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About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
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xviii                 MOF2 Query/View/Transformation (QVT), v1.2



1 Scope
This specification provides the architecture, languages, operational mappings, and core language for the MOF 2.0 Query, 
View, and Transformation (QVT) specification.  The specification defines three related transformation languages: Relations, 
Operational Mappings, and Core.

2 Conformance
QVT language conformance is specified along two orthogonal dimensions: the language dimension and the 
interoperability dimension. Each dimension specifies a set of named levels. Each intersection of the levels of the two 
dimensions specifies a valid QVT conformance point. All conformance points are valid by themselves, which implies that 
there is no general notion of “QVT conformance.” Instead, a tool shall state which conformance points it implements, as 
described below in “Conformance Points.” 

2.1 Conformance Points
Any combination of two named levels, one from each dimension, constructs a conformance point. Figure 2.1 specifies the 
different possible conformance points. A tool can claim to be conformant according to one or more of these conformance 
points.

Figure 2.1 - Conformance Table

By convention a conformance point is denoted using the abbreviation

QVT - <language level> - <interoperability level> 

For example, a tool could be QVT-Relations-SyntaxExecutable, QVT-Relations-XMIExportable, and QVT-Core-
SyntaxExportable. Another tool could be QVT-Operational-SyntaxExecutable and QVT-Operational-XMIExportable. 

There is one implicit requirement: A tool which is QVT-SyntaxExecutable or QVT-XMIExecutable for a particular 
language level shall also be QVT-SyntaxExportable conformant or QVT-XMIExportable conformant, respectively, for the 
same language level.  
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2.2 Language Dimension
The language dimension consists of the three named language levels:

1. Core: The Core language is described in Clause 9. This includes the ability to insert black-box implementations via 
MOF operations as specified.

2. Relations: The Relations language is described in Clause 7. This includes the ability to insert black-box 
implementations via MOF operations as specified.

3. Operational: The Operational Mappings language is described in Clause 8.

2.3 Interoperability Dimension
The interoperability dimension has four named interoperability levels:

1. SyntaxExecutable: An implementation shall provide a facility to import or read, and then execute the concrete syn-
tax description of a transformation in the language given by the language dimension. The execution shall be accord-
ing to the semantics of the chosen language as described in this document.   

2. XMIExecutable: An implementation shall provide a facility to import or read, and then execute an XMI 
serialization of a transformation description that conforms to the MOF meta-model of the language given by the 
language dimension. The execution shall be according to the semantics of the chosen language as described in this 
document.   

3. SyntaxExportable: An implementation shall provide a facility to export a model-to-model transformation in the 
concrete syntax of the language given by the language dimension.

4. XMIExportable: An implementation shall provide a facility to export a model-to-model transformation into its XMI 
serialization that conforms to the MOF meta-model of the language given by the language dimension.

2.4 EMOF and CMOF Compliance
A QVT tool may declare to be EMOF-compliant or CMOF-compliant (possibly both) depending on the kind of models 
that it is capable of working with. The same dimensions serving to characterize QVT-EMOF compliant implementations 
(in Figure 2.1) are applicable to QVT CMOF-compliant implementations. 

Note however that the XMI for an EMOF-compliant QVT tool is not the same as the XMI for a CMOF-compliant QVT 
tool since the XMI generation rules for CMOF are distinct from the corresponding generation rules for EMOF.

2.5 Conformance of QVT Definitions
Figure 2.1 defines compliance points for tools. We address here conformance of transformation definitions written in 
QVT.

The authors of a QVT transformation definition shall indicate:

1. The language dimension being used, and

2. whether black-box operations are being used. If black-box operations are used, then a suitable description of the 
operations should also be provided including a signature expressed in OCL syntax.
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By convention the following terms should be used when claiming QVT compliance of a transformation definition:

QVT - <language-level>   or

QVT - <language-level> *

The asterisk symbol means that black-boxes are used. This gives the following possible set of values: QVT-Core, QVT-
Core*, QVT-Relations, QVT-Relations*, QVTOperational, and QVT-Operational*.

3 Normative References
The QVT specification depends on the following two OMG specifications:

• MOF 2.4.1 Core Specification: http://www.omg.org/spec/MOF/2.4.1/PDF 

• OCL 2.4 Specification: http://www.omg.org/spec/OCL/2.4/PDF
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4 Definitions and Terms

4.1 Glossary

Area In the context of a core mapping an area is a pair of patterns, consisting of a guard pattern 
and a bottom pattern. 

Bottom Pattern A pattern that is checked or enforced for the bindings generated by the guard pattern of the 
same area of a mapping, and other patterns that this area is related to for execution in a 
particular direction. 

Core Domain A specialized kind of domain that forms part of a mapping. A core domain is also an area 
that defines a pair of patterns, consisting of a guard pattern and a bottom pattern. 

Core Transformation A transformation definition formalized by a list of core mappings. 

Domain A domain is a distinguished set of variables to be matched in a typed model. It is related to 
other domains by a transformation rule. 

Domain is an abstract type in the QVTBase package that has concrete types RelationDomain 
and CoreDomain.

Domains have flags to indicate whether they are checkonly or enforced. When a 
transformation is executed with the typed model of this domain as its target model, and it is 
an enforced domain, values may be created or destroyed in the typed model in order to satisfy 
the rules of the relation to which it belongs. 

Guard Pattern A pattern that must hold as a precondition to the application of the bottom pattern related to 
it in an area of a core mapping.

Identifying Property A property of class that is part of a key defined in a relational transformation.

Incremental Update Once a relationship (a set of trace instances) has been established between models by 
executing a transformation, small changes to a source model may be propagated to a target 
model by re-executing the transformation in the context of the trace, causing only the relevant 
target model elements to be changed, without modifying the rest of the model. 

Key In the context of relations a key is a definition of which properties of a MOF class, in 
combination, can uniquely identify an instance of that class. These properties are called 
identifying properties, and are used when matching template patterns to determine how many 
instances of a class should exist in a relationship by creating or locating an instance for each 
unique key that can be derived from the values bound to the identifying properties.

Mapping (Core) A transformation rule in a Core transformation description. It is an area, consisting of a pair 
of patterns that are designed to locate or create instances of the trace classes that store the 
relationships between models. It also owns a set of core domains that identify the model 
elements in those models to be related to one another.

Mapping Operation An operation implementing a part of a transformation. It defines a signature and a structured 
and imperative body. It is associated with a relation for which it is a refinement. 
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Model Type In the context of an operational transformation a model type represents the type of the 
models involved in the transformation. A model type is defined by a metamodel, a 
conformance kind - strict or effective - and an optional set of constraint expressions.  The 
metamodel defines the set of classes and property elements that are expected by the 
transformation, and is captured in a set of MOF Packages. Effective compliance allows 
flexible transformations to be defined that can be applied to similar metamodels. 

Operational 
Transformation

A transformation definition that is formalized by a list of mapping operations.

Relation A relation is a subset of an N-ary product of sets, A1 x A2 x ... x AN, and may be represented 
as a set of N-tuples (a1, a2,..., aN). In the context of MOF, each set AK, called a domain, is a 
MOF type, and a relation will be populated by tuples referring to model elements of those 
types that exist in MOF extents.

A Relation in the QVT specification also defines the rules by which the exact subset of model 
elements to be related is determined. These rules comprise variables of additional MOF types, 
template pattern matches on the structure of the relation domains that bind values to the 
variables, OCL constraints over the relation domains and variables of the relation, and 
assertions that other relations hold.

Relations imply the existence of equivalent trace classes that have properties for each of its 
domains, and whose set of trace instances are equivalent to the relation’s population of 
tuples.

Relational 
Transformation

A transformation definition that is formalized by a list of relations.

Relation Domain A specialization of the concept of a domain. In a Relation a domain is a type that may be the 
root of a template pattern, which can match any model element navigable from that type.

A domain implies the existence of a property of the same type in a trace class derived from 
the relation to which it belongs.

Template Pattern A template pattern is a combination of a literal as defined in OCL that can match against 
instances of a class and values for any of its properties, including recursive matching of other 
class instances, which are values of those properties. It also allows for the binding of 
variables to any value matched in that structure, including collections of values. Template 
Patterns are part of the definition of a relation domain. They provide a terse, user-friendly 
expression of what can be quite verbose expressions in ordinary OCL. Template Patterns rely 
on identifying properties of classes, defined by keys to further simplify the specification of 
relationships between relation domains.

Trace Class A MOF class with properties that refer to objects and values in models that are related by a 
transformation. Instances of these classes (trace instances) are created during the execution of 
a transformation so that relationships between models that are created by the execution can be 
stored. In the context of the Relations Language, a trace class is derived from each Relation, 
with a property to represent each domain of the relation. 
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5 Additional Information

5.1 Changes To Adopted OMG Specifications
This specification does not make any changes to existing OMG specifications. 

5.2 Structure of the Specification
This specification defines three related transformation languages: Relations, Operational Mappings, and Core.

Clause 6 - QVT Overview, describes the relationships between the three language models, and gives an overview of their 
purposes and features.

Clause 7 - The Relations Language, provides the details of this language, and its evaluation semantics. It shows the MOF 
metamodel and describes the elements of that model. It gives the concrete syntax for the language. It also describes how 
black-box operation implementations can be used.

Clause 8 - Operational Mappings, provides the details of this language in terms of imperative mappings, which extend the 
QVTRelation package introduced in the previous clause, as well as side-effect extensions to OCL 2.0, and their evaluation 
semantics. It shows the MOF metamodel and describes the elements of that model. It gives the concrete syntax for the 
language. 

Clause 9 - The Core Language, describes the Core on which the semantics of the Relations Language is based. The core 
evaluation semantics is given in semi-formal set-theoretic notation. Then the MOF metamodel and descriptions of its 
elements are given.

Clause 10 - Relations to Core Transformation, gives the transformation from an arbitrary relations specification for a 
particular execution direction, to an equivalent core specification and trace classes. This allows relational transformation 
descriptions to be understood in terms of the formal semantics of the Core.

Annex A: - Additional Examples, provides some whole transformation examples to augment the excerpt examples shown 
inline in the rest of the specification.

5.3 Acknowledgements
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• Adaptive

• Alcatel
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Trace Instance An instance of a trace class that represents the linkage between models established by a 
transformation execution. These instances may be used to aid in propagating incremental 
updates to a source model into a target model without re-executing the entire transformation.
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• CBOP
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Pete Rivett, Roy Gronmo, Karl Frank, Michael Wagner, Grégoire Dupé, Florian Guillard, Nicolas Rouquette, Victor 
Sanchez, Adolfo Sanchez-Barbudo Herrera, Sergey Boyko, Chistopher Gerking.
8                 MOF2 Query/View/Transformation (QVT), v1.2



6 QVT Overview
The QVT specification has a hybrid declarative/imperative nature, with the declarative part being split into a two-level 
architecture. We start by explaining the two-level architecture of the declarative part, as it forms the framework for the 
execution semantics of the imperative part.

6.1 Two Level Declarative Architecture
The declarative parts of this specification are structured into a two-layer architecture. The layers are:

• A user-friendly Relations metamodel and language that supports complex object pattern matching and object template 
creation. Traces between model elements involved in a transformation are created implicitly.

• A Core metamodel and language defined using minimal extensions to EMOF and OCL. All trace classes are explicitly 
defined as MOF models, and trace instance creation and deletion is defined in the same way as the creation and deletion 
of any other object. 

Figure 6.1 - Relationships between QVT metamodels

6.1.1 Relations 

A declarative specification of the relationships between MOF models. The Relations language supports complex object 
pattern matching, and implicitly creates trace classes and their instances to record what occurred during a transformation 
execution. Relations can assert that other relations also hold between particular model elements matched by their patterns. 
The semantics of Relations are defined in a combination of English and first order predicate logic in Clause 9.10 
“Enforcement” on page 162, as well as by a standard transformation for any Relations model to trace models and a Core 
model with equivalent semantics. This transformation can be found in Clause 10. It can be used purely as a formal 
semantics for Relations, or as a way of translating a Relations model to a Core model for execution on an engine 
implementing the Core semantics.

6.1.2 Core

This is a small model/language that only supports pattern matching over a flat set of variables by evaluating conditions 
over those variables against a set of models. It treats all of the model elements of source, target, and trace models 
symmetrically. It is equally powerful to the Relations language, and because of its relative simplicity, its semantics can be 
defined more simply, although transformation descriptions described using the Core are therefore more verbose. In 
addition, the trace models must be explicitly defined, and are not deduced from the transformation description, as is the 
case with Relations. The core model may be implemented directly, or simply used as a reference for the semantics of 
Relations, which are mapped to the Core, using the transformation language itself. The definition of the Core semantics is 
given in Clause 9. 
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6.1.3 Virtual Machine Analogy

An analogy can be drawn with the Java™ architecture, where the Core language is like Java Byte Code and the Core 
semantics is like the behavior specification for the Java Virtual Machine. The Relations language plays the role of the 
Java language, and the standard transformation from Relations to Core is like the specification of a Java Compiler, which 
produces Byte Code. 

6.2 Imperative Implementations
In addition to the declarative Relations and Core Languages that embody the same semantics at two different levels of 
abstraction, there are two mechanisms for invoking imperative implementations of transformations from Relations or 
Core: one standard language, Operational Mappings, as well as non-standard Black-box MOF Operation 
implementations. Each relation defines a class that will be instantiated to trace between model elements being 
transformed, and it has a one-to-one mapping to an Operation signature that the Operational Mapping or Black-box 
implements.

6.2.1 Operational Mappings Language

This language is specified as a standard way of providing imperative implementations, which populate the same trace 
models as the Relations Language. It is given in Clause 8. It provides OCL extensions with side effects that allow a more 
procedural style, and a concrete syntax that looks familiar to imperative programmers.

Mappings Operations can be used to implement one or more Relations from a Relations specification when it is difficult 
to provide a purely declarative specification of how a Relation is to be populated. Mappings Operations invoking other 
Mappings Operations always involves a Relation for the purposes of creating a trace between model elements, but this 
can be implicit, and an entire transformation can be written in this language in the imperative style. A transformation 
entirely written using Mapping Operations is called an operational transformation.

6.2.2 Black Box Implementations

MOF Operations may be derived from Relations making it possible to “plug-in” any implementation of a MOF Operation 
with the same signature. This is beneficial for several reasons:

• It allows complex algorithms to be coded in any programming language with a MOF binding (or that can be executed 
from a language with a MOF binding).

• It allows the use of domain specific libraries to calculate model property values. For example, mathematical, 
engineering, bio-science, and many other domains have large libraries that encode domain-specific algorithms that will 
be difficult, if not impossible to express using OCL.

• It allows implementations of some parts of a transformation to be opaque.

However, it is also dangerous. The plugin implementation has access to object references in models, and may do arbitrary 
things to those objects, possibly breaking encapsulation. Black-box implementations do not have an implicit relationship 
to Relations, and each black-box must explicitly implement a Relation, which is responsible for keeping traces between 
model elements related by the Operation implementation. In these cases, the relevant parts of the models can be matched 
by a Relation, and passed out to implementations in the most relevant language for processing.

To extend the Java architecture analogy, the ability to invoke black-box and operational mapping implementations can be 
considered equivalent to calling the Java Native Interface (JNI).
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6.3 Execution Scenarios
The semantics of the Core language (and hence the Relations language) allow for the following execution scenarios:

• Check-only transformations to verify that models are related in a specified way.

• Single direction transformations.

• Bi-directional transformations. (In fact more than two directions are possible, but two is the most common case.)

• The ability to establish relationships between pre-existing models, whether developed manually, or through some other 
tool or mechanism.

• Incremental updates (in any direction) when one related model is changed after an initial execution.

• The ability to create as well as delete objects and values, while also being able to specify which objects and values must 
not be modified.

The operational mapping and black-box approaches, even when executed in tandem with relations, restrict these scenarios 
by only allowing specification of transformations in a single direction. Bi-directional transformations are only possible if 
an inverse operational implementation is provided separately. However, all of the other capabilities defined above are 
available with imperative and hybrid executions.

6.4 MOF Metamodels
This specification defines three main packages, one for each of the languages defined: QVTCore (Clause 9.17), 
QVTRelation (Clause 7.11.3), and QVTOperational (Clause 8.2). 

The QVTBase package defines common structure for transformations (Clause 7.11.1). 

In addition the QVTRelation package uses template pattern expressions defined in the QVTTemplateExp package 
(Chapter 7.11.2).

Figure 6.2 - Package dependencies in the QVT specification
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QVTOperational extends QVTRelation, as it uses the same framework for traces defined in that package. It uses 
imperative expressions defined in the ImperativeOCL Package (Clause 8.2.2).

All of QVT depends on the EssentialOCL package from OCL 2.4, and all of the language packages depend on EMOF.
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7 The Relations Language

7.1 Transformations and Model Types
In the relations language, a transformation between candidate models is specified as a set of relations that must hold for 
the transformation to be successful. A candidate model is any model that conforms to a model type, which is a 
specification of what kind of model elements any conforming model can have, similar to a variable type specifying what 
kind of values a conforming variable can have in a program. Candidate models are named, and the types of elements they 
can contain are restricted to those within a set of referenced packages. An example is:

      transformation umlRdbms (uml : SimpleUML, rdbms : SimpleRDBMS) {

In this declaration named “umlRdbms,” there are two typed candidate models: “uml” and “rdbms.” The model named 
“uml” declares the SimpleUML package as its metamodel, and the “rdbms” model declares the SimpleRDBMS package 
as its metamodel. A transformation can be invoked either to check two models for consistency or to modify one model to 
enforce consistency. 

7.1.1 Transformation Execution Direction

A transformation invoked for enforcement is executed in a particular direction by selecting one of the candidate models 
as the target. The target model may be empty, or may contain existing model elements to be related by the transformation. 
The execution of the transformation proceeds by first checking whether the relations hold, and for relations for which the 
check fails, attempting to make the relations hold by creating, deleting, or modifying only the target model, thus enforcing 
the relationship.

7.2 Relations and Domains
Relations in a transformation declare constraints that must be satisfied by the elements of the candidate models. A 
relation, defined by two or more domains and a pair of when and where predicates, specifies a relationship that must hold 
between the elements of the candidate models.

A domain is a distinguished typed variable that can be matched in a model of a given model type.  A domain has a 
pattern, which can be viewed as a graph of object nodes, their properties and association links originating from an 
instance of the domain’s type. Alternatively a pattern can be viewed as a set of variables, and a set of constraints that 
model elements bound to those variables must satisfy to qualify as a valid binding of the pattern. A domain pattern can be 
considered a template for objects and their properties that must be located, modified, or created in a candidate model to 
satisfy the relation. Pattern matching and object creation using patterns are discussed in more detail in Clause 7.3 and 
Clause 7.4 below.

In the following example two domains are declared that will match elements in the “uml” and “rdbms” models 
respectively. Each domain specifies a simple pattern - a package with a name, and a schema with a name, both the “name” 
properties being bound to the same variable “pn” implying that they should have the same value.

relation PackageToSchema   /* map each package to a schema */ 
   { 
      domain uml p:Package {name=pn} 
      domain rdbms s:Schema {name=pn} 
   }
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7.2.1 When and Where Clauses

A relation also can be constrained by two sets of predicates, a when clause and a where clause, as shown in the example 
relation ClassToTable below. The when clause specifies the conditions under which the relationship needs to hold, so the 
relation ClassToTable needs to hold only when the PackageToSchema relation holds between the package containing the 
class and the schema containing the table. The where clause specifies the condition that must be satisfied by all model 
elements participating in the relation, and it may constrain any of the variables in the relation and its domains. Hence, 
whenever the ClassToTable relation holds, the relation AttributeToColumn must also hold.

relation ClassToTable   /* map each persistent class to a table */ 
   { 
      domain uml c:Class {  
            namespace = p:Package {},  
            kind='Persistent',  
            name=cn 
       } 
     domain rdbms t:Table { 
             schema = s:Schema {},  
              name=cn, 
              column = cl:Column { 
                    name=cn+'_tid',  
                    type='NUMBER'},  
              primaryKey = k:PrimaryKey { 
              name=cn+'_pk',   
              column=cl} 
       } 
      when { 
         PackageToSchema(p, s); 
      } 
      where { 
         AttributeToColumn(c, t); 
      } 
   }

The when and where clauses may contain any arbitrary OCL expressions in addition to the relation invocation 
expressions. Relation invocations allow complex relations to be composed from simpler relations. 

7.2.2 Top-level Relations

A transformation contains two kinds of relations: top-level and non-top-level. The execution of a transformation requires 
that all its top-level relations hold, whereas non-top-level relations are required to hold only when they are invoked 
directly or transitively from the where clause of another relation.

transformation umlRdbms (uml : SimpleUML, rdbms : SimpleRDBMS) { 
top relation PackageToSchema {…} 
top relation ClassToTable {…} 
relation AttributeToColumn {…} 

}

A top-level relation has the keyword top to distinguish it syntactically. In the example above, PackageToSchema and 
ClassToTable are top level relations, whereas AttributeToColumn is a non-top-level relation.

7.2.3 Check and Enforce

When a transformation is evaluated, the transformation executes in the direction of the domain specified as the target. 
Whether or not a relation is enforced is determined by the target domain, which may be marked as checkonly or 
enforced. When a relation executes in the direction of a checkonly domain, the domain is simply checked to see whether 
there exists a valid match in the relevant model that satisfies the relationship. When a relation executes in the direction of 
an enforced domain, if checking fails, the target model is modified so as to satisfy the relation.
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In the example below, the domain for the “uml” model is marked checkonly and the domain for the rdbms model is 
marked enforce.

relation PackageToSchema   /* map each package to a schema */ 
   { 
      checkonly domain uml p:Package {name=pn} 
      enforce domain rdbms s:Schema {name=pn} 
   }

If we are executing in the direction of uml and there exists a schema in rdbms for which we do not have a corresponding 
package with same name in uml, it is simply reported as an inconsistency - a package is not created because the “uml” 
model is not enforced, it is only checked.

However, if we are executing the transformation umlRdbms in the direction of rdbms, then for each package in the uml 
model the relation first checks if there exists a schema with same name in the rdbms model, and if it does not, a new 
schema is created in that model with the given name. To consider a variation of the above scenario, if we execute in the 
direction of rdbms and there is not a corresponding package with the same name in uml, then that schema will be deleted 
from the rdbms model, thus enforcing consistency in the enforce domain.

These rules apply depending on the target domain only. In this execution scenario, schema deletion will be the outcome 
even if the uml domain is marked as enforced, because the transformation is being executed in the direction of rdbms, and 
object creation, modification, and deletion can only take place in the target model for the current execution.

Clause 7.10 “Detailed Semantics” on page 19 contains a more detailed description of the checking and enforcement 
semantics.

7.2.4 Primitive Domains

Simple data such as configuration information or constants may be passed as parameters to a relation using primitive 
domains. A primitive domain is identified by primitive keyword and no domain name. A primitive domain is neither 
checkable nor enforceable.

relation Outer { 
checkonly domain source s:Source {}; 
enforce domain target t:Target {}; 
where { 
Inner(s,t,'target'); 

}
relation Inner { 

checkonly domain source s:Source {name=pn}; 
enforce domain target t:Target {name=separator + pn}; 
primitive domain separator:String; 

}

7.3 Pattern Matching
Let us use an example to discuss matching of the patterns associated with domains, known as object template expressions. 
We continue to use ClassToTable above as an example.

ClassToTable defines several object template expressions, which are used to match patterns in candidate models. For 
example the following object template expression is associated with the domain of “uml.”

c:Class {    namespace = p:Package {},  
                   kind='Persistent',  
                   name=cn 
              }
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A template expression match results in a binding of model elements from the candidate model to variables declared by the 
domain. A template expression match may be performed in a context where some of the domain variables may already 
have bindings to model elements (e.g., resulting from an evaluation of the when clause or other template expressions). In 
this case template expression match finds bindings only for the free variables of the domain.

For example, in the case of the above template expression associated with the “uml” domain, pattern matching will bind 
all the variables in the expression (“c,” “p,” and “cn”), starting from the domain’s root variable “c” of type Class. In this 
example the variable “p” would already have a binding resulting from the evaluation of the when clause expression 
PackageToSchema(p, s). The matching proceeds by filtering all of the objects of type Class in the “uml” model, 
eliminating any that do not have the same literal values for their properties as the template expression. In the example, 
any Class with its “kind” property not set to ‘Persistent’ is eliminated. 

For properties that are compared to variables such as “name=cn” two cases arise. If the variable “cn” already has a value 
binding, then any class that does not have the same value for its name property is eliminated. If the variable “cn” is free, 
as in our example, then it will get a binding to the value of the name property for all classes that are not filtered out due 
to a mismatch with other property comparisons. The value of “cn” will be either used in another domain, or can have 
additional constraints placed on it in the where expression of the domain or its owning relation.

Then the matching proceeds to properties whose values are compared to nested template expressions. For example, the 
property pattern “namespace = p:Package {}” will match only those classes whose “namespace” property has a non-null 
reference to a Package. At the same time, the variable “p” will be bound to refer to the Package. However, since in our 
example “p” is already bound in the when clause, the pattern will only match those classes whose “namespace” property 
has a reference to the same package that is bound to “p.”

Arbitrarily deep nestings of template expressions are permitted, and matching and variable binding proceeds recursively 
until there is a set of value tuples corresponding to the variables of the domain and its template expression (for example, 
the three variables: “c,” “p,” and “cn”). These make a 3 tuple and each valid match will result in a unique tuple 
representing the binding.

In a given relation invocation, there may be multiple valid matches for a given template expression. How this multiplicity 
is dealt with depends on the execution direction.

For instance if ClassToTable is executed with rdbms as the target model, then for each valid match (i.e., valid tuple of 
variable bindings) of the uml domain, there must exist at least one valid match of the rdbms domain that satisfies the 
where clause. If for a given valid match of the uml domain there does not exist a valid match of the rdbms domain, then 
(since rdbms domain is enforced) objects are created and properties are set as specified in the template expression 
associated with the rdbms domain. Also, for each valid match of the rdbms domain, there must exist at least one valid 
match of the uml domain that satisfies the where clause (this is required since uml domain is marked checkonly); 
otherwise, objects will be deleted from the rdbms model such that it is no longer a valid match.

Sometimes it may be necessary to use a non-navigable opposite role in the specification of object templates. 

E.g. 

domain myModel a:Attribute {name = n, opposite(Class.attribute) = c:Class{}}; 

This specifies that the pattern will only match if the class the attribute belongs to is equal to ‘c.’ This is equivalent to the 
following template definition with condition: 

domain myModel a:Attribute {name = n} {c.attribute.includes(a)}; 

But the ‘opposite’ notation allows this to be specified in the template itself, leading to more compact specifications. 

Clause 7.10 “Detailed Semantics” on page 19 contains a more detailed description of the pattern matching semantics.
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7.4 Keys and Object Creation Using Patterns
As mentioned previously, an object template expression also serves as a template for creating an object in a target model. 
When for a given valid match of the source domain pattern, there does not exist a valid match of the target domain 
pattern, then the object template expressions of the target domain are used as templates to create objects in the target 
model. For example, when ClassToTable is executed with rdbms as the target model, the following object template 
expression serves as a template for creating objects in the rdbms model:

t:Table { 
     schema = s:Schema {},  
     name = cn, 
     column = cl:Column {name=cn+'_tid',  type='NUMBER'},  
     primaryKey = k:PrimaryKey {name=cn+'_pk', column=cl} 
}

The template associated with Table specifies that a table object needs to be created with properties “schema,” “name,” 
“column,” and “primaryKey” set to values as specified in the template expression. Similarly the templates associated with 
Column, PrimaryKey, etc, specify how their respective objects should be created.

However, when creating objects we want to ensure that duplicate objects are not created when the required objects already 
exist. In such cases we just want to update the existing objects. But how do we ensure this? The MOF allows for a single 
property of a class to be nominated as identifying. However, for most metamodels, this is insufficient to uniquely identify 
objects. The relations metamodel introduces the concept of Key, which defines a set of properties of a class that uniquely 
identify an object instance of the class in a model. A class may have multiple keys (as in relational databases).

For example, continuing with the ClassToTable relation, we might wish to specify that in simpleRDBMS models a table 
is uniquely identified by two properties - its name and the schema it belongs to. We can state this as follows:

key Table {schema, name};

Keys are used at the time of object creation; if an object template expression has properties corresponding to a key of the 
associated class, then the key is used to locate a matching object in the model; a new object is created only when a 
matching object does not exist.

In our example, consider the case where we have a persistent class with name “foo” in the uml model, and a table with a 
matching name “foo” exists in a matching schema in the rdbms model but the table does not have matching values for 
properties “column” and “primaryKey.” In this case as per our pattern matching semantics, the rdbms model does not 
have a valid match of the pattern associated with Table (since two of its properties do not match) and so we need to create 
objects to satisfy the relation. However, since the existing table matches the specified key properties (i.e., name and 
schema), we do not have to create a new table; we just have to update the table to set its “column” and “primaryKey” 
properties.

Sometimes it may be necessary to use a non-navigable opposite role in the specification of a key. For instance, an 
attribute is identified by a combination of its name and the owning class. Suppose we have a meta model in which the 
'Class' to ‘Attribute’ association ‘attribute’ is only navigable from Class to Attribute. We should still be able to use this 
association in the key specification of Attribute. 

E.g. 

key Attribute {name, opposite(Class.attribute)}; 

This specifies that an attribute is uniquely identified by its name and the class it belongs to.
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7.5  Restrictions on Expressions
In order to guarantee executability (i.e., there exists a bounded algorithm to enforce a relation in the direction of a given 
target model) expressions occurring in a relation are required to satisfy the following conditions:

1. It should be possible to organize the expressions that occur in the when clause, the source domains, and the where 
clause into a sequential order that contains only the following kinds of expressions:

1.1.  An expression of the form
<object>.<property> = <variable>

Where <variable> is a free variable and <object> is either a variable bound to an object template expression of an 
opposite domain pattern or a variable that gets a binding from a preceding expression in the expression order. 
This expression provides a binding for variable <variable>.

1.2.  An expression of the form:
<object>.<property> = <expression>

Where <object> is either a variable bound to an object template expression of a domain pattern or a variable that 
gets a binding from a preceding expression in the expression order. There are no free variable occurrences in 
<expression> (variable occurrences if any should all have been bound in the preceding expressions).

1.3.  No other expression has free variable occurrences (all their variable occurrences should have been bound in 
        the preceding expressions). 

2. It should be possible to organize the expressions that occur in the target domain into a sequential order that contains 
only the following kinds of expressions:

 2.1. An expression of the form 
<object>.<property> = <expression>

Where <object> is either a variable bound to an object template expression of the domain pattern or a variable 
that gets a binding from a preceding expression in the expression order. There are no free variable occurrences in 
<expression> (variable occurrences if any should all have been bound in the preceding expressions).

 2.2. No other expression has free variable occurrences (all their variable occurrences should have been bound in the 
 preceding expressions).

7.6 Change Propagation
In relations, the effect of propagating a change from a source model to a target model is semantically equivalent to 
executing the entire transformation afresh in the direction of the target model. The semantics of object creation and 
deletion guarantee that only the required parts of the target model are affected by the change. Firstly, the semantics of 
check-before-enforce ensures that target model elements that satisfy the relations are not touched. Secondly, key-based 
object selection ensures that existing objects are updated where applicable. Thirdly, deletion semantics ensures that an 
object is deleted only when no other rule requires it to exist.

An implementation is free to use any efficient algorithm for change propagation as long as it is consistent with the above 
semantics. The relations-to-core mapping provides one such implementation option, as core mappings support incremental 
change propagation more directly.

Please refer to Clause 10 on relations to core mapping for a detailed description of how change propagation is handled in 
core and how that applies to relations.
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7.7 In-place Transformations
A transformation may be considered in-place when one or more source models are bound to one or more target models at 
runtime. Execution proceeds as if the source and target models are distinct with an atomic update of non-distinct models 
occurring on completion of the transformation. This implies that an implementation that operates in-place must take 
copies of the old state to avoid confusion with updated new state.

Execution of a transformation should return a Boolean status to indicate whether any changes were made to target models. 
This status enables transformation applications to repeat execution until no changes occur where that is appropriate for 
the application.

7.8 Integrating Black-box Operations with Relations
A relation may optionally have an associated black-box operational implementation to enforce a domain. The black-box 
operation is invoked when the relation is executed in the direction of the enforced domain and the relation evaluates to 
false as per the checking semantics. The invoked operation is responsible for making the necessary changes to the model 
in order to satisfy the specified relationship. It is a runtime exception if the relation evaluates to false after the operation 
returns. The signature of the operation can be derived from the domain specification of the relation - an output parameter 
corresponding to the enforced domain, and an input parameter corresponding to each of the other domains.

The Relations that may be implemented by Mapping Operations and Black box Operations are restricted in the following 
ways:

• Their domain should be primitive or contain a simple object template (with no sub-elements).

• The when and where clause should not define variables. 

These restrictions allow for a simple call-out semantics, which does not need any constraint evaluation before, and 
constraint checking after the operation invocation. When clauses, where clauses, patterns, and other machinery can be 
used in a “wrapper” relation that invokes the simple relation with values constrained by the wrapper.

7.9 Executing a Transformation in Checkonly mode
A transformation can be executed in “checkonly” mode. In this mode, the transformation simply checks whether the 
relations hold in all directions, and reports errors when they do not. No enforcement is done in any direction, irrespective 
of whether the domains are marked checkonly or enforced.

7.10 Detailed Semantics
This clause provides a detailed description of the semantics of relations. A more formal semantics are given in Clause 10 
“Relations to Core Transformation” by specifying how a relation specification maps to the core model.

To simplify the description of semantics, we can view a relation as having the following abstract structure:

Relation R 
{ 
   Var <R_variable_set>   //  declaration of variables used in the relation 
   [checkonly | enforce] Domain:<typed_model_1>  

<domain_1_variable_set> // subset of <R_variable_set> 
   { 
      <domain_1_pattern> [<domain_1_condition>] 
   } 
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   ... 
   [checkonly | enforce] Domain:< typed_model_n>  

       <domain_n_variable_set> // subset of <R_variable_set> 
   { 
      <domain_n_pattern> [<domain_n_condition>] 
   }  // n >= 2 
 
   [when <when_variable_set> <when_condition>] 
   [where <where_condition>] 
}

With the following properties:

• < R_variable_set > is the set of variables occurring in the relation.

• <domain_k_variable_set> is the set of variables occurring in domain k. It is a subset of <R_variable_set>, for all k = 
1..n.

• <when_variable_set> is the set of variables occurring in the when clause. It is a subset of <R_variable_set>.

• The intersection of domain variable sets need not be null, i.e., a variable may occur in multiple domains.

• The intersection of a domain variable set and when variable set need not be null.

• The term <domain_k_pattern> refers to the set of constraints implied by the pattern of domain k.  Please recall that a 
pattern can be viewed as a set of variables, and a set of constraints that model elements bound to those variables must 
satisfy in order to qualify as a valid binding of the pattern. Please refer to Clause 7.2.3 for a detailed discussion on 
pattern matching semantics. Given below is an example pattern and the constraint implied by it.

Pattern:
c:Class {kind=Persistent, name=cn, attribute=a:Attribute {}}
Implied constraint:
c.kind = Persistent and c.name = cn and c.attribute->includes(a)

7.10.1 Checking Semantics

Checking of a relation in the direction of model k (i.e., with model k as the target model) has the following semantics:

For each valid binding of variables of the when clause and variables of domains other than the target domain k, that 
satisfy the when condition and source domain patterns and conditions, there must exist a valid binding of the remaining 
unbound variables of domain k that satisfies domain k’s pattern and where condition.

A more formal definition of the checking semantics in terms of a predicate calculus formula is given in Annex B.

7.10.2 Enforcement Semantics

Enforcement of a relation in the direction of model k (i.e., with model k as the target model) has the following semantics:

• For each valid binding of variables of the when clause and variables of domains other than the target domain k that 
satisfy the when condition and source domain patterns and conditions; if there does not exist a valid binding of the 
remaining unbound variables of domain k that satisfies domain k’s pattern and where condition, then create objects (or 
select and modify if they already exist) and assign properties as specified in domain k pattern. Whether an object is 
selected from the model or created afresh depends on whether the model already contains an object that matches the 
key property values, if any, specified in the object template. It is an error, if the template expression evaluation results 
in an assignment of a value to a property that clashes with another value set for the same property by another rule in the 
transformation execution, indicating an inconsistent specification. For primitive types, the values clash when they are 
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different. An object assignment to a link of multiplicity “one” clashes if the object being assigned is different from the 
one that already exists.

• Also, for each valid binding of variables of domain k pattern that satisfies domain k condition, if there does not exist a 
valid binding of variables of the when clause and source domains that satisfies the when condition, source domain 
patterns and where condition, and at least one of the source domains is marked checkonly (or enforce, which entails 
check), then delete the objects bound to the variables of domain k when the following condition is satisfied: delete an 
object only if it is not required to exist by any other valid binding of the source domains as per the enforcement 
semantics (i.e., avoid delete followed by an immediate create).

A more formal definition of the enforcement semantics in terms of a predicate calculus formula is given in Annex B.

7.10.3 Pattern Matching Semantics

7.10.3.1 Introduction

This clause describes the semantics of the pattern specification construct supported by the relations language. To simplify 
the description of the semantics we introduce a simple “infrastructure” model of patterns and explain its semantics. Then 
Clause 7.10.3.3 “Patterns Specifying Collections” on page 22 explains how Template expressions, as used within a QVT 
relation specification, can be transformed to this simple model. The example meta-model of Figure 7.1 and its 
corresponding instance model of Figure 7.2 are used as examples throughout the text.  

7.10.3.2 Pattern Infrastructure

To simplify the semantics definition we assume a pattern to have the following abstract structure:

Figure 7.1 - Simple UML Model

Figure 7.2 - Instance Model
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Pattern =  
{ 

e1: <classname1>, e2: <classname2> …. en:<classnameN> 
l1 : <assoc1> (ei, ej) …. lm:<assocM>(eu, ew) 
where <predicate> 

}

A pattern can be viewed as a graph where the pattern elements, e1, e2, …en, with types <classname1>, 
<classname2>…<classnamen> respectively, are the nodes of the graph and pattern links l1, l2, …lm are the edges. The 
predicate is a Boolean expression that may refer to the pattern elements. The predicates may refer to variables other than 
the pattern elements; these are the free variables of a pattern. A pattern is used to find matching sub-graphs in a model. A 
sub-graph of a model consisting of objects o1, o2, …on, matches a pattern as described above if and only if:

• o1 is of type <classname1> or one of its subtypes, and o2 is of type <classname2> or one of its subtypes, and so on

• oi and oj are linked by association <assoc1> and ou and ow are linked by association <assoc2>, and so on

• There exists one or more bindings of values to free variables such that <predicate> evaluates to true when references to 
e1,e2, …en are replaced by o1, o2, …on respectively.

Once a pattern has matched, each ei is bound to the corresponding oi and each free variable vi is bound to the value with 
which the <predicate> was evaluated while performing the match. For example:

Pattern { 
      c1: Class, a1: Attribute 
      l1: attrs (c1, a1) 
      where c1.name = X and a1.name = X + Y 
}

In the above example X and Y are free variables. The only sub-graph of the model in Figure 7.2 that matches the above 
pattern is <c1, c1a1>. This matching binds X to “c1” and Y to “a1.”

7.10.3.3 Patterns Specifying Collections

The type of elements in a pattern could be a collection such as - Set, OrderedSet, Bag, or Sequence. If the type of ei is a 
collection of type <classnamei>, then a sub-graph of a model matches the pattern if and only if:

• oi  is a collection of objects from the model of type <classnamei>.

• There is no collection of objects from the model of type <classnamei>, oj such that oi is a sub-collection of oj and 
replacement of oi with oj will satisfy the other pattern matching criteria.

• If lj: <assocname>(em, ei) is a link in the pattern and the type of em  is <classnamem>, then every element of oi must be 
linked to om  by the association <assocname>.

• If lj: <assocname>(em, ei) is a link in the pattern and the type of em  is also set of <classnamem>, then every element of 
oi must be linked to every element of om  by the association <assocname>.

For example:

Pattern { 
c1: Class, a1: Set(Attribute) 
l1: attrs (c1, a1) 
  where TRUE 
}

The two sub-graphs <c1, {c1a1, a2}> and <c2, {a3, a4}> of the instance model in Figure 7.3 match the above pattern.
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Constraints

A pattern must have at least one element. Only first order sets are allowed, i.e., Elements cannot have type set of sets. 

7.10.3.4 QVT Template Expressions

Here we describe the QVT Template Expressions metamodel (Clause 7.11.2 “QVTTemplate Package” on page 28) in 
terms of the infrastructure described above. 

An object template expression models a pattern element with its type as the referred class of the object template 
expression. Similarly a collection template expression models a pattern element with its type as the collection of the 
referred class of the collection template expression. A property template item connecting two object template expressions 
models a link.

The predicate part of a pattern is a conjunction of the following expressions:

• An expression of the form “referredProperty.name = value” derived from the referredProperty and value expression 
associated with a property template item.

• The part expression associated with a collection template expression. 

• An expression asserting that no collection is empty.

• The where expression associated with each template expression.

For example, consider the pattern specified by the concrete syntax:

Class {name = X, attribute = Attribute {name = X +  Y}}

The instance model for the above example is shown in Figure 7.3. For brevity the detailed structure of OCL expressions 
is excluded and is replaced by a variable expression and a note representing the complete OCL expression. The instance 
model has two object template expression nodes corresponding to Class and Attribute. The node corresponding to Class 
has two property template item nodes corresponding to the two properties - name and attribute. Same is the case with the 
Attribute node. Each of the property template item nodes are associated with OCL expression nodes corresponding to the 
expressions - X and X+Y.

Instance diagrams omit the usual UML decorations, so the reader should note that a top to bottom composition layout is 
used in Figure 7.3. Thus the PropertyTempateItem for 'attribute' is composed by the ObjectTemplateItem for 'Class' and 
composes the ObjectTemplateItem for 'Attribute'.

Figure 7.3 - Example Pattern Instance
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The pattern structure corresponding to the above model is:

Pattern { 
dummy: Class, dummy1: Attribute 

dummy2: attribute (dummy, dummy1) 
freevars X, Y 

where dummy.name = X and dummy1.name = X + Y 
}

7.11 Abstract Syntax and Semantics
The Relations metamodel is structured into three packages: QVTBase, QVTTemplate, and QVTRelation.

7.11.1 QVTBase Package

This package contains a set of basic concepts, many reused from the EMOF and OCL specifications that structure 
transformations, their rules, and their input and output models. It also introduces the notion of a pattern as a set of 
predicates over variables in OCL expressions. These classes are extended in language-specific packages to provide 
language-specific semantics.  

Conventions
The metaclasses imported from other packages are shaded and annotated with ‘from <package-name>’ indicating the 
original package where they are defined. The classes defined specifically by the packages of the QVT Relation formalism 
are not shaded. Within the class descriptions, metaclasses and meta-properties of the metamodel are rendered in courier 
font. Courier font is also used to refer to identifiers used in the examples. Keywords are written in bold face. Italics are 
freely used to emphasize certain words, such as specific concepts, it helps understanding. However that emphasis is not 
systematically repeated in all occurrences of the chosen word.   

7.11.1.1 Transformation

A transformation defines how one set of models can be transformed into another. It contains a set of rules that specify its 
execution behavior. It is executed on a set of models whose types are specified by a set of typed model parameters 
associated with the transformation. 

Syntactically, a Transformation is a subclass of both a Package and a Class. As a Package it provides a 
namespace for the rules contained in it. As a Class it can define properties and operations - properties to specify 
configuration values, if any, needed at runtime and operations to implement utility functions, if any, required by the 
transformation.

Remark: Instances of parameterized types defined in different transformations denote the same type if the base types are 
the same: for instance ‘Tx1::Set(Integer)’ and ‘Tx2::Set(Integer)’ denote the same type ‘Set(Integer).’

Superclasses
Package
Class

Associations
modelParameter: TypedModel [*] {composes}

The set of typed models, which specify the types of models that may participate in the transformation. 
rule: Rule [*] {composes}

The rules owned by the transformation, which together specify the execution behavior of the transformation. 
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Figure 7.4 - QVTBase Package - Transformations and Rules

Figure 7.5 - QVTBase Package - Patterns and Functions
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ownedTag: Tag [*] {composes}

The set of tags associated with the transformation whose values may be used to configure its runtime 
environment. 

extends: Transformation [0..1]

A transformation can extend another transformation. The rules of the extended transformation are included in the 
extending transformation to specify the latter’s execution behavior. Extension is transitive. 

/ownedType: Type [0..*] {composes, ordered} (from Package)

All the types being defined by this transformation. Specifically this includes any composite type used to define 
the type of a variable or a parameter, for instance a ‘Set(MyMetaclass)’ parameterized type instance.

7.11.1.2 TypedModel

A typed model specifies a typed parameter of a transformation. Explicit external parameters have a non-null name. An 
implicit parameter such as the QVTc middle model may have a null name. At runtime, a model that is passed to the 
transformation by this name is constrained to contain only those model elements whose types are specified in the set of 
model packages associated with the typed model. At runtime, a transformation is always executed in a particular direction 
by selecting one of the typed models as the target of the transformation.

