finds a factory for data objects as specified by the key.

2.8.5 The PDS_DA Interface

The DA Protocol uses an extended PDS interface calledPDS_DA:

interface PDS_DA : CosPersistencePDS::PDS {
DAObject get_data();
void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
Persistent Service V1.0 The CosPersistencePDS_DA Module April 2000 2-19

2

in

n

ace
s as

re and

g
to

es.
PID_DA get_pid();
PID_DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

};

The PDS_DA provides the following operations:

DAObject get_data();

This returns the single root data object of the PDS.

void set_data(in DAObject new_data);

This sets the single root data object

DAObject lookup(in DAObjectID id);

This finds a data object by object id.

PID_DA get_pid();

This constructs a PID that corresponds to the single root data object of this PDS.

PID_DA get_object_pid(in DAObject dao);

This constructs a PID that corresponds to the specified data object, which must be
this PDS.

DAObjectFactoryFinder data_factories();

This returns a factory finder. The factory finder will provide factories for the creatio
of new data objects within the PDS.

2.8.6 Defining and Using DA Data Objects

A PDS_DA implements data objects that have a set of attributes defined in a Data
Definition Language (DDL). DDL is a subset of OMG IDL. In DDL, all interfaces
consist only of attributes; that is, there are no operations. The programming interf
for accessing the persistent state is the CORBA-defined attribute access operation
specified in the particular programming language mapping. APDS_DA implements
those accessor operations and transfers the persistent state between the Datasto
data objects as necessary.

DA data objects are used like normal CORBA objects. They are manipulated usin
object references, sometimes called “data object references.” Language mappings
data object interfaces are generated just like language mappings for other interfac
2-20 Persistent Service V1.0 April 2000

2

de
s, one

ide

above
ject

t
ct to
To define a DA data object (DADO), the developer decides what state must be ma
persistent. For example, suppose the object’s persistent data consists of two value
integer and one floating point number. The developer would define a data object
interfaceMyDataObject describing this data:

interface MyDataObject {
attribute short my_short;
attribute float my_float;

};

The DDL definition must be compiled, installed and linked with the object
implementation as necessary for the particular PDS and CORBA environment.
Mechanisms similar to those for creating stubs for IDL interfaces are used to prov
the callable routines and create the runtime information necessary for the PDS
implementation. The precise mechanisms are not defined in this specification.

Once the object has been connected to the PDS, the factory operations described
are used to create the data object and set it as the root object in the PDS. The ob
gets or sets values for the attributes using the CORBA accessor operations, for
example:

// PDS_DA Examples
// C++ code
// Include IDL compiler output from CosPersistencePDS_DA.idl
#include "CosPersistencePDS_DA.xh"
// CosPersistencePDS_DA.idl #includes CosPersistencePDS.idl
// CosPersistencePDS.idl #includes CosPersistencePID.idl
// connect to PDS
CosPersistencePDS_DA::PDS_DA my_pds =

pom->connect(my_object,my_PID);
// get factory finder
DAObjectFactoryFinder daoff = my_pds->data_factories();
// get factory for MyDataObject
DAObjectFactory my_factory =

daoff->find_factory(“MyDataObject”);
// create an instance of MyDataObject
MyDataObjectRef my_obj = my_factory->create();
// set the object to be the root object
my_pds->set_data(my_obj);
// put persistent state in attributes
my_obj->my_short(42);
my_obj->my_float(3.14159);
// use persistent state
my_obj->my_short(my_obj->my_short()+12);

The DA Protocol allows developers to build simple object implementations that jus
read and write attribute values whenever they need to. There is no need for an obje
cache persistent data in its transient store or to explicitly request it to be read or
written.
Persistent Service V1.0 The CosPersistencePDS_DA Module April 2000 2-21

2

r

a

. For

In

ing

ce
tify
s,
s
and
this
tions
Attributes can be defined using the full flexibility of the DDL type system. A particula
PDS may restrict the attribute types it supports.

A data object may contain object references to other data objects and to ordinary
CORBA objects. Here is an example that extends the previous example by adding
data object reference attribute and an ordinary CORBA object reference:

interface MyDataObject {
attribute short my_short;
attribute float my_float;
attribute MyDataObject next_data;
attribute SomeOtherObject my_object_ref;

};

This example allows an instance ofMyDataObject to refer to another instance. A
Datastore implementation might restrict the scope of stored data object references
example, it might permit only references to data objects in the same Datastore.

