UML™ Profile for Modeling
Quality of Service and

Fault Tolerance

Characteristics and Mechanisms

This OMG document replaces the final adaopted submission document (ptc/04-09-01), which is an OMG
Proposed Available Specification.

May 20, 2005

Date: May 2005

UML™ Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms

OMG Adopted Specification

| ptc/2005-05-02

Copyright © 2002-2003 I-Logix Inc..

Copyright © 1997-2003 Object Management Group.
Copyright © 2002-2003 Open-IT.

Copyright © 2002-2003 Thales.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS I1S" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the
DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the Object
Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and 10P®
are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™, OMG
Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmMed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are trademarks
of the Object Management Group. All other products or company names mentioned are used for identification purposes only, and
may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and
shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the
software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report
any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web
page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Table of Contents

L SCOPE it 1
2 ConformancCecoooeiiiiiie e 1
3 Normative Referencescccoooevveeiiiiiiiiiiiiiiieeeeeniennn 1
4 Terms and Definitionscccoiiiiiiiiiii e, 2
5 SYMDOIS .. 2
6 Additional Informationcccccooiiiiiii 2
6.1 How to Read this SPecCifiCationcccviiiiiiiiiiii e 2
6.2 ACKNOWIEAQEMENTSeiiiiiii i e e e e e e e eaaes 2
7 Rationale and General Modelscccccvviiiiiiinienen. 5
7.1 Constructors of QoS Modeling LanNQUAQJESccoeeveeeeeeeiieeeeeeeiitiee e e e e 5
7.2 Q0S Modeling EIEMENLSoooiiiiiiiiiiii i 6
8 QoS Framework Metamodelccccvviiiiiiii, 9
8.1 General QOS FrameEWOrKuuiiiiiiiiiiiie et e e e e eaaaaas 9
8.2 QOS CharacCteriSUCuuiiiiiiiiiiiie e e e e e e e e e aaaas 10
TG @ T I 01 153 1 = 1] | PSP 13
8.4 QOS LEVEI .. 16
8.5 Integration with Package Core Resource Modelccccceeeiiiiiiiiiiiiiiiiiiiiiiiiinns 17
9 UML QOS Profilecooeniiiiii e, 19
9.1 QoS Characteristics SUDPIOfileccooiiiiiiiieii e 19
9.2 QO0S Constraints SUDPIOfileuiiiiiiiiii e 27
9.3 QO0S Behavior SUDPIOfileoevviiiiiiiie e 29
9.4 Integration of General Resource SubProfilecccciiiiiiiii 30
10 QOS Catalogoevvnieeeiieeee e 33

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

10.1 General QOS CaAtEQOIIESuuuiiiiiieeeeeiiie et e e e e e e e e s
10.2 Throughput CharacteriStiCScccoiiiiiiiiiiicr e
10.3 Latency CharacteriStICSuuiiiiiiiieeeeeeeeeieeeeerr e e e e e e e e e e e s
10.4 Efficiency CharacCteriStiCSccooiiiiieiiiiiiiieece e
10.5 Demand CharacteriStiCSeeviiiiiiuiiiiiieeeiiiiiie e
10.6 Integrity CharacCteriStiCcceiiiiii i s
10.7 Security CharacCteriStiCuuuuiiiiieie e e e e s
10.8 Dependability CharacteriStiCccoeiiiiiiiiieiiei e
10.9 Coherence CharacCteriStiCccoiiiiiiriieeaiiiiiiiee e e e

10.10 Scalability CharacteriStiCccoeeeeiiiiiiiiiercr e

11 RISK ASSESSIMENT ..ouiniii et e e 47

11.1 Risk Assessment MetamOdelco.oeeie e e
11.2 RISK ASSESSMENT Profile ..o e

0 = T 4 o] =SS

12 FT Mitigation Solutionsccccoevviiiiiiiiiineeeeen, 63

12.1 FT Architectures MetaMOodelc.oonionii e
12.2 FT ArChItECTUIES PrOfile oo e e

13 REFEIENCES ..ouiviiiei e 73
A STP QoS and Resource Conceptual Models 77
B Proof of Conceptscovevviiiiiiii i, 79

B.1 Scheduling Analysis Based on QoS CharacteristiCscccccvviiririiriiiiieneeeenn.

B.2 Description of Telemetry Example with Q0S Contractsccccceveveeeeieeennnn.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

1 Scope

This specification defines a set of UML extensions to represent Quality of Service and Fault-Tolerance concepts. These
extensions reduce the problems of UML 2.0 for the description of Quality of Service and Fault-Tolerance properties, and
integrate the extensions in two basic general frameworks (QoS Modeling Framework, and FT Modeling Framework).

The general framework for the description of QoS requirements and properties gives the support to describe vocabulary
that we use in high quality technologies (e.g., real-time, fault-tolerant). The framework provides the ability to associate
the requirements and properties to model elements to introduce extra-functional aspects in UML models. High quality
systems must allocate their extra-functional requirements in the analysis models, and must support the decomposition of
these requirements in the software architectures.

The general framework for fault-tolerance includes notations to model risk assessments, paying special attention to the
description of hazards, risks, and risk treatments. This general framework supports the description of fault-tolerant
architectures based on object replications.

2 Conformance

Compliance with this specification is defined as compliance with any of the following profile packages and model
libraries:

* QoS subprofile package: Profile models of Chapter 9. This chapter includes in Section 9.4 a subprofile package that
extends the GRM profile package of UML Profile for Scheduling, Performance, and Time standard.

e QoS Catalog model library. Model library of Chapter 10.
« Risk Assessment subprofile package: Profile models in Section 11.2 and graphical notations in Section 11.4.
« FT subprofile package: Profile models in Section 12.2.

Compliance with a profile package implies complying with any packages on which the particular package depends via a
package dependency, complying with the profile models, and with the profile constraints. Compliance with a model
library implies complying profile packages prerequisites for the model library and other model library on which the
particular package depends via a package dependency, and the constraints included in the model library.

3 Normative References

The normative references of this standard are:

e Object Management Group, UML 2.0 Superstructure Specification, Draft Adopted Specification, OMG document
number ptc/04-10-02 (October 2004).

¢ Object Management Group, UML Profile for Scheduling, Performance, and Time, Draft Adopted Specification, OMG
document number formal/2005-01-02 (January 2005).

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 1

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 How to Read this Specification

This specification includes two different parts. The first provides solutions to the mandatory requirements related to QoS
(Quality of Service) specifications. The second are solutions to the requirements for the FT (Fault Tolerance) aspects. The

next table includes the contents of following sections.

Chapter 7 Introduces the objectives of this specification and its general structure.

Chapter 8 This chapter includes the metamodel of QoS Framework that the RFP request as mandatory part
of the specification.

Chapter 9 This chapter includes the UML profile of QoS Framework.

Chapter 10 This chapter includes a proposal of QoS Catalog that introduces a set of domain and application
independent QoS characteristics, which are supported with the QoS Catalog.

Chapter 11 This is the first chapter of the second part of this specification. It includes methods for the
description of models of risk analysis.

Chapter 12 This chapter includes notations for the extension of UML for the description of fault tolerant
architectures.

Chapter 13 References

Appendix A | This appendix concretes the conceptual elements that include the standard UML Profile for
Scheduling, Performance, and Time, OMG document number ptc/2002-11-01 (November 2002).
for the description of QoS of resources. QoS Framework and profile reuses these concepts for the
description of QoS of resources.

Appendix B | This appendix present the application of QoS Framework for the description of latency properties
that include the standard UML Profile for Scheduling, Performance, and Time, OMG document
number ptc/2002-11-01 (November 2002). And uses these characteristics for the generation of
scheduling analysis models.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

6.2

Acknowledgements

The following companies submitted and/or supported parts of this specification. For each company we include a contact

point:

llogix-Inc. Bruce Douglass bpd@ilogix.com

Open-IT Chris Sluman Chris.Sluman@Open-1T.co.uk

THALES Laurent Rioux laurent.rioux@thalesgroup.com
ARTISAN Alan Moore AlanM@artisansw.com

CEA Sebastien Gerard GERARD@ortolan.cea.fr

Lockheed Martin Bennett C. Watson bennett.c.watson@Imco.com
SINTEF Jan @yvind Aagedal Jan.Aagedal@sintef.no

Softeam Benoit Langlois benoit.langlois@softeam.com

Universidad Politecnica de Madrid Miguel A. de Miguel mmiguel@dit.upm.es

The following persons designed and wrote this specification: Jan @yvind Aagedal, Miguel A. de Miguel, Emmanuel
Fafournoux, Mass S. Lund and Ketil Stglen.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Arne J. Berre, Earl F. Ecklund, Sebastien Gerard, Eric Jouenne, Benoit Langlois, Alan Moore,
Laurent Rioux, Bran Selic, Chris Sluman, Bennett C. Watson.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

7 Rationale and General Models

Frequently the behavior of a system component is functionally correct, but the result it generates is nevertheless
unacceptable because the result does not meet some QoS criteria, such as the response time and accuracy (i.e., quality).
One way to enhance the capability of the system to deliver results of acceptable quality is to use flexible components. A
flexible component can trade off among the amounts of time and resources it uses to produce its results, the quality of its
input, and the quality of its result.

In addition to its functional behavior and internal structure, the developer of each component must consider its QoS
requirements. For example, components such as pattern recognizers or signal filters have temporal requirements (e.g.,
maximum response times and jitters and minimum execution frequencies) and input and output accuracy requirements
(e.g., percent of error in the pattern recognition as a function of noise in the input). If the component is flexible, the
output quality depends both on input quality and available resources (e.g., amounts of CPU execution time and memory).

Most modeling languages provide support for the description of functional behavior, they describe the non-functional
requirement merely using simple comments or informal structures. An example are the interfaces that provide support for
the description of functional services in some modeling and interface description languages, but they do not specify non-
functional properties of implementators. When a client defines a dependency of these interfaces, it has no information
about the quality properties.

QoS can be defined as a set of perceivable characteristics expressed in user-friendly language with quantifiable
parameters that may be subjective or objective [59]. Examples of objective parameters are startup delay, and data sizes.
Subjective factors are the overall cost or the factors of importance of other parameters. Examples of QoS parameters for
system resources are jitters, delays, blocking times, and size of buffers.

The characteristics of quality and their parameters are based on two types of concerns: i) user satisfaction, these
parameters are based on the user or client requirements, and ii) resource consumption and system parameters, these are
the parameters that support the resource managers of system infrastructures. Sometimes the user parameters depend on
some properties of the functional architecture (e.g., types of algorithms, data redundancy, and limited execution time). In
the process of analysis of QoS, we must establish the mapping between different user parameters and the resource
parameters or the functional architectures to achieve the user qualities based on system parameters and the functional
implementation of the system.

The function f(qi, r) —» go does the quality characterization of software components or the entire system, where gi are the
quality attributes of other components or external environment that affect to the quality of this component (input), r are
the resources used in the component that affect to its qualities, and qo are the qualities provided. Examples of input and
output qualities are the precision of input/output arguments, maximum frequency of input/output data, and the accuracy of
output results (output). Examples of resource qualities are the maximum response time in CPU executions and network
bandwidth. The function depends on the functional behavior (e.g., to support reliability we must include some type of
redundancy in the architecture or implementation).

7.1 Constructors of QoS Modeling Languages

QoS specification languages are based on a set of constructors that provide support to describe the main QoS elements of
the problem. Nevertheless, the model requires a general reference architecture. We are going to consider the QoS
specification for two different abstraction levels: QoS application analysis and QoS application architecture. In the first
case we analyze the QoS of the systems that is going to be developed and in the second case we study the QoS of
solutions. The general model for the QoS application architecture is based on 1SO general QoS architecture [30].

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 5

The basic functional elements of the QoS model that we will be considering is the resource-consuming component (RCC)
for the QoS application architectures and the QoS-aware specification functions (QASF) for the QoS application analysis.
QASF are significant services and functions of the new systems (specified from an analysis point of view) that have
associated QoS requirements. These functions support the functional behavior of the system. However, the execution of
each function will take time, require system resources and be subject to occasional system errors or failure. These and
other similar features are non-functional behavior of the system. RCC is a processing entity that includes a group of
concurrent units of execution, which cooperates in the execution of a certain activity and share common budgets. The
budget is an assigned and guaranteed share of certain resources. An RCC has the following associated: i) facets
(interfaces provided and synchronously used by RCC clients), ii) receptacles (interfaces synchronously used by this
RCCQ), iii) event sinks (event queues supported by this RCC and asynchronously used by RCC clients), and iv) event
sources (event queues asynchronously used by this RCC). UML can model RCC in different ways; in general, classes,
component and interfaces are modeling elements that model the RCCs. At this point what we want to address is the
identification of the main concepts that a QoS model includes.

QASFs and RCCs have non-functional characteristics associated, which can be general purpose or domain specific. In
both cases QoS characteristics make reference to quantifiable non-functional attributes. The quantification with one or
multiple dimensions is fundamental for the expression of QoS supported-provided, the monitoring of the characteristic,
and evaluation of fulfillment and level of satisfaction.

A quality characteristic includes a set of quality attributes that are the dimensions to express a quality satisfaction. An
example of quality characteristic to express latency constraints could include the following attributes: i) arrival patterns,
the values of this enumerated quality value are: periodic, irregular, bounded, busty, unbounded, ii) minimum period, iii)
maximum period, iv) jitter, v) burst interval, vi) burst size, vii) requirement type, the values of this enumerated quality
value are: hard, soft, firm, viii) deadline hard, ix) deadline soft, and x) output jitter.

The facets, receptacles, event sinks, and event sources interconnect the RCC group, which collaborate to provide support
of QASF. They support QASF transforming input data and events into output data and events. The QASF are the external
QoS system operations, which have a quality utility associated that express the degree of satisfaction of the operation,
from the user or external system point of view. The quality utility is expressed in terms of quality types and quality
constraints. The grouped RCC are not quality independent in the sense that their configuration and quality provided in
their facets and event sink may limit the quality behavior of another RCC. The end-to-end quality of a qualified
functionality depends on the sequence of transformations developed along the RCC sequence. For example, the end-to-
end latency of a video signal transformation depends on the latency of all RCC involved in the transformation operation.

Quality levels express the quantifiable level of satisfaction of a non-functional property. An RCC can associate quality
levels to its facets and event sinks. These quality levels are the RCC's quality provided contracts. To support the quality
provided contracts, the RCC can require some minimum budgets and quality levels in its receptacles and event sources,
and in the system resources. These quality levels are expressed in the required quality contracts. Quality contracts are
expressed in terms of the values associated to quality characteristics.

7.2 QoS Modeling Elements

A general QoS modeling language must provide support for the specification of:

Definition of QoS Characteristics: QoS Characteristic is a quantifiable aspect of QoS, which is defined independently of
the means by which it is represented or controlled [30]. QoS Characteristics are quantified with some specific
parameters and methods, and with other characteristics with a lower abstraction level. QoS Characteristics can be
grouped into categories that group characteristics of a common subject. Different enterprises and organizations use
the same QoS Characteristics, but they use different evaluation methods or establish different hierarchies. An
example of divergence is that standards like [31] do not identify specific QoS characteristics for performance, but

6 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

other proposals like [7] do. Another specific example is what we can do to measure availability characteristics. We
can do it with different levels of abstraction: i) a simple probability, and in a hypothetical domain, this is enough, and
we do not enter in more details, ii) in other domains we require more details, and we use two arguments, the mean-
time-to-repair (MTTR) and the mean-time-to-failure (MTTF), and the availability is the probability: MTTF / (MTTF
+ MTTR). iii) When the operations are transactions, this probability is not enough, and we need to introduce the
availability period (the period that a client will be able to access times arbitrarily) and the availability makes
reference to a continuous availability [7][33]. Some authors would classify the last case such as a reliability quality.
Different domains require different levels of abstraction. We need enough flexibility to make the description of
particular characteristics of specific domain environments possible.

QoSConstraint: The QoS Constraints define any kind of restriction that QASF and RCC impose on QoS characteristics.
The restrictions express limitations in the parameters and methods of characteristics. They identify ranges of values
allowed for one or multiple parameters and methods and their dependencies. Examples of simple QoS Constraints are
constraints that describe maximum response times, or the minimum number of errors supported. Sometimes the QoS
Characteristics have associated interdependencies, for example, in a compression algorithm; the response time
depends on the compression degree (more level of compressions, requires more computation time) or the functions
for the description of subjective priority of qualities or for the description of quality optimal values. Figure 7-1
represents the dependencies of qualities gx, qy and gz for a hypothetical implementation function. Figure 7-1
represents the maximum and minimum values and the dependencies of quality values; gx cannot have an arbitrary
value when the values of qy and gz are fixed. Analytical methods are based on the optimization of these functions
and these functions can be restricted for specific analysis methods.

Figure 7-1 Relationship of qualities.

QoS Levels of Execution: Sometimes, QASFs and RCCs are designed to support different modes of executions with
different quality levels. Each mode has different QoS Constraints associated and their functionality can be different.
Often, the execution modes for specific QASF or RCC are discrete (there is an enumeration of the different modes),
for example, the levels of quality of a window in a digital television are High, Medium and Low resolution, and the
television system uses different implementation algorithms for each mode [43]. But in some cases, the mode is
defined with continuous values, for example, the maximum speed of the target in radar, and the quality level
supported is specified with the values of the speed. In this case, the level is based on the real number that describes
the speed. In general, the design of the functional architecture must take into account these modes, and there are
different functions and components for each mode.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 7

QoS Adaptation and Monitoring: The transition from one execution mode to another requires some actions in the
application execution, and some types of transitions are not allowed (we cannot change the quality level arbitrarily).
Another common activity in some applications is monitoring QoS characteristics for the detection of errors and
robustness. The monitors detect non-achievement of some QoS constraints, but we must specify the actions to be
taken when the system does not achieve the quality levels.

Specific reservation protocols, admission control and analysis methods must specialize these general elements and restrict
allowed values. They address solutions for platform independent models. Specific QoS frameworks that provide specific
supports to the negotiation process require the specialization of some elements.

8 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

8 QoS Framework Metamodel

This metamodel defines the abstract language of a modeling language that supports modeling general QoS concepts. This
metamodel defines a set of modeling elements represented as metaclasses. A concrete syntax must define the specific
notation rules for the graphical representation of this modeling language. In our case the concrete syntax does not exist,
and the UML profile that we will introduce in the next section supports the representations of QoS concepts in models (in
UML models).

Because we intend to use UML notations for the representation of QoS concepts, some elements in the abstract syntax
have been simplified to reduce its complexity. For example, in Figure 8-2 association Template-Derivations defines
a relationship between QoS Characteristics. There is no metaclass to represent the model element that represents the
relationship.

8.1 General QoS Framework

A general QoS framework provides support to ensure consistency in modeling various qualities. The QoS framework
supports a general categorization of different kinds of QoS; including QoS that are fixed at design time as well as ones
that are managed dynamically. Futhermore it supports the integration of different categories of QoS for the purpose of
modeling QoS of system aspects. This section includes the metamodels that describe the main packages of this UML
extension. The different metamodels establish the elements used to model QoS systems.

|

<<metamodel>>
QoSCharacteristics

|

<<metamodel>>
QoSConstraints

|

<<metamodel>>
QoSLevels

Figure 8-1Submetamodels in the QoS Metamode

Figure 8-1 includes the set of packages that comprise the metamodel. The QoSCharacteristics package includes the model
elements for the description of QoS Characteristics; the QoS Constraints package includes the modeling elements for the
description of QoS contracts and constraints and the QoS Levels package includes the modeling elements for the
specification of QoS modes and transitions. The next section specifies each of these metamodels.

8.2 QoS Characteristic
Figure 8-2 includes the metamodel for the description of QoS Characteristics. The concepts involved are:

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 9

QoS Characteristics represents quantifiable characteristics of services. The QoS Characteristics are specified

independently of the elements that they qualify. QoS Characteristic is the constructor for the description of non-
functional aspects like: latency, throughput, capacity, scalability, availability, reliability, safety, confidentiality,
integrity, error probability, accuracy, and loading as mentioned in [7][30][31][33]. These are some general
characteristics, but specific domains have associated specific characteristics.

