

Date: April 2008

Quality of Service for CORBA Components
Specification

Version 1.0

OMG Document Number: formal/2008-xx-xx
URL: http://www.omg.org/spec/QOSCCM/1.0/PDF/
Associated Files* : http://www.omg.org/spec/QOSCCM/20070801/
 http://www.omg.org/spec/QOSCCM/20071001/

* original file: ptc/2007-08-23 (IDL), ptc/2007-10-07 (CCM CMOF)

Copyright © 2003-2006, American Systems Corporation
Copyright © 2003-2006, ARTISAN Software Tools
Copyright © 2003-2006, BAE SYSTEMS
Copyright © 2003-2006, The Boeing Company
Copyright © 2003-2006, Ceira Technologies
Copyright © 2003-2006, Deere & Company
Copyright © 2003-2006, EADS Astrium GmbH
Copyright © 2003-2006, EmbeddedPlus Engineering
Copyright © 2003-2006, Eurostep Group AB
Copyright © 2003-2006, Gentleware AG
Copyright © 2003-2006, I-Logix, Inc.
Copyright © 2003-2006, International Business Machines
Copyright © 2003-2006, International Council on Systems Engineering
Copyright © 2003-2006, Israel Aircraft Industries
Copyright © 2003-2006, Lockheed Martin Corporation
Copyright © 2003-2006, Mentor Graphics
Copyright © 2003-2006, Motorola, Inc.
National Institute of Standards and Technology
Copyright © 2003-2006, Northrop Grumman
Copyright © 1997-2008, Object Management Group.
Copyright © 2003-2006, oose Innovative Informatik GmbH
Copyright © 2003-2006, PivotPoint Technology Corporation
Copyright © 2003-2006, Raytheon Company
Copyright © 2003-2006, Sparx Systems
Copyright © 2003-2006, Telelogic AB
Copyright © 2003-2006, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for

commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically
terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately
any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™
are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and
shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the
software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ... v

1 Scope ... 1
1.1 Overview ...1
1.2 Quality of Service ..2

2 Conformance .. 2
2.1 Mandatory Compliance Points ..2
2.2 Optional Compliance Points ..3

3 References ... 3
3.1 Normative References ..3
3.2 Non-normative References ...3

4 Terms and Definitions .. 3

5 Symbols (and abbrevated terms) ... 4

6 Additional Information .. 4
6.1 Changes to Adopted OMG Specifications ..4
6.2 How to Read this Specification ...4
6.3 Acknowledgements ...4

7 Modeling of QoS for CORBA Components 5
7.1 Scope of QoS Properties .. 5
7.2 CCMQoS Metamodel.. 5

 7.2.1 Package Structure .. 6
 7.2.2 Binding ... 6

7.3 Notation for QoS ...8

8 Container Architecture ... 9
8.1 Introduction ...9

 8.1.1 Requirements ... 10

8.2 Component Instance Identity ..11
8.3 Container Portable Interceptors ..11

 8.3.1 Introduction .. 11
 8.3.2 Design Priciples .. 12
 8.3.3 General Flow Rules .. 13
Quality of Service for CORBA Components, v1.0 i

 8.3.4 Container Interceptor Interface ... 13
 8.3.5 Stack Visual Model and Interception Points .. 14
 8.3.6 COPIServiceContext .. 14

8.4 Basic Container Interceptors ...15
 8.4.1 Basic Interception Points .. 15
 8.4.2 ClientContainerInterceptor Interface .. 16
 8.4.3 Client-Side Interception Points ... 17
 8.4.4 Interception Flow for ClientContainerInterceptors .. 18
 8.4.5 ServerContainerInterceptor Interface ... 19
 8.4.6 Server-Side Interception Points .. 20
 8.4.7 Interception Flow for ServerContainerInterceptors.. 21
 8.4.8 Server-side Flow Rules .. 21

8.5 Extended Container Interceptor Interfaces ...22
 8.5.1 Extended Interception Points ... 23
 8.5.2 StubContainerInterceptor ... 23
 8.5.3 Stub Interception Points ... 24
 8.5.4 Interceptor Flow for StubContainerInterceptors ... 26
 8.5.5 ServantContainerInterceptor .. 26
 8.5.6 Servant Interception Points .. 27
 8.5.7 Interception Flow for ServantContainerInterceptors 29

8.6 Request Information ..29
 8.6.1 ContainerRequestInfo .. 29
 8.6.2 ContainerClientRequestInfo ... 30
 8.6.3 ContainerServerRequestInfo .. 31
 8.6.4 ContainerStubRequestInfo ... 31
 8.6.5 ContainerServantRequestInfo .. 32

8.7 Registering Container Interceptors ...33
 8.7.1 Client Registration Interface ... 33
 8.7.2 Server Registration Interface .. 34
 8.7.3 Servant Registration Interface .. 35
 8.7.4 InvalidRegistration Exception ... 36

8.8 Negotiation ..36
 8.8.1 Introduction ... 36
 8.8.2 Constraint Description .. 37
 8.8.3 Negotiation Interface .. 37
 8.8.4 Provision of Negotiation Interface .. 38
 8.8.5 Definition of Negotiation Flow ... 38

8.9 Extension Container ..43
 8.9.1 Introduction ... 43
 8.9.2 ExtensionContext ... 43
 8.9.3 ExtensionComponent ... 45

8.10 Modification of CCMContext interface ...45
 8.10.1 resolve_service_reference ... 46
ii Quality of Service for CORBA Components, v1.0

8.11 QoS Enabler ...46
 8.11.1 Introduction .. 46
 8.11.2 QoS Usage Interface .. 47
 8.11.3 QoSCallback Interface ... 48
 8.11.4 Packaging and Deployment of QoS Enablers .. 48
 8.11.5 Monitoring .. 48

Annex A - IDL .. 49
Annex B - Examples.. 57
Index.. 63
Quality of Service for CORBA Components, v1.0 iii

iv Quality of Service for CORBA Components, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)
Quality of Service for CORBA Components, v1.0 v

Platform Specific Model and Interface Specifications

• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
vi Quality of Service for CORBA Components, v1.0

1 Scope

1.1 Overview
Distributed systems, and especially highly distributed applications, are very dependent on many execution conditions:
number of available computers, their location, quality of network connection, heterogeneous hardware, operating systems,
and libraries to name only a few. Middleware like the CORBA Component Model is used to make such heterogeneity
more transparent. But sometimes a distributed application cannot be written and executed ignoring the features of the
underlying system. To keep both the transparency and the flexibility to build adaptable applications, the separation of
functional code (i.e., business code) and non-functional code (i.e., container related code) is needed. This separation
allows a developer or system administrator to easily adapt an application to particular execution conditions or to change
the Quality of Service (QoS) of the application without rewriting the application.

However, not all QoS properties are non-functional; some are strongly linked to the service that a component performs.
An example is an audio encoding algorithm whose results should match certain quality criteria, e.g., a maximum data rate.
The component implementation, i.e., the business code written by the developer, needs to be aware of the values of these
properties.

Separation of functional and non-functional aspects is necessary but not sufficient to allow efficient and flexible
adaptation. A component platform has to provide an extensible and flexible architecture for an easy integration of those
two separated aspects (functional and non-functional properties) at deployment and run-time.

Dynamic configuration and re-configuration is also an essential point of distributed systems, because in order to adapt an
application to a specific execution environment, one has to be aware that the QoS of the execution environment evolves
during execution. There is a strong need to be able to make on-the-fly adaptation. That is why it is very important to
provide an architecture, mechanisms, and monitoring concepts that allow dynamic adaptation of a running application,
explicitly by an administrator, but also automatically. The specification addresses this problem domain in the context of
the CORBA Component Model (CCM) [CCM].

The CORBA Component Model supports the separation of functional and non-functional properties for a fixed set of such
properties already. Transactions, Persistency, and Security are part of this fixed set as well as component co-locations
properties. Some of these properties are completely independent of the component implementation while other properties
can be managed by the component implementation by using standardized interfaces. The specification defines concepts
that keep this approach, by allowing the injection of non-functional aspects completely transparent to component
implementations and gives the component implementation the possibility to manage such properties.

The specification describes the essential extensions that need to be made to the container architecture to allow the support
of separation of functional and non-functional properties of CORBA components.

The first aspect of QoS properties within the container is their configuration or – in dynamic environments – their
negotiation. The second aspect is the enforcement and realization of the non-functional properties. This specification will
deal with three different realization mechanisms:

1. The injection of non-functional properties into the container by means of interception. Container plugins defined in
this specification, named QoSEnablers, have the responsibility to provide such interceptors if the QoS pattern they
implement need to be based on them. A major part of this document deals with their specification.

2. The configuration of the underlying middleware, for instance the use of certain policies of the portable object adapter,
or object references, typically in order for QoS properties to be propagated in a suitable way.
Quality of Service for CORBA Components, v1.0 1

3. The configuration of the underlying transport. This mechanism is relevant, since QoS does not only apply to single
components, but to connections between components as well.

The goal of this specification is not only to support the consideration of typical QoS properties like Latency, Throughput,
Bandwidth, etc. but also very different kind of QoS properties (non-functional aspects) like reservation of computing
power or constraining the frequency of event submission which can be useful for saving battery power of a mobile device.
Nevertheless, this specification concentrates on the introduction of container extensibility mechanisms in order to allow
realization of such properties, and does not deal directly with them, since the needs are very disparate and sometimes
application specific.

1.2 Quality of Service
This specification targets on modeling, realizing, and managing Quality of Service (QoS) properties. However, this term
needs to be defined for this specification. Quality of Service properties of a component are properties that describe how a
component deliver a service to other components. QoS properties do not define what functionality is provided but define
how functionality is provided.

It is not easy to clearly draw a line between properties that describe the functionality of a component and properties that
describe QoS of a component. In this specification, everything that describes a component with its ports is considered as
the functionality. This means every port of a component with all the operation in the corresponding interface or events is
considered to be the functionality of a component. Everything else is per definition not the functionality.

Moreover, the term Quality of Service is sometime not really adequate, since some of the properties do not really describe
a quality of a service but cannot be considered as functionality. For example, to enable a tracing that monitors calls
between components is not really a quality of the service that the called component provides. For that reason such
properties are often called non-functional properties or non-functional aspects instead of QoS properties. In some cases
the term extra-functional properties is used as well. In this specification the terms QoS properties and nun-functional
properties or aspects are used synonymously.

2 Conformance

It is the intent of the specification to support a wide variety of use cases where handling of non-functional aspects can be
important. Furthermore, some parts of the specification can be used to develop other container related services which can
not directly be seen as a non-functional or QoS aspect of a component.

Some realizations of non-functional aspects might not require all the parts of the described concepts of the specification
to be present. It is also possible to use the Container Oriented Portable Interceptors defined by the specification to realize
certain functionality but not the use the QoS Enabler concept to implement them. This is the reason why the specification
defines two sets of compliance points by definition of two sets of compliance points.

2.1 Mandatory Compliance Points
A conformant CORBA Component implementation should at least support the following items:

• Container Portable Interceptors
2 Quality of Service for CORBA Components, v1.0

2.2 Optional Compliance Points
A conformant CORBA Component implementation shall support the mandatory compliance points and can optionally
support the following additional concepts:

• QoS Enabler

• Extension Container

• Negotiation Interface and Flow Details

3 References

3.1 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

[CCM] CORBA Components Specification, OMG TC Document formal/02-06-65

[CORBA] CORBA Specification, OMG; OMG document number formal/04-03-01

[MOF] Meta Object Facility (MOF) Specification, Version 1.4, OMG document ptc/2001-10-04

[UMLQOS] UML Profile for Modelling Quality of Service and Fault Tolerance Characteristics and Mechanisms,
OMG Adopted Specification, OMG documents number ptc/2005-05-02

3.2 Non-normative References
[QEDO] Qedo, QoS Enabled Distributed Objects, an Open Source CCM implementation, http://www.qedo.org

[UMLCCM] UML Profile for CORBA and CORBA Components, Initial Submission, OMG document number
mars/2005-11-05

[COACH] COACH Project Home Page, http://www.ist-coach.org, IST Program. Project IST-2001-34445.
1 April 2002 to 31 March 2004

4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative reference and the following apply.

Container Portable Interceptor

An interface at container level that allows the interception of calls at client and server side.
Quality of Service for CORBA Components, v1.0 3

5 Symbols (and abbreviated terms)

CCM CORBA Component Model

COPI Container Portable Interceptor

QoS Quality of Service

6 Additional Information

6.1 Changes to Adopted OMG Specifications
The general principle of this specification is to define only extensions to existing specifications. The concepts defined are
targeted on the CORBA Component Model (CCM) and enable the management of QoS properties in a very flexible and
general way. The extensions to the CCM specification that are implied by this specification are listed below. No other
OMG specification is affected.

• This specification defines the extension of the CCM metamodel by introducing the new package CCMQoS as it is
explained in Chapter 7.

• This specification defines an extension to the number of predefined container types as part of the full compliance
profile. The container type is named Extension. This container type is described in detail in Section 8.9.

• Extension of the context interface to retrieve reference to container services.

• Extending the enumeration Components::CCMExceptionReason by the values: QOS_ERROR,
REGISTRATION_ERROR, SERVICE_INSTALLATION_ERROR.

• Extend the component category by new type extension. This is used to denote components such as QoSEnablers which
extend the run-time environment of CORBA Components.

Issue 12430 Dynamic configuration of components

• Extend the Components::StandardConfigurator interface to get component configuration.

• Extend the Components::HomeConfiguration interface to retrieve reference to Configurator.

6.2 How to Read this Specification
The rest of this document contains the technical content of this specification. As background for this specification, readers
are encouraged to first read the CORBA and the CORBA Component Model specification that complements this.
Furthermore, the TheUML Profile for Quality of Service and Fault Tolerance Specification explains the concepts and the
language how to model QoS properties in general.

6.3 Acknowledgements
The following companies submitted and/or supported parts of this specification:

• Fraunhofer FOKUS
• CEA
4 Quality of Service for CORBA Components, v1.0

• THALES
• ObjectSecurity Ltd.
• Deutsche Telekom / T-Systems
Quality of Service for CORBA Components, v1.0 5

6 Quality of Service for CORBA Components, v1.0

7 Modeling of QoS for CORBA Components

7.1 Scope of QoS Properties
Not all QoS properties are valid for the whole application lifetime. Some are bound to the lifetime of a connection
instance; others are to be applied specifically for each call. The following list shows the possible entities to which a QoS
property may be bound:

1. Component (type)

2. Group of component instances (Managed by one Home)

3. Component Instance

4. Connection (type)

5. Call

If a QoS property is bound to a component or connection type, only one value is configured for all possible component
instances. The configuration of a QoS property related to the connection type corresponds to a global transport
configuration, e.g., a general CORBA policy.

Issue 12430 Dynamic configuration of components

If a QoS property is bound to a component or connection instance, its actual scope depends on their lifetime. If a
component instance is already declared during the assembly and never deleted until application shutdown, its lifetime –
and that of the QoS property as well – is identical with that of the application. In this case, the value of the QoS property
may be configured during the deployment and configuration phase. However, if the component is created dynamically, the
QoS value needs to be configured in a different way or configured at runtime, the QoS value needs to be configured either
via application specific means or by using configurator. The latter mechanism is modified by this specification, see 8.12,
’Dynamic adaptation of a running application’.

