
Date: April 2017

Precise Semantics of UML State Machines
(PSSM)

Version 1.0 Beta

__

OMG Document Number: ptc/2017-04-04

Normative reference: http://www.omg.org/spec/PSSM/1.0

Machine readable file(s): http://www.omg.org/PSSM/20161101

Normative: http://www.omg.org/spec/PSSM/20161101/PSSM_Syntax.xmi
http://www.omg.org/spec/PSSM/20170401/PSSM_Semantics.xmi
http://www.omg.org/spec/PSSM/20161101/PSSM_TestSuite.xmi
http://www.omg.org/spec/PSSM/20161101/fUML_Syntax.xmi
http://www.omg.org/spec/PSSM/20161101/fUML_Semantics.xmi
http://www.omg.org/spec/PSSM/20161101/PSCS_Syntax.xmi
http://www.omg.org/spec/PSSM/20161101/PSCS_Semantics.xmi

This OMG document replaces the submission document (ad/2016-11-01, Alpha). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content of this
document are welcome, and should be directed to issues@omg.org by June 5, 2017.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on December 15, 2017.
If you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

NOTE: The second FTF will deliver the report on June 29, 2018.

http://www.omg.org/spec/PSSM/1.0
http://www.omg.org/issues/
mailto:issues@omg.org
http://www.omg.org/spec/PSSM/20161101/PSCS_Semantics.xmi
http://www.omg.org/spec/PSSM/20161101/PSCS_Syntax.xmi
http://www.omg.org/spec/PSSM/20161101/fUML_Semantics.xmi
http://www.omg.org/spec/PSSM/20161101/fUML_Syntax.xmi
http://www.omg.org/spec/PSSM/20161101/PSSM_TestSuite.xmi
http://www.omg.org/spec/PSSM/20161101/PSSM_Syntax.xmi
http://www.omg.org/PSSM/20161101

Copyright © 2016 Airbus Group
Copyright © 2016 Commissariat á l'Energie Atomique et Alternatives (CEA)
Copyright © 2016 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2016 LeiberLeiber Software
Copyright © 2017 Object Management Group, Inc.
Copyright © 2016 No Magic, Inc.
Copyright © 2016 Simula Research Laboratory

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® XMI® and IMM®
are registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ ,
Unified Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™,
CORBA logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition
Language (IDL)™ , and OMG SysML™ are trademarks of the Object Management Group. All other products
or company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue).

http://www.omg.org/report_issue

Table of Contents

1 Scope .. 1

2 Conformance ... 1
2.1 General .. 1

2.2 Conformance Levels ... 2
2.2.1 PSSM-only Conformance ... 2
2.2.2 Joint PSSM and PSCS Conformance ... 2

2.3 Genericity of the Execution Model .. 2

3 Normative References ... 3

4 Terms and Definitions .. 3

5 Symbols ... 4

6 Additional Information .. 5
6.1 Relationship to UML .. 5

6.2 Changes to Adopted OMG Specifications .. 5

6.3 Acknowledgments ... 6

7 Abstract Syntax .. 7
7.1 Overview ... 7

7.2 Common Structure .. 9
7.2.1 Overview ... 9
7.2.2 Constraints ... 10

7.3 Values .. 10
7.3.1 Overview ... 10
7.3.2 Constraints .. 11

7.4 Classification ... 11
7.4.1 Overview ... 11
7.4.2 Constraints ... 12

7.5 Common Behavior .. 12
7.5.1 Overview ... 12
7.5.2 Constraints ... 13

7.6 State Machines ... 13
7.6.1 Overview ... 13
7.6.2 Behavior State Machines .. 13

7.6.2.1 Overview .. 13
7.6.2.2 Constraints ... 15

7.6.3 State Machine Redefinition ... 19

Precise Semantics of UML State Machines (PSSM), v1.0 Beta i

7.6.3.1 Overview .. 19
7.6.3.2 Constraints ... 20

8 Execution Model .. 21
8.1 Overview ... 21

8.2 Values .. 23

8.3 Structured Classifiers .. 23

8.4 Common Behavior .. 24

8.5 State Machines ... 26
8.5.1 Overview ... 26
8.5.2 State Machine Execution .. 26
8.5.3 State Machine Semantic Visitors .. 29
8.5.4 State Machine Configuration .. 35
8.5.5 State Activations ... 36
8.5.6 “doActivity” Behavior Execution .. 39
8.5.7 Pseudostate Activations .. 42

8.5.7.1 Basic Pseudostate Activations ... 42
8.5.7.2 Connection Point Activations .. 45
8.5.7.3 Conditional Pseudostate Activations .. 47
8.5.7.4 History Pseudostate Activations ... 48

8.5.8 Transition Activations .. 50
8.5.9 Event Occurrences ... 52
8.5.10 Event Data Passing .. 55

8.5.10.1 Event Triggered Execution ... 55
8.5.10.2 Event Data Passing and Static Analysis ... 56

8.6 Actions ... 57

8.7 Loci .. 57

9 Test Suite ... 60
9.1 Overview ... 60

9.2 Utilities ... 60
9.2.1 Overview ... 60
9.2.2 Architecture .. 60

9.2.2.1 Architecture Concepts .. 60
9.2.2.2 Architecture Class Descriptions ... 62

9.2.2.2.1 Tester ... 62
9.2.2.2.2 Target ... 62
9.2.2.2.3 SemanticTest ... 63
9.2.2.2.4 SemanticTestSuite ... 65

9.2.3 Protocol .. 67
9.2.3.1 Protocol Overview .. 67
9.2.3.2 Synchronization Signal Descriptions .. 68

9.2.3.2.1 Start ... 68
9.2.3.2.2 End ... 68
9.2.3.2.3 TestEnd .. 68

9.2.4 Tracing .. 68

9.3 Tests .. 69
9.3.1 Overview ... 69
9.3.2 Behavior ... 70

9.3.2.1 Overview .. 70

ii Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.3.2.2 Test Behavior 001 ... 70
9.3.2.3 Test Behavior 002 ... 72
9.3.2.4 Test Behavior 003-A ... 73
9.3.2.5 Test Behavior 003-B ... 75
9.3.2.6 Test Behavior 004 ... 76

9.3.3 Transition .. 77
9.3.3.1 Transition 001 ... 77
9.3.3.2 Transition 007 ... 78
9.3.3.3 Transition 010 ... 79
9.3.3.4 Transition 011-A ... 81
9.3.3.5 Transition 011-B ... 82
9.3.3.6 Transition 011-C ... 83
9.3.3.7 Transition 011-D ... 84
9.3.3.8 Transition 011-E ... 85
9.3.3.9 Transition 015 ... 87
9.3.3.10 Transition 016 ... 88
9.3.3.11 Transition 017 ... 89
9.3.3.12 Transition 019 ... 91
9.3.3.13 Transition 020 ... 94
9.3.3.14 Transition 022 ... 95
9.3.3.15 Transition 023 ... 97

9.3.4 Event .. 99
9.3.4.1 Overview .. 99
9.3.4.2 Event 001 ... 99
9.3.4.3 Event 002 ... 100
9.3.4.4 Event 008 ... 101
9.3.4.5 Event 009 ... 102
9.3.4.6 Event 010 ... 103
9.3.4.7 Event 015 ... 105
9.3.4.8 Event 016-A .. 107
9.3.4.9 Event 016-B .. 108
9.3.4.10 Event 017-A .. 113
9.3.4.11 Event 017-B .. 114
9.3.4.12 Event 018 ... 115
9.3.4.13 Event 019-A .. 117
9.3.4.14 Event 019-B .. 118
9.3.4.15 Event 019-C .. 119
9.3.4.16 Event 019-D ... 121
9.3.4.17 Event 019-E .. 122

9.3.5 Entering .. 124
9.3.5.1 Overview .. 124
9.3.5.2 Entering 004 ... 124
9.3.5.3 Entering 005 ... 126
9.3.5.4 Entering 009 ... 127
9.3.5.5 Entering 010 ... 128
9.3.5.6 Entering 011 ... 130

9.3.6 Exiting ... 131
9.3.6.1 Overview .. 131
9.3.6.2 Exiting 001 .. 132
9.3.6.3 Exiting 002 .. 133
9.3.6.4 Exiting 003 .. 135
9.3.6.5 Exiting 004 .. 136
9.3.6.6 Exiting 005 .. 137

9.3.7 Entry ... 139
9.3.7.1 Overview .. 139
9.3.7.2 Entry 002-A .. 139
9.3.7.3 Entry 002-B .. 140

Precise Semantics of UML State Machines (PSSM), v1.0 Beta iii

9.3.7.4 Entry 002-C .. 142
9.3.7.5 Entry 002-D .. 143
9.3.7.6 Entry 002-E .. 145
9.3.7.7 Entry 002-F ... 146

9.3.8 Exit .. 147
9.3.8.1 Overview .. 147
9.3.8.2 Exit 001 .. 147
9.3.8.3 Exit 002 .. 148
9.3.8.4 Exit 003 .. 150

9.3.9 Choice .. 151
9.3.9.1 Overview .. 151
9.3.9.2 Choice 001 ... 151
9.3.9.3 Choice 002 ... 153
9.3.9.4 Choice 003 ... 154
9.3.9.5 Choice 004 ... 155
9.3.9.6 Choice 005 ... 156

9.3.10 Junction .. 158
9.3.10.1 Overview .. 158
9.3.10.2 Junction 001 ... 158
9.3.10.3 Junction 002 ... 159
9.3.10.4 Junction 003 ... 161
9.3.10.5 Junction 004 ... 162
9.3.10.6 Junction 005 ... 164
9.3.10.7 Junction 006 ... 165

9.3.11 Fork .. 166
9.3.11.1 Overview .. 166
9.3.11.2 Fork 001 ... 166
9.3.11.3 Fork 002 ... 171

9.3.12 Join ... 172
9.3.12.1 Overview .. 172
9.3.12.2 Join 001 .. 173
9.3.12.3 Join 002 .. 174
9.3.12.4 Join 003 .. 176

9.3.13 Terminate .. 178
9.3.13.1 Overview .. 178
9.3.13.2 Terminate 001 ... 178
9.3.13.3 Terminate 002 ... 180
9.3.13.4 Terminate 003 ... 182

9.3.14 Final .. 183
9.3.14.1 Overview .. 183
9.3.14.2 Final 001 ... 184

9.3.15 History .. 185
9.3.15.1 Overview .. 185
9.3.15.2 History 001-A .. 185
9.3.15.3 History 001-B .. 187
9.3.15.4 History 001-C ... 189
9.3.15.5 History 001-D ... 192
9.3.15.6 History 002-A .. 193
9.3.15.7 History 002-B .. 195
9.3.15.8 History 002-C ... 198
9.3.15.9 History 002-D ... 199

9.3.16 Deferred .. 200
9.3.16.1 Overview .. 200
9.3.16.2 Deferred 001 .. 200
9.3.16.3 Deferred 002 .. 202
9.3.16.4 Deferred 003 .. 204
9.3.16.5 Deferred 004-A ... 206

iv Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.3.16.6 Deferred 004-B ... 207
9.3.16.7 Deferred 005 .. 209
9.3.16.8 Deferred 006-A ... 211
9.3.16.9 Deferred 006-B ... 213
9.3.16.10 Deferred 006-C ... 216
9.3.16.11 Deferred 007 .. 219

9.3.17 Redefinition ... 220
9.3.17.1 Overview .. 220
9.3.17.2 Redefinition 001 ... 222
9.3.17.3 Redefinition 002 ... 224
9.3.17.4 Redefinition 003 ... 227
9.3.17.5 Redefinition 004 ... 230
9.3.17.6 Redefinition 005 ... 233
9.3.17.7 Redefinition 006 ... 235

9.3.18 Standalone ... 237
9.3.18.1 Overview .. 237
9.3.18.2 Standalone 001 .. 237
9.3.18.3 Standalone 002 .. 238
9.3.18.4 Standalone 003 .. 239

9.3.19 Other Test ... 239
9.3.19.1 Overview .. 239
9.3.19.2 Transition Execution Algorithm Test ... 239

9.4 Test Coverage and Traceability ... 240
9.4.1 Overview ... 240
9.4.2 Behavior ... 240
9.4.3 Transition .. 241
9.4.4 Event .. 243
9.4.5 Entering .. 246
9.4.6 Exiting ... 247
9.4.7 Encapsulated .. 248
9.4.8 Entry ... 248
9.4.9 Exit .. 248
9.4.10 Choice .. 249
9.4.11 Junction .. 249
9.4.12 Join ... 249
9.4.13 Terminate .. 249
9.4.14 Final .. 250
9.4.15 History .. 250
9.4.16 Deferred .. 250
9.4.17 Region .. 251
9.4.18 Configuration .. 252
9.4.19 Redefinition ... 252
9.4.20 Data Passing .. 253

A Protocol State Machines .. 256
A.1 Overview ... 256

A.2 Abstract Syntax ... 256

A.3 Semantics .. 257
A.3.1 Controlled Events ... 257
A.3.2 Protocol States Configuration ... 257
A.3.3 Protocol Violation .. 258

Precise Semantics of UML State Machines (PSSM), v1.0 Beta v

B State Machines for Passive Classes ... 260
B.1 Background and Rationale .. 260

B.2 Semantics .. 261

vi Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

Precise Semantics of UML State Machines (PSSM), v1.0 Beta vii

http://www.omg.org/spec

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

OMG Domain Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm.

viii Precise Semantics of UML State Machines (PSSM), v1.0 Beta

http://www.omg.org/report_issue.htm

1 Scope

The Precise Semantics of UML State Machines (PSSM) specification is an extension of the Semantics of a Foundational
Subset for Executable UML Models standard (known as “Foundational UML” or “fUML”) [fUML] that defines the
execution semantics for UML state machines. Syntactically, this specification extends fUML with a (large) subset of the
abstract syntax of state machines as given in the OMG Unified Modeling Language specification [UML] (Clause 14, for
UML 2.5 and later). Semantically, this specification extends the fUML execution model in order to specify the
operational execution semantics of the state machine abstract syntax subset.

The semantic model defined in this specification is actually an extension of the model from the Precise Semantics of
UML Composite Structures (PSCS) standard [PSCS], which is itself an extension of fUML. This is done in order to
ensure that the semantics given in this specification are compatible with the extensions defined in PSCS and to allow for
the definition of the semantics of triggers reference specific ports of an enclosing composite structure. However, this
latter feature is the only point for which the semantics of state machines presented here depends in any way on the PSCS
semantic extensions, and it is possible for an execution tool to conform to this specification without also conforming to
the PSCS specification (see Clause 2).

Figure 1.1 shows schematically the relationship of PSSM to the syntactic and semantic models from the fUML and PSCS
specifications.

Figure 1.1 - Scope of this specification

2 Conformance

2.1 General

The PSSM specification is based on fUML. Hence, except where explicitly noted in this clause, the definitions,
interpretations (meaning), and types of conformance and related terms in this specification fully match their
corresponding definitions, interpretations, and types in fUML (see [fUML], Clause 2). Thus, as in fUML, conformance to
this specification has two aspects:

1. Syntactic Conformance – A conforming model must be restricted to the abstract syntax subset defined in Clause
7 of this specification.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 1

2. Semantic Conformance – A conforming execution tool must provide execution semantics for a conforming
model consistent with the semantics specified in Clause 8 of this document.

2.2 Conformance Levels

The semantic model in Clause 8 are specified as an extension to the semantic model given in [PSCS]. However, the only
point at which the semantics given in this specification actually depend on the PSCS semantics is for triggers with “port”
references (see [UML], 13.3). There are two levels of conformance defined for this specification, depending on whether
an execution tool conforms only to PSSM or conforms to PSSM and PSCS, including the semantics for triggers with
“port” references. Both of these have syntactic and semantic aspects, as specified in the following subclauses.

2.2.1 PSSM-only Conformance

1. Syntactic Conformance – A conforming model must be restricted to the abstract syntax subset defined in Clause
7 of this specification, including the satisfaction of all additional constraints.

Note. The abstract syntax subset defined in Clause 7 is a superset of the subset defined in [fUML]. Thus, every
syntactically conforming fUML model is also a syntactically conforming PSSM model. The PSSM subset does
not itself include Ports, so a model syntactically conforming to only the PSSM subset cannot have “port”
references on any triggers.

2. Semantic Conformance – A conforming execution tool must provide execution semantics for a conforming
model consistent with the semantics specified in Clause 8 of this specification. Demonstrating semantic
conformance to fUML (as defined in Clause 2 of [fUML] and passing all the tests of the test suite in Clause 9 of
this specification, except for those related to triggers with “port” references, is sufficient to demonstrate
semantic conformance at this level.

2.2.2 Joint PSSM and PSCS Conformance

1. Syntactic Conformance – A conforming model must be restricted to the abstract syntax subset defined by the
union of the subset defined Clause 7 of this specification and the subset defined in Clause 7 of [PSCS]. The
model shall satisfy all constraints as specified in this specification and in [PSCS].

2. Semantic Conformance – A conforming execution tool must provide execution semantics for a conforming
model consistent with the semantics specified in Clause 8 of this specification and the semantics specified in
Clause 8 of [PSCS]. Demonstrating semantic conformance to fUML (as defined in Clause 2 of [fUML]) and
passing all the tests of the test suite in Clause 9 of this specification and all the tests in Clause 9 of [PSCS] is
sufficient to demonstrate semantic conformance at this level.

2.3 Genericity of the Execution Model

To support a variety of different execution paradigms and environments, the specification of the execution model
incorporates a degree of genericity. This is achieved in two ways: (1) by leaving some key semantic elements
unconstrained, and (2) by defining explicit semantic variation points. A particular execution tool can then realize specific
semantics by suitably constraining the unconstrained semantic aspects and providing specifications for any desired
variation at semantic variation points.

The semantic areas that are not explicitly constrained by the execution model in this specification are the same as the
ones defined in subclause 2.3 of [fUML]. Different execution tools may semantically vary in these areas in executing the
same model, while still being conformant to the semantics specified by the execution model in this specification.
Additional semantic specifications or constraints may be provided for a specific execution tool in these areas, so long as
it remains, overall, conformant to the execution model. For instance, a particular tool may be limited to a single
centralized time source such that all time measurements can be fully ordered.

2 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

In contrast to the above areas, subclause 2.3 of [fUML] defines a set of explicit semantic variation points. The execution
model as given in this specification by default fully specifies the semantics of these items. However, it is allowable for a
conforming execution tool to define alternate semantics for them, so long as this alternative is fully specified as part of
the conformance statement for the tool. This specification does not define any further semantic variation points in
addition to those defined in fUML. Note, however, that the default event dispatching strategy defined for fUML is
replaced by the default strategy given in subclause 8.4.1.2.1 of [PSCS], but this is only relevant for Joint PSSM and
PSCS Conformance (see 2.2.2).

If a conforming execution tool wishes to implement a semantic variation in one of the above areas, then a specification
must be provided for this variation via a specialization of the appropriate execution model class as identified above. This
specification must be provided as a fUML model in the “base UML” subset interpretable by the base semantics of Clause
10 of [fUML]. Further, it must be defined in what cases the variation is used and, if different variants may be used in
different cases, when each variant applies, and/or how what variant to use, is to be specified in a conforming model
accepted by the execution tool.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For versioned references, subsequent amendments to, or revisions of, any of these publications do not
apply.

[fUML] Semantics of a Foundational Subset for Executable UML Models (fUML), Version 1.2.1,
http://www.omg.org/spec/FUML

[PSCS] Precise Semantics of UML Composite Structures (PSCS), Version 1.0, http://www.omg.org/spec/PSCS

[UML] OMG Unified Modeling Language (OMG UML), Version 2.5.1, http://www.omg.org/spec/UML

Note. The machine readable files for fUML and PSCS have been updated by this specification.

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Base Semantics

A definition of the execution semantics of those UML constructs used in the execution model, using some formalism
other than the execution model itself. Since the execution model is a UML model, the base semantics are necessary in
order to provide non-circular grounding for the execution semantics defined by the execution model. The base semantics
provide the “meaning” for the execution of just those UML constructs used in the execution model. The execution model
then defines the “meaning” of executing any UML model based on the full foundational subset. Any execution tool that
executes the execution model should reproduce the execution behavior specified for it by the base semantics. (The base
semantics for this specification are as specified in [fUML].)

Behavioral Semantics

The denotational mapping of appropriate language elements to a specification of a dynamic behavior resulting in changes
over time to instances in the semantic domain about which the language is making statements.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 3

http://www.omg.org/spec/UML
http://www.omg.org/spec/PSCS
http://www.omg.org/spec/FUML

Execution Model

A model that provides a complete, abstract specification to which a valid execution tool must conform. Such a model
defines the required behavior of a valid execution tool in carrying out its function of executing a UML model and
therefore provides a definition of the semantics of such execution.

Execution Semantics

The behavioral semantics of UML constructs that specify operational action over time, describing or constraining
allowable behavior in the domain being modeled.

Execution Tool

Any tool that is capable of executing any valid UML model that is based on the abstract syntax subset defined in this
specification and expressed as an instantiation of the UML 2 abstract syntax metamodel. This may involve direct
interpretation of UML models and/or generation of equivalent computer programs from the models through some kind of
automated transformations. Such a tool may also itself be concurrent and distributed.

Static Semantics

Possible context sensitive constraints that statements of a language must satisfy, beyond their base syntax, in order to be
well-formed.

Structural Semantics

The denotational mapping of appropriate language elements to instances in the semantic domain about which the
language makes statements.

Syntax

The rules for how to construct well-formed statements in a language or, equivalently, for validating that a proposed
statement is actually well-formed.

5 Symbols

There are no symbols or abbreviated terms necessary for the understanding of this specification.

4 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

6 Additional Information

6.1 Relationship to UML

The PSSM specification is based on version 2.5.1 of UML, which addresses certain issues with UML 2.5 whose
resolution was critical for PSSM. The relevant issues, are:

• UMLR-92 UML/OCL spec mismatch – The OCL 2.4.1 specification [OCL] states that, when OCL is used to
specify a UML Constraint used as a class invariant, the OCL context classifier (i.e., the type of the OCL keyword
self) is the constrainedElement of the Constraint. However, the UML 2.5 specification stated (as had
previous versions before it) that the context Namespace that owns a Constraint acts as self if the Constraint is
specified using OCL (presumably in the case that the Namespace is a Classifier), which was inconsistent with the
OCL specification. The offending statement is removed in UML 2.5.1, making it consistent with the OCL
specification. This consistency is important for the approach used to add constraints to the PSSM syntax subset
(see 7.1).

• UMLR-685 StateMachine Vertex needs to be made a kind of RedefinableElement – UML allows a StateMachine to
be extended through redefinition, providing also for the redefinition of Regions, States and Transitions within the
extension StateMachine. However, in UML 2.5, if new States were added to an extension StateMachine, then it
was possible to define Transitions that crossed from the extended StateMachine to the extension StateMachine.
UML 2.5.1 has an additional constraint that disallows such Transitions, requiring the source and target of a
Transition be contained in the same StateMachine as the Transition. This new constraint means that, when a
Transition is added to an extension StateMachine with the intention of having an existing Vertex in the extended
StateMachine as its source, then that source Vertex actually needs to be redefined in the extension
StateMachine. This, in turn, implies that any kind of Vertex, not just States, must be redefinable, which is possible
in UML 2.5.1. The constraint to disallow Transitions from crossing from one StateMachine to another is important
in PSSM for the specification of StateMachine execution semantics (see 8.5.3). The PSSM semantics also take
into account that Pseudostates are redefinable, in addition to States. (There is a third kind of Vertex,
ConnectionPointReference, that also becomes redefinable in UML 2.5.1, but the PSSM syntax subset does not
include ConnectionPointReference.)

• UMLR-696 The behavior of an OpaqueExpression should be allowed to have input parameters – In UML 2.5, if
an OpaqueExpression specified a behavior, then that behavior was required to have a return Parameter and no
other Parameters. In UML 2.5.1, such a behavior is also allow to have in Parameters. In PSSM, this is used to
pass data from an event occurrence into a Behavior on an OpaqueExpression used to specify the guard Constraint
on a Transition (see 7.3 and 8.5.10).

6.2 Changes to Adopted OMG Specifications

The PSSM syntax is a subset of the UML 2.5.1 abstract syntax metamodel, and the required functionality formalized in
PSSM is taken from that specified in UML 2.5.1. However, PSSM is also semantically based on fUML and PSCS. But
the current versions of these standards, fUML 1.2.1 [fUML] and PSCS 1.0 [PSCS] are based on UML 2.4. In order to
avoid inconsistency, particularly given the sweeping reorganization of the UML abstract syntax metamodel adopted in
UML 2.5, the fUML and PSCS syntax and semantics models have been migrated to UML 2.5.1 for use with PSSM, but
with no change to their functionality. In addition, the fUML and PSCS models have been updated to use an approach for
identifying and constraining their syntax subsets that is consistent with that used in PSSM (see 7.1)

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 5

6.3 Acknowledgments

The following people directly contributed to the development of this specification.

• Yves Bernard, Airbus

• Nerijus Jankevicius, No Magic

• Julio Medina, Universidad de Cantabria

• Ed Seidewitz, Model Driven Solutions

• Bran Selic, Simula Research Laboratory

• Daniel Siegl, LieberLieber

• Jeffery Smith, Sierra Nevada Corporation (formerly BEA Systems)

• Jérémie Tatibouet, CEA

6 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

7 Abstract Syntax

7.1 Overview

This clause defines the subset of the UML abstract syntax [UML] for which precise semantics are provided in this
specification. Models that syntactically conform to this subset (see 2.1) are simply UML models constructed from the
limited set of UML abstract syntax metaclasses included in the PSSM subset defined here. The definition of the subset
thus consists of identifying exactly which metaclasses are included.

The subset definition is captured in the package PSSM_Syntax::Syntax, which imports into its namespace exactly those
UML metaclasses included in the PSSM subset (see Figure 7.1). A UML model that syntactically conforms to this subset
shall have an abstract syntax representation that consists solely of instances of metaclasses that are (imported) members
of the PSSM_Syntax::Syntax package. For simplicity, meta-associations from the UML abstract syntax metamodel are
not explicitly imported into the PSSM_Syntax::Syntax package, but it is, nevertheless, permissible for the model
elements of a conforming model, within the PSSM subset, to be involved in any meta-associations consistent with both
the UML metamodel and any further constraints as defined in this specification.

Note. This approach for defining a subset of the UML abstract syntax is similar to the approach used for defining the
metamodel subset covered by a UML profile, in which specially identified PackageImports (metamodelReferences)
and ElementImports (metaclassReferences) are used to import the metaclasses from the subset into the namespace
of the Profile (see Clause 12 of [UML]).

The PSSM subset is an extension of the fUML subset (as specified in Clause 7 of [fUML]), and PSSM_Syntax::Syntax
directly includes (via package import) all metaclasses from the Classification, SimpleClassifiers, StructuredPackages,
Activities and Actions packages from the fUML subset model. It also includes all metaclasses in the CommonStructure,
Values and CommonBehavior packages from the fUML subset, but, in these cases the PSSM subset also includes
additional metaclasses from the corresponding UML abstract syntax packages that are not included in the fUML subset.
Therefore, the PSSM_Syntax::Syntax package contains CommonStructure, Values and CommonBehavior subpackages
that import all the metaclasses from the corresponding fUML packages, plus the additional required metaclasses from the
UML abstract syntax metamodel (as further described in 7.2, 7.3, and 7.5, respectively), and the content of these
subpackages is then further imported into the top-level Syntax package. Finally, the major extension provided by the
PSSM subset is the inclusion of metaclasses from the UML StateMachines abstract syntax metamodel package (as
described in 7.6), which are first grouped into the PSSMSyntax::Syntax::StateMachines subpackage and then imported
into the top-level Syntax package.

The PSSM subset specified here is not an extension of the PSCS subset. To satisfy the requirements of the “Joint PSSM
and PSCS” conformance level (see 2.2.2), the relevant abstract syntax subset is the union of the PSSM subset specified
here and the PSCS subset specified in Clause 7 of [PSCS].

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 7

In addition to being representable within the PSSM abstract syntax subset, as described above, a UML model that
syntactically conforms to PSSM shall also satisfy all relevant constraints defined in the UML abstract syntax metamodel
[UML] and the additional syntactic constraints specified here for PSSM. The PSSM semantics specified in Clause 8 are
only defined for well-formed PSSM models that meet all the necessary constraints. In the case of “Joint PSSM and
PSCS” conformance (see 2.2.2), a well-formed model must further meet all the syntactic constraints required for PSCS
(see Clause 7 of [PSCS]).

The constraints specified for PSSM are all those that are imported members of the PSSM_Syntax::Constraints package
(see Figure 7.2). Each of these constraints has as its single constrained element the UML abstract syntax metaclass to
which the constraint applies.

8 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

(fUML_Syntax::Syntax)
Activities

(PSSM_Syntax::Syntax)
Values

(fUML_Syntax::Syntax)
Packages

(PSSM_Syntax::Syntax)
CommonBehavior

(fUML_Syntax::Syntax)
Classification

(PSSM_Syntax::Syntax)
CommonStructure

(fUML_Syntax::Syntax)
Actions

(PSSM_Syntax::Syntax)
StateMachines

(PSSM_Syntax)
Syntax

(fUML_Syntax::Syntax)
SimpleClassifiers

(fUML_Syntax::Syntax)
StructuredClassifiers

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

Figure 7.1 - PSSM Syntax Package

(PSSM_Syntax)

Constraints

(PSSM_Syntax::Constraints)

CommonStructure

(PSSM_Syntax::Constraints)

Values

(PSSM_Syntax::Constraints)

Classification

(PSSM_Syntax::Constraints)

CommonBehavior

(PSSM_Syntax::Constraints)

StateMachines

(fUML_Syntax::Constraints)

StructuredClassifiers

(fUML_Syntax::Constraints)

Activities

(fUML_Syntax::Constraints)

Actions

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

Figure 7.2 - PSSM Constraints Package

The PSSM_Syntax::Constraints package includes (via package import) all the constraints from the fUML constraints
packages for StructuredClassifiers, Activities and Actions (see Clause 7 of [fUML]). It also includes all the fUML
constraints for CommonStructure, Values and CommonBehavior, but with additional constraints for the additional
metaclasses in the PSSM subset in those areas (see 7.2, 7.3, and 7.5, respectively). In addition, in one case (for
Classification::Operation), a constraint from fUML is replaced in PSSM with a less restrictive constraint (see 7.4).
Finally, additional constraints are included for the StateMachine abstract syntax specific to PSSM.

7.2 Common Structure

7.2.1 Overview

In addition to all the metaclasses included in the fUML subset CommonStructure package, PSSM includes the Constraint
metaclass (see Figure 7.3). This metaclass is included in PSSM because the guard of a StateMachine Transition is given
as a Constraint (as shown in Figure 7.7). There is also an additional syntactic constraint specified for Constraint, as
shown in Figure 7.3 and formally defined in 7.2.2.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 9

Figure 7.3 - Constraints

7.2.2 Constraints

pssm_constraint_is_guard

A Constraint must be owned as a guard by a Transition and its constrainedElements must be empty.

context UML::CommonStructure::Constraint inv:

self.owner.oclIsKindOf(UML::StateMachines::Transition) and

self.constrainedElement->isEmpty()

7.3 Values

7.3.1 Overview

In addition to all the metaclasses included in the fUML subset Values package, PSSM includes the Expression and
OpaqueExpression metaclasses (see Figure 7.4).

The OpaqueExpression metaclass is included in PSSM in order to provide a way to specify the specification of a
Constraint used as the guard of a StateMachine Transition (as shown in Figure 7.3). However, in order for such a
specification to be precise, an OpaqueExpression is constrained to have a behavior that may be executed to provide the
result value of the expression (as shown in Figure 7.4 and formally defined in 7.3.2).

The Expression metaclass is also used to specify the specification of a guard Constraint, but only in the specific
case of an “else” guard on a Transition outgoing from a junction or choice Pseudostate. Such a guard is specified using
an Expression whose symbol is “else”, with no operands (as shown in Figure 7.4 and formally defined in 7.3.2). No
other forms of Expression are included in PSSM.

10 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Constraint

Namespace

Element

ValueSpecification

PackageableElement

pssm_constraint_is_guard
{{Natural language} The Constraint must
be owned as a guard by a Transition and
its constrainedElements must be empty.}

 + specification + owningConstraint

 1 0..1

 + ownedRule + context

 * 0..1

 + constrainedElement + constraint

 * *

OpaqueExpression

 + body: String [*]
 + language: String [*]

ValueSpecification

Behavior Parameter

pssm_opaque_expression_has_behavior
{{Natural language} The OpaqueExpression
must have a behavior.}

Expression

 + symbol: String [0..1]

pssm_expression_only_for_else
{{Natural language} The Expression must
have no operands and its symbol must
be "else". }

 + behavior

 + opaqueExpression

 0..1

 *

 +/ result

 + opaqueExpression

 0..1

 *

 + operand

 + expression

 *

 0..1

Figure 7.4 - Expressions and OpaqueExpressions

7.3.2 Constraints

pssm_opaque_expression_has_behavior

The OpaqueExpression must have a behavior.

context UML::Values::OpaqueExpression inv:

self.behavior <> null

pssm_expression_only_for_else

The Expression must have no operands and its symbol must be “else”.

context UML::Values::Expression inv:

self.symbol = 'else' and self.operand->isEmpty()

7.4 Classification

7.4.1 Overview

The PSSM subset includes all the metaclasses in the fUML subset Classification package and does not include any
additional ones in this area. However, the fUML constraint fuml_operation_zero_or_one_method requires that a concrete
Operation have a single associated method. This constraint is too restrictive for PSSM, because PSSM allows an
Operation to be handled via a CallEvent trigger on a StateMachine Transition, in which case the Operation cannot
have a method (see 7.5). Therefore, the PSSM_Syntax::Constraints::Classification package imports all the constraints
from the corresponding fUML package except for the zero_or_one_method constraint, which is replaced with the
pssm_operation_has_at_most_one_method constraint (as shown in Figure 7.5 and formally defined in 7.4.2).

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 11

Figure 7.5 - Operations

7.4.2 Constraints

pssm_operation_has_at_most_one_method

If an Operation is abstract, it must have no method. Otherwise it must not have more than one method and it must have
exactly one method unless owned by an active Class.

context UML::Classification::Operation inv:

if self.isAbstract then self.method->isEmpty()

else

self.method->size() <= 1 and

((self.class = null or not self.class.isActive) implies

self.method->size() = 1)

endif

7.5 Common Behavior

7.5.1 Overview

In addition to all the metaclasses included in the fUML subset CommonBehavior package, PSSM includes the CallEvent
metaclass (see Figure 7.6). Including CallEvent in the PSSM subset provides the ability for an Operation of a Class in a
PSSM conformant model to be handled by a CallEvent trigger on a Transition of a StateMachine acting as the
classifierBehavior of that class (see 7.6.2), rather than be implemented by a method. Since the UML specification
specifies that having a method on an Operation means all calls on the Operation are handled by executing that method
(see [UML], 13.3.3.2), even if there may also be executing Behaviors with CallEvent Triggers for the Operation,
Operations on CallEvents in PSSM are constrained not to have a method, in order to avoid confusion. This constraint is
shown in Figure 7.6 and formally defined in 7.5.2.

12 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Operation

pssm_operation_has_at_most_one_method
{{Natural language} If an Operation is abstract, it
must have no method. Otherwise it must not
have more than one method and it must have
exactly one method unless owned by an active
Class.}

This replaces fUML constraint
fuml_operation_zero_or_one_method.

Figure 7.6 - CallEvents

7.5.2 Constraints

pssm_call_event_operation_has_no_method

The operation of the CallEvent must not have any methods.

context UML::CommonBehavior::CallEvent inv:

self.operation.method->isEmpty()

7.6 State Machines

7.6.1 Overview

Not surprisingly, the largest extension to fUML provided by PSSM is in the area of StateMachines. Within this area, the
PSSM subset includes abstract syntax for behavior StateMachines (see 7.6.2) and StateMachine redefinition (see 7.6.3).
The formal PSSM subset does not include ProtocolStateMachines, they are discussed non-normatively in Annex A.

7.6.2 Behavior State Machines

7.6.2.1 Overview

A behavior StateMachine may be used in a PSSM-conformant model either stand-alone or as the
classifierBehavior of an active Class. As shown in Figure 7.7, the PSSM subset includes the full UML abstract
syntax for behavior StateMachines, except for the ConnectionPointReference metaclass. ConnectionPointReferences are
used only in relation to submachine States, and such states are not allowed in a PSSM-conformant model. Figure 7.7
shows various additional constraints on StateMachines required for PSSM, including the constraints on the usage of
StateMachines and the prohibition on submachine States, all of which are formally defined in 7.6.2.2.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 13

CallEvent

MessageEvent

Operation

pssm_call_event_operation_has_no_method
{{Natural language} The operation of the
CallEvent must not have any methods.}

 + operation

 + callEvent

 1

 *

Figure 7.7 - Behavior StateMachines

In particular, the pssm_state_behavior_parameters constraint defines the rules for the conformance of the
Parameters of entry, doActivity, and exit Behaviors on States and effect Behaviors on Transitions outgoing from
States with relevant Triggers that might cause those Behaviors to execute. This allows data from event occurrences to be
passed to executions of such Behaviors as Parameter values (and, in the case of synchronous calls, for data to be returned,
too). Requirements for this event data passing are listed in 9.4.20, and the semantics for data passing are covered in
8.5.10.

14 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

StateMachine

Behavior

Region

Namespace

Transition

 + kind: TransitionKind [1]

Vertex

NamedElement

«Enumeration»
TransitionKind

internal
local
external

«Enumeration»
PseudostateKind

initial
deepHistory
shallowHistory
join
fork
junction
choice
entryPoint
exitPoint
terminate

State

 +/ isComposite: Boolean [1]
 +/ isOrthogonal: Boolean [1]
 +/ isSimple: Boolean [1]
 +/ isSubmachineState: Boolean [1]

Namespace

Trigger Constraint

Behavior

Pseudostate

 + kind: PseudostateKind [1] = initial

FinalState

pssm_state_has_no_submachine
{{Natural language} A State must
not have a submachine.}

pssm_state_has_no_invariant
{{Natural language} A State must
not have a stateInvariant.}

pssm_state_machine_context
{{Natural language} A StateMachine may not be
a method and, if it has a context, it must be a
classifierBehavior for that context.}

pssm_transition_triggers
{{Natural language} The triggers of a Transition must all be for
CallEvents or SignalEvents.}

pssm_transition_call_event_operations
{{Natural language} The Operations of any CallEvents on the
triggers of a Transition must be owned or inherited by the
context of the containing StateMachine of the Transition.}

pssm_state_behavior_parameters
{{Natural language} The entry and doActivity Behaviors of a State
must conform to all the Triggers of Transitions that might cause the
State to be entered. The exit Behavior of a State must conform to all
the Triggers of Transitions that might cause the State to be exited.
The effect and guard Behaviors of an outgoing Transition of a State
must conform to all the Triggers of the Transition. (Note that only
Transitions outgoing from a State may have Triggers.)}

pssm_transition_signal_event_receptions
{{Natural language} The Signals of any SignalEvents on the triggers of a Transition
must have matching Receptions that are owned or inherited by the context of the
containing StateMachine of the Transition.}

pssm_state_helper_operations
{{} conformsToAll(signature : OrderedSet(Parameter), triggers : Collection(Trigger) : Boolean
conforms(signature1 : OrderedSet(Parameter), signature2 : OrderedSet(Parameter) : Boolean}

pssm_state_do_activity_parameters
{{Natural language} A doActivity Behavior of a State can only have "in" Parameters.}

 + region

 + stateMachine

 1..*

 0..1

 + transition

 + container

 *

 1

 +/ incoming + target
 * 1

 +/ outgoing + source

 * 1

 + subvertex

 + container

 *

 0..1

 + region

 + state

 *

 0..1

 + trigger

 + transition

 *

 0..1

 + guard

 + transition

 0..1

 0..1

 + deferrableTrigger

 + state

 *

 0..1

 + entry + state
 0..1 0..1

 + exit + state

 0..1 0..1

 + doActivity + state
 0..1 0..1

 + effect

 + transition

 0..1

 0..1

 + connectionPoint

 + state

 *

 0..1

7.6.2.2 Constraints

pssm_state_machine_context

A StateMachine may not be a method and, if it has a context, it must be a classifierBehavior for that context.

context UML::StateMachines::StateMachine inv:

self.specification = null and

self._'context' <> null implies self._'context'.classifierBehavior = self

pssm_transition_triggers

The triggers of a Transition must all be for CallEvents or SignalEvents.

context UML::StateMachines::Transition inv:

self.trigger.event->forAll(

oclIsKindOf(UML::CommonBehavior::CallEvent) or

oclIsKindOf(UML::CommonBehavior::SignalEvent)

)

pssm_transition_call_event_operations

The Operations of any CallEvents on the triggers of a Transition must be owned or inherited by the context of the
containing StateMachine.

context UML::StateMachines::Transition inv:

let stateMachine = self.containingStateMachine() in

let context_ =

if stateMachine._'context' = null then stateMachine

else stateMachine._'context'

endif in

context_.allFeatures()->includesAll(

self.trigger->select(oclIsKindOf(UML::CommonBehavior::CallEvent)).

oclAsType(UML::CommonBehavior::CallEvent).operation

)

pssm_transition_signal_event_receptions

The Signals of any SignalEvents on the triggers of a Transition must have matching Receptions that are owned or
inherited by the context of the containing StateMachine of the Transition.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 15

context UML::StateMachines::Transition inv:

let stateMachine = self.containingStateMachine() in

let context_ =

if stateMachine._'context' = null then stateMachine

else stateMachine._'context'

endif in

context_.allFeatures()->select(oclIsKindOf(UML::SimpleClassifiers::Reception)).

oclAsType(UML::SimpleClassifiers::Reception).signal->includesAll(

self.trigger->select(oclIsKindOf(UML::CommonBehavior::SignalEvent)).

oclAsType(UML::CommonBehavior::SignalEvent).signal

)

pssm_state_has_no_submachine

A State must not have a submachine.

context UML::StateMachines::State inv:

not self.isSubmachineState

pssm_state_has_no_invariant

A State must not have a stateInvariant.

context UML::StateMachines::State inv:

self.stateInvariant = null

pssm_state_do_activity_parameters

A doActivity Behavior of a State can only have in parameters.

context UML::StateMachines::State inv:

self.doActivity <> null implies

self.doActivity.ownedParameter->forAll(direction =
ParameterDirectionKind::_'in')

pssm_state_behavior_parameters

The definition of this constraint is given below, followed by the definition of two helper operations it uses.

The entry and doActivity Behaviors of a State must conform to all the Triggers of Transitions that might cause the
State to be entered. The exit Behavior of a State must conform to all the Triggers of Transitions that might cause the
State to be exited. The effect and guard Behaviors of an outgoing Transition of a State must conform to all the
Triggers of the Transition. (Note that only Transitions outgoing from a State may have triggers.)

context UML::StateMachines::State inv:

-- Collect this State and all containing States.

let allStates = self->asSet()->closure(container.state) in

-- Get all the incoming Transitions of the collected States, including

-- Transitions incoming to entryPoint Pseudostates owned by the States and

-- all segments of compound Transitions.

16 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

let allIncoming = allStates.incoming->union(

allStates.connectionPoint->

select(kind =
UML::StateMachines::PseudostateKind::entryPoint).incoming

)->asSet()->closure(

if source.oclIsKindOf(UML::StateMachines::Pseudostate) then
source.incoming

else Set{} endif

) in

-- Get all the outgoing Transitions of the collected States, including

-- Transitions outgoing from exitPoint Pseudostates owned by the States and

-- all segments of compound Transitions.

let allOutgoing = allStates.outgoing->union(

allStates.connectionPoint->

select(kind =
UML::StateMachines::PseudostateKind::exitPoint).outgoing

)->asSet()->closure(

if target.oclIsKindOf(UML::StateMachines::Pseudostate) then
target.outgoing

else Set{} endif

) in

-- Check the conformance of the various State Behaviors. (Note that

-- doActivity Behaviors are separately required to have only "in" Parameters.)

(self.entry <> null implies

conformsToAll(self.entry.ownedParameter, allIncoming.trigger)) and

(self.doActivity <> null implies

conformsToAll(self.doActivity.ownedParameter, allIncoming.trigger)) and

(self.exit <> null implies

conformsToAll(self.exit.ownedParameter, allOutgoing.trigger)) and

-- Check the conformance of the effect and guard Behaviors on outgoing

-- Transitions. (Note that the behavior on an OpaqueExpression is

-- separately required to have only "in" Parameters, other than a single

-- return parameter.)

allOutgoing->forAll(transition |

(transition.effect <> null implies

conformsToAll(transition.effect.ownedParameter, allOutgoing.trigger)) and

(transition.guard <> null and

 transition.guard.specification.oclIsKindOf(UML::Values::OpaqueExpression)
implies

 let behavior = transition.guard.specification.

 oclAsType(UML::Values::OpaqueExpression).behavior in

 behavior <> null implies

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 17

 conformsToAll(

behavior.ownedParameter->reject(

direction =
UML::Classification::ParameterDirectionKind::return),

allOutgoing.trigger

))

)

A signature (set of Parameters) conforms to a collection of Triggers if one of the following is true: the signature is empty;
all the Triggers are for SignalEvents and the signature has exactly one Parameter of direction in, has multiplicity upper
bound of 1 and is either untyped or has a type that is a Signal that conforms to all the Signals of the Triggers; or all
theTriggers are for CallEvents and the signature conforms to or input-conforms to all the signatures of the Operations of
the CallEvents. (A signature input-conforms to another if the first signature conforms to the signature containing only the
in Parameters from the second signature).

conformsToAll(

signature : OrderedSet(UML::Classification::Parameter),

triggers : Collection(UML::CommonBehavior::Trigger)) : Boolean =

signature->isEmpty() or

triggers.event->forAll(oclIsKindOf(UML::CommonBehavior::SignalEvent)) and

signature->size() = 1 and

(let parameter = signature->at(1) in

parameter.direction = UML::Classification::ParameterDirectionKind::_'in'
and

parameter.is(1,1) and

(parameter.type = null or

triggers.event.oclAsType(UML::CommonBehavior::SignalEvent).signal-
>forAll(s |

parameter.type.conformsTo(s)

))) or

triggers.event->forAll(oclIsKindOf(UML::CommmonBehavior::CallEvent)) and

triggers.event.oclAsType(UML::CommmonBehavior::CallEvent).operation->

forAll(operation |

conforms(signature, operation.ownedParameter) or

conforms(signature, operation.ownedParameter->select(

direction = UML::Classification::ParameterDirectionKind::_'in'

)))

One signature conforms to another if the first signature has the same number of Parameters as the second signature, and
each Parameter of the first signature has the same direction, ordering and uniqueness as the corresponding Parameter (in
order) from the second signature and a type and multiplicity that are compatible with those of the corresponding
Parameter (depending on the Parameter direction).

conforms(

signature1 : OrderedSet(UML::Classification::Parameter),

signature2 : OrderedSet(UML::Classification::Parameter)) : Boolean =

signature1->size() = signature2->size() and

Sequence{1..signature1->size()} -> forAll(i |

18 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

let parameter1 = signature1->at(i) in

let parameter2 = signature2->at(i) in

parameter1.direction = parameter2.direction and

parameter1.isOrdered = parameter2.isOrdered and

parameter1.isUnique = parameter2.isUnique and

(parameter2.direction = UML::Classification::ParameterDirectionKind::_'in'
implies

 parameter2.type = null or

 parameter2.type <> null and

 parameter2.type.conformsTo(parameter1.type) and

 parameter2.compatibleWith(parameter1)) and

(parameter1.direction = UML::Classification::ParameterDirectionKind::out or

parameter1.direction = UML::Classification::ParameterDirectionKind::return
implies

 parameter1.type = null or

 parameter1.type <> null and

 parameter1.type.conformsTo(parameter2.type) and

parameter1.compatibleWith(parameter2)) and

(parameter1.direction = UML::Classification::ParameterDirectionKind::inout
implies

 parameter1.type = parameter2.type and

 parameter2.compatibleWith(parameter1) and

 parameter1.compatibleWith(parameter2))

)

7.6.3 State Machine Redefinition

7.6.3.1 Overview

The capability for StateMachine redefinition actually does not require any other metaclasses than those already included
for behavior StateMachines. However, for clarity, the diagram for StateMachine redefinition from the UML specification
is repeated here, showing the additional meta-associations involved (Figure 7.8). This diagram also shows the additional
constraint (formally defined in 7.6.3.2) required for the PSSM semantics, which only support the ability of a
StateMachine to extend at most one other StateMachine.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 19

Figure 7.8 - StateMachine Redefinition

7.6.3.2 Constraints

pssm_state_machine_extends_at_most_one

A StateMachine must not have more than one extendedStateMachine.

context UML::StateMachines::StateMachine inv:

self.extendedStateMachine->size() <= 1

20 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Region

Transition

RedefinableElement

Classifier

StateMachine

pssm_state_machine_extends_at_most_one
{{Natural language} A StateMachine must not
have more than one extendedStateMachine.}

Vertex

 + extendedRegion

 + region

 0..1

 *

 + redefinedVertex

 + vertex

 0..1

 *

 + redefinedTransition

 + transition

 0..1

 *

 +/ redefinitionContext

 + region

 1

 *

 +/ redefinitionContext + vertex

 1 *

 +/ redefinitionContext

 + transition

 1

 *

 + extendedStateMachine

 + stateMachine

 *

 *

8 Execution Model

8.1 Overview

This clause defines the precise semantics of the abstract syntax subset specified in Clause 7. This semantic definition is
given as an extension to the semantic model for PSCS (see [PSCS], Clause 8), which is itself an extension of the
execution model for fUML (see [fUML], Clause 8). This clause includes only the extensions to the PSCS model
necessary for PSSM. However, the full semantics for PSSM are given by the fUML execution model as extended for both
PSCS and PSSM, which is then a complete, executable fUML model of the operational semantics for the combined PSCS
and PSSM subset.

The PSSM execution model is given as an extension of the PSCS model in order to ensure that PSSM semantics are
compatible with PSCS semantics. However, the only point at which the PSSM semantic functionality actually depends on
PSCS is in the definition of the behavior of Triggers that reference one or more Ports, using the Trigger port property
(see [UML], 13.3). An execution tool that conforms at the “PSSM-only Conformance” level (see 2.2.1) is not required to
implement the port functionality (since the PSSM-only abstract syntax subset does not include Ports), and none of the
rest of the semantic functionality for PSSM depends on the functionality provided by the PSCS execution model
extensions. Therefore, a tool conforming at the “PSSM-only” level can effectively treat the PSSM execution model as
directly extending the fUML execution model, ignoring all inherited PSCS-specific functionality. A tool conforming at
the “Joint PSSM and PSCS Conformance” level (see 2.2.2), on the other hand, must implement the semantics as
specified in the entire extension of the fUML execution model by both PSCS and as given for PSSM in this clause.

The circularity of defining PSSM semantics by extending the fUML execution model, which is itself an fUML model, is
handled as it is in fUML. That is, the execution model is defined using only the further subset of fUML whose semantics
are separately specified by the fUML base semantics (see [fUML], Clause 10), which do not need to be extended further
for the purposes of PSSM. This further subset, known as Base UML (or “bUML”) includes a subset of UML activity
modeling that is used to specify the detailed behavior of all concrete operations in the execution model. However, rather
than using activity diagram notation to represent such activity models, they are specified in the execution model
extensions for PSSM using the Java-syntax textual notation whose mapping to UML is given in Annex A of [fUML].

The PSSM extensions to the PSCS execution model are organized into six packages, which are named according to
corresponding UML abstract syntax packages. Figure 8.1 shows each of these packages and their dependencies on
packages from the fUML, PSCS and PSSM syntactic and semantic models. These dependencies are represented as
package-import relationships, which also make the unqualified names of the necessary syntactic and semantics elements
visible for use in the detailed behavioral code of each of the PSSM semantics packages. Each PSSM semantic package
also publicly exports all its imported members, allowing those packages to be organized in a layered fashion. This
layering starts with the small semantic extensions defined in the Values, StructuredClassifiers and CommonBehavior
packages, which are used in defining the primary PSSM semantics in the StateMachines package and one extension to
the actions semantics in the Action package, all of which are then fully integrated into the semantic infrastructure of the
fUML execution model in the Loci package.

The subsequent subclauses in this clause describe each of the PSSM semantics packages in turn. The description includes
a class model for the contents of the package and an explanation of the operational semantics defined by the functionality
of the classes in the model. The detailed behavior code for the operations of the classes is not included in this document,
but can be found in the associated normative XMI file for the PSSM semantic model that is described in this clause.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 21

22 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 8.1 - PSSM Semantics Package

(PSSM_Semantics::Semantics)

Values
(PSCS_Semantics::Semantics)

Values

(PSSM_Syntax::Syntax)

Values

(PSSM_Syntax::Syntax)

CommonBehavior

(PSSM_Semantics::Semantics)

CommonBehavior

(PSSM_Semantics::Semantics)

StructuredClassifiers

(PSCS_Semantics::Semantics)

StructuredClassifiers

(fUML_Syntax::Syntax)

StructuredClassifiers

(PSSM_Semantics::Semantics)

StateMachines

(PSSM_Syntax::Syntax)

CommonStructure

(PSSM_Syntax::Syntax)

StateMachines

(PSSM_Semantics::Semantics)

Loci

(PSCS_Semantics::Semantics)

Loci

(fUML_Semantics::Semantics)

CommonBehavior

(fUML_Semantics::Semantics)

Loci

(PSSM_Semantics::Semantics)

Actions

(PSCS_Semantics::Semantics)

Actions

«import»«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

8.2 Values

The Values package in the PSSM abstract syntax subset extends the Values package from the fUML abstract syntax by
adding the OpaqueExpression metaclass (see 7.3). As shown in Figure 8.2, the semantics for OpaqueExpressions in
PSSM is defined by the corresponding SemanticVisitor class SM_OpaqueExpressionEvaluation. This class is a
specialization of the CS_OpaqueExpressionEvaluation class defined in the PSCS semantics (see [PSCS], 8.3.1.2.2).

An OpaqueExpression in PSSM is required to have an associated behavior. As in PSCS, the evaluation of an
OpaqueExpression consists in executing its associated behavior. The functionality for this is provided by the
executeExpressionBehavior operation defined in the CS_OpaqueExpressionEvaluation class. The PSSM
SM_OpaqueExpressionEvaluation adds a new context attribute and redefines the executeExpressionBehavior
operation such that the OpaqueExpression behavior is executed with the given context Object. This extension is
necessary to allow an OpaqueExpression used as the specification of a guard Constraint on a StateMachine Transition to
be evaluated in the proper context for that StateMachine (see 8.5.8).

In addition, as of UML 2.5.1, UML allows the behavior of an OpaqueExpression to optionally have in Parameters (in
addition to a mandatory return Parameter). In PSSM, if the behavior of an OpaqueExpression used to specify a
guard Constraint has in Parameters, then these Parameters are used to pass event data into the Behavior execution (see
8.5.10. The initialize operation is used to create parameterValues on an SM_OpaqueExpressionEvaluation
corresponding to the data available from an EventOccurrence (either the SignalInstance from a SignalEventOccurrence
or the input ParameterValues from a CallEventOccurrence). Then, when executeExpressionBehavior is called,
these parameterValues are passed to the newly created Behavior Execution.

Figure 8.2 - Values Extension

8.3 Structured Classifiers

The PSSM abstract syntax subset does not extend the StructuredClassifiers package from the fUML abstract syntax.
However, the PSSM execution model StructuredClassifiers package includes a specialization of the semantics of Objects,
as shown in Figure 8.3. The SM_Object class redefines the startBehavior operation from the fUML Object class
(which is inherited without change by the PSCS CS_Object class) such that, when the Behavior of an active Object is
started, an SM_ObjectActivation (as defined in 8.4) is instantiated for it, rather than the usual fUML ObjectActivation.

SM_Object also redefines the destroy operation from the fUML Object class to ensure that, when an Object is
destroyed, any EventOccurrences remaining in the eventPool of the ObjectActivation are also removed, before
carrying out the functionality of stopping the ObjectActivation for the Object and removing the Object from its Locus.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 23

SM_OpaqueExpressionEvaluation

 + executeExpressionBehavior(): Value [*]
 + initialize(in eventOccurrence: EventOccurrence [1])
 + getParameterValue(in parameter: Parameter [1]): ParameterValue [1]
 + setParameterValue(in parameterValue: ParameterValue [1])

(fUML_Semantics::Semantics::StructuredClassifiers)
Object

(PSCS_Semantics::Semantics::Values)
CS_OpaqueExpressionEvaluation

(fUML_Semantics::Semantics::CommonBehavior)
ParameterValue

 + opaqueExpressionEvaluation

 + context

 *

 0..1

 + parameterValues

 1

 *

This avoids the possibility of the event-dispatch loop of the ObjectActivation still getting a next event even once the
Object has been removed from the Locus.