The relation Sub-Parent provides support for the extensions-specialization. This association supports the reuse of
characteristics. Sometimes the QoS Characteristic definition requires some parameters. The description of generic
characteristics may require, for example, the parameterization of the units and types for the description of value
definitions, or some specific methods for the quantification of the values; QoS Parameter supports these parameters.
The attribute islnvariant specifies when the QoS Characteristic can or cannot update the value of dimensions
dynamically.

QoS Dimension: QoS Dimensions are dimensions for the quantification of QoS Characteristics. We can quantify a QoS

Characteristic in different ways (e.g., absolute values, maximum and minimum values, statistical values). For
example, we can quantify the latency of a system function as the end-to-end delay of that function, the mean time of
all executions, or the variance of time delay. A QoS Characteristic can require more than one type of value for its
quantification. Examples of dimensions of Reliability are (from [27][33]): time to repair; time to failure; failure
masking that server exposes to their clients (failure, omission, response, value, timing, late or early); service failure
is the way in which a service can fail (halt, roll back, or initial state); semantic of services (exactly once, at least
once, or at most once); and number of failures supported. We can define a dimension of a QoS Characteristic based
on another QoS Characteristic and we make composition of QoS Characteristics for the definition of new qualities.
The type of dimension specifies the quantification.

To make a relational comparison between two values of QoS Dimensions, which domain is ordered, we need to know
the relational precedence of the domain. The attribute direction (an enumeration of increasing, decreasing, and
undefined values) defines the type of order relation. When the attribute is increasing the relation “>"represents a
higher-quality relation, when it is decreasing, it is the relation “<”. When the relation is decreasing, the quality value
X is better than y when x <'y is true. For example, in most of the systems, a low response time is better than a high
response time; in this case, the value is decreasing. The rate transmission is an example of increasing value, because,
in general, a high transmission rate is better. Units allows the specification of the unit for the values of the dimension
and statisticalQualifier gives the type of statistical qualifier when the value of the dimension represents a statistical
value. The types of statistical qualifiers are: maximum value, minimum value, range, mean, variance, standard
deviation, percentile, frequency, moment, and distribution.

QoS Category: When the number of QoS Characteristics is large, or they are especially complex, some mechanisms for

10

grouping are required. Some examples of general groupings of quality attributes are: i) Performance: Performance
makes reference to the timeliness aspects of how software systems behave. ii) Dependability: Dependability is the
property of computer systems such that reliance can justifiably be placed on the service it delivers. iii) Security: this
capability covers different subjects such as the protection of entities, and access to resources.

The main difference between a QoS Category and a QoS Characteristic is that QoS Characteristics are directly
quantifiable, and QoS Categories do not provide a direct framework for the evaluation of non-functional attributes; it
requires a more detailed level of specification to establish constraints or comparisons. The definition of QoS
Characteristics included in a QoS Category can make reference to characteristics defined in other categories. The
properrty referenced rerpesents this dependency.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

Issue: 7793 Introduce the Dependencies between categories in the metamodel

1 *
Owner | 0.1 Template Derivations SUb* * parent
* | Ownes
<<metaclass>>
<<metaclass>> Groupedin Groupes QoS Characteristic
QoSCategory [<>———————— Type Parameter
0.1 * isinvariant : boolean & | <<metaclass>>
referenced 1 * QoSParameter
*

1 YDimensionOf 0..1 | Type

1..* | Quantifier *ATyped

<<metaclass>>
QoSDimension

statisticalQualifier : QoSStatisticalAttribute
direction : DirectionKind
unit : string

Figure 8-2 QoSCharacteristic Diagram

In general, QoS Characteristics are defined independently of the modeling element that they describe and the other
QoS Characteristics.

Figure 8-3 includes the metamodel for the description of QoS Values. The concepts involved are:

QoS Value: QoS Characteristics and QoS Context provide support for the description of quantifiable QoS values.
However, often there are some QoS specific values identifiable at modeling time (e.g., limits of characteristics, or
specific QoS values). QoS Value instantiate QoS Characteristic and fixes it with specific values of its value
definitions (QoS DimensionSlot). When we attach a QoS Value to a model element, we are characterizing the element
with quality values.

QoS Value and QoS Characteristics are specializations of QoScharacteristics and QoSValue metaclasses

included in the package Core Resource Model of standard UML Profile for Scheduling, Performance and Time
(SPT) [42]. These specializations allow reuse these concepts modeling QoS for resources, see Figure 8-3.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 11

::STP QoS Profile View Point::General Ressource QoS Profile::Core Resource Model::QoScharacteristic

type |1.*
instance |*

::STP QoS Profile View Point::General Ressource QoS Profile::Core Resource Model::QoSValue

0.1

referencedValue QoSCharacteristic

<<metaclass>>

<<metaclass>>
QoSValue

1..* | Quantifier

<<metaclass>>
QoSDimension

Evaluate [statisticalQualifier : QoSStatistical Attribute
* 1 direction : DirectionKind

unit : string

<<metaclass>>
QoSDimensionSlot Value

Value : undefined

Figure 8-3 QoSValues Diagram

QoS Values are instances of QoS Characteristics that have resolved all their parameters. The OCL expression that
expresses this is:

context QoSValue inv:
self.type.Parameter->size() = 0

QoS Dimension Slot: QoS Dimension Slot represents the value of a primitive QoS Dimension or a reference to another
QoS Value. The attribute Value has valid value when the slot represents primitive dimensions. The association
referencedVvalue identifies the value that references a non-primitive dimension.

Figure 8-4 includes the metamodel for the description of QoS Context. The concepts involved are:

QoS Context: Often, quality constraints and expressions have more than one QoS Characteristic associated. Sometimes,
these expressions and constraints combine functional elements and non-functional elements. QoS Context allows
describing the context of quality expression when it includes multiple QoS Characteristics and model elements. A
single QoS Characteristic defines a QoS Context for the expression whose references are only to the QoS
Characteristic. We can define a QoS Context based on other QoS Contexts and QoS Characteristics.

The attribute isQoSObservation, whose default value is false, defines when a QoS Context represents an environment
of quality observation. A quality observation records quality values of QoS Characteristics included in the
association BasedOn. It records the QoS Characteristics of QoS Context included in this QoS Context, if they are not
observation contexts. A quality observation is associated to a single execution element (e.g., a link end, a message, an
object), and records values of QoS Characteristics. This allows representing constraints that include more than one
quality point (e.g., end-to-end quality constraints, or output qualities that depend on input qualities).

12 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

oppositeAssociation *

* BasedOn

. 01 <<metaclass>> " <<metaclass>>
<<metaclass>> - Context isti
QoS Context | QoSCharacteristic

QoSValue | ValidValues Evaluates

isQoSObservation : boolean

Context | 1.*

Supports

<<metaclass>>
QoS Constraint

Figure 8-4 QoSContext Diagram

A QoS Context is described with QoS Characteristics or with the combination of other QoS Context. This means that a
QoS Context that does not include other QoS Context must be defined in terms of QoS Characteristics:

context QoSContext inv:
self.oppositeAssociation.size() = 0 implies self.BasedOn.size() > 0

8.3 QoS Constraint

Figure 8-5 includes the metamodel for the description of QoS Constraints. In this diagram we identify one abstract
metaclass (QoS Constraint) and three specific types of QoS contracts. The concepts involved in the constraints description
are:

QoS Constraint: This is an abstract metaclass. A QoS Constraint limits the allowed values of one or more QoS
Characteristics. The QoS Constraints define the constraints of the QoS Characteristics of modeling elements.
Application requirements or architectural decisions limit the allowed values of quality and the QoS Constraints
describe these limitations. QoS Context defines the QoS Characteristics and functional elements involved in a QoS
Constraint. The QoS Context establishes the vocabulary of the constraint, and the QoS Constraint the allowed values.
Two approaches for the description of values are:

1. Enumerate the QoS Values allowed for each of the QoS Characteristics involved in the QoS Context. For example, we
can specify the allowed latency and accuracy for a function that computes the trajectory of a target in military radar.
In this case, both QoS Characteristics are considered independent.

2. The expressions that must be fulfilled by the QoS Characteristics. These expressions define maximum and minimum
values, and the dependencies of QoS Characteristics. This approach is more flexible than previous ones, because we
can identify not only the limits but also the dependencies of both QoS Characteristics supported. We can identify
some kind of relationship between accuracy and latency (for a more precise trajectory we require more computation
time). Furthermore, the allowed values are not independent.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 13

We can see the quality constraints from two points of view: from the client’s point of view and from the provider’s
point of view. This approach defines two different types of constraints: constraints required and constraints offered
(Figure 8-5). This is a common approach in the specification of QoS [1][11][53]. Some approaches pay special
attention to the quality provided by the resources and the impact of sharing the resources, and others pay more
attention to the extension of functional interfaces with non-functional contracts.

QoS Required: when a client defines its Required QoS constraint, the provider (software element or a resource) that

supports the service must provide services with some quality levels to achieve its clients’ requirements. The service
provider must support not only the service required but also must provide its services with certain quality constraints.
When the provider defines its Required QoS constraint, the client must achieve some quality requirements to get the
quality offered. An example of Required QoS constraint for providers is the maximum frequency of invocation from
its client.

When a client uses a service with some quality requirements, it specifies the non-functional requirements with a
Required QoS constraint. This constraint specifies the quality that the server must achieve. This constraint limits the
space of valid values for the QoS Characteristics involved in the service. The QoS Characteristics are the dimensions
of the quality space, and the QoS Required defines the valid values of this space.

The expressions of Required QoS constraints appear because the system must fulfill some user requirements, or
because a user-provider (a software element that provides services and uses other services) component or subsystem
must support other qualities required. The user-provider requires some qualities for its providers to achieve the
quality required. For example, a reliable component can support its quality requirements, when its service providers
are reliable.

Often, an end-to-end quality requirement is decomposed into a set of sub-quality requirements, and the software
architects define a set of Required QoS constraints to achieve the quality required.

QoS Offered: The specification of software components includes the description of their interfaces. The interfaces include

the set of services provided. However, their architectures and implementations are designed to support some specific
qualities. Architects design a component or a subsystem to support some levels of scalability, to have a limited
response time, or to make the component reliable based on persistence techniques, and these decisions create impacts
in the types of data structures and algorithms. These quality properties have a special impact on the architecture.

QoS Offered has associated the set of QoS Characteristics that the component takes into account (QoS
Characteristics are part of the specification of QoS Context). QoS Offered establishes the limits of values that support
the software elements. This is the space of quality that can support the software element. When a quality does not
appear in the context of the Offered QoS, the software element does not take it into account, and the component does
not guarantee this quality. Often, the Offered QoS depends on the QoS provided by the resources and service
providers that the software element uses. When the provider defines an Offered QoS constraint, it is the provider who
must achieve the constraint. When a client defines an Offered QoS constraint, the client must achieve the constraint
invocating the service.

QoS Contract: The quality provider specifies the quality values it can support (provider- Offered QoS) and the

14

requirements that must achieve its clients (provider-Required QoS). And the user, the quality it requires (client-
Required QoS), and the quality that it ensures (client-Offered QoS). Finally, in an assembly process, we must
establish an agreement between all constraints.

In general, the allowed values that client-Required QoS specifies must be a subset of values supported in provider-
Offered QoS, and the allowed values that provider-QoS Required specifies must be a subset of values supported in

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

client-Offered QoS. If the provider does not support the QoS required, we must negotiate the contract and the final
quality provided. Sometimes, we cannot compute the Contract QoS statically, because it depends on the resources
available or quality attributes fixed dynamically. However, we can identify the qualities supported in the contract and
some limit values. To compare two QoS Values, we can use the = operator for QoS Dimension Slot, or we can use the
attribute direction in QoS Dimension. In the last case the data type of QoS Dimension associated with QoS Dimension
Slot must support the relational operators < and >.

Issue: 7792 Explicit identification of sources and targets in end-to-end constraints

<<metaclass>>
::QoSFramework::QoS Characteristics::QoS Context

Context 0-1
Supports | *
<<metaclass>> <<metaclass>>
> QoS Constraint <‘ QoS CompoundConstraint
previous 0..1 — — -
Qualification : QualificationKind
~| EndToEndSource [*] : Element * 0
next 0.1 |EndToEndTarget [*] : Element -)
SubConstraints GlobalConstraint

<<metaclass>> * Contract | <<metaclass>> | Contract *| <<metaclass>>
QoSRequired RequireAccorded . QoS Contract * OfferAccorded QoS Offered

Figure 8-5 QoSConstraint Diagram

Some infrastructures provide support for the management of QoS Contracts. A common approach is to extend the
IDLs (Interfaces Description Languages) [8][64] to provide support for the description of quality contracts. QuO [64]
is an example of an environment for the specification of QoS contracts and management of negotiation processes, and
access to Resource Managers and services to support some types of quality such as reliability. Other approaches are
based on component solutions [22][60], and the component infrastructures support the agreement and adaptation to
the quality contracts.

The attribute Qualification specifies the strictness of the constraint. The values are: Guarantee, Bets-Effort,
Threshold-Best-Effort, Compulsory-Best-Effort, and none.

End-to-End QoS constraints make reference to quality constraints that involves two or more modeling elements.
Source elements define source instants for the quantification of constraints and target define the end of interval.
EndToEndSource and EndToEndTarget are properties that make reference to source and target modeling elements. An
example would be a QoS constraint (for example an OCL constraint attached to two modelling elements) that makes
reference to two actions in an activity diagram (an iteration diagram would be the similar). Sometimes we can
identify implicitly who are the source and the target, but in some cases (for example loops) this implicit assumption
can generate errors. EndToEndSource and EndToEndTarget properties define explicitly the sources and targets.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 15

Often a model element does not have a single mode of execution or can adapt its execution to provide different

quality levels. This means that the quality offered or required can be a combination of a set of quality constraints, and
each constraint is associated to a specific level or execution mode. QoSCompoundConstraint is the combination of a
set of constraints that ensemble represent a QoS Constraint for the model element (e.g., class, component, or object).

Issue: 7796 Traceability between QoS Constraints

QoSCompoundConstraints can represent global constraints decomposed in a set of subconstraints. The sub constraint
can have a precedence order relations. These relations can represent, for example, how to decompose a latency
constraint in a set of subconstraints.

A QoS Constraint must have associated at least one QoS Context that is the reference for the description of
expressions and values for the software element associated to the constraint. However sometimes the QoS value for a
software element depends on the allowed QoS values of other software elements. For example, the QoS that a
component offers in its interfaces depends on the QoS values required in the used interfaces. A QoS Constraint can
reference multiple contexts and the context can identify software element that is the source of dynamic QoS values.

The QoS Compound Constraint qualification is defined in terms of the QoS Constraints that it includes, and because
of this the value of attribute Qualification is the default value (none):

context QoSCompundConstraint inv:
self.Qualification = QualificationKind: :none

8.4 QoS Level

Figure 8-6 is a metamodel for the description of QoS Levels. The basic concepts of this model are:

QoS Level: QoS Level represents the different modes of QoS that a subsystem can support. Depending on the algorithms

16

or the configurations of the systems, the component can support different working modes, and these working modes
provide different qualities for the same services. For each working mode, we specify a QoS Level. The QoS Levels
represent states in the system from a quality point of view. The current QoS Level depends on the current resources
available, the quality required, and functional parameters such as state variables that identify the current
configuration. For each QoS Level the resources required are different. In general, the resources offer different quality
depending on the load that they have. Allowed Space describes the conditions that a software element and the system
must achieve to state in a specific QoS Level.

When a QoS Level has more than one Allowed Space, the system continues in the QoS Level if all Allowed Space
expressions are true.

A QoS Level Change occurs when the Allowed Space of the current QoS Level becomes false, and a transition fires.
This change must have one enabled transition from the current QoS Level to another that is going to be fired. If there
is not an enabled transition, the system is in a state where it cannot achieve its QoS requirements, it will continue in
the current state, but it cannot support its contracts.

An example of change is when the resources cannot support their contracts (they have received new requests and the
resource has a different load level), and we must change the QoS Level of some elements. If we cannot change the
level, the component will not fulfill its QoS requirements. This change initiates a process of adaptation in the quality
of the component. Another source of QoS Level Change is the reconfiguration of the component. The component
must provide different levels of quality because the user requires a different level of quality at the components with
external interfaces. Examples of these changes occur in multimedia systems, when the user resizes some video
windows or changes the quality levels of audio and video.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

QoS Transition: QoS Transition models the allowed transitions between QoS Levels. QoS Level Change is a type of
events that can fire a QoS Transition. The architecture and implementation of software elements take into account
these states and transitions. The property AdaptionActions includes the set of acctions to describe the adaptation to
new mode.

Issue: 7802 Representation of adaptation actions in metamodels

<<metaclass>>
QoSConstraint

*

AllowedSpace

* | CurrentLevel

Levelsincluded | <<metaclass>>

I QoSLewel
Source |1 1 | Destination
GroupOfLevels| 0..1
<<metaclass>>
QoSCompoundLewel To |* * [From
0.17 Levels <<metaclass>>
QoSTransition
0.1} AllowedSpaces AdaptationActions [*] : string

<<metaclass>>
QoS CompoundConstraint

Figure 8-6 QoSLevel Diagram

The QoS Levels define the QoS behavior of model elements. This behavior must fulfill that when the quality state is
some quality level, the QoS Constraint associated to it must be fulfilled.

context QoSLevel inv:
self.AllowedSpace->forAll (self == true)

A QoS Compound Level includes all the QoS Levels that define the quality behavior of a model element. These QoS
Levels have associated some QoS Constraints, all of them define the QoS Compound Constraint associated to the
QoS Compound Level:

context QoSCompoundLevel inv:
let ConstraintsOfQoSLevels : Set (QoSConstraint) = self.AllowedSpaces in
self.LevelsIncluded->forAll (ConstraintsOfQoSLevels->
includesAll (self.AllowedSpaces))

8.5 Integration with Package Core Resource Model

The modeling elements that we have introduced provide support for the description of QoS Characteristics and contracts
in general. One specific case is the quality provided by resources and their contracts. SPT [42] pays special attention to
this type of qualities, and includes classes that concrete the relations between resources and qualities.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 17

Three packages of SPT can support the description of QoS contracts for resources:

GeneralResourceModel: : CoreResourceModel, GeneralResourceModel: : ResourceUsageModel,
and GeneralResourceModel : : CausalityModel. CoreReourceModel includes the classes QoScharacteristic and
QoSValue that we reuse in the metamodel of package QoSCharacteristic.

Appendix A includes the SPT diagrams that we reuse to support the description of QoS for resources. General Resource
Model in SPT was designed as a conceptual model and not as a metamodel. It was not designed to identify modeling
structures and because of this some concepts included in the diagrams in Appendix A cannot be identified in annotated
UML model but others can be identified with profile annotations (e.g., resources, resource usage, and client).

18 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

9 UML QoS Profile

This profile defines limited extensions to the reference UML 2.0 meta-model with the purpose of adapting the meta-model
to a specific platform or domain. The extension of this profile does not change the reference metamodel, and keeps its
semantics.

In UML 2.0, profiles are packages that structure UML extensions. The principal extension mechanism in UML 2.0 is the
concept of stereotype. Stereotypes are specific metaclasses, having restrictions and the specific extension mechanism.
Additional semantics can be specified using Stereotype features (“attributes” in UML2.0, “tagged values” in UML1.x)
and new well-formedness rules in the context of a profile.

A UML profile extends parts of the UML metamodel in a constrained way. All new modeling concepts must be supported
by UML modeling elements. The new attributes must respect the semantic of UML modeling elements. All associations
are binary associations. We cannot redefine features, but we can add new features (meta-attributes of stereotypes). UML
metaclasses are extended by stereotypes, using a mechanism called extension. The semantic of metaclass generalization
and stereotype extension must not be confused. We will use this notation of UML 2.0 to represent this profile.

The general structure of the profile model is the same as the general structure of the metamodel.

