Persistent State Service Specification

ptc/2001-12-02

I ncor por atesall FTFresolutions

Per sistent State Ser viceNovember 2001




Copyright 1999, FUJTSU LIMITED
Copyright 1999, INPRISE Corporation
Copyright 1999, IONA TechnologiesPLC
Copyright 1999, Objectivity Inc.
Copyright 1999, Oracle Corporation
Copyright 1999, Persistence Software Inc.
Copyright 1999, Secant Technologies Inc.
Copyright 1999, Sun Microsystems Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adoptersisdirected to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be
required by any OM G specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

Theinformation contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company’s products.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIPR, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holderslisted
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of thiswork covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OM G®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and |1OP are trademarks of the Object Management Group, Inc.
X/Open is atrademark of X/Open Company Ltd.



ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http: //mww.omg.org/library/issuer pt.htm.






Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group’s answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

Persistent Sate Service V2.0 November 2001 1



Associated OMG Documents

The CORBA documentation is organized as follows:;

« Object Management Architecture Guide defines the OMG'’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It defines the umbrella architecture for the OMG standards. It also
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

« CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

« CORBAservices. Common Object Services Specification contains specifications
for OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail i@hjeet Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

Object Management Group
250 First Avenue

Needham, MA 02494
USA

Tel: +1-781 444 0404
Fax: +1-781 444 0320
pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:
 Ardent Software Inc.
« FUJITSU LIMITED
e IBM Corporation
« INPRISE Corporation
* |ONA Technologies PLC
 Objectivity Inc.
« Object Design Inc.

2 Persistent Sate Service V2.0 November 2001



« Oracle Corporation

* Persistence Software Inc.

Secant Technologies Inc.

e Sun Microsystems Inc.

Versant Object Technology Corporation

Persistent Sate ServiceV2.0  Acknowledgments November 2001



Persistent Sate Service V2.0 November 2001



ServiceDescription 1

The Persistent State Service provides a service to programmers (‘you’) who develop
CORBA object implementations. A client has no way to tell if the implementation of
an object uses this service.

ORB domain Datastore domain

Servants

externa interface intérna interface

Figure1-1 External and internal interfaces of a CORBA server

Figure 1-1 shows a computational context that hosts one or more object
implementations — or CORBA server for short. This server provides an external
interface that represents the interfaces supported by the object implementations it
contains; these interfaces are described usingifidérface constructs. Servants in
this server access a datastore (or several datastores) through an internal interface.

Persistent Sate Service V2.0 November 2001 1-5



1-6

This specification focuses on the definition of this internal interface.

1.1 Fundamental Concepts

The Persistent State Service presents persistent information as storage objects stored in
storage homes. Storage homes are themselves stored in datastores. A datastore is an
entity that manages data, for example a database, a set of files, a schemain arelational
database.

In order to manipulate a storage object, you need a programming-language object that
represents it in your program. In Java and C++, this programming language object is
an instance of a class: therefore we call it a storage object instance.

A storage object instance may be bound to a storage object in the datastore, and
provides direct access to the state of this storage object: updating the instance updates
the storage object in the datastore. Such a connected instance is called a storage object
incarnation.

Likewise, to use a storage home, you need a programming language object called a
storage home instance. Storage home instances themselves are provided by catalogs.

To access a storage object, you need alogical connection between your process and the
datastore that contains the storage home of this storage object. This logical connection,
called session, can give access to more than one datastore.

The management of sessions is either explicit (you create and manage sessions
yourself) or implicit (you create one or more session pools that manage sessions for
you). Sessions and session pools are the two kinds of catalogs defined by this
specification.

Persistent Sate Service V2.0 November 2001



Storage object
incarnations

Process A

Process B

Catalogs

1.2 Datastore Model

Figure 1-2 Fundamental Concepts

Conceptually, a datastore is a set of storage homes. Each storage home has a type.
Within a datastore, a storage home is a singleton: there is at most one storage home of
a given type in this datastore.

A storage home contains storage objects. Each storage object has an ID unique within
its storage home (its short-pid) and a global ID (its pid). The scope of the pid is all
storage objects that can be accessed through the same catal og.

Each storage object has a type, which defines the state members and operations (also
known as stored methods) of instances of this type. A storage object type can derive
from another storage object type.

A storage home can only contain storage objects of a given type. The type of a storage
home defines this storage object type, plus operations and keys (defined below). A
storage home type can derive from another storage home type: the storage object type
of the base storage home type must be a base of the storage object type of the derived
storage home type.

Within a datastore, a storage home manages its own storage objects and the storage
objects of all derived storage homes. A storage home and all its derived storage homes
is called a storage home family.

A storage home can ensure that alist of state members of its storage object type forms
a unique identifier for the storage objects it manages. Such a list of state members is
called a key. A storage home can have any number of keys.

Persistent Sate Service V2.0  Datastore Model November 2001 1-7



1.3 Specifying Sorage Objectsand Sorage Homes

When developing an application with the Persistent State Service, you are responsible
to specify the kind of storage objects and storage homes you need.

The Persistent State Service provides two ways to define the datastore schema and the
application programming interface of storage object instances in a datastore with this
schema:

® Using the Persistent State Definition Language (PSDL)

® Directly in your favorite programming language; this is known as Transparent
Persistence.

PSDL is asuperset of OMG IDL, with four new constructs: storagetype, storagehome,
abstract storagetype and abstract storagehome.

The PSDL type model is very similar to Java: a PSDL storage type (comparable to a
Java class) can implement any number of abstract storage types (comparable to Java
interfaces), and can inherit from at most one other storage type. Likewise, a PSDL
storage home type can implement any number of abstract storage homes and inherit
from at most one other storage home type.

You provide PSDL definitionsin a .psdl file. For example:
/I'In file People.psdl

abstract storagetype Person {
readonly state long social_security_number;
state string full_name;
state string phone_number;
|3
abstract storagehome PersonHome of Person {
Person create(in long ssn, in string full_name, in
string phone);

¥

A tool provided by your Persistent State Service implementation will process this file
and generate code in your target programming language. For example, if your target
programming language is Java, the tool will generate a Java interface for each
abstract storagetype and abstract storagehome.

An abstract storagetype can have state members and operations.

To locate or create a storage object, you call operations on the storage home where this
object is stored (or will be stored). An abstract storagehome can define arbitrary
operations.

A PSS implementation that supports transparent persistence allows you to specify your
storage objects directly in your programming language of choice. For example, you
could define a JPerson Java interface as follows:

Persistent Sate Service V2.0 November 2001



/1 Java
public interface JPerson {
public | ong social SecurityNunber();
public String full Name();
public void full Nane(String newNane) ;
public String phoneNunber ()
public void phoneNunber (String newNunber);

1.4 Implementing Sorage Objectsand Sorage Homes

A PSS implementation will typically offer several ways to define the storage types and
storage home types that implement the storage object and storage home specifications
you have specified in PSDL. For example, a graphical tool can let you map state
members to relational columns, and abstract storagehomes to relational tables.

Storage types and storage homes can also be defined in a .psdl file, using the
storagetype and storagehome constructs. A compliant PSS implementation must
understand these storage type and storage home definitions and must be able to
generate a full (default) implementation from these definitions alone.

For example:
/l'In file Peoplelmpl.psdl

#include <People.psdl>
storagetype Personimpl implements Person {};
storagehome PersonHomelmpl of Personimpl implements PersonHome{};

A tool provided by your Persistent State Service implementation will process this file
and generate code in your target programming language. For example, if your target
programming language is Java, this tool will generate concrete Java classes for both
Personimpl and PersonStorel mpl.

With transparent persistence, you can define storage object implementations directly
with regular programming language constructs. For example:

/1 Java
public class JPersonlnpl inplements JPerson {
private | ong _ssn;
private String _nane;
private String _phoneNumber;
public |l ong social SecurityNunmber() { return _ssn }
/1l etc.

}

With transparent persistence, however, you cannot define application-specific storage
homes: default storage homes with no keys and no operations are implicitly defined.
The type hierarchy of these default storage homes parallels the type hierarchy of the
corresponding storage objects. For example JPersonimpl’s associated storage home

Persistent Sate Service V2.0  Implementing Sorage Objects and Sorage Homes November



type derives from java.lang.Object’s associated storage home type. As a result, with
transparent persistence, you can only define a single storage home family in each
datastore.

1.5 Creating Sessionsand Session Pools

1.6 Transactions

1-10

Each PSS implementation provides a local connector object that you use to create
sessions and session pools. To get a reference to a connector object, use the
find_connector operation on the connector registry. The connector registry is a per-
ORB instance singleton obtained by callirggolve_initial_references(“PSS”) on

the ORB pseudo-interface. For example, the following Java code retrieves the default
PSS connector associated with the ORBO b, creates a session, and then finds a
storage home and inserts a new person in this storage home.

i mport org.ong. *;
CORBA. ORB nyOb = CORBA.ORB.init();
CosPer si st ent St at e. Connect or Regi stry connect or Regi stry

= CosPer si st ent St at e. Connect or Regi st ryHel per. narr ow

myOrb.resolve_initial_references(“PSS”)
);

CosPersistentState.Connector connector

= connectorRegistry.find_connector(*");
/I create session
CosPersistentState.Session mySession

= connector.create_basic_session(

org.omg.CosPersistentState. READ_WRITE,

parameters
)i
/I find person home
/I (personHome is a storage home instance)
PersonHome personHome = (PersonHome)
mySession.find_storage_home(“PSDL:PersonHomelmpl:1.0");

/I create person Joe Bloggs
Person joe = personHome.create(12345678, “Joe Bloggs”,
“(617) 949-9000");

Storage objects can be accessed in the context of transactions managed by the OMG
Transaction Service.

When you manage sessions explicitly, a storage object incarnation and a transaction
are linked through a transactional session:

® The storage object incarnation is managed by a storage home incarnation, which is
itself managed by a transactional session.

Persistent Sate Service V2.0 November 2001



1

® A resource object, which represents a datastore transaction, is registered with the
OTS transaction.

® The transactional session is associated with the resource (datastore transaction).

A normal application developer does not tell the PSS implementation when it needs to
create and register resources, or how and when it associates transactions and sessions;
thisis typically done by a third-party vendor, such as an implementation of the
SessionPool by the PSS Vendor, or a CORBA Components container vendor.

Often, in agiven CORBA server, only one resource is registered with each transaction.
To retrieve the session associated with this resource, use the current_session
operation on the connector object. For example:

/I get the ‘current’ session
org.omg.CosPersistentState.Session mySession =
connector.current_session();

In many cases, the management of sessions and their association of session with
transactions is not something you want to worry about. Further, some vendors offer
high performance transactional mapping and caching based on complex, highly
optimized session management. When you use session pools (implicit session
management), the implementation does everything for you. You have however no
programmatic control over transaction/session association, and you have to use
implicit transaction-context propagation. Each time you call a session pool in the
context of a transaction, the session pool implementation checks if it needs to register
a resource with this transaction, if it needs to create a new session, etc.

Note —Although everything is described in terms of Resources, the Persistent State
Service does not provide resource objects to its users. As aresult a PSS
implementation does not need to use Resources to integrate with a Transaction Service
implementation.

1.7 Persistent CORBA Objects

The simplest way to associate a CORBA object with a storage object is to bind the
identity of the CORBA object (its oid, an octet sequence) with the identity of the
storage object.

For example, to make the storage objects stored in storage home PersonHomelmpl
remotely accessible, you can create for each person a CORBA object whose oid is the
person’s social security number.

To make such a common association easier to implement, each storage object provides
two external representations of its identity as octet sequencegicttaand the
short_pid.

Persistent Sate ServiceV2.0  Persistent CORBA Objects November 2001 1-11



1.8 Relationship to CORBA Components

This specification was designed to satisfy all the requirements defined by the CORBA
Components submitters. However, it does not depend on CORBA Components.

When developing a CORBA Component with container-managed persistence, a
programmer sees a simplified subset of the application programming interface defined
by this specification. In particular, when using container-managed persistence, a
Component developer does not have access to sessions or session pools. As aresult, a
container vendor does not need a full Persistent State Service implementation to
provide container-managed persistence.

1-12 Persistent Sate Service V2.0 November 2001



2.1 Introduction

2.2 Catalogs

Accessing SorageObjects 2

Storage object instances are managed by storage home instances that are themselves
managed by catalogs.

There are two kinds of catalogs: sessions and session pools. Sessions, unlike session
pools, provide a programmatic control over session-allocation and session-transaction
association.

Access to storage objects is also either transactional or non-transactional: this depends
if you use atransactional session or transactional session pool, or not. The
programming model with or without transactions is dlightly different: with
transactions, the application must start and end units of work (transactions). Without
transactions, there is no need for demarcation.

A catalog is alocal object that implements the local interface
CosPersistentState::CatalogBase:

module CosPersistentState {
local interface StorageHomeBase;
exception NotFound {};
typedef short AccessMode;

const AccessMode READ_ONLY =0;
const AccessMode READ_WRITE =1,

Persistent Sate Service November 2001 2-13



typedef CORBA::OctetSeq Pid;
typedef CORBA::OctetSeq ShortPid;

local interface CatalogBase {
readonly attribute AccessMode access_mode;

StorageHomeBase
find_storage _home(in string storage_home_id) raises (NotFound);

StorageObjectBase
find_by pid(in Pid the_pid) raises (NotFound);

void flush();
void refresh();
void free_all();
void close();
|3
|3

The read-only attribute access_mode returns the access mode of this catalog. When
the access mode is READ_ONLY, the storage object incarnations obtained through
storage home instances provided by this catalog are read-only.

The find_storage_home operation can be used to obtain a storage home instance.
find_storage _home raises NotFound if it cannot find a storage home that matches
the given storage_home_id.

The format of the storage_home_id parameter is mostly implementation-defined.

