
Python Language Mapping
Specification

Draft Adopted Specification: January 26, 2000

Copyright 2000, GMD Fokus

The company listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
1
1

1

2
2

2

3

4

-1

1-1

1-2

1-3
-3
-4
-5
-6
-6
-7
-7
-7
-8
-9

1-9
-9
Preface .
About the Object Management Group

What is CORBA? .

About CORBA Language Mapping Specifications
Alignment with CORBA .

Definition of CORBA Compli ance

Associated OMG Documents .

Acknowledgements .

1. Python Language Mapping . 1

1.1 Mapping Overview .

1.2 Using Scoped Names .

1.3 Mapping for Data .
1.3.1 Mapping for Basic Types 1
1.3.2 Mapping for Template and Array Types 1
1.3.3 Mapping for Enumeration Types 1
1.3.4 Mapping for Structured Types 1
1.3.5 Mapping for Union Types 1
1.3.6 Mapping for Constants 1
1.3.7 Mapping for Exceptions 1
1.3.8 Mapping for TypeCodes 1
1.3.9 Mapping for Any . 1
1.3.10 Mapping for Value Types 1

1.4 Client Side Mapping .
1.4.1 Mapping for Objects and Operations 1
Python Language Mapping January 2000 i

Contents

-10
10
11
12

-12
-12
13
13
14

-14

1-15
1.4.2 Narrowing Object References 1
1.4.3 Mapping for Context . 1-
1.4.4 The Dynamic Invocation Interface 1-
1.4.5 Mapping for Components 1-

1.5 Server Side Mapping . 1
1.5.1 Skeleton-Based Implementation 1
1.5.2 The Dynamic Skeleton Interface 1-
1.5.3 Mapping for the Cookie Type 1-
1.5.4 Mapping for Components 1-

1.6 Mapping for ORB Services . 1

1.7 Deprecated Interfaces .
ii Python Language Mapping January 2000

Preface
d by
users.
nol-
of
e-

. Con-
plica-

tion

ent
er of
ica-

ic
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numb
hardware and software products available today. Simply stated, CORBA allows appl
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specif
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
Python Draft Adopted Specification January 2000 1

n for

 lan-

tions
,
oints

,

ation
e
About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping informatio
the following languages:

• Ada

• C

• C++

• COBOL

• IDL to Java

• Java to IDL

• Python

• Smalltalk

Each language is described in a separate stand-alone volume.

Alignment with CORBA

The following table lists each language mapping and the version of CORBA that this
guage mapping is aligned with.

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the specifica
in CORBA Core and one mapping. Each additional language mapping is a separate
optional compliance point. Optional means users aren’t required to implement these p
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if a vendor supports C++
their ORB must comply with the OMG IDL to C++ binding specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed inform
about Interworking compliance, refer to the Common Object Request Broker: Architectur
and Specification, Interworking Architecture chapter.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and

Language Mapping Aligned with CORBA
version

Ada CORBA 2.0

C CORBA 2.1

C++ CORBA 2.3

COBOL CORBA 2.1

IDL to Java CORBA 2.3

Java to IDL CORBA 2.3

Smalltalk CORBA 2.0
2 Python Draft Adopted Specification January 2000

-

 are
ides
 are

tion,
ating
f the

 OMG

t. To
con-
components. Likewise, the body of CORBA specifications is divided into core and compo
nent-like specifications. The structure of this manual reflects that division.

The CORBA specifications are divided into these volumes:

1. The Common Object Request Broker: Architecture and Specification, which
includes the following chapters:

• CORBA Core, as specified in Chapters 1-11

• CORBA Interoperability , as specified in Chapters 12-16

• CORBA Interworking , as specified in Chapters 17-21

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

• Mapping of OMG IDL to the Ada programming language

• Mapping of OMG IDL to the C programming language

• Mapping of OMG IDL to the C++ programming language

• Mapping of OMG IDL to the COBOL programming language

• Mapping of OMG IDL to the Java programming language

• Mapping of Java programming language to OMG/IDL

• Mapping of OMG IDL to the Python programming language

• Mapping of OMG IDL to the Smalltalk programming language

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Services: Common Object Services Specification contains specifications for
OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for Informa
Requests for Proposals, and Requests for Comment and, with its membership, evalu
the responses. Specifications are adopted as standards only when representatives o
OMG membership accept them as such by vote. (The policies and procedures of the
are described in detail in the Object Management Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF forma
obtain print-on-demand books in the documentation set or other OMG publications,
tact the Object Management Group, Inc. at:

Python Language Mapping Associated OMG Documents January 2000 3

OMG Headquarters
250 First Avenue, Suite 201

Needham, MA 02494

USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Acknowledgements

The following companies submitted and/or supported parts of the specification:

• GMD Fokus

• Humboldt-Universität zu Berlin, DSTC Pty Ltd
4 Python Draft Adopted Specification January 2000

Python Language Mapping 1
age
re
Contents

This chapter contains the following sections.

1.1 Mapping Overview

The mapping of IDL to Python presented here does not prescribe a specific
implementation. It follows the guide lines presented in Chapter 1.1 of the C Langu
Mapping (formal/99-07-39). The Python language features used in this mapping a
available since Python 1.3, most of them have been around much longer.

This document covers the following aspects of implementing CORBA-based
architectures in Python:

• Representation of IDL types, constants, and exceptions in Python

• Invocation of methods on a CORBA object using a statically generated stub

• Invoking methods dynamically (DII)

Section Title Page

“Mapping Overview” 1-1

“Using Scoped Names” 1-2

“Mapping for Data” 1-3

“Client Side Mapping” 1-9

“Server Side Mapping” 1-12

“Mapping for ORB Services” 1-14

“Deprecated Interfaces” 1-15
Python Draft Adopted Specification January 2000 1-1

1

ould

All
.

ms,
h

e

ions

of the
• Providing object implementations using generated stubs

• Providing object implementations dynamically (DSI)

• Access to ORB services

For some of the concepts, alternative mappings are given. An implementation sh
clearly identify if it uses these alternative mappings.

An implementation of this specification provides the predefined module CORBA.
names qualified with the CORBA module are also provided by the implementation

1.2 Using Scoped Names

Python implements a module concept that is similar to the IDL scoping mechanis
except that it does not allow for nested modules. In addition, Python requires eac
object to be implemented in a module; globally visible objects are not supported1.

Because of these constraints, scoped names are translated into Python using the
following rules:

• An IDL module mapped into a Python module. Modules containing modules ar
mapped to packages (i.e., directories with an __init__ module containing all
definitions excluding the nested modules)

• For all other scopes, a Python class is introduced which contains all the definit
inside this scope.

• Other global definitions (except modules) appear in a module whose name is
implementation dependent. Implementations are encouraged to use the name
IDL file when defining the name of that module.

For instance,

module M
{
 struct E{
 long L;
 };
 module N{
 interface I{
 void import(in string what);
 };
 };
};
const string NameServer="NameServer";

1. The __builtin__ module is globally accessible. However, an application like an IDL-to-
Python compiler should not introduce new objects into that module.
1-2 Python Draft Adopted Specification January 2000

1

f that
les

 not

e
er
basic
would introduce a module M.py , which contains the following definitions:

since M is a package, this appears in M/__init__.py
class E:
 pass #structs are discussed later

module M/N.py
class I:
 def import_(self,what):
 pass #interfaces are discussed later

The string NameServer would be defined in another module. Because the name o
module is not defined in this specification, using global definitions except for modu
is discouraged.

To avoid conflicts, IDL names that are also Python identifiers are prefixed with an
underscore ('_'). For a list of keywords, see Table 1-1.

1.3 Mapping for Data

1.3.1 Mapping for Basic Types

Because Python does not require type information for operation declarations, it is
necessary to introduce standardized type names, unlike the C or C++ mappings.
Instead, the mapping of types to dynamic values is specified here. For most of th
simple types, it is obvious how values of these types can be created. For the oth
types, the interface for constructing values is also defined. The mappings for the
types are shown in Table 1-2.

Table 1-1 Python keywords

and assert break class continue

def del elif else except

exec finally for from global

if import in is lambda

not or pass print raise

return try while

Table 1-2 Basic Data Type Mappings.