]

<<profilel>>
QoSCharacteristics

]

<<profile>>
QoSConstraints
A

<<profile>>
QoSLevels

Figure 9-1 Subprofiles in the QoS Profile

9.1 QoS Characteristics Subprofile

The base class of stereotype <<QoSCharacteristic>> is Class. Properties and Structural Features with stereotype
<<QoSDimension>> provide support for the quantification of characteristics. The base classes of
<<QoSDimension>> are StructuralFeature and Property. The types for QoSDimensions are UML 2.0 primitive types,
enumerations, or QoS Characteristics. The metaclass Class included un metamodel Classes::Kernel do not provide
support for the description of template properties. The metamodel AuxiliaryConstructs::Templates includes the
constructors for the description of template and parameters of model elements. Classifier metaclass in metamodel
AuxiliaryConstructs:: Templates is the UML metaclass that can represent classes with template parameters.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 19

AuxiliaryConstructs::Templates defines Classifier to apply the template associations that includes the metamodel to
metaclass Clases::Kernel ::Classifier and its subclasses (such as Class, Collaboration, Component, Datatype, Interface,
Signal, and Use Cases). In this profile, the metaclass of model element that has associated the parameters must be Class.

<<QoSCharacteristics>> includes the attribute isInvariant. <<QoSDimensions>> includes the attributes
unit, direction, and statisticalQualifier.

The base class of stereotype <<QoSCategory>> is Package. The package is a grouping of QoS Characteristics that
provides support for the management of QoS Characteristics. QoS Categories are modeled in UML 2.0 with packages,
and the packages include QoS Characteristics and other QoS Categories.

<<metaclass>> g <<stereotype>>
::UML::Classes::Kernel::Package QoSCategory
<<stereotype>>

QoSDimension
<<metaclass>>

statisticalQualifier : QoSStatistical Attribute
::UML::Classes::Kernel::Feature < L L .
direction : DirectionKind

unit : string

<<metaclass>>

::UML::Classes::Kernel::Class < <<stereotype>>

QoSCharacteristic
isInvariant : boolean

<<metaclass>> 47

::UML::AuxiliaryConstructs::Templates::Classifier

Figure 9-2 QoS Characteristics Stereotypes

tacl <<stereotype>>
<< >>
metaclass o 4— QoS Value
::UML::Classes::Kernel::InstanceS pecification

<<stereotype>>

<<metaclass>> " < QoSContext
::UML::Classes::Kernel::Classifier

isQoSObservation : boolean

<<stereotype>>
QoS Characteristic

Figure 9-3 QoS Values Stereotypes

20 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

The base class of stereotype <<QoSValues> is InstanceSpecification. The model element annotated is an instance of a
class annotated <<QoSCharacteristic>>. The QoS Value is implicitly a constraint whose slots fix the values of
QoS Dimensions.

9.1.1 Well-formedness and Semantics

When a property is annotated with the stereotype <<QoSDimension>>, the class that includes the property must be
annotated with the stereotype <<QoSCharacteristics>s.

context QoSDimension inv:
self.base.class.
stereotypes->includes (QoSCharacteristic)

The type of a <<QoSDimensions>> represented with a property can be a <<QoSCharacteristics>>, a primitive
type or an enumerated type.

context QoSDimension inv:
self.base.classifier.isTypeOf (Property) implies
(self .base.classifier.isTypeOf (Enumeration) or
self .base.classifier.isKindOf (PrimitiveType) or
(self.base.classifier.isTypeOf (Class) and
self.base.classifier.
stereotypes->includes (QoSCharacteristic)))

The classes annotated with <<QoSCharacteristic>> and class parameters cannot have QoS Value instances.

context QoSValue inv:
self .base.classifier->forAll (self.isKindOf (
UML: :AuxiliarConstructs::Templates::Classifier) implies
self.ownedSignature.inheritedParameter.size() = 0)

isQoSObservation identifies some kind of QoS monitoring. The QoS Context defines the quality values that are collected.
The collected information includes all quality characteristics and context navigable from the original context excluded
other QoS Context that are QoS Observations. When we can navigate from one context QoS Observation to another, we
maintain references that allow to express end-to-end quality expressions and expressions that make reference to qualities
of multiple elements. If a QoS Context with isQoSObservation true were used in expressions of multiple elements, we
could not identify which is the element that we reference. Because of this, when isQoSObservation is true, QoS Context
can only annotate one model element.

context QoSContext inv:
let ns : Namespace = sgelf in
self.isQoSObservation implies
Constraint.allInstances->select (
self.stereotypes->isKindOf (QoSConstraint) and
context = ns)->collect(element : Set (Element) |
element.union(self.constrainedElement))-> size() = 1

Three types of modeling elements can represent quality dimension. The specific semantic depends on the specific
modeling element that annotate <<QoSDimensions> stereotype. We identify three different modeling elements:

Attributes: Properties owned by the class that represent primitive values for the dimension.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 21

1. Navigation Properties. Properties owned by association that allows the definition of dimensions based on other QoS
Charateristics.

2. Behavior Features. This type of QoSDimension supports the description of dimensions with quality expressions
(expressions that represent a quality dimension based on other dimensions)

QoSCharacteristicStp2: QoSCharacteristic[*]

1]
1

base
QoSCharacteristicStp:QoSCharacteristic QoSCharacteristicSubType:Class[*] QoSDimensionPrimitive:QoSDimension[*]
1 type Quantifier
basg 1 DimensionOf

featuringClassfier

oneQoSCharacteristic:Class QoSDimensionNonPrimitive:Property[*]

oneQoSCharacteristic: QoSCharacteristic

feature

1

featuringClassfier base DimensionOf
feature 1 Quantifier
. . A SDi ionNonPrimitive:QoSDi ion[*
QoSDimensionPrimitive:Feature[*] QoSDimensionStp2:QoSDimension[*] QoSDimensionNonPrimitive:QoSbimension(*]
. Typed
1 |pase ‘{self.forAII(seIfAowningAssociation->notEmpty())} %
1| type 1 |Type
oneType:DataType[*] ‘ {self forAll(self. class->notEmpty())} % QoSCharacteristicSubType/:QoSCharacteristic[*]
1

QoSDimensionStp:QoSDimension[*]

Figure 9-4 (a) QoS Characteristics and Dimension in UML 2.0 (b) QoS Characteristics and Dimension in QoS
metamodel

Figure 9-4 (a) includes a collaboration based on a set of roles that represent the definition of a QoS Characteristic and its
dimensions. The diagram includes two types of dimensions (primitive and navigable). Both types of roles are roles with
multiple instances. The attributes are owned by the class, and the navigation properties the feature is owned by the
association. In the connections of this and the rest of composite structure diagrams we do not use the name of associations
as classifier of the connector, because UML 2.0 does not include names in the associations. We use the property names,
which include the associations of UML 2.0, in the connector end. Figure 9-4 (b) represents the equivalent elements in the
QoS language that defines the QoS metamodel. The roles represent the QoS model elements that should be created to
represent the equivalent in UML, and the reference roles represent referenced elements in the QoS model that are not
created (e.g., the role subCharacteristic makes reference to some QoSCharacteristic that exists in this QoS
model).

The UML 2.0 metaclass Generalization and the metaclasses of Template metamodel provide support to represent the
association Parent-Sub, and metaclass QoSParameter of QoS metamodel. We do not propose explicit stereotypes to
represent these concepts. We propose an implicit approach that reduces the model annotations. The generalization

22 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

associations of two classes stereotyped with <<QoSCharacteristic>> represents the Parent-Sub association of QoS
metamodel. Figure 9-5 represents the correspondence between the Parent-Sub association expressed in UML 2.0
viewpoint and QoS Characteristic metamodel. Figure 9-6 describes the correspondence between the description of
template in UML 2.0 and the parameters of QoS Characteristics. Figure 9-6 (a) includes a template that represent the
parameters description for a QoSCharacteristic and one binding from another characteristic. Figure (b) represents the
characteristics equivalent in QoS metamodel that creates the binding references between characteristic and associate the
parameters.

QoSCharacteristicStp:QoSCharacteristic

1

base

1

QoSParent:Class

general QoSParent:QoSCharacteristic

Parent

oneGeneralization:Generalization

Sub

generalization

QoSSub:QoSCharacteristic

specific
QoSSub:Class
1 base

1

QoSCharacteristicStp2:QoSCharacteristic

Figure 9-5 (a) QoS Paren-Sub in UML 2.0 (b) QoS Parent-Sub in QoS metamodel

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 23

QoSCharapteristicStp:QoSCharacteristic QoSCharacteristicStp2: QoSCharacteristic

1 1
genericCharacteristic:QoSCharacteristic
1 |base base 1
1 | Template
genericCharacteristic:Classifier boundedQoSCharacteristic:Class
source Derivations
template 1 target| ¢
boundedQoSCharacteristic: QoSCharacteristic[*]
ownedTemplateSignature Type
oneSignature: TemplateSignature bind:TemplateBinding Parameter
1 | templateBinding parameterSubstitution:QoSParameter[*]
parameter parameterSubstitution
oneParameter: TemplateParameter[*] 1 oneSubstitution: TemplateParameterSubstitution[*]
formal

Figure 9-6 (a) QoS Templates UML 2.0 (b) QoS Parameter in QoS metamodel

Figure 9-7 (a) includes the representation of a QoS Value in UML 2.0 and its relations with QoS Characteristics and slots.
Figure (a) includes dimensions primitives and dimensions that reference other QoS Characteristics. The UML model
element that represent the QoS Value is InstanceSpecification. UML 2.0 uses the metaclasses Slot and
ValueSpecification for the description of attributes and their values. Figure (b) includes the representation of same
concepts in QoS metamodel. Two different types of QosDimensionSlot represent dimensions primitive or dimensions
that make reference to other QoS Characteristics.

24 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

QoSCharacteristicStp:QoSCharacteristic QoSValueStp/:QoSValue

1
bess | classifier base
oneCharacteristic:Class class oneQoSValue: InstanceSpecification
class 1
owninglnstance
ownedAttribute
QoSDimensionNonPrimitive:Property[*] oneLink: InstanceSpecification[*]
memberEnd ownedAttribute
base slot
QoSDimensionPrimitive:Property[*] — DimensionValue:Slot[*]
1 base definingFeature owningSlot
QoSDimensionStp: QoSDimension[*] 1
value| 0.1
QoSDimensionStp2:QoSDimension[*]
association value:ValueSpecification[*]
QoSAssociation: Association[*]
1 1
type
ownedCharacteristic: Class[*] ownedQoSValue: InstanceSpecification
classifier
. . Evaluates ValidValues|
oneCharacteristic: QoSCharacteristic oneQoSValue:QoSValue
1
T DimensionOf 1 Evaluates 1 Evaluates
DimensionOf Quantifier Slot
. . L . . Evaluate . . o . .
QoSDimensionPrimitive:QoSDimension ——| QoSDimensionSlotPrimitive: QoSDimensionSlot[*]
e 1 Valug
Quantifier Slot
QoSDimensionNonPrimitive: QoSDimension QoSDimensionSlotNonPrimitive: QoSDimensionSlot[*]
Evaluate Value
Typed
Type 1 | referencedValue
o L Evaluates ValidValue
ownedCharacteristic: QoSCharacteristic T otherQoSValues:QoSValue[*]

Figure 9-7 (a) QoS Value in UML 2.0 (b) QoS Value in QoS metamodel

The base class of stereotype <<QoSCapability>> is Package. The package is a grouping of QoS Characteristics that
provides support for their management. QoS Categories are modeled in UML 2.0 with packages, and the packages
include QoS Characteristics and other QoS Categories. Figure 9-8 (a) describes the modeling of QoS Categories in UML
2.0 and Figure (b) the equivalent in QoS metamodel.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 25

The base class of stereotype QoSContext is Classifier. A UML Classifier with <<QoSCharacteristic>>
stereotype defines a QoS Context of QoS metamodel. The <<QoSContext >> stereotype is not required to define the
context for this simple characteristic. QoS Contexts can reference other QoS Contexts and QoS Characteristics.

Figure 9-9 describes the representation of a QoS Context with reference to other context and characteristics in UML 2.0
and the equivalent in QoS metamodel.

QoSCharacteristicStp:QoSCharacteristic QoSCharacteristicStp2:QoSCharacteristic
1 1
base base
oneQoSCharacteristic: Class[*] subQoSCharacteristic:Class[*]
ownedMember ownedMember

owningPackage| owningPackage

nestingPackage
oneQoSCategory:Package subQoSCategory:Package[*]
nestedPackage
base base
1 1
QoSCategoryStp:QoSCategory QoSCategoryStp2:QoSCategory
oneQoSCharacteristic: QoSCharacteristic[*] subQoSCharacteristic:QoSCharacteristic[*]
Groupes Groupes
GroupedIn GroupedIn
Owner Ownes
oneQoSCategory:QoSCategory subQoSCategory: QoSCategory[*]

Figure 9-8 (a) QoS Category in UML 2.0 (b) QoS Category in QoS metamodel

QoSContextStp:QoSContext[*] QoSContextStp2:QoSContext[*] QoSCharacteristicStp:QoSCharacteristic[*] referencedQoSContext:QoSContext[*]
1 1 1 oppositeAssociation
base base base
refrencedQoSContext:Class[*] oneQoSContext:Class referencedQoSCharacteristic:Class[*] oneQoSContext/:QoSContext

h type class, Type 1 Context

BasedOn

_ownedAttribute
ownedAttribute
propertyContext:Property[*] propertyCharac:Property[*] referencedQoSCharacteristic:QoSCharacteristic[*]

Figure 9-9 (a) QoS Context in UML 2.0 (b) QoS Context in QoS metamodel

26 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

9.2

QoS Constraints Subprofile

QoS Constraint is an abstract stereotype (there is not instances of this stereotype); we use it for structural purposes in the
profile. The QoS constraint stereotypes are: <<QoSRequireds>>, <<QoSOffereds>>, and <<QoSContracts>>. The
attribute Qualification specifies the strictness of the constraint. The values are: Guarantee, Best-Effort, Threshold-Best-
Effort, Compulsory-Best-Effort, and none.

There are three methods for the specification of QoS Constraints in UML:

1.

UML constraint with stereotype <<QoSRequireds>>, <<QoSOffereds>>, Or <<QoSContract>>. These con-
straints include OCL expression whose context is a QoS Context classifier. The expression in the OCL expression
limits the allowed values of QoS Characteristics associated to the QoS Context. The attributes AllowedValue and log-
icalOperator are not used.

UML Dependency relationship with stereotype <<QoSRequireds>, <<QoSOffereds>>, Or <<QoSCon-
tract>>. A model element (client) depends on a QoS Value (supplier). The attribute logicalOperator specifies the
relationship between values when there are multiple values (because the dependency has multiple suppliers, or
because the same client has multiple dependencies to different QoS Values). The values for logicalOperator are: and,
or, and none. The attribute AllowedValue is not used. logicalOperator represents the logical relation when there are
multiple QoS Values in the dependency. When the logicalOperator is and, the quality required or provided must
achieve all QoS Values. When the operator is or, the quality provided or required must have at least the value of one
QoS Values.

A model element with stereotype <<QoSRequireds>, <<QoSOffereds>>, Of <<QoSContract>>. The
attribute AllowedValue references a set of QoS Values and logicalOperator specifies the logical relationship between
the QoS Values. With this annotation we constraint a model element with this set of allowed QoS Values.

Issue: 7792 Explicit identification of sources and targets in end-to-end constraints

<<metaclass>>
::UML::Classes::Kernel::Element

<<metaclass>> <<metaclass>>

::UML::Classes::Kernel::Constraint K f ::UML::Classes::Dependencies::Dependency

<<stereotype>>
QoSConstraint

Qualification : QualificationKind
AllowedValues [1..n] : string
logicalOperator : logicalOperators
EndToEndSource [*] : Element
EndToEndTarget [*] : Element
SubConstraint [*] : Element
GlobalConstraint : Element
previous : Element

next : Element

7

<<stereotype>> [<<stereotype>>
QoSRequired <<stereotype>> QoS Offered
QoS Contract

Figure 9-10 QoS Constraints Stereotypes

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 27

9.2.1 Well-formedness and Semantics

The supplier of a UML dependency annotated with stereotype <<QoSRequireds>>, <<QoSOffered>>, or
<<QoSContract>> must be an InstanceSpecification annotated with stereotype <<QoSvalues>.

context QoSConstraint inv:
self .base.isKindOf (Dependency) implies
self.base.supplier->forall (
self.isKindOf (Instancespecification) and
self.stereotypes->includes (QoSValue)

)

The context of constraints annotated with stereotype <<QoSRequireds>, <<QoSOffereds>>, or
<<QoSContract>> must be a Classifier with stereotypes <<QoSContext>> 0r <<QoSCharacetristic>>.

context QoSConstraint inv:
self .base.i1sKindOf (Constraint) implies
self.context->forAll (self.stereotypes->
forAll (self.isKindOf (QoSContext))
)

In Figure 9-10 QoSConstraint extends metaclasses Element, Constraint, and Dependency. Element is
superclass of Constraint and Dependency. But these extensions represent the three methods for the specification of
QoS Constraints. The semantic of the constraints depends on the model element that annotate the UML constraint
(method 1), the client of the dependency (method 2), or the element that annotate the stereotype (method 3). Examples of
modeling elements annotated with QoS Constraints are actor, class, component, node, object, subsystem, use case, and
instance. The constraints limits the quality of services that provides the modeling element. The annotation of interface
elements limits the quality of its implementators, or models the quality that requires its users. The annotation of modeling
elements such as associations, connectors, and ports represent the quality that require the client that use the specific
services provided in these relationships, and the quality provided.

Figure 9-11 (a) represent a QoS Constraint in UML with a UML constraint. The constraint is annotated with a QoS
Constraint stereotype. The context of the constraint is a QoS Context or a QoS Characteristic. Figure 9-11 (b) represents
the equivalent concepts in QoS metamodel.

28 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

QoSConstraintStp:QoSConstraint oneQoSConstraint:QoSConstraint
1 Supports
base 1 | Context
oneQoSConstraint:Constraint QoSContext:QoSContext
\ constrainedElement

oneElement:Element

1 | /context

oneQoSContext:Classifier

base

1

QoSContextStp:QoSContext

Figure 9-11 (a) QoS Constraints in UML 2.0 (b) QoS Constraint in QoS metamodel

9.3 QoS Behavior Subprofile

The base class of stereotype <<QoSLevel>> is State. States with stereotype <<QoSLeve I>> model the quality state of
model elements like classes or components. The QoS Level states can have associated QoS Constraints.

The base class of stereotype <<QoSTransition>> is Transition. It models the quality transition of software elements
associated to the state machine where it is included. These transitions connect QoS Level states (states with stereotype
<<QoSLevel>>), and can have associated a QoS Adaptation Process. These transitions have associated the implicit
event that occurs when the QoS Allowed Spaces of source state becomes false, and the QoS Allowed States become true
for the target state. This event represents the QoS Level Change metaclass.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 29

<<metaclass>>
::UML::StateMachines::BehaviorStateMachines::State

A

<<metaclass>>
::UML::StateMachines::BehaviorStateMachines:: Transition

<<stereotype>> <<stereotype>>
QoSLewel QoS Transition

Figure 9-12 QoS Behavior Stereotypes

9.3.1 Well-formedness and Semantics
The transitions that connect two QoS Level states are QoS Transitions:

context QoSLevel inv:
self .base.outgoing->union(self.base.incoming) ->
forAll (self.stereptypes.includes (
QoSTransition))

context QoSTransition inv:
self .base.source->union(self.base.target) ->
forAll (self.stereotypes.includes (QoSLevel))

9.4 Integration of General Resource SubProfile

Figure 9-13 includes the stereotypes in GRM subprofile of SPT that provide support for the identification of dependencies
of resources. These dependencies can be annotated with quality constraints and characteristics to constraint the quality of
services that provide the resource. These stereotypes are specified in chapter 4 in the standard [42].

GRM subprofile does not include directly any stereotype for the identification of resource. The concept is described at
conceptual level, but it does not include an UML extension. The subprofile that uses this subprofile (Scheduling Analysis
and Performance Modeling) introduces specific resource stereotypes, but for analysis purposes (they include attributes
that represent analysis results and specific values). To represent a general resource we introduce a new stereotype that
identifies the resources. This stereotype provides support for the description of QoS provided or required from resources.
Figure 9-14 includes this new stereotype.