The SM_RedefinitionBasedDispatchStrategy class redefines the dispatch and getMethod operations from the fUML
RedefinitionBasedDispatchStrategy class. The redefined getMethod operation has the same functionality as the fUML
operation except that it returns null if an Operation does not have any associated method (rather than this being an error,
as in fUML). The redefined dispatch operation handles the case in which getMethod returns a null value by creating
a CallEventExecution (see 8.5.9). In any other case, the dispatch operation behaves as in fUML and PSCS: it creates
an Execution for the resolved method Behavior of the given Operation.

SM_Object

 + startBehavior(in classifier: Class [0..1], in inputs: ParameterValue [*])
 + destroy()

(PSCS_Semantics::Semantics::StructuredClassifiers)
CS_Object

(fUML_Semantics::Semantics::StructuredClassifiers)
Object

(fUML_Semantics::Semantics::CommonBehavior)
ObjectActivation

(PSSM_Semantics::Semantics::CommonBehavior)
SM_ObjectActivation

(fUML_Semantics::Semantics::CommonBehavior)
EventOccurrence

SM_RedefinitionBasedDispatchStrategy

 + getMethod(in object: Object [1], in operation: Operation [1]): Behavior [1]
 + dispatch(in object: Object [1], in operation: Operation [1]): Execution [1]

(PSCS_Semantics::Semantics::StructuredClassif...
CS_DispatchOperationOfInterfaceStrategy

(fUML_Semantics::Semantics::StructuredClassifiers)
RedefinitionBasedDispatchStrategy

 + objectActivation

 + object 0..1

 1

 + eventPool *

 0..1

Figure 8.3 - StructuredClassifiers Extension

8.4 Common Behavior

The CommonBehavior package in the PSSM abstract syntax subset extends the CommonBehavior package from the
fUML abstract syntax by adding the CallEvent metaclass (see 7.5). However, the semantics of CallEvent is defined as

24 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

part of the semantics of the triggering of StateMachine Transitions (see 8.5.8), not in the CommonBehavior semantics.
Instead, as shown in Figure 8.4, the CommonBehavior package in the PSSM execution model includes the
SM_ObjectActivation class, which specializes the ObjectActivation class from fUML (see [fUML], 8.4.3.2.7). The
SM_Object class in the StructuredClassifiers package of the PSSM execution model provides the functionality for
instantiating an SM_ObjectActivation instead of a regular ObjectActivation when the Behavior of an active Object is
started (see 8.3).

The SM_ObjectActivation class adds semantics for handling two types of EventOccurrences that are specific to
StateMachines: CompletionEventOccurrence and DeferredEventOccurrence (see 8.5.9). To do this, the class redefines
operations provided by the fUML ObjectActivation class and also adds new attributes and operations.

The new deferredEventPool contains the set of DeferredEventOccurrences that are deferred in the current
configuration of a StateMachine, which is used in the specification of the semantics of the deferredEvents of a State
(see 8.5.5)

The getNextEvent is redefined to extend the way that events are retrieved from the eventPool to account for
CompletionEventOccurrences and DeferredEventOccurrences that may be in the pool, as follows:

• While there are CompletionEventOccurrences in the eventPool, they are dispatched before any other
EventOccurrences. The dispatching order is the order in which the CompletionEventOccurrences were added to
the eventPool.

• When there are no remaining CompletionEventOccurrences in the eventPool, then regular EventOccurrences
are dispatched according to the chosen GetNextEventStrategy (see 8.4.3.1 in [fUML]). EventOccurrences are
handled as in fUML, except for DeferredEventOccurrences, for which the EventOccurrence that is returned is the
one that is referenced by the DeferredEventOccurrence (which is the actual EventOccurrence that was originally
deferred).

SM_ObjectActivation

 + getNextCompletionEvent(): CompletionEventOccurrence [1]
 # getDeferredEventInsertionIndex(): Integer [1]
 + registerCompletionEvent(in stateActivation: StateActivation [1])
 + releaseDeferredEvents(in deferringState: StateActivation [1])
 + registerDeferredEvent(in eventOccurrence: EventOccurrence [1], in stateActivation: StateActivation [1])
 + getNextEvent(): EventOccurrence [1]

(fUML_Semantics::Semantics::CommonBehavior)
ObjectActivation

(PSSM_Semantics::Semantics::StateMachines)
DeferredEventOccurrence

EventOccurrence

 + objectActivation

 + deferredEventPool 1

 *

 + eventPool

 * 0..1

Figure 8.4 - CommonBehavior Extension

The SM_ObjectActivation class also adds the following operations:

• The registerCompletionEvent operation is used to add a CompletionEventOccurrence to the eventPool of
the SM_ObjectActivation when the activation of a StateMachine State completes (see 8.5.5). When added to the
eventPool, a CompletionEventOccurrence is always placed after all CompletionEventOccurrences already in
the pool.

• The registerDeferredEvent operation is used to add an EventOccurrence o be deferred by a StateActivation
to the deferredEventPool of the SM_ObjectActivation. The EventOccurrence that is deferred is wrapped in a
DeferredEventOccurrence and added at the end of the deferredEventPool.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 25

• The releaseDeferredEvent operation is used to release all EventOccurrences that were deferred by a
StateActivation. The DeferredEventOccurrences are removed from the deferredEventPool and added to the
regular eventPool. All events returning to the regular eventPool are placed in that pool after all existing
CompletionEventOccurrences, but before any other EventOccurrence already in the pool, in the order in which the
DeferredEventOccurrences had in the deferredEventPool.

The PSSM CommonBehavior package also contains the EventTriggeredExecution class, a specialization of the fUML
Execution class that is used as part of the model for passing data from an EventOccurrence to the Executions of
Behaviors within a StateMachine that may have been invoked due to the handling of that EventOccurrence. This class is
discussed in 8.5.10.1 as part of the description of StateMachine semantics.

8.5 State Machines

8.5.1 Overview

The StateMachines package of the PSSM abstract syntax (see 7.6) defines the subset of the UML abstract syntax for
StateMachines that is covered by the PSSM semantics. This subset includes primarily the syntax for so-called behavior
StateMachines (see 7.6.2), the primary kind of executable StateMachine included in UML. The semantics for behavior
StateMachines are modeled in the StateMachines package of the PSSM execution model, which is described in this
subclause (8.5).

The PSSM subset also includes the additional meta-associations from the UML abstract syntax required in models that
use StateMachine redefinition (see 7.6.3). The semantics for StateMachine redefinition is included in the functionality
provided by the RegionActivation in the StateMachines package of the PSSM execution model (see 8.5.3).

Finally, the UML abstract syntax also includes the syntax for ProtocolStateMachines (see [UML], 14.4). However, the
operational execution of ProtocolStateMachines requires the raising of exceptions when the protocol defined by the
StateMachine is violated, but the semantics of exceptions are not currently included in fUML. Therefore, the PSSM
syntax subset does not include ProtocolStateMachines, and the PSSM execution model does not include formal
operational semantics for them. Instead, Annex A gives a non-normative description of the semantics that is more precise
than that given in the UML specification, but without a formal execution model.

8.5.2 State Machine Execution

Figure 8.5 shows the root classes in the StateMachines package of the PSSM execution model related to the execution of
a StateMachine.

26 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 8.5 - StateMachineExecution

StateMachineExecution

In the fUML execution model, the abstract Execution class represents that execution of any kind of Behavior (see
[fUML], 8.4.2.1.1). The Execution class is specialized to ActivityExecution to specify the semantics of Activities in
fUML. Similarly, the PSSM execution model includes a StateMachineExecution class that acts as the root element for
specifying the execution semantics for StateMachines.

In the UML abstract syntax, Behaviors are a kind of Class. Correspondingly, in the fUML execution model, Executions
are a kind of Object, and the Behavior being executed is associated as the (single) type of the Execution, considered as
an Object. For a StateMachineExecution, this type will always be a StateMachine.

A StateMachine is composed of one or more Regions (see 7.6.2.1). The semantics of the Regions in a StateMachine are
captured in corresponding RegionActivation classes associated with a StateMachine execution for the StateMachine (see
8.5.3). The StateMachineExecution is responsible for creating a RegionActivation for each of the Regions of its
StateMachine, and the RegionActivations then create (in a cascade) SemanticVisitors for all their contained elements.

The execution of a StateMachine starts when the execute operation is called on a StateMachineExecution for it. Since a
StateMachine is always invoked asynchronously in fUML, the CommonBehavior semantics of fUML (see [fUML],
8.4.3) ensure that the invocation of the execute operation of a StateMachineExecution will always take place as part of
a run-to-completion (RTC) step for an initial InvocationEventOccurrence for the StateMachineExecution.

The execution of the StateMachine then proceeds by concurrently entering all RegionActivations of the
StateMachineExecution (as discussed in 8.5.3). The initial RTC step completes once the StateMachine has reached a
stable configuration.

The current configuration of a StateMachineExecution is represented as an instance of the
StateMachineConfiguration class. A StateMachineConfiguration represents the hierarchy of active States that the
StateMachineExecution currently is in (as discussed further in 8.5.4). A configuration is stable once all the
Transitions triggered in an RTC step have been traversed and any invoked entry Behaviors have completed (see [UML],
14.2.3.4.2). This configuration is used to determine how the StateMachineExecution will proceed in response to
subsequent dispatched EventOccurrences accepted by the StateMachineExecution.

A StateMachineExecution completes when all its RegionActivations have themselves completed. A
StateMachineExecution may also be terminated when a terminate Pseudostate is reached, regardless of its level of

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 27

StateMachineExecution

 + execute()
 + new_(): Value [1]
 # initRegions()
 + getConfiguration()
 # getVertexActivation(in vertex: Vertex [1]): VertexActivation [1]
 + getRegionActivation(): RegionActivation [1..*]
 + terminate()
 + startBehavior(in classifier: Class [0..1], in inputs: ParameterValue [*])

(fUML_Semantics::Semantics::CommonBehavior)
Execution

(fUML_Semantics::Semantics::StructuredClassifiers)
Object

(UML::StructuredClassifiers)
Class

(UML::StateMachines)
StateMachine

(UML::StateMachines)
Region

(UML::CommonBehavior)
Behavior

RegionActivation

StateMachineEventAccepter

 + match(in eventOccurrence: EventOccurrence [1]): Boolean [1]
 + accept(in eventOccurrence: EventOccurrence [1])
 # select(in eventOccurrence: EventOccurrence [1]): TransitionActivation [*]
 - _select(in eventOccurrence: EventOccurrence [1], in stateConfiguration: StateConfiguration [1]): TransitionActivation [*]
 # isDeferred(in eventOccurrence: EventOccurrence [1]): Boolean [1]
 - _isDeferred(in eventOccurrence: EventOccurrence [1], in stateConfiguration: StateConfiguration [1]): Boolean [1]
 # defer(in eventOccurrence: EventOccurrence [1]): Boolean [1]
 - _defer(in eventOccurrence: EventOccurrence [1], in stateConfiguration: StateConfiguration [1]): Boolean [1]
 # isTriggering(in eventOccurrence: EventOccurrence [1]): Boolean [1]

(fUML_Semantics::Semantics::CommonBehavior)
EventAccepter

(fUML_Semantics::Semantics::CommonBehavior)
ObjectActivation

StateMachineConfiguration

 + types

 * *

 + region

 + stateMachine

 1..*

 0..1

 + execution

 + regionActivations

 0..1

 1..*

 + registrationContext

 + eventAccepter
 1 0..1

 + waitingEventAccepters *

 0..1

 + objectActivation + object

 0..1 1

 + execution

 + configuration

 1

 1

 + context 1

 *

nesting. The termination of a StateMachineExecution implies the termination of all of its RegionActivations, as captured
in the behavior of the terminate operation of the StateMachineExecution class. This operation is also called when a
StateMachine is terminated due to its context Object being destroyed.

StateMachineEventAccepter

Once the initial RTC step has completed for a StateMachineExecution, the StateMachineExecution will generally need to
be able to handle EventOccurrences for Events linked to Triggers on the Transitions of the StateMachine being executed.
The fUML CommonBehavior semantics provides a general model for the registration of EventAccepters with the
ObjectActivation of an active Object, in order to allow an Execution to respond to EventOccurrences dispatched from the
eventPool for that ObjectActivation (see [fUML], 8.4.3). A StateMachineExecution uses this mechanism by registering
a single, specialized StateMachineEventAccepter instance with the ObjectActivation of its context Object.

Note. In the fUML execution model, each AcceptEventActionActivation that fires within an ActivityExecution will
register its own AcceptEventActionEventAccepter with the ObjectActivation of the context of the ActivityExecution (see
[fUML], 8.6.4.2.1 and 8.6.4.2.2). Thus, an ActivityExecution can potentially have several registered EventAccepters
associated with it at any one time. In contrast, an executing StateMachineExecution will always have exactly one
registered StateMachineEventAccepter associated with it. The reason for this is that, in order to account for priorities,
conflicts, etc. between Transitions between these active States, how a StateMachineExecution responds to any specific
EventOccurrence requires an analysis of the entire current StateMachineConfiguration. It is therefore not possible to
associate separate, independent EventAccepters with, say, each individual Transition within the StateMachine being
executed.

The fUML EventAccepter class has two abstract operations, match and accept, whose concrete behavior must be
provided by any concrete subclass of EventAccepter. The match operation is used to determine if the EventAccepter is
able to accept a given EventOccurrence. If the EventAccepter does match an EventOccurrence, and is chosen to
actually handle that EventOccurrence, then an RTC step for handling the EventOccurrence is initiated by calling the
accept operation on the chosen EventAccepter.

The specified behavior of the match and accept operations for a StateMachineEventAccepter rely on the association of
the StateMachineEventAccepter with its registrationContext, that is, the StateMachineExecution that originally registered
the StateMachineEventAccepter. A StateMachineEventAccepter will match a dispatched EventOccurrence in the
following situations:

1. The EventOccurrence is deferred in the current StateMachineConfiguration of the registrationContext. In
this case, if the EventOccurrence is subsequently accepted by the StateMachineEventAccepter, it is placed in the
deferredEventPool for the ObjectActivation (which, therefore, must be an SM_ObjectActivation, as
described in 8.4).

2. The EventOccurrence triggers one or more Transitions in the StateMachine of the registrationContext. In
this case, if the EventOccurrence is subsequently accepted by the StateMachineEventAccepter, the functionality
of the SemanticVisitors associated with various elements of the StateMachine being executed results in the
StateMachineExecution moving to a new stable configuration during the course of the RTC step (as
described in 8.5.3 and following subclauses).

The above two situations are identified by the analysis of the StateMachineConfiguration. This analysis is based on a
recursive algorithm that starts from the most nested StateActivations referenced as being active in the current
StateMachineConfiguration. This enables the algorithm to account for Transition priorities, which are relative to the level
of nesting of their source States. The StateMachineEventAccepter class provides two main operations dedicated to the
analysis of the StateMachineConfiguration: isDeferred and isTriggering. The isDeferred operation returns true
if the proposed EventOccurrence must be deferred in the current StateMachineConfiguration. The isTriggering
operation returns true if the proposed EventOccurrence triggers at least one Transition in the current
StateMachineConfiguration.

Both operations rely on the select operation, which is responsible for building the set of Transitions that can be fired
using the proposed EventOccurrence. This set only contains Transitions that lead from the current

28 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

StateMachineConfiguration to a valid StateMachineConfiguration. Indeed, before being placed in the set of Transitions to
be fired, an entire compound Transition is analyzed to determine if it is possible to find at least one valid path to a target
StateMachineConfiguration.

8.5.3 State Machine Semantic Visitors

Figure 8.6 shows the base SemanticVisitors introduced in the PSSM semantic model to specify the semantics of the
various elements of a StateMachine. VertexActivation captures the basic semantics for Vertexes, and TransitionActivation
captures the basic semantics for Transitions. These visitors are both further specialized in the semantic model to
respectively capture semantics of different kinds of Vertexes and Transitions. VertexActivations and
TransitionActivations are always owned by a RegionActivation, which captures the semantics of the Region that owns
the corresponding Vertexes and Transitions.

StateMachineSemanticVisitor

 + activate()
 + activateTransitions()
 + getNode(): NamedElement [1]
 + getExecutionLocus(): Locus [1]
 + getParent(): SemanticVisitor [1]
 + getExecutionContext(): Object [1]
 + setParent(in parent: SemanticVisitor [1])
 + setNode(in null: NamedElement [1])
 + getStateMachineExecution(): Execution [1]
 + getContextChain(): SemanticVisitor [*]
 + isVisitorFor(in node: NamedElement [1]): Boolean [1]
 + match(in eventOccurrence: EventOccurrence [1], in triggers: Trigger [*]): Boolean [1]
 # getExecutionFor(in behavior: Behavior [1], in eventOccurrence: EventOccurrence [1]): Execution [1]

(fUML_Semantics::Semantics::Loci)
SemanticVisitor

(UML::CommonStructure)
NamedElement

RegionActivation

 + isCompleted: Boolean [1]

 + activate()
 + terminate()
 + activateTransitions()
 + getOrigin(): InitialPseudostateActivation [1]
 + isVisitorFor(in node: NamedElement [1]): Boolean [1]
 + getVertexActivations(): VertexActivation [*]
 + getTransitionActivations(): TransitionActivation [*]
 # getVertexActivation(in vertex: Vertex [1]): VertexActivation [1]
 + isRedefined(in vertices: Vertex [*], in vertex: Vertex [1]): Boolean [1]
 + isRedefined(in transitions: Transition [*], in transition: Transition [1]): Boolean [1]
 # enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1])
 + exit(in exitingTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1])
 + canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1]): Boolean [1]

VertexActivation

 # status: StateMetadata [1]

 + terminate()
 + isActive(): Boolean [1]
 + getStatus(): StateMetadata [1]
 + setStatus(in status: StateMetadata [1])
 + getParentVertexActivation(): VertexActivation [1]
 + isVisitorFor(in node: NamedElement [1]): Boolean [1]
 + getAscendingHierarchy(): VertexActivation [*]
 + getOwningRegionActivation(): RegionActivation [1]
 + getIncomingTransitions(): TransitionActivation [*]
 + getOutgoingTransitions(): TransitionActivation [*]
 # getVertexActivation(in vertex: Vertex [1]): VertexActivation [1]
 + addIncomingTransition(in transitionActivation: TransitionActivation [1])
 + addOutgoingTransition(in transitionActivation: TransitionActivation [1])
 + tagOutgoingTransition(in status: TransitionMetadata [1], in staticCheck: Boolean [1])
 + tagIncomingTransition(in status: TransitionMetadata [1], in staticCheck: Boolean [1])
 + getLeastCommonAncestor(in vertexActivation: VertexActivation [1]): RegionActivation [1]
 + isExitable(in exitingTransition: TransitionActivation [1], in staticCheck: Boolean [1]): Boolean [1]
 + isEnterable(in enteringTransition: TransitionActivation [1], in staticCheck: Boolean [1]): Boolean [1]
 + exit(in exitingTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1]): Boolean [1]
 - getRegionActivation(in semanticVisitor: SemanticVisitor [1]): RegionActivation [1]

TransitionActivation

 # status: TransitionMetadata [1]
 # analyticalStatus: TransitionMetadata [1]
 + lastPropagation: Boolean [1]
 + leastCommonAncestor: RegionActivation [1]

 + isReached(): Boolean [1]
 + isGuarded(): Boolean [1]
 + getStatus(): TransitionMetadata [1]
 + setStatus(in status: TransitionMetadata [1])
 + getSourceActivation(): VertexActivation [1]
 + getTargetActivation(): VertexActivation [1]
 + fire(in eventOccurrence: EventOccurrence [1])
 + isTraversed(in staticCheck: Boolean [1]): Boolean [1]
 + isTriggered(in staticCheck: Boolean [1]): Boolean [1]
 + isVisitorFor(in node: NamedElement [1]): Boolean [1]
 # exitSource(in eventOccurrence: EventOccurrence [1])
 # getLeastCommonAncestor(): RegionActivation [1]
 # enterTarget(in eventOccurrence: EventOccurrence [1])
 + tryExecuteEffect(in eventOccurrence: EventOccurrence [1])
 + setSourceActivation(in null: VertexActivation [1])
 + setTargetActivation(in null: VertexActivation [1])
 + canFireOn(in eventOccurrence: EventOccurrence [1]): Boolean [1]
 + hasTrigger(in eventOccurrence: EventOccurrence [1]): Boolean [1]
 + evaluateGuard(in eventOccurrence: EventOccurrence [1]): Boolean [1]
 + canPropagateExecution(in eventOccurrence: EventOccurrence [1]): Boolean [1]

«Enumeration»
StateMetadata

idle
active

«Enumeration»
TransitionMetadata

none
reached
traversed
completed

StateActivation
(fUML_Semantics::Semantics::CommonBehavior)

EventOccurrence

 + visitor

 + parent

 *

 0..1

 + node

 + visitor 1

 *

 + regionActivation

 # vertexActivations

 1

 *

 + regionActivation

 # transitionActivations

 1

 *

 + sourceVertexActivation

 + outgoingTransitionActivations 1

 *

 + incomingTransitionActivations

 + targetVertexActivation *

 1

 + history

 0..1

 0..1

 + lastTriggeringEventOccurrence

 *

 0..1

Figure 8.6 - StateMachine SemanticVisitors

StateMachineSemanticVisitor

A StateMachineSemanticVisitor is an fUML SemanticVisitor for an element within a StateMachine (as opposed to the
StateMachine itself, whose SemanticVisitor is a StateMachineExecution, as discussed in 8.5.2). A

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 29

StateMachineSemanticVisitor is actually generically associated with a NamedElement, because this is the most
specialized kind of UML syntax element that is common to all the elements within a StateMachine that need to be given
semantics (e.g., Regions, Vertexes and Transitions). However, as specified for each of the various kinds of
StateMachineSemanticVisitor in the following, the node of each kind of StateMachineSemanticVisitor will always be a
corresponding kind of StateMachine element.

A StateMachineSemanticVisitor may also generically have another SemanticVisitor as its parent (which will be either
itself a kind of StateMachineSemanticVisitor or a StateMachineExecution). The parent-child hierarchy of the
StateMachineSemanticVisitors for a StateMachine reflects the hierarchical organization of the StateMachine syntactic
elements associated with those StateMachineSemanticVisitors. For example, the StateActivations for all States in a
Region will have the RegionActivation for that Region as their parent, and the RegionActivations for all Regions in a
composite State will have the StateActivation for that State as their parent. Ultimately, this tree structure of
StateMachineSemanticVisitors is rooted in the StateMachineExecution for the StateMachine being executed.

The StateMachineSemanticVisitor class also takes advantage of the generic tree-structured hierarchy of
StateMachineSemanticVisitors for a StateMachineExecution in order to provide certain utility operations that are
inherited by all specialized StateMachineSemanticVisitors.

• The getStateMachineExecution operation returns the StateMachineExecution at the root of the tree.

• The getExecutionContext operation returns the context object of the root StateMachineExecution.

• The getExecutionLocus operation return the locus at which the root StateMachineExecution resides (in fUML,
every Object, including every Execution, resides at a specific Locus; see [fUML], 8.2.2.2.6).

• The isVisitorFor operation returns true if the current StateMachineSemanticVisitor is a SemanticVisitor for
the given NamedElement. By default ,this operation returns true if the node of the StateMachineSemanticVisitor
is the same as that given as the argument to the operation. This default functionality is overridden in certain
StateMachineSemantics Visitor subclasses.

• The getExecutionFor operation returns an Execution for the behavior provided in Parameter. If an
EventOccurrence is also passed to this operation, the returned Execution is an EventTriggeredExecution (see
8.5.10.1), which is able to pass any data embedded in the given EventOccurrence to the Behavior to be executed.
Otherwise, the returned Execution is the usual kind for the given Behavior (e.g. an ActivityExecution if the
Behavior is an Activity).

Each specialized kind of StateMachineSemanticVisitor adds functionality to the base StateMachineSemanticVisitor class
to capture the semantics of a specific kind of StateMachine element. These semantics are always split into two distinct
parts:

1. After a StateMachineSemanticVisitor is instantiated, it is activated by calling the activate and
activateTransitions operations. These operations are redefined in each kind of
StateMachineSemanticVisitor in order to specify the appropriate activation semantics.

2. Additional operations are defined for each kind of StateMachineSemanticVisitor in order to specify the
execution semantics specific to the kind of StateMachine element associated with that kind of
StateMachineSemanticVisitor.

RegionActivation

A RegionActivation captures the semantics of a Region. Thus, the node of a RegionActivation is always a Region. The
instances of all other kinds of StateMachineSemanticVisitors are always contained in a RegionActivation.

Using functionality added to the activate and activateTransitions operations, a RegionActivation instantiates all
visitors required to execute model elements contained in the associated Region. Hence, during the execution of a
StateMachine, a RegionActivation owns a set of VertexActivations and TransitionActivations that are the visitors for the
Vertexes and Transitions contained in the associated Region.

30 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

A RegionActivation is entered by calling the enter operation and exited by calling the exit operation. A
RegionActivation may be entered or exited implicitly or explicitly.

Entering a RegionActivation

A RegionActivation can be entered either implicitly or explicitly.

• An implicit entry consists in starting the Region execution using the initial Pseudostate (if any) and firing its
continuation Transition. Note that if the initial Pseudostate does not exist, then the RegionActivation is considered
as being immediately completed. This leads the execution to properly ignore the execution of that particular
RegionActivation.

• An explicit entry occurs when the Region is entered via a Transition with a source outside the Region and a
target inside the Region. The Region execution does not then start with an initial Pseudostate. Instead, the
RegionActivation is considered to be entered when the VertexActivation for the target Vertex internal to the
Region is entered. Note that this case can only happen if the RegionActivation is owned by a StateActivation. The
owning StateActivation will always have been entered before any of its RegionActivations are actually started
(see 8.5.5).

Exiting a RegionActivation

A RegionActivation can be exited either implicitly or explicitly.

• An implicit exit of one or more RegionActivations occurs when a TransitionActivation exits a StateActivation for
a composite state. In this case, all RegionActivations currently executing in the StateActivation are exited. This
implies that all VertexActivations located within the RegionActivation are also exited. The exiting sequence for
each RegionActivation starts by exiting the most nested VertexActivations.

• An explicit exit of a RegionActivation occurs when a TransitionActivation exits a VertexActivation located in that
RegionActivation and the target VertexActivation is located outside the RegionActivation. In this case, the
RegionActivation that is exited explicitly starts the exiting sequence using the source VertexActivation (note that
if the StateActivation is for a composite state, then active VertexActivation(s) located within are exited first).
Other RegionActivations (if any) start their exiting phase using their innermost VertexActivations.

The final point of exiting either implicitly or explicitly one or more RegionActivations owned by a StateActivation
consists in executing the exit behavior (if any) attached to the associated State and traversing the exiting Transition.

Completion of a region activation

RegionActivations never reach completion by being exited either implicitly or explicitly. There are two ways to complete
the execution of a region.

1. The general rule is that a RegionActivation can only complete if a FinalStateActivation (see 8.5.5) for a
FinalState owned by the Region is executed. This leads the RegionActivation to be marked as being completed
(its isCompleted attribute is set to true).

2. The above general rule is violated only in the situation where a VertexActivation owned by a RegionActivation
is exited and the TransitionActivation that exits that VertexActivation has as its target the StateActivation
owning the RegionActivation. In this case, and only in this case, does the RegionActivation that owns the exited
VertexActivation complete.

Termination of a RegionActivation

A RegionActivation can be terminated (using its terminate operation). The termination of a RegionActivation occurs
as the result of the termination of the StateMachineExecution. It consists in terminating all VertexActivations owned by
the RegionActivation. Finally, the terminated VertexActivations are destroyed.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 31

History of a RegionActivation

The history StateActivation associated with a RegionActivation is the last known StateActivation in that
RegionActivation. This history is non-empty when the RegionActivation is exited while a non-final StateActivation is
active, in which case it can be used to restore the RegionActivation if it is re-entered via a shallow or deep history
Pseudostate (see 8.5.7.4). The history of a RegionActivation is updated in two situations:

1. A StateActivation (other than a FinalStateActivation) that is directly owned by the RegionActivation is entered.
During its entry sequence, the StateActivation updates the history of its containing RegionActivation to itself,
the StateActivation being entered.

2. A FinalStateActivation that is directly owned by the RegionActivation is entered. During its entry sequence, the
FinalStateActivation removes any history the RegionActivation might have. If a FinalState is reached, a
Region is considered to have no history.

Extension and RegionActivation

A Region can extend another Region using redefinition (see 7.6.3.1). In this case, the RegionActivation for the extension
Region also acts as the visitor for all the Regions directly and indirectly redefined by the extension Region.

For example, suppose that Region R1 is extended by Region R2, which is itself extended by Region R3. The
RegionActivation instantiated for R3 is then not only the visitor for R3, but also a visitor for R2 and R1. To make this
possible, the RegionActivation class redefines the isVisitorFor operation.

Further, the RegionActivation for an extension Region not only instantiates visitors for the Vertices and Transitions
directly owned by the extension Region, but also for Vertices and Transitions owned by any extended Region but are not
redefined in the extension Region. In this way, the RegionActivation constructs a set of visitors that represents an
effective “dynamic merge” of all the extended Regions with the extension Region. This set of visitors is then used to
perform the interpretation of the extension Region, just as if the visitors had been instantiated for elements directly
owned by the Region.

Evaluation of a RegionActivation

During the static analysis of compound Transitions that takes place when a StateMachineEventAccepter checks the
matching of a particular EventOccurrence, the analysis of Transitions and Vertices within a Region is handled by the
canPropagateExecution operation of the RegionActivation for that Region. The following two situations can be
encountered:

1. The target of the Transition that is used to enter the Region is an internal Vertex of that Region. This means
that the Region is going to be entered explicitly, so no implicit path starting from an initial Pseudostate needs to
be evaluated.

2. The target of the Transition that is used to enter the Region is an internal Vertex of that Region. This means
that the static analysis must be propagated through the PseudoStateActivation for the initial Pseudostate owned
by the Region. If the propagation of the static analysis through this path is acceptable, then the path is also valid
for the Region. Conversely if this propagation is not acceptable, then the path is considered as being invalid for
the Region.

VertexActivation

VertexActivation is the base class for all StateMachineSemanticVisitors capturing semantics of specializations of Vertex
(i.e., State, FinalState and Pseudostate). A VertexActivation is always owned by a RegionActivation. It is associated with
a set of TransitionActivations for the outgoing Transitions of its Vertex and another set for the incoming Transitions.

32 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

VertexActivations and StateMachineConfiguration

A VertexActivation captures the status of a Vertex. The Vertex is either idle or active. In essence, if the Vertex is a State
then to be active, the State must be in the current StateMachine configuration. Conversely, if the State is not in the
StateMachine configuration, it is idle.

VertexActivation entry and exit

The VertexActivation class defines the common way to enter and exit any kind of Vertex.

• A Vertex can only be entered if its prerequisites (specific to each kind of Vertex, based on its redefinition of the
VertexActivation isEnterable operation) have been fulfilled. In this case, and only in this case, can the
VertexActivation be entered (using its enter operation). The entry semantics are specific to each kind of Vertex.
Nevertheless, each specialized Vertex is entered using a given entering Transition and knows about the common
ancestor it shares with the source VertexActivation. The entered VertexActivation always takes advantage of the
common ancestor (a RegionActivation) information to identify if the parent VertexActivation must also be
entered.

• A Vertex can only be exited if its prerequisites (specific to each kind of Vertex, based on its redefinition of the
VertexActivation isExitable operation) have been fulfilled. In this case, and only this case, can the
VertexActivation be exited (using its exit operation). The exit semantics are specific to each kind of Vertex.
Nevertheless, each specialized Vertex is exited using a given exiting Transition and knows about the common
ancestor it shares with the target VertexActivation. The exited VertexActivation always takes advantage of the
common ancestor (a RegionActivation) information to identify if the parent VertexActivation must be exited
before it.

VertexActivation termination

The VertexActivation class does not enforce a particular termination semantics. These semantics are specific to each
subclass of VertexActivation. They are captured through the different redefinitions of the terminate operation.

Evaluation of a VertexActivation

During static analysis of compound Transitions that takes place when a StateMachineEventAccepter checks the matching
of a particular EventOccurrence, the analysis of a path that traverses a specific Vertex is handled by the
canPropagateExecution operation of the VertexActivation for that Vertex. This consists of propagating the analysis
to the parent VertexActivation. The propagation in the parent is constrained by the common ancestor computed between
the current VertexActivation and the VertexActivation that was the source of the entering Transition. As long as the
common ancestor is not encountered, the analysis continues to be propagated to the parent. The verdict of the analysis is
the verdict of the propagation made to the parent VertexActivation. Subclasses of VertexActivation add further
functionality to the static analysis by redefining the canPropagateExecution operation.

TransitionActivation

A TransitionActivation is the base class for all StateMachineSemanticVisitors capturing Transition semantics.
TransitionActivations have the responsibility to link VertexActivations that capture Vertex semantics. A
TransitionActivation references the VertexActivation for the source and target Vertices of its Transition. It also has a
status that defines the current situation of the Transition. For instance, reach means that the TransitionActivations
originates from a VertexActivation that is currently active.

Evaluation of a TransitionActivation

A TransitionActivation can evaluate the guard of its associated Transition (using its evaluateGuard operation), if there
is one on the visited transition. It is also capable of determining if the Transition can be triggered by a specific
EventOccurrence (using its canFireOn operation). These evaluation semantics are common to all kinds of
TransitionActivations.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 33

The evaluation sequence of a TransitionActivation always takes place during the analysis of the
StateMachineConfiguration. In addition to determining whether the Transition has a trigger matching the dispatched
EventOccurrence and a guard evaluating to true, the evaluation checks that, if the TransitionActivation is fired, the
result will be a valid StateMachineConfiguration. If this is not the case, the TransitionActivation will not be included in
the set of TransitionActivations to be fired in the next run-to-completion step.

The canPropagate operation of the TransitionActivation class is responsible for propagating the static analysis to the
target VertexActivation of the TransitionActivation. It is required that the static analysis can be propagated through the
target VertexActivation, meaning a valid path has been found by the static analysis, so the TransitionActivation can be
part of the set of TransitionActivation to be fired.

In addition to the canPropagate operation, the TransitionActivation class also maintains additional information to deal
with the static analysis:

1. The analyticalStatus attribute captures the status of the static analysis of the TransitionActivation.

2. The lastTriggeringEventOccurrence association references the last EventOccurrence that was used
during the static analysis of the TransitionActivation. This enables the detection of whether the
TransitionActivation was already explored using the same EventOccurrence.

3. The lastPropagation flag captures the result of the last static-analysis propagation when this
TransitionActivation was explored. If the TransitionActivation was explored using the same EventOccurrence,
then the current analysis can simply return the previous result, rather than performing a detailed analysis again.

Firing

The Transition firing sequence is also common to all kinds of TransitionActivations (using the fire operation). It always
consists of the following steps:

1. The Transition source may be exited. This depends on the kind of Transition that is actually firing. The exit
sequence performed by the exited VertexActivation depends on the type of the source Vertex.

2. The effect Behavior of the Transition is always executed.

3. The Transition target may be entered. This depends on the kind of Transition that is actually firing. The entry
sequence performed by the entered VertexActivation depends on the type of the target Vertex.

A firing sequence can thus be viewed as a chain of calls:

fire()

exit(exitingTransition, eventOccurrence, commonAncestor)

exit(exitingTransition, eventOccurrence, commonAncestor)

…

executeEffect(eventOccurrence)

enter(enteringTransition, eventOccurrence, commonAncestor)

enter(enteringTransition, eventOccurrence, commonAncestor)

end

The fire operation of a TransitionActivation initiates the exit sequence of the source VertexActivation. Assuming that
the prerequisites of the source Vertex are fulfilled, the exit sequence consists of a call to the exit behavior of the
source VertexActivation. This exit sequence can nest a number of exit calls. These nested calls propagate the exit
sequence to parent VertexActivations as long as the common ancestor of the source and the target VertexActivations
has not been reached. As soon as the exit sequence is terminated, if the Transition has an associated effect Behavior, it
is executed. After the execution of this Behavior, the target VertexActivation is entered via a call to its entry Behavior

34 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

(assuming that the prerequisites for entering the target VertexActivation are fulfilled). This call can lead to a number of
nested enter calls that are used to enter parent VertexActivations before the actual target VertexActivation is entered.
The call nesting ends when the common ancestor between the source and the target VertexActivations is reached.

Note. The triggering of the exit or entry sequence of a VertexActivation depends on the kind of Transition. Each
specialization of a TransitionActivation is intended to provide the appropriate semantics be redefining the operations
exitSource and enterTarget.

8.5.4 State Machine Configuration

A StateMachineExecution always has an associated StateMachineConfiguration. As shown in Figure 8.7, this
configuration represents the hierarchy of active States in which the currently executed StateMachine is.

The view that is provided through the StateMachineConfiguration offers a simple way to evaluate:

• Transitions that can be fired using the dispatched EventOccurrence.

• If the currently dispatched EventOccurrence can be deferred.

The StateMachineConfiguration is always evaluated through the StateMachineEventAccepter that is registered in the
ObjectActivation attached to the StateMachineExecution context. It determines the way that dispatched
EventOccurrences are handled.

Figure 8.7 - StateMachineConfiguration

StateMachineConfiguration

The StateMachineConfiguration attached to a StateMachineExecution is modified either when a StateActivation is
entered or when a StateActivation is exited (via its register and unregister operations, respectively).

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 35

StateMachineConfiguration

 + getRoot(): StateConfiguration [1]
 + getExecution(): StateMachineExecution [1]
 + getVertexActivationsAtLevel(in level: Integer [1]): VertexActivation [*]
 + register(in stateActivation: StateActivation [1]): Boolean [1]
 + unregister(in stateActivation: StateActivation [1]): Boolean [1]
 + isStable(): Boolean [1]
 + isActive(in activation: VertexActivation [1]): Boolean [1]
 # remove(in vertexActivation: VertexActivation [1]): Boolean [1]
 # add(in activation: VertexActivation [1]): Boolean [1]

StateConfiguration

 - level: Integer [1]

 # getLevel(): Integer [1]
 + getChildren(): StateConfiguration [*]
 + getParent(): StateConfiguration [1]
 + getVertexActivation(): VertexActivation [1]
 + setParent(in stateConfiguration: StateConfiguration [1])
 - getContext(in activation: VertexActivation [1]): VertexActivation [*]
 + removeChild(in activation: VertexActivation [1])
 - remove(in activation: VertexActivation [1], in context: VertexActivation [*])
 + addChild(in activation: VertexActivation [1])
 - add(in activation: VertexActivation [1], in context: VertexActivation [1..*])
 + isActive(): Boolean [1]

VertexActivation

StateMachineExecution RegionActivation

 + parent

 + children

 0..1

 *

 + completeConfiguration + rootConfiguration

 1 1

 + stateConfiguration

 + vertexActivation

 1

 1

 + execution

 + configuration

 1

 1

 + execution + regionActivations

 0..1
 1..*

 + regionActivation

 # vertexActivations

 1

 *

Note that a StateMachineConfiguration does not evolve between run-to-completion steps. A StateMachineConfiguration
only evolves during a run-to-completion step initiated via the acceptance of an event occurrence dispatched from the
event pool.

The internal structure of a StateMachineConfiguration is represented as a hierarchy of StateConfigurations. Each
StateConfiguration included in the hierarchy actually references a VertexActivation that is active in the currently
executed StateMachine.

Note. The additional level of nesting introduced by the presence of RegionActivations is not captured by the
StateMachineConfiguration. Nevertheless it is inherent in the StateMachineConfiguration tree structure, since each
branch of the tree denotes the presence of a Region.

StateConfiguration

A StateConfiguration is a basic unit of a StateMachineConfiguration, representing the membership of a VertexActivation
in the configuration of the executed StateMachine. Each StateConfiguration has a single parent StateConfiguration (if
any) and may have zero or more children StateConfiguration(s).

8.5.5 State Activations

Figure 8.8 shows the SemanticVisitor StateActivation and its further specialization, FinalStateActivation. StateActivation
captures simple and composite State semantics while FinalStateActivation captures FinalState semantics.

StateActivation

 + isDoActivityCompleted: Boolean [1]
 + isEntryCompleted: Boolean [1]
 + isExitCompleted: Boolean [1]

 + activate()
 + terminate()
 + notifyCompletion()
 + activateTransitions()
 + releaseDeferredEvents()
 + hasCompleted(): Boolean [1]
 + defer(in eventOccurrence: EventOccurrence [1])
 + isVisitorFor(in node: NamedElement [1]): Boolean [1]
 + getRegionActivation(): RegionActivation [*]
 # tryExecuteExit(in eventOccurrence: EventOccurrence [1])
 # tryExecuteEntry(in eventOccurrence: EventOccurrence [1])
 + canDefer(in eventOccurrence: EventOccurrence [1]): Boolean [1]
 # tryInvokeDoActivity(in eventOccurrence: EventOccurrence [1])
 # getVertexActivation(in vertex: Vertex [1]): VertexActivation [0..1]
 + getConnectionPointActivation(): ConnectionPointActivation [*]
 + getConnectionPointActivation(in vertex: Vertex [1]): ConnectionPointActivation [0..1]
 + isExitable(in exitingTransition: TransitionActivation [1], in staticCheck: Boolean [1]): Boolean [1]
 + isEnterable(in enteringTransition: TransitionActivation [1], in staticCheck: Boolean [1]): Boolean [1]
 + getFireableTransitions(in eventOccurrence: EventOccurrence [1]): TransitionActivation [*]
 + enterRegions(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1])
 + exit(in exitingTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1]): Boolean [1]
 + getEntry(): Behavior [1]
 + getExit(): Behavior [1]
 + getDoActivity(): Behavior [1]

VertexActivation

FinalStateActivation

 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])

RegionActivation

ConnectionPointActivation

CompletionEventOccurrence

(fUML_Semantics::Semantics::CommonBehavior)
EventOccurrence

DoActivityContextObject

DeferredEventOccurrence

 + regionActivations

 0..1 *

 + connectionPointActivations

 1 *

 + stateActivation

 + eventOccurrence 1

 0..1

 + owner

 + doActivityContextObject 1

 0..1

 + deferredEventOccurrence

 + constrainingStateActivation *

 1

 + deferredEventOccurrence

 0..1

 1

Figure 8.8 - StateActivations

StateActivation

A StateActivation is used to execute a State that is either simple or composite, but not a FinalState.

• A StateActivation can have ConnectPointActivations (see 8.5.7), which are SemanticVisitors for EntryPoints and
ExitPoints.

• A StateActivation for a composite State owns one or more RegionActivations (see 8.5.3), one for each Region
contained in the composite State. A StateActivation for a simple State does not have any RegionActivations.

36 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

• A StateActivation for a State with a doActivity Behavior will have a DoActivityContextObject (see 8.5.6) to
manage the execution of that Behavior.

StateActivation entry

The common ancestor rule requires that, before a StateActivation can be entered, all parent VertexActivations of the
StateActivation must be entered recursively, until the common ancestor (which is a RegionActivation) of the
StateActivation being entered and the source VertexActivation is reached. The entry of a StateActivation then involves
the following sequential steps:

1. If the State of the StateActivation has an entry Behavior, then this Behavior is executed synchronously.

2. If the State of the StateActivation has a doActivity Behavior, then this Behavior is invoked asynchronously. A
DoActivityContextObject is created, to act as the context object for the Behavior Execution, and associated with
the StateActivation (see also 8.5.6 on doActivity Behavior execution).

3. If the State of the StateActivation is composite, then RegionActivations are started concurrently for each Region
of the composite State. How each RegionActivation is started depends on whether it is entered explicitly or
implicitly (see 8.5.3).

Once a StateActivation is entered, it is then also registered with the StateMachineConfiguration associated with the
containing StateMachineExecution and set as the history of its RegionActivation (see 8.5.3).

StateActivation exit

Exiting a StateActivation involves the following sequential steps:

1. If the StateActivation owns any RegionsActivations, they are exited.

2. If the StateActivation has a running doActivity, it is aborted.

3. If the State of the StateActivation has an exit Behavior, this Behavior is executed synchronously.

The common ancestor rule also applies during exit. All parent VertexActivations located at a more nested level than the
common ancestor of the StateActivation being exited and the target VertexActivation are also exited.

Once a StateActivation is exited, it is then unregistered from the StateMachineConfiguration associated with the
containing StateMachineExecution.

StateActivation completion

The completion of a StateActivation means that a CompletionEventOccurrence is generated by that StateActivation and
placed in the eventPool handled by the ObjectActivation associated with the context Object of the containing
StateMachineExecution.

The completion of a StateActivation occurs in the following situations, depending on the structure of the associated State:

• The State is simple and has no associated entry or doActivity Behaviors. The StateActivation generates a
CompletionEventOccurrence as soon as it is entered.

• The State is simple with an associated entry Behavior but no doActivity Behavior. The StateActivation
generates a CompletionEventOccurrence upon the termination of the entry Behavior Execution.

• The State is simple and has an associated doActivity Behavior. The StateActivation generates a
CompletionEventOccurrence only when the doActivity Behavior has completed.

• The State is composite and has no associated doActivity Behavior. The StateActivation can only generate a
CompletionEventOccurrence when all RegionActivations for the Regions of the composite State have completed.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 37

• The State is composite and has an associated doActivity Behavior. The StateActivation can only generate a
CompletionEventOccurrence when all RegionActivations for Regions of the composite state have completed and
the doActivity Behavior has completed.

StateActivation and deferred events

A StateActivation can defer an EventOccurrence when the following conditions are met:

1. At least one StateActivation in the active StateMachineConfiguration is for a State with a
deferrableTrigger that matches the EventOccurrence.

2. There is no Transition with a higher priority and able to react to the EventOccurrence in the active
StateMachineConfiguration.

When deferred, an EventOccurrence is “captured” by the deferring StateActivation. This means it is placed into the
deferredEventPool of the ObjectActivation of the context Object of the containing StateMachineExecution (see
8.4) and will only return to the regular eventPool when the StateActivation that deferred it leaves the
StateMachineConfiguration.

Note. The UML specification states that “A State may specify a set of Event types that may be deferred in that State. This
means that Event occurrences of those types will not be dispatched as long as that State remains active. Instead, these
Event occurrences remain in the event pool.” ([UML], 14.2.3.4.4). However fUML CommonBehavior semantics [fUML]
define a dispatching strategy that does not account for deferred events, since these are StateMachine specific. In fUML,
once an EventOccurrence is taken from the eventPool, it must either be accepted or it is lost. In order to introduce
semantics for deferred events, without changing the base fUML CommonBehavior semantic model, instead of leaving
deferred EventOccurrences in the eventPool, the model defined here moves them to a separate deferredEventPool
(which is defined on the class SM_ObjectActivation described in 8.4). This solution provides effectively the same
semantics as defined in the UML specification, at least for the default first-in-first-out dispatching strategy. However, it
may not be compatible with other dispatching strategies, unless they are modified to explicitly account for
DeferredEventOccurrences (see also the further discussion of DeferredEventOccurrences in 8.5.9).

Evaluation of a StateActivation

When the static analysis used in the evaluation process of a compound Transition reaches a StateActivation, the analysis
proceeds as follows:

1. First, the analysis is propagated to the parent of the StateActivation. If the propagation is accepted by the
parent, the analysis continues.

2. If the StateActivation is for a simple State (i.e., one with no Regions), then the analysis ends. The analysis is
considered to have identified an acceptable Transition path, because the StateActivation that has been reached
cannot be left in any way other than by the dispatching of an EventOccurrence.

3. If the StateActivation is for a composite State, then the analysis is propagated to the RegionActivations for the
Regions owned by the State. In order for the analysis to be acceptable for the composite StateActivation, the
analysis of each RegionActivation must find an acceptable Transition path.

FinalStateActivation

A FinalStateActivation specifies the semantics of a FinalState.

As for a regular StateActivation, the common ancestor rule applies when a FinalStateActivation is entered. This means
that parent VertexActivations are entered recursively until the common ancestor of the source VertexActivation and the
FinalStateActivation is reached.

Once a FinalStateActivation is finally entered, it completes the execution of the RegionActivation in which it is located
and clears its history (see 8.5.3). If this RegionActivation is owned by a StateActivation, and all RegionActivations

38 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

owned by that StateActivation have completed, then a CompletionEventOccurrence is generated for that StateActivation
(see also the discussion on StateActivation completion above).

Evaluation of a FinalStateActivation

The way the propagation analysis must be performed when a final state is reached is a subset of the propagation sequence
described for a State. Before propagating the analysis to the final state, the analysis is propagated to the parent vertex. If
the propagation is accepted by the parent vertex then propagation is also accepted by the final state.

8.5.6 “doActivity” Behavior Execution

Figure 8.9 shows part of the PSSM execution model related to the execution of a doActivity behavior.

DoActivityContextObject

Since a doActivity Behavior is asynchronous, it is executed on its own thread of execution. The purpose of the
DoActivityContextObject is to provide a specialized context Object in which the doActivity Behavior will be
executed. The DoActivityContextObject class is therefore a specialization of the fUML Object class ([fUML], Clause 8).

• The context of a DoActivityContextObject is the context Object of the StateMachineExecution from which
the doActivity Behavior was invoked.

• A DoActivityContextObject references the StateActivation that invoked doActivity Behavior.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 39

StateActivation

DoActivityContextObject

 + getFeatureValue(in feature: StructuralFeature [1]): FeatureValue [1]
 + setFeatureValue(in feature: StructuralFeature [1], in values: Value [*], in position: Integer [0..1])
 + dispatch(in operation: Operation [1]): Execution [1]
 + send(in eventOccurrence: EventOccurrence [1])
 + unregister(in accepter: EventAccepter [1])
 + register(in accepter: EventAccepter [1])
 + destroy()
 # unregisterFromContext(in encapsulatedAccepter: EventAccepter [1])
 + initialize(in context: Object [1])
 + startBehavior(in classifier: Class [1], in inputs: ParameterValue [*])

(fUML_Semantics::Semantics::CommonBehavior)
EventAccepter

DoActivityExecutionEventAccepter

 + match(in eventOccurrence: EventOccurrence [1]): Boolean [1]
 + accept(in eventOccurrence: EventOccurrence [1])

(fUML_Semantics::Semantics::StructuredClassifiers)
Object

(fUML_Semantics::Semantics::CommonBehavior)
ObjectActivation

DoActivityContextObjectActivation

 + dispatchNextEvent()
 + startBehavior(in classifier: Class [1], in inputs: ParameterValue [*])

 + encapsulatedAccepter

 + encapsulatingAccepter

 1

 0..1

 + context

 + doActivityContextObject

 1

 *

 + context

 + doActivityEventAccepter

 1

 1
 + owner

 + doActivityContextObject

 1

 0..1

Figure 8.9 - doActivity Behavior Execution

Feature access context

Even though a doActivity Behavior is executed on its own thread of execution, it still must be able to access Features
(e.g. Properties and Operations) of the context StateMachine from which it was invoked. To allow this, the
DoActivityContextObject class redefines operations from the Object to delegate various functions to its own context:

• getFeature, for reading a Feature

• setFeature, for updating a Feature

• dispatch, for calling an Operation

• send, for sending an Event

doActivity accepter registration

While a doActivity Behavior is executing, it may need to register EventAccepters for specific EventOccurrences. An
accepter registered by a doActivityBehavior is registered in two places:

1. The EventAccepter is registered first as a waitingEventAccepter of the SM_ObjectActivation of the
StateMachineExecution context Object. This is necessary, since EventOccurrences cannot be sent directly to
an executing doActivity. Instead, the doActivity Behavior Execution may accept EventOccurrences sent to the
context Object of its invoking StateMachineExecution and, to be able to do so, it must have its
EventAccepters registered with the ObjectActivation of that context Object.

2. The EventAccepter is also registered as a waitingEventAccepter of the DoActivityContextObjectActivation
for the DoActivityContextObject. This is necessary so that, when an EventOccurrence is dispatched from the
StateMachineExecution context Object's eventPool and accepted by the doActivity Execution, it triggers a
run-to-completion step for the doActivity.

doActivity run-to-completion step

A run-to-completion step in an executing doActivity Behavior is triggered by the acceptance of an EventOccurrence
dispatched from the StateMachineExecution context Object's eventPool. The acceptance process implies that one of
the DoActivityEventAccepter registered by the doActivity matched the dispatched EventOccurrence and that the
matching accepter has been removed as a waitingEventAccepter for the StateMachineExecution context
ObjectActivation.

The dispatched EventOccurrence is transferred to the eventPool of the DoActivityContextObjectActivation for the
DoActivityContextObject for the doActivity. Since the originally matching DoActivityEventAccepter is also
registered with the DoActivityContextObjectActivation, it will again match and accept the EventOccurrence, but, this
time, in the context of the DoActivityContextObject. This starts a new run-to-completion step for the doActivity
Execution, asynchronously from the StateMachineExecution.

Note that, in general, an executing doActivity Behavior will compete with the executing StateMachine that invoked it
to accept EventOccurrences dispatched from the same eventPool. Nevertheless, in some situations it is necessary to
ensure that a doActivity is able to accept certain EventOccurrences instead of the StateMachine. To allow this, a
deferredTrigger should be used on the State that owns the doActivity, in which case any EventOccurrences
deferred while the StateMachine is in that State may be consumed by the executing doActivity.

The doActivity priority for the consumption of an EventOccurrence is given by the following semantic rules:

• If the StateMachine is about to defer an EventOccurrence for which the doActivity has also registered an
accepter, the StateMachine is not allowed to defer the EventOccurrence. Instead, the EventOccurrence can then be
accepted by the doActivity.

40 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

• If the StateMachine has deferred an EventOccurrence for which the doActivity registers an accepter, then the
deferred EventOccurrence can be accepted by the doActivity directly from the deferredEventPool for the
StateMachine.

doActivity finalization

There are two ways for a doActivity to finalize its execution:

1. Completion: This means the doActivity ended its execution naturally (i.e., the execution reached a point
where there is no possibility to continue). Completion occurs when, after a run-to-completion step, there are no
more event accepter registered for the doActivity with its DoActivityContextObjectActivation. When a
doActivity execution completes, the StateActivation that invoked that doActivity may have to complete
too. In this situation, upon the completion of the doActivity execution, a CompletionEventOccurrence is
generated for the StateActivation and placed in StateMachine context's eventPool.

2. Destruction: This means the StateActivation from which the doActivity was invoked is exited. In this
situation, the execution of the running doActivity is aborted, via a call to the DoActivityContextObject
destroy operation. In addition to the semantics provided by fUML when an Object is destroyed, all accepters
registered by the doActivity with the StateMachine context ObjectActivation are also destroyed.

DoActivityContextObjectActivation

The DoActivityContextObjectActivation class is a specialized ObjectActivation. Each DoActivityContextObject has a
DoActivityContextObjectActivation.

The DoActivityContextObjectActivation class redefines the dispatchNextEvent operation provided by the fUML
ObjectActivation class. It adds functionality to this operation in order to check if the doActivity has completed after
the last run-to-completion step.

DoActivityExecutionEventAccepter

A DoActivityExecutionEventAccepter is a specialized EventAccepter.

• A DoActivityEventAccepter references its original creation context, a DoActivityContextObject.

• A DoActivityEventAccepter references the original EventAccepter that was registered by an executing
doActivity, in the DoActivityContextObjectActivation associated with the DoActivityContextObject for the
doActivity Execution.

DoActivityEventAccepter registration

When an executing doActivity Behavior registers an EventAcceptor with its DoActivityContextObject, the
EventAccepter is added to the waitingEventAccepters for the associated DoActivityContextObjectActivation. In
addition, it is wrapped in a DoActivityEventAccepter, which is then also registered with the StateMachine context
Object.

DoActivityEventAccepter matching

A DoActivityEventAccepter delegates its check for a matching EventOccurrence to the match operation of the wrapped
EventAccepter. A DoActivityEventAccepter therefore matches any EventOccurrence that would be matched by its
wrapped EventAccepter.

DoActivityEventAccepter acceptance

• When a DoActivityEventAccepter accepts an EventOccurrence, this EventOccurrence is transferred to the
eventPool of the DoActivityContextObjectActivation of the context of the DoActivityEventAccepter. Since
the EventAccepter wrapped by the DoActivityEventAccepter will also be registered with this

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 41

DoActivityContextObjectActivation, this EventAccepter will also match the EventOccurrence, triggering a run-to-
completion step in the doActivity Execution without blocking the containing StateMachineExecution.

8.5.7 Pseudostate Activations

8.5.7.1 Basic Pseudostate Activations

PseudostateActivation

The PseudostateActivation class (see Figure 8.10) is a specialization of VertexActivation that specifies the common
semantics for Pseudostates. A PseudostateActivation references a set of TransitionActivations corresponding to the set of
outgoing Transitions of the Pseudostate whose guards have evaluated to true during the static analysis. This set is
computed each time the analysis is performed (i.e. each time an evaluation is made as to whether a compound Transition
should be added in the set of Transitions to be fired in the next run-to-completion step). PseudostateActivation also
redefines the canPropagateExecution operation, adding functionality for performing the static analysis in the context
of a Pseudostate.

Figure 8.10 - PseudostateActivations

StateMachineConfiguration and PseudostateActivation

Although a Pseudostate is a Vertex, PseudostateActivations never enter the StateMachineConfiguration. While
Pseudostates are traversed during a run-to-completion step, a run-to-completion step never ends on a Pseudostate.