The find_storage_home operation also understands storage_home_id that have

the form of a PSDL type id (such as “PSDL:com/acme/PersonStoreimpl:1.0",
Section 3.2.4, “PSDL Type Id,” on page 3-3@)d_storage_home looks up a
PSDL-defined storage home with this type id in the catalog’s default datastore. If the
storage_home_id parameter has the forndatastore_name’, wheredatastore_name

is a stringfind_storage_home returns a storage home instance for the storage home
associated withj ava. | ang. Obj ect (Java) od_Cbj ect (C++) in this datastore.

Thefind_by pid operation attempts to locate a storage object with the given PID in
the storage homes provided by the target catalog. fiflde by pid operation raises
NotFound if it cannot find a storage object with thpsd; otherwise, it returns an
incarnation of this storage object.

Often, when an application creates a new storage object or updates a storage object, th
modification is not written directly to disk -- the PSS implementation can cache some
“dirty” data. Theflush operation instructs the PSS implementation to write to disk any
cached modifications of storage object incarnations managed by this catalog.

In addition, a PSS implementation can cache data read from the datastore(s). The
refresh operation instructs the PSS implementation to refresh any cached storage
object incarnations accessed by this catalog. This operation can invalidate any direct
reference to a storage object incarnation’s data member.

2-14 Persistent Sate Service November 2001



For example:

/I PSDL
abstract storagetype Person {

readonly state string full_name;
state CORBA::OctetSeq photo;

b

/1 Java
Person joe = // sonehow | ocates
/1 Joe Bloggs in catal og myCatal og
byte[] photo = joe.photo();
nmyCat al og. refresh();
/1 photo is now undefined (can be an out-of-data photo,
/1 random octets, anything)
/1 joe, however, is still valid.

Calling refresh is unusual: most applications will never use this operation.

In programming languages without garbage collection, such as C++, PSDL storage

object instances are reference-counted by the application. Further, when a PSDL

storage object A holds a reference to another PSDL storage object B, A's instance
owns a reference count of B’s instance. When PSDL storage objects form a cyclic
graph, the corresponding instances own reference count of each other; even if the
programmer correctly releases all her reference counts, the cyclic graph will never be
completely released.

For example:

/I PSDL

abstract storagetype Person {
readonly state string full_name;
state ref<Person> spouse;

b

Once a couple is formed, each Person incarnation maintains the other Person’s
incarnation in memory.

The operatiorfree_all deals with this issue: it instructs the catalog implementation to
set the reference count of all its PSDL storage object instances to 0.

The operatiorclose terminates the catalog. When closed, the catalog is also flushed.
If the catalog is associated with one or more transactions (see below)xiolsenis
called, these transactions are marked roll-back only.

2.3 Connector

Sessions and session pools are created by connectors. A connector is a local object tha
represents a given PSS implementation.

Persistent Sate Service  Connector November 2001 2-15



Applications obtain connectors by calling the operation resolve_initial_references
on a CORBA::ORB object.The format of the Objectld string passed to
resolve_initial_references is:

PSS[ : vendor _id:inplementation_id]
The [ ] denote optional parts in this string format.

The vendor-id is an id assigned by the OMG, and implementation-id is an
implementation-defined string.

module CosPersistentState {

local interface Connector;

local interface Session;

local interface TransactionalSession;
local interface SessionPool;

typedef short TransactionPolicy;
const TransactionPolicy NON_TRANSACTIONAL = 0;
const TransactionPolicy TRANSACTIONAL = 1;

struct Parameter {
string name;
any val;

b

typedef sequence<Parameter> ParameterList;
typedef sequence<TransactionalSession> TransactionalSessionList;

local interface Connector {
readonly attribute string implementation_id;

Session
create_basic_session(
in AccessMode access_mode,
in ParameterList additional_parameters

);

TransactionalSession
create_transactional_session(
in AccessMode access_mode,
in IsolationLevel default_isolation_level,
in EndOfAssociationCallback callback,
in ParameterList additional_parameters

);

TransactionalSession current_session();

2-16 Persistent Sate Service November 2001



TransactionalSessionList
sessions(
in CosTransactions::Coordinator transaction
);
SessionPool
create_session_pool(
in AccessMode access_mode,
in TransactionPolicy tx_policy,
in ParameterList additional_parameters

);

Pid get_pid(in StorageObjectBase obj);
ShortPid get_short_pid(in StorageObjectBase obj);

I"...
h
h

The read-only attribute implementation_id returns the id of this implementation.

The create_basic_session operation creates a basic, non-transactional,
session.Typically the additional parameters will contain information such as file name,
database name, or authentication information. If the implementation cannot provide a
session with the desired access mode (or higher) it raises the standard exception
PERSIST_STORE.

The create_transactional_session operation creates a new transactional session. If
the implementation cannot provide the desired access mode (or higher) or the desired
default isolation level, it raises the standard exception PERSIST_STORE.

The create_session_pool operation creates a new session pool.

The operation sessions returns all the transactional sessions created by this connector
that are associated with resources registered with the given transaction.

Very often sessions will return a single session. The operation current_session
logicaly calls sessions with the transaction associated with the calling thread; if a
single session is returned, current_session returns it, else it raises the standard
exception PERSIST_STORE.

Theget_pid operation returns the pid of the given storage object. The get_short_pid
operation returns the short pid of the given storage object.

2.4 Explicit Session Management
2.4.1 Overview

A PSS session is alogical connection between a process and one or more datastores.
Security credentials are associated with each PSS session.

Persistent Sate Service  Explicit Session Management November 2001 2-17



This specification defines two kinds of sessions: basic sessions for file-like access and
transactional sessions for transactional access.

2.4.2 Session Local Interface

A session is alocal object that supports the local interface
CosPersistentState::Session:

module CosPersistentState {
local interface Session : CatalogBase {};

h
2.4.3 Transactional Sessions

A transactional session is a specialized session that provides transactional access to
storage objects. It supports the local interface
CosPersistentState:: TransactionalSession:

module CosPersistentState {

typedef short IsolationLevel ;
const IsolationLevel READ_UNCOMMITTED =0;

const IsolationLevel READ_COMMITTED =1;
const IsolationLevel REPEATABLE _READ =2;
const IsolationLevel SERIALIZABLE =3;

local interface TransactionalSession : Session {

typedef short AssociationStatus;
const AssociationStatus NO_ASSOCIATION =0;

const AssociationStatus ACTIVE =1;
const AssociationStatus SUSPENDED =2;
const AssociationStatus ENDING =3;

readonly attribute IsolationLevel resource_isolation_level;

void start(in CosTransactions::Coordinator transaction);
void suspend(in CosTransactions::Coordinator transaction);
void end(

in CosTransactions::Coordinator transaction,

in boolean success

);
AssociationStatus get_association_status();

CosTransactions::Coordinator get_transaction();
IsolationLevel get_isolation_level_of associated_resource();

2-18 Persistent Sate Service November 2001



h

At a given point in time, a transactional session can be associated with one resource
object (a datastore transaction), or with no resource at al. The session-resource
association can be active, suspended or ending. The state members of an incarnation
managed by a transactional session can be used only when this session has an active
association with a resource.

Typically, aresource is associated with a single session for its entire lifetime. However,
with some advanced database products, the same resource may be associated with
several sessions, possibly at the same time.

The start operation:

® re-activates a suspended (or ending) session-resource association, when the given
transaction matches the transaction of the suspended (or ending) association; if
there is a suspended (or ending) association but the transactions do not match, the
standard exception INVALID_TRANSACTION is raised.

® else if aresource compatible with this session is already associated with the given
transaction, start associates this resource with this session, and makes the
association active.

® elsethe session creates a new resource and registers it with the given transaction; it
also associates itself with this resource and makes the association active.

Compatibility between resources and transactional sessions is implementation-defined.
At aminimum, a resource is compatible with the session that created it.

The behavior when several resources compatible with a given session are registered
with a coordinator given to start is implementation-defined.

The suspend operation suspends a session-resource association. The suspend
operation raises the standard exception PERSIST_STORE if there is no active
association, and INVALID_TRANSACTION if the given transaction does not match
the transaction of the resource actively associated with this session.

The end operation terminates a session-resource association. The end operation raises
the standard exception PERSIST_STORE if there is no associated resource, and
INVALID_TRANSACTION if the given transaction does not match the transaction of
the resource associated with this session. If the success parameter is FALSE, the
resource is rolled back immediately. Like refresh, end invalidates direct references to
incarnations’ data members.

Persistent Sate Service  Explicit Session Management November 2001 2-19



()
)

destruction

creation

INACTIVE ‘ ENDING

start
end
suspend L
ACTIVE SUSPENDED

start

Figure 2-3 Transactional Session State Diagram

A resource can be prepared or committed in one phase only when it is not actively
associated with any session. If asked to prepare or commit in one phase when till in
use, the resource will rollback. A resource (provided by the PSS implementation) ends
any session-resource association in which it isinvolved when it is prepared, committed
in one phase, or rolled back.

The get_association_status operation returns the status of the association (if any)
with this session.

The get_transaction operation returns the coordinator of the transaction with which
the resource associated with this session is registered. get_transaction returns a nil
object reference when the session is not associated with a resource.

When data is accessed through a transactional session actively associated with a
resource, a number of undesirable phenomena may occur:

® Dirty Reads. A dirty read occurs when a resource is used to read the uncommitted
state of a storage object. For example, suppose a storage object is updated using
resource 1. The updated storage object’s state is read using resource 2 before
resource 1 is committed. If resource 1 is rolled back, the data read with resource 2
is considered never to have existed.

* Nonrepeatable Reads. A nonrepeatable read occurs when a resource is used to read
the same data twice but different data is returned by each read. For example,
suppose resource 1 is used to read the state of a storage object. Resource 2 is used
to update the state of this storage object and resource 2 is committed. If resource 1
is used to reread the storage object’s state, different data is returned.

Depending on the isolation level of the resource used, the application is or is not
protected from these phenomena:

2-20 Persistent Sate Service November 2001



® when aresource has the READ_UNCOMMITTED isolation level, its user may
experience the dirty reads and the nonrepeatable reads phenomena.

® when aresource has the READ_COMMITTED isolation level, its user may
experience the nonrepeatable reads phenomenon, but not the dirty reads
phenomenon.

® when aresource has the SERIALIZABLE isolation level, its user is protected from
these two phenomena.

The REPEATABLE_READ isolation level is reserved for future use.

The get_isolation_level of associated_resource operation returns the isolation
level of the resource associated with this session. If no resource is associated with this
session, get_isolation_level _of _associated_resource raises the standard
exception PERSIST_STORE.

The read-only attribute resource_isolation_level returns the isolation level of the
resources created by this session.

Note that this section uses resources to describe the interaction between the
Transaction Service and the Persistent State Service. The application developer,
however, cannot get an object reference to such resources. This allows PSS
implementations to take advantage of the non-standard direct XA integrations provided
by some Transaction Service implementations.

Note —In XA terms, start corresponds to xa_st art () with either the
TIMNOFLAGS, TMIO N or TMRESUME flag. end corresponds to xa_end() with
the TMSUCCESS or the TMFAI L flag. suspend correspondsto xa_end() with the
TMSUSPEND or TMSUSPEND | TMM GRATE flag.

2.4.4 EndOfAssociationCallback

When a session-resource association is ended, the session may not become available
immediately. For example, if the session is implemented using an ODBC or JDBC
connection, the PSS implementation will need this connection until the resource
(ODBC/JDBC transaction) is committed or rolled back.

A session pooling mechanism may want to be notified when a session is released by
the PSS implementation; this is achieved by passing a EndOfAssociationCallback
local object to the Connector::create_transactional_session operation.

module CosPersistentState {
local interface EndOfAssociationCallback {
void released(in TransactionalSession session);
|3
|3

Persistent Sate Service  Explicit Session Management November 2001 2-21



2.5 Implicit Session Management

2-22

2.5.1 SessionPool

A session pool is alocal object that implements the local interface
CosPersistentState:: SessionPool:

module CosPersistentState {
typedef sequence<Pid> PidList;

local interface SessionPool : CatalogBase {

void flush_by_ pids(in PidList pids);
void refresh_by pids(in PidList pids);

readonly attribute TransactionPolicy transaction_policy;
|3
|3

If the transaction policy of the session pool is NON_TRANSACTIONAL, the
flush_by_ pids operation makes durable all of the modifications to active incarnations
whose PIDs are contained in the pids parameter, regardless of the transactional
context of the calling thread.

If the transaction policy of the target session pool is TRANSACTIONAL,
flush_by pids behaves as follows:

® |f the invoking thread is associated with a transaction context, flush_by pids
makes durable all state modifications made in the current transactional scope for
incarnations whose PIDs are contained in the pids parameter, flushing them to the
underlying datastore.

® |f the invoking thread is not associated with a transactional context, the standard
exception TRANSACTION_REQUIRED is raised.

If the session pool implementation is unable to reconcile the changes and make them
durable, then the PERSIST_STORE standard exception is raised.

If the current transaction policy of the session pool is TRANSACTIONAL and the
invoking thread is associated with a transactional context, refresh_by pids causes
the following behavior:

® All incarnations involved in the current transaction context, and associated with the
given pids, are refreshed.

® |f any of the given PIDs are associated with incarnations which are themselves not
associated with the current transaction, the INVALID_TRANSACTION standard
exception is raised.

If the transaction policy of the session pool is TRANSACTIONAL and the invoking
thread is not associated with a transactional context, the standard exception
TRANSACTION_REQUIRED is raised.

Persistent Sate Service November 2001



2

2.6 |Thread Safety

If the session pool implementation is unable to refresh the appropriate incarnations, the
PERSIST_STORE standard exception is raised.

Note —Short pids will not be passed to flush_by pids and refresh_by pids.

flush and refresh, inherited from CatalogBase, behave as flush_by pids and
refresh_by pids applied to all storage object incarnations cached by the target
session pool in the same context (whether transactional or not).

A catalog (session or session pool) can be either thread-safe or thread-unsafe. A
compliant implementation does not need to provide thread-safe catal ogs.

All objects provided directly or indirectly by a thread-unsafe catalog are thread-unsafe
- the application must serialize access to any of these objects, typically by using a
single thread.