30 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

<<stereotype>>
GRMrealize

GRMmapping [0..1] :

string

<<stereotype>>
GRMcode

<<metaclass>>

::UML::Classes::Dependencies::Abstraction

<<stereotype>>
GRMdeploys

<<stereotype>>
GRMrequires

Figure 9-13 GRM Subprofile Stereotypes

<<metaclass>>

::UML::Classes::Kernel::InstanceSpecification

<<metaclass>>

::UML::Deployments::Nodes::Node

<<stereotype>>
GRMResource

<<metaclass>>

::UML::Classes::Kernel::Classifier

Figure 9-14 Resource Stereotype

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

31

32

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

10 QoS Catalog

General QoS Characteristics and Categories can be reused in different projects and domains. They include characteristics
whose quantification dimensions are not problem specific. A general QoS catalog includes a set of general characteristics
and categories that are not specific of projects or domains.

The analysis for identification of characteristics required in a project is a complex process that, as other analysis process,
requires some experience and a good knowledge of types of non-functional requirements of the domain. But the quality
models for specific domains are easy to reuse, because these models have a very few changes between projects, the
quality quantification is practically the same in most of the projects, and some of the characteristics (e.g., the
characteristics for the quantification of qualities of resources and infrastructures) are associated to types of resources and
platforms common on several projects of the same domain.

A quality model is easy to reuse in the specification of non-functional properties of different projects. A common quality
model is a good candidate to reduce cost of specification of non-functional properties by reusing the quality models.

This section introduces a general quality model independent of domains and problems. This general catalog can be
extended with domain specific characteristics to define a domain QoS catalog, and each domain QoS catalog would be
specialized for specific projects. The objective of this section is not creating a standard of reference model for general
QoS characteristics. Several standards have been adopted for these purposes. These standard have specific purposes, and
in some cases they address the problem from the software metric perspective (quality attributes for the evaluation of
software, not for the qualification of services), and in all cases there is not modeling language used for the representation
of characteristics. The objective of this section is the to define QoS characteristics, particularly those characteristics
important to real-time and high confidence systems, which describe the fundamental aspects of the various specific kinds
of QoS and create a common framework that relates all them. These characteristics will be extended or specialized for
specific domain and projects.

We have used different references to identify the QoS Characteristics and Categories that we are going to introduce.
None of them try to use UML as specification language, or try to integrate the characteristics with UML models. The
main references are [32][7][31].

10.1 General QoS Categories

Figure 10-1 includes a set of general QoS categories:

« Performance: Performance makes reference to the timeliness aspects of how software systems behave, and this
includes different types of QoS Characteristics: latency and throughput. Sometimes it refers to the relationship
between the services provided and the utilization of resources: memory and CPU consumptions.

« Dependability [34]: Dependability is the property of computer systems such that reliance can justifiably be placed
on the service it delivers. It includes QoS Characteristics such as: availability, reliability, safety, and integrity.

« Security. This capability covers different subjects such as the protection of entities, and access to resources. QoS
Characteristics included in this capability are access control and confidentiality.

« Integrity: Sometimes the service provided is not the service expected, but it is functionally correct and does not
directly produces faults it self. A specific case are the levels of error or accuracy that are different in the service
provided and the service expected.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 33

« Coherence: Coherence includes characteristics about concurrent and temporal consistency of data and software
elements.

« Throughput: Throughput refers to the number of event responses handled during an observation interval. These
values determine a processing rate.

 Latency: Latency refers to a time interval during which a response to an event must arrive.
« Efficiency: The capability of the software to produce their results with the minimum resource consumption.
* Demand: Demand is the characterization of how much of a resource or a service is needed.

* Reliability: The capability of the software product to maintain a specified level of performance when used under
specified conditions.

« Availability: Availability is the capability of the software product to be in a state to perform a required function at
a given point in time, under stated conditions of use. Externally, availability can be quantified by the proportion of
total time during which the software product is in an up state.

1

<<QoSCategory>>
Coherence

<<QoSCategory>>
Performace
<<QoSCategory>>| | <<QoSCategory>> <<QoSCategory>>
Throughput Latency Efficiency
/ <<QoSCategory>>
<<QoSCategory>> Functionality
Demand *‘
<<QoSCategory>>
] Integrity
<<QoSCategory>>
Dependability *‘
’ <<QoSCategory>>
<<QoSCategory>> <<QoSCategory>> Security
Reliability Auvailability

Figure 10-1 Quality Categories

10.2 Throughput Characteristics

Figure 10-2 includes a model for the description of different types of application of throughput concept. An abstract QoS
Characteristics (throughput) represent the throughput in general, during an interval of time and a rate, whose units or
direction are not defined (because it is abstract). This diagram considers three types of throughputs: input-data-
throughputs represents the arrival rate of user data input channel, software or hardware, averaged over a time interval.
The rate unit for this throughput is bit/sec, and the direction of this dimension is increasing. communication-throughput

34 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

represents the rate of user data output to a channel averaged over a time interval. The units and direction of rate are the
same as input-data-throughput. processing-throughput represents the amount of processing able to be performed in a
period of time. The unit of rate is instructions/sec and the direction increasing.

observation-interval

interval | 1

0.1

<<description>>
| Number of event responses that have
been completed over a given observation

<<QoSCharacteristic>> | - _ _
<<description>> throughput
The rate of user data input to a channel

. . <<QoSDimension>> i
averaged over a period of time. Q interval
rate : real
/
/
/
/
!
!
/
/
/
/
//
<<QoSCharacteristic>> <<QoSCharacteristic>> <<QoSCharacteristic>>
input-data-throughput communication-throughput processing-throughput
<<QoSDimension>> <<QoSDimension>> <<QoSDimension>>
+rate : real rate : real +rate : real
{unit(bit/sec), {unit(bit/sec), {unit(instructions/sec),
direction(increasing)} direction(increasing)} direction(increasing)}
\ .\
\ AN
— N <<description>>
<<description>> .
The amount of processing able to be
The amount of _user dat.a able t_o be output performed in a period of time.
from a channel in a period of time.

Figure 10-2 Throughput Characteristics

10.3 Latency Characteristics

The package Latency includes two characteristics for the description of latencies. The characteristic latency is based on
general dimension for the description of latencies for any kind of software elements. The characteristic turn-around is
specific for the description of the absolute limit on time required in fulfilling a job task or service, or to represent the time
required to perform a specific task, in the worst case. The turn-around is based on the description of the instant of request
and the instant of result. The operation turn-around-value represents the difference and the direction is decreasing (the
latency quality improves when the difference decreases). The other characteristic uses other types of dimensions, it refers
to a time interval during which the response to an event must be executed. The response event may not be associated to
the end of the task that starts the event. The time interval defines a response window with a minimum and maximum
ending time. The jitter specifies the maximum variation in the time a computed result is output from cycle to cycle. Its
worst value must be less than the window, in some cases the difference from cycle to cycle is known and less than the
window. The criticality represents the importance of the event to the system.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 35

<<QoSCharacteristic>>
latency

<<description>>

Time interval between the instant a software element (e.g.
component, object) receives a request until the final result is

generated

<<QoSDimension>>
minimumLatency : real
{unit(MinLatUnit),
direction(decreasing),
statisticalQualifier(minimum)}
<<QoSDimension>>
maximumLatency : real
{unit(MaxLatUnit),
direction(increasing),
statisticalQualifier(maximum)}
<<QoSDimension>>
jitter : real
{direction(decreasing),
unit(JitterUnit),
statisticalQualifier(maximum)}
<<QoSDimension>>
criticality : integer
{unit(priority),
direction(increasing)}

<<description>>
context turn-around::turn-around-value
post resultOk : result =
self.instant-of-result - self.instant-of-request

instant-of-request and instant-of-result are set
before the invocation of turn-around-value, and
their Units are the same

<<QoSCharacteristic>>
turn-around

<<QoSDimension>>
instant-of-request : real

{unit(requestUnit)}
<<QoSDimension>>
instant-of-result : real

{unit(resultUnit)}

J<<QoSDimension>>
turn-around-value()
{unit(Unit),

direction(decreasing)}

<<description>>
Latency refers to a time interval during
which the response to an event
must be executed

Figure 10-3 Latency Characteristics

10.4 Efficiency Characteristics

The efficiency characteristics allow representing the execution time requirements for responding to each event.

Figure 10-4 includes a general characteristic for the representation of resource request, but we need to know the specific
type of resource to concrete the units of resource requested. The resource-utilization characteristic only describes the
utilization in a single action. The demand characteristics reuse this characteristic to describe general demands of
resources.

Specializations of resource-utilization describe the utilization of computation, communication, and memory resources.
They specialize the units of resource demand for the specific type of resource.

The package includes a general characteristic for the specification of QoS policies. This characteristic only includes some
policies specific of real-time and QoS IP systems.

36

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

<<description>>
The capability of the software product to use appropriate

amounts of resources when the software performs its function
under stated conditions.

[
 Unit :string

<<QoSCharacteristic>>
resource-utilization

<<QoSDimension>>
worst-case-request : integer
{direction(decreasing),

<<description>> statisticalQualifier(maximum), <<description>>
The capability of the software product to use unit(Unit)} The capability of the software product to use appropriate
appropriate amounts of computation resource when <<QoSDimension>> amounts of memory resources when the software
the sgf_tware performs its function under stated mean-case-request : integer performs its function under stated conditions.
conditions. . . !
{statisticalQualifier(mean),

direction(decreasing), !

unit(Unit)}

1
<<QoSCharacteristic>>

T
|
I
I
|
|
1
|
I
I
|
|
|
I
| 1
: resource-comunication : resource-utilization <Unitl -> byte> \
1
|
| 1
: | 1
| 1
| \ N
<<QoSCharacteristic>> “ <<QoSCharacteristic>>
1

resource-memory : resource-utilization <Unitl -> byte>
|

resource-computation : resource-utilization <Unitl -> seconds>

|
|

<<description>>
The capability of the software product to use appropriate
amounts of network resources when the software
performs its function under stated conditions.

<<description>> AN
policies for resource scheduling:

cpu:
"rate monotonic"

“earliest deadline first"
"fifo"

shared resource:
"highest locker"
"priority inheritance"

“ceiling protocol"
"fifo"

<<QoSCharacteristic>>

resource-policy
network:

"weighted fair-queuing”
"deficit round robind"
“class based weighted fair-
queuing”

"fifo"

“rate monotonic"

"earliest deadline first"

<<QoSDimension>>
policy : string

Figure 10-4 Efficiency Characteristics

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

10.5 Demand Characteristics

The demand characteristics combine the resource-utilization characteristics with arrival patterns characteristics for the
description of the amount of resources needed. The types of arrival pattern (periodic, irregular, bounded, bursty and
unbounded) and their dimensions define arrival-pattern. The dimensions are the interval (period of pattern arrival), jitter
(the difference of pattern arrival from cycle to cycle), and burst size (the maximum number of occurrences in the time
interval).

<<description>>

o Parameters for the description of occurences of invocations,
<<QoSCharacteristic>> events, request of resources, and access to objects and
::QoSCatalog::Performace::Efficiency::resource-utilization software resources.

<<QoSDimension>>
worst-case-request : integer
{direction(decreasing),
statisticalQualifier(maximum),
unit(Unit)}
<<QoSDimension>>
mean-case-request : integer PeriodUnit : string, JitterUnit : string, MinUnit : string, MaxUnit : string
{statisticalQualifier(mean),
direction(decreasing), <<QoSCharacteristic>>
unit(Unit)} arrivialPattern

<<QoSDimension>> AU..1

<<QoSDimension>>

execution -)
period [0..n] : real
<<QoSDimension>> {unit(PeriodUnit)}
<<QoSCharacteristic>> load <<QoSDimension>>
demand * 0.1 jitter [0..1] : real
. {Lunit(itterUnit),
<<description>> direction(decreasing)}
Combined description of load quality and resource required <<QoSDimension>>
for execution of elements such us operations, objects, and pattern : arrivial-pattern-types
resources. <<QoSDimension>>

burstSize [0..1] : integer
{direction(decreasing)}

parameters for patterns AN - <<QoSD|.men5|on>>
{context arrivalPattern inv: e minimal [O"_1]) _real .
pattern = arrival-pattern-types::periodic implies {unit(MinUnit),
period.size() = 1 and jitter.size() = 1 and burstSize.size() = 0 and statisticalQualifier(minimum)}
minmal.size () = 0 and maximal.size() = 0 <<QoSDimension>>
pattern = arrival-pattern-types::bursty implies maximal [0..1] : real
period.size() = 1 and jitter.size() = 0 and burstSize.size() = 1 and {unit(MaxUnit : string),
minmal.size () = 0 and maximal.size() = 0 statisticalQualifier(maximum)}

pattern = arrival-pattern-types::irregular implies
period.size() > 0 and jitter.size() = 0 and burstSize.size() = 0 and
minmal.size () = 0 and maximal.size() = 0
pattern = arrival-pattern-types::bounded implies
period.size() = 0 and jitter.size() = 0 and burstSize.size() = 0 and
minmal.size () = 1 and maximal.size() = 1}

Figure 10-5 Demand Characteristics

38 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

10.6 Integrity Characteristic

This QoS Category includes QoS Characteristics that describe allowed differences between the functional result expected
and functional results provided. The main characteristic in this category is the accuracy that is another example of
characteristic that can be dimensioned in different ways. Accuracy is a QoS Characteristic of concern to the user, for
whom this characteristic refers to the integrity of the user information only. (The integrity of headers and similar protocol
control information may be the subject of other characteristics). The accuracy characteristic is specialized in many ways,
including addressing error, delivery error, residual error, etc. Figure 10-6 includes the first QoS characteristic for the
description of the accuracy. It includes a dimension that expresses the maximum allowed difference between the expected
result and the result provided. It is a parameterized characteristic, because the type of the dimension depends on the type
of the results that we want to qualify. We must create an instance of this template with the specific type (e.g., real, integer,
and application types), which will be used as characteristic.

[Type

<<QoSCharacteristic>>
accuracy

<<QoSDimension>>
absolute-difference : Type
{direction(decreasing)}

Figure 10-6 Accuracy Error Characteristics

Figure 10-7 represents different types of accuracies, all them in terms of accuracy errors. All of them include as
dimension the probability of error occurrence. transfer-integrity and establishment-error include an additional dimension
(observation-interval) that specifies the temporal interval of the error occurrence. The different types of errors are:

 addressing error: An incorrect choice of address(es) used for delivery of data.

« transfer error: The incorrect transmission of an amount of data.

« resilience: The ability to recover from errors.

« transfer integrity: The amount of data transferred in a time interval without error.

« establishment error: Inability to establish, within a specified time window, a connection or association that was
requested.

« recovery error: Inability to recover from an error condition.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 39

observation-interval

<<description>>

1
<QoSDimension>> Inability to establish, within a specified time

window, a connection or association that
was requested

<<description>> <<QoSDimension

The amount of data transferred in a interval
time interval without error

1 interval

0.1

<<QoSCharacteristic>>

<<QoSCharacteristic>> .
Q establishment-error

transfer-integrity

descriti <<description>>
<<description>> .

. P The ability to recover from
Inabl_lle to recover from an error errors

condition

<<QoSCharacteristic>>
accuracy-error

_ _ <<QoSCharacteristic>>

<<QoSDimension>> resilience

probability : real
{direction(decreasing)

<<QoSCharacteristic>>
recovery-error

[[
<<QoSCharacteristic>> <<QoSCharacteristic>>
addressing-error transfer-error

<<description>> <<description>>
An incorrect choice of address(es) The incorrect transmission of
used for delivery of data an amount of data

Figure 10-7 Accuracy Error Characteristics

10.7 Security Characteristic

Security characteristics are another example of characteristics that can be dimensioned with different types of parameters
(e.g., type of keys, types of encryption algorithms). We have used three general characteristics. The access-control
specifies the control policy used in the access to the service. The policy has associated a security level. The protection is
a more general characteristic for services that can have associated more than one access control method, and includes the
probability of control break. Another characteristic (safety) is used to qualify the security level that an element provides.
In this case we do not provide details about the methods of security used.

40 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

<<QoSCharacteristic>>

<<description>> Ly . protection
The security afforded to a resource or to <<QoSDimension>>
information probability-faliure : real

{direction(decreasing),
statisticalQualifier(mean)}

<<description>> N

Protection against unauthorized

access to a resource _—
<<$9SDimension>>

control

<<QoSCharacteristic>>
access-control

<<QoSDimension>>
policy : string
<<QoSDimension>>
+derived-level():integer
{direction(incremenal)}

Figure 10-8 Security Characteristics

10.8 Dependability Characteristic

<<description>>
The level of safety of an
event, an action or a resource

<<QoSCharacteristic>>

safety

<<QoSDimension>>
+safety-level : integer
{direction(increasing)}

The dependability includes several characteristics such as availability, reliability, safety (from a reliability perspective),

confidentiality, and maintainability. We have paid special attention to the characteristics that qualify the services.

<<description>>
Adjudged or hypothesized cause of an error. The
system generates a specification fault when the
behavior ends up differing from the specification.

<<QoSCharacteristic>>
failure

<<QoSDimension>>
+domain : domains
<<QoSDimension>>
+perception-by-users : perceptions
{direction(decreasing)}
<<QoSDimension>>
+consequences : consequences
{direction(decreasing)}

<<description>>

A system fails when its behavior differs from that
which was intended. We define failure with respect
to intent, and not respect specification.

<<QoSCharacteristic>>

fault

<<QoSDimension>>
cause : causes
<<QoSDimension>>
nature : natures
{direction(decreasing)}
<<QoSDimension>>
boundary : boundaries
<<QoSDimension>>
persistence : persistences

Figure 10-9 Fault and Failure Characteristics

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

41

The impairments to dependability include the fault, error, and failure. The faults occur inside the system and the failures
are observed in the environment [29]. The failures are evaluated with respect to intent, not the specification. The failures
are quantified with three enumerated attributes: domain (value failures, timing failures), perception-by-users (consistent
failures, inconsistent failures), consequences (benign failures, catastrophic failures). Figure 10-9 includes the
characteristics.

Figure 10-10 includes characteristics for the description of availability and reliability. The availability is a measure of
readiness for usage. There are different parameters for its evaluation; in this solution we use the mean-time-between-
failures and the mean-time-to-repair. And the availability is calculated in the operation availability-value.

<<description>>
<<QoSCharacteristic>> Approaches to detect and correct latent errors
fault-tolerance | - before they become effective.

<<QoSDimension>> . .
<QoSDimension>>

max-number-of-faults : 0.1 heFT 0.1 <<QoSCharacteristic>>
.{qlrectlon.({ncrea3|r1g), reliability
statisticalQualifier(maximum)} _ _
<<QoSDimension>> <<QoSDimension>>
expected-number-service-failures :

+error-procesing : error-procesing L X
{direction(incresing)} {direction(decreasing)}
<<QoSDimension>> <<Q_oSD|mens_|on>>_
fault-treatment : fault-treatments Operation-semantic : string
{direction(increasing)}

U=

<<description>>
Capability of the software product to be in a state to
perform a required function at a given point in time, 1
under stated conditions of use.

<<description>>
. . Measure of the ability of a
<QoSDimension>> system to keep operating
theAvailability | correctly over time.

<<QoSCharacteristic>>
availability
<<QoSDimension>> <<description>>
time-to-repair : real context availability::availability-
{direction(decreasing) post resultOK : result = time-between-failure /
statisticalQualifier(mean)} (time-between-failures + time-to-repair)
<<QoSDimension>> Lot

statisticalQualifier(mean)}
<<QoSDimension>>
availability-value()
{direction(increasing),
statisticalQualifier(mean)}
<<QoSCharacteristic>> % <<QoSCharacteristic>>

connection-availability processing-availability

Figure 10-10 Reliability and Availability Characteristics

Fault-tolerance are solutions to mitigate the reliability problems. In this approach we model the fault-tolerance
characteristic with three dimensions: maximum-number-of-faults (the maximum number of faults supported), error-
processing (what is done at removing errors: detection, diagnosis, backward recovery, forward recovery, and
compensation), and fault-treatment (fault diagnosis and passivation: diagnosis, passivation, reconfiguration).

42 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

The reliability is the ability of a system to keep operating over time. The availability gives one dimension of reliability,
and the fault-tolerance one possible solution to mitigate the reliability problems. The expected-number-of-failures is an

estimation of the number of failures that the service generate, and the operation-semantic is the type of semantic that we
can expect (only one time execution, at least one time execution, at most one time execution, none).