A target model may be produced from more than one source model, and in such cases a transformation may require the 
selection of model elements from one source model to be constrained by the selection of model elements from another 
source model. This situation may be modeled by a typed model declaring a dependency on another typed model.

Superclasses
NamedElement

Associations
transformation: Transformation [1]

The transformation that owns the typed model.
usedPackage: Package [1..*]

The meta model packages that specify the types for the model elements of the models that conform to this typed 
model.

dependsOn: TypedModel [*]

The set of typed models that this typed model declares a dependency on.

7.11.1.3 Domain

A domain specifies a set of model elements of a typed model that are of interest to a rule. Domain is an abstract class, 
whose concrete subclasses are responsible for specifying the exact mechanism by which the set of model elements of a 
domain may be specified. It may be specified as a pattern graph, a set of typed variables and constraints, or any other 
suitable mechanism (Please see Clause 7.11.3.3 “RelationDomain” and Clause 9.17.5 “CoreDomain” for details).

A domain may be marked as checkable or enforceable. A checkable domain declares that the owning rule is only required 
to check whether the model elements specified by the domain exist in the target model and report errors when they do not. 
An enforceable domain declares that the owning rule must ensure that the model elements specified by the domain exist 
in the target model when the transformation is executed in the direction of the typed model associated with the domain.  

Superclasses
NamedElement
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Attributes
isCheckable : Boolean

Indicates that the domain is checkable.
isEnforceable : Boolean

Indicates that the domain is enforceable. 

Associations
rule: Rule [1]

The rule that owns the domain.
typedModel: TypedModel [0..1]

The typed model that contains the types of the model elements specified by the domain. 

7.11.1.4 Rule

A rule specifies how the model elements specified by its domains are related with each other, and how the model 
elements of one domain are to be computed from the model elements of the other domains. Rule is an abstract class, 
whose concrete subclasses are responsible for specifying the exact semantics of how the domains are related and 
computed from one another (please see Clause 7.11.3.2 “Relation” and Clause 9.17.6 “Mapping” for details).

A rule may conditionally override another rule. The overriding rule is executed in place of the overridden rule when the 
overriding conditions are satisfied. The exact semantics of overriding are subclass specific.  

Superclasses
NamedElement

Associations
domain: Domain [*] {composes}

The domains owned by this rule.  
transformation: Transformation[0..1]

The transformation that owns this rule.
overrides: Rule [0..1]

The rule that this rule overrides.

7.11.1.5 Function

A function is a side-effect-free operation owned by a transformation. A function is required to produce the same result 
each time it is invoked with the same arguments. Since a function is side-effect free, it is often called a query. A function 
may be specified by an OCL expression, or it may have a black-box implementation. 

Superclasses
Operation

Associations
queryExpression: OclExpression [0..1] {composes}

The OCL expression that specifies the function. If this reference is absent, then a black-box implementation is 
assumed.
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7.11.1.6 FunctionParameter

A function parameter specifies the parameters of a function. 

Syntactically, it is a subclass of the classes Parameter and Variable. By virtue of it being a subclass of Variable, 
it enables the OCL expression that specifies a function to access the function parameters as named variables. A function 
owns its parameters through Operation owning Parameters in EMOF.

Superclasses
Parameter
Variable

7.11.1.7 Predicate

A predicate is a boolean-valued expression owned by a pattern. It is specified by an OCL expression that may contain 
references to the variables of the pattern that owns the predicate.

Superclasses
Element

Associations
conditionExpression: OclExpression [1] {composes}

The OCL expression that specifies the predicate. 
pattern: Pattern [1]

The pattern that owns the predicate.

7.11.1.8 Pattern

A pattern is a set of variable declarations and predicates, which when evaluated in the context of a model, results in a set 
of bindings for the variables.

Superclasses
Element

Associations
bindsTo: Variable [*]

The set of variables that are to be bound when the pattern is evaluated.
predicate: Predicate [*] {composes}

The set of predicates that must evaluate to true for a binding of the variables of the pattern to be considered a 
valid binding.

7.11.2  QVTTemplate Package

7.11.2.1 TemplateExp

A template expression specifies a pattern that matches model elements in a candidate model of a transformation. The 
matched model element may be bound to a variable and this variable may be used in other parts of the expression. A 
template expression matches a part of a model only when the where expression associated with the template expression 
evaluates to true. A template expression may match either a single model element or a collection of model elements 
depending on whether it is an object template expression or a collection template expression.
28                 MOF2 Query/View/Transformation (QVT), v1.2



Figure 7.6 - QVT Template Package

Superclasses
LiteralExp

Associations
bindsTo: Variable [0..1]

The variable that refers to the model element matched by this template expression. 
where: OclExpression [0..1] {composes}

A boolean expression that must evaluate to true for the template expression to match.

7.11.2.2 ObjectTemplateExp

An object template expression specifies a pattern that may match only single model elements. An object template has a 
type specified by the referred class. An object template is specified by a collection of property template items each 
corresponding to different attributes of the referred class.

Superclasses
TemplateExp

Associations
referredClass: Class [1]

The EMOF Class that specifies the type of objects to be matched by this expression.
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part: PropertyTemplateItem [*] {composes}

Specification of a value expression that must be satisfied by the corresponding slot of the object that matches the 
object template expression. 

7.11.2.3 CollectionTemplateExp

A collection template expression specifies a pattern that matches a collection of elements.

It specifies a set of member expressions that match individual elements, and a collection-typed variable that matches the 
rest of the collection. The type of collection that a template matches is given by the referred collection type. If the 
referred collection type is a sequence, then the matching member elements must be present at the head of the sequence in 
the order specified by the member expressions.

Superclasses
TemplateExp

Associations
referredCollectionType : CollectionType [1]

The type of the collection that is being specified. It can be any of the EMOF collection types such as Set, 
Sequence, OrderedSet, etc.

member : OclExpression [*] {composes}

The expressions that the elements of the collection must have matches for. A special variable _ may be used to 
indicate that any arbitrary element may be matched and ignored. The expression may be omitted to restrict a 
match to an empty collection.

rest : Variable [0..1]

The variable that the rest of the collection (i.e., excluding elements matched by member expressions) must 
match. A special variable _ may be used to indicate that any arbitrary collection may be matched and ignored. 
The variable may be omitted to restrict a match to a collection with no elements other than those matched by the 
member expressions.

7.11.2.4 PropertyTemplateItem

Property template items are used to specify constraints on the values of the slots of the model element matching the 
container object template expression. The constraint is on the slot that is an instance of the referred property and the 
constraining expression is given by the value expression.

A property template item has a valid match when the value of the referred property matches the value specified by the 
value expression. The following rules apply when the value is specified by a template expression:

• If the value expression is an object template expression and the referred property is single-valued, then the property 
value must match the object template expression.

• If the value expression is an object template expression and the referred property is multi-valued, then at least one of 
the property values must match the object template expression.

• If the value expression is a collection template expression and the referred property is single-valued, then the property 
value is treated as a singleton collection that must match the collection template expression.

• If the value expression is a collection template expression and the referred property is multi-valued, then the collection 
of property values must match the collection template expression. The following rules apply:

• If the property value is a set, then the collection type of the collection template expression must be a set.
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• If the property value is an ordered set, then the collection type of the collection template expression can be one of 
set, sequence, or ordered set.

• If the property value is a sequence, then the collection type of the collection template expression can be one of set, 
sequence, or ordered set. When the collection type is a set or an ordered set, a valid match requires that each value 
of the property be unique.

Superclasses
Element

Attributes 
isOpposite: Boolean 

Specifies whether the referred property is owned by the opposite end class. An opposite property template item 
selects an object of the opposite end class that has this object as the value of the specified property. The default 
value of this property is false. Please refer to Clause 7.3 for an example that uses an opposite property in tem-
plate specification. 

Associations
referredProperty : Property [1]

The EMOF Property that identifies the slot that is being constrained.
value : OclExpression [1] {composes}

The value that the slot may take.
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7.11.3   QVTRelation Package

Figure 7.7 - QVT Relation Package - Transformations and Relations

  

7.11.3.1 RelationalTransfomation

A RelationalTransformation is a specialization of a Transformation representing a transformation definition that uses the 
QVT-Relation formalism.

Superclasses
Transformation (from QVTBase)

Associations
ownedKey: Key [*]  {composes}

The keys defined within the transformation.

7.11.3.2 Relation

A relation is the basic unit of transformation behavior specification in the relations language. It is a concrete subclass of 
Rule. It specifies a relationship that must hold between the model elements of a set of candidate models that conform to 
the typed models of the transformation that owns the relation. A relation is defined by two or more relation domains that 
specify the model elements that are to be related, a when clause that specifies the conditions under which the relationship 
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Figure 7.8 - QVT Relation Package - Domains and patterns

Figure 7.9 - QVT Relation Package - Expressions and miscellaneous inheritance

needs to hold, and a where clause that specifies the condition that must be satisfied by the model elements that are being 
related. A relation may optionally have an associated black-box operational implementation to enforce a domain. Please 
refer to Clause 7.1 to Clause 7.9 for a detailed description of the semantics, and Clause 10 for a more formal description 
in terms of a mapping to the core model. 

Superclasses
Rule
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Attributes
isTopLevel : Boolean

Indicates whether the relation is a top-level relation or a non-top-level relation. The execution of a transformation 
requires that all its toplevel relations must hold, whereas a non-top-level relation is required to hold only when it 
is invoked from another relation.

Associations
variable: Variable [*] {composes}

The set of variables occurring in the relation. This set includes all the variables occurring in its domains and 
when and where clauses.

/domain: RelationDomain [*] {composes} (from Rule)

The set of domains owned by the relation that specify the model elements participating in the relationship. 
Relation inherits this association from Rule, and is constrained to own only RelationDomains via this 
association.

when: Pattern [0..1] {composes}

The pattern (as a set of variables and predicates) that specifies the when clause of the relation. 
where: Pattern [0..1] {composes}

The pattern (as a set of variables and predicates) that specifies the where clause of the relation.
operationalImpl: RelationImplementation [*] {composes}

The set of black-box operational implementations, if any, that are associated with the relation to enforce its 
domains.

7.11.3.3 RelationDomain

The class RelationDomain specifies the domains of a relation. It is a concrete subclass of Domain. A relation 
domain has a distinguished typed variable called the root variable that can be matched in a model of a given model type. 
A relation domain specifies a set of model elements of interest by means of a domain pattern, which can be viewed as a 
graph of object nodes, their properties and association links, with a distinguished root node that is bound to the root 
variable of the relation domain. Please refer to Clause 7.2, Clause 7.3 and Clause 7.10 for a detailed discussion of the 
semantics of domains and domain patterns in the relations language.

In bidirectional relations, sometimes it is not possible to automatically compute the values required to enforce a relation 
in the reverse direction. This can be addressed by allowing a domain to specify default value assignments for its variables. 
The default assignments are executed only during enforcement and the values they assign must be capable of satisfying 
the relationship condition. Default assignments do not play a role in checking.

Superclasses
Domain

Associations
rootVariable: Variable [1] 

The distinguished typed variable of the relation domain that can be matched in a model of a given model type.
/typedModel: TypedModel [0..1] (from Domain)

The typed model that specifies the model type of the models in which the typed variable (root variable) of the 
domain can be matched.

pattern: DomainPattern [0..1] {composes}
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The domain pattern that specifies the model elements of the relation domain. The root object template expression 
(i.e., the root node) of the domain pattern must be bound to the root variable of the relation domain.

defaultAssignment: RelationDomainAssignment [0..*] {composes}

The assignments that set default values for the variables of the domain that are required for its enforcement.

7.11.3.4 DomainPattern

The class DomainPattern is a subclass of the class Pattern. A domain pattern can specify an arbitrarily complex 
pattern graph in terms of template expressions consisting of object template expressions, collection template expressions, 
and property template items. A domain pattern has a distinguished root template expression that is required to be bound 
to the root variable of the relation domain that owns the domain pattern. An object template expression can have other 
template expressions nested inside it to an arbitrary depth. Please refer to Clause 7.10.3 for a detailed discussion of the 
semantics of pattern matching involving template expressions. 

Superclasses
Pattern

Associations
templateExpression: TemplateExp [0..1] {composes}

The root template expression of the domain pattern. This template expression must be bound to the root variable 
of the relation domain that owns this domain pattern, and its type must be the same as the type of the root 
variable.

relationDomain: RelationDomain [1]

The relation domain that owns this domain pattern.

7.11.3.5 Key

A key defines a set of properties of a class that uniquely identify an instance of the class in a model extent. A class may 
have multiple keys (as in relational databases). Sometimes it may be necessary to specify a key in terms of opposite 
properties that are not navigable from the class. Please refer to Clause 7.4 for a detailed description of the role played by 
keys in the enforcement semantics of relations. 

Superclasses
Element

Associations
identifies: Class [1]

The class that is identified by the key.
part: Property [0..*]

Properties of the class that make up the key.
oppositePart: Property [0..*] 

Opposite properties of the class that make up the key. 

7.11.3.6 RelationImplementation

A RelationImplementation specifies an optional black-box operational implementation to enforce a domain of a relation. 
The black-box operation is invoked when the relation is executed in the direction of the typed model associated with the 
enforced domain and the relation evaluates to false as per the checking semantics. The invoked operation is responsible 
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for making the necessary changes to the model in order to satisfy the specified relationship. It is a runtime exception if 
the relation evaluates to false after the operation returns. The signature of the operation can be derived from the domain 
specification of the relation - an output parameter corresponding to the enforced domain, and an input parameter 
corresponding to each of the other domains.

Superclasses
Element

Associations
impl: Operation [1]

The operation that implements the relation in the given direction.
inDirectionOf: TypedModel [1]

The direction of the relation being implemented.
relation: Relation [1]

The relation being implemented.

7.11.3.7 RelationDomainAssignment

A relation domain assignment sets the value of a domain variable by evaluating the associated expression in the context 
of a relation.

Associations
variable: Variable [1] 

The variable being assigned.
valueExp: OclExpression [1] {composes} 

The expression that provides the value of the variable.

7.11.3.8 RelationCallExp

A relation call expression specifies the invocation of a relation. A relation may be invoked from the when or where clause 
of another relation. The expression contains a list of argument expressions corresponding to the domains of the relation. 
The number and types of the arguments must match the number of domains and types of the root variables of the domains 
respectively.

Superclasses
OclExpression

Associations
argument: OclExpression [2..*] {composes, ordered}

Arguments to the relation call.
referredRelation: Relation [1]

The relation being invoked.

7.12 Standard Library
The QVT standard library for Relations is the OCL standard library. No additional operation is defined.
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7.13 Concrete Syntax
This clause provides both the textual and graphical concrete syntaxes for the Relations Language.

7.13.1 Compilation Units

Within an import statement a compilation unit is referenced by means of a simple unqualified alphanumeric identifier - 
with no special characters and blank characters allowed - or is referenced by means of a qualified one. In the latter case, 
the qualification is given by a list of namespaces separated by the dot character. These namespaces have no representation 
in the metamodel. It is up to an implementation to make a correspondence between the namespace hierarchy and the 
hierarchy of the file system.

7.13.2  Keywords

checkonly, domain, enforce, extends, implementedby, import, key, overrides, primitive, query, relation, top, 
transformation, when, where.

All these keywords are reserved words, they cannot be used as identifiers.

The "_" OCL prefix convention for escaping reserved words can be used to refer to conflicting properties or class names.

7.13.3  Comments

The syntax supports two forms of comments; a line comment, and a paragraph comment.

The line comment starts with the string ‘--’ and ends with the next newline. The paragraph comment starts with the string 
‘/*’ and ends with the string ‘*/.’ Paragraph comments may be nested.

7.13.4  Shorthands used to invoke pre-defined operations

The binary operator “+” can be used as shorthand for the string concat operation.

7.13.5  Relations Textual Syntax Grammar

<topLevel> ::= ('import' <unit> ';' )* <transformation>*

<unit> ::= <identifier> ('.' <identifier>)*

<transformation> ::= 'transformation' <transformationId> 
'(' <modelDecl> (',' <modelDecl>)* ')' ['extends' <transformationId>] 
'{' <keyDecl>* ( <relation> | <query> )* '}'

<transformationId> ::= <pathNameCS>

<modelDecl> ::= <modelId> ':' ( <metaModelId> |  
  '{' <metaModelId> (',' <metaModelId>)* '}' )

<modelId> ::= <identifier>

<metaModelId> ::= <identifier>

<keyDecl> ::= 'key' <classId> '{' <keyProperty> (, <keyProperty>)* '}' ';' 

<classId> ::= <pathNameCS> 

<keyProperty> ::= <identifier> | 'opposite' '(' <classId> '::' <identifier> ')' 
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<relation> ::= ['top'] 'relation' <identifier> 
        ['overrides' <identifier>] 

               '{' 
               <varDeclaration>* 
               (<domain> | <primitiveTypeDomain>)+  
               [<when>] [<where>] 
               '}'

<varDeclaration> ::= <identifier> (, <identifier>)* ':' <TypeCS> ';'

<domain> ::= [<checkEnforceQualifier>] 'domain' <modelId> <template> 
             ['implementedby' <OperationCallExpCS>] 
             ['default_values' '{' (<assignmentExp>)+ '}'] 
             ';'

<primitiveTypeDomain> ::= 'primitive' 'domain' <identifier> ':' <TypeCS> ';'

<checkEnforceQualifier> ::= 'checkonly' | 'enforce'

<template> ::= (<objectTemplate> | <collectionTemplate>) 
 ['{' <OclExpressionCS> '}']

<objectTemplate> ::= [<identifier>] ':' <pathNameCS> 
 '{' [<propertyTemplateList>] '}'

<propertyTemplateList> ::= <propertyTemplate> (',' <propertyTemplate>)*

<propertyTemplate> ::= <identifier> '=' <OclExpressionCS> | 
 'opposite' '(' <classId> '::' <identifier> ')' '=' <OclExpressionCS> 

<collectionTemplate> ::= [<identifier>] ':' 
       <CollectionTypeIdentifierCS> '(' <TypeCS> ')' '{' [<memberSelection>] '}'

<memberSelection> ::= (<identifier> | <template> | '_') 
  (',' (<identifier> | <template> | '_'))* 

                      '++' 
                      (<identifier> | '_')

<assignmentExp> ::= <identifier> '=' <OclExpressionCS> ';'

<when> ::= 'when' '{' (<OclExpressionCS> ';')* '}'

<where> ::= 'where' '{' (<OclExpressionCS> ';')* '}'

<query> ::= 'query' <identifier>  
            '(' [<paramDeclaration> (',' <paramDeclaration>)*] ')' 

     ':' <TypeCS> 
            (';' | '{' <OclExpressionCS> '}')

<paramDeclaration> ::= <identifier> ':' <TypeCS>

7.13.6  Expressions Syntax (extensions to OCL)

<OclExpressionCS> ::= <PropertyCallExpCS> 
                    | <VariableExpCS> 
                    | <LiteralExpCS> 
                    | <LetExpCS> 
                    | <IfExpCS> 
                    | '(' <OclExpressionCS> ')' 
                    | <template>
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7.13.7  Graphical Syntax

7.13.7.1  Introduction

Diagrammatic notations have been a key factor in the success of UML, allowing users to specify abstractions of 
underlying systems in a natural and intuitive way. Therefore this specification contains a diagrammatic syntax to 
complement the textual syntax of Clause 7.13.1. There are two ways in which the diagrammatic syntax is used, as a way 
of: 

• representing transformations in standard UML class diagrams, 

• representing transformations, domains, and patterns in a new diagram form: transformation diagrams. 

The syntax is consistent between its two uses, the first usage representing a subset of the second. A visual notation is 
suggested to specify transformations. A relationship relates two or more patterns. Each pattern is a collection of objects, 
links, and values. The structure of a pattern, as specified by objects and links between them, can be expressed using UML 
object diagrams. Using object diagrams with some extensions to specify patterns within a relation specification is 
suggested. The notation is introduced through some examples followed by detailed syntax and semantics. Figure 7.10 
specifies a relation, UML2Rel from UML classes and attributes to relational tables and columns. A new symbol is 
introduced  to represent a transformation. The specifications “uml1:UML” and “r1:RDBMS” on each limb 
of the transformation specifies that this is a relationship between two typed candidate models “uml1” and “r1” with 
packages “UML” and “RDBMS” as their respective meta models. The “C” under each limb of the relation symbol 
specifies that both domains involved in this relation are checkonly.

Figure 7.10 corresponds to the textual specification given below.

relation UML2Rel { 
  checkonly domain uml1 c:Class {name = n, attribute = a:Attribute{name = an}} 
  checkonly domain r1 t:Table {name = n, column = col:Column{name = an}} 
}

Figure 7.10 - UML Class to Relational Table Relation
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The where clause of a relation can be shown using a where box as shown in Figure 7.11, which specifies a relation, 
PackageToSchema that extends the above relation to specify that UML2Rel is to be applied on every class within a 
package.

Figure 7.11 - Example showing the usage of the where clause

A similar box may be shown for the when clause of a relation. 

An enforceable domain is shown by replacing the C within the relation symbol by an E. In the above example if the 
RDBMS side is to be made enforceable, then it will be as shown in Figure 7.12.
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Figure 7.12 - RDBMS domain made enforceable

Constraints may be attached to objects or a pattern. This is done as in UML by attaching a note. An example is shown in 
Figure 7.13. In the figure, one constraint is attached to the col object and another one to the UML pattern.

Figure 7.13 - UML2REL with constraints
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In all the examples so far, the patterns comprised individual objects and links between them. The notation also supports 
specifications involving set of objects. Figure 7.14 shows an example where Table has a field totcols that is set to the 
number of attributes in the Class.

Figure 7.14 - Example using a Set

The notation also includes support for specifying the non-existence of objects and overriding of relations. Figure 7.15 
specifies a strange relation from a class with no attributes to a table with totcols = 0. The {not} annotating Attribute 
indicates that this pattern matches only if there exists no Attribute linked to class c. 

Figure 7.15 - Example using {not}

The textual specification corresponding to Figure 7.15 is as follows.

relation UML2Rel { 
  checkonly domain uml1 c:Class {attribute = Set(Attribute){}}{attribute->size()=0} 
  checkonly domain r1 t:Table {totcols = 0 } 
}
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7.13.7.2  Graphical Notation Elements

Table 7.1 - gives a brief description of the various visual notation elements.

Table 7.1 - Diagrammatic Notations

Notation Description

A relation between models m1 having MM1 as meta-model and m2 
having MM2 as meta-model. The label C/E indicates whether the 
domain in that direction is checkable or enforceable.

An object template having type C and referred to by the free 
variable o.

An object template having type C and a constraint that the property 
a should take the value val. val can be an arbitrary ocl expression.

The domain in a relation.
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7.13.7.3  Variations in Graphical Notation

In the above examples the positioning of certain elements in a diagram is only indicative and tools may choose to position 
these elements differently. The elements in which tools may choose to be different are.

• Name of the relation: The name of the relation may appear anywhere in the drawing page.

• where and when clause: These may appear as shown or may be hidden and shown optionally or shown in a separate 
frame.

• model and meta-model name: These may be shown optionally and when shown they may be shown anywhere close to 
the relation symbol in the direction of the appropriate pattern.

• check/enforce letter: These need to be shown but may appear anywhere close to the relation symbol and in the 
appropriate direction.

7.13.8 Concrete textual syntax to abstract syntax mapping 

The mapping is specified using attribute grammar similar to how OCL' concrete to abstract syntax mapping is specified. 

topLevelCS 
topLevelCS ::= importListCS? transformationListCS? 

Abstract syntax mapping 

topLevelCS.ast : Set(RelationalTransformation) 

oset is an object template that matches a set of objects of type C. 

A not template that matches only when there is no object of type C 
satisfying the constraints associated with it.

A constraint that may be attached to either a domain or an object 
template.

Table 7.1 - Diagrammatic Notations
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Synthesized attributes 

topLevelCS.ast = TransformationListCS.ast 

Inherited attributes 

topLevelCS.ast = TransformationListCS.ast 

Inherited attributes 

transformationListCS.env =  
    if (importListCS.ast.notEmpty())  
    then  

  Environment.EMPTY_ENV.addElement('imported transformation', importListCS.ast)  
    else 

  Environment.EMPTY_ENV  
    endif 

importListCS 
importListCS[1] ::= 'import' unitCS ';' importListCS[2]? 

Abstract syntax mapping 

importListCS[1].ast : Set(RelationalTransformation) 

Synthesized attributes 

importListCS[1].ast = unitCS.ast->union(importListCS[2].ast) 

unitCS 
unitCS ::= identifierCS ('.' identifierCS)* 

Abstract syntax mapping 

unitCS.ast : Set(RelationalTransformation) 

Synthesized attributes 

<left unspecified>  
The dot separated identifiers identify a compilation unit that is expected 
to contain transformation specifications. As explained in Clause 7.13.1 of 
the specification, how the dot separated identifiers are mapped to, say, a file  
system hierarchy is implementation specific.

transformationListCS 
transformationListCS[1] ::= transformationCS transformationListCS[2]? 

Abstract syntax mapping 

transformationListCS[1].ast : Set(RelationalTransformation) 
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Synthesized attributes 

transformationListCS[1].ast =  
Set{transformationCS.ast}->union(transformationListCS[2].ast) 

Inherited attributes 

transformationCS[1].env = transformationListCS[1].env  
transformationListCS[2].env = transformationListCS[1].env 

transformationCS 
transformationCS ::= 'transformation' identifierCS[1] '(' modelDeclListCS ')'  

('extends' identifierCS[2])?  
'{' keyDeclListCS? relQueryListCS? '}' 

Abstract syntax mapping 

transformationCS.ast : RelationalTransformation 

Synthesized attributes 

transformationCS.ast.name = identifierCS[1].ast 
transformationCS.ast.modelParameter = modelDeclListCS.ast  
if (not identifierCS[2].ast.oclIsUndefined())  
then transformationCS.ast.extends =  

let importedTransformationSet:Set(RelationalTransformation) =  
transformationCS.env.lookup('imported transformations').referred 
Element.oclAsType(SetType)  

in  
importedTransformationSet->any(t | t.name = identifierCS[2].ast) 

endif  
transformationCS.ast.rule = relQueryListCS->select(r | r.OclIsTypeOf (Relation))  
transformationCS.ast.ownedOperation = relQueryListCS->select(r | r. 
OclIsTypeOf(Function))  
transformationCS.ast.ownedKey = keyDeclListCS.ast 

Inherited attributes 

identifierCS[1].env = transformationCS.env  
modelDeclListCS.env = transformationCS.env  
identifierCS[2].env = transformationCS.env  

let  
env:Environment =  

transformationCS.env.addElement('context transformation',  
transformationCS.ast)  

in keyDeclListCS.env =  
env and relQueryListCS.env = env  

modelDeclListCS  
modelDeclListCS[1] ::= modelDeclCS (',' modelDeclListCS[2])? 

Abstract syntax mapping 

modelDeclListCS[1].ast : Sequence(TypedModel) 

Synthesized attributes 

modelDeclListCS[1].ast = Sequence{modelDeclCS.ast}->union(modelDeclListCS[2].ast) 
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Inherited attributes 

modelDeclCS.env = modelDeclListCS[1].env modelDeclListCS[2].env =  
modelDeclListCS[1].env 

keyDeclListCS 
keyDeclListCS[1] ::= keyDeclCS keyDeclListCS[2]? 

Abstract syntax mapping 

keyDeclListCS[1].ast : Set(Key) 

Synthesized attributes 

keyDeclListCS[1].ast = Set{keyDeclCS.ast}->union(keyDeclListCS[2].ast) 

Inherited attributes 

keyDeclCS.env = keyDeclListCS[1].env keyDeclListCS[2].env =  
keyDeclListCS[1].env 

relQueryListCS 
relQueryListCS[1] ::= relQueryCS relQueryListCS[2]? 

Abstract syntax mapping 

relQueryListCS[1].ast : Set(ModelElement) 

Synthesized attributes 

relQueryListCS[1].ast = Set{relQueryCS.ast}->union(relQueryListCS[2].ast) 

Inherited attributes 

relQueryCS.env = relQueryListCS[1].env relQueryListCS[2].env =  
relQueryListCS[1].env 

relQueryCS 
[A] relQueryCS ::= relationCS  
[B] relQueryCS ::= queryCS 

Abstract syntax mapping 

relQueryCS.ast : ModelElement 

Synthesized attributes 

[A] relQueryCS.ast = relationCS.ast 

[B] relQueryCS.ast = queryCS.ast
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Inherited attributes 

[A] relationCS.env = relQueryCS.env  
[B] queryCS.env = relQueryCS.env 

modelDeclCS 
modelDeclCS ::= modelIdCS ':' metaModelIdCS 

Abstract syntax mapping 

modelDeclCS.ast : TypedModel 

Synthesized attributes 

modelDeclCS.ast.name = modelIdCS.ast  
modelDeclCS.ast.usedPackage = metaModelIdCS.ast 

Inherited attributes 

modelIdCS.env = modelDeclCS.env  
metaModelIdCS.env = modelDeclCS.env 

modelIdCS 
modelIdCS ::= identifierCS 

Abstract syntax mapping 

modelIdCS.ast : String 

Synthesized attributes 

modelIdCS.ast = identifierCS.ast 

metaModelIdCS 
metaModelIdCS ::= identifierCS 

Abstract syntax mapping 

metaModelIdCS.ast : Package 

Synthesized attributes 

metaModelIdCS.ast = loadMetaModelPackage(identifierCS.ast)  
// How the package is located and loaded is tool specific and so left unspecified. 

keyDeclCS 
keyDeclCS ::= 'key' classIdCS '{' keyPropertyListCS '}' ';' 

Abstract syntax mapping 

keyDeclCS.ast : Key 
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Synthesized attributes 

keyDeclCS.ast.identifies = classIdCS.ast  
keyDeclCS.ast.part->union(keyDeclCS.ast.oppositePart) = keyPropertyListCS.ast 

Inherited attributes 

classIdCS.env = keyDeclCS.env  
keyPropertyListCS.env = keyDeclCS.env.addElement('context key', keyDeclCS.ast) 

keyPropertyListCS 
keyPropertyListCS[1] ::= keyPropertyCS (',' keyPropertyListCS[2])? 

Abstract syntax mapping 

keyPropertyListCS[1].ast : Set(Property) 

Synthesized attributes 

keyPropertyListCS[1].ast : Set{keyPropertyCS.ast}->union(keyPropertyListCS[2].ast) 

Inherited attributes 

keyPropertyCS.env = keyPropertyListCS[1].env  
keyPropertyListCS[2].env = keyPropertyListCS[1].env 

classIdCS
classIdCS ::= pathNameCS 

Abstract syntax mapping 

classIdCS.ast : Class 

Synthesized attributes 

classIdCS.ast =  
let  

trans:RelationalTransformation =  
classIdCS.env.lookup('context transformation').  

referredElement.oclAsType(RelationalTransformation)  
in  

trans.lookupClassName(pathNameCS.ast) 

keyPropertyCS
[A] keyPropertyCS ::= identifierCS  
[B] keyPropertyCS ::= 'opposite' '(' classIdCS '.' identifierCS ')' 

Abstract syntax mapping: 

keyPropertyCS.ast : Property 

Synthesized attributes: 

[A] keyPropertyCS.ast = 
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let  
cls:Class = keyPropertyCS.env.lookup('context key').  

referredElement.oclAsType(Key).identifies  
in  

cls.lookupProperty(identifierCS.ast)  
    keyPropertyCS.env.lookup('context key').referredElement.oclAsType(Key).  

part->includes(keyPropertyCS.ast) 

[B] keyPropertyCS.ast = classIdCS.ast.lookupProperty(identifierCS.ast)  
    keyPropertyCS.env.lookup('context key').referredElement.oclAsType(Key).  

oppositePart->includes(keyPropertyCS.ast) 

Inherited attributes: 

[B] classIdCS.env = keyPropertyCS.env 

relationCS 
relationCS ::= topQualifierCS? 'relation' identifierCS[1]  

('overrides' identifierCS[2])?  
'{'  
varDeclListCS?  
domainListCS  
whenCS?  
whereCS?  
'}' 

Abstract syntax mapping 

relationCS.ast : Relation 

Synthesized attributes 

relationCS.ast.isTopLevel = if (not topQualifierCS.ast.oclIsUndefined() and 
topQualifierCS.ast = 'top')  

then  
true  

else  
false  

endif

 
relationCS.ast.name = identifierCS[1].ast

 
if (not identifierCS[2].ast.oclIsUndefined())  
then  

relationCS.ast.overrides =  
let  

currTrans:RelationTransformation = 
relationCS.env.lookup('context transformation').  

referredElement.oclAsType(RelationalTransformation)  
in  

currTrans.extends.rule->any(r | r.name = identifierCS[2].ast)  
endif 

relationCS.ast.variable =  
varDeclListCS.ast->union(  

domainListCS->iterate(d:RelationDomain; domainVars:Set(Variable)={} |  
  domainVars->including(d.rootVariable))  

) 

relationCS.ast.domain = domainListCS.ast

relationCS.ast.when = whenCS.ast 
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relationCS.ast.where = whereCS.ast 

Inherited attributes 

let  
env:Environment = relationCS.env.addElement('context relation', relationCS.ast)  

in  
varDeclListCS.env = env  
domainListCS.env = env  
whenCS.env = env  
whereCS.env = env 

topQualifierCS 
topQualifierCS ::= 'top' 

Abstract syntax mapping 

topQualifierCS.ast : String 

Synthesized attributes 

topQualifierCS.ast = 'top' 

varDeclListCS 
varDeclListCS[1] ::= varDeclarationCS varDeclListCS[2]? 

Abstract syntax mapping 

varDeclListCS[1].ast : Set(Variable) 

Synthesized attributes 

varDeclListCS[1].ast ::= varDeclarationCS.ast->union(varDeclListCS[2].ast) 

Inherited attributes 

varDeclarationCS.env = varDeclListCS[1].env  
varDeclListCS[2].env = varDeclListCS[1].env 

varDeclarationCS 
varDeclarationCS ::= varListCS ':' TypeCS ';' 

Abstract syntax mapping 

varDeclarationCS.ast : Set(Variable) 

Synthesized attributes 

varDeclarationCs.ast->size() = varListCS.ast->size()  
varListCS.ast->forAll(vn |  

varDeclarationCS.ast->exists(v | v.name = vn and v.type = TypeCS.ast)  
) 
MOF2 Query/View/Transformation (QVT), v1.2 51



Inherited attributes 

TypeCS.env = varDeclarationCS.env 

varListCS 
varListCS[1] ::= identifierCS (',' varListCS[2])? 

Abstract syntax mapping

varListCS[1].ast : Set(String) 

Synthesized attributes 

varListCS[1].ast : Set{identifierCS.ast}->union(varListCS[2].ast) 

domainListCS 
domainListCS[1] ::= domainCS domainListCS[2]?

Abstract syntax mapping 

domainListCS[1].ast : Sequence(RelationDomain)

Synthesized attributes 

domainListCS[1].ast = Sequence{domainCS.ast}->union(domainListCS[2].ast) 

Inherited attributes 

domainCS.env = domainListCS[1].env  
domainListCS[2].env = domainListCS[1].env 

domainCS 
domainCS[A] ::= modelDomainCS  
domainCS[B] ::= primitiveDomainCS 

Abstract syntax mapping 

domainCS.ast : RelationDomain 

Synthesized attributes 

[A] domainCS.ast = modelDomainCS.ast  
[B] domainCS.ast = primitiveDomainCS.ast 

Inherited attributes 

[A] modelDomainCS.env = domainCS.env 

[B] primitiveDomainCS.env = domainCS.env 
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modelDomainCS
modelDomainCS ::= checkEnforceQualifierCS? 'domain' modelIdCS templateCS  

'implementedby' OperationCallExpCS)?  
('default_values' '{' assignmentExpListCS '}')? ';' 

Abstract syntax mapping 

modelDomainCS.ast : RelationDomain 

Synthesized attributes 

if (checkEnforceQualifierCS.ast.oclIsUndefined())  
then  

modelDomainCS.ast.isCheckable = false  
and  
modelDomainCS.ast.isEnforceable = false  

else  
if (checkEnforceQualifierCS.ast = 'checkonly')  
then  

modelDomainCS.ast.isCheckable = true  
and  
modelDomainCS.ast.isEnforceable = false  

else  
modelDomainCS.ast.isCheckable = true  
and  
modelDomainCS.ast.isEnforceable = true  

endif  
endif 

modelDomainCS.ast.typedModel =  
modelDomainCS.env.lookup('context transformation').modelParameter->  

any(t | t.name = modelIdCS.ast) 

modelDomainCS.ast.pattern.templateExpression = templateCS.ast 

modelDomainCS.ast.rootVariable = templateCS.ast.bindsTo

if (not OperationCallExpCS.ast.oclIsUndefined())  
then  

let  
rel:Relation = modelDomainCS.env.lookup('context relation').  

referredElement.oclAsType(Relation)  
in  

rel.operationalImpl.impl = OperationCallExpCS.ast.referredOperation  
and  
rel.operationalImpl.inDirectionOf = modelDomainCS.ast.typedModel  

endif 

if (assignmentExpListCS.ast.notEmpty())  
then  

modelDomainCS.ast.defaultAssignment = assignmentExpListCS.ast  
endif 

Inherited attributes 

let  
    env:Environment = modelDomainCS.env.addElement('context domain', modelDmainCS.ast) 
in  
    templateCS.env = env  
    OperationCallExpCS.env = env  
    assignmentExpListCS.env = env

primitiveTypeDomainCS 
primitiveTypeDomainCS ::= 'primitive' 'domain' identifierCS ':' TypeCS ';' 
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Abstract syntax mapping 

primitiveTypeDomainCS.ast : RelationDomain 

Synthesized attributes 

primitiveTypeDomainCS.ast.rootVariable.name = identifierCS.ast  
primitiveTypeDomainCS.ast.rootVariable.type = TypeCS.ast 

Inherited attributes 

TypeCS.env = primitiveTypeDomainCS.env 

checkEnforceQualifierCS 
[A] checkEnforceQualifierCS ::= 'checkonly' 

[B] checkEnforceQualifierCS ::= 'enforce' 

Abstract syntax mapping 

checkEnforceQualifierCS.ast : String 

Synthesized attributes 

[A] checkEnforceQualifierCS.ast = 'checkonly' 

[B] checkEnforceQualifierCS.ast = 'enforce' 

templateCS 
[A] templateCS ::= objectTemplateCS ('{' OclExpressionCS '}')? 

[B] templateCS ::= collectionTemplateCS ('{' OclExpressionCS '}')? 

Abstract syntax mapping 

templateCS.ast : TemplateExp 

Synthesized attributes 

[A] templateCS.ast = objectTemplateCS.ast  
 if (not OclExpressionCS.ast.oclIsUndefined())  
 then  

templateCS.ast.where = OclExpressionCS.ast  
 endif 

[B] templateCS.ast = collectionTemplateCS.ast  
 if (not OclExpressionCS.ast.oclIsUndefined())  
 then  

templateCS.ast.where = OclExpressionCS.ast 
 endif 

Inherited attributes 

[A] objectTemplateCS.env = templateCS.env  
    OclExpressionCS.env = templateCS.env 

[B] collectionTemplateCS.env = templateCS.env  
    OclExpressionCS.env = templateCS.env 
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objectTemplateCS 
objectTemplateCS ::= identifierCS? ':' pathNameCS '{' propertyTemplateListCS? '}' 

Abstract syntax mapping 

objectTemplateCS.ast : ObjectTemplateExp 

Synthesized attributes 

let  
cls:Class = objectTemplateCS.env.lookup('context domain').  

referredElement.typedModel.usedPackage.getEnvironmentWithoutParents().  
lookupPathName(pathNameCS.ast).referredElement.oclAsType(Class)  

in  
if (not identifierCS.ast.oclIsUndefined)  
then  

objectTemplateCS.ast.bindsTo.name = identifierCS.ast  
and  
objectTemplateCS.ast.bindsTo.type = cls  
and  
objectTemplateCS.env.lookup('context relation').  

referredElement.oclAsType(Relation).variable->  
exists(v | v = objectTemplateCS.ast.bindsTo)  

endif  
and  
objectTemplateCS.ast.referredClass = cls  

objectTemplateCS.ast.part = propertyTemplateListCS.ast 

Inherited attributes 

propertyTemplateListCS.env =  
objectTemplateCS.env.addElement('context template', objectTemplateCS.ast)

propertyTemplateListCS 
propertyTemplateListCS[1] ::= propertyTemplateCS (',' propertyTemplateListCS[2])? 

Abstract syntax mapping 

propertyTemplateListCS[1].ast : Set(PropertyTemplateItem) 

Synthesized attributes 

propertyTemplateListCS[1].ast = Set{propertyTemplateCS.ast}->  
union(propertyTemplateListCS[2].ast)

Inherited attributes 

propertyTemplateCS.env = propertyTemplateListCS[1].env  
propertyTemplateListCS[2].env = propertyTemplateListCS[1].env 

propertyTemplateCS 
[A] propertyTemplateCS ::= identifierCS '=' ExtOclExpressionCS 

[B] propertyTemplateCS ::= 'opposite' '(' classIdCS '.' identifierCS ')' '='  
ExtOclExpressionCS 
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Abstract syntax mapping: 

propertyTemplateCS.ast : PropertyTemplateItem 

Synthesized attributes: 

[A] propertyTemplateCS.ast.referredProperty =  
propertyTemplateCS.env.lookup('context template').  

referredElement.oclAsType(ObjectTemplateExp). 
referredClass.lookupProperty(identifierCS.ast)  

propertyTemplateCS.ast.isOpposite = false  
propertyTemplateCS.ast.value = ExtOclExpressionCS.ast 

[A] propertyTemplateCS.ast.referredProperty =  
classIdCS.ast.lookupProperty(identifierCS.ast)  

propertyTemplateCS.ast.isOpposite = true  
propertyTemplateCS.ast.value = ExtOclExpressionCS.ast 

Inherited attributes: 

[A] ExtOclExpressionCS.env = propertyTemplateCS.env 

[B] ExtOclExpressionCS.env = propertyTemplateCS.env  
classIdCS.env = propertyTemplateCS.env 

collectionTemplateCS 
collectionTemplateCS ::= identifierCS? ':' CollectionTypeIdentifierCS '(' TypeCS ')'  

   '{' (memberListCS '++' restCS)? '}' 

Abstract syntax mapping 

collectionTemplateCS.ast : CollectionTemplateExp 

Synthesized attributes 

if (CollectionTypeIdentifierCS.ast = CollectionKind::Set)  
then  

collectionTemplateCS.ast.referredCollectionType.oclIsTypeOf(SetType)  
else  

if (CollectionTypeIdentifierCS.ast = CollectionKind::Sequence)  
then  

collectionTemplateCS.ast.referredCollectionType.oclIsTypeOf(SequenceType)  
else  

if (CollectionTypeIdentifierCS.ast = CollectionKind::Bag)  
then  
    collectionTemplateCS.ast.referredCollectionType.oclIsTypeOf(BagType)  
else  
    if (CollectionTypeIdentifierCS.ast = CollectionKind::OrderedSet)  
    then  

     collectionTemplateCS.ast.referredCollectionType.  
oclIsTypeOf(OrderedSetType)  

endif  
endif  

endif  
endif 

collectionTemplateCS.ast.referredCollectionType.elementType = TypeCS.ast 

if (not identifierCS.ast.oclIsUndefined)  
then  

collectionTemplateCS.ast.bindsTo.name = identifierCS.ast  
and  
collectionTemplateCS.ast.bindsTo.type =  
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collectionTemplateCS.ast.referredCollectionType  
and  
collectionTemplateCS.env.lookup('context relation').  

referredElement.oclAsType(Relation).variable->  
exists(v | v = collectionTemplateCS.ast.bindsTo)  

endif 

if (memberListCS->notEmpty())  
then  

collectionTemplateCS.ast.member = memberListCS.ast  
endif 

if (not restCS.oclIsUndefined())  
then  

collectionTemplateCS.ast.rest = restCS.ast  
endif

Inherited attributes 

TypeCS.env = collectionTemplateCS.env  
memberListCS.env = collectionTemplateCS.env  
restCS.env = collectionTemplateCS.env 

memberListCS 
memberListCS[1] ::= memberCS (‘,’ memberListCS[2])? 

Abstract syntax mapping 

memberListCS[1].ast : Sequence(OclExpression) 

Synthesized attributes 

memberListCS[1].ast = Sequence{memberCS.ast}->union(memberListCS[2].ast) 

Inherited attributes 

memberCS.env = memberListCS[1].env  
memberListCS[2].env = memberListCS[1].env 

restCS 
[A] restCS ::= identifierCS 

[B] restCS ::= '_' 

Abstract syntax mapping 

restCS.ast : Variable 

Synthesized attributes 

[A] restCS.ast = restCS.env.lookup('context relation').  
referredElement.oclAsType(Relation).variable->any(v | v.name = identifierCS.ast) 

[B] restCS.ast.name = '_' 

memberCS 
[A] memberCS ::= identifierCS 

[B] memberCS ::= templateCS 
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[C] memberCS ::= '_' 

Abstract syntax mapping 

memberCS.ast : OclExpression 

Synthesized attributes 

[A] memberCS.ast = memberCS.env.lookup('context relation').  
referredElement.oclAsType(Relation).variable->any(v | v.name = identifierCS.ast) 

[B] memberCS.ast = templateCS.ast 

[C] memberCS.ast.oclIsTypeOf(Variable)  
memberCS.ast.oclAsType(Variable).name = '_' 

Inherited attributes 

[B] templateCS.env = memberCS.env 

assignmentExpListCS 
assignmentExpListCS[1] ::= assignmentExpCS assignmentExpListCS[2]? 