OMG IDL Python

octet Integer (<type 'int'>)

short Integer

long Integer

unsigned short Integer
Python Mapping Language Mapping for Data Jan. 2000 1-3

1

t

ng
112

n
the

For the boolean type, two predefined values CORBA.TRUE and CORBA.FALSE are
available. Since the wchar type currently cannot be represented appropriately in
Python, an alternative mapping is possible. For the long double type, the following
interface must be provided:

• The function CORBA.long_double creates a new long double number from a
floating point number.

• The operation to_float of a long double number converts it into a floating poin
number. For each floating point number f ,
CORBA.long_double(f).to_float==f .

• The long double number has an internal representation that is capable of stori
IEEE-754 compliant values, with sign, 31 bits of mantissa (offset 16383), and
bits of fractional mantissa. If numeric operations are provided, they offer the
precision resulting from this specification.

1.3.2 Mapping for Template and Array Types

Both the bounded and the unbounded string type of IDL are mapped to the Pytho
string type. Wide strings are represented by an implementation-defined type with
following properties:

• For the wide string X and the integer n, X[n] returns the nth character, which is a
wide string of length 1.

• len(X) returns the length of wide string X.

• CORBA.wstr(c) returns a wide character with the code point c in an
implementation-defined encoding.

• X+Y returns the concatenation of wide strings X and Y.

unsigned long Long integer(<type 'long
int'>)

long long Long integer (<type 'long
int'>)

unsigned long long Long integer

float Floating Point Number
(<type 'float'>)

double Floating Point Number

long double CORBA.long_double

boolean Integer

char string of length 1

wchar Wide string of length 1

Table 1-2 Basic Data Type Mappings.

OMG IDL Python
1-4 Python Draft Adopted Specification January 2000

1

ences
asons.

 or

f

is

where
• CORBA.word(CORBA.wstr(c)) == c

The sequence template is mapped to sequence objects (e.g., tuples or lists).
Applications should not assume that values of a sequence type are mutable. Sequ
and arrays of octets and characters are mapped to the string type for efficiency re

For example, given the IDL definitions

typedef sequence<long> LongList;
interface VectorOps{
 long sum(in LongList l);
};

a client could invoke the operation

print obj.sum([1,2,3])

An object implementation of this interface could define

...
 def sum(self,l):
 return reduce(operator.add,l,0)

Array types are mapped like sequence templates. An application should expect a
BAD_PARAM exception if it passes sequences that violate the bounds constraint
arrays of wrong size.

A fixed point type fixed<foo,bar> is mapped to a Python type or class with the
following interface:

• A constructor expecting an integer or large integer with most foo digits.

• Numeric operators for addition, subtraction, multiplication, and division, both o
two fixed point numbers and in combination with integers. A
DATA_CONVERSION exception is raised if the operation results in a loss of
precision.

• Operations value, precision, and decimals.

• Fix.value() returns an integer or large integer

• Fix.precision() returns foo

• Fix.decimals() returns bar

• The class CORBA.fixed has a constructor expecting foo, bar, and the value. It
used in the case of anonymous fixed types.

1.3.3 Mapping for Enumeration Types

An enumeration is mapped into a number of constant objects in the name space
the enumeration is defined. An application may only test for equivalence of two
enumeration values, and not assume that they behave like numbers.

For example, the definition
Python Mapping Language Mapping for Data Jan. 2000 1-5

1

e
field.

t

ties:

lue

ts.

with
d
module M{
 enum color{red,green,blue};
 interface O{
 enum Farbe{rot,gruen,blau};
 };
};

introduces the objects

import M
M.red, M.green, M.blue, M.O_rot,M.O_gruen, M.O_blau

1.3.4 Mapping for Structured Types

An IDL struct definition is mapped into a Python class or type. For each field in th
struct, there is a corresponding attribute in the class with the same name as the
The constructor of the class expects the field values, from left to right.

For example, the IDL definition

struct segment { long left_limit; long right_limit };

could be used in the Python statements

s=segment(-3, 7)
print s.left_limit,s.right_limit

1.3.5 Mapping for Union Types

Union types are mapped to classes with two attributes. The first is the discriminan_d ,
the second the associated value _v . For each branch, there is an additional attribute,
which can only be accessed if the branch has been set. There are three possibili

• If the discriminant was explicitly listed in a case statement, the value is of the
branch associated with that case.