A storage object incarnation provided by a thread-safe catalog is like a struct:
concurrent reads are safe and do not require any locking by the application; concurrent
writes (or a concurrent read and a concurrent write) are not thread-safe - the
application must ensure mutual exclusion to avoid problems. Flushing a storage object
is like reading this object.’Refreshing’ a storage object is like updating it.

Further, the following Session operations are not thread safe (for a given session): they
are not supposed to be called concurrently, and no thread should be using the target
session (or anything in the target session, such as an incarnation or a storage home)
when they are called:

Session::free_all
Session::refresh
Session::close
TransactionalSession::start
TransactionalSession::suspend
TransactionalSession::end

OTS operations are however safe; for example one thread can call
tx_current->roll back()

while another thread calls start, suspend or end on a session involved in this
transaction, or while a thread is using storage objects managed by that session.

Rationale:

1. Concurrent writes (or a read and a write) within the same transaction is extremely
rare -- if PSS implementations were to provide mutual exclusion, we would penalize
the common usage (single-threaded access or maybe concurrent reads) for this unusual

usage.

Persistent Sate Service | Thread Safety November 2001 2-23



2. Since calling these operations concurrently is wrong or at least dubious, we can
avoid some locking in the PSS implementation by declaring them not thread-safe.

2-24 Persistent Sate Service November 2001



3.1

Introduction

Defining Sorage Objects 3

The Persistent State Service provides two ways to specify datastore structures, or
schemas, and the programming-language representation of storage objects and storage
homes:

® with programming-language independent PSDL constructs

® directly in Java or C++

All storage object instances whether defined in PSDL or directly in Java or C++ are
derived from a common base, CosPersistentState::StorageObjectBase.
Similarly, all storage home instances implement the local interface
CosPersistentState::StorageHomeBase:

module CosPersistentState {
local interface CatalogBase;
exception NotFound {};
native StorageObjectBase;

local interface StorageHomeBase {

StorageObjectBase
find_by short_pid(

in ShortPid short_pid
) raises (NotFound);

CatalogBase get_catalog();
|3
|3
StorageObjectBase mapstoj ava. | ang. Obj ect in Java, and to CosPer si s-
tent St ate:: St orage(hj ect Base in C++:

Persistent Sate Service November 2001 3-25



nanespace CosPersistentState {

cl ass StorageObj ect Base {
pr ot ect ed:
virtual ~StorageObjectBase() {}
i
}

Thefind_by short_pid operation looks for a storage object with the given short pid
in the target storage home. If such an object is not found, find_by short_pid, raises
the CosPersistentState::NotFound exception.

The get_catalog operation returns the catalog that manages the target storage home
instance.

3.2 PSDL Syntax and Semantics

3.2.1 Overview

Storage objects and storage object homes can be defined using the Persistent State
Definition Language (PSDL).

PSDL is a superset of OMG IDL v2.4: storage objects can have state members and
operations parameters of any IDL type. PSDL, like IDL, is a declarative language, not
a programming language.

The mapping of PSDL constructs to several programming languages is specified in the
“PSDL Language Mappings” chapter.

PSDL obeys the same lexical rules as IDL (except that it adds new keywords); its
grammar is an extended IDL grammar, with new constructs to define storage objects
and storage homes.

A PSDL specification can contain any IDL construct; further, local operations (on local
interface, values, storage objects and storage homes) can accept parameters of PSDL
types, such as a sequence of storage object references.

A source file containing PSDL constructs must have a “.psdl” extension. The file
CosPersistentState.psdl contains PSDL type definitions and is implicitly included in
any PSDL specification.

The description of the PSDL grammar uses the same notation as the CORBA
specification:

Table3-1 PSDL EBNF
Symbol M eaning

RE Is defined to be

| Alternatively

<text> Nonterminal
“text” Literal

3-26 Persistent Sate Service November 2001



Table 3-1 PSDL EBNF (Continued)

Symbol M eaning

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

¢ The enclosed syntactic units are grouped as a single syntactic unit

1] The enclosed syntactic unit is optional—may occur zero or one fime

3.2.2 Keywords

Both OMG IDL keywords and the identifiers listed in Table 3-2 are reserved for use as
PSDL keywords and may not be used otherwise.

Table 3-2 PSDL Keywords
as

factory

implements

key

of

primary

ref

scope

State

storagehome

storagetype

stores

strong

PSDL aso uses the IDL keywords factory and const in productions unlike the IDL
productions in which they are used.

3.2.3 PSDL Grammar

The PSDL grammar is the IDL grammar plus the following productions. Productions
shown in italics are defined in the CORBA specification.

(1) <psdl_specification> <psdl_definition>*

(2) <psdl_definition> ::= <type dcl>*,
<const _dcl>"}"
<except _dcl>""
<interface>"}"
<psdl_module> *;"
<storagehome> “;"
<abstract_storagehome> ;"

<storagetype> “;
<abstract_storagetype> “;"

Persistent SateService  PSDL Syntax and Semantics November 2001 3-27



3-28

| <value>*;"
3) <psdl_module> := “module” <identifier>
“{* <psdl_definition> **“}"
(4) <abstract_storagehome_name> ::= <scoped_name>
(5) <abstract_storagetype> ::= <abstract_storagetype_dcl>

| <abstract_storagetype fwd_dcl>

(6) <abstract_storagetype dcl>::= <abstract_storagetype header>

“{” <abstract_storagetype_body> “}"
(7)<abstract_storagetype_fwd_dcl>::= “abstract storagetype” <identifier>
(8)<abstract_storagetype header>::="abstract storagetype” <identifier>

[ <abstract_storagetype_inh_spec>]
(9)<abstract_storagetype body>::= <abstract_storagetype_member> *

(10)<abstract_storagetype_member>::= <psdl_state_dcl> *;
| <storagetype _local_op_dcl >*"
(11)<abstract_storagetype_inh_spec>::=":" <abstract_storagetype_name>
{“)” <abstract_storagetype_name> }
(12)<abstract_storagetype _name>::= <scoped_name>
(13) <psdl_state_dcl> := [‘readonly”] “state” <psdI_state_type_spec>
<simple_declarator>
{"“,” <simple_declarator>}*
(14) <psdl_state_type_spec> := <base_type spec>
| <string_type>
| <wide_string_type>
| <abstract_storagetype ref type>
| <scoped_name>
(15)<abstract_storagetype_ref type>::= [“strong”] “ref’ “<*
<abstract_storagetype_name> “>"

(16) <abstract_storagehome> ::= <abstract_storagehome_dcl>
| <abstract_storagehome_fwd_dcl>
(17)<abstract_storagehome_fwd_dcl>::="abstract storagehome” <identifier>

(18)<abstract_storagehome_dcl>::=<abstract_storagehome_header>
“{” <abstract_storagehome_body> “}"

(19)<abstract_storagehome_header>::="abstract_storagehome” <identifier> “of”
<abstract_storagetype_name>
[ <abstract_storagehome_inh_spec> ]
(20)<abstract_storagehome_body>::=<storagehome_member> *

(21)<storagehome_member::= <local_op_dcl> “;
| <key dcl>*“}"
|  <psdl_factory_dcl>*;"
(22)<abstract_storagehome_inh_spec>::=";" <abstract_storagehome_name>
{",” <abstract_storagehome_name> }
(23)<storagetype_local_op_dcl>::= < op_type spec> <identifier>
<parameter_dcls> [ <raises_expr>] [‘const”]
(24) <local _op_dcl> := < op_type spec> <identifier>
<parameter_dcls> [ <raises_expr> ]

Persistent Sate Service November 2001



(25) <key_dcl>
(26) <storagetype>
(27) <storagetype_dcl>

(28) <storagetype_fwd_dcl>
(29) <storagetype_header>

(30) <storagetype_body>
(31) <storagetype_member>

(32) <storagetype_inh_spec>
(33) <storagetype_name>
(34) <storagetype_impl_spec>

(35) <storagetype ref type>
(36) <storagehome_scope>
(37) <store_directive>

“key” <identifier>
[“(“ <simple_declarator>

{“,” <simple_declarator>}* “)"]
<storagetype_dcl>

<storagetype_fwd_dcl>

::= <storagetype_header>

.= “storagetype”
“storagetype”

“stores”

{* <storagetype_body> “}"
<identifier>
<identifier>
[ <storagetype_inh_spec>]
[ <storagetype_impl_spec>]
[<ref_rep_directive>]

<storagetype_member>
<psdl_state_dcl>*“;"

<store_directive> ;"

<storagetype _local op_dcl >*"
‘" <storagetype_name>

<scoped_name>

“implements” <abstract_storagetype_name>
{“)” <abstract_storagetype_name> }

“ref” “<" <storagetype_name> “>"
“scope” <storagehome_name>
<simple_declarator>"“as”

<psdl_concrete_state_type>
[<storagehome_scope>]

(38)<psdl_concrete_state_type>::= <storagetype name>

(39) <ref_rep_directive>
(40) <storagehome>

(41) <storagehome_header>

(42) <storagehome_body>
(43)<storagehome_inh_spec>
(44) <storagehome_name>

(45)<storagehome_impl_spec> ::

(46) <primary_key_dcl>

47) <psdl_factory_dcl>
(48) <factory_parameters>

Persistent Sate Service

PSDL Syntax and Semantics

“r.ef” “(“
{"“,” <simple_declatator>}*")"

<storagetype_ref_type>
<simple_declarator>

<storagehome_header>
“{” <storagehome_body> “}”

“storagehome” <identifier> “of”

<storagetype_name>

[ <storagehome_inh_spec> ]
[ <storagehome_impl_spec>]
[<primary_key dcl>]

<storagehome_member>
“” <storagehome_name>

<scoped_name>

“implements” <abstract storagehome_name>
{“” <abstract storagehome_name> }

“primary” “key”

<identifier>
“primary” “key” “ref’

“factory” <identifier> <factory_parameters>
"(" <simple_declarator> [{ ","

<simple_declarator> }*] *)"

oy

November 2001

3-29



3-30

A PSDL specification is like an IDL specification that could also contain abstract
storagetype, abstract storagehome, storagetype, and storagehome definitions. The
syntax is:

<psdl_specification> = <psdl_definition>*

<psdl_definition>: = <type_dcl>"}"
<const_dcl>"}"
<except_dcl>"}"
<interface>"}"
<psdl_module> *“;"
<storagehome> “;"
<abstract_storagehome> “;”
<storagetype> ;"
<abstract_storagetype> ;"
<value>*“;"

“module” <identifier>
“{"* <psdl_definition> **}"

<psdl_module>

3.2.4 PSDL Type ld

module CosPersistentState {
typedef string Typeld;

8

A PSDL typeidisastring that identifies a PSDL type. The format of PSDL typeidis
the same as the IDL format of repository ids, except that the prefix is “PSDL,” not
HIDL.”

The pragmas prefix and version apply to PSDL type ids in the same way as they apply
to repository ids in the IDL format (see the CORBA specification).

3.2.5 Specifying Sorage Objects and Sorage Homes

A storage object can have both state and behavior. The visible part of its state is
described by state members. Similarly, its behavior is described by operations.

For simplicity, a storage home does not have its own state, but it can have behavior.
The behavior of a storage home is described by operations on its abstract or concrete
storage home type(s). An abstract or concrete storagehome can also define any numbe
of keys; each key declaration implicitly declares a pair of finder operations.

Abstract storagetypes and abstract storagehomes are abstract specifications -- like IDL
interfaces. Like IDL interfaces, they support multiple inheritance, including “diamond
shape” inheritance (“diamond” shape inheritance is defined in Chapter 3 of the
CORBA specification).

Persistent Sate Service November 2001



3.2.5.1 Abstract Soragetype

An abstract storagetype definition satisfies the following syntax. Thisis almost the
same syntax as an IDL interface; however, unlike an interface, an abstract storagetype
cannot contain constants, or type definitions.

<abstract_storagetype> = <abstract_storagetype_dcl>
| <abstract_storagetype_fwd_dcl>

<abstract_storagetype_dcl> ::= <abstract_storagetype_header>

“{” <abstract_storagetype_body> “}"
<abstract_storagetype_fwd_dcl>::= “abstract storagetype” <identifier>
<abstract_storagetype_header>::=  “abstract storagetype” <identifier>

[ <abstract_storagetype_inh_spec>]
<abstract_storagetype_body> ::= <abstract_storagetype_member> *
<abstract_storagetype_member>::= <abstract_storagetype_state_dcl> ;"

| <storagetype _local_op_dcl>*“;"

<abstract_storagetype_inh_spec>::= “:” <abstract_storagetype name>
{*"” <abstract_storagetype_name> }

<abstract_storagetype_name>::= <scoped_name>

Each <abstract_storagetype_name> in a<abstract_storagetype_inh_spec>
must denote a previously defined abstract storagetype.

Abstract storagetype inheritance rules are like the rules for interface inheritance: an
abstract storagetype may inherit from any number of base abstract storagetypes, an
abstract storagetype may not be specified as a direct abstract storagetype base more
than once, it is not legal to inherit two operations or state members (or an operation
and an state member) with the same name, but “diamond” shape inheritance is
supported. Any abstract storagetype without a base abstract storagetype, except
CosPersistentState::StorageObject, implicitly inherits from
CosPersistentState::StorageObject.

An abstract storagetype forward declaration declares the name of an abstract
storagetype without defining it. This permits the definition of abstract storagetypes and
abstract storagehomes that refer to each other. The actual definition must follow later
in the PSDL specification. Multiple forward declarations of the same abstract
storagetype name are legal.

3.2.5.2 Abstract Soragetype Sate Members

The abstract state of a storage object is described using state members. The syntax is

<psdl_state _dcl> = [“readonly”] “state”
<psdl_state type spec>
<simple_declarator>
{“,” <simple_declarator>}*

Persistent SateService  PSDL Syntax and Semantics November 2001 331



<psdl_state _type_spec> <base_type spec>
| <string_type>

| <wide_string_type>

| <abstract_storagetype_ref_type>

| <scoped_name>

For each state member, a language mapping must provide a way to retrieve the state
member’s value and a way to set the state member’s value. The optadahly

keyword indicates that the state member’s value can only be read.