In case of dynamically created connections, the property might be configured either via application specific means or
negotiation. The latter mechanism is standardized by this specification, see Section 8.8, “Negotiation,” on page 37 for
details.

An example of a QoS property that is bound to a component type is a specific synchronization mechanism that is needed
to avoid race conditions within the component implementation.

In many cases, the implementation of a component does not need to know which QoS properties are configured: the
properties are managed by the container and it is an essential benefit that the implementation can be done being aware of
these. But in some cases, the implementation needs to access the value of the QoS property, imagine an encoder that
should process data trading CPU usage for quality. Therefore, the access to the QoS property needs to be specified
through an API.

7.2 CCMQoS Metamodel
The modeling of non-functional properties such as QoS properties requires clearly defined modeling concepts. Such
concepts are defined in a platform independent way in the specification “UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms” [UMLQOS]. Chapter 8 of that specification defines a
comprehensive metamodel for the description of QoS properties.
Quality of Service for CORBA Components, v1.0 5

The CCM specification [CCM] contains the definition of a metamodel for CCM. This metamodel contains different
packages. The BaseIDL package contains basic IDL concepts e.g., for defining interfaces. The ComponentIDL package
contains concepts needed for the definition of component types. The CIF package contains concepts needed for the
definition of component implementations.

However, the modeling of QoS properties for CORBA Components requires the definition of a link between QoS
metamodel and CCM metamodel. This link is defined in the metamodel package CCMQoS. Due to the fact that definition
of QoS properties for CORBA Components may have different scopes different links between the metamodels needs to be
defined.

The CCM metamodel currently does not contain concepts for defining component instances and component assemblies.
This part of the metamodel has been removed, with the goal to define a new and consistent Deployment and
Configuration metamodel. A first draft of such a metamodel is presented in the initial submission to the UML2 Profile for
CORBA and CORBA Components RFP [UMLCCM].

7.2.1 Package Structure
The link between the QoS metamodel and the CCM metamodel is described in a new package that depends on the
QoSConstraint package of the QoS metamodel and on the ComponentIDL package from the CCM metamodel. The overall
package structure is shown in Figure 7.1.

Figure 7.1 - Package Structure

7.2.2 Binding
The CCMQoS package contains definitions to link QoS properties to CORBA Components. This is achieved by defining
a Binding metaclass. A binding metaclass correlates a QoS constraint (QoSConstraint) with a component feature
definition (ComponentFeature). With this it is possible to describe that a specific QoS constraint is relevant in the context
of a specific component type A ComponentFeature can be any of the ports of a component type or the component type
itself. (Figure 7.2)

 «metamodel»
BaseIDL

«metamodel»
ComponentIDL

«metamodel»
QoSCharacteristics

«metamodel»
QoSConstraints

«metamodel»
CCMQoS
6 Quality of Service for CORBA Components, v1.0

Figure 7.2 - ComponentFeature (from CCM Metamodel)

Binding a QoSContext to a ComponentFeature makes this QoS property relevant for the component type. This means all
instances of this component type are related to that QosContext.

The definition of the Binding metaclass is depicted in Figure 7.3.

Figure 7.3 - Binding

7.2.2.1 mandatory

This attribute is of type boolean. If it is set to true, the Binding is mandatory. Which means the QoS property bound in
any case. If this attribute is set to false, the binding needs not to be valid all the time. This can be useful for systems in
phases where fewer resources are available and even the handling of QoS bindings would imply major decrease of system
performance. QoS bindings which are not mandatory can be temporarily disabled.

Bin d in g

+ m an d a to ry: bo o l e a n
+ n a m e : S t ri n g

Q o SC on s tr ain ts ::Q o SC o nte x t

Co m p on e n tIDL ::
Co m p on e n tF ea tu r e

0 . .n+b i n d i n g

co n te xt_ b i nd i n g

0 . .n+q o s_ co nte xt

0 . .n

+ b i nd i n g

co m p o n en t_ b i n di n g0 . .n

+ co m p _ fe a tu re
Quality of Service for CORBA Components, v1.0 7

7.2.2.2 name

This attribute is of type string and is used to give the binding a name.

7.3 Notation for QoS
The notation for QoS properties is completely based on the notation defined by UML profile for QoS and the UML
Profile for CCM. Furthermore, the upcoming UML2 Profile for CORBA and CORBA Components [UMLCCM] is going
to replace the Profile for UML 1.x. Examples on how to use the notations are given in Annex B.
8 Quality of Service for CORBA Components, v1.0

8

8 Container Architecture

8.1 Introduction
This specification defines concepts and interfaces that allow the integration of non-functional aspects and CCM based
applications. The goal is the separation of the realization of such non-functional aspects from the business code as much
as possible.

The component server is the run-time environment of a component. The component server is extended by containers that
are a more dynamic part of the run-time environment of a component. Containers can be created inside the component
server or can be destroyed. From a logical perspective components are created inside a container. Component server and
container together dispatch calls, manage lifecycle of components. Although the term Container Portable Interceptors
does not directly cover this, it is important to mention that Containers are dependent on the Components Server to provide
their functionality.

The injection of non-functional aspects according to the above principle implies the need for some extensions of the
container architecture and the definition of APIs between container, component implementations, and QoS related entities.
Those entities can be realized by using the QoS Enablers. QoS Enablers are similar to components and are executed in a
specialized container. This specification does not require the usage of the QoS Enabler concept to integrate non-functional
properties into the container.

In some situation the separation of non-functional aspects from business code will not be possible to the full extent
(because QoS logic has sometimes to be intimately related to component logic). In such cases clear interfaces between the
component implementation (Executor) and the run-time environment (Container) are defined. This helps making
functional and non-functional properties as independent as possible.

For managing QoS properties for CORBA components, it is not sufficient only to extend the container architecture. It is
also important to define means for managing QoS properties from outside of the container. This includes the connection
between components as well as the deployment of components.

The general container architecture of the CORBA Component Model is explained in the specification of the CORBA
Component Model [CCM]. Figure 8.1 is in accordance to the corresponding figure of the CCM specification and contains
the general idea of the extension of the container architecture by introducing the Container Portable Interceptors (COPI).
Container Portable Interceptors are the means by which Container extensions can effectively becoming part of the
container.
Quality of Service for CORBA Components, v1.0 9

Figure 8.1 - Extended Container Architecture

8.1.1 Requirements

8.1.1.1 Support of CORBA Portable Interceptors

A basic principle, among others, for integration of non-functional properties to CORBA applications is the interception
mechanism, which can be used to monitor and possibly change the processing of calls. This mechanism is defined by the
specification of the CORBA Portable Interceptors [CORBA]. CORBA Portable Interceptors can be used for integrating
CORBA services within CORBA based applications.

The CORBA Component Model emphasizes the clear separation of business logic implementation (Executor) and other
run-time related artifacts (Container). This means that user provided code is essentially reduced to the core business logic.
All other activities, which are common to plain CORBA based applications are now managed by Container and
Component Server and are controlled by the deployment infrastructure. For that reason there is no standard way for
accessing and using the CORBA Portable Interceptors from CORBA Components. One of the reasons is that Executors
have no direct access to the ORB and cannot make use of pre_init() and post_init() methods that prevents them from
registering interceptors at the ORB. The Container Portable Interceptors shall allow the injection interception mechanism
as user provided code in a standard way.

An important addition to the CORBA Portable Interceptors is needed since not only an interface and its implementation
is an identifiable entity in the CORBA Component Model but also the component implementation (executor). This means
that the information provided in the various interception points has to be enhanced by information about Executor.

8.1.1.2 Migrating from CORBA to CCM

The CORBA Component Model is based on plain CORBA and allows an easy migration from plain CORBA based
applications to CCM based applications. The same principle shall be applied to the Interception mechanism of CORBA.
The Container Portable Interceptors shall support an easy migration from user code based CORBA Portable Interceptor to
user code based on Container Portable Interceptors. This may lead to definition of similar or same API as well as same or
similar flow rules.
10 Quality of Service for CORBA Components, v1.0

8.1.1.3 Simple Management of User Code

Since the implementation for doing the actual interception is provided by user and not by container vendor, it is important
that handling of such code is as simple as it is to handle component implementations. The COPI specification shall allow
easy implementation and management of Container Portable Interceptor code.

8.2 Component Instance Identity
The identity of a component instance is important, in particular associating non-functional properties with them. On the
basis of this identity the container is able to associate such properties to an actual call dispatched by it. In contrast to
traditional CORBA systems, two important identities are relevant. One is the identity of the client component instance
that calls a method on a server component instance and the identity of the server component instance itself.

Currently, the handling of component instance identifiers is not supported by CCM. For the reliable handling of non-
functional aspects on the basis of the contract concept a way to identify client and server is needed. This is achieved by
associating each component instance with an identifier at instance creation time. The identifier needs to be unique.

In order to achieve this, two different cases have to be distinguished. In case of a static component setup, as useful for
rather small embedded systems, a unique identifier can easily be achieved: all component instances are known at compile
time and can be associated with a unique instance. In case of dynamic systems in which new component instances might
show up, the situation is different. In this situation it is important to identify each component instance with a unique
identifier. If this component instance identifier is chosen out of a sufficiently large value space it is very unlikely that a
client “guesses” a client identifier belonging to another client. Depending on the desired improbability identifiers could be
sequence of octet. In the context of this specification the possibility that one client steals the identity of another by means
of spying out the network traffic is not addressed (if this is an issue, encrypted transports need to be used).

To identify a client component instance at server side it is vital that the identity information is transmitted in every call a
client makes to give the server side the possibility to check for active contracts for the calling component instance. If a
client does not submit its identity, an inter-component QoS agreement cannot be applied.

The container, i.e., the run-time environment of a component, is responsible for managing the association of the identifier
and the component instance. Furthermore, the transmission of component instance identities should be completely
transparent to the component instances itself. Therefore it has to be handled by the container. The container shall use the
Service Context defined for plain Portable Interceptors (PI) to achieve this. This allows the integration of this
functionality by standard means, which will in fact keep interoperability at CORBA level.

8.3 Container Portable Interceptors

8.3.1 Introduction
Container Portable Interceptors (COPI) are hooks into the Container Architecture through which the normal flow of
execution inside the Container can be intercepted. In general, the Container Portable Interceptors are built upon the
principles of the CORBA Portable Interceptors, but modifications are applied to take the container architecture and the
component setting into account.

There are two levels of Container Portable Interceptors. The basic level corresponds to the capabilities of the CORBA
Portable Interceptors (PI) and the extended ones provide an extended functionality to better control the call chain within
the Container.

Container Portable Interceptors support similar programming models as Portable Interceptors do, namely:
Quality of Service for CORBA Components, v1.0 11

1. Client sendsrequest

2. Server receives request

3. Server sends reply

4. Client sends reply

A detailed description on how to implement the basic and the extended COPIs will not be given in this specification. This
will leave container vendors the freedom to decide on how to implement this specification. However, a possible
implementation variant is that basic COPIs will be realized by wrapping the CORBA Portable Interceptor as part of the
container implementation, which means that the basic interception points will be called by a wrapped Portable Interceptor.
The extended COPIs can be realised by extending the container implementation and make the calls to the extended
interceptions points directly from the container.

8.3.2 Design Principles
The following points are the principles followed in the design of the basic Container Portable Interceptor architecture:

1. Interceptors are called on all container mediated calls that are directed to components. Interceptors are not called for
operations for management of run-time (e.g., install_home). Due to the fact that implicit operations (i.e.,
get_interface, is_a, non_existent, get_domain_managers, and get_component) may or may not be
ORB mediated, Basic Container Interceptors may or may not be called. Whenever the implicit operations are ORB
mediated, interceptors are called; otherwise, they are not called.

2. A basic Container Interceptor can affect the outcome of a request by raising a system exception at any of the
interception points. It can stop the request from even reaching the target by raising a system exception.

3. A basic Container Interceptor can affect the outcome of a request by directing a request to a different location at any
interception point other than a successful reply.

4. A basic Container Interceptor cannot affect a request by changing a parameter specified by a client. That is, the
Basic Container Interceptor cannot modify “in” arguments.

5. A basic Container Interceptor cannot affect a non-exception outcome by supplying the response itself. That is, the
basic Container Interceptor cannot modify “out” arguments or the return value.

6. Basic Container Interceptors are independent of other Container Interceptors. That is, a Container Interceptor won’t
need to know, and won’t even be told, if there are Container Interceptors executed before or after it.

7. A basic Container Interceptor may make object invocation itself before allowing the current request to execute.

8. There is no provision of making component implementation aware that any Container Interceptor is called.

9. The basic Container Interceptors do not bypass the dispatching of the request within the container.

The following points are the principles followed in the design of the extended Container Portable Interceptor architecture:

10. Basic Container Portable Interceptors and Extended Container Portable Interceptors can be used in parallel. They
work independently of each other. From the perspective of basic Container Portable Interceptor, the Extended
Portable Interceptors are similar to plain user code.
Corollary: Basic and Extended Container Portable Interceptors can communicate between themselves to bypass this
principle.

12 Quality of Service for CORBA Components, v1.0

11. Even if the interception points are quite similar to the ones of the basic Container Interceptors different names are
used to provide clear separation of the different interception points.

12. A set of general flow rules governs the flow of processing.

8.3.3 General Flow Rules
Container Interceptors are registered with the Component Server. The Component Server logically maintains the order of
the list of Container Interceptors.

To accommodate both Client and Server Container Portable Interceptors a set of general flow rules are defined. These
flow rules are exactly the same rules as the general flow rules defined for portable request interceptors (section 21.3.2 in
CORBA specification [CORBA]), with the following addition:

• Basic and extended Container Interceptors can be used in parallel.

• On client side, starting points of Extended Container Portable Interceptors are called before starting points of Basic
Container Portable Interceptors. Ending points of Extended Container Portable Interceptors are called after ending
points of Basic Container Portable Interceptors.

• On server side starting points of Basic Container Portable Interceptors are called before starting points of Extended
Container Portable Interceptors. Ending points of Basic Container Portable Interceptors are called after ending points
of Extended Container Portable Interceptors.

8.3.4 Container Interceptor Interface
All Container Portable Interceptor Interfaces are defined in the module ContainerPortableInterceptor, which is defined in
the module Components. All Container Portable Interceptors inherit from the local interface ContainerInterceptor.

The following IDL fragment describes the ContainerInterceptor interface.

module Components {
 module ContainerPortableInterceptor {
 struct CustomSlotItem
 {
 string identifier;
 any content;
 };

 typedef sequence<CustomSlotItem> CustomSlotItemSeq;
Issue 11703 Interceptor registration

 struct IntegrationPoint
 {
 string port;
 string operation;
 };

 local interface ContainerInterceptor
 {
 readonly attribute string name;

 attribute unsigned short priority;
Quality of Service for CORBA Components, v1.0 13

 attribute IntegrationPoint registration_info;
 void
 destroy ();

void
set_slot_id(in PortableInterceptor::SlotId slot_id);

 };
 };
};

8.3.4.1 name
Issue 11703 Interceptor registration

Each container interceptor may have a name that may be used for administrative purposes; in particular, to order the list
of registered interceptors. It is possible to use anonymous interceptors. In this case the name is an empty string. There can
be more than one anonymous interceptor.