Abstract syntax mapping 

assignmentExpListCS[1].ast : Set(RelationDomainAssignment) 

Synthesized attributes 

assignmentExpListCS[1].ast = Set{assignmentExpCS.ast}->  
union(assignmentExpListCS[2].ast) 

Inherited attributes 

assignmentExpListCS[2].env = assignmentExpListCS[1].env  
assignmentExpCS.env = assignmentExpListCS[1].env

assignmentExpCS 

assignmentExpCS ::= identifierCS '=' OclExpressionCS ';'

Abstract syntax mapping 

assignmentExpCS.ast : RelationDomainAssignment 

Synthesized attributes 

assignmentExpCS.ast.variable = assignmentExpCS.env.lookup('context relation').  
referredElement.oclAsType(Relation).variable->  

any(v | v.name = identifierCS.ast)  
assignmentExpCS.ast.valueExp = OclExpressionCS.ast 

Inherited attributes 

OclExpressionCS.env = assignmentExpCS.env 
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whenCS 
whenCS ::= 'when' '{' predicateListCS '}' 

Abstract syntax mapping 

whenCS.ast : Pattern 

Synthesized attributes 

whenCS.ast.predicate = predicateListCS.ast 

Inherited attributes 

predicateListCS.env = whenCS.env 

whereCS 
whereCS ::= 'where' '{' predicateListCS '}' 

Abstract syntax mapping 

whereCS.ast : Pattern 

Synthesized attributes 

whereCS.ast.predicate = predicateListCS.ast 

Inherited attributes 

predicateListCS.env = whereCS.env 

predicateListCS 
predicateListCS[1] ::= predicateCS ';' predicateListCS[2]? 

Abstract syntax mapping 

predicateListCS[1].ast : Set(Predicate) 

Synthesized attributes 
predicateListCS[1].ast = Set{predicateCS.ast}->union(predicateListCS[2].ast) 

Inherited attributes 

predicateCS.env = predicateListCS[1].env  
predicateListCS[2].env = predicateListCS[1].env 

predicateCS 
predicateCS ::= ExtOclExpressionCS

Abstract syntax mapping 

predicateCS.ast : Predicate 
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Synthesized attributes 

predicateCS.ast.conditionExpression = ExtOclExpressionCS.ast 

Inherited attributes 

ExtOclExpressionCS.env = predicateCS.env 

queryCS 
queryCS ::= 'query' identifierCS '(' paramDeclListCS? ')' ':' TypeCS  

 queryBodyCS 

Abstract syntax mapping 

queryCS.ast : Function

Synthesized attributes 

queryCS.ast.name = identifierCS.ast  
queryCS.ast.ownedParameter = paramDeclListCS.ast  
queryCS.ast.type = TypeCS.ast  
queryCS.ast.queryExpression = queryBodyCS.ast 

Inherited attributes 

paramDeclListCS.env = queryCS.env  
queryBodyCS.env = queryCS.env 

paramDeclListCS 
paramDeclListCS[1] ::= paramDeclarationCS (',' paramDeclListCS[2])? 

Abstract syntax mapping 

paramDeclListCS[1].ast : Sequence(Parameter) 

Synthesized attributes 

paramDeclListCS[1].ast = Sequence{paramDeclarationCS.ast}->  
union(paramDeclListCS[2].ast) 

Inherited attributes 

paramDeclarationCS.env = paramDeclListCS[1].env  
paramDeclListCS[2].env = paramDeclListCS[1].env

paramDeclarationCS 
paramDeclarationCS ::= identifierCS ':' TypeCS 

Abstract syntax mapping 

paramDeclarationCS.ast : Parameter 
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Synthesized attributes 

paramDeclarationCS.ast.name = identifierCS.ast  
paramDeclarationCS.ast.type = typeCS.ast 

Inherited attributes 

typeCS.env = paramDeclarationCS.env 

queryBodyCS 
[A] queryBodyCS ::= ';'  
[B] queryBodyCS ::= '{' OclExpressionCS '}' 

Abstract syntax mapping 

queryBodyCS.ast : OclExpression 

Synthesized attributes 

[B] queryBodyCS.ast = OclExpressionCS.ast 

Inherited attributes 

[B] OclExpressionCS.env = queryBodyCS.env 

ExtOclExpressionCS 
[A] ExtOclExpressionCS ::= OclExpressionCS  
[B] ExtOclExpressionCS ::= templateCS  
[C] ExtOclExpressionCS ::= RelationCallExpCS 

Abstract syntax mapping 

ExtOclExpressionCS.ast : OclExpressionCS 

Synthesized attributes 

[A] ExtOclExpressionCS.ast = OclExpressionCS.ast 

[B] ExtOclExpressionCS.ast = templateCS.ast 

[C] ExtOclExpressionCS.ast = RelationCallExpCS.ast 

Inherited attributes 

[A] OclExpressionCS.env = ExtOclExpressionCS.env 

[B] templateCS.env = ExtOclExpressionCS.env

[C] RelationCallExpCS.env = ExtOclExpressionCS.env 

RelationCallExpCS 
RelationCallExpCS ::= (identifierCS[1] '.')? identifierCS[2] '(' argumentsCS? ')' 

Abstract syntax mapping 

RelationCallExpCS.ast : RelationCallExp 
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Synthesized attributes 

RelationCallExpCS.ast.referredRelation =  
let  

trans:RelationalTransformation =  
if (not identifierCS[1].ast.oclIsUndefined)  
then  

RelationCallExpCS.env.lookup('imported transformation').  
referredElement.oclAsType(CollectionType)->  

any(t | t.name = identifierCS[1].ast)  
else  

RelationCallExpCS.env.lookup('context transformation').  
referredElement.oclAsType(RelationalTransformation)  

endif  
in  

trans.rule->any(r | r.name = identifierCS[2].ast).  
oclAsType(RelationalTransformation)  

RelationCallExpCS.ast.argument = argumentsCS.ast 

Inherited attributes 

argumentsCS.env = RelationCallExpCS.env 

argumentsCS 
argumentsCS[1] ::= OclExpressionCS (',' argumentsCS[2])? 

Abstract syntax mapping 

argumentsCS[1].ast : Sequence(OclExpression) 

Synthesized attributes 

argumentsCS[1].ast = Sequence{OclExpressionCS.ast}->union(argumentsCS[2].ast) 

Inherited attributes 

OclExpressionCS.env = argumentsCS[1].env  
argumentsCS[2].env = argumentsCS[1].env

Operations 
context RelationalTransformation::lookupClassName(names: Sequence(String)) : Class  
post:  
result =  
let  

typesPackage:Package =  
self.modelParameter.usedPackage->any(p|  
    not p.getEnvironmentWithoutParents().lookupPathName(names).oclIsUndefined())  

in  
typesPackage.getEnvironmentWithoutParents().lookupPathName(names).oclAsType(Class)
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8 Operational Mappings
The QVT Operational Mapping language allows either to define transformations using a complete imperative approach 
(operational transformations) or allows complementing relational transformations with imperative operations 
implementing the relations (hybrid approach). Clause 8.1 “Overview” provides an overview of the language,  
8.2, ‘Abstract Syntax and Semantics’ defines its abstract syntax and its semantics, 8.3, ‘Standard Library’ introduces the 
standard library, and 8.4, ‘Concrete Syntax’ defines the concrete syntax.

8.1 Overview
This overview presents informally salient features of the language.

8.1.1 Operational transformations

An operational transformation represents the definition of a unidirectional transformation that is expressed imperatively. 
It defines a signature indicating the models involved in the transformation and it defines an entry operation for its 
execution (named main). Like a class, an operational transformation is an instantiable entity with properties and 
operations. 

The example below shows the signature and the entry point of a transformation called Uml2Rdbms, which transform 
UML class diagrams into RDBMS tables. See Annex A for the metamodels and for a complete definition of this 
transformation.

transformation Uml2Rdbms(in uml:UML,out rdbms:RDBMS) { 
    // the entry point for the execution of the transformation 
    main() {  
        uml.objectsOfType(Package)->map packageToSchema(); 
    } 
….  
}

The signature of this transformation declares that an rdbms model of type RDBMS will be produced from a uml model of 
type UML.

In the example, the main entry operation firstly retrieves the list of objects of type Package and then applies a mapping 
operation called packageToSchema on each Package of the list.

If the source text file defines a unique transformation, the content of the transformation definition does not need to be 
placed within braces.

transformation Uml2Rdbms(in uml:UML,out rdbms:RDBMS); 
// the entry point for the execution of the transformation 
main() {  
    uml.objectsOfType(Package)->map packageToSchema(); 
 }

8.1.2 Model Types 

UML and RDBMS symbols represent model types. A model type is defined by a metamodel (a set of MOF packages), a 
conformance kind (strict or effective), and an optional set of conditions. Model types introduce accurate flexibility for 
writing transformation definitions that are applicable to similar metamodels.
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In our Uml2Rdbms example, the UML and RDBMS model types refer to implicit metamodels. When the textual syntax is 
used, the transformation writer is not obliged to indicate what MOF packages are used. However, in order to build the 
corresponding XMI serialization, it is mandatory to bind the model type symbol to an existing metamodel definition. 

Alternatively to this approach, the transformation writer may indicate what metamodels are being used. This is done by 
an explicit declaration to be placed before the transformation signature:

modeltype UML uses SimpleUml ("http://omg.qvt-examples.SimpleUml"); 
modeltype RDBMS "strict" uses SimpleRdbms;

The first declaration states that the UML model type is defined by the SimpleUml metamodel and assumes an effective 
conformance kind, which is the default. This implies that the XMI representation of the transformation definition has to 
be built using this SimpleUml metamodel definition. However, effective compliance allows passing models that are not 
necessarily “instances” of this metamodel. The input model can be checked to determine whether it is a valid input for 
this transformation by comparing its structure to the model elements defined by the SimpleUml metamodel. 

When declaring explicitly a model type, an absolute URI may be given for the referred metamodel. In addition, the where 
keyword is used to define the additional constraints of the model type.  

In the example below a new definition for the ‘UML’ model type is given: it imposes the model to contain at least a Class.

modeltype UML uses SimpleUml("http://omg.qvt-examples.SimpleUml") 
   where { self.objectsOfType(Class)->size()>=1};

8.1.3 Libraries

A library contains definitions that can be reused by transformations. It may define specific types and may define 
operations (like query operations or metaclass constructors). A library is imported through one of the two available import 
facilities: access or extension. The QVT Standard library, named Stdlib is an example of a library. Since this library is 
pre-defined it does not need to be explicitly imported within transformation definitions.

The declaration below defines a library named MyUmlFacilities, which defines a list of query operations on UML models.

library MyUmlFacilities(UML); 
query UML::Class::getAllBaseClasses() : Set(Class); 
query UML::Element::getUsedStereotypeNames() : Set(String);

The declaration below illustrates the usage of this library in the UmlCleaning transformation.

transformation UmlCleaning(inout umlmodel:UML14) 
   extends MyUmlFacilities(UML14), 
   access MathUtils; 
var allSuper : Set(Class); // a global variable

main () { 
    allSuper := umlmodel.objectsOfType(Class)->collect(i|i.getAllBaseClasses()); 
    // …. 
}

The UmlCleaning transformation extends the MyUmlFacilities library, meaning that all operations defined in this library 
behave as if they were directly defined by the UmlCleaning transformation. The model type ‘UML14’ is a local symbol 
name. In our example it is bound to the ‘UML’ model type symbol name declared by the UmlFacilities. The example 
above also illustrates the possibility to import external libraries like the MathUtils, which implementation could be given 
in another language than QVT. 
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8.1.4 Mapping operations

A mapping operation is an operation that implements a mapping between one or more source model elements into one or 
more target model elements.

A mapping operation is syntactically described by a signature, a guard (a when clause), a mapping body, and a post-
condition (a where clause). Even if it is not explicitly notated in the concrete syntax, a mapping operation is always a 
refinement of an implicit relation that is the owner of the when and where clauses.

The packageToSchema mapping operation below defines how a UML Package has to be transformed into an RDBMS 
Schema.

mapping Package::packageToSchema() : Schema 
    when { self.name.startingWith() <> "_"} 
{ 
    name := self.name; 
    table := self.ownedElement->map class2table(); 
}

The implicit relation associated with this mapping operation has the following structure:

relation REL_PackageToSchema { 
  checkonly domain:uml (self:Package)[] 
  enforce domain:rdbms (result:Schema)[] 
  when { self.name.startingWith() <> "_" } 
}

The packageToSchema mapping operation behaves as any operation that would be defined on the UML Package 
metaclass. The self variable refers to the instance of the Package metaclass being passed to the operation. The when 
clause restricts the execution of the body. In our example, if a Package whose name starts with underscore is passed, the 
operation simply returns the null value; otherwise, the body is executed.

The general syntax for the body of a mapping operation is:

mapping <dirkind0> X::mappingname  
      (<dirkind1> p1:P1, <dirkind2> p2:P2)  : r1:R1, r2:R2 
   when { … } 
   where { … } 
{ 
   init { … } 
   population { … } 
   end { … } 
}

Where <dirkindN> refers to the in/inout/out direction kinds. 

The init section contains some code to be executed before the instantiation of the declared outputs. The population 
section contains code to populate the result parameters and the end section contains additional code to be executed before 
exiting the operation.

Between the initialization and the population sections, there is an implicit section, named the instantiation section, which 
creates all output parameters that have a null value at the end of the initialization section. This means that, in order to 
return an existing object rather than creating a new one, one simply needs to assign the result parameter within the 
initialization section.
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In the packageToSchema mapping body the population keyword is omitted. The rules for interpreting the absence of the 
population keyword are given in Clause 8.2.1.19 “MappingBody”.

8.1.5 Object Creation and Population in Mapping Operations

The QVT operational mappings language defines a specific “high-level” facility to create and/or update model elements: 
the object expression construct notated using the object keyword. 

object s:Schema {  
      name := self.name;  
      table := self.ownedElement->map class2table(); 
}

In the example above, the object expression refers to an existing variable named ‘s,’ which necessarily has to be of type 
Schema. The semantics of this expression is as follows: if the ‘s’ variable has a null value, a Schema instance is created 
and assigned to the ‘s’ variable. The list of expressions of the body of the object expression are then executed in 
sequence. The expression returns the value of the ‘s’ variable. If the ‘s’ value has a non null variable, no instantiation 
occurs, instead, the body is used to update the existing object.

Within an object expression, the properties of the target variable (‘s’ in our example) can be accessed directly. Thus the 
assignment expression “name := self.name” means “s.name := self.name.” 

The textual definition of the package2Schema mapping operation presented in Clause 8.1.4 uses in fact an implicit object 
expression to populate the RDBMS Schema. The equivalent textual definition, without the shorthand, is:

mapping Package::packageToSchema() : result:Schema 
    when { self.name.startingWith() <> "_"} 
{ 
    population { 
        object result:Schema { 
           name := self.name; 
           table := self.ownedElement->map class2table(); 
        } 
   } 
}

Since the packageToSchema mapping has no initialization section, the result variable is initialized with a new created 
instance of Schema before the population section is entered. Hence, when the object expression is reached, the object 
expression operates on an existing object and the update semantics applies.

There is an important outcome of this instantiation policy. The trace associated with the execution of the mapping is 
created immediately after the instantiation and hence can be used within any inner mapping operation that is invoked 
within the population section. Usage of trace information is described in Clause 8.1.9.

8.1.6 Inlining Mapping Operations

The definition below describes the class2table mapping operation that creates an RDBMS table from a persistent UML 
class. Two other mappings are used: attr2Column creates a column from an attribute and class2Key creates a Key 
instance attached to the “primary” attributes of the class.

mapping Class::class2table() : Table   when {self.isPersistent()}  
{ 
  name := 't_' + self.name; 
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  column := self.attribute->map attr2Column()); 
  key := self.map class2key(result.column); 
}

mapping Attribute::attr2Column() : Column { 
   name:=self.name; type:=getSqlType(self.type); 
}

mapping Class::class2Key(in cols:Sequence(Column)) : Key { 
   name := 'k_'+ self.name; column := cols[kind='primary']; 
}

Thanks to the object expression construct it is possible to rewrite these definitions using a unique mapping operation.

mapping Class::class2table() : Table  when {self.isPersistent()}  
{ 
     name := 't_' + self.name; 
     column := self.attribute->object(a) Column{ 
           name=a.name; 
           type=getSqlType(a.type); 
     }; 
     key := object Key { 
                name := 'k_'+ self.name;  
                column := result.column[kind='primary']; 
      }; 
}

The advantage of inlining mapping operations is conciseness. On the other hand, splitting of mappings may favor 
reusability. Also it is important to be aware that the execution of an object expression does not imply the creation of a 
trace.

As stated before, an object expression, such as ’object x:X {...}’, does not create an instance if the target variable 
- ‘x’ in the example - has a non null value. In the ’object Key {…}’ expression, since there is no variable reference, 
a Key instance will be systematically created. 

In the rewritten version of class2table an object expression is invoked on a list using the arrow symbol. As for the map 
mapping invocation operator, we are using here the imperative collect shorthand. The expression “self.attribute->object(a) 
Column {…}” is a shorthand for “self. attribute->xcollect(a| object Column {…}),” where xcollect is an imperative 
variant of the OCL collect construct.

8.1.7 Using Constructor Operations

There is yet another way to express the creation of metaclass instances: we can define a constructor operation. A 
constructor is a specialized operation that creates instances of a given type. For instance to create a UML::Operation, one 
may want to define a constructor that accepts a list of parameter names and create for each of them an inner 
UML::Parameter.

constructor UML::Operation::Operation(opname:String,Sequence(String));

This constructor operation may be used by any transformation dealing with UML models. It avoids writing various 
mappings for this simple purpose.

In the case of our Uml2Rdbms example, we can define constructors for Columns and for Keys:
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constructor Column::Column (n:String,t: String)  { name:=n; type:=t; } 
constructor Key::Key(n:String,primarycols:Sequence(Column))  
     {name:=n;column:=primarycols;}

Now we have yet another variant of the class2table mapping operation.

mapping Class::class2table() : Table  when {self.isPersistent()}  
{ 
  name := 't_' + self.name; 
  column := self.attribute->new(a) Column(a.name,getSqlType(a.type)); 
  key := new Key('k_'+self.name,t.column[kind='primary']; 
}

As in Java language, the new keyword is used to instantiate an element. This implies looking for a matching constructor. 
We should note that this does not interleave with the implicit instantiation that potentially occurs within an object 
expression, since, in this case the constructor that is invoked is a built-in one.

All the previous examples show that there are many ways to structure a transformation definition. There is no general rule 
or guidance that can be provided to select the “best” solution since it really depends on a compromise between various 
criteria (such as reusability, readability, maintainability, and conciseness).

8.1.8 Helpers

A helper is an operation that performs a computation on one or more source objects and provides a result. The body of a 
helper is an ordered list of expressions that is executed in sequence. A helper may have side-effects on the parameters; for 
instance, a list may be passed and changed within the body and its effect is visible after the operation call termination. A 
query operation is a helper operation that has no side effects.

Helpers allow writing complex navigations operations in a comfortable way since the user is not restricted to write 
everything within a unique expression. The return is used to exit immediately from the operation. 

The example below shows two queries that are written using a unique expression.

query Class::isPersistent() : Boolean = self.kind='persistent'; 
query Association::isPersistent() : Boolean =  
         (self.source.kind='persistent' and self.destination.kind='persistent'); 

The example below shows a more sophisticated query defined using a block of expressions.

query Class::checkConsistency(typename:String) : Boolean { 
    if (not typename) return false; 
    if  (cl := self.namespace.lookForClass(typename) ) return false; 
    return self.compareTypes(cl); 
}

Now we have the definition of a helper with side-effects.

helper Package::computeCandidates(inout list:List) : List { 
    if (self.nothingToAdd()) return list; 
    list.append(self.retrieveCandidates());  
    return list; 
}

The computeCandidates helper operation uses a mutable List type (see type extensions clause).
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Query operations may be defined also on primitive types, like strings.

query String::addUnderscores() : String = "_".concat(self).concat("_");

8.1.9 Intermediate Data

An operational transformation may use for its definition intermediate classes and intermediate properties.

Below is an example of usage of intermediate data in a re-designed Uml2Rdbms transformation that treats appropriately 
non-primitive attributes. Instead of creating a column per attribute we intend now to create as many columns as there are 
primitive slots in a complex data type. One approach to solve this recursive 1-to-N transformation problem is to use 
intermediate data.

intermediate class LeafAttribute {name:String;kind:String;attr:Attribute;}; 
intermediate property Class::leafAttributes : Sequence(LeafAttribute);

In the declarations above, the LeafAttribute class declares the structure to represent the flattened primitive attributes. The 
leafAttributes intermediate property allows a class instance to store all created intermediate objects derived from its 
definition. The new definition of the class2table mapping is:

mapping Class::class2table() : Table  
    when {self.isPersistent() ;}  {  
    init {  
       self.leafAttributes := self.attribute->map attr2LeafAttrs(); 
     } 
    name := 't_' + self.name; 
    column := self.leafAttributes->map leafAttr2OrdinaryColumn(); 
    key := object Key { 
           name := 'k_'+ self.name;  
           column := result.column[kind='primary']; 
     }; 
}

The leaf attributes are created in the initialization section through the invocation of a recursive mapping operation named 
attr2LeafAttrs (not detailed here). Then the iteration over this list is used to create the columns.

The important point is that intermediate properties are manipulated as ordinary properties of the context metaclass 
(UML::Class in our example). Intermediate properties are property extensions that do not exist outside the scope of the 
transformation that defines it. This is similar to the query and mapping operations that conceptually are operation 
extensions. The addUnderscores query definition above illustrates the fact that it is even possible to add operations to the 
primitive types.

8.1.10 Updating Objects and Resolving Object References

A common technique in model transformation is the usage of various passes to solve cross referencing between model 
elements. The language provides resolution constructs to access target objects created previously from source objects. 
These facilities implicitly use the trace records created by the execution of a mapping operation. 

The asso2table definition below is responsible for adding a foreign key in a previously created RDBMS table. This 
requires retrieving the existing table. 

mapping Association::asso2table() : Table   
when {self.isPersistent()} 
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{ -- result is the default name for the output parameter of the rule 
  init { result := self.destination.resolveone(Table); } 
  foreignKey := self.map asso2ForeignKey(); 
  column := result.foreignKey.column; 
}

The resolveone construct inspects the trace data to see whether there is a Table instance created from an association 
destination class that satisfies a boolean condition. In our case the condition is to be a kind of “Table.” 

There are three orthogonal variants of this resolution construct:

• invresolve performs the reverse treatment, that is, looks for the objects that were responsible for generating the object 
passed as the context argument. 

• resolveIn looks for target objects created from a source object by a unique mapping operation. The example below 
illustrates its usage: given a list of java classes (JClass instances) that have a packageName field indicating the name of 
the owning Package, the JClass2JPackage transformation creates a Java Package (JPackage) for each package name 
found in the list of java classes.

transformation JClass2JPackage(inout javamodel:JAVA);

main () { javamodel->objectsOfType(JClass)->jclass2jpackage();}

mapping Class::jclass2jpackage() : JPackage () { 
    init { 
       result := resolveIn(jclass2jpackage,true) 
             ->select(p|self.package=p.name)->first(); 
       if result then return; 
    }  
    name := self.package; 
}

In the example above, return is used to avoid creating more than two packages having the same name.

• The final variant of the resolution operator is the ability to postpone the retrieval of target objects until the end of the 
transformation, that is to say, at the end of the execution of the entry operation. Deferred resolutions may be useful to 
avoid defining various passes for a transformation. The example below treats potential cyclic due to class inheritance 
dependencies. 

transformation Uml2Java(in uml:UML,out java:JAVA) 

main() : JAVA::Interface { 
    uml->objectsOfType(Class)->map transformClass(); 
}

mapping UML::transformClass() : JAVA::Interface () { 
   name := "Ifce".concat(self.name); 
   base := self.superClass->late resolve(JAVA::Interface); 
}

Below is an equivalent solution for this transformation problem that does not use the late resolution. This solution uses 
two passes.

transformation Uml2Java(in uml:UML,out java:JAVA) 

main() : JAVA::Interface { 
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    uml->objectsOfType(Class)->map transformClass(); 
    uml->objectsOfType(Class)->map transformClassInheritance(); 
}

mapping UML::transformClass() : JAVA::Interface { 
   name := "Ifce".concat(self.name); 
}

mapping UML::transformClassInheritance() : JAVA:Interface { 
   base := self.superClass->resolveIn(transformClass,JAVA::Interface); 
}

In terms of execution, the ‘late resolve’ expression is always related to an assignment. Conceptually it returns null but in 
the meantime it stores all the information that is required to re-execute later the trace inspection and the assignment. 

8.1.11 Composing Transformations

Composition of coarse-grained transformation is an essential feature in large and complex transformations. To this end, 
the language allows to instantiate and to invoke explicitly transformations.

Let’s imagine that the Uml2Rdbms transformation requires that the source uml model is a “clean” model with all 
redundant associations removed. We will need to extend the previous transformation definition by invoking an in-place 
“cleaning facility” on the UML model prior to apply the Uml2Rdbms transformation. This can be achieved by the 
following definition.

transformation CompleteUml2Rdbms(in uml:UML,out rdbms:RDBMS) 
  access transformation UmlCleaning(inout UML), 
  extends transformation Uml2Rdbms(in UML,out RDBMS);

main() {  
    var tmp: UML = uml.copy(); 
    var retcode := (new UmlCleaning(tmp))->transform(); // performs the "cleaning" 
    if  (not retcode.failed())  
         uml.objectsOfType(Package)->map packageToSchema() 
    else raise "UmlModelTransformationFailed"; 
}

In this example we see the usage of access and extension reuse mechanisms. An access import behaves as a traditional 
package import, whereas extension semantics combines package import and class inheritance paradigm. 

This example also illustrates the following: (i) the ability to execute in place transformations, like UmlCleaning, (ii) the 
ability to perform an explicit transformation instantiation (through the new operator), and (iii) the ability to invoke high 
level operations on models, like the cloning facility (copy operation). 

8.1.12 Reuse Facilities for Mapping Operations

The language provides two reuse facilities at the level of the mapping operations: mapping inheritance and mapping 
merge.

A mapping operation may inherit from another mapping operation. In terms of execution semantics the inherited mapping 
is executed after the initialization section of the inheriting mapping. The example below illustrates the usage of mapping 
inheritance. The mapping that creates foreign RDBMS Columns reuses the mapping defined to create “ordinary” 
Columns. 
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mapping Attribute::attr2Column (in prefix:String) : Column {  
  name := prefix+self.name;  
  kind := self.kind; 
  type := if self.attr.type.name='int' then 'NUMBER' else 'VARCHAR' endif; 
}

mapping Attribute::attr2ForeignColumn (in prefix:String) : Column  
  inherits leafAttr2OrdinaryColumn { 
     kind := "foreign"; 
}

Within a transformation, a mapping operation may also declare a list of mapping operations that complements its 
execution: this is mapping merge. In terms of execution, the ordered list of merged mappings is executed in sequence 
after the end section. The ordinary compliance rules between a caller and the callee apply here constraining the 
parameters of the complementary mapping to conform to the mapping serving as the base for merging. 

The example below shows an example of a transformation definition that uses mapping merging. This style of writing 
allows defining a modular specification where the transformation writer can try to define mapping operations for each 
rule defined in natural language.

// Rule 1 (in english): A Foo should be transformed into an Atom and a Bar. 
// The name of the Bar is upperized and the name of the Bar is lowerized 
mapping Foo::foo2atombar () : atom:Atom, bar:Bar 
     merges foo2barPersistence, foo2atomFactory 
{  
      object atom:{name := "A_"+self.name.upper();}  
      object bar:{ name := "B_"+self.name.lower();} 
}

// Rule 2: Persistent attributes of Foo are treated as volatile Bar properties 
mapping Foo::foo2barPersistence () : atom:Atom, bar:Bar   
    when {foo.isPersistent();} {  
    object bar:{ property := self.attribute->map persistent2volatile(); } 
}

// Rule 3: An Atom factory should be created for each Atom and have the name 
// of the associated Bar. 
mapping Foo::foo2atomFactory () : atom:Atom, bar:Bar {  
    object bar:{ factory := object Factory {name := bar.name}};  
}

A merged mapping is not invoked if the guard is not satisfied. This occurs in Rule 2 for the Foo instances that are not 
persistent.

The code below shows an invocation of the foo2atombar mapping. The resulting tuple is unpacked and assigned to the 
‘atom’ and ‘bar’ variables.

var f := lookForAFooInstance(); 
var t := f.foo2atombar();                        // Tuple(atom: Atom, bar: Bar) 
var atom := t.atom; 
var bar := t.bar; 
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We should note that conceptually a result parameter is treated as an optional parameter of the mapping operation. Thus, 
the first call of “f.foo2atombar()” is equivalent to invoke “f.foo2atombar(null,null).” In contrast, foo2barPersistence and 
foo2atomFactory are internally invoked with the atom and bar instances created by the foo2atombar mapping. This 
mechanism allows the merged mappings to update the instances created by the merging mapping.

8.1.13 Disjunction of Mapping Operations

A mapping operation may be defined as a disjunction of an ordered list of mappings. This means that an invocation of the 
operation results on the selection of the first mapping whose guard (type and when clause) succeeds. The null value is 
returned if no guard succeeds.

Below an example:

mapping UML::Feature::convertFeature () : JAVA::Element  
   disjuncts convertAttribute, convertOperation, convertConstructor() {}

mapping UML::Attribute::convertAttribute : JAVA::Field {  
    name := self.name; 
}

mapping UML::Operation::convertConstructor : JAVA::Constructor  
   when {self.name = self.namespace.name;} { 
   name := self.name; 
}

mapping UML::Operation::convertOperation : JAVA::Constructor 
   when {self.name <> self.namespace.name;} { 
   name := self.name; 
}

8.1.14 Type Extensions

The language extends the OCL and MOF type system with some general purpose data types. These are mutable lists and 
dictionary types. 

A mutable list (List) contains an ordered list of elements. In contrast with an OCL collection, a List can be updated. List 
is a parameterized type. When no type for the elements is given, the generic MOF type Object is assumed.

var mylist := List{1,2,3,4};  // a list literal 
mylist.add(5);

A dictionary (Dict) is a facility to store values accessed by keys - also known as a hash table. It is a mutable type.

var mydict := Dict{"one"=1,"two"=2,"three"=3};  // a dictionary literal 
mydict.put("four",1);

Another mechanism is defined to make the type system more flexible. The typedef mechanism allows attaching additional 
constraints to an existing type within a specific context. It also serves to define aliases to complex data types. When used 
in the signature of a mapping operation, the typedef constraints are added to the guard of the mapping operation. The 
condition is expressed within brackets after the type taken as reference.

typedef TopLevelPackage = Package [container()=null]; 
typedef AttributeOrOperation  = Any [#Attribute or #Operation]; 
typedef Activity = ActionState[stereotypedBy("Activity")];
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The type defined by a typedef is considered to be in the scope of the model type of the type taken as reference. For 
instance, if Package exists in the context of a UML modeltype, the TopLevelPackage is also considered being defined in 
the context of the UML modeltype.

The “#Metaclass” notation - respectively '##Metaclass’ - is a shorthand for isKindOf(Metaclass) - respectively 
isTypeOf(Metaclass).

A typedef can also be used to simply define an alias to a complex type, as for tuple types:

typedef PersonInfo = Tuple{name:String,phone:String}; 

8.1.15 Imperative Expressions

The QVT operational mapping language is an imperative language to define transformations. It extends OCL but includes 
all the necessary machinery that is needed to write in a comfortable way complex transformations. The imperative 
expressions in QVT realizes a compromise between functional features in OCL and the more traditional constructs that 
we found in general purpose languages like Java.

The most relevant example of this marriage is the ability to use block expressions to compute a given value. The 
construct:

compute (v:T := initexp) body;

returns the value of the v variable after ending the execution of the body. The body may be a “block” expression where 
variables defined in outer scope can be freely accessed and changed.

compute (v:T := initexp) { … self.getSomething() …};

The construct can be combined with a while expression.

self.myprop := while(v:T = initexp; v<>null) { … self.getSomething() …} 
    // "while(v;cond) body” is a shorthand for “compute(v) while(cond) body”

The forEach expression is an imperative loop that can also iterate over a block expression and make an optional filter on 
the elements of the first. It plays the role of a loop instruction in Java language.

self.ownedElement->forEach(i|i.isKindOf(Actor)) { … } 
range(2,8)->forEach(i) { … }

Within imperative loops, break and continue constructs are available. The combination of compute and forEach allows 
defining the imperative xcollect and xselect operations and various others high-level facilities. 

The language also defines an imperative “if-then-else” construct that is less constrained as the corresponding OCL 
construct, since block expressions can be executed and else parts are not mandatory. The notation for this construct is 
Java-like: 

var x:= if (self.name.startsWith("_") "PROTECTED" 
           elif (self.type.isPrimitive() "NORMAL" 
           else "UNEXPECTED"

In general, there is no obligation to use this control expression within expressions. They can be used alone as in 
traditional programming.

if (x==0) { 
    list->forEach(i) { 
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        if (…) continue; 
        …  
    } 
}

8.1.16 Pre-defined Variables: this, self, and result

The variable this represents the transformation instance being defined. It can be used implicitly to refer to the properties 
of the transformation class or to the operations owned by him.

Within a contextual operation (a query helper operation or a mapping operation) self represents the contextual parameter.

Within a contextual operation result represents the unique result parameter (if there is a unique declared result) or the 
tuple containing the list of declared result parameters.

8.1.17 Null

The literal null is a specific literal value that complies to any type. It can be explicitly returned by an operation or can be 
implicitly returned to mean the absence of value. 

8.1.18 Advanced Features: dynamic definition and parallelism

When dealing with a complex MDA process, it may be useful to be able to define transformations that use transformation 
definitions computed automatically.  It is indeed possible for a transformation definition to be the output of a 
transformation definition - since a QVT model can be represented as a model. The language provides a pre-defined 
‘asTransformation’ operation that allows to cast a transformation definition (a model typed through a ModelType that 
accepts QVT compliant definitions) as an instance of the corresponding transformation class. The implementation of this 
'asTransformation' operation typically requires compiling the transformation definition on the fly.

The example below illustrates a possible usage of this facility. This PimToPsm transformation transforms a PIM model 
into a PSM model. To this end, the initial PIM model is first of all automatically annotated using an ordered set of UML 
Packages that defines the transformation rules to infer the annotations, on the basis of an arbitrary proprietary UML-
oriented formalism. Each UML Package defining a transformation is transformed into the corresponding QVT compliant 
specification. When executed in sequence, each resulting QVT transformation definition adds its own set of annotations 
to the PIM model. At the end, the annotated PIM is converted into a PSM model using the AnnotatedPimToPsm 
transformation.

transformation PimToPsm(inout pim:PIM, in transfSpec:UML, out psm:PSM) 
   access UmlGraphicToQvt(in uml:UML, out qvt:QVT) 
   access AnnotatedPimToPsm(in pim:PIM, out psm:PSM);

main() { 
   transfSpec->objectsOfType(Package)->forEach(umlSpec:UML) { 
        var qvtSpec : QVT; 
        var retcode := new UmlGraphicToQvt(umlSpec,qvtSpec).transform();

        if (retcode.failed())  { 
             log("Generation of the QVT definition has failed",umlSpec); return;};

        if  (var transf := qvtSpec.asTransformation()) { 
             log("Instanciation of the QVT definition has failed",umlSpec); return;}

        if  ( transf.transform(pimModel,psmModel).failed()) { 
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            log("failed transformation for package spec:",umlSpec); return;} 
   } 
}

Another advanced feature is parallel launching of various transformations. These are useful when there are no sequencing 
constraints between a set of coarse-grained transformations. In terms of execution, invoking a transformation simply 
behaves as forking a process to accomplish the task. Synchronization is achieved through the invocation of the wait 
operation on the status variable returned by the ‘transform’ operation.

The example below is a ’Requirement To Psm’ transformation that decomposes a requirement model into two 
intermediate PIM models (one for the GUI, another for the behavior) and then merges the two pim models into the 
executable psm model. The two PIM models are generated in parallel.

transformation Req2Psm (inout pim:REQ, out psm:PSM) 
   access Req2Pimgui(in req:REQ, out pimGui:PIM) 
   access Req2Pimbehavior(in req:REQ, out pimBehavior:PIM), 
   access Pim2Psm(in pimGui:PIM, in pimBehavior:PIM, out psm:PSM);

main() { 
    var pimGui : PIM := PIM::createEmptyModel(); 
    var pimBehavior : PIM  := PIM::createEmptyModel(); 
    var tr1 := new Req2Pimgui(req, pimGui); 
    var tr2 := new Req2Pimbehavior(req, pimBehavior); 
    var st1 := tr1.parallelTransform(); // forks the PIM GUI transformation 
    var st2 := tr2.parallelTransform(); // forks the PIM Behavior transformation 
    this.wait(Set{st1,st2}); // waits patiently 
    if (st1.succeeded() and st2.succeeded())  
        // creates the executable model 
        new  Pim2Psm(pimGui,pimBehavior,psm).transform();  
}

8.2 Abstract Syntax and Semantics
This clause defines the abstract syntax of the QVT operational formalism. Concepts are depicted first graphically through 
class diagrams, and then a description of each class is given. When applicable, additional sub-clauses are included to 
explain in more detail the semantics of a given concept. 

The QVT operational formalism is defined by two EMOF packages: QVTOperational and ImperativeOCL. The 
following packages are imported: EMOF, EssentialOCL, QVTBase, QVTTemplate, and QVTRelation.

Conventions

The metaclasses imported from other packages are shaded and annotated with ‘from <package-name>’ indicating the 
original package where they are defined. The classes defined specifically by the two packages of the QVT Operational 
formalism are not shaded. 

Within the class descriptions, metaclasses, and meta-properties of the metamodel are rendered in courier font (for instance 
MappingOperation). Courier font is also used to refer to identifiers used in the examples. Keywords are written in 
bold face. Italics are freely used to emphasize certain words, such as specific concepts, it helps understanding. However 
that emphasis is not systematically repeated in all occurrences of the chosen word.
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In general, inherited properties (attributes or association ends) are not repeated in class descriptions except when this is 
useful to understand its specific usage in the context of operational transformations. A slash prefix “/” is used to mark 
inherited properties in class descriptions. In addition the origin of the inherited property is indicated through a “from 
<class-name>” annotation.

8.2.1 The QVTOperational Package

The QVTOperational package defines the concepts that are needed to specify transformation definitions written 
imperatively. It defines general structuring concepts (like module and imperative operation) and specialized ones (like 
operational transformations, mapping operations, and so on). It uses the ImperativeOCL package that extends OCL with 
constructs that are common in programming languages. 

For convenience, the metaclasses defined by this package are grouped into two categories: 

• concepts related to the definition of operational transformations, and 

• concepts related to the definition of operations within the transformation.

Concepts related to the definition of operational transformations

This group has seven classes: OperationalTransformation, Library, Module, ModuleImport, 
ModelType, ModelParameter, and VarParameter and two enumerations: ImportKind and DirectionKind. 
The EntryOperation is described in the second group of classes.

Figure 8.1 depicts the definition of all the metaclasses of this group. They are all closely related to the definition of an 
operational transformation.        

Figure 8.1 - QVT Operational Package - Modules and ModelTypes
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8.2.1.1 OperationalTransformation

An operational transformation represents the definition of a unidirectional transformation that is expressed imperatively. 
It has a model signature indicating the models involved in the transformation and it defines an entry operation, named 
main, which represents the initial code to be executed to perform the transformation. An operational transformation 
requires a model signature, but it does not require an implementation. This allows for black-box implementations defined 
outside QVT.

An operational transformation may extend or access an existing operational transformation or an existing library (see 
ModuleImport and Library classes). 

An operational transformation may define configuration properties, that is, properties that actual value is to be given at 
execution time. In addition it may define intermediate data properties and define explicitly new classes to store 
intermediate data.

An operational transformation may be explicitly declared as the ‘refinement’ of a relational transformation. In that case 
each model parameter in the operational transformation corresponds to a typed model in the relational transformation. The 
enforced direction is the one corresponding to the output parameter of the operational transformation.

Syntactically, an OperationalTransformation is a subclass of Module, hence it is, by inheritance, both a Class 
and a Package. As a Class it can define properties and operations (like helper queries, mapping operations, and 
constructors) and has to be instantiated to be executed (see InstantiationExp). As a Package it can define and 
contain specific types for usage within the transformation definition. 

Figure 8.2  QVT Operational Package - OperationalTransformation and ModelParameter
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Superclasses
Module 

Attributes
/isBlackbox : Boolean (from Module)

Indicates that the whole transformation is opaque: no entry operation and no mapping operations are defined.  
It is typically used to reuse coarse-grained transformations defined or implemented externally.

/isAbstract : Boolean (from Class)

Indicates that the transformation serves for the definition of other transformations. No entry operation should  
be defined.

Figure 8.3 QVT Operational Package - Operations and Bodies
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Figure 8.4 QVT Operational Package - Imperative Expressions

Figure 8.5 - QVT Operational Package - Miscellaneous Elements
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Associations
modelParameter: ModelParameter [*] {composes, ordered}

The signature of this operational transformation. A model parameter indicates a direction kind (in/out/inout) and 
is typed by a model type (see ModelParameter class description). If the transformation defines intermediate 
classes this contains a parameter named ‘_intermediate’ of the type ‘_INTERMEDIATE’ (see 
‘Module::ownedType’ property description).

intermediateClass : Class [*] {ordered}

The classes that are defined explicitly by the transformation writer to contain structured intermediate data used 
for the purpose of the transformation. These intermediate classes are to be distinguished from the trace classes 
that are implicitly and automatically derived from the relations. Instances of intermediate classes do not survive 
the execution of the transformation, except for ensuring trace persistence.

intermediateProperty: Property[*]{ordered}

Refers to the properties defined to store the intermediate data used by the transformation. These properties are 
typically contextual properties (see ContextualProperty metaclass description), that is, properties that are 
owned by the transformation class but which are conceptually extensions of the metaclasses involved in the 
transformation.

Intermediate properties do not survive to the execution of the transformation - except for ensuring trace 
persistence. 

refined : Transformation [0..1]

Indicates a relational transformation (see Clause 7: Relations) being refined by this operational transformation. 
relation : Relation [0..*] {composes, ordered}

The ordered set of relation definitions (see Clause 7: Relation) that are associated with the mapping operations 
(see MappingOperation) of this operational transformation. 

Constraints

Class inheritance should not be used for OperationalTransformations.
self.superClass->isEmpty()

Semantics

The execution semantics of an operational transformation is described below through comparisons with the Java 
language. 

An operational transformation is like a Java class where all the declared properties and operations of the transformation 
are effectively attribute slots and methods of the class. In addition, for each model parameter there is an attribute slot. An 
implicit constructor also exists for the transformation: its signature corresponds to the list of the in and inout model 
parameters. 

The code of this implicit constructor performs the following actions: 

1. For each declared out parameter a MOF extent is created with empty contents. 

2. The attribute of the slots associated with each model parameter is assigned.

3. Loading the values of the configuration properties, if available.

The instantiation of the transformation is either implicit (the instance being referred through the predefined this 
variable) or explicit. In the latter case an InstantiationExp expression is used.
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The implicit “this” variable is represented by a Variable instance named “this” having the transformation as its type and 
owned by the transformation through the ‘ownedVariable’ property.

The population of configuration properties may be done using any external mechanism; for instance, using an external 
configuration file. This aspect is beyond the scope of this specification.

As in java, instantiation and execution of the main operation are separate things. A transformation is explicitly invoked 
using the transform pre-defined operation (see the Standard Library). An invocation of the transform operation 
provokes the execution in sequence of the list of expressions within the body of the entry operation. At the end of the 
execution of main, the deferred assignments, if any, are executed in sequence (see ResolveExp). This terminates the 
execution of the transformation.

For each declared model type there is, conceptually, a corresponding import of the java package representing the 
metamodel bound to the model type.

Import with access semantics is like an import of another Java class. In contrast import with extension semantics 
corresponds firstly to an import and secondly to class inheritance. The imported names are included in the name space of 
the transformation. 

Notation

The notation to define a transformation uses the transformation keyword. The notation contains a header prefixed with 
the transformation keyword. The content of the transformation definition may be within braces or after the header 
declaration. The former should be used to include various transformation definitions within a single text file.

// defining multiple transformations in a single file 
transformation Uml2Rdbms (in uml:UML, out rdbms:RDBMS) {  
      // content of the transformation definition 
}

transformation Logical2PhysicalRdbms (inout rdbms:RDBMS) {  
      // content of the transformation definition 
}

When the latter option is used, the transformation should be the first declaration (except for comments).