42 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

VertexActivation

ConnectionPointActivation

 + getParentVertexActivation(): VertexActivation [1]
 + getOwningRegionActivation(): RegionActivation [1]

InitialPseudostateActivation

 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])

PseudostateActivation

 + evaluateAllGuards(in eventOccurrence: EventOccurrence [1])
 + canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1]): Boolean [1]

ForkPseudostateActivation

 + isExitable(in exitingTransition: TransitionActivation [1], in staticCheck: Boolean [1]): Boolean [1]
 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1]): Boolean [1]
 - _canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1]): Boolean [1]

JoinPseudostateActivation

 + isEnterable(in enteringTransition: TransitionActivation [1], in staticCheck: Boolean [1]): Boolean [1]
 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1]): Boolean [1]
 - _canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1]): Boolean [1]

TerminatePseudostateActivation

 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])

TransitionActivation

HistoryPseudostateActivation

 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + restore(in regionActivation: RegionActivation [1], in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1])
 + restore(in stateActivation: StateActivation [1], in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1])

ConditionalPseudostateActivation

 + evaluateAllGuards(in eventOccurrence: EventOccurrence [1])
 + isElseTransition(in transitionActivation: TransitionActivation [1]): Boolean [1]

 + fireableTransitions

 0..1 *

Evaluation of a PseudostateActivation

The general sequence to propagate the static analysis through a PseudostateActivation is given by the following steps:

1. Propagate the analysis to the parent of the PseudostateActivation.

2. If the analysis of the parent has an acceptable result and the PseudostateActivation can be entered (i.e., its
preconditions to be entered are all fulfilled), then:

a. If the Pseudostate has no outgoing Transitions, then the analysis is considered to have found an acceptable
path.

b. If it has outgoing Transitions but the set of fireable TransitionActivations remains empty, then no acceptable
path can be found through this PseudostateActivation.

c. If it has outgoing Transitions and the set of fireable TransitionActivations is not empty, then the static
analysis of at least one of the TransitionActivations in that set must find an acceptable path. If no such path
is found, then there is no acceptable path through this PseudostateActivation.

InitialPseudostateActivation

The InitialPseudostateActivation class (see Figure 8.10) is a specialization of PseudostateActivation that specifies the
semantics of a Pseudostate whose kind is initial.

Entry

The InitialPseudostateActivation class redefines the enter operation, such that entrance to an
InitialPseudostateActivation results in the firing of its outgoing TransitionActivation.

Note: UML allows an initial Pseudostate to have at most a single outgoing Transition (see [UML], 14.5.6.6). Any other
model is ill-formed according to the constraints of the UML specification.

ForkPseudostateActivation

The ForkPseudostateActivation class (see Figure 8.10) is a specialization of PseudostateActivation that specifies the
semantics of a Pseudostate whose kind is fork.

Entry

The ForkPseudostateActivation class redefines the enter operation so that the ForkPseudostateActivation is entered by
the following sequential steps:

1. Enter the parent of the ForkPseudostateActivation, if it has not already been entered. The common ancestor
rule applies.

2. Concurrently fire all the outgoing TransitionActivations of the ForkPseudostateActivation. The
TransitionActivations are fired without any guard evaluation, since UML does not allow Transitions outgoing a
fork Pseudostate to have guards (see [UML], 14.5.11.8).

Exit

The ForkPseudostateActivation class does not redefine the exit operation provided by VertexActivation. Nevertheless it
imposes a constraint on when the generic exit sequence can be performed: a ForkPseudostateActivation cannot be exited
until all of its outgoing transitions have been fired.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 43

Evaluation

The ForkPseudostateActivation class specifies that a static analysis is propagated by the following steps:

1. Propagate the analysis to the parent of the ForkPseudostateActivation. The common ancestor rule applies.

2. If the analysis of the parent has an acceptable result, then an acceptable path can be found through the
ForkPseudostateActivation if the static analysis returns acceptable results for all the outgoing
TransitionActivations of the ForkPseudostateActivation. If a path fails to be found through any one of the
outgoing TransitionActivations, then an acceptable path cannot be found through the
ForkPseudostateActivation.

JoinPseudostateActivations

The JoinPseudostateActivation class (see Figure 8.10) is a specialization of PseudostateActivation that specifies the
semantics of a Pseudostate whose kind is join.

Entry

The JoinPseudostateActivation redefines the enter operation to check that all TransitionActivations incoming to the
JoinPseudostateActivation have been previously fired. If this precondition is satisfied, then the JoinPseudostateActivation
is entered by the following steps:

1. Enter the parent of the JoinPseudostateActivation, if it has not already been entered. The common ancestor
rule applies.

2. Fire one of the TransitionActivations outgoing from the JoinPseudostateActivation. If more than one
TransitionActivation is ready to fire, then one is selected nondeterministically (using the ChoiceStrategy
mechanism from fUML – see [fUML], 8.2.2.1).

Evaluation

The JoinPseudostateActivation class specifies that a static analysis is propagated by the following steps:

1. Propagate the analysis to the parent of the JoinPseudostateActivation. The common ancestor rule applies.

2. If the analysis of the parent has an acceptable result, but the JoinPseudostateActivation cannot be entered, then
the result of the analysis of the JoinPseudostateActivation is considered to have found an acceptable path ending
there.

3. If the analysis of the parent has an acceptable result, and the JoinPseudostateActivation can be entered, then
the analysis of at least one of the TransitionActivations outgoing from the JoinPseudostateActivation must have
an acceptable result. If a path fails to be found through any one of the outgoing TransitionActivations, then an
acceptable path cannot be found through the JoinPseudostateActivation.

TerminatePseudostateActivation

The TerminatePseudostateActivation class (see Figure 8.10) is a specialization of PseudostateActivation that specifies the
semantics of a Pseudostate whose kind is terminate.

Entry

The TerminatePseudostateActivation class redefines the enter operation so that a TerminatePseudostateActivation is
entered by the following steps:

1. Enter the parent of the JoinPseudostateActivation, if it has not already been entered. The common ancestor
rule applies.

44 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

2. Terminate the containing StateMachineExecution. The termination process occurs without the execution of
exit Behaviors of States currently active in the StateMachineConfiguration. It ends with the destruction of the
entire StateMachineSemanticVisitors hierarchy.

3. Destroy the context Object of the StateMachineExecution. As a result, the ObjectActivation associated with
the context Object has its eventPool cleared and it is stopped. No further execution is possible after this
step.

8.5.7.2 Connection Point Activations

ConnectionPointActivation

The ConnectionPointActivation class (see Figure 8.11) is a specialization of PseudostateActivation that specifies the
common semantics for entry-point and exit-point Pseudostates. These common semantics define how to determine the
parent VertexActivation and the owning RegionActivation of an EntryPointPseudostateActivation or an
ExitPointPseudostateActivation.

• The parent of a ConnectionPointActivation is the StateActivation on which this ConnectionPointActivation is
placed.

• The RegionActivation which is said to own the ConnectionPointActivation is the parent RegionActivation of the
StateActivation on which the ConnectionPointActivation is placed.

EntryPointPseudostateActivation

The EntryPointPseudostateActivation class is a specialization of ConnectionPointActivation that specifies the semantics
of a Pseudostate whose kind is entryPoint.

Entry

The EntryPointPseudostateActivation class (see Figure 8.11) redefines the enter operation so that an
EntryPointPseudostateActivation is entered by the following steps:

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 45

Figure 8.11 - EntryPointActivation and ExitPointActivation

EntryPointPseudostateActivation

 + isExitable(in exitingTransition: TransitionActivation [1], in staticCheck: Boolean [1]): Boolean [1]
 + exit(in exitingTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 - _enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1]): Boolean [1]

ConnectionPointActivation

 + getParentVertexActivation(): VertexActivation [1]
 + getOwningRegionActivation(): RegionActivation [1]

PseudostateActivation

ExitPointPseudostateActivation

 + isEnterable(in enteringTransition: TransitionActivation [1], in staticCheck: Boolean [1]): Boolean [1]
 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1]): Boolean [1]

1. Enter the parent StateActivation for the EntryPointPseudostateActivation. The common ancestor rule applies
(i.e., the parent of that StateActivation may also need to be entered).

2. If the EntryPointPseudostateActivation has no outgoing TransitionActivations, then the parent StateActivation
performs a default entry (see StateActivation in 8.5.5).

3. If the EntryPointPseudostateActivation has outgoing TransitionActivations, then one of two situation can occur:

a. If the State on which the Pseudostate is placed is not orthogonal, then one of the outgoing
TransitionActivations that is fireable is chosen to be fired. If more than one outgoing TransitionActivation
is fireable, then one is chosen nondeterministically (using the fUML ChoiceStrategy mechanism – see
[fUML]. 8.2.2.1).

b. If the State on which the Pseudostate is place is orthogonal (i.e, it has multiple Regions), then all
TransitionActivations outgoing from the EntryPointPseudostateActivation are fired concurrently.

Exit

The EntryPointPseudostateActivation class specifies the precondition that an EntryPointPseudostateActivation can only
be exited after all its outgoing TransitionActivations have fired. This precondition only applies if the entry point is on an
orthogonal State.

Evaluation

The EntryPseudostateActivation class specifies that a static analysis is propagated by the following steps:

1. Propagate the analysis to the parent StateActivation of the EntryPseudostateActivation.

2. If the analysis of the parent has an acceptable result and the EntryPointPseudostateActivation has no outgoing
TransitionActivations, then the analysis is considered to have found an acceptable path ending at the
EntryPointPseudostateActivation.

3. If the analysis of the parent has an acceptable result and the EntryPointPseudostateActivation has outgoing
TransitionActivations, then one of two situations can occur:

a. If the State being entered is not orthogonal, then only one of the analyses of the outgoing
TransitionActivations must have an acceptable result in order for there to be an acceptable path through the
EntryPointPseudostateActivation.

b. If the State being entered is not orthogonal, then the analyses of the outgoing TransitionActivations must all
have acceptable results in order for there to be an acceptable path through the
EntryPointPseudostateActivation.

ExitPointPseudostateActivation

The ExitPointPseudostateActivation class (see Figure 8.11) is a specialization of ConnectionPointActivation that
specifies the semantics of a Pseudostate whose kind is exitPoint.

Enter

The ExitPointPseudostateActivation class redefines the enter operation so that an ExitPointPseudostateActivation is
entered by the following steps:

1. Nondeterministically select one of the fireableTransitions for the ExitPointPseudostateActivation (using the
ChoiceStrategy mechanism from fUML – see [fUML], 8.2.2.1).

2. Exit only the parent StateActivation of the ExitPointPseudostateActivation.

46 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

3. Fire the selected TransitionActivation.

An ExitPointPseudostateActivation can only be entered if all of its incoming TransitionActivations have been fired.

Evaluation

The ExitPointPseudostateActivation class specifies that a static analysis is propagated by the following steps:

1. If the ExitPointPseudostateActivation cannot be entered, then the analysis is considered to have an acceptable
result.

2. If the ExitPointPseudostateActivation can be entered, then at least one of the analyses of the outgoing
TransitionActivations must have an acceptable result in order for the analysis of the
ExitPointPseudostateActivation to have an acceptable result.

8.5.7.3 Conditional Pseudostate Activations

ConditionalPseudostateActivation

The ConditionalPseudostateActivation class (see Figure 8.12) is a specialization of a PseudostateActivation that specifies
the semantics common to choice and junction Pseudostates.

ConditionalPseudostateActivation redefines the evaluateAllGuards operation from the PseudostateActivation so that
all guards of outgoing Transitions are evaluated. TransitionActivations for Transitions whose guard evaluates to true
are added to the set of fireableTransitions. If this produces no fireableTransitions, but there is is an
outgoing “else” Transition, then the TransitionActivation for this Transition is added to the set of
fireableTransitions. An “else” Transition is one with a guard Constraint whose specification is an
Expression whose symbol is the string “else” and which has no operands (see also 7.3.1).

ChoicePseudostateActivation

The ChoicePseudostateActivation class is a specialization of ConditionalPseudostateActivation that specifies the
semantics of a Pseudostate whose kind is choice.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 47

Figure 8.12 - ChoicePseudostateActivation and JunctionPseudostateActivation

ConditionalPseudostateActivation

 + evaluateAllGuards(in eventOccurrence: EventOccurrence [1])
 + isElseTransition(in transitionActivation: TransitionActivation [1]): Boolean [1]

PseudostateActivation

ChoicePseudostateActivation

 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])
 + canPropagateExecution(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1]): Boolean [1]

JunctionPseudostateActivation

 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])

Entry

The ChoicePseudostateActivation class (see Figure 8.12) redefines the enter operation so that a
ChoicePseudostateActivation is entered by the following steps:

1. Enter the parent of the ChoicePseudostateActivation, if it has not already been entered. The common ancestor
rule applies.

2. Evaluate all guards of Transitions outgoing the choice Pseudostate. Note that it is specific to choice
Pseudostates that the guards of outgoing Transitions are only evaluated when the Pseudostate is reached during
the course of a run-to-completion step. This is known as dynamic evaluation, as opposed to the static evaluation
performed during static analysis.

3. Nondeterministically select one TransitionActivation from the set of (dynamically) fireable
TransitionActivations (using the fUML ChoiceStrategy mechanism – see [fUML], 8.2.2.1).

Evaluation

The ChoicePseudostateActivation class specifies that the static analysis of the ChoicePseudostateActivation has an
acceptable result if the analysis of the parent of the ChoicePseudostateActivation does. The static analysis is not
propagated to outgoing TransitionActivations, since the guards of Transitions outgoing from a choice Pseudostate are
dynamically evaluated.

JunctionPseudostateActivation

The JunctionPseudostateActivation class (see Figure 8.12) is a specialization of ConditionalPseudostateActivation that
specifies the semantics of a Pseudostate whose kind is junction.

Entry

The JunctionPseudostateActivation class redefines the enter operation so that a JunctionPseudostateActivation is
entered by the following steps:

1. Enter the parent of the JunctionPseudostateActivation, if it has not already been entered. The common
ancestor rule applies.

2. Nondeterministically select one TransitionActivation from the set of fireableTransitions (using the fUML
ChoiceStrategy mechanism – see [fUML], 8.2.2.1).

8.5.7.4 History Pseudostate Activations

HistoryPseudostateActivation

The HistoryPseudostateActivation class (see Figure 8.13) is a specialization of PseudostateActivation that specifies the
common semantics of ShallowHistoryPseudostateActivation and DeepHistoryPseudostateActivation.

48 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Entry

The HistoryPseudostateActivation class redefines the enter operation so that a HistoryPseudostateActivation (deep or
shallow) is entered as follows:

• If the parent RegionActivation of the HistoryPseudostateActivation has no history, and the history
Pseudostate has no default Transition (i.e. an outgoing Transition that targets a Vertex directly or indirectly owned
by the Region that owns the history Pseudostate), then

○ If the history Pseudostate is nested in a State hierarchy, then this is entered. The common ancestor rule
applies.

○ If the history Pseudostate is owned by a top-level Region (i.e. a Region owned by a StateMachine), then this
Region performs an implicit entry.

• If the parent RegionActivation of the HistoryPseudostateActivation has a history, the history Pseudostate has
a default Transition, then

○ If the history Pseudostate is nested in a State hierarchy, then this is entered, and the restoration process starts
from the StateActivation owning the parent RegionActivation of the HistoryPseudostateActivation.

○ If the history Pseudostate is owned by a top-level Region, then the restoration process starts from the
RegionActivation for that Region.

Restoration

HistoryPseudostateActivation provides two kinds of restoration process (see restore operations in Figure 8.13), one for
restoration of a StateActivation and one for restoration starting of a RegionActivation. Deep and shallow history have
common semantics for restoring a StateActivation, but the semantics for restoring a RegionActivation is specific to each
kind of history.

The restoration of a StateActivation consists of the following steps:

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 49

Figure 8.13 - DeepHistoryPseudostateActivation and ShallowHistoryPseudostateActivation

HistoryPseudostateActivation

 + hasDefaultTransition(): Boolean [1]
 + restore(in stateActivation: StateActivation [1], in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1])
 + restore(in regionActivation: RegionActivation [1], in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1])
 + enter(in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1], in leastCommonAncestor: RegionActivation [0..1])

PseudostateActivation

DeepHistoryPseudostateActivation

 + canRestore(in stateActivation: StateActivation [1]): Boolean [1]
 + restore(in regionActivation: RegionActivation [1], in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1])

ShallowHistoryPseudostateActivation

 + restore(in regionActivation: RegionActivation [1], in enteringTransition: TransitionActivation [1], in eventOccurrence: EventOccurrence [1])

1. The StateActivation is entered into the StateMachineConfiguration.

2. The entry and doActivity behaviors that are associated with the State (if any) are executed. If, after this, the
StateActivation is completed, a CompletionEventOccurrence is placed in the StateMachine context's event
pool.

3. If the StateActivation has RegionActivations, then all of them are restored concurrently.

DeepHistoryPseudostateActivation

The DeepHistoryPseudostateActivation class (see Figure 8.13) is a specialization of HistoryPseudostateActivation that
specifies the semantics of a Pseudostate whose kind is deepHistory.

Restoration

The DeepHistoryPseudostateActivation class specifies that a RegionActivation is restored by the following steps:

1. If the RegionActivation being restored is the parent RegionActivation of the
DeepHistoryPseudostateActivation, then

a. If the RegionActivation has a history (which is a StateActivation), then this history is restored using
the generic restoration process specified by the HistoryPseudostateActivation class for a StateActivation.

b. If the RegionActivation has no history, but the history Pseudostate has a default Transition, then the
TransitionActivation for this Transition is fired.

2. If the RegionActivation is not the parent RegionActivation of the DeepHistoryPseudostateActivation, then

a. If the RegionActivation is within the parent RegionActivation of the DeepHistoryPseudostateActivation,
then it is restored.

b. Otherwise the RegionActivation is not restored but, instead, performs an implicit entry.

ShallowHistoryPseudostateActivation

The ShallowHistoryPseudostateActivation class (see Figure 8.13) is a specialization of HistoryPseudostateActivation that
specifies the semantics of a Pseudostate whose kind is shallowHistory.

Restoration

The ShallowHistoryPseudostateActivation class specifies that a RegionActivation is restored in a manner that is slightly
different from that specified for a DeepHistoryPseudostateActivation. The parent RegionActivation of the
ShallowHistoryPseudostateActivation is the only one that is restored. All other RegionActivations (for orthogonal
Regions or nested Regions) perform implicit entries.

8.5.8 Transition Activations

TransitionActivation

Figure 8.14 shows the three specializations of the TransitionActivation class, which, respectively, specify the semantics
for external Transitions, local Transitions and internal Transitions. The semantics of the different kinds of Transition are
reflected in the way the sourceVertexActivation is exited and the targetVertexActivation is entered. The
different kinds of Transactions all share the base semantics for guard evaluation and evaluation of the reactivity to a
particular EventOccurrence.

50 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 8.14 - TransitionActivations

ExternalTransitionActivation

Exit source

In the case of an ExternalTransitionActivation, the sourceVertexActivation is exited only if all of its prerequisites
to be exited are fulfilled (e.g., a ForkPseudostateActivation can only be exited when all its outgoing
TransitionActivations except this one have been traversed), otherwise it is not exited.

The way the sourceVertexActivation is exited also depends on whether the targetVertexActivation can be
entered. If the targetVertexActivation is not ready to be entered, then the exit sequence of the
sourceVertexActivation is limited to itself. Otherwise, if the targetVertexActivation is ready to be entered,
then the exit sequence of the sourceVertexActivation follows the common ancestor rule. This implies that the exit
sequence is propagated to parent VertexActivations until the common ancestor between the
sourceVertexActivation and the targetVertexActivation is reached.

Enter target

If the prerequisites to enter the targetVertexActivation are fulfilled, then this VertexActivation is entered,
following the common ancestor rule. This means that the entering sequence is propagated to parent VertexActivations
until the common ancestor existing between the sourceVertexActivation and the targetVertexActivation is
reached.

If the prerequisites are not fulfilled (e.g., the target is a StateActivation that is not already active), the
targetVertexActivation is not entered. Nevertheless, if the target is a StateActivation for a composite State, then
the RegionActivation owning the sourceVertexActivation completes. This may lead to the generation of a
CompletionEventOccurrence for the StateActivation composite State (see 8.5.5 on situations in which a StateActivation
is ready to complete).

LocalTransitionActivation

Containing StateActivation

For a LocalTransitionActivation, the exiting of the sourceVertexActivation and the entering of the
targetVertexActivation are conditioned by the identification of the so-called containing StateActivation. The
containing State of a local Transition can be determined in the following manner:

1. If the sourceVertexActivation of the local Transition is an EntryPointActivation, then the containing
StateActivation is the owner of this EntryPointActivation (i.e., a StateActivation for a composite State).

2. If the sourceVertexActivation contains the targetVertexActivation, then the containing
StateActivation is the sourceVertexActivation.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 51

TransitionActivation

ExternalTransitionActivation

 # enterTarget()
 # exitSource()

InternalTransitionActivation

 # exitSource()
 # enterTarget()

LocalTransitionActivation

 # enterTarget()
 # exitSource()
 # getContainingState(): StateActivation [1]

3. Otherwise the containing StateActivation is the targetVertexActivation.

Exit source

If the sourceVertexActivation has fulfilled its requirements to be exited, two cases are possible:

1. If the sourceVertexActivation is an EntryPointActivation, the exit sequence is trivial. Only the
EntryPointActivation is exited, through one or more continuation Transitions.

2. If the sourceVertexActivation is a StateActivation for a composite State and the
targetVertexActivation is a Vertex Activation located in a RegionActivation owned by the
sourceVertexActivation, then the sourceVertexActivation cannot be exited since it is also the
containing StateActivation for the LocalTransitionActivation. If there is already a StateActivation that is active
in the same RegionActivation as the targetVertexActivation, then that StateActivation is exited.

Enter target

If the targetVertexActivation has fulfilled its requirement to be entered and it is not the containing StateActivation
of the LocalTransitionActivation, then the entering sequence starts and the common ancestor rule applies.

InternalTransitionActivation

Exit source

An InternalTransitionActivation never exits its sourceVertexActivation.

Enter target

An InternalTransitionActivation never enters its targetVertexActivation.

8.5.9 Event Occurrences

Three kinds of event occurrences can be accepted by a StateMachineEventAccepter: SignalEventOccurrence,
CallEventOccurrence and CompletionEventOccurrence (see Figure 8.15). In addition, the DeferredEventOccurrence
class is used to wrapped deferred EventOccurrences. All these classes are specializations of the base EventOccurrence
class, which is part of the fUML common model for handling events (see [fUML, 8.4.3]), as is the
SignalEventOccurrence class. The other classes are added for PSSM and are described further below.

52 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 8.15 – Event Occurrences

CompletionEventOccurrence

A CompletionEventOccurrence is a specialization of EventOccurrence that denotes the completion of a StateActivation.

Scope of completion events

The scope of a CompletionEventOccurrence is limited to the StateActivation from which it was generated. This means
that, when the CompletionEventOccurrence is dispatched and accepted, it can only be used to trigger a completion
TransitionActivation (i.e, a TransitionActivation for a completion Transition, which has no explicit trigger – see [UML],
14.2.3.8.3) originating from the StateActivation that generated the CompletionEventOccurrence.

If the StateActivation that generated the CompletionEventOccurrence has no completion TransitionActivation, then the
CompletionEventOccurrence will be lost once it is dispatched.

Priority of completion events

When generated, a CompletionEventOccurrence is placed in the eventPool of the ObjectActivation associated with the
StateMachineExecution context Object. CompletionEventOccurrences added to the eventPool have priority over all
other EventOccurrences except other CompletionEventOccurrences. This means that a new CompletionEventOccurrence
is placed into the (ordered) eventPool behind any CompletionEventOccurrences already in the pool, but ahead of any
other EventOccurrences.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 53

DeferredEventOccurrence

(fUML_Semantics::Semantics::CommonBehavior)
EventOccurrence

StateActivation

CompletionEventOccurrence CallEventOccurrence

CallEventExecution

 + callerSuspended: Boolean [1]

 # _send(in eventOccurrence: CallEventOccurrence [1])
 - _suspend()
 + execute()
 + getBehavior(): Behavior [1]
 + new_(): Value [1]
 + releaseCaller()
 + getInputParameterValues(): ParameterValue [*]

(fUML_Semantics::Semantics::CommonBehavior)
Execution

(fUML_Semantics::Semantics::StructuredClassifiers)
Object

(UML::Classification)
Operation

(UML::CommonBehavior)
Behavior

 + constrainingStateActivation

 + deferredEventOccurrence

 1

 *

 + deferredEventOccurrence

 + deferral

 1

 0..1

 + stateActivation

 + eventOccurrence

 1

 0..1 + callEventOccurrence

 + execution

 0..1

 1

 + callEventExecution

 + callerContext

 *

 1

 + callEventExecution

 + operation *

 1

 + callEventExecution

 + behavior 1

 1

CallEventOccurrence

A CallEventOccurrence is a specialization of EventOccurrence that denotes a call to an Operation. This kind of
EventOccurrence is always produced by a CallEventExecution.

CallEventExecution

The fUML semantics for calling an Operation are specified using the dispatch operation of the Object class, which
returns an Execution for the appropriate method Behavior used to implement the Operation, taking any polymorphic
redefinition of the Operation into account (see [fUML], 8.3.2.1). In fUML, it is an error if no method can be found for
the Operation being called. In PSSM, however, a call to an Operation with no method is handled using a
CallEventOccurrence.

Dispatching behavior is actually a semantic variation point in fUML, with the exact behavior provided by a
DispatchStrategy class. The default DispatchStrategy class is RedefinitionBasedDispatchStrategy, which is specialized in
PSCS by the CS_DispatchOperationOfInterfaceStrategy. This is further specialized in PSSM by the
SM_RedefinitionBasedDispatchStrategy, whose dispatch operation creates a CallEventExecution in the case that a called
Operation has no implementing method (see 8.3).

A CallEventExecution is a specialization of the fUML Execution class whose execute operation is specified to create a
CallEventOccurrence. Normally, an Execution is instantiated from a Behavior, which serves as its type. This is not the
case for a CallEventExecution, however, which, instead, creates an effective Behavior with the same Parameter signature
as the called Operation. The CallEventExecution class then overrides the Execute getBehavior operation to return this
effective Behavior.

After a CallEventOccurrence is created, it is placed into the eventPool of the target Object of the Operation call, from
which it may be dispatched and, potentially, trigger a run-to-completion step in the target Object. However, as in fUML,
PSSM semantics only provide for synchronous Operation calls, so the caller remains blocked on its calling action until
the call is completed. The callerSuspended flag of the associated CallEventExecution remains true while the caller is
suspended.

If the CallEventOccurrence is dispatched and it triggers a run-to-completion step, then, once the step completes (i.e., at
the end of the accept operation of the StateMachineEventAccepter), the releaseCaller operation of the
CallEventExecution for the CallEventOccurrence is called, which notifies the callerContext (the Object from which
the call was made) to let it continue its own execution. It is also possible that the CallEventOccurrence is never handled
(for example, if it is dispatched but cannot be accepted at that time by the StateMachineExecution), in which case the call
will never return and the execution of the caller will simply hang.

Note. CallEvents in UML are not specific to StateMachines, but are part of the UML CommonBehavior model (see
[UML], 13.3). However, the fUML subset does not currently include CallEvent, only allowing calls to Operations for
which an implementing method can be found. Nevertheless, because it is a common use of StateMachines to specify the
behavior operations via CallEvent triggers on Transitions, this capability is included in PSSM.

DeferredEventOccurrence

A DeferredEventOccurrence is a specialization of EventOccurrence used to wrap another EventOccurrence (the actual
deferredEventOccurrence) that has been deferred. An EventOccurrence is always deferred by a StateActivation (see
8.5.5), which becomes the constrainingStateActivation of the DeferredEventOccurrence in which it is wrapped

An EventOccurrence is deferred under the following conditions:

1. The current StateMachineConfiguration includes a StateActivation for a State that declares a
deferrableTrigger that matches a dispatched EventOccurrence.

2. The analysis of the StateMachineConfiguration did not find a TransitionActivation with a higher priority that
could be fired by the dispatched EventOccurrence.

54 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

3. There is no “overriding” Transition (i.e. a Transition outgoing from the State declaring the
deferrableTrigger) able to fire with the dispatched EventOccurrence.

If these conditions hold, the EventOccurrence is wrapped in a DeferredEventOccurrence and placed in the
deferredEventPool of the SM_ObjectContextActivation of the context of the StateMachineExecution (see also 8.4). A
DeferredEventOccurrence is returned to the regular eventPool when the StateActivation responsible for deferring the
EventOccurrence is no longer in the StateMachineConfiguration.

8.5.10 Event Data Passing

8.5.10.1 Event Triggered Execution

A run-to-completion step is always started by the acceptance of an EventOccurrence. Then, during the run-to-completion
step, a number of Behaviors may be executed. For a StateMachine, such Behaviors include effect Behaviors on
Transitions and entry, exit and doActivity Behaviors on States. In addition, a guard Condition on a Transition
may have a specification that is an OpaqueExpression that may be defined using a Behavior. These Behaviors are all
considered to have event-triggered executions within the run-to-completion step for a given EventOccurrence.

Any of the kinds of Behaviors mentioned above can have input Parameters by which they can receive data contained in
the dispatched EventOccurrence during an event-triggered execution. In addition, effect, entry and exit Behaviors
can also have output Parameters that are used to provide data to be returned from a synchronous Operation call being
handled via a CallEventOccurrence. (See 7.6.2 on the necessary syntactic constraints on the Parameters of such
Behaviors.)

EventTriggeredExecution

The EventTriggeredExecution (see Figure 8.16) class is a specialization of the fUML Execution class that specifies the
semantics of a wrappedExecution happening within the context of the run-to-completion step of a
triggeringEventOccurrence. The wrappedExecution is the normal kind of Execution corresponding to the actual
Behavior being executed (e.g., an ActivityExecution for an Activity). (See also [fUML], 8.4.2, on the Execution class and
its ParameterValue mechanism.)

Figure 8.16 - EventTriggeredExecution

Execution

The EventTriggeredExecution class defines the execute operation from the Execution class to do the following:

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 55

EventTriggeredExecution

 + finalize()
 + execute()
 + initialize()
 + copy(): Value [1]
 + new_(): Value [1]

(fUML_Semantics::Semantics::CommonBehavior)
Execution

(fUML_Semantics::Semantics::CommonBehavior)
EventOccurrence

 + wrappedExecution

 0..1

 1

 + triggeringEventOccurrence

 0..1

 1

1. If the Behavior being executed has appropriate input Parameters (see below), then extract the data contained in
the triggeringEventOccurrence and pass it to the wrappedExecution as ParameterValues.

2. Execute the wrappedExecution.

3. If the Behavior being executed has output parameters, extract the output ParameterValues (see below).

Input ParameterValues

The initialize operation of the EventTriggeredExecution class is used to extract data from an EventOccurrence and create
the corresponding ParameterValues to be passed to a wrappedExecution. Syntactic constraints ensure that, if the
Behavior being executed has Parameters, then they are appropriate to receive the data from any possible
triggeringEventOccurrence. (See 7.6.2.2, pssm_state_behavior_parameters and
pssm_transition_behavior_parameters constraints.)

Data can be extracted from either a SignalEventOccurrence or a CallEventOccurrence.

1. If the triggeringEventOccurrence is a SignalEventOccurrence, then the executing Behavior must have
either one Parameter or no Parameters. If the Behavior has a Parameter, the SignalInstance corresponding to the
SignalEventOccurrence is passed to the wrappedExecution as the value of that Parameter.

2. If the triggeringEventOccurrence is a CallEventOccurrence, then the executing Behavior will either have
no Parameters or its input (“in” or “inout”) Parameters will conform, in order, to the input Parameters of the
Operation of the CallEvent for the CallEventOccurrence. If the Behavior has Parameters, then the input
ParameterValues of the CallEventExecution for the CallEventOccurrence (see 8.5.9) are used to set the input
ParameterValues of the wrappedExecution.

Output ParameterValues

Output ParameterValues may only be produced when the triggeringEventOccurrence is a CallEventOccurrence
and the Operation being called has output (“out”, “inout” and “return”) Parameters. In that case, an effect, entry or
exit Behavior, in addition to having input parameters that conform to those of the called Operation, can also have output
Parameters conforming to the output Parameters of the Operation (see 7.6.2.2, pssm_state_behavior_parameters
and pssm_transition_behavior_parameters constraints). In such a situation, after the completion of the
wrappedExecution, the output ParameterValues it produces are used to set the outputParameterValues of the
CallEventExecution of the CallEventOccurrence (see 8.5.9).

Note. In presence of concurrency, the output ParameterValues provided to the CallEventExecution may have changed
multiple times, if multiple Behaviors producing outputs are executed during the course of a run-to-completion step. The
final output ParametersValues are the ones provided by the last executed Behavior. Since the order of concurrent
execution is nondeterministic, which are the final outputs may also be nondeterministic. If nondeterminism is not desired,
then it is a modeler responsibility to ensure that a CallEventOccurrence will never result in the concurrent execution of
multiple Behaviors producing output values.

8.5.10.2 Event Data Passing and Static Analysis

While effect Behaviors Transitions and entry, exit and doActivity Behaviors on States are only executed during
the realization of a run-to-completion step, guard evaluation (except for guards on the outgoing Transitions of a choice
Pseudostate – see 8.5.7.3) takes place during the static analysis of the validity of the compound Transitions that might be
added to the set of Transitions to be fired. If a guard Constraint has a specification that is an OpaqueExpression
defined by an associated Behavior, then that Behavior may have input Parameters in order to obtain EventOccurrence
data (as described above). For any such guards evaluated during the static analysis process, data is extracted from the
EventOccurrence that has been dispatched from the eventPool and is being matched, even though a run-to-completion
step has not actually started yet.

56 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

8.6 Actions

The PSSM abstract syntax subset includes all the Actions included in the fUML abstract syntax subset, and PSSM does
not specify any different semantics for those Actions than specified in the fUML execution model (as extended in some
cases by PSCS). Nevertheless, it is necessary for the PSSM execution model to define a specialization of the PSCS
ReadSelfActionActivation class, in order to simply preserve the semantics of ReadSelfActions under PSSM. No other
ActionActivation classes are specialized in PSSM.

As described in 8.5.6, the model for the semantics of the execution of doActivities includes the use of a special
DoActivityContextObject class for the context of the Execution of a doActivity, wrapping the context Object of
the StateMachineExecution that invoked the doActivity. If the doActivity is an Activity, then, in most cases, the
fact that the context Object for the Activity is a DoActivityContextObject is entirely transparent to the Actions in the
Activity, which execute as if the context was the same as that of the containing StateMachine.

However, if a ReadSelfAction is executed within a doActivity, its base semantics would be to return a reference to the
actual context Object of the containing Activity, which would be a DoActivityContextObject. Because the
DoActivityContextObject class overrides various operations of the Object class (as shown on Figure 8.9), it acts
indistinguishably from the StateMachine context Object that it wraps when accessing any behavioral or structural
Feature. Nevertheless, a DoActivityContextObject still has a different identity than the actual context Object it wraps,
and it would be distinguishable from the wrapped context using, say, a TestIdentityAction. Further, reading Links in
which the StateMachine context Object participates would not work using the DoActivityContextObject, because the
Links being read are identified by implicitly testing the identity of the Objects at their ends.

To prevent these problems, the PSSM execution model includes the SM_ReadSelfActionActivation class, which is a
specialization of the PSCS CS_ReadSelfActionActivation (see Figure 8.17). The specialized class overrides the
getExecutionContext operation to test whether the context Object of the containing Behavior Execution is a
DoActivityContextObject. If so, it returns the context Object wrapped by the DoActivityContextObject, rather than the
DoActivityContextObject. As a result, when a ReadSelfAction is executed within a doActivity, its output is the
StateMachine context Object, just as it is when a ReadSelfAction executes within any other kind of Behavior owned by
a StateMachine.

(PSCS_Semantics::Semantics::Actions)
CS_ReadSelfActionActivation

SM_ReadSelfActionActivation

 + getExecutionContext(): Object [1]

Figure 8.17 - Actions Extension

8.7 Loci

The Loci package in the PSSM execution model includes specializations of the CS_Locus and CS_ExecutionFactory
classes from the Loci package of the PSCS execution model. The PSCS classes are specialized, rather than the
corresponding fUML execution model classes, so that the PSSM execution model can also handle the SemanticVisitor
classes that provide the operational semantics for PSCS, which is necessary to execute a model at the “Joint PSSM and
PSCS Conformance” level (see 2.2.2). However, a model at the “PSSM-only Conformance” level, that strictly adheres to

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 57

the PSSM subset specified in Clause 7, will not include any PSCS-specific elements and, therefore, can be executed
without the PSCS functionality inherited by the PSSM Loci classes.

The SM_Locus class redefines the instantiate operation such that, if the given type is not a Behavior, then it is
instantiated as an SM_Object (see 8.3), rather than a regular fUML Object. The SM_ExecutionFactory class redefines the
instantiateVisitor operation in order to instantiate the new SemanticVisitors for StateMachine elements (as defined in 8.5)
and to instantiate the PSSM-specific SM_OpaqueExpressionEvaluation SemanticVisitor for OpaqueExpression (as
defined in 8.2) and the SM_ReadSelfActionActivation SemanticVisitor for ReadSelfAction (as defined in 8.6).

SM_ExecutionFactory

 + instantiateVisitor(in element: Element [1]): SemanticVisitor [1]
SM_Locus

 + instantiate(in type: null [1]): Object [1]

(PSCS_Semantics::Semantics::Loci)
CS_ExecutionFactory

(PSCS_Semantics::Semantics::Loci)
CS_Locus

Figure 8.18 - Loci Extensions

58 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 59

9 Test Suite

9.1 Overview

This clause presents a test suite to be used to validate that an execution tool conforms to the semantic model presented in
Clause 8 (see also Clause 2 on the requirements for conformance). The test suite is an fUML, PSCS and PSSM
conformant model comprising a set of test cases that, when executed by an execution tool, report on whether or not the
expected results are obtained.

The definition of the test suite is based on an analysis of the UML specification of the semantics of state machines
([UML], Clause 14) that identified a set of requirements to be validated by the test cases in the suite. Each requirement is
a textual statement about one specific part of the semantics of state machines. Each test case then verifies whether or not
an execution tool meets one particular requirement, as formally interpreted according to the semantic model defined in
Clause 8.

The test suite is separated into two parts.

1. The first part defines the abstract architecture of a test case. This architecture is specialized (in the UML sense)
for each test case. A detailed presentation of this part of the test suite model is given in 9.2.

2. The second part of the test suite is a set of packages, where each package refers to a particular test category. For
example, one test category in the test suite captures all test cases related to transition semantics. Each test case in
this category asserts a specific part (identified in the requirements) of the transition semantics. All test cases in
the test suite are described in 9.3. Each description includes a statement of the requirement covered by the test
case, a model of the state machine being tested and a description of the expected result of running the test.

The purpose of having a strong coupling between the semantic requirements for state machines is to be able to (as in any
software development) identify quickly and precisely what is covered by the semantic model in terms of semantics and
what is not. Coverage of the requirements by the test suite is discussed in 9.4.

9.2 Utilities

9.2.1 Overview

One objective of the PSSM test suite is to define a base architecture to simplify the definition of executable tests cases.
This architecture (structure and behavior) is presented in 9.2.2. The communications that take place between the different
elements of the architecture are presented in 9.2.3. Finally, 9.2.4 explains the process of generating a trace that captures
information about the state machine execution. This trace is used to compare the execution expected for the state machine
against the trace actually generated at execution time.

9.2.2 Architecture

9.2.2.1 Architecture Concepts

This subclause presents the architecture that was defined to describe test cases to assess the PSSM semantic model. The
base architecture of the PSSM test suite is inspired by concepts identified by the UML testing profile. The UML testing
profile was built to provide “a standardized language based on OMG's Unified Modeling Language for designing,
visualizing, specifying, analyzing, constructing, and documenting the artifacts commonly used in and required for

60 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

various testing approaches, in particular model-based testing (MBT) approaches”.1 The UTP concepts used in the PSSM
test suite are:

• TestComponent: “Test components are part of the test environment and are used to communicate with the system
under test (SUT) and other test components. The main function of test components is to drive a test case by
stimulating the system under test through its provided interfaces and to evaluate whether the actual responses of
the system under test comply with the expected ones.” (see subclause 8.2.2.2 of UTP to read the complete
description of this concept).

• TestCase: “A test case is a behavioral feature or behavior specifying tests. A test case specifies how a set of test
components interact with an SUT to realize a test objective. Test cases are owned by test contexts, and therefore
have access to all parts of the test configuration, other global variables (e.g., data pools, etc.) or further behavioral
features (e.g., auxiliary methods). A test case always returns a verdict.” (see subclause 9.2.2.4 of UTP to read the
complete description of this concept).

• TestContext: “A test context acts as a grouping mechanism for a set of test cases. The composite structure of a test
context is referred to as test configuration. The classifier behavior of a test context may be used for test control”
(see subclause 8.2.2.3 of UTP to read the complete description of this concept).

Figure 9.1 shows how these concepts are used in the context of the definition of the abstract architecture of a test. Figure
9.2 shows the structure of the semantic test container for such tests. These classes and their behavior, are described in
9.2.2.2.

Figure 9.1 - Architecture of an Abstract Semantic Test

1 UML Testing Profile (UTP), Version 2, Revised Submission, OMG document ad/2016-05-10.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 61

Tester

«Signal» Start

Tester$behavior$1

Target

 + traceBuilder: TraceBuilder [1]

«Signal» Continue
«Signal» AnotherSignal
 + trace(in segment: String [1])
«Signal» Start

Target$behavior$1

SemanticTest

 + pass: Boolean [1]
 + name: String [1]
 + expectedResult: String [1]

«Signal» TestEnd
 + getTestComponent(): Tester [1]
 + getTestTarget(): Target [1]
«Signal» Start
 + assert(in trace: String [1])

AbstractSemanticTest$behavior$1

 + testable

 + tester

 1

 1

 + tester

 + test

 1

 1

 + target

 + test

 1

 1

Figure 9.2 - SemanticTest and SemanticsTestSuite

9.2.2.2 Architecture Class Descriptions

9.2.2.2.1 Tester

Description

Tester is an abstract active class which encodes in its classifier behavior the stimulation sequence (i.e, a set of event
occurrences) that will be sent to the target (i.e., the system under test).

Note that this role matches what is intended for a TestComponent in UTP. This class has the stereotype “TestComponent”
applied.

Association Ends

• testable: Target [1] – The SUT (System Under Test) to which the stimulation sequence is sent.

• test: SemanticTest [1] – The test case which controls the tester.

Receptions

• Start – A tester can receive a Start signal

Classifier Behavior

The classifier behavior of the abstract Tester class is empty. Specializations are intended to provide a new classifier
behavior which will encode the user defined stimulation sequence.

9.2.2.2.2 Target

Description

Target defines the system under test. Specializations of this class have to provide their classifier behaviors specified as a
state machine.

A target receives the stimulation sequence produced by the ester. The dispatching of the events will enable transitions of
the state machine playing the role of a classifier behavior to be triggered.

Throughout its execution the state machine generates an execution trace. This trace is stored by the target and finally
provided as the result of the execution to the test which controls the target.

Attributes

• traceBuilder: TraceBuilder [1] – Each test target owns a trace builder. It enables the classifier behavior of a target
to build a trace of its execution.

Association Ends

• test: SemanticTest [1] - The test case which controls the target.

62 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

SemanticTest

SemanticTestSuite

 - name: String [1]

 - displayResultLabel(in verdict: Boolean [1], in label: String [1], in test: SemanticTest...
 - displayTestSuiteLabel()
«Signal» TestEnd

 + tests

 + testSuite *

 1

Operations

• trace(in segment: String[1]) – The operation enables the addition of “segment” (i.e., a new part) to the execution
trace. It can be called at any time in the classifier behavior of the target to capture information relative to the
executed state machine.

Receptions

• Start – The target is able to receive Start signals

• Continue – The target is able to receive Continue signals

• AnotherSignal – The target is able to receive AnotherSignal signals.

• Pending – The target is able to receive Pending signals.

• Data – The target is able to receive Data signals. Data signal has a property value which is of type Boolean.

• IntegerData – The target is able to receive IntegerData signals. IntegerData signal has a property value which is of
type Integer.

Classifier Behavior

The classifier behavior of the abstract Target is empty. All specializations are intended to provide a new classifier
behavior which will be the state machine whose execution is performed by the execution model defined for PSSM.

9.2.2.2.3 SemanticTest

Description

The SemanticTest class represents the main artifact of a semantic test case. A semantic test is in charge of instantiating
and controlling the tester and the target (i.e. the SUT). When the execution of the SUT is completed, the execution trace
that was produced is provided to the semantic test case for analysis. If the trace matches one of the expected traces for the
executed state machine the test is deemed to have passed otherwise it is marked as failed.

The classifier behavior of a semantic test has the TestCase stereotype applied.

Attributes

• name: String [1] – The name of the test case.

• pass: Boolean [1] – The current status (pass or fail) of the test.

• expectedResult: String [1..*] – The set of all possible valid execution traces for the SUT.

Operations

• getTestComponent(): Tester – An abstract operation which returns an instance of Tester controlled by the semantic
test whose classifier has been started. This operation is intended to be redefined by specializations of
SemanticTest.

• getTestTarget(): Target – An abstract operation which returns an instance of the target controlled by the semantic
test whose classifier has been started. This operation is intended to be redefined by specializations of
SemanticTest.

• assert(in trace: String[1]) – This operation updates the value of the attribute “pass” by comparing the trace given
as a parameter to the expected execution trace known by the semantic test.

• register(in possibleTrace: String[1]) – This operation updates the set of valid traces that can be expected to be
generated by the target. The specified trace is added to the set of traces.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 63

Receptions

• Start – The semantic test is able to receive Start signals.

• TestEnd – The semantic test is able to receive TestEnd signals.

Classifier Behavior

The classifier behavior of a semantic test is defined as a UML activity. It conforms to the fUML subset. The Alf
specification corresponding to this activity is presented in Table 9.1.

The flow of this behavior is the following:

1. When the classifier behavior starts, it blocks waiting for the reception of a Start signal

2. Upon receiving the Start signal, it creates and initializes both the tester and the target.

○ The links (instances of associations) are created.

○ The tester and the target are each sent a Start signal.

○ The semantic test then blocks waiting for a TestEnd signal.

3. When the TestEnd signal is received, it computes the verdict of the test. The verdict is either PASS or FAIL. In
case of a failure of the test, the semantic test displays the trace generated by the target as well as the set of valid
traces that were expected. Finally, regardless of the verdict, the semantic test notifies the test suite that controls
it about the termination of the test execution.

Note that specializations of SemanticTest are not intended to override this general pattern.

64 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

private import Util::Protocol::Messages::Start;

private import Util::Protocol::Messages::End;

activity 'AbstractSemanticTest$behavior$1'() {

// Wait for a start signal

accept(Start);

// Tester and target are created and started

target = this.getTestTarget();

tester = this.getTestComponent();

// Create link connection between the two

target.tester = tester;

tester.testable = target;

this.target = target;

this.tester = tester;

// Both are started

target.Start();

tester.Start();

// Wait for the arrival of the result emitted by the target

accept(executionResult : End);

this.pass = this.matches(executionResult.trace);

// Result analysis

if(!this.pass){

WriteLine("[TEST] "+ this.name + " ** FAIL ** - {"+

executionResult.trace + "} does not match any of the following");

for(i in 1..this.expectedTraces->size()){

WriteLine("-----> [" + IntegerFunctions::ToString(i)+"] - "+

this.expectedTraces->at(i));

}

}else{

WriteLine("[TEST] " + this.name + " - PASS -");

}

// Provides the result back to the test suite governing this semantic test case

this.testSuite.TestEnd(this.pass);

}

Table 9.1: Specification of SemanticTest Behavior

9.2.2.2.4 SemanticTestSuite

Description

An instance of SemanticTestSuite owns a set of SemanticTests. The execution of these tests is orchestrated by the test
suite itself. Tests are executed one by one. At the end of each test the verdict is retrieved by the test suite that is in charge
of displaying the results. This is an active class. It is not intended to be specialized.

 It corresponds to the concept of TestContext proposed by UTP and, consequently, it is stereotyped as a TestContext.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 65

Attributes

• name: String [1] – The name of the test suite.

Association Ends

• tests: SemanticTest [*] - the set of semantic tests that are handled by the semantic test suite.

Receptions

• TestEnd – The SemanticTestSuite class is able to received TestEnd signals.

Operations

• displayResultLabel(in verdict: Boolean [1], in label: String[1], in test: SemanticTest [1]) – A utility operation to
display the test result on an output stream.

• displayTestSuiteLabel() - A utility operation to display the name of the suite on an output stream.

Classifier Behavior

The test suite is composed of a set of semantic tests. Each semantic test is executed in sequence. The execution of a
semantic test is started by the sending of a Start signal and ends when the semantic test suite receives the notification
TestEnd, which includes the information relative to the semantic test verdict. The entire semantic test suite is deemed to
have failed if at least one of its test fails. In case of failure, the semantic test suite provides the number of failed semantic
tests. The classifier behavior of the semantic test suite is presented in Table 9.2 using the Alf notation.

66 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

private import Util::Protocol::Messages::TestEnd;

private import Util::Protocol::Messages::Start;

activity 'SemanticTestSuite$behavior$1'() {

accept(Start);

WriteLine("\n[TEST SUITE ("+IntegerFunctions::ToString(this.tests->size())+

" tests)] - "+this.name+"\n");

// Execute all semantic tests registered in that test suite

Integer failures = 0;

for(i in 1..this.tests->size()){

// Test gets the authorization to start

this.tests->at(i).Start();

// Test suite waits for the results

accept(testResult : TestEnd){

if(testResult.verdict == false){

failures++;

}

}

}

// There is at least one failure then the test suite is considered as failed

if(failures > 0){

WriteLine("\n[TEST SUITE] - "+this.name + " FAILURE ("+

IntegerFunctions::ToString(failures+

" / "+IntegerFunctions::ToString(this.tests->size())+" failed)\n");

}

}

Table 9.2: Specification of SemanticTestSuite Behavior

9.2.3 Protocol

9.2.3.1 Protocol Overview

The Protocol package of the test suite has two subpackages: Messages and Events.

1. Messages contains all signals used to communicate between the different active classes:

namespace StateMachine_TestSuite::Util::Protocol;

package Messages {

/* -- Synchronization --*/

public signal Start {}

public signal End {

public trace: String;

}

public signal TestEnd {

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 67

public verdict: Boolean;

public label: String[0..1];

}

/* -- Synchronization --*/

/* -- Stimulations --*/

public signal Continue {}

public signal AnotherSignal {}

public signal Pending {}

public signal Data{

public value: Boolean;

}

public signal IntegerData{

public value: Integer;

}

/* -- Stimulations --*/

}

2. Events contains the signal events (for the signals located in Messages) that can be directly used for triggers.

The synchronization signals in the Messages package (i.e., Start, End and TestEnd) are used to synchronize executions of
different active objects. These signals are further described in 9.2.3.2.

The stimulation signals (i.e., Continue, Pending, AnotherSignal, Data and IntegerData), on the other hand, are used by the
tester to stimulate the target (i.e. the system under test). None of these signals contain data except Data and IntegerData.
These two signals are used to assess event data passing semantics.

9.2.3.2 Synchronization Signal Descriptions

9.2.3.2.1 Start

Description

The Start signal is used for to two purposes in the test suite context. First, it enables the test suite to start the execution of
a specific semantic test. Second it enables the test to start both its tester and its target. The modeling constraint for the
SemanticTest, the Tester, and the Target is that they must all register as acceptors for the Start signal at the beginning of
the execution of their classifier behaviors. Note that the Start signal does not include any data (it has no attributes).

9.2.3.2.2 End

Description

The End signal enables the Target to provide its controller (i.e., the SemanticTest) with a notification containing its
execution trace. The semantic test takes advantage of this notification to compute the test verdict.

Attributes

• trace: String [1] – The execution trace generated by the state machine that plays the role of a classifier behavior
for the Target.

68 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.2.3.2.3 TestEnd

Description

The TestEnd signal enables a semantic test to notify its test suite that it has completed. This notification encapsulates two
items of information: the test verdict as well as, in case of failure, a label indicating the differences between the expected
trace and the trace actually produced during the execution.

Attributes

• verdict: Boolean [1] – The verdict of test, that is to say, pass or fail encoded as Boolean values.

• label: String [0..1] – If the test failed, the label presents the difference between the trace that was expected and the
one actually produced during the execution.

9.2.4 Tracing

At run time, the target is intended to produce an execution trace. This trace will be used to compute the test verdict by
comparing the trace expected by the semantic test against the one actually generated by the target. The production of this
trace relies on a small utility class, TraceBuilder.

namespace StateMachine_TestSuite::Util::Tracing;

class TraceBuilder {

/*Record the trace as simple String*/

public trace: String;

/*Construction and destruction */

@Create

public TraceBuilder();

@Destroy

public destroy();

/*Add a new segment in the trace*/

public addSegment(in segment: String);

}

The execution information (state entered, behavior executed, etc.) that must be part of the trace is up to the designer of
the test. To add new information in the trace, the designer must call the trace operation provided by the target. The latter
will delegate to the trace builder. Such a call to the trace operation must take place while the state machine is running.
Consequently, there are four places at which the calls to trace might occur:

1. The entry behavior of a state
2. The doActivity behavior of a state
3. The exit behavior of a state
4. The effect behavior of a transition

9.3 Tests

9.3.1 Overview

This subclause presents the different test cases that are currently included in the PSSM test suite. The tests cases are
grouped into categories. Each category is related to a specific part of the semantics.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 69

Each test included in the test suite specializes the base test architecture presented in 9.2.2.1. Figure 9.3 illustrates such a
specialization, for the case of the test Behavior 001 (which is fully described in 9.3.2.2). The Target class presented in
9.2.2.2.2 is specialized in order to provide a specific test target. This specialized class then defines a new classifier
behavior, which is the state machine that is going to be executed.

Behaviors_001_Test

Behavior_001_Test$behavior$1

Target

SemanticTest Behavior001

 + getTestComponent(): Tester [1]
 + getTestTarget(): Target [1]

SemanticTest

Figure 9.3 - Behavior 001 Test Architecture

The general class SemanticTest is also specialized. This enables the test to provide redefined versions of operations
getTestComponent and getTestTarget. These two operations are used to instantiate and start the classifier behaviors of
both the tester (see 9.2.2.2.1) and the test target (see 9.2.2.2.2).

All test cases in the test suite follow a similar test architecture, except for those in 9.3.18, which test the execution of
“standalone” state machines. In the standalone state machine test cases, the state machine is itself the test target, rather
than being the classifier behavior of another class. However, these test cases otherwise run in a similar fashion to the
other test cases.

Each of the following test descriptions includes:

• A statement of the semantic requirement covered by the test.

• A diagram of the state machine being tested.

• The event sequence that is received by the tested state machine. The order in which the event occurrences are
enumerated is the order in which the event occurrences will be received. Each received event occurrence is related
to a specific state machine configuration.

• The execution trace generated during the test execution. This trace does not represent the complete execution of
the tested state machine. It is only composed of trace messages generated while corresponding model elements
composing the state machine are executed. Although the trace built during the execution is not complete, it is
always sufficient to evaluate if the state machine was executed in way that conforms to the semantics specified for
UML state machines.

• An explanatory note detailing the different phases of the execution.

• A table describing the different run-to-completion (RTC) steps realized during the execution of the tested state
machine. This table contains the following columns:

1. Steps – The identifier of the run-to-completion step

2. Event pool – The status of the event pool for the time at which the RTC step is realized. Using the default
first-in-first-out dispatching strategy, the rightmost event occurrence in the pool is then the one to be
dispatched for that step. In the list of event occurrences, the notation “CE” is used to identify the occurrence
of a completion event.

3. State machine configuration – The state configuration of the state-machine at the moment when the RTC step
is realized.

70 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

4. Fired transition(s) – The transitions that are fired during the RTC step.

• A list of all alternative execution traces that can be be produced by the test. If there are alternative traces, one of
the traces is chosen and explained using a table describing the different RTC steps leading to the generation of that
trace.

9.3.2 Behavior

9.3.2.1 Overview

Tests presented in this subclause test that semantics associated with state behaviors (i.e., entry, doActivity and exit)
conform to what is specified in UML.

9.3.2.2 Test Behavior 001

Tested state machine

The state machine that plays the role of a classifier behavior for the class Behaviors_001_Test is presented in Figure 9.4.
The entry behavior associated with the state S1 of this state machine is intended to be executed when the state is entered.
When executed, the behavior will add in the execution trace a message S1(entry). If the message is not part of the trace,
then the test is considered to have failed.