DDL interfaces support inheritance with semantics identical to IDL. In the following
example, a new type of data object is defined that has all the attributes of
MyDataObject , plus an additional integer:

interface DerivedObject : MyDataObject {
attribute short my_extra;

};

Like other CORBA objects, data objects support operations on object references.
particular, theget_interface operation, which returns an interface repository
reference to the object’s most derived interface, is useful for dynamically determin
the type of a data object.

2.8.7 The DynamicAttributeAccess Interface

Because data objects are CORBA objects, the CORBA Dynamic Invocation Interfa
can be used to get and set data object attributes dynamically, using strings to iden
attributes at run time. However, to simplify dynamic access to data object attribute
the DynamicAttributeAccess interface is defined. This interface defines operation
that allow determination of the names of the attributes of a data object and getting
setting individual attribute values by name. A data object is not required to support
interface. It can be determined whether or not a data object supports these opera
by narrowing a data object reference to theDynamicAttributeAccess interface.

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {

AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

};
2-22 Persistent Service V1.0 April 2000

2

eter.

lude

e

AttributeNames attribute_names();

This returns a sequence containing the names of the object’s attributes.

any attribute_get(in string name);

This returns the value of the specified attribute.

void attribute_set(in string name, in any value);

This sets the value of the named attribute to the value specified by the any param

2.8.8 The PDS_ClusteredDA Interface

It is often useful to group data objects together within a PDS. Common reasons inc
locking, sharing, and performance. ThePDS_ClusteredDA is an extension to the
PDS_DA. A non-clusteredPDS_DA is effectively a single cluster.

Each cluster is represented as a distinct instance of thePDS_ClusteredDA interface,
although they will typically all be implemented by the same service using the sam
Datastore.

In addition to supporting the normalPDS_DA interface, aClustered PDS_DA has
the following interface:

typedef string ClusterID;
typedef sequence<ClusterID> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA {

ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterID cluster);
PDS_ClusteredDA copy_cluster(

in PDS_DA source);
};

ClusterID cluster_id();

This returns the id of this cluster.

string cluster_kind();

This returns the kind of this cluster.

ClusterIDs clusters_of();

This returns a sequence of ClusterIDs listing all of the clusters in this Datastore.

PDS_ClusteredDA create_cluster(in string kind);
Persistent Service V1.0 The CosPersistencePDS_DA Module April 2000 2-23

2

s
3.

of
ified

-93.

be
S.

e

it
This creates a new cluster of the specified kind in this Datastore and returns a
PDS_ClusteredDA instance to represent it.

PDS_ClusteredDA open_cluster(in ClusterID cluster);

This opens an existing cluster that has the specified ClusterID.

PDS_ClusteredDA copy_cluster(in PDS_DA source);

Creates a new cluster, loading its state from the specified cluster, which may be
implemented in a different Datastore.

2.9 The ODMG-93 Protocol

A group of Object-Oriented Database Management System (ODBMS) vendors ha
recently endorsed and published a common ODBMS specification called ODMG-9
That specification defines an extended version of IDL for defining ODBMS object
types as well as programming language interfaces for object manipulation.

The ODMG-93 Protocol is similar to the DA Protocol, in that the object accesses
attributes organized as data objects. The primary difference is that the ODMG-93
Protocol uses the Object Definition Language (ODL) defined in ODMG-93 instead
DDL, and it uses the programming language mapping defined for data objects spec
in ODMG-93, rather than the CORBA IDL attribute operations.

If the ODMG-93 database object inherits thePDS_DA interface, then the database
object can be used with the rest of this specification. Objects using the ODMG-93
Protocol would manipulate persistent data using the interfaces specified in ODMG

Note that in addition to using the ODMG-93 interface as another protocol, it would
straightforward to implement the DA Protocol using an ODMG-93 ODBMS as a PD
Since the DA Protocol is a subset of the functionality in ODMG-93, in most
programming languages the language mapping for the DDL attributes would be a
trivial layer on the ODMG-93 mapping. Using the ODMG-93 Protocol would fully
exploit the capabilities of ODMG-93; using an ODMG-93 ODBMS to implement th
DA Protocol captures those objects that use DA Protocol.