Issue 11703 Interceptor registration

8.3.4.2 priority

Each container interceptor may have a priority that may be used to order the list of registered interceptors. Priority value may
help implementor to control execution order of interceptors and some existing dependencies between interceptors. The
determination and management of priority values is free.

8.3.4.3 registration_info

This attribute is a structure containing a port and an operation string that informs about the specific intercepted call. If null
strings are set, interceptor is registered for all interception points.

8.3.4.4 destroy

This operation can be used by the container to destroy the container interceptor interface to free resources (e.g., when the
container is destroyed). The semantics of this operation depends on how the container interceptor is implemented. It
might be the case that the container interceptor is implemented by QoS Enabler, which itself will control the lifecycle of
the container interceptor interface. In such a case the destroy operation has no other effect than to inform that the
container interceptor interface is no longer used and subsequently no interception points will be called.

8.3.4.5 set_slot_id

This operation is used by the container to set the identifier of the slot that is used by the container in the
PortableInterceptor::Current to handle thread specific information. Container interceptors have to use the slot
identified by this id to process call and thread context specific information.

The data in the slot contains CustomSlotItemSeq which is a sequence of CustomSlotItem. A CustomSlotItem is a
struct which contains an identifier and a content of type any. A COPI can add a new CustomSlotItem at the end of the
sequence contained in the slot. The identifier of a CustomSlotItem should denote the COPI name. Content could be any
content provided as any. The CustomSlotItemSeq sequence contained in the slot of PortableInterceptor::PICurrent
identified by this slot_id will be encoded by the container in the service context of the call and is exchanged between
client-side and server-side COPIs. See Section 8.3.6 for details.
14 Quality of Service for CORBA Components, v1.0

8.3.5 Stack Visual Model and Interception Points
Similar to the definition of the CORBA Portable Interceptors, the same Flow Stack visual model is applied. This means
to visualize the general flow rules, think of each Container Interceptor as being put on a Flow Stack when a starting
interception point completes successfully. An ending interception point is called for each Container Interceptor in the
stack. If one of the interceptors raises an exception during the invocation of its starting interception point, only those
Interceptors on the stack at that point will be popped and have an ending interception point called.

Although basic and extended Container Portable Interceptors are inherently independent at run-time, they share the same
Flow Stack.

8.3.6 COPIServiceContext
The COPIServiceContext struct contains information about the component identifier of the component instances
participating in a call. origin_id denotes the client side component instance id. target_id denotes the server side
component instance id. When Container Portable Interceptors are used the context_data component of the ServiceContext
shall contain a CDR encapsulation of the COPIServiceContext struct, which is defined below:

module IOP {
 const ServiceID COPI = 18;
};

module Components {
 module ContainerPortableInterceptor {
 struct COPIServiceContext
 {
 CORBA::OctetSeq origin_id;
 CORBA::OCtetSeq target_id;
 CustomSlotItemSeq slot_info;
 };
 };
};

8.3.6.1 origin_id

This identifies the client component instance id that is the originator of a call. Whenever a call is not issued by a
component instance or the originator id cannot be determined for any reason the sequence should have a zero length.

8.3.6.2 target_id

This identifies the server component instance id that is the target of the call. Whenever the id of the target component
instance cannot be determined for any reason the sequence should have a zero length.

8.3.6.3 slot_info

slot_info is used to transmit a CustomSlotItemSeq sequence between client side and server side Container Portable
Interceptors. CustomSlotItems are provided by Container PortableInterceptors during the processing of a call. See
Section 8.3.4.5 for details.
Quality of Service for CORBA Components, v1.0 15

8.4 Basic Container Interceptors
Basic Container Interceptors are designed with the very same intension as the Request Interceptors of Portable Interceptor
specification are defined for the integration of ORB services into the ORB.

A basic Container Interceptor is designed to intercept the flow of a request/reply sequence through the Component Server
and the Container respectively at specific points so that container services and other container extensions such as QoS
Enablers can query the request information and manipulate the service context that are propagated between clients and
servers.

The primary use of basic Container Interceptors is to enable ORB services and other artifacts that might be used to ensure
a certain level of QoS to transfer context information between client and servers.

There are two types of basic Container Interceptors: client-side (8.4.2, ’ClientContainerInterceptor Interface’) and server-
side (8.4.5, ’ServerContainerInterceptor Interface’).

A set of Design Principles apply to the Container Portable Interceptors that are very similar to the ones applied to the
Portable Interceptors.

8.4.1 Basic Interception Points
Each basic Container Portable Interceptor is called at a number of interception points. Figure 8.2 shows the interception
points which might be called in a request reply cycle. The details of the client-side interception points are described in
8.4.3, ’Client-Side Interception Points’. The details of server-side interception points are described in 8.4.6, ’Server-Side
Interception Points’.

Figure 8.2 - Basic Interception Points

8.4.2 ClientContainerInterceptor Interface
The following IDL fragment describes the ClientContainerInterceptor interface. The operations (interception points)
defined in this interface correspond to the operations defined in the ClientRequestInterceptor interface. The important
difference between the operations of those two interfaces is related to the request info object that is passed as parameter.

To write a basic client-side Container Portable Interceptor this interface needs to be implemented.

module Components {
 module ContainerPortableInterceptor {
 local interface ClientContainerInterceptor : ContainerInterceptor
 {

16 Quality of Service for CORBA Components, v1.0

 void
 send_request (in ContainerClientRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);

 void
 send_poll (in ContainerClientRequestInfo info);

 void
 receive_reply (in ContainerClientRequestInfo info);

 void
 receive_exception (
 in ContainerClientRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);

 void
 receive_other (in ContainerClientRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);
 };
 };
};

8.4.3 Client-Side Interception Points

8.4.3.1 send_request

This interception point allows an Interceptor to query request information and modify the service context before the
request is sent to the server component.

This interception point may raise a system exception. If it does, no other Interceptors’ send_request operations are
called. Those Interceptors on the Flow Stack are popped and their receive_exception interception points are called.

The interception point may also raise a ForwardRequest Exception. If an Interceptor raises this exception, no other
Interceptors’ send_request operations are called. Those Interceptors on the Flow Stack are popped and their
receive_other interception point is called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

8.4.3.2 send_poll

This interception point allows an Interceptor to query information during Time-Independent Invocation (TII) polling get
reply sequence.

With TII, an application may poll for a response to a request sent previously by the polling client component or some
other client. This poll is reported to the Interceptors, through the send_poll interception point and the response is
returned through the receive_reply or receive_exception interception points. If the response is not available before
the poll time-out expires, the system exception TIMEOUT is raised and the receive_exception is called with this
exception.

This interception point may raise a system exception. If it does, no other Interceptors’ send_poll operations are called.
Those Interceptors on the Flow Stack are popped and their receive_exception interception points are called.
Quality of Service for CORBA Components, v1.0 17

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

8.4.3.3 receive_reply

This interception point allows an interceptor to query the information on a reply after it is returned from the server
component and before control is returned to the client component.

This interception point may raise a system exception. If it does so, no other Interceptors’ receive_reply operations are
called. The remaining Interceptors in the Flow Stack shall have their receive_exception interception point called.

Compliant Interceptors shall properly follow completion_status sematics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_YES.

8.4.3.4 receive_exception

When an exception occurs, this interception point is called. It allows an Interceptor to query the exception’s information
before it is raised to the client component.

This interception point may raise a system exception. This has the effect of changing the exception, which successive
Interceptors popped from the Flow Stack receive on their calls to receive_exception. The exception raised to the client
component will be the last exception raised by an Interceptor, or the original exception if no Interceptor changes the
exception.

This interception point may raise also a ForwardRequest exception. If an Interceptor raises this exception, no other
Interceptors’ receive_exception operations are called. The remaining Interceptors in the Flow Stack are popped and
have their receive_other interception point called.

If the completion_status of the exception is not COMPLETED_NO, then it is inappropriate for this interception point
to raise a ForwardRequest exception. The request’s at most-once semantics would be lost.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. If the original exception is a system exception, the completion_status of the new exception shall be
the same as on the original. If the original exception is a user exception, then the completion_status of the new exception
shall be COMPLETED_YES.

Under some conditions, depending on what policies are in effect, an exception (such as COMM_FAILURE) may result in
a retry of the request. While this retry is a new request with respect to Interceptors, there is one point of correlation
between the original request and the retry: because control has not returned to the client component, the
PortableInterceptor::Current for both the original request and the retrying request is the same.

8.4.3.5 receive_other

This interception point allows an Interceptor to query information available when a request results in something other
than a normal reply or an exception. For example, a request could result in a retry (for example, a GIOP Reply with a
LOCATION_FORWARD status was received.); or on asynchronous calls, the reply does not immediately follow the
request, but the control shall return to the client component and an ending interception point shall be called.

For retries, depending on the policies in effect, a new request may or may not follow when a retry has been indicated. If
a new request does follow, while this request is a new request with respect to Interceptors, there is one point of correlation
between the original request and the retry. Because control has not returned to the client component, the request scoped
PortableInterceptor::Current for both the original request and the retrying request is the same.
18 Quality of Service for CORBA Components, v1.0

This interception point may raise a system exception. If it does, no other Interceptors’ receive_other operations are
called. The remaining Interceptors in the Flow Stack are popped and have their receive_exception interception point
called.

This interception point may also raise a ForwardRequest exception. If an Interceptor raises this exception, successive
Interceptors’ receive_other operations are called with the new information provided by the ForwardRequest
exception.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO. If the target invocation had completed, this
interception point would not be called.

8.4.4 Interception Flow for ClientContainerInterceptors
Instances of the ClientContainerInterceptor Interface are registered with the run-time environment. The run-time
environment logically maintains an ordered list of client-side Container Interceptors. The interceptor list is traversed in
order on the sending interception points and in reverse order on the receiving interception points.

8.4.4.1 Client-side Flow Rules

The client-side flow rules for basic Container Portable interceptors are derived from the general flow rules:

• The set of starting interception points is: send_request and send_poll. One and only one of these is called on any
given request/reply sequence.

• The set of ending interception points is: receive_reply, receive_exception, receive_other. One and only one of
these is called on any given request/reply sequence.

• There are no intermediate exception points.

• If and only if send_request or send_poll runs to completion is an ending interception point called.

8.4.4.2 Additional Client-side Details

If, during request processing, a request is canceled because of an ORB shutdown, which is caused by component server
shutdown, receive_exception is called with the system exception BAD_INV_ORDER with a minor code of 4 (ORB
has shutdown).

If a request is canceled for any other reason (for example, a GIOP cancel message is sent by the ORB),
receive_exception is called with the system exception TRANSIENT with a standard minor code of 2.

On oneway requests, returning control to the client component may occur immediately or it may return after the target has
performed the operation, or somewhere in-between depending on the SyncScope. Regardless of the SyncScope, if there is
no exception, receive_other is called before control is returned to the client component.

Asynchronous requests are simply two separate requests. The first request receives no reply. The second receives a
normal reply. So the normal (no exceptions) flow is: first request - send_request followed by receive_other; second
request - send_request followed by receive_reply.

8.4.5 ServerContainerInterceptor Interface
The following IDL fragment describes the ServerContainerInterceptor interface. The operations defined in this
interface correspond to the operations defined in the ServerRequestInterceptor interface. The main difference between
those operations is the request info object.
Quality of Service for CORBA Components, v1.0 19

To write a basic server-side Container Portable Interceptor this interface needs to be implemented.

module Components {
 module ContainerPortableInterceptor {
 local interface ServerContainerInterceptor : ContainerInterceptor
 {
 void
 receive_request_service_contexts (
 in ContainerServerRequestInfo csi)
 raises (PortableInterceptor::ForwardRequest);

 void
 receive_request (in ContainerServerRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);

 void
 send_reply (in ContainerServerRequestInfo info);

 void
 send_exception (in ContainerServerRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);

 void
 send_other (in ContainerServerRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);
 };
 };
};

8.4.6 Server-Side Interception Points

8.4.6.1 receive_request_service_contexts

At this interception point, Interceptors must get their service context information from the incoming request and transfer
it to PortableInterceptor::Current’s slots.

This interception point is called before the servant manager is called. Operation parameters are not yet available at this
point. This interception point may or may not execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other Interceptors’
receive_request_service_contexts operations are called. Those Interceptors on the Flow Stack are popped and their
send_exception interception points are called.

This interception point may also raise a ForwardRequest exception If an Interceptor raises this exception, no other
Interceptor’s receive_request_service_contexts operations are called. Those Interceptors on the Flow Stack are
popped and their send_other interception points are called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.
20 Quality of Service for CORBA Components, v1.0

8.4.6.2 receive_request

This interception point allows an Interceptor to query request information after all the information, including operation
parameters, are available. This interception point shall execute in the same thread as the target invocation.

In the DSI model, since the parameters are first available when the user code calls arguments, receive_request is called
from within arguments. It is possible that arguments is not called in the DSI model. The target may call set_exception
before calling arguments. The ORB shall guarantee that receive_request is called once, either through arguments or
through set_exception. If it is called through set_exception, requesting the arguments will result in
NO_RESOURCES being raised with a standard minor code of 1.

This interception point may raise a system exception. If it does, no other Interceptors’ receive_request operations are
called. Those Interceptors on the Flow Stack are popped and their send_exception interception points are called.

This interception point may also raise a ForwardRequest exception. If an Interceptor raises this exception, no other
Interceptors’ receive_request operations are called. Those Interceptors on the Flow Stack are popped and their
send_other interception points are called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

8.4.6.3 send_reply

This interception point allows an Interceptor to query reply information and modify reply service context after the target
operation has been invoked and before the reply is returned to the client component. This interception point shall execute
in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other Interceptors’ send_reply operations are called.
The remaining Interceptors in the Flow Stack shall have their send_exception interception point called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_YES.

8.4.6.4 send_exception

When an exception occurs, this interception point is called. It allows an Interceptor to query the exception information
and modify the reply service context before the exception is raised to the client component. This interception point shall
execute in the same thread as the target invocation.

This interception point may raise a system exception. This has the effect of changing the exception that successive
Interceptors popped from the Flow Stack receive on their calls to send_exception. The exception raised to the client
will be the last exception raised by an Interceptor, or the original exception if no Interceptor changes the exception.

This interception point may also raise a ForwardRequest exception. If an Interceptor raises this exception, no other
Interceptors’ send_exception operations are called. The remaining Interceptors in the Flow Stack shall have their
send_other interception points called.

If the completion_status of the exception is not COMPLETED_NO, then it is inappropriate for this interception point
to raise a ForwardRequest exception. The request’s at-most-once semantics would be lost.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. If the original exception is a system exception, the completion_status of the new exception shall be
the same as on the original. If the original exception is a user exception, then the completion_status of the new
exception shall be COMPLETED_YES.
Quality of Service for CORBA Components, v1.0 21

8.4.6.5 send_other

This interception point allows an Interceptor to query information available when a request results in something other
than a normal reply or an exception. A request could result in a retry (for example, a GIOP Reply with a
LOCATION_FORWARD status was received). This interception point shall execute in the same thread as the target
invocation.

This interception point may raise a system exception. If it does, no other Interceptors’ send_other operations are called.
The remaining Interceptors in the Flow Stack shall have their send_exception interception points called.