<scoped_name> must denote a previously declared [abstract or local] interface,
struct, union, type, [abstract] valuetype, or a previously defined abstract storagetype.

<psdl_state_type_spec> will not be, contain or refer to a native type.

Value state members, unlike value data members of structs or valuetypes, do not
support sharing semantics: when you set a state member whose type is a valuetype ol
an abstract valuetype, it is really a copy of the value truncated to the formal state
member type which is stored.

3.2.5.3 Embedded Sorage Objectsand References

Like a struct can contain other structs, a storage object can contain other storage
objects: such contained storage objects are said to be embedded. The lifetime of an
embedded storage object is the same as the lifetime of the containing object; the
embedded object does not have an identity and cannot be referenced directly.

Like a value can contain references to other values, a storage object can contain
references to other storage objects. These references, like value references, support
NULL and sharing semantics. The syntax for a reference to an abstract storagetype is
the following:

<abstract_storagetype_ref_type>::=[‘strong”] “ref” “<*
<abstract_storagetype_name> “>”

<abstract_storagetype_nhame> must denote a previously declared abstract
storagetype.

The default value of areference state member is NULL.

The optional strong keyword indicates that the referenced storage object is destroyed
when the storage object holding this reference is destroyed.

3.2.5.4 Local Operations

The syntax of alocal operation on a (abstract or concrete) storage home ereataleg is:

<local_op_dcl> n= <op_type_spec> <identifier>
<parameter_dcls> [ <raises_expr> ]

The syntax of alocal operation on a (abstract or concrete) storage type is:

3-32 Persistent Sate Service November 2001



3.2.5.5

3.25.6

<storagetype_local _op_dcl> ::= <op_type_spec> <identifier>
<parameter_dcls> [ <raises_expr> ]
[“‘const”]

A “const” operation does not update any state member of the target storage object.

In a PSDL specification, each parameter of a local operation can be of a valid IDL
parameter type, or of an abstract PSDL type.

SorageObject

The CosPersistentState module defines the abstract storagetgperageObject as
follows:

abstract storagetype StorageObject {
void destroy_object();
boolean object_exists();

Pid get_pid();
ShortPid get_short_pid();

StorageHomeBase get_storage_home();
|3

When called on an incarnation, tdestroy_object operation destroys the associated
storage object (but doewmt destroy any of its incarnation).

When called on an incarnation, thbject_exists operation returnsTRUE if the target
incarnation represents an actual storage object, FALSE if it does not.

When called on an incarnation, thet_pid andget_short_pid operations return the
pid, resp. the short pid, of the associated storage object.

The standard exceptid®ERSIST_STORE is raised whemlestroy_object, get_pid
or get_short_pid is called on the instance of an embedded storage object.

Theget_storage_home operation returns the storage home instance that manages
the target storage object instance.

Abstract Soragehome
An abstract storagehome definition satisfies the following syntax:
<abstract_storagehome>: = <abstract_storagehome_dcl>

| <abstract_storagehome_fwd_dcl>
<abstract_storagehome_fwd_dcl>::= “abstract_storagehome” <identifier>
<abstract_storagehome_dcl> ::= <abstract_storagehome_header>

“{” <abstract_storagehome_body>"}"

<abstract_storagehome_header>::= “abstract™storagehome” <identifier>

“of” <abstract_storagetype_name>

Persistent SateService  PSDL Syntax and Semantics November 2001 3-33



3-34

3.25.7

[ <abstract storagehome_inh_spec> ]

<abstract_storagehome_body>::= <storagehome_member>"
<storagehome_member = <local_op_dcI>*;"
| <key dcl>*"

| <psdl_factory_dcl>“;"

The <abstract_storagetype_name> in a <abstract storagehome_header>
must denote a previously defined abstract storagetype.

An abstract storagehome forward declaration declares the name of an abstract
storagehome without defining it. This permits the definition of abstract storagetypes
and abstract storagehomes that refer to each other. The actual definition must follow
later in the PSDL specification. Multiple forward declarations of the same abstract
storagehome name are legal.

Keys
A key isanamed list of one of more state members, that satisfies the following syntax:
<key dcl> = “key” <identifier>

[‘(“ <simple_declarator>{"," <simple_declarator>}* “)"]

“key” <identifier> is just a shortcut notation for “key” <identifier>
“(“<identifier>")"

Each <simple_declarator> must be the name of a state member of the abstract
storagehome’s abstract storagetype (including inherited state members). For keys
defined on storage homes, eaimple_declarator> must be the name of a state
member of the storagehome’s storagetype (including inherited state members).

All <simple_declarator> in a key declaration must be distinct.

The following types are said to be comparable:

® integral types (octet, short, unsigned short, long, unsigned long, long
long, unsigned long long)

* fixed types

® char, wchar, string, and wstring

® sequence<octet>

® struct with only comparable members

® valuetype with only public non-valuetype comparable state members
The types of all the state members used in the definition of a key must be comparable.

A value of thislist of state members uniquely identifies at most one storage object in a
storage home.

With respect to language mappings, the declaration of a key key _name is equivalent to
the declaration of the following finder operations:

Persistent Sate Service November 2001



S find_by key name(<parameter_list>)
raises (CosPersistentState::NotFound);
ref<S> find_ref by key name(<parameter_list>);

where S is the abstract storagehome’s abstract storagetype (or concrete storagehome’s
storage type), andparameter_list> arein parameters corresponding to each state
member in the key declaration, in the same order. Each finder operation attempts to
locate a storage object with the given key among the storage objects managed directly
or indirectly by the target storage home. If a storage object with the given key is found,
find_by_key_name returns an incarnation of this storage object, and
find_ref by key name returns a reference to this storage object. The storage home
incarnation that manages the returned incarnation or reference may be the target
storage home instance, or an instance of a derived storage home in the same session.
a storage object with the given key is not foufidd by key name raises the
CosPersistentState::NotFound exception, andind_ref by key name returns a

NULL reference.

For example:

abstract storagetype Account {
state string accno;
state float balance;

h

abstract storagehome Bank of Account {
key accno(accno);
/I in the language mappings, it's like:
/I Account find_by accno(in string accno)
/I raises (CosPersistentState::NotFound);
/I ref<Account> find_ref by accno(in string accno);

3.2.5.8 Factory Operations

A factory operation satisfies the following syntax:

<psdl_factory_dcl>::="factory” <identifier> <factory_parameters>

<factory_parameters> ::= “(“* <simple_declarator>
") <simple_declarator>}*] “)”

| ‘)

Each <simple_declarator> must be the name of a state member of the abstract
storagehome’s abstract storagetype (including inherited state members). For factories
defined on concrete storage homes, esgimple_declarator> must be the name of

a state member of the storagehome’s storagetype (including inherited state members).

All <simple_declarator> in a factory declaration must be distinct.

With respect to language mappings, the definition of a factory opefatitony _name
is equivalent to the definition of the following operation:

Persistent SateService  PSDL Syntax and Semantics November 2001 3-35



3-36

3.2.5.9

3.2.5.10

S factory_name(<parameter_list>);

where S is the abstract storagehome’s abstract storagetype (resp. storagehome’s
storagetype), andparameter_list> arein parameters corresponding to each state
member in the factory operation declaration, in the same order. For example:

abstract storagetype Account {
state string accno;
state float balance;

b

abstract storagehome Bank of Account {
factory create(accno);
/[ in the language mappings, it’s like:
/I Account create(in string accno) ;

h

Abstract Soragehome Inheritance

An abstract storagehome may inherit from any number of abstract storagehomes, with
the following syntax:

<abstract_storagehome_inh_spec>::=":" <abstract_storagehome_name>
{",” <abstract_storagehome_name>

}

<abstract_storagehome_name>::= <scoped_name>

Each <abstract_storagehome_name> inan

<abstract_storagehome_inh_spec> must denote a previously defined abstract
storagehome. Further, the abstract storagetype of any base abstract storagehome must

be a base abstract storagetype of the abstract storagehome’s abstract storagetype, or tt
abstract storagehome’s abstract storagetype itself.

“diamond” shape inheritance is supported. Like IDL interfaces and PSDL abstract
storagetypes, an abstract storagehome cannot inherit two operations with the same
name; as a result, it cannot inherit two keys with the same name.

Sequencesand Arrays

The IDL typedef construct can be used to define sequences and arrays of abstract
storagetype, and sequences and arrays of reference to abstract storagetype. Anonymot
sequences and arrays are not supported.

For example:
abstract storagetype Account { /* ... */};

typedef sequence<ref<Account>> AccountList;
typedef Account AccountArray[4],

Persistent Sate Service November 2001



3.2.6 Implementing Sorage Objects and Sorage Homes

3.26.1

This specification provides two constructs sufficient to define default implementations
for storage objects and storage homes: storagetype and storagehome. Everything is
implemented except operations; in particular, the PSS implementation must generate
complete implementations for all state members and keys. If the stored storage type
has a reference representation, only factory operations whose parameters contain all
the reference representation members are generated automatically.

Of course, an implementation generated from standard PSDL definitions is unlikely to
be as efficient as an implementation defined and tuned for a particular datastore.

To allow the generation of reasonably efficient default implementations for relational
and relational-like datastores, PSDL storagetypes and storagehomes borrow a number
of features from SQL 3 user defined types and tables:

® Reference representation - Some systems, in particular many relational systems, do
not have storage object identifiers, such as row ids: a storage object id is actually
the value of a state member or of alist of state members. With this kind of system,
it is useful to define on the storagetype itself the structure of persistent ids, rather
than later in a storage home specification or definition.

® Scope for references - When a state member of a storage object is a reference to
another storage object, a priori, this reference can point to a storage object stored in
any storage home. PSDL, like SQL 3, let you specify a scope for this reference (i.e.,
a storage home where the referenced storage object must be stored). This also
allows some code generators to produce smaller data members for storagetypes that
contain scoped references to other storagetypes.

® Primary key - A primary key is just a distinguished key, like in relational systems.

® Storage home inheritance - The rules and semantics for PSDL storage home
inheritance were designed to be the same as SQL 3 table inheritance rules.

Soragetype
A storagetype definition satisfies the following syntax:
<storagetype> = <storagetype_dcl>
<storagetype_fwd_dcl>
<storagetype_dcl> = <storagetype_header>
“{"* <storagetype_body> “}"
<storagetype_fwd_dcl> = “storagetype” <identifier>
<storagetype_header> i= “storagetype” <identifier>

[ <storagetype_inh_spec> ]
[ <storagetype_impl_spec>]
[<ref_rep_directive>]

<storagetype_body> <storagetype_member>

Persistent SateService  PSDL Syntax and Semantics November 2001 3-37



3-38

3.2.6.2

<storagetype_member> e <psdl_state_attr_dcl> “;”
| <store_directive> ;"
| <local_op_decl>;

A storagetype may inherit from another storagetype. The syntax is.

<storagetype_inh_spec> = “” <storagetype_name>
<storagetype_name> RE <scoped_name>
<storagetype_name> must denote a previously defined storagetype.

A storagetype may implement any number of abstract storagetypes:

<storagetype_impl_spec> u= “implements”
<abstract_storagetype_name>
{“,” <abstract_storagetype_name> }

<abstract_storagetype_name> must denote a previously defined abstract
storagetype. The same abstract storagetype cannot appear twice in a
<storagetype_impl_spec> . However, an abstract storagetype can appear more than
once in the ‘implements’ graph of a storagetype. For example:

abstract storagetype A {/* ... */ };

abstract storagetype B : A {/* ... */ };

storagetype Almpl implements A {/* ... */};
storagetype Blmpl : Almpl implements B {/* ... */};

The first storagetype that implements an abstract storagetype in a storagetype
inheritance tree is said to implemaditectly this abstract storagetype. In the example
above, Almpl implements A directly; however, Bimpl does not implement A directly.

SoreDirective
A store directive defines how a state member is stored.

A storagetype that directly implements an abstract storagetype that declares a state
member whose type is an abstract storagetype or an array or a sequence of abstract
storagetypes must provide a store directive for this state member.

A storagetype that directly implements an abstract storagetype that declares a state
member whose type is an abstract storagetype reference, or an array or sequence of
abstract storagetype references, may provide a store directive for this state member.

The syntax is:

<store_directive> = “stores” <simple declarator>“as”
<psdl_concrete_attr_type>
[<storagehome_scope>]

<psdl_concrete_attr_type> = <storagetype_name>
<storagetype_ref_type>

<storagehome_scope> = “scope” <storagehome_name>

Persistent Sate Service November 2001



3.2.6.3

3.2.6.4

<simple_declarator> must be the name of a state member declared in this
storagetype or in one of the abstract storagetype it implements.

* |f <psdl_concrete_attr_type> denotes a storagetype S then the type of the state
member must be an abstract storagetype S’ or a sequence/array of an abstract
storagetype S’, S must implement directly or indirectly S’, and
<storagehome_scope> shall not be specified.

® |f <psdl_concrete_attr_type> denotes a storagetype reference ref<S> then the
type of the state member must be an abstract storagetype reference ref<S’> or a
sequence/array of ref<S’> and S must implement directly or indirectly S’.

The storage home scope optional clause defines in which storage home referenced
objects are stored. The referenced storage home must be in the same datastore as the
storage object that holds this referenestoragehome_name> must denote a

previously defined storage home. If aetoragehome_scope> is specified,

referenced storage objects can be stored in any storage home.

Reference Representation

A storagetype without any base storagetype can define its reference representation. The
syntax is:

<ref_rep_directive>: n= “ref”“(* <simple_declarator>
{"“,” <simple_declatator>}*")"

<simple_declarator> must denote a state member directly declared in this
storagetype or in one of the abstract storagetypes directly implemented by this
storagetype. The same <simple_declarator> shall not be repeated. A storagetype has
at most one reference representation.

The state members that form the reference representation of a storagetype are read-
only. If any of these state members is not declared read-only, the corresponding
modifier and read-write accessor will always raise the standard exception
PERSIST_STORE.