2.10 The Dynamic Data Object (DDO) Protocol

The DDO is a Datastore-neutral representation of an object’s persistent data. Its
purpose is to contain all of the data for a single object. Figure 2-4 illustrates an
example of a DDO. A DDO has a single PID,object_type and set of data items
whose cardinality isdata_count . Each piece of data has adata_name , data_value
and a set of properties whose cardinality isproperty_count . Each property has a
property_name and a property value.

Although any data can be stored in a DDO, the following example illustrates how
might map onto a row in a table:

• a DDO = a row
2-24 Persistent Service V1.0 April 2000

2

. In
t. It
ch
• data_count = number of rows

• data_item = column

• data_name = column name

• data_value = column value

• property_count = number of column properties

• property_name = e.g., type or size

• property_value = e.g., character or 255

Figure 2-4 Structure of a DDO

A DDO provides a Protocol when the persistent object supports the DDO interface
this case, the DDO interface is used to get data in and out of the persistent objec
may even provide the way that the persistent object stores its internal data, in whi
case a copy and reformat step is avoided.

PID object_typedata_count=2

data_id=1

property_count=2

a data item

property_id=1

property_value=any

a property

data_name=”” data_value=any

property_name=””

property_id=2

property_value=any

a property

property_name=””

data_id=2

property_count=1

a data item

property_id=1

property_value=any

a property

data_name=”” data_value=any

property_name=””

a DDO
Persistent Service V1.0 The Dynamic Data Object (DDO) Protocol April 2000 2-25

2

,
pes
a in
To facilitate fast and simple storage and retrieval in specialized types of Datastore
DDOs can be used with particular conventions that are more suitable to different ty
of Datastore. If the DDO is used for both a Protocol and as a direct way to get dat
and out of a Datastore, then copy and format costs are greatly reduced.

2.11 The CosPersistenceDDO Module

The CosPersistenceDDO module contains the OMG IDL to support the DDO
protocol. The module contains one interface, theDDO interface.

This section describes theCosPersistenceDDO module in detail.

#include "CosPersistencePID.idl"

module CosPersistenceDDO {

interface DDO {
attribute string object_type;
attribute CosPersistencePID::PID p;
short add_data();
short add_data_property (in short data_id);
short get_data_count();
short get_data_property_count (in short data_id);
void get_data_property (in short data_id,

in short property_id,
out string property_name,
out any property_value);

void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);

void get_data (in short data_id,
out string data_name,
out any data_value);

void set_data (in short data_id,
in string data_name,
in any data_value);

};
};

A DDO has two attributes:

attribute string object_type;

This identifys theobject_type that this DDO is associated with.

attribute CosPersistencePID::PID p;

This identify the PID of the DDO.

A DDO has the following operations for getting data in and out of the DDO:
2-26 Persistent Service V1.0 April 2000

2

this
nt

hen
short add_data();

This adds a new data item and returns a newdata_id that can be used to access it.

short add_data_property (in short data_id);

This adds a new property within the data item identified bydata_id and returns the
new property_id that can be used to access it within the context of the data item.

short get_data_count();

This gets the number of data items in the DDO.

short get_data_property_count (in short data_id);

This gets the number of properties associated with the data item identified bydata_id .

void get_data_property (in short data_id,
in short property_id,
out string property_name,
out any property_value);

This gets the name and value of the property identified byproperty_id within the data
item identified bydata_id .

void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);

This sets the name and value of the property identified byproperty_id within the data
item identified bydata_id .

void get_data (in short data_id,
out string data_name,
out any data_value);

This gets the name and value of the data item identified bydata_id .

void set_data (in short data_id,
in string data_name,
in any data_value);

This sets the name and value of the data item identified bydata_id .