The declaration below defines an operational transformation named Uml2Rdbms with a signature made of two model 
parameters uml and rdbms typed by the UML and RDBMS model types. It also defines a tag to indicate the transformer 
writer.

transformation Uml2Rdbms (in uml:UML, out rdbms:RDBMS); 
tag "author" Uml2Rdbms = "Pepe";

The imported modules (transformations or libraries) are indicated in the same statement after the model parameters using 
the extends or access keywords. The keywords transformation or library may be used to remind on the kind of module 
being imported.

transformation Uml2Rdbms (in uml:UML, out rdbms:RDBMS) 
   extends BasicUml2Rdbms, -- extending a transformation 
   extends library UMLUtilities(UML)  -- extending a library 
   access library MathLibrary; -- accessing a math library

All access declarations may appear in a separate statement (not necessarily in the header).

An operational transformation indicates a refined relational transformation using the refines keyword.
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transformation Uml2Rdbms (in uml:UML, out rdbms:RDBMS) refines R_UML2RDBMS;

Intermediate classes and intermediate properties of the transformation are notated using the property and class keywords 
prefixed by the intermediate keyword. 

intermediate class LeafAttribute { … }  
intermediate property  UML::Attribute::extravalue : String;

Properties that are configuration properties may have hierarchical scope. They are declared using the configuration 
qualifier keyword.

configuration property  UML::Attribute::MAX_SIZE : String;

8.2.1.2 Library

A library is a module grouping a set of operations and type definitions that are put together for reuse. The QVT Standard 
Library is an example of a Library instance. All but the QVT Standard Library must be explicitly imported. A library may 
be declared as a black-box: this means that no implementation is provided for the owned operations.

A library may declare an ordered list of model types on which it operates. This list is the signature of the library.

Syntactically, a Library is a subclass of Module and hence a subclass of Class and a subclass of Package. 

Superclasses
Module 

Semantics

The execution semantics for a library is described below through comparisons with the Java language. 

A library is like a Java class where all the declared properties and declared operations of the library are effectively 
attribute slots and methods of the class. However, in contrast with operational transformations there is no main operation 
to execute and the instantiation of the class is always implicit. When a library is imported with access semantics, an 
implicit instance is created and used to access the properties and operations of the library. When a library is imported with 
extension semantics, normal class inheritance applies as for operational transformations.

For each declared model type there is, conceptually, a corresponding import of the java package that represents the 
metamodel that is bound to the model type.

Notation

The notation to define a library is similar to the notation to define transformations except that the library keyword is used 
instead of the transformation keyword. 

The signature of the library is, in this case, a list of model types; in contrast with transformations, where the signature is 
a list of model parameters.

The declaration below defines a library named UmlUtilities extending BasicUmlUtilities with a signature 
made of a model type named UML1_4.

library UmlUtilities(UML1_4)  
     extends BasicUmlUtilities(UML1_4) 
     access MathLibrary ;
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8.2.1.3 Module

A module is a unit containing a set of operations and types defined to operate on models. This concept defines common 
features shared by operational transformations and libraries. 

Syntactically, a Module is a subclass of a Class and a Package. As a Class it can define properties and operations. 
As a Package it can define and contain specific types for usage within the module definition.

Superclasses
Class
Package

Attributes
isBlackbox : Boolean

Indicates that the whole module is opaque: no operations are defined. It is typically used to reuse coarse-grained 
transformations defined or implemented externally.

/uri : String (from Package)

Indicates an identity for the module. This is used to refer to an existing module without including its full content. 
This should be used in conjunction with the pre-defined tag proxy (see the predefined tags clause in the 
standard library).

Associations
entry : EntryOperation [0..1]

An operation acting as the entry point for the execution of the operational transformation. It is optional since an 
operational transformation may serve as a base for another operational transformation.

moduleImport : ModuleImport [0..*] {composes, ordered} 

The list of module import elements. Each module import refers to an imported module and indicates an import 
kind (access or extension semantics).

usedModelType : ModelType [0..*] {ordered}

The list of model types being used. This includes the implicit ‘_INTERMEDIATE’ model type when available 
(see ownedType description).

configProperty : Property[0..*] {ordered}

The list properties, which value may be left undefined and assigned at execution time. Example: a MAX_SIZE 
property.

ownedTag : Tag [0..*] {composes, ordered}

All the tags that are defined within this module. Note that, in most cases, the marked element is not the owner of 
the tag.

ownedVariable : Variable [0..*] {composes}

The list of variables owned by this module.
/nestedPackage : Package [0..*] (from Package)

Package nesting is a general property of MOF packages and then applicable to modules (which are 
specializations of Packages). In this context it can be used to contain metamodel definitions referred by model 
types (see ModelType description).

/ownedAttribute:Property[0..*](from Class){composes,ordered}

Any property owned by this module. 
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/ownedOperation:Operation[0..*](from Class){composes,ordered}

Any operation owned by this module. 
/ownedType : Type [0..*] (from Package) {composes,ordered}

All the types being defined by this module. Specifically this includes the model types, locally defined classes, 
and any composite type used to define the type of a variable or a parameter - for instance a ‘Set(MyMetaclass)’ 
user-defined datatype. 

If the module contains the declaration of intermediate classes (see OperationalTransformation::intermediateClass 
definition) a model type named ‘_INTERMEDIATE’ is automatically defined and inserted in the list of owned 
types. The model type package is also named ‘_INTERMEDIATE.’ This package is nested by the transformation 
(by means of the inherited Package::nestedPackage property).

8.2.1.4 ModuleImport

A module import represents the usage of a module through one of the two import semantics. With extension 
semantics, importing the module is identical to defining the imported operations and types of the imported module in the 
importing module. Hence an operation or a property of the imported module is considered as being an operation or a 
property of the importer - similarly to class extension semantics. With access semantics, the definitions of the imported 
module are not inherited by the importing module. Hence an instance of the imported module has to be used in order to 
access them. In the case of accessing a library, an instance of the imported module is implicitly available. In the case of 
a non-library module, the instance of the accessed module is to be created explicitly (see Clause 8.2.2.22 
“InstantiationExp”).

Two identical names coming from two distinct modules can be distinguished by qualifying them. However, a symbol 
defined locally always has precedence in respect to the imported symbols.

Superclasses
Element

Attributes
kind: ImportKind

The semantics of the library import. Possible values are access and extension.

Associations
binding: ModelType [0..*] {ordered}

The model types being “passed” to the imported module. The binding is done according to the ordering of the 
original list of model types declared by the imported module. Note that model types are contained using the 
ownedType property link. 

importedModule: Module [1]

The module being imported.

Notation

See the notation for operational transformations and for libraries.

8.2.1.5 ModelParameter

A model parameter is a parameter to an operational transformation. Hence, the ordered set of model parameters forms the 
signature of the transformation. Each model parameter refers implicitly to a model participating in the query or 
transformation. 
MOF2 Query/View/Transformation (QVT), v1.2 85



Each model parameter contains an indication stating the effect of the module execution on a model: in means changes 
forbidden, inout means model updated, out means model being created. These model parameters are globally accessible 
within the transformation.  

Each model parameter has a type, for which see ModelType.  

Superclasses
VarParameter

Constraints

The type of an instance of ModelParameter is an instance of ModelType.
self.type.oclIsKindOf(ModelType)

Notation

Model parameters are notated as simple parameters within the signature of a transformation.

8.2.1.6 ModelType

Each model parameter conforms to a model type, which is defined or referenced by the transformation or the library. A 
model type is defined by a metamodel, a conformance kind, and an optional set of constraint expressions. The metamodel 
defines the set of classes and property elements that are expected by the transformation, and is captured in a set of MOF 
Packages. 

Type conformance is defined in two ways: strict and effective. When conformance is strict, the objects of the model 
extent should necessarily be instances of the classes of the associated metamodel.

When conformance is effective, any object in the model extent that has a type that refers to a type of the associated 
metamodel must contain the properties defined in the metamodel class and have compatible property types. See semantics 
sub-clause for the binding rules between actual and effective types.

Effective compliance allows flexible transformations to be defined that can be applied to similar metamodels.  For 
example, if a transformation is defined for UML 1.4 but uses no UML 1.4 specificities, we can manage so that it also 
works with UML 1.3 models.

To restrict further the set of valid participant models, a model type may specify a list of extra conditions (expressed as 
OCL expressions) that need to hold for participating models. For example: a transformation that expects UML models 
with use cases can restrict otherwise well-formed UML models that do not contain use cases. 

A model type is defined as a subclass of Class so that it is possible to define operations and properties on it. 

Pre-defined operations defined on types can be used to inspect the objects that are part of the model at any time during 
the transformation.  More precisely there is a MOF extent corresponding to each parameter. Any object creation occurs in 
an extent associated with a model parameter. 

Superclasses
Class 

Attributes
conformanceKind: String

Indicates the kind of required compliance. Predefined values are effective and strict. The default value is 
effective. Other values could be defined but their semantics is outside the scope of this specification.
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Associations
metamodel: Package [1..*] {ordered}

The packages defining the structural constraints for a model parameter to comply to its model type. The 
Package::uri informs the user on the “actual” metamodel that has been taken as reference - in the case the 
referred metamodel is an effective metamodel.  

additionalCondition: OclExpression [*] {composes, ordered}

Additional conditions restricting the set of valid participant models for this model type. 

Semantics of model compliance

When an operational transformation in instantiated, the model parameters passed as arguments should be conformant with 
the model types of the parameters of the instantiated transformation. The meaning of compliance of models to models 
types is defined below:

• When the compliance kind is “strict,” the objects of the model extent should necessarily be instances of the metaclasses 
of the referred MOF packages. If the referred metamodel defines well-formedness constraints these should also be 
satisfied.

• When the compliance kind is “effective,” any instance in the model extent that has a type that is referred in the model 
type metamodel need at least to contain the properties defined in the effective metamodel metaclass and have 
compatible types. The binding between the types in the effective metamodel and the actual types in the model extent is 
based on name comparison, except for specific renamings expressed using the alias pre-defined tag - see the QVT 
standard library.

In both cases - strict or effective - model compliance implies that all the extra conditions (see extraCondition property) 
are satisfied as well as any pre-existing well-formedness rule that exists for the associated metamodel.

An effective metamodel represents the metamodel that is declared at the transformation definition level whereas an actual 
metamodel represents the metamodel that is used when executing the transformation. 

Note: We define here only the meaning of a model being compliant with a model type. Comparisons and classifications 
between model types are possible but are considered to be beyond the scope of this specification.

Relationship between MOF extents and model parameters 
When a model element is created by a transformation it is necessary to know in what model the model element is to be 
created. In particular, this makes it possible to use the inspection operations on model parameters like objects() and 
objectsOfType() to retrieve an object previously created. In MOF there is a notion of Extent that is simply defined 
as a container for Objects. Here we are correlating the notion of model (represented by model parameters in a 
transformation definition) with the notion of MOF extent stating that for each model parameter there is a MOF extent.

Notation

A model type is referred by name in the signature or in the access and extends declaration of a transformation or library. 
In the example below, the UML and RDBMS symbol names are necessarily model types and there is no obligation to 
declare them as being model types.

transformation Uml2Rdbms (in uml:UML, out rdbms:RDBMS);

When a modeltype is explicitly declared, the syntax is as follows:

modeltype <modeltypeid> "<conformance>"  
      uses <packageid>("<uri>") where {<expressions>…};
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The extra conditions may use the self variable, which is implicitly defined in the where block and refers conceptually to 
an instance of the model type (a model). The declaration below declares that a model type uses for its definition an 
existing Package named SimpleUml by providing its URI. The second declaration only gives a URI and indicates a 
strict compliance kind.

modeltype UML uses SimpleUml("http://omg.qvt-samples.SimpleUml"); 
modeltype RDBMS "strict" uses "http://omg.qvt-samples.SimpleRdbms"; 
transformation Uml2Rdbms(in uml:UML, out rdbms:RDBMS);

A modeltype declaration may have the same name as a metamodel definition. If no explicit definition of the model type 
is found, this is equivalent to declare a modeltype which “referred metamodel” is the given metamodel. The “effective” 
model type conformance is assumed.

metamodel SimpleUML { … };  
metamodel SimpleRDBMS { … }; 
transformation Uml2Rdbms(in uml:SimpleUML, out rdbms:SimpleRDBMS);

8.2.1.7 VarParameter

A variable parameter is a concept that is introduced to allow referring to parameters in the same way as variables are 
referred, specifically within OCL expressions. 

Syntactically, a VarParameter is a MOF Parameter that is also a Variable. 

Superclasses
Variable
Parameter

Attributes
kind: DirectionKind

Indicates the effect of the module or the operation on the parameter. Possible values are: in, inout, and out.

8.2.1.8 DirectionKind

A direction kind is an enumeration type that gives the possible values of direction kinds for parameters. 

Enumeration values
in
inout
out

8.2.1.9 ImportKind

An import kind is an enumeration type that gives the possible values for the semantics of module import. 

Enumeration values
access
extension

Concepts related to the definition of operations and properties

Figure 8.2 depicts the concepts that are related to the definition of imperative operations and contextual properties. The 
metaclasses described in this clause are:
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ImperativeOperation, MappingOperation, Helper, Constructor, EntryOperation, 
ContextualProperty, OperationBody, MappingBody,and ConstructorBody.

8.2.1.10 ImperativeOperation

An imperative operation extends the general notion of MOF operation with the ability to define an imperative body and 
an enriched signature for the operation. In addition to the ordinary parameters of a MOF operation, an imperative 
operation may declare a context parameter and zero or more result parameters. The context parameter, named self, has a 
type (called the context type of the operation). These parameters apply uniformly to helpers and mapping operations. An 
imperative operation is owned by an operational transformation or by a library. 

An imperative operation may override an existing imperative operation defined in a higher level of the inheritance tree. In 
this case, the name of the overriding operation must be the same as the overridden operation and the signature must be 
compliant (same number of parameters, and the type of each parameter of the overriding operation should comply with 
the type of the corresponding parameter in the overridden operation).

An imperative operation that defines a context within its signature is known as a contextual operation. Within a module, 
two contextual operations can have the same name only if they have distinct contexts. Conceptually, a contextual 
operation behaves as an operation that extends the referred contextual type. For instance, within a transformation 
definition that deals with UML models, one may want to make usage of a query named 
'getAllAbstractBaseActors' on Actor instances (Actor is our contextual type). In order not to change the 
definition of the UML Actor metaclass by inserting “physically” a new owned operation, this query will not be owned 
by Actor class but instead will be an operation of the operational transformation. The context is then used to associate 
the query to the class being “logically” extended. In other words, making an explicit distinction between ownership and 
context avoids creating variants on metamodels for the sole purpose of a transformation definition.

In terms of name scoping, the definition of a contextual operation inserts a new symbol in the namespace of the owner 
(the transformation or the library) and in parallel inserts a symbol in the namespace of the context class. As a 
consequence, a contextual operation can be invoked either as a non-contextual operation (self is the first argument of 
the call expression) or as an operation of the context class (self is the source of the call expression). 

Superclasses
Operation

Associations
context: VarParameter [0..1]{composes}

The context variable representing the object on which the operation is invoked.
result: VarParameter [*] {composes,ordered}

The variables containing the values to be returned by this operation.
body: OperationBody [0..1] {composes}

The imperative implementation for this operation.
overridden: ImperativeOperation [0..1]

An operation of an imported transformation or library that is overridden.
/ownedParameter:Parameter [*]{composes,ordered} (from Operation)

The list of parameters of the operation excluding the context and result parameters. 
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8.2.1.11 EntryOperation

An entry operation is the entry point for the execution of a transformation. Its body contains an ordered list of expressions 
executed in sequence. A transformation may define no more than an entry operation, which is invoked when the 
transformation execution starts.

An entry operation has no parameters but can access any globally accessible property or parameter, such as model 
parameters. The name of an entry operation is main.

Superclasses
ImperativeOperation

Notation

The notation uses the main keyword and a body with the list of expressions.

transformation UmlCleaning (inout uml:UML); 
main() {  uml->objectsOfType(Package)->map cleanPackage();}

8.2.1.12 Helper

A helper is an operation that performs a computation on one or more source objects and provides a result. The body of a 
helper is an ordered list of expressions that is executed in sequence. When more than one result is declared in the 
signature of the helper operation, the invocation of the operation returns a tuple.

Unless the isQuery property is true, a helper may have side-effects on the parameters; for instance, a list may be passed 
and changed within the body and its effect is visible after the operation call termination. However it is illegal to create or 
update object instances within a helper operation except for pre-defined types like sets, tuples, and for intermediate 
properties.

Helpers allow writing complex queries in a comfortable way since the user is not restricted to write everything within a 
unique expression. 

Superclasses
ImperativeOperation

Attributes
isQuery: Boolean 

Indicates whether the helper operation can have side-effects on the parameters. 

Constraints

The body of a helper operation is a direct instance of OperationBody.

self.body.isTypeOf(OperationBody)

Notation

The notation uses the standard convention for notating operations in UML except that the query or helper keywords are 
used to prefix the declaration. The latter ‘helper’ prefix is used when the operation provokes side-effects. The body may 
be introduced using a simple expression (with '=' symbol) or be defined within braces.

The declaration below declares a query to retrieve all derived classes of a UML class.  In this example the body is not 
defined, meaning that it is a black-box implemented elsewhere. This query is defined within the UmlUtilities library.
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The self variable to access the properties of the context argument cannot be omitted in the body of the helper operation.

library UmlUtilities(UML); 
query Class::getAllDerivedClasses() : Set(Class);

8.2.1.13 Constructor

A constructor is an operation that defines how to create and populate the properties of an instance of a given class. This 
concept corresponds to the familiar notion of a constructor in object oriented languages. A constructor may be defined as 
an operation of the class to be constructed or may be owned by a module that plays a role of factory for the class. 

A constructor may be defined within a library so that it can be reused by various transformations. A constructor is a 
means to factor out the code needed to create and populate an object.

A constructor does not declare result parameters. The name of the constructor is usually the name of the class to be 
instantiated. However this is not mandatory. Giving distinct names allows having more than one constructor. 

To create an object it is not mandatory to define a constructor operation. For each class, if not defined explicitly, there is 
an implicit default constructor that has no parameter and that has the name of the class. Also the object expression 
specific construct allows to instantiate and to populate an object inline (see ObjectExp).

A constructor operation can be implicitly or explicitly invoked through an instantiation expression (see 
InstantiationExp).

Superclasses
ImperativeOperation

Associations
/body : ConstructorBody [0..1] {composes} (from ImperativeOperation)

The imperative implementation for this constructor.

Constraints

The body of a constructor operation is a direct instance of ConstructorBody.

self.body.isTypeOf(ConstructorBody)

Notation

The notation for declaring constructors is similar to the notation for declaring any imperative operation except that it uses 
the constructor keyword and declares no result. The name of the constructor is usually the name of the context type. The 
body of the constructor is notated within braces. It contains directly the contents of the object expression. 

The declaration below is an example of a constructor definition for a Column metaclass.

constructor Column::Column (n:String,t: String)  { name:=n; type:=t; }

8.2.1.14 ContextualProperty

A contextual property is a property that is owned by a transformation or a library but is defined as an extension of the 
type referred by the context. Such properties are accessed as any other property of the referred context. This is typically 
used to define intermediate properties as class extensions of metaclasses involved in a transformation. Intermediate data 
is created temporarily by a transformation to perform some needed calculation but which is not part of the expected 
output.
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Superclasses
Property

Associations
context : Class [1]

The class being extended with this property.
overridden : Property [0..1]

The imported property being overridden by this property.
initExpression : OclExpression [0..1] {composes}

An optional OCL Expression to initialize the contextual property.

Notation

The notation for a contextual property uses the “regular” property keyword. It may be complemented with the 
intermediate qualifier if the property is defined as an intermediate property of the operational transformation. 

intermediate property Class::leafAttributes : Sequence(LeafAttribute);

8.2.1.15 MappingOperation

A mapping operation is an operation implementing a mapping between one or more source model elements into one or 
more target model elements. 

A mapping operation may be provided with its signature only or may additionally be provided with an imperative body 
definition. In the former case, where there is no body provided, the operation is said to be a black-box. Mapping black-
boxes are useful to escape from the QVT language in specific sections of the transformation. An example of a situation 
where the escape mechanism is useful is when the transformation treatment requires dedicated techniques like lexical and 
syntax analysis that will be hard to provide using the QVT formalism.

A mapping operation always refines conceptually a relation where each relation domain corresponds to a parameter of the 
operational mapping. 

The when clause acts either as a pre-condition or as a guard, depending on the invocation mode of the mapping 
operation. The where clause always acts as a post-condition for the mapping operation. 

The body of a mapping operation is structured in three optional sections. The initialization section is used for computation 
prior to the effective instantiation of the outputs. The population section is used to populate the outputs and the 
finalization section is used to define termination computations that take place before exiting the body.

There are three reuse and composition facilities associated to mapping operations:

1. A mapping operation may inherit from another mapping operation. This means invoking the initialization section of 
the inherited operation after executing its own initialization section. 

2. A mapping operation may also merge other mapping operations. This means invoking the merged operations after the 
termination section.

3. A mapping operation may be defined as a disjunction of other mapping operations. This means selecting, among the 
set of disjuncted mappings, the first that satisfies the when clause and then invoking it. The execution semantics sub-
section below provides the details of these reuse facilities.
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Syntactically, a MappingOperation is a subclass of the ImperativeOperation metaclass. As such it is owned by 
an OperationalTransformation, which is a specific kind of Class.

Superclasses
ImperativeOperation

Attributes
/isBlackbox: Boolean (from ImperativeOperation)

Indicates whether the body is available. If isBlackbox is true, this means that the definition should be 
provided externally in order for the transformation to be executed.

Associations
inherited: MappingOperation [*] {ordered}

Indicates the list of the mappings that are specialized. 
merged: MappingOperation [*] {ordered}

Indicates the list of mapping operations that are merged. 
disjunct: MappingOperation [*] {ordered}

Indicates the list of potential mapping operations to invoke.  
refinedRelation: Relation [0..1]

The refined relation, if any.
when: OclExpression [0..1] {composes}

The pre-condition or the guard of the operational mapping. It acts as a pre-condition when the operation is called 
with strict semantics, it acts as a guard otherwise (see MappingCallExp).

 where: OclExpression [0..1] {composes}
The post condition for the operational mapping.

Constraints

The body of a constructor operation is a direct instance of MappingBody.

self.body.isTypeOf(MappingBody)

Execution Semantics

We first define the semantic of the execution of a mapping operation in absence of any reuse facility (inheritance, merge, 
and disjunction), then we describe the effect of using these facilities.

Executing a mapping operation

A mapping operation may declare a contextual parameter, in which case the operation extends the type of the contextual 
parameter. Resolving the mapping call implies finding the operation to call on the basis of the actual type of the source 
(self variable). This follows usual object-oriented virtual call semantics. 

After call resolution, the parameters of the mapping include: the context parameter (if any), the owned parameters (from 
Operation::ownedParameter), and the parameters declared as result. All out parameters, including result 
parameters, have their value initialized to null.  All in or inout non null values, except for the primitive types are 
passed by reference. However it is not legal to change the value when an object is declared with in direction kind. 

After passing the parameters, the type compliance of the actual object parameters as well as the when clause are checked. 
If this fails, null is returned.
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If the guard succeeds, the relation trace is checked to find out whether the relation already holds. If so, the out 
parameters are populated using the corresponding trace tuples of the relation and the value associated to the result 
parameters is returned. Otherwise the body of the operation is executed in three sections.

The execution semantics of the body of a mapping operation is as follows:

1. The initialization section is entered and the expressions of the initialization section are executed in sequence. In the 
initialization section typically we find variable assignments, mapping or query invocations or explicit assignments of 
the output parameters.

2. At the end of the initialization section, an implicit “instantiation section” is entered, which provokes the instantiation 
of all the out parameters that are object instances and  that still have a null value. Collection types are initialized 
with empty collections. By doing so, the corresponding relation trace tuple is populated. From that point the relation 
is considered to hold and the trace data becomes available.

3. The population section is entered and each expression is executed in sequence. A population section typically 
contains a list of object expressions, which correspond with the out and inout parameters.

4. The termination section is entered provoking the execution in sequence of the list of expressions. A termination 
section typically contains additional computations that need to take place after population of output objects occurs, 
such as operation mapping invocations.

Executing mappings that inherit from other mappings

A mapping that has inherited mappings invokes first its initialization section, including the implicit instantiation section, 
and then invokes the inherited mappings. Invocation of the inherited mappings follows the “standard” invocation 
semantics, except that the out parameters may now start with a non-null value, which would be the case if the out 
parameter were changed in the initialization section of the inheriting mapping. Parameter compliance between the 
inheriting mapping and the inherited mapping follows the compliance constraints between a caller and a callee.

Executing mappings merging other mappings

The merged mappings are executed at the end of the execution of the merging mapping. The parameters of the merging 
mapping are passed to the parameters of the merged mappings, including the actual value of the out parameters. 
Parameter compliance between the merging mapping and the merged mappings simply follows the compliance constraints 
between a caller and a callee.

Executing mappings defined as disjunction of other mappings

An invocation of a mapping operation defined as a disjunction of other mapping operations is done in two steps: firstly, 
the guards of the disjuncted mappings are executed in sequence until one of the guards succeeds. If no guard succeeds, the 
null value is immediately returned. Otherwise, the body of the mapping which guard has succeeded is executed. The 
signature of the disjuncting mapping must conform to the signature of the disjuncted mappings, following ordinary 
constraints between the caller and the callee. Specifically, the result of the disjunction needs to be a super type of the 
result type of the composed mappings.

Notation

A mapping operation signature is notated as any other operation signature except that it uses the mapping keyword, and 
includes various additional elements. The general form is:

mapping inout <contexttype>::<mappingname> (<parameters>,) : <result-parameters> 
  inherits <rulerefs>, merges <rulerefs>, disjuncts <rulerefs>,  
  refines <rulerefs>  when {<exprs>} where { <exprs>} 
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The <contexttype> appears only if the mappings declare a contextual parameter. For result parameters the direction 
kind is necessarily out and is not notated. For the other parameters, including the contextual parameter, the default 
direction kind is in.

The declaration below is an example of a mapping operation that defines a contextual parameter (of type Package), a 
result (of type Schema), and a guard. No body is defined (it is a black-box).

mapping Package::packageToSchema() : Schema 
    when { self.name.startingWith() <> "_"};

8.2.1.16 MappingParameter

A mapping parameter is a parameter of a mapping operation. A mapping parameter has a direction kind that restricts the 
changeability of the argument passed when the mapping operation is invoked. Possible values of direction kinds are: in, 
inout, and out.  

A mapping operation being a refinement of a relation, a mapping parameter is associated with a domain of the refined 
relation. This correspondence is based on the order of the declared parameters and domains, where the contextual 
parameter, if any, is the first and the result parameters are positioned after the “regular” parameters. The type of the 
mapping parameter should necessarily be the same as the type specified by the object pattern of the domain (see Domain 
definition in Clause 7.11). 

Superclasses
VarParameter

Attributes
/kind: DirectionKind (from VarParameter)

The direction indication of the parameter. in value means that the actual parameter is not changed, inout 
means the actual parameter is updated, out means that the actual parameter will receive a new value.

Associations
extent: ModelParameter [0..1]

The extent of the mapping parameter. If not provided, the extent is inferred by inspecting the model types of the 
transformation. See the inference rules below. Should be explicitly provided when there is an ambiguity on the 
extent to own the potential created element corresponding to this parameter.

referredDomain: RelationDomain [0..1]

The relation domain that corresponds to the parameter.

Constraints

The type of the parameter is the type of the object template expression of the referred domain.

Extent inference rule for mapping parameters

If the mapping parameter direction is “in,” inspect the input model types of the transformation to find the one that 
contains the type of the parameter. A model type “contains” a type if the type is directly or indirectly contained by the 
package defining the model type.

If the model parameter direction is “inout” or “out,” inspect the inout or output model types of the transformation to find 
the one that contains the type of the parameter.

In both cases there should be a unique model type found. 
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Notation

The extent of a mapping parameter can be provided explicitly using the '@' symbol after the type of the mapping 
parameter. In that case the declarator has the form: 

mymappingparameter : myextent::MyType@mymodelparameter 

It is not mandatory to provide the extent when it can be inferred from the type.

Example: 

transformation T(in src:S, out dest1:D, out dest2:D); 
mapping X::foo(inout Y@dest1) : Y@dest2; 
  // 'X' is a class of 'S' metamodel and 'Y' is a class of 'D' metamodel

8.2.1.17 OperationBody

An operation body contains the implementation of an imperative operation that is an ordered list of expressions that are 
executed in sequence.

An operation body defines a scope that is contained in the scope of the operation definition. Variables and parameters 
defined in outer scopes are accessible.

Superclasses
Element

Associations
content: OclExpression [*] {composes, ordered}

The list of expressions of the operation body.
variable: Variable [*] {composes}

The variables defined implicitly within this operation body. This concerns implicit variables in object 
expressions (ObjectExp).

Notation

An operation body is delimited by braces where each contained expression is separated by semi-colons. Within the 
operation body the self variable represents the context parameter, if any, and the result variable represents the parameter 
to be returned, which is a tuple when multiple results are declared.

8.2.1.18 ConstructorBody

A constructor body contains the implementation of a constructor operation or the implementation of an inline constructor 
(see ObjectExp).

Superclasses
OperationBody

Notation

A constructor body is delimited by braces where each contained expression is separated by semi-colons. However, in 
contrast with the general operation body notation, the variable representing the instantiated object can be omitted when 
referring to its properties. 
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The example below illustrates this notation facility. A constructor for a Message class that defines two ‘name’ and ‘type’ 
attributes is defined.

constructor Message::Message(messName:String,messType:String) {  
   name := messageName; // same as result.name := messageName 
   type := messType:String;  // same as result.type := messType 
}

8.2.1.19 MappingBody

A mapping body defines the structure of the body of a mapping operation. It consists of three non-mandatory sections: 
initialization, population, and termination sections. See execution semantics in the MappingOperation metaclass 
description.

Superclasses
OperationBody

Associations
initSection: OclExpression [0..*] {composes,ordered}

The initial section containing the ordered set of expressions to be executed in sequence prior to a possible 
instantiation of the output parameters.

/content: OclExpression [0..*]  {composes,ordered} (from OperationBody)

The population section containing the expressions used to populate the inout parameters and out parameters.
endSection: OclExpression [0..*] {composes,ordered}

The termination section containing other expressions to perform final computations before leaving the mapping 
operations.

Notation

The notation uses braces that come after the signature of the mapping operation. The general syntax is:

mapping <mapping_signature>  // see MappingOperation description 
{ 
   init { … } // init section 
   population { … } // population section 
   end { … } // end section 
}

In most cases, the population keyword can be skipped. The init and end keywords cannot be skipped unless these 
sections are empty.

The rule for interpreting a body in which there is no population keyword is as follows:

1. If the mapping operation defines a unique result, the list of expressions in the body is the list of expressions of the - 
unique - implicit object expression (see ObjectExp) contained by the population section.

2. If the mapping operation defines more than one result, the list of expressions in the body is the list of expressions of 
the population section.

This notation convention facilitates the writing of concise specifications since the situation where there is a unique result 
is very common.
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An explicit usage of the population keyword may, however, be required in certain situations, such as to update inout 
parameters.

According to these two rules, the declaration:

mapping A::AtoB() : B { 
   init { … } 
   myprop1 := … ; 
   myprop2 := …; 
}

is equivalent to:

mapping A::AtoB() : B { 
   init { … } 
   population { 
      object result:B {  
           myprop1 := … ; 
            myprop2 := …; 
     }; 
   } 
}

The same convention as for the general operation body applies to mapping bodies: self represents the contextual argument 
and result the declared result, possibly a tuple if more than a result is declared.

Concepts related to the usage of imperative operations.

Figure 8.3 depicts the specific concepts related to the usage of the imperative operations. The group of classes described 
in this clause consists of: ImperativeCallExp, MappingCallExp, ObjectExp, ResolveExp, and 
ResolveInExp.

8.2.1.20 ImperativeCallExp

An imperative call expression represents the invocation of an imperative operation. Unless isVirtual is 
true, this invocation is virtual: the operation to call depends on the actual type of the context parameter (similarly as for 
Java and C++ languages). 

Superclasses
OperationCallExp

Attributes
isVirtual: Boolean = true

Indicates whether the referred operation should be statically called (true value) or dynamically resolved (false 
value). The default value is true.

Notation

An imperative call is notated as any operation call. The source object may not be explicitly provided. 

The general syntax is:

        <operationreference>(<arg1>,<arg2>, …, <argN>) or 
        <source>.<operationreference>(<arg1>,<arg2>, …, <argN>) or 
        <source>-><operationreference>(<arg1>,<arg2>, …, <argN>).
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The third form is used for collection operations.

Note that the omission of the source is a shorthand in terms of the execution semantics - the source is the transformation 
class itself, denoted by ‘this,’ but not in terms of the metamodel representation: the OperationCallExp::source 
property may be left empty.

Qualified names in <operationreference> can be used to disambiguate operations. This is specifically needed when two 
accessed modules define operations with the same name.

8.2.1.21 MappingCallExp

A mapping call expression represents the invocation of a mapping operation. A mapping operation can be invoked either 
in strict mode or in standard mode, depending on the value of the isStrict Boolean property. In strict mode the when 
clause is evaluated as a pre-condition. In contrast, when the mapping is invoked in standard mode, the execution of the 
mapping body is skipped and the null value is returned to the caller.

Superclasses
ImperativeCallExp

Attributes
isStrict : Boolean

Indicates the mode of the mapping invocation. 

Notation 

A mapping call is notated as any other operation call except that is uses the map or xmap keyword. The latter keyword 
is used when isStrict is true. 

If the invoked mapping defines a contextual parameter, the call notation will require a source object.

// for a mapping  defined with a contextual signature: Class::class2table() : Table 
myumlclass.map class2table();  // invocation with non-strict semantics 
myumlclass.xmap class2table(); // invocation with strict semantics

// for a mapping  defined with a non-contextual signature: attr2Column(Attribute) : Table  
map attr2column(myattr);  // invocation with non-strict semantics 
xmap attr2column(myattr); // invocation with strict semantics

The map and xmap keywords may be called on a list as source and have, if needed, the iterator variable in parentheses. 
This is called the “imperative collect” shorthand: the mapping operation is in fact the body of the imperative collect 
construct xcollect (see ImperativeLoopExp). 

self.ownedElement->map class2table();  
     // shorthand of self.ownedElement->xcollect(i | i.map class2table()); 
     // the iterator is implicit

self.ownedElement[Class]->xmap(i) i.class2table();  
    // the iterator variable is explicitly passed in parentheses of xmap keyword

It is always possible to invoke a mapping operation using a reference to a transformation instance as the source of the 
call.

// for a mapping  defined with a non-contextual signature: attr2Column(Attribute) : Table 
this.map attr2column(myattr);  // the this keyword refers to the current transformation instance
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When the invoked mapping operation has a context type, the context argument takes the position of the first argument. If 
the mapping declares additional parameters, the corresponding additional arguments are passed with its position shifted.

// for a mapping  defined with a contextual signature: Class::class2table() : Table 
this.map class2table(myumlclass);  // equivalent to myumlclass.map class2table()

Invoking a mapping operation with a transformation instance as the source argument may be useful when a transformation 
make usage of other coarse-grained transformations (transformation composition). The example below depicts this 
situation: the cleaningTransf is an instance of a transformation that has been imported. An explicit call to the 
removeDup mapping is done on behalf of this cleaningTransf instance.

transformation Uml2Java(in uml:UML,out java:JAVA) 
   access transformation UmlCleaning(UML);

mapping UmlCleaning::Class::removeDups(); // declaring the signature of an imported mapping

main () { 
  cleaningTransf  = UmlCleaning(uml); // instantiating the imported transformation 
  // first pass: cleaning the UML classes 
  uml->objectsOfType(Class) // invoking the imported transformation 
       ->forEach (cl) { 
           cleaningTransf.map removeDups(cl); 
       } 
  // second pass: transforming all UML classes 
  uml->objectsOfType(Class)->forEach (cl) { 
       cl.map umlclass2javaclass (); 
  } // equivalent to:  this.map umlclass2javaclass(cl) 
}

mapping UML::Class::umlclass2javaclass(): JAVA::Class { … }

8.2.1.22 ResolveExp

A resolve expression is an expression that inspects trace objects of the transformation in order to retrieve target objects 
created or updated by mapping operation invocations executed previously on source objects. Conceptually, for each 
mapping invocation, the transformation records the correspondence between source and target objects participating in a 
given mapping invocation. A resolve expression has a conditional expression that is used to filter the target objects. 

The source object is optional. When no source object is provided, this expression inspects all the targets created or 
updated by all mapping operations irrespective of the source objects.

There are various variants for this construct. Firstly, instead of looking for all target objects satisfying the condition, it is 
possible to indicate that the first is to be returned. 

Also, instead of looking for created or updated objects, the inverse operation can be requested, that is, looking for all 
source elements responsible for creating or updating a given target.

The last orthogonal variant allows invoking the construct in deferred mode. The effect of this mode is to postpone the 
lookup of target objects to the end of the execution of the transformation. This facility is used in conjunction with an 
assignment. It may be useful to avoid multiple passes to solve a transformation problem. 

Superclasses
CallExp
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Attributes
one: Boolean

Indicates whether the resolve expression should return a unique first result or all results.
isInverse: Boolean

If true, the resolve expression looks for the source objects responsible for the “creation” of an object instead of 
looking for the objects “created” by the source object.

isDeferred: Boolean

Indicates whether the resolve expression returns a future value containing the necessary information to compute 
the resolution later.  See execution semantics.

Associations
target: Variable [0..1] {composes}

A variable whose type indicates the primary condition for filtering the potential result objects. The extra 
condition (see ‘condition’ property) may use the variable to express a complementary filtering condition. This 
variable also has an influence in the type returned by the resolve expression (see type returned by the resolution 
expression).

condition : OclExpression [0..1] {composes}

An optional additional Boolean condition to be evaluated to filter the potential results.

Type of a resolve expression

The type of a ResolveExp expression depends on the type of the ‘target’ variable and on the multiplicity indication (the 
‘one’ property). If ‘one’ is true, the returned type is the type of the ‘target’ variable. Otherwise, the returned type is a 
Sequence of the type of the ‘target’ variable. If no target variable is provided, the type is either Object (the type 
representing all types, see Clause 8.3.1) either a Sequence of Objects - depending on the multiplicity.

Execution Semantics

The trace information for a mapping operation invocation is created after the execution of the initialization section (see 
MappingCallExp execution semantics). The trace contains a tuple that stores a reference of the mapping operation - 
or, what is equivalent, a reference to the corresponding implicit relation - and then the value for each parameter, including 
the context variables and the result variables. It remembers the direction kind of each parameter as well as the position of 
the slot referring to the context variable and the slot of the result variables. In this sense, the trace for operational 
transformation extends the structure of the trace defined for relational transformations.

An execution engine then has sufficient information to be able to keep track of the objects that were derived from a 
source object and to reverse the relationship. 

Deferred resolutions have implications in the execution semantics of assignment expressions (see AssignExp). The 
effect is explained below:

A deferred assignment is an assignment where the value - necessarily a unique value - is a future value  
produced by a resolve expression. This assignment is not executed at the time the assignment is reached  
during the control flow. A null value is returned instead. In the meantime, the execution engine stores the 
following information for the future variable: the source object, the function representing the filtering  
expression and the property or the variable reference to be assigned. This information is sufficient to allow the 
assignment to be performed at the end of the execution of the entry operation of the transformation. The tuple 
storing this information is appended to an ordered list that is given to the entry operation to terminate with the 
execution of the transformation.
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Notation

The notation uses one of these three forms:

<resolve_op> '(' (<identifier> ':' )? <typespec> ')'  // no extra condition 
|  <resolve_op> '(' (<identifier> ':' )? <typespec> '|' <expression> ')'  // with extra condition 
| <resolve_op> '(' ')' // no target, no extra condition

where the <resolve_op> is one of the following: resolve, invresolve, and invresolveone. 

When isDeferred is true the late keyword is used before the operation name. 

The resolution operator may be called on a list. This is a shorthand for invoking it in the body of a ForExp expression. 

myresult := mysourceobject.resolveone(Table);  
myresult := mysourceobject.resolveone(t:Table | t.name.startsWith("_")); 
myprop := mylist->late resolve(Table);  
     // shorthand for mylist->forEach(i) { i.late resolve(Table); }

8.2.1.23 ResolveInExp

A resolve in expression looks for target objects created or updated from a source object by a unique mapping operation. 
In contrast, a resolve expression performs a lookup for all mapping operations. The source object is optional. When no 
source object is provided, this expression inspects all the targets created or updated by the mapping operation irrespective 
of the source objects.

All variants described for the resolve expression are applicable to the resolve in expression.

A resolve in expression may be applied with an empty source argument. In that case it inspects all objects created or 
updated by the rule (instead of inspecting only the objects created or updated from the source object).

Type of a resolveIn expression

The type of a ResolveInExp expression depends on the type of the ‘target’ variable, the 'inMapping' operation and on the 
multiplicity indication (the ‘one’ property). The overall returned type is specified in terms of an intermediate resolved 
type.

If a 'target' variable is provided, the resolved-type is the type of the 'target' variable 
Otherwise if an 'inMapping' is provided, .the resolved-type is the type of the 'inMapping'. 
Otherwise the resolved-type is Object (the type representing all types, see Clause 8.3.1).

If ‘one’ is true, the returned type is the resolved-type. Otherwise, the returned type is a Sequence of the resolved-type.

Superclasses
ResolveExp

Association
inMapping: MappingOperation [0..1]

The mapping rule that is the target for trace inspection.
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Notation

The notation uses the operation call syntax where the called operation is named resolveIn or resolveoneIn. The 
notation uses the same syntax as ResolveExp except that the operation names are one of the following resolveIn, 
resolveoneIn, invresolveIn, or invresolveoneIn. The two variants starting with “inv” prefix correspond to the “inverse” 
variant (ResolveExp::isInverse == true). 

The late keyword is used for deferred resolutions. The same notational conventions as for the ResolveExp apply. The 
first parameter is the reference of the rule and the second parameter is the condition to evaluate.

The reference to the rule is given by a qualified identifier (context class and name). As a limitation of the concrete syntax, 
it is not possible to provide a reference to a rule if there is an ambiguity (having the same name and context but different 
parameters).

myresult := mysourceobject.resolveIn(myrule, mycondition); 

8.2.1.24 ObjectExp

An object expression is an inline instantiation facility. It contains a constructor body, it refers to a class and refers to a 
variable, possibly null valued. If the variable is null, a new object of the given class is created, then assigned to the 
variable and finally the constructor body is executed. If the variable is non-null, no instantiation occurs but the 
constructor body is used to update the existing code. In both cases the value returned is the value of the variable at the 
end of the execution of the body. 

All variables of outer scopes can be accessed within the object expression.

Superclasses
InstantiationExp

Associations
referredObject: Variable [1]

The object to be updated or created. 
body: ConstructorBody [1] {composes}

The inline constructor body for the object to be instantiated or updated.
/initializationOperation : Constructor [0..1] (from InstantiationExp)

The constructor that uses the arguments to initialize the object after creation. The constructor may be omitted 
when implicit construction occurs with no arguments.

/instantiatedClass: Class [1] (from InstantiationExp)

Indicates the class of the object to be created or populated.
/extent:  Variable [0..1](from InstantiationExp)

References a model parameter where the object should reside in case it is instantiated. This is optional. 

Notation

The notation uses the object keyword followed by the referred variable and the referred class. There are some syntax 
variants depending on the availability of the referred variable and the possibility to skip the class reference. 

object x:X { … } // An explicit variable here 
object Y { … } // No referred variable here. 
object x: { … } // the type of 'x' is skipped here when already known
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When an explicit extent is provided, the model parameter variable name postfixes the type of the object expression using 
the “@” separator symbol.

object x:X@srcmodel { … }  // x is created within the ‘srcmodel’

When an object expression is the body of an imperative collect expression (see xcollect in ImperativeIterateExp), 
the reference to the collect construct may be skipped and the arrow symbol applies on the object keyword.

list->object(x) X{… } // shorthand for list->xcollect(x | object X{ … })

Under certain circumstances, the object keyword itself is skipped and its body contents directly expanded in an outer 
definition. See the notation of MappingBody. 

8.2.2 The ImperativeOCL Package

The ImperativeOCL Package extends OCL with imperative expressions to allow expressing complex treatments 
imperatively but in the meantime keeping some of the advantages of OCL expressivity. It also extends the OCL type 
system with additional facilities such as dictionaries (hashtables).

For convenience, the metaclasses defined in this package are divided in two groups. The first concerns the imperative 
expressions, the second one concerns the additions to the type system.

Imperative expressions

Figure 8.6 depicts the class hierarchy for the side-effect expressions.

Figure 8.6 - Imperative OCL Package - Side-effect expressions hierarchy
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Figure 8.7 depicts the specific control and block expressions enhancements as well as the instantiation facility.    

Figure 8.8, Figure 8.9 and Figure 8.10 depict the remaining expressions like those related with attribute manipulation, 
assignment, exception handling.     

8.2.2.1 ImperativeExpression

The imperative expression is an abstract concept serving as the base for the definition of all side-effect oriented 
expressions defined in this specification.

Figure 8.7 - Imperative OCL Package - Control and instantiation constructs
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Note: In contrast with pure OCL side-effect free expressions, imperative expressions do not behave as functions. For 
instance, executing interrupt constructs like break, continue, raise, and return have an effect in the control flow of the 
imperative expressions that contain them. 