Maturity and recoverability are two specific types of reliability. The maturity size is the capacity of the software to avoid
failures caused in the software itself. And the recoverability is the capacity to re-establish its adequate level of
performance with minimum loss of data. The maximum number of errors in an interval evaluates the maturity. The time
to recover and the time required to restart the system are the dimension of recoverability.

<<description>>
The capability of the software product to re-establish a
specified level of performance and recover the data
directly affected in the case of a failure.

observation-interval

<<QoSDimensiorI>> <<QoSCharacteristic>>
interval recoverability

<<QoSDimension>>
recovery : real
{unit(second),

0.1 direction(decreasing)}
<<QoSDimension>>
‘ restartability : real
<<QoSCharacteristic>> {direction(decreasing),
maturity unit(second)}

<<QoSDimension>>
number-of-faults : integer
{direction(decreasing)}

<<description>>
The capability of the software product to avoid failure
as a result of faults in the software.

Figure 10-11 Maturity and Recoverability Characteristics

10.9 Coherence Characteristic

The coherence includes characteristics for the evaluation of the concurrent and temporal consistency of data and
functions.

The characteristic coherence in Figure 10-12 indicates whether an action has been performed on each entity (data item,
value, etc.) in a list within a given time window. In this solution the characteristics represent the probability and the
interval, the constraint attaches the characteristics to the set of elements.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 43

10.10 Scalability Characteristic

Sometimes the same service is not produced with the same quality level when the number of software element increases.
The capacity of software elements is limited to a minimum and maximum number of elements. For example, the
minimum and maximum number of elements in a list is limited, and the quality of services over the list depends on the
number of elements. Figure 10-13 includes a simple characteristic for the general description of scalability. The operation
cost-per-unit includes a number as argument that represents the number of units, and returns a value that represents the
cost for the application of services for this number of units.

<<description>>

Indicates whether an action has been performed on each entity
(data item, value, etc.) in a list within a given time window

<<QoSCharacteristic>>
coherence

<<QoSDimension>>
probability : real
{unit(incresing)}

0.1

<<Q0aSDimension>>
interval

observation-interval

Figure 10-12 Coherence Characteristics

44 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

<<description>>
Ability of a system to continue to meet its quality levels as
the demand for the software functions

<<QoSCharacteristic>>
scalability

<<QoSDimension>>
minimum :

{direction(decreasing)
statisticalQualifier(minimum)
" <<QoSDimension>>
maximum :

{direction(increasing)
statisticalQualifier(maximum)
<<QoSDimension>>
cost-per-unit()
{direction(decreasing)

Figure 10-13 Scalability Characteristics

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

46

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

11 Risk Assessment

This metamodel defines an abstract language for supporting model-based risk assessment. The aim of model-based risk
assessment is to integrate established risk analysis methods, like HazOp, FTA, and FMEA with UML modeling in a
framework for conducting risk assessments of dependable IT-systems.

An important motivation for the metamodel is the practical use of UML to support risk management in general, and risk
assessment in particular. In model-based risk assessment, UML models are used for three different purposes:

To describe the target of evaluation at the right level of abstraction. A proper assessment of technical system
documentation is not sufficient; a clear understanding of system usage and its role in the surrounding organization
or enterprise is just as important. UML allows these various aspects to be documented in a uniform manner.

To facilitate communication and interaction between different groups of stakeholders involved in a risk assessment.
One major challenge when performing a risk assessment is to establish a common understanding of the target of
evaluation, threats, vulnerabilities, and risks among the stakeholders participating in the assessment. This
motivates a UML profile aiming to facilitate improved communication during risk assessments, by making the
UML diagrams easier to understand for non-experts, and at the same time preserving the well-definedness of
UML.

To document risk assessment results and the assumptions on which these results depend to support reuse and
maintenance. Risk assessments are costly and time consuming and should not be initiated from scratch each time
we assess a new or modified system. Documenting assessments using UML supports reuse of assessment
documentation, both for systems that undergo maintenance and for new systems, if similar systems have been
assessed before.

<<metamodel>> E— <<metamodel>>
Context SWOT

<<metamodel>>
UnwantedIncident

<<metamodel>>
Risk

]

<<metamodel>>
Treatment

Figure 11-1 Submodels in the Risk Assessment Metamodel

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms a7

11.1 Risk Assessment Metamodel

The metamodel is divided into five submodels (Figure 11-1) that support different stages of a risk assessment. A risk
assessment always starts with identifying the context of the assessment. A strengths, weaknesses, opportunities, and
threats (SWOT) analysis may be part of this. After the context has been established, the remainder of a risk assessment
can be divided into identification and documentation of unwanted incidents, risks, and treatments. This process is in
accordance with the risk management process of [5].

The unwanted incident model is concerned with organizing and documenting the threats and vulnerabilities that open for
incidents that may harm the system. The risk model quantifies unwanted incidents with respect to the reductions of asset
value that they may cause. The treatment model supports documenting ways of treating the system and quantifying the
effect of treatments with respect to reducing the potential harm of risks.

11.1.1 Context

This submodel (Figure 11-2) defines the context of a risk assessment. The context consists of the stakeholders and assets
of the system under assessment, which all further assessment is based on.

Issue: 7811 Class "ownership"

<<metaclass>> <<metaclass>>
Policy Entity
* 1
11 owner valuation | 1..*
<<metaclass>> orgin - | <<metaclass>> | OWner <<metaclass>> <<metaclass>>
RiskEvaluationCriterion 1L* 1 Stakeholder 1 1L* Asset 1 1 AssetValue
19 ource target * | instance
1. 1 1| definition
<<metaclass>> <<metaclass>>
Interest 1 ValueDefinition

Figure 11-2 Context submodel

A risk assessment is asset-driven, which means that assessment is carried out relative to the identified assets. In the
general case, an asset may be anything that stakeholders of the system under assessment find to have value. However, in
the setting of Quality-of-Service, an asset should be the quality level of an entity of the assessed system. In this case, the
entity would typically be a service of the system under assessment.

Each asset may only be related to one stakeholder and should have an unambiguous value assigned by one stakeholder. If
two stakeholders view the same entity as an asset, the entity should be documented as two different assets related to the
same entity. Two assets are per definition different if valued by different stakeholders. Both the values and the reasons for
the valuing may be different.

Below the concepts of the models are described:

Stakeholder: A person or organization who has interests in the assessed system.

48 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

Policy: A rule or regulation defined by a stakeholder, related to the system under assessment. A policy could relate to
security aspects like confidentiality, integrity, availability, non-repudiation, accountability, authenticity and
reliability, and should provide directions for the assessment.

RiskEvaluationCriterion: A criterion that identified risks are evaluated against in order to decide whether the risk is
acceptable or not.

Asset: A part or feature of the system that has value for one of the stakeholders, for example the quality level of a
service.

Entity: A physical or abstract part or feature of the system under assessment that becomes an asset when assigned
value by a stakeholder, for example a service provided by the system.

AssetValue: The value assigned to an asset by a stakeholder.

ValueDefinition: Definition of value types for various values used in a risk assessment, such as asset value.

11.1.2 SWOT

Issue: 7812 Qualification Enterprise

Strengths, weaknesses, opportunities, and threats (SWOT) analysis is a part of establishing the context of a risk

assessment. A SWOT is carried out on enterprise level and is used for pointing out general directions of the assessment.

Its results are only indirectly used in the further assessment. For this reason the concepts of the submodel for SWOT,

shown in Figure 11-3, are not strongly connected to the rest of the metamodel.

<<metaclass>>

:RiskAssessment::Context: :Stakeholder

relatedStakeholder | 1..*

*

<<metaclass>> relatedAssel <<metaclass>>
SWOTElement L * 1% EnterpriseAsset
<<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>>
EnterpriseStrength EnterpriseWeakness EnterpriseOpportunity EnterpriseThreat

Figure 11-3 SWOT submodel

A SWOT analysis is concerned with identifying the strategic context of the organization carrying out a risk assessment.
The elements of the SWOT model are described below:

EnterpriseAsset: Asset of the organization from a strategic point of view.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

49

EnterpriseStrength: A strategic strength of the organization.
EnterpriseWeakness: A strategic weakness of the organization.
EnterpriseOpportunity: A strategic opportunity of the organization.

EnterpriseThreat: Something that threatens the strategic position of the organization.

11.1.3 Unwanted Incident

Identification and documentation of unwanted incidents is concerned with exploring the threats and vulnerabilities of the
system under assessment, and how threats and vulnerabilities may combine and lead to potential incidents that can harm
the system.

<<metaclass>> <<metaclass>> *
Threat Unwantedincident
threat incident * L=
1.* 1% enabler
<<metaclass>> * 1. <<metaclass>> <<metaclass>>
ThreatScenario | . IncidentScenario Vulnerabili
included Y
*
* 1.*
initiator Q target
« | <<metaclass>> target <<metaclass>>
Scenario * * ::RiskAssessment::Context::Asset
*
1¢source tl t
initiatedScenario arge
*
*
<<metaclass>>
Initiate

Figure 11-4 Unwanted incident submodel
The concepts of Figure 11-4 are described below:

Threat. A potential cause of an unwanted incident, which may result in harm to a system or organization and its
assets. Threat agents may be external, (e.g., hackers or viruses) or internal (e.g., system failures or disloyal
employees).

ThreatScenario. A description of how a threat may lead to an unwanted incident.
Vulnerability. A weakness with respect to an asset or group of assets that can be exploited by one or more threats.
UnwantedIncident. An undesired event that may reduce the value of an asset.

Initiate. An unwanted incident may lead to another scenario. Initiate is a relation for modeling that between an
unwanted incident acts as an initiator of another unwanted incident.

IncidentScenario. A scenario leading to an unwanted incident.

50 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

11.1.4 Risk

A risk is an unwanted incident that has been assigned consequence and frequency values. These values are used for
calculating a risk value, which represents loss of asset value of the asset the risk is related to. Risks that in some way are
related or similar may be categorized into risk themes. A risk theme is itself assigned a risk value based on the risks it
contains and is treated like a singular risk with respect to evaluation and treatment.

Risk values are evaluated by risk evaluation criteria defined in the context of the risk assessment. A risk evaluation

criterion states which risk values are acceptable, and which are not — implying the need for treatment.

nstance
<<metaclass>> <<metaclass>>
::RiskAssessme nt::Unwante dincident::Unwantedinci dent Consequence [
1 | target 1 1 <<metaclass>> | instance
even
- Frequency .
<<metaclass>> 1 1 1
RiskEvaluation
<<metaclass>> grouping | <<metaclass>>
Risk 1L R RiskTheme
target
<<metaclass>>
::Risk Assessment: :Context::Asset <<metaclass>>
1 b * * RiskRelationship
<<metaclass>>
::RiskAssessment::Context:: RiskEvaluationCriterion 1
definition 1 | definition
1
<<metaclass>> * <<metaclass>> |instance definition <<metaclass>>

::RiskAssessment::Context::AssetValue

Figure 11-5 Risk submodel

RiskValue

*

1

::RiskAssessme nt::Context::ValueDefinition

The concepts of the submodel of Figure 11-5 are described in the following:

AbstractRisk: The common properties of risks and risk themes, such as risk value.

Risk: An unwanted incident that has been assigned a consequence value, a frequency value, and a resulting risk value.
Threats, vulnerabilities, and unwanted incidents may go to several assets, but since a risk may reduce the value
of an asset, a risk is only related to one particular asset.

RiskTheme: A categorization of similar risks, assigned its own risk value.

RiskRelationship: The relation between risks or risk themes.

RiskEvaluation: The assignment of a risk or a risk theme to the unwanted incident it evaluates with respect to risk
value.

Consequence: The consequence of an unwanted incident happening, relative to an asset.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

51

Issue: 7819 Definition of Frequency

Frequency: A qualitative or quantitative measure of how often or with what probability a risk occurs.

RiskValue: A value assigned to a risk, reflecting the loss of asset value that the risk represents.

11.1.5 Treatment

The treatment model (Figure 11-6) is concerned with documenting and evaluating ways of providing treatments to the
system under assessment in order to reduce the value of risks. A treatment may apply to several unwanted incidents.
However, when a treatment’s capability to reduce risk value is assessed, this is with respect to a single risk or risk theme.

Issue: 7820 Accept treatment

<<metaclass>>

<<metaclass>>

TreatmentEvaluation

*

Awid 1
\ 1 |target
<<metaclass>> | 1 | 1 L I I
<< >> . << >> .- << >> << >>
ReduceConsequence — metaclass ' 1 metaclass metaclass ' metac assv
TreatmentOption @ Treatment TreatmentEffect RiskReduction
/7 sourc effect 1
*
<<meta'class'>> be . * | reduction instance
ReduceLikelihood 1| target
*
<<metaclass>> <<metaclass>>
Transfer ::RiskAssessment::Risk::AbstractRisk
1 1
<<metaclass>>
Retain 1.* 1
target target
<<metaclass>> <<metaclass>>
::RiskAssessment::UnwantedIncident::Scenario ::RiskAssessment::Risk::RiskValue
instance| *
definition 1| definition
<<metaclass>>

Figure 11-6 Treatment submodel

The concepts of Figure 11-6 are described below:

52

Treatment: Ways of treating scenarios leading to risks.

TreatmentEffect: A treatment’s capability to reduce the risk value of a particular risk.

::RiskAssessment::Context::ValueDefinition

TreatmentEvaluation: The assignment of a treatment effect to the treatment it evaluates.

RiskReduction: The value of a treatment effect, i.e., the concrete reduction of a value of a risk.

TreatmentOption: Main classes of providing treatment [5], and hence the relation between a treatment and the
scenario it applies to. The options are

Avoid: Decide not to carry on the activity that may lead to risks.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

ReduceConsequence: Reduce the impact on assets of the resulting risks.
ReduceLikelihood: Reduce the frequency of the scenario leading to risks.
Transfer: Involve other party bearing or shearing the resulting risks.

Retain: Keep the resulting risks..

11.2 Risk Assessment Profile

This profile provides an extension to the UML metamodel, introducing modeling elements for the concepts defined in the
risk assessment metamodel. To some extent, modeling elements from the QoS framework profile in Chapter 8 are used.
The structure of the profile, shown in Figure 11-7, reflects the structure of the metamodel.

11.2.1 Context

The subprofile for the context of risk assessments is shown in Figure 11-8. As can be seen from the figure, Stakeholder
and Asset may be modeled as both Class and Actor. Documenting assets stakeholder, and their relationships is most
appropriately done in a class diagram, and hence assets and stakeholders are modeled as classes. However, when
documenting threats and unwanted incidents in use case diagrams (see Section 11.2.3) assets and stakeholders should be
modeled as Actor. The Interest relation is modeled using DirectedRelationship.

For the remaining concepts Policy, ValueDefinition, AssetValue, and RiskEvaluationCriterion we apply the appropriate
stereotypes from the QoS framework profile. ValueDefinition is modeled as QoSCharacteristic and AssetValue as
QoSValue. Policy is modeled as QoSCharacteristic, which has the expressiveness to capture various security aspects (see
Chapter 10). RiskEvaluationCriterion is modeled as QoSRequired.

<<Profile>> <<Profile>>
Context SWOT
<<Profile>>
UnwantedIncident
<<Profile>>
Risk
<<Profile>>
Treatment

Figure 11-7 Subprofiles in the Risk Assessment profile

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 53

<<metaclass>> o <<stereotype>>
::UML2.0::Logical View::UML::UseCases::Actor Stakeholder
>< <<stereotype>>
y 3 Asset
<<metaclass>>
::UML2.0::Logical View::UML::Classes::Kernel::Class
<<stereotype>>
Entity
<<metaclass>> l <<stereotype>>
::UML2.0::Logical View::UML::Classes::Kernel::DirectedRelationship Interest
<<stereotype>>

Policy
<<stereotype>>
::QoSProfile::QoSCharacteristic
<<stereotype>>

ValueDefinition

<<stereotype>> 7 <<stereotype>>
::QoSProfile::QoSValue AssetValue
<<stereotype>>

<<stereotype>> 1

::QoSProfile::QoSRequired RiskEvaluationCriterion

Figure 11-8 Context subprofile

11.2.2 SWOT

As seen in Figure 11-9, SWOTEIlement is modeled as UseCase and EnterpriseAsset as Classifier.

<<stereotype>>
Enterprise Asset

<<stereotype>>
EnterpriseStrength

<<metaclass>>
::UML2.0::Logical View::UML::Classes::Kernel::Classifier

<<stereotype>>
Enterprise Weakness

<<stereotype>>
SWOTEIlement

S
~F—

<<stereotype>>
EnterpriseOpportunity

<<stereotype>>
EnterpriseThreat

Figure 11-9 SWOT subprofile

54 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

11.2.3 Unwanted Incident

The subprofile for unwanted incidents is shown in Figure 11-10. As the acting part Threat is modeled as Actor and
ThreatScenario, as the behavioral aspect, is modeled as UseCase. IncidentScenario, which also represents behavior, is also
modeled as UseCase, while UnwantedIncident is not given an explicit representation. Initiate is represented by
DirectedRelationship. Vulnerabilities may be seen as (unwanted) features of the assets they apply to, and are modeled as
Feature.

<<metaclass>> > <<stereotype>>
::UML2.0::Logical View::UML::UseCases::Actor Threat
<<stereotype>>

/ ThreatScenario
<<metaclass>>

::UML2.0::Logical View::UML::UseCases::UseCase ‘\ <<stereotype>>
IncidentScenario

<<metaclass>> . <<stereotype>>

::UML2.0::Logical View::UML::Classes::Kernel::Feature Vulnerability

<<metaclass>> <<stereotype>>
::UML2.0::Logical View::UML::Classes::Kernel::DirectedRelationship . Initiate

Figure 11-10 Unwanted Incidents subprofile

11.2.4 Risk

The subprofile for risks is shown in Figure 11-11. Both Risk and RiskTheme are modeled as UseCase. This makes it
possible to capture arbitrary grouping of Risks into RiskThemes by making risks parts in a risk theme. RiskRelationship
is modeled as Association, allowing risk themes, with their relations, to be documented in class diagrams. RiskEvaluation
assigns a risk to an unwanted incident, and is modeled as DirectedRelationship.

Consequence, Frequency, and RiskValue, which all are values, are modeled by the means of QoSValue.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 55

<<stereotype>>

4/ Risk
<<metaclass>> -] | <<stereotype>>

::UML::UseCases::UseCase AbstractRisk ﬂ\
<<stereotype>>

RiskTheme

<<stereotype>>

::UML::Classes::Kernel::Association D — X 2 .
RiskRelationship

<<metaclass>> <<stereotype>>

::UML::Classes::Kernel::DirectedRelationship < RiskEvaluation

<<stereotype>>
Consecuence
<<stereotype>> <<stereotype>>
::QoSProfile::QoSValue \ Frequency
<<stereotype>>
RiskValue

Figure 11-11 Risk subprofile

11.2.5 Treatment

The treatment subprofile is shown in Figure 11-12. Treatment protects against risks, and is modeled as a UseCase.
TreatmentEffect is modeled using Class and TreatmentEvaluation using DirectedRelationship. TreatmentOption relates
treatments to risks and is modeled using DirectedRelationship. Finally, RiskReduction is a kind of a value and is modeled

with QoSValue.

56 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

::UML2.0::Logical View::UML::UseCases::UseCase

<<metaclass>>

::UML2.0::Logical View::UML::Classes::Kernel::Class

<<metaclass>>

<<metaclass>>
::UML2.0::Logical View::UML::Classes::Kernel::DirectedRelationship

<<stereotype>>
::QoSProfile::QoSValue

Figure 11-12 Treatment subprofile

11.3 Examples

In the following we present some examples on the use of the risk assessment profile. The presentation is structured

according to the subprofiles.

11.3.1 Context

‘ <<stereotype>>

!

<<stereotype>>
Treatment

TreatmentEffect

/ TreatmentOption | <}]—— |

<<stereotype>>
TreatmentEvaluation

<<stereotype>>
RiskReduction

<<stereotype>>
Awvoid

<<stereotype>>

ReduceConsequence

<<stereotype>> A/

<<stereotype>>

ReduceLikelihood

<<stereotype>>
Transfer

<<stereotype>>
Retain

Figure 11-13 shows how the stereotype <<ValueDefinition>> is used for defining the value types used throughout a risk
assessment. In this case all values are enumerations, i.e., values on an ordinal scale, except for “RiskReductionRef” which

defines a mapping. An alternative could have been to define asset values and consequences as monetary values and

frequencies as probabilities.