2.12 Other Protocols

This specification includes three protocols, but other protocols can be supported in
architecture. The proliferation of protocols would reduce the commonality of differe
objects, so it is desirable to use an existing protocol if that is possible. However, w
Persistent Service V1.0 Other Protocols April 2000 2-27

2

ject

ols.

rfaces
this
and

LISP-
t to
S
nt
ded

nce

es

en

any

ter to
t

a new protocol is required, it is still possible to use other parts of the Persistent Ob
Service with it. In general, the protocol should be independent of the Datastore
interface, although some Datastore interfaces will be better suited to some protoc

Some protocols are already defined and are not specified here. Such standard inte
as POSIX files are already in wide use, and there is no need to respecify them. In
case, the PID would include the file name, and the protocol would consist of reads
writes.

Other protocols are intended to be value-added and non-standard. For example, a
specific PDS might take advantage of knowledge of the LISP runtime environmen
create the appearance of a single-level store of LISP objects. Although such a PD
would not be usable from other programming languages, it could provide significa
value to LISP programmers. Of course, it is also possible for a particular value-ad
protocol to be implemented as a layer on a standard Protocol.

This specification allows such protocols to be integrated in the overall POS
architecture without changing that architecture.

2.13 Datastores: CosPersistenceDS_CLI Module

The last major component in the architecture is aDataStore , which provides
operations on a data repository underneath the Protocols just discussed. As with
Protocols, a variety ofDataStore interfaces may be defined. There is no “standard”
DataStore interface. Only one kind ofDataStore is defined here, for record-oriented
databases, because other standard interfaces already exist at this level and many
customers may choose to omit this level of the architecture altogether for performa
in an object-oriented database by using the DA or ODMG Protocol directly on the
DBMS.

Datastore_CLI provides a uniform interface for accessing many different Datastor
either individually or simultaneously. The acronym CLI refers to the X/Open Data
Management Call Level Interface on which the module is based.Datastore_CLI is
especially suited for record database and file systems (e.g., relational, IMS,
hierarchical databases, and VSAM file systems) that support user sessions,
connections, transactions, and scanning through data items using cursors.

The specification of this framework, where appropriate, is consistent with the X/Op
CLI, IDAPI, and ODBC standards. These are industry standards which specify
procedure-oriented application programming interfaces for accessing data stored in
type of Datastore.

More detailed explanations and enumeration of the options in theDatastore_CLI
operations can be found in the X/Open CLI Specification.

DDOs are used as the way data are passed into theDatastore_CLI interface. If DDO
is also being used as the Protocol, the PDS can use this DDO directly as a parame
calls to theDatastore_CLI . When a different Protocol is being used, the PDS mus
create a new DO and populate it with data prior to calling theDatastore_CLI .
2-28 Persistent Service V1.0 April 2000

2

ains

The CosPersistenceDS_CLI module contains the interfaces derived from ODBC
and IDAPI, providing cursors into relational and other databases. The module cont
the following interfaces:

• The UserEnvironment Interface

• The Connection Interface

• The ConnectionFactory Interface

• The Cursor Interface

• The CursorFactory Interface

• The PID_CLI Interface

• The Datastore_CLI Interface

This section describes these interfaces and their operations in detail.

The CosPersistenceDS_CLI Module is shown below:

#include "CosPersistenceDDO.idl"
// CosPersistenceDDO.idl #includes CosPersistencePID.idl

module CosPersistenceDS_CLI {
interface UserEnvironment {

void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

};

interface Connection {
void set_option (in long option,in any value);
void get_option (in long option,out any value);

};

interface ConnectionFactory {
Connection create_object (

in UserEnvironment user_envir);
};

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

};

interface CursorFactory {
Cursor create_object (

in Connection connection);
};

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
Persistent Service V1.0 Datastores: CosPersistenceDS_CLI Module April 20002-29

2

attribute string id;
};

interface Datastore_CLI {
void connect (in Connection connection,

in string datastore_id,
in string user_name,
in string authentication);

void disconnect (in Connection connection);
Connection get_connection (

in string datastore_id,
in string user_name);

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

Cursor select_object(
in Connection connection,
in string key);

void transact (in UserEnvironment user_envir,
in short completion_type);

void assign_PID (in PID_CLI p);
void assign_PID_relative (

in PID_CLI source_pid,
in PID_CLI target_pid);

boolean is_identical_PID (
in PID_CLI pid_1,
in PID_CLI pid_2);

string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection connection,

in string command);
};

};

2.13.1 The UserEnvironment Interface

The UserEnvironment OMG IDL is as follows:

interface UserEnvironment {
void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();
2-30 Persistent Service V1.0 April 2000

2

the

or

the

or
};

The UserEnvironment has the following operations:

void set_option (in long option, in any value);

This sets the option to the desired value. The list of settable options is specified in
X/Open CLI Specification and the IDAPI Specification.

void get_option (in long option, out any value);

This gets the value of the option. The list of gettable options is the same as that f
set_option() .

void release();

This releases all resources associated with theUserEnvironment .