This interception point may also raise a ForwardRequest exception. If an Interceptor raises this exception, successive
Interceptors’ send_other operations are called with the new information provided by the ForwardRequest exception.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

8.4.7 Interception Flow for ServerContainerInterceptors
Instances of the ServerContainerInterceptor Interface are registered with the run-time environment. The run-time
environment logically maintains an ordered list of server-side Container Interceptors. The interceptor list is traversed in
order on the receiving interception points and in reverse order on the sending interception points.

8.4.8 Server-side Flow Rules
The server-side flow rules for basic Container Portable interceptors are derived from the general flow rules:

• The starting interception point is receive_request_service_contexts; this interception point is called on any given
request/reply sequence.

• The set of ending interception points is send_reply, send_exception, send_other. One and only one of these is
called on any given request/reply sequence.

• The intermediate interception point is receive_request, which is called after
receive_request_service_contexts and before ending interception point.

• On an exception, receive_request may not be called.

• If and only if receive_request_service_contexts runs to completion is an ending interception point called.

8.4.8.1 Additional Server-side Details

If, during request processing, a request is canceled because of an ORB shutdown that is initiated by a component server
shutdown, send_exception is called with the system exception BAD_INV_ORDER with a minor code of 4 (ORB has
shutdown).

If a request is canceled for any other reason (for example, a GIOP cancel message has been received), send_exception
is called with the system exception TRANSIENT with a standard minor code of 3.

On oneway requests, there is no reply sent to the client; however, the target is called and the server component can
construct an empty reply. Since closure is necessary, this reply is tracked and send_reply is called (unless an exception
occurs, in which case send_exception is called).

Asynchronous requests, from the server’s point of view, are just normal synchronous requests. Normal interception point
flows are followed.
22 Quality of Service for CORBA Components, v1.0

8.5 Extended Container Interceptor Interfaces
In contrast to the basic Container Portable Interceptors the extended Container Portable Interceptors are designed to
overcome some limitations in the design of the CORBA Portable interceptors. This is in particular related to the
modification of parameters of requests or replies.

Furthermore, extended Container Interceptors intercept a call on a different level than the basic interceptors do. Basic
interceptors mostly work on level of ORB dispatching while extended interceptors work on the level of container
dispatching.

Issue 11699 Section 8.5: error in the text

An extended basic Container Interceptor is designed to intercept the flow of a request/reply sequence through the
Container at specific points so that container services and other container extensions such as QoS Enablers can query the
request information and manipulate the invocation parameters.

The primary use of extended Container Portable Interceptors is to enable ORB services and other artifacts modification of
component behavior to ensure a certain level of QoS.

There are two types of extended Container Interceptors: client-side (Section 8.5.2, “StubContainerInterceptor,” on
page 23) and server-side (Section 8.5.5, “ServantContainerInterceptor,” on page 26).

8.5.1 Extended Interception Points
Each extended Container Portable Interceptor is called at a number of interception points. Figure 8.3 shows the
interception points that might be called in a request reply cycle. The details of the client-side interception points are
described in Section 8.5.3, “Stub Interception Points,” on page 24. The details of server-side interception points are
described in Section 8.5.6, “Servant Interception Points,” on page 27.

Figure 8.3 - Extended Interception Points

8.5.2 StubContainerInterceptor
The following IDL fragment describes the StubContainerInterceptor interface. To write an extended client-side Container
Portable Interceptor this interface needs to be implemented.

module Components {
 module ContainerPortableInterceptor {
 local interface StubContainerInterceptor : ContainerInterceptor
 {
 void
Quality of Service for CORBA Components, v1.0 23

 stub_send_request (
 in ContainerStubRequestInfo info,
 out boolean con)
 raises (PortableInterceptor::ForwardRequest);
 void
 stub_receive_reply (
 in ContainerStubRequestInfo info,
 out boolean con);
 void
 stub_receive_exception (
 in ContainerStubRequestInfo info,
 out boolean con)
 raises(PortableInterceptor::ForwardRequest);
 void
 stub_receive_other (
 in ContainerStubRequestInfo info)
 raises(PortableInterceptor::ForwardRequest);
 };
 };
};

8.5.3 Stub Interception Points

8.5.3.1 stub_send_request

This interception point allows an Interceptor to query request information and modify value of the parameters of the call
or change the target of the call by directing the call to a different location.

This interception point may modify the parameters of the current request by using the ContainerStubRequestInfo
object.

This interception point may raise a system exception. If it does, no other Interceptors’ stub_send_request operations
are called. Those Interceptors on the Flow Stack are popped and their receive_exception interception points are called.

If a system exception is raised by any interceptor at this interception point, the call is not handled by the ORB and no
basic interception point will be called.

The interception point may also raise a ForwardRequest Exception. If an Interceptor raises this exception, no other
Interceptors’ send_request operations are called. Those Interceptors on the Flow Stack are popped and their
receive_other interception point is called.

Compliant Interceptors shall properly follow completion_status sematics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

This interception point may also end the current call without exception but by providing appropriate return values. This is
done by setting the boolean output parameter proceed_call to false and by modifying the parameters (i.e., return, inout,
and out parameter). If this non-exception completion of a call occurs, no other Interceptors’ stub_send_request
operations are called. Those Interceptors on the Flow Stack are popped and their stub_receive_other interception point
is called. If call shall continue normally the proceed_call parameter shall be set to true.
24 Quality of Service for CORBA Components, v1.0

8.5.3.2 stub_receive_reply

This interception point allows an interceptor to query the information on a reply after it is returned from the server
component and before control is returned to the client component.

This interception point may modify the return parameter of the current request by using the
ContainerStubRequestInfo object.

This interception point may raise a system exception. If it does so, no other Interceptors’ stub_receive_reply operations
are called. The remaining Interceptors in the Flow Stack shall have their receive_exception interception point called.

Compliant Interceptors shall properly follow completion_status sematics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_YES.

This interception point may also end the current call without exception but by providing appropriate return values. This is
done by setting the boolean parameter proceed_call to false and by modifying the parameters (i.e., return, inout, and out
parameter). If this non-exception completion of a call occurs, no other Interceptors’ stub_receive_reply operations are
called. Those Interceptors on the Flow Stack are popped and their stub_receive_other interception point is called. If
call shall continue normally, the proceed_call parameter shall be set to true.

8.5.3.3 stub_receive_exception

When an exception occurs, this interception point is called. It allows an Interceptor to query the exception’s information
before it is raised to the client component.

This interception point may raise a system exception. This has the effect of changing the exception, which successive
Interceptors popped from the Flow Stack receive on their calls to receive_exception. The exception raised to the client
component will be the last exception raised by an Interceptor, or the original exception if no Interceptor changes the
exception.

This interception point may raise also a ForwardRequest exception. If an Interceptor raises this exception, no other
Interceptors’ receive_exception operations are called. The remaining Interceptors in the Flow Stack are popped and
have their receive_other interception point called.

If the completion_status of the exception is not COMPLETED_NO, then it is inappropriate for this interception point
to raise a ForwardRequest exception. The request’s at most-once semantics would be lost.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. If the original exception is a system exception, the completion_status of the new exception shall be
the same as on the original. If the original exception is a user exception, then the completion_status of the new
exception shall be COMPLETED_YES.

This interception point may also end the current call without exception but by providing appropriate return values. This is
done by setting the boolean parameter proceed_call to false and by modifying the parameters (i.e., return, inout, and out
parameter). If this non-exception completion of a call occurs, no other Interceptors’ stub_receive_exception
operations are called. Those Interceptors on the Flow Stack are popped and their stub_receive_other interception point
is called. If call shall continue normally, the proceed_call parameter shall be set to true.

8.5.3.4 stub_receive_other

This interception point allows an Interceptor to query information available when a request results in something other
than a normal reply or an exception but the control shall return to the client component and an ending interception point
shall be called.
Quality of Service for CORBA Components, v1.0 25

For retries, depending on the policies in effect, a new request may or may not follow when a retry has been indicated. If
a new request does follow, while this request is a new request with respect to Interceptors, there is one point of correlation
between the original request and the retry. Because control has not returned to the client component, the request scoped
PortableInterceptor::Current for both the original request and the retrying request is the same.

This interception point may raise a system exception. If it does, no other Interceptors’ stub_receive_other operations
are called. The remaining Interceptors in the Flow Stack are popped and have their stub_receive_exception
interception point called.

This interception point may also raise a ForwardRequest exception. If an Interceptor raises this exception, successive
Interceptors’ stub_receive_other operations are called with the new information provided by the ForwardRequest
exception.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO. If the target invocation had completed, this
interception point would not be called.

8.5.4 Interceptor Flow for StubContainerInterceptors
Instances of the StubContainerInterceptor Interface are registered with the run-time environment. The run-time
environment logically maintains an ordered list of client-side Container Interceptors. The interceptor list is traversed in
order on the sending interception points and in reverse order on the receiving interception points.

8.5.4.1 Client-side Flow Rules

The client-side flow rules for extended Container Portable interceptors are derived from the general flow rules:

• The starting interception point is: stub_send_request; this interception point is called on any given request/reply
sequence.

• The set of ending interception points is: stub_receive_reply, stub_receive_exception, stub_receive_other.
One and only one of these is called on any given request/reply sequence.

• There are no intermediate exception points.

• If and only if send_request runs to completion is an ending interception point called.

8.5.4.2 Additional Client-side Details

If, during request processing, a request is canceled because of an ORB shutdown, which is caused by component server
shutdown, stub_receive_exception is called with the system exception BAD_INV_ORDER with a minor code of 4
(ORB has shutdown).

If a request is canceled for any other reason (for example, a GIOP cancel message is sent by the ORB),
stub_receive_exception is called with the system exception TRANSIENT with a standard minor code of 2.

On oneway requests, returning control to the client component may occur immediately or it may return after the target has
performed the operation, or somewhere in-between depending on the SyncScope. Regardless of the SyncScope, if there is
no exception, stub_receive_other is called before control is returned to the client component.

8.5.5 ServantContainerInterceptor
The following IDL fragment describes the ServantContainerInterceptor interface.
26 Quality of Service for CORBA Components, v1.0

Issue 11700 Section 8.5.5: error in the text

To write an extended serverclient-side Container Portable Interceptor this interface needs to be implemented.

module Components {
 module ContainerPortableInterceptor {
 local interface ServantContainerInterceptor : ContainerInterceptor
 {
 void
 servant_receive_request (
 in ContainerServantRequestInfo info,
 out boolean proceed_call)
 raises (PortableInterceptor::ForwardRequest);

 void
 servant_send_reply (
 in ContainerServantRequestInfo info,
 out boolean proceed_call);

 void
 servant_send_exception (
 in ContainerServantRequestInfo info,
 out boolean proceed_call)
 raises (PortableInterceptor::ForwardRequest);

 void
 servant_send_other (
 in ContainerServantRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);
 };
 };
};

8.5.6 Servant Interception Points

8.5.6.1 servant_receive_request

This interception point allows an Interceptor to query request information after all the information, including operation
parameters, are available. This interception point shall execute in the same thread as the target invocation.

This interception point may modify the parameters of the current request by using the ContainerServantRequestInfo
object.

This interception point may raise a system exception. If it does, no other Interceptors’ servant_receive_request operations
are called. Those Interceptors on the Flow Stack are popped and their servant_send_exception interception points are
called.

This interception point may also raise a ForwardRequest exception. If an Interceptor raises this exception, no other
Interceptors’ servant_receive_request operations are called. Those Interceptors on the Flow Stack are popped and
their servant_send_other interception points are called.
Quality of Service for CORBA Components, v1.0 27

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

This interception point may also end the current call without exception but by providing appropriate return values. This is
done by setting the boolean parameter proceed_call to false and by modifying the parameters (i.e. return, inout, and out
parameter). If this non-exception completion of a call occurs, no other Interceptors’ servant_receive_request
operations are called. Those Interceptors on the Flow Stack are popped and their servant_send_other interception
point is called. If call shall continue normally, the proceed_call parameter shall be set to true.

8.5.6.2 servant_send_reply

This interception point allows an Interceptor to query reply information after the target operation has been invoked and
before the reply is returned to the client component. This interception point shall execute in the same thread as the target
invocation.

This interception point may modify the return parameters of the current request by using the
ContainerServantRequestInfo object.

This interception point may raise a system exception. If it does, no other Interceptors’ servant_send_reply operations
are called. The remaining Interceptors in the Flow Stack shall have their servant_send_exception interception point
called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_YES.

This interception point may also end the current call without exception but by providing appropriate return values. This is
done by setting the boolean parameter proceed_call to false and by modifying the parameters (i.e., return, inout, and out
parameter). If this non-exception completion of a call occurs, no other Interceptors’ servant_send_reply operations are
called. Those Interceptors on the Flow Stack are popped and their servant_send_other interception point is called. If
call shall continue normally, the proceed_call parameter shall be set to true.

8.5.6.3 servant_send_exception

When an exception occurs, this interception point is called. It allows an Interceptor to query the exception information
before the exception is raised to the client component. This interception point shall execute in the same thread as the
target invocation.

This interception point may raise a system exception. This has the effect of changing the exception that successive
Interceptors popped from the Flow Stack receive on their calls to servant_send_exception. The exception raised to the
client will be the last exception raised by an Interceptor, or the original exception if no Interceptor changes the exception.

This interception point may also raise a ForwardRequest exception. If an Interceptor raises this exception, no other
Interceptors’ servant_send_exception operations are called. The remaining Interceptors in the Flow Stack shall have
their servant_send_other interception points called.

If the completion_status of the exception is not COMPLETED_NO, then it is inappropriate for this interception point
to raise a ForwardRequest exception. The request’s at-most-once semantics would be lost.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. If the original exception is a system exception, the completion_status of the new exception shall be
the same as on the original. If the original exception is a user exception, then the completion_status of the new
exception shall be COMPLETED_YES.
28 Quality of Service for CORBA Components, v1.0

This interception point may also end the current call without exception but by providing appropriate return values. This is
done by setting the boolean parameter proceed_call to false and by modifying the parameters (i.e., return, inout, and out
parameter). If this non-exception completion of a call occurs, no other Interceptors’ servant_send_exception
operations are called. Those Interceptors on the Flow Stack are popped and their servant_send_other interception
point is called. If call shall continue normally, the proceed_call parameter shall be set to true.

8.5.6.4 servant_send_other

This interception point allows an Interceptor to query information available when a request results in something other
than a normal reply or an exception. This interception point shall execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other Interceptors’ servant_send_other operations
are called. The remaining Interceptors in the Flow Stack shall have their servant_send_exception interception points
called.

This interception point may also raise a ForwardRequest exception. If an Interceptor raises this exception, successive
Interceptors’ servant_send_other operations are called with the new information provided by the ForwardRequest
exception.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

8.5.7 Interception Flow for ServantContainerInterceptors
Instances of the ServantContainerInterceptor Interface are registered with the run-time environment. The run-time
environment logically maintains an ordered list of server-side Container Interceptors. The interceptor list is traversed in
order on the receiving interception points and in reverse order on the sending interception points.

8.5.7.1 Server-side Flow Rules

The server-side flow rules for extended Container Portable interceptors are derived from the general flow rules:

• The starting interception point is servant_receive_request; this interception point is called on any given request/
reply sequence.

• The set of ending interception points is servant_send_reply, servant_send_exception, servant_send_other.
One and only one of these is called on any given request/reply sequence.

• There is no intermediate interception point.

• If and only if servant_receive_request runs to completion is an ending interception point called.