Figure 9.4 - Behavior 001 Test Classifier Behavior

The behavior which is associated as an entry to the state S1 is presented as an activity in Figure 9.5.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 71

Behavior_001_Test$behavior$1

S1
/entry Activity entry

T1

T2 Start/Activity: testEnd

T1

T2 Start/Activity: testEnd

Figure 9.5 - S1 entry behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration S1

Generated trace

• S1(entry)

Note. The purpose of this test is to assess that S1 entry behavior is executed when the state is entered.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(S1)] [S1] []

3 [Start] [S1] [T2]

9.3.2.3 Test Behavior 002

Tested state machine

The state machine that is executed for this test is presented in Figure 9.6.

72 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

entry

this

this

trace

segmenttarget

S1(entry)

value

Behaviors_002$behavior$1

S1
/exit Activity exit

T1

T2Start/Activity: testEnd

T1

T2Start/Activity: testEnd

Figure 9.6 - Behavior 002 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration S1

Generated trace

• S1(exit)

Note. The purpose of this test is to assert that S1 exit behavior is executed when the state is exited.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(S1)] [S1] []

3 [Start] [S1] [T2]

9.3.2.4 Test Behavior 003-A

Tested state machine

The state machine that is executed for this test is presented in Figure 9.7.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 73

Behaviors003_Test$behavior$1

wait

S1
/do Activity doActivity

/entry Activity entry

 FS1

error

T1

T3/Activity: effect
T5 AnotherSignal/Activity: testEnd

T2Start

T4

/Activity: testEnd

T1

T2Start

T4

/Activity: testEnd

T3/Activity: effect
T5 AnotherSignal/Activity: testEnd

Figure 9.7 - Behavior 003 - A Test Classifier behavior

The doActivity behavior which is executed when the entry of S1 finished is presented in Figure 9.8. When started, this
behavior completes the execution trace with the message S1(doActivityPartI) and blocks until the reception of a Continue
signal. Only if this signal triggers the continuation of the doActivity will the execution trace be completed with the
message S1(doActivityPartII).

doActivity

this

target

call(trace)

segment

target

S1(doActivityPartI)

call(trace)

segmenttarget

accept(Continue)

S1(doActivityPartII)

Figure 9.8 - S1 doActivity behavior

74 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Test executions

Received event occurrence(s)

• Start – received when in configuration wait

• AnotherSignal – received when in configuration S1

Generated trace

• S1(entry)::S1(doActivityPartI)

Note. In this test the focus is on validating the assertion that if a doActivity is currently being executed by a state and
the latter is exited, then the doActivity is aborted. Consider that the state machine is in configuration S1 and the
doActivity that was executed on on its own thread of execution is now blocked waiting for a Continue signal to be
dispatched. The next event to be dispatched is AnotherSignal. When dispatched it triggers transition T5. The
triggering of the latter implies that S1 is exited and hence its running doActivity is aborted. The state machine
terminates its execution by reaching the final state.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [AnotherSignal] [S1] [T5]

9.3.2.5 Test Behavior 003-B

Tested state machine

The state machine that is executed for this test is presented in Figure 9.9.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 75

Test execution

Received event occurrence(s)

• Start – received when in configuration wait

• Continue – received when in configuration S1

Generated trace

• S1(entry)::S1(doActivityPartI)::S1(doActivityPartII)

Note. This test focuses on validating the assertion that when the doActivity completes then, if the state is in a
situation where it is ready to complete, it generates a completion event. For this test, the doActivity that is related to
S1 is the same as the one presented in Figure 9.8. In this test case, the only way for the state machine to terminate its
execution is to traverse the completion transition T3 using the completion event generated by S1. The completion
event has to be generated so that the doActivity behavior started by S1 completes. In this case, when Continue gets
dispatched, it cannot be accepted by the state machine since there is no transition that has a trigger to react to this
event. However, it can be accepted by the doActivity behavior which is currently blocked waiting for a Continue
event. The acceptance of this event leads to the doActivity completing, which implies that, upon completion, state S1
generates a completion event.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [Continue] [S1] [] - RTC step in the doActivity

76 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Behaviors003-bis_Test$behavior$1

wait

S1
/entry Activity entry

/do Activity doActivity

 FinalState1

T1

T3 /Activity: testEnd

T2 Start

T1

T2 Start

T3 /Activity: testEnd

Figure 9.9 - Behavior 003 - B Test Classifier behavior

Step Event pool State machine configuration Fired transition(s)

5 [CE(S1)] [S1] [T3]

9.3.2.6 Test Behavior 004

Tested state machine

The state machine that is executed for this test is presented in Figure 9.10. It is important to note the presence of the
internal transition T3 (see AnotherSignal/Activity: effect in S1 on Figure 9.10) which can be triggered when the state
machine is in configuration S1 and AnotherSignal event is dispatched.. For this test the doActivity that is related to S1 is
the same as the one presented in Figure 9.8.

Figure 9.10 - Behavior 004 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait

• AnotherSignal – received when in configuration S1

• Continue – received when in configuration S1

Generated trace

• S1(entry)::S1(doActivityPartI)::T3(effect)::S1(doActivityPartII)

Note. When in configuration S1, T3 is triggered by the dispatching of AnotherSignal. This triggering has no impact
on the doActivity behavior that is currently running. Indeed the behavior is still blocked waiting for the Continue
event occurrence. When this event is received, the doActivity consumes it and completes its execution.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 77

Step Event pool State machine configuration Fired transition(s)

4 [Continue, AnotherSignal] [S1] [T3]

5 [Continue] [S1] [] - RTC step in the doActivity

6 [CE(S1)] [S1] [T4]

9.3.3 Transition

9.3.3.1 Transition 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.11.

Figure 9.11 - Transition 001 Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration S1.

Generated trace

• T2(effect)

Note. The purpose of this test is to assert that the effect behavior of a transition is executed when the latter is
traversed. In this test, when Start is dispatched it triggers T2 whose execution adds the message T2(effect) to the
execution trace.

78 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Transition_001_Test$behavior$1

S1

S2

T1

T2 Start/Activity: effect

T3 /Activity: testEnd

T1

T2 Start/Activity: effect

T3 /Activity: testEnd

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(S1)] [S1] []

3 [Start] [S1] [T2]

4 [CE(S2)] [S2] [T3]

9.3.3.2 Transition 007

Tested state machine

The state machine that is executed for this test is presented in Figure 9.12.

Test executions

Received event occurrence(s)

• AnotherSignal – received when in configuration S1.

• Continue – received when in configuration S3.

• Continue – received when in configuration S1.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 79

Figure 9.12 - Transition 007 Test Classifier Behavior

Transition_007_Test$behavior$1

S1

S3

 FinalState1

S2

T4 /Activity: testEnd

T2

Continue, AnotherSignal/Activity: doTraversal

T1 AnotherSignal/Activity: doTraversal

T3

Continue/Activity: doTraversal

T1 AnotherSignal/Activity: doTraversal

T3

Continue/Activity: doTraversal

T4 /Activity: testEnd

T2

Continue, AnotherSignal/Activity: doTraversal

Generated trace

• T1(effect)::T2(effect)::T3(effect)

Note. The purpose of this test is to assert that a transition can be triggered if at least one of its triggers matches the
dispatched event. Consider that the state machine is in configuration S1. When AnotherSignal is dispatched,
transition T1 is triggered. This is due to the fact that T1 declares a trigger for the signal AnotherSignal. The state
machine then moves into configuration S3. There is no difference in the situation where there are multiple triggers
declared for a transition (see T2 in Figure 9.24). If the dispatched event occurrence matches at least one of them, the
transition is traversed. Continue then triggers T2.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [AnotherSignal, CE(S1)] [S1] []

3 [AnotherSignal] [S1] [T1]

4 [Continue, CE(S3)] [S3] []

5 [Continue] [S3] [T2]

6 [Continue, CE(S1)] [S1] []

7 [Continue] [S1] [T3]

8 [CE(S2)] [S2] [T4]

9.3.3.3 Transition 010

Tested state machine

The state machine that is executed for this test is presented in Figure 9.13. It is important to note the presence of an
internal transition for S1 (see AnotherSignal/Activity: effect in S1 on Figure 9.13). This transition can be triggered when
an occurrence of AnotherSignal is dispatched.

80 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

• AnotherSignal – received when in configuration S1.

• AnotherSignal – received when in configuration S1.

• Continue – received when in configuration S1.

Generated trace

• waiting(exit)::S1(entry)::IT(effect)::IT(effect)::S1(exit)

Note. The purpose of this test is to assert that, when an internal transition is fired ,the source state is not exited and
the target state is not entered. The generated trace demonstrates this behavior. Indeed, S1 is not exited and re-entered
when the internal transition IT is traversed. In the trace, one can observe that IT(effect) appears twice. This illustrates
the fact that this transition is triggered for each dispatching of an occurrence of AnotherSignal. The dispatching of
the Continue event occurrence implies that T2 is traversed and the S1 exit behavior is executed. The state machine
execution completes by reaching the final state.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T1]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 81

Figure 9.13 - Transition 010 Test Classifier Behavior

Step Event pool State machine configuration Fired transition(s)

4 [AnotherSignal, AnotherSignal,
CE(S1)]

[S1] []

5 [AnotherSignal, AnotherSignal] [S1] [IT]

6 [Continue, AnotherSignal] [S1] [IT]

7 [Continue] [S1] [T2]

9.3.3.4 Transition 011-A

Tested state machine

The state machine that is executed for this test is presented in Figure 9.14.

Figure 9.14 - Transition 011- A Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1].

Generated trace

• S1.1(entry)::S1.1(exit)::T1.3(effect)::S1.2(entry)

Note. The purpose of this test is to demonstrate that, when a local transition leaving the containing state is triggered,
then the state is not exited. Consider that the state machine is in configuration S1[S1.1], and Continue is the next
event to be dispatched. . The traversal of T1.3 implies that S1.1 is exited, the effect behavior is executed and, finally,
S1.2 is entered. Upon completion of the entry behavior a completion event is generated for S1.2. The latter is used to
trigger T1.4 in the next RTC step.

82 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Transition011_Test_A$behavior$1

wait
S1

S1.1
/entry Activity entry

/exit Activity exit

S1.2

/entry Activity entry

/exit Activity exit

T1.4
 T3

/Activity: testEnd T1.3Continue/Activity: effect

T2

Start

T1.1

T1

T1.2

Pending

T1

T2

Start

T1.1

T3

/Activity: testEnd

T1.2

Pending

T1.3Continue/Activity: effect

T1.4

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [Continue, CE(S1.1)] [S1[S1.1]] []

5 [Continue] [S1[S1.1]] [T1.3]

6 [CE(S1.2)] [S1[S1.2]] [T1.4]

7 [CE(S1)] [S1] [T3]

9.3.3.5 Transition 011-B

Tested state machine

The state machine that is executed for this test is presented in Figure 9.15.

Figure 9.15 - Transition 011 - B Test Classifier behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 83

• Continue – received when in configuration S1.

Generated trace

• S1(entry)::S1.1(entry)::T1.3(effect)

Note. The purpose of this test is to demonstrate that, if a local transition leaves an entry point owned by the
containing state and targets the inside edge of the containing state, then exiting the entry point has no effect on
hierarchy of active states and the target is not re-entered since it is already active. Consider that the state machine is
configuration wait. When T2 is triggered, the entry point is reached, S1 is entered and its unique region is entered.
The execution of the region starts from the initial pseudostate. Next, the initial transition T1.1 is traversed, and,
finally, S1.1 is entered. At this point, the RTC step initiated by the dispatching of the Start event occurrence is not
finished. Indeed, the continuation transition T1.3 outgoing from the entry point is traversed. Since S1 is already
active, it is not re-entered. This marks the end of the current RTC step. When the Continue event occurrence is
dispatched, it triggers T1.2 which leads to the region completion and hence to the completion of S1. The completion
event for S1 is used to trigger T3, which leads to the completion of the state machine execution.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T1.3)]

4 [Continue, CE(S1.1)] [S1[S1.1]] []

5 [Continue] [S1[S1.1]] [T1.2]

6 [CE(S1)] [S1] [T3]

9.3.3.6 Transition 011-C

Tested state machine

The state machine that is executed for this test is presented in Figure 9.16.

84 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.2].

Generated trace

• S1(entry)::S1.1(entry)::S1.1(exit)::S1.2(exit)::T1.3(effect)::S1(exit)

Note. The purpose of this test is to demonstrate that, when an external transition is fired, if its source is an internal
vertex of the target, then the region of the target that contains (directly or indirectly) the source vertex completes.
Consider that the state machine is in configuration S1[S1.2]. When T1.3 is triggered (by the dispatching of
Continue), S1.2 is exited and the effect behavior is executed. However, S1 is not re-entered (it is already active), but
the region that contains the last exited state is completed. The completion of the region implies the generation of a
completion event for I. This completion event is used to trigger T3.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.2]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 85

Transitions011-ter_Test$behavior$1

wait

S1

S1.1
/entry Activity entry

/exit Activity exit

S1.2
/entry Activity exit

/entry Activity entry
/exit Activity exit

T1.3Continue/Activity: effect

T1.2

T2

Start

T1.1

T1

T3

/Activity: testEnd

T1

T2

Start

T1.1

T1.2

T1.3Continue/Activity: effect
T3

/Activity: testEnd

Figure 9.16 - Transition 011 - C Test Classifier Behavior

Step Event pool State machine configuration Fired transition(s)

5 [Continue, CE(S1.2)] [S1[S1.2]] []

6 [Continue] [S1[S1.2]] [T1.3]

7 [CE(S1)] [S1] [T3]

9.3.3.7 Transition 011-D

Tested state machine

The state machine that is executed for this test is presented in Figure 9.17.

Figure 9.17 - Transition 011- D Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1, S2.1].

Generated trace

• S1.1(entry)::S2.1(entry)::T3(effect)::S1.1(exit)::S2.1(exit)::S1(exit)

Note. The purpose of this test is to demonstrate that, when a local transition leaves the containing state, then this
state is not exited and there is no impact on the hierarchy of active states. However, it shows that, if the target of this
local transition is an exit point, then the semantics of this pseudostate applies. Hence, all regions owned by the

86 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

containing state are exited concurrently. When the state machine configuration is S1[S1.1, S2.1], the event
occurrence Continue is dispatched. This leads to the triggering of the local transition T3. The source state is not
exited, the effect behavior is executed and, finally, the exit point is reached. Hence S1.1 and S2.1 are exited
immediately, followed by S1. The continuation transition fires and leads to the completion of the state machine
execution.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [Continue, CE(S2.1), CE(1.1)] [S1[S1.1, S2.1]] []

5 [Continue, CE(S2.1)] [S1[S1.1, S2.1]] []

6 [Continue] [S1[S1.1, S2.1]] [T3(T4)]

Alternative execution traces

The presence of orthogonal regions in S1 implies the existence of an alternative execution trace for this test. This trace
captures the situation where S2.1 is exited before S1.1.

• S1.1(entry)::S2.1(entry)::T3(effect)::S2.1(exit)::S1.1(exit)::S1(exit)

9.3.3.8 Transition 011-E

Tested state machine

The state machine that is executed for this test is presented in Figure 9.18.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 87

Figure 9.18 - Transition 011 - E Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S1(entry)::S1.1(entry)::T1.3(effect)::S1.1(exit)::S1(exit)

Note. The purpose of this test is to demonstrate that, when a local transition leaves an entry point and enters an exit
point, then exiting the entry point has no effect, there is no impact on the hierarchy of active states however when the
exit point is entered the semantics for this pseudostate applies which implies that regions owned by the containing
state are exited. Consider the situation where the state machine is in configuration wait. When T2 fires, the entry
point is reached, S1 is entered and the region is entered using the default approach (i.e., an initial transition is sought
to start the execution). Hence S1.1 is entered via the transition T1.1. The RTC step initiated by the dispatching of the
Start event occurrence is not ended. The continuation transition T1.3 is traversed and its effect behavior is executed.
At the point where the exit point is reached, S1.1 is exited as well as S1. The continuation transition T3 is traversed
and leads to the completion of the state machine execution. Transition T1.2 is never traversed in this test case and,
consequently, the S1 region never completes.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T1.3, T3)]

88 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.3.3.9 Transition 015

Tested state machine

The state machine that is executed for this test is presented in Figure 9.19. The doActivity for state S1 state is exactly the
same as the one presented in Figure 9.8.

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

Generated trace

• S1(entry)::S1(doActivity)

Note. The purpose of this test is to demonstrate that a completion event can be generated for a simple state only if
both its entry behavior (if any) and its doActivity (if any) have completed their executions. Consider the situation
where the state machine is in configuration waiting. When T2 is traversed (RTC step started by dispatching Start), S1
is entered and its entry behavior is executed. As soon as the entry behavior terminates its execution, the doActivity
behavior is started asynchronously. When this doActivity behavior completes its execution, a completion event is
generated by S1 (its entry and doActivity behaviors are now terminated). This completion event is used in the next
RTC step to trigger T3.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2]

4 [CE(S1)] [S1] [T3]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 89

Figure 9.19 - Transition 015 Test Classifier Behavior

Transitions015_Test$behavior$1

waiting

S1
/do Activity doActivity
/entry Activity entry

T3/Activity: testEnd

T2Start

T2Start

T3/Activity: testEnd

9.3.3.10 Transition 016

Tested state machine

The state machine that is executed for this test is presented in Figure 9.20.

Figure 9.20 - Transition 016 Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

Generated trace

• T2(effect)

Note. The purpose of this test is to demonstrate that, if the entered state has no entry or doActivity behaviors, then a
completion event is generated upon its entry. Consider the situation where the state machine is in configuration
waiting. When Start is dispatched, T2 is triggered. Hence, the effect behavior of T2 is executed and S1 is entered. In
this test case S1 has no entry or doActivity behaviors, so the completion event is generated when it is entered. The
completion event generated for S1 is used in the next RTC step to trigger T3, which is a completion transition.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2]

90 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Transition016_Test$behavior$1

waiting

S1

T2 Start/Activity: doTraversal

T1

T3 /Activity: testEnd

T1

T2 Start/Activity: doTraversal

T3 /Activity: testEnd

Step Event pool State machine configuration Fired transition(s)

4 [CE(S1.1)] [S1] [T3]

9.3.3.11 Transition 017

Tested state machine

The state machine that is executed for this test is presented in Figure 9.21.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 91

Figure 9.21 - Transition 017 Test Classifier Behavior

Transition017_Test$behavior$1

waiting

S1

S2.1

S3.1

S3.1.1

/do Activity doActivity

/entry Activity entry

T3.1
T2.1

T3 /Activity: testEnd

T1

T3.1.1

T3.2 /Activity: effect

T2.2 /Activity: effect

T2 Start/Activity: effect

T3.1.2

/Activity: effect

T1

T2 Start/Activity: effect

T2.1

T3 /Activity: testEnd

T2.2 /Activity: effect

T3.1

T3.2 /Activity: effect

T3.1.1

T3.1.2

/Activity: effect

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

Generated trace

• T2(effect)::S1(entry)::T2.2(effect)::T3.1.2(effect)::S3.1(doActivity)::T3.2(effect)

Notes. The purpose of this test is to demonstrate that a composite state can only complete (i.e., generate a completion
event) if its entry behavior (if any) has completed, its doActivity behavior has completed and all of its regions have
also completed (see 8.5.3 for conditions enabling a region to complete). Consider the situation where the state
machine is in configuration waiting. When Start is dispatched, T2 fires and implies the entrance of S1. Each region
of S1 is entered concurrently using the default entry approach. Assume that for the described execution:

a. The doActivity for S3.1 starts immediately and includes its message in the execution trace before any other
RTC step is performed in the state machine.

b. The completion events generated by S2.1 and S3.1 are added in the event pool in the following order:
CE(S1.2) is first and CE(S3.1.1) second. With respect to these assumptions the following execution steps
occur: T2.2 is triggered by the dispatching of CE(S2.1). When the final state is reached no completion event
is generated since the right hand side region of the state machine is still running.

c. T3.1.2 is triggered by the dispatching of CE(S3.1.2). When the final state is reached a completion event is
generated for S3.1 since its doActivity behavior has already terminated its execution.

d. T3.2 is triggered by the dispatching of the completion event generated by S3.1. This leads to the completion
of S1.

e. The completion event generated by S1 will be then used to trigger T3. The traversal of this transition leads
to a final state upon which the state machine execution completes.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2(T2.1, T3.1(T3.1.1))]

4 [CE(S3.1.1), CE(S2.1)] [S1[S2.1, S3.1[S3.1.1]]] [T2.2]

5 [CE(S3.1.1)] [S1[S3.1[S3.1.1]]] [T3.1.2]

6 [CE(3.1)] [S1[S3.1] [T3.2]

7 [CE(S1)] [S1] [T3]

Alternative execution traces

The state machine specifies parallelism through S1, which owns orthogonal regions and S3.1, which provides a
doActivity that will evolve on its own thread of execution. For this particular state machine, the following set of
alternative execution traces (the one presented above is not included in that set) is allowed with regards to the UML state
machines semantics:

92 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

1. T2(effect)::S1(entry)::T2.2(effect)::S3.1(doActivity)::T3.1.2(effect)::T3.2(effect)

2. T2(effect)::S1(entry)::T2.2(effect)::T3.2(effect)::S3.1(doActivity)::T3.1.2(effect)

3. T2(effect)::S1(entry)::T2.2(effect)::T3.2(effect)::T3.1.2(effect)::S3.1(doActivity)

4. T2(effect)::S1(entry)::S3.1(doActivity)::T2.2(effect)::T3.1.2(effect)::T3.2(effect)

5. T2(effect)::S1(entry)::S3.1(doActivity)::T3.1.2(effect)::T2.2(effect)::T3.2(effect)

6. T2(effect)::S1(entry)::T3.1.2(effect)::T2.2(effect)::S3.1(doActivity)::T3.2(effect)

7. T2(effect)::S1(entry)::T3.1.2(effect)::S3.1(doActivity)::T2.2(effect)::T3.2(effect)

The alternative trace 6 denotes an execution in which the doActivity behavior includes its trace message after that the
RTC steps related to the dispatching of completion events CE(S3.1.1) and CE(S2.1) have been performed. The table
below describes the different steps leading to the production of this execution trace.

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2[T2.1, T3.1(T3.1.1)]]

4 [CE(S2.1), CE(S3.1.1)] [S1[S2.1, S3.1[S3.1.1]]] [T3.1.2]

5 [CE(3.1), CE(S2.1)] [S1[S2.1, S3.1]] [T2.2]

6 [CE(3.1)] [S1[S2.1]] [T3.2]

7 [CE(S1)] [S1] [T3]

9.3.3.12 Transition 019

Tested state machine

The state machine that is executed for this test is presented in Figure 9.22.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 93

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1, S2.1].

Generated trace

• S1.1(exit)::T1.2(effect)::S2.1(exit)::T2.2(effect)::T1.3(effect)::T2.3(effect)

Note. The purpose of that test is to demonstrate that the firing order of T1.3 and T2.3 is related to the order in which
S1.2 and S1.3 generate their respective completion events. Consider the situation where the state machine is in
configuration S1[S1.1, S1.2]. The dispatching of the Continue event occurrence implies a simultaneous triggering of
both T1.2 and T2.2. Hence, due to the same event occurrence, two completion are generated by S1.2 and S2.2
respectively. The order in which these completion events will be dispatched is the order in which they were placed in
the event pool. Assuming that CE(S1.2) is first, then T1.3 will be fired first. CE(2.1) will be triggered next and the
join node prerequisite will be satisfied.

94 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.22 - Transition 019 Test Classifier Behavior

Transitions019_Test$behavior$1

wait
S1

S1.1
/exit Activity exit

S1.2

S2.1
/exit Activity exit

S2.2

T1.3/Activity: effect

T1.1

T1

T2.3/Activity: effect

T2

Start

T2.2Continue/Activity: effect

T2.1

T1.2Continue/Activity: effect

T3 /Activity: testEnd

T1
 T2

Start

T1.1

T1.2Continue/Activity: effect

T2.1

T2.2Continue/Activity: effect

T1.3/Activity: effect T2.3/Activity: effect

T3 /Activity: testEnd

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [Continue, CE(S1.1), CE(S2.1)] [S1[S1.1, S2.1]] []

5 [Continue, CE(S1.1)] [S1[S1.1, S2.1]] []

6 [Continue] [S1[S1.1, S2.1]] [T1.2, T2.2]

7 [CE(S2.2), CE(S1.2)] [S1[S1.2, S2.2]] [T1.3]

8 [CE(S2.2)] [S1[S2.2]] [T2.3(T3)]

Alternative execution traces

The state machine specifies parallelism, since state S1 owns two orthogonal regions. Hence, different execution traces are
possible while still conforming to UML semantics. The set of traces below describe the alternative execution traces that
can be observed at runtime.

1. S1.1(exit)::S2.1(exit)::T1.2(effect)::T2.2(effect)::T1.3(effect)::T2.3(effect)

2. S1.1(exit)::S2.1(exit)::T2.2(effect)::T1.2(effect)::T2.3(effect)::T1.3(effect)

3. S2.1(exit)::S1.1(exit)::T2.2(effect)::T1.2(effect)::T2.3(effect)::T1.3(effect)

4. S2.1(exit)::S1.1(exit)::T1.2(effect)::T2.2(effect)::T1.3(effect)::T2.3(effect)

5. S2.1(exit)::T2.2(effect)::S1.1(exit)::T1.2(effect)::T2.3(effect)::T1.3(effect)

The alternative trace 2 denotes an execution where T2.3 effect behavior is executed before T1.3 effect behavior. The table
below describes the RTC steps leading to the production of this execution trace.

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [Continue, CE(S2.1), CE(S1.1)] [S1[S1.1, S2.1]] []

5 [Continue, CE(S2.1)] [S1[S1.1, S2.1]] []

6 [Continue] [S1[S1.1, S2.1]] [T1.2, T2.2]

7 [CE(S1.2), CE(S2.2)] [S1[S1.2, S2.2]] [T2.3]

8 [CE(S1.2)] [S1[S1.2]] [T1.3(T3)]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 95

9.3.3.13 Transition 020

Tested state machine

The state machine that is executed for this test is presented in Figure 9.23.

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1.

Generated trace

• S1(entry)::T4(effect)

Note. The purpose of this test is to demonstrate that completion event occurrences have priority over other event
occurrences already present at the pool, except for other completion event occurrences. Consider the situation where
the state machine is in configuration wait. When Start is dispatched, transition T2 is triggered. This brings the state
machine into configuration S1. The entry of S1 results in the execution of its entry behavior. Upon the termination of
the execution of this behavior, S1 is ready to generate a completion event. The latter is placed at the head of the event
pool. Consequently, it is given priority over non-completion event occurrence(s) already present in the pool.
Therefore, the next RTC step will begin by the dispatching of the completion event occurrence generated for S1. This
event occurrence will trigger transition T4. The Continue event occurrence will never be dispatched.

96 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.23 - Transition 020 Test Classifier Behavior

Transitions020_Test$behavior$1

wait

S1
/entry Activity entry

end

T3

Continue/Activity: effect

T5/Activity: testEnd

T2Start

T4

/Activity: effect

T1 T1

T2Start

T3

Continue/Activity: effect

T4

/Activity: effect

T5/Activity: testEnd

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [Continue, CE(S1.1)] [S1] [T4]

5 [Continue, CE(end)] [end] [T5]

9.3.3.14 Transition 022

Tested state machine

The state machine that is executed for this test is presented in Figure 9.24.

Figure 9.24 - Transition 022 Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

Generated trace

• T3(effect)::T3(effect)::T3(effect)::T3(effect)::T3(effect)

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 97

Transition022_Test$behavior$1

Incrementing

Waiting

T1

T4

[this.count == 5]/Activity: testEnd

T3

[this.count < 5]/Activity: doIncrement

T2Start

T1

T4

[this.count == 5]/Activity: testEnd

T3

[this.count < 5]/Activity: doIncrement

T2Start

Note. The purpose of this test is to demonstrate that, if a transition has a guard, then the guard is evaluated. In
addition if the result of the evaluation is false, then the transition cannot be traversed. Conversely if the result is true,
then it can be traversed. The intent of the test is to increment the value of a property of the test class that has, as its
classifier behavior, the state machine presented in Figure 9.24. The property is initialized to zero when the test object
is initialized, and its value is incremented until it reaches the value 5. The state machine that implements this
behavior uses guarded transitions (see T3 and T4). When the Start event occurrence is dispatched, T2 fires and
Incrementing is entered. The completion event generated for that state is used to trigger either T4 or T3 based on
their guard evaluations.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [CE(Incrementing)] [Incrementing] [T3]

5 [CE(Incrementing)] [Incrementing] [T3]

6 CE(Incrementing) [Incrementing] [T3]

7 CE(Incrementing) [Incrementing] [T3]

8 CE(Incrementing) [Incrementing] [T3]

9 CE(Incrementing) [Incrementing] [T4]

98 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.3.3.15 Transition 023

Tested state machine

The state machine that is executed for this test is presented in Figure 9.25.

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• IntegerData – received when in configuration S1[S1.1]. The property value has the value 20.

• IntegerData – received when in configuration S1[S1.1]. The property value has the value 5.

Generated trace

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 99

Figure 9.25 - Transition 023 Test Classifier Behavior

Transition023_Test$behavior$1

wait

S1

S1.1
/entry Activity entry

/exit Activity exit

/entry Activity entry
/exit Activity exit

S2

S2.1

/entry Activity entry

S2.2

/entry Activity entry

/entry Activity entry
/exit Activity exit

Cannot be taken since the
guard placed on T3 evaluates to
false. T3 is part of the
compound transition
T1.2{T3{T1.1}}

Cannot be taken when the first
IntegerData signal is received.
Indeed it has the value 20 which
makes the two guard of the junction
to evaluate to false and with the
absence of an else transition the
entire compound transition is
disabled.

end

T4

T1.2

T1.1

/Activity: effect

T2

Start

T2.1

[evt.value == 5]/Activity: effectT6

/Activity: testEnd

T1

T1.3

IntegerData/Activity: effect

T2.3

T2.4

T5

T3 [false]

T2.2[evt.value==10]/Activity: effect

T1

T2

Start

T1.2

T3 [false]

T1.1

/Activity: effect

T1.3

IntegerData/Activity: effect

T5

T4

T2.2[evt.value==10]/Activity: effect

T2.3

T2.4

T2.1

[evt.value == 5]/Activity: effectT6

/Activity: testEnd

• S1(entry)::S1.1(entry)::S1.1(exit)::S1(exit)::T1.3(effect)[in=5]::S2(entry)[in=5]::S2.2(entry)[in=5]::S2(exit)
[in=5]::T2.1(effect)[in=5]

Note. The purpose of the test is to assess that, when an event occurrence is about to be dispatched, a static analysis
is performed to ensure that from the current state machine configuration we can reach a stable state machine
configuration. If no path can be found from the current state machine configuration to the next configuration, then
the event occurrence will be lost and no RTC step is initiated.

In this test case, the state machine receives three event occurrences: Start, IntegerData(20) and IntegerData(5).
The dispatching of the Start event brings the state-machine to the configuration S1[S1.1] due to the triggering of
T2. The configuration will remain the same until IntegerData(5) is dispatched. This can be explained because:

○ The completion event generated for S1.1 when dispatched cannot bring the state machine to a valid
configuration. Indeed event if the completion event could have been used to trigger the compound transition
starting with T1.2, T3 could not have been traversed since its guard evaluated to false.

○ The received IntegerData(20) signal event cannot bring the state machine to a valid configuration. Indeed
even if the event occurrence could have been used to trigger the compound transition starting with T1.3
neither T2.1 nor T2.2 could have been traversed since their guards both evaluate to false (because of the value
associated with the signal event occurrence). Hence IntegerData(20) is lost.

When IntegerData(5) is finally dispatched it triggers the traversal of the compound transition T1.3[T4[T2.1,
T2.2], T5].

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [IntegerData(20), CE(S1.1)] [S1[S1.1]] []

5 [IntegerData(20)] [S1[S1.1]] []

6 [IntegerData(5)] [S1[S1.1]] [T1.3[T4[T2.1], T5]]

7 [CE(end)] [end] [T6]

Alternative execution traces

This state machine specifies parallelism due to the Fork pseudostate. This implies that an alternative execution trace is
possible for this state machine. This execution trace is is specified below.

• S1(entry)::S1.1(entry)::S1.1(exit)::S1(exit)::T1.3(effect)[in=5]::S2(entry)[in=5]::S2(exit)[in=5]::T2.1(effect)
[in=5]

The difference from the previous trace is that the entry behavior of S2.2 is not executed. This is possible because, when
the compound transition T1.3[T4[T2.1], T5] is executed, state S2 might be exited through T2.1 before S2.2 was entered.

100 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.3.4 Event

9.3.4.1 Overview

Test cases presented in this subclause concern the dispatching and the acceptance of event occurrences in a state machine
context.

9.3.4.2 Event 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.26.

Figure 9.26 - Event 001 Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• wait(exit)

Note. The purpose of this test is to show that, upon creation, the tested state machine immediately starts its
execution. This execution always starts from the initial pseudostate owned by the region of the state machine. In the
context of this test, the initial RTC step implies that transition T1 is traversed and state wait is entered. At the end of
this RTC step, the state machine execution enters a wait point (i.e., a stable configuration). As required per UML,
the state machine is only able to leave this configuration when a Start event occurrence is dispatched from the event
pool.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 101

Event001_Test$behavior$1

wait
/exit Activity exit

T1

T2 Start/Activity: testEnd

T1

T2 Start/Activity: testEnd

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

9.3.4.3 Event 002

Tested state machine

The state machine that is executed for this test is presented in Figure 9.27.

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

• AnotherSignal received when in configuration S1[S1.1].

Generated trace

• S1(entry)::S1.1(entry)::S1(exit)

102 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.27 - Event 002 Test Classifier Behavior

Event002$behavior$1

Waiting

S1

S1.1

/entry Activity entry

S2.2

/entry Activity entry
/exit Activity exit

T1

T1.1

T2 Start

T3 AnotherSignal/Activity: testEnd

T1.2

Continue

T1

T2 Start

T1.1

T1.2

Continue

T3 AnotherSignal/Activity: testEnd

Note. The purpose of this test is to demonstrate that, if a trigger of a transition outgoing an active state matches the
dispatched event, then this transition is triggered and a single state machine step is executed. At the point where
AnotherSignal event occurrence is dispatched, the state machine is in configuration S1[S1.1]. This implies that, when
T3 is triggered, state S1.1 is exited, followed immediately by S1. The state machine execution completes by reaching
the final state. This illustrates the realization of a RTC step initiated by the dispatching of an event occurrence.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [AnotherSignal, CE(S1.1)] [S1[S1.1]] []

5 [AnotherSignal] [S1[S1.1]] [T3]

9.3.4.4 Event 008

Tested state machine

The state machine that is executed for this test is presented in Figure 9.28.

Test executions

Received event occurrence(s)

• Start – when received in configuration waiting.

• Continue – when received in configuration S2.

Generated trace

• T2(effect)::T3(effect)

Note. The purpose of this test is to demonstrate that, if an event occurrence cannot be accepted by a state machine
(i.e., cannot be deferred and does not trigger any transition in the current state machine configuration), then this
event occurrence is lost. When the Start event occurrence is dispatched, the state machine is in configuration
waiting. The dispatching of this event implies that T2 is triggered and S1 is entered. Since S1 is a simple state with
no entry and doActivity behaviors, a completion event occurrence is generated for that state when entered. The

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 103

Figure 9.28 - Event 008 Test Classifier Behavior

Event008_Test$behavior$1

waiting S1 S2
T2

Start/Activity: effect

T4

Continue/Activity: testEnd

T1
 T3

/Activity: effect

T1
 T2

Start/Activity: effect

T3

/Activity: effect

T4

Continue/Activity: testEnd

dispatching of this completion event occurrence triggers T3. Consequently, its effect behavior is executed and S2 is
entered. The completion event occurrence generated by S2 is dropped. This occurs when there is no possibility to use
it for triggering an outgoing transition from that state. The only way to exit S2 is to receive and dispatch a Continue
event occurrence.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2]

4 [CE(S1)] [S1] [T3]

5 [Continue, CE(S2)] [S2] []

6 [Continue] [S2] [T4]

9.3.4.5 Event 009

Tested state machine

The state machine that is executed for this test is presented in Figure 9.29.

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

• Continue – received when in configuration S1[S1.1, S1.2].

• Pending – received when in configuration S1[S1.1, S1.2].

Generated trace

• T1.2(effect)::T2.2(effect)

104 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.29 - Event 009 Classifier behavior

Event009_Test$behavior$1

waiting

S1

S1.1

S1.2 invalid

T1.1

T1

T2.2

Continue/Activity: effect

T3

Pending/Activity: effect

T2.1

T1.2

Continue/Activity: effect

T5

/Activity: testEnd

T2

Start

T4 /Activity: testEnd

T1 T2

Start T1.1

T1.2

Continue/Activity: effect

T2.1

T2.2

Continue/Activity: effect

T5

/Activity: testEnd

T3

Pending/Activity: effect

T4 /Activity: testEnd

Note. The Continue event occurrence is dispatched when the state machine execution is in configuration S1[S1.1,
S1.2]. The dispatching of this event triggers simultaneously transitions T1.2 and T2.2, which are located in different
orthogonal regions. This leads to the completion of the regions of S1 so that a completion event occurrence is
generated for that state. This is used to trigger the completion transition T5. Note that transition T3 is never triggered,
because the completion event occurrence that triggers transition T5 has the priority for dispatching over the Pending
event occurrence.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2(T1.1, T2.1)]

4 [Pending, Continue, CE(S1.2),
CE(S1.1)]

[S1[S1.1, S1.2]] []

5 [Pending, Continue, CE(S1.2)] [S1[S1.1, S1.2]] []

6 [Pending, Continue] [S1[S1.1, S1.2]] [T1.2, T2.2]

7 [Pending, CE(S1)] [S1] [T5]

Alternative execution traces

The presence of two transitions that are placed in orthogonal regions and that can fire on the same event occurrence
implies the possibility to observe an alternative execution trace for this test case.

• T2.2(effect)::T1.2(effect)

9.3.4.6 Event 010

Tested state machine

The state machine that is executed for this test is presented in Figure 9.30.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 105

Figure 9.30 - Event 010 Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

• Continue – received when in configuration S1[S1.1].

Generated trace

• T2(effect)::S1(entry)::S1.1(entry)::T1.2(effect)::S1.2(entry)

Note. This test case highlights the resolving of transition conflicts at run time. The first conflict that is encountered
happens when the event occurrence Start is accepted. Many transitions (i.e., T2 and T3) originating from the same
state (i.e., waiting) can be triggered using this same event occurrence. Only one of them is chosen,
nondeterministically. In the case of the above trace, T2 is chosen. A similar scenario happens when the state machine
execution is in configuration S1[S1.1]. In the case of the above trace, T1.2 is triggered by the Continue event
occurrence.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

106 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Event010_Test$behavior$1

waiting

S1

S1.1
/entry Activity entry

S1.2
/entry Activity entry

S1.3
/entry Activity entry

/entry Activity entry

S2
/entry Activity entry

T4

/Activity: testEnd

T2

Start/Activity: effect

T1.1

T1.2

Continue/Activity: effect

T5

/Activity: testEnd

T1.4

T1

T1.5

T1.3

Continue/Activity: effect

T3

Start/Activity: effect

T1

T2

Start/Activity: effect

T3

Start/Activity: effect

T5

/Activity: testEnd

T4

/Activity: testEnd

T1.1

T1.2

Continue/Activity: effect

T1.3

Continue/Activity: effect

T1.4

T1.5

Step Event pool State machine configuration Fired transition(s)

3 [Start] [waiting] [T2(T1.1)]

4 [Continue, CE(S1.1)] [S1[S1.1]] []

5 [Continue] [S1[S1.1]] [T1.2]

6 [CE(S1.2)] [S1[S1.2]] [T1.4]

7 [CE(S1)] [S1] [T4]

Alternative execution trace

The presence of conflicting transitions in this test implies the possibility to observe different executions traces. Indeed,
for example, T2 and T3 are in conflict, but it is not possible to anticipate which one will be chosen to fire. Hence, the
following alternative execution traces can be generated for that test case:

• T2(effect)::S1(entry)::S1.1(entry)::T1.3(effect)::S1.3(entry)

• T3(effect)::S2(entry)

9.3.4.7 Event 015

Tested state machine

The state machine that is executed for this test is presented in Figure 9.31.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 107

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

Generated trace

• T1.2(effect)

Note. The purpose of this test is to demonstrate conflict resolution in the case where more than one completion
transition can be fired using the same completion event. This test case is similar to the one presented in 9.3.4.6.
Nevertheless, it illustrates the situation in which the conflict occurs when a completion event occurrence for S1.1 is
accepted. The two completion transitions T1.2 and T1.3 can both be triggered using the completion event occurrence.
Here again, the conflict is resolved nondeterministically.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

108 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.31 - Event 015 Test Classifier Behavior

Event015_Test$behavior$1

waiting

S1

S1.1

T3/Activity: testEnd

T2Start

T1.1

T1

T1.3/Activity: effectT1.2/Activity: effect

T1

T2Start

T1.1

T1.2/Activity: effect T1.3/Activity: effect

T3/Activity: testEnd

Step Event pool State machine configuration Fired transition(s)

3 [Start] [waiting] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.2]

5 [CE(S1)] [S1] T3

Alternative execution traces

The presence of conflicting transitions in this test implies the possibility of an alternative execution trace. Indeed, T1.2
and T1.3 are in conflict, and it is not possible to anticipate which one will be the first chosen to fire.

• T1.3(effect)

9.3.4.8 Event 016-A

Tested state machine

The state machine that is executed for this test is presented in Figure 9.32.

Figure 9.32 - Event 016 – A Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1].

• Continue – received when in configuration S1.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 109

Event_016_Test$behavior$1

S1

S1.1 S2wait

T1

T4

/Activity: testEnd
T1.2Continue/Activity: effect

T2

Start

T1.1

T3

Continue/Activity: effect

T1
T1.1

T1.2Continue/Activity: effect

T3

Continue/Activity: effect

T4

/Activity: testEnd

T2

Start

Generated trace

• T1.2(effect)::T3(effect)

Note. The purpose of this test is to demonstrate that, if multiple transitions are available to fire, but cannot be fired
concurrently, then the transition selected to fire is the one with the highest priority. . When the RTC step initiated by
accepting the Continue event occurrence starts, the state machine is in configuration S1[S1.1]. At this point, two
transitions can be triggered by the same event occurrence. The resolution of this potential conflict is realized by
analyzing transition priorities. Since S1.1 is the innermost state in the configuration, transitions originating from this
state will have the highest priority. Hence T1.2 is triggered.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [Continue, CE(S1.1)] [S1[S1.1]] []

5 [Continue] [S1[S1.1]] [T1.2]

6 [Continue, CE(S1)] [S1] []

7 [Continue] [S1] [T3]

8 [CE(S2)] [S2] [T4]

9.3.4.9 Event 016-B

Tested state machine

The state machine that is executed for this test is presented in Figure 9.33.

110 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.33 - Event 016 – B Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1, S2.1[S2.1.1, S2.2.1]].

• Continue – received when in configuration S1[S1.1, S2.1].

• Continue – received when in configuration S1[S1.2, S2.2].

Generated trace

• T1.2(effect)::T2.1.2(effect)::T2.2.2(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

Note. In this test case, hierarchical states, conflicting transitions and orthogonal regions are combined. The purpose
is to demonstrate support for conflict resolution, support for transitions priority and firing of multiple transitions on a
single execution step. The execution proceeds as follows. The RTC step initiated by the acceptance of the Start event
occurrence brings the state machine to the configuration S1[S1.1, S2.1[S2.1.1, S2.2.1]]]. Completions event
occurrences generated during this RTC step (respectively for states S1.1, S2.1.1 and S2.2.1) do not trigger any
transition when dispatched.

The next RTC step that actually leads to transition triggering is the one initiated by the acceptance of the Continue
event occurrence. During this step, T2.1.2, T2.2.2 and T1.2 are fired using the same event occurrence. This is made
possible since all of these transitions are located in different regions and have a trigger for the same event. Note that
instead of T1.2, the transition T1.3 could have been fired. This is true since both transitions were in conflict (they

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 111

Event016_Test_B$behavior$1

wait
S1

S1.1

S1.2
/exit Activity exit

S2.1

S2.1.1 S2.2.1

/exit Activity exit

S2.2

/exit Activity exit

T1.2

Continue/Activity: effect

T2.2.1

T2.4

Continue/Activity: effect

T1.1

T2.1.2

Continue/Activity: effect

T1

T2.2

Continue/Activity: effect

T2.1

T2.1.1

T2.2.2

Continue/Activity: effect

T2.3

Continue/Activity: effect

T3

Continue/Activity: testEnd

T2

Start

T1.3

Continue/Activity: effect

T1 T2

Start

T1.1

T1.2

Continue/Activity: effect

T1.3

Continue/Activity: effect

T2.1

T2.1.1 T2.2.1

T2.1.2

Continue/Activity: effect

T2.2.2

Continue/Activity: effect

T2.2

Continue/Activity: effect

T2.3

Continue/Activity: effect

T3

Continue/Activity: testEnd
T2.4

Continue/Activity: effect

leave the same state and have a trigger for the same event type) at the time of the step. Such conflicts are resolved
nondeterministically. In the case of the above trace, at the end of the step, the state machine reaches the configuration
S1[S1.2, S2.1].

Completion event occurrences generated for states S1.2 and S2.1 do not trigger any transition when dispatched.
However, when the next Continue event occurrence is dispatched, T2.2 is fired. Here again there is a conflict
between T2.2, T2.3 and T2.4 which is resolved non-deterministically. The last Continue event fires T3 and leads to
the completion of the state-machine execution.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1(T2.1.1,
T2.2.1))]

4 [Continue, CE(2.2.1), CE(S2.1.1),
CE(S1.1)]

[S1[S1.1, S2.1[S2.1.1,
S2.2.1]]]

[]

5 [Continue, CE(2.2.1), CE(S2.1.1)] [S1[S1.1, S2.1[S2.1.1,
S2.2.1]]]

[]

6 [Continue, CE(2.2.1)] [S1[S1.1, S2.1[S2.1.1,
S2.2.1]]]

[]

7 [Continue] [S1[S1.1, S2.1[S2.1.1,
S2.2.1]]]

[T1.2, T2.1.2, T2.2.2]

8 [Continue, CE(S2.1), CE(S1.2)] [S1[S1.2, S2.1]] []

9 [Continue, CE(S2.1)] [S1[S1.2, S2.1]] []

10 [Continue] [S1[S1.2, S2.1]] [T2.2]

11 [Continue, CE(S2.2)] [S1[S1.2, S2.2]] []

12 [Continue] [S1[S1.2, S2.2]] [T3]

Alternative execution traces

The test case specifies concurrency with the orthogonal regions owned by S1 and S2.1. This implies that when the test
case is executed it can produce execution traces that are different from the one initially described, while remaining
correct regarding the semantics specified for UML state machines. These alternative execution traces are presented
below:

1. T1.3(effect)::T2.1.2(effect)::T2.2.2(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

2. T1.3(effect)::T2.1.2(effect)::T2.2.2(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

3. T1.3(effect)::T2.1.2(effect)::T2.2.2(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

4. T1.3(effect)::T2.2.2(effect)::T2.1.2(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

112 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

5. T1.3(effect)::T2.2.2(effect)::T2.1.2(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

6. T1.3(effect)::T2.2.2(effect)::T2.1.2(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

7. T2.1.2(effect)::T1.3(effect)::T2.2.2(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

8. T2.1.2(effect)::T1.3(effect)::T2.2.2(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

9. T2.1.2(effect)::T1.3(effect)::T2.2.2(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

10. T2.1.2(effect)::T2.2.2(effect)::T1.3(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

11. T2.1.2(effect)::T2.2.2(effect)::T1.3(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

12. T2.1.2(effect)::T2.2.2(effect)::T1.3(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

13. T2.2.2(effect)::T1.3(effect)::T2.1.2(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

14. T2.2.2(effect)::T1.3(effect)::T2.1.2(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

15. T2.2.2(effect)::T1.3(effect)::T2.1.2(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

16. T2.2.2(effect)::T2.1.2(effect)::T1.3(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

17. T2.2.2(effect)::T2.1.2(effect)::T1.3(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

18. T2.2.2(effect)::T2.1.2(effect)::T1.3(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

19. T1.2(effect)::T2.1.2(effect)::T2.2.2(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

20. T1.2(effect)::T2.1.2(effect)::T2.2.2(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

21. T1.2(effect)::T2.2.2(effect)::T2.1.2(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

22. T1.2(effect)::T2.2.2(effect)::T2.1.2(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

23. T1.2(effect)::T2.2.2(effect)::T2.1.2(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

24. T2.1.2(effect)::T1.2(effect)::T2.2.2(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

25. T2.1.2(effect)::T1.2(effect)::T2.2.2(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

26. T2.1.2(effect)::T1.2(effect)::T2.2.2(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

27. T2.1.2(effect)::T2.2.2(effect)::T1.2(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

28. T2.1.2(effect)::T2.2.2(effect)::T1.2(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

29. T2.1.2(effect)::T2.2.2(effect)::T1.2(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

30. T2.2.2(effect)::T1.2(effect)::T2.1.2(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

31. T2.2.2(effect)::T1.2(effect)::T2.1.2(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

32. T2.2.2(effect)::T1.2(effect)::T2.1.2(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

33. T2.2.2(effect)::T2.1.2(effect)::T1.2(effect)::S2.1(exit)::T2.2(effect)::S1.2(exit)::S1(exit)

34. T2.2.2(effect)::T2.1.2(effect)::T1.2(effect)::S2.1(exit)::T2.3(effect)::S1.2(exit)::S1(exit)

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 113

35. T2.2.2(effect)::T2.1.2(effect)::T1.2(effect)::S2.1(exit)::T2.4(effect)::S1.2(exit)::S1(exit)

Alternative trace 33 describes an execution where T2.2.2 effect behavior is executed first and followed by the ones of
T2.1.2 and T1.2. The RTC steps that leads to the production of this trace are described in the table below.

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1(T2.1.1, T2.2.1))]

4 [Continue, CE(2.2.1), CE(S2.1.1), CE(S1.1)] [S1[S1.1, S2.1[S2.1.1, S2.2.1]]] []

5 [Continue, CE(2.2.1), CE(S2.1.1)] [S1[S1.1, S2.1[S2.1.1, S2.2.1]]] []

6 [Continue, CE(2.2.1)] [S1[S1.1, S2.1[S2.1.1, S2.2.1]]] []

7 [Continue] [S1[S1.1, S2.1[S2.1.1, S2.2.1]]] [T2.2.2, T2.1.2, T1.2]

8 [CE(S1.2), CE(S2.1)] [S1[S1.2, S2.1] []

9 [Continue, CE(S1.2)] [S1[S1.2, S2.1]] []

10 [Continue] [S1[S2.2]] [T2.2]

11 [Continue, CE(S2.2)] [S1[S2.2]] []

12 [Continue] [S1[S2.2]] [T3]

9.3.4.10 Event 017-A

Tested state machine

The state machine that is executed for this test is presented in Figure 9.34.

114 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Data(true) – received when in configuration S1.

Generated trace

• T3(effect)

Note. The purpose of this test is to check that during a RTC step initiated by the dispatching of a signal event
occurrence, guard specifications and effect behaviors that are executed can access to properties values of the
signal. In that test case, when the state machine is in configuration S1 and Data(true) is received, T3 fires because
its guard comparing the value of the property value to true evaluates to true. Hence the effect behavior is executed
and the trace fragment T3(effect) is added. The execution of the state machine completes when the RTC step
initiated by the dispatching of S2 completion event occurrence ends.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 115

Figure 9.34 - Event 017 - A Test Classifier Behavior

Event017_Test_A$behavior$1

wait

S1

S2

T5

/Activity: testEnd

T1

T3

Data[data.value == true]/Activity: effect

T4

Data[data.value == false]/Activity: effect

T2 Start

T1

T2 Start

T3

Data[data.value == true]/Activity: effect

T4

Data[data.value == false]/Activity: effect

T5

/Activity: testEnd

Step Event pool State machine configuration Fired transition(s)

3 [Start] [wait] [T2]

4 [Data(true), CE(S1)] [S1] []

5 [Data(true)] [S1] [T3]

6 [CE(S2)] [S2] [T5]

9.3.4.11 Event 017-B

Tested state machine

The state machine that is executed for this test is presented in Figure 9.35.

Test executions

Received event occurrence(s)

• Data(true) – received when in configuration wait.

• Data(false) – received when in configuration S1[S1.1].

• Continue – received when in configuration S1.

116 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.35 - Event 017 - B Test Classifier Behavior

Event017_Test_B$behavior$1

wait
S1

S1.1
/entry Activity entry

/exit Activity exit
/do Activity doActivity

/entry Activity entry

T1.1

T3

Continue/Activity: testEnd

T1.2 Data/Activity: effect

T2

Data

T1

T1

T2

Data

T3

Continue/Activity: testEnd

T1.1

T1.2 Data/Activity: effect

Generated trace

• S1(effect)[in=true]::S1.1(entry)[in=true]::S1.1(doActivity)[in=true]::S1.1(exit)[in=false]::T1.2(effect)[in=false]

Note. The purpose of this test is to check that state behaviors (i.e., entry, doActivity and exit behaviors) have access
to the signal instance that initiated the RTC step in which they are executed. In the test case, when the state machine
is in configuration wait, the dispatching of Data(true) implies the execution of the compound transition T2(T1.1).
Hence, during that step, the S1 entry behavior and the S1.1 entry behavior are executed, and the S1.1 doActivity
behavior is invoked. Considering that they are all executed, the following trace fragment is added to the trace:
S1(effect)[in=true]::S1.1(entry)[in=true]::S1.1(doActivity)[in=true]. When the second occurrence of Data(false) is
dispatched, S1.1 is exited and T1.2 is traversed. The execution of the S1.1 exit behavior and the T2 effect behavior
add the following fragment to the trace: S1.1(exit)[in=false]::T1.2(effect)[in=false]. The state-machine execution
completes at the end of the RTC step in which T3 is fired by the dispatching of the Continue event occurrence.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Data(true), CE(wait)] [wait] []

3 [Data(true)] [wait] [T2(T1.1)]

4 [Data(false), CE(S1.1)] [S1[S1.1]] []

5 [Data(false)] [S1[S1.1]] [T1.2]

6 [Continue, CE (S1)] [S1] []

7 [Continue] [S1] [T3]

Alternative execution trace(s)

In this test case, S1.1 has a doActivity behavior. The doActivity starts execution asynchronously from the state machine
when the state S1.1 is entered. Hence, the doActivity may or may not have the time to contribute to the trace before the
state S1.1 is exited. Considering this aspect, the following alternative execution trace can be generated:

• S1(effect)[in=true]::S1.1(entry)[in=true]::S1.1(exit)[in=false]::T1.2(effect)[in=false]

9.3.4.12 Event 018

Tested state machine

The state machine that is executed for this test is presented in Figure 9.36.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 117

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S1.1.1(exit)::S1.1(exit)::S1(exit)::T3(effect)::S2(entry)::S1.2(entry)

Note. The focus of this test case is to cover the situation in which transition T3 is triggered by the acceptance of the
completion event generated for S1.1.1. It shows support for exiting explicitly a nested state and entering explicitly a
nested state. The exiting sequence implies that parent states are exited after the source state was exited. The entering
sequence implies that parent states are entered before the target state is entered. Consider the situation where the
state machine is in configuration. S1[S1.1[S1.1.1]]. When T3 is traversed, it results in the following set of actions:

1. S1.1.1, S1.1 and S1 are exited (in this order).

2. The effect behavior of the transition is executed.

3. S2 and S2.1 are entered (in this order).

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1(T1.1.1))]

4 [CE(S1.1.1)] [S1[S1.1[S1.1.1]]] [T3]

118 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.36 - Event 018 Test Classifier Behavior

Event018_Test$behavior$1

S1

S1.1

S1.1.1
/exit Activity exit

/exit Activity exit

/exit Activity exit

wait

S2

S1.2

/entry Activity entry

/entry Activity entry

T2Start

T4

/Activity: testEnd

T1.1.1

T1

T1.1

T1.1

T3

/Activity: effect

T1

T1.1

T2Start

T3

/Activity: effect

T1.1

T4

/Activity: testEnd

T1.1.1

Step Event pool State machine configuration Fired transition(s)

5 [CE(S1.2)] [S2[S1.2]] [T1.1]

6 [CE(S2)] [S2] [T4]

9.3.4.13 Event 019-A

Tested state machine

The state machine that is executed for this test is presented in Figure 9.37.

Test executions

Received event occurrence(s)

• Call to operation op() – received when in configuration S1. This operation has no parameters.

• Continue – received when in configuration S2.

Generated trace

• S1(exit)::Call(op)::End::S2(entry)

Note. The purpose of this test is ensure that a call event is generated when an operation with no method is called on
an active object and that this call event is dispatched in a RTC step. In the test case, the initial step brings the state
machine to the configuration S1. When the call event is dispatched, the transition T2, which has a trigger for call
event referencing the operation op, is fired. The computations corresponding to the realization of the operation are
specified in the effect behavior, which is executed during the traversal of the transition. For this test, the

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 119

Figure 9.37 - Event 019 – A Test Classifier Behavior

Event019_Test_A$behavior$1

S1
/exit Activity exit

S2
/exit Activity entry

synchronous
call to "op"
operation

T3 Continue/Activity: testEnd

T1

T2 op/Activity: effect

T1

T2 op/Activity: effect

T3 Continue/Activity: testEnd

computations are straightforward and lead to the inclusion of a new trace fragment: Call(op). The state machine
execution completes when the Continue event occurrence is received and triggers T3, which enables the state
machine to reach the final state.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Call(op[]), CE(S1)] [S1] []

3 [Call(op[])] [S1] [T2]

4 [Continue, CE(S2)] [S2] []

5 [Continue] [S2] [T3]

9.3.4.14 Event 019-B

Tested state machine

The state machine that is executed for this test is presented in Figure 9.38.