2.13.2 The Connection Interface

The Connection OMG IDL is as follows:

interface Connection {
void set_option (in long option,in any value);
void get_option (in long option,out any value);

};

The Connection interface contains the following operations:

void set_option (in long option,in any value);

This sets the option to the desired value. The list of settable options is specified in
IDAPI Specification.

void get_option (in long option, out any value);

This gets the value of the option. The list of gettable options is the same as that f
set_option .

2.13.3 The ConnectionFactory Interface

The ConnectionFactory OMG IDL is as follows:

interface ConnectionFactory {
Connection create_object (

in UserEnvironment user_envir);
};

The ConnectionFactory has the following operation:

 Connection create_object (
 in UserEnvironment user_envir);
Persistent Service V1.0 Datastores: CosPersistenceDS_CLI Module April 20002-31

2

t of

s:

or.

le
This creates an instance of Connection. A Connection is created within the contex
a singleUserEnvironment .

2.13.4 The Cursor Interface

The Cursor OMG IDL is as follows:

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

};

A cursor is a movable pointer into a list of DDOs, through which a client can move
about the list or fetch a DDO from the list. The Cursor has the following operation

void set_position (in long position, in any value);

This sets the Cursor position to the desired value. The list of settable positions is
specified in the IDAPI Specification.

CosPersistenceDDO::DDO fetch_object();

This fetches the next DDO from the list, based on the current position of the Curs

2.13.5 The CursorFactory Interface

The CursorFactory OMG IDL is as follows:

interface CursorFactory {
Cursor create_object (

in Connection connection);
};

The CursorFactory has the following operations:

Cursor create_object (in Connection connection);

This create an instance of Cursor. A Cursor is created within the context of a sing
Connection. See the X/Open CLI Specification and IDAPI Specification for more
information.

2.13.6 The PID_CLI Interface

The PID_CLI IDL is as follows:

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

};
2-32 Persistent Service V1.0 April 2000

2

-4),

iple
base
a

se,
For
e

PID_CLI subtypes the PID base type (see Section 2.2.1, “PID Interface,” on page 2
adding attributes required for theDatatstore_CLI interface. ThePID_CLI interface
has the following attributes:

attribute string datastore_id;

This identifies the specific datastore in use. Most datastore products support mult
datastores. For a relational database, this might be the name of a particular data
containing multiple tables. For a Posix file system, this might be the pathname of
file.

attribute string id;

This identifies a particular data element within a datastore. For a relational databa
this might be a table name and primary key indicating a particular row in a table.
a Posix file system, this might be a logical offset within the file indicating where th
data starts.

2.13.7 The Datastore_CLI Interface

The Datastore_CLI OMG IDL is as follows:

interface Datastore_CLI {
void connect (in Connection connection,

in string datastore_id,
in string user_name,
in string authentication);

void disconnect (in Connection connection);
Connection get_connection (

in string datastore_id,
in string user_name);

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

Cursor select_object(
in Connection connection,
in string key);

void transact (in UserEnvironment user_envir,
in short completion_type);

void assign_PID (in PID_CLI p);
void assign_PID_relative (

in PID_CLI source_pid,
Persistent Service V1.0 Datastores: CosPersistenceDS_CLI Module April 20002-33

2

Os:

es.

en

blish

gins
in PID_CLI target_pid);
boolean is_identical_PID (

in PID_CLI pid_1,
in PID_CLI pid_2);

string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection connection,

in string command);
};

In general, a client goes through the following steps to store, restore or delete DD

1. Create aUserEnvironment and set the appropriate options to their desired valu

2. Create aConnection and set the appropriate options to their desired values. Op
a connection to the Datastore, viaconnect() .