8.5.7.2 Additional Server-side Details

If, during request processing, a request is canceled because of an ORB shutdown, which is initiated by a component
server shutdown servant_send_exception is called with the system exception BAD_INV_ORDER with a minor code
of 4 (ORB has shut down).

If a request is canceled for any other reason (for example, a GIOP cancel message has been received),
servant_send_exception is called with the system exception TRANSIENT with a standard minor code of 3.

On oneway requests, there is no reply sent to the client; however, the target is called and the server component can
construct an empty reply. Since closure is necessary, this reply is tracked and servant_send_reply is called (unless an
exception occurs, in which case servant_send_exception is called).
Quality of Service for CORBA Components, v1.0 29

Asynchronous requests, from the server’s point of view, are just normal synchronous requests. Normal interception point
flows are followed.

8.6 Request Information
Issue 11701 Section 8.6: error in the text

Each interception point is given an object through which the Interceptor can access request information. Client-side and
Server-side interception points as well as basic interception points and extended interception points are concerned with
different information. ContainerClientRequestInfo is passed to basic client-side interception points and
ContainerServerRequestInfo is passed to basic server-side interception points. ContainerStubRequestInfo is
passed to extended client-side interception points and ContainerServantStubRequestInfo is passed to extended
server-side interception points. There is information that is common to all information objects, so they all inherit from a
common interface: ContainerRequestInfo.

8.6.1 ContainerRequestInfo
RequestInfo interfaces are used to provide information about a specific invocation at a container interceptor. The
ContainerRequestInfo interface is a base interface for all RequestInfo interfaces.

module Components {
 module ContainerPortableInterceptor {
 local interface ContainerRequestInfo {
 readonly attribute CORBA::OctetSeq origin_id;
 readonly attribute CORBA::OctetSeq target_id;
 readonly attribute FeatureName name;
 };
 };
};

8.6.1.1 origin_id

This attribute is read only and contains the instance identifier of the component, which initiated an invocation. The
sequence of octets is of zero length if no id is associated with the calling component or whenever the id of the calling
component cannot be determined. (See details on component instance identity in Section 8.2, “Component Instance
Identity,” on page 11).

8.6.1.2 target_id

This attribute is read only and contains the identifier of the component, which receives an invocation. The sequence of
octets is of zero length if no id is associated with the component or whenever the id cannot be determined. (See details on
component instance identity in Section 8.2, “Component Instance Identity,” on page 11).

8.6.1.3 name

This attribute is read only and contains the name of the port that is used for the current call. If the request information is
provided client-side interception point, the name of the port must correspond to a port of the client component that is a
Receptacle, a Publisher, or an Emitter.

If the request information is provided to a server-side interception point, the name of the port must correspond to a port
of the server component that is a Facet or a Consumer. Furthermore, on server-side interception points this attribute may
be an empty string, which indicated that the server component’s equivalent is the target of the call.
30 Quality of Service for CORBA Components, v1.0

Note – Using a special identifier for equivalent interface would constrain the number of valid names of ports of a component.
Since ports always do have a name, an empty identifier is used to identify the component interface.

8.6.2 ContainerClientRequestInfo
ContainerClientRequestInfo interface is a local interface and provides information about invocations done by
components on client-side. This interface is provided for basic client-side interception points.

The following IDL fragment defines the ContainerClientRequestInfo interface.

module Components {
 module ContainerPortableInterceptor {
 local interface ContainerClientRequestInfo : ContainerRequestInfo
 {
 PortableInterceptor::ClientRequestInfo request_info();
 };
 };
};

8.6.2.1 request_info

This operation returns the ClientRequestInfo object defined in PortableInterceptors module. This object contains
information about current invocation. The rules for validity of attributes and operations of this ClientRequestInfo object
defined for CORBA Portable Interceptors in apply here as well.

Note – Using the exact same data structure as used in CORBA Portable Interceptors supports easy migration of applications
based on CORBA Portable Interceptors to Container Portable Interceptors.

8.6.3 ContainerServerRequestInfo
ContainerServerRequestInfo interface is a local interface and provides information on invocations received by
components at server side. This interface is provided for basic server-side interception points.

The following IDL fragment defines the ContainerServerRequestInfo interface.

module Components {
 module ContainerPortableInterceptor {
 local interface ContainerServerRequestInfo : ContainerRequestInfo
 {
 PortableInterceptor::ServerRequestInfo request_info();
 };
 };
};

8.6.3.1 request_info

This operation returns the ServerRequestInfo object defined in PortableInterceptors module. This object contains
information about current invocation. The rules for validity of attributes and operations of this ServerRequestInfo
object defined for CORBA Portable Interceptors in [CCM] apply here as well.

Note – Using the exact same data structure as used in CORBA Portable Interceptors supports easy migration of applications
based on CORBA Portable Interceptors to Container Portable Interceptors.
Quality of Service for CORBA Components, v1.0 31

8.6.4 ContainerStubRequestInfo
ContainerStubRequestInfo interface is a local interface and provides information about invocations done by components
on client-side. This interface is provided for extended client-side interception points. The following IDL fragment defines
the ContainerStubRequestInfo interface.

module Components {
 module ContainerPortableInterceptor {
 local interface ContainerStubRequestInfo : ContainerRequestInfo
 {
 attribute Dynamic::ParameterList arguments;
 readonly attribute string operation;
 attribute any result;
 attribute Object target;
 attribute any the_exception;
 };
 };
};

8.6.4.1 arguments

This attribute provides the parameters that are part of the current invocation. The arguments are provided as a list of
Dynamic::Parameter.

8.6.4.2 operation

This attribute provides the name of the operation that is subject of the current invocation.

8.6.4.3 result

This attribute is an any containing the result of the operation invocation.

If the operation return type is void, this attribute will be an any containing a type code with a TCKind value of tk_void
and no value.

8.6.4.4 target

This attribute is an object pointing to the target of the current invocation.

8.6.4.5 exception

This attribute is an any providing the exception that is received by the client.

8.6.5 ContainerServantRequestInfo
ContainerServantRequestInfo interface is a local interface and provides information on invocations received by
components at server side. This interface is provided for extended server-side interception points.

The following IDL fragment defines the ContainerServantRequestInfo interface.

module Components {
 module PortableInterceptor {
 local interface ContainerServantRequestInfo : ContainerRequestInfo {
 attribute Dynamic::ParameterList arguments;
32 Quality of Service for CORBA Components, v1.0

 readonly attribute string operation;
 attribute any result;
 attribute Components::EnterpriseComponent target;
 attribute any the_exception;
 };
 };
};

8.6.5.1 arguments

This attribute provides the parameters that are part of the current invocation. The arguments are provided as a list of
Dynamic::Parameter.

8.6.5.2 operation

This attribute provides the name of the operation that is subject of the current invocation.

8.6.5.3 result

This attribute is an any containing the result of the operation invocation.

If the operation return type is void, this attribute will be an any containing a type code with a TCKind value of tk_void
and no value.

8.6.5.4 target

This attribute contains an object of type Components::EnterpriseComponent. This object is the Executor that is used
for the current invocation.

8.6.5.5 exception

This attribute is an any providing the exception that is returned to the client.

8.7 Registering Container Interceptors
Container Interceptors are intended to be used for integration of new services and functionality to the run-time
environment of components, namely Components Server and Container. They are means for getting access to the request
processing within the run-time environment.

In contrast to the ORB Interceptors Container Interceptors can be registered to the Component Server at any time after
creation of a CCM run-time and before destruction of this run-time.

To allow a flexible registration of Container Interceptors the following registration interfaces shall be used. For client and
server side there is one registration interface for basic Container Interceptors and one registration interface for Extended
Container Interceptor.

Issue 11702 Interceptor registration

Note – Current definition of registration interfaces allow only for unspecific registration. Possible specific registration opera-
tions (e.g., register only for a specific facet) shall be investigated in FTF.
Quality of Service for CORBA Components, v1.0 33

8.7.1 Client Registration Interface
The ClientContainerInterceptionRegistration interface shall be used to register and deregister client container
interceptors.

module Components {
 module ContainerPortableInterceptor {
 local interface ClientContainerInterceptorRegistration {
 Components::Cookie
 register_client_interceptor (
 in ClientContainerInterceptor ci);

 ClientContainerInterceptor
 unregister_client_interceptor (

 in Components::Cookie cookie)
 raises(InvalidRegistration);
 };
 };
};

8.7.1.1 register_client_interceptor

This operation registers a ClientContainerInterceptor interface to the run-time environment. If the registration is
successful a Components::Cookie is returned. This Cookie value can be used to identify the registration and needs to
be used for a subsequent unregister operation to unregister the ContainerPortableInterceptor.

After successful registration of a Client Container Portable Interceptor the run-time environment will call appropriated
interception points of this interceptor for all request/replies sequences.

8.7.1.2 unregister_client_interceptor

This operation unregisters a previously registered Client Container Interceptor. This operation expects a Cookie value to
identify the Interceptor that was previously registered. The result of the operation is the Container Interceptor that is now
unregistered. If the provided Cookie value does not correspond to a previously registered Interceptor, the
InvalidRegistration exception is raised.

8.7.2 Server Registration Interface
The ServerContainerInterceptorRegistrationInterface shall be used to register and unregister server container
interceptors.

module Components {
 module ContainerPortableInterceptor {
 local interface ServerContainerInterceptorRegistration {
 Components::Cookie
 register_server_interceptor (
 in ServerContainerInterceptor ci) ;

 ServerContainerInterceptor
 unregister_server_interceptor (
 in Components::Cookie ck)
 raises(InvalidRegistration);
34 Quality of Service for CORBA Components, v1.0

 };
 };
};

8.7.2.1 register_server_interceptor

This operation registers a ServerContainerInterceptor interface to the run-time environment. If the registration is
successful, a Components::Cookie is returned. This Cookie value can be used to identify the registration and needs to
be used for a subsequent unregister operation to unregister the Container Portable Interceptor.

After successful registration of a Server Container Portable Interceptor the run-time environment will call appropriated
interception points of this interceptor for all request/replies sequences.

8.7.2.2 unregister_server_interceptor

This operation unregisters a previously registered Server Container Interceptor. This operation expects a Cookie value to
identify the Interceptor that was previously registered. The result of the operation is the Container Interceptor that is now
unregistered. If the provided Cookie value does not correspond to a previously registered Interceptor, the
InvalidRegistration exception is raised.

8.7.2.3 Stub Registration Interface

The StubContainerInterceptionRegistration interface shall be used to register and unregister client container
interceptors.

module Components {
 module ContainerPortableInterceptor {
 local interface StubContainerInterceptorRegistration {
 Components::Cookie
 register_stub_interceptor (
 in StubContainerInterceptor ci) ;

 StubContainerInterceptor
 unregister_stub_interceptor (
 in Components::Cookie ck)
 raises(InvalidRegistration);
 };
 };
};

8.7.2.4 register_stub_interceptor

This operation registers a StubContainerInterceptor interface to the run-time environment. If the registration is
successful a Components::Cookie is returned. This Cookie value can be used to identify the registration and needs to
be used for a subsequent unregister operation to unregister the Container Portable Interceptor. After successful
registration of a Stub Container Portable Interceptor the run-time environment will call appropriated interception points of
this interceptor for all request/replies sequences.
Quality of Service for CORBA Components, v1.0 35

8.7.2.5 unregister_stub_interceptor

This operation unregisters a previously registered Stub Container Interceptor. This operation expects a Cookie value to
identify the Interceptor that was previously registered. The result of the operation is the Container Interceptor that is now
unregistered. If the provided Cookie value does not correspond to a previously registered Interceptor, the
InvalidRegistration exception is raised.

8.7.3 Servant Registration Interface
The ServerContainerInterceptorRegistrationInterface shall be used to register and unregister server container
interceptors.

module Components {
 module ContainerPortableInterceptor {
 local interface ServantContainerInterceptorRegistration {
 Components::Cookie
 register_servant_interceptor (
 in StubContainerInterceptor ci);

 ServantContainerInterceptor
 unregister_servant_interceptor (
 in Components::Cookie ck)

 raises(InvalidRegistration);
 };
 };
};

8.7.3.1 register_servant_interceptor

This operation registers a ServantContainerInterceptor interface to the run-time environment. If the registration is
successful, a Components::Cookie is returned. This Cookie value can be used to identify the registration and needs to
be used for a subsequent unregister operation to unregister the Container Portable Interceptor.

After successful registration of a Servant Container Portable Interceptor the run-time environment will call appropriated
interception points of this interceptor for all request/replies sequences.

8.7.3.2 unregister_servant_interceptor

This operation unregisters a previously registered Servant Container Interceptor. This operation expects a Cookie value
to identify the Interceptor that was previously registered. The result of the operation is the Container Interceptor that is
now unregistered. If the provided Cookie value does not correspond to a previously registered Interceptor, the
InvalidRegistration exception is raised.

8.7.4 InvalidRegistration Exception
An InvalidRegistration exception is raised by the unregister operations in case the provided Cookie value does not
correspond to a previously registered interceptor or the interceptor has already been unregistered. This exception is
defined as follows.

module Components {
36 Quality of Service for CORBA Components, v1.0

 module ContainerPortableInterceptor {
 exception InvalidRegistration { };
 };
};

8.8 Negotiation

8.8.1 Introduction
Components may require or offer certain QoS characteristics. Matching QoS requirements and QoS offers is important for
proper operation of a system. However, in some cases the requirements of a client side component cannot be clearly
identified before execution time (e.g., it might depend on user requirements). On the other side sometimes the QoS
properties offered by a server-side component cannot be determined before run-time, because of dependencies to the
execution environment of the components (e.g., available network interface, main memory, CPU clock). For that reason
additional concepts are defined to allow the dynamic agreement on specific QoS characteristics. Instead of a static
assignment of QoS properties to a particular component or connection between components, a dynamic way to agree on
QoS properties at run-time is required. Such an agreement is called negotiation; it has to be negotiated to check if the
server side component can fulfill the client-side requirements. Such a negotiation may take place at connection
establishment, for example when a facet is connected to a receptacle. A negotiation may also take place later, whenever
the requirements or the offers may change. For a successful agreement on a set of QoS properties it is important that the
component instance id of the client component is transmitted in the call context. This allows the server side to correlate a
certain agreement on QoS properties with a specific client component instance and enforcing the agreement later on,
when the client invokes service of the server, see Section 8.2, “Component Instance Identity,” on page 11.

8.8.2 Constraint Description
In particular for the agreement on specific QoS properties between client and server components, the description of the
client side requirements is important. Client side requirements can be modeled by using the UML Profile for QoS. At
negotiation time an extract of these modeled QoS information has to be transmitted to the server for requesting particular
QoS properties (i.e., by calling the require_qos operation).

module Components {
 module QoS {
 struct QoSInstance {
 string dimension;
 any value;
 };

 typedef sequence<QoSInstance> QoSInstances;

 struct QoSConstraint {
 string characteristic;
 QoSInstances instances;
 };

 typedef sequence<QoSConstraint> QoSConstraints;
 };
};
Quality of Service for CORBA Components, v1.0 37

8.8.2.1 QoSConstraint

As part of the negotiation process the client side QoS requirements are formulated in terms of instances of
QoSConstraint. A QoSConstraint corresponds to a particular QoSCharacteristics. The name of that
QoSCharacteristics is identified by the attribute characteristics. A QoSRequirement shall also contain a sequence of
QoSInstances. These QoSInstances contain the concrete resource requirements.