• If the discriminant is not explicitly listed and there is a default case label, the va
is of the branch associated with the default case label.

• If the discriminant is not listed, and there is no default, the value is None.

The constructor of that class expects the discriminator and the value as argumen

Alternatively, the union can also be constructed by passing a keyword argument,
the field name of the union as the key. If more than one discriminator is associate
with a field, the discriminator must be set explicitly.

For example, the definition

union MyUnion switch(long){
 case 1: string s;
 default: long x;
1-6 Python Draft Adopted Specification January 2000

1

he

 The
t

in the

};

can be accessed as

u = MyUnion(17, 42)
print u.x
u = MyUnion(s = 'string')
print u._d, u._v

1.3.6 Mapping for Constants

An IDL constant definition maps to a Python variable initialized with the value of t
constant.

1.3.7 Mapping for Exceptions

An IDL exception is translated into a Python class derived from
CORBA.UserException. System exceptions are derived from
CORBA.SystemException. Both base classes are derived from CORBA.Exception.
parameters of the exception are mapped in the same way as the fields of a struc
definition. When raising an exception, a new instance of the class is created; the
constructor expects the exception parameters.

For example, the definition

module M{
 interface I{
 exception PermissionDenied{string details;};
 I create(in string name)raises(PermissionDenied);
 };
};

could be used caught as

from M import I;
try:
 i_copy=my_i.create('SuperUser');
except I.PermissionDenied,value:
 print "Could not create SuperUser:",value.details
 i_copy=None

1.3.8 Mapping for TypeCodes

TypeCodes are defined in IDL in [OMG96]. As a result, the normal mapping rules
apply. In addition, the type code kind constants are available as Python variables
module CORBA.

For user-defined types, a function CORBA.TypeCode can be used to create the type
codes. This function expects the repository ID. The repository ID of a type can be
obtained with the function CORBA.id , passing the object representing the type.
Python Mapping Language Mapping for Data Jan. 2000 1-7

1

, are
llow

be
the
lues
he

Example: To obtain the TypeCode of the CosNaming::NamingContext interface
type, either

CORBA.TypeCode("IDL:omg.org/CosNaming/NamingContext:1.0")

or

CORBA.TypeCode(CosNaming.NamingContext)

could be used. In addition, the ORB operations for creating type code, create_*_tc
available to create type code values. Even though they are defined in PIDL, they fo
the mapping for IDL operations in Python.

1.3.9 Mapping for Any

Because of the dynamic typing in Python, there is no need for a strictly type-safe
mapping of the any type as in the C or C++ mappings. Instead, all that needs to
available at run-time is the value and the type code corresponding to the type of
value. Because of the mappings for structured types, there is no need that the va
belong to the exact class that would have been generated by the IDL compiler. T
only requirement is that the values conform to the interface that the IDL compiler
would have provided.

To create an any value, the application invokes CORBA.Any(typecode,value) . The
resulting object supports two operations, typecode() and value() .

For example, with the IDL specification

module M{
 struct S{
 short l;
 boolean b;
 };
 interface foo{
 void operate(in any on_value);
 };
};

a client could perform the actions

import M
class Dummy: pass
#construct value
v=Dummy()
v.l=42
v.b=0
#somehow obtain type code
tc=Corba.TypeCode("M::S")
o=something() #obtain object reference
o.foo(CORBA.Any(tc,v))
1-8 Python Draft Adopted Specification January 2000

1

ns of

on of

tor of

ject
gh
ing

s
ent is
1.3.10 Mapping for Value Types

A value type V (either concrete and abstract) is mapped to a Python class V, which
inherits from either the base value type, or from CORBA.ValueBase . The state of a
value is represented in attributes of the instance representing the value. Operatio
the V are implemented in a class derived from V implementing the value. Value
implementations may or may not provide an __init__ method; if they do provide
one, which requires parameters, the registered factory is expected to fill in these
parameters.

The null value is represented by None.