3. To store a DDO, calladd_object() or update_object() . To restore a DDO, call
retrieve_object() . To delete a DDO, calldelete_object() .

4. If necessary, calltransact() to commit or abort a Datastore transaction.

5. Repeat steps 3 and 4 as necessary.

6. Close the connection to the Datastore, viadisconnect() . Delete the corresponding
Connection.

7. Delete theUserEnvironment .

The Datastore_CLI connection operations are:

 void connect (in Connection connection,
 in string datastore_id,
 in string user_name,
 in string authentication);

This opens a connection to the Datastore using the Connection. A client can esta
more than one connection, but only one connection can be current at a time. The
connection thatconnect() establishes becomes the current connection.

void disconnect (in Connection connection);

This closes the Connection.

Connection get_connection (
in string datastore_id,
in string user_name);

This returns the Connection associated with thedatastore_id .

When any of the data manipulation operations is called, a datastore transaction be
implicitly if the Connection involved is not already active. A Connection becomes
active once the transaction begins and remains active untiltransact() is called.

The Datastore_CLI data manipulation operations are:
2-34 Persistent Service V1.0 April 2000

2

ation

e.

s.
ion

ion

as
 void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

This adds the DDO to the Datastore. If necessary, get the mapping schema inform
for the DDO first.

 void delete_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This deletes the DDO from the Datastore. If necessary, get the mapping schema
information for the DDO first.

void update_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This updates the DDO in the Datastore. If necessary, get the mapping schema
information for the DDO first.

void retrieve_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This retrieves the DDO from the Datastore. If necessary, get the mapping schema
information for the DDO first. To improve performance, theDBDatastore_CLI may
obtain access to more than one DDO at a time and cache these.

Cursor select_object (in Connection connection,
in string key);

This selects and retrieve the DDO(s) which match the key from the Datastore. The
DDO(s) are returned through the Cursor. If necessary, get the mapping schema
information for the key first. This operation is provided to support the Query Servic
In addition, theDatastore_CLI will support any other operation required by the
Object Query Service.

The Datastore_CLI functions as a resource manager for the DDOs that it manage
As such, it will support all resource manager operations specified by the Transact
Service. When the Transaction Service is not being used, a transaction is initiated
implicitly by either a Connection or atransact() , and ended with atransact() :

void transact (in UserEnvironment user_envir,
 in short completion_type);

This completes (commit or rollback) a Datastore transaction. Transaction complet
enacts or undoes anyadd_object() , update_object() or delete_object() operations
performed on any Connection within the UserEnvironment since the connection w
established or since a previous call totransact() for the same UserEnvironment. The
values ofcompletion_type are specified in the X/Open CLI Specification.

The Datastore_CLI PID Operations are:

void assign_PID (in PID_CLI p);
Persistent Service V1.0 Datastores: CosPersistenceDS_CLI Module April 20002-35

2

n

t of
n.

al,

as a

the

may
LI
r

This assign a value for the id attribute of the pid. The first attribute,datastore_type ,
must be filled in before calling this operation. If only the first attribute is filled in, the
this operation will fill in the second attribute,datastore_id , as well.

void assign_PID_relative (in PID_CLI source_pid,
in PID_CLI target_pid);

This assigns values for the attributes of the target_pid based on the values of the
source_pid . The target_pid’s first two attributes,datastore_type and
datastore_id , will be assigned the same values as those of thesource_pid . Its id
attribute will be assigned a new value which is based on some relationship with tha
the source_pid . The algorithm defining that relationship is up to the implementatio

boolean is_identical_PID (in PID_CLI pid_1, in PID_CLI pid_2);

This tests to see if the two pids are identical. In order for the two pids to be identic
the following conditions must be true:

1. Both pids must be managed by this PDS

2. all three attributes of the pids must be identical individually.

string get_object_type (in PID_CLI p);

This gets theobject_type of the pid.

OtherDatastore_CLI operations are:

void register_mapping_schema (in string schema_file);

This registers the mapping schema information contained within theschema_file
with the Datastore_CLI . The mapping schema generally consist of individual
mappings each of which is applicable to a given pair ofobject_type and
datastore_type .

Cursor execute (in Connection connection,
 in string command);

This executes a command on the Datastore. If there are any DDOs to be returned
result, this is done through the Cursor.