Superclasses
OclExpression

8.2.2.2 BlockExp

A block expression is an expression that executes in sequence an ordered list of expressions. The returned value is null. 
The execution of a block expression may be interrupted by a break, a continue, or a return expression.

A block expression is typically used in conjunction with other constructs like if and loop expressions.

Figure 8.8 Imperative OCL Package - Assert and Assign Expressions

Figure 8.9  - Imperative OCL Package - Exception Expressions
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Figure 8.10  - Imperative OCL Package - Return Unlink and VariableInit  Expressions

Figure 8.11 - Imperative OCL Package - Type extensions
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The block creates a new scope, local variables to the scope are not accessible outside. Variables defined in outer scopes 
are accessible within the block.

Superclasses
ImperativeExpression

Associations
body: OclExpression [0..*] {composes, ordered}

The ordered list of expressions to be executed in sequence.

Notation

The notation uses the do keyword followed by braces to delimit the list of expressions. However, when used within the 
following control expressions: if, switch, compute, and for expressions the do keyword can be skipped.

do  { … } // executes the body and returns null 
if name.startswith("_") then { … } else null endif // do keyword being skipped

8.2.2.3 ComputeExp

A compute expression is an expression that defines a variable, possibly initializing it, and defines a body to update the 
value of the variable. It returns the value of the variable at the end of the execution of the body.

Superclasses
ImperativeExpression

Associations
returnedElement : Variable [1] {composes}

The local Variable to hold the value for the result of the expression.
body : OclExpression [1] {composes}

The body to be executed to compute the value of the given variable. 

Notation

The notation uses the compute keyword with a variable declaration in parentheses followed by the body. 

compute  (x:String = "_") { … }  // The body is here a block expression

8.2.2.4 WhileExp

A while expression is a control expression that iterates on an expression until a condition becomes false. It returns null. 
A break expression executed within the body provokes the termination of the while expression. A continue 
expression provokes the execution of the next iteration without executing the remaining instructions in the block.

Superclasses
ImperativeExpression

Associations
condition : OclExpression [1]{composes}

The condition to be evaluated at each iteration (including the first iteration).
body : OclExpression [1] {composes}

The expression on which the while expression iterates.
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Notation

The notation uses the while keyword with a condition in parentheses followed by a body.

while (not node.isFinal()) { … } 
compute  (x:MyClass := self.getFirstItem()) { while (x<>null) { … } }

When a compute expression is used on top of a while expression, the compute keyword can be skipped and the result 
variable initialization be placed within the parentheses of the header.  

while (x:MyClass := self.getFirstItem(); x<>null) { … }  

8.2.2.5 ImperativeLoopExp

An imperative loop expression is a generic concept representing an imperative loop statement that iterates on a collection, 
the source of the loop. It declares iterators, a body, and a condition. The execution of the loop may be interrupted by a 
return, a break, or a continue expression that is invoked within the loop.

This abstract concept serves as the base to define the pre-defined imperative loop constructs such as forEach, forOne, 
xcollectselect, and xcollectselectOne. 

Superclasses
LoopExp
ImperativeExpression

Associations
condition : OclExpression [0..1] {composes}

An optional additional Boolean condition to be evaluated to filter the potential results. The role played by this 
condition depends on the concrete loop construct being instantiated.

8.2.2.6 ForExp

A for expression is an imperative loop expression that iterates over a source collection evaluating an expression for each 
element of the collection that satisfies a given condition. It returns the null value. 

A for expression is a generic construct: it has two pre-defined variants named forEach and forOne. The name attribute is 
used to distinguish between the variants.

The forEach loop executes the body for all elements of the collection that satisfies the condition, whereas, forOne 
executes the body only for the first element that satisfies the condition. 

Superclasses
ImperativeLoopExp

Attributes
/name : String (from NamedElement)

The name of the loop variant being used.

Associations
/condition : OclExpression [0..1] {composes}(from ImperativeLoopExp)

The condition restricting the elements in the collection for which the body is executed.
/body : OclExpression [1] {composes} (from LoopExp)
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The body to execute at each iteration.
/iterator : Variable [1..*] {composes,ordered}(from LoopExp)

The iterator variables defined for this loop.
/source : OclExpression [1] {composes} (from LoopExp)

The source collection.

Semantics

The behavior of the two predefined variants is given below. All these definitions use the basic imperative constructs: 
compute, while, and block.

Collection(T)::forEach(source, iterator, condition,body)  = 
          do { 
              count : Integer := 1; 
              while (count <= source->size()) { 
                    var iterator := source->at(count); 
                    if (condition) body; 
                    count += 1; 
               }; 
         };

Collection(T)::forOne(source, iterator, condition,body)  = 
          forEach (iterator | condition) { 
              body; 
              break; 
          }

T represents the type of the source element.

Collection(T) is any collection type. When applying the for expression, if the source collection is not ordered it is 
implicitly converted into the corresponding ordered collection (Set and Bag become respectively OrderedSet and 
Sequence).

Notation

<source>-><for-name> (<iterator-list> | <condition>) <body> ; 
<source>->< for-name> (<iterator-list> ) <body> ;

where <for-name> is the name of the loop construct - for instance forEach and forOne.

list->forEach(i) {…}  // in this example the body is a block expression 
compute (s:String = "_") { self.ownedElement->forEach(i|i.isKindOf(Actor)) {s += i.name;}} 
    // in this example the for construct is embedded within a compute expression 
list->forOne(i|i.isKindOf(Actor)) { …} 

When using a foreach expression in conjunction with a compute expression the following shorthand can be used: 

mylist->forEach(i;x:X=...|cond) { … } 

Which is equivalent to: 

compute (x:X=...) mylist->forEach(i|cond) { … } 

This is similar to the shorthand notation for while expression (see 8.2.2.4). 
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8.2.2.7 ImperativeIterateExp

An imperative iterate expression is an imperative loop expression that iterates over a source collection and builds a given 
result using iterator variables, a target variable, a body, and a condition expression.

This expression is a generic construct: it has five pre-defined variants named xcollect, xcollectselect, xcollectselectOne, 
xselect, and xselectOne. The name attribute is used to distinguish between the variants. The behavior of these variants is 
similar to their OCL counterparts except that the execution of the loop can be interrupted through the usage of break, 
continue, raise, and return expressions. Also a specific implicit type casting rule applies depending on the condition 
expression that is associated with the iteration (see implicit type casting rules sub-clause).

A xcollectselect behaves pretty much as an OCL collect construct composed with a select construct, except that the 
execution is conceptually performed within a single loop. In addition any null value is removed from the result list. See 
semantics clause above, for a detailed definition.

Superclasses
ImperativeLoopExp

Attributes
/name : String (from NamedElement)

The name of the loop variant being used.

Associations
target : Variable [0..1] {composes}

The variable that holds the value computed in one iteration. 
/condition : OclExpression [0..1] {composes}(from ImperativeLoopExp)

The condition restricting the values being collected.
/body : OclExpression [1] {composes} (from LoopExp)

The value that is appended to the result variable at each iteration.
/iterator : Variable [1..*]{composes, ordered} (from LoopExp)

The iterator variables defined for this loop.
/source : OclExpression [1] {composes}(from LoopExp)

The source collection.

Type re-casting

The type of the sequence or the object returned by the ImperativeIterateExp construct depends on the usage of the 
‘condition’ expression: if the condition is an instance of TypeExp, the condition is firstly re-interpreted as a Boolean 
expression of the form ‘oclIsKind(TypeExp).’ Additionally, the returned sequence (resp. the returned single object) is re-
casted as a sequence of the type denoted in the type expression (resp. as an instance of the denoted type). If the 
‘condition’ expression is not used or is not a TypeExp instance no implicit re-casting semantic applies.

Example:   

self.mysequence[MyType]  
    // the type of this expression is a Sequence of 'MyType'

self.mysequence[oclIsKind(MyType) and name=="foo"]  
    //the type is the type of the self.mysequence source expression 
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Semantics

The behavior of the predefined variants of the collector expression is given below. Note that the approach taken is similar 
to the way side-effect free iterations are defined in OCL. All these definitions use the basic imperative constructs: 
compute, forEach, and block.

Collection(T)::xcollect(source, iterator, body)  : Sequence(TT)  = 
    compute (res:Sequence(TT) := Sequence{}) 
          source->forEach (iterator:T) { 
              var target : TT := body; 
              if (target<>null) res += target; 
          };

Collection(T)::xselect(source, iterator, condition) : Sequence(T)  = 
    compute (res:Sequence(T) := Sequence{}) 
          source->forEach (iterator:T) { 
              var target : T := iterator; 
              if (target<>null and condition) res += target; 
          };

Collection(T)::xselectOne(source, iterator, condition) : Sequence(T) = 
    compute (res:Sequence(T) := Sequence{}) 
          source->forEach (iterator:T) { 
              var target : T := iterator; 
              if (target<>null and condition) {res += target; break;} 
          };

Collection(T)::xcollectselect(source, iterator, target, body, condition) : Sequence(TT) = 
    compute (res:Sequence(TT) := Sequence{}) 
          source->forEach (iterator:T) { 
              var target : TT := body; 
              if (target<>null and condition) res += target; 
          };

Collection(T)::xcollectselectOne(source, iterator, target, body, condition) : Sequence(TT) = 
    compute (res:Sequence(TT) := Sequence{}) 
          source->forEach (iterator:T) { 
             var target : TT := body; 
             if (target<>null and condition) {res += target; break;} 
          };

T and TT are respectively the type of the source elements and the type of the target elements. When applying the 
imperative iterate expression if the source collection is not ordered, it is implicitly converted into the corresponding 
ordered collection (Set and Bag become respectively OrderedSet and Sequence). If the condition is not given, it should be 
replaced by true in the definitions above.

Notation

The notation depends on the list of items that are explicitly passed to the construct. All possibilities are showed below: 

<source> -> <collector-name> (<iterator-list>; <target>  = <body> | <condition>)  ; 
<source> -> <collector-name> (<iterator-list> | <body_or_condition>)  ; 
<source> -> <collector-name> (<body_or_condition>)  ;

where <collector-name> is the name of the loop construct - for instance xcollectselect and xcollectselectOne.
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list->xcollectselect(i;res= i.prop | not res.startswith("_")) ;

When iterating on property values, the following shorthand may be used:

list->propertyname[res | condition]  
    // represents  list->xcollectselect(i;res:=i.propertyname | condition)

Hence, the previous example may be rewritten as:

list->prop[res| res.startswith("_")];

The target variable may be omitted. The same example can then be written as:

list->prop[startswith("_")]) ;

If a property is invoked with "->" symbol and no “bracket” follows, this means that xcollect construct is being used.

list->prop;    // same as list->xcollect(i | i.prop), the iterator variable is implicit here

Also, if a list reference is accompanied by brackets with no previous “->” symbol, this means the xselect construct is 
being used.

list[condition];    // same as list->xselect(i | condition)

All these defined shorthand conventions used to collect property values equally apply to operations. However, the referred 
operation cannot be a pre-defined collection operation since this would conflict with regular OCL call of collection 
operators.

list->foo()[startswith("_")]) ; // same as list->xcollectselect(i; res= i.foo() | res.startswith("_"))

These shorthand conventions apply also to the xcollectselectOne and xselectOne variants, except a “!” symbol should 
prefix the brackets used to render the condition.

list->prop![startswith("_")]) ; // calling xcollectselectOne(i;res= i.prop | not res.startswith("_"))

8.2.2.8 SwitchExp

A switch expression is an imperative expression that is used to express alternatives that depend on conditions to evaluate. 
Semantically it behaves almost as nested OCL if expressions. However, there are two important differences: the switch 
expression is sensitive to interrupt expressions (break, continue, raise, and return expressions) that may be invoked on an 
inner expression. Also, it extends the corresponding OCL concept by making non mandatory the else part. 

Superclasses
ImperativeExpression

Associations
alternativePart : AltExp [*] {composes,ordered}

The alternative parts. Each alternative consists of a condition and an expression to evaluate. The alternatives are 
evaluated in sequence until one condition succeeds.

elsePart : OclExpression [0..1] {composes}

The expression to evaluate if all the conditions fail.
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Notation

Two distinct notation styles are available for the same construct. One may use the traditional if-then-else notation, using 
a Java-like notation instead of OCL-like. The notation pattern is:

if  (cond1) exp1 
elif (cond2) exp2, 
… 
else expN  
endif;

The endif keyword may be skipped. It is needed only when the expression composed with other expressions.

The alternative notation uses the switch keyword with the following syntax pattern:

When the switch keyword is used, the “imperative collect” shorthand with the arrow symbol convention is available:

list->switch (i) { … }  // same as list->xcollect(i | switch { … }) 

Remark: The concurrent usage of OCL-like syntax “if exp then body endif” and java-like syntax “if (exp) body …” may 
produce a grammar conflict in parsers which can, however, be solved through appropriate look-ahead.

8.2.2.9 AltExp

An alternative expression is an expression telling that some expression is to be executed if a condition holds. It returns 
the executed expression if the condition is satisfied, otherwise it returns null. It is semantically equivalent to an if 
expression with a null in the else clause. However, it offers a more direct representation of decisions written within a 
switch expression.

Superclasses
ImperativeExpression

Associations
condition : OclExpression [1] {composes}

The condition to evaluate.
body : OclExpression [1] {composes}

The expression to evaluate if the condition is satisfied.

Notation

See the notation of SwitchExp. 

8.2.2.10 VariableInitExp

A variable initialization expression represents the declaration of a variable with an optional initialization value. This 
expression may either return the initialization value or return null depending on the return mode being used (see 
withResult property).

Superclasses
ImperativeExpression

Attributes
withResult : Boolean
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Indicates whether the initialization value is returned by this expression. If false null is returned. The default 
value is false.

Associations
referredVariable : Variable [1] {composes}

The variable being declared. The variable is visible within the current scope. It starts to be visible after the 
declaration occurs. 

Notation

The notation uses the var keyword. The initialization value is notated using ‘:=’ if withResult property is false or 
uses ‘::=’ if withResult is true. 

var x : String := "abracadabra"; 
if (var x::="hello") then … 

The type of the variable can be omitted as long as it can be derived from the initialization expression. A variable may not 
declare an initialization value. In this case a default value is assumed (an empty collection for a collection, zero for a 
numeric type, the empty string for a string, and null for all other elements.

Multiple variable declarations may be grouped using a unique var keyword.

var x:= "", i:=0;

The “=” symbol can be used instead of the “:=” to initialize a variable. 

8.2.2.11 AssignExp

An assignment expression represents the assignment of a variable or the assignment of a Property. In this description we 
refer to “target field” the referred variable or property. If the variable or the property is monovalued, the effect is to reset 
the target field with the new value. If it is multivalued, the effect is to reset the field or to append it depending on the 
isReset property. If the provided value is made of more than one expression, then the assignment is said to be a 
compound assignment, otherwise it is a simple assignment. An expression in a compound assignment is called a 
contribution.

For a simple assignment, if the right-expression is a collection, assigning the variable or the property means adding each 
of the items of the collection (additive semantics). Note that this is only valid for a multivalued target field. Duplicate 
elements are removed if the target field are Sets - this is the case for property elements. In addition null values are 
automatically skipped.

A compound assignment is equivalent to perform as much simple assignments as there are expressions. Null values are 
skipped.

An assignment may receive a future variable produced by a deferred resolve expression (see ResolveExp). The effect is 
equivalent to receive a null value except that a side-effect action occurs in order to allow re-executing the assignment at 
the end of the transformation. 

An assignment expression returns the assigned value unless it is a future value, in which case null is returned.

Superclasses
ImperativeExpression

Attributes
isReset : Boolean
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Indicates, for a multivalued target, that the list is reset before executing the assignment.

Associations
value : OclExpression [*] {composes,ordered}

The expression to be evaluated in order to assign the variable or the property.
left : OclExpression [1] {composes}

The left hand side expression of the assignment. Should reference a variable or a property that can be updated.
defaultValue : OclExpression [0..1]{composes}

The expression to compute a value in case the evaluation of the ‘value’ property returns null.

Constraints

A deferred assignment is a simple assignment

self.value->size()=1

Local references cannot be used for the value of the assignment.

Notation

The notation uses the ‘:=' symbol if isReset is true and the symbol '+=' otherwise. Composite assignments are 
introduced by a list of expressions delimited by braces. The default value is introduced using the default keyword.

mysimpleproperty := "hello";  
mymultivaluedproperty += object Node {…}; // additive semantics 
mymultivaluedproperty := object Node {…}; // the list is reset and re-assigned 
feature := {  // a composite assignment with two contributions 
   self.attribute; 
   self.operation; 
}

8.2.2.12 UnlinkExp

An unlink expression represents an explicit removal of a value from a multivalued property link.

Superclasses
ImperativeExpression

Associations
item : [1] OclExpression {composes}

The object to be removed from the multivalued property.
target : [1] OclExpression {composes}

The target expression. It should evaluate to a Property. 

Notation

The notation uses a call to the unlink “operation” where the source argument is the target and the first argument is 
the item to be removed.

feature.unlink(myattribute);
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8.2.2.13 TryExp

A try expression catches possible exceptions raised by the target expression (the body). It provides the list of candidate 
exceptions and indicates the expression to be executed if catching of an exception occurs.

The exceptClauses are searched in order to select the first exceptClause that provides an exception type to which the 
raised exception conforms. If an exceptClause is selected, its body is executed.

A nested exception within an exceptClause terminates the exceptClause unless caught by a nested TryExp.

Superclasses
ImperativeExpression

Associations
tryBody : OclExpression [*] {composes,ordered}

The expression being under the control of exception handling.
exceptClause : CatchExp [*] {composes,ordered}

 The exception clauses providing the code to execute in case of failure.

Notation

The notation uses the try and except keywords.

try { expression1 } except (exception1,exception2)  {expression2};

8.2.2.14 CatchExp

A catch expression represents the code to be executed when an exception matching a given list of exception types is fired 
during the execution of the containing try expression.

The caught expression may be accessed in the body expression using the exceptionVariable whose apparent (static) type 
is the most derived common super type of all catchable exception types.

Superclasses
ImperativeExpression

Associations
exception: Type [+] {ordered}

The list of exceptions being treated by this catch handler.
body: OclExpression [*] {composes,ordered}

The list of expressions to execute in sequence.
exceptionVariable: Variable [0..1]

The variable through which the caught exception may be accessed.

Notation

The notation uses the except keyword with the list of exception types in parenthesis and the body in braces.

except (exception1,exception2)  {expression2};
MOF2 Query/View/Transformation (QVT), v1.2 117



8.2.2.15 RaiseExp

A raise expression is an expression that produces an exception.

Superclasses
ImperativeExpression

Associations
exception: Type [1]

The exception being raised.
argument: OclExpression [0..1] {composes}

The argument accompanying the raised exception.

Notation

The notation uses the raise keyword followed by the exception type name and arguments for one of the expression type 
name constructors.

myproperty := self.something default raise  StringException("ProblemHere");

The exceptions can be provided as simple strings. This is a shorthand for raising a StringException with the string as the 
constructor argument

myproperty := self.something default raise "ProblemHere";

8.2.2.16 ReturnExp

A return expression is used within an imperative operation to exit from the operation interrupting the normal control flow. 
If a value is indicated and if the operation declares a unique result, the value is assigned to the result parameter of the 
operation. If the operation declares more than one return parameter, the result is a tuple with a tuple part for each return 
parameter. When the return expression value is omitted, this tuple is created automatically from the assignable result 
parameters. Alternatively the return expression value may be an explicitly constructed tuple with one part for each return 
parameter.

Superclasses
ImperativeExpression

Associations
value: OclExpression [0..1]{composes}

The value to return from the operation.

Notation

The notation uses the return keyword used alone or accompanied with the value expression.

return; 
return 1+1;

8.2.2.17 BreakExp

A break expression is used to stop prematurely an iteration over a list of expressions. It is used in the body of imperative 
loop expressions (while and for expressions). A break expression cannot be directly owned by a non-imperative 
expression, like the side-effect free OCL iterate expression.
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Superclasses
ImperativeExpression

Notation

The notation uses the break keyword alone.

8.2.2.18 ContinueExp

Within an interation over a list of expressions, a continue expression is used to jump to the next iteration without 
executing the remaining expressions of the current iteration. It is used within the body of imperative loop expressions 
(while and for expressions). A continue expression cannot be directly owned by a non-imperative expression.

Superclasses
ImperativeExpression

Notation

The notation uses the continue keyword alone.

8.2.2.19 LogExp

A log expression is an expression used to print a log record to the environment. It is often used for debug. A log may only 
be sent when a condition holds. 

A log expression is a kind of operation call expression where the first argument contains the message to be print, the 
second argument gives the model element to be print (using an implicit call to the ‘repr’ operation from the QVT 
Standard Library) , and the third argument gives a level number for the log. Only the first argument is mandatory.

A log expression returns null.

Superclasses
OperationCallExp
ImperativeExpression

Associations
condition: OclExpression [0..1] {composes}

An optional condition to check. No log record is produced if it evaluates to false.

Notation

The notation uses the syntax of an operation call where the log keyword is the name of the operation. The parameters are 
in order: the message to print, the reference to the “responsible” element, and the level. Only the first parameter is 
mandatory.

log ("property bob is null", result) when result.bob=null;

8.2.2.20 AssertExp

An assert expression is an expression that checks whether a condition holds. If the assertion fails, an error message is 
generated - possibly accompanied with a log record. If the assertion fails with fatal severity, the execution terminates with 
the exception AssertionFailed. In all other cases the expression returns null.
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Superclasses
ImperativeExpression

Attributes
severity: SeverityKind

Indicates a severity level. Possible values are warning, error, and fatal. The default is error.

Associations
assertion: OclExpression [1]{composes}

The condition to check.
log: LogExp [0..1] {composes}

The log record to generate when the assertion fails.

Notation

The notation uses the assert keyword. It may be followed by a severity indication - warning or fatal identifiers - and by 
the log expression introduced by a with keyword.

assert  result.bob<>null with log("non null 'bob' expected", result); 
assert fatal  typename<>"int" with log("type integer expected",typename); 
assert warning  name.startswith("_") with log("special character being used", name);

8.2.2.21 SeverityKind

The severity kind enumeration defines all possible levels of severity for errors raised by assertion expressions.

Enumeration values
warning
error
fatal

8.2.2.22 InstantiationExp

An instantiation expression creates an instance of a class, invokes an initialization operation on the created object, and 
returns the created object. The initialization operation is either implicit, either explicitly given and has necessarily the 
name of the class. By default, an initialization operation with no arguments exists for all classes. 

An instantiation expression may indicate the MOF extent, represented by a variable, where the created instance will 
“live.” 

Superclasses
ImperativeExpression

Associations
argument : OclExpression [*] {composes, ordered}

The arguments of the instantiation expression. Should correspond with the initialization operation for the class 
(which by default is implicit and has no arguments).

extent : Variable [0..1]

The extent on which the new object is created.
instantiatedClass : Class [1] 
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The type of the object to be created.
initializationOperation : Operation [0..1] 

The initialization operation that uses the arguments to initialize the object after creation. The initialization 
operation may be omitted when implicit initialization occurs with no arguments.

Notation

An instantiation expression is notated using the new keyword followed by the name of the class. 

  mycolumn := new Column(n,t);  // invokes a Column::Column(String,String) operation. 
           // n and t are variables representing a name and a type name

When an explicit extent is provided, the variable name postfixes the type of the instantiation expression using the “@” 
separator symbol.

column := new Column@mymodel(n,t);  // mymodel is the extent for the new instance.

When an instantiation expression is used as the body of a for each expression the following shorthand can be used:

column := self.attribute->new(a) Column(a.name,a.type.name);  
       // equivalent code:  
       //  column := self.attribute->forEach { new(a) Column(a.name,a.type.name); }

Type Extensions

This clause defines the extensions to the type systems as well as the literals that are associated with the new types. Figure 
8.11  depicts the four new types, which are: TemplateParameterType, Typedef, DictionaryType, and 
ListType. The DictionaryType and ListType are two mutable collection types.

8.2.2.23 Typedef

A typedef allows to constraint an existing type, called the base type. An object of the base type can be checked to see 
whether it complies with the typedef. When no condition is given a typedef simply serves as an alias to the base type. 
This may be used for complex types like tuples, collection, and dictionary types.

This is specifically used in the QVT standard library to attach operations to pre-defined primitive types, like String and 
Collections.

Superclasses
Class

Associations
base : Type [1]

The referenced base type.
condition : OclExpression [0..1] {composes}

The expression defining the condition for an instance to comply with the typedef.

Notation

A Typedef is notated using the typedef keyword with the following syntax:

typedef  MyType = MyBaseType [ condition_expression ];

The brackets delimiting the condition expression are omitted when the typedef is used only to rename an existing type:
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typedef  MyType = Tuple {x:X; y:Y};

8.2.2.24 ListType

A list type is a mutable parameterized collection type. A value conforming to this type contains an ordered sequence of 
values. When a type for the element type is not provided Object is assumed.

A list of pre-defined operations on list is given in the QVT standard library.

Superclasses
CollectionType

8.2.2.25 DictionaryType

A dictionary type is a mutable type representing a hash-table data structure. For each key value in the table there is a 
unique value. The type of the key can only be a primitive type - such as integers and strings. A list of pre-defined 
operations on dictionaries is given in the QVT standard library.

A dictionary can be initialized through a literal and then freely updated (see DictLiteralExp).

Superclasses
CollectionType

Associations
keyType : Type [0..1] 

The declared type for the key. By default the type is String.
/elementType : Type [0..1] (from CollectionType)

The declared type for the elements. By default the type is the special type Object.

Notation

A dictionary type is notated similarly to collection types except that the Dict type specifier is used. Also, two type 
informations can be indicated - the type of the keys and the type of the values.

The declaration below declares a variable of dictionary type.

 var x:Dict(String,Actor);

If the types of the keys and the type of the values is not indicated, the default values are assumed (String and Object).

8.2.2.26 TemplateParameterType

A template parameter type is used to refer to generic types in parameterized definitions. It is specifically used when 
defining the query operations associated with collections and dictionary types within the QVT Standard Library.

A template parameter type is usually named “T.”

Note: The language does not provide a means to write user-defined parameterized types. Hence the only parameterized 
types available are those defined by the QVT standard library.  

Superclasses
Type
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Attributes
specification : String 

An uninterpreted opaque definition of the template parameter type. 

8.2.2.27 DictLiteralExp

A dictionary literal expression is a literal definition for a dictionary. Each data stored in the dictionary consists of a key 
and a value (see DictLiteralPart).

Superclasses
LiteralExp

Associations
part : DictLiteralPart [*] {composes}

The parts contained by this dictionary.

Notation

A dictionary literal expression is notated using the Dict type specifier followed by curly braces. The “=” symbol separates 

var dic =  Dict{'E'  = 'EXPLICIT', 'I' = 'IMPLICIT'};

8.2.2.28 DictLiteralPart

A dictionary literal part is an element of a dictionary literal.

Superclasses
Element

Associations
key : OclExpression [1] {composes}

The key associated with this element.
value : OclExpression [1] {composes}

The value that corresponds to the key of this element.

8.2.2.29 ListLiteralExp

A list literal expression is a literal definition for a mutable list type (see 8.2.2.25).

Superclasses

CollectionLiteralExp (From EssentialOCL)

Associations

element : OclExpression [*] {composes,ordered} 

The values of the literal list.
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8.3 Standard Library
This clause describes the additions to the OCL standard library to form the QVT Operational Mappings Library, which is 
an instance of the Library metaclass. This library is named Stdlib and is imported implicitly by all non black-box 
libraries or transformations.

8.3.1 Predefined types

MOF and OCL define pre-defined types that are usable at instance level (M1). MOF terminology is adopted here. 

Object is an M1 type representing all types, including data types. The M1 Object type is an instance of the 
MOF::Element metatype.

Element is an M1 type and represents class instances such as elements that are contained within a model. The M1 
Element type is an instance of the MOF::Element metatype.

Some of the operations of the standard library use the List M1 type, which is an instance of the List(Object) meta-
type, the type parameter for the parameterized type List(T) is Object. 

The clauses below define the additional pre-defined M1 types that are specific to QVT.  

8.3.1.1 Transformation

This M1 class named Transformation represents a base class for all instantiated OperationalTransformations. It is 
itself an instance of the OperationalTransformation metatype. It is used to define generic pre-defined operations 
available to any transformation instance.

8.3.1.2 Model

This M1 class named Model represents a base class for all instantiated ModelTypes. It is itself an instance of the 
ModelType metatype. It is used to define generic pre-defined operations available to any model parameter.

8.3.1.3 Status

This M1 class named Status contains information about the execution of a transformation. The M1 Status type is an 
instance of the Class metatype. 

A transform() operation on a transformation returns a Status object.

8.3.1.4 Exception

This M1 class named Exception represents the base class for all exceptions. The M1 Exception type is an instance of the 
Class metatype.

8.3.1.5 StringException

The StringException supports the simple string-valued shorthand of a RaiseExp.

Superclasses

Exception
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Constructor

StringException(reason : String)

Attributes

reason : String [1]

The reason provided on construction.

8.3.1.6 AssertionFailed

The AssertionFailed exception supports a fatal AssertExp.

Superclasses

Exception

Constructor

AssertionFailed(reason : LogExp)

Attributes

reason : LogExp [1]

The reason provided on construction.

8.3.2 Synonym types and synonym operations

All the OCL operations starting with “Ocl” prefix have a synonym operation in the QVT library where the prefix is 
skipped. For instance: isKindOf is a synonym of oclIsKindOf.

All the predefined OCL types M1 starting with “Ocl” prefix have a synonym type in the QVT library where the prefix is 
skipped. 

The Ocl prefix in types and operations, can still be used but its usage is not recommended since name conflicts can be 
avoided by qualifying with the name of the library (StdLib).

The following synonyms are defined for the following pre-defined OCL operations:

String  :  operator+ -> concat

Integer:  operator+ -> plus, 

               operator- (binary) -> minus, 

               operator- (unary) -> unaryminus

               operator*  -> multiply

               operator/   -> divide

Real:     operator+ -> plus, 

               operator- (binary) -> minus, 
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               operator- (unary) -> unaryminus

               operator*  -> multiply

               operator/   -> divide

8.3.3 Operations on objects

The Object type represents all types.

8.3.3.1 repr

Object::repr() : String

Prints a textual representation of the object.

8.3.4  Operations on elements

All MOF reflective operations are available, in particular the Element::container() operation that is very useful to inspect 
a model.

8.3.4.1 _localId

Element::_localId() : String

Returns a local internal identifier for the instance (it uniquely identifies the instance in respect to the instance 
containing it).

8.3.4.2 _globalId

Element::_globalId() : String

Returns a global identifier for the instance, which identifies the instance in the used model extent.

8.3.4.3 metaClassName

Element::metaClassName() : String

Returns the name of the metaclass. It is an abbreviation for invoking the reflective Element::getMetaClass() 
method and retrieving the name.

8.3.4.4 subobjects

Element::subobjects() : Set(Element)

Returns all immediate sub objects of an object.

8.3.4.5 allSubobjects

Element::allSubobjects() : Set(Element)

Returns iteratively all sub objects of an object.

8.3.4.6 subobjectsOfType

Element::subobjectsOfType(OclType) : Set(Element)
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Same as subobjects but filters according to the exact type.

8.3.4.7 allSubobjectsOfType

Element::allSubobjectsOfType(OclType) : Set(Element)

Same as allSubobjects but filters according to the exact type..

8.3.4.8 subobjectsOfKind

Element::subobjectsOfKind(OclType) : Set(Element)

Same as subobjects but filters according to the type.

8.3.4.9 allSubobjectsOfKind

Element::allSubobjectsOfKind(OclType) : Set(Element)

Same as allSubobjects but filters according to the type.

8.3.4.10 clone

Element::clone() : Element

Creates and returns a copy of a model element. Copy is done only at first level (sub objects are not cloned). 
References to non contained objects are copied only if the multiplicity constraints are not violated.

8.3.4.11 deepclone

Element::deepclone() : Element

Creates and returns a deep copy of a model element. Copy is done recursively on sub objects. References to non 
contained objects are copied only if the multiplicity constraints are not violated.

8.3.4.12 markedAs

Element::markedAs(value:String) : Boolean

This function has to be defined for each model type. It is used to check whether an object has been marked. For 
instance, for UML 1.4, this corresponds to accessing a UML::TaggedValue, while for a MOF model this 
corresponds to accessing a MOF::Tag.

8.3.4.13 markValue

Element::markValue() : Object

This function id used to return the value associated with a mark. It is a virtual function, and should be defined 
specifically for each model type.

8.3.4.14 stereotypedBy

Element::stereotypedBy(String) : Boolean

This function id used to check whether an instance is “stereotyped.” The definition depends on the metamodel.

8.3.4.15 stereotypedStrictlyBy

Element::stereotypedStrictlyBy(String) : Boolean
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Same as stereotypedBy except that base stereotypes are not taken into account.

8.3.5 Operations on models

The following operations can be invoked on any model.

8.3.5.1 objects

Model::objects() : Set(Element)

Returns the list of the objects in the model extent.

8.3.5.2 objectsOfType

Model::objectsOfType(OclType) : Set(Element)

Returns the list of the objects in the model extent that have the type given. The returned Element type is the type 
denoted by the type expression.

8.3.5.3 rootObjects

Model::rootObjects(): Set(Element)

Returns all the objects in the extent that are not contained by other objects of the extent.

8.3.5.4 removeElement

Model::removeElement (Element): Void

Removes an object of the model extent. All links between the object and other objects in the extent are deleted. 
References from collections to the ends of deleted links are removed. References from noncollections are set to 
null.

8.3.5.5 asTransformation

Model::asTransformation(Model) : Transformation

Cast a transformation definition compliant with the QVT metamodel as a transformation instance. This is used to 
invoke on the fly transformations definitions created dynamically.

8.3.5.6 copy

Model::copy() : Model

Performs a complete copy of a model into another model. All objects belonging to the source extent are copied 
into the target extent.

8.3.5.7 createEmptyModel

static Model::createEmptyModel() : Model

Creates and initializes a  model of the given type. This operation is useful when creating intermediate models 
within a transformation.
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8.3.6 Operations on Transformations

In this clause we provide the operations that can be invoked on any transformation and the operation that can be invoked 
on Status instances (storing information on the execution of a transformation).

8.3.6.1 transform

Transformation::transform () : Status

Executes the transformation on the instance of the transformation class. Returns a Status object that can be 
checked using the Status::failed.

8.3.6.2 parallelTransform

Transformation::parallelTransform () : Status

Executes the transformation on the instance of the transformation class. The operation returns immediately so 
that the invoking transformation can continue. Conceptually the transformation runs in parallel. The returned 
Status object can be used for synchronization (see wait operation).

8.3.6.3 wait

Transformation::wait (List(Status)) : Void

Waits for the termination of all transformations invoked in parallel. The Status objects are used to synchronize 
with the end of a transformation.

8.3.7 Operations on Status

The following operations may be used to interrogate the Status object that synchronizes the end of a transformation.

8.3.7.1 raisedException

Status::raisedException () : Exception

Returns the exception raised by the transformation execution.

8.3.7.2 failed

Status::failed() : Boolean

Returns true if the transformation failed, false otherwise.

8.3.7.3 succeeded

Status::succeeded() : Boolean

Returns true if the transformation succeeded, false otherwise.

8.3.8 Operations on Dictionaries

The following operations can be invoked on any dictionary. A dictionary type is a parameterized type. The symbol T 
denotes the type of the values and KeyT the type for the key.
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8.3.8.1 get

Dictionary(KeyT,T)::get (k:KeyT) : T

Returns the value associated with the given key. The null value is returned if k is not present. Modifying the 
returned value modifies the value stored in the dictionary.

8.3.8.2 hasKey

Dictionary(KeyT,T)::hasKey (k:KeyT) : Boolean

Checks whether the dictionary has a value for the given key.

8.3.8.3 defaultget

Dictionary(KeyT,T)::defaultget (k:KeyT) : T

Returns the value associated with the given key or the given default value if the key does not exist in the 
dictionary.

8.3.8.4 put

Dictionary(KeyT,T)::put (k:KeyT, v:T) : Void

Modifies the dictionary by assigning a value to a key. Modifying the value modifies the value stored in the 
dictionary.

8.3.8.5 clear

Dictionary(KeyT,T)::clear() : Void

Modifies the dictionary by removing all values.

8.3.8.6 size

Dictionary(KeyT,T)::size() :Integer

Returns the number of values stored in the dictionary.

8.3.8.7 values

Dictionary(KeyT,T)::values() : List(T)

Returns a new list of the values in the dictionary. The order is arbitrary. Modifying the returned list does not 
modify the contents of the dictionary. Modifying the values in the list modifies the values stored in the 
dictionary.

8.3.8.8 keys

Dictionary(KeyT,T)::keys() : List(KeyT)

Returns a new list of keys to the dictionary. Modifying the returned list does not modify the contents of the 
dictionary. Modifying the values in the list may modify the keys to the dictionary contents giving unpredictable 
behaviour. If mutable types such as List or Dictionary are used as Dictionary keys, applications should take care 
to create clones where appropriate.
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8.3.8.9 isEmpty

Dictionary(KeyT,T)::isEmpty() : Boolean

Returns true if the dictionary is empty, false otherwise.

8.3.9 Operations on Lists

The following operations can be invoked on any list. A list type is a parameterized type. The symbol T denotes the type 
of the values. The operations include all those of the OCL Sequence type.

8.3.9.1 =

List(T)::=(s : List(T)) : Boolean

True if self contains the same elements as s in the same order.
post: result = (size() = s->size()) and 

  Sequence{1..size()}->forAll(i | at(i) = s->at(i))

8.3.9.2 <>

List(T)::<>(c : List(T)) : Boolean

True if c is not equal to self.
post: result = not (self = c) 

8.3.9.3 add

List(T)::add() : Void

Adds a value at the end of the mutable list.
post: size() = size@pre() + 1
post: Sequence{1..size@pre()}->forAll(i | at(i) = at@pre(i))
post: at(size()) = object

8.3.9.4 append

List(T)::append(object: T) : List(T)

Returns a new list of elements, consisting of all elements of self, followed by object.
post: result->size() = size() + 1
post: Sequence{1..size()}->forAll(i | result->at(i) = at(i))
post: result->at(result->size()) = object

8.3.9.5 asBag

List(T)::asBag() : Bag(T)

Returns a Bag containing all the elements from self, including duplicates. The element order is indeterminate.
post: result->forAll(elem | self->count(elem) = result->count(elem))
post: self->forAll(elem | self->count(elem) = result->count(elem))
MOF2 Query/View/Transformation (QVT), v1.2 131



8.3.9.6 asList 

List(T)::asList() : List(T)

Returns a new list that is a shallow clone of self.
post: Sequence{1..size()}->forAll(i | result->at(i) = self->at(i))

8.3.9.7 asOrderedSet

List(T)::asOrderedSet() : OrderedSet(T)

Returns a OrderedSet that contains all the elements from self, in the same order, with duplicates removed.
post: result->forAll(elem | self ->includes(elem))
post: self->forAll(elem | result->count(elem) = 1)
post: self->forAll(elem1, elem2 | self->indexOf(elem1) < self->indexOf(elem2) 

    implies result->indexOf(elem1) < result->indexOf(elem2) )

8.3.9.8 asSequence

List(T)::asSequence() : Sequence(T)

Returns a Sequence that contains all the elements from self, in the same order.
post: result->size() = size()
post: Sequence{1..size()}->forAll(i | result->at(i) = self->at(i))

8.3.9.9 asSet

List(T)::asSet() : Set(T)

Returns a Set containing all the elements from self, with duplicates removed. The element order is indeterminate.
post: result->forAll(elem | self->includes(elem))
post: self->forAll(elem | result->includes(elem))

8.3.9.10 at

List(T)::at(i : Integer) : T

Returns the element of the list at the i-th one-based index.
pre : 1 <= i and i <= size()

8.3.9.11 clone 

List(T)::clone() : List(T)

Returns a new list that is a shallow clone of self.
post: Sequence{1..size()}->forAll(i | result->at(i) = self->at(i))

8.3.9.12 count

List(T)::count(object : T) : Integer

Returns the number of occurrences of object in self.
132                 MOF2 Query/View/Transformation (QVT), v1.2



8.3.9.13 deepclone 

List(T)::deepclone() : List(T)

Returns a new list that is a deep clone of self; that is a new list in which each element is in turn a deepclone of the 
corresponding element of self.

8.3.9.14 excludes

List(T)::excludes(object : T) : Boolean

True if object is not an element of self, false otherwise.
post: result = (self->count(object) = 0) 

8.3.9.15 excludesAll

List(T)::excludesAll(c2 : Collection(T)) : Boolean

Does self contain none of the elements of c2 ?
post: result = c2->forAll(elem | self->excludes(elem))

8.3.9.16 excludesAll

List(T)::excludesAll(c2 : List(T)) : Boolean

Does self contain none of the elements of c2 ?
post: result = c2->forAll(elem | self->excludes(elem))

8.3.9.17 excluding

List(T)::excluding(object : T) : List(T)

Returns a new list containing all elements of self apart from all occurrences of object. The order of the remaining 
elements is not changed.

post:result->includes(object) = false
post: result->size() = self->size()@pre - self->count(object)@pre
post: result = self->iterate(elem; acc : List(T) = List{} | 

    if elem = object then acc else acc->append(elem) endif )

8.3.9.18 first

List(T)::first() : T

Returns the first element in self.
post: result = at(1)

8.3.9.19 flatten

List(T)::flatten() : List(T2)

Returns a new list containing the recursively flattened contents of the old list. The order of the elements is partial.
post: result = self->iterate(c; acc : List(T2) = List{} | 

    if c.oclType().elementType.oclIsKindOf(CollectionType) 
    then acc->union(c->flatten()->asList()) 
    else acc->union(c) 
    endif)
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8.3.9.20 includes

List(T)::includes(object : T) : Boolean

True if object is an element of self, false otherwise.
post: result = (self->count(object) > 0) 

8.3.9.21 includesAll

List(T)::includesAll(c2 : Collection(T)) : Boolean

Does self contain all the elements of c2 ?
post: result = c2->forAll(elem | self->includes(elem))

8.3.9.22 includesAll

List(T)::includesAll(c2 : List(T)) : Boolean

Does self contain all the elements of c2 ?
post: result = c2->forAll(elem | self->includes(elem))

8.3.9.23 including

List(T)::including(object : T) : List(T)

Returns  a new list containing all elements of self plus object added as the last element.
post: result = append(object)

8.3.9.24 indexOf

List(T)::indexOf(obj : T) : Integer

The one-based index of object obj in the list.
pre : includes(obj)
post : at(result) = obj

8.3.9.25 insertAt

List(T)::insertAt(index : Integer, object : T) : List(T)

Returns a new list consisting of self with object inserted at the one-based position index.
pre : 1 <= index and index <= size()
post: result->size() = size() + 1
post: Sequence{1..(index - 1)}->forAll(i | result->at(i) = at(i))
post: result->at(index) = object
post: Sequence{(index + 1)..size()}->forAll(i | result->at(i + 1) = at(i))

8.3.9.26 insertAt

List(T)::insertAt(object : T, index : Integer) : Void

The list is modifed to consist of self with object inserted at the one-based position index.
pre : 1 <= index and index <= size()
post: size() = size@pre() + 1
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post: Sequence{1..(index - 1)}->forAll(i | at(i) = at@pre(i))
post: at(index) = object
post: Sequence{(index + 1)..size()}->forAll(i | at(i) = at@pre(i - 1))

8.3.9.27 isEmpty

List(T)::isEmpty() : Boolean

Is self an empty list?
post: result = (self->size() = 0)

8.3.9.28 joinfields

List(T)::joinfields(sep:String,begin:String,end:String) :String

Creates a string separated by sep and delimited with begin and end strings.
post: result = begin + Sequence{1..size()}->iterate(i; acc : String = '' |
    acc + if i = 1 then '' else sep endif + at(i).toString()) 

  + end

8.3.9.29 last

List(T)::last() : T

Returns  the last element in self.
post: result = at(size())

8.3.9.30 max

List(T)::max() : T

The element with the maximum value of all elements in self. Elements must be of a type supporting the max 
operation. The max operation - supported by the elements - must take one parameter of type T. Integer and Real 
fulfill this condition.

post: result = self->iterate(elem; acc : T = self->any(true) | acc.max(elem))

8.3.9.31 min

List(T)::min() : T

The element with the minimum value of all elements in self. Elements must be of a type supporting the min 
operation. The min operation - supported by the elements - must take one parameter of type T. Integer and Real 
fulfill this condition.

post: result = self->iterate(elem; acc : T = self->any(true) | acc.min(elem))

8.3.9.32 notEmpty

List(T)::notEmpty() : Boolean

Is self not an empty list?
post: result = (self->size() <> 0)

8.3.9.33 prepend

List(T)::prepend(object : T) : List(T)
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Returns a new list consisting of object, followed by all elements in self.
post: result->size = size() + 1
post: result->at(1) = object
post: Sequence{1..size()}->forAll(i | result->at(i + 1) = at(i))

8.3.9.34 product

List(T)::product(c2: Collection(T2)) : Set(Tuple(first: T, second: T2))

The cartesian product operation of self and c2.
post: result = self->iterate(e1; acc: Set(Tuple(first: T, second: T2)) = Set{} 

| 
        c2->iterate(e2; acc2: Set(Tuple(first: T, second: T2)) = acc | 
             acc2->including(Tuple{first = e1, second = e2})))

8.3.9.35 remove 

List(T)::remove(element : T) : Void

Removes .all elements from self equal to element.
post: result = self@pre->reject(e = element)

8.3.9.36 removeAll 

List(T)::removeAll(elements : Collection(T)) : Void

Removes .all elements from self equal to any of elements.
post: result = self@pre->reject(e | elements->includes(e))

8.3.9.37 removeAll 

List(T)::removeAll(elements : List(T)) : Void

Removes .all elements from self equal to any of elements.
post: result = self@pre->reject(e | elements->includes(e))

8.3.9.38 removeAt 

List(T)::removeAt(index : Integer) : T

Removes .and returns .the list element at index. Returns invalid for an invalid index.
pre: 1 <= index and index <= size()
post: size() = size@pre() - 1
post: Sequence{1..index}->forAll(i | at(i) = at@pre(i))
post: Sequence{(index+1)..size()}->forAll(i | at(i) = at@pre(i+1))
post: result = at@pre(index)

8.3.9.39 removeFirst 

List(T)::removeFirst() : T

Removes .and returns .the first list element. Returns invalid for an empty list.
pre: 1 <= size()
post: size() = size@pre() - 1
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post: Sequence{1..size()}->forAll(i | at(i) = at@pre(i+1))
post: result = at@pre(1)

8.3.9.40 removeLast 

List(T)::removeLast() : T

Removes .and returns .the last list element. Returns invalid for an empty list.
pre: 1 <= size()
post: size() = size()@pre - 1
post: Sequence{1..size()}->forAll(i | at(i) = at@pre(i))
post: result = at@pre(size@pre())

8.3.9.41 reverse

List(T)::reverse() : List(T)

Returns a new list containing the same elements but with the opposite order.
post: result->size() = self->size()
post: Sequence{1..size()}->forAll(i | result->at(i) = at(size() - (i-1)))

8.3.9.42 selectByKind

List(T)::selectByKind(type : Classifier) : List(T1)

Returns a new list containing the non-null elements of self whose type is type or a subtype of type. The returned list 
element type T1 is the type specified as type.

post: result = self 
    ->collect(if oclIsKindOf(type) then oclAsType(type) else null endif) 
    ->excluding(null)

8.3.9.43 selectByType

List(T)::selectByType(type : Classifier) : List(T1)

Returns a new list containing the non-null elements of self whose type is type but which are not a subtype of type. 
The returned list element type T1 is the type specified as type.

post: result = self 
    ->collect(if oclIsTypeOf(type) then oclAsType(type) else null endif) 
    ->excluding(null) 

8.3.9.44 size

List(T)::size() : Integer

The number of elements in the collection self.
post: result = self->iterate(elem; acc : Integer = 0 | acc + 1) 

8.3.9.45 subSequence

List(T)::subSequence(lower : Integer, upper : Integer) : Sequence(T)

Returns a new sub-List of self starting at number lower, up to and including element number upper.
pre : 1 <= lower and lower <= upper and upper <= size()
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post: result->size() = upper -lower + 1
post: Sequence{lower..upper}->forAll(i | result->at(i - lower + 1) = at(i))

8.3.9.46 sum

List(T)::sum() : T

The addition of all elements in self. Elements must be of a type supporting the + operation. The + operation must 
take one parameter of type T. It does not need to be commutative or associative since the iteration order over a 
list is well-defined. Integer and Real fulfill this condition.

post: result = self->iterate(elem; acc : T = 0 | acc + elem)

8.3.9.47 union

List(T)::union (s : List(T)) : List(T)

Returns  a new list consisting of all elements in self, followed by all elements in s.
post: result->size() = size() + s->size()
post: Sequence{1..size()}->forAll(i | result->at(i) = at(i))
post: Sequence{1..s->size()}->forAll(i | result->at(i + size()) = s->at(i)))

8.3.10 Iterations on Lists

There are no iterations defined for Lists since Lists are mutable and iteration domains are immutable. However the 
iterations defined for Sequences may be used without explicitly converting the List to a Sequence.