120 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.38 - Event 019 - B Test Classifier Behavior

Event019_Test_B$behavior$1

S1

/exit Activity exit

S2

/entry Activity entry

T1

T2 op/Activity: effect

T3 /Activity: testEnd

T1

T2 op/Activity: effect

T3 /Activity: testEnd

Test executions

Received event occurrence(s)

• Call to operation op(in p1: Integer, in p2: String) is received when in configuration S1. Values associated to the
parameters are (in order): 42 and “input”.

Generated trace

• S1(exit)[in=42][in=input]::T2(effect)[in=42][in=input]::S2(entry)[in=42][in=input]

Note. The purpose of this test is to check that, during the dispatching of a call event for an operation with input
parameters, behaviors have access to the input parameter values. In the test case, the initial step brings the state
machine to the configuration S1. The step triggered by the call event implies the execution of the exit behavior of S1.
This behavior has input parameters conforming to those of the operation. When executed, the behavior has access to
the input parameter values 42 and “input” and adds the trace fragment: S1(exit)[in=42][in=input]. The T2 effect
behavior and S2 entry behavior similarly have access to the input parameter values. The state machine execution
completes when the completion event occurrence generated by S2 triggers T3, whose traversal lead to the final state.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Call(op), CE(S1)] [S1] []

3 [Call(op)] [S1] [T2]

4 [CE(S2)] [S2] [T3]

9.3.4.15 Event 019-C

Tested state machine

The state machine that is executed for this test is presented in Figure 9.39.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 121

Test executions

Received event occurrence(s)

• Call to operation op1(in p1: Integer, in p2: Integer) – received when in configuration wait. Values associated to
parameters are: 42 and “input”.

• Call to operation op2(in p1: Boolean) – received when in configuration S1[S1.1[S1.1.1]]. Value associated to
parameter p1 is: true.

Generated trace

• S1(entry)[in=42][in=input]::S1.1(entry)[in=42][in=input]::S1.1.1(entry)[in=42][in=input]::S1.1.1(exit)
[in=true]::T1.1.2(effect)[in=true]

Note. The purpose of this test is to check that input parameter values of an operation are made available to behaviors
executed during a step, even if they are located at different level of nesting. In the test case, the execution proceeds
as follows. When the state machine is in the configuration wait, the call event for operation op1 is received. The step
initiated by the dispatching of op1 implies the execution of the compound transition T2[T1.1[T1.1.1]]. During the
step, the S1 entry behavior, S1.1 entry behavior and S1.1.1 entry behavior are executed. Their executions add the
following trace fragments: S1(entry)[in=42][in=input], S1.1(entry)[in=42][in=input] and S1.1.1(entry)[in=42]
[in=input].The second call event that is dispatched triggers the transition T1.1.2, which implies the execution of the
S1.1.1 exit behavior and T1.1.2 effect behavior. They add the following fragments to the trace: S1.1.1(exit)[in=true]
and T1.1.2(effect)[in=true].

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

122 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.39 - Event 019 - C Test Classifier Behavior

Event019_Test_C$behavior$1

wait S1

S1.1

S1.1.1
/entry Activity entry

/exit Activity exit

/entry Activity entry

/entry Activity entry

T1.2

T1.1.1

T1.1

T1

T2

op1

T1.1.2 op2/Activity: effect

T3

/Activity: testEnd

T1

T2

op1

T1.1

T1.1.1

T1.1.2 op2/Activity: effect

T1.2

T3

/Activity: testEnd

2 [Call(op1[42, input]), CE(wait)] [wait] []

3 [Call(op1[42, input])] [wait] [T2(T1.1(T1.1.1))]

4 [Call(op2[true]), CE(S1.1.1)] [S1[S1.1[S1.1.1]]] []

5 [Call(op2[true])] [S1[S1.1[S1.1.1]]] [T1.1.2]

6 [CE(S1.1)] [S1[S1.1]] [T1.2]

7 [CE(S1)] [S1] [T3]

9.3.4.16 Event 019-D

Tested state machine

The state machine that is executed for this test is presented in Figure 9.40.

Figure 9.40 - Event 019 - D Test Classifier Behavior

Test executions

Received event occurrence(s)

• Call to operation op():String – received when in configuration S1.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 123

Event019_Test_D$behavior$1

S1

/entry Activity entry

S2

/exit Activity exit

T1

T3 Continue/Activity: testEnd

T2 op/Activity: effect

T1

T2 op/Activity: effect

T3 Continue/Activity: testEnd

• Continue – received when in configuration S2.

Generated trace

• S1(entry)::T2(effect)[out=output]::[out=output]::S2(exit)

Note. The purpose of this test is to check that, when an operation with output parameters is called on an active class,
output values might be produced during the step of execution in which the call event is dispatched. In such a
situation, these output values are made available as output values of the operation. In this test case, the call event
corresponding to the call of the operation op is dispatched when the state-machine is in configuration S1. Hence the
transition T2 is fired and the effect behavior as well as the exit behavior of S2 are executed. The values they produce
are made available as operation outputs. However, in that context the exit behavior is the last behavior to be executed
before the RTC completes. Consequently, the output value produced by this behavior is the output value of the
operation.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Call(op(), CE(S1)] [S1] []

3 [Call(op)] [S1] [T2]

4 [Continue, CE(S2)] [S2] []

5 [Continue] [S2] [T3]

9.3.4.17 Event 019-E

Tested state machine

The state machine that is executed for this test is presented in Figure 9.41.

124 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Test executions

Received event occurrence(s)

• Call to operation or(in left: Boolean, in right: Boolean, out result: Boolean): Boolean – received when in
configuration wait. Values associated to input parameters are true and true.

• Continue – received when in configuration S1.

Generated trace

• S1.1(entry)[in=true][in=true][out=true][out=true]::S2.1.1(entry)[in=true][in=true][out=false][out=false]::
[out=false][out=false]

Note. The purpose of this test is to check that output values for the operation call or are also produced even if the
executed behaviors are located at different levels of nesting. In addition, it shows that two possible output values can
be produced depending on how the orthogonal regions of S1 are interleaved at run time. In that case, the realization
of the operation call is encoded in the entry behaviors that are executed during the step initiated by the call-event
occurrence. The output values produced by the S1.1 entry behavior and the S2.1.1 entry behavior are different.
Indeed, the S1.1 behavior realizes the operation by performing a logical OR between the two inputs while S2.1.1
behavior performs a logical XOR. Hence if the S1.1 behavior is the last executed behavior and the two inputs have
the value true, then the output values for the operation will be true. Conversely, if the S2.1.1 behavior is the last
executed behavior and the two inputs have the value true then the output values for the operation will be false.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 125

Figure 9.41 - Event 019 - E Test Classifier Behavior

Event019_Test_E$behavior$1

S1

S1.1
/entry Activity entry

S2.1

S2.1.1
/entry Activity entry

wait

T1.2

T2.1.1

T2.1.2

T2.1

T2

or

T2.2

T1.1

T1

T3

Continue/Activity: testEnd

T1

T2

or

T1.1

T2.1

T2.2

T1.2

T3

Continue/Activity: testEnd

T2.1.1

T2.1.2

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Call(or(true, true), CE(wait)] [wait] []

3 [Call(or(true, true))] [wait] [T2(T1.1, T2.1(T2.1.1))]

4 [CE(S2.1.1), CE(S1.1)] [S1[S1.1, S2.1[S2.1.1]]] [T1.2]

5 [CE(S2.1.1)] [S1[S2.1[S2.1.1]]] [T2.1.2]

6 [CE(S2.1)] [S1[S2.1]] [T2.2]

7 [Continue, CE(S1)] [S1] []

8 [Continue] [S1] [T3]

Alternative execution traces

In the test case, there is concurrency specified in state S1. This means an alternative execution is possible for the state
machine under test. This trace is described below and shows the case where S1.1 entry behavior is executed after the
S2.1.1 entry behavior.

• S2.1.1(entry)[in=true][in=true][out=false][out=false]::S1.1(entry)[in=true][in=true][out=true][out=true]::
[out=true][out=true]

9.3.5 Entering

9.3.5.1 Overview

Test cases presented in this subclause deal with entry semantics of composite states.

9.3.5.2 Entering 004

Tested state machine

The state machine that is executed for this test is presented in Figure 9.42.

126 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

Generated trace

• S1(entry)::S1(exit)

Note. The purpose of this test is to demonstrate that, if a region has no initial pseudostate but is entered implicitly,
then this region is ignored by the execution. The test case model intentionally omits an initial pseudostate and
transition for the composite state S1 – a situation that is syntactically valid but not recommended. Consequently, S1
is treated as if it is a simple state upon the completion of transition T2. This means that, when S1 is entered, it
completes right after the termination of its entry behavior. This completion event is used to trigger the transition T3,
which leads to the completion of the state machine execution.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2]

4 [CE(S1)] [S1] [T3]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 127

Figure 9.42 - Entering 004 Test Classifier behavior

Entering004_Test$behavior$1

S1

S1.1

/entry Activity entry

/entry Activity entry
/exit Activity exit

waiting
T2

Start

T1

T3 /Activity: testEnd

T1.1

T1 T1.1

T3 /Activity: testEnd

T2

Start

9.3.5.3 Entering 005

Tested state machine

The state machine that is executed for this test is presented in Figure 9.43.

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

Generated trace

• T2(effect)::S1(entry)::S1.1(entry)::S1.1.1(entry)

Note. The purpose of this test is to demonstrate that, when a nested state is entered directly while its parent states
have not yet been entered, then the entry behavior of the entered state is always executed after the entry behavior of
its parent and that rule applies recursively. This test case illustrates direct entry to the deeply nested state S1.1.1. In
this situation, when T2 is triggered, its effect behavior is executed and leads to the entering of S1, S1.1, and S1.1.1
respectively. S1 and S1.1 are composite states whose unique region is entered directly (i.e., even if an initial
pseudostate and transition exist, they will not be taken).

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2]

128 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.43 - Entering 005 Test Classifier Behavior

Entering005_Test$behavior$1

S1

S1.1

S1.1.1
/entry Activity entry

/entry Activity entry

/entry Activity entry

waiting
T2

Start/Activity: effect

T1.1.1

T1

T1.1.2 /Activity: testEnd

T1.1 T1.1

T1

T1.1.1

T1.1.2 /Activity: testEnd

T2

Start/Activity: effect

Step Event pool State machine configuration Fired transition(s)

4 [CE(S1.1.1)] [S1[S1.1[S1.1.1]]] [T1.1.2]

5 [CE(S1.1)] [S1[S1.1]] []

9.3.5.4 Entering 009

Tested state machine

The state machine that is executed for this test is presented in Figure 9.44.

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

Generated trace

• T2(effect)::S1(entry)::T1.1(effect)::S1.1(entry)

Note. This test case illustrates entering of a composite state through an entry point. It shows that the entry behavior
of the composite state owning the entry point is executed before the effect behavior of the transition leaving the entry
point. Consider the situation where the state machine is in configuration waiting. When the Start event is dispatched,
T2 is traversed and the entry point is reached. This leads to the entering of S1 and the execution of its entry behavior.
The region of S1 is then entered immediately after the entry point is reached and transition T1.1 is traversed. This
leads to the entering of S1.1. The latter completes when its entry behavior has executed, after which the completion
event is used to trigger the transition T1.2.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 129

Figure 9.44 - Entering 009 Test Classifier Behavior

Entering009_Test$behavior$1

S1

S1.1

/entry Activity entry

/entry Activity entry

waiting
T1

T1.2 /Activity: testEnd

T2

Start/Activity: doTraversal
T1.1

/Activity: doTraversal

T2

Start/Activity: doTraversal
T1.1

/Activity: doTraversal

T1.2 /Activity: testEnd

T1

Step Event pool State machine configuration Fired transition(s)

3 [Start] [waiting] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.2]

5 [CE(S1)] [S1] []

9.3.5.5 Entering 010

Tested state machine

The state machine that is executed for this test is presented in Figure 9.45.

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S1(entry)::T2.1(effect)::S2.1(entry)::S1.1(entry)

Note. This test case presents the entry into a composite state with multiple regions. In this case, one region is entered
directly whereas the other is entered by default. This occurs in the RTC step initiated by acceptance of the Start event
occurrence. First S1 is entered, which leads to the default entry of the right-hand side region. Next, the left hand side

130 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.45 - Entering 010 Test Classifier Behavior

Entering010_Test$behavior$1

wait

S1

S1.1
/entry Activity entry

S2.1
/entry Activity entry

/entry Activity entry

T1.1/Activity: effect

T2.1/Activity: effect

T1.2

T3/Activity: testEnd

T2.2

T1

T2 Start

T1

T2 Start

T1.1/Activity: effect

T1.2

T2.1/Activity: effect

T2.2

T3/Activity: testEnd

region is entered directly (i.e., the initial pseudo state and its outgoing transition are not traversed). This means that
state S1.1 is entered. Note that this describes one possible execution, since the concurrency implied by the
orthogonal regions of S1 can lead to other valid execution traces. The rules for default and direct entry of regions
remain the same as stated in previous tests.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [waiting] [T2(T1.1, T2.1)]

4 [CE(S1.1), CE(2.1)] [S1[S1.1, S2.1]] [T2.2]

5 [CE(S1.1)] [S1[S1.1]] [T1.2]

6 [CE(S1)] [S1] [T3]

Alternative execution traces(s)

In this test case, S1 specifies concurrency due to its two orthogonal regions. Hence, there are also traces that might be
generated by the test that are different from the one presented above. These traces are:

1. S1(entry)::S1.1(entry)::T2.1(effect)::S2.1(entry)

2. S1(entry)::T2.1(effect)::S1.1(entry)::S2.1(entry)

Consider trace 2. It shows that S1.1 entry behavior is executed first, followed by the effect behavior of T2.1 and finally
the execution of S2.1 entry behavior. The RTC steps lead to the production of this trace are described below:

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T2.1)]

4 [CE(S2.1), CE(S1.1)] [S1[S1.1, S2.1]] [T1.2]

5 [CE(S2.1)] [S1[S2.1]] [T2.2]

6 [CE(S1)] [S1] [T3]

9.3.5.6 Entering 011

Tested state machine

The state machine that is executed for this test is presented in Figure 9.46.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 131

Figure 9.46 - Entering 011 Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

• Continue – received when in configuration S1.

Generated trace

• S1(entry)::T2.1(effect)::S1.2(entry)::T1.1(effect)::S1.1(entry)

Note. This test case covers the situation where all regions of a composite state are entered using the default entry
rule. The RTC step that is initiated by the acceptance of the Start event occurrence leads to the entering of S1, which
means that, after its entry behavior is executed, all regions will be started concurrently. The execution of each region
starts from its initial pseudostate. S1 completes when both of its region have completed. This occurs when
completion events generated by S1.1 and S1.2 have been dispatched. The S1 completion event is then used to trigger
transition T3.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2(T1.1, T2.1)]

4 [CE(1.2), CE(S1.1)] [S1[S1.1, S2.1]] [T1.2]

5 [CE(1.2)] [S1[S2.1]] [T2.2]

132 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Entering011_Test$behavior$1

waiting

S1

S1.2
/entry Activity entry

S1.1
/entry Activity entry

/entry Activity entry

T2.2

T1.2

T1

T2

Start

T1.1

/Activity: effect

T3

Continue/Activity: testEnd

T2.1

/Activity: effect

T1

T2

Start

T1.1

/Activity: effect

T1.2

T2.2

T2.1

/Activity: effect

T3

Continue/Activity: testEnd

Step Event pool State machine configuration Fired transition(s)

6 [Continue, CE(S1)] [S1] []

7 [Continue] [S1] [T3]

Alternative execution traces

In this test, concurrency is specified due to orthogonal regions owned by the composite state S1. The presence of these
regions implies that different execution traces can be observed for the tested state machine while conforming to UML
semantics. These execution traces are:

1. S1(entry)::T2.1(effect)::T1.1(effect)::S1.2(entry)::S1.1(entry)

2. S1(entry)::T2.1(effect)::T1.1(effect)::S1.1(entry)::S1.2(entry

3. S1(entry)::T1.1(effect)::T2.1(effect)::S1.1(entry)::S1.2(entry)

4. S1(entry)::T1.1(effect)::T2.1(effect)::S1.2(entry)::S1.1(entry)

5. S1(entry)::T1.1(effect)::S1.1(entry)::T2.1(effect)::S1.2(entry)

Consider trace 4. The RTC steps leading to the production of this trace are described in the table below:

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2(T1.1, T2.1)]

4 [CE(S1.1), CE(S1.2)] [S1[S1.1, S1.2]] [T2.2]

5 [CE(S1.1)] [S1[S1.1]] [T1.2]

6 [Continue, CE(S1)] [S1] []

7 [Continue] [S1] [T3]

9.3.6 Exiting

9.3.6.1 Overview

Tests presented in this subclause assess that semantics associated with state exiting rules conform to what is specified in
UML.

9.3.6.2 Exiting 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.47.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 133

Figure 9.47 - Exiting 001 Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration waiting.

• Continue – received when in configuration S1[S1.1[S1.1.1], S2.1].

Generated trace

• S1.1.1(exit)::S1.1(exit)::S2.1(exit)::S1(exit)

Note. This test illustrates the exit sequence of a composite state with orthogonal regions. It shows that the exit
sequence starts with the innermost active state of each region and is propagated up to the source state (i.e., the
composite state). Consider the situation where the state machine is in configuration S1[S1.1[S1.1.1], S2.1]. When the
Continue event occurrence is accepted, it triggers transition T3. The first action encountered by the traversal of T3 is
the exiting of S1. This requires first that all active states in all regions controlled by this state are exited. The exit
sequence starts for each region with the innermost active state. Hence, assuming that the left-hand side S1.1.1 is
exited first, it will be immediately followed by S1.1. Concurrently, S2.1 is exited in the right-hand region. The exit
sequence is concluded by the execution of the exit behavior of S1. Finally, the effect behavior of T3 is executed and
the state machine execution completes.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2(T1.1(T1.1.1), T2.1)]

4 [Continue, CE(S2.1), CE(S1.1.1)] [S1[S1.1[S1.1.1], S2.1]] []

5 [Continue, CE(S2.1)] [S1[S1.1[S1.1.1], S2.1]] []

6 [Continue] [S1[S1.1[S1.1.1], S2.1]] [T3]

134 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Exiting001_Test$behavior$1

waiting

S1

S1.1

S1.1.1
/exit Activity exit

/exit Activity exit

S2.1
/exit Activity exit

/exit Activity exit

T1.1

T2

Start

T1

T1.1.1

T3
Continue/Activity: testEnd

T1

T2

Start

T3
Continue/Activity: testEnd

T1.1

T1.1.1

Alternative execution traces

In this test, concurrency is specified due to orthogonal regions owned by the composite state S1. The presence of these
regions implies that a different execution trace can be observed for the tested state machine while conforming to UML
semantics. This execution trace is:

1. S1.1.1(exit)::S2.1(exit)::S1.1(exit)::S1(exit)

2. S2.1(exit)::S1.1.1(exit)::S1.1(exit)::S1(exit)

Consider trace 2. This trace is generated when the Continue signal event occurrence is dispatched, initiating the process
of concurrently exiting the S1 orthogonal regions. In this situation, the S2.1 exit behavior is executed before S1.1.1 exit
behavior.

9.3.6.3 Exiting 002

Tested state machine

The state machine that is executed for this test is presented in Figure 9.8. The doActivity behavior of S1 has exactly the
same behavior as the one presented in Figure 9.37 except that, instead of waiting for a Continue event occurrence, it
waits for an AnotherSignal event occurrence.

Figure 9.48 - Exiting 002 Test Classifier Behavior

The exit behavior is specified as shown in Figure 9.49. It contributes to the trace production by adding the trace fragment
S1(exit) and sends a signal AnotherSignal to the current context object executing this behavior.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 135

Exiting002_Test$behavior$1

wait

S1
/do Activity doActivity

/exit Activity exit

end

T4 Continue/Activity: testEnd

T2 Start

T1

T3 Continue

T1

T2 Start

T4 Continue/Activity: testEnd

T3 Continue

Figure 9.49 - S1 exit behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1.

• AnotherSignal – received when in configuration S1.

• Continue – received when in configuration end.

Generated trace

• S1(doActivityPartI)::S1(exit)

Note. The purpose of this test is to demonstrate that the doActivity behavior (if it is still running) is aborted before
the exit behavior is actually executed. In this test case, the doActivity behavior is started asynchronously after S1 is
entered. It is the very last action that takes place during the RTC step initiated by the acceptance of the Start event
occurrence.

In this case, when the Continue event occurrence is dispatched, the doActivity behavior is still running. Indeed the
latter waits for an AnotherSignal occurrence. However, S1 is now forced to be exited using the transition T3 (due to
the acceptance of the Continue event occurrence). Hence, its doActivity behavior is aborted and its exit behavior is
executed. To verify that the doActivity was effectively aborted before execution of the exit, the exit behavior of S1
sends an AnotherSignal occurrence to the context object. If the doActivity was not aborted, then it would have used
this event occurrence to continue its execution and it would have completed the execution trace with the message
S1(doActivityPartII).

136 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

exit

this

this

Call(trace)

segmenttarget

S1(exit)

value

Send(AnotherSignal)

target

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [AnotherSignal, Continue] [S1] [T3]

5 [Continue, AnotherSignal, CE(end)] [end] []

6 [Continue, AnotherSignal] [end] []

7 [Continue] [end] [T4]

9.3.6.4 Exiting 003

Tested state machine

The state machine that is executed for this test is presented in Figure 9.50.

Figure 9.50 - Exiting 003 Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1[S1.1.1, S1.2.1]].

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 137

Exiting003_Test$behavior$1

wait S1

S1.1

S1.1.1
/exit Activity exit

S1.2.1
/exit Activity exit

/exit Activity exit

/exit Activity exit

T2

Start

T1.1

T1.2.2
Pending

T3

Continue/Activity: testEnd

T1.1.1

T1.1.2 Pending

T1.2.1

T1

T1

T2

Start

T1.1

T1.1.1 T1.2.1

T1.1.2 Pending
T1.2.2

Pending

T3

Continue/Activity: testEnd

Generated trace

• S1.1.1(exit)::S1.2.1(exit)::S1.1(exit)::S1(exit)

Note. The purpose of this test is to demonstrate that when a composite state is exited, the exit behaviors that are
executed first are those owned by the innermost active state(s). When the Continue event occurrence is accepted, the
state machine is in configuration S1[S1.1[S1.1.1, S1.2.1]]. This means that to conform to UML state machine
semantics, the exit sequence of S1 must start by first exiting S1.1.1 and S1.2.1. Next, S1.1 is exited and, finally, S1 is
exited.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1(T1.1.1, T1.2.1))]

4 [Continue, CE(S1.2.1),
CE(S1.1.1)]

[S1[S1.1[S1.1.1, S1.2.1]]] []

5 [Continue, CE(S1.2.1)] [S1[S1.1[S1.1.1, S1.2.1]]] []

6 [Continue] [S1[S1.1[S1.1.1, S1.2.1]]] [T3]

Alternative execution traces

In this test, concurrency is specified due to orthogonal regions owned by the composite state S1.1. The presence of these
regions implies that a different execution trace can be observed for the tested state machine while conforming to UML
semantics. This alternative execution trace is:

• S1.2.1(exit)::S1.1.1(exit)::S1.1(exit)::S1(exit)

In this case, when the Continue signal event occurrence is dispatched, S1.2.1 exit behavior is executed before S1.1.1 exit
behavior.

9.3.6.5 Exiting 004

Tested state machine

The state machine that is executed for this test is presented in Figure 9.51.

138 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.51 - Exiting 004 Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S1.1(exit)::T1.2(effect)::S1(exit)

Note. The purpose of this test is to validate that, when a composite state is exited using an exit point, then the effect
behavior of the transition entering this pseudostate is executed before the exit behavior of the state. At the point
where the state machine is in configuration S1[S1.1], the completion event generated for S1.1 is dispatched and
accepted. This initiates an RTC step during which S1.1 is exited, the effect behavior is of T1.2 is executed, S1 is
exited and finally the continuation transition T3 is traversed.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.2(T3)]

9.3.6.6 Exiting 005

Tested state machine

The state machine that is executed for this test is presented in Figure 9.52.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 139

Exiting004$behavior$1

S1

S1.1

/exit Activity exit

/exit Activity exit

waiting
T2

Start

T1
 T1.1

T1.2

/Activity: effect

T3

/Activity: testEnd

T1
 T1.1

T1.2

/Activity: effect

T3

/Activity: testEnd

T2

Start

Figure 9.52 - Exiting 005 Test Classifier behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1].

Generated trace

• S1.1(exit)::S2.1(exit)::S1(exit)

Note. The purpose of the test is to ensure that, when exiting a composite state with orthogonal regions, all regions
that have not yet completed are exited and active states in these regions have their exit behaviors executed before the
one owned by the composite state,.. When the Continue event occurrence is dispatched, the state machine is in the
configuration S1[S2.1] (the left-hand region has already completed due to the acceptance of the S1.1 completion
event). Transition T3 is triggered next, and the exit sequence starts with the execution of the S2.1 exit behavior
followed by the exit behavior of S1.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(waiting)] [waiting] []

3 [Start] [waiting] [T2(T1.1, T2.1)]

4 [Continue, CE(S2.1), CE(S1.1)] [S1[S1.1, S2.1]] [T1.2]

5 [Continue, CE(S2.1)] [S1[S2.1]] []

6 [Continue] [S1] [T3]

140 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Exiting005_Test$behavior$1

wait

S1

S1.1
/exit Activity exit

S2.1
/exit Activity exit

/exit Activity exit

T3

Continue/Activity: testEnd

T2

Start

T1

T2.2Pending/Activity: effectT1.2

T2.1 T1.1

T1

T2

Start

T1.1 T2.1

T3

Continue/Activity: testEnd

T1.2 T2.2Pending/Activity: effect

9.3.7 Entry

9.3.7.1 Overview

Tests presented in this subclause assess that semantics associated with entry points conform to what is specified in UML.

9.3.7.2 Entry 002-A

Tested state machine

The state machine that is executed for this test is presented in Figure 9.53.

Figure 9.53 - Entry 002 - A Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S1.1(entry)::S2.1(entry)

Note. The fact that the entry behavior of the state owning the entry point is executed before the effect behavior of the
transition outgoing the exit point was demonstrated in the test case presented in 9.3.5.4. The purpose of the present
test is to demonstrate that, if an entry point is placed on a composite state with orthogonal regions, then this entry
point behaves as a fork. When the Start event occurrence is accepted by the state machine, T2 is triggered. At the end
of the T2 traversal, the entry point is reached, which implies the entry of S1. Since there are no transitions originating
from the pseudostate and penetrating into the state, all regions of S1 are entered using the default entry rule (i.e, each
region starts is execution using the its initial pseudostate). Hence, both transitions T1.1 and T2.1 are traversed
resulting in states S1.1 and S2.1 executing their entry behaviors. At the end of each entry behavior execution, a
completion event is generated. This is the end of the RTC step initiated by the dispatching of the Start event
occurrence. The two following RTC steps are related to the dispatching and the acceptance of these completion
events. As soon as both regions have completed, a completion event is generated for S1. The last RTC step consist of
accepting this completion event to trigger T3 thereby completing the state machine execution when the final state is
reached.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 141

Entry002_Test_A$behavior$1

wait

S1

S1.1

/entry Activity entry

S2.1

/entry Activity entry

T1.2

T1

T3

/Activity: testEnd

T2.1

T2

Start

T2.2

T1.1

T1

T2

Start
T1.1

T2.1

T1.2 T2.2

T3

/Activity: testEnd

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [CE(S2.1), CE(S1.1)] [S1[S1.1, S2.1]] [T1.2]

5 [CE(S2.1)] [S1[S2.1]] [T2.2]

6 [CE(S1)] [S1] [T3]

Alternative execution traces

In the test, there is concurrency specified in state S1. This means an alternative execution is possible for the state machine
under test. This trace is described below and shows the case where the S1.1 entry behavior is executed after the S2.1
entry behavior.

• S2.1(entry)::S1.1(entry)

The RTC steps leading to the production of this trace are described in the table below.

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [CE(S1.1), CE(S2.1)] [S1[S1.1, S2.1]] [T2.2]

5 [CE(S1.1)] [S1[S2.1]] [T1.2]

6 [CE(S1)] [S1] [T3]

9.3.7.3 Entry 002-B

Tested state machine

The state machine that is executed for this test is presented in Figure 9.54.

142 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.54 - Entry 002 - B Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S2.1(entry)::S1.2(entry)

Note. The test case presented in 9.3.7.4 demonstrates that, when a transition outgoing from entry point and
penetrating a composite state is traversed, then the region containing the targeted state is entered explicitly (i.e.,
without using the initial pseudo-state). The purpose of the present test is to demonstrate that, if orthogonal regions
exist in that composite state, then these are entered using the default approach, whereas the first one (i.e., the one
containing the target vertex) is entered explicitly. As we can see from the generated execution trace, the S1.1(entry)
message does not appear, which indicates the entrance of the upper region of S1 was realized explicitly. In addition,
S2.1(entry) is part of the trace, indicating that the other region of S1 was entered using the default entry approach.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T2.1, T1.2)]

4 [CE(S1.2), CE(S2.1)] [S1[S1.2, S2.1]] [T2.2]

5 [CE(S1.2)] [S1[S1.2]] [T1.3]

6 [CE(S1)] [S1] T3

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 143

Entry002_Test_B$behavior$1

wait

S1

S2.1
/entry Activity entry

S1.1
/entry Activity entry

S1.2
/entry Activity entry

T1.3

T2.2

T1

T2

Start T1.1

T2.1

T3

/Activity: testEnd

T1.2

T1

T2

Start

T3

/Activity: testEnd

T1.1

T1.2

T2.1

T1.3

T2.2

Alternative execution traces

In the test, there is concurrency specified in state S1. This means an alternative execution is possible for the state machine
under test. This trace is described below and shows the case where S1.2 entry behavior is executed before the S2.1 entry
behavior.

• S1.2(entry)::S2.1(entry)

The RTC steps leading to the production of this trace are described in the table below.

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.2, T2.1)]

4 [CE(S2.1), CE(S1.2)] [S1[S1.2, S2.1]] [T1.3]

5 [CE(S2.1)] [S1[S1.2]] [T2.2]

6 [CE(S1)] [S1] T3

9.3.7.4 Entry 002-C

Tested state machine

The state machine that is executed for this test is presented in Figure 9.55.

Figure 9.55 - Entry 002 - C Test Classifier Behavior

144 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Entry002_Test_C$behavior$1

wait

S1

S1.1

/entry Activity entry

T2

Start/Activity: effect

T1.2

T1.1

/Activity: effect

T1.3

T1

T3

/Activity: testEnd

T1

T2

Start/Activity: effect

T3

/Activity: testEnd

T1.2

T1.1

/Activity: effect

T1.3

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T2(effect)::S1(entry)::T1.1(entry)

Note. The purpose of this test is to demonstrate that the entry behavior of the state owning the entry point is always
executed before the effect behavior(s) of the transition(s) originating from this entry point. When the Start event
occurrence is dispatched and accepted by the state machine, T2 is triggered and traversed. This traversal implies the
execution of the effect behavior as well as the entrance of the entry point pseudostate. When the entry point is
entered, S1 is entered and its entry behavior is executed. As soon as the previous actions have completed, the
continuation transition T1.1 can be traversed. Hence its effect behavior is executed and S1.1 is entered.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.3]

5 [CE(S1)] [S1] [T3]

9.3.7.5 Entry 002-D

Tested state machine

The state machine that is executed for this test is presented in Figure 9.56.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 145

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T2(effect)::S1(entry)::T1.1(effect)::T1.2(effect)

Note. The purpose of this test is to consolidate what was shown in previous test-cases presented in 9.3.7. It
demonstrates that, if the composite has a single region and is entered through an entry with no outgoing transitions,
then the region is entered using the default entry approach. When the Start event occurrence is dispatched and
accepted by the state machine, T2 is triggered and traversed. This is manifested in the trace by the message
T2(effect). Next, S1 is entered and its entry behavior is executed (see message S1(entry) in the trace). Finally, we see
the region is entered using the default approach, since the execution of the T1.1 effect behavior adds message
T1.1(effect) to the trace.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.2]

5 [CE(S1)] [S1] [T3]

146 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.56 - Entry 002 - D Test Classifier Behavior

Entry002_Test_D$behavior$1

wait

S1

S1.1

/entry Activity entry

T1

T1.2 /Activity: effect

T1.1 /Activity: effect
T2

Start/Activity: effect

T3

/Activity: testEnd

T1

T2

Start/Activity: effect

T3

/Activity: testEnd

T1.1 /Activity: effect

T1.2 /Activity: effect

9.3.7.6 Entry 002-E

Tested state machine

The state machine that is executed for this test is presented in Figure 9.57.

Figure 9.57: Entry002 - E Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration wait.

Generated trace

• S2(entry)::S2(exit)

Note. The purpose of this test is to demonstrate the impact of the static analysis performed before an event
occurrence is actually dispatched on the execution. In that test case, the Start event occurrence is lost. This loss is
due to the impossibility of finding a path to a valid state machine configuration from the configuration wait. Indeed,
the compound transition T2(T1.1, T2.1) cannot be traversed since the transition T2.1 has a guard evaluating to false.
The reason for this choice is that, as the entry point plays the same role as fork pseudostate (because all of its
outgoing transitions target states located in orthogonal regions), hence it must be possible to propagate the execution
to all of its outgoing transitions. When the Continue event occurrence is dispatched the state machine is in
configuration wait. Transition T4 is fired using this event occurrence and state S2 is entered. The completion event
for S2 when dispatched triggers T5, which enables the state machine execution to reach the final state and to
complete.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 147

Entry002_Test_E$behavior$1

wait

S1

S1.1

/entry Activity entry

S2.1

/entry Activity entry

/entry Activity entry

S2
/entry Activity entry

/exit Activity exit

T3

/Activity: testEnd

T4

Continue

T2

Start

T2.1

[false]

T5

/Activity: testEnd

T1

T2.2

T1.2

T1.1

[true]

T1

T2

Start

T1.1

[true]

T2.1

[false]

T1.2

T2.2

T3

/Activity: testEnd

T4

Continue

T5

/Activity: testEnd

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] []

4 [Continue] [wait] [T4]

5 [CE(S2)] [S2] [T5]

9.3.7.7 Entry 002-F

Tested state machine

The state machine that is executed for this test is presented in Figure 9.58.

Test executions

Received event occurrence(s)

• IntegerData(8) – received when in configuration wait.

• Continue – received either on configuration S1 or S2.

Generated trace

• S1(entry)[in=8]::S1.1(entry)[in=8]

148 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.58: Entry 002 - F Test Classifier Behavior

Entry002_Test_F$behavior$1

S1

S1.1
/entry Activity entry

S1.2
/entry Activity entry

/entry Activity entry

wait

S2

T1.3

T1.1 [evt.value < 10]

T1

T4

Continue/Activity: effect

T1.4

T1.2 [evt.value < 5]

T5

/Activity: testEnd

T3

/Activity: testEnd

T2

IntegerData

T1

T2

IntegerData

T1.1 [evt.value < 10]

T1.2 [evt.value < 5]

T1.3

T1.4

T3

/Activity: testEnd

T4

Continue/Activity: effect

T5

/Activity: testEnd

Note. In this test, the entry point plays the role of a junction pseudostate (it has outgoing transitions to different
states located in the same region). The test case shows that a valid path can be found during the static analysis phase
from the wait configuration to the S1[S1.1] configuration. Indeed when IntegerData(8) is dispatched, the compound
transition T2(T1.1) is traversed because the guard on T1.1 evaluates to true, while the guard on T1.2 evaluates to
false. The completion event generated during that step for S1.1 is used in the next step to trigger T1.3. Hence S1
completes and T3 is fired when the completion event is dispatched.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [IntegerData(8)] [wait] [T2(T1.1)]

3 [CE(S1.1)] [S1[S1.1]] [T1.3]

4 [Continue, CE(S1)] [S1] [T3]

9.3.8 Exit

9.3.8.1 Overview

Tests presented in this subclause assess that semantics associated with exit points conform to what is specified in UML.

9.3.8.2 Exit 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.59.

Figure 9.59 - Exit 001 Test Classifier behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 149

Exit001_Test$behavior$1

S1

S1.1

S1.1.1

/exit Activity exit

/exit Activity exit

/exit Activity exit

S2
wait

T1.1

T4 /Activity: testEnd
T1.1.1

T1.2

/Activity: effect

T3

/Activity: effect

T2

Start
T1 T1

T1.1

T1.1.1

T1.2

/Activity: effect

T4 /Activity: testEnd

T3

/Activity: effect

T2

Start

Generated trace

• S1.1.1(exit)::S1.1(exit)::T1.2(effect)::S1(exit)::T3(effect)

Note. The purpose of this test case is to demonstrate support of the exit point pseudostate for exiting a composite
state. The completion event generated by S1.1.1 is dispatched and accepted when the state machine is in
configuration S1[S1.1[S1.1.1]]. At this point, T1.2 is triggered. When traversed, this transition implies first that
S1.1.1 is exited as well as S1.1. Next, its effect behavior is executed and, finally, the exit point placed on S1 is
reached. The semantics of the exit point requires S1 to be exited and transition T3 to be traversed.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1(T1.1.1))]

4 [CE(S1.1.1)] [S1[S1.1[S1.1.1]]] [T1.2(T3)]

5 [CE(S2)] [S2] [T4]

9.3.8.3 Exit 002

Tested state machine

The state machine that is executed for this test is presented in Figure 9.60.

150 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.60 - Exit 002 Test Classifier Behavior

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T1.2(effect)::T2.2(effect)

Note. The purpose of this test is to demonstrate that, if multiple transitions originating from states located in
different orthogonal regions terminate on an exit pseudostate, then it acts (in addition to its original semantics) as a
join pseudostate.

When the completion event generated by S1.1 is dispatched and accepted by the state machine, then T1.2 is triggered
and traversed. This is the first time that the exit point is reached. It cannot be traversed since its prerequisites are not
satisfied (i.e., all of its incoming transition have not already been traversed). The next RTC step is initiated by the
acceptance of the S2.1 completion event. T2.2 is triggered, after which the execution reaches the exit point for the
second time. The latter is traversed and its outgoing transition is taken. The state machine execution completes when
the final state is reached.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 151

Exit002_Test$behavior$1

wait

S1

S1.1 S2.1

T2.1

T1.2

/Activity: effect

T1

T2Start

T2.2

/Activity: effect

T1.1

T3/Activity: testEnd

T1

T2Start

T1.1

T1.2

/Activity: effect

T2.2

/Activity: effect

T2.1

T3/Activity: testEnd

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [CE(S2.1), CE(S1.1)] [S1[S1.1, S2.1]] [T1.2]

5 [CE(S2.1)] [S1[S2.1]] [T2.2(T3)]

Alternative execution traces

In the test, there is concurrency specified in state S1. This means an alternative execution is possible for the state machine
under test. This trace is described below and shows the case where T2.2 effect behavior is executed after the T1.2 effect
behavior.

• T2.2(effect)::T1.2(effect)

9.3.8.4 Exit 003

Tested state machine

The state machine that is executed for this test is presented in Figure 9.61.

Test executions

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T1.2(effect)::S1(exit)::T3(effect)

152 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.61 - Exit 003 Test Classifier Behavior

Exit003_Test$behavior$1

wait

S1

S1.1

/exit Activity exit

S3

T1
T1.1

T3

[true]/Activity: effect

T5

[true]/Activity: effect

T6

/Activity: testEnd

T1.2

/Activity: effect

T4

[false]/Activity: effect

T2

Start

T1 T2

Start

T1.1

T1.2

/Activity: effect

T3

[true]/Activity: effect

T4

[false]/Activity: effect

T6

/Activity: testEnd

T5

[true]/Activity: effect

Note. The purpose of this test case is to ensure that, in a situation where multiple transitions outgoing an exit point
are ready to be traversed, only one of them will actually be selected for firing. At the point of the execution when the
S1.1 completion event is accepted, the exit point that is placed on S1 is reached. The guards placed on transitions
originating from this exit point are evaluated. The set of enabled transitions is now composed of T3 and T5. The
transition to be traversed is chosen nondeterministically. In the case of the above trace, T3 is chosen and S3 is
entered. The completion event generated by S3 will be dispatched in the next RTC step and the state machine will
complete its execution.

RTC Steps

Step Event pool\ State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.2(T3)]

5 [CE(S3)] [S3] [T6]

Alternative execution traces

In this test, the exit point has two outgoing transitions (T3 and T5) that can be fired at the same time. This results in a
conflicting situation, where only one transition will actually be chosen to fire. As this choice is nondeterministic, one
alternative execution trace can be observed for this test case.

• T1.2(effect)::S1(exit)::T5(effect)

9.3.9 Choice

9.3.9.1 Overview

Tests presented in this subclause assess that choice semantics conform to what is specified in UML.

9.3.9.2 Choice 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.62.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 153

Figure 9.62 - Choice 001 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T4(effect)::T4(effect)::T4(effect)::T4(effect)

Note. The purpose of this test is to demonstrate how evaluation of transition guards of transitions originating from a
choice pseudostate has an impact on the execution flow. When the Start event occurrence is dispatched and accepted
by the state machine, T2 is triggered. The execution of its associated effect behavior implies the initialization of the
value property of the class for which the state machine plays the role of a classifier behavior. The Increment state is
entered and its entry behavior increments the value of property value. Right after the termination of the entry
behavior, a completion event is generated for the state Increment. This is the end of the RTC step initiated by the
acceptance of the Start event occurrence. The next RTC step is initiated by the acceptance of the completion event
generated by the Increment state. This triggers T3, which is the incoming transition of the choice pseudostate. When
it is reached, all guards placed on outgoing transitions are evaluated. Only the guard placed on T4 evaluates to true,
so that this continuation transition is taken. This leads to re-entering of the Increment state. The next four RTC steps
repeat this execution path. The fifth consists in traversing T5, whose guard now evaluates to true. When the final
state is reached the state machine completes its execution.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [CE(Increment)] [Increment] [T3(T4)]

154 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Choice001_Test$behavior$1

Increment

/entry Activity increment
wait

T4

[this.value < 5]/Activity: effect

T5[this.value == 5]/Activity: testEnd

T2

Start/Activity: effect

T3

T1

T1

T2

Start/Activity: effect

T3

T5[this.value == 5]/Activity: testEnd

T4

[this.value < 5]/Activity: effect

Step Event pool State machine configuration Fired transition(s)

5 [CE(Increment)] [Increment] [T3(T4)]

6 [CE(Increment)] [Increment] [T3(T4)]

7 [CE(Increment)] [Increment] [T3(T4)]

8 [CE(Increment)] [Increment] [T3(T5)]

9.3.9.3 Choice 002

Tested state machine

The state machine that is executed for this test is presented in Figure 9.63.

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T4(effect)

Note. The purpose of this test is to demonstrate that, if many transitions originating from a choice pseudostate are
enabled, then at most one of them is chosen to be traversed. When the Start event occurrence is dispatched and
accepted by the state machine, T2 is triggered. The choice pseudostate reached at this point has outgoing transitions.
Each guard of each transition is evaluated. It happens at this point that T3, T4 and T5 are all ready to be traversed (a
transition with no explicit guard is considered to have a guard that always evaluates to true). The transition that will
be fired is chosen nondeterministically. In the case of the above trace, T4 is chosen to be traversed.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 155

Figure 9.63 - Choice 002 Test Classifier Behavior

Choice002_Test$behavior$1

wait
S1

T6

/Activity: testEnd

T3

[true]/Activity: effect

T5

/Activity: effect

T1

T2

Start

T4

[true]/Activity: effect

T1

T2

Start

T3

[true]/Activity: effect

T4

[true]/Activity: effect

T5

/Activity: effect

T6

/Activity: testEnd

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T4)]

4 [CE(S1)] [S1] [T6]

Alternative execution traces

In this test, the choice has three outgoing transitions (T3, T4 and T5) that can be fired at the same time. This result is a
conflicting situation where only one transition will actually be chosen to fire. As this choice is nondeterministic, two
alternative execution traces can be observed for this test case.

• T3(effect)

• T5(effect)

9.3.9.4 Choice 003

Tested state machine

The state machine that is executed for this test is presented in Figure 9.64.

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T4(effect)

Note. The purpose of this test is to demonstrate that, if a choice point has an else outgoing transition and all of other
outgoing transitions have guards that evaluate to false, then the else transition is chosen and traversed. When the
Start event occurrence is dispatched and accepted, T2 is triggered, which enables the state machine to reach the

156 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.64 - Choice 003 Test Classifier Behavior

Choice003_Test$behavior$1

wait S1

T4

[else]/Activity: effect

T3

[false]/Activity: effect

T5

[false]/Activity: effect

T2

Start

T1
 T6

/Activity: testEnd

T1

T2

Start

T4

[else]/Activity: effect

T3

[false]/Activity: effect

T5

[false]/Activity: effect

T6

/Activity: testEnd

choice point. At this point, the guards of transitions T3 and T5 are evaluated. Neither of them evaluates to true, but
there also exists an else transition T4. This transition (i.e., T4) is traversed and S1 is entered. The completion event
generated by S1 is used to trigger T6, which leads to the completion of the state machine execution.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T4)]

4 [CE(S1)] [S1] [T6]

9.3.9.5 Choice 004

Tested state machine

The state machine that is executed for this test is presented in Figure 9.65.

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Data(true) – received when in configuration S1.

Generated trace

• T4(effect)

Note. The purpose of this test case is to demonstrate that data available in an event occurrence can be made available
to guards placed on outgoing transitions of a choice pseudostate. When the Data event occurrence is dispatched, the
compound transition T3(T4) is traversed. T4 is chosen because its guard evaluates to true. Note that the guards on the
outgoing transitions of a choice pseudostate are not evaluated during the static analysis phase, but they are evaluated
at the time the choice is reached by the execution flow. This means that, even in the case where the step is accepted

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 157

Figure 9.65 - Choice 004 Test Classifier Behavior

Choice004_Test$behavior$1

wait
S1

S2

T2

Start

T3

Data

T1

T4

[data.value == true]/Activity: effect

T6

/Activity: testEnd
T5

[data.value == false]/Activity: effect

T1

T2

Start

T3

Data

T5

[data.value == false]/Activity: effect

T4

[data.value == true]/Activity: effect

T6

/Activity: testEnd

by the state machine, there is no guarantee that the execution will be able to reach a valid state machine
configuration. The dispatching of the S2 completion event enables the transition T6 to be fired.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [Data(true), CE(S1)] [S1] []

5 [Data(true)] [S1] [T3(T4)]

6 [CE(S2)] [S2] [T6]

9.3.9.6 Choice 005

Tested state machine

The state machine that is executed for this test is presented in Figure 9.66.

• T1.2 guard evaluates to true.

• T1.3 guard evaluates to false.

• T1.4 guard evaluates to true.

• T1.5 guard evaluates to false.

158 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Choice005_Test$behavior$1

wait
S1

S1.1

/entry Activity entry

S1.2

/entry Activity entry

/entry Activity entry

T1.5[false]

T1.1

T2

Start/Activity: effect

T1

T3

Continue/Activity: testEnd

T1.2 [true]

T1.4 [true]

T1.7

T1.3 [false]

T1.6

T1

T2

Start/Activity: effect

T1.1

T1.2 [true]

T1.4 [true] T1.5[false]

T1.7

T1.3 [false]

T1.6

T3

Continue/Activity: testEnd

Figure 9.66 - Choice 005 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1.

Generated trace

• T1.2(guard)::T1.3(guard)::T2(effect)::S1(entry)::T1.4(guard)::T1.5(guard)::S1.1(entry)

Note. The purpose of this test is to demonstrate that guards of transitions outgoing a choice pseudostate are not
evaluated prior to an RTC step but during the RTC step. To demonstrate this, guards placed on T1.2, T2.3, T1.4 and
T1.5 contribute to the trace generated by this test case. Consider the situation where the state machine is in
configuration wait, and the Start event is about to be dispatched. Before realizing the RTC step, the static analysis
phase takes place. During this static analysis, the compound transitions T2(T1.1, T1.2) and T2(T1.1, T1.3) are
evaluated in order to determine if a valid state machine configuration can be reached. Guards on transitions are
evaluated during this phase, which explains that the trace fragments T1.2(guard) and T1.3(guard) appear at the
beginning of the trace. In this test it is only possible for that step to reach a valid state machine configuration using
the compound T2(T1.1, T1.2) (T1.3 guard evaluates to false). One can notice that, during the static analysis, guards
of outgoing transitions of the choice pseudo state have not been evaluated. These latter are clearly evaluated when
the choice pseudostate is reached since the trace shows that T2(effect) and S1(entry) fragments appear before
T1.4(guard)::T1.5(guard). When S1.1 is entered a completion event is generated, which enables T6 to be fired in the
next step and S1 to complete. The last RTC step is realized when the Continue event is dispatched.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 159

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T1.2, T1.4)]

4 [CE(S1.1)] [S1[S1.1]] [T1.6]

5 [Continue, CE(S1)] [S1] []

6 [Continue] [S1] [T3]

9.3.10 Junction

9.3.10.1 Overview

Test presented in this subclause assess that junction pseudostate semantics conform to what is specified in UML.

9.3.10.2 Junction 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.67.

Junction001_Test$behavior$1

wait
S1

S1.1 S1.2

/entry Activity entry
/exit Activity exit

T1.1 /Activity: effect

T1.3

[false]/Activity: effect

T1.4

T1.5

T3

/Activity: testEnd

T1

T1.2

[true]/Activity: effect

T2

Start

T1

T2

Start

T1.1 /Activity: effect

T1.2

[true]/Activity: effect

T1.3

[false]/Activity: effect

T1.5

T1.4

T3

/Activity: testEnd

Figure 9.67 - Junction 001 Test Classifier Behavior

160 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S1(entry)::T1.1(effect)::T1.2(effect)::S1(exit)

Note. The purpose of this test is to demonstrate that junction pseudostate guards are evaluated before the RTC step
that would traverse the junction is executed. Consider the situation where the state machine is in configuration wait.
Prior to dispatching of the Start event occurrence, a static analysis is performed on the state machine. The purpose of
this static analysis is to determine whether, from the current configuration, at least one valid path can be found to the
next configuration. In this case, the paths that are evaluated are represented by the compound transitions T2(T1.1,
T1.2) and T2(T1.1, T1.3). During the evaluation, the guards on these transitions are evaluated. This leads to the
conclusion that, in the current situation, only T2(T1.1, T1.2) can be traversed. Specifically, following this transition
will reach the configuration S1[S1.1]. It is not possible to reach S1[S1.2] due to the T1.3 guard, which evaluates to
false. Following the traversal of T2(T1.1, T1.2), S1.1 is entered and a completion event occurrence is generated for
that state. This completion event occurrence triggers T1.4, which leads to the completion of S1. Its completion event
occurrence is then used in the next step to fire T3.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T1.2)]

4 [CE(S1.1)] [S1[S1.1]] [T1.4]

5 [CE(S1)] [S1] [T3]

9.3.10.3 Junction 002

Tested state machine

The state machine that is executed for this test is presented in Figure 9.68.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 161

Junction002_Test$behavior$1

wait
S1

S1.1 S1.2No valid
guards on
outgoing
transitions

/entry Activity entry
/exit Activity exit

S2

T1.1 /Activity: effect

T4 /Activity: testEnd

T5

/Activity: testEnd

T1

T3

Continue/Activity: effect
T1.2

[false]/Activity: effect

T1.3

[false]/Activity: effect

T1.5

T2

Start

T1.4

T1

T2

Start

T1.1 /Activity: effect

T1.2

[false]/Activity: effect

T1.3

[false]/Activity: effect

T1.5

T1.4

T5

/Activity: testEnd

T3

Continue/Activity: effect

T4 /Activity: testEnd

Figure 9.68 - Junction 002 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration wait.

Generated trace

• T3(effect)

Note. The purpose of this test is to demonstrate that, in the situation where a path does not lead to a valid state
machine configuration, this path is disabled. If all paths are disabled, then the event occurrence that should have
been used to trigger one path is dispatched and lost. Consider the situation where the state machine is in the
configuration wait and the Start event occurrence is about to be dispatched. Possible paths to be triggered by the
Start event occurrence are T2(T1.1, T1.2) and T2(T1.1, T1.3). Nevertheless, none of them can be traversed to reach a
valid state machine configuration. Indeed, both T1.2 and T1.3, which are parts of the paths, have a guard evaluating
to false. Hence the Start event occurrence is dispatched and lost and the state machine remains in configuration wait.
When the Continue event occurrence is dispatched, T3 is triggered and S2 is entered. The completion event
occurrence of S2 is used to fire T4 in the next step.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] []

162 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Step Event pool State machine configuration Fired transition(s)

4 [Continue] [wait] [T3]

5 [CE(S2)] [S2] [T4]

9.3.10.4 Junction 003

Tested state machine

The state machine that is executed for this test is presented in Figure 9.69.

Junction003_Test$behavior$1

wait S1

S1.1

S1.6S1.2 S1.3 S1.4 S1.5

If at least one valid path (i.e. a path
to a valid state-machine
configuration) is found then the
execution can take place

T1

T1.7
/Activity: effect

T2

Start

T1.8

/Activity: effect

T1.3

[true]/Activity: effect

T1.5

/Activity: effect

T3.1.1

[true]/Activity: effect

T3.1.2 [false]/Activity: effect

T1.10

T3.1.1.1

[false]/Activity: effect

T1.9

/Activity: effect

T1.4

[true]/Activity: effect

T1.2

T1.1

T3.1.1.2 [true]/Activity: effect

T1.4.2

[false]/Activity: effect

T1.6

/Activity: effect

T3

/Activity: testEnd

T1.4.1

[true]/Activity: effect

T1

T2

Start

T1.1

T1.2

T1.3

[true]/Activity: effect

T1.4.2

[false]/Activity: effect

T3.1.1

[true]/Activity: effect

T3.1.1.1

[false]/Activity: effect

T3.1.1.2 [true]/Activity: effect

T3.1.2 [false]/Activity: effect T1.4.1

[true]/Activity: effect

T1.5

/Activity: effect

T1.6

/Activity: effect

T1.7
/Activity: effect

T1.8

/Activity: effect T1.9

/Activity: effect
T1.10 T3

/Activity: testEnd

T1.4

[true]/Activity: effect

Figure 9.69 - Junction 003 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T1.3(effect)::T3.1.1(effect)::T3.1.1.2(effect)::T1.6(effect)

Note. The purpose of this test is twofold. First, it demonstrates the flow of the static analysis along nested paths.
Second, it demonstrates the capability of the semantics to resolve ambiguity if multiple transitions outgoing a

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 163

junction have a guard evaluating to true. Consider the situation where the state machine is in configuration S1[S1.1].
When the S1.1 completion event occurrence is dispatched, multiple paths are evaluated:

○ T1.2(T1.3, T3.1.1, T3.1.1.1)

○ T1.2(T1.3, T3.1.1, T3.1.1.2)

○ T2(T1.3, T3.1.2)

○ T2(T1.4, T1.4.1)

○ T2(T1.4, T1.4.2)

Among these paths only two offer the possibility to reach a valid state machine configuration:

○ T1.2(T1.3, T3.1.1, T3.1.1.2)

○ T2(T1.4, T1.4.1)

Assume that T1.2(T1.3, T3.1.1, T3.1.1.2) is chosen to be traversed. This brings the state machine to the
configuration S1[S1.3]. In the next RTC step, the completion event occurrence generated for S1.3 is used to
trigger the compound transition T1.6(T1.10). When the final state is reached, S1 completes. The last RTC step is
initiated by the dispatching of its completion event occurrence.

RTC steps

Step Event pool State machine
configuration

Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [CE(S1.1)] [S1[S1.1]] T1.2(T1.3, T3.1.1, T3.1.1.2)

5 [CE(S1.3)] [S1[S1.3]] [T1.6(T1.10)]

6 [CE(S1)] [S1] [T3]

Alternative execution traces

In this test, the junction has two outgoing transitions (T1.3 and T1.4) that can be fired at the same time. This result is a
conflicting situation where only one transition will actually be chosen to fire. As this choice is nondeterministic, one
alternative execution trace can be observed for this test case.

• T1.4(effect)::T1.4.1(effect)::T1.8(effect)

9.3.10.5 Junction 004

Tested state machine

The state machine that is executed for this test is presented in Figure 9.70.

164 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Junction004_Test$behavior$1

S1

S1.1
/entry Activity entry

S1.2
/exit Activity exit

S2.1
/entry Activity entry

S2.2
/entry Activity entry

Invalid path. The
compound
transitionT2{T1.3,
T2.1} cannot be taken.