8.8.2.2 QoSInstance

A QoSInstance is a concrete QoSValue which is part of a QoSConstraint. The member dimension is of type string
and denotes the QoSDimension the QoSInstance corresponds to. The member value is of type any and contains the
concrete value of this QoSInstance. This type of this any corresponds to the unit of the dimension.

8.8.3 Negotiation Interface
module Components {
 module QoS {
 interface Negotiation {

 Components::Cookie
 require_qos(
 in QoSConstraint requirements,
 in CORBA::OctetSeq client_id)
 raises (CCMException);

 void
 release_qos (in Components::Cookie ck);
 };
 };
};

8.8.3.1 require_qos

This operation is used to express requirements on particular QoS properties of a client. These requirements are expressed
as QoSConstraints. The receiving party of this call shall check whether the requirements can be fulfilled or not. This may
or may also imply the reservation of resources. If this operation returns without exception the server side agrees to fulfil
the requirements of the client side. In that case the operation returns a Cookie to identify this agreement. This Cookie
can be used to release this agreement in subsequent release_qos call. Whenever the server side is not able to fulfill the
client’s requirements it shall return a CCMException with the reason QOS_ERROR. This does mean that no agreement
on QoS properties between client and server can be found.

8.8.3.2 release_qos

This operation can be used to release a particular agreement on QoS properties. This agreement is identified by the
Cookie provided as parameter. The server can free all resources that might have been allocated for this agreement before.
38 Quality of Service for CORBA Components, v1.0

8.8.4 Provision of Negotiation Interface
To facilitate the negotiation process, i.e., the agreement on certain QoS properties, the negotiation interface is provided by
every component that is deployed into a QoS-aware container. To have minimal impact on the CCM Architecture the
Negotiation interface shall be offered by each component as a default facet. This default facet is not part of any
component definition it can be seen as a virtual facet. The implementation and the management of this facet (e.g., the
navigation capabilities) are added only by the QoS-aware container.

The negotiation facet has the identifier ccm_qos_negotiation. This facet is of type
Components::QoS::Negotiation. In case a component is deployed to a QoS-aware container the navigation operation
provide_facet with the parameter _ccm_qos_negotiation shall return such an interface. In case of a QoS-unaware
container the provide_facet operation raises an InvalidName exception.

8.8.5 Definition of Negotiation Flow

8.8.5.1 Connection Flow Details

The CORBA Component Model supports the explicit connection establishment of components. This means that all
interactions between CCM components only happen if an explicit connection establishment phase is accomplished before.
Figure 8.4 shows a typical connection setup, where a facet port of a server component is connected to a receptacle port of
a client component. The entity that controls the connection setup (3rd_party) can be a deployment tool in case of
constructing the initial configuration of a CCM based system or it can be even another application component that
connects components at run-time.

Figure 8.4 - Connection Setup between CORBA Components

A non-exceptional completing of the connection operation indicates that the connection between the components is
established. In the case that a client component has some specific QoS requirements, the connection setup shall not
complete without proper agreement on certain QoS properties between server component and client component. For that
reason the following negotiation flow has to be followed at connection setup.
Quality of Service for CORBA Components, v1.0 39

Receiving the connect operation the client side shall call the require_qos operation at the server component that is about
to be connected to the client component. The operation provides as parameter the description of the QoS requirements of
the client component as ConstraintDescriptions (Section 8.8.2, “Constraint Description,” on page 37). On the server side
these requirements shall be evaluated. If the server side can fulfill the requirements of the client side it has to return a
cookie value identifying the agreement between client and server component. If the server component side cannot fulfill
the client requirement, it has to raise a CCMException with reason QOS_ERROR. If the server side raises this
exception the client has two options. This first option is to repeat the require_qos call with a different
ConstraintDescriptions. This can be repeated if this fails again. The other option is to let the connection setup fail due
to the reason that the QoS constraints cannot be supported. In this case the client will raise a
Components::InvalidConnection exception.

The following picture represents a connection setup with a successful connection setup where client requirements can be
fulfilled by the server side.

Figure 8.5 - Connection Setup with Negotiation and Option 1

The following picture shows a connection setup that fails due to the reason that an agreement on a specific QoS property
cannot be reached between client and server.
40 Quality of Service for CORBA Components, v1.0

Figure 8.6 - Connection Setup with negotiation and Option 2

The negotiation of QoS constraints requires two things, the first one is external interfaces for the negotiation and the
second one is the internal representation of the negotiation. This means that the server side container may allocate
resources to accept a request for a specific QoS requirement or refuses it otherwise. The container is responsible for
involving appropriate entities into a negotiation.

8.8.5.2 Disconnection Flow details

Links between CORBA Components shall be disconnected explicitly by calling the corresponding disconnect operation at
the client component. This is usually done by the party that created the connection. In any way the disconnecting entity
needs the Cookie value that was returned by the connect operation. Whenever a disconnection occurs the client
component shall inform about the disconnection in order to allow the server side component to free allocated resources
that are dedicated to that specific connection.

The following picture shows the usual way of disconnecting two components.
Quality of Service for CORBA Components, v1.0 41

Figure 8.7 - Disconnecting Components

The following flow shall be applied whenever a QoS agreement between client and server has been established (i.e., a
require_qos call was return without exception). Whenever the client side receives a disconnect call it shall call the
release_qos operation providing the cookie value that was returned by a preceding require_qos call.

The following picture shows how components are disconnected in case a QoS agreement exists and the right cookie value
is provided with the release_qos call.

Figure 8.8 - Disconnecting Resource with Releasing Resources

8.8.5.3 Re-negotiation flow details

In dynamic environments the agreement on a particular QoS is needed not only at connection setup but also later in the
lifetime of a connection. This could be because the requirements of the client component may change over time.

In such cases the following flow has to be applied. The client shall call the release_qos operation to allow the server
side to free allocated resource. The next step is a require_qos call. The parameter of this operation shall be an instance
of ConstraintsDescriptions that expresses the changed requirements. In case the requirements cannot be fulfilled by the
42 Quality of Service for CORBA Components, v1.0

server it will raise a CCMException with reason QOS_ERROR exception. If this happens the client has two options.
First option is to repeat the call require_qos with different ConstraintDescriptions. The second option is to
disconnect the interface that is currently bound to the client’s receptacle.

The following picture shows the general flow details which occur at re-negotiating.

Figure 8.9 - Successful Re-negotiation

In case a renegotiation fails (e.g., possibly because of unavailable resources) the client shall make a disconnection of the
interface that is currently bound to the client’s receptacle. Figure 8.10 illustrates this flow detail.

Figure 8.10 - Unsuccessful Re-Negotiation Flow
Quality of Service for CORBA Components, v1.0 43

8.9 Extension Container

8.9.1 Introduction
The CORBA Component Model defines the Component Server and the Container as the standard run-time environment
for components. Container vendors can specialize this run-time environment by providing specific container
implementation or by introducing completely new container types. However such extensions are vendor specific. The
extension container is a means for deploying run-time extensions in a standard way. The extension container can host
specific components, which are not typical application components.

The extension container provides an internal interface to the hosted components, which in particular supports the control
of the run-time of application components. For example this internal interface, the extension context, provides access to
the COPI registration interfaces.

Components hosted by the extension container shall realize a specific call-back interface, the extension component
interface.

8.9.2 ExtensionContext
The ExtensionContext interface is offered by the container to a component implementation. The following IDL
fragment defines this interface.

module Components {
 local interface ExtensionContext : CCMContext {

 Components::ContainerPortableInterceptor::ClientContainerInterceptorRegistration
 get_client_interceptor_registration ()
 raises (CCMException);

 Components::ContainerPortableInterceptor::ServerContainerInterceptorRegistration
 get_server_interceptor_registration ()
 raises (CCMException);

 Components::ContainerPortableInterceptor::StubContainerInterceptorRegistration
 get_stub_interceptor_registration()
 raises (CCMException);

 Components::ContainerPortableInterceptor::ServantContainerInterceptorRegistration
 get_servant_interceptor_registration()
 raises (CCMException);

 Cookie
 install_service_reference(
 in string service_id, in Object objref)
 raises (CCMException);

 Object
 uninstall_service_reference(in Cookie ck)
 raises (CCMException);
44 Quality of Service for CORBA Components, v1.0

Issue 11702 Configuration of the underlying middleware
 QoSPropertyRegistration
 get_qos_property_registration()
 raises (CCMException);
 };
};

8.9.2.1 get_client_interceptor_registration

This operation returns a ClientContainerInterceptionRegistration interface, which can be used subsequently to
register a COPI of type ClientContainerInterceptor. If a registration interface is not available, an exception of type
CCMException with a reason REGISTRATION_ERROR shall be raised.

8.9.2.2 get_server_interceptor_registration

This operation returns a ServerContainerInterceptionRegistration interface, which can be used subsequently to
register a COPI of type ServerContainerInterceptor. If a registration interface is not available, an exception of type
CCMException with a reason REGISTRATION_ERROR shall be raised.

8.9.2.3 get_stub_interceptor_registration

This operation returns a StubContainerInterceptionRegistration interface, which can be used subsequently to
register a COPI of type StubContainerInterceptor. If a registration interface is not available, an exception of type
CCMException with a reason REGISTRATION_ERROR shall be raised.

8.9.2.4 get_servant_interceptor_registration

This operation returns a ServantContainerInterceptionRegistration interface, which can be used subsequently to
register a COPI of type ServantContainerInterceptor. If a registration interface is not available, an exception of type
CCMException with a reason REGISTRATION_ERROR shall be raised.

8.9.2.5 install_service_reference

This operation can be used to register a reference to container services, which are run-time extension hosted by the
extension container. After successful installation of such a service reference the service reference can be resolved by plain
applications components by using the resolve_service_reference operation defined in the CCMContext interface
(see 8.10, ’Modification of CCMContext interface’). The name under which the service reference is bound is provided
with the service_id parameter. Whenever this name is already in use this operation shall return an exception of type
CCMException with reason SERVICE_INSTALLATION_ERROR. In a non-exceptional case this operation returns a
Cookie, which uniquely identifies this service reference installation. This Cookie value can be used for subsequent calls
of uninstall_service_reference.

8.9.2.6 uninstall_service_reference

This operation can be used to uninstall a service reference that was previously installed by calling
install_service_reference. The Cookie value that was returned as a result of the installation call has to be provided as
parameter to this operation. If the Cookie does not identify an currently installed service reference, the operation raises
an CCMException with reason SERVICE_INSTALLATION_ERROR.

Issue 11702 Configuration of the underlying middleware
Quality of Service for CORBA Components, v1.0 45

8.9.2.7 get_qos_property_registration

This operation returns a QoSPropertyRegistration interface, which can be used subsequently to register a
QoSPropertyInstance. If a registration interface is not available, an exception of type CCMException with a reason
REGISTRATION_ERROR shall be raised.

8.9.3 ExtensionComponent
The ExtensionComponent interface is offered by a component implementation that is executed in an Extension
container. The interface is defined by the following IDL fragment.

module Components {
 local interface ExtensionComponent : EnterpriseComponent {

 void
 set_extension_context (in ExtensionContext ctx)
 raises (CCMException);

 void
 ccm_remove ()
 raises (CCMException);
 };
};

8.9.3.1 set_extension_context

The set_extension_context operation is used to set the ExtensionContext of the component. The container calls this
operation after a component instance has been created. This operation is called outside the scope of an active transaction.
The component may raise the CCMException with the SYSTEM_ERROR minor code to indicate a failure caused by a
system level error.

8.9.3.2 ccm_remove

The ccm_remove operation is called by the container when the servant is about to be destroyed. It informs the
component that it is about to be destroyed. The component may raise the CCMException with the SYSTEM_ERROR
minor code to indicate a failure caused by a system level error.

8.10 Modification of CCMContext interface
To allow normal application components to access the services provided by a container service the CCMContext interface
is used. A number of container services that can be used by the component implementation are already defined. This
includes security and transaction service. However, the number of services is fixed since their service interface is partly
provided by the CCMContext interface itself.

It is the intension of this modification to make the number of container services that may be available to application
components open. This is achieved by defining the operation resolve_service_reference as part of the CCMContext
interface.

module Components {
 local interface CCMContext
 {
 Principal get_caller_principal();
46 Quality of Service for CORBA Components, v1.0

 CCMHome get_CCM_home();

 boolean get_rollback_only() raises(IllegalState);

 Transaction::UserTransaction
 get_user_transaction() raises(IllegalState);

 boolean is_caller_in_role(in string role);

 void set_rollback_only() raises(IllegalState);

 /* QoS4CCM */
 Object
 resolve_service_reference(in string service_id)
 raises (CCMException);
 };
};

8.10.1 resolve_service_reference
This operation returns references to container services in a generic way. The parameter service_id identifies the service
that shall be resolved. In case the provided service id corresponds to a service that is provided by the run-time
environment the operation returns an object reference to that service. The Executor can narrow this reference to the
specific service interface to make use of the container service.

If no service with the specified service id is known to the container the operation will raise a CCMException with reason
OBJECT_NOT_FOUND.

8.11 QoS Enabler

8.11.1 Introduction
Implementing the QoS extension which should be part of the run-time environment (component server and container)
could be done in a proprietary way by modifying the container. This specification defines concepts for developing and
integrating such extension in a standard way. This is achieved by using the component concept, which means that the run-
time extensions can be realized as components. These components differ from plain application components in that they
are deployed into containers of a particular type (container category). This type is the extension container type as defined
in 8.9, ’Extension Container’. Components that are deployed in this container and that are responsible for managing
particular QoS properties are called QoSEnablers.

A QoS Enabler is responsible for bringing additional functionality into the container. A QoSEnabler is concerned with a
particular QoS characteristic. It depends on the implementation strategy whether only one instance of a QoSEnabler is
responsible for managing a QoS characteristic in run-time environment (component server) or several instances of the
same QoSEnabler type are used for that.

A QoSEnabler can use different techniques to provide the QoS functionality to the run-time environment. In case the
QoSEnabler needs to monitor the interactions between components it can use the Container Portable Interceptors (COPI)
to realize this. Furthermore, the QoSEnabler can use COPI interface also to modify call chain to change the behavior of
components, to ensure certain QoS properties.
Quality of Service for CORBA Components, v1.0 47

Figure 8.11 - Extension Container Category

The QoS Enabler can offer a special usage interface that can be used by a component implementation (executor) to
retrieve QoS category specific information. On the other side the executor may provide special call-back operations that
give the QoS Enabler the opportunity to configure the component implementation (executor) before the actual request is
performed by that executor. This means the executor has to be QoS aware because it has to behave according to the
configuration done by the QoS Enabler.

Figure 8.12 - QoS Callback

8.11.2 QoS Usage Interface
If a component wants to retrieve special information about the state of a particular QoS related property it needs to get a
reference to the appropriate QoS Enabler. For this purpose it uses the resolve_service_reference() operation at the
CCMContext interface as defined in 8.10, ’Modification of CCMContext interface’.

The service_id parameter corresponds to the QoS characteristics. Whenever a QoSEnabler offers such a QoS Usage
interface it has to register this interface to the run-time environment by using the install_service_reference operation
provided by the extension context. It is QoS category dependent whether a QoS Enabler offers such a QoS usage interface
or not.