Invocation of one the following list iterations returning non-Lists
    aList->iteration(...)

is therefore shorthand for
    aList->asSequence()->iteration(...)
List(T)::any(i : T[?]) : T[?]
List(T)::collect(i : T[?]) : Collection(T1)
List(T)::collectNested(i : T[?]) : Collection(T1)
List(T)::exists(i : T[?]) : Boolean[?]
List(T)::exists(i : T[?], j : T[?]) : Boolean[?]
List(T)::forAll(i : T[?]) : Boolean[?]
List(T)::forAll(i : T[?], j : T[?]) : Boolean[?]
List(T)::isUnique(i : T[?]) : Boolean
List(T)::iterate(i : T[?]; acc : T2[?]) : T2[?]
List(T)::one(i : T[?]) : Boolean
Invocation of one the following list iterations returning Lists
    aList->iteration(...)
is shorthand for
    aList->asSequence()->iteration(...)->asList()
List(T)::reject(i : T[?]) : List(T)
List(T)::select(i : T[?]) : List(T)
List(T)::sortedBy(i : T[?]) : List(T)
138                 MOF2 Query/View/Transformation (QVT), v1.2



8.3.11 Operations on Collections

The following operations are added to the standard OCL collections

8.3.11.1 asList 

Collection(T)::asList() : List(T)

Returns a new list containing all the elements of a collection. Whether the order is determinate depends on the 
derived collection type..

post: result->size() = size()
post: self->asSet()->forAll(e | result->count(e) = self->count(e))

8.3.11.2 clone 

Collection(T)::clone() : Collection(T)

Collections are immutable so a clone returns self.
post: result = self

8.3.11.3 deepclone 

Collection(T)::deepclone() : Collection(T)

Collections are immutable so a deep clone returns self.
post: result = self

8.3.12 Operations on Bags

The following operations are added to the standard OCL bags

8.3.12.1 asList 

Bag(T)::asList() : List(T)

Returns a new list containing all the elements of a bag in an indeterminate order.

8.3.12.2 clone 

Bag(T)::clone() : Bag(T)

Bags are immutable so a clone returns self.

8.3.12.3 deepclone 

Bag(T)::deepclone() : Bag(T)

Bags are immutable so a deep clone returns self.

8.3.13 Operations on OrderedSets

The following operations are added to the standard OCL ordered sets
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8.3.13.1 asList 

OrderedSet(T)::asList() : List(T)

Returns a new list that contains all the elements  an ordered set  in the same order.
post: Sequence{1..size()}->forAll(i | result->at(i) = self->at(i))

8.3.13.2 clone 

OrderedSet(T)::clone() : OrderedSet(T)

OrderedSets are immutable so a clone returns self.

8.3.13.3 deepclone 

OrderedSet(T)::deepclone() : OrderedSet(T)

OrderedSets are immutable so a deep clone returns self.

8.3.14 Operations on Sequences

The following operations are added to the standard OCL sequences

8.3.14.1 asList 

Sequence(T)::asList() : List(T)

Returns a new list that contains all the elements  a sequence  in the same order.
post: Sequence{1..size()}->forAll(i | result->at(i) = self->at(i))

8.3.14.2 clone 

Sequence(T)::clone() : Sequence(T)

Sequences are immutable so a clone returns self.

8.3.14.3 deepclone 

Sequence(T)::deepclone() : Sequence(T)

Sequences are immutable so a deep clone returns self.

8.3.15 Operations on Sets

The following operations are added to the standard OCL sets

8.3.15.1 asList 

Set(T)::asList() : List(T)

Returns a new list containing all the elements of a set in an indeterminate order.

8.3.15.2 clone 

Set(T)::clone() : Set(T)

Sets are immutable so a clone returns self.
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8.3.15.3 deepclone 

Set(T)::deepclone() : Set(T)

Sets are immutable so a deep clone returns self.

8.3.16 Operations on Strings

All string operations defined in OCL 2.4 are available. An OCL String is immutable and so there are no operations 
that modify strings. In addition there is:

8.3.16.1 format

String::format(value:Object) : String

Print a message where the holes - marked with %s, %d, %f - are filled with the value, necessarily a tuple if more 
than a hole is defined. Formatting an object (with %s) implies the invocation of the Object::repr(). The format 
%d is used for integers, the %f is used for floats.

A dictionary can be passed as the value. In this case the holes have the syntax “%(key)s” and are filled by 
inspecting the dictionary with the corresponding key.

8.3.16.2 length

String::length () : Integer

The length operation returns the length of the sequence of characters represented by the object at hand.

This is a synonym of the OCL String::size() operation. It is therefore deprecated.

8.3.16.3 substringBefore

String::substringBefore (match : String) : String

retrieves the substring that is before the matched string. 

8.3.16.4 substringAfter

String::substringAfter (match : String) : String

retrieves the substring that is after the matched string.

8.3.16.5 toLower

String::toLower () : String

Converts all of the characters in this string to lowercase characters.

This is a synonym of the OCL String::toLowerCase() operation. It is therefore deprecated.

8.3.16.6 toUpper

String::toUpper () : String

Converts all of the characters in this string to uppercase characters.

This is a synonym of the OCL String::toUpperCase() operation. It is therefore deprecated.
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8.3.16.7 firstToUpper

String::firstToUpper () : String

Converts the first character in the string to an uppercase character.

8.3.16.8 lastToUpper

String::lastToUpper () : String

Converts the last character in the string to an uppercase character.

8.3.16.9 indexOf

String::indexOf (match : String) : Integer

Returns the index of the first character of the first substring if the substring provided in the parameter occurs as a 
substring in the object at hand. If it does not occur as a substring, the operation returns -1.

8.3.16.10 endsWith

String::endsWith (match : String) : Boolean

Returns true if the string at hand ends with the substring provided in the parameter.

Parameters 
        .. match: the suffix to be searched for.

8.3.16.11 startsWith

String::startsWith (match : String) : Boolean

Returns true if the string at hand starts with the substring provided in the parameter.

Parameters 
         . match: the prefix to be searched for.

8.3.16.12 trim

String::trim () : String

Returns a copy of the string where all trailing and leading white spaces have been removed. If there are no 
trailing or leading white spaces, the operation returns the string.

8.3.16.13 normalizeSpace

String::normalizeSpace() : String

Removes all trailing and leading white space and replaces all internal sequences of white space with a single 
space.

8.3.16.14 replace

String::replace (m1:String, m2:String): String

All occurrences of m1 in the context string are replaced by m2. The operation returns a new string.
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8.3.16.15 match

String::match (matchpattern:String) : Boolean

Returns true if the value of the String matches the regular expression, else return false. The syntax of regular 
expression is the syntax or regular expression in Java language.

8.3.16.16 equalsIgnoreCase

String::equalsIgnoreCase (match:String) : Boolean

Returns true if the value of String, when ignoring letter casing matches the input String “match,” else returns 
false.

8.3.16.17 find

String::find (match:String) : Integer

Returns the position of the substring that starts with ‘match.’

8.3.16.18 rfind

String::rfind (match:String) : Integer

Returns the position of the substring that starts with ‘match.’ The search starts from the right.

8.3.16.19 isQuoted

String::isQuoted (s:String) : Boolean

Returns true if the string starts and ends with the “s” string.

8.3.16.20 quotify

String::quotify (s:String) : String

Adds the “s” string at the beginning and the end of the strings and returns it.

8.3.16.21 unquotify

String::unquotify (s:String) : String

Removes the ’s’ string at the beginning and at the end of the string and returns the resulting string. If the string 
’s’ does not appear at the beginning or at the end, the content of source string is returned.

8.3.16.22 matchBoolean

String::matchBoolean() : Boolean

Returns true if the string is “true,” “false,” “0,” or “1.” The method is not case sensitive.

8.3.16.23 matchInteger

String::matchInteger() : Boolean

Returns true if the string represents an integer.
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8.3.16.24 matchFloat

String::matchFloat() : Boolean

Returns true if the string represents a real.

This is a synonym of the matchReal() operation. It is therefore deprecated

8.3.16.25 matchReal

String::matchReal() : Boolean

Returns true if the string represents a real.

8.3.16.26 matchIdentifier

String::matchIdentifier(s : String) : Boolean

Returns true if the string represents an alphanumeric word.

8.3.16.27 asBoolean

String::asBoolean() : Boolean

Returns a Boolean value if the string can be interpreted as a string. Null otherwise.

8.3.16.28 asInteger

String::asInteger() : Integer

Returns a Integer value if the string can be interpreted as as integer. Null otherwise.

8.3.16.29 asFloat

String::asFloat() : Real

Returns a Real value if the string can be interpreted as as real. Null otherwise.

This is a synonym of the asReal() operation. It is therefore deprecated.

8.3.16.30 asReal

String::asReal() : Real

Returns a Real value if the string can be interpreted as as real. Null otherwise.

8.3.16.31 startStrCounter

String::startStrCounter (s:String) : Void

Associates a counter to the string. Initializes the counter to zero.

8.3.16.32 getStrCounter

String::getStrCounter (s:String) : Integer

Returns the current value of the counter associated with the string. 
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8.3.16.33 incrStrCounter

String::incrStrCounter (s:String) : Integer

Increments the current value of the counter associated with the string. 

8.3.16.34 restartAllStrCounter

String::restartAllStrCounter () : Void

Restarts all the counters associated with strings.

8.3.16.35 addSuffixNumber

String::addSuffixNumber () : String

Returns the string with a suffix that represents the value of the counter associated with this string. The counter is 
incremented. (see startStrCounter and incrStrCounter).

This method is specifically used to generate internal names that are unique.

8.3.17  Operations on numeric types

Integer::range (start:Integer,end:Integer) : List(Element)
Returns a list of integers starting from ‘start’ position to ‘end’ position.

8.3.18  Predefined tags

proxy : Boolean
When present this tag indicates that the instance acts as proxy for a definition that is defined elsewhere. Used for 
Library and Transformations.

alias : String
When marking a Class or a Property this tag provides an alternative name. This is used in the concrete syntax to 
avoid name clashes.This is a purely syntactic tag. Consequently the representation of this Tag can be skipped 
after parsing the source file.

topclasses : String
Tag used to mark model types in order to provide the list of classes names, comma separated, that are valid as 
types for the root objects of a model. 

rememberChanges : Boolean
Tag used to mark a MappingOperation, an ObjectExp, or an AssignExp with an indication stating whether 
manual changes made within the properties assigned have to be restored when the transformation is executed 
twice.

manuallyChanged : Boolean
Tag used to mark Properties or Classes to indicate that a property or a class has been changed. A tool may 
automatically annotate a model with this information to implement an execution scenario that preserves manual 
changes.
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8.4 Concrete Syntax

8.4.1 Files

An operational transformation specification provided using concrete syntax in a text file may import one or more 
compilation units. A compilation unit corresponds to another operational transformation or library definition given either 
using the concrete syntax definition or the abstract representation.  

Within an import statement a compilation unit is referenced by means of a simple unqualified alphanumeric identifier, 
with no special characters and blanks characters allowed, or is referenced by means of a qualified one. In the latter case, 
the qualification is given by a list of namespaces separated by the dot character. These namespaces have no representation 
in the metamodel. It is up to an implementation to make a correspondence between the namespace hierarchy and the 
hierarchy of the file system.

A file can contain the definition of the following top entities: transformations, libraries, model types, and metamodels. If 
more than one element in this list is defined, the import statement designates the entities that need to be visible in the 
importing file. This is done using the syntax:

from <filename> import <definition1>, <definition2>, …;

If the used file contains a unique transformation or a unique library definition, it is not always necessary for the importer 
file to contain an import statement. In effect; an access or an extends declaration in the header of a transformation implies 
looking for a file with the name of the accessed or extended module. In other words if the file exists, the import statement 
is implicit.

8.4.2 Comments

Three kinds of conventions are used to include comments in a text file.

1. Line comment delimited by “--” and the end of linefile.

2. Line comment delimited by “//” and the end of linefile.

3. Multi-line comments delimited by “/*” and  “*/.”

8.4.3 Strings

Literal strings that fit in a single line are delimited either by single quotes or by double quotes. Literal strings that fit in 
multiple lines can be notated as a list of literal strings. 

Example: 

  var s:String = 'This is a long string'

                  'that fits in two lines';

All the usual escape characters using backslash can be used including the '\n' return-line character. The list of available 
escape characters are those defined for the Java language.

EscapeSequence:

\ b /* \u0008: backspace BS */
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\ t /* \u0009: horizontal tab HT */

\ n /* \u000a: linefeed LF */

\ f /* \u000c: form feed FF */

\ r /* \u000d: carriage return CR */

\ " /* \u0022: double quote" */

\ ' /* \u0027: single quote ' */

\ \ /* \u005c: backslash \ */

OctalEscape /* \u0000 to \u00ff: from octal value

OctalEscape:

\ OctalDigit

\ OctalDigit OctalDigit

\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of

0 1 2 3 4 5 6 7

ZeroToThree: one of

0 1 2 3

8.4.4 Shorthands used to invoke specific pre-defined operations

In this clause we describe a list of shorthands that concern the invocation of some pre-defined operations.

1. The notation ‘#MyClass’ involving the unary '#' operator is a shorthand for oclIsKindOf(MyClass).

2. The notation ‘##MyClass’ involving the unary '##' operator is a shorthand for oclIsTypeOf(MyClass).

3. The notation '*"mystereotype"' involving the unary '*' operator is a shorthand for stereotypedBy(“mystereotype”). 
Note that potential ambiguity with the integer/float multiply operation is solved thanks to the type of the argument (a 
string in our case).

4. The notation “blabla %s\n” % myvar involving the binary '%' operator is a shortand for invoking the pre-defined 
'format' operation. The potential ambiguity with the modulo operator is solved thanks to the type of the first 
argument, which is a string in our case.

5. The binary operator "==" can replace the "=" comparison operator.

6. The binary operator "!=" can be used instead of the "<>" comparison operator. Both alternatives should be available.

7. The binary operator "+" can be used as a shorthand for the concat string operation.

8. The binary operator "+=" can be used as a shorthand for the add List operation.
MOF2 Query/View/Transformation (QVT), v1.2 147



The alternative '==' and '!=' notations can only be used if the source file pre-declares the intention of using them by means 
of a directive placed before entering the library of the transformation definitions. The syntax of this directive should be a 
comment having the following form:

-- directive: use-traditional-comparison-syntax, or

// directive: use-traditional-comparison-sysntax.

This declaration makes illegal the usage of the corresponding OCL-like syntax ('=' and '<>') within the compilation unit. 

8.4.5 Other Language Shorthands

The following describes additional shorthand conventions not described in the Notation sub-clause of class descriptions 
because they do not apply to QVT metaclasses.

1. A string naming an enumeration can be used each time an enumeration value is expected. This implies that there is an 
implicit call to the asEnumeration() string operation. 

2. Whenever a Boolean value is expected in an expression: (i) if an Element instance is passed there is an implicit 
comparison with the null value. (ii) if a collection value is passed there is an implicit comparison with the size of the 
collection.

8.4.6 Notation for Metamodels

A model type may explicitly refer to a metamodel defined locally. To that end this specification defines a notation for 
describing MOF metamodels. The formal EBNF definition is given in Clause 8.4.4.

A MOF Package is notated either using the package keyword or the metamodel keyword followed by a name. Both 
notations are equivalent when translating to the corresponding EMOF metamodel representation. The metamodel 
keyword should preferably be used when referring to a top-level package that represents a complete metamodel.

 metamodel SimpleUML { … }

The classes are notated using the class keyword followed by a name, an optional extends specification for class 
inheritance and a body delimited by curly braces.

class Class extends ModelElement { … }

A primitive type is declared using the primitive keyword.

'primitive' <primitivetypename>.

Example:

 primitive Double;

An enumeration type is notated using the enum keyword followed by the list of enumeration values.

enum ParameterDirectionKind { "in", "inout", "out" }

An exception is declared using the exception keyword followed by the name of the exception. Inheritance between 
exceptions is introduced using the extends keyword.

Example:
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exception VeryStrangeException extends UnexpectedException;

The properties of a class are notated using a declarator made of: a name, a type, optional property qualifiers, and an 
optional initialization expression.

The general syntax pattern is:

<qualifier>* <propname> ':' <typespec> ('=' <init>)? '<multiplicity>'? 'ordered'? 
       (opposites ’~’? <propname> <multiplicity>?)?

For properties typed by primitive types or collection of primitive types, the valid property qualifiers are ‘derived’ and 
‘readonly’ to represent respectively a derived attribute or a readonly attribute. When provided, the initialization value for 
a derived attribute represents the expression used to compute the value of the derived property. 

The syntax of multiplicity specification follows the regular convention from UML, where brackets surrounds the 
definition (such as [0..1], [1], [*] and [0..*]). When absent the [0..1] multiplicity is assumed.

Examples:

isStatic : Boolean = 0; 
values : Sequence(String); 
derived size : Integer = self.ownedElement->size();

To indicate that an attribute acts as a qualifying identifier for the class, a stereotype qualifier named ‘id’ is used. The 
syntax for stereotyped qualifiers is:

'<<' <IDENTIFIER> (',' <IDENTIFIER>)? '>>'

Example:

 <<id> uuid:String [1]; // a mandatory qualifying uuid attribute

For properties referencing non primitive types, the same syntax is used except that the ‘composes’ or ’references’ 
qualifier is used to distinguish between composite or non composite association ends. The ‘opposites’ keyword is used to 
indicate the opposite property, if any. When present, the '~' annotation indicates that the opposite property is not 
navigable.

Example:

composes ownedElement : Element [*] ordered opposites namespace;  
references usedElement : Element [*];

An operation declaration has a name, a list of formal parameters, and a return type.

getAllBaseClasses() : Set(Class);

8.4.7 EBNF

We provide below a formal definition of the textual syntax in EBNF.

8.4.7.1  Syntax for module definitions

// keywords

Bag, Collection, Dict, OrderedSet, Sequence, Set, Tuple, List, abstract, 
access, and, any, assert, blackbox, break, case, class, collect, 
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collectNested, composes, compute, configuration, constructor, continue,
datatype, default, derived, disjuncts, do, elif, else, end, endif, 
enum, except, exists, extends, exception, false, forAll, forEach , 
forOne, from, helper, if, implies, import , in, inherits, init, 
inout, intermediate, invresolve, invresolveIn, invresolveone, 
invresolveoneIn , isUnique, iterate, late, let, library, literal, 
log, main, map, mapping, merges, metamodel, modeltype, new, not, 
null, object, one, or, ordered, out, package, population, primitive,
property, query, raise, readonly, references, refines, reject, resolve,
resolveIn, resolveone, resolveoneIn, return, select, sortedBy, static,
switch, tag, then, transformation, true, try, typedef, unlimited, uses,
var, when, where, while, with, xcollect, xcollectOne, xcollectselect,
xcollectselectOne, xmap, xor, xselect, xselectOne

// start rule

<topLevel> ::= <import>* <unit_element>*

<import> ::= 'from' <unit> 'import' (<identifier_list> | '*') ';'
            | 'import' <unit> ';'
<unit> ::= <identifier> ('.' <identifier>)*

<identifier_list> ::= <identifier> (',' <identifier>)*

// definitions in a compilation unit
<unit_element> 
   ::= <transformation>
       | <library>
       | <access_decl>
       | <modeltype>
       | <metamodel>
       | <classifier>
       | <property>
       | <helper>
       | <constructor>
       | <entry>
       | <mapping>
       | <tag>
       | <typedef>

// Transformation and library definitions
<transformation> ::= <transformation_decl> | <transformation_def>
<transformation_decl> ::= <transformation_h> ';'
<transformation_def> ::= <transformation_h>  '{' <module_element>* '}' ';'?

<library> ::= <library_decl> | <library_def>
<library_decl> ::= <library_h> ';'
<library_def> ::= <library_h>  '{' <module_element>* '}' ';'?

// Transformation header
<transformation_h> ::= <qualifier>* 'transformation' <identifier> 
     <transformation_signature> <transformation_usage_refine>?
<transformation_usage_refine> ::= <module_usage> | <transformation_refine>
<transformation_signature> ::= <simple_signature>
<transformation_refine> ::= 'refines' <moduleref>

// Library header
<library_h> ::= 'library' <identifier> <library_signature>? <module_usage>?
<library_signature> ::= <simple_signature>

// import of transformation and library
<module_usage> ::= <access_usage> | <extends_usage>
<access_usage> ::= 'access' <module_kind>? <moduleref_list>
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<extends_usage> ::= 'extends' <module_kind>? <moduleref_list>
<module_kind> ::= 'transformation' | 'library'
<moduleref_list> ::= <moduleref> (',' <moduleref>)*
<moduleref> ::= <scoped_identifier> <simple_signature>?
<access_decl> ::= <access_usage> ';'

// module definitions
<module_element> 
   ::= <classifier>
       | <property>
       | <helper>
       | <constructor>
       | <entry>
       | <mapping>
       | <tag>
       | <typedef>
       | <access_decl>

// general purpose grammar rules
<qualifier> ::= 'blackbox' | 'abstract' | 'static'
<complete_signature> ::= <simple_signature> (':' param_list)?
<simple_signature> ::= '(' <param_list>? ')'
<param_list> ::= <param> (',' <param>)*
<param> ::= <param_direction>? <declarator>
<param_direction> ::= 'in' | 'inout' | 'out'
<simple_declarator> ::= <typespec>
                   | <scoped_identifier> ':' <typespec>
<declarator> ::= <typespec> <init_part>?
                  | <scoped_identifier> ':' <typespec> <init_part>?
<simple_declarator_list> ::= <simple_declarator> (',' <simple_declarator>)*
<declarator_list> ::= <declarator> (',' <declarator>)*
<declarator_semi_list> ::= <declarator> (';' <declarator>)*
<init_part> ::= <init_op> <expression>
<init_op> ::= '=' | ':=' | '::='
<typespec> ::= <type_reference> <extent_location>?
<type_reference> ::= <scoped_identifier> | <complex_type>
<extent_location> ::= '@' <identifier>
<complex_type> ::= <complex_type_key>
                   | <collection_key> '(' <typespec> ')'
                   | 'Tuple' '(' <declarator_list> ')'
                   | 'Dict' '(' <typespec> ',' <typespec> ')'
<complex_type_key> ::= <collection_key> | 'Dict' | 'Tuple'
<collection_key> ::= 'Collection' | 'Set' | 'OrderedSet' | 'Sequence' | 'Bag'
                     | 'List'
<scoped_identifier> ::= <identifier> ('::' <identifier>)*
<scoped_identifier_list> ::= <scoped_identifier> (',' <scoped_identifier>)*
<expression_list> ::= <expression_semi_list> ';'?
<expression_semi_list> ::= <expression> (';' <expression>)*
<expression_comma_list> ::= <expression> (',' <expression>)*
<expression_block> ::= '{' <expression_list>? '}'
<expression_statement> ::= <expression> ';' | <expression_block> ';'?

// model types compliance and metamodel declarations
<modeltype> ::= 'modeltype' <identifier> <compliance_kind>?
   'uses' <packageref_list> <modeltype_where>?  ';'
<modeltype_where> ::= 'where' <expression_block>
<packageref_list> ::= <packageref> (',' <packageref>)*
<packageref> ::= (<scoped_identifier> ( '(' <uri> ')' )? | <uri>)
<compliance_kind> ::= <STRING> // like: "strict" and "effective"
<uri> ::= <STRING>

// Syntax for defining explicitly metamodel contents
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<metamodel> ::= <metamodel_decl> | <metamodel_def>
<metamodel_decl> ::= <metamodel_h> ';'
<metamodel_def> ::= <metamodel_h> '{' <metamodel_element>* '}' ';'?

<metamodel_h> ::= ('metamodel' | 'package') scoped_identifier
<metamodel_element> ::= <classifier> | <enumeration> | <tag>

<classifier> ::= <classifier_decl> | <classifier_def>
<classifier_decl> ::= <classifier_h> ';'
<classifier_def> ::= <classifier_h> '{' <classifier_feature_list>?  '}' ';'?

<classifier_h> ::= <classifier_info> <scoped_identifier> <classifier_extension>?
<classifier_info> ::= 'datatype' 
                 | 'primitive' | 'exception' 
                 | 'intermediate'? <qualifier>* 'class'
<classifier_extension> ::= 'extends' <scoped_identifier_list>
<classifier_feature_list> ::= <classifier_feature> (';' <classifier_feature>)* ';'?
<classifier_feature> ::= <classifier_property> | <classifier_operation> | <tag>

<classifier_property> ::= <feature_qualifier>? <declarator> <multiplicity>? 
                     <opposite_property>?
<feature_qualifier> ::= <stereotype_qualifier>? <feature_key>*
<feature_key> ::= 'composes' | 'references' | 'readonly' | 'derived' | 'static'
<stereotype_qualifier> ::= '<<' <identifier_list> '>>'
<multiplicity> ::= '[' multiplicity_range ']'
<multiplicity_range> ::= <INTEGER> | '*' | <INTEGER> '...' <INTEGER> | <INTEGER> 
'...' '*' 
<classifier_operation> ::= <feature_qualifier>? <declarator> <complete_signature>

<enumeration> ::= <enumeration_h>  ';'
                | <enumeration_h>  '{' <identifier_list> '}' ';'?

<enumeration_h> ::= 'enum' <identifier>
<opposite_property> ::= 'opposites' '~'? <identifier> <multiplicity>?

<tag> ::= 'tag' <tagid> <scoped_identifier> ('=' <tagvalue>)? ';'
<tagid> ::= <STRING>
<tagvalue> :: <expression>

// typedefs
<typedef> ::= 'typedef' <identifier> '=' <typespec> (typedef_condition)? ';'
<typedef_condition> ::= '[' <expression> ']'

// Properties in transformation
<property> ::= 'intermediate'? <property_key>+ <declarator> ';'
<property_key> ::= 'derived' | 'literal' | 'configuration' | 'property'

// Syntax for helper operations
<helper> ::= <helper_decl> | <helper_simple_def> | <helper_compound_def>
<helper_header> ::= <helper_info> <scoped_identifier> <complete_signature>
<helper_info> ::= <qualifier>* <helper_kind>
<helper_kind> ::= 'helper' | 'query'
<helper_decl> ::= <helper_header> ';'
<helper_simple_def> ::= <helper_header> '=' <expression> ';'
<helper_compound_def> ::= <helper_header> <expression_block> ';'?

// Syntax for constructors
<constructor> ::= <constructor_decl> | <constructor_def>
<constructor_header> ::= <qualifier>* 'constructor' <scoped_identifier> 
                         <simple_signature>
<constructor_decl> ::= <constructor_header> ';'
<constructor_def> ::= <constructor_header> <expression_block> ';'?
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// Syntax for entries
<entry> ::= <entry_decl> | <entry_def>
<entry_header> :: 'main' <simple_signature>
<entry_decl> ::= <entry_header> ';'
<entry_def> ::= <entry_header> <expression_block>  ';'?

// syntax for mapping operations
<mapping> ::= <mapping_decl> | <mapping_def>
<mapping_decl> ::= <mapping_full_header> ';' 
<mapping_def> ::= <mapping_full_header> '{' <mapping_body> '}' ';'?
<mapping_full_header> ::= <mapping_header> <when>? <where>?
<mapping_header> ::= <qualifier>* 'mapping' <param_direction>?
    <scoped_identifier> <complete_signature> <mapping_extra>*
<mapping_extra> ::= <mapping_extension> | <mapping_refinement>
<mapping_extension> ::= <mapping_extension_key> <scoped_identifier_list>
<mapping_extension_key> ::= 'inherits' | 'merges' | 'disjuncts'
<when> ::= 'when' <expression_block> 
<where> ::= 'where' <expression_block> 
<mapping_refinement> ::= 'refines' <scoped_identifier>
<mapping_body> ::= <init_section>? <population_section>? <end_section>?
<init_section> ::= 'init' <expression_block>
<population_section> ::= <expression_list>
                         | 'population' <expression_block>
<end_section> ::= 'end' <expression_block>

// Expressions
<expression> ::= <assign_exp>
                 | <let_exp>
                 | <var_init_exp>

<assign_exp> ::= <implies_exp>
           | <unary_exp> <assign_op> <expression> <default_val>?
           | <unary_exp> <assign_op> <expression_block> <default_val>?
           | 

<assign_op> := ':=' | '::=' | '+=' | '-='

<default_val> ::= 'default' <assign_exp>

<implies_exp> ::= <or_exp>
             | <implies_exp> 'implies' <or_exp>

<or_exp> ::= <and_exp>
         | <or_exp> <or_op> <and_exp>

<or_op> ::= 'or' | 'xor'

<and_exp> ::= <cmp_exp>
          | <and_exp> 'and' <cmp_exp>

<cmp_exp> ::= <additive_exp>
               | <cmp_exp> <cmp_op> <additive_exp>

<cmp_op> ::= '=' | '==' | '<>' | '<' | '>' | '<=' | '>=' 

<additive_exp> ::= <mult_exp>
               | <additive_exp> <add_op> <mult_exp>

<add_op> ::= '+' | '-'

<mult_exp> ::= <unary_exp>
            | <mult_exp> <mult_op> <unary_exp>
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<mult_op> ::= '*' | '/' | '%'

<unary_exp> ::= <postfix_exp>
            | <unary_op> <unary_exp>

<unary_op> ::= '-' | 'not' | '#' | '##' | '*'

<postfix_exp> ::= <primary_exp>
              | <postfix_exp> '(' <arg_list>? ')'
              | <postfix_exp> '!'? '[' <declarator_vsep>? <expression> ']'
              | <postfix_exp> <access_op> 
                   (<scoped_identifier> | <iterator_exp> | <block_exp> 
                    | <control_exp> | <rule_call_exp> 
                    | <resolve_exp> | <resolve_in_exp>)

<declarator_vsep> ::= <simple_declarator> '|'
<multi_declarator_vsep> ::= <simple_declarator_list> '|'

<resolve_exp> ::= <resolve_key> '(' <resolve_condition>? ')'
<resolve_condition> ::= <declarator> ('|' <expression>)?
<resolve_key> ::= 'late'? <resolve_kind>
<resolve_kind> ::= 'resolve' | 'resolveone' | 'invresolve' | 'invresolveone'

<resolve_in_exp> ::= <resolve_in_key> '(' <scoped_identifier> 
                          (',' <resolve_condition>)?')'
<resolve_in_key> ::= 'late'? <resolve_in_kind>
<resolve_in_kind> ::= 'resolveIn' | 'resolveoneIn' | 'invresolveIn' | 'invresolveo-
neIn' 

<access_op> ::= '.' | '->' | '!->'

<primary_exp> ::= <literal>
              | <scoped_identifier>
              | <if_exp>
              | <block_exp>
              | <control_exp>
              | <rule_call_exp>
              | <quit_exp>
              | <try_exp>
              | <raise_exp>
              | <assert_exp>
              | <log_exp>
              | '(' <expression> ')'

<literal> ::= <literal_simple>
           | <literal_complex>

<literal_simple> ::= <INTEGER> | <FLOAT> | <STRING>
                  | 'true' | 'false' | 'unlimited' | 'null'

<literal_complex> ::= <literal_collection>
                   |  <literal_tuple>
                   |  <literal_dict>

<literal_collection> ::= <collection_key> '{' <collection_item_list>? '}'

<literal_tuple> ::= 'Tuple' '{' <tuple_item_list>? '}'
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<literal_dict> ::= 'Dict' '{' <dict_item_list>? '}'

<collection_item_list> ::= <expression_comma_list>
<tuple_item_list> ::= <declarator_list>
<dict_item_list> ::= <dict_item> (',' <dict_item>)*
<dict_item> ::= <literal_simple> '=' <expression>

<if_exp> ::= 'if' <expression> <then_part>
             <elif_part>* <else_part>? 'endif'
<then_part> ::= 'then' <if_body>
<elif_part> ::= 'elif' <if_body>
<else_part> ::= 'else' <if_body>
<if_body> ::= <expression> | <expression_block>

<iterator_exp> ::= <simple_iterator_op> '(' <declarator_vsep>? <expression> ')'
            | <multi_iterator_op>  '(' <multi_declarator_vsep>? <expression> ')'
            | <iterate_exp>

<simple_iterator_op> ::= 'reject' | 'select' | 'collect' | 'exists'
                | 'one' | 'any' | 'isUnique' | 'collectNested'
                | 'sortedBy' | 'xselect' | 'xcollect' 
                | 'xselectOne' | 'xcollectOne' 
                | 'xcollectselect' | 'xcollectselectOne'

<multi_iterator_op> ::= 'forAll'

<iterate_exp> ::= 'iterate' '(' <declarator_list> ';' 
    <declarator> '|' <expression> ')'

<iter_declarator> ::= <declarator>
<iter_declarator_list> ::= <declarator_list>

<block_exp> ::= (<object_exp> | <do_exp> | <switch_exp>)

<object_exp> ::= 'object' ('(' <iter_declarator> ')')? <object_declarator> 
     <expression_block>
<object_declarator> ::= <typespec> | <identifier> ':' <typespec>?

<do_exp> ::= 'do' <expression_block>

<switch_exp> ::= 'switch' ('(' <iter_declarator> ')')? <switch_body>
<switch_body> ::= '{' <switch_alt>+ <switch_else>? '}'
<switch_alt> ::= 'case' '(' <expression> ')'  <expression_statement>
<switch_else> ::= 'else' <expression_statement>

<control_exp> ::= (<while_exp> | <compute_exp> | <for_exp>)

<while_exp> ::= 'while' '(' (<declarator> ';')? <expression> ')' 
   <expression_block> 
<compute_exp> ::= 'compute' '(' <declarator> ')' <expression_block>
<for_exp> ::= ('forEach' | 'forOne') '(' <iter_declarator_list> 
   (';' <declarator>)? ('|' <expression>)? ')' <expression_block>

<rule_call_exp> ::= ('map' | 'xmap' | 'new' )
  ('(' <declarator> ')')? <scoped_identifier>

<let_exp> ::= 'let' <declarator_list> 'in' <expression>

<var_init_exp> ::= 'var' <declarator_list>
               | 'var' '(' <declarator_list> ')'
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<quit_exp> ::= 'break' | 'continue' | <return_exp>)

<return_exp> ::= 'return' <expression>?

<try_exp> ::= 'try' <expression_block> <except>+

<except> ::= 'except' '(' [<identifier> ':'] <scoped_identifier> 
[',' <scoped_identifier>]* ')' <expression_block>

<raise_exp> ::= 'raise' <scoped_identifier> ('(' <arg_list>? ')')? 
  | 'raise' <STRING>

<arg_list> ::= <expression_comma_list>

<assert_exp> ::= 'assert' <identifier>? '(' <expression> ')' 
   ( 'with' <log_exp> )?

<log_exp> ::= 'log' '(' <arg_list> ')' ('when' <expression>)?

8.4.8 Solving Type Identifiers

When referring to a type within an operational transformation definition it is possible to either qualify the type name with 
a model type or a package name, or, alternatively, leave the name of the type unqualified. In the latter case, a list of rules 
applies to resolve the symbol into the denoted type. If the resolution rule provides more than one result, the specification 
is erroneous.

• First, a type definition existing at the level of the current module (a transformation or a library) is searched.

• If not found, all the packages of the model types declared in the module are recursively visited to found a type with the 
same name.
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9 The Core Language

9.1 Comparison with the Relational Language
The Core language supports pattern matching over a flat set of variables by evaluating conditions over those variables 
against a set of models. The Core Language is as powerful as the Relations language, though simpler. Consequently, the 
semantics of the Core Language can be defined more simply, though transformations described using the Core are more 
verbose. The Core Language may be implemented directly, or used as a reference for the semantics of Relations, which 
are mapped to the Core, using the transformation language itself, as described in Clause 10.

As described in Clause 7, the Relations Language implicitly creates trace classes and objects to record what occurred 
during a transformation execution. In the Core Language, these traces are explicit. By implication, the Core Language 
supports more class models that hold the trace than the implied class model of the Relations Language.

The following aspects, implied in the relational language, have to be defined explicitly when using the core language:

• The patterns that match against, and create the instances of the classes that are the trace objects of the transformation 
(e.g., the links between the transformed model elements).

• Atomic sets of model elements that are created or deleted as a whole, specified in smaller patterns than commonly 
specified in the Relational Language.

The trace classes (whose instances are the trace objects) are defined using MOF.

9.2 Transformations and Model Types
In the core language, a transformation is specified as a set of mappings that declare constraints that must hold between the 
model elements of a set of candidate models and the trace model. The candidate models are named, and the types of 
elements they can contain are restricted by a model type.

A transformation may be executed in one of two modes: checking mode or enforcement mode. In checking mode, a 
transformation execution checks whether the constraints hold between the candidate models and the trace model, resulting 
in reporting of errors when they do not. In enforcement mode, a transformation execution is in a particular direction, 
which is defined as the selection of one of the candidate models as the target model. The execution of the transformation 
proceeds by, first checking the constraints, and secondly attempting to make all the violated constraints hold by modifying 
only the target model and the trace model.

9.3 Mappings
A transformation contains mappings. A mapping has zero or more domains. A domain has an associated model type of 
the transformation. A domain does not have a name; it is uniquely identified by the mapping and the associated model 
type. Thus, in a transformation execution, each domain specifies a set of model elements of exactly one of the candidate 
models that is of interest to a mapping. 

The following picture shows (informally) the structure of a mapping with two domains, one for model type L and one for 
model type R.
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Each rectangle in the above picture of a mapping represents a pattern. The columns in the picture are called areas. Each 
area consists of two patterns, the guard pattern and the bottom pattern. A mapping consists of one area for the trace (the 
middle area) and one area (a domain) for each model type. The domain areas consist of patterns that match the candidate 
models, the middle area consists of patterns that match the trace model.

A mapping defines a one-to-one relation between all bottom patterns of that mapping. This means that for any successful 
match of one of the bottom patterns there should exist exactly one successful match for each other bottom pattern. The 
one-to-one constraint between the bottom patterns is only checked or enforced if a successful match for each guard 
pattern of that mapping exists.

When a transformation is executed in checking mode, all the mappings of the transformation are executed, by matching 
the patterns, to check the one-to-one constraints.

When a transformation is executed in enforcement mode in the direction of a target model, each mapping is executed to 
enforce the one-to-one constraint. Firstly by matching the patterns (the same as in checking mode), secondly by enforcing 
the one-to-one constraint if it is violated. Enforcement will only cause changes to model elements of the trace model and 
the target model associated with the domain and its model type.

9.4 Patterns
A pattern is specified as a set of variables, predicates, and assignments. Patterns can be matched and enforced. Matching 
of a pattern can result in value bindings of the variables (e.g., pattern instances), and enforcing of a pattern can result in 
model changes causing new value bindings for the variables during matching.

Patterns can depend on each other. A pattern that depends on another pattern may use the variables of that other pattern 
in its own predicates and assignments, and is matched using value bindings of the variables produced by a match of that 
other pattern. The dotted arrows in Figure 9.1 show the dependencies between the patterns, with the following 
interpretation:

More formally: If pattern C depends on pattern S, then C may use variables of S in predicates and assignments of C, and 
pattern C is always matched using value bindings of the variables produced by a match of pattern S.

Figure 9.1 - Core Domains and Pattern Dependencies
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In a mapping, bottom patterns depend on guard patterns (in the same column) and middle patterns depend on domain 
patterns (in the same row). In addition, dependencies between two patterns of two different domains (in the same row) 
also exist when one of the two associated model types is declared to depend on the other associated model type (see QVT 
Base in Clause 7). Dependencies between domain patterns (in the same row) are not shown in the above picture. 
Dependencies between model types are typically declared to define transformations between 3 or more models, where one 
model has model elements that refer to model elements of another model.

More formally: Only the following dependencies between patterns exist:

• A bottom pattern always depends on the guard pattern above it in the same area.

• A middle-pattern depends on all domain patterns on the same level (either between guard patterns or between bottom 
patterns).

• When a model type called A depends on another model type called B, then each pattern of the domain that has model 
type A depends on the pattern, in the same mapping and on the same level, of the domain that has model type B.

9.5 Bindings
A match of a pattern results in zero or more valid bindings. A binding is a unique set of values for all variables of the 
pattern. A valid binding of a pattern is a binding where all the variables of the pattern are bound to a value other than 
undefined, and where all the predicates of the pattern evaluate to true. (The semantics of OCL define that (and how) OCL 
expressions of type Boolean evaluate to false, true, or undefined.)

For example:

• A match of an empty pattern (no variables and no constraints) always results in one valid binding, with an empty set of 
values.

• A match of a pattern with one variable V and no constraints, always results in one valid binding per instance of the type 
of V in the model corresponding to the model type of the domain of the pattern.

• A match of a pattern with two variables V and W, and no constraints, results always in one valid binding per element of 
the cartesian product of all instances of the type of V and all instances of the type of W in the model corresponding to 
the model type of the domain of the pattern.

• A match of a pattern with two variables V and W of the same type, and one constraint that declares V and W should be 
equal (V=W), results always in one valid binding per element of the type of V in the model corresponding to the model 
type of the domain of the pattern.

A partial-valid binding is a binding where one or more variables are bound to a value other than undefined or one or more 
constraints evaluate to true, and no constraints evaluate to false (thus, either true or undefined). This implies that, any 
valid binding of a non-empty pattern is a partial-valid binding, and partial-valid bindings of empty patterns do not exist.