/entry Activity entry
/exit Activity exit

wait

S2

T1.1 /Activity: effect

T1.3 [true]/Activity: effect

T2.1 /Activity: effect

T2.5

T2.2

[false]

T2.4

T2.3

[false]

T1.4 Continue

T4 /Activity: testEnd

T2

Start

T3 Continue/Activity: effect

T1

T2.6 /Activity: testEnd

T1.2 [false]/Activity: effect

T1.1 /Activity: effect

T1

T2

Start

T1.2 [false]/Activity: effect

T1.3 [true]/Activity: effect

T1.4 Continue

T2.1 /Activity: effect

T2.2

[false]

T2.3

[false]

T2.4

T2.5

T2.6 /Activity: testEnd

T3 Continue/Activity: effect

T4 /Activity: testEnd

Figure 9.70 - Junction 004 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration wait.

Generated trace

• T3(effect)

Note. The purpose of this test is to demonstrate the flow of the static analysis through orthogonal regions. Consider
the situation where the state machine is in configuration wait and the Start event occurrence is about to be
dispatched. In this case, none of the four paths starting from T2 that are evaluated allow the state machine to reach a
valid configuration. Indeed, even if it were possible to find one path (T2(T1.3)) in the left region, it is not possible to
find any valid path in the right region. Both T2(T2.1, T2.2) and T2(T2.1, 2.3) contain a transition with a guard
evaluating to false. Hence, when the Start event occurrence is dispatched, it is lost. The next event occurrence to be
dispatched is for the signal Continue, which triggers T3. This enables the state machine to reach the configuration
S2. The completion event occurrence generated by that state triggers the last RTC step.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] []

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 165

Step Event pool State machine configuration Fired transition(s)

4 [Continue] [wait] [T3]

5 [CE(S2)] [S2] [T4]

9.3.10.6 Junction 005

Tested state machine

The state machine that is executed for this test is presented in Figure 9.71.

Junction005_Test$behavior$1

S1

S1.1
/entry Activity entry

S1.2
/exit Activity exit

S2.1
/entry Activity entry

S2.2
/entry Activity entry

/entry Activity entry
/exit Activity exit

wait

S2

T4 /Activity: testEnd

T2

Start

T2.2

[true]

T1.2 [false]/Activity: effect

T2.6 /Activity: testEnd

T2.3

[false]

T1.3 [true]/Activity: effect

T2.1 /Activity: effect

T1.1 /Activity: effect

T3 Continue/Activity: effect

T1.4 Continue

T2.4

T1

T2.5

T1.1 /Activity: effect

T1

T2

Start

T1.2 [false]/Activity: effect

T1.3 [true]/Activity: effect

T1.4 Continue

T2.1 /Activity: effect

T2.2

[true]

T2.3

[false]

T2.4

T2.5

T2.6 /Activity: testEnd

T3 Continue/Activity: effect

T4 /Activity: testEnd

Figure 9.71 - Junction 005 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received in configuration wait.

Generated trace

• S1(entry)::T2.1(effect)::S2.1(entry)::T1.3(effect)::S1.2(exit)::S1(exit)

Note. The purpose of this test is to demonstrate the flow of the static analysis through orthogonal regions. This test is
the exact opposite of the Junction 004 test in the sense that, when the Start event occurrence is dispatched, it is
possible to find a valid path to the next valid state machine configuration. Consider the situation where the state
machine is in configuration wait. When the Start event occurrence is about to be dispatched, four paths can be
evaluated. Among these paths, the one corresponding to the compound transition T2(T1.3, T2.1, T2.2) is the only one
that leads to a valid state machine configuration: S1[S1.2, S2.1]. Consequently, this compound transition is traversed.

166 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

The completion event occurrence generated for S1.2 is lost, since the state has no completion transition available.
This is not the case for the S2.1 completion event occurrence, which, when dispatched, triggers the compound
transition T2.4(T2.6). During the traversal of this transition S1.2 and S1 are exited. When the final state is reached,
the state machine execution completes.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.3, T2.1, T2.2)]

4 [CE(S1.2), CE(S2.1)] [S1[S1.2, S2.1]] [T2.4(T2.6)]

Alternative execution steps

The presence of orthogonal regions in S1 implies the possibility of valid alternative execution traces. These alternative
execution traces are listed below.

• S1(entry)::T2.1(effect)::T1.3(effect)::S2.1(entry)::S1.2(exit)::S1(exit)

• S1(entry)::T1.3(effect)::T2.1(effect)::S2.1(entry)::S1.2(exit)::S1(exit)

9.3.10.7 Junction 006

Tested state machine

The state machine that is executed for this test is presented in Figure 9.72.

Junction006_Test$behavior$1

S1

S1.2 S1.3

wait

T1.6

[false]/Activity: effect

T3

/Activity: testEndT1.7 [else]/Activity: effect
T1.4 /Activity: effect

T1.2 [else]/Activity: effect T1.3 [data.value == true]/Activity: effect

T1

T1.1

/Activity: effect

T4

/Activity: testEnd

T1.5

T2

Data

T1

T2

Data

T1.1

/Activity: effect

T1.2 [else]/Activity: effect T1.3 [data.value == true]/Activity: effect

T1.5

T1.7 [else]/Activity: effect
T1.4 /Activity: effect

T1.6

[false]/Activity: effect

T3

/Activity: testEnd

T4

/Activity: testEnd

Figure 9.72 - Junction 006 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Data(true) – received when in configuration wait.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 167

Generated trace

• T1.1(effect)[in=true]::T1.3(effect)[in=true]::T1.7(effect)

Note. The purpose of this test is twofold. First, it demonstrates the capability of accessing event data during static
analysis. Second, it demonstrates usage of the else transition in cases where none of the other transitions outgoing a
junction has a guard evaluating to true. Consider the situation where the state machine is in configuration wait and a
Data(true) event occurrence is about to be dispatched. A valid path (T2(T1.1, T1.3)) allows the state machine to
move from the current configuration to configuration S1[S1.3]. There is no need to use the else transition in this
case, since the T1.3 guard evaluates to true. Therefore, after the dispatching of Data(true), the state machine enters
configuration S1[S1.3]. The completion event occurrence generated by S1.3 is used during the following RTC step to
trigger the compound transition T1.5(T1.7, T3), which leads the state machine execution to reach the final state. Note
that the else transition T1.7 is used for this step, since this is the only way to traverse through the junction
pseudostate.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Data(true), CE(wait)] [wait] []

3 [Data(true)] [wait] [T2(T1.1, T1.3)]

4 [CE(S1.3)] [S1[S1.3]] [T1.5(T1.7, T3)]

9.3.11 Fork

9.3.11.1 Overview

Tests presented in this subclause assess that fork semantics conform to what is specified in UML.

9.3.11.2 Fork 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.73.

168 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.73 - Fork 001 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T3(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::S1.1(entry)::T4(effect)::S1.2(entry).

Note. The purpose of this test is to demonstrate the support for fork pseudostate semantics, as well as the
preservation of region entry rules, when this pseudostate is used. When the Start event occurrence is dispatched and
accepted by the state machine, it triggers T2. Traversal of this transition brings the state machine to the fork
pseudostate. Both of its outgoing transitions are fired concurrently. However neither S1.1 nor S1.2 are entered
immediately. S1 is entered first, its entry behavior is executed, and all regions that are not entered explicitly are
started concurrently. This implies that the third region (i.e., the one containing S1.3) starts its execution starting from
the initial pseudostate. Hence, T3.1 is traversed and S1.3 is entered (a completion event is generated for that state
when its entry behavior has finished). Finally both S1.1 and S1.2 are entered. This concludes the RTC step that was
initiated by the acceptance of the Start event occurrence. The three completion events generated by S1.3, S1.1 and
S2.1 will be used in next RTC steps to trigger T3.2, T1.2 and T2.2.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T3.1, T3, T4)]

4 [CE(S1.2), CE(S1.1), CE(S1.3)] [S1[S1.1, S1.2, S1.3]] [T3.2]

5 [CE(S1.2), CE(S1.1)] [S1[S1.1, S1.2]] [T1.2]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 169

Fork001_Test$behavior$1

wait

S1

S1.2

/entry Activity entry

S1.1

/entry Activity entry

S1.3

/entry Activity entry

/entry Activity entry

T3.1

/Activity: effect

T1

T3.2

T2

Start

T2.2

T1.2

T2.1

/Activity: effect

T3

/Activity: effect

T5

/Activity: testEnd
T4

/Activity: effect

T1.1

/Activity: effect

T1

T2

Start

T3

/Activity: effect

T1.1

/Activity: effect T1.2

T4

/Activity: effect

T2.2

T2.1

/Activity: effect T5

/Activity: testEnd

T3.1

/Activity: effect
T3.2

Step Event pool State machine configuration Fired transition(s)

6 [CE(S1.2)] [S1[S1.2]] [T2.2(T5)]

Alternative execution traces

The presence of the fork pseudostate and the three orthogonal regions in S1 imply the existence of multiple execution
traces. These execution traces are listed below:

1. T3(effect)::T4(effect)::S1(entry)::S1.1(entry)::S1.2(entry)::T3.1(effect)::S1.3(entry)

2. T3(effect)::T4(effect)::S1(entry)::S1.1(entry)::T3.1(effect)::S1.2(entry)::S1.3(entry)

3. T3(effect)::T4(effect)::S1(entry)::S1.1(entry)::T3.1(effect)::S1.3(entry)::S1.2(entry)

4. T3(effect)::T4(effect)::S1(entry)::S1.2(entry)::S1.1(entry)::T3.1(effect)::S1.3(entry)

5. T3(effect)::T4(effect)::S1(entry)::S1.2(entry)::T3.1(effect)::S1.3(entry)::S1.1(entry)

6. T3(effect)::T4(effect)::S1(entry)::S1.2(entry)::T3.1(effect)::S1.1(entry)::S1.3(entry)

7. T3(effect)::T4(effect)::S1(entry)::T3.1(effect)::S1.1(entry)::S1.2(entry)::S1.3(entry)

8. T3(effect)::T4(effect)::S1(entry)::T3.1(effect)::S1.1(entry)::S1.3(entry)::S1.2(entry)

9. T3(effect)::T4(effect)::S1(entry)::T3.1(effect)::S1.2(entry)::S1.1(entry)::S1.3(entry)

10. T3(effect)::T4(effect)::S1(entry)::T3.1(effect)::S1.2(entry)::S1.3(entry)::S1.1(entry)

11. T3(effect)::T4(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::S1.1(entry)::S1.2(entry)

12. T3(effect)::T4(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::S1.2(entry)::S1.1(entry)

13. T3(effect)::S1(entry)::T3.1(effect)::T4(effect)::S1.1(entry)::S1.3(entry)::S1.2(entry)

14. T3(effect)::S1(entry)::T3.1(effect)::T4(effect)::S1.1(entry)::S1.2(entry)::S1.3(entry)

15. T3(effect)::S1(entry)::T3.1(effect)::T4(effect)::S1.3(entry)::S1.1(entry)::S1.2(entry)

16. T3(effect)::S1(entry)::T3.1(effect)::T4(effect)::S1.3(entry)::S1.2(entry)::S1.1(entry)

17. T3(effect)::S1(entry)::T3.1(effect)::T4(effect)::S1.2(entry)::S1.1(entry)::S1.3(entry)

18. T3(effect)::S1(entry)::T3.1(effect)::T4(effect)::S1.2(entry)::S1.3(entry)::S1.1(entry)

19. T3(effect)::S1(entry)::T3.1(effect)::S1.1(entry)::T4(effect)::S1.2(entry)::S1.3(entry)

20. T3(effect)::S1(entry)::T3.1(effect)::S1.1(entry)::T4(effect)::S1.3(entry)::S1.2(entry)

21. T3(effect)::S1(entry)::T3.1(effect)::S1.1(entry)::S1.3(entry)::T4(effect)::S1.2(entry)

22. T3(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::T4(effect)::S1.1(entry)::S1.2(entry)

23. T3(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::T4(effect)::S1.2(entry)::S1.1(entry)

24. T3(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::S1.1(entry)::T4(effect)::S1.2(entry)

25. T3(effect)::S1(entry)::T4(effect)::T3.1(effect)::S1.2(entry)::S1.1(entry)::S1.3(entry)

170 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

26. T3(effect)::S1(entry)::T4(effect)::T3.1(effect)::S1.2(entry)::S1.3(entry)::S1.1(entry)

27. T3(effect)::S1(entry)::T4(effect)::T3.1(effect)::S1.1(entry)::S1.2(entry)::S1.3(entry)

28. T3(effect)::S1(entry)::T4(effect)::T3.1(effect)::S1.1(entry)::S1.3(entry)::S1.2(entry)

29. T3(effect)::S1(entry)::T4(effect)::T3.1(effect)::S1.3(entry)::S1.2(entry)::S1.1(entry)

30. T3(effect)::S1(entry)::T4(effect)::T3.1(effect)::S1.3(entry)::S1.1(entry)::S1.2(entry)

31. T3(effect)::S1(entry)::T4(effect)::S1.1(entry)::S1.2(entry)::T3.1(effect)::S1.3(entry)

32. T3(effect)::S1(entry)::T4(effect)::S1.1(entry)::T3.1(effect)::S1.3(entry)::S1.2(entry)

33. T3(effect)::S1(entry)::T4(effect)::S1.1(entry)::T3.1(effect)::S1.2(entry)::S1.3(entry)

34. T3(effect)::S1(entry)::T4(effect)::S1.2(entry)::T3.1(effect)::S1.1(entry)::S1.3(entry)

35. T3(effect)::S1(entry)::T4(effect)::S1.2(entry)::T3.1(effect)::S1.3(entry)::S1.1(entry)

36. T3(effect)::S1(entry)::T4(effect)::S1.2(entry)::S1.1(entry)::T3.1(effect)::S1.3(entry)

37. T3(effect)::S1(entry)::S1.1(entry)::T3.1(effect)::S1.3(entry)::T4(effect)::S1.2(entry)

38. T3(effect)::S1(entry)::S1.1(entry)::T3.1(effect)::T4(effect)::S1.3(entry)::S1.2(entry)

39. T3(effect)::S1(entry)::S1.1(entry)::T3.1(effect)::T4(effect)::S1.2(entry)::S1.3(entry)

40. T3(effect)::S1(entry)::S1.1(entry)::T4(effect)::S1.2(entry)::T3.1(effect)::S1.3(entry)

41. T3(effect)::S1(entry)::S1.1(entry)::T4(effect)::T3.1(effect)::S1.2(entry)::S1.3(entry)

42. T3(effect)::S1(entry)::S1.1(entry)::T4(effect)::T3.1(effect)::S1.3(entry)::S1.2(entry)

43. T4(effect)::T3(effect)::S1(entry)::S1.1(entry)::S1.2(entry)::T3.1(effect)::S1.3(entry)

44. T4(effect)::T3(effect)::S1(entry)::S1.1(entry)::T3.1(effect)::S1.2(entry)::S1.3(entry)

45. T4(effect)::T3(effect)::S1(entry)::S1.1(entry)::T3.1(effect)::S1.3(entry)::S1.2(entry)

46. T4(effect)::T3(effect)::S1(entry)::S1.2(entry)::S1.1(entry)::T3.1(effect)::S1.3(entry)

47. T4(effect)::T3(effect)::S1(entry)::S1.2(entry)::T3.1(effect)::S1.3(entry)::S1.1(entry)

48. T4(effect)::T3(effect)::S1(entry)::S1.2(entry)::T3.1(effect)::S1.1(entry)::S1.3(entry)

49. T4(effect)::T3(effect)::S1(entry)::T3.1(effect)::S1.1(entry)::S1.2(entry)::S1.3(entry)

50. T4(effect)::T3(effect)::S1(entry)::T3.1(effect)::S1.1(entry)::S1.3(entry)::S1.2(entry)

51. T4(effect)::T3(effect)::S1(entry)::T3.1(effect)::S1.2(entry)::S1.1(entry)::S1.3(entry)

52. T4(effect)::T3(effect)::S1(entry)::T3.1(effect)::S1.2(entry)::S1.3(entry)::S1.1(entry)

53. T4(effect)::T3(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::S1.1(entry)::S1.2(entry)

54. T4(effect)::T3(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::S1.2(entry)::S1.1(entry)

55. T4(effect)::S1(entry)::T3.1(effect)::T3(effect)::S1.1(entry)::S1.3(entry)::S1.2(entry)

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 171

56. T4(effect)::S1(entry)::T3.1(effect)::T3(effect)::S1.1(entry)::S1.2(entry)::S1.3(entry)

57. T4(effect)::S1(entry)::T3.1(effect)::T3(effect)::S1.3(entry)::S1.1(entry)::S1.2(entry)

58. T4(effect)::S1(entry)::T3.1(effect)::T3(effect)::S1.3(entry)::S1.2(entry)::S1.1(entry)

59. T4(effect)::S1(entry)::T3.1(effect)::T3(effect)::S1.2(entry)::S1.1(entry)::S1.3(entry)

60. T4(effect)::S1(entry)::T3.1(effect)::T3(effect)::S1.2(entry)::S1.3(entry)::S1.1(entry)

61. T4(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::T3(effect)::S1.1(entry)::S1.2(entry)

62. T4(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::T3(effect)::S1.2(entry)::S1.1(entry)

63. T4(effect)::S1(entry)::T3.1(effect)::S1.3(entry)::S1.2(entry)::T3(effect)::S1.1(entry)

64. T4(effect)::S1(entry)::T3.1(effect)::S1.2(entry)::T3(effect)::S1.3(entry)::S1.1(entry)

65. T4(effect)::S1(entry)::T3.1(effect)::S1.2(entry)::T3(effect)::S1.1(entry)::S1.3(entry)

66. T4(effect)::S1(entry)::T3.1(effect)::S1.2(entry)::S1.3(entry)::T3(effect)::S1.1(entry)

67. T4(effect)::S1(entry)::T3(effect)::T3.1(effect)::S1.2(entry)::S1.1(entry)::S1.3(entry)

68. T4(effect)::S1(entry)::T3(effect)::T3.1(effect)::S1.2(entry)::S1.3(entry)::S1.1(entry)

69. T4(effect)::S1(entry)::T3(effect)::T3.1(effect)::S1.1(entry)::S1.2(entry)::S1.3(entry)

70. T4(effect)::S1(entry)::T3(effect)::T3.1(effect)::S1.1(entry)::S1.3(entry)::S1.2(entry)

71. T4(effect)::S1(entry)::T3(effect)::T3.1(effect)::S1.3(entry)::S1.2(entry)::S1.1(entry)

72. T4(effect)::S1(entry)::T3(effect)::T3.1(effect)::S1.3(entry)::S1.1(entry)::S1.2(entry)

73. T4(effect)::S1(entry)::T3(effect)::S1.1(entry)::S1.2(entry)::T3.1(effect)::S1.3(entry)

74. T4(effect)::S1(entry)::T3(effect)::S1.1(entry)::T3.1(effect)::S1.3(entry)::S1.2(entry)

75. T4(effect)::S1(entry)::T3(effect)::S1.1(entry)::T3.1(effect)::S1.2(entry)::S1.3(entry)

76. T4(effect)::S1(entry)::T3(effect)::S1.2(entry)::T3.1(effect)::S1.1(entry)::S1.3(entry)

77. T4(effect)::S1(entry)::T3(effect)::S1.2(entry)::T3.1(effect)::S1.3(entry)::S1.1(entry)

78. T4(effect)::S1(entry)::T3(effect)::S1.2(entry)::S1.1(entry)::T3.1(effect)::S1.3(entry)

79. T4(effect)::S1(entry)::S1.2(entry)::T3.1(effect)::S1.3(entry)::T3(effect)::S1.1(entry)

80. T4(effect)::S1(entry)::S1.2(entry)::T3.1(effect)::T3(effect)::S1.3(entry)::S1.1(entry)

81. T4(effect)::S1(entry)::S1.2(entry)::T3.1(effect)::T3(effect)::S1.1(entry)::S1.3(entry)

82. T4(effect)::S1(entry)::S1.2(entry)::T3(effect)::T3.1(effect)::S1.1(entry)::S1.3(entry)

83. T4(effect)::S1(entry)::S1.2(entry)::T3(effect)::T3.1(effect)::S1.3(entry)::S1.1(entry)

84. T4(effect)::S1(entry)::S1.2(entry)::T3(effect)::S1.1(entry)::T3.1(effect)::S1.3(entry)

Consider trace 84. The RTC steps leading to the production of this are presented in the table below.

172 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T4, T3, T3.1)]

4 [CE(S1.3), CE(S1.1), CE(S1.2)] [S1[S1.1, S1.2, S1.3]] [T2.2]

5 [CE(S1.3), CE(S1.1)] [S1[S1.1, S1.2]] [T1.1]

6 [CE(S1.3)] [S1[S1.3]] [T3.2(T5)]

9.3.11.3 Fork 002

Tested state machine

The state machine that is executed for this test is presented in Figure 9.74.

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T2(effect)::S1(entry)::T2.1(effect)::S1.1(entry)::T2.2(effect).

Note. The purpose of this test is to consolidate fork semantics by evaluating that, if a fork is used in a nested context,
the composite state explicit entry rule is preserved. When the Start event occurrence is dispatched and accepted by
the state machine, T2 is triggered and its effect behavior is executed. This brings the state machine to the fork
pseudostate. As the Fork pseudostate is located within a composite state that is not already active, the latter is entered
first. Hence, the S1 entry behavior is executed. Next, the fork pseudostate outgoing transitions are traversed. The
attempt to enter a state that is not already active leads to entering of that state and the execution of its entry behavior.
Only at this point can explicit entry of both regions of S1.1 proceed.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 173

Figure 9.74 - Fork 002 Test Classifier Behavior

Fork002_Test$behavior$1

wait

S1

S1.1

S1.1.1

S1.2.1

/entry Activity entry

/entry Activity entry

T2

Start/Activity: effect

T2.2

/Activity: effect

T2.4

T1 T3

/Activity: testEnd

T2.1

/Activity: effect

T2.5

T2.3

T1 T2

Start/Activity: effect

T2.1

/Activity: effect

T2.2

/Activity: effect

T2.4

T2.3

T2.5

T3

/Activity: testEnd

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T2.1, T2.2)]

4 [CE(1.2.1), CE(S1.1.1)] S1[S1.1[S1.1.1, S1.2.1]] [T2.3]

5 [CE(1.2.1)] S1[S1.1[S1.2.1]] [T2.4]

6 [CE(S1.1)] [S1[S1.1]] [T2.5]

7 [CE(S1)] [S1] [T3]

Alternative execution traces

The presence of the fork pseudostate and the two orthogonal regions of S1.1 imply the existence of alternative execution
traces. These traces are listed below:

1. T2(effect)::S1(entry)::T2.1(effect)::T2.2(effect)::S1.1(entry)

2. T2(effect)::S1(entry)::T2.2(effect)::T2.1(effect)::S1.1(entry)

3. T2(effect)::S1(entry)::T2.2(effect)::S1.1(entry)::T2.1(effect)

Consider trace 3, which shows that T2.1 is fired after T2.2. The RTC steps leading to the production of this trace are
described below:

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T2.2, T2.1)]

4 [CE(S1.1.1), CE(S1.2.1)] [S1[S1.1[S1.1.1, S1.2.1]]] [T2.4]

5 [CE(S1.1.1)] [S1[S1.1[S1.1.1]]] [T2.3]

6 [CE(S1.1)] [S1[S1.1]] [T2.5]

7 [CE(S1)] [S1] [T3]

9.3.12 Join

9.3.12.1 Overview

Test presented in this subclause assess that join semantics conform to what is specified in UML.

174 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.3.12.2 Join 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.75.

Figure 9.75 - Join 001 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S1.1(exit)::T2.3(effect)::S2.1(exit)::S1(exit)::T2.4(effect)

Note. The purpose of this test is to demonstrate that the join pseudostate can only be traversed when all incoming
transitions have been traversed. Consider the situation where the state machine is currently in configuration S1[S1.1,
S2.1]. Two completion event occurrences (one for S1.1 and the other one for S2.1) are available in the pool. When
the completion event occurrence generated by S1.1 is dispatched and accepted, it triggers T2.3. Next, S1.1 is exited,
the effect behavior of T2.3 is executed, but S1 is not exited and the join pseudostate is not traversed. The next step
consists in accepting the S2.1 completion event occurrence. This means that T2.4 is triggered, so that S2.1 is exited
and T2.4 is executed. In addition, S1 is exited and the join pseudo state is traversed. The continuation transition T3 is
traversed. When the final state is reached, the state machine execution completes.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 175

Join001_Test$behavior$1

wait

S1

S2.1
/exit Activity exit

S1.1
/exit Activity exit

/exit Activity exit

T2.1

T1

T3

/Activity: testEnd

T2.3

/Activity: effect

T2.2

T2

Start

T2.4

/Activity: effect

T1

T2

Start

T2.1

T2.2

T2.3

/Activity: effect

T2.4

/Activity: effect

T3

/Activity: testEnd

Step Event pool State machine configuration Fired transition(s)

3 [Start] [wait] [T2(T2.1, T2.2)]

4 [CE(S2.1), CE(S1.1)] [S1[S1.1, S2.1]] [T2.3]

5 [CE(S2.1)] [S1[S2.1]] [T2.4(T3)]

Alternative execution traces

The presence of fork pseudostate and the orthogonal regions in S1.1 implies that an alternative execution trace is possible
for this test case. This trace is:

• S1.2(exit)::T2.4(effect)::S1.1(exit)::S1(exit)::T2.4(effect)

The trace shows that T2.4 is fired before T2.3. The RTC steps leading to the production of this trace are described in the
table below.

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T2.2, T2.1)]

4 [CE(S1.1), CE(S2.1)] [S1[S1.1, S2.1]] [T2.4]

5 [CE(S1.1)] [S1[S1.1]] [T2..3(T3)]

9.3.12.3 Join 002

Tested state machine

The state machine that is executed for this test is presented in Figure 9.76.

176 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T2.2(effect)::T1.2(effect)::S1(exit)::T3(effect)::S2(entry)

Note. The purpose of this test is to consolidate join semantics and demonstrate that, if used in a nested context, the
exit rule of a composite state is still preserved. In addition, it shows that the composite state is only exited when all
transitions leaving the internal vertices located in different orthogonal regions have been traversed. Consider the
situation where the state machine is in configuration S1[S1.1[S1.1.1]]. The completion event occurrence generated
by S1.1.1 is dispatched and accepted. Next, T1.2 is traversed, its effect behavior is executed, S1.1 is exited, and the
join pseudostate is reached. All incoming transitions have been fired so the join pseudostate can be traversed. When
continuation transition T3 is traversed, S1 is exited, the effect behavior of the transition is executed, and, finally, S2 is
entered.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [CE(S1.2.1), CE(S1.1.1)] [S1[S1.1[S1.1.1, S1.2.1]]] [T1.2]

5 [CE(S1.2.1)] [S1[S1.1[S1.2.1]]] [T2.2(T3)]

6 [CE(S2)] [S2] [T4]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 177

Figure 9.76 - Join 002 Test Classifier Behavior

Join002_Test$behavior$1

wait

S1

S1.1

S1.2.1

S1.1.1

/exit Activity exit

S2

/entry Activity entry

T1.1

T1.2

/Activity: effect

T1

T2.1

T2

Start

T4

/Activity: testEnd

T3

/Activity: effect

T2.2

/Activity: effect

T1

T2

Start
T1.1

T2.1

T1.2

/Activity: effect

T2.2

/Activity: effect

T3

/Activity: effect

T4

/Activity: testEnd

Alternative execution traces

The presence of orthogonal regions in S1.1 implies that an alternative execution trace is possible for this test case. This
trace is:

• T1.2(effect)::T2.2(effect)::S1(exit)::T3(effect)::S2(entry)

The trace shows the situation where T1.2 is fired after T2.2. The RTC steps leading to the production of this trace are
described in the table below.

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T2.1, T1.1)]

4 [CE(S1.1.1), CE(S1.2.1)] [S1[S1.1[S.1.1.1, S1.2.1]]] [T2.2]

5 [CE(S1.1.1)] [S1[S1.1[S1.1.1]]] [T1.2(T3)]

6 [CE(S2)] [S2] [T4]

9.3.12.4 Join 003

Tested state machine

The state machine that is executed for this test is presented in Figure 9.77.

178 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• IntegerData(8) – received when in configuration S1.1.

Generated trace

• T1.2(effect)[in=8]::T1.4(effect)[in=8]::T3(effect)[in=8]

Note. The test is focused on the application of the static analysis when a join pseudostate is encountered in a
compound transition. It also shows triggering of multiple transitions located in different regions (see T1.2 and T1.4)
using the same event occurrence and conflict resolution (see T3 and T4). In this test case, when a Start event
occurrence is about to be dispatched, the static analysis perceives two possible compound transitions ([T1.2,
T1.4(T4)] and [T1.2, T4(T3)]) leading to the same state machine configuration. During the RTC step initiated by the
Start event occurrence, one of them is traversed to reach this state machine configuration. Note the conflict between
T3 and T4. This conflict is resolved by a semantic strategy that chooses the first transition available in the set of
enabled transitions. For this test case, T3 is always chosen. The last RTC step is realized when the completion event
for S2 is dispatched.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 179

Figure 9.77 - Join 003 - Test Classifier Behavior

Join003_Test$behavior$1

wait S1

S1.1 S1.2

S2

T1.2

IntegerData/Activity: effect

T2

Start

T4 [evt.value < 10]/Activity: effect

T1.4

IntegerData/Activity: effect

T1

T1.1

T5

/Activity: testEnd

T1.3

T3[evt.value >= 5]/Activity: effect

T1

T2

Start

T1.1

T1.3

T1.2

IntegerData/Activity: effect

T1.4

IntegerData/Activity: effect

T3[evt.value >= 5]/Activity: effect T4 [evt.value < 10]/Activity: effect

T5

/Activity: testEnd

Step Event pool State machine configuration Fired transition(s)

3 [Start] [wait] [T2(T1.1, T1.3)]

4 [IntegerData(8), CE(S1.2),
CE(S1.1)]

[S1[S1.1, S1.2]] []

5 [IntegerData(8), CE(S1.2)] [S1[S1.1, S1.2]] []

6 [IntegerData(8)] [S1[S1.1, S1.2]] [T1.2, T1.4(T3)]

7 [CE(S2)] [S2] [T5]

Alternative execution traces

The orthogonal regions existing in S1 imply the existence of an alternative execution trace. This trace is:

1. T1.4(effect)[in=8]::T1.2(effect)[in=8]::T3(effect)[in=8]

2. T1.4(effect)[in=8]::T1.2(effect)[in=8]::T4(effect)[in=8]

3. T1.2(effect)[in=8]::T1.4(effect)[in=8]::T4(effect)[in=8]

The trace 1 shows the situation where T1.4 is fired before T1.2. The RTC steps leading to the production of this trace are
described in the table below.

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.3, T1.1)]

4 [IntegerData(8), CE(S1.1),
CE(S1.2)]

[S1[S1.1, S1.2]] []

5 [IntegerData(8), CE(S1.1)] [S1[S1.1, S1.2]] []

6 [IntegerData(8)] [S1[S1.1, S1.2]] [T1.4, T1.2(T3)]

7 [CE(S2)] [S2] [T5]

9.3.13 Terminate

9.3.13.1 Overview

Tests presented in this subclause assess that terminate semantics conform to what is specified in UML.

9.3.13.2 Terminate 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.78.

180 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.78 - Terminate 001 Test Classifier behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S1(entry)::S1.1(entry)::S2.1(entry)::S2.1(exit)

Note. The purpose of this test is to demonstrate support for terminate semantics. It especially shows that, when the
terminate pseudostate is entered, the state machine execution terminates and no exit behavior is executed. Consider
the situation where the state machine is in configuration S1[S1.1, S2.1]. Two completion events are in the event pool,
one of for S2.1 and the other one for S1.1. When the S2.1 completion event is accepted, it triggers T2.2. The traversal
of this transition leads the state machine to reach the terminate pseudostate. No state can be exited when the
terminate pseudostate is entered since the state machine terminates its execution. This behavior can be observed in
the generated trace. Indeed neither S1.1 nor S1 have executed their exit behaviors after the execution of the terminate
pseudostate.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 181

Terminate001_Test$behavior$1

wait

S1

S1.1
/entry Activity entry

/exit Activity exit

S2.1
/entry Activity entry

/exit Activity exit

/exit Activity exit
/entry Activity entry

T2.1

T1.2

Continue/Activity: testEnd

T2

Start

T1

T1.1

T2.2

/Activity: testEnd

T1

T2

Start

T1.1

T2.1

T1.2

Continue/Activity: testEnd

T2.2

/Activity: testEnd

Step Event pool State machine configuration Fired transition(s)

4 [CE(S2.1), CE(S1.1)] [S1[S1.1, S2.1]] []

5 [CE(2.1)] [S1[S1.1, S2.1]] [T2.2]

Alternative execution traces

The orthogonal regions existing in S1 implies the existence of an alternative execution trace. This trace is:

• S1(entry)::S2.1(entry)::S1.1(entry)::S2.1(exit)

The trace shows the situation where S2.1 is entered before S1.1. Such execution implies that the S1.1 completion event
will never be dispatched because the S2.1 completion event triggers T2.2 which implies the termination of the state
machine. The RTC steps leading to the production of this trace are described in the table below.

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T2.1, T1.1)]

4 [CE(S1.1), CE(S2.1)] [S1[S1.1, S2.1]] T2.2

9.3.13.3 Terminate 002

Tested state machine

The state machine that is executed for this test is presented in Figure 9.79.

182 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.79 - Terminate 002 Test Classifier Behavior

The behavior specified for the doActivity for S1.1 is presented in Table 9.3. It contributes to the trace by producing the
fragment S1.1doActivityPartI and waits for a Continue event occurrence. This occurrence is never available during the
test, therefore the doActivity remains suspended until it is aborted.

activity doActivity() {

this.trace("S1.1(doActivityPartI)");

accept(Continue);

this.trace("S1.1(doActivityPartII)");

}

Table 9.3 - S1.1 doActivity Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S1(entry)::S1.1(entry)::S1.1(doActivityPartI)::S2.1(entry)

Note. The purpose of this test is to demonstrate that running doActivity behaviors are aborted if a terminate
pseudostate is reached. At the end of the RTC step initiated by the acceptance of the Start event occurrence, the state
machine is in configuration S1[S1.1, S2.1]. The doActivity behavior of S1.1 has been invoked (which automatically
implies it has already started) and a single completion event occurrence is waiting in the pool, the one for S2.1. For
this execution, it is assumed that the S2.1 entry behavior is executed after the S1.1 entry behavior and also after the

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 183

Terminate002_Test$behavior$1

wait

S1

S1.1
/entry Activity entry

/exit Activity exit
/do Activity doActivity

S2.1
/entry Activity entry

/entry Activity entry
/exit Activity exit

T2.1

T1

T2.2

/Activity: testEnd

T1.1

T2

Start

T1.2

T1

T2

Start

T1.1

T1.2

T2.2

/Activity: testEnd

T2.1

invoked doActivity has contributed to the trace. When the completion event occurrence generated by S2.1 is
dispatched, then T2.2 is traversed and the terminate pseudostate is reached. This implies that the execution of the
running doActivity is aborted, the state machine execution terminates and no exit behavior is executed. Note that, in
this test, S1.1 can never complete, since the doActivity behavior invoked from that state cannot complete.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [CE(S2.1)] [S1[S1.1, S2.1]] [T2.2]

Alternative execution traces

The two orthogonal regions of S1 and the doActivity behaviors specified on S1.1 imply the existence of alternative
execution traces. These traces are listed below.

1. S1(entry)::S1.1(entry)::S2.1(entry)::S1.1(doActivityPartI)"

2. S1(entry)::S2.1(entry)::S1.1(entry)::S1.1(doActivityPartI)"

3. S1(entry)::S1.1(entry)::S2.1(entry)

4. S1(entry)::S2.1(entry)::S1.1(entry)

Consider trace 4. It shows the situation where the S2.1 entry behavior gets executed before the S1.1 entry behavior and
the S1.1 doActivity has not contributed to the trace before the state machine execution terminates.

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T2.1, T1.1)]

4 [CE(S2.1)] [S1[S1.1, S2.1]] [T2.2]

Here the S1.1 doActivity is aborted before it has actually completed its initial first RTC step.

9.3.13.4 Terminate 003

Tested state machine

The state machine that is executed for this test is presented in Figure 9.80.

184 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.80 - Terminate 003 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T2(effect)

Note. The purpose of this test is to ensure that, when a terminate pseudostate is used in a nested context, the
composite state entry rule is preserved. When the Start event occurrence is dispatched and accepted by the state
machine, T2 is triggered. Next, wait is exited, the effect behavior of the transition is executed, S1 is entered, and,
finally, the terminate pseudostate is reached. The execution of this pseudostate implies the termination of the state
machine. Note that the entry behavior for S1 is testEnd, which registers the ending of the test (but is not shown
explicitly in the trace). If the entry behavior testEnd of S1 was not executed, then the SemanticTest object for this test
would not have been notified of the termination of the test target, and, hence, the test would not have been
considered as having passed.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

9.3.14 Final

9.3.14.1 Overview

Tests presented in this subclause assess that final-state semantics conform to what is specified in UML.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 185

Terminate003_Test$behavior$1

wait

S1
/entry Activity testEnd

T1

T2

Start/Activity: effect

T1

T2

Start/Activity: effect

9.3.14.2 Final 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.81.

Figure 9.81 - Final 001 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration [S1[S1.1.1], S2.1].

Generated trace

• S1.1.1(exit)::T1.1.2(effect)::S1.1(exit)::T1.2(effect)::S2.1(exit)

Note. The purpose of this test is to demonstrate support for the final state, both at the state machine and composite
state levels. It especially shows that, when the final state is executed, the containing region completes, regardless of
its container (that is, either a state machine or a composite state). When the state machine starts its execution, both
regions start their executions concurrently. The initial RTC step ends up with the following configuration:
[S1.1[S1.1.1], S2.1]. At this point, there are two completion event occurrences placed in the pool. The completion
event occurrences were generated when S2.1 and S1.1.1 were entered. Assuming that the S2.1 completion event is at
the head of the event pool, it is dispatched first. However, it does not initiate an RTC step. Since S2.1 has no
completion transition the completion event occurrence is lost. The next RTC step consists of dispatching and
accepting the S1.1.1 completion event occurrence. It triggers traversal of T1.1.2 and leads the state machine to reach
the final state located in the S1.1 region. This region completes and a completion event occurrence is generated for

186 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Final001_Test$behavior$1

S1.1

S1.1.1
/exit Activity exit

/exit Activity exit

S2.1
/exit Activity exit

T2.2 Continue/Activity: testEnd

T2.1

T1.1

T1.1.1

T1.1.2 /Activity: effect

T1.2 /Activity: effect

T1.1

T2.1

T1.1.1

T1.1.2 /Activity: effect

T1.2 /Activity: effect

T2.2 Continue/Activity: testEnd

S1.1. This completion event occurrence is dispatched and accepted in the next RTC step. It triggers T1.2 so that the
final state is reached, and the left-hand region of the state machine completes. When the Continue event occurrence
is dispatched and accepted, T2.2 is triggered. The state machine execution completes when the target final state is
reached.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T1.1(T1.1.1), T2.1]

4 [Continue, CE(S2.1), CE(S1.1.1)] [S1.1[S1.1.1], S2.1] [T1.1.2]

5 [Continue, CE(S1.1), CE(S2.1)] [S1.1, S2.1] []

6 [Continue, CE(S1.1)] [S1.1, S2.1] [T1.2]

7 [Continue] [S2.1] [T2.2]

9.3.15 History

9.3.15.1 Overview

Tests presented in this subclause assess that history pseudostate semantics conform to what is specified in UML.

9.3.15.2 History 001-A

Tested state machine

The state machine that is executed for this test is presented in Figure 9.82.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 187

History001_Test_A$behavior$1

wait S1

S1.1

S1.1.1
/entry Activity entry

S1.1.2
/entry Activity entry

/entry Activity entry

 H *
/entry Activity entry

When the (deep) history is reached, the configuration
that shall be restored is [S1[S1.1[S1.1.2]]].

T2

Start

T1.1.1

T1

T1.1.2

T1.1.3 Continue

T1.1

T3 AnotherSignal/Activity: effect

T1.2

T4 /Activity: testEnd

T1

T2

Start

T1.1

T1.1.1

T1.1.2

T1.1.3 Continue

T3 AnotherSignal/Activity: effect

T1.2

T4 /Activity: testEnd

Figure 9.82 - History 001 - A Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• AnotherSignal – received when in configuration S1[S1.1[S1.1.2]].

• Continue – received when in configuration S1[S1.1[S1.1.2]].

Generated trace

• S1(entry)::S1.1(entry)::S1.1.1(entry)::S1.1.2(entry)::T3(effect)::S1(entry)::S1.1(entry)::S1.1.2(entry)

Note. The purpose of this test is to demonstrate that, when a deep-history pseudostate is reached and the region in
which it is placed already has a history, then the full configuration corresponding to this pseudostate is restored.
Consider the situation where the state machine is in configuration S1[S1.1[S1.1.2]]. When the event occurrence for
AnotherSignal is dispatched, T3 is fired. This means that S1.1.2, S1.1, and S1 are exited (in that order) before the
history pseudostate is reached. At that point, S1 is entered and the process of restoring the state-machine
configuration based on history occurs. In this case, S1.1 and S1.1.2 are restored. When these states are restored, their
entry behaviors are executed. Note that, in this process, states are entered directly without going through transitions.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

188 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Step Event pool State machine configuration Fired transition(s)

3 [Start] [wait] [T2(T1.1(T1.1.1))]

4 [CE(S1.1.1)] [S1[S1.1[S1.1.1]]] [T1.1.2]

5 [AnotherSignal, CE(S1.1.2)] [S1[S1.1[S1.1.2]]] []

6 [AnotherSignal] [S1[S1.1[S1.1.2]]] [T3]

7 [Continue, CE(S1.1.2)] [S1[S1.1[S1.1.2]]] []

8 [Continue] [S1[S1.1[S1.1.2]]] [T1.1.3]

9 [CE(S1.1)] [S1[S1.1]] [T1.2]

10 [CE(S1)] [S1] [T4]

9.3.15.3 History 001-B

Tested state machine

The state machine that is executed for this test is presented in Figure 9.83.

History001_Test_B$behavior$1

wait

S1

 H *
S1.1

/entry Activity entry

S1.2

S1.2.1
/entry Activity entry

S1.2.2
/entry Activity entry

/entry Activity entry
/exit Activity exit

/entry Activity entry

T1.2.2
Continue/Activity: effect

T1.2.3

T4

/Activity: testEnd

T3
AnotherSignal

T1

T1.2

T1.4

/Activity: effect

T1.3

T1.1

T2

Start

T1.2.1

T1

T2

Start

T3
AnotherSignal

T4

/Activity: testEnd

T1.1

T1.2

T1.4

/Activity: effect

T1.3

T1.2.1

T1.2.2
Continue/Activity: effect

T1.2.3

Figure 9.83 - History 001 - B Test Classifier Behavior

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 189

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• AnotherSignal – received when in configuration S1[S1.2[S1.2.1]].

• Continue – received when in configuration S1[S1.2[S1.2.1]].

Generated trace

• S1(entry)::T1.4(effect)::S1.2(entry)::S1.2.1(entry)::S1.2(exit)::S1(entry)::S1.2(entry)::S1.2.1(entry)::T1.2.2(effect)
::S1.2.2(entry)::S1.2(exit)

Note. The purpose of this test is to demonstrate that, if a deep-history pseudostate is entered but the region which
contains it has no prior history, then, if the pseudostate has a default transition (i.e., an outgoing transition), this
transition is taken. Consider the situation where the state machine is in configuration wait. When the event
occurrence for the Start signal is dispatched, T2 fires. S1 is entered, but the deep history pseudo state is in a region
that, at this point, has no history. Therefore, transition T1.4, which is the pseudostate's default transition, is fired and
state S1.2 is entered. At that point, S1.2 executes its entry behavior and the execution of its region begins. The RTC
step ends with the state machine in the configuration S1[S1.2[S1.1.2]]. When AnotherSignal event occurrence is
dispatched, S1.2.1, S1.2, and S1 are exited. During that step, the history pseudostate is entered again. But, this time,
the region has a history. Hence, the state hierarchy S1[S1.1.2]] is restored and T1.4 is not used.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.4(T1.2.1))]

4 [AnotherSignal, CE(S1.2.1)] [S1[S1.2[S1.2.1]]] []

5 [AnotherSignal] [S1[S1.2[S1.2.1]]] [T3]

6 [Continue, CE(S1.2.1)] [S1[S1.2[S1.2.1]]] []

7 [Continue] [S1[S1.2[S1.2.1]]] [T1.2.2]

8 [CE(S1.2.2)] [S1[S1.2[S1.2.2]]] [T1.2.3]

9 [CE(S1.2)] [S1[S1.2]] [T1.3]

10 [CE(S1)] [S1] [T4]

9.3.15.4 History 001-C

Tested state machine

The state machine that is executed for this test is presented in Figure 9.84.

190 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

History001_Test_C$behavior$1

wait S1

S1.1
/exit Activity exit

S1.2
/entry Activity entry

S2.1

S2.2

S2.2.1
/exit Activity exit

S2.2.2
/entry Activity entry

/entry Activity entry

 H *

/entry Activity entry
/exit Activity exit

S2

T2.2

T1.2

T3

AnotherSignal

T2.1

T2.2.3 Continue

T1

T4

T5

/Activity: testEnd

T2.2.1

T2

Start

T1.3 Continue

T1.1

T2.2.2

T1

T1.1

T2.1

T2.2

T2.2.1

T2.2.2

T1.2

T1.3 Continue

T3

AnotherSignal

T4

T2

Start

T2.2.3 Continue

T5

/Activity: testEnd

Figure 9.84 - History 001 - C Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• AnotherSignal – received when in configuration S1[S1.2, S2.2[S2.2.2]].

• Continue – received when in configuration S1[S1.2, S2.2[S2.2.2]].

Generated trace

• S1(entry)::S1.1(exit)::S1.2(entry)::S2.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S2.2(entry)::
S2.2.2(entry)::S1.1(exit)::S1.2(entry)::S1(exit)

Note. The purpose of this test is to demonstrate that, when orthogonal regions are involved, only the region that
contains the deep history pseudo state is affected by the restoration process. Consider the situation where the state
machine is in configuration S1[S1.2, S2.2[S2.2.2]]. When the AnotherSignal event occurrence is dispatched, the
complete state hierarchy is exited, starting with the innermost active states (S1.2 and S2.2.2) of both regions. T3 is
traversed and S2 is entered. The completion event occurrence generated by S2 is dispatched during the next RTC step
and triggers T4. This means that S1 is entered and the deep-history pseudostate is reached. As a result, the left region
starts its execution from the initial pseudostate while the right region is restored to its last recorded configuration
(i.e., S1[S1.2, S2.2[S2.2.2]]). This completes the step started by the firing of T4. When dispatched, the completion
event occurrence generated by S1.1 triggers T1.2. At this point, the state machine is in configuration S1[S1.2,
S2.2[S2.2.2]]. The dispatching of the Continue event occurrence forces the firing of both T1.3 and T2.2.3. The
completion event occurrence generated by S2.2 is then used to trigger its outgoing transition. This enables S1 to
complete and to produce a new completion event occurrence that is used to trigger T5.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 191

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [CE(S2.1), CE(S1.1)] [S1[S1.1, S2.1]] [T1.2]

5 [CE(S1.2), CE(S2.1)] [S1[S1.2, S2.1]] [T2.2(T2.2.1)]

6 [CE(S2.2.1), CE(S1.2)] [S1[S1.2, S2.2[S2.2.1]]] []

7 [CE(S2.2.1)] [S1[S1.2, S2.2[S2.2.1]]] [T2.2.2]

8 [AnotherSignal, CE(S2.2.2)] [S1[S1.2, S2.2[S2.2.2]]] []

9 [AnotherSignal] [S1[S1.2, S2.2[S2.2.2]]] [T3]

10 [CE(S2)] [S2] [T4]

11 [CE(S1.1), CE(S2.2.2)] [S1[S1.1, S2.2[S2.2.2]]] []

12 [CE(S1.1)] [S1[S1.2, S2.2[S2.2.2]]] [T1.2]

13 [Continue, CE(S1.2)] [S1[S1.2, S2.2[S2.2.2]]] []

14 [Continue] [S1[S1.2, S2.2[S2.2.2]]] [T1.3, T2.2.3]

15 [CE(S2.2)] [S1[S2.2]] [T2.3]

16 [CE(S1)] [S1] [T5]

Alternative execution traces

The presence of orthogonal regions in S1 implies the possibility of different valid traces. These are listed below.

1. S1(entry)::S1.1(exit)::S1.2(entry)::S2.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S2.2(entry)::S1.1
(exit)::S2.2.2(entry)::S1.2(entry)::S1(exit)

2. S1(entry)::S1.1(exit)::S1.2(entry)::S2.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S2.2(entry)::S1.1
(exit)::S1.2(entry)::S2.2.2(entry)::S1(exit)

3. S1(entry)::S1.1(exit)::S1.2(entry)::S2.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S1.1(exit)::S2.2(
entry)::S2.2.2(entry)::S1.2(entry)::S1(exit)

4. S1(entry)::S1.1(exit)::S1.2(entry)::S2.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S1.1(exit)::S2.2(
entry)::S1.2(entry)::S2.2.2(entry)::S1(exit)

5. S1(entry)::S1.1(exit)::S1.2(entry)::S2.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S1.1(exit)::S1.2(
entry)::S2.2(entry)::S2.2.2(entry)::S1(exit)

192 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

6. S1(entry)::S2.2(entry)::S1.1(exit)::S1.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S2.2(entry)::S2.2
.2(entry)::S1.1(exit)::S1.2(entry)::S1(exit)

7. S1(entry)::S2.2(entry)::S1.1(exit)::S1.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S2.2(entry)::S1.1
(exit)::S2.2.2(entry)::S1.2(entry)::S1(exit)

8. S1(entry)::S2.2(entry)::S1.1(exit)::S1.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S2.2(entry)::S1.1
(exit)::S1.2(entry)::S2.2.2(entry)::S1(exit)

9. S1(entry)::S2.2(entry)::S1.1(exit)::S1.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S1.1(exit)::S2.2(
entry)::S2.2.2(entry)::S1.2(entry)::S1(exit)

10. S1(entry)::S2.2(entry)::S1.1(exit)::S1.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S1.1(exit)::S2.2(
entry)::S1.2(entry)::S2.2.2(entry)::S1(exit)

11. S1(entry)::S2.2(entry)::S1.1(exit)::S1.2(entry)::S2.2.1(exit)::S2.2.2(entry)::S1(exit)::S1(entry)::S1.1(exit)::S1.2(
entry)::S2.2(entry)::S2.2.2(entry)::S1(exit)

9.3.15.5 History 001-D

Tested state machine

The state machine that is executed for this test is presented in Figure 9.85.

History001_Test_D$behavior$1

wait H * S1

S1.1
/entry Activity entry

S1.2
/entry Activity entry

/entry Activity entry
/exit Activity exit

S2
/entry Activity entry

T1.2 /Activity: effect

T5

/Activity: testEnd

T3

AnotherSignal/Activity: effect

T4

T1.1

T1

T1.3

Continue

T2

Start

T1

T2

Start

T3

AnotherSignal/Activity: effect

T4

T5

/Activity: testEnd

T1.1

T1.2 /Activity: effect

T1.3

Continue

Figure 9.85 - History 001 - D Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 193

• AnotherSignal – received when in configuration S1[S1.2].

• Continue – received when in configuration S1[S1.2].

Generated trace

• S1(entry)::S1.1(entry)::T1.2(effect)::S1.2(entry)::S1(exit)::T3(effect)::S1(entry)::S1.2(entry)::S1(exit)::S2(entry)

Note. The purpose of this test is to demonstrate that, when a deep-history pseudo state is owned by a state machine
region, then, when that region is entered via that pseudostate, the last recorded configuration of the region is
restored. Consider the situation where the state machine is in configuration S1[S1.2].When the AnotherSignal event
occurrence is dispatched, T3 is fired. The traversal of T3 implies that S1.2 and S1 are exited. The entrance of the
deep-history pseudostate causes the last recorded configuration for that region to be restored: S1[S1.2]. When the
Continue event occurrence is dispatched, T1.3 fires and S1 completes. The completion event generated by that state
causes the traversal of T4 and entry into S2. The state machine execution completes at the end of the RTC step
initiated by the dispatching of the S2 completion event occurrence.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.2]

5 [AnotherSignal, CE(S1.2)] [S1[S1.2]] []

6 [AnotherSignal] [S1[S1.2]] [T3]

7 [Continue, CE(S1.2)] [S1[S1.2]] []

8 [Continue] [S1[S1.2]] [T1.3]

9 [CE(S1)] [S1] [T4]

10 [CE(S2)] [S2] [T5]

9.3.15.6 History 002-A

Tested state machine

The state machine that is executed for this test is presented in Figure 9.86.

194 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

History002_Test_A$behavior$1

wait S1

S1.1
/exit Activity exit

S1.2

S1.2.1
/exit Activity exit

S1.2.2
/entry Activity entry

/entry Activity entry

 H

/entry Activity entry
/exit Activity exit

T1.3

T1.2.1

T1.2

T2

T1

T3

AnotherSignal/Activity: effect

T1.1

T1.2.3

Continue

T1.2.2 /Activity: effect

T4 /Activity: testEnd

T1

T2

T1.1

T1.2

T1.2.1

T1.2.2 /Activity: effect

T1.2.3

Continue T1.3

T3

AnotherSignal/Activity: effect

T4 /Activity: testEnd

Figure 9.86 - History 002 - A Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• AnotherSignal – received when in configuration S1[S1.2[S1.2.2]].

• Continue – received when in configuration S1[S1.2[S1.2.2]].

Generated trace

• S1(entry)::S1.1(exit)::S1.2(entry)::S1.2.1(exit)::T1.2.2(effect)::S1.2.2(entry)::S1(exit)::T3(effect)::S1(entry)::S1.2
(entry)::S1.2.1(exit)::T1.2.2(effect)::S1.2.2(entry)::S1(exit)

Note. The purpose of this test is to demonstrate that, when a shallow-history pseudostate is entered and the region
containing that pseudostate has a history, only the top state in the current deep history of that state is restored (and, if
that state is a composite, the remainder of its internal deep-history configuration is not restored). Consider the
situation where the state machine is in configuration [S1[S1.2[S1.2.2]]]. When the AnotherSignal event occurrence
is dispatched, T3 is fired. First, S1.2.2, S1.2, and are S1 exited. Next, the shallow-history pseudostate is reached. This
implies that S1 is entered and S1.2 is restored. When S1.2 is restored, its internal state configuration is not restored.
Indeed, its region is entered using the default entry rule. That means the region execution starts from the initial
pseudostate. The RTC step initiated by the dispatching of AnotherSignal ends after the completion event occurrence

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 195

for S1.2.1 is generated. When this completion event occurrence is dispatched, T1.2.2 is fired and S1.2.2 is entered. At
this point, the state machine is in configuration [S1[S1.2[S1.2.2]]] and waits for the dispatching of a Continue signal
event occurrence. When this event occurrence is dispatched, T1.2.3 fires and S1.2 completes. The completion event
occurrence generated for that state is used to trigger the transition T1.3 in the next RTC step. T4 will be traversed due
to the completion event occurrence generated by S1 and will lead to the completion of the state machine execution.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.2(T1.2.1)]

5 [CE(S1.2.1)] [S1[S1.2[S1.2.1]]] [T1.2.2]

6 [AnotherSignal, CE(S1.2.2)] [S1[S1.2[S1.2.2]]] []

7 [AnotherSignal] [S1[S1.2[S1.2.2]]] [T3(T1.2.1)]

8 [CE(S1.2.1)] [S1[S1.2[S1.2.1]]] [T1.2.2]

9 [Continue, CE(S1.2.2)] [S1[S1.2[S1.2.2]]] []

10 [Continue] [S1[S1.2[S1.2.2]]] [T1.2.3]

11 [CE(S1.2)] [S1[S1.2]] [T1.3]

12 [CE(S1)] [S1] [T4]

9.3.15.7 History 002-B

Tested state machine

The state machine that is executed for this test is presented in Figure 9.84.

196 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

History002_Test_B$behavior$1

wait

S1

S1.1
/exit Activity exit

S1.2
/entry Activity entry

 H

S2.1
/exit Activity exit

S2.2

S2.2.1
/exit Activity exit

S2.2.2
/entry Activity entry

/entry Activity entry

/entry Activity entry
/exit Activity exit

T4

/Activity: testEnd

T2

Start

T2.3

T1

T2.2.3Continue

T2.1

T3

AnotherSignal/Activity: effect

T2.2.2/Activity: effect

T1.1

T1.3 Continue

T2.2.1

T2.2

T1.2

T1 T2

Start

T1.1

T1.2

T1.3 Continue

T4

/Activity: testEnd

T3

AnotherSignal/Activity: effect

T2.1

T2.3

T2.2

T2.2.1

T2.2.2/Activity: effect

T2.2.3Continue

Figure 9.87 - History 002 - B Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• AnotherSignal – received when in configuration S1[S1.2, S2.2[S2.2.2]].