A reference representation also defines this list of state members as a unique identifier
for the storage objects in a storage home of this storagetype.

Soragehome

A storage home definition satisfies the following syntax:

<storagehome> = <storagehome_header>
| “{” <storagehome_body> “}”

<storagehome_header>::= “storagehome” <identifier> “of”
<storagetype_name>
[ <storagehome_inh_spec> ]
[ <storagehome_impl_spec>]

*

<storagehome_body> ::= <storagehome_member>

Persistent SateService  PSDL Syntax and Semantics November 2001 3-39



<storagehome_member::= <key_dcl>*;”
| <local_op_dcl>;
| <factory_dcl>;

<storagetype_name> must denote a previously defined storagetype.

A storage home may inherit from another storage home:
<storagehome_inh_spec>::= “” <storagehome_name>

<storagehome_name> must denote a previously defined storagehome. The
storagetype of a base storagehome must be a base of <storagetype name> . Further,
two storagehomes in a storagehome inheritance tree cannot have the same storagetype.
For example, the following specification is not legal:

storagetype A {/* ... */};

storagetype B : A {/* ... */};

storagehome H of A {};

storagehome H2 of B : H {};

storagehome H3 of B : H {}; // error -- B is already the storagetype
/I of another sub-storage-home of H.

A storagehome may implement any number of abstract storagehomes:

<storagehome_impl_spec> := “implements”
<abstract_storagehome_name>
{",” <abstract_storagehome_name>}

<abstract_storagehome_name> must denote a previously defined abstract
storagehome. The same abstract storagehome cannot appear more than once in a
<storagehome_impl_spec> . However, an abstract storagehome can appear more
than once in the ‘implements’ graph of a storagehome.

The storagehome’s storagetype must implement the abstract storagetype of each of the
implemented abstract storagehomes.

A storagehome is said to directly implement an abstract storagehome when it is the
first storagehome in its inheritance tree to implement this abstract storagehome.

A storagehome is said to directly implement a storagetype when it is the first home to
implement this storage type in its inheritance tree.

A storagehome is said to directly implement a state member when it directly
implements a storagetype that contains the definition of this state member or that
directly implements the abstract storagetype in which this state member is declared.

Each key declared on the abstract storagehomes implemented directly by a
storagehome must use at least one state member implemented by this storagehome. Fc
example:

abstract storagetype AS {

state string name;

h

3-40 Persistent Sate Service November 2001



abstract storagehome ASHome {
key name;

h

storagetype A implements AS {};

storagetype B : A {};

storagehome H of A {};

storagehome H2 of B : Himplements ASHome {
I/l error -- too late, name is implemented by H.

h

3.2.6.5 PrimaryKey

A storage home without any base storage home can define a key as the primary key of
its storage home family:

<primary_key_dcl> = “primary” “key”  <identifier>
| l‘primaryﬂ eryli Href”

<identifier> must denote a key declared in one of the implemented abstract
storagehomes.

primary key ref tells the PSS implementation to use the state members of the
reference representation as the primary key.

3.3 Transparent Persistence

3.3.1 Overview

A PSS implementation that supports the definition of storage objects directly in Java or
C++ is said to support transparent persistence. With this capability, there is no need for
a separate PSDL specification of the schema. The transparent persistence mechanism
also attempts to allow any Java class to be made persistent, although there are a few
restrictions which are mentioned in the following sections.

The most visible benefit is that state members may be directly represented with fields
(or member variables) rather than requiring accessor and modifier methods that make
calls to the PSS implementation. To provide this benefit, PSS implementations that
provide transparent persistence need to make sure that an object’s incarnation is |oaded
before the program tries to access a state member from it. It also needs to be able to
determine which objects have changed and need to be committed. The approaches used
to accomplish these tasks dictate some of the restrictions this standard makes on the
classes that can be made persistent.

Because both schema definition and data manipulation are accomplished directly in
Java or C++, the majority of the description of transparent persistence is in terms of
each of these languages.

Persistent Sate Service  Transparent Persistence November 2001 341



3-42

3.3.2 Java

In Java, there are four techniques that are likely to be used by a PSS implementation
that provides transparent persistence:

® aJava pre-processor inserts Java code to fetch objects from the database before
every read of persistent-capable class fields, and code to mark objects dirty before
every write to these fields;

® aspecial Java compiler makes these same kinds of modifications;

® apost-processor makes similar modifications, but to the bytecode that is generated
by the Java compiler, rather than to source;

® aspecial Java virtua machine uses non-standard hooks for fetching and dirtying
objects when they are read or modified.

The first two approaches require that source code be available for any class that is to
be made persistent-capable, the third requires that the bytecode files (e.g. ".class" files)
be available. This leads to the following specification:

A PSS implementation that supports transparent persistent must be able to make any
class persistent-capable that:

® jt has Java source code for;
® inherits from nothing or inherits from a class that can be made persistent-capable;

® has only fields that are one of the following:
* aprimitive data type
* a persistent-capable class
« of type Object
e an Array

« one of the following immutable classes:
String, Character, Boolean, Byte, Short, Integer, Long, Float, or Double.

Note, in particular, that there is no requirement that a class must inherit from an
incarnation base class in order to be persistent-capable.

Object identity is not necessarily maintained for objects of the immutable classes listed
above. So, for example, two String fields that refer to the same String object in one
transaction may refer to different objects in another; or, two String fields that refer to
different String objects with the same values in one transaction, may refer to the same
String object in a later transaction.

IDL types can be used for fields by using the corresponding Java constructs from the
CORBA IDL to Java mapping standard. References to CORBA objects can be stored
in persistent objects as their string representations (use the CORBA .object_to_string
method). The application then has to explicitly convert back from a string to an object
reference, and should deal with the contingencies that the object is no longer available.

Static fields and transient fields may be included in persistent capable classes, although
they are not made persistent.

Persistent Sate Service November 2001



3

3321

PSS implementations need not guarantee that incarnations are correctly loaded when
an incarnation’s fields are accessed through the reflection API or through JNI.

The following is an example of Java classes that can be used to define the storage
object types Bank and Account:

/1 Java
public class Bank {
public String nane;

public class Account {
public long id;
publ i ¢ Bank myBank;
public float bal ance;

}

The fields of the Bank and Account instances are automatically fetched and stored by
the PSS implementation; that is, they are transparently persistent.

Making Objects Persist

In Java, storage homes for transparent persistent objects implement the Java interface
or g. ong. CosPer si st ent St at e. JSt or ageHone:

package CosPersi stent State;

public interface JStorageHone extends StorageHoneBase {
public void persist(Cbject obj);

}

An instance of a persistent-capable class can be made persistent by calling the
per si st method on an instance of a storage home. The per si st method records
the association between the object and the family of this storage home.

When the transaction is committed, every field of every persistent incarnation must be
either:

® aprimitive value,
* null,

* areference to a persistent incarnation associated with the same catalog as the
referring object,

® or reference to an object of one of the immutable classes listed above.

If there is a reference to a transient object, the behavior is implementation-defined.
Some vendors may choose to automatically migrate the referred object to become
persistent in the same database as the referring object. Other vendors may choose to
raise an exception.

Persistent Sate Service  Transparent Persistence November 2001 343



344

333 C++

A new transaction must acquire its first incarnation by using some known pid with the
find_by_pid operation on CatalogBase, or with thefind_by_short_pid operation

on StorageHomeBase (see Section 3.2.1, “Overview,” on page 3-26). Subsequent
incarnations can then be acquired through navigation, or by additional calls to
find_by_pid (or find_by_short_pid).

When an incarnation is used outside of the transaction in which it was either fetched or
created, either the incarnation will hold the current valid contents of the storage object,
or the incarnation will have old data, but attempting to commit changes made after
reading such an out-of-date object will cause the transaction to abort. Valid data for all
incarnations can be guaranteed by callaalogBase::refresh.

A PSS implementation that provides transparent persistence for C++ must implement
the Object Data Management Group (ODMG) version 2.0 standard for C++ ([ODMG]
chapter 5), with the following modificationt_Cbj ect inherits (with public virtual
inheritance) fromCosPer si st ent St at e: : St or age(bj ect Base.

The ODMG C++ standard uses a smart pointer cldsBdf ) for determining which
objects need to be fetched into application memory and requires an explicit call to a
mar k_nodi fi ed() member function for determining which objects have changed.

ODMG defines a_Tr ansact i on class for handling transaction semantics. In PSS,
transactions are handled entirely through the Transaction Service; therefore, the
d_Transacti on class should not be used in conjunction with PSS.

Also [ODMG] uses the term database for datastore.

Persistent Sate Service November 2001



4.1

Introduction

PSDL LanguageMappings 4

Application code that uses the Persistent State Service interacts with abstract
storagetypes, abstract storagehomes and types defined in the CosPersistentState
module. Such code can be completely shielded from PSS-implementation
dependencies: in C++ and Java, it should not be necessary to recompile this application
code when switching from one PSS implementation to another one. To make this
possible, each language mapping must fully specify the mapping for abstract
storagetypes, abstract storagehomes, and the types defined by the
CosPersistentState module.

On the other hand, storagetypes and storagehomes are mapped to concrete
programming language constructs with implementation-dependent parts (such as C++
members, Java fields and methods). Language mappings should avoid to put
restrictions on these concrete constructs.

Of course, each PSDL language mapping should try to be as consistent as possible
with the IDL mapping. In particular, the mapping for PSDL modules in a given
programming language shall be the same as the mapping for IDL modules in this
language. The mapping for PSDL abstract storagetypes and abstract storagehomes
should be similar to the mapping for IDL structs or abstract valuetypes; the mapping
for storagetypes and storagehomes should be similar to the mapping for IDL structs or
valuetypes.

Implementations of PSDL operations declared on abstract storagetype and abstract
storagehomes are typically provided in classes derived from classes generated by the
PSDL compiler. The PSS implementation needs factories in order to create instances of
such user-defined classes. Factories for storage object instances are represented by the
native type CosPersistentState::StorageObjectFactory, factories for storage
home instances are represented by the native type
CosPersistentState::StorageHomeFactory, factories for session instances are
represented by the native type CosPersistentState::SessionFactory, and factories
for session-pools are represented by the native type

Persistent Sate Service November 2001 4-45



CosPersistentState::SessionPoolFactory. The connector of a PSS
implementation provides an operation to register storage object factories,
register_storage_object_factory, an operation to register storage home factories,
register_storage_factory, an operation to register session factories,
register_session_factory, and an operation to register session pool factories,
register_session_pool_factory:

module CosPersistentState {
native StorageObjectFactory;
native StorageHomeFactory;
native SessionFactory;
native SessionPoolFactory;

interface Connector {

StorageObjectFactory
register_storage_object_factory(
in Typeld storage_type_name,
in StorageObjectFactory factory
);

StorageHomeFactory
register_storage_home_factory(
in Typeld storage_home_type_name,
in StorageHomeFactory factory

);
...
|3
|3
Each register_ operation returns the factory previously registered with the given
name; they return NULL when there is no previously registered factory.

The CosPersistentState module aso defines two enumeration types:

®* YieldRef, which can be used to define overloaded functions or methods that return
incarnations and references.

® ForUpdate, which can be used to define overloaded accessor function/method
which will update the state member.

module CosPersistentState {
enum YieldRef { YIELD REF };
enum ForUpdate { FOR_UPDATE };
|3

4-46 Persistent Sate Service November 2001



4.2 JavaMapping

4.2.1 Abstract Soragetypes

An abstract storagetype definition is mapped to a public Java interface with the same
name and the definition of the associated Holder class.

Refs are mapped to pids (byte[]) in Java.

The mapped Java interface extends the mapped interfaces of all the abstract
storagetype inherited by this abstract storagetype.

For example:

/ PSDL
abstract storagetype A {}; // implicitly inherits

/I CosPersistentState::StorageObject
abstract storagetype B : A {};

is mapped to:

/1 Java
public interface A
ext ends CosPer si stent St at e. St or ageObj ect {}

public interface B extends A {}

The forward declaration of an abstract storagetype is mapped to the forward
declaration of its mapped interface and the associated Holder class.

4.2.2 Arrays and Sequences

Like arrays and sequences of IDL types, arrays and sequences of abstract storagetypes
and reference to abstract storagetype are mapped to Java arrays. For example:

/I PSDL
abstract storagetype A {};
typedef sequence <ref<A>> ASeq;

ASeq is mapped to ARef [ ] .

Holder classes are also generated, like for IDL types.

4.2.3 Sate Members

Each state member is mapped to a number of overloaded accessor and modifier
methods, with the same name as the state member. These methods can raise any
CORBA standard exception.

Persistent Sate Service  Java Mapping November 2001 4-47



4-48

A state member whose mapped Java type is immutable is simply mapped to a pair of
accessor and modifier methods. There is no modifier method if the state member is
read-only.

For example:

/l PSDL
abstract storagetype Person {
state string name;

|3
is mapped to

/1 Java

public interface Person extends StorageObject {
public String nane();
public void name(String s);

b

A state member whose type is a abstract storagetype is also mapped to a pair of
accessor and modifier methods, or just an accessor method when the state member is
read-only.

A state member whose type is a reference to an abstract storagetype is mapped to two
accessors and two modifier methods. One of the accessor methods takes no parameter
and returns a storage object incarnation, the other takes a
CosPersistentState.YieldRef parameter and returns a reference. One of the
modifier methods takes an incarnation, the other one takes a reference. If the state
member is read-only, only the accessor methods are generated. For example:

abstract storagetype Bank;
abstract storagetype Account {
state long id;
state ref<Bank> my_bank;

|3
is mapped to:

/1 Java

public interface Account
ext ends CosPer si stent St at e. St or ageObj ect {
public long id();

public void id(long I);

public Bank mny_bank();

public byte[] my_bank(CosPersistentState.YieldRef yr);
public void nmy_bank(Bank k);

public void ny_bank(byte[] kr);

}

All other state members are mapped to two accessor methods (one read-only, one read-
write) and one modifier method. If such a state member is read-only, only the read-
only accessor is generated. For example:

Persistent Sate Service November 2001



abstract storagetype Person {
readonly state string name;
state CORBA::OctetSeq photo;

¥
is mapped to:

/1 Java
public interface Person
ext ends CosPer si st ent St at e. St orageObj ect {
public String nane();
public byte[] photo();
public byte[] photo(CosPersistentState. ForUpdate fu);
public void photo(byte[] new one);

4.2.4 Soragetype Operations

Const and non-const operations on abstract and concrete storagehomes are mapped to
public Java methods.