For a given value type, the ValueFactory maps to a class instance with a
__call__ method, which returns a new instance of the value type. Initializer
operations of the value type map to methods of the factory. The registry for value
factories can be accessed using the standard ORB operations
register_value_factory , unregister_value_factory , and
lookup_value_factory . For value types without operations, a default factory is
registered automatic [Reviewer: automatically?]

If a value type supports an interface (either concrete or abstract), the implementati
the value type can also be supplied as a servant to the POA.

Value boxes are mapped as a Python class with an instance attribute _boxed .
Instances of the value box are created by passing the boxed value to the construc
the class.

A custom value type inherits from CORBA.CustomMarshal , instances need to
provide the custom marshal and unmarshal methods as defined by
CORBA::CustomMarshal . The types CORBA::DataOutputStream and
CORBA::DataInputStream follow the mapping for abstract values.

1.4 Client Side Mapping

1.4.1 Mapping for Objects and Operations

A CORBA object reference is represented as a Python object at run-time. This ob
provides all the operations that are available on the interface of the object. Althou
this specification does not mandate the use of classes for stub objects, the follow
discussion uses classes to indicate the interface.

The nil object is represented by None.

If an operation expects parameters of the IDL Object type, any Python object
representing an object reference might be passed as actual argument.

If an operation expects a parameter of an abstract interface, either an object
implementing that interface, or a value supporting this interface may be passed a
actual argument. The semantics of abstract values then define whether the argum
passed by value or by reference.
Python Mapping Language Client Side Mapping Jan. 2000 1-9

1

e
is

cific
Operations of an interface map to methods available on the object references.
Parameters with a parameter attribute of in or inout are passed from left to right to
the method, skipping out parameters. The return value of a method depends on th
number of out parameters and the return type. If the operation returns a value, th
value forms the first result value. All inout or out parameters form consecutive result
values. The method result depends then on the number of result values:

• If there is no result value, the method returns None.

• If there is exactly one result value, it is returned as a single value.

• If there is more than one result value, all of them are packed into a tuple, and this
tuple is returned.

Assuming the IDL definition

interface I{
 oneway void stop();
 bool more_data();
 void get_data(out string name,out long age);
};

a client could write

names={}
while my_I.more_data():
 name,age = my_I.get_data()
 names[name]=age
my_I.stop()

If an interface defines an attribute name , the attribute is mapped into an
operation _get_name , as defined If the attribute is not readonly , there is an
additional operation _set_name , as defined in chapter 3.11 of CORBA 2.2.

1.4.2 Narrowing Object References

Python objects returned from CORBA operations or pseudo-operations (such as
string_to_object) might have a dynamic type, which is more specific than the
static type as defined in the operation signature.

Since there is no efficient and reliable way of automatically creating the most spe
type, explicit narrowing is necessary. To narrow an object reference o to an interface
class I , the client can use the operation o._narrow(I) .

Implementations may give stronger guarantees about the dynamic type of object
references.

1.4.3 Mapping for Context

The Context object supports the following operations:

• set_one_value(name,val) associates a property name with a property value.
1-10 Python Draft Adopted Specification January 2000

1

at
is

alues,

 pass
s

alues

.
ystem

cs in
• set_values(dict) sets a number of properties, passed as a dictionary.

• get_values(prop_name,start_scope=None) returns a dictionary of properties th
match with prop_name. If the key word argument start_scope is given, search
restricted to that scope.

• delete_values(prop_name) deletes the specified properties from the context.

• create_child(ctx_name) returns a new child context.

• delete(flags) deletes the context, and all children if the flag
CTX_DELETE_DESCENDANTS is given.

All property names and values are passed as strings. Instead of returning Status v
these operations may raise CORBA system exceptions.

1.4.4 The Dynamic Invocation Interface

Because Python is not statically typed, there is no need to use the NVList type to
parameters at the DII. Instead, the create_request operation takes the parameter
of the operation directly.

The operation create_request of CORBA.Object instances returns a Request
object and takes the following parameters:

• the name of the operation

• a variable list of parameters

• optionally the keyword argument context

• optionally the keyword argument flags

• optionally the keyword argument repository_id

The parameters are passed following the usual conventions for values of their
respective types. It is the responsibility of the run-time system to correlate these v
to the types found in the interface repository. The application may specify the
repository id of the target object. Instead of returning a Status value,
create_request might raise a CORBA system exception.