• Continue – received when in configuration S1[S1.2, S2.2[S2.2.2]].

Generated trace

• S1(entry)::S1.1(exit)::S1.2(entry)::S2.1(exit)::S2.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1(exit)::T3
(effect)::S1(entry)::S2.2(entry)::S1.1(exit)::S1.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1(exit)

Note. The purpose of this test is to demonstrate that, in a situation where orthogonal regions are involved, the usage
of a shallow-history pseudostate only affects the region in which this pseudostate is located. Consider the situation
where the state machine is in configuration S1[S1.2, S2.2[S2.2.2]]. When the AnotherSignal event occurrence is
dispatched, the full configuration is exited starting with innermost active states located in both regions (i.e., S1.2 and
S2.2.2). Next, S1 is entered, the left region starts executing from its initial pseudo state, while in the right region S2.2
is restored. The action of restoring S2.2 involves the execution of its own region, which starts from the initial
pseudostate. At the end of the RTC step initiated by dispatching of the AnotherSignal event occurrence, the state
machine is in configuration S1[S1.1, S2.2[S2.2.1]]. The next step consists in the firing of T1.2 upon the dispatching
of the completion event occurrence generated by S1.1. At this point, the only remaining event occurrence in the
event pool is the completion event occurrence generated for S2.2.1. When dispatched, this will trigger T2.2.2 and
enable S2.2.2 to be entered. The execution then waits for a Continue event occurrence, which, when dispatched, will
trigger both T1.3 and T2.2.3. The two remaining execution steps are initiated by the completion event occurrences
generated respectively by S2.2 and S1.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 197

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [CE(S2.1), CE(S1.1)] [S1[S1.1, S2.1]] [T1.2]

5 [CE(S1.2), CE(S2.1)] [S1[S1.2, S2.1]] [T2.2(T2.2.1)]

6 [CE(S2.2.1), CE(1.2)] [S1[S1.2, S2.2[S2.2.1]]] []

7 [CE(S2.2.1)] [S1[S1.2, S2.2[S2.2.1]]] [T2.2.2]

8 [AnotherSignal, CE(S2.2.2)] [S1[S1.2, S2.2[S2.2.2]]] []

9 [AnotherSignal] [S1[S1.2, S2.2[S2.2.2]]] [T3(T1.1, T2.2.1)]

10 [CE(S2.2.1), CE(S1.1)] [S1[S1.1, S2.2[S2.2.1]]] [T1.2]

11 [CE(S1.2), CE(S2.2.1)] [S1[S1.2, S2.2[S2.2.1]]] [T2.2.2]

12 [CE(S2.2.2), CE(S1.2)] [S1[S1.2, S2.2[S2.2.2]]] []

13 [Continue, CE(S2.2.2)] [S1[S1.2, S2.2[S2.2.2]]] []

14 [Continue] [S1[S1.2, S2.2[S2.2.2]]] [T1.3, T2.2.3]

15 [CE(S2.2)] [S1[S2.2]] [T2.3]

16 [CE(S1)] [S1] [T4]

Alternative execution traces

The presence of orthogonal regions in S1 implies the possibility to obtain other valid traces. These are listed below.

1. S1(entry)::S1.1(exit)::S1.2(entry)::S2.1(exit)::S2.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1(exit)::T
3(effect)::S1(entry)::S2.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1.1(exit)::S1.2(entry)::S1(exit)

2. S1(entry)::S1.1(exit)::S1.2(entry)::S2.1(exit)::S2.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1(exit)::T
3(effect)::S1(entry)::S1.1(exit)::S1.2(entry)::S2.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1(exit)

3. S1(entry)::S2.1(exit)::S2.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1.1(exit)::S1.2(entry)::S1(exit)::T
3(effect)::S1(entry)::S2.2(entry)::S1.1(exit)::S1.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1(exit)

4. S1(entry)::S2.1(exit)::S2.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1.1(exit)::S1.2(entry)::S1(exit)::T
3(effect)::S1(entry)::S2.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1.1(exit)::S1.2(entry)::S1(exit)

5. S1(entry)::S2.1(exit)::S2.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1.1(exit)::S1.2(entry)::S1(exit)::T
3(effect)::S1(entry)::S1.1(exit)::S1.2(entry)::S2.2(entry)::S2.2.1(exit)::T2.2.2(effect)::S2.2.2(entry)::S1(exit)

198 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.3.15.8 History 002-C

Tested state machine

The state machine that is executed for this test is presented in Figure 9.88.

History002_Test_C$behavior$1

wait

S1

S1.1
/entry Activity entry

S1.2
/entry Activity entry

 H

/entry Activity entry
/exit Activity exit

This shallow history has no default
transition. This implies that when
reached in the situation where S1
region has no history then a default
entry is performed. This semantics is
shared between shallow and deep
history.

T1

T1.3

T2

Start T1.1

T1.2 /Activity: effect

T3

/Activity: testEnd

T1

T2

Start

T3

/Activity: testEnd

T1.1

T1.2 /Activity: effect

T1.3

Figure 9.88 - History 002 - C Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• S1(entry)::S1.1(entry)::T1.2(effect)::S1.2(entry)::S1(exit)

Note. The purpose of this test is to demonstrate that, if a history pseudostate (a shallow history in this test) has no
default transition and its containing region has no history, then a default entry is performed for that region. Consider
the situation where the state machine is in configuration wait. When the Start event occurrence is dispatched,
transition T2 is fired. Since the targeted history pseudostate has no default transition and the region of S1 has not yet
been entered, S1 is entered, and its single region is entered using the default entry semantics. This means that the
execution of the region starts from the initial pseudostate. After that RTC step, the state machine is in configuration
S1[S1.1]. The completion event occurrence generated by S1.1 is then used in the next step to trigger T1.2. The two
remaining RTC steps for that state machine execution are initiated by the dispatching of the S1.2 completion event
occurrence followed by the S1 completion event occurrence.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 199

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.2]

5 [CE(S1.2)] [S1[S1.2]] [T1.3]

6 [CE(S1)] [S1] [T3]

9.3.15.9 History 002-D

Tested state machine

The state machine that is executed for this test is presented in Figure 9.89.

History002_Test_D$behavior$1

wait

S1

 H

S1.1
/entry Activity entry

/exit Activity exit

S1.2

/entry Activity entry

/entry Activity entry
/exit Activity exit

When S1 is exited then the final
state is the last visited state.
This implies that when the
history pseudo-state is reached
then no history is available so
the only possible solution is to
enter S1.2 through T1.3

T1.4

/Activity: testEnd

T1.2 /Activity: effect

T1

T1.3 /Activity: effect

T3 /Activity: effect

T1.1 /Activity: effect

T2

Start

T1

T2

Start

T3 /Activity: effect

T1.1 /Activity: effect

T1.2 /Activity: effect T1.3 /Activity: effect

T1.4

/Activity: testEnd

Figure 9.89 - History 002 - D Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

200 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

• S1(entry)::T1.1(effect)::S1.1(entry)::S1(exit)::T1.2(effect)::S1(exit)::T3(effect)::S1(entry)::T1.3(effect)::S1.2(entr
y)::S1(exit)

Note. The purpose of this test is to demonstrate that when a final state is reached by the execution, then the region
containing that final state no longer has any history. Consider the situation where the state machine is in
configuration S1. The next event to be dispatched is the completion event occurrence for S1. When dispatched, this
completion event occurrence triggers T3. Hence, S1 is exited, entered again and finally the history pseudostate is
reached. As the last state to be executed in the S1 region was a final state, the region has no history. The only
possible execution here is therefore to fire the default transition provided by the history state in order to enter S1.2.
The completion event occurrence generated by S1.2 is used to trigger T1.4 in the next RTC step. When the state
machine's final state is reached, its execution completes.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [CE(S1.1)] [S1[S1.1]] [T1.2]

5 [CE(S1)] [S1] [T3(T1.3)]

6 [CE(S1.2)] [S1[S1.2]] [T1.4]

9.3.16 Deferred

9.3.16.1 Overview

Tests presented in this subclause assess that deferred event semantics conform to what is specified in UML.

9.3.16.2 Deferred 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.90.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 201

Figure 9.90 - Deferred 001 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1.

• AnotherSignal – received when in configuration S1.

• Pending – received when in configuration S2.

Generated trace

• S1(exit)::S2(entry)::T4(effect)::S3(entry)

Note. The purpose of this test is to demonstrate support for event deferral in the context of simple states. It especially
shows that, if the state machine is in a configuration enabling the dispatched event occurrence to be deferred, then
the event occurrence is deferred and only released when its deferring state has left the state-machine configuration.
Consider the situation where the state machine is in configuration S1. S1 has no completion transitions, hence its
completion event is lost when it is dispatched. The Continue event occurrence is dispatched and can be accepted,
since it is indicated as being deferred in configuration S1. The acceptance of the event occurrence does not change
the state-machine configuration. The next RTC step consists of dispatching and accepting AnotherSignal. This leads
to the triggering of T3. S1 is exited, which means that the Continue event occurrence is no longer deferred, so that S2
is entered. At this point, three event occurrences are available in the pool. The one at the head of the pool is the
completion event for S2, the second is the Continue event occurrence, and the last is the Pending event occurrence.
The dispatching of the completion event does not trigger a new RTC step, since S2 has no completion transition. The
next event to be dispatched (i.e., the one that was originally deferred) matches the trigger declared in T4. Hence, T4

202 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Deferred001_Test$behavior$1

wait

S1
/exit Activity exit

S2
/entry Activity entry

S3
/entry Activity entry

Defers Continue

T1

T5

Pending/Activity: effect

T4

Continue/Activity: effect

T2 Start

T6

/Activity: testEnd

T3 AnotherSignal

T1

T2 Start

T3 AnotherSignal

T4

Continue/Activity: effect

T5

Pending/Activity: effect

T6

/Activity: testEnd

is taken, its effect behavior is executed, and S3 is entered. As the completion event generated by S3 has priority over
the Pending event occurrence, it is dispatched first. The S3 completion transition is traversed, and the state machine
execution completes when the final state is reached. Note that, in this execution, the Pending event occurrence is
never dispatched. However, if the Continue event occurrence was actually not deferred, a different execution path
would have occurred. That is, T5 would have been taken instead of T4.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [AnotherSignal, Continue, CE(S1)] [S1] []

5 [AnotherSignal, Continue] [S1] []

6 [AnotherSignal] [S1] [T3]

7 [Pending, Continue] [S2] [T4]

8 [Pending, CE(S3)] [S3] [T6]

9.3.16.3 Deferred 002

Tested state machine

The state machine that is executed for this test is presented in Figure 9.91.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 203

Figure 9.91 - Deferred 002 Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1.

• AnotherSignal – received when in configuration S1.

• Continue – received when in configuration S2.

Generated trace

• S1(exit)::T4(effect)::S2(entry)::T6(effect)::S3(entry)

Note. The purpose of this test is to demonstrate that, in a specific situation, an event that is declared as being
deferred is not actually deferred due to the presence of an overriding transition. Consider the situation where the
state machine is in configuration S1 and the completion event of S1 was dispatched but did not trigger any RTC step.
The event pool contains, at this time, two event occurrences. The first is a Continue event occurrence and the second
is an AnotherSignal event occurrence. When the Continue event occurrence is accepted, it is not deferred. Indeed a
transition originating from the deferring state has a trigger which explicitly refers to the Continue event. This
overrides the deferring constraint, and transition T4 is triggered. Next, S1 is exited, the effect behavior of the
transition is executed, and S2 is entered. The completion event generated by S2 will not trigger an RTC step, since
this state has no completion transition. The next RTC step consists of dispatching and accepting the AnotherSignal
event occurrence. This means that T6 is triggered, so that S2 is exited, the effect behavior is executed, and S3 is

204 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Deferred002_Test$behavior$1

wait

S1
/exit Activity exit

S2
/entry Activity entry

S3
/entry Activity entry

Defers Continue

T7 /Activity: testEnd

T5Continue/Activity: effect

T1

T6 AnotherSignal/Activity: effect

T3AnotherSignal/Activity: effect

T2 Start

T4 Continue/Activity: effect

T1

T2 Start

T3AnotherSignal/Activity: effect T4 Continue/Activity: effect

T5Continue/Activity: effect T6 AnotherSignal/Activity: effect

T7 /Activity: testEnd

entered. The completion event of S3 is used to initiate the next RTC step, which leads the state machine to reach the
final state and to complete its execution.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [AnotherSignal, Continue, CE(S1)] [S1] []

5 [AnotherSignal, Continue] [S1] [T4]

6 [Continue, AnotherSignal, CE(S2)] [S2] []

7 [Continue, AnotherSignal] [S2] [T6]

8 [Continue, CE(S3)] [S3] [T7]

9.3.16.4 Deferred 003

Tested state machine

The state machine that is executed for this test is presented in Figure 9.92.

Figure 9.92 - Deferred 003 Test Classifier Behavior

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 205

Deferred003_Test$behavior$1

wait
S1

S1.1

S1.1.1
/exit Activity exit

/exit Activity exit

S1.2
/exit Activity exit

Defers Continue and AnotherSignalT1.1

T1.3Continue/Activity: effect

T1.1.2

Continue/Activity: effect

T1.1.1

T1.2

Pending/Activity: effect

T3

AnotherSignal/Activity: testEnd

T2

Start

T1

T1

T2

Start

T1.1

T1.1.1

T1.1.2

Continue/Activity: effect

T3

AnotherSignal/Activity: testEnd

T1.2

Pending/Activity: effect

T1.3Continue/Activity: effect

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1[S1.1.1]].

• Continue – received when in configuration S1[S1.1].

• AnotherSignal – received when in configuration S1[S1.1].

• Pending – received when in configuration S1[S1.1].

Generated trace

• S1.1.1(exit)::T1.1.2(effect)::S1.1(exit)::T1.2(effect)::S1.2(exit)::T1.3(effect)

Note. The purpose of this test is to demonstrate the support for deferred-event semantics when the deferred event is
declared by a composite state. Consider the situation where the state machine is in the configuration
S1[S1.1[S1.1.1]]. There are, at this time, two event occurrences that are ready to be dispatched: the first is a
completion event for state S1.1.1 and the second is a Continue event occurrence. The completion event is lost since
S1.1.1 has no completion transition. Next, the Continue event occurrence is dispatched and accepted. Transition
T1.1.2 is triggered by this event occurrence. This transition has priority over the deferring constraint added by S1.1
since it is more deeply nested in the state hierarchy. Therefore, T1.1.2 is triggered and S1.1.1 leaves the state
machine configuration so that S1.1 region completes. The completion event generated by S1.1 cannot be used to
trigger any transition, so it is lost. The next RTC step consists of dispatching a new Continue event occurrence. This
event occurrence is accepted and deferred due to the constraint required by S1.1. The next event occurrence to be
dispatched and accepted is for AnotherSignal. S1.1 also defers this type of event occurrence. Since the state machine
configuration did not change, the event occurrence is deferred. To summarize, at this point of the execution two
events occurrences are deferred: one Continue event occurrence and one AnotherSignal event occurrence. The next
RTC step is initiated by the acceptance of the Pending event occurrence. As T1.2 can be triggered using this event
occurrence, state S1.1 is exited (the deferred events are released), the effect behavior of the transition is executed,
and S1.2 is entered. The S1.2 completion event does not trigger an RTC step, since it has no completion transitions.
The Continue event occurrence that was originally deferred is used to trigger T1.3, which leads the S1 region to
complete. The S1 completion event is lost, however. The final RTC step is initiated by the dispatching of the
AnotherSignal event occurrence. It triggers T3, which enables the state machine to reach the final state and to
complete its execution.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T1.1.1)]

4 [Continue, CE(S1.1.1)] [S1[S1.1[S1.1.1]]] []

5 [Continue] [S1[S1.1]] [T1.1.2]

6 [Pending, AnotherSignal, Continue, CE(S1.1)] [S1[S1.1]] []

7 [Pending, AnotherSignal, Continue] [S1[S1.1]] []

206 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Step Event pool State machine configuration Fired transition(s)

8 [Pending, AnotherSignal] [S1[S1.1]] []

9 [Pending] [S1[S1.1]] [T1.2]

10 [AnotherSignal, Continue, CE(S1.2)] [S1.2] []

11 [AnotherSignal, Continue] [S1.2] [T1.3]

12 [AnotherSignal, CE(S1)] [S1] []

13 [AnotherSignal] [S1] [T3]

9.3.16.5 Deferred 004-A

Tested state machine

The state machine that is executed for this test is presented in Figure 9.93.

Figure 9.93 - Deferred 004 - A Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1, S2.1].

• Pending – received when in configuration S1[S1.1, 2.1].

• AnotherSignal – received when in configuration S1.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 207

Deferred004_Test$behavior$1

wait S1

S1.1
/exit Activity exit

Defers
Continue

S2.1
/exit Activity exit

/exit Activity exit

end

T2

Start

T2.2

Continue/Activity: effect

T1.1

T3

Continue/Activity: effect

T5

/Activity: testEnd
T4

AnotherSignal/Activity: effect

T1

T2.1

T1.2

Pending/Activity: effect

T1

T2

Start

T3

Continue/Activity: effect

T4

AnotherSignal/Activity: effect

T1.1

T1.2

Pending/Activity: effect

T2.1

T2.2

Continue/Activity: effect
T5

/Activity: testEnd

Generated trace

• S1.1(exit)::T1.2(effect)::S2.1(exit)::T2.2(effect)::S1(exit)::T4(effect)

Note. The purpose of this test is to assess deferred-event semantics when used in the context of orthogonal regions.
Consider the situation where the state machine is in configuration S1[S1.1, S2.1]. After dispatching of completion
events for S1.1 and S2.1, there remains one event occurrence in the pool that is ready to be dispatched: a Continue
event occurrence. When the Continue event occurrence is dispatched and accepted by the state machine, it is
deferred by S1.1. The current state machine configuration remains S1[S1.1, S2.1]. The next RTC step is initiated by
the acceptance of the Pending event occurrence. This starts by triggering T1.2. As S1.1 leaves the state machine
configuration, the Continue event occurrence is now available in the pool. The left-hand region completes. T2.2 is
triggered by the RTC step initiated by the dispatching of the Continue event occurrence. This leads S1 to generate a
completion event. The completion event is lost, since S1 has no outgoing completion transition. S1 is exited when
AnotherSignal event is dispatched.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1, T2.1)]

4 [Pending, Continue, CE(S2.1), CE(S1.1)] [S1[S1.1, S2.1]] []

5 [Pending, Continue, CE(S2.1)] [S1[S1.1, S2.1]] []

6 [Pending, Continue] [S1[S1.1, S2.1]] []

7 [Pending] [S1[S1.1, S2.1]] [T1.2]

8 [Continue] [S1[S2.1]] [T2.2]

9 [AnotherSignal, CE(S1)] [S1] []

10 [AnotherSignal] [S1] [T4]

11 [CE(end)] [end] [T5]

9.3.16.6 Deferred 004-B

Tested state machine

The state machine that is executed for this test is presented in Figure 9.94.

208 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.94 - Deferred 004 - B Test Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• AnotherSignal – received when in configuration S1[S1.1[S1.1.1], S2.1].

• Continue – received when in configuration S1[S1.1[S1.1.1], S2.1].

• Pending – received when in configuration S1.

Generated trace

• S1.1.1(exit)::T1.1.2(effect)::S1.1(exit)::S2.1(exit)::T2.2(effect)::S1(exit)

Note. The purpose of this test is is to assess deferred-event semantics when used in the context of orthogonal
regions. Consider the situation where the state machine is in configuration S1[S1.1[S1.1.1], S2.1]. After dispatching
of completion events for S1.1.1 and S2.1, there remain two event occurrences in the pool: an AnotherSignal event
occurrence and a Continue event occurrence. When accepted, the AnotherSignal event occurrence is deferred by
S1.1.1. The next RTC step is initiated by the acceptance of the Continue event occurrence. T1.1.2 is triggered, which
means that S1.1.1 leaves the state machine configuration, so that the event occurrence that was previously deferred
becomes available. The unique region of S1.1 completes, and a completion event occurrence is generated for S1.1. In
the next RTC step, this completion event is dispatched and accepted. This means that T1.2 is triggered, which leads
to the completion of the left region of S1. At this point, one event occurrence (i.e., AnotherSignal) remains in the
pool. When dispatched, it triggers T2.2 which forces and exit of S2.1, and the final state is reached, leading to the
completion of the S1 region.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 209

Deferred004-bis_Test$behavior$1

wait
S1

S1.1

S1.1.1
/exit Activity exit

/exit Activity exit

S2.1
/exit Activity exit

/exit Activity exit

Defers AnotherSignal

T1.1

T2.2

AnotherSignal/Activity: effect

T2.3

Pending/Activity: effect
T1.2

T2.1

T1.1.2Continue/Activity: effect

T1

T1.1.1

T3

/Activity: testEnd

T2

Start

T1

T2

Start

T1.1

T1.1.1

T1.1.2Continue/Activity: effect

T2.1

T2.2

AnotherSignal/Activity: effect

T3

/Activity: testEnd

T1.2

T2.3

Pending/Activity: effect

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1(T1.1.1), T2.1)]

4 [Continue, AnotherSignal, CE(S1.1.1)] [S1[S1.1[S1.1.1], S2.1]] []

5 [Continue, AnotherSignal] [S1[S1.1[S1.1.1], S2.1]] []

6 [Continue] [S1[S1.1[S1.1.1], S2.1]] [T1.1.2]

7 [AnotherSignal, CE(S1.1)] [S1[S1.1, S2.1]] [T1.2]

8 [AnotherSignal] [S1[2.1]] [T2.2]

9 [Pending, CE(S1)] [S1] [T3]

9.3.16.7 Deferred 005

Tested state machine

The state machine that is executed for this test is presented in Figure 9.95.

Deferred005_Test$behavior$1

wait
S1

/exit Activity exit

S2
/entry Activity entry

Defers Continue and
AnotherSignal

T1

T3Pending/Activity: effect

T2

Start

T6

Pending/Activity: testEnd

T4

Continue/Activity: effect

T5

AnotherSignal/Activity: effect

T1

T2

Start

T3Pending/Activity: effect

T5

AnotherSignal/Activity: effect

T4

Continue/Activity: effect

T6

Pending/Activity: testEnd

Figure 9.95 - Deferred 005 Test Classifier Behavior

210 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

activity exit() {

this.Pending();

}

Table 9.4 - S1 exit behavior specification

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1.

• AnotherSignal – received when in configuration S1.

• Pending – received when in configuration S1.

Generated trace

• T3(effect)::S2(entry)::T4(effect)::S2(entry)::T5(effect)::S2(entry)

Note. The purpose of this test is to show that deferred event occurrences return to the event pool in the same order
in which they have been deferred and that they will be dispatched before any event occurrence already available in
the pool that is not a completion event occurrence. After the first RTC step, the state machine is in configuration
wait. The completion event generated by wait is lost when dispatched, since there is no completion transition
outgoing that state. When Start is dispatched T2 is fired and S1 is entered. During the execution, three event
occurrences are received while in configuration S1: Continue, AnotherSignal and Pending. Continue and
AnotherSignal signals are deferred by the state machine, since S1 declares two deferring triggers for signal events
for these signals. This means that, after two steps related to the deferral of Continue and AnotherSignal, the state
machine is still in the same configuration: S1. When Pending is finally dispatched, T3 is fired, which implies the
execution of the S1 entry behavior, the release of events deferred by S1, the execution of the T3 effect behavior,
and finally, the execution of the S2 entry behavior. After that step, four event occurrences are available in the pool
(see RTC step 8 in the table below): Pending (sent by the state machine to itself when the S1 exit behavior is
executed – see Table 9.4), AnotherSignal, Continue, and the completion event for S2. As S2 does not have a
completion transition, the completion event occurrence is lost when dispatched. However, when Continue is
dispatched, T4 is fired (see RTC step 9), and, when AnotherSignal is dispatched, T5 is fired (see RTC step 11). The
final step takes place when Pending is dispatched. During that step, T6 is fired, which enables the execution to
reach the state machine final state.

RTC steps

Step Event pool Deferred events State machine configuration Fired transition(s)

1 [] [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [] [wait] []

3 [Start] [] [wait] [T2]

4 [AnotherSignal Continue, CE(S1)] [] [S1] []

5 [Pending, AnotherSignal, Continue] [] [S1] []

6 [Pending, AnotherSignal] [Continue] [S1] []

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 211

7 [Pending] [AnotherSignal,
Continue]

[S1] [T3]

8 [Pending, AnotherSignal Continue,
CE(S2)]

[] [S2] []

9 [Pending, AnotherSignal, Continue] [] [S2] [T4]

10 [Pending, AnotherSignal, CE(S2)] [] [S2] []

11 [Pending, AnotherSignal] [] [S2] [T5]

12 [Pending, CE(S2)] [] [S2] []

13 [Pending] [] [S2] [T6]

9.3.16.8 Deferred 006-A

Tested state machine

The state machine that is executed for this test is presented in Figure 9.96. The specification of the doActivity associated
with the state S2 is given in Figure 9.97.

212 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Deferred006_Test_A$behavior$1

S2

/do Activity doActivity

S1
Defers AnotherSignal

T2 Start

T3 /Activity: testEnd

T1 T1

T3 /Activity: testEnd

T2 Start

Figure 9.96 - Deferred 006 - A Test Classifier Behavior

Test execution

Received event occurrences

• Start – received when in configuration S1.

• AnotherSignal – received when in configuration S2.

Generated trace

• S2(doActivity-AnotherSignal)

Note. The purpose of this test is to demonstrate that, even if a state has a deferrable trigger that matches a
dispatched event occurrence, the event occurrence is not actually deferred if an executing doActivity can accept
the event occurrence, so that the doActivity is actually able to accept it (see also 8.5.6). After the first RTC step,
the state machine is in the configuration S1. The completion event occurrence generated for that state is lost, since
no completion transition outgoing S1 is available. When the Start event occurrence is dispatched, T2 is traversed
and S2 is entered. Upon the entrance of S2, its doActivity behavior is invoked. This doActivity behavior registers
an accepter for AnotherSignal and sends a Continue signal to the tester. At this point of the execution, both the

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 213

doActivity

this

target

accept(anotherSignal)

call('trace')

segmenttarget

S2(doActivity-AnotherSignal)

read(tester)

target

tester

Send(Continue)

target

Trace segment is
produced when the
signal event occurrence
gets received by the
doActivity

Figure 9.97 - Deferred 006 - A S2 doActivity Behavior

state machine and the doActivity are idle (i.e., they wait for the next event to be added in the pool). The next event
occurrence coming into the pool is emitted by the tester. This is an AnotherSignal event occurrence. At this point,
either the state machine can defer the event occurrence or the doActivity can accept this event occurrence to move
forward in its execution. The priority is given to the doActivity. The event occurrence is accepted and leads the
doActivity to complete. The completion of the doActivity implies the generation of a completion event for S2.
This completion event is used to fire T3. When the final state is reached the state machine execution completes.

RTC steps

Step Event pool Deferred events State machine configuration Fired
transition(s)

1 [] [] [] - Initial RTC step [T1]

2 [Start, CE(S1)] [] [S1] []

3 [Start] [] [S1] [T2]

4 [CE(S2)] [] [S2] []

Step Event pool doActivity configuration Executed Node(s)

1 [] [] - Initial RTC step [InitialNode, this, fork, read(tester),
send(Continue), accept(AnotherSignal)]

2 [AnotherSignal] [accept(AnotherSignal)] [S2(doActivity-AnotherSignal), call(trace),
Activity Final Node]

9.3.16.9 Deferred 006-B

Tested state machine

The state machine that is executed for this test is presented in Figure 9.98. The doActivity associated with state S2 is
given in Figure 9.99.

214 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 215

Deferred006_Test_B$behavior$1

S2
/do Activity doActivity

defers 'Pending' signals

S1

T1

T4

AnotherSignal/Activity: testEnd

T2 Start

T3

/Activity: testEnd

T1

T3

/Activity: testEnd T4

AnotherSignal/Activity: testEnd

T2 Start

Figure 9.98 - Deferred 006 - B Test Classifier Behavior

Test execution

Received event occurrences

• Start – received when in configuration S1.

• Pending – received when in configuration S2.

• AnotherSignal – received when in configuration S2.

Generated trace

• S2(doActivityPartI)::S2(doActivityPartII)

Note. The purpose of this test is to demonstrate that, if a state has deferred an event occurrence, then, if the
doActivity invoked from that state registers an accepter for the deferred event occurrence, that even occurrence is
accepted directly from the deferred event pool. After the first step, the state machine is in the configuration S1.

216 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

doActivity

accept(AnotherSignal)

this

target

call('trace')

segment

target

S2(doActivityPartI)

accept(pending)

call('trace')

segment

target

S2(doActivityPartII)

Figure 9.99 - Deferred 006 - B S2 doActivity Behavior Specification

The completion event occurrence generated for that state is lost, since no completion transition is available from
S1. When Start is dispatched, T2 is traversed and S2 is entered. Upon the entry to S2, the doActivity behavior is
invoked and the step ends. Concurrently from the state machine execution, the doActivity executes its initial RTC
step and registers an accepter for AnotherSignal. The state machine receives a Pending event occurrence from the
tester. This event occurrence is deferred by S2. Next, the tester sends an AnotherSignal event occurrence. Only the
doActivity has an event accepter for such an event occurrence. Hence, the doActivity accepts this event
occurrence and moves forward in its execution until it registers an event accepter for a Pending event occurrence.
When the accepter is registered, a new RTC steps is initiated in the doActivity, because state S1, which invoked
the doActivity behavior, had previously deferred a Pending event occurrence. The new RTC step of the doActivity
is initiated by the acceptance of this event occurrence from the deferred event pool. This RTC step implies the
completion of the doActivity and the generation of a completion event occurrence for S2. When this completion
event occurrence is dispatched, T3 is fired, and the state machine execution completes.

RTC steps

Step Event pool Deferred events State machine configuration Fired
transition(s)

1 [] [] [] - Initial RTC step [T1]

2 [Start, CE(S1)] [] [S1] []

3 [Start] [] [S1] [T2]

4 [Pending] [] [S2] []

5 [CE(S2)] [] [S2] [T3]

Step Event pool doActivity configuration Executed Node(s)

1 [] [] - Initial RTC step [InitialNode, accept(AnotherSignal)]

2 [AnotherSignal] [accept(AnotherSignal)] [this, fork, S2(doActivityPartI), call(trace),
accept(Pending)]

3 [Pending] [accept(Pending)] [S2(doActivityPartII), call(trace),
ActivityFinalNode]

9.3.16.10 Deferred 006-C

Tested state machine

The state machine that is executed for this test is presented in Figure 9.100.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 217

Note that, in this state machine:

• The doActivity for S1.1 registers an accepter for a Continue signal and contributes to the trace by adding the trace
fragment S1.1(doActivity).

• The doActivity for S1.2 registers an accepter for a Continue signal and contributes to the trace by adding the trace
fragment S1.2(doActivity).

Test execution

Received event occurrences

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1, S1.2]

• Continue – received when in configuration S1[S1.1, S1.2]

Generated trace

• S1.1(doActivity)::S1.2(doActivity)

Note. The purpose of this test is to demonstrate the application of deferral semantics in a concurrent context with
multiple doActivities competing with the state machine to consume occurrences of the same event. After the initial
RTC step, the state machine is in configuration wait. When the Start event occurrence is received, the compound
transition T2(T1.1, T1.3) is fired. This means that, at the end of the step, the state machine is in configuration
S1[S1.1, S1.2], with the two doActivity behaviors invoked and evolving on their own threads of execution.
Consider that, before the first Continue event is dispatched, both doActivities have already registered an accepter
for a Continue. When a Continue event occurrence is dispatched, the state machine is not allowed to defer it.
Instead, the priority is given to the doActivities that already have a registered accepter for this event. In such a
situation, one of the doActivities will be selected nondeterministically to consume the dispatched event
occurrence. Assume that the S1.1 doActivity behavior is selected to consume the event occurrence. In this
situation, S1.1 will complete upon the completion of the doActivity behavior execution. When the second
Continue event occurrence is dispatched, only the doActivity behavior invoked by S1.2 will be able to accept it. A
completion event occurrence will be generated for S1.2 at the end of the RTC step of the doActivity. This will be

218 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Deferred006_Test_C$behavior$1

wait

S1

S1.1
/do Activity doActivity

defers Continue

S1.2
/do Activity doActivity

T2

Start

T1.1

T3

/Activity: testEnd

T1.2

T1.3

T1.4

T1

T1

T2

Start

T1.1

T1.2

T3

/Activity: testEnd

T1.3

T1.4

Figure 9.100 - Deferred 006 - C Test Classifier Behavior

used to fire T1.4. When the final state targeted by T1.4 is reached, a completion event occurrence is generated for
S1. That completion event will be used to trigger T3.

RTC steps

Step Event pool Deferred events State machine configuration Fired
transition(s)

1 [] [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [] [wait] []

3 [Start] [] [S1[S1.1, S1.2]] [T2(T1.1, T1.3)]

6 [Continue, Continue] [] [S1[S1.1, S1.2]] []

7 [Continue, CE(S1.1)] [] [S1[S1.1, S1.2]] [T1.2]

8 [Continue] [] [S1[S1.2]] []

9 [CE(S1.2)] [] [S1[S1.2]] [T1.4]

10 [CE(S1)] [] [S1] [T3]

Step Event pool S1.1 doActivity configuration Executed Node(s)

1 [] [] - Initial RTC step [InitialNode, accept(Continue), S1.1(doActivity)]

2 [Continue] [accept(Continue)] [this, call(trace)]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 219

Step Event pool S1.2 doActivity configuration Executed Node(s)

1 [] [] - Initial RTC step [InitialNode, accept(Continue), S1.2(doActivity)]

2 [Continue] [accept(Continue)] [this, call(trace)]

Alternative execution traces

There exists one alternative execution trace for this test. This trace is described below. It shows the situation where the
S1.2 doActivity behavior is selected to consume the first Continue event occurrence, rather than the S1.1 doActivity
behavior.

• S1.2(doActivity)::S1.1(doActivity)

9.3.16.11 Deferred 007

Tested state machine

The state machine that is executed for this test is presented in Figure 9.101.

Test execution

Received event occurrences

• Start – received when in configuration wait.

• op – received when in configuration S1.

220 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Deferred007_Test$behavior$1

wait
S1

/exit Activity exit

S2
/exit Activity exit

S3

Defers call to operation op T3

Continue/Activity: effect

T5

Continue

T2

Start

T6

op/Activity: effect

T1

T7 /Activity: testEnd

T1

T2

Start

T3

Continue/Activity: effect

T5

Continue

T6

op/Activity: effect

T7 /Activity: testEnd

Figure 9.101 - Deferred 007 Test Classifier Behavior

• Continue – received when in configuration S1.

• Continue – received when in configuration S2.

Generated trace

• S1(exit)::T3(effect)::S2(exit)[in=true]::T6(effect)[in=true]

Note. The purpose of this test is to demonstrate that semantics of deferral also applies to call events. Consider the
situation where the state machine is in configuration S1. The completion event occurrence generated for S1 is lost,
since that state has no completion transition. The next event to be dispatched is the call event occurrence for the
operation op(in p1: Boolean). When dispatched, the call event occurrence is deferred by the state machine. This is
due to the fact that S1 declares a deferrable trigger for that call event. Hence, the call event occurrence is placed in
the deferred event pool of the state machine and will be released only when S2 leaves the state-machine
configuration. In this test, the call event is released when the first Continue event occurrence is dispatched. The
dispatching of this event implies the firing of T3 and the entrance of S2. The call event occurrence is placed in the
event pool after the completion event occurrence generated for S2 but before the Continue event occurrence
already already in the event pool. Hence, T6 always fires when the call event occurrence is dispatched and S3 is
entered. It is never possible to fire T5. The state machine execution completes during the step initiated by the
dispatching of the S3 completion event occurrence.

RTC steps

Step Event pool Deferred events State machine configuration Fired
transition(s)

1 [] [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [] [wait] []

3 [Start] [] [wait] [T2]

4 [Call(op(true)), CE(S1)] [] [S1] []

5 [Continue, Call(op(true))] [] [S1] []

6 [Continue] [Call(op(true))] [S1] [T3]

7 [Continue, Call(op(true)),
CE(S2)]

[] [S2] []

8 [Continue, Call(op(true))] [] [S2] [T6]

9 [Continue, CE(S3)] [] [S3] [T7]

9.3.17 Redefinition

9.3.17.1 Overview

Test cases presented in this subclause assess whether state machine redefinition semantics conform to what is specified in
UML.

Test architecture

Each test (i.e., extension of Target) contains at least two state machines. This enables each test to specify at minimum one
level of extension. The state machine for each presented in such a way that the reader is able to understand:

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 221

• Extension relationships existing between state machines as well as between regions. These relationships are shown
by the following type of arrow inthe diagrams.

• Redefinition relationships existing between vertices as well as between transitions. These relationships are shown
by the following type of arrow in the diagrams.

In addition, the description of each test includes the presentation of the corresponding runtime state machine. This state
machine is the one effectively executed by the semantic model for PSSM (see the discussion under RegionActivation in
8.5.3). The runtime state machine is the result of merging all the extension and redefinition relationships that were
specified for the test into a single state machine. Note that this runtime state machine does not actually exist in the user
model.

Test naming conventions

A test involves at least two state machines, which are given different prefix names. The prefixed names are based on the
following convention:

• RedefinitionXXX_Test – Represents the root level state machine (i.e., it does not extend any other state machine
but is, instead, extended by others).

• RedefinitionXXX_Test_Redefinition_Prime – A state machine that extends the root state machine.

• RedefinitionXXX_Test_Redefinition_Second – A state machine that extends the state machines that extend the root
state machine.

This naming convention still applies if additional levels of extensions are added.

Trace construction

The trace produced by a test is the result of the execution of the different behaviors (entry, doActivity, exit and effect)
taking place during the test execution. These behaviors may be attached to states and transitions located in different state
machines. To capture this, the trace fragment that is produced by a behavior must conform to a specific pattern.

• S<ID>(<BEHAVIOR_NAME>)[-redefined][-<LEVEL>] - denotes the pattern for identifying trace fragments
produced by a behavior placed on a state.

○ Example 1: S1(entry) denotes a trace fragment produced by an entry behavior placed on state S1, where this
state does not redefine another state.

○ Example 2: S1(entry)-redefined denotes a trace fragment produced by an entry behavior placed on state S1
which redefine a state in a redefined state machine.

○ Example 3: S1(entry)-redefined-second denotes a trace fragment produced by an entry behavior placed on
state S1, where the state is defined in a state machine that extends another state machine that is itself an
extension of another state machine.

• T<ID>(effect)[-redefined][-<LEVEL>] - denotes the pattern for identifying trace fragments produced by the effect
behavior of a transition.

○ Example 1: T1(entry) denotes a trace fragment produced by an effect behavior placed on a transition T1,
where this transition does not redefine another transition.

○ Example 2: T1(entry)-redefined-second denotes a trace fragment produced by an effect behavior placed on a
transition T1, which is defined in a state machine that itself extends another state machine.

222 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.3.17.2 Redefinition 001

Tested state machine

The test target for Redefinition 001 owns two state machines: Redefinition001_Test and
Redefinition001_Test_Redefinition. The former is extended by the latter. The extension and redefinition relationships
existing between the two state machines are shown in Figure 9.102.

The corresponding runtime state machine is presented in Figure 9.103.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 223

Figure 9.102 - Extension and Redefinition Relationships for Redefinition 001

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S3.

• AnotherSignal – received when in configuration S3.

Generated trace

• S2(entry)-redefined::T3(effect)::S3(entry)-redefined::T4(effect)::S4(entry)::T5(effect)::S2(entry)-
redefined::T3(effect)::S3(entry)-redefined

Note. The purpose of this test is to demonstrate the capability of computing a runtime state machine that is the
result of the application of extension and redefinition relationships defined between state machines and internal
elements of these state machines. The basic rules are: everything that is not redefined in the extending state
machines will be present in the runtime state machine. In addition, all elements that are redefined will be replaced
by their latest definition in the runtime state machine. In this test, S1, T1, T2, T3 and T6 are part of the extended
state machine, and they are not redefined. Hence, they are present in the runtime state machine. S2 and S3 are
redefined states, so their definitions in the runtime state machine will be those provided by the extending state
machine. In addition, all transitions and states added by the extending state machine will be part of the runtime
state machine. Following its derivation, the runtime state machine is executed according to the regular state
machine semantics (see the RTC steps in the table below).

224 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.103 - Redefinition 001 Test Classifier Behavior – Runtime State Machine

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(S1)] [S1] [T1]

3 [Start] [S1] [T2]

4 [CE(S2.1)] [S2[S2.1]] [T2.2]

5 [CE(S2.2)] [S2[S2.2]] [T2.3]

6 [CE(S2)] [S2] [T3]

7 [Continue, CE(S3)] [S3] []

8 [Continue] [S3] [T4]

9 [CE(S4)] [S4] [T5]

10 [CE(S2.1)] [S2[S2.1]] [T2.2]

11 [CE(S2.2)] [S2[S2.2]] [T2.3]

12 [CE(S2)] [S2] [T3]

13 [AnotherSignal, CE(S3)] [S3] []

14 [AnotherSignal] [S3] [T6]

9.3.17.3 Redefinition 002

Tested state machine

The test target for Redefinition 002 owns three state machines: Redefinition002_Test,
Redefinition002_Test_Redefinition_Prime and Redefinition002_Test_Redefinition_Second. The first state machine is
extended by the second which is itself extended by the third. The extension and redefinition relationships between the
three state machines are shown in Figure 9.106.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 225

The corresponding runtime state machine is presented in Figure 9.105.

226 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.104 - Extension and Redefinition Relationships for Redefinition 002

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received in configuration S1’’[S1.1’].

Generated trace

• T2(effect)::S1(entry)-redefined-prime::S1.1(entry)-redefined-second::T1.2(effect)::S1.2(exit)

Note. The purpose of this test is to demonstrate the capability of computing the runtime state machine when multiple
levels of extension and redefinition are involved. Note that in this test:

○ Transition T2 defined in Redefinition002_Test_Redefinition_Second redefines the transition T2 that was
originally defined in Redefinition002_Test. The redefining transition adds a trigger for the Start signal and, as
it does not define an effect behavior, it inherits the one defined in the redefined transition. Finally, the version
of T2 in the runtime state machine can be fired only when a Start event occurrence is dispatched, and its
traversal forces the execution of an effect behavior.

○ State S1’ defined in Redefinition002_Test_Redefinition Prime provides an entry behavior. Since the redefined
version of that state described in Redefinition002_Test_Redefinition_Second does not provide an entry
behavior, the original one is inherited. This means that when S1’’ is entered, the entry behavior of S1’ is
executed.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 227

Figure 9.105 - Redefinition 002 Test Classifier Behavior – Runtime State Machine

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait’)] [wait’] []

3 [Start] [wait’] [T2’(T1.1)]

4 [Continue, CE(S1.1’)] [S1’’[S1.1’]] []

5 [Continue] [S1’’[S1.1’]] [T1.2]

6 [CE(S1.2)] [S1’’[S1.2]] [T1.3]

7 [CE(S1’’)] [S1’’] [T3]

9.3.17.4 Redefinition 003

Tested state machine

The test target for Redefinition 003 owns three state machines: Redefinition003_Test,
Redefinition003_Test_Redefinition_Prime and Redefinition003_Test_Redefinition_Second. The first state machine is
extended by the second one, which is itself extended by the third. The extension and redefinition relationships between
the three state machines are shown in Figure 9.106.

228 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

The corresponding runtime state machine is presented in Figure 9.107.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 229

Figure 9.106 - Extension and Redefinition Relationships for Redefinition 003

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1.

• AnotherSignal – received when in configuration S2.

• AnotherSignal – received when in configuration S1.

• AnotherSignal – received when in configuration S2.

• Pending – received when in configuration S1.

• Continue – received when in configuration S2.

Generated trace

• S1(entry)-redefined-second::T3(effect)::S2(entry)-redefined-second::S1(entry)-redefined-
second::T4(effect)::S2(entry)-redefined-second::S1(entry)-redefined-second::T6(effect)::S2(entry)-redefined-
second

• Note. The purpose of this test is to demonstrate the capability of computing the runtime state machine in a
situation in which each level of extension adds new transitions to states originally defined in the root state
machine. Figure 9.107 shows this runtime state machine. Note that no states are added by the successive
extensions of Redefinition003_Test. However, transitions T4 and T5 come from
Redefinition003_Test_Redefinition_Prime and transitions T6 and T7 come from
Redefinition003_Test_Redefinition_Second. The RTC steps realized during this execution are described below.

230 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.107 - Redefinition 003 Test Classifier Behavior – Runtime State Machine

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [Continue, CE(S1)] [S1] []

5 [Continue] [S1] [T3]

6 [AnotherSignal, CE(S2)] [S2] []

7 [AnotherSignal] [S2] [T5]

8 [AnotherSignal, CE(S1)] [S1] []

9 [AnotherSignal] [S1] [T4]

10 [AnotherSignal, CE(S2)] [S2] []

11 [AnotherSignal] [S2] [T5]

12 [Pending, CE(S1)] [S1] []

13 [Pending] [S1] [T6]

14 [Continue, CE(S2)] [S2] []

15 [Continue] [S2] [T7]

9.3.17.5 Redefinition 004

Tested state machine

The test target for Redefinition 004 owns two state machines: Redefinition004_Test and
Redefinition004_Test_Redefinition_Prime. The first state machine is extended by the second. The extension and
redefinition relationships between the two state machines are shown in Figure 9.108.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 231

The corresponding runtime state machine is presented in Figure 9.109.

232 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.108 - Extension and Redefinition Relationships for Redefinition 004

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1.1’.

• Pending – received when in configuration S1.2’.

• AnotherSignal – received when in configuration S1.1’.

• Continue – received when in configuration S1.2’.

Generated trace

• S1.1(entry)-redefined-prime::T1.2(effect)-redefined-prime::S1.2(entry)-redefined-prime::S1.1(entry)-redefined-
prime::T1.2(effect)-redefined-prime::S1.2(entry)-redefined-prime

Note. The purpose of this test is to demonstrate that redefining transitions inherit triggers that were declared in
directly or indirectly redefined transitions. In this test, T1.2’, from Redefinition004_Test_Prime, redefines T1.2
declared in Redefinition004_Test. At runtime, T1.2’ can be fired by the dispatching of either an AnotherSignal event
occurrence or a Continue event occurrence. The trigger for the AnotherSignal event is inherited from T1.2, which is
declared in Redefinition004_Test. The triggering of this transition can be observed in the table below at RTC steps 5
and 9.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait’)] [wait’] []

3 [Start] [wait] [T2’(T1.1)]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 233

Figure 9.109 - Redefinition 004 Test Classifier Behavior – Runtime State Machine

Step Event pool State machine configuration Fired transition(s)

4 [Continue, CE(S1.1’)] [S1’[S1.1’]] []

5 [Continue] [S1’[S1.1’]] [T1.2’]

6 [Pending, CE(S1.2’)] [S1’[S1.2’]] []

7 [Pending] [S1’[S1.2’]] [T1.3]

8 [AnotherSignal, CE(S1.1’)] [S1’[S1.1’]] []

9 [AnotherSignal] [S1’[S1.1’]] [T1.2’]

10 [Continue, CE(S1.2’)] [S1’[S1.2’]] []

11 [Continue] [S1’[S1.2’]] [T1.4]

12 [CE(S1’)] [S1’] [T3]

9.3.17.6 Redefinition 005

Tested state machine

The test target for Redefinition 005 owns two state machines: Redefinition005_Test and
Redefinition005_Test_Redefinition_Prime. The first state machine is extended by the second. The extension and
redefinition relationships existing between the two state machines are shown in Figure 9.110.

The corresponding runtime state machine is presented in Figure 9.111.

234 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.110 - Extension and Redefinition Relationships for Redefinition 005

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

Generated trace

• T2(effect)::S1(entry)::S1(doActivity)::S1(exit)::T3(effect)-redefined::S2(entry)-redefined-prime::S2(doActivity)-
redefined-prime::S2(exit)-redefined-prime

Note. The purpose of this test is to demonstrate two capabilities: First, it shows that, when a redefining state does not
define state behaviors (entry, doActivity, exit) but the redefined state does, then the behaviors defined in the
redefined state are inherited. Consequently, state S1’ in the runtime state machine executes the entry behavior of S1
and invokes its doActivity when entered. In addition, it executes the exit behavior defined in S1 when exited.
Second, the test verifies that, if both the redefining state and the redefined state specify state behaviors, then the
behaviors that are executed at runtime are those defined in the redefining state. As an example consider S2’. This
state defines new entry, doActivity and exit behaviors. Consequently, behaviors defined in S2 in the extended state
machine are not included in the runtime state machine. Note that the aforementioned rules also apply for transition
effect behaviors. Such support is shown for T2’ and T3’. Indeed T2’, when traversed, executes the effect behavior
inherited from redefined transition T2. T3’ declares its own effect behavior and so overrides the one provided by the
redefinition transition T3.

RTC steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2]

4 [CE(S1’)] [S1’] [T3]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 235

Figure 9.111 - Redefinition 005 Test Classifier Behavior – Runtime State Machine

Step Event pool State machine configuration Fired transition(s)

5 [CE(S2’)] [S2’] [T4]

9.3.17.7 Redefinition 006

Tested state machine

The test target for Redefinition 006 owns two state machines: Redefinition006_Test and
Redefinition006_Test_Redefinition_Prime. The first state machine is extended by the second. The extension and
redefinition relationships existing between the two state machines are shown in Figure 9.112.

The corresponding runtime state machine is presented in Figure 9.113.

236 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Figure 9.112 - Extension and Redefinition Relationships for Redefinition 006

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1’[S1.1’].

• AnotherSignal – received when in configuration S1’[S1.1’].

Generated trace

• S1.1(exit)-redefined-prime::S1(exit)

Note. The purpose of this test is to demonstrate the inheritance of deferrable triggers defined in a redefined state. In
this test, S1.1’ redefines state S1.1. Consequently, the deferrable trigger declared by S1.1 is also deferrable for S1.1’
at execution time. This means that, when the state machine is in configuration S1’[S1.1’], the state machine will still
defer the occurrence of a Continue signal event. This situation is shown at RTC step 5 in the table below.

RTC steps

Step Event pool Deferred events State machine configuration Fired
transition(s)

1 [] [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [] [wait] []

3 [Start] [] [wait] [T2(T1.1)]

4 [Continue, CE(S1.1’)] [] [S1’[S1.1’]] []

5 [Continue] [] [S1’[S1.1’]] []

6 [AnotherSignal] [Continue] [S1’[S1.1’]] [T1.2]

7 [Continue, CE(S1’)] [] [S1’] []

8 [Continue] [] [S1’] [T3]

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 237

Figure 9.113 - Redefinition 006 Test Classifier Behavior

9.3.18 Standalone

9.3.18.1 Overview

This subclause includes tests related the execution of standalone state machines, that is, state machines that are
themselves active behaviors, as opposed to being the classifier behaviors of other classes.

Given that a UML state machine is a kind of UML class, it is legal for this state machine to specialize the Target abstract
class (see 9.2.2.2.2). Hence the state machine itself is the test target, which means that it is able to receive any signals that
a Target can receive. Note that the standalone state machine is active (as is required by fUML in order for it to specialize
an active class), but it does not have a classifier behavior, meaning that, dynamically, it acts as the context for its own
execution.

The tests in this subclause are based on similar tests from other test categories, except for Standalone 001. The purpose
here is to demonstrate that, if a state machine is active and does not play the role of a classifier behavior, it can still be
executed according to the same semantics.

9.3.18.2 Standalone 001

Tested state machine

The state machine that is executed for this test is presented in Figure 9.114.

Standalone001_Test

wait

S1

S1.2
/entry Activity entry

S1.3
/entry Activity entry

S1.1

S2

S2.1

/entry Activity entry

S2.2

/do Activity doActivity

T3

T1.1

T4 /Activity: testEnd

T2.1

T1.1

T1.2

T1.7

[this.balance <= 0]/Activity: effect

T1.5

T2.2

T1

T2 Start/Activity: effect

T1.4

T1.3

AnotherSignal

T1.6

[else]/Activity: effect

T1.2

Continue

T1

T2 Start/Activity: effect

T1.1

T1.2

Continue

T1.3

AnotherSignal

T1.4

T1.5

T1.7

[this.balance <= 0]/Activity: effect

T1.6

[else]/Activity: effect

T3

T4 /Activity: testEnd

T1.1

T1.2

T2.1

T2.2

Figure 9.114 - Standalone 001 Test

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1].

• Continue – received when in configuration S1[S1.1].

238 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Generated trace

• T2(effect)::S1.2(entry)::T1.6(effect)::S1.2(entry)::T1.7(effect)::S2.1(entry)::S2.2(doActivity)

Note. The Start event occurrence is dispatched and accepted while the state machine is in configuration wait. Hence,
T2 is triggered (see message T2(effect) in the trace) and S1 is entered using the default entry approach. The S1 region
starts executing from the initial pseudostate, T1.1 is traversed, and S1.1 is entered. The next RTC step is initiated by
the acceptance of the Continue event occurrence, which triggers T1.2 and whose traversal leads to S1.2 being
entered. The execution of the S1.2 entry behavior updates a property balance owned by the state machine. When this
behavior has terminated its execution, a completion event occurrence is generated for S1.2. The completion event
occurrence is used to trigger T1.4. The state machine reaches the choice point and evaluates the guard of T1.7. The
balance (initial value 150) is not less than or equal to 0, hence the else transition T1.6 is taken, and a completion
event occurrence is generated upon S1.1 entry. A second Continue event occurrence is dispatched and accepted, and
the state machine returns to S1.2, generating a completion event occurrence for that state. This time, when T1.4 is
triggered, the choice point is reached and the T1.7 guard is true, so it can be traversed. When the exit point is
reached, S1 is exited. The continuation transition T3 is then traversed, and S2 is entered through the entry point.
Consequently, both orthogonal regions are entered using the default entry approach. S2.1 generates a completion
event occurrence when this entry behavior terminates its execution, and S2.2 generates a completion event
occurrence when its doActivity has completed. Completion event occurrences generated by these states are used to
trigger T1.2 and T2.2. When both completion event occurrences have been dispatched and accepted, S2 can
complete. The completion event occurrence will be used to trigger T4, and the final state is reached, which will
complete the state machine execution.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1)]

4 [Continue, CE(S1.1)] [S1[S1.1]] []

5 [Continue] [S1[S1.1]] [T1.2]

6 [CE(S1.2)] [S1[S1.2]] [T1.4(T1.6)]

7 [Continue, CE(S1.1)] [S1[S1.1]] []

8 [Continue] [S1[S1.1]] [T1.2]

9 [CE(S1.2)] [S1[S1.2]] [T1.4(T1.7, T3, T1.1, T2.1))]

10 [CE(2.1)] [S2[S2.1, S2.2]] [T1.2]

11 [CE(S2.2)] [S2[S2.2]] [T2.2]

12 [CE(S2)] [S2] [T4]

9.3.18.3 Standalone 002

Tested state machine

The state machine that is tested is the one used in Transition 023. See 9.3.3.15.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 239

Test execution

The state machine receives the same stimulation sequence as the one specified in 9.3.3.15 and can generate the same
execution traces.

9.3.18.4 Standalone 003

Tested state machine

The state machine that is tested is the one used in Event 019-E. See 9.3.4.17.

Test execution

The state machine receives the same stimulation sequence than the one specified in 9.3.4.17 and can generate the same
execution traces.

9.3.19 Other Test

9.3.19.1 Overview

This subclause includes an additional test based on an example from the UML specification. This test assesses that the
intended execution semantics of the example are captured by the PSSM execution model.

9.3.19.2 Transition Execution Algorithm Test

Tested state machine

This test is based on the example from [UML], Figure 14.2. The state machine that is executed for the test is presented in
Figure 9.115.

Figure 9.115 - TransitionExecutionAlgorithmTest Classifier Behavior

Test execution

Received event occurrence(s)

• Start – received when in configuration wait.

• Continue – received when in configuration S1[S1.1].

240 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

TransitionExecutionAlgorithmTest

S1

S1.1

/exit Activity exit

/do Activity exit

S2

S2.1

S2.1.1
/entry Activity entry

/entry Activity entry

/entry Activity entry

Waiting

T2.1

/Activity: effect

T2

/Activity: effect

T1.1

T1.2

Continue/Activity: effect

T1 Start

T2.1

/Activity: effect

T1.2

Continue/Activity: effect

T1.1

T2

/Activity: effect

T1 Start

Generated trace

• S1.1(exit)::T1.2(effect)::S1(exit)::T2(effect)::S2(entry)::S2.1(entry)::T2.1(effect)::S2.1.1(entry)

Note. Consider the situation where the state machine is in configuration S1[S1.1]. There are two event occurrences
available in the event pool: the first is the completion event occurrence for S1.1, and the second is a Continue event
occurrence. The completion event occurrence gets dispatched first. It does not initiate an RTC step, since S1.1 has no
completion transition and, therefore, the event occurrence is lost. When the Continue event occurrence is dispatched,
it triggers T1.2. State S1.1 is exited, the T1.2 effect behavior is executed, and the exit point placed on the edge of S1
is reached. This exit point implies exiting S1 and traversal of the continuation transition T2. This leads the state
machine to reach the entry point placed on the edge of S2.1. At this point, S2 is entered first and the continuation
transition T2.1 is traversed next. This means that, at the conclusion of the RTC step, S2.1.1 is entered and its entry
behavior is executed.