<<ValueDefinition>>
AssetValueDef

<<ValueDefinition>>
ConsequenceDef

<<ValueDefinition>>
FrequencyDef

<<QoSDimention>>
value:{low,medium,high}
{direction(increasing)}

<<QoSDimention>>

value:{insignificant,minor,

moderate,major,catastrofic}
{direction(increasing)}

<<QoSDimention>>

value:{rare,unlikely,possible,

likely,almost_certain}
{direction{increasing)}

<<ValueDefinition>>
RiskValueDef

<<ValueDefinition>>
RiskReductionDef

<<QoSDimention>>

value:{no,low,moderate,high,

extreme}
{direction(increasing)}

<<QoSDimention>>
value:{no,low,moderate,high,

high,extreme}

extreme} -> {no,low,moderate,

Figure 11-13 Value definitions

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

57

<<Asset>>
QualityLevel <<Entity>>

/ Service

<<AssetValue>>
Value: AssetValueDef

value = medium

Vulnerabilities: <<QoSOffered>>
- Extensive computation Service Quality

A
|

<<Interest>>
1

<<Stakeholder>>
Service provider

Figure 11-14 Modeling of assets

Figure 11-14 shows definition of an asset. The entity is a service that has some quality characterizations associated with
it. The asset is defined as the quality level of the service related to some offered service quality. The asset is owned by the
stakeholder “Service provider,” and its value is assigned by instantiating the value definition for asset values. Further the
diagram shows that asset has one vulnerability.

11.3.2 Unwanted incident

In Figure 11-15, modeling of a threat is exemplified. "The threat "Malicious person™ has the scenario, i.e. behavior,
"Flooding". This threat scenario is related to the asset "QualityLevel”.

<<Threat>> <<ThreatScenario>> <<Asset>>
Malicious person Flooding QualityLevel

Figure 11-15 Modeling of threats

Figure 11-16 illustrates how incident scenarios are modeled. The incident scenario “Denial-of-Service” relates to the asset
“QualityLevel”, and includes the threat scenario from the diagram above. A scenario may lead to another scenario, and
this is shown by use of the stereotype <<Initiate>>. In this case, “Denial-of-Service” initiates the incident scenario “Loss
of customer” which relates to the assets “Customers”.

58 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

<<Initiate>>
-

-

<<Incident$cenario>>
Denial-ofService
1
<<include>>

<<IncidentScenario>>
Loss of customer

<<Asset>>

Customers
Vulnerabilities:
- Disloyalty

<<ThreatScenario>>
Flooding

Figure 11-16 Modeling of unwanted incidents

11.3.3 Risk

<<Asset>>
QualityLevel
Vulnerabilities:
- Extensive computatiol

A risk is an assignment of consequence, frequency, and risk values to an unwanted incident. Figure 11-17 illustrates how
this is modeled. The values are instances of the corresponding value definitions. The risk “Denial-of-service evaluation”
is assigned to the unwanted incident resulting from the incident scenario "Denial-of-Service" by the use of the stereotype

<<RiskEvaluation>>. The diagram also shows that the risk is related to the asset “QualityLevel.”

<<Risk>>
Denial-of-Service evaluation

<<Consequence>> <<Frequency>>
H f EValue:FrequencyDef
value = major value = unlikely

<<RiskValue>>
Rvalue:RiskValueDef

value = moderate

1

|

|

|
<<RiskEvaluation>>

<<IncidentScenario>>
Denial-of-Service

Figure 11-17 Modeling of risks

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

<<Asset>>
QualityLevel

<<AssetValue>>
Value: AssetValueDef

value = medium

Vulnerabilities:
- Extensive computation

59

Similar risks may be grouped into risk themes. Figure 11-18 shows how the stereotype <<RiskTheme>> is used to define
risk themes of instances of risks. This allows a risk to be a member of several risk themes. In this example, the risks
“Denial-of-service evaluation” and “Loss of customer evaluation” are grouped to form the risk theme “DoSRelated.” As
seen in the example, a risk theme is also assigned a risk value.

<<RiskTheme>>
DoSRelated

<<Risk>>
r1:Denial-of-Service evaluaion

<<Risk>>
r2:Loss of customer evaluaion

<<Riskvalue>>
Rvalue:RiskValueDef

value = moderate

Figure 11-18 Modeling of risk themes

11.3.4 Treatment

Figure 11-19 models “Authentication” as a treatment for the unwanted incident resulting from the incident scenario
"Denial-of-Service." The stereotype <<Transfer>> (one of the treatment options) explains what kind of treatment
“Authentication” is.

<<Treatment>>
Authentication

<<Incident$cenario>>
Denial-of-Service
1
<<include>>
|
I
|

; ; <<Asset>>

<<Threat>> QualityLevel

L <<ThreatScenario>>
Malicious person

Flooding
Figure 11-19 Modeling of treatments

In Figure 11-20 an example of how a treatment effect is modeled is presented. The treatment effect “DoSTransfer” is
bound to the treatment “Authentication” by the use of the stereotype <<TreatmentEvaluation>>. The figure also shows
that “DoSTransfer” relates to the risk “Denial-of-Service evaluation.” The risk reduction, i.e., the value of the treatment
effect, is a mapping from moderate to low, meaning that implementation of the treatment would reduce the risk value of
“Denial-of-Service evaluation” from moderate to low.

60 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

<<Risk>>
Denial-of-Service evaluation

<<TreatmentEffect>> <<Consequence>> <<Frequency>>
DoSTransfer CValue:ConsequenceDef| EValue:FrequencyDef
value = major value = unlikely
<<RiskReduction>> E—
RRValue: RiskReductionDef
value = moderate -> low
<<RiskValue>>
Rvalue:RiskValueDef
1
] value = moderate
|
|
| 1
1 |
<<TreatmentEvaluation>> I
|
l‘ <<RiskEvaluation>>
I
[!
| [
|

<<Transfer>>

<<Treatment>> <<IncidentScenario>>
Authentication Denial-of-Service

Figure 11-20 Modeling of treatment effects

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

61

62

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

12 FT Mitigation Solutions

In this part of the specification, we propose some UML extension for the description of Fault-Tolerant (FT) software
architectures. The solutions proposed are oriented to complex systems (in general distributed systems), with high-
reliability requirements. Examples of these types of systems are air traffic control systems.

FT techniques provide support to mitigate the reliability problems. To model software architectures that employs FT
techniques, we require some constructors for the description of specific concepts involved in these techniques. Some
examples are the identification of groups of elements that support services and the selection policies used in multiple
versions approaches.

In this specification, we limit the scope of FT to the safety mitigation means. We concentrate our work in the scope of the
FT technical solutions, not in safety in general (not in safety assessment and prediction). FT are technical solutions to the
reliability requirements. Reliability is a specific QoS Characteristics that we can quantify in different ways.

Reliability refers to the continuity of the service, and safety is related to the non-occurrence of catastrophic consequences
on the environment because of the global system (not only the software system). Reliability measures the probability of
failure, not the consequences of those failures. Pressman [46] defines the reliability such as “the probability of failure free
operation of a computer program in a specified environment for a specified period of time.”

Software safety is concerned with the consequences of failures from a global system perspective. Leveson [35] defines
software system safety as “the software will execute within a system context without contributing to hazards.” A hazard
is defined as “a state or set of conditions of a system (or an object) that, together with other conditions in the environment
of the system (or object), will lead inevitably to an accident (loss event).”

[25] states “The goal of [software] fault tolerance methods is to include safety features in the software design or Source
Code to ensure that the software will respond correctly to input data errors and prevent output and control errors. The
need for error prevention or fault tolerance methods is determined by the system requirements and the system safety
assessment process.” This is a proposal to integrate the FT solutions in UML software architectures; the safety analysis
would be part of a process analysis of Reliability QoS.

FT requires some kind of redundancy, fault detection, and recovery. Replication is a basic redundancy tool. In general,
replicas will execute in different nodes. UML provide good solutions to describe object-oriented architectures; in our
approach, the main redundancy entities will be the objects and components.

This solution provides support to describe Fault Tolerant CORBA architectures. However, we are not limited to Fault
Tolerant CORBA architectures.

12.1 FT Architectures MetaModel

Lyu [37] and Torres [57] propose a classification of FT techniques in two types: i) single-version; in this type of solutions
a single piece of software includes some techniques to detect the fault and handle the errors, and ii) multi-version; the
same piece of software can have more than one version, and the architecture provides support to avoid global failures
when one version fail.

Single and multi-version have different architectures, but both require some basic concepts such as fault detection. Some
basic concepts of both types of solutions are:

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 63

Fault Detection. There are very different types of tools to support the fault detection. Some examples are: i) run-time
checks, they include hardware detection mechanisms such as overflow, division by zero and others and software
checks that raise exceptions. ii) Timing checks, such as watchdog timers. iii) Coding checks based on some kind
of redundancy. iv) Functions and software structures that support some properties such as inverse computations
and redundant fields, and v) replication checks based on matching of multiple outputs.

The self-protection of FT must take into account the external and the internal contaminations. We can detect
errors because of the inputs arriving from other software pieces or errors in the results that are provided to other
pieces.

Groups. The replication of software elements requires the identification of the group of elements that compose a
replication block to provide the common service. Groups of elements have associated FT policies and styles that
customize FT mechanisms according to application characteristics (response time requirements, maintenance
considerations, development costs, etc.).

Replication styles. The FT architectures use different policies to handle the different types of replications, and
recovery information. Some styles define active replications (all replicas remain active) and others define more
passive ones (only one replication is active while others wait for synchronization and wake-up). Some policies
require that the state of all replicas be the same, while in others replicas can have divergent behaviors. For
passive replications, there are different approaches to update the state of passive replicas. All these types of
configuration parameters define the replication styles.

The FT profile includes four metamodels that support the concepts that we have introduced.

Fault Tolerant Core: This package includes the basic concepts for the description of FT architectures. These basic con-
cepts define how to apply FT policies and styles to groups of replications, how to identify these groups, and how to
identify the individual replications.

Fault Detection: This package includes solutions for the detection of faults. The different approaches for the detection of
faults go from the automatic generation of detectors to the entire support from the application.

Object Group Properties: The group properties include information such as the type of consistency checking, the monitor-
ing of the different members in the group, and how to control the aggregation of new memberships.

Replication Styles: FT techniques use different approaches to support the replications with different properties. The single
and multi-version solutions have different replication techniques. Two different styles are passive and active
replications that require different types of monitoring and state checking. Another classification depends on the type
of information required to synchronize the state of replicas and their persistence.

| |

<<metamodel>> <<metamodel>>
Fault Detection Object Group Properties

]]]

<<metamodel>> <<metamodel>> <<metamodel>>
Fault Tolerant Domain Replication Styles Client Side View

Figure 13-1 FT Subprofiles

64 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

12.1.1 Core Package for FT Architectures

FT extensions support the design of FT systems with the following principles:
« No single point of failure that may cause the loss of a critical function.
« Systematic monitoring and control of applications, nodes, external links and networks to detect failures.

« Manual System Control capability e.g., stop/restart of run-time applications, or transitions to a degraded mode.

Global and redundant supervision.

« Local supervision capability on each node.

Widely used synchronization algorithms, and tolerance to loss of external time reference.

The core of FT identifies concepts to model policies that use the common infrastructures that support FT, including the
core of group and the core of replica. These main concepts identify the main FT concepts in a UML architecture. These
concepts have equivalent elements in CORBA FT (Fault Tolerant Domain, Server Object Group, and Fault Tolerant
Object).

Figure 13-2 includes the core model for the description of FT Architectures. This model includes the following main
concepts:

FaultToleranceDomain:

Many applications that need fault tolerance are quite large and complex. Managing such applications as a single entity is
inappropriate. Each FaultToleranceDomain typically contains several hosts and many object groups, and a single host
may support several FaultToleranceDomain. The FaultToleranceDomain decides about the default policies that are
applied in the ServerObjectGroup and Replicas that it manages. The policies includes the approachs to detect the errors
and styles of replication management. Each ServerObjectGroup has associated a FaultToleranceDomain.

Examples of policies are the type of ReplicationStyle (e.g., passive, active), initial number replicas, and minimum number
replicas. FaultToleranceDomain defines the default policies that apply to all object groups associated to this manager. It
is also possible to set the properties of an object group.

<<metaclass>>
FaultToleranceDomain

FaultDetectorDeploymentPolicy : FaultDetectorDeploymentPolicy

Identifier : string ReplicationStyl
1
Element

*
<<metaclass>>

::FaultTolerant Mechanisms::SoftwareReplicationMechanisms::Replication Styles::ReplicationStyle
<<metaclass>>
ServerObjectGroup ReplicaﬁonSter _
<<comment>> o T 1 {LoggableState is relevant
Any kind of element that only if ReplicationStyle is
needs to be managed with FT "PassiveReplicaStyle" (need
constraints. State for synchronisation).}
* | Replica .
<<comment>> AN
Only used to deploy ~ }eem <<rr)etaclass‘>>
replicas. ObjectReplica <<metaclass>>
InitialReplicationState : ReplicaState LoggableState

Figure 13-2 Metamodel of FT Core

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 65

ServerObjectGroup:

To render an object fault-tolerant, several replicas are created and managed as an object group. While each individual
replica has its own identity, a reference to the entire group makes transparent to the clients the concept of replication. The
clients invoke the object group, and the GroupManager decides the replicas that must execute the invocation and manages
the validity of responses.

ObjectReplica:

The redundancy entity in this proposal is the Replica. The number of replicas or their location are basic parameters to
support the failure management.

The LoggableState defines the significant state of the entire group of Replicas. This state is used for the synchronization
of primary and backups.

ReplicaState defines the dynamic state information of a Replica, which depends on the role of the replica in the group.
These roles depend on the policies used in the group but examples are Primary Replica, Backup Replica, Transient
Replica. For each type of policy the information included in a ReplicaState is different.

The FaultToleranceDomain establishes the type of replication and the type of fault detector to be used. Figure 13-3
inludes types of fault detection policies.

FaultDetectorDeploymentPolicy:

FaultDetectorDeploymentPolicy describes the required material that the safety engineering uses to describe how to
monitor software faults. We define three types of detectors:

« StaticallyDeployedFaultDetectors: In an operating environment with a relatively static configuration, location-
specific Fault Detectors will typically be created when the FT infrastructure is installed. For example, the stand-
alone Fault Detectors could be implemented as daemon processes that are installed with the FT infrastructure.
These Fault Detectors could be registered in a manner internal to the FT infrastructure, allowing the infrastructure
to include them in every fault-tolerant application within the fault tolerance domain in a transparent manner.

« InfrastructureCreatedFaultDetectors: The FT infrastructure may create instances of Fault Detectors to meet the
needs of the applications. Because these Fault Detectors are created (or, at least, configured) by the FT
infrastructure, it is the only one who needs to know the identities.

« ApplicationCreatedFaultDetectors: It might be necessary or advantageous for applications to create their own Fault
Detectors. For example, applications might have unique knowledge of their operating environment, such as access
to hardware indicators of faults within the operating environment. However, unlike the other types of Fault
Detectors, the FT infrastructures do not need to know the identity of application-created Fault Detectors.

66 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

<<metaclass>>
FaultDetectorDeploymentPolicy

i

<<metaclass>>
StaticallyDeployedFaultDetectors

<<metaclass>>
InfrastructureCreatedFaultDetectors

<<metaclass>>
ApplicationCreatedFaultDetectors

Figure 13-3 Metamodel of Fault Detection Policies

12.1.2 FT Group Properties

FT infrastructures provide support to detect faults and activate mechanisms to handle these faults. The infrastructures can
include different mechanisms to monitor the replicas to detect the failures, to check the consistency, and to handle the
faults.

These properties may be set statically as defaults in the PolicyManager, or may be set or changed dynamically while the
application is executing.

Figure 13-4 includes the metamodel for the description of FT Group Properties. This model includes the following
concepts:

MembershipStyle:

Describes responsibilities for replica creation. Defines whether the membership of an object group is infrastructure-
controlled or application-controlled:

ApplicationControlledMembership: The application may create a server object itself and then notify to the GroupManager
the creation of the new replica. Another alternative is the creation from the GroupManager when application request it.
The application is responsible for enforcing the Initial Number Replicas and Minimum Number Replicas properties.

InfrastructureControlledMembership: The GroupManager decides when to create the members of the object group, and
satisfies the Initial Number Replicas property, and after the loss of a member because of a fault to satisfy the Minimum
Number Replicas property. The GroupManager initiates monitoring of the members for faults, according to the
FaultMonitoringStyle.

ConsistencyStyle:

Describes responsibilities for replica consistency management. Defines whether the consistency of the states of the
members of an object group is infrastructure-controlled or application-controlled. Some components of the FT
infrastructure, such as the Logging and Recovery Mechanisms, are used only for object groups that have the
infrastructure-controlled Consistency Style.

ApplicationControlledConsistency: The application is responsible for checkpointing, logging, activation and recovery, and
for maintaining any kind of consistency appropriate for the application.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 67

InfrastructureControlledConsistency: The FT infrastructure is responsible for checkpointing, logging, activation and
recovery, and for maintaining Strong Replica Consistency, Strong Membership Consistency, and Uniqueness of the
Primary for the ColdPassive and WarmPassive Replication Styles.

FaultMonitoringStyle:
Describes how replica faults are controlled. Two types of FaultMonitoringStyles are:

< PullMonitoringStyle: The Fault Monitor interrogates the monitored object periodically to determine whether it is
alive.

« PushMonitoringStyle: The monitored object periodically reports to the fault monitor to indicate that it is alive.
FaultMonitoringGranularity:

The granularity determines the level of control used to detect the fails. Some types require more resources than others, but
can detected exceptional occurrences.

IndividualMemberMonitoring: Each individual member of this object group is monitored.

LocationMonitoring: When a new replica in the group is created, and there is not another replication monitored in the
same location, the new replica is monitored. This replica acts as a “fault monitoring representative” for the members of
the other objects groups at that location. If another object at that location is already being monitored, then that object acts
as the “fault monitoring representative” for the member of this object group at that location. If the “fault monitoring
representative” at a particular location ceases to exist due to a fault, then the Replication Manager regards all objects at
that location to have failed and performs recovery for all objects at that location. If the “fault monitoring representative”
ceases to exist because the replica was removed from the group but had not actually failed, then the Replication Manager
selects another object at that location as the “fault monitoring representative.”

LocationAndTypeMonitoring: When a new replica of a group is created at a particular location, and no other replica of the
same group at that location is already being monitored, then the new replica of this object group at that location is monitored.
This member acts as a “fault monitoring representative” for the members of the other object groups of the same type at that
location.

<<metaclass>>
ObjectGroupProperty

=

I T T 1
<<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>>
MembershipStyle ConsistencyStyle FaultMonitoringStyle FaultMonitoringGranularity

<<metaclass>> Z} Zﬁ

ApplicationControlledMembership [‘
<<metaclass>> I
PullMonitoringStyle - <<metaclass>>
<<metaclass>> — - IndividualMemberMonitoring
Pinglnterval : undefined

PingM aximumResponseTime : undefined <<metaclass>>

InfrastructureControlledMembership

LocationMonitoring

<<metaclass>>

<<metaclass>> PushMonitoringStyle

ApplicationControlledConsistency

<<metaclass>>
LocationAndTypeMonitoring

<<metaclass>>
<<metaclass>> ApplicationMonitoringStyle

InfrastructureControlledConsistency

Figure 13-4 Metamodel of FT Group Properties

68 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

12.1.3 FT Replication Styles

FT depends on entity redundancy, fault detection, and recovery. Replicated objects can invoke the methods of other
replicated objects without regard to the physical location of those objects. Support for redundancy in time is provided by
allowing clients to repeat requests on the server replicas, using the same or alternative transport paths. The re-invocation
is transparent to the client.

Figure 13-5 includes the metamodel of FT Replication Styles. This model includes the following main concepts:
TransientStateReplicationStyle:
This replication style family defines styles for objects that do not have any persistent state.