An invalid binding is a binding where at least one of the constraints evaluates to false. 

9.6 Binding Dependencies
A pattern can depend on another pattern. Predicates in a pattern that depend on another pattern may refer to variables 
declared in that other pattern. Matching a pattern that depends on another pattern involves always the usage of one valid 
binding of the other pattern. This ensures that all variables have a value when evaluating the predicates.
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More formally: If a pattern named C depends on patterns named S1 to Sn, then a valid binding of pattern C needs one 
valid binding for each pattern S1 to Sn. In other words: The match of pattern C takes place in the context of a set of valid 
bindings, one for each pattern S1 to Sn.

Binding dependencies commute: A valid combination of valid bindings of a set of depending patterns is a set of valid 
bindings, where each pattern has exactly one valid binding, and each pattern dependency has exactly one binding 
dependency between two valid bindings of that combination.

A partial-valid binding may depend on some other valid or partial-valid binding. However, each partial-valid binding 
must bind more variables or evaluate more constraints to true than the binding it depends upon.

9.7 Guards
Guards of a mapping narrow the selection of model elements to be considered for the mapping. The matching of bottom 
patterns takes place in the context of a valid combination of valid bindings of all the guard patterns. In such a 
combination, for each dependency between two guard patterns there must be exactly one dependency between two valid 
bindings of those two guard patterns.

Note that the guard patterns define neither constraints nor derivations on the transformed candidate and trace models. 
They are only used for defining a context in which constraints and derivations of the bottom patterns of a mapping can be 
computed.

9.8 Bottom Patterns
The bottom patterns of a mapping are the patterns that are checked and possibly enforced. A mapping declares essentially 
that all bottom patterns should relate one-to-one. That is, for each valid binding of one of the bottom patterns there must 
be exactly one valid binding for each other bottom pattern in that mapping. This implies that each valid binding of a 
bottom pattern may only be part of one unique valid combination of valid bindings for each bottom pattern.

Bottom patterns can have (in addition to variables and predicates) realized variables, assignments, and black-box 
operations. These extra features can have side effects when executed in enforcement mode, and when a one-to-one 
constraint is violated. These features are used to change the trace model and the target model to create, or remove a valid-
binding of a bottom pattern, to repair the one-to-one constraint. A description of these features follows.

Enforcement of the bottom patterns of a target domain and the middle area takes place when there is no valid match of 
these patterns for a given valid combination of valid bindings for all the guard and source domain bottom patterns.

During enforcement, all the side effect causing features of a bottom pattern are executed when a repair of a one-to-one 
constraint is necessary.  This is different from the relational language, where enforcement of a valid binding of a pattern 
may result in altering only parts of the pattern.

9.9 Checking
Mappings can be checked, either as part of a transformation execution in checking mode or in the first step of a 
transformation execution in enforcement mode. A transformation execution in checking mode will produce an error for 
each violation of a mapping constraint. A transformation execution in enforcement mode will enforce a repair for each 
violation of a mapping constraint. The latter is described in the next paragraph called enforcement. In both cases we first 
have to check if there are any violations of the mapping constraints.
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Domains may be checkable or not. Let us suppose that L and R are two different domains of the same mapping. Either L, 
or R, or both may be nominated as capable of being checked. Until now we assumed the typical situation in which both 
L and R are checkable.

If R is checkable and L is not checkable, this defines a one-to-one constraint between the bottom pattern of L and the 
middle bottom pattern, and a one-to-zero/one (i.e., 1:0..1) constraint between the bottom pattern of R and the middle 
bottom pattern. In other words, if there is a valid binding for the bottom pattern of L there must be one valid binding for 
the middle bottom pattern and one valid binding for the bottom pattern of R. If there is a valid binding for the bottom 
pattern of R, then there does not have to be a valid binding for the bottom pattern of L nor for the middle bottom pattern.

If both R and L are checkable, this defines a one-to-one relation between the bottom pattern of L and the middle bottom 
pattern, and a one-to-one relation between the bottom pattern of R and the middle bottom pattern. In other words, if there 
is a valid binding for the bottom pattern of L there must be a valid binding for the middle bottom pattern and a valid 
binding for the bottom pattern of R. If there is a valid binding for the bottom pattern of R there must be a valid binding 
for the middle bottom pattern and a valid binding for the bottom pattern of L.

More generally and formally: There must be (exactly) one valid-binding of the bottom-middle pattern and (exactly) one 
valid binding of the bottom-domain pattern of a checked domain, for each valid combination of valid bindings of all 
bottom-domain patterns of all domains not equal to the checked domain, and all these valid bindings must form a valid 
combination together with the valid bindings of all guard patterns of the mapping.

9.9.1 Checking Formally Defined

Following is a formal specification of the checking semantics using first order predicate logic.

• Each usage of b1:P1 is read as “a binding b1 resulting from a match of pattern P1.”

• Each usage of b1(b2,b3) is read as “b1 is a valid binding and b1 uses binding b2 and binding b3.”

If domains L and R are given, and domain R is checked:

Forall  gl:Guard-L, gr:Guard-R, gm:Guard-Middle (
( gl() and gr() and gm(gl,gr) ) implies
forall bl:Bottom-L (

bl(gl) implies
existsone bm:Bottom-Middle, br:Bottom-R (

br(gr) and bm(bl,gm,br)
)

)
)

If domains L, R, and T are given, and domain R is checked, and the model type of L uses the model type of T:

forall gl:Guard-L, gr:Guard-R, gt:Guard-T, gm:Guard-Middle (
( gl(gt) and gr() and gt() and gm(gl,gr,gt) ) implies
forall bl:Bottom-L, bt:Bottom-T (

( bl(gl,bt) and bt(gt) ) implies
existsone bm:Bottom-Middle, br:Bottom-R (

br(gr) and bm(bl,gm,br,bt)
)

)

)
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If domains L and R are given and both are checked:
 
forall gl:Guard-L, gr:Guard-R, gm:Guard-Middle (

( gl() and gr() and gm(gl,gr) ) implies
forall bl:Bottom-L (

bl(gl) implies
existsone bm:Bottom-Middle, br:Bottom-R (

br(gr) and bm(bl,gm,br)
)

)
and
forall br:Bottom-R (

br(gr) implies
existsone bl:Bottom-L, bm:Bottom-Middle (

bl(gl) and bm(bl,gm,br)
)

)
)

9.10 Enforcement
At execution time, one model type of the transformation (selecting all domains that have that model type) can be chosen 
as the enforcement direction (the target model). An enforcement direction thus designates the set of domains that 
associate with the target model type.

The target model and trace model may be changed to fulfill the (one-to-one) constraints of the mappings. The models are 
only changed when the constraints of a mapping are not fulfilled. The changes will lead either to the creation of new valid 
bindings or the removal of existing valid bindings of the target bottom patterns and the trace bottom patterns to enforce 
the constraints of a mapping.

A pattern contains variables, predicates, and assignments. For a specific value binding of the variables, a predicate 
evaluates to true, false, or undefined. Thus, predicates are only used for matching. For a specific value binding of the 
variables, assignments assign values to properties. These values are set to properties to repair a violation of a mappings 
constraint.

Assignments may be default assignments or not. Default assignments only assign values to satisfy the mapping 
constraints, they do not play a role during checking. A non-default assignment also plays the role of a predicate during 
checking, where the assignment operator (between the property and the value expression) is replaced by the equality 
operator. 

Variables may be realized or not. When a variable is realized, a new instance of the type of that variable may be created 
or an existing value of that variable may be deleted. Non-realized variables are used only to bind values during matching. 
Realized variables are used for both matching and enforcement.

Domains may be enforceable or not. Assignments and realized variables may only be defined in enforceable bottom-
domain patterns and bottom-middle patterns. A non-enforceable domain’s bottom pattern cannot be enforced, instead only 
the checking semantics will apply. 

If no valid binding of an enforceable target domain bottom pattern or middle bottom pattern exists and a valid binding of 
that pattern is required by the checking semantics, then new instances of the types of all unbound realized variables of 
that pattern are created and bound as values of those variables, and all assignments of the pattern are executed.
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If a valid binding of an enforceable target domain bottom pattern exists and a valid binding of that pattern is required not 
to exist by the checking semantics, then all the properties of the assignments of the pattern are nullified and all the values 
of the realized variables of the pattern are deleted. A valid binding of the target pattern is required not to exist when the 
source domain is required to be checked and there does not exist a valid binding of the source and middle patterns in a 
valid combination with the valid binding of the target pattern.

9.10.1 Enforcement formally defined

Following is a formal specification of the enforcement semantics using first order predicate logic.

Each usage of b1?(b2,b3) is read as “b1 is a partial-valid binding and b1 uses binding b2 and binding b3”.

• Each usage of b1>=b2 is read as “binding b1  is a superset of (or equal to) binding b2 (where b1 and b2 are bindings 
of the same pattern)”.

• Each usage of pre.b1 is read as “a binding b1 existing before a transformation execution”.

• Each usage of post.b1 is read as “a binding b1 existing after a transformation execution”.

If domains L and R are given, and both are checked, and R is enforced:
 
forall gl:Guard-L, gr:Guard-R, gm:Guard-Middle (

( gl() and gr() and gm(gl,gr) ) implies
forall bl:Bottom-L (

bl(gl) implies (
existsone post.bm:Bottom-Middle, post.br:Bottom-R (

post.bm(bl,gm,post.br) and post.br(gr) and
forall pre.bm:Bottom-Middle, pre.br:Bottom-R (

( pre.br?(gr) and pre.bm?(bl,gm,pre.br) )
implies
( post.bm>=pre.bm and post.br>=pre.br )

)
)

)
)
and
forall pre.br:Bottom-R (

pre.br(gr) and (
not exists pre.bm:Bottom-Middle, bl:Bottom-L (

bl(gl) and pre.bm(bl,gm,pre.br)
)

) implies (
not exists post.br:Bottom-R, post.bm:Bottom-Middle (

( post.br?(gr) and pre.br>=post.br )
or post.bm?(gm,pre.br)

)
)

)

)

If domains L and R are given, and R is checked and enforced:
 forall gl:Guard-L, gr:Guard-R, gm:Guard-Middle (

( gl() and gr() and gm(gl,gr) ) implies
forall bl:Bottom-L (
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bl(gl) implies (
existsone post.bm:Bottom-Middle, post.br:Bottom-R (

post.bm(bl,gm,post.br) and post.br(gr) and
forall pre.bm:Bottom-Middle, pre.br:Bottom-R (

( pre.br?(gr) and pre.bm?(bl,gm,pre.br) )
implies
( post.bm>=pre.bm and post.br>=pre.br )

)
)

)
)

)

If domains L and R are given, and L is checked, and R is enforced:
forall gl:Guard-L, gr:Guard-R, gm:Guard-Middle (

( gl() and gr() and gm(gl,gr) ) implies
forall pre.br:Bottom-R (

pre.br(gr) and (
not exists pre.bm:Bottom-Middle, bl:Bottom-L (

bl(gl) and pre.bm(bl,gm,pre.br)
)

) implies (
not exists post.br:Bottom-R, post.bm:Bottom-Middle (

( post.br?(gr) and pre.br>=post.br )
or post.bm?(gm,pre.br)

)
)

)

)

9.11 Realized Variables
A realized variable can be enforced to bind to a value, when enforcing the bottom pattern in which it is declared. A 
realized variable can be bound to a new value by creating a new instance of the type of the variable when enforcing a 
bottom pattern. A realized variable can also be nullified by deleting the instance that is the value of that variable. A 
realized variable has the same semantics as other variables when matching a pattern.

Creating and deleting instances of realized variable types are model changes that (as all other side effects) only take place 
when executing a transformation in enforcement mode, where a mapping has to be repaired to satisfy a one-to-one 
constraint.

9.12 Assignments
An assignment sets the value of a property of a target object, when enforcing the bottom pattern in which it is declared. 
An assignment has two associated OCL expressions and a referenced property. One of the OCL expressions, the slot 
expression, specifies the object whose property is to be assigned, the other OCL expression defines the value to be 
assigned.

An assignment is of two kinds, default and not default. Default assignments only play a role during the execution of a 
transformation in enforcement mode. Non-default assignments also play the role of predicates during the matching of a 
bottom pattern in both checking and enforcement modes.
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A default assignment only sets the value of a property of an object identified by a slot expression when enforcing a target 
bottom pattern or a middle bottom pattern. A non-default assignment is also evaluated during the matching of a bottom 
pattern.  If the value of the property of the object identified by the slot expression is equal to the value to be assigned, and 
all other predicates evaluate to true, then a valid binding is found. If the value of the property does not match the value to 
be assigned (or another predicate is violated), then the binding is not valid.

If an existing valid binding has to be deleted to repair the mapping constraint, then the properties of the objects identified 
by the slot expressions are nullified.

9.13 Enforcement Operations
In addition to realized variables and assignments, a mapping may also use black-box operations for enforcement of a 
domain. A domain-bottom pattern can contain operation call expressions specifically designated for the purpose of 
enforcement. An operation call is designated for a specific mode of enforcement: creation or deletion.

Creation semantics: 

1. Check if a valid binding of the enforced domain- or middle-bottom pattern exists for a given valid binding of the 
guard and other non-enforced domain patterns.

2. If a valid binding does not exist, then execute all the enforceable elements in creation mode, i.e., create new instances 
of unbound realized variables, execute  assignments, and invoke operations that are designated for the creation mode 
of enforcement of the domain.

3. Check again if a valid binding of the enforced domain pattern exists for the given valid binding of the guard and other 
non-enforced domain patterns. Checking is expected to succeed now and yield a valid binding (if the implementation 
is consistent with the mapping specification). If the checking fails, raise a runtime exception.

Deletion semantics:

1. Check if there exists a valid binding of the enforced domain- or middle-bottom pattern that is required not to exist as 
per the checking semantics.

2. If such a binding exists, then execute all the enforceable elements in deletion mode, i.e., invoke operations that are 
designated for the deletion mode of enforcement, nullify properties of assignments, and delete realized variable 
values.

9.14 Mapping Refinement
Refinement of mappings is used to specialize mappings into more specific mappings. Refinement is similar to inheritance 
of features between class specializations.

To explain the semantics of refinement we need to define the meaning of pattern correspondence first: Each pattern in 
one mapping corresponds with a pattern in another mapping if they are both in a domain with the same associated model 
type or both in the middle area, and if they are both guard patterns or both bottom patterns.

If one mapping is a refinement of one or more other mappings, then all the features (variables, predicates, assignments, 
etc.) of the patterns of the refined mappings are inherited in the corresponding patterns of the refinement, and none of the 
features of the patterns of the refined mappings can be overruled or removed.

To define the semantics of mapping refinement more formally, we will give the rewrite rules that will produce a new 
mapping that is semantically equal to, and derived from, the combination of the refined mapping and the refinement:
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• If a mapping named S refines a mapping named G, then the mappings S and G together are semantically equal to a 
mapping named R where each pattern of R has all the features of a corresponding pattern of G, extended with all the 
features of the corresponding pattern of S.

From the semantics of pattern matching we can now conclude: The constraints of the extended patterns in R are the 
conjunctions of the constraints of the corresponding patterns of S and G, applied over the union of the variables of the 
corresponding patterns of S and G. 

9.15 Mapping Composition
Composition of mappings is used to define mappings that are checked or enforced in the context of a valid combination 
of valid binding for all bottom patterns of another mapping. In other words: the child mapping is matched in the context 
of a valid binding of the bottom-middle pattern (implying valid bindings for all other patterns) of the parent mapping.

Essentially a child mapping can be defined as a mapping whose guard patterns effectively inherit all the features 
(variables, predicates, assignments, etc.) of both the guard and the bottom pattern of the corresponding area (middle areas 
or domains associated with the same model type) of the parent mapping.

A child mapping is local to the parent mapping. They do not have a name and cannot be refined by other mappings. 
However, child mappings can be parents of other child mappings.

The semantics are defined more formally by giving rewriting rules that will produce a new mapping, in place of the child 
mapping, that is semantically equal to, and derived from, a given child mapping and its parent mapping:

• If mapping C is composed by mapping P (P composes C), then the combination of C and P is semantically equal to the 
mappings R and P where the patterns of R have all the features of the corresponding patterns of C, and R has its guard 
patterns extended with all the features of the guard and bottom patterns of the corresponding area (domains with the 
same model type or middle areas) of P. 

9.16 Functions
Functions (from the QVT Base package) can be declared in mappings. Functions are operations (as in EMOF) with an 
OCL expression as body. Since OCL expressions do not have side effects, functions do not have side effects either.

The parameters of the function are the variables that can be used in the body-expression. The type of the OCL expression 
should conform to the result type of the function.

Functions can be used in the predicates and assignments of the patterns of the mapping. If a mapping refines, or is a child 
of, another mapping, then a function that is defined in the refined, or parent mapping, can be used in the predicates and 
assignments of the refinement or child mapping. 

9.17 Abstract Syntax and Semantics
This clause defines the abstract syntax of the Core Language. The Core Language is declared the QVTCore Package that 
depends on the QVTBase Package, EMOF, and the Expressions package of OCL. The QVTBase Package is described in 
Clause 7.11.1 “QVTBase Package” on page 24.

Conventions:
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The metaclasses imported from other packages are shaded and annotated with ‘from <package-name>’ indicating the 
original package where they are defined. The classes defined specifically by the packages of the QVT Core formalism are 
not shaded. Within the class descriptions, metaclasses and meta-properties of the metamodel are rendered in courier font. 
Courier font is also used to refer to identifiers used in the examples. Keywords are written in bold face. Italics are freely 
used to emphasize certain words, such as specific concepts, it helps understanding. However that emphasis is not 
systematically repeated in all occurrences of the chosen word.

 

9.17.1 CorePattern

A core pattern is specified as a set of variables, predicates, and assignments. Core patterns can be matched and enforced. 
Matching a core pattern can result in value bindings of the variables (e.g., pattern instances), and enforcing a pattern can 
result in model changes causing new value bindings for the variables during matching.

A match of a core pattern results in zero or more valid bindings. A binding is a unique set of values for all the variables 
of the pattern. A valid binding of a pattern is a binding where all the variables of the pattern are bound to a value other 
than undefined, and where all the predicates of the pattern evaluate to true.

Core patterns are declared in mappings, and although there are different kinds of core patterns playing different roles in a 
mapping, all core patterns have the same matching semantics.

The way in which the core patterns are organized in a mapping (explained in the following class descriptions) implies 
dependencies between them. Predicates in a pattern that depends on another pattern, may refer to the variables declared in 
that other pattern. Matching a pattern that depends on another pattern involves always the usage of one valid binding of 
the other pattern. This ensures that all the variables have a value when evaluating the predicates.

Superclasses
Pattern 

Figure 9.2 - QVTCore Package - Mappings and Patterns
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Associations
variable: Variable [*] {composes} (opposite end: corePattern?])

Unrealized guard pattern variables are the unbound variables of the pattern. Unrealized bottom pattern variables 
may be used to factor out common expressions.

9.17.2 Area

An area is a pair of core patterns, comprising a guard pattern and a bottom pattern. A bottom pattern depends on its 
guard pattern in the same area. Thus, we may use variables declared in the guard pattern in predicates and assignments in 
the bottom pattern. The matching of the bottom pattern uses a valid binding established during the matching of the guard 
pattern (as well as other valid bindings, depending on which concrete subtype of Area is under discussion).

Associations
guardPattern: GuardPattern [1] {composes}

The core pattern that is evaluated as a guard to the bottom pattern.
bottomPattern: BottomPattern [1] {composes}

The core pattern that is evaluated if the guard pattern of the same area has a valid binding. The bottom pattern is 
matched using the value bindings of the variables of the guard pattern.

Figure 9.3 - QVT Core Package - Bottom patterns
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9.17.3 GuardPattern

A guard pattern is one of the two core patterns in an area. A guard pattern is the guard for the bottom pattern of the same 
area. This means that the bottom pattern is evaluated using the variable values of the valid binding of the guard pattern. 
The evaluation of a guard pattern does not have any side effects.

Superclasses
CorePattern

Associations
area : Area [1] 

The area that owns the guard pattern.

9.17.4 BottomPattern

A bottom pattern can have (in addition to variables and predicates) realized variables, assignments, and black-box 
operations. These features are used to change the models and to create, or remove a valid-binding of the bottom pattern in 
which they are defined. A description of these features is given in the following class descriptions.

Bottom patterns have side effects when executed in enforcement mode. Enforcing a bottom pattern for a target domain 
and the middle bottom pattern takes place when a constraint, that a mapping imposes, is violated. The imposed constraints 
of a mapping are defined in the description of the class Mapping.

During enforcement, all the side effect features of a bottom pattern are executed when a repair of a constraint is necessary.  
This is different from the relational language where enforcement of a valid binding of a pattern may result in altering only 
parts of the pattern.

A bottom pattern is one of the two patterns declared in one area. A bottom pattern is matched or enforced using a valid 
binding of the guard pattern of the same area.

Superclasses
CorePattern

Associations
assignment : Assignment [*] {composes}

The assignments that specify assignment actions in enforcement mode. Some of the assignments may 
additionally specify  equality predicates to be used in checking mode. 

enforcementOperation: EnforcementOperation [*] {composes}

Black-box operations to enforce the bottom pattern in an opaque manner (not defined in a QVT language). See  
Clause 9.13 for the semantics of enforcement with black-box operations.

realizedVariable: RealizedVariable [*] {composes}

Realized variables are the variables whose values may be created or deleted in order to enforce  the bottom 
pattern.

9.17.5 CoreDomain

A core domain is an area that is associated with one model type (as defined for the class Domain in QVTBase). Patterns 
in a core domain are matched or enforced on the model elements of the candidate models of that model type. Each core 
domain of a mapping has one unique associated model type.
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Domains may be checkable or not. If a domain is checkable, the bottom pattern of that domain is matched to check the 
constraint the mapping imposes. The imposed constraints of a mapping are defined in the description of the class 
Mapping.

Domains may be enforceable or not. A non-enforceable domain’s bottom pattern can only be checked. Assignments and 
realized variables may only be defined in the bottom patterns of domains that are enforceable. 

When a transformation is executed in enforcement mode, one candidate model is selected as the target model. This also 
designates one core domain of each mapping that is associated with the model type of the target model as the target 
domain for the enforcement of that mapping. The candidate models corresponding to the other model types are not 
changed, because only the bottom patterns of the selected target core domains are possibly enforced.

A pattern of a domain has a dependency on a corresponding pattern (i.e., guard on guard and bottom on bottom) of 
another domain if the model type associated with the former has a dependency on the model type associated with the 
latter (see QVT Base in Clause 7). Thus, in a mapping we may use the variables declared in the patterns of the domain 
associated with the used model type in the predicates and assignments of the patterns of the domain associated with the 
depending model type. The matching of the depending pattern uses a valid binding established during the matching of the 
used pattern. (Note that a bottom domain pattern also depends on the guard pattern in the same domain.)

Variables in the patterns of a core domain must always have types that are defined in the used packages of its associated 
model type.

Superclasses
Domain
Area

9.17.6 Mapping

A mapping has one middle area and zero or more core domains. The guard pattern of the middle area depends on all the 
guard patterns of all the domains. The bottom pattern of the middle area depends on all the bottom patterns of all the 
domains. Thus, we may use the variables declared in the patterns of all the domain areas in the predicates and 
assignments of the pattern of the middle area (provided that they are at the same level, i.e., both guard patterns or both 
bottom patterns). The matching of the middle pattern uses all the valid bindings established during the matching of all the 
domain patterns.

All the different dependencies between the patterns in one mapping commute. (See Clause 9.6 for semantics of binding 
dependencies.) For example, with respect to any domain of the mapping, matching of the bottom middle pattern uses a 
valid binding of its guard pattern, and a valid binding of the bottom pattern of that domain, and these two valid bindings 
in turn depend on the same valid binding of the guard pattern of that domain.

The constraint expressed by a mapping between its bottom patterns is only checked or enforced if a set of valid bindings, 
one for each guard pattern of that mapping, exists where all dependencies commute. A mapping essentially defines a one-
to-one relation between all bottom patterns of the areas of that mapping. This means that for any successful match of one 
of the bottom patterns there should exist exactly one successful match for each other bottom pattern. 

When a transformation is executed in checking mode, all the mappings of the transformation are executed, by matching 
the patterns, to check the one-to-one constraints.
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When a transformation is executed in enforcement mode in the direction of a target model, each mapping is executed to 
enforce the one-to-one constraint, firstly by matching the patterns (the same as in checking mode), secondly by enforcing 
the one-to-one constraint if it is violated. Enforcement will only cause changes to model elements of the trace model (by 
the bottom middle patterns) and the target model (by the bottom patterns of the domains associated with the model type 
of the target model).

Superclasses
Rule

Associations
/domain : CoreDomain [*] {composes} (From QVTBase)

The domains that specify the patterns to match (and perhaps enforce) in the candidate models. All domains of a 
mapping must be of subtype CoreDomain.

local : Mapping [*] {composes} (opposite end: context [0..1])

The set of local mappings owned by this mapping that are evaluated in the context of this mapping as per 
composition semantics. Local mappings are only evaluated in the context of a set of valid bindings for all bottom 
patterns of the context mapping. (See  Clause 9.15 for semantics of composition.)

specification : Mapping [*] (opposite end: refinement [*])

A mapping can refine another mapping, which acts as its specification. This results in refinement semantics. The 
core patterns of a refinement mapping inherit the variables, predicates, and assignments from the corresponding 
core patterns of the specification mapping. (See  Clause 9.14 for refinement semantics.)

9.17.7 RealizedVariable

A realized variable can be enforced to bind to a value, when enforcing the bottom pattern in which it is declared. A 
realized variable can be bound to a new value by creating a new instance of the type of the variable when enforcing a 
bottom pattern. A realized variable can also be nullified by deleting the instance that is bound as the value of that 
variable. A realized variable has the same semantics as other variables when matching a pattern.

Creating and deleting instances of realized variable types are model changes that (as all other side effects) take place only 
when executing a transformation in enforcement mode, where a mapping has to be repaired to satisfy a one-to-one 
constraint.

Superclasses
Variable

Associations
bottomPattern : BottomPattern [1]

The bottom pattern in which the realized variable is declared.

9.17.8 Assignment

An assignment sets the property of a target object or sets the value of a variable. See PropertyAssignment and 
VariableAssignment definitions for detailed semantic of property assignment and variable assignment.

Attributes
isDefault : Boolean

Indicates whether the assignment is default assignment or a non-default assignment.
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Associations
value : OclExpression [1] {composes}

An OCL expression specifying the value to be assigned to the target property. The type of the value expression 
must conform to the type of the target property.

bottomPattern : BottomPattern [1]

The bottom pattern that contains the assignment.

9.17.9 PropertyAssignment

A property assignment sets the value of a property of a target object, when enforcing the bottom pattern in which it is 
declared. An assignment has two associated OCL expressions and a referenced target property. One of the OCL 
expressions, the slot expression, specifies the object whose property is to be assigned, the other OCL expression defines 
the value to be assigned.

An assignment is of two kinds, default and not default. Default assignments only play a role during the execution of a 
transformation in enforcement mode. Non-default assignments also play the role of predicates during the matching of a 
bottom pattern in both checking and enforcing mode. 

A default assignment only sets the value of a property of an object identified by a slot expression when enforcing a target- 
bottom pattern or a middle-bottom pattern. A non-default assignment on the other hand is also evaluated during the 
matching of a bottom pattern. If the value of the property of the object identified by the slot expression is equal to the 
value to be assigned, and all other predicates evaluate to true, then a valid binding is found. If the value of the property 
does not match the value to be assigned (or another predicate is violated), then the binding is not valid.

If an existing valid binding has to be deleted, to repair the mapping constraint, then the properties of the objects identified 
by the slot expressions are nullified.

Superclasses
Assignment

Associations
slotExpression: OclExpression [1] {composes}

An OCL expression identifying the object whose property value is to be assigned.
targetProperty: Property [1]

The property whose value is to be assigned. The target property should be defined on the type of the slot 
expression.

9.17.10 VariableAssignment

A variable assignment sets the value of a variable.

Superclasses
Assignment

Associations
targetVariable: Variable [1]

The variable whose value is to be assigned.
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9.17.11 EnforcementMode

The enforcement mode specifies the mode in which an operation that implements the enforcement semantics of a 
mapping is to be invoked. It is used when invoking an enforcement operation for enforcing the creation of a new valid 
binding of a bottom pattern or for enforcing the deletion of an existing valid binding of a bottom pattern.

Enumeration values
Creation

Specifies that the invoked operation is expected to alter the models to enforce a new valid binding of a bottom 
pattern.

Deletion

Specifies that the invoked operation is expected to alter the models to enforce the deletion of an existing valid 
binding of a bottom pattern.

9.17.12 EnforcementOperation

An enforcement operation is an OCL expression resulting in an Operation Invocation that plays a special role in the 
enforcement of a bottom pattern of the target domain or the middle area. It is analogous to an assignment, in that it only 
changes the model for valid bindings of the guard and opposite bottom patterns when the bottom pattern, to which it 
belongs, fails to satisfy the one-to-one constraint. The invoked operation has side-effects, which, after execution must 
result in a set of value bindings for variables for which all the predicates of the bottom pattern evaluate to true. It may be 
invoked in two modes: Create or Delete. In Create mode it must make objects of the types of the realized variables of the 
bottom pattern, and in Delete mode it must delete these model elements. In both modes it must also perform whatever 
other actions are required to fulfill the bottom pattern conditions.

Associations
operationCallExp: OperationCallExp [1] {composes}

An OCL Expression identifying an operation invocation and its parameters, which must include the variables 
that are defined in the owning bottom pattern.

bottomPattern: BottomPattern [1] 

The bottom pattern in which the enforcement operation is declared.

9.18 Concrete Syntax
This clause defines the concrete textual syntax for the QVT core language using the EBNF notation.

TopLevel ::= (Transformation | Mapping | Query)*

Transformation ::= 
'transformation' TransformationName 
  '{' ( Direction';' )* '}' 
  [ 'extends' TransformationName (',' TransformationName)*]

Direction ::= 
[DirectionName] ['imports' PackageName(',' PackageName)*] 
  ['uses' DirectionName(',' DirectionName)*]

Mapping ::= 
  'map' MappingName ['in' TransformationName] ['refines' MappingName] '{' 
    ( ['check'] ['enforce'] DirectionName '('DomainGuardPattern')' '{' 
  DomainBottomPattern 
  '}' )* 
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  'where' '(' MiddleGuardPattern ')' '{' 
MiddleBottomPattern 

  '}' 
    ( ComposedMapping )* 
  '}'

ComposedMapping ::= 'map' [MappingName] ['refines' MappingName] '{' 
  (['check'] ['enforce'] DirectionName '('DomainGuardPattern')' '{' 
  DomainBottomPattern 
  '}' )* 
  'where' '(' MiddleGuardPattern ')' '{' 
  MiddleBottomPattern 
  '}' 
  (ComposedMapping )* 
  '}'

DomainGuardPattern, MiddleGuardPattern ::= GuardPattern

DomainBottomPattern, MiddleBottomPattern ::= BottomPattern

GuardPattern ::= 
  [Variable(',' Variable )* ] 
  ['|' ( Predicate ';' )+]

BottomPattern ::= 
  [ (Variable | RealizedVariable) 
  (',' ( Variable | RealizedVariable))*] 
  ['|' ( (Constraint | EnforcementOperation) ';' )+]

EnforcementOperation ::= 
  ('create' | 'delete') OperationCallExpCS

Variable := 
  VariableName ':' TypeDeclaration

RealizedVariable := 
  'realize' VariableName ':' TypeDeclaration

Constraint ::= Predicate | Assignment

Predicate ::= BooleanOCLExpr

Assignment ::= 
  ['default’] SlotOwnerOCLExpr '.' PropertyName ':=' ValueOCLExpr

Query ::= 'query' QueryName '(' [ ParamDeclaration (',' ParamDeclaration)*] ')' 
  ':' TypeDeclaration (';' | '{' QueryOCLExpr '}')

ParamDeclaration ::= ParameterName ':' TypeDeclaration
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10 Relations to Core Transformation
This clause provides the transformation that gives the Relations language its semantics in terms of the Core. The 
principles of the transformation are given first in an introduction. Then the full transformation specification is shown, and 
finally, the application of this transformation to the familiar object to relational transformation is shown to demonstrate 
the results.

10.1 Mapping Approach
In relations, transformation classes (or trace classes) are not explicitly specified and used. Instead, a relation directly 
specifies the relationship that should hold between source and target domains. Whereas in core, transformation classes 
and patterns over them (to query and instantiate transformation relations between source target model elements) are an 
essential part of the specification of mappings. Transformation classes and their instances are important for supporting 
efficient implementation of incremental execution scenarios, but avoiding them at specification level (as far as possible) 
makes a transformation writer’s job easier. Since a relation is an assertion of a relationship that exists between source and 
target model elements, and a transformation class essentially serves to capture such assertions structurally, it is possible to 
derive transformation classes from relation specifications, and relation dependencies can be mapped to corresponding 
transformation class dependencies.

A relation’s when and where clauses map to the middle area of a mapping: the when clause maps to the middle-guard and 
the where clause maps to the middle-bottom. A domain pattern maps to a domain area in the core: domain variables that 
occur in the when clause map to the domain-guard and the remaining domain pattern maps to the domain-bottom.

Relations can have arbitrary invocation dependencies. A relation can invoke multiple relations and a relation can be 
invoked by multiple relations. A relation can invoke another relation in its pre-condition (when clause) or post-condition 
(where clause). This style is intuitive to users and allows for complex composition hierarchies to be built. A relation 
invoking another relation over a set of values is semantically equivalent to a relation asserting the existence of another 
relation, i.e., asserting the existence of an instance of the corresponding transformation class with references to, or copies 
of, the values passed to the relation invocation. When mapping from relations to core we need to decompose relation 
invocation dependencies into simpler mapping dependencies; essentially each relation invocation chain needs to be 
broken down into its binary components (see the mapping rules below). Since relations are expressed in terms of patterns, 
relation dependencies can be translated to corresponding pattern dependencies.

Structural patterns of the domains of relations can be translated to equality constraints (or assignments depending on the 
“enforcement” specification) in the core.

Relation variables used in enforced domain patterns are mapped as realized variables in the bottom patterns of the 
corresponding core domain.

A relation domain can have a complex pattern consisting of multiple object nodes, properties, and links. While translating 
to core an enforced relation domain’s complex pattern needs to be split into simpler patterns of multiple nested composed 
mappings. Naively putting the entire pattern in a single (core domain of a) core mapping can lead to duplicate object 
creations and unwanted object deletion-recreation cycles. This is because core has a simplified pattern matching 
semantics. During enforcement if a pattern does not match in its entirety, then all the realized variables are freshly created 
irrespective of whether any of the objects already exist or not. During deletion all the realized variables of a pattern 
binding are deleted irrespective of whether any of the objects are required in other valid pattern bindings or not. See Rule 
4.3 below.
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10.2 Mapping Rules

Trace class generation rule

Rule 1

Corresponding to each relation there exists a trace class in core. The trace class contains a property corresponding to each 
object node in the pattern of each domain of the relation.  For example:

relation ClassToTable 
{ 
   checkonly domain uml c:Class {namespace=p:Package {}, kind='Persistent',  
name=cn} 
   checkonly domain rdbms t:Table {schema=s:Schema {}, name=cn} 
}
class TClassToTable 
{ 
   c: Class; 
   p: Package; 
   t: Table; 
   s: Schema; 
}

For mapping to core we distinguish between two kinds of relations of a transformation: top-level relations and invoked 
relations. By a top-level relation we mean a relation that is not invoked from the where clause of any other relation; by an 
invoked relation we mean a relation that is invoked from the where clause of another relation.

A top-level relation maps to a single core mapping (perhaps with composed mappings), whereas an invoked relation maps 
to a separate mapping for each invoker-invoked combination.

For mapping to core we also distinguish between check-only relations and enforceable relations. A check-only relation 
maps to a single core mapping, whereas an enforceable relation may map to a composite hierarchy of core mappings.

Relation-to-mapping - common rule

Rule 2

The following are the common translation rules between a relation and a core mapping.

Variables of a RelationDomain that occur in the when clause become Variables of the core domain guard.

2.20  All other Variables of a RelationDomain become Variables of the core domain bottom pattern.

2.21  An instance variable corresponding to the trace class of the relation becomes part of the core mapping bottom 
pattern with its properties assigned to the corresponding core domain pattern variables.

2.22  A property template item in the relation domain pattern becomes an assignment (or an equality predicate in the case 
of check-only domains) in the core domain bottom pattern.

2.23  Predicates of the when clause become predicates of the core mapping guard.

2.24  Non RelationInvocation predicates of the where clause become predicates of the core mapping bottom.

2.6.1  RelationInvocation predicates of the where clause are ignored in this mapping, but reflected in the mapping 
   corresponding to the invoked relation.
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Top-level check-only relation to mapping

Rule 3 (extends Rule 2)

A relation is ‘checkonly’ if it does not have any enforceable domains.

2.7  The only realized variable in the entire mapping is the trace class variable in the mapping bottom; there are no other 
realized variables in any of the mapping areas. 

2.8  A property template item in a relation domain becomes an equality predicate in the core domain bottom.

2.9  A property template item in a relation domain that refers to a shared variable (i.e., a variable that also occurs in 
another domain) becomes an equality predicate in the mapping bottom.

2.10  Shared variables referenced in property template items of relation domains become variables of the mapping 
bottom. For example: 

relation ClassToTable 
{ 
   checkonly domain uml c:Class {namespace=p:Package {}, kind='Persistent', 
name=cn} 
   checkonly domain rdbms t:Table {schema=s:Schema {}, name=cn} 
   when { 
      PackageToSchema(p, s); 
   } 
   where { 
      AttributeToColumn(c, t); 
   } 
}

becomes:

map ClassToTable in umlRdbms 
{ 
   check uml (p:Package) { 
      c: Class| 
      c.namespace = p; 
      c.kind = 'Persistent'; 
   } 
   check rdbms (s:Schema) { 
      t:Table| 
      t.schema = s; 
   } 
   where (v1: TPackageToSchema| v1.p = p; v1.s = s;) { 
      realize v2: TClassToTable, cn:String | 
      v2.p := p; 
      v2.s := s; 
      v2.c := c; 
      v2.t := t; 
      c.name = cn; 
      t.name = cn; 
   } 
}

Top-level enforceable relation to mapping

Rule 4 (extends Rule 2)

A separate mapping is generated for each enforced domain of the relation.
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2.11  In this mapping, only the enforced relation domain in question is marked as enforced in core; all its opposite 
domains are marked in core as checked at most (i.e., either left as they are or downgraded to checked if marked as 
enforced).

2.12  The enforced domain’s pattern is decomposed into composed mappings as follows:

• root pattern object variable becomes a realized variable in the domain bottom pattern of the current mapping.

• all identifying property template items become assignments in the domain bottom pattern of the current mapping.

• all non identifying property template items of primitive type become assignments in the bottom pattern of a nested 
mapping.

• each non identifying property template item of object type results in a nested mapping that will have:

• a realized variable in the domain bottom, corresponding to the variable of the property value object,

• a property assignment from parent object variable to this variable in the domain bottom, and

• its own nested mappings recursively as described above.

2.13  Predicates of the where clause that refer to variables of the enforced domain are distributed down to the composed 
mappings as accumulated variable bindings become available in the nested mappings.

2.14  All other opposite domains are mapped to their respective core domain parts as described in Rule 3, i.e., their 
patterns are not decomposed down into nested mappings.

2.15  A black-box operational implementation, if any, that the relation has for the enforced domain becomes a pair of 
enforcement operations (one for creation and one for deletion) in the domain-bottom pattern, both pointing to the 
same operation call expression that takes its arguments from the variables corresponding to the root objects of the 
domains of the relation.  For example:

key Table (name, schema); // key of class “Table” 
key Key (name, owner);   // key of class “Key”; owner:Table opposite key:Key
relation ClassToTable 
{ 
   checkonly domain uml c:Class {namespace=p:Package {}, kind='Persistent',  
     name=cn, description=cd} 
   enforce domain rdbms t:Table {schema=s:Schema {}, name=cn,  
description=cd, key=k:Key {name=cn+'_pk'}} 
   when { 
      PackageToSchema(p, s); 
   } 
   where { 
      AttributeToColumn(c, t); 
   } 
}

becomes:

map ClassToTable_rdbms in umlRdbms 
{ 
   check uml (p:Package) { 
      c: Class| 
      c.namespace = p; 
      c.kind = 'Persistent'; 
   } 
   check enforce rdbms (s:Schema) { 
      realize t:Table| 
      t.schema := s; 
   } 
   where (v1: TPackageToSchema| v1.p = p; v1.s = s;) { 
      realize v2: TClassToTable, cn:String, cd:String | 
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      v2.p := p; 
      v2.s := s; 
      v2.c := c; 
      v2.t := t; 
      cn := c.name; 
      cd := c.description; 
      t.name := cn; 
   } 
   map { 
      where () { 
         t.description := cd; 
      } 
   } 
   map { 
      check enforce rdbms () { 
         realize k:Key| 
         t.key := k; 
      } 
      where () { 
         v2.k := k; 
         k.name := cn+'_pk'; 
      } 
   } 
}

For example:  

key Table (name, schema); 
key Column (name, owner);   // owner:Table opposite column:Column 
key Key (name, owner);   // key of class ëKeyí; owner:Table opposite key:Key
relation ClassToTable 
{ 
   checkonly domain uml c:Class {namespace=p:Package {}, kind='Persistent',  
name=cn} 
   enforce domain rdbms t:Table {  schema=s:Schema {}, name=cn, 
                                                       column=cl:Column { 
                                                                 name=cn+'_tid', type='NUMBER'}, 
                                                       key=k:Key {name=cn+'_pk', column=cl} 
                                                    } 
   when { 
      PackageToSchema(p, s); 
   } 
   where { 
      AttributeToColumn(c, t); 
   } 
}

becomes: 

map ClassToTable_rdbms in umlRdbms 
{ 
   check uml (p:Package) { 
      c: Class| 
      c.namespace = p; 
      c.kind = 'Persistent'; 
   }
   check enforce rdbms (s:Schema) { 
      realize t:Table | 
      t.schema := s; 
   }
   where (v1: TPackageToSchema| v1.p = p; v1.s = s;) { 
      realize v2: TClassToTable, cn:String | 
      v2.p := p; 
      v2.s := s; 
      v2.c := c; 
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      v2.t := t; 
      cn := c.name; 
      t.name := cn; 
   }
   map { 
      check enforce rdbms () { 
         realize cl:Column| 
         t.column := cl; 
      }
      where () { 
         v2.cl := cl; 
         cl.name := cn+'_tid'; 
      }
      map { 
         where () { 
            cl.type := 'NUMBER'; 
         } 
      } 
   }
   map { 
      check enforce rdbms (cl:Column) { 
         realize k:Key| 
         t.key := k; 
         k.column := cl; 
      } 
      where (v2.cl = cl) { 
         v2.k := k; 
         k.name := cn+'_pk'; 
      } 
   } 
}

Invoked check-only relation to mapping

Rule 5 (extends Rule 3)

An invoked relation maps to as many core mappings as the relations that invoke it, i.e., there exists a separate core 
mapping for each invoker-invoked pair.

2.16  The guard pattern of the mapping will have a variable corresponding to the trace class of the invoker relation, with 
equality predicates between root object variables of all the patterns of all the domains of the invoked relation and 
their corresponding properties in this trace class.

2.17  The root object variable of a relation domain’s pattern becomes a pattern variable in the core domain guard (this is 
in addition to the variables that occur in the when clause as per rule 2.1).

For example: 

relation ClassToTable 
{ 
   checkonly domain uml c:Class {namespace=p:Package {}, kind='Persistent',  
     name=cn} 
   checkonly domain rdbms t:Table {schema=s:Schema {}, name=cn} 
   when { 
      PackageToSchema(p, s); 
   } 
   where { 
      AttributeToColumn(c, t); 
   } 
}
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relation AttributeToColumn 
{ 
   checkonly domain uml c:Class { attribute=a:Attribute  
                                                           {  name=an, 
                                                               type=p:PrimitiveDataType {name=pn} 
                                                           } 
                                                     } 
   checkonly domain rdbms t:Table {  column=cl:Column { name=an,  
                                                      type=sqltype} 
                  } 
   where { 
      sqltype = if (pn ='INTEGER') then 'NUMBER' else 'VARCHAR' endif 
   } 
}

becomes:
map AttributeColumn_ClassToTable in UmlRdbms 
{ 
   check uml (c:Class) { 
      a:Attribute, p:PrimitiveDataType| 
      c.attribute = a; 
      a.type = p; 
   }
   check rdbms (t:Table) { 
      cl:Column | 
      t.column = cl; 
      cl.type = sqlType; 
   }
   where (v1:TClassToTable| v1.c = c; v1.t = t;) { 
      realize v2:AttributeToColumn, an:String, pn:String, sqlType:String | 
      v2.c := c; 
      v2.a := a; 
      v2.p := p; 
      v2.t := t; 
      v2.cl := cl; 
      a.name = an; 
      p.name = pn; 
      cl.name = an; 
      sqltype = if (pn ='INTEGER') then 'NUMBER' else 'VARCHAR' endif 
   } 
}

Invoked enforceable relation to mapping

Rule 6 (extends Rule 4)

An invoked relation maps to as many core mappings as the relations that invoke it, i.e., there exists a separate core mapping for 
each invoker-invoked pair.