The resulting Request object supports the following operations:

• invoke(flags=0) synchronously initiates the operation.

• send(flags=0) asynchronously initiates the operation.

• get_response(flags=0) can be used to analyze the status of the operation
This returns the result value and out parameter, and may raise both user and s
exceptions.

• delete(flags=0) can be used to invalidate a request.

The various flags defined in the CORBA module follow the normal mapping rules.
Some of the flags deal with memory management and have no specified semanti
Python. Relevant to the DII are the following flags: INV_NO_RESPONSE,
INV_TERM_ON_ERR, and RESP_NO_WAIT.
Python Mapping Language Client Side Mapping Jan. 2000 1-11

1

nts.
ith

s to

ange

ts to
g
ORBA
pter

ures.

. The

ject

m a
ented

lly-

 for the
1.4.5 Mapping for Components

The CORBA Component specification defines a number of new IDL Syntax eleme
It also explains how these syntax elements result in implicit interface definitions, w
implicit operations. A component-aware Python program should use the implicit
operation names to access the component.

1.5 Server Side Mapping

Traditionally, IDL language mapping would be unspecific on purpose when it come
a mapping for object implementations. The reasoning was that there are various
reasonable approaches, and standardizing on a single approach would limit the r
of applications.

Central to the architecture is the object adapter, which communicates the reques
the implementation. CORBA explicitly allows for multiple object adapters, includin
non-standardized ones. The only object adapter that has been standardized for C
2.0 is the Basic Object Adapter (BOA), as a least common denominator. This ada
has been found to be insufficient, so vendors would extend it with proprietary feat

A recent effort was made in order to standardize a portable object adapter (POA)
POA standard [BDE97] now suggests to drop the BOA from the CORBA Core
specification, and replace it with the POA. Vendors are still free to support other ob
adapters, including the old BOA.

This specification only defines a server side mapping for the POA. Many of the
relevant definitions are defined using IDL in [BDE97]. The corresponding Python
mapping follows the rules specified above.

1.5.1 Skeleton-Based Implementation

One approach of implementing interfaces is to derive the implementation class fro
skeleton class. Delegation-based approaches are also possible, but can be implem
on top of the inheritance-based approach. For the POA, the first qualifier of the fu
scoped name of the interface is suffixed with "__POA". Following the name mapping
scheme for Python, the corresponding Python class can be used as a base class
implementation class. For example, the interface

module M{
 interface I{
 void foo();
 };
};

could be implemented in Python as

import M__POA
class MyI(M__POA.I):
 def foo(self):
 pass #....
1-12 Python Draft Adopted Specification January 2000

1

A
s. A

 be
A.

 the

ion,
hat

he
hat

ter

y

 to
If the implementation class derives from other classes that also implement CORB
interfaces, the skeleton class must be mentioned before any of those base classe
class may implement multiple interfaces only if these interfaces are in a strict
inheritance relationship.

The skeleton class (POA_M.I in the example) supports the following operations:

• _default_POA() returns the POA reference that manages that object. It can
overridden by implementations to indicate they are managed by a different PO
The standard implementation returns the same reference as
ORB.resolve_initial_reference("RootPOA") .

• _this() returns the reference to the object that a servant incarnates during a
specific call. This works even if the servant incarnates multiple objects. Outside
context of an operation invocation, it can be used to initiate the implicit activat
if the POA supports implicit activation. In any case, it should return an object t
supports the operations of the corresponding IDL interface.

The base class for all skeleton classes is the class PortableServer.Servant .

1.5.2 The Dynamic Skeleton Interface

An implementation class is declared as dynamic by inheriting from
PortableServer.DynamicImplementation . Derived classes need to
implement the operation invoke, which is called whenever a request is received. T
PIDL type ServerRequest is not mapped to a structure, but to a parameters list for t
operation. invoke is passed the following parameters:

• the name of the operation.

• a variable list of parameters, following the usual mapping rules for the parame
types of the specified operation.

• a keyword parameter context , specifying the context object if any, or None.

• a keyword parameter repository_id , specifying the interface type for which the
operation was called.

invoke returns either with a result following the mapping for out parameters, or b
raising an appropriate exception.