Table 4-1 shows the mapping for parameters of type S and ref<S> (where Sis an
abstract storagetype) For IDL parameters, the regular IDL to Java mapping is used.

Table 4-1 Mapping for PSDL parameters

PSDL parameter

Java parameter

in S param

S param

inout S param

SHol der param

out S param

SHol der param

(return) S

(return) S

in ref<S> param

byte[] param

inout ref<S> param

byte[] param

out ref<S> param

byte[] param

(return) ref<S>

(return) byte[]

4.2.5 Abstract Soragehomes

The mapping for PSDL abstract storagehomes is similar to the mapping for IDL local
interfaces.

An abstract storagehome definition is mapped to a public Java interface with the same
name. The mapped Java interface extends the mapped interfaces of all the abstract
storagehomes inherited by this abstract storagehome. If an abstract storagehome does
not extend any other abstract storagehome, its mapped interface extends the interface
org.omg.CosPersistentState. StorageHomeBase.

Persistent Sate Service  Java Mapping November 2001 4-49



4-50

4.2.6 Soragehome Operations

Operations on abstract and concrete storagehomes are mapped like non-const
operations on storagetypes (see Section 4.2.4).

Note that key and factory operations are mapped as equivalent regular operations, as
defined by Section 3.2.5.

4.2.7 Soragetype

A storagetype is mapped to a Java class with the same name. This class implements the
mapped interfaces of all the abstract storagetypes implemented by the storagetype, and
extends the mapped class of its base storagetype, if there is one. This class also
provides a public default constructor.

If any of the abstract storagetypes implemented by the storagetype declares an
operation, then the mapped class is abstract and public.

All state members implemented directly by the storagetype are mapped to public final
accessor and modifier methods. The PSS implementation must be able to implement
these methods without additional input from the developer.

For example:

abstract storagetype Dictionary {
readonly state string from_language;
readonly state string to_language;
void insert(in string word, in string translation);
string translate(in string word);

|3
/l a portable implementation:

struct Entry {
string from;
string to;
|3
typedef sequence<Entry> EntryList;

storagetype PortableDictionary implements Dictionary {
state EntryList entries;

|3

is mapped to:

/1 Java

public abstract class Portabl eDictionary
i mpl enents Dictionary /* ... */ {
public final string fromlanguage() { /* ... */ }
public final string to_language() { /* ... */ }
public final Entry[] entries() { /* ... */}

Persistent Sate Service November 2001



public final Entry[] entries(ForUpdate fu) { /* ... */}
public final void entries(Entriese) { /* ... */}
public PortableDictionary() { /* ... */ }

/1

4.2.7.1 Soragehomes

A storage home is mapped to a Java class with the same name. This class implements
the mapped interfaces of all the abstract storagehomes implemented by the
storagehome, and extends the mapped class of its base storagehome, if there is one.
This class also provides a public default constructor.

If any of the abstract storagehomes implemented by the storagehome declares an
operation, then the mapped class is abstract and public.

A storagehome class implements all finder operations implicitly defined by abstract
storagehomes directly implemented by the storagehome.

The mapped Java class provides four public non-abstract _cr eat e() methods:

® one that takes a parameter for each of its storagetype’s state members and returns al
incarnation

® one that takes a parameter for each of its storagetype’s reference representation
member, or no parameter of its storagetype has no reference representation.

® one that takes a parameter for each of the its storagetype’s state members, plus a
CosPer si st ent St at e. Vi el dRef parameter and returns a reference.

® one that takes a parameter for each of its storagetype’s reference representation
member (nothing if its storagetype has no reference representation), plus a
CosPer si st ent St at e. Yi el dRef parameter and returns a reference.

The order of the _create() parameters is as follows: it begins with the base type of the
storage type, proceed with the leftmost implemented abstract storage type and end with
the state members defined in the storage type itself.

For example:

abstract storagetype Book {
readonly state string title;
state float price;

h

abstract storagehome BookStore of Book {};

storagetype PortableBook implements Book {};
storagehome PortableBookStore of PortableBook implements BookStore {};

maps to:

/1 Java
cl ass Portabl eBookStore inplenments BookStore /* ... */ {

Persistent Sate Service  Java Mapping November 2001 4-51



public Portabl eBook create(String nane, float price) {/* ... */ }
public Portabl eBook _create() {/* ... */}
public byte[] _create(

String nane,

float price,

CosPersi stent State. Yi el dRef yr

) {/* ... *I}
public byte[] _create(CosPersistentState.YieldRef yr)
{r* ... *I}

/1

4.2.8 Factory Native Types

All the factory native types (StorageObjectFactory, StorageHomeFactory,
SessionFactory and SessionPoolFactory) are mapped to the Java class
j ava. |l ang. d ass.

4.3 C++ Mapping

4-52

4.3.1 Abstract Soragetypes

An abstract storagetype definition is mapped to a C++ abstract base class with the

same name; an abstract storagetype definition also results in the declaration of a C++
concrete class with “Ref” appended to its name, and the definition of _var and _out
classes for memory management.

The mapped C++ class inherits (with public virtual inheritance) from the mapped
classes of all the abstract storagetype inherited by this abstract storagetype. It also
provides two public static member functions:

® duplicate(): increases the reference count of the given parameter (if not null)
and then returns itself

® downcast (): like _downcast () for valuetypes.

For example:

/l PSDL
abstract storagetype A {}; // implicitly inherits

/I CosPersistentState::StorageObject
abstract storagetype B : A {};

is mapped to:

Persistent Sate Service November 2001



/] C++
class A

public virtual CosPersistentState:: StorageQbject {};
cl ass ARef

public virtual CosPersistentState:: StorageQbj ect Ref
{ 1> ... *I};

class Avar { /*... */};
class ARef var {/* ... */};
class Aout { /*... */};
class ARef out {/* ... */};

class B : public virtual A {};
class BRef {/*... */};

class Bvar { /*... */};
class BRef var {/* ... */};
class Bout { /*... */};
class BRef _out {/* ... */};

The forward declaration of a abstract storagetype is mapped to the forward declaration
of its mapped class and “Ref” class.

The Ref class is a concrete C++ class which provides:

® apublic default constructor that creates a null reference

® anon-explicit constructor which takes an incarnation of the target storage type.
® apublic copy constructor

® apublic destructor

® apublic assignment operator

® apublic assignment operator which takes an incarnation of the target abstract
storage type.

® apublic operator->() that dereferences this reference and returns the target object.
The caller is not supposed to release this incarnation.

® apublic deref() function which behaves like operator->()

® apublic release() function which releases this reference

® apublic destroy_object() function which destroys the target object

® apublic get_pid() function which returns the pid of the target object.

® apublic get_short_pid() function which returns the short-pid of the target object.
® apublicis null() function; it returns true if and only if this reference is null.

® apublic get_storage home() function which returns the storage home of the target
object. This function increases the reference count of the return storage home.

® aconversion operator for each abstract storage type from which the corresponding
abstract storage type derives directly or indirectly.

® apublic typedef target type that type-defs the corresponding abstract storagetype.

Persistent SateService  C++ Mapping November 2001 4-53



® apublic static _duplicate member function

® apublic static _downcast member function

CosPersi stent St at e: : St or age(hj ect Ref isaregular Ref class:

nanespace CosPersistentState {
cl ass Storagebj ect Ref

{
public:
t ypedef StorageOhject _target type;

St or ageObj ect Ref (
St orageChj ect*  obj =0
) throw();

St or ageObj ect Ref (
const Storage(oj ect Ref & ref

) throw();

St or ageOhj ect Ref &
oper at or =(

const Storage(j ect Ref & ref
) throw();

St or ageOhj ect Ref &
oper at or =(

St or ageOhj ect * obj
) throw();

voi d
rel ease() throw();

St or ageOhj ect *
deref () throw (CORBA:: Syst emExcepti on);

St or agehj ect *
operator->() throw (CORBA: : Syst enExcepti on);
/1 not const!

voi d
destroy_object() throw (CORBA:: Syst enException);

Pi d*
get _pid() const throw (CORBA: : SystenmException);

Short Pi d*
get _short _pid() const throw (CORBA:: Syst enException);

CORBA: : Bool ean
is null() const throw();

4-54 Persistent Sate Service November 2001



St or ageHoneBase_ptr
get _storage_honme() const
t hrow ( CORBA: : Syst emExcepti on);

static StorageObject Ref
_duplicate(

St or ageOhj ect Ref ref
)

static StorageObject Ref
_downcast (
St or ageOhj ect Ref ref

)

Note —C++ namespaces are used in this specification to represent mapped IDL
modules. Depending on the target C++ compiler and ORB implementation, a module
can be mapped to a C++ namespace, a class or a prefix.

The class CosPer si st ent St at e: : St or age(hj ect declares two pure virtual
functions for reference counting, _add_ref () and _renove_ref (), and inherits
from CosPer si st ent St at e: : St or ageObj ect Base:

nanespace CosPersistentState {

cl ass StorageGbject : public virtual StorageObjectBase {
public:

virtual void _add ref() = O;
virtual void _renove ref() = O;

/1 normal mappi ng of PSDL operations:
virtual void destroy_object()
t hrow (Syst enkException) = 0;

virtual Bool ean object exists()
t hrow (Syst enkException) = 0;

virtual Pid* get pid() throw (SystenException) = 0;
virtual ShortPid* get_short _pid()
t hrow ( Syst enException) = 0;

virtual StorageHoneBase* get storage_ hone()
t hrow ( Syst enkException) = 0;

Persistent SateService  C++ Mapping November 2001 4-55



4-56

static StorageObject*
_duplicate(StorageCbject*);

static Storage(bject*
_downcast ( St or agehj ect *) ;

pr ot ect ed:
virtual ~StorageCbject() {}
i
}

The CosPer si st ent St at e namespace also provides two overloaded r el ease()
functions, one that takes a St or agebj ect * and releases a reference count if it is
not null, and one that takes a St or ageObj ect Ref and releases a reference count if
it is not null.

4.3.2 Ref var Classes

The _var class associated with a Ref class provides the same member functions as the
Ref class (operat or->(),deref (), destroy_object(), get_pid(),

get _short _pid(), is_null() and get_storage_ hone()) withthe same
behavior, a constructor and an assignment operator that accepts a Ref object, a copy
constructor and an assignment operator that accepts a const Ref-var object reference,
an const i n() member function that returns a Ref object, an non-const i nout ()
member function that returns a non-const Ref object reference, an out () member
function that returns a non-const Ref object reference, and a_r et n() member
function that returns a Ref object, releasing the Ref held by this var object.

4.3.3 Arrays and Sequences

The C++ mapping for sequences and arrays of abstract storagetypes/references to
abstract storagetype is like the C++ mapping for sequences and arrays of IDL types.

4.3.4 Sate Members

Each state member is mapped to a number of overloaded public pure virtual accessor
and modifier functions, with the same name as the state member. These functions can
raise any CORBA standard exception.

A state member whose C++ type is a basic type is mapped like a value data member.
There is no modifier function if the state member is read-only.

For example:

/I PSDL
abstract storagetype Person {
state string name;

|3
is mapped to

Persistent Sate Service November 2001



/] C++
class Person : public virtual StorageObject {
public:
virtual const char* nane() const 0;
virtual void nane(const char* s) 0; [// copies
virtual void nane(char* s) = O; /1 adopts
virtual void nanme(String_var& s) 0; // adopts

}s

A state member whose type is an abstract storagetype is mapped to a read-only
accessor, a read-write accessor and a modifier, or just a read-only accessor when the
state member is read-only.

For example:

/ PSDL

abstract storagetype A {};

abstract storagetype B {
state A embedded;

|3

is mapped to:

[l C++

class B : public virtual Storage(hject {

public:
virtual const A& enbedded() const = 0;
virtual A& enbedded(CosPersistent State:: ForUpdate) = O;
virtual void enbedded(const A& = 0; // copies

b

A state member whose type is a reference to an abstract storagetype is mapped to two
accessors and one modifier functions. One of the accessor functions takes no parameter
and returns a storage object incarnation, the other takes a CosPersistentState::Yiel dRef
parameter and returns a reference. The modifier function accepts a reference object. If
the state member is read-only, only the accessor functions are generated. For example:

abstract storagetype Bank;

abstract storagetype Account {
state long id;
state ref<Bank> my_bank;

¥
is mapped to:

/] C++
class Account : public virtual Storage(bject {
public:

virtual CORBA: :Long id() = O;

virtual void id(CORBA: :Long |I) = 0;

virtual Bank* ny_bank() const= 0;

Persistent SateService  C++ Mapping November 2001 4-57



virtual BankRef ny_bank(CosPersistentState:: Yiel dRef yr)
const = O;

virtual void ny_bank(BankRef b) = O;
i

All other state members are mapped to two accessor functions (one read-only, one
read-write) and one modifier function. If such a state member is read-only, only the
read-only accessor is generated. For example:

abstract storagetype Person {
readonly state string name;
state CORBA::OctetSeq photo;

|3
is mapped to:
[l C++
class Person : public virtual StorageObject {
public:

virtual const char* nane() = O;

virtual CctetSeq* photo() const = O;

virtual CctetSeq* photo(CosPersistentState:: ForUpdate fu)

= 0;

virtual void photo(const CctetSeq& new one) = O;

b

4.3.5 Soragetype Operations

A const operation on an abstract or concrete storagetype is mapped to a const virtual
public member function; a non-const operation on an abstract or concrete storagetype
is mapped to a non const virtual public member function.