Issue 12429 Servie configuration
48 Quality of Service for CORBA Components, v1.0

In some very constrained environments, it can be more efficient to design services as interfaces, not necessarily part of a
component. Since the service is co-localized with components, it can be designed as an interface accessible at container
level. The following interface is a standard base interface for services and is designed to allow service configuration when
installing reference using the install_service_reference() operation.

A service is identified with the characteristic it manages which is part of the QoSConstraint definition. A
QoSConstraint shall also contain a sequence of QoSInstances. These QoSInstances are the concrete resource
requirements.

module Components
{
 module QoS
 {
 local interface QoSUsage : public ExtensionComponent
 {
 attribute readonly string characteristic;

Cookie install_qos_property(in QoSInstances instances)
 raises(CCMException);
void uninstall_qos_property(in Cookie ck) ;
 } ;
 } ;
} ;

8.11.2.1 characteristic

This attribute identifies a QoSCharacteristic corresponding to the service_id parameter of the
install_service_reference operation.

8.11.2.2 install_qos_property

This operation is called by the container, to set the service configuration defined in QoSInstances that are description
of the constraints. The QoSInstances can be expressed in a QoSPropertyInstance and binded to a component feature if
needed. Whenever the service is not able to process a QoSValue it shall return a CCMException with the reason
QOS_ERROR. This means that the QoS property can't be installed or managed by service.

8.11.2.3 uninstall_qos_property

This operation is called by the container to unset some QoS properties managed by the service and uninstall related
QoSPropertyInstance if exist.

8.11.3 QoSCallback Interface
In some cases the component implementation, the Executor, may be QoS-aware. This means it can realize specific QoS
properties on its own, though the management of QoS properties is to some extent delegated to a QoS Enabler. This
executor is delivered to the QoS Enabler via the servant COPI. The member target is part of the
ContainerServantRequestInfo object that is provided at interception points.

To get a reference to the QoS Callback interface the Executor Locator approach has to be used. This means that the
Executor provided to the COPI is in fact an Executor Locator. A subsequent call of obtain_executor with the name
_ccm_qos_callback can be used to get a reference to such a call-back interface.
Quality of Service for CORBA Components, v1.0 49

8.11.4 Packaging and Deployment of QoS Enablers
Since QoS Enablers are supposed to be dynamic parts of a component server it is most likely that a QoS Enabler is loaded
into a component server at run-time. Nevertheless, this should not exclude the possibility to build pre-configured
component server with a fixed set of QoS Enablers. But in any case it should be possible to load a QoS Enabler at run-
time later on.

Two things need to be achieved to support this behavior. The first one is the physical transportation of the dynamic library
to the target node. The second one is the loading of the library by calling the appropriate entry point. Both can be
accomplished by using standard CCM means for deployment and configuration. For the physical transportation the
mechanism provided by the ComponentInstallation is used.

The same mechanism that is used for loading component libraries is used for loading QoS Enabler libraries. For that
reason a container of the category Extension shall be instantiated in the component server. QoS Enablers do not need to
run in a container exclusively they can be installed in any other already running extension container.

8.11.5 Monitoring
To determine whether a certain QoS contract is fulfilled or violated a QoS Enabler may use special monitoring
mechanisms. These mechanisms may be provided by a container or the QoS Enabler may use self provided monitoring
capabilities. For example a QoS Enabler needs to measure whether the provided bandwidth does not fall under that level
defined by the active QoS agreement. Because the monitoring depends very much on the QoS category and also on the
implementation of a QoS Enabler this specification defines no architecture for that. If a contract is violated, the QoS
Enabler is responsible for terminating the contract.

Issue 12430 Dynamic configuration of components

8.12 Dynamic adaptation of a running application
In a most general way QoS Enabler life cycle may need to be managed over the component life cycle. This means that
creation, deletion and configuration of QoSEnabler have to be done independently of component corresponding means.
Container vendor are free to exploit CCM capacities to add specific operations for QoSEnabler configuration, however
configuration at run-time may become constraining :

• client may have to manage QoSEnabler owned by components with heterogeneous configuration interface.

• client implementation may be generic code and not be aware about specific component definition.

• client in an embedded environment may not be allowed to used corba dynamic capacities.

To help container vendor to implement standard and homogeneous dynamic configuration mechanisms the
StandardConfigurator and the HomeConfiguration definition has been extended.

8.12.1 Modification of StandardConfigurator interface
module Components {
 interface StandardConfigurator : Configurator {
 void set_configuration (in ConfigValues descr);
 /* QoS4CCM */
 ConfigValues get_configuration(in CCMObject comp)
 raises (WrongComponentType);
50 Quality of Service for CORBA Components, v1.0

 };
};

8.12.1.1 get_configuration

This operation returns a sequence of ConfigValue instances containing the configuration of the target component. If the
target component is not of the type expected by the configurator, the get_configuration operation shall raise the
WrongComponentType exception.

8.12.2 Modification of HomeConfiguration interface
module Components {
 interface HomeConfiguration : CCMHome {
 void set_configurator (in Configurator cfg);
 /* QoS4CCM */
 Configurator get_configurator();
 void set_configuration_values (in ConfigValues config);
 void complete_component_configuration (in boolean b);
 void disable_home_configuration();
 };
};

8.12.2.1 get_configurator

This operation returns a Configurator reference to the standard configurator that manages this home. This one may be able
to process particular configuration values and to call specific user interface of component and component's home.

Issue 11702 Configuration of the underlying middleware

8.13 Binding QoSConstraint with component feature
Even if interceptor mechanism allows injection of non-functional properties at interception points, it is not sufficient to
correlate non-functional properties with component feature out of the calling process. The necessity to configure the
underlying middleware, for instance the use of certain policies of the portable object adapter, or object references, may be
designed with new interfaces as well as interceptors. This section introduces two interfaces based on interception
principle:

• The QoSPropertyInstance is designed to provide means for non-functional properties definition. A
QoSPropertyInstance have to be referenced inside run-time environment in association with a component feature.
The container manages the activation and deactivation of the QoSPropertyInstance.

• The QoSPropertyInstanceRegistration, as well as container interceptor registration, shall be used to register and
unregister QoSPropertyInstance.

8.13.1 QoSPropertyInstance
The following IDL fragment defines the QoSPropertyInstance interface.
module QoS {
 local interface QoSPropertyInstance {
 attribute readonly string functionality;
Quality of Service for CORBA Components, v1.0 51

 attribute QoSInstances qos_instances;
 void activate(in string operation, in ParameterList parameters);
 void deactivate(in string operation,
 in ParameterList parameters);
 };
};

8.13.1.1 functionality

This attribute provides the name of the functionality that the QoS property corresponds to.

8.13.1.2 qos_instances

This attribute is a QoSInstances which is part of the QoSConstraint. It contains description of the property. A
QoSConstraint may be managed by a service.

8.13.1.3 activate

This operation is called by container to activate a property on a correlated component feature. If activation can't be
realized the operation shall return a CCMException with the reason QOS_ERROR.

8.13.1.4 deactivate

This operation is called by container to disable a property associated to a component feature.

8.13.2 QoSPropertyInstanceRegistration
The following IDL fragment defines the QoSPropertyInstanceRegistration interface.
module QoS {
 local interface QoSPropertyInstanceRegistration {
 Cookie register_qos_property(in QoSPropertyInstance instance);
 void unregister_qos_property(in Cookie ck)
 raises(InvalidRegistration);
 };
};

8.13.2.1 register_qos_property

This operation may be called by a service to register a QoSPropertyInstance interface to the run-time environment and
to bind the property with a functionality of the component. If the operation is successful, it returns a Cookie to identify
the binding. This Cookie value can be used to identify the registration and needs to be used for subsequent operation to
unregister the property.

8.13.2.2 unregister_qos_property

This operation unregisters a previously registered property. This operation expects a Cookie value to identify the QoS
property that was previously registered. If the provided Cookie value does not correspond to a previously registered
property, the InvalidRegistration exception is raised
52 Quality of Service for CORBA Components, v1.0

Annex A: Components.idl

(normative)

This section gives a summary of all IDL definitions that are added or changed by this specification. The modifications are
made based on the file Components.idl part of the document ptc/02-10-04.

A.1 CCMExceptionReason
module Components {
 enum CCMExceptionReason
 {
 SYSTEM_ERROR,
 CREATE_ERROR,
 REMOVE_ERROR,
 DUPLICATE_KEY,
 FIND_ERROR,
 OBJECT_NOT_FOUND,
 NO_SUCH_ENTITY,
 /* extended by QoS4CCM */
 QOS_ERROR,
 REGISTRATION_ERROR,
 SERVICE_INSTALLATION_ERROR
 };
}; // end module components

A.2 Module ContainerPortableInterceptor
module Components {
 module ContainerPortableInterceptor {
 struct CustomSlotItem
 {
Issue 11697 IDL inconsistency for ContainerInterceptor interface
 CORBA::OctetSeqstring identifier;
 any content;
 };

 typedef sequence<CustomSlotItem> CustomSlotItemSeq;

Issue 11703 Interceptor registration
 struct IntegrationPoint
 {
 string port;
 string operation;
 };
Quality of Service for CORBA Components, v1.0 49

 struct COPIServiceContext
 {
 CORBA::OctetSeq origin_id;
 CORBA::OCtetSeq target_id;
 CustomSlotItemSeq slot_info;

 local interface ContainerRequestInfo {
 readonly attribute CORBA::OctetSeq origin_id;
 readonly attribute CORBA::OctetSeq target_id;
 readonly attribute FeatureName name;
 };

 local interface ContainerClientRequestInfo : ContainerRequestInfo
 {
 PortableInterceptor::ClientRequestInfo request_info();
 };

 local interface ContainerServerRequestInfo : ContainerRequestInfo
 {
 PortableInterceptor::ServerRequestInfo request_info();
 };

 local interface ContainerStubRequestInfo : ContainerRequestInfo
 {
 attribute Dynamic::ParameterList arguments;
 readonly attribute string operation;
 attribute any result;
 attribute Object target;
 attribute any the_exception;
 };

 local interface ContainerServantRequestInfo : ContainerRequestInfo {
 attribute Dynamic::ParameterList arguments;
 readonly attribute string operation;
 attribute any result;
 attribute Components::EnterpriseComponent target;
 attribute any the_exception;
 };

 local interface ContainerInterceptor
 {
 readonly attribute string name;
Issue 11703 Interceptor registration
 attribute unsigned short priority;
 attribute IntegrationPoint registration_info;

 void
 destroy ();
50 Quality of Service for CORBA Components, v1.0

 void
 set_slot_id(in PortableInterceptor::SlotId slot_id);
 };

 local interface ClientContainerInterceptor : ContainerInterceptor
 {
 void
 send_request (in ContainerClientRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);

 void
 send_poll (in ContainerClientRequestInfo info);

 void
 receive_reply (in ContainerClientRequestInfo info);

 void
 receive_exception (
 in ContainerClientRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);

 void
 receive_other (in ContainerClientRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);
 };

 local interface ServerContainerInterceptor : ContainerInterceptor
 {
 void
 receive_request_service_contexts (
 in ContainerServerRequestInfo csi)
 raises (PortableInterceptor::ForwardRequest);

 void
 receive_request (in ContainerServerRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);

 void
 send_reply (in ContainerServerRequestInfo info);

 void
 send_exception (in ContainerServerRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);

 void
 send_other (in ContainerServerRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);
 };

 local interface StubContainerInterceptor : ContainerInterceptor
 {
Quality of Service for CORBA Components, v1.0 51

 void
 stub_send_request (
 in ContainerStubRequestInfo info,
 out boolean con)
 raises (PortableInterceptor::ForwardRequest);

 void
 stub_receive_reply (
 in ContainerStubRequestInfo info,
 out boolean con);

 void
 stub_receive_exception (
 in ContainerStubRequestInfo info,
 out boolean con)
 raises(PortableInterceptor::ForwardRequest);

 void
 stub_receive_other (
 in ContainerStubRequestInfo info)
 raises(PortableInterceptor::ForwardRequest);
 };

 local interface ServantContainerInterceptor : ContainerInterceptor
 {
 void
 servant_receive_request (
 in ContainerServantRequestInfo info,
 out boolean proceed_call)
 raises (PortableInterceptor::ForwardRequest);

 void
 servant_send_reply (
 in ContainerServantRequestInfo info,
 out boolean proceed_call);

 void
 servant_send_exception (
 in ContainerServantRequestInfo info,
 out boolean proceed_call)
 raises (PortableInterceptor::ForwardRequest);

 void
 servant_send_other (
 in ContainerServantRequestInfo info)
 raises (PortableInterceptor::ForwardRequest);
 };

 exception InvalidRegistration { };

 local interface ClientContainerInterceptorRegistration {
52 Quality of Service for CORBA Components, v1.0

 Components::Cookie
 register_client_interceptor (
 in ClientContainerInterceptor ci);

 ClientContainerInterceptor
 unregister_client_interceptor (
 in Components::Cookie cookie)
 raises(InvalidRegistration);
 };

 local interface ServerContainerInterceptorRegistration {
 Components::Cookie
 register_server_interceptor (
 in ServerContainerInterceptor ci) ;

 ServerContainerInterceptor
 unregister_server_interceptor (
 in Components::Cookie ck)
 raises(InvalidRegistration);
 };

 local interface StubContainerInterceptorRegistration {
 Components::Cookie
 register_stub_interceptor (
 in StubContainerInterceptor ci);

 StubContainerInterceptor
 unregister_stub_interceptor (
 in Components::Cookie ck)
 raises(InvalidRegistration);
 };

 local interface ServantContainerInterceptorRegistration {
 Components::Cookie
 register_servant_interceptor (
 in ServantContainerInterceptor ci) ;

 ServantContainerInterceptor
 unregister_servant_interceptor (
 in Components::Cookie ck)
 raises(InvalidRegistration);
 };

 }; // end module ContainerPortableInterceptors
}; // end module Components
Quality of Service for CORBA Components, v1.0 53

A.3 Interface CCMContext
module Components {
 local interface CCMContext
 {
 Principal get_caller_principal();

 CCMHome get_CCM_home();

 boolean get_rollback_only() raises(IllegalState);

 Transaction::UserTransaction
 get_user_transaction() raises(IllegalState);

 boolean is_caller_in_role(in string role);

 void set_rollback_only() raises(IllegalState);

 /* QoS4CCM */
 Object
 resolve_service_reference(in string service_id)
 raises (CCMException);

 };

Issue 12430 Dynamic configuration of components
 interface StandardConfigurator : Configurator
 {
 void set_configuration (in ConfigValues descr);

 /* QoS4CCM */
 ConfigValues get_configuration(in CCMObject comp)
 raises (WrongComponentType);

 };

 interface HomeConfiguration : CCMHome
 {
 void set_configurator (in Configurator cfg);

 /* QoS4CCM */
 Configurator get_configurator();

 void set_configuration_values (in ConfigValues config);
 void complete_component_configuration (in boolean b);
 void disable_home_configuration();

 };

};
54 Quality of Service for CORBA Components, v1.0

A.4 Interface ExtensionContext
module Components {
 local interface ExtensionContext : CCMContext {

 Components::ContainerPortableInterceptor::ClientContainerInterceptorRegistration
 get_client_interceptor_registration ()
 raises (CCMException);