StatelessReplicationStyle is a type of TransientStateReplicationStyle. For the StatelessReplicationStyle, the behavior of the
object group is unaffected by its history of invocations. A typical example is a server that provides read-only access to a
database.

PersistentStateReplicationStyle:

This replication style family defines styles for objects that have a persistent state. The infrastructure uses persistent state
to restablish some state.

PassiveReplicationStyle:

This replication style family defines replication styles based on the uniqueness of the object replica that is responsible for
managing incoming requests (this replica is usually called master or primary).

The PassiveReplicationStyles require that, during fault-free operation, only one member of the object group, the primary
member, executes the methods invoked on the group. Periodically if infrastructure is controlled, or on demand (if
application controlled), the state of the primary member is recorded in a log, together with the sequence of method
invocations. In the presence of a fault, a backup member is promoted to be the new primary member of the group. The
state of the new primary is restored to the state of the old primary by reloading its state from the log, followed by
reapplying request messages recorded in the log. Passive replication is useful when the cost of executing a method
invocation is larger than the cost of transferring a state, and the time for recovery after a fault is not constrained. Two
types of PassiveReplicationStyles are:

« WarmPassiveReplicationStyle: A form of passive replication in which only the primary member executes the
methods invoked on the object group by the client objects. Several other members operate as backups. The
backups do not execute the methods invoked on the object group; rather, the state of the primary is transferred to
the backups periodically.

» ColdPassiveReplicationStyle: A form of passive replication in which only one replica, the primary replica, in the
object group executes the methods invoked on the object. The state of the primary replica is extracted from the log
and is loaded into the backup replica when needed for recovery.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 69

<<metaclass>>
ReplicationStyle

{initialNumberReplica >= ﬁ — -
minimumNumberReplica} Membershlp . MembershipStyle e
- FaultMonitoringStyle : FaultMonitoringStyle

FaultMonitoringGranularity : FaultMonitoringGranularity
fnitialNumberReplicas : integer

““EMinimumNumberReplicas : integer

HeartbeatEnabled : boolean

Identifier : string
<<metaclass>> <<metaclass>>
TransientStateReplicaStyle PersistentStatetReplicaStyle

Consistency : ConsistencyStyle

i

<<metaclass>> ‘I ‘I
<< >> << >>
StatelessReplicationStyle 'metac aés .metac 'ass
PassiveReplicaStyle ActiveReplicaStyle
CheckPointInterval : undefined Zﬁ
[1
<<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>>
WarmPassiveReplicationStyle ColdPassiveReplicationStyle ActiveReplicationStyle ActiveWithVotingReplicationStyle

Figure 13-5 Metamodel of FT Replication Styles
ActiveReplicaStyle:

This replication style family defines styles where several replicas of a same object are active simultaneously (e.g., they all
compute incoming requests).

The ActiveReplicationStyle requires that all of the members of an object group execute each invocation independently but
in the same order. They maintain exactly the same state and, when a fault in one member occurs, the application can
continue with results from another member without waiting for fault detection and recovery. Even though each of the
members of the object group generates each request and each reply, the Message Handling Mechanism detects and
suppresses duplicate requests and replies, and delivers a single request or reply to the destination object(s).

Active replication is useful when the cost of transferring a state is larger than the cost of executing a method invocation,
or when the time available for recovery after a fault is tightly constrained. Two types of ActiveReplicationStyle are:

« ActiveReplicationStyle: All of the members of an object group independently execute the methods invoked on the
object. If a fault prevents one replica from operating correctly, the other replicas will produce the required results
without the delay incurred by recovery.

« ActiveWithVotingReplicationStyle: They are active replication where the requests (replies) from the members of a
client (server) object group are voted, and are delivered to the members of the server (client) object group only if
a majority of the requests (replies) are identical.

70 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

12.2 FT Architectures Profile

The packages of FT profile include stereotypes from the description of four main concepts: the FT policies for the
domains (FTFaultToleranceDomain), the identification of groups (FTServerObjectGroup), the state to be considered in
state full replicas (FTLoggableState, and FTHasReplicationState) and the replicas styles (FTReplicationStyle and

subclasses). Figure 13-6 and Figure 13-7 include the general stereotypes and stereotypes for the description of replication

styles. The stereotypes are based on metaclasses and attributes presented in Section 12.1, “FT Architectures MetaModel
on page 63.

<<stereotype>>
FTFaultTolerantDomain

/ FaultDetertorDeploy mentPolicy : string
<<metaclass>>

<<stereotype>>

::UML::Classes::Kernel::Classifier L
FTReplicationStyle

FaultM onitoringSty le : FaultM onitoringSty le

FaultM onitoringGranularity : FaultM onitoringGranularity
InitiaINumberRep icas : integer

M inimumNumberReplicas : integer

HeartbeatEnabled : boolean

<<stereotype>>
FTInitialReplicationStyle

InitialNumberReplicas : integer
HeartbeatEnabled : boolean

<<metaclass>> < <<stereotype>>

::UML::Classes::Kernel::Class FTServerObjectGroup
\ <<stereotype>>

FTLoggableState

<<metaclass>> - <<stereotype>>

::UML::Classes::Kernel::Association FTHasReplicationState

Figure 13-6 Core FT Profile

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

71

<<stereotype>>
FTReplicationStyle

7

<<stereotype>>
FTStatelessReplicationStyle

<<stereotype>>

FTPersistentStateReplicationStyle

Consistency : Consistency Style

1

<<stereotype>>
FTPassiveReplicationState

CheckPointInterval : undefined

7

<<stereotype>>
FTActiveReplicationStyle

<<stereotype>>

FTWarmPassiveReplicationStyle

<<stereotype>>
FTColdPassiveReplicationStyle

<<stereotype>>
FTActiveWithVotingRelicationStyle

Figure 13-7 Profile of FT Replication Styles

72

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

13 References

[1] J. Aagedal Quality of Service in Development of Distributed Systems, PhD Thesis, Department of Informatics, Univer-
sity of Oslo (March 2001).

[2] J. Aagedal and E. Ecklund, “Modelling QoS: Toward a UML Profile”, Proc. <<UML-2002>> Conference, Springer Ver-
lag 2002

[3] J. Asensio and V. Villagra, “A UML Profile for QoS Management Information Specification in Distributed Object-based
Applications”, Proc. 7th Workshop HP Open View University Association (2000).

[4] J. Asensio, Contribucién a la Especificacion y Gestidn Integrada de la Calidad de Servicio en Aplicaciones de Objectos
Distribuidos. PhD Thesis, Department of Telematic, University of Valladolid. (2000).

[5] AS/NZS 4360:1999. Australian Standard: Risk Management. Standards Association of Australia, 1999.

[6] M. Barbacci, M. Klein and C. Weinstock., Principles for Evaluating the Quality Attributes of a Software Architecture,
CMUV/SEI Technical Report No. CMU/SEI-96-TR-036 ESC-TR-96-136, May 1997.

[71 M. Barbacci, T. Longstaff, M. Klein and C. Weinstock., Quality Attributes, CMU/SEI Technical Report No. CMU/SEI-
95-TR-021 ESC-TR-95-021, (December 1995).

[8] C. Becker and K. Geihs. MAQS - Management for Adaptative QoS-enabled Services. Proc. Workshop Middleware for
Distributed Real-Time Systems and Services, IEEE Computer Society, (December 1997)

[9] Y. Bernet, J. Stewart, R. Yavatkar, D. Andersen, C. Tai, B. Quinn and K. Lee. "Winsock Generic QoS Mapping (draft)".
ftp://ftp.microsoft.com/bussys/winsock/winsock2/gqos_spec.doc

[10] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. "An Architecture for Differentiated Services", Inter-
net RFC 2475, http://www.ietf.org/html.charters/diffserv-charter.ntml, (December 1998).

[11] M. Born, E. Holz and O. Kath, “A Method for the Design and Development of Distributed Applications using UML”,
Proc. International Conference on “Technology of Object-Oriented Languages and Systems” (November 2000).

[12] M. Born, A. Halteren and O. Kath, “Modeling and Runtime Support for Quality of Service in Distributed Component
Platforms”, Proc. 11th Annual IFIP/IEEE Workshop on Distributed Systems: Operations and Management, (December
2000).

[13] R. Braden, D. Clark, and S. Shenker "Integrated Services in the Internet Architecture: Overview", Internet RFC 1633,
http://www.ietf.org/html.charters/OLD/intserv-charter.html (June 1994).

[14] R. Braden and D. Hoffman. "RAPI - An RSVP Application Programming Interface™ Internet Draft http://www.isi.edu/
rsvp/DOCUMENTS/rsvpapi.txt (August 1998)

[15] G. Brahnmath, R. Raje, A. Olson, M. Auguston, B. Bryant and C. Bjurt, “A Quality of Service Catalog for Software
Components”, Proc . SESEC 2002, 2002 Southeastern Software Engineering Conference 2002, (April 2002)

[16] R. Bril, C. Hentschel, E. Steffens, M. Gabrani, G. van Loo and H. Gelissen, “Multimedia QoS in Consumer Terminals”,
Proc. IEEE Workshop on Signal Processing Systems Design and Implementation, IEEE (2001).

[17] C. Burt, B. Bryant , R. Raje, A. Olson, and M. Auguston, “Quality of Service (QoS) Standards for Model Driven Archi-
tecture”, Proc. SESEC 2002, Southeastern Software Engineering Conference 2002, (April 2002)

[18] D. Clark, S. Shenker and L. Zhang. "Supporting Real-Time Applications in an Integrated Services Packet Network:
Acrchitecture and Mechanism". Proc. of ACM SIGCOMM. August 1992.

[19] P. Collet, “On Contract Monitoring for the Verification of Component-Based Systems”, Proc. Workshop On Contract
Monitoring for the Verification of Component-Based Systems , (October 2002).

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 73

[20] D. Conan, E. Putrycz, N. Farcet and M. DeMiguel, "Integration of Non-Functional Properties in Containers", Proc. Euro-
pean Conference on Object-Oriented Programming 20'01 Workshop Component Oriented Programming (June 2001).

[21] M. de Miguel, "Integration of QoS Facilities into Component Container Architectures”, Proc. 5th International Sympo-
sium on Object-Oriented Real-Time Distributed Computing. IEEE Computer Socity, (May 2002).

[22] M. de Miguel, J. Ruiz and M. Garcia, “QoS-Aware Component Frameworks”, Proc. International Worshop on Quality of
Service, (May 2002).

[23] M. de Miguel,. "Solutions to Make Java-RMI Time Predictable” Proc. 4th International Symposium on Object-Oriented
Real-Time Distributed Computing., IEEE Computer Society, (May 2001).

[24] Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing alorithm”, Proc. ACM SIGCOMM,
(September 1989).

[25] DO, Software Considerations in Airbone Systems and Equipment Certifications, RTCA/DO-178B, RTAC, Inc, (1992).

[26] S. Floyd and V. Jacobson. "Link-sharing Resource Management Models for Packet Networks". IEEE Transactions on
Networking, no. 4, 1995.

[27] S. Frolund and J. Koistinen, “Quality of Service Specification in Distributed Object Systems”, Distributed Systems Engi-
neering Journal, Vol. 5(4), December 1998.

[28] M. Gonzalez, J.Gutierrez, J. Palencia, J.Drake, “MAST: Modeling and Analysis Suite for Real-Time Applications”, http:/
/mast.unican.es/

[29] L. Halton, “Exploring the Role of Diagnosis in Software Failure”, IEEE Software, Vol. 18(4) July 2001, IEEE Computer
Society (2001).

[30] International Organization for Standardization, CD15935 Information Technology: Open Distributed Processing - Refer-
ence Model - Quality of Service, ISO document ISO/IEC JTC1/SC7 N1996 (October 1998).

[31] International Organization for Standardization, Quality of Service: Framework, ISO document ISO/IEC JTC1/SC 6 1SO/
IEC 13236:1998 (December 1998).

[32] International Organization for Standardization, Final Text of X.641 for Acceptance at the SG7 December 1997 Plenary,
ISO document ITU-Telecommunication Standarization Sector TD0115 (December 1997).

[33] J. Koistinen, “Dimensions for Reliability Contracts in Distributed Object Systems”, Hewlett Packard Technical port,
HPL-97-119 (October 1997).

[34] J. Laprie, “Dependable Computing and Fault-Tolerant Systems”, Depndability: Basic Concepts and Terminology in Eng-
lish, French, German, Italian and Japanese. Vol 5. Springer-Verlag (1992).

[35] N. Leveson, Safeware: System Safety and Computers, Addison-Wesley (1995).

[36] J. Loyall, R. Schantz, J. Zinky and D. Bakken, “Specifying and Measuring Quality of Service in Distributed Object Sys-
tems”, Proc. 5th International Symposium on Object-Oriented Real-Time Distributed Computing, (April 1998).

[37] M. Lyu, editor, Software Fault Tolerance, John Wiley & Sons, (1995).

[38] Military Standard, Procedures for Performing A Failure Mode, Effects and Criticality Analysis, MIL-STD-1629A,
(November 1980).

[39] Object Management Group, Real-Time CORBA 1.0 Spec, OMG document number ptc/00-09-02 (September 2000).

[40] Object Management Group, UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms Initial Submission, OMG document number realtime/2002-09-01 (September 2002).

[41] Object Management Group, UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms RFP, OMG document number ad/02-01-07 (January 2002).

[42] Object Management Group, UML Profile for Scheduling, Performance, and Time, Draft Adopted Specification, OMG
document number ptc/2002-11-01 (November 2002).

74 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

[43] C. Otero and I. Nitescu, "Quality of Service Resource Management for Consumer Terminals: Demonstrating the Con-
cepts”, 14th Euromicro Conference on Real-Time Systems, Work-In-Progress Session (June 2002).

[44] A. Parekh, A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks, PhD Thesis,
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, (February 1992).

[45] T. Perry, “In Search of the Future Air traffic Control”, IEEE Spectrum, August 1997.
[46] R. Pressman. Software Engineering: A Practitioner’s Approach Mc Graw-Hill, Inc, (1997).

[47] U. Rastofer and F. Bellosa, “Component-based software engineering for distributed embedded real-time systems”, IEE
Proceedings Software, Vol. 148(3), (June 2001).

[48] A. Reibman and M. Veeraraghavan, “Reliability Modeling: An Overview for System Designers”, IEEE Computer (April
1991).

[49] A. Sassen, G. Amords, P. Donth, K. Geihs, J. Jézéquel, K. Odent, N. Plouzeau and T. Weis, “QCCS: A methodlogy for the
development of contract-aware components based on Aspect Oriented Design”, Proc. Workshop Aspect-Oriented
Requirements Engineering and Architecture Design, (April 2002).

[50] B. Selic., “A Quality of Service Framework for Object-Oriented Architectures”, International Journal of Software Engi-
neering and Knowledge Engineering, Vol. .8(3), 1998.

[51] B. Selic., “Turning Clockwise: Using UML in the Real-Time Domain,” Communications of the ACM, \Vol. 42(10), Octo-
ber 1999.

[52] B. Selic., “A Generic Framework for Modeling Resources with UML,” IEEE Computer , Vol. 33(.6), June 2000.

[53] M. Shankar, M. de Miguel, and J. Liu, "An End-to-End QoS Management Architecture”, Proc. Real-Time Application
Symposium, IEEE Computer Society (1999).

[54] S. Shenker, C. Partridge and R. Guerin. “Specification of Guaranteed Quality of Service”, Internet RFC 2212 (September
1997). http://www.ietf.org/rfc/rfc2212.txt?number=2212

[55] M. Shreedhar and G. Varghese, “Efficient Fair Queuing using Deficit Round Robin”, Proc. ACMSIGCOMM (1995).

[56] R. Staehli, J. Walpole and D. Maier, “Quality of Service Specification for Multimedia Presentations”, Multimedia Sys-
tems, Vol 3(1), November 1995.

[57] W. Torres-Pomales, Software Fault Tolerance: A Tutorial, NASA/TM-2000-210616, (October 2000).

[58] J. Turner, “New directions in communications (or Which way to the information age)”, IEEE Communications Magazine,
Vol. 24 (1986).

[59] N. Venkatasubramanian and K. Nahrstedt, “An Integrated Metric for Video QoS”, Proc. ACM Multimedia 97, (Novem-
ber 1997).

[60] N. Wang, D. Levine and D. Schmidt, “Optimizing the CORBA Component Model for High-performance and Real-Time
Applications”, Proc. Work in Progress Workshop of Middleware 2000 Conference, IFAC/ACM (April 2000).

[61] N. Wang, D. Schmidt, M. Kircher, and K. Parameswaran, “Adaptive and Reflective Middleware for QoS-Enabled CCM
Applications”, IEEE Distributed Systems Online, Vol. 2(5), 2001.

[62] P. Wang, Y. Yemini, D. Florissi, P. Florissi and J. Zinky, “Experimental QoS Performances of Multimedia Applications”,
Proc. IEEE Infocom 2000, IEEE Computer Society (2000).

[63] Zhang, S. Berson, S. Herzog, and S. Jamin, "Resource ReSerVation Protocol (RSVP)- Version 1 Function Specification".
Internet RFC 2205 (1997), http://www.ietf.org/html.charters/rsvp-charter.html

[64] J. Zinky, D. Bakken and R. Schantz, “Architectural Support for Quality of Service for CORBA Objects”, Theory and
Practice of Object Systems, Vol. 3(1) 1997.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 75

76

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

A SPT QoS and Resources Conceptual Models

This appendix includes the models of SPT [42] that we reuse for the description of resource usage with quality
annotations. Metamodels included in Chapter 8 do not include metaclasses for the description of quality of resource
services. Chapter 4 of SPT pay special attention to this concept.

A model that describes a set of resources, the clients that use these resources, and the qualities that these resources
provide must include model elements that identify the resources, the clients, the connection that describe the usage of
resources from clients and the qualities associated to these usages.

Figure A-lincludes the concepts of resource and resource services. They have associated a set of QoS characteristics that
qualify the service that provide these resources. This model does not distinguish between the characteristics and the
constraint that must fulfill the resource in the services provided.

instanje type
1.

resource g
ResourceServicelnstance pffered service 1 ResourceInstance Resource _ ResourceService
% 1 offered service
resource instarrce
. resource instance resopirce
resourice service instance
* * .
* resotirge service
offeredd QoS
offered QoS
* be
offered QoS instance type *
QoSValue QoScharacteristic
* 1”*
*

Figure A-1 General Resource Core

offered QoS

Figure A-2 includes the classes for the identification and description of usage of resources.

1

analysis context

AnalysisContext "
analysis context
0..17 analysis context
1..* | resource instance
::STP QoS Profile View Point::General Ressource QoS Profile::Core Resource Model::Resource Instance
1.*
1..* | used resource
usage demand L esource usage resource instance | 1
- resource usage
UsageDemand | Workload resource usagd
ResourceUsage :
1.* 1
I .
A esource usage offered service | 1..*
*| used service
::STP QoS Profile View Point::General Ressource QoS Profile::Core Resource Model::ResourceServicelnstance

Static Usage Model::StaticUsage Dynamic Usage Model::DynamicUsage

Figure A-2 Resource Usage Framework

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

i

Figure A-3 and Figure A-4 include details for the description of dynamic and static resource usage.

StaticUsage

client

Client

* *
L. u]s*ed resource

client

::STP QoS Profile View Point::General Ressource QoS Profile::Core Resource Model::ResourcelInstance

*/Iresource instance

1. QoS required
Q d « | offered QoS

::STP QoS Profile View Point::General Ressource QoS Profile::Core Resource Model::QoSValue

*

instance

1.* | type

::STP QoS Profile View Point::General Ressource QoS Profile::Core Resource Model::QoScharacteristic

Figure A-3 Static Resource Usage

resource usage 1.*) . " +
ResourceUsage g ::STP QoS Profile View Point::General Ressource QoS Profile::Core Resource Model::ResourceInstance
« Used resource

Z} used resource | 1..*
resource instance

DynamicUsage

?

::STP QoS Profile View Point::General Ressource QoS Profile::CausalityModel::Scenario

-

1. offered service | 1..*

0..1 scenario used service , 1.