Table 4-2 shows the mapping for parameters of type S and ref<S> (where Sis an
abstract storagetype). For IDL parameters, the regular IDL to C++ mapping is used .

Table 4-2 Mapping for PSDL parameters

PSDL parameter

C++ parameter

in S param

const S& param

inout S param

S& param

out S param

S out param

(return) S

(return) S*

in ref<S> param

SRef param

inout ref<S> param

SRef & param

out ref<S> param

SRef _out param

(return) ref<S>

(return) SRef

Persistent Sate Service

November 2001




References are always passed by value or reference (never through pointers).

4.3.6 Abstract Soragehomes

The mapping for PSDL abstract storagehomes is similar to the mapping for IDL local
interfaces.

An abstract storagehome definition is mapped to a C++ class with the same name. The
mapped C++ class inherits using public virtual interitance from the mapped classes of
all the abstract storagehomes inherited by this abstract storagehome. If an abstract
storagehome does not extend any other abstract storagehome, its mapped class inherits
(using public virtual inheritance) from CosPersistentState:: StorageHomeBase.

Like with local interfaces, the mapped class has associated var and _out helper
classes.

4.3.7 Soragehome Operations

Operations on abstract and concrete storagehomes are mapped like non-const
operations on storagetypes (see Section 4.3.5).

Note that key and factory operations are mapped as equivalent regular operations, as
defined by Section 3.2.5.

4.3.8 Soragetype

A storagetype is mapped to a C++ class with the same name. This class inherits from
the mapped classes of all the abstract storagetypes implemented by the storagetype,
and from the mapped class of its base storagetype, if there is one. This class also
provides a public default constructor.

All state members implemented directly by the storagetype are implemented by the
mapped class, as public functions. The PSS implementation must be able to implement
these functions without additional input from the devel oper.

For example:

abstract storagetype Dictionary {
readonly state string from_language;
readonly state string to_language;
void insert(in string word, in string translation);
string translate(in string word);

|3
/l a portable implementation:
struct Entry {

string from;

string to;

h

Persistent SateService  C++ Mapping November 2001 4-59



4-60

typedef sequence<Entry> EntryList;

storagetype PortableDictionary implements Dictionary {
state EntryList entries;

|3
is mapped to:
/I C++
class PortableDictionary : public virtual Dictionary /* ... */ {
public:
const char* from_language() const;
const char* to_language() const;
EntryList* entries() const;
EntryList* entries(CosPersistentState::ForUpdate fu);
void entries(const EntryList&);
PortableDictionary();
...
|3

For each storagetype, a concrete “Ref” class is also generated. Like the Ref class
generated for an abstract storage type, it provides

® apublic default constructor that creates a null reference

® anon-explicit constructor which takes an incarnation of the target storage type.

® apublic copy constructor

® apublic destructor

® apublic assignment operator

® apublic assignment operator which takes an incarnation of the target storage type.

® apublic operator->() that dereferences this reference and returns the target object.
The caller is not supposed to release this incarnation.

® apublic deref() function which behaves like operator->()

® apublic release() function which releases this reference

® apublic destroy_object() function which destroys the target object

® apublic get_pid() function which returns the pid of the target object.

® apublic get_short_pid() function which returns the short-pid of the target object.
® apublicis null() function; it returns true if and only if this reference is null.

® apublic get_storage home() function which returns the storage home of the target
object. This function increases the reference count of the return storage home.

® aconversion operator for each abstract storage type implemented by the
corresponding storage type (directly or indirectly).

® aconversion operator for each storage type implemented from which the
corresponding storage type derives (directly or indirectly).

Persistent Sate Service November 2001



® apublic typedef target type that type-defs the corresponding storagetype.
® apublic static _duplicate member function

® apublic static _downcast member function

4.3.9 Soragehomes

A storagehome is mapped to a C++ class with the same name. This class inherits from
the mapped classes of all the abstract storagehomes implemented by the storagehome,
and from the mapped class of its base storagehome, if there is one. This class also
provides a public default constructor.

A storagehome class implements all finder operations implicitly defined by abstract
storagehomes directly implemented by the storagehome.

The mapped C++ class provides two public non-virtual _cr eat e() member
functions:

® one that takes a parameter for each of the its storagetype’s state members and
returns an incarnation

® one that takes a parameter for each of the its storagetype’s state members, plus a
CosPersistentState::YieldRef parameter and returns a reference.

It also provides two public virtualcr eat e() member functions:

® one that takes a parameter for each of the its storagetype’s reference representation
members (no parameter if the storagetype has no reference representation) and
returns an incarnation

® one that takes a parameter for each of the its storagetype’s reference representatior
members (nothing if the storagetype has no reference representation), plus a
CosPersistentState::YieldRef parameter and returns a reference.

The order of the _create() parameters is as follows: it begins with the base type of the
storage type, proceed with the leftmost implemented abstract storage type and end with
the state members defined in the storage type itself.

Like other mapped types, this class also provides a public stitigl i cat e() and
a public static downcast () member function.

For example:

abstract storagetype Book {
readonly state string title;
state float price;

b

abstract storagehome BookStore of Book {};

storagetype PortableBook implements Book {};
storagehome PortableBookStore of PortableBook implements BookStore {};

maps to:

Persistent SateService  C++ Mapping November 2001 4-61



/] C++
cl ass Portabl eBookStore : public virtual BookStore /* ... */
{
public:
Port abl eBook* _create(const char* name, Float price);
Port abl eBook* _create();
Por t abl eBookRef _create(
const char* nane,
Fl oat pri ce,
CosPersi stent State: :Yiel dRef yr
)
Por t abl eBookRef _creat e(
CosPersi stent State: :Yiel dRef yr
)
/1

b

4.3.10 Factory Native Types

The native factory types StorageObjectFactory, StorageHomeFactory,
SessionFactory and SessionPoolFactory map the C++ classes with the same
names, defined as follows:

nanespace CosPersistentState {

tenpl ate cl ass<T>
cl ass Factory {
publi c:
virtual T* create() throw (SystenException) = O;
virtual void _add ref() {}
virtual void _remove_ref() {}
virtual ~Factory() {}

b

t ypedef Factory<StorageObj ect> StorageObj ect Factory;
t ypedef Fact ory<StorageHoneBase> St orageHomeFact ory;
t ypedef Factory<Sessi on> Sessi onFactory;

t ypedef Fact ory<Sessi onPool > Sessi onPool Fact ory;

4-62 Persistent Sate Service November 2001



A.1l CompletelDL

CosPersistentSateModule

/[File: CosPersistentState.psdl

/I Copyright 1998-1999 by the Object Management Group.

/I All Rights Reserved.

#ifndef _COS_PERSISTENT_STATE_PSDL_
#define_COS_PERSISTENT_STATE_PSDL_

#include <orb.idl>
#include <CosTransactions.idl>

module CosPersistentState {

local interface CatalogBase;

local interface Connector;

local interface EndOfAssociationCallback;
local interface Session;

local interface SessionPool;

local interface StorageHomeBase;

local interface TransactionalSession;

native StorageObjectBase;
native StorageObjectFactory;
native StorageHomeFactory;
native SessionFactory;
native SessionPoolFactory;
exception NotFound {};

typedef string Typeld;

Persistent Sate Service V2.0 November 2001

A-1



typedef CORBA::OctetSeq Pid;
typedef CORBA::OctetSeq ShortPid;

abstract storagetype StorageObject {
void destroy_object();
boolean object_exists();
Pid get_pid();
ShortPid get_short_pid();
StorageHomeBase get_storage_home();

enum YieldRef { YIELD_REF };
enum ForUpdate { FOR_UPDATE };

typedef short IsolationLevel;

const IsolationLevel READ_UNCOMMITTED =0;
const IsolationLevel READ_COMMITTED =1,
const IsolationLevel REPEATABLE_READ =2,
const IsolationLevel SERIALIZABLE = 3;

typedef short TransactionPolicy;
const TransactionPolicy NON_TRANSACTIONAL = 0;
const TransactionPolicy TRANSACTIONAL =1,

typedef short AccessMode;
const AccessMode READ_ONLY = 0;
const AccessMode READ_WRITE = 1;

struct Parameter {
string name;

any val,

¥
typedef sequence<Parameter> ParameterList;

typedef sequence<TransactionalSession> TransactionalSessionList;

/I
/I Connector
/I

local interface Connector {
readonly attribute string implementation_id;
Pid get_pid(in StorageObjectBase obj);
ShortPid get_short_pid(in StorageObjectBase obj);

A-2 Persistent Sate Service V2.0 November 2001



Session
create_basic_session(
in AccessMode access_mode,
in ParameterList additional _parameters

);

TransactionalSession
create_transactional_session(
in AccessMode access_mode,
in IsolationLevel default_isolation_level,
in EndOfAssociationCallback callback,
in ParameterList additional _parameters

);

SessionPool
create_session_pool(
in AccessMode access_mode,
in TransactionPolicy tx_policy,
in ParameterList additional _parameters

TransactionalSession current_session();

TransactionalSessionList
sessions(
in CosTransactions::Coordinator transaction

);

StorageObjectFactory
register_storage object_factory(
in Typeld storage_type_name,
in StorageObjectFactory storage_object_factory

);

StorageHomeFactory
register_storage_home_factory(

in Typeld storage_home_type _name,

in StorageHomeFactory storage_home_factory

);

SessionFactory
register_session_factory(
in SessionFactory session_factory

);

SessionPoolFactory
register_session_pool_factory(
in SessionPoolFactory session_pool_factory

);

Persistent Sate Service V2.0 November 2001 A-3



I
/I CatalogBase
I

local interface CatalogBase {
readonly attribute AccessMode access_mode;
StorageHomeBase
find_storage_home(in string storage_home_id)

raises (NotFound);

StorageObjectBase
find_by pid(in Pid the_pid) raises (NotFound);

void flush();
void refresh();

void free_all();

void close();

1
/I StorageHomeBase
I

local interface StorageHomeBase {

StorageObjectBase
find_by_short_pid(in ShortPid short_pid)
raises (NotFound);

CatalogBase get_catalog();
¥

/I
/l Session
/I

local interface Session : CatalogBase {};

/I
/I TransactionalSession
/I

Persistent Sate Service V2.0 November 2001



local interface TransactionalSession : Session {
readonly attribute IsolationLevel default_isolation_level;

typedef short AssociationStatus;
const AssociationStatus NO_ASSOCIATION = 0;

const AssociationStatus ACTIVE =1;
const AssociationStatus SUSPENDED =2;
const AssociationStatus ENDING =3;

void start(in CosTransactions::Coordinator transaction);
void suspend(in CosTransactions::Coordinator transaction);
void end(

in CosTransactions::Coordinator transaction,

in boolean success

)1
AssociationStatus get_association_status();

CosTransactions::Coordinator transaction();

h

local interface EndOfAssociationCallback {
void released(in TransactionalSession session);

h

Il
/I SessionPool
Il

typedef sequence<Pid> PidList;
local interface SessionPool : CatalogBase {

void flush_by_ pids(in PidList pids);
void refresh_by pids(in PidList pids);

readonly attribute TransactionPolicy transaction_policy;

h
h

#endif // _COS_PERSISTENT_STATE_PSDL_

Persistent Sate Service V2.0 November 2001 A-5



A-6

Persistent Sate Service V2.0

November 2001



B.1

Introduction

Example: Anlmplementationof the
Naming Service B

This non-normative section presents a simple, portable implementation of the Naming
Service using the Persistent State Service.

The Naming Service defines only two IDL interfaces, NamingContext and
Bindinglterator.

From the Naming Service chapter: “A name-to-object association is catiache
binding. A name binding is always defined relative toamning context. A naming
context is an object that contains a set of name bindings in which each name is
unique.”

A naming context is typically persistent CORBA object: its implementation outlives
the process that created it, by storing information (its state, or at least part of its state)
in a datastore.

A binding iterator is an object used to iterate over the content of a naming context;
binding iterators aréransient objects created by naming contexts.

B.1.1 Specifying Sorage Objects

We choose to associate with each naming context a storage object that represents its
state. This state is a set of name bindings -- which can also be viewed as a name-to-
object-reference map; so we specify our naming context state storage objects as
follows:

/l file NamingContextState.psdl

#include <CosNaming.idl>
abstract storagetype NamingContextState {

Persistent Sate Service V2.0 November 2001 B-1



B-2

Object resolve(in CosNaming::NameComponent n)
raises(CosNaming::NotFound, CosNaming::CannotProceed,
CosNaming::InvalidName);
void bind(in CosNaming::NameComponent n, in Object obj)
raises(CosNaming::NotFound, CosNaming::CannotProceed,
CosNaming::InvalidName, CosNaming::AlreadyBound);
void rebind(in CosNaming::NameComponent n, in Object obj)
raises(CosNaming::NotFound, CosNaming::CannotProceed,
CosNaming::InvalidName);
void unbind(in CosNaming::NameComponent n, in Object obj)
raises(CosNaming::NotFound, CosNaming::CannotProceed,
CosNaming::InvalidName);

boolean is_empty();

CosNaming::Bindinglterator create_iterator();

b

abstract storagehome NamingContextStateHome of NamingContextState {
factory create();

b

| mplementing NamingContext Servants

The implementation of a naming context servant is quite simple: most operations
simply “unwrap” a name by calling resolve to reduce its length to one. When the
name’s length is one, the implementation delegates the real work to its storage object.

To establish the association naming context object -- storage object, we choose to use
the storage object short pid as the naming context object’s object id. Further, for
simplicity (and scalability), we use a single servant to handle all requests to
NamingContext objects.

In this first cut, we use the same storage home instance (and hence catalog) to acces:s
all storage objects.