1.5.3 Mapping for the Cookie Type

Because the Cookie type is a native type, a Python mapping is required:

class Cookie: pass

According to the language mapping, the preinvoke operation of the
ServantLocator returns a tuple (servant, cookie). The cookie will be input later
the postinvoke operation. The ServantLocator implementation is free to
associate any attributes with the cookie.
Python Mapping Language Server Side Mapping Jan. 2000 1-13

1

rfaces
 not

 first

e a

al

on

nge

t
1.5.4 Mapping for Components

A component implementation consists of a set of interface implementations. The
names of these interfaces are defined in the Components specification; these inte
follow the standard mapping rules for interfaces in Python. This specification does
define a mapping of the Component Implementation Framework to Python.

1.6 Mapping for ORB Services

The predefined module CORBA contains the interfaces to the ORB services. The
step that needs to be performed is the ORB initialization. This is done using the
ORB_init operation:

orb=CORBA.ORB_init(argv,orbid)

Both the argument vector and the orbid are optional. If provided, the orbid must b
string, and the argument vector must be similar to sys.argv.

Depending on the object adapters provided, the ORB object may provide addition
initialization functions. Furthermore, two operations allow access to the initial
references:

• orb.list_initial_references() returns a list of names of available
services.

• orb.resolve_initial_reference(string) returns an object reference or
raises ORB_InvalidName.

Two operations are available for stringification of object references:

• orb.string_to_object(string) returns an object reference, or a nil
reference if the string is not understood.

• orb.object_to_string(object) returns a stringification of the object
reference that can be passed later to string_to_object .

Each object reference supports a number of operations:

• _get_implementation() returns an ImplementationDef object related to
the object.

• _get_interface() returns an InterfaceDef object.

• _is_a(string) expects a repository identifier and returns true if the object
implements this interface.

• _non_existent() returns true if the ORB can establish that the implementati
object behind the reference is gone.

• _hash(maximum) returns a value between 0 and maximum that does not cha
in the lifetime of the object.

• _is_equivalent(other_object) returns true if the ORB can establish tha
the references reference the same object.
1-14 Python Draft Adopted Specification January 2000

1

e
• create_request(context,op_name,arg_list,result,flags)
returns the tuple (status, request) for use with the DII.

The interface ORB provides some additional functions:

• get_default_context() returns the default context

• send_multiple_requests_oneway , send_multiple_requests ,
get_next_response , and poll_next_response are used with the DII.

1.7 Deprecated Interfaces

Because some interfaces and operations of earlier CORBA specifications are
deprecated in CORBA 2.2, no mapping is provided for these interfaces:

• get_current() . Applications should use resolve_initial_reference
instead.

• get_implementation() and the ImplementationDef interface, as well as
the mapping for the Basic Object Adapter. Applications should use the Portabl
Object Adapter.

• get_principal and the Principal interface. Applications should use
SecurityLevel2::Credentials instead.
Python Mapping Language Deprecated Interfaces Jan. 2000 1-15

1

1-16 Python Draft Adopted Specification January 2000

	Preface
	1. Python Language Mapping
	1.1 Mapping Overview
	1.2 Using Scoped Names
	1.3 Mapping for Data
	1.3.1 Mapping for Basic Types
	1.3.2 Mapping for Template and Array Types
	1.3.3 Mapping for Enumeration Types
	1.3.4 Mapping for Structured Types
	1.3.5 Mapping for Union Types
	1.3.6 Mapping for Constants
	1.3.7 Mapping for Exceptions
	1.3.8 Mapping for TypeCodes
	1.3.9 Mapping for Any
	1.3.10 Mapping for Value Types

	1.4 Client Side Mapping
	1.4.1 Mapping for Objects and Operations
	1.4.2 Narrowing Object References
	1.4.3 Mapping for Context
	1.4.4 The Dynamic Invocation Interface
	1.4.5 Mapping for Components

	1.5 Server Side Mapping
	1.5.1 Skeleton-Based Implementation
	1.5.2 The Dynamic Skeleton Interface
	1.5.3 Mapping for the Cookie Type
	1.5.4 Mapping for Components

	1.6 Mapping for ORB Services
	1.7 Deprecated Interfaces