 Components::ContainerPortableInterceptor::ServerContainerInterceptorRegistration
 get_server_interceptor_registration ()
 raises (CCMException);

 Components::ContainerPortableInterceptor::StubContainerInterceptorRegistration
 get_stub_interceptor_registration()
 raises (CCMException);

 Components::ContainerPortableInterceptor::ServantContainerInterceptorRegistration
 get_servant_interceptor_registration()
 raises (CCMException);

 Cookie
 install_service_reference(
 in string service_id, in Object objref)
 raises (CCMException);

 Object
 uninstall_service_reference(in Cookie ck)
 raises (CCMException);

Issue 11702 Configuration of the underlying middleware
 QoSPropertyRegistration
 get_qos_property_registration()
 raises (CCMException);
 };
}; // end module Components

A.5 Interface ExtensionComponent
module Components

 local interface ExtensionComponent : EnterpriseComponent {

 void
 set_extension_context (in ExtensionContext ctx)
 raises (CCMException);

 void
 ccm_remove ()
 raises (CCMException);
Quality of Service for CORBA Components, v1.0 55

 };

};

A.6 Module QoS
module Components {
 module QoS {
 struct QoSInstance {
 string dimension;
 any value;
 };

 typedef sequence<QoSInstance> QoSInstances;

Issue 11702 Configuration of the underlying middleware
 local interface QoSPropertyInstance {
 attribute readonly string functionality;

 attribute QoSInstances qos_instances;
 void activate(in string operation, in ParameterList parameters);
 void deactivate(in string operation,

 in ParameterList parameters);
 };

 local interface QoSPropertyInstanceRegistration {

 Cookie register_qos_property(in QoSPropertyInstance instance);
 void unregister_qos_property(in Cookie ck)
 raises(InvalidRegistration);
 };

 struct QoSConstraint {
 string characteristic;
 QoSInstances instances;
 };

 typedef sequence<QoSConstraint> QoSConstraints;

 interface Negotiation {

 Components::Cookie
 require_qos(
 in QoSConstraint requirements,
 in string client_id)
 raises (CCMException);

 void
 release_qos (in Components::Cookie ck);
 };

Issue 12429 Service configuration
56 Quality of Service for CORBA Components, v1.0

 local interface QoSUsage : public ExtensionComponent {
 attribute readonly string characteristic;
 Cookie install_qos_property(in QoSInstances instances)
 raises(CCMException);
 void uninstall_qos_property(in Cookie ck) ;
 } ;

 }; // end module QoS
}; //end module Components
Quality of Service for CORBA Components, v1.0 57

58 Quality of Service for CORBA Components, v1.0

Annex B: Examples

(non-normative)

This Annex contains examples to demonstrate how this specification facilitates the development of QoS aware CORBA
Component based applications. The examples presented here are developed based on the CCM implementation Qedo
[Qedo].

B.1 Example: Tracing
This example demonstrates the integration of a specialized tracing functionality into the container. This monitoring simply
logs every call that is made between components. As a result, traces between components are produced and can be
presented to a human. This may possibly help to identify problems in an application.

The example was developed as a showcase of the COACH project [COACH]. This example only uses the basic
interceptors. This is sufficient since the tracing does not need to change anything on the call processing.

The tracing property is an example of a very general service that can be integrated into the container. The concepts
defined by this specification offer the possibility to integrate very different tracing approaches. In this case log events are
produced and sent to a tracing server. An interactive Web page can query the tracing server later on to present the traces.

The tracing property is applied to every component instance of the assembly. The property is also not directly linked to a
limited resource and therefore a negotiation is not needed here. Monitoring can be simply switched on. Of course it
should imply some run-time overhead.

The example assembly contains a very simple Hello World application. The interaction between them should be
monitored. The general scenario is depicted in the figure below.

Figure B.1 - Tracing Scenario
Quality of Service for CORBA Components, v1.0 57

B.1.1 Modeling
The first task is to model the example application itself. Since it is a very simple hello world application where one
component calls a simple operation on another component, we only need two component types.

These component types are defined by the following IDL fragment.

module HelloWorld {

 interface Hello {
 void say ();
 };

 component Callee {
 provides Hello the_hello;
 };

 home CalleeHome manages Callee {};

 component Caller {
 uses Hello hi;
 };

 home CallerHome manages Caller {};
};

The same definition can be displayed with a UML2 Profile [UMLCCM].

Figure B.2 - Component types of the HelloWorld Example
58 Quality of Service for CORBA Components, v1.0

The next step is the definition of the Tracing QoSCharacteristic. The only dimension this QoSCharacteristic needs to have
is the location of the TracingServer. The Tracing Server offers an interface that can be used by Tracing QoSEnablers to
send Tracing events to. The reference to the interface of this location is defined as a CORBA NameService name (e.g.,
“Services/TracingService”). Taking this into account the definition of the QoSCharacteristic Tracing could look as
follows.

Figure B.3 - QoSCharacteristic Tracing

Finally the assembly needs to be defined. In this example only one instance of the client component and one instance of
the server component is needed. Furthermore, the constraint for the Tracing Characteristics needs to be defined. Since this
is not related to a negotiation no specific Constraint such as QoSoffered of QoSRequired needs to be used.

Figure B.4 - QoSConstraint Tracing for Hello World

B.2 Example: Processing Throughput
This example is an implementation of the Throughput Characteristics as defined by the UML Profile for QoS. This
characteristic is applied to a simple computation scenario. One Server component instance offers the service to compute
something (operation compute) multiple client component instances uses this service. But at least one of them has a
specific QoS requirement. It requires to be able to make a certain number of calls in a specific time interval.

In this example negotiation is used. Because it cannot be determined before deployment that such requirements can be
fulfilled at run-time. It could be possible that other requirements need to be fulfilled.

B.2.1 Modeling
In this example two component types are used, one component type for the client side and one for the server side. While
the server offers a port and the client requires a port of the same type. The following definitions apply.
Quality of Service for CORBA Components, v1.0 59

module Computation {

interface Computing_Service {
long compute (in long argument_of_function);

};

component Client {
uses Computing_Service computing_server;

};

home ClientHome manages Client {};

component Server {
provides Computing_Service computing_interface;

};

home ServerHome manages Server {};
};

For illustrational purposes the same types are displayed as UML2 models. Using a UML2 Profile for CCM [UMLCCM].

Figure B.5 - Component Types of Computation Example

The UML Profile for QoS defines the abstract QoS Characteristics Throughput. This characteristic has one dimension
rate. The Unit of rate is not defined since it is an abstract characteristic. Furthermore, it has an interval of observation,
where the rate is averaged.

The following diagram represents the definition of the processing throughput characteristic. This diagram is based on
[UMLQOS].
60 Quality of Service for CORBA Components, v1.0

Figure B.6 - QoS Characteristics Communication Throughput

The next step is the definition of a QoS constraint base on the processing-throughput characteristic. This constraint
defines the allowed values of the characteristic. In this case the specific client might have the requirement to make 3 calls
per second averaged over an interval of 2 seconds. The definition of such a requirement in UML is depicted blow.
Furthermore it has to be expressed that the server instance is capable of providing control over the processing-throughput.

Figure B.7 - QoSConstraints for Computation example
Quality of Service for CORBA Components, v1.0 61

B.3 Example: Encryption
This example describes a way to encrypt specific parameters and return values of calls respectively. The idea behind this
is to encrypt the parameter of a method invocation at the client side and to decrypt this parameter at the receiving side.
This functionality can be achieved by using underlying security mechanisms like SSL as well. But in this specific
solution, only a very specific portion of information is protected, while all other information remains unprotected.

This example uses the same functional example as the Processing Throughput example, which is the compute example.
Multiple client request a service from a server component. To protect the result of the computation conducted by the
server component from getting read by unintended parties it is encrypted with a specific algorithm. On the receiving side
the result is decrypted again and delivered to the client component.

B.3.1 Modeling
First of all the definition of a QoS characteristic needs to be done. In this case it is fairly simple since it is only needed to
switch encryption on or off. It is not necessary to define further QoSDimensions for this QoSCharacteristic.

Figure B.8 - Encryption QoS Characteristics

In this example two instances of the client component are connected to one instance of a server component.

Figure B.9 - QoS Constraint Encryption for Computation Example
62 Quality of Service for CORBA Components, v1.0

INDEX

A
Acknowledgements 4
Additional Information 4
Adopted OMG Specifications 4
arguments 32

B
Basic Container Interceptors 15
Basic Interception Points 15
Binding metaclass 6
business code 1

C
ccm_remove operation 45
CCMQoS Metamodel 5
Changes to Adopted OMG Specifications 4
ClientContainerInterceptionRegistration interface 33
ClientContainerInterceptor interface 16
Client-side Flow Rules 18, 26
Compliance points 2
ComponentFeature 6
Configuration 1
Conformance 2
Constraint Description 37
Container Interceptors 22, 33
Container Portable Interceptor 3
Container Portable Interceptors (COPI) 9, 11
container related code 1
ContainerClientRequestInfo interface 30
Containers 9
ContainerServantRequestInfo interface 32
ContainerServerRequestInfo interface 31
ContainerStubRequestInfo interface 31
COPIServiceContext 14
CORBA Component Model 1
CORBA Components 10
CORBA Portable Interceptors 10

D
Definitions 3
destroy 14
Disconnection Flow details 41

E
Examples 57
exception 32, 33
Extension container 43
ExtensionComponent interface 45
ExtensionContext interface 43
extra-functional properties 2

F
Flow rules 13
Flow Stack 14
functional code 1

G
get_client_interceptor_registration 44
get_servant_interceptor_registration 44
get_server_interceptor_registration 44
get_stub_interceptor_registration 44

H
How to Read this Specification 4

I
IDL definitions 49
install_service_reference 44
Interception point 20
Interception points 17, 23
InvalidRegistration exception 36

M
Mandatory 7
Monitoring 48

N
Name 8, 14, 30
negotiation 1
Negotiation Interface 37
non-functional 1
Normative References 3
Notation for QoS properties 8
nun-functional properties 2

O
operation 32
Optional compliance points 3
origin_id 15, 30

P
Package structure 6
Portable Interceptors (PI) 11
properties 2

Q
QoS Callback interface 48
QoS Enabler 9, 46, 48
QoS properties 1, 2, 5
QoS Usage interface 47
QoSConstraint 37
QoSEnablers, 1
QoSInstance 37
Quality of Service (QoS) 2

R
receive_exception 17
receive_other 18
receive_reply 17
receive_request 20
References 3
register_client_interceptor 34
register_servant_interceptor 36
register_server_interceptor 34
register_stub_interceptor 35
release_qos 38
Re-negotiation flow details 42
Quality of Service for CORBA Components, v1.0 63

request_info 31
RequestInfo interfaces 29
require_qos 38
resolve_service_reference 46
result 32, 33
Rules 13

S
Scope 1
send_exception 21
send_other 21
send_poll 17
send_reply 20
servant_receive_request 27
servant_send_exception 28
servant_send_other 28
servant_send_reply 27
ServantContainerInterceptor interface 29
ServerContainerInterceptor interface 19
ServerContainerInterceptorRegistrationInterface 34, 35
Server-side Flow Rules 21, 29
set_extension_context operation 45
set_slot_id 14
slot_info 15
stub_receive_exception 25
stub_receive_other 25
stub_receive_reply 24
stub_send_request 24
StubContainerInterceptionRegistration interface 35
StubContainerInterceptor interface 23
Symbols 4

T
target 32, 33
target_id 15, 30
Terms 4

U
uninstall_service_reference 45
unregister_client_interceptor 34
unregister_servant_interceptor 36
unregister_server_interceptor 34
unregister_stub_interceptor 35
64 Quality of Service for CORBA Components, v1.0

	OMG’s Issue Reporting Procedure
	Preface
	1 Scope
	1.1 Overview
	1.2 Quality of Service

	2 Conformance
	2.1 Mandatory Compliance Points
	2.2 Optional Compliance Points

	3 References
	3.1 Normative References
	3.2 Non-normative References

	4 Terms and Definitions
	5 Symbols (and abbreviated terms)
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgements

	7 Modeling of QoS for CORBA Components
	7.1 Scope of QoS Properties
	7.2 CCMQoS Metamodel
	7.2.1 Package Structure
	7.2.2 Binding

	7.3 Notation for QoS

	8
	8 Container Architecture
	8.1 Introduction
	8.1.1 Requirements

	8.2 Component Instance Identity
	8.3 Container Portable Interceptors
	8.3.1 Introduction
	8.3.2 Design Principles
	8.3.3 General Flow Rules
	8.3.4 Container Interceptor Interface
	8.3.5 Stack Visual Model and Interception Points
	8.3.6 COPIServiceContext

	8.4 Basic Container Interceptors
	8.4.1 Basic Interception Points
	8.4.2 ClientContainerInterceptor Interface
	8.4.3 Client-Side Interception Points
	8.4.4 Interception Flow for ClientContainerInterceptors
	8.4.5 ServerContainerInterceptor Interface
	8.4.6 Server-Side Interception Points
	8.4.7 Interception Flow for ServerContainerInterceptors
	8.4.8 Server-side Flow Rules

	8.5 Extended Container Interceptor Interfaces
	8.5.1 Extended Interception Points
	8.5.2 StubContainerInterceptor
	8.5.3 Stub Interception Points
	8.5.4 Interceptor Flow for StubContainerInterceptors
	8.5.5 ServantContainerInterceptor
	8.5.6 Servant Interception Points
	8.5.7 Interception Flow for ServantContainerInterceptors

	8.6 Request Information
	8.6.1 ContainerRequestInfo
	8.6.2 ContainerClientRequestInfo
	8.6.3 ContainerServerRequestInfo
	8.6.4 ContainerStubRequestInfo
	8.6.5 ContainerServantRequestInfo

	8.7 Registering Container Interceptors
	8.7.1 Client Registration Interface
	8.7.2 Server Registration Interface
	8.7.3 Servant Registration Interface
	8.7.4 InvalidRegistration Exception

	8.8 Negotiation
	8.8.1 Introduction
	8.8.2 Constraint Description
	8.8.3 Negotiation Interface
	8.8.4 Provision of Negotiation Interface
	8.8.5 Definition of Negotiation Flow

	8.9 Extension Container
	8.9.1 Introduction
	8.9.2 ExtensionContext
	8.9.3 ExtensionComponent

	8.10 Modification of CCMContext interface
	8.10.1 resolve_service_reference

	8.11 QoS Enabler
	8.11.1 Introduction
	8.11.2 QoS Usage Interface
	8.11.3 QoSCallback Interface
	8.11.4 Packaging and Deployment of QoS Enablers
	8.11.5 Monitoring

	8.12 Dynamic adaptation of a running application
	8.12.1 Modification of StandardConfigurator interface
	8.12.2 Modification of HomeConfiguration interface

	8.13 Binding QoSConstraint with component feature
	8.13.1 QoSPropertyInstance
	8.13.2 QoSPropertyInstanceRegistration

	A.1 CCMExceptionReason
	A.2 Module ContainerPortableInterceptor
	A.3 Interface CCMContext
	A.4 Interface ExtensionContext
	A.5 Interface ExtensionComponent
	A.6 Module QoS
	B.1 Example: Tracing
	B.1.1 Modeling

	B.2 Example: Processing Throughput
	B.2.1 Modeling

	B.3 Example: Encryption
	B.3.1 Modeling