RTC Steps

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T1(T1.1)]

4 [Continue, CE(S1.1)] [S1[S1.1]] []

5 [Continue] [S1[S1.1]] [T1.2(T2, T2.1)]

6 [CE(2.1.1)] [S2[S2.1[S2.1.1]]] []

9.4 Test Coverage and Traceability

9.4.1 Overview

This subclause presents the complete set of semantic requirements that have been identified for PSSM and describes the
coverage of those requirements by the tests in the foregoing test suite (as presented in 9.3). The requirements are grouped
according to the same categories as the tests. The requirements for each category are presented in a table that lists, for
each requirement, a unique identifier, a description, and references to any related tests (or, alternatively, a note as to why
the requirements is not testable).

9.4.2 Behavior

ID Description Test(s)

Behavior 001 A State may have an associated entry Behavior. This Behavior, if defined, is
executed whenever the State is entered through an external Transition.

See 9.3.2.2

Behavior 002 A State may also have an associated exit Behavior, which, if defined, is
executed whenever the State is exited.

See 9.3.2.3

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 241

ID Description Test(s)

Behavior 003 A State may also have an associated doActivity Behavior. This Behavior
commences execution when the State is entered (but only after the State
entry Behavior has completed) and executes concurrently with any other
Behaviors that may be associated with the State, until it completes (in
which case a completion event is generated) or the State is exited, in which
case execution of the doActivity Behavior is aborted.

See 9.3.2.4 and 9.3.2.5.

Behavior 004 The execution of a doActivity Behavior of a State is not affected by the
firing of an internal Transition of that State.

See 9.3.2.6.

9.4.3 Transition

ID Description Test(s)

Transition 001 A Transition may have an associated effect Behavior, which is executed
when the Transition is traversed (executed)

See 9.3.3.1.

Transition 002 The duration of a Transition traversal is undefined, allowing for different
semantic interpretations, including both “zero” and non-“zero” time.

See [fUML], 2.4, on the
semantics of time in
fUML.

Transition 003 Transitions are executed as part of a more complex compound transition
that takes a StateMachine execution from one stable state configuration to
another.

See 9.3.3.11, 9.3.3.15
and 9.3.10.5.

Transition 004 A transition is said to be reached, when execution of its StateMachine
execution has reached its source Vertex (i.e., its source State is in the active
state configuration).

This requirement cannot
be tested via the test
suite model.

Transition 005 A transition is said to be traversed, when it is being executed (along with
any associated effect Behavior)

This requirement cannot
be tested via the test
suite model.

Transition 006 A transition is said to be completed, after it has reached its target Vertex This requirement cannot
be tested via the test
suite model.

Transition 007 A Transition may own a set of Triggers, each of which specifies an Event
whose occurrence, when dispatched, may trigger traversal of the
Transition.

See 9.3.3.2.

Transition 008 A Transition trigger is said to be enabled if the dispatched Event
occurrence matches its Event type

See 9.3.3.2, 9.3.3.11,
9.3.3.15 and 9.3.4.8.

Transition 009 When multiple triggers are defined for a Transition, they are logically
disjunctive, that is, if any of them are enabled, the Transition will be
triggered

See 9.3.3.2.

242 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

ID Description Test(s)

Transition 010 kind = external means that the Transition exits its source Vertex. If the
Vertex is a State, then executing this Transition will result in the execution
of any associated exit Behavior of that State

See 9.3.3.3 and 9.3.3.6.
Note that a number of
other tests also
extensively use external
transitions.

Transition 011 kind = local is the opposite of external, meaning that the Transition does
not exit its containing State (and, hence, the exit Behavior of the containing
State will not be executed)

See 9.3.3.4, 9.3.3.5,
9.3.3.7 and 9.3.3.8.

Transition 012 kind = internal is a special case of a local Transition that is a self-
transition (i.e., with the same source and target States), such that the State
is never exited (and, thus, not re-entered), which means that no exit or
entry Behaviors are executed when this Transition is executed.

See 9.3.2.6.

Transition 013 Transitions whose source Vertex is a composite State are called high-level
or group Transitions. If they are external, group Transitions result in the
exiting of all substates of the composite State, executing any defined exit
Behaviors starting with the innermost States in the active state
configuration.

See 9.3.6.2 and 9.3.6.4.

Transition 014 In case of local Transitions, the exit Behaviors of the source state and the
entry Behaviors of the target State will be executed, but not those of the
containing State

See 9.3.3.4 and 9.3.3.7.

Transition 015 In case of simple States, a completion event is generated when the
associated entry and doActivity Behaviors have completed executing

See 9.3.3.9.

Transition 016 If no such Behaviors are defined, the completion event is generated upon
entry into the State.

See 9.3.3.10.

Transition 017 For composite States, a completion event is generated under the following
circumstances: All internal activities (e.g., entry and doActivity Behaviors)
have completed execution, and all its orthogonal Regions have reached a
FinalState

See 9.3.3.11.

Transition 019 If two or more completion events corresponding to multiple orthogonal
Regions occur simultaneously (i.e., as a result of the same Event
occurrence), the order in which such completion occurrences are processed
is not defined.

See 9.3.3.12.

Transition 020 Completion events have dispatching priority. That is, they are dispatched
ahead of any pending Event occurrences in the event pool.

See 9.3.3.13.

Transition 021 Completion of all top level Regions in a StateMachine corresponds to a
completion of the Behavior of the StateMachine and results in its
termination.

See 9.3.14.1.

Transition 022 A Transition may have an associated guard Constraint. Transitions that
have a guard which evaluates to false are disabled.

See 9.3.3.14.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 243

ID Description Test(s)

Transition 023 Guards are evaluated before the compound transition that contains them is
enabled, unless they are on Transitions that originate from a choice
Pseudostate

See 9.3.3.15, but also
9.3.7.6 9.3.10.5.

Transition 024 In the latter case, the guards are evaluated when the choice point is
reached

See 9.3.9.6.

Transition 025 A Transition that does not have an associated guard is treated as if it has a
guard that is always true.

See 9.3.3.2, 9.3.3.11 and
9.3.9.3.

Transition 026 Branching in a compound transition execution occurs whenever an
executing Transition performs a default entry into a State with multiple
orthogonal Regions, with a separate branch created for each Region, or
when a fork Pseudostate is encountered. The overall behavior that results
from the execution of a compound transition is a partially ordered set of
executions of Behaviors associated with the traversed elements, determined
by the order in which the elements (Vertices and Transitions) are
encountered

See 9.3.3.11, 9.3.4.9 and
9.3.5.6

Transition 027 If a choice or join point is reached with multiple outgoing Transitions with
guards, a Transition whose guard evaluates to true will be taken. If more
than one guard evaluates to true, one of these Transitions is chosen for
continuing the traversal. The algorithm for making this selection is
undefined. (p.329)

See 9.3.9.3 (for choice)
and 9.3.12.4 (for join).

9.4.4 Event

ID Description Test(s)

Event 001 Upon creation, a StateMachine will perform its initialization during which
it executes an initial compound transition prompted by the creation, after
which it enters a wait point. In case of StateMachine Behaviors, a wait
point is represented by a stable state configuration. It remains thus until an
Event stored in its event pool is dispatched.

See 9.3.4.2. Note that all
tests start executing as
described in this
requirement.

Event 002 This Event is evaluated and, if it matches a valid Trigger of the
StateMachine and there is at least one enabled Transition that can be
triggered by that Event occurrence, a single StateMachine step is executed.

See 9.3.4.3, but also
9.3.4.9, 9.3.4.14 and
9.3.10.7

Event 003 No dedicated test is provided for this requirement. Nevertheless its support
is demonstrated through various tests in this suite.

See 9.3.4.9, 9.3.4.14 and
9.3.8.2.

244 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

ID Description Test(s)

Event 004 It is possible for multiple mutually exclusive Transitions in a given Region
to be enabled for firing by the same Event occurrence. In those cases, only
one is selected and executed. Which of the enabled Transitions is chosen is
determined by the Transition selection algorithm described below. The set
of Transitions that will fire are the Transitions in the Regions of the current
state configuration that satisfy the following conditions: All Transitions in
the set are enabled. There are no conflicting Transitions within the set.
There is no Transition outside the set that has higher priority than a
Transition in the set (that is, enabled Transitions with highest priorities are
in the set while conflicting Transitions with lower priorities are left out).

There is no dedicated test
for this requirement, but
it is supported by the
tests in 9.3.4.7 and
9.3.4.9.

Event 005 StateMachines can respond to any of the Event types described in Clause
13 as well as to completion events.

 See 9.3.4.10, 9.3.4.11,
9.3.4.13, 9.3.4.14,
9.3.4.15 and 9.3.4.16.

Event 006 Event occurrences are detected, dispatched, and processed by the
StateMachine execution, one at a time.

This is covered by fUML
CommonBehavior
semantics that are not
changed by PSSM. The
required behavior can be
observed in all PSSM
tests.

Event 007 Run-to-completion means that, in the absence of exceptions or
asynchronous destruction of the context Classifier object or the
StateMachine execution, a pending Event occurrence is dispatched only
after the processing of the previous occurrence is completed and a stable
state configuration has been reached. That is, an Event occurrence will
never be dispatched while the StateMachine execution is busy processing
the previous one.

This is covered by fUML
CommonBehavior
semantics that are not
changed by PSSM. The
required behavior can be
observed in all PSSM
tests.

Event 008 When an Event occurrence is detected and dispatched, it may result in one
or more Transitions being enabled for firing. If no Transition is enabled
and the corresponding Event type is not in any of the deferrableTriggers
lists of the active state configuration, the dispatched Event occurrence is
discarded and the run-to-completion step is completed trivially.

See 9.3.4.4.

Event 009 It is possible that multiple Transitions (in different Regions) can be
triggered by the same Event occurrence. The order in which these
Transitions are executed is left undefined.

See 9.3.4.5. (But see also
9.3.4.9.)

Event 010 it is possible for multiple mutually exclusive Transitions in a given Region
to be enabled for firing by the same Event occurrence. In those cases, only
one is selected and executed. Which of the enabled Transitions is chosen is
determined by the Transition selection algorithm described below.

See 9.3.4.6.

Event 011 When all orthogonal Regions have finished executing the Transition, the
current Event occurrence is fully consumed, and the run-to-completion step
is completed.

There is no dedicated test
for this requirement, but
it is supported by the test
in 9.3.4.5.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 245

ID Description Test(s)

Event 013 During a Transition, a number of actions Behaviors may be executed. If
such a Behavior includes a synchronous invocation call on another object
executing a StateMachine, then the Transition step is not completed until
the invoked object method completes its run-to-completion step. (p.330).

See 9.3.4.14, 9.3.4.15,
9.3.4.16 and 9.3.4.17.

Event 014 A Transition is enabled if and only if: 1 All of its source States are in the
active state configuration. 2 At least one of the triggers of the Transition
has an Event that is matched by the Event type of the dispatched Event
occurrence. In case of Signal Events, any occurrence of the same or
compatible type as specified in the Trigger will match. If one of the
Triggers is for an AnyReceiveEvent, then either a Signal or CallEvent
satisfies this Trigger, provided that there is no other Signal or CallEvent
Trigger for the same Transition or any other Transition having the same
source Vertex as the Transition with the AnyReceiveEvent trigger (see also
13.3.1). 3 If there exists at least one full path from the source state
configuration to either the target state configuration or to a dynamic
choice Pseudostate in which all guard conditions are true (Transitions
without guards are treated as if their guards are always true).

AnyReceiveEvents are
not included in PSSM.
However for signal event
support see 9.3.4.10, for
call event support see
9.3.4.17, for static
analysis (path analysis)
see 9.3.10.4 and 9.3.3.15.

Event 015 It is possible for more than one Transition to be enabled within a
StateMachine. If that happens, then such Transitions may be in conflict
with each other. For example, consider the case of two Transitions
originating from the same State, triggered by the same event, but with
different guards. If that event occurs and both guard conditions are true,
then at most one of those Transition can fire in a given run-to-completion
step

See 9.3.4.7.

Event 016 In situations where there are conflicting Transitions, the selection of which
Transitions will fire is based in part on an implicit priority. These priorities
resolve some but not all Transition conflicts, as they only define a partial
ordering. The priorities of conflicting Transitions are based on their
relative position in the state hierarchy. By definition, a Transition
originating from a substate has higher priority than a conflicting
Transition originating from any of its containing States. The priority of a
Transition is defined based on its source State.

See 9.3.4.8 and 9.3.4.9.

Event 017 The priority of Transitions chained in a compound transition is based on
the priority of the Transition with the most deeply nested source State.

See 9.3.4.8.

246 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

ID Description Test(s)

Event 018 Once a Transition is enabled and is selected to fire, the following steps are
carried out in order: 1. Starting with the main source State, the States that
contain the main source State are exited according to the rules of State exit
(or, composite State exit if the main source State is nested) as described
earlier. 2. The series of State exits continues until the first Region that
contains, directly or indirectly, both the main source and main target states
is reached. The Region that contains both the main source and main target
states is called their least common ancestor. At that point, the effect
Behavior of the Transition that connects the sub-configuration of source
States to the sub-configuration of target States is executed. (A “sub-
configuration” here refers to that subset of a full state configuration
contained within the least common ancestor Region.) 3. The configuration
of States containing the main target State is entered, starting with the
outermost State in the least common ancestor Region that contains the
main target State. The execution of Behaviors follows the rules of State
entry (or composite State entry) described earlier.

See 9.3.4.12 and
9.3.19.2.

9.4.5 Entering

ID Description Test(s)

Entering 001 The rule for this case is the same as for shallow history except that the
target Pseudostate is of type deepHistory and the rule is applied recursively
to all levels in the active state configuration below this one.

 See 9.3.15.2.

Entering 002 If a doActivity Behavior is defined for the State, this Behavior commences
execution immediately after the entry Behavior is executed. It executes
concurrently with any subsequent Behaviors associated with entering the
State, such as the entry Behaviors of substates entered as part of the same
compound transition.

There is no dedicated test
for this requirement, but
it is supported by the
tests in 9.3.2.4 and
9.3.2.5.

Entering 003 If the incoming Transition terminates on a shallowHistory Pseudostate of a
Region of the composite State, the active substate becomes the substate that
was most recently active prior to this entry.

See 9.3.15.5.

Entering 004 If no initial Pseudostate is defined, there is no single approach defined.
One alternative is to treat such a model as ill formed. A second alternative
is to treat the composite State as a simple State, terminating the traversal
on that State despite its internal parts.

See 9.3.5.2.

Entering 005 If the incoming Transition or its continuations terminate on a directly
contained substate of the composite State, then that substate becomes
active and its entry Behavior is executed after the execution of the entry
Behavior of the containing composite State. This rule applies recursively if
the Transition terminates on an indirect (deeply nested) substate.

See 9.3.5.3, Also
supported by 9.3.5.5 and
9.3.19.2.

Entering 006 Rules described in Entering_001 do not apply in the case where the most
recently active substate is the FinalState, or this is the first entry into this
State. In the latter two cases, if a default shallow history Transition is
defined originating from the shallowHistory Pseudostate, it will be taken.
Otherwise, default State entry is applied.

 See 9.3.15.8 and
9.3.15.9.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 247

ID Description Test(s)

Entering 007 If a Transition enters a composite State through an entryPoint Pseudostate,
then the effect Behavior associated with the outgoing Transition
originating from the entry point and penetrating into the State (but after the
entry Behavior of the composite State has been executed).

See 9.3.5.4. Also
supported by 9.3.19.2.

Entering 008 If the composite State is also an orthogonal State with multiple Regions,
each of its Regions is also entered, either by default or explicitly.

See 9.3.5.5.

Entering 009 If the Transition terminates on the edge of the composite State (i.e., without
entering the State), then all the Regions are entered using the default entry
rule above.

See 9.3.5.6. Also
supported by 9.3.4.9 and
9.3.3.11.

Entering 010 If the Transition explicitly enters one or more Regions (in case of a fork),
these Regions are entered explicitly and the others by default.

See 9.3.11.2.

Entering 011 Regardless of how a State is entered, the StateMachine is deemed to be
“in” that State even before any entry Behavior or effect Behavior (if
defined) of that State start executing.

This requirement cannot
be tested via the test suite
model.

9.4.6 Exiting

ID Description Test(s)

Exiting 001 When exiting a State, regardless of whether it is simple or composite, the
final step involved in the exit, after all other Behaviors associated with the
exit are completed, is the execution of the exit Behavior of that State.

See 9.3.6.2.

Exiting 002 If the State has a doActivity Behavior that is still executing when the State
is exited, that Behavior is aborted before the exit Behavior commences
execution

See 9.3.6.3.

Exiting 003 When exiting from a composite State, exit commences with the innermost
State in the active state configuration. This means that exit Behaviors are
executed in sequence starting with the innermost active State.

See 9.3.6.4.

Exiting 004 If the exit occurs through an exitPoint Pseudostate, then the exit Behavior
of the State is executed after the effect Behavior of the Transition
terminating on the exit point.

See 9.3.6.5.

Exiting 005 When exiting from an orthogonal State, each of its Regions is exited. After
that, the exit Behavior of the State is executed

See 9.3.6.6.

Exiting 006 Regardless of how a State is exited, the StateMachine is deemed to have
“left” that State only after the exit Behavior (if defined) of that State has
completed execution.

This requirement cannot
be tested via the test
suite model.

248 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.4.7 Encapsulated

ID Description Test(s)

Encaps 001 Entry points represent termination points (sources) for incoming
Transitions and origination points (targets) for Transitions that terminate
on some internal Vertex of the composite State. In effect, the latter is a
continuation of the external incoming Transition, with the proviso that the
execution of the entry Behavior of the composite State (if defined) occurs
between the effect Behavior of the incoming Transition and the effect
Behavior of the outgoing Transition.

See 9.3.7.4

Encaps 002 If there is no outgoing Transition inside the composite State, then the
incoming Transition simply performs a default State entry.

See 9.3.7.5.

Encaps 003 Exit points are the inverse of entry points. That is, Transitions originating
from a Vertex within the composite State can terminate on the exit point. In
a well-formed model, such a Transition should have a corresponding
external Transition outgoing from the same exit point, representing a
continuation of the terminating Transition. If the composite State has an
exit Behavior defined, it is executed after any effect Behavior of the
incoming inside Transition and before any effect Behavior of the outgoing
external Transition.

See 9.3.8.2.

9.4.8 Entry

ID Description Test(s)

Entry 001 If the owning State has an associated entry Behavior, this Behavior is
executed before any behavior associated with the outgoing Transition.

See 9.3.7.4 and 9.3.7.7.

Entry 002 In addition to Entry 001, if multiple Regions are involved, the entry point
acts as a fork Pseudostate.

See 9.3.7.2.

9.4.9 Exit

ID Description Test(s)

Exit 001 Transitions terminating on an exit point within any Region of the composite
State implies exiting of this composite (with execution of its associated exit
Behavior).

See 9.3.8.2.

Exit 002 If multiple Transitions from orthogonal Regions within the State terminate
on this Pseudostate, then it acts like a join Pseudostate.

See 9.3.8.3.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 249

9.4.10 Choice

ID Description Test(s)

Choice 001 The guard Constraints on all outgoing Transitions are evaluated
dynamically, when the compound transition traversal reaches this
Pseudostate.

See 9.3.9.2.

Choice 002 If more than one guard evaluates to true, one of the corresponding
Transitions is selected. The algorithm for making this selection is not
defined.

See 9.3.9.3.

Choice 003 If none of the guards evaluates to true, then the model is considered ill
formed. To avoid this, it is recommended to define one outgoing Transition
with the predefined “else” guard for every choice Pseudostate.

See 9.3.9.4.

9.4.11 Junction

ID Description Test(s)

Junction 001 Junction pseudo state can be used to split an incoming Transition into
multiple outgoing Transition segments with different guard Constraints.
Such guard Constraints are evaluated before any compound transition
containing this Pseudostate is executed

See 9.3.10.3 and
9.3.10.5.

Junction 002 It may happen that, for a particular compound transition, the configuration
of Transition paths and guard values is such that the compound transition
is prevented from reaching a valid state configuration. In those cases, the
entire compound transition is disabled even though its Triggers are enabled

See 9.3.10.4 and
9.3.10.5.

Junction 003 If more than one guard evaluates to true, one of these is chosen. The
algorithm for making this selection is not defined.

See 9.3.10.4.

9.4.12 Join

ID Description Test(s)

Join 001 All incoming Transitions have to complete before execution can continue
through an outgoing Transition.

See 9.3.12.2 and
9.3.12.3.

9.4.13 Terminate

ID Description Test(s)

Terminate 001 Entering a terminate Pseudostate implies that the execution of the
StateMachine is terminated immediately. The StateMachine does not exit
any States nor does it perform any exit Behaviors.

See 9.3.13.2 and
9.3.13.4.

Terminate 002 Any executing doActivity Behaviors are automatically aborted. Entering a
terminate Pseudostate is equivalent to invoking a DestroyObjectAction.

See 9.3.13.3.

250 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.4.14 Final

ID Description Test(s)

Final 001 FinalState is a special kind of State signifying that the enclosing Region
has completed. Thus, a Transition to a FinalState represents the completion
of the behaviors of the Region containing the FinalState.

See 9.3.14.2.

9.4.15 History

ID Description Test(s)

History 001 Deep history (deepHistory) represents the full state configuration of the
most recent visit to the containing Region. The effect is the same as if the
Transition terminating on the deepHistory Pseudostate had, instead,
terminated on the innermost State of the preserved state configuration,
including execution of all entry Behaviors encountered along the way

See 9.3.15.2. Also
supported by 9.3.15.3.

History 002 In cases where a Transition terminates on a history Pseudostate when the
State has not been entered before (i.e., no prior history) or it had reached
its FinalState, there is an option to force a transition to a specific substate,
using the default history mechanism. This is a Transition that originates in
the history Pseudostate and terminates on a specific Vertex (the default
history state) of the Region containing the history Pseudostate. This
Transition is only taken if execution leads to the history Pseudostate and
the State had never been active before. Otherwise, the appropriate history
entry into the Region is executed (see above)

See 9.3.15.3 and
9.3.15.9.

History 003 If no default history Transition is defined, then standard default entry of the
Region is performed

See 9.3.15.8.

History 004 A Transition terminating on this Pseudostate implies restoring the Region
to that same state configuration, but with all the semantics of entering a
State (see the Subclause describing State entry). The entry Behaviors of all
States in the restored state configuration are performed in the appropriate
order starting with the outermost State

See 9.3.15.2 and
9.3.15.3.

History 005 Represents the most recent active substate of its containing Region, but not
the substates of that substate. A Transition terminating on this Pseudostate
implies restoring the Region to that substate with all the semantics of
entering a State. A single outgoing Transition from this Pseudostate may be
defined terminating on a substate of the composite State. This substate is
the default shallow history state of the composite State.

See 9.3.15.6 and
9.3.15.9.

9.4.16 Deferred

The PSSM semantics covers the usual functionality of States with deferrableTriggers, as captured in requirements
Deferred 001 to Deferred 003, below (see the discussion under StateActivation in 8.5.5). However, PSSM also adopts
some special functionality to allow deferredTriggers to be used to permit doActivities executed by a State to
consume Event occurrences without competing with the execution of the containing StateMachine (see the discussion
under DoActivityContextObject in 8.5.6). This functionality is captured in the additional requirements Deferred 004 and
Deferred 005, below, in order to show the traceability to certain tests that validate support for the required capabilities.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 251

ID Description Test(s)

Deferred 001 A State may specify a set of Event types that may be deferred in that State.
This means that Event occurrences of those types will not be dispatched as
long as that State remains active. Instead, these Event occurrences remain
in the event pool until a state configuration is reached where these Event
types are no longer deferred.

See 9.3.16.2 for
SignalEvent deferral and
9.3.16.11 for CallEvent
deferral. Also supported
by 9.3.16.5, 9.3.16.6 and
9.3.16.7.

Deferred 002 An otherwise deferrable Event occurrence will instead be dispatched if a
deferred Event type is used explicitly in a Trigger of a Transition whose
source is the deferring State.

See 9.3.16.3.

Deferred 003 An Event may be deferred by a composite State, in which case it remains
deferred as long as the composite State remains in the active configuration

See 9.3.16.4.

Deferred 004 An otherwise deferrable Event occurrence will instead be dispatched if
there is an executing doActivity invoked from the deferring State that is
able to accept the Event occurrence.

See 9.3.16.8.

Deferred 005 If an Event occurrence has been deferred by a State, but an executing
doActivity invoked by that State becomes able to accept that Event
occurrence, then the Event occurrence will be dispatched to the doActivity,
even though it was previously deferred.

See 9.3.16.9.

9.4.17 Region

ID Description Test(s)

Region 001 A Region becomes active (i.e., it begins executing) either when its owning
State is entered or, if it is directly owned by a StateMachine (i.e., it is a top
level Region), when its owning StateMachine starts executing.

See 9.3.5.6 and 9.3.14.2.
Also supported by
9.3.4.9 and 9.3.3.11.

Region 002 A default activation of a Region occurs if the Region is entered implicitly,
that is, it is not entered through an incoming Transition that terminates on
one of its component Vertices (e.g., a State or a history Pseudostate), but
either through a (local or external) Transition that terminates on the
containing State or, in case of a top level Region, when the StateMachine
starts executing. Default activation means that execution starts with the
Transition originating from the initial Pseudostate of the Region, if one is
defined. no specific approach is defined if there is no initial Pseudostate
exists within the Region. One possible approach is to deem the model ill
defined. An alternative is that the Region remains inactive, although the
State that contains it is active. In other words, the containing composite
State is treated as a simple (leaf) State.

No dedicated test is
provided for this
requirement.
Nevertheless support for
it is demonstrated by
9.3.5.6 9.3.7.5, 9.3.5.2,
9.3.3.11 and 9.3.4.17.

Region 003 An explicit activation occurs when a Region is entered by a Transition
terminating on one of the Region’s contained Vertices. When one Region of
an orthogonal State is activated explicitly, this will result in the default
activation of all of its orthogonal Regions, unless those Regions are also
entered explicitly (multiple orthogonal Regions can be entered explicitly in
parallel through Transitions originating from the same fork Pseudostate).

See 9.3.7.3, 9.3.11.2,
9.3.11.3 and 9.3.5.5.

252 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

9.4.18 Configuration

ID Description Test(s)

Config 001 A particular “state” of an executing StateMachine instance is represented
by one or more hierarchies of States, starting with the topmost Regions of
the StateMachine and down through the composition hierarchy to the
simple, or leaf, States. Similarly, we can talk about such a hierarchy of
substates within a composite State. This complex hierarchy of States is
referred to as a state configuration (of a State or a StateMachine)

This requirement cannot
be tested via the test
suite model.

Config 002 An executing StateMachine instance can only be in exactly one state
configuration at a time, which is referred to as its active state configuration

This requirement cannot
be tested via the test
suite model.

Config 003 A State is said to be active if it is part of the active state configuration. This requirement cannot
be tested via the test
suite model.

Config 004 A state configuration is said to be stable when no further Transitions from
that state configuration are enabled and all the entry Behaviors of that
configuration, if present, have completed (but not necessarily the doActivity
Behaviors of that configuration, which, if defined, may continue executing).
A configuration is deemed stable even if there are deferred, completion, or
any other types of Event occurrences pending in the event pool of that
StateMachine

This requirement cannot
be tested via the test
suite model.

Config 005 After it has been created and completed its initial Transition, a
StateMachine is always “in” some state configuration. However, because
States can be hierarchical and because there can be Behaviors associated
with both Transitions and States, “entering” a hierarchical state
configuration involves a dynamic process that terminates only after a
stable state configuration (as defined above) is reached.

This requirement cannot
be tested via the test
suite model.

9.4.19 Redefinition

ID Description Test(s)

Redefinition
001

A specialized StateMachine will have all the elements of the general
StateMachine, and it may include additional elements. Regions may be
added. Inherited Regions may be redefined by extension: States and
Vertices are inherited, and States and Transitions of the Regions of the
StateMachine may be redefined.

See 9.3.17.2, 9.3.17.3
and 9.3.17.4 . Note that
other tests in 9.3.17 also
demonstrate support for
this requirement.

Redefinition
002

A simple State may be redefined (extended) to become a composite State by
one or more Regions. A composite State can be redefined (extended) by:
adding new Regions, adding Vertices and Transitions to inherited Regions,
adding entry/exit/doActivity Behaviors, if the general State does not have
any, redefining States and Transitions.

See 9.3.17.2, 9.3.17.3
and 9.3.17.4 . Note that
other tests in 9.3.17 also
demonstrate support for
this requirement.

Redefinition
003

The effective set of triggers for a redefining transition is the set of triggers
owned by that transition plus the set of triggers owned by directly or
indirectly redefined transitions.

See 9.3.17.5.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 253

ID Description Test(s)

Redefinition
004

If a redefining transition does not declare an effect behavior, then if a
directly or indirectly redefined transition declares an effect, this effect is
used for the redefining transition.

See 9.3.17.3.

Redefinition
005

If a redefining transition declares an effect behavior, then this behavior is
used (i.e., it replaces any effect specified by the transition it redefined).

See 9.3.17.5 and
9.3.17.6.

Redefinition
006

A state can have entry, doActivity and exit behaviors. If the redefining state
does not declare such a behavior, then the behavior from the directly or
indirectly redefined state is used for the redefining state.

See 9.3.17.6.

Redefinition
007

A state can have entry, doActivity and exit behaviors. If the redefining state
has such a behavior defined, then this behavior is used instead of the
corresponding behavior of the redefined state.

See 9.3.17.6.

Redefinition
008

The set of deferrable triggers of a redefining state is the set of deferrable
triggers declared by that state plus the set of deferrable triggers declared
in its directly or indirectly redefined states.

See 9.3.17.7.

9.4.20 Data Passing

A dispatched event occurrence can be either a SignalEvent occurrence or a CallEvent occurrence. Both kinds of Event
occurrences can hold data. UML does not specify whether this data can be accessed during the execution of an RTC step
by the Behaviors of a StateMachine (entry, doActivity, exit, effect) or by guards on Transitions. PSSM
clarifies this point by describing how data embedded in event occurrences is passed to behaviors and guards (see 7.6.2
and 8.5.10).

The adopted approach for event data passing essentially places additional requirements on a conforming PSSM execution
tool. These requirements are listed below, in order to show how the traceability of certain tests to the required capabilities
for data passing. The following terms are used in the statement of the requirements:

• A signature is the ordered sequence of Parameters owned by an Operation or Behavior.

• One signature conforms to another if the first signature has the same number of Parameters as the second
signature, and each Parameter of the first signature has a type that conforms to the type of the corresponding
Parameter (in order) from the second signature, a multiplicity that is a superset of that of the second Parameter and
the same ordering and uniqueness as the second Parameter. (Note: An “empty type” is considered to conform to
any other type, including “empty”, while no non-empty type conforms to an “empty type”.)

• A signature input-conforms to another if the first signature conforms to the signature that results from including
only the in Parameters from the second signature.

ID Description Test(s)

DataPassing
001

If the trigger is for a SignalEvent, then all executed Behaviors must have
either one Parameter or no Parameters. If a Behavior has a Parameter,
then the Signal instance corresponding to the SignalEvent occurrence is
passed into the Behavior execution as the value of its Parameter.

See 9.3.4.11 and
9.3.10.7.

254 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

ID Description Test(s)

DataPassing
002

If the trigger is for a CallEvent, then all executed Behaviors must have
either no Parameters or they must have signatures that conform or input-
conform to the signature of the Operation being called. If a Behavior has
Parameters, then the values of the input Parameters of the call are passed
into the Behavior execution as the values of the corresponding input
Parameters of that Behavior.

See 9.3.4.13, 9.3.4.14
and 9.3.4.15.

DataPassing
003

If the trigger is for a CallEvent, then all executed Behaviors must have
either no Parameters or they must have signatures that conform or input-
conform to the signature of the Operation being called. If an effect, entry
or exit Behavior is not just input-conforming, then the values of its output
Parameters are passed out of its Behavior execution on its completion as
values for the output Parameters of the called Operation.

See 9.3.4.16.

DataPassing
004

If the trigger is for a CallEvent, then all executed Behaviors must have
either no Parameters or must have signatures that conform or input-
conform to the signature of the Operation being called. The (synchronous)
call ends at the end of the triggered RTC step. If the called Operation has
output Parameters, then the values returned for those parameters are those
produced by the last effect, entry or exit Behavior to complete its execution
during the RTC step. (Since some or all of those Behaviors may execute
concurrently, which one completes “last” may be only partially determined
by the specified semantics. The values returned may legally be those
produced by any Behavior that produces potential output values and is the
last one to complete in any valid execution trace for the RTC step.)

See 9.3.4.17.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 255

256 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Annex A Protocol State Machines
(informative)

A.1 Overview

ProtocolStateMachines are intended to specify some constraints on sequences of interactions supported by an associated
classifier behavior together with their expected outcomes.

According to the UML specification [UML], violation of a constraint specified by a ProtocolStateMachine at run time
shall result in an exception to be raised. However, since the fUML version upon which this specification is built [fUML]
does not support exceptions, it is not possible to define an executable semantics for ProtocolStateMachines. Instead, this
annex provides a precise but non-normative interpretation of the UML semantics for ProtocolStateMachines.

This interpretation assumes the following restrictions:

• ProtocolConformance is excluded since the real conformance of one protocol to another depends the valid
interaction sequences actually allowed be each of them and cannot simply be claimed.

• Protocols specify contracts constraining all the involved entities. ProtocolsStateMachines are given semantics only
in the case where they control binary interactions. This specification constrains them to be associated with an
Interface

• There can be more than one protocol defined for given Classifier. The precise semantics specified below assumes
that only one protocol is controlling a given interaction. ProtocolsStateMachines are constrained to be associated
with a Port, which identifies an interaction point where the protocol applies.

• Neither Operation::precondition nor Operation::postcondition are derived. Therefore, it is not possible to compute
them according to the preconditions and the postconditions of enabled ProtocolTransitions they are associated
with. Instead, this specification assumes that the constraint implied by an enabled ProtocolTransition is the result
of a logical “and” between the preconditions and the postconditions, respectively, of both the protocol transition
and its associated operation.

A.2 Abstract Syntax

Figure A.1 shows classes related to protocol state machines in the StateMachines package from the UML abstract syntax.
ProtocolConformance has been excluded from this subset, since it is a declarative statement that can be derived from the
actual definition of the involved ProtocolStateMachine.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 257

Figure A.1 - ProtocolStateMachines

A.3 Semantics

A.3.1 Controlled Events

Interactions controlled by a ProtocolStateMachine are restricted to event occurrences for which this state machine has at
least one trigger defined. An occurrence of such a controlled event violates the protocol specified by a
ProtocolStateMachine if it is not explicitly allowed according to the current state of the protocol.

A.3.2 Protocol States Configuration

The initial state configuration of the protocol is defined according the initial Pseudostate of each active Region within the
ProtocolStateMachine. For each occurrence of an event controlled by the ProtocolStateMachine which is not invalid, the
corresponding ProtocolTransition is fired, which result in the target State to become the active protocol state.

258 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

StateMachine

ProtocolTransition

Constraint

ProtocolConformance

Transition

ProtocolStateMachine

Operation

 + generalMachine + protocolConformance

 1 *

 + postCondition + owningTransition

 0..1 0..1

 + preCondition + protocolTransition

 0..1 0..1

 + conformance + specificMachine
 * 1

 +/ referred

 + protocolTransition

 *

 *

A.3.3 Protocol Violation

A protocol violation shall result in an exception being raised. This occurs in the following cases:

• An occurrence of a controlled event is received while it is invalid. That is, there is no enabled ProtocolTransition
for that event for which the precondition is satisfied. In cases where that event is a CallEvent, this precondition is
computed as a logical “and” between the ProtocolTransition::precondition and the
CallEvent::operation::precondition.

• The postcondition of the ProtocolTransition activated following the occurrence of a controlled event linked o the
invocation of a BehavioralFeature is not met when the execution of the corresponding method ends. In cases
where that event is a CallEvent, this postcondition is computed as a logical “and” between the ProtocolTransition::
postcondition and the CallEvent::operation::postcondition.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 259

260 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

Annex B State Machines for Passive Classes
(Informative)

B.1 Background and Rationale

The precise execution semantics for StateMachines in the main body of this specification covers the cases in which a
StateMachine is either used as the classifierBehavior of an active Class or executes itself as a “standalone” active
Behavior. However, StateMachines have also been used to specify the behavior of passive Classes, and support for this
can be found in existing UML tools. This annex discusses the semantics of this usage, which are different than the
semantics of StateMachines used with active Classes.

To help understand how the behavior of passive classes can be described using StateMachines, it is useful to recall that an
essential characteristic of StateMachine behavior is that a response to a particular stimulus (e.g., a CallEvent occurrence)
depends on the object’s history; that is, the nature and order of preceding stimuli received by that object. In
StateMachines for active Classes, this information is captured concisely by the current State of an object’s
classifierBehavior. However, when dealing with passive objects, which do not have a classifierBehavior, this means that,
in the general case, each method of the Class of the object needs to include a conditional branch to handle the different
responses based on some internal value that, in effect, represents the history of the object.

Consider, for example, the simplest case of a Stack Class shown in Figure B.1. Note that the response to a “pop”
Operation will depend on whether the stack is empty or not. Similarly, assuming that the stack is of limited capacity, the
response to a “push” Operation will differ when the stack is full compared to when it is not full.

Of course, this can be coded explicitly by defining a suitable local variable of the object (e.g., “stack size”) and using
appropriate action language conditional statements. However, this not only obscures the true nature of the behavior in
question, but, because it relies on relatively low-level (i.e., “manual”) coding, it is also more error prone and requires
more effort by the modeler. This approach becomes increasingly more problematic as the complexity of the behavior
grows.

Hence, the motivations behind supporting StateMachine specifications of passive Class behaviors are to reduce the
burden on the modeler, to more clearly describe an object’s behavior using a higher-level formalisms, and to increase
both reliability and productivity.

Precise Semantics of UML State Machines (PSSM), v1.0 Beta 261

Figure B.1 - Stack Example

Stack

Empty

Normal Full

pop[stkSize>1]/popItem()

pop[stkSize==1]/popItem()

/stkSize=0

push/pushItem()

push[stkSize==(max-1)]/pushItem()

pop/errorEmpty()

push[stkSize<(max-1)]/pushItem()

push/errorFull()

pop/popItem()

/stkSize=0

pop/errorEmpty()

push/pushItem()

pop[stkSize==1]/popItem()

push[stkSize==(max-1)]/pushItem()

pop/popItem()

push[stkSize<(max-1)]/pushItem()

pop[stkSize>1]/popItem()

push/errorFull()

B.2 Semantics

To avoid gratuitous differences from the familiar semantics of active StateMachines, the general strategy taken here is to
be fully consistent with those semantics wherever possible. Note that this approach covers both passive Classes as well as
stand-alone passive StateMachines (which are, after all, Classes as well).

The core idea behind the approach is straightforward: map the StateMachine specification into an equivalent set of
behavioral fragments and conditional statements distributed across the appropriate methods. For example, all three
transitions triggered by the “pop” CallEvent in the Stack example above, would be mapped to appropriate conditional
statement cases of a single “pop” Operation method. The control variable of such a statement would correspond to the
current state of the StateMachine2. This is illustrated by the following pseudocode for the method of the “pop”
Operation3:

operation pop(): Item {
case (state) {

'Empty': errorEmpty();
'Normal': if (stkSize == 1) then

{popItem();
 nextState('Empty');}

else
popItem();

'Full': {popItem();
 nextState('Normal');}

};
}

Furthermore, any action associated with the initial Transition would be mapped to the method of the Class constructor.

Of course, in addition to the lack of a classifierBehavior, one key difference between active and passive Class semantics
is in how the Transition triggering mechanism works. For active Classes, triggering is realized by a dedicated scheduling
and dispatch mechanism, which is external to the StateMachine instance. Among other responsibilities, this mechanism
also ensures that run-to-completion semantics are enforced. In contrast, no such mechanism exists for passive Classes;
the methods of a passive Class are executed synchronously when some calling behavior invokes the corresponding
Operation. Consequently, if two or more concurrently executing behaviors make overlapping calls to the same passive
object, there is a possibility of concurrency conflicts that would violate the run-to-completion semantics. (Note that this
can occur even if all of the Operations of the passive class are declared as “guarded”, since that only prevents a given
Operation being invoked concurrently. However, it would still be possible to concurrently invoke two or more different
Operations of the passive class.)

Therefore, to ensure run-to-completion semantics of a passive-Class StateMachine, it is necessary that, for any passive
Class whose behavior is defined by a StateMachine, at most one Operation call can be executed (to completion) at a time.
This restriction avoids unsafe and error prone designs, and it is consistent the core semantic tenets of UML
StateMachines.

2 The exact type and format of such a variable are of no concern here; implementers are free to chose their own.

3 To simplify the example, we assume here that there are no entry, exit, or doActivity behaviors associated with any of the states.

262 Precise Semantics of UML State Machines (PSSM), v1.0 Beta

	Precise Semantics of UML State Machines (PSSM)
	Table of Contents
	1 Scope
	2 Conformance
	2.1 General
	2.2 Conformance Levels
	2.2.1 PSSM-only Conformance
	2.2.2 Joint PSSM and PSCS Conformance

	2.3 Genericity of the Execution Model

	3 Normative References
	4 Terms and Definitions
	Base Semantics
	Behavioral Semantics
	Execution Model
	Execution Semantics
	Execution Tool
	Static Semantics
	Structural Semantics
	Syntax

	5 Symbols
	6 Additional Information
	6.1 Relationship to UML
	6.2 Changes to Adopted OMG Specifications
	6.3 Acknowledgments

	7 Abstract Syntax
	7.1 Overview
	7.2 Common Structure
	7.2.1 Overview
	7.2.2 Constraints
	pssm_constraint_is_guard

	7.3 Values
	7.3.1 Overview
	7.3.2 Constraints
	pssm_opaque_expression_has_behavior
	pssm_expression_only_for_else

	7.4 Classification
	7.4.1 Overview
	7.4.2 Constraints
	pssm_operation_has_at_most_one_method

	7.5 Common Behavior
	7.5.1 Overview
	7.5.2 Constraints
	pssm_call_event_operation_has_no_method

	7.6 State Machines
	7.6.1 Overview
	7.6.2 Behavior State Machines
	7.6.2.1 Overview
	7.6.2.2 Constraints
	pssm_state_machine_context
	pssm_transition_triggers
	pssm_transition_call_event_operations
	pssm_transition_signal_event_receptions
	pssm_state_has_no_submachine
	pssm_state_has_no_invariant
	pssm_state_do_activity_parameters
	pssm_state_behavior_parameters

	7.6.3 State Machine Redefinition
	7.6.3.1 Overview
	7.6.3.2 Constraints
	pssm_state_machine_extends_at_most_one

	8 Execution Model
	8.1 Overview
	8.2 Values
	8.3 Structured Classifiers
	8.4 Common Behavior
	8.5 State Machines
	8.5.1 Overview
	8.5.2 State Machine Execution
	StateMachineExecution
	StateMachineEventAccepter

	8.5.3 State Machine Semantic Visitors
	StateMachineSemanticVisitor
	RegionActivation
	Entering a RegionActivation
	Exiting a RegionActivation
	Completion of a region activation
	Termination of a RegionActivation
	History of a RegionActivation
	Extension and RegionActivation
	Evaluation of a RegionActivation

	VertexActivation
	VertexActivations and StateMachineConfiguration
	VertexActivation entry and exit
	VertexActivation termination
	Evaluation of a VertexActivation

	TransitionActivation
	Evaluation of a TransitionActivation
	Firing

	8.5.4 State Machine Configuration
	StateMachineConfiguration
	StateConfiguration

	8.5.5 State Activations
	StateActivation
	StateActivation entry
	StateActivation exit
	StateActivation completion
	StateActivation and deferred events
	Evaluation of a StateActivation

	FinalStateActivation
	Evaluation of a FinalStateActivation

	8.5.6 “doActivity” Behavior Execution
	DoActivityContextObject
	Feature access context
	doActivity accepter registration
	doActivity run-to-completion step
	doActivity finalization

	DoActivityContextObjectActivation
	DoActivityExecutionEventAccepter
	DoActivityEventAccepter registration
	DoActivityEventAccepter matching
	DoActivityEventAccepter acceptance

	8.5.7 Pseudostate Activations
	8.5.7.1 Basic Pseudostate Activations
	PseudostateActivation
	StateMachineConfiguration and PseudostateActivation
	Evaluation of a PseudostateActivation

	InitialPseudostateActivation
	Entry

	ForkPseudostateActivation
	Entry
	Exit
	Evaluation

	JoinPseudostateActivations
	Entry
	Evaluation

	TerminatePseudostateActivation
	Entry

	8.5.7.2 Connection Point Activations
	ConnectionPointActivation
	EntryPointPseudostateActivation
	Entry
	Exit
	Evaluation

	ExitPointPseudostateActivation
	Enter
	Evaluation

	8.5.7.3 Conditional Pseudostate Activations
	ConditionalPseudostateActivation
	ChoicePseudostateActivation
	Entry
	Evaluation

	JunctionPseudostateActivation
	Entry

	8.5.7.4 History Pseudostate Activations
	HistoryPseudostateActivation
	Entry
	Restoration

	DeepHistoryPseudostateActivation
	Restoration

	ShallowHistoryPseudostateActivation
	Restoration

	8.5.8 Transition Activations
	TransitionActivation
	ExternalTransitionActivation
	Exit source
	Enter target

	LocalTransitionActivation
	Containing StateActivation
	Exit source
	Enter target

	InternalTransitionActivation
	Exit source
	Enter target

	8.5.9 Event Occurrences
	CompletionEventOccurrence
	Scope of completion events
	Priority of completion events

	CallEventOccurrence
	CallEventExecution
	DeferredEventOccurrence

	8.5.10 Event Data Passing
	8.5.10.1 Event Triggered Execution
	EventTriggeredExecution
	Execution
	Input ParameterValues
	Output ParameterValues

	8.5.10.2 Event Data Passing and Static Analysis

	8.6 Actions
	8.7 Loci

	9 Test Suite
	9.1 Overview
	9.2 Utilities
	9.2.1 Overview
	9.2.2 Architecture
	9.2.2.1 Architecture Concepts
	9.2.2.2 Architecture Class Descriptions
	9.2.2.2.1 Tester
	Description
	Association Ends
	Receptions
	Classifier Behavior

	9.2.2.2.2 Target
	Description
	Attributes
	Association Ends
	Operations
	Receptions
	Classifier Behavior

	9.2.2.2.3 SemanticTest
	Description
	Attributes
	Operations
	Receptions
	Classifier Behavior

	9.2.2.2.4 SemanticTestSuite
	Description
	Attributes
	Association Ends
	Receptions
	Operations
	Classifier Behavior

	9.2.3 Protocol
	9.2.3.1 Protocol Overview
	9.2.3.2 Synchronization Signal Descriptions
	9.2.3.2.1 Start
	Description

	9.2.3.2.2 End
	Description
	Attributes

	9.2.3.2.3 TestEnd
	Description
	Attributes

	9.2.4 Tracing

	9.3 Tests
	9.3.1 Overview
	9.3.2 Behavior
	9.3.2.1 Overview
	9.3.2.2 Test Behavior 001
	Tested state machine
	Test execution

	9.3.2.3 Test Behavior 002
	Tested state machine
	Test execution

	9.3.2.4 Test Behavior 003-A
	Tested state machine
	Test executions

	9.3.2.5 Test Behavior 003-B
	Tested state machine
	Test execution

	9.3.2.6 Test Behavior 004
	Tested state machine
	Test execution

	9.3.3 Transition
	9.3.3.1 Transition 001
	Tested state machine
	Test executions

	9.3.3.2 Transition 007
	Tested state machine
	Test executions

	9.3.3.3 Transition 010
	Tested state machine
	Test executions

	9.3.3.4 Transition 011-A
	Tested state machine
	Test executions

	9.3.3.5 Transition 011-B
	Tested state machine
	Test executions

	9.3.3.6 Transition 011-C
	Tested state machine
	Test executions

	9.3.3.7 Transition 011-D
	Tested state machine
	Test executions

	9.3.3.8 Transition 011-E
	Tested state machine
	Test executions

	9.3.3.9 Transition 015
	Tested state machine
	Test executions

	9.3.3.10 Transition 016
	Tested state machine
	Test executions

	9.3.3.11 Transition 017
	Tested state machine
	Test executions

	9.3.3.12 Transition 019
	Tested state machine
	Test executions

	9.3.3.13 Transition 020
	Tested state machine
	Test executions

	9.3.3.14 Transition 022
	Tested state machine
	Test executions

	9.3.3.15 Transition 023
	Test executions

	9.3.4 Event
	9.3.4.1 Overview
	9.3.4.2 Event 001
	Tested state machine
	Test executions

	9.3.4.3 Event 002
	Tested state machine
	Test executions

	9.3.4.4 Event 008
	Tested state machine
	Test executions

	9.3.4.5 Event 009
	Tested state machine
	Test executions

	9.3.4.6 Event 010
	Tested state machine
	Test executions

	9.3.4.7 Event 015
	Tested state machine
	Test executions

	9.3.4.8 Event 016-A
	Tested state machine
	Test executions

	9.3.4.9 Event 016-B
	Tested state machine
	Test executions

	9.3.4.10 Event 017-A
	Tested state machine
	Test executions

	9.3.4.11 Event 017-B
	Tested state machine
	Test executions

	9.3.4.12 Event 018
	Tested state machine
	Test executions

	9.3.4.13 Event 019-A
	Tested state machine
	Test executions

	9.3.4.14 Event 019-B
	Tested state machine
	Test executions

	9.3.4.15 Event 019-C
	Tested state machine
	Test executions

	9.3.4.16 Event 019-D
	Tested state machine
	Test executions

	9.3.4.17 Event 019-E
	Tested state machine
	Test executions

	9.3.5 Entering
	9.3.5.1 Overview
	9.3.5.2 Entering 004
	Tested state machine
	Test executions

	9.3.5.3 Entering 005
	Tested state machine
	Test executions

	9.3.5.4 Entering 009
	Tested state machine
	Test executions

	9.3.5.5 Entering 010
	Tested state machine
	Test executions

	9.3.5.6 Entering 011
	Tested state machine
	Test executions

	9.3.6 Exiting
	9.3.6.1 Overview
	9.3.6.2 Exiting 001
	Tested state machine
	Test executions

	9.3.6.3 Exiting 002
	Tested state machine
	Test executions

	9.3.6.4 Exiting 003
	Tested state machine
	Test executions

	9.3.6.5 Exiting 004
	Tested state machine
	Test executions

	9.3.6.6 Exiting 005
	Tested state machine
	Test executions

	9.3.7 Entry
	9.3.7.1 Overview
	9.3.7.2 Entry 002-A
	Tested state machine
	Test execution

	9.3.7.3 Entry 002-B
	Tested state machine
	Test execution

	9.3.7.4 Entry 002-C
	Tested state machine
	Test execution

	9.3.7.5 Entry 002-D
	Tested state machine
	Test execution

	9.3.7.6 Entry 002-E
	Tested state machine
	Test execution

	9.3.7.7 Entry 002-F
	Tested state machine
	Test executions

	9.3.8 Exit
	9.3.8.1 Overview
	9.3.8.2 Exit 001
	Tested state machine
	Test executions

	9.3.8.3 Exit 002
	Tested state machine
	Test executions

	9.3.8.4 Exit 003
	Tested state machine
	Test executions

	9.3.9 Choice
	9.3.9.1 Overview
	9.3.9.2 Choice 001
	Tested state machine
	Test execution

	9.3.9.3 Choice 002
	Tested state machine
	Test execution

	9.3.9.4 Choice 003
	Tested state machine
	Test execution

	9.3.9.5 Choice 004
	Tested state machine
	Test execution

	9.3.9.6 Choice 005
	Tested state machine
	Test execution

	9.3.10 Junction
	9.3.10.1 Overview
	9.3.10.2 Junction 001
	Tested state machine
	Test execution

	9.3.10.3 Junction 002
	Tested state machine
	Test execution

	9.3.10.4 Junction 003
	Tested state machine
	Test execution

	9.3.10.5 Junction 004
	Tested state machine
	Test execution

	9.3.10.6 Junction 005
	Tested state machine
	Test execution

	9.3.10.7 Junction 006
	Tested state machine
	Test execution

	9.3.11 Fork
	9.3.11.1 Overview
	9.3.11.2 Fork 001
	Tested state machine
	Test execution

	9.3.11.3 Fork 002
	Tested state machine
	Test execution

	9.3.12 Join
	9.3.12.1 Overview
	9.3.12.2 Join 001
	Tested state machine
	Test execution

	9.3.12.3 Join 002
	Tested state machine
	Test execution

	9.3.12.4 Join 003
	Tested state machine
	Test execution

	9.3.13 Terminate
	9.3.13.1 Overview
	9.3.13.2 Terminate 001
	Tested state machine
	Test execution
	Alternative execution traces

	9.3.13.3 Terminate 002
	Tested state machine
	Test execution

	9.3.13.4 Terminate 003
	Tested state machine
	Test execution

	9.3.14 Final
	9.3.14.1 Overview
	9.3.14.2 Final 001
	Tested state machine
	Test execution

	9.3.15 History
	9.3.15.1 Overview
	9.3.15.2 History 001-A
	Tested state machine
	Test execution

	9.3.15.3 History 001-B
	Tested state machine
	Test execution

	9.3.15.4 History 001-C
	Tested state machine
	Test execution

	9.3.15.5 History 001-D
	Tested state machine
	Test execution

	9.3.15.6 History 002-A
	Tested state machine
	Test execution

	9.3.15.7 History 002-B
	Tested state machine
	Test execution

	9.3.15.8 History 002-C
	Tested state machine
	Test execution

	9.3.15.9 History 002-D
	Tested state machine
	Test execution

	9.3.16 Deferred
	9.3.16.1 Overview
	9.3.16.2 Deferred 001
	Tested state machine
	Test execution

	9.3.16.3 Deferred 002
	Tested state machine
	Test execution

	9.3.16.4 Deferred 003
	Tested state machine
	Test execution

	9.3.16.5 Deferred 004-A
	Tested state machine
	Test execution

	9.3.16.6 Deferred 004-B
	Tested state machine
	Test execution

	9.3.16.7 Deferred 005
	Tested state machine
	Test execution

	9.3.16.8 Deferred 006-A
	Tested state machine
	Test execution

	9.3.16.9 Deferred 006-B
	Tested state machine
	Test execution

	9.3.16.10 Deferred 006-C
	Tested state machine
	Test execution

	9.3.16.11 Deferred 007
	Tested state machine
	Test execution

	9.3.17 Redefinition
	9.3.17.1 Overview
	Test architecture
	Test naming conventions
	Trace construction

	9.3.17.2 Redefinition 001
	Tested state machine
	Test execution

	9.3.17.3 Redefinition 002
	Tested state machine
	Test execution

	9.3.17.4 Redefinition 003
	Tested state machine
	Test execution

	9.3.17.5 Redefinition 004
	Tested state machine
	Test execution

	9.3.17.6 Redefinition 005
	Tested state machine
	Test execution

	9.3.17.7 Redefinition 006
	Tested state machine
	Test execution

	9.3.18 Standalone
	9.3.18.1 Overview
	9.3.18.2 Standalone 001
	Tested state machine
	Test execution

	9.3.18.3 Standalone 002
	Tested state machine
	Test execution

	9.3.18.4 Standalone 003
	Tested state machine
	Test execution

	9.3.19 Other Test
	9.3.19.1 Overview
	9.3.19.2 Transition Execution Algorithm Test
	Tested state machine
	Test execution

	9.4 Test Coverage and Traceability
	9.4.1 Overview
	9.4.2 Behavior
	9.4.3 Transition
	9.4.4 Event
	9.4.5 Entering
	9.4.6 Exiting
	9.4.7 Encapsulated
	9.4.8 Entry
	9.4.9 Exit
	9.4.10 Choice
	9.4.11 Junction
	9.4.12 Join
	9.4.13 Terminate
	9.4.14 Final
	9.4.15 History
	9.4.16 Deferred
	9.4.17 Region
	9.4.18 Configuration
	9.4.19 Redefinition
	9.4.20 Data Passing

	Annex A Protocol State Machines
	A.1 Overview
	A.2 Abstract Syntax
	A.3 Semantics
	A.3.1 Controlled Events
	A.3.2 Protocol States Configuration
	A.3.3 Protocol Violation

	Annex B State Machines for Passive Classes
	B.1 Background and Rationale
	B.2 Semantics