/1 POA-based Java servant class
public class Nam ngContextl|npl extends POA Nani ngCont ext {
/1 fields
privat e Nam ngCont ext St at eHomre m_hone;
private POA m poa;
/1 hel per methods
Nam ngCont ext State ny_state() ({

return (Nam ngCont ext St at e)
nmy_hone().find_by _short_pid(_object_id());

Persistent Sate Service V2.0 November 2001



Nam ngCont ext St at eHore ny_home() {
/1 first cut: all naming contexts use the sane
/1 storage hone instance
return m_honme;

}

/1 Constructor

Nam ngCont ext | npl (
Nam ngCont ext St at eHone hone,

POA poa
)
{
m_home = hone;
m poa = poa;
}

/1 inplenentation of IDL operations

publ i c CORBA. Obj ect
resol ve( NanmeConponent[] n) {
if (n.length == 1) {
return ny_state().resolve(n[0]);

}
el se {
Nam ngCont ext new_target = Nam ngContext. narrow
ny_state().resolve(n[n.length -1])
)
NanmeConponent[] rest_of nane
= new NameComponent[n.length - 1];
System arraycopy(n, 0,rest_of _nane,0,n.length-1);
return new target.resol ve(rest of nane);
}

}

/1 simlar inplenentations for bind, unbind, rebind,
/1 bind_context, rebind_context

publ i ¢ Nam ngCont ext new context() {
Nam ngContextState ref = my_hone().create();
return Nam ngCont ext. narrow
_poa().create_reference_wth_id(
ref.short pid(),
“IDL:omg.org/CosNaming/NamingContext:1.0”

}

/I bind_new_context() simply creates a new context and
// binds it

Persistent Sate Service V2.0 Introduction November 2001 B-3



public void destroy() throws NoEmpty ({

if (my_state().is_empty()) {
nmy_state().destroy();

}
el se {

t hr ow new Not Enpty;
}

}

/l'ist() ‘wraps’ my_state().create_iterator()

B.1.3 Implementing Sorage Objects

Depending on the PSS implementation, and the underlying datastore,
NamingContextState can be implemented in different ways.

A PSS implementation for an ODMG system would probably provide adictionary
type, as a proprietary extension. For example;

storagetype OdmgNCtxState implements NamingContextState {
state dictionary<CosNaming::ComponentName, Object> m_map;

|3

storagehome OdmgNCtxStateHome of OdmgNCtxState implements
NamingContextStateHome {};

A PSS implementation for Oracle8 could provide a nested table type, sinceit isa
native Oracle8 feature. For example:

nestedtable BindingTable {
state CosNaming::ComponentName name;
state Object obj;
key name;

|3

storagetype OracleNCtxState implements NamingContextState {
state BindingTable m_table;

|3

storagehome OracleNCtxStateHome of OracleNCtxState implements
NamingContextStateHome {};

However, for some developers, portability is more important than performance. Such a
developer would use only standard PSDL to define his’her implementation,
PortableNamingContextState:

struct ListElement {
CosNaming::NameComponent name;
Object obj

|3

typedef sequence<ListElement> List;

Persistent Sate Service V2.0 November 2001



storagetype PortableNCtxState implements NamingContextState {
state List m_list;

h

storagehome PortableNCtxStateHome of PortableNCtxState
implements NamingContextStateHome

{
/1 Java inpl enentation

public class Portabl eNCt xStatel npl extends Portabl eNCt xSt ate

{
publ i c CORBA. Obj ect resol ve( NaneConponent n)
t hrows Not Found, Cannot Proceed, |nvali dName
{
for (int i =0; i <mlist.length; i++)
if ((mlist[i].nane.id == n.id)
& & (mlist[i].name.kind = n.kind))
{
return mlist[i].obj;
}
}
}
public Boolean is_empty() {
return (mlist.length == 0);
}
/1l etc.
}

public class Portabl eNCt xSt at eHorrel npl
ext ends Portabl eNCt xSt at eHone {
publ i c Nam ngContextState create() {/* generated */)

B.1.4 Completing the Naming Server

Now that our servants and storage objects are implemented, we need to create the
‘main’ of our naming server:

® Get the PSS connector, to register our incarnation and storage home incarnation
factories.

® Get theroot POA, to create a child POA with the following policies: PERSISTENT,
USE_DEFAULT_SERVANT, USER_ID, MULTIPLE_ID, NON_RETAIN.

® Create a session and find the storage home that manages our storage objects.

® Create a servant with this ‘persistent’ POA and this storage home incarnation.

Persistent Sate Service V2.0 Introduction November 2001 B-5



® |f the server is run for the first time, create the root naming context and prints its
object reference.

public class Nam ngServer {
public static void main(String[] args) {

/1 initializes ORB
CORBA. ORB myOrb = CORBA. ORB. i nit(args);

/1 get connector registry
CosPer si st ent St at e. Connect or Regi stry registry
= CosPer si st ent St at e. Connect or Regi stryHel per.
nar r owm(
myOrb.resolve_initial_references(“PSS”)
);
/I get connector
CosPersistentState.Connector connector =
registry.find_connector(*");

/I register storage object factory

connector.register_storage_object_factory(
“PortableNCtxState”,
Class.forName(“PSDL:PortableNCtxStatelmpl:1.0")

);

/I register storage home factory

connector.register_storage_home_factory(
“PSDL:PortableNCtxStateHome:1.0",
Class.forName(“PortableNCtxStateHomelmpl”)

);

/I create session
CosPersistentState.Session mySession
= connector.create_basic_session(
org.omg.CosPersistentState. READ_WRITE,

parameters

);

/I get storage home

NamingContextStateHome home = (NamingContextStateHome)
mySession.find_storage_home(

“PSDL:PortableNCtxStateHomelmpl:1.0"

);

/I get root POA
PortableServer.POA rootPOA
= PortableServer.POAHelper.narrow(
myOrb.resolve _initial_references(*RootPOA”)

Persistent Sate Service V2.0 November 2001



/'l create policies
CORBA. Pol i cy policies[5];
policies[0] = rootPOA create |ifespan_policy(
Por t abl eServer. Li f espanPol i cyVal ue. PERSI STENT
)
pol i cies[1] =rootPQOA create_request_processing policy(
Por t abl eSer ver. Request Processi ngPol i cyVal ue.
USE_DEFAULT_SERVANT
)
policies[2] = rootPOA create_id _uniqueness_policy(
Por t abl eServer. | dUni quenessPol i cyVal ue. MULTI PLE | D
)
policies[3] = rootPOA create_id _assignnment_policy(
Por t abl eServer. | dAssi gnrment Pol i cyVal ue. USER | D
)
policies[4] = rootPOA create_servant_retention_policy(
Por t abl eServer. Servant Ret ent i onPol i cyVal ue.
NON_RETAI N

)

/1 create POA for nanming contexts

Por t abl eSer ver . POAManager poaMyr
= root POA. t he_POAManager () ;

Port abl eServer. POA poa = root POA create PQOA(
“Naming”, null, policies

);

/I the first time, create a root naming context
/I and prints its IOR
if (firstTime) {
byte[] root_id = home.create().short_pid();
CORBA.Object root_naming_context =
poa.create_reference_with_id(
root_id,
“IDL:omg.org/CosNaming/NamingContext:1.0”
);
System.out.printin(
myOrb.object_to_string(root_naming_context)
);
}

/Il create and set servant
NamingContextimpl servant(home, poa);
poa.set_servant(servant);

/I start server
poaMgr.activate();
myOrb.run();
mySession.close();

Persistent Sate Service V2.0 Introduction November 2001 B-7



B.1.5 ATransactional Naming Server

Our first naming server is non-transactional: we created a basic session, and used the
same storage home incarnation for all requests.

We can easily upgrade it to a transactional naming server, by updating the
ny_hone() method and the constructor of the Nam ngCont ext | npl servant class:

Nam ngCont ext St at eHore ny_home() {
return (Nam ngCont ext St at eHome) m connect or.
current _session().find_storage_honme(m hone_nane);

}

Nam ngCont ext | npl (
String hone_nane,

POA poa

)

{
m _horme_nanme = hone_nane;
m poa = poa;

}

This also assumes that we have a mechanism that deals with the association between
OTS transactions and sessions. For example:

/1 The inplementation of MySessi onPool creates/ manages

/1 transactional sessions; it registers a

/1 EndOf Associ ationCal | back to be notified when a session
/1 is released by the PSS inpl ementation.

public interface MySessi onPool {
Transact i onal Sessi on
get _idl e_session();

}

public class Associ ati onManager {

private CosTransactions.Current mtxcurrent;
private MySessi onPool m pool;

/1 Somehow cal | ed before the business |ogic of each
/1 operation
public void start_of_request() {
CosTransactions. Control control =
m t xcurrent.get_control ();
if (control !'= null) {
CosPersi stent St at e. Transacti onal Sessi on
sessi on = m.connector. current_session();
if (session == null){
session = m pool.get_idle_session();

}

Persistent Sate Service V2.0 November 2001



}

session.start(control.get _coordinator());

}

/1 Sonmehow cal |l ed after the business |ogic of each
/1 operation
public void end _of request() {
CosTransactions. Control control =
m t xcurrent.get_control ();
if (control !'= null) {
m _connect or. current _sessi on().suspend(
control .get_coordi nator()

)

Persistent Sate Service V2.0 Introduction November 2001

B-9



B-10 Persistent Sate Service V2.0 November 2001



Relationshipto Other Services C

C.1 Introduction

This appendix describes the relationship between the Persistent State Service and the
other Common Object Services defined by the OMG.

C.1.1 Transaction Service

The Persistent State Service relies on the Transaction Service for transactions. The
relationship with this service is fully described in “Accessing Storage Objects”.

C.1.2 Security Service

This section specifies how a Persistent State Service implementation fits into the
overall CORBA Security framework. The Security Service provides means to secure
interactions between CORBA clients and CORBA Objects; the Persistent State Service
provides a service to servant developers and is not directly involved in any CORBA
Object invocation. As a result, there is no overlap of functionality in these two
services.

Nonetheless, a Persistent State Service implementation can help application developers
take advantage of the security features provided by their datastore to implement secure
CORBA applications. Such a security-aware implementation shall support the general
model described below.

Model

Storage object provided by a Persistent State Service implementation, and CORBA
Objects managed by an ORB and a Security Service implementation are in different
security policy domains, and generally in different security technology domains.

Persistent Sate Service V2.0 November 2001 C-1



C-2

Conceptually, the operations Connector::create_basic_session,
Connector::create_transactional _session and
Connector::create_session_pool perform a
SecurityLevel2::PrincipalAuthenticator::authenticate call. Some compliant
implementations may have drastic restrictions: for example, a simple file-system based
implementation can support only one principal per process with authentication
performed by the operating system.

Persistent Sate Service V2.0 November 2001



ConformanceReguirements D

A compliant implementation must implement the CosPersistentState module
entirely in at least one programming language for which this specification defines a
mapping. It must also provide a tool that reads PSDL specifications and generate code
in this programming language.

There are two optional features; transaction support and transparent persistence.

The operation create_transactional_session on the connector of an

implementation that does not support transactions must raise the NO_IMPLEMENT
standard exception. The operation create_session_pool of an implementation that
does not support transactions must raise the NO_IMPLEMENT standard exception

when the transaction_policy parameter is TRANSACTIONAL. A compliant
implementation that supports transactions as specified in this specification can claim to

be “a compliant Persistent State Service implementation with transaction support”.

A compliant implementation that supports transparent persistence can claim to be “a
compliant Persistent State Service implementation with transparent persistence
support.”

Persistent Sate Service V2.0 November 2001 D-3



D-4

Persistent Sate Service V2.0

November 2001



References E

[ODMG] Rick G. G. Cattell et a, The Object Database Sandard: ODMG 2.0, The
Morgan Kaufmann Series in Data Management Systems, 1997

[SQL3] IS0 Working Draft, Database Language SQL -- Part 2: Foundation
(SQL/Foundation), September 1998

[XA] Distributed Transaction Processing: The XA Specification, X/Open Document
C193, X/Open Company Ltd., Reading, U.K., ISBN 1-85912-057-1.

Persistent Sate Service V2.0 November 2001 E-5



E-6

Persistent Sate Service V2.0

November 2001



	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	Service Description
	1.1 Fundamental Concepts
	1.2 Datastore Model
	1.3 Specifying Storage Objects and Storage Homes
	1.4 Implementing Storage Objects and Storage Homes
	1.5 Creating Sessions and Session Pools
	1.6 Transactions
	1.7 Persistent CORBA Objects
	1.8 Relationship to CORBA Components

	Accessing Storage Objects
	2.1 Introduction
	2.2 Catalogs
	2.3 Connector
	2.4 Explicit Session Management
	2.4.1 Overview
	2.4.2 Session Local Interface
	2.4.3 Transactional Sessions
	2.4.4 EndOfAssociationCallback

	2.5 Implicit Session Management
	2.5.1 SessionPool

	2.6 IThread Safety

	Defining Storage Objects
	3.1 Introduction
	3.2 PSDL Syntax and Semantics
	3.2.1 Overview
	3.2.2 Keywords
	3.2.3 PSDL Grammar
	3.2.4 PSDL Type Id
	3.2.5 Specifying Storage Objects and Storage Homes
	3.2.6 Implementing Storage Objects and Storage Homes

	3.3 Transparent Persistence
	3.3.1 Overview
	3.3.2 Java
	3.3.3 C++


	PSDL Language Mappings
	4.1 Introduction
	4.2 Java Mapping
	4.2.1 Abstract Storagetypes
	4.2.2 Arrays and Sequences
	4.2.3 State Members
	4.2.4 Storagetype Operations
	4.2.5 Abstract Storagehomes
	4.2.6 Storagehome Operations
	4.2.7 Storagetype
	4.2.8 Factory Native Types

	4.3 C++ Mapping
	4.3.1 Abstract Storagetypes
	4.3.2 Ref_var Classes
	4.3.3 Arrays and Sequences
	4.3.4 State Members
	4.3.5 Storagetype Operations
	4.3.6 Abstract Storagehomes
	4.3.7 Storagehome Operations
	4.3.8 Storagetype
	4.3.9 Storagehomes
	4.3.10 Factory Native Types


	CosPersistentState Module
	Example: An Implementation of the Naming Service
	Relationship to Other Services
	Conformance Requirements
	References