::STP QoS Profile View Point::General Ressource QoS Profile::Core Resource Model::ResourceServicelnstance

step resource service instance
1*
Lordered}| | SUCESSOr

offered QoS

*

*

ActionExecution | *
‘ predecessor

::STP QoS Profile View Point::General Ressource QoS Profile::Core Resource Model::QoSValue

" required QoS *

Figure A-4 Dynamic Resource Usage

78 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

B Proof of Concepts

This chapter includes guides for the application of QoS extensions, for the description of real-time models analyzable
with scheduling analysis techniques. Rate monotonic analysis techniques and scheduling analysis techniques do the
analysis of systems based on some analytical models that include some quality characteristics and attributes. These
characteristics are basically characteristics for the description of workloads, worst-case latencies, and QoS policies.

We have defined a set of QoS characteristics based on the QoS Catalog included in Chapter 10. The QoS Catalog’s design
was based on general QoS characteristics included in some standards and quality evaluation references. In this section we
have reused the extensions and domain models included in [42] and some modeling languages for the design of
analyzable models [28].

Our extensions pay special attention to some modeling aspects of hard real-time techniques not considered in UML:

» Systems load and load timing distribution. The performance parameter evaluation depends on the number and type
of jobs included in the system, and their space distribution.

« Resources available and usage of resources. Different architectural solutions can include different system
resources, and can make different resource usage.

 Scheduling policies. The performance analysis depends on the type of scheduling algorithms used in the resource
management.

» Representation of analysis results. The analysis of the models can provide results useful during the architecture
evaluation.

B.1 Scheduling Analysis Based on QoS Characteristics

The QoS characteristic Performance: :Demand: :demand included in the QoS Catalog provides support for the
description of workloads. But it was not designed for scheduling analysis and does not include some common results of
scheduling analysis such as end-to-end response time, or if a trigger is schedulable or not. Figure B-1 includes the
characteristic QoS4SADemand that reuses the characteristic demand (Figure 10-5). In this characteristic the association
with the characteristic arrivalPattern is especially important, that includes as dimensions values that represent the
same concepts as the tagged type RTarrivalPattern in [42].

QoSRequired and QoSContract constraint based on QoS4SADemand can annotate UML 2.0 Messages, Control Flows,
Associations, and Transitions for the description of frequencies of demand of services. These UML elements have
associated implicitly or explicitly request of services from a client to a service provider, and the QoS Constraints provide
additional information for the temporal distribution of the invocations. QoS4SADeamand include some dimensions that
are the results of scheduling analysis (endToEndTime and isSchedulable). A QoSValue instance of
QoS4SADemand can represent these types of results.

Figure B-2 includes two new types of latencies and reuses the characteristic Performance: :Latency: : latency
included in the catalog. The characteristic Q0S4SAGlobal Latency extends the characteristic latency that
represents the latencies of transactions and group of actions associated to demands. The new latencies allow representing
individual latencies of actions and their laxity. The characteristic QoS4SADetai ledLatency decomposes the total
latency into specific time values such as preemption and blocking times. These dimensions represent some of the concepts
included in the class SAAction in [42].

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 79

The latencies represent the deadlines and output jitters. These values can be associated to model elements (Messages,
Control Flows, Associations, Transitions, Actions, and Structural Features) with QoS Constraints. These constraints
represent the temporal constraints that must achieve the model elements.

‘L PeriodUnit : string, JitterUnit : string, MinUnit : string, MaxUnit : strind;

<<QoSDimension>>

<<QoSCharacteristic>>
- load arrivalPattern
<<QoSCharacteristic>> ——~|
::QoSCatalog::Performace::Demand::demand 0.1
<<QoSDimension>>
+period [0..n] : real
{unit(PeriodUnit)}
<<QoSDimension>>
: End2EndUnit : strina Jieter [9"11 creal .
<<QoSCharacteristic>> | dl&'{tﬁggﬁ;ﬁ@}
Qo0S4SADemand <<QoSDiension>>
<<QoSDimension>> pattern : arrivial-pattern-types
+isSchedulable : boolean <<QoSDimension>>
<<QoSDimension>> burstSize [0..1] : integer
+endToEndTime : real {direction(decreasing)}
{direction(decreasing), <<QoSDimension>>
unit(End2EndUnit), minimal [0..1] : real
statisticalQualifier(maximum)} {unit(MinUnit),
statisticalQualifier(minimum)}
<<QoSDimension>>
maximal [0..1] : real
{unit(MaxUnit),
statisticalQualifier(maximum)}

Figure B-1 Demand Characteristic for Scheduling Analysis

—| MinUnit : string, MaxUnit : string, JitterUnit :strind

<<QoSCharacteristic>>

::QoS Catalog::Performace::Latency::latency

|WCCTUnit s string, PreemptionUnit, Ready Unit, ReleaseUnit, BIockingUnitl

<<QoSDimension>>
minimumLatency : real

<<QoSCharacteristic>>
Qo0S4S ADetailedLatency

<<QoSDimension>>
+WorstCaseComp letionTime : real
{direction(decreasing),
unit(WCCTUnit)}

<<QoSDimension>>
+Preempted : real
{direction(decreasing),
unit(PreemptionUnit)}
<<QoSDimension>>
+Ready : real
{direction(decreasing),

unit(Ready Unit)}
<<QoSDimension>>
+Release : real
{direction(decreasing),

unit(ReleaseUnit)}
<<QoSDimension>>
+Blocking : real
{direction(decreasing),
unit(BlockingUnit)}

<<QoSDimension>>
maximumLatency : real
<<QoSDimension>>
jitter : real
<<QoSDimension>>
criticality : integer

|

4' relMinUnit : string, relM axUnit :strind

<<QoSCharacteristic>>
Qo0S4SAGlobalLatencies

<<QoSDimension>>
+relativeM inimumLatency : real
{unit(relM inUnit),
statisticalQualifier(minimum),
direction(decreasing)}
<<QoSDimension>>
+relativeM aximumLatency : real
{unit(relMaxUnit),
statisticalQualifier(maximum),
direction(decreasing)}
<<QoSDimension>>
+laxity : kindsOfLaxity
{direction(increasing)}

Figure B-2 Latency Characteristic for Scheduling Analysis

80 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

Figure B-3 includes a new characteristic (QoS4SAResourceUtilization) that extends resource-
utilization. Both represent characteristics that are used to describe the quality that resources provide.
QoS4SAResourceUti lization represents the request of resources that do the actions and transaction in the system.
QoS4SAResourceUtilization extends resource-utilization to specify when a request is atomic.

UML 2.0 model elements that can represent the request of resource services are Messages, Control Flows, Associations,
Transitions, Actions and Structural Features. There are two different approached to represent the request of the resource
service: i) Implicitly. The instance or classifier that include the model element (method of the message, the actions
associated to the control flows, the association end of the association, or the transition, action and structural feature) has
a GRMdeploys relation with the resource, and implicitly the execution of these features uses implicitly the resource. ii)
Explicitly. Some type of extension annotate the model element to identify the resources that they use. [42] uses both
solutions. We are going to use only the second solution to avoid the confusion created because in these cases, in general,
there are two services: the service of the resource, and the application service (for example the operation of the message,
and the resource used for the execution of the message). The request of the resource service is represented with a
GRMrequires dependency. And the QoS Constraints annotate these dependencies to describe the quality of resource
service required and offered.

<<QoSCharacteristic>>
resource-utilization

<<QoSDimension>>
worst-case-request : integer
{direction(decreasing),
statisticalQualifier(maximum),
unit(Unit)}
<<QoSDimension>>
mean-case-request : integer
{statisticalQualifier(mean),
direction(decreasing),
unit(Unit)}

!

<<QoSCharacteristic>>
Qo0S4S AActivityResource Utilization

<<QoSDimension>>
+isAtomic : boolean

Figure B-3 Efficiency Characteristic for Scheduling Analysis

In the scheduling analysis techniques are especially important the scheduling policies used for resource management. The
QoS Catalog does not pay special attention to this subject, because, in general, these policies are specific of the
techniques (e.g., QoS IP and networks, real-time), and most of the middlewares and operating systems of general
purposes do not include these policies.

Two new characteristics include dimension for the description of data resources and execution resources. These
dimensions are, for example, the context switch times and specific parameters of some scheduling algorithms (e.g., the
resource ceiling of ceiling protocols).

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 81

These dimensions have the same semantics as the equivalent attributes of classes ExecutionEngine and Sresource
in [42].

Most of QoS characteristics are templates whose parameters must be resolved before being used. The parameters
represent, in general, the units of times used in the time expressions. Here, we will use the same units as in [42] (ns, us,
ms, s, hr, days, wks, mos, and yrs). After the parameters resolution, we can use these characteristics in the description of
QoSValues and QoSConstraints that represent the specific values of these characteristics. The next section includes some
examples of application.

QoS Offered constraint annotates GRMResource model elements (elements with stereotype GRMReosuce). These
constraints define the QoS policies for the resource.

<<QoSCharacteristic>>
resource-policy

<<QoSDimension>>
policy : string

|
(I

<<QoSCharacteristic>>
QoS 4S AResourcePolicies

<<QoSCharacteristic>>
Qo0S4S AExecutionResourcePolicies

<<QoSDimension>>
+Capacity : integer
{direction(increasing)}
<<QoSDimension>>
+AdquisitionTime : real
{unit(Unit1),
direction(decreasing),
statisticalQualifier(maximum)}
<<QoSDimension>>
+DeadquisitionTime : real
{unit(DeatUnit),
statisticalQualifier(maximum),
direction(decreasing)}
<<QoSDimension>>
+isConsumable : boolean
<<QoSDimension>>
+Priority Ceiling : integer
{direction(increasing)}
<<QoSDimension>>
+isPreemptible : boolean
<<QoSDimension>>
+AccesCtrlParam [0..n] : real

<<QoSDimension>>
+AccessCrtlPolicy : string
<<QoSDimension>>
+AccessCtrlPolicy Param [0..n] : real
<<QoSDimension>>
+rate : real
{direction(increasing)}
<<QoSDimension>>
+contextSwitch : real
{unit(ContextUnit),
statisticalQualifier(maximum),
direction(decreasing)}
<<QoSDimension>>
+schedulable : boolean
<<QoSDimension>>
+preeemptible : boolean
<<QoSDimension>>
+priorityRange [2] : integer
<<QoSDimension>>
+utilization : real
{statisticalQualifier(maximum),
unit(percentage),
direction(increasing)}

Figure B-4 Policy Characteristics for Scheduling Analysis

B.2 Description of Telemetry Example with QoS Contracts

In this section we are going to use the QoS Profile presented in Chapter 9 and the QoS characteristics included in Section
10.3 to redesign the example included in Section 7.2.3 in [42]. This new design has removed all the UML extensions that
were included in the original example, and we have used the QoS profile and the QoS4SA characteristics to represent
similar concepts.

82 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

We start creating the Quality Model, which we are going to use in this example to represent any quality value. Figure B-
5 includes QoS characteristics specific for this system, which resolves all parameters of characteristics templates. In this
case we resolve all temporal units with the unit ms (all temporal expressions are milliseconds). The characteristics are:

* TelemetryQoS4SADemand,

e TelemetryQoS4SAGloballatencies,

* TelemetryQoS4SAExecutionResourcePolicies,

e TelemetryQo4SAActivityResourceUtilization, and
e TelemetryQoS4SAResourcePolicies.

They bind the characteristics included in Section B.1, “Scheduling Analysis Based on QoS Characteristics,” on page 79,
and resolve the parameters of characteristics.

ContextUnit : strin

. E_nd_ZEndUnlt 2 strin 4|hreIM|nl_Jn_|t s string, relMaxUnit : strlnd <<QoSCharacteristic>>
<<QoSCharacteristic>> <<QoSC aracterlstlc>-> Qo0S4S AExecutionResourcePolicies
QoS4SADemand Q0S4S AGlobal Latencies
<<bind>>
{ TemplateParameters(MinLatUnit -> ms, MaxLatUnit -> ms, JitterUnit -> ms, relMinUnit -> ms, relMaxUnit -> ms} }
<bind>>

<<bing>>

{ TemplateParametprs(End2EndUnit" -> ms) } i
{ TemplateParameters(ContextUnit -> ms) }

<<QoSCharacteristic>> <<QoSCharacteristic>>
TelemetryQoS4S ADemand TelemetryQoS4S AGlobal Latencies

<<QoSCharacteristic>>
TelemetryQoS4S AExecutionResourcePolicies

<<QoSCharacteristic>>
QoS4S AResourcePolicies

<<QoSCharacteristic>>
QoS 4S AActivityResourceUtilization

<<hind>>

{ TemplateParameters{DeatUnit -> ms) }
<<bingi>>

{ TemplateParametgrs(Unit -> ms) }

<<QoS{Characteristic>> <<QoSCharacteristic>>
TelemetryQoS4S AActivityResourceUtilization TelemetryQoS4S AResourcePolicies

Figure B-5 Telemetry System Quality Model

Figure B-6 shows the structural specification of a telemetry system example that includes the Figure 7-4 in [42]. This
class diagram is a descriptor diagram, to enable schedulability analysis we must concrete the instances and physical
elements that will support the system execution.

Figure B-7 is a UML 2.0 communication diagram associated to a package that includes the instances that represent the
scheduling scenario. This diagram represents concepts equivalent to Figure 7-6 in [42], but it uses QoS Values and
Constraints based on the Quality Model that includes the Figure B-5. The messages from TGClock are constrained with
the period of demand and the latencies. TelemetryGather and TelemetryProcessor are annotated with
Constraints and TelemetryDisplay is annotated with Abstraction dependencies that have associated QoS Values that
describe the latencies and demand of this message.

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms 83

We have included in Figure B-7 the resource of type Ix86Resource (it represents the CPU) that UML 2.0 communication
diagrams cannot include, but we have included it to represent the dependency of some actions (Al1.1 and Al1.1.1) of this
resource. The rest of actions depend on this resource too, but the dependency is not visible. The dependency is annotated as
GRMRequires and QoSContract. The attribute AllowedSpace of stereotype QoSContract references the QoSValues that
enumerate the quality that must provide the service of the resource.

Clock % TelemetrySystem | g 1
1 +main():integer &
<> configure() 1

Telemetry Displayer

-

Telemetry Gatherer
1 | sensorData

Gatherer DataDisplayer
SensorData | pawpata |01 play
0.1 SensorData -
+gatherData() - +display Data()
. +start() .
main() . main()
+writeData()
1 +readData() 1
+stop()
SensorData | 0..1 1] s
1 Display
Sensors
DisplayInterface
Sensorlinterface DataProcessor
*
+getData() +filterData()
main() Telemetry Filter

Figure B-6 Logic Model of Telemetry System

84 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

sd TelemetryScenario /

<<QoSValue>>
<<QoSContract>> <<QoSContract>> TelemetryArrivalPattern:arrivialPattern
{context TelemetryQoS4SADemand inv: load.period = 100] {context TelemetryQoS4SADemand inv: load.period = 200] period=60
Toa
<<QuSContract>> <<QoSContract>>
QoScantr - TGClock:Clock, QoSContra o
{context TelemetryQoS4SAGIobalLatencies inv: — {context TelemetryQoS4SAGlobalLatencies inv:|

WorstCaseCompletionTime = 93} WorstCaseCompletionTime = 177} j <<QoSValue>> ‘

<<QuSContract TriggerOfbisplay: TelemetryQoS4SADemand

<<QoSValue>>
therMainExecutionTime: Telemets ISAActivityResourceUtilization
oSt case eSS AlLgatherDatg, B.LfilterData i oA 4
B.llmais— 3 <<QoSValue>>
C.Ldisy vDala\‘ ResponseOfDisplay: TelemetryQoS4SAGIobalLatencies

AL Lmain TE' TelemetryGather:Gatherer
<<GRMrequires>>"
<<QoSContract>>
{AllowedValues = galherMaipES(eculion'l’lme}

A AlllgetData i

‘ TelemetryProcessor: DataProcessor

WorstCaseCompletionTime=50.5

TelemetryDisplayer:DataDsiplayer Dc‘l‘l:mainT

Bi.l.l:readDatai
C.1.1.Lreadl

<<GRMResource>>

ALL2WteData N\

~Ix86Processor <<GRMrequires>>

<<QoSContract>>

{AllowedValues = writeDataExecutionTime} Sensors:SensorInterface <<GRMResource>> Display:Displaylnterface
SensorData:RawData
<<QoSValue>>
writeDataExecutionTime: TelemetryQoS4SAActivityResourceUtilizatior <<QoSOffered>>
worst-case-request=17.0 {context TelemetryQoS4SAResourcePolicies inv:
Capacity =1

policy = Prioritylnheritance

Figure B-7 Expression of Schedulability Using Communication Diagram

QoS Offered constraints in Figure B-7 and Figure B-8 describe the QoS policies of the data and execution resources.

TelemetryDisplayer:DataDsiplayer TelemetryGather:Gatherer

TelemetryProcessor:DataProcessor

<<GRMdeploys>

<<GRMdeploys>
<<GRMdeploys>
<<GRMResource>>
<<GRMResource>> SensorData:RawData
:1x86Processor <<GRMIrealize>>
<<QoSOffered>>

{context TelemetryQoS4SAExecutionResourcePolicies inv:
policy = FixedPriority
rate = 1}

Figure B-8 Execution Engine Policies

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

85

As in [42] the values of attributes in QoS Values and QoS Constraint can be resolved for the automatic generation of
analysis models. To resolve these values the expressions of OCL expressions are limited and must be valuable statically.

86 UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

Index

A

Access control 33, 40, 41
Accuracy 39, 40
ActiveReplicaStyle 70
Avrrival pattern 38

Asset 48, 49, 54

Asset Value 51, 57
Availability 34, 42
Avoid 52

C

Coherence 43

Communication throughput 35
Consecuence 51
ConsistencyStyle 67, 68

D

Demand 38
Dependability 41
Direction 12, 20

E

Efficiency 34, 36
EnterpriseAsset 49, 54
EnterpriseWeakness 49
EnterpriseOpportunity 49, 54
EnterpriseThreat 49, 54
Entity 48, 54

Establishment error 39

F

Fault detection 64, 66

Fault tolerance 42, 63
FaultDetectorDeploymentPolicy 66
FaultMonitoringGranularity 68
FaultMonitoringStyle 68
FaultToleranceDomain 65
Frequency 521, 56

G

GRMcode 31
GRM(deploys 31
GRMrealize 31
GRMrequires 31
GRMresource 31
Groups 64

H
Hazard 63

I

Initiate 51

Input data throughput 32
Integrity 31
isQoSObservation 12

L
Latency 32

M
MembershipStyle 57

@]
ObjectReplica 65

P

PassiveReplicationStyle 66
Performance 31
PersistentStateReplicationStyle 69
Policy 37, 41, 49, 53, 54
Processing throughput 35

Suality contracts 15

Quality of Service 5

QoS5

QoS-aware specification functions 6
QoS4SADemand 79, 80
QoS4SADetailedLatency 79
Qo0S4SAGIlobalLatency 79
QoS4SAResourceUtilization 81
QoS adaptation 8, 29

QoS category 10, 20, 33
QoS characteristic 6, 7, 9
QoS constraint 7, 13

QoS context 12

QoS contract 14, 25

QoS dimension 10, 21

QoS dimension slot 12

QoS levels 6, 16

QoS monitoring 21

QoS offered 14, 25

QoS parameter 10, 24

QoS required 14, 25

QoS transition 16, 30

QoS value 11, 20

R

ReduceConsequence 52
ReduceLikelihood 53
Reliability 34, 42

Replication styles 64, 69
Resource consuming component 6
Resource utilization 36, 37
Risk 48
RiskEvaluationCriterion 48, 51
RiskReduction 52, 56
RiskRelationship 51, 56
RiskTheme 51, 56

RiskValue 51, 56

S

Safety 63

Security 40
ServerObjectGroup 65
Stakeholder 48, 49
Statistical qualifier 10
SWOT 49

T
ThreatScenario 50, 55

UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms

Index-87

Throughput 34

Transfer 52, 57

Transfer integrity 39
TransientStateReplicationStyle 69
Treatment 56, 57, 60
TreatmentEffect 52, 57
TreatmentEvaluation 57

Turn around 35

U
Unit 10, 20
Unwanted Incident 50

\%
ValueDefinition 48, 54
Vulnerability 50, 55

Index-88
nisms

UML Profile for ModelingQuality of Service and Fault Tolerant Characteristics and Mecha-