2.14 Other Datastores

There are other Datastore interfaces that can be used by PDSs. Some of these
interfaces are not CORBA object interfaces, in that they are not defined in IDL and
Datastores are not objects.

Some Datastores are simple, such as POSIX files. Others may be databases, and
use generic interfaces for databases and record files such as SQL, the X/Open C
API, IDAPI or ODBC. Some Datastores are tuned to support nested documents o
other specific kinds of objects such as Bento.
2-36 Persistent Service V1.0 April 2000

2

s, the
s
tore
res
Because the Datastore interface is not exposed to object implementations or client
choice of Datastore interface is up to the PDS. So long as the PDS can support it
Protocol using the particular Datastore interface, any implementation of the Datas
can be used by that PDS. The identification of data within different types of Datasto
is facilitated by the PID, which can be specialized to each Datastore type.

2.15 Standards Conformance

This service is specified in standard OMG IDL.

The Datastore_CLI portion of the Persistent Object Service is consistent with the
X/Open CLI draft standard.

The ODMG-93 PDS Object Protocol incorporates the ODMG-93 specificiation.
Persistent Service V1.0 Standards Conformance April 2000 2-37

2

2-38 Persistent Service V1.0 April 2000

References A
The X/Open CLI standard is documented inX/Open Data Management Call Level
Interface (CLI) Draft Preliminary Specification. Reading, UK: X/Open Ltd., 1993.

The IDAPI standard is documented inIDAPI Working Draft. Scotts Valley, CA:
Borland International, August 1993.

The term “ODBC” refers toMicrosoft Open Database Connectivity Software
Development Kit, Programmer Reference, Version 1.0. Redmond, WA: Microsoft
Corp., 1992.

The term “Bento” refers to Jed Harris and Ira Rubin,The Bento Specification, Revision
1.0d5. Cupertino, CA: Apple Computer, Inc., July 15, 1993,

The term “ODMG-93” refers to R.G.G.Cattell, T.Atwood, J.Duhl, G.Ferran,
M.Loomis, and D.Wade,The Object Database Standard: ODMG-93. San Mateo, CA:
Morgan Kaufmann, 1993.
Persistent Service V1.0 April 2000 A-1

A

A-2 Persistent Service V1.0 April 2000

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Goals and Properties
	1.2.1 Basic Capabilities
	1.2.2 Object-oriented Storage
	1.2.3 Open Architecture

	1.3 Views of Service
	1.3.1 Client
	1.3.2 Object Implementation
	1.3.3 Persistent Data Service
	1.3.4 Datastore

	2. Persistent Service Modules
	2.1 Service Structure
	2.2 The CosPersistencePID Module
	2.2.1 PID Interface
	2.2.2 Example PIDFactory Interface

	2.3 The CosPersistencePO Module
	2.3.1 The PO Interface
	2.3.2 The POFactory Interface
	2.3.3 The SD Interface

	2.4 The CosPersistencePOM Module
	2.5 Persistent Data Service (PDS) Overview
	2.6 The CosPersistencePDS Module
	2.7 The Direct Access (PDS_DA) Protocol
	2.8 The CosPersistencePDS_DA Module
	2.8.1 The PID_DA Interface
	2.8.2 The Generic DAObject Interface
	2.8.3 The DAObjectFactory Interface
	2.8.4 The DAObjectFactoryFinder Interface
	2.8.5 The PDS_DA Interface
	2.8.6 Defining and Using DA Data Objects
	2.8.7 The DynamicAttributeAccess Interface
	2.8.8 The PDS_ClusteredDA Interface

	2.9 The ODMG-93 Protocol
	2.10 The Dynamic Data Object (DDO) Protocol
	2.11 The CosPersistenceDDO Module
	2.12 Other Protocols
	2.13 Datastores: CosPersistenceDS_CLI Module
	2.13.1 The UserEnvironment Interface
	2.13.2 The Connection Interface
	2.13.3 The ConnectionFactory Interface
	2.13.4 The Cursor Interface
	2.13.5 The CursorFactory Interface
	2.13.6 The PID_CLI Interface
	2.13.7 The Datastore_CLI Interface

	2.14 Other Datastores
	2.15 Standards Conformance

	Appendix A - References