2.18  The guard pattern of the mapping will have a variable corresponding to the trace class of the invoker relation, with 
equality predicates between root object variables of all the patterns of all the domains of the invoked relation and 
their corresponding properties in this trace class.

2.19  The root object variable of a relation domain's pattern becomes a pattern variable in the core domain guard (this is 
in addition to the variables that occur in the when clause as per rule 2.1).

For example: 

relation ClassToTable 
{ 
   checkonly domain uml c:Class {  namespace=p:Package {},  
                                                        kind='Persistent', 
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                                                        name=cn 
                                                     } 
   enforce domain rdbms t:Table {schema=s:Schema {}, name=cn} 
   when { 
      PackageToSchema(p, s); 
   } 
   where { 
      AttributeToColumn(c, t); 
   } 
}
relation AttributeToColumn 
{ 
   checkonly domain uml c:Class {  attribute=a:Attribute  
                                                        {  name=an, 
                                                           type=p:PrimitiveDataType {name=pn} 
                                                        } 
                                                    } 
   enforce domain rdbms t:Table {  column=cl:Column { name=an,  
                                                  type=sqltype} 
              } 
   where { 
      sqltype = if (pn ='INTEGER') then 'NUMBER' else 'VARCHAR' endif 
   } 
}
map AttributeColumn_ClassToTable_rdbms in UmlRdbms 
{ 
   check uml (c:Class) { 
      a:Attribute, p:PrimitiveDataType| 
      c.attribute = a; 
      a.type = p; 
   }
   check enforce rdbms (t:Table) { 
      realize cl:Column | 
      t.column := cl; 
   }
   where (v1:TClassToTable| v1.c = c; v1.t = t;) { 
      realize v2:AttributeToColumn, an:String, pn:String, sqlType:String | 
      v2.c := c; 
      v2.a := a; 
      v2.p := p; 
      v2.t := t; 
      v2.cl := cl; 
      an := a.name; 
      pn := p.name; 
      cl.name := an; 
      sqltype := if (pn ='INTEGER') then 'NUMBER' else 'VARCHAR' endif 
   }
   map { 
      where () { 
         cl.type := sqlType; 
      } 
   } 
}

10.3 Relational Expression of Relations To Core Transformation
transformation relToCore(relations:QVTMM; core:QVTMM)
{

key QVTMM::Mapping{name, _transformation};
key QVTMM::GuardPattern{area};
key QVTMM::BottomPattern{area};
key QVTMM::Variable{name, type};
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key QVTMM::Type{name};
key QVTMM::Class{name};
key QVTMM::Property{name, class};
key QVTMM::CoreDomain{name, rule};
key QVTMM::TypedModel{name, usedPackage, _transformation};
key QVTMM::Package{name};
key QVTMM::Transformation{name};
key QVTMM::Operation{name};
key QVTMM::Predicate{pattern, conditionExpression};

query getSharedDomainVars(r:QVTMM::Relation):Set(QVTMM::Variable)
{
   r._domain->iterate(d; vars: Set(QVTMM::Variable) = Set{} |
      if (vars->isEmpty())
      then
         vars->union(d.oclAsType(QVTMM::RelationDomain).pattern.bindsTo)
      else
         vars->intersection(d.oclAsType(QVTMM::RelationDomain).pattern.bindsTo)
      endif
   )
}

query getWhenVars(r:QVTMM::Relation):Set(QVTMM::Variable)
{
   let
      vs:Set(QVTMM::Variable) = Set{}
   in
   r._domain->iterate(d; vars: Set(QVTMM::Variable) = Set{} |
      if (vars->isEmpty())
      then
         vars->union(d.oclAsType(QVTMM::RelationDomain).pattern.bindsTo)
      else
         vars->intersection(d.oclAsType(QVTMM::RelationDomain).pattern.bindsTo)
      endif
   )
}
 
-- Get variables occuring in an ocl expression
-- Note: this function is not complete! It needs to be completed for other expressions
query getVarsOfExp(e:QVTMM::OclExpression):Set(QVTMM::Variable)
{
   -- Walk the expr tree of the OclExpression and
   -- collect the variables used in those expressions
   let
      vs:Set(QVTMM::Variable) = Set{}
   in
   if (e.oclIsTypeOf(QVTMM::VariableExp))
   then
      vs->including(e.oclAsType(QVTMM::VariableExp).referredVariable)
   else
      if (e.oclIsTypeOf(QVTMM::OperationCallExp))
      then
         let
            oc:QVTMM::OperationCallExp = e.oclAsType(QVTMM::OperationCallExp)
         in
            vs->union(getVarsOfExp(oc.source))->union(
               oc.argument->iterate(a; avs:Set(QVTMM::Variable)=Set{} | avs-
>union(getVarsOfExp(a)))
            )
      else
         if (e.oclIsTypeOf(QVTMM::PropertyCallExp))
         then
            vs->union(getVarsOfExp(e.oclAsType(QVTMM::PropertyCallExp).source))
         else
            if (e.oclIsTypeOf(QVTMM::RelationCallExp))
            then
               let
                  rc:QVTMM::RelationCallExp = e.oclAsType(QVTMM::RelationCallExp)
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               in
                  vs->union(rc.argument->iterate(a; avs:Set(QVTMM::Variable)=Set{} |
                     avs->union(getVarsOfExp(a)))
                  )
            else
               vs
            endif
         endif
      endif
   endif
}

query filterOutPredicatesThatReferToVars(rpSet:Set(QVTMM::Predicate),
      ownrdVars:Set(QVTMM::Variable)) :Set(QVTMM::Predicate)
{
   rpSet->iterate(p:QVTMM::Predicate; fpSet:Set(QVTMM::Predicate) = Set{}|
      if (getVarsOfExp(p.conditionExpression)->intersection(ownrdVars)->isEmpty())
      then
         fpSet->including(p)
      else
         fpSet
      endif
   )
}

--Check if the given variable is bound to any template other than the one to be skipped
query isVarBoundToSomeOtherTemplate(rootTe:QVTMM::ObjectTemplateExp,
      skipTe:QVTMM::ObjectTemplateExp, v:QVTMM::Variable):Boolean
{
   if (rootTe = skipTe)
   then
      false
   else
      if (rootTe.bindsTo = v)
      then
         true
      else
         rootTe.part.value->select(pe | pe.oclIsKindOf(QVTMM::ObjectTemplateExp))->exists(pet 
|
            isVarBoundToSomeOtherTemplate(pet.oclAsType(QVTMM::ObjectTemplateExp), skipTe, v))
      endif
      
   endif
}

top relation RelationTransformationToMappingTransformation
{
   rtn, tmn:String;
    
   domain relations rt:RelationTransformation {
      name = rtn,
      modelParameter = rtm:TypedModel {
         name = tmn, 
         usedPackage = up:Package{}
      }
   }; 

   enforce domain core mt:Transformation {
      name = rtn,
      modelParameter = mtm:TypedModel {
         name = tmn, 
         usedPackage = up
      }
   }; 
}

-- Rule 1: Corresponding to each relation there exists a trace class in core.
-- The trace class contains a property corresponding to each object node in the
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-- pattern of each domain of the relation.
--
top relation RelationToTraceClass
{
   rn, vn:String;

   domain relations r:Relation {
      name = rn,
      _domain = rd:RelationDomain {
         pattern = rdp:DomainPattern {
            templateExpression = t:ObjectTemplateExp {
               bindsTo = tv:Variable {
                  name = vn,
                  type = c:Class {}
               }
            }
         }
      }
   };
   enforce domain core rc:Class {
      name = 'T'+rn,
      ownedAttribute = a:Property {
         name = vn,
         type = c
      }
   };
   where {
      SubTemplateToTraceClassProps(t, rc);
   }
}

relation SubTemplateToTraceClassProps
{
   vn: String;

   domain relations t:ObjectTemplateExp {
      part = pt:PropertyTemplateItem {
         value = tp:ObjectTemplateExp {
            bindsTo = tv:Variable {
               name = vn,
               type = c:Class {}
            }
         }
      }
   };
   enforce domain core rc:Class {
      ownedAttribute = a:Property {
         name=vn,
         type=c
      }
   };
   where {
      SubTemplateToTraceClassProps(tp, rc);
   }
}

-- For mapping to core we distinguish between two kinds of relations of a transformation:
--   - top-level relations and invoked relations.
-- Top-level relations are not invoked by any other relation in the transformation.
-- There exists a single mapping (with perhaps contained mappings) for a top-level relation,
-- whereas for an invoked relation there exists a separate mapping for each invoker-invoked
-- combination.

-- For mapping to core we also distinguish between check-only relations and enforceable 
-- relations. A check-only relation maps to a single core mapping, whereas an enforceable
-- relation typically maps to a composite hierarchy of mappings in core.
--
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-- Rule 2:
-- The following are the common translation rules between 
-- a relation and a core mapping.
-- 2.1: Variables of a RelationDomain that occur in the when clause become
-- PatternVarables of the core domain guard.
-- 2.2: All other Variables of a relationDomain become PatternVars
-- of the core domain bottom pattern.
-- 2.3: An instance variable corresponding to the trace class of the relation becomes part of 
-- the core mapping bottom pattern with its properties set(assigned or equated) to the 
-- corresponding core domain pattern variables.
-- 2.4: A property template item in the relation domain pattern becomes an 
-- assignment (or equation in the case of check-only domains) in the core domain bottom 
pattern.
-- 2.5: Predicates of the when clause become predicates of the core mapping guard.
-- 2.6: Non relation invocation predicates of the where clause become predicates of the core
--   mapping bottom.
-- 2.6.1: relation invocation predicates of the where clause are ignored in this mapping, but
-- are reflected in the mapping corresponding to the invoked relation.
-- 

-- All Object template expressions (at the top level of the DomainPattern)
-- become assignments in the core domain bottom. Nested
-- ObjectTemplateExpressions become assignments in composed mappings. 
--

-- Rule 3 (extends Rule 2):
-- 3.1: A relation is 'check-only' if it does not have any enforceable domains.
-- 3.2: Only the trace class variable in the mapping bottom is 'realized'; there are no 
-- other 'realized' variables in any of the mapping areas.
-- 3.3: A property template item in a relation domain becomes an equation in the core domain
-- bottom.
-- 3.4: A property template item in a relation domain that refers to a shared variable
-- becomes an equation in the mapping bottom.
-- 3.5: Shared variables referenced in property template items of relation domains become
-- variables of the mapping bottom.
--
top relation TopLevelRelationToMappingForChecking
{
   allDomainVars: Set(QVTMM::Variable);
   sharedDomainVars: Set(QVTMM::Variable);
   unsharedWhereVars: Set(QVTMM::Variable);
   whenVars: Set(QVTMM::Variable);
   whereVars: Set(QVTMM::Variable);
   rn: String;
   mbVars:Set(QVTMM::Variable);
   rt: QVTMM::RelationTransformation;
   mt: QVTMM::Transformation;

   domain relations r:Relation {
      _transformation = rt,
      isTopLevel = true,
      name = rn
   } {
      not r._domain->exists(d| d.isEnforceable = true)
   };
   enforce domain core m:Mapping {
      _transformation = mt,
      name = rn,
      guardPattern = mg:GuardPattern {
         area = m
      },
      bottomPattern = mb:BottomPattern {
         bindsTo = vs:Set(Variable) {
            tcv:RealizedVariable {} ++ mbVars
         }
      }
   };
   when {
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      RelationTransformationToMappingTransformation(rt, mt);
   }
   where {
      allDomainVars = r._domain->iterate(md; acc:Set(QVTMM::RelationDomain)=Set{} | 
                      acc->including(md.oclAsType(QVTMM::RelationDomain))).pattern.bindsTo;
      whenVars = r._when.bindsTo;
      whereVars = r._where.bindsTo;

      sharedDomainVars = getSharedDomainVars(r);
      unsharedWhereVars =
         (whereVars - whenVars - allDomainVars)->union(sharedDomainVars);

      RelationToTraceClassVar(r, tcv);
      RWhenPatternToMGuardPattern(r, mg);
      if (unsharedWhereVars->isEmpty())
      then
         mbVars = Set{}
      else
         RVarSetToMVarSet(unsharedWhereVars->asSequence(), mbVars)
      endif;
      -- Only non relation invocation predicates are copied from where clause to mapping
      -- bottom.
      RWherePatternToMPattern(r, mb);
      RDomainToMDomainForChecking(r, m);
   }
}

relation RWherePatternToMPattern
{
   domain relations r:Relation{
      _where = wherep:Pattern { }
   };
   enforce domain core mp:Pattern {};
   where {
      RSimplePatternToMPattern(wherep, mp);
   }
}

relation UnsharedWhenVarsToMgVars
{
   domain relations unsharedWhenVars:Set(Variable) {_++_};
   enforce domain core mg:GuardPattern {
      bindsTo = mgVars:Set(Variable) {}
   };
   where {
      RVarSetToMVarSet(unsharedWhenVars->asSequence(), mgVars);
   }
}

relation DomainVarsSharedWithWhenToDgVars
{
   domain relations domainVarsSharedWithWhen:Set(Variable) {_++_};
   enforce domain core dg:GuardPattern {
      bindsTo = dgVars:Set(Variable) {}
   };
   where {
      RVarSetToMVarSet(domainVarsSharedWithWhen->asSequence(), dgVars);
   }
}

relation DomainBottomUnSharedVarsToDbVars
{
   domain relations domainBottomUnSharedVars:Set(Variable) {_++_};
   enforce domain core db:BottomPattern {
      bindsTo = dbVars:Set(Variable) {}
   };
   where {
      RVarSetToMVarSet(domainBottomUnSharedVars->asSequence(), dbVars);
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   }
}

-- Rule 4 (extends Rule 2):
-- 4.1: A separate mapping is generated for each enforced domain of the relation.
-- 4.2: In this mapping only the enforced domain in question is marked as enforced in core;
-- all its opposite domains are marked in core as checked at most (i.e. either left as
-- they are or downgraded to checked if marked as enforced).
-- 4.3: The enforced domain's pattern gets decomposed into nested mappings as follows:
--         - root pattern object variable becomes a realized variable in the domain bottom 
--         pattern of the current mapping.
--         - all identifying property template items become assignments in the domain bottom
--         pattern of the current mapping.
--         - all non identifying property template items of primitive type become assignments
--         in the bottom pattern of a nested mapping.
--         - each non identifying property template item of object type results in a nested
--         mapping which will have:
--            - a realized variable in the domain bottom, corresponding to the variable of the 
--            property value object.
--            - a property assignment from parent object variable to this variable in the 
--            domain bottom.
--            - and its own nested mappings as above recursively.
-- 4.4: Predicates of the where clause that refer to variables of the enforced domain get
-- distributed down to the nested mappings as variable bindings accumulate in the nested
-- mappings.
-- 4.5: all other opposite domains are mapped to their respective core domain parts as 
-- described in Rule 3, i.e. their patterns are not decomposed down into nested mappings.
-- 4.6: A black-box operational implementation, if any, that the relation has for the 
-- enforced domain becomes a pair of enforcement operations (one for creation and one for 
-- deletion) in the domain-bottom pattern, both pointing to the same operation call 
-- expression that takes its arguments from the variables corresponding to the root objects 
-- of the domains of the relation.
--
top relation TopLevelRelationToMappingForEnforcement
{
   allDomainVars: Set(QVTMM::Variable);
   oppositeDomainVars: Set(QVTMM::Variable);
   sharedDomainVars: Set(QVTMM::Variable);
   predicatesWithVarBindings: Set(QVTMM::Predicate);
   predicatesWithoutVarBindings: Set(QVTMM::Predicate);
   unsharedWhenVars: Set(QVTMM::Variable);
   unsharedWhereVars: Set(QVTMM::Variable);
   domainVarsSharedWithWhen: Set(QVTMM::Variable);
   domainBottomUnSharedVars: Set(QVTMM::Variable);
   rdSeq, rdtSeq, relImplSeq: Sequence(QVTMM::Element);
   rdSet: Set(QVTMM::Element);
   rdVarsSeq: Sequence(Set(QVTMM::Element));
   rdtSet: Set(QVTMM::Element);
   rdtVarsSeq: Sequence(Set(QVTMM::Element));
   rn, dn, tmn: String;
   rOppositeDomains:Set(QVTMM::RelationDomain);
   oppDomainSeq:Sequence(QVTMM::Element);
   whenVars: Set(QVTMM::Variable);
   whereVars: Set(QVTMM::Variable);
   mbVars: Set(QVTMM::Variable);
   rpSet: Set(QVTMM::Predicate);
   rt: QVTMM::RelationTransformation;
   mt: QVTMM::Transformation;
    
   domain relations r:Relation {
      _transformation = rt,
      isTopLevel = true,
      name = rn,
      _domain = rds:Set(RelationDomain) {
         rd:RelationDomain {
            isEnforceable = true,
            name = dn,
            typedModel = dir:TypedModel {
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                name = tmn, 
                usedPackage = up:Package{},
                _transformation = rt
            },
            pattern = dp:DomainPattern {
               bindsTo = domainVars:Set(Variable) {},
               templateExpression = te:ObjectTemplateExp {
                  bindsTo = tev:Variable {}
               }
            }
         } ++ rOppositeDomains
      }
   };
   enforce domain core m:Mapping {
      _transformation = mt,
      name = rn+'_'+dn,
      guardPattern = mg:GuardPattern {
         area = m
      },
      bottomPattern = mb:BottomPattern {
         bindsTo = vs:Set(Variable) {
            tcv:RealizedVariable {} ++ mbVars
         }
      },
      _domain = md:CoreDomain {
         name = dn,
         isEnforceable = true,
         typedModel = mdir:TypedModel {
            name = tmn, 
            usedPackage = up,
            _transformation = mt
         },
         guardPattern = dg:GuardPattern {
            area = md
         },
         bottomPattern = db:BottomPattern {
            bindsTo = mtev:Variable {}
         }
      }   --TODO: add var only if tev not in whenVars
   };
   when {
      RelationTransformationToMappingTransformation(rt, mt);
   }
   where {
      allDomainVars = r._domain->iterate(md; acc:Set(QVTMM::RelationDomain)=Set{} | 
                      acc->including(md.oclAsType(QVTMM::RelationDomain))).pattern.bindsTo;
      whenVars = r._when.bindsTo;
      whereVars = r._where.bindsTo;

      -- Exclude where clause relation calls.
      -- The predicate corresponding to a where clause relation call is included not in this
      -- mapping but in the one corresponding to the invoked relation (refer to rule 2.6.1)
      rpSet = r._where.predicate->reject(p |
                                 p.conditionExpression.oclIsTypeOf(QVTMM::RelationCallExp));

      oppositeDomainVars = rOppositeDomains->iterate(d; vars: Set(QVTMM::Variable) = Set{} |
         vars->union(d.oclAsType(QVTMM::RelationDomain).pattern.bindsTo));
      sharedDomainVars = getSharedDomainVars(r);
      domainBottomUnSharedVars = domainVars - whenVars - sharedDomainVars;

      unsharedWhereVars =
         (whereVars - whenVars - allDomainVars)->union(sharedDomainVars);

      predicatesWithVarBindings =
         filterOutPredicatesThatReferToVars(rpSet, domainBottomUnSharedVars);
      predicatesWithoutVarBindings = rpSet - predicatesWithVarBindings;
      unsharedWhenVars = whenVars - allDomainVars;
      domainVarsSharedWithWhen = domainVars->intersection(whenVars);
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      rdSeq = Sequence{r, rd};
      rdSet = Set{r, rd};
      rdVarsSeq = Sequence{rdSet, oppositeDomainVars};
      rdtSet = Set{r, rd, te};
      rdtVarsSeq = Sequence{rdtSet, predicatesWithoutVarBindings, domainBottomUnSharedVars};
      oppDomainSeq = Sequence{r, rd};
      relImplSeq = Sequence{r, rd};

      RelationDomainToTraceClassVar(rdSeq, tcv);
      RWhenPatternToMGuardPattern(r, mg);
      DomainVarsSharedWithWhenToDgVars(domainVarsSharedWithWhen, dg);
      RVarToMRealizedVar(tev, mtev);
      if (unsharedWhereVars->isEmpty())
      then
         mbVars = Set{}
      else
         RVarSetToMVarSet(unsharedWhereVars->asSequence(), mbVars)
      endif;
      RPredicateSetToMBPredicateSet(predicatesWithVarBindings->asSequence(), mb);
      RDomainToMDBottomForEnforcement(rdtVarsSeq, db);
      ROppositeDomainVarsToTraceClassProps(rdVarsSeq, mb);
      TROppositeDomainsToMappingForEnforcement(oppDomainSeq, m);
      RRelImplToMBottomEnforcementOperation(relImplSeq, mb);
   }
}

-- Rule 5 (extends Rule 3):
-- 5.1: an invoked relation maps to as many core mappings as the relations that invoke it.
--   i.e. there exists a separate core mapping for each invoker-invoked pair.
-- 5.2: The guard pattern of the mapping will have a variable corresponding to the trace
-- class of the invoker relation, with root object variables of all the patterns of all the
-- domains of the invoked relation being equated with corresponding properties of this
-- trace class .
-- 5.3: The root object variable of a relation domain's pattern becomes a pattern variable
-- in the core domain guard (this is in addition to the variables that occur in the when clause
-- as per rule 2.1).
--
top relation InvokedRelationToMappingForChecking
{
   allDomainVars: Set(QVTMM::Variable);
   sharedDomainVars: Set(QVTMM::Variable);
   unsharedWhereVars: Set(QVTMM::Variable);
   seqForInvoker: Sequence(QVTMM::Element);
   rn, irn: String;
   mbVars:Set(QVTMM::Variable);
   rt: QVTMM::RelationTransformation;
   mt: QVTMM::Transformation;
   whenVars: Set(QVTMM::Variable);
   whereVars: Set(QVTMM::Variable);
    
   domain relations r:Relation {
      _transformation = rt,
      isTopLevel = false,
      name = rn,
      relationCallExp = ri:RelationCallExp {
         predicate = p:Predicate {
            pattern = pt:Pattern {
               whereOwner = ir:Relation {name = irn}
            }
         }
      }
   } {
      not r._domain->exists(d| d.isEnforceable = true)
   };
   enforce domain core m:Mapping {
      _transformation = mt,
      name = rn+'_'+irn,
      guardPattern = mg:GuardPattern {
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         area = m
      },
      bottomPattern = mb:BottomPattern {
         bindsTo = vs:Set(Variable) {
            tcv:RealizedVariable {} ++ mbVars
         }
      }
   };
   when {
      RelationTransformationToMappingTransformation(rt, mt);
   }
   where {
      allDomainVars = r._domain->iterate(md; acc:Set(QVTMM::RelationDomain)=Set{} | 
                      acc->including(md.oclAsType(QVTMM::RelationDomain))).pattern.bindsTo;
      whenVars = r._when.bindsTo;
      whereVars = r._where.bindsTo;
      sharedDomainVars = getSharedDomainVars(r);
      unsharedWhereVars =
         (whereVars - whenVars - allDomainVars)->union(sharedDomainVars);
      seqForInvoker = Sequence{ ir, ri, r};

      RelationToTraceClassVar(r, tcv);
      RWhenPatternToMGuardPattern(r, mg);
      RInvokerToMGuard(seqForInvoker, mg);
      if (unsharedWhereVars->isEmpty())
      then
         mbVars = Set{}
      else
         RVarSetToMVarSet(unsharedWhereVars->asSequence(), mbVars)
      endif;
      RWherePatternToMPattern(r, mb);
      RDomainToMDomainForChecking(r, m);
   }
}

-- Rule 6 (extends Rule 4):
-- 6.1: an invoked relation maps to as many core mappings as the relations that invoke it.
--   i.e. there exists a separate core mapping for each invoker-invoked pair.
-- 6.2: The guard pattern of the mapping will have a variable corresponding to the trace
-- class of the invoker relation, with root object variables of all the patterns of all the
-- domains of the invoked relation being equated with corresponding properties of this
-- trace class .
-- 6.3: The root object variable of a relation domain's pattern becomes a pattern variable
-- in the core domain guard (this is in addition to the variables that occur in the when clause
-- as per rule 2.1).
--
top relation InvokedRelationToMappingForEnforcement
{
   allDomainVars: Set(QVTMM::Variable);
   oppositeDomainVars: Set(QVTMM::Variable);
   sharedDomainVars: Set(QVTMM::Variable);
   predicatesWithVarBindings: Set(QVTMM::Predicate);
   predicatesWithoutVarBindings: Set(QVTMM::Predicate);
   unsharedWhenVars: Set(QVTMM::Variable);
   unsharedWhereVars: Set(QVTMM::Variable);
   domainTopVars: Set(QVTMM::Variable);
   domainBottomUnSharedVars: Set(QVTMM::Variable);
   rdSeq, relImplSeq: Sequence(QVTMM::Element);
   rdSet: Set(QVTMM::Element);
   rdVarsSeq: Sequence(Set(QVTMM::Element));
   rdtSet: Set(QVTMM::Element);
   rdtVarsSeq: Sequence(Set(QVTMM::Element));
   seqForInvoker: Sequence(QVTMM::Element);
   rn, irn, dn, tmn: String;
   rOppositeDomains:Set(QVTMM::RelationDomain);
   oppDomainSeq:Sequence(QVTMM::Element);
   whenVars: Set(QVTMM::Variable);
   whereVars: Set(QVTMM::Variable);
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   mbVars: Set(QVTMM::Variable);
   rpSet: Set(QVTMM::Predicate);
   rt: QVTMM::RelationTransformation;
   mt: QVTMM::Transformation;
    
   domain relations r:Relation {
      _transformation = rt,
      isTopLevel = false,
      name = rn,
      relationCallExp = ri:RelationCallExp {
         predicate = p:Predicate {
            pattern = pt:Pattern {
               whereOwner = ir:Relation {name = irn}
            }
         }
      },
      _domain = rds:Set(RelationDomain) {
         rd:RelationDomain {
            isEnforceable = true,
            name = dn,
            typedModel = dir:TypedModel {
               name = tmn, 
               usedPackage = up:Package{},
               _transformation = rt
            },
            pattern = dp:DomainPattern {
               bindsTo = domainVars:Set(Variable) {},
               templateExpression = te:ObjectTemplateExp {
                  bindsTo = tev:Variable {}
               }
            }
         } ++ rOppositeDomains
      }
   };
   enforce domain core m:Mapping {
      _transformation = mt,
      name = rn+'_'+irn+'_'+dn,
      guardPattern = mg:GuardPattern {
         area = m
      },
      bottomPattern = mb:BottomPattern {
         bindsTo = vs:Set(Variable) {
            tcv:RealizedVariable {} ++ mbVars
         }
      },
      _domain = md:CoreDomain {
         name = dn,
         isEnforceable = true,
         typedModel = mdir:TypedModel {
            name = tmn, 
            usedPackage = up,
            _transformation = mt
         },
         guardPattern = dg:GuardPattern {
            bindsTo = dgVars:Set(Variable) {}
         },
         bottomPattern = db:BottomPattern {
            area = md
         }
      }
   };
   when {
      RelationTransformationToMappingTransformation(rt, mt);
   }
   where {
      allDomainVars = r._domain->iterate(md; acc:Set(QVTMM::RelationDomain)=Set{} | 
                      acc->including(md.oclAsType(QVTMM::RelationDomain))).pattern.bindsTo;
      whenVars = r._when.bindsTo;
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      whereVars = r._where.bindsTo;

      -- Exclude where clause relation calls.
      -- The predicate corresponding to a where clause relation call is included not in this
      -- mapping but in the one corresponding to the invoked relation (refer to rule 2.6.1)
      rpSet = r._where.predicate->reject(p |
                                 p.conditionExpression.oclIsTypeOf(QVTMM::RelationCallExp));

      oppositeDomainVars = rOppositeDomains->iterate(d; vars: Set(QVTMM::Variable) = Set{} |
         vars->union(d.pattern.bindsTo));
      sharedDomainVars = getSharedDomainVars(r);
      domainBottomUnSharedVars =
         (domainVars - whenVars - sharedDomainVars)->excluding(tev);
      unsharedWhereVars =
         (whereVars - whenVars - allDomainVars)->union(sharedDomainVars);
      predicatesWithVarBindings =
         filterOutPredicatesThatReferToVars(rpSet, domainBottomUnSharedVars);
      predicatesWithoutVarBindings = rpSet - predicatesWithVarBindings;
      unsharedWhenVars = whenVars - allDomainVars;
      domainTopVars = domainVars->intersection(whenVars)->including(tev);
      rdSeq = Sequence{r, rd};
      rdSet = Set{r, rd};
      rdVarsSeq = Sequence{rdSet, oppositeDomainVars};
      rdtSet = Set{r, rd, te};
      rdtVarsSeq = Sequence{rdtSet, predicatesWithoutVarBindings, domainBottomUnSharedVars};
      oppDomainSeq = Sequence{r, ir, rd};
      seqForInvoker = Sequence{ir, ri, r};
      relImplSeq = Sequence{r, rd};

      RelationDomainToTraceClassVar(rdSeq, tcv);
      if (unsharedWhereVars->isEmpty())
      then
         mbVars = Set{}
      else
         RVarSetToMVarSet(unsharedWhereVars->asSequence(), mbVars)
      endif;
      RPredicateSetToMBPredicateSet(predicatesWithVarBindings->asSequence(), mb);
      RWhenPatternToMGuardPattern(r, mg);
      RInvokerToMGuard(seqForInvoker, mg);
      RVarSetToMVarSet(domainTopVars->asSequence(), dgVars);
      RDomainToMDBottomForEnforcement(rdtVarsSeq, db);
      ROppositeDomainVarsToTraceClassProps(rdVarsSeq, mb);
      IROppositeDomainsToMappingForEnforcement(oppDomainSeq, m);
      RRelImplToMBottomEnforcementOperation(relImplSeq, mb);
   }
}

relation RDomainToMDomainForChecking
{
   sharedDomainVars: Set(QVTMM::Variable);
   domainVarsSharedWithWhen: Set(QVTMM::Variable);
   domainBottomUnSharedVars: Set(QVTMM::Variable);
   seqForDomainPtrn: Sequence(QVTMM::Element);
   whenVars: Set(QVTMM::Variable);
   dn, tmn: String;
   rt: QVTMM::RelationTransformation;
   mt: QVTMM::Transformation;

   domain relations r:Relation {
      _domain = rd:RelationDomain {
         name = dn,
         isCheckable = true,
         typedModel = dir:TypedModel {
            name = tmn, 
            usedPackage = up:Package{},
            _transformation = rt
         },
         pattern = dp:DomainPattern {
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            bindsTo = domainVars:Set(Variable){},
            templateExpression = te:ObjectTemplateExp {}
         }
      }
   };
   enforce domain core m:Mapping {
      bottomPattern = mb:BottomPattern {
         area = m
      },
      _domain = md:CoreDomain {
         name = dn,
         isCheckable = true,
         typedModel = mdir:TypedModel {
            name = tmn, 
            usedPackage = up,
            _transformation = mt
         },
         guardPattern = dg:GuardPattern {
            area = md
         },
         bottomPattern = db:BottomPattern {
            area = md
         }
      }
   };
   when {
      RelationTransformationToMappingTransformation(rt, mt);
   }
   where {
      whenVars = r._when.bindsTo;
      sharedDomainVars = getSharedDomainVars(r);
      domainVarsSharedWithWhen = domainVars->intersection(whenVars);
      domainBottomUnSharedVars = domainVars - whenVars - sharedDomainVars;
      seqForDomainPtrn = Sequence{r, te};

      DomainVarsSharedWithWhenToDgVars(domainVarsSharedWithWhen, dg);
      DomainBottomUnSharedVarsToDbVars(domainBottomUnSharedVars, db);
      RDomainPatternToMDBottomPattern(seqForDomainPtrn, db);
      RDomainVarsToTraceClassProps(rd, mb);
   }
}

-- opposite domains of a top-level relation's enforced domain are mapped as per rules
-- 4.2 and 4.5
-- In addition, as per rule 6.3 the root object variable of a relation domain's pattern 
-- becomes a pattern variable in the core domain guard (this is in addition to the variables
-- that occur in the when clause as per rule 2.1).
--
relation IROppositeDomainsToMappingForEnforcement
{
   sharedDomainVars:Set(QVTMM::Variable);
   domainTopVars: Set(QVTMM::Variable);
   domainBottomUnSharedVars: Set(QVTMM::Variable);
   domainBottomSharedVars: Set(QVTMM::Variable);
   seqForDomainPtrn: Sequence(QVTMM::Element);
   dn, tmn: String;
   c: Boolean;
   mbVars:Set(QVTMM::Variable);
   whenVars:Set(QVTMM::Variable);
   rt: QVTMM::RelationTransformation;
   mt: QVTMM::Transformation;
   up: QVTMM::Package;

   domain relations oppDomainSeq:Sequence(Element) {
      r:Relation {
         _domain = rds:Set(RelationDomain) {
            ord:RelationDomain {      -- opposite domain
               name = dn,
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               typedModel = dir:TypedModel {
                  name = tmn, 
                  usedPackage = up,
                  _transformation = rt
               },
               isCheckable = c,
               pattern = dp:DomainPattern {
                  bindsTo = domainVars:Set(Variable) {},
                  templateExpression = te:ObjectTemplateExp {
                     bindsTo = tev:Variable {}
                  }
               }
            } ++ _
         }
      },
      ir:Relation{},
      rd:RelationDomain{}
      ++ _
   } {
      ord <> rd
   };
   enforce domain core m:Mapping {
      _domain = cd:CoreDomain {
         name = dn,
         typedModel = mdir:TypedModel {
            name = tmn, 
            usedPackage = up,
            _transformation = mt
         },
         isCheckable = c,
         isEnforceable = false,
         guardPattern = dg:GuardPattern {
            bindsTo = dgVars:Set(Variable) {}
         },
         bottomPattern = db:BottomPattern {
            bindsTo = dbVars:Set(Variable) {}
         }
      },
      bottomPattern = mb:BottomPattern {
         area = m
      }
   };
   when {
      RelationTransformationToMappingTransformation(rt, mt);
   }
   where {
      whenVars = r._when.bindsTo;
      domainTopVars = domainVars->intersection(whenVars)->including(tev);
      sharedDomainVars = getSharedDomainVars(r);
      domainBottomUnSharedVars = (domainVars - whenVars - sharedDomainVars)->excluding(tev);
      domainBottomSharedVars =
         (domainVars - whenVars)->intersection(sharedDomainVars)->excluding(tev);
      seqForDomainPtrn = Sequence{r, te};

      RVarSetToMVarSet(domainTopVars->asSequence(), dgVars);
      RVarSetToMVarSet(domainBottomUnSharedVars->asSequence(), dbVars);
      RVarSetToMBVarSet(domainBottomSharedVars->asSequence(), mb);
      RDomainPatternToMDBottomPattern(seqForDomainPtrn, db);
   }
}

-- opposite domains of an invoked relation's enforced domain are mapped as per rules
-- 4.2 and 4.5
--
relation TROppositeDomainsToMappingForEnforcement
{
   sharedDomainVars:Set(QVTMM::Variable);
   domainTopVars: Set(QVTMM::Variable);
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   domainBottomUnSharedVars: Set(QVTMM::Variable);
   domainBottomSharedVars: Set(QVTMM::Variable);
   seqForDomainPtrn: Sequence(QVTMM::Element);
   dn, tmn: String;
   c: Boolean;
   mbVars:Set(QVTMM::Variable);
   whenVars:Set(QVTMM::Variable);
   rt: QVTMM::RelationTransformation;
   mt: QVTMM::Transformation;
   up: QVTMM::Package;

   domain relations oppDomainSeq:Sequence(Element) {
      r:Relation {
         _domain = rds:Set(RelationDomain) {
            ord:RelationDomain {
               name = dn,
               typedModel = dir:TypedModel {
                   name = tmn, 
                   usedPackage = up,
                   _transformation = rt
               },
               isCheckable = c,
               pattern = dp:DomainPattern {
                  bindsTo = domainVars:Set(Variable) {},
                  templateExpression = te:ObjectTemplateExp {}
               }
            } ++ _
         }
      },
      rd:RelationDomain{}
      ++ _
   } {
      ord <> rd
   };
   enforce domain core m:Mapping {
      _domain = cd:CoreDomain {
         name = dn,
         typedModel = mdir:TypedModel {
            name = tmn, 
            usedPackage = up,
            _transformation = mt
         },
         isCheckable = c,
         isEnforceable = false,
         guardPattern = dg:GuardPattern {
            area = cd
         },
         bottomPattern = db:BottomPattern {
            bindsTo = dbVars:Set(Variable) {}
         }
      },
      bottomPattern = mb:BottomPattern {
         area = m
      }
   };
   where {
      whenVars = r._when.bindsTo;
      domainTopVars = domainVars->intersection(whenVars);
      sharedDomainVars = getSharedDomainVars(r);
      domainBottomUnSharedVars = domainVars - whenVars - sharedDomainVars;
      domainBottomSharedVars =
                  (domainVars - whenVars)->intersection(sharedDomainVars);
      seqForDomainPtrn = Sequence{r, te};

      RelationTransformationToMappingTransformation(rt, mt);
      RVarSetToMVarSet(domainTopVars->asSequence(), dgVars);
      RVarSetToMVarSet(domainBottomUnSharedVars->asSequence(), dbVars);
      RVarSetToMBVarSet(domainBottomSharedVars->asSequence(), mb);
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      RDomainPatternToMDBottomPattern(seqForDomainPtrn, db);
   }
}

relation RWhenPatternToMGuardPattern
{
   allDomainVars: Set(QVTMM::Variable);
   unsharedWhenVars: Set(QVTMM::Variable);

   domain relations r:Relation{
      _when = whenp:Pattern {
         bindsTo = whenVars:Set(Variable) {}
      }
   };
   enforce domain core mg:GuardPattern {};
   where {
      allDomainVars = r._domain->iterate(md; acc:Set(QVTMM::RelationDomain)=Set{} | 
         acc->including(md.oclAsType(QVTMM::RelationDomain))).pattern.bindsTo;
      unsharedWhenVars = whenVars - allDomainVars;

      RWhenRelCallToMGuard(whenp, mg);
      RSimplePatternToMPattern(whenp, mg);
      UnsharedWhenVarsToMgVars(unsharedWhenVars, mg);
   }
}

relation RVarSetToMVarSet
{
   rvRest: Sequence(QVTMM::Variable);
   mvRest: Set(QVTMM::Variable);

   domain relations rvSeq:Sequence(Variable) {rv:Variable {}++rvRest};
   enforce domain core mvSet:Set(Variable) {mv:Variable {}++mvRest};
   where {
      RVarToMVar(rv, mv);
      if (rvRest->isEmpty())
      then
         mvRest = Set{}
      else
         RVarSetToMVarSet(rvRest, mvRest)
      endif;
   }
}

relation RVarSetToMBVarSet
{
   rvRest: Sequence(QVTMM::Variable);
   mvRest: Set(QVTMM::Variable);

   domain relations rvSeq:Sequence(Variable) {rv:Variable {}++rvRest};
   enforce domain core mb:BottomPattern {
      bindsTo = mv:Variable {}
   };
   where {
      RVarToMVar(rv, mv);
      RVarSetToMBVarSet(rvRest, mb);
   }
}

relation RVarSetToDGVarSet
{
   rvRest: Sequence(QVTMM::Variable);
   mvRest: Set(QVTMM::Variable);

   domain relations rvSeq:Sequence(Variable) {rv:Variable {}++rvRest};
   enforce domain core dg:GuardPattern {
      bindsTo = mv:Variable {}
   };
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   where {
      RVarToMVar(rv, mv);
      RVarSetToDGVarSet(rvRest, dg);
   }
}

relation RVarToMVar
{
   n: String;

   domain relations rv:Variable {name=n, type=t:Type {}};
   enforce domain core mv:Variable {name=n, type=t};
}

relation RVarToMRealizedVar
{
   n: String;

   domain relations rv:Variable {name=n, type=t:Type {}};
   enforce domain core mv:RealizedVariable {name=n, type=t};
}

relation RSimplePatternToMPattern
{
   domain relations rp:Pattern {
      predicate = pd:Predicate {
         conditionExpression = re:OclExpression {}
      }
   }
   {
      not re.oclIsTypeOf(RelationCallExp)
   };
   enforce domain core mp:Pattern {
      predicate = mpd:Predicate{
         conditionExpression = me:OclExpression {}
      }
   };
   where {
      RExpToMExp(re, me);
   }
}

-- Relation invocation in when clause maps to a trace class pattern in mapping guard.
-- Relation call argument position corresponds to the domain position in the invoked relation.
-- Domain's root pattern object var gives us the corresponding trace class prop.
--
relation RWhenRelCallToMGuard
{
   domain relations rp:Pattern {
      predicate = pd:Predicate {
         conditionExpression = e:RelationCallExp {
            referredRelation = r:Relation {
               _domain = dseq:Sequence(RelationDomain) {}
            },
            argument = aseq:Sequence(VariableExp) {}
         }
      }
   }; 
   enforce domain core mp:GuardPattern {};
  
   where {
      aseq->forAll( a | RWhenRelCallArgToMGuardPredicate( Sequence{ r, a, dseq->at(aseq-
>indexOf(a)) }, mp) ); 
   }
} 

relation RWhenRelCallArgToMGuardPredicate
{
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   tc: QVTMM::Class;
   dvn: String;
   mv:QVTMM::Variable;

   domain relations daSeq:Sequence(Element) {
      r:Relation{},
      ve:VariableExp {
         referredVariable = v:Variable {}
      }, 
      d:RelationDomain {
         rootVariable = dv:Variable {name = dvn}
      }
      ++ _
   };
   enforce domain core mp:GuardPattern {
      bindsTo = vd:Variable {
         name = tc.name+'_v',
         type = tc
      },
      predicate = mpd:Predicate {
         conditionExpression = ee:OperationCallExp {   -- vd.dvn = mv
            source = pe:PropertyCallExp {
               source = pve:VariableExp{referredVariable = vd},
               referredProperty = pep:Property{name = dvn, class = 
vd.type.oclAsType(QVTMM::Class)}
            },
            referredOperation = eo:Operation{name = '='},
            argument = ave:VariableExp{referredVariable = mv}
         }
      }
   };
   when {
      RelationToTraceClass(r, tc);
   }
   where {
      RVarToMVar(v, mv);
   }
}

-- invocation argument position corresponds to the domain position in invoked relation.
-- Invocation argument variable name gives the invoker trace class prop name;
-- Domain's root pattern object var gives us core domain guard var 
--
relation RInvokerToMGuard
{
   domain relations seqForInvoker:Sequence(Element) {
      ir:Relation {},   -- invoking relation
      ri:RelationCallExp {
         argument = aseq:Sequence(VariableExp) {}
      },
      r:Relation {   -- invoked relation
         _domain = dseq:Sequence(RelationDomain) {}
      }
      ++ _
   };
   enforce domain core mg:GuardPattern {};
   where {
      aseq->forAll( a | RInvokerToMGuardPredicate( Sequence{ ir, a, dseq->at(aseq->indexOf(a)) 
}, mg) ); 
   }
}

relation RInvokerToMGuardPredicate
{
   vn: String;
   tc: QVTMM::Class;
   mdv: QVTMM::Variable;
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   domain relations seqForInvoker:Sequence(Element) {
      ir:Relation {},   -- invoking relation
      ve:VariableExp {referredVariable = v:Variable {name=vn}},
      d:RelationDomain { rootVariable = dv:Variable {} }
      ++ _
   };
   enforce domain core mg:GuardPattern {
      bindsTo = vd:Variable {
         name = tc.name+'_v',
         type = tc
      },
      predicate = pd:Predicate {
         conditionExpression = ee:OperationCallExp {   -- vd.vn = mdv
            source = pe:PropertyCallExp {
               source = mve:VariableExp{referredVariable = vd},
               referredProperty = pep:Property{name = vn, class = 
vd.type.oclAsType(QVTMM::Class)}
            },
            referredOperation = eo:Operation{name = '='},
            argument = ave:VariableExp{referredVariable = mdv}
         }
      }
   };
   when {
      RelationToTraceClass(ir, tc);
   }
   where {
      RVarToMVar(dv, mdv);
   }
}

relation RDomainPatternToMDBottomPattern
{
   domain relations seqForDomainPtrn:Sequence(Element) {};
   enforce domain core db:BottomPattern {
      area = cd:CoreDomain{
         rule = m:Mapping {
            bottomPattern = mb:BottomPattern{area = m}
         }
      }
   };   -- domain bottom
   where {
      RDomainPatternToMDBottomPatternComposite(seqForDomainPtrn, db);
      RDomainPatternToMDBottomPatternSimpleNonVarExpr(seqForDomainPtrn, db);
      RDomainPatternToMDBottomPatternSimpleUnSharedVarExpr(seqForDomainPtrn, db);
      RDomainPatternToMDBottomPatternSimpleSharedVarExpr(seqForDomainPtrn, mb);
   }
}

relation RDomainToMDBottomForEnforcement
{
   remainingUnBoundDomainVars: Set(QVTMM::Variable);
   predicatesWithVarBindings:Set(QVTMM::Predicate);
   remainingPredicatesWithoutVarBindings:Set(QVTMM::Predicate);
   rdSeq, rtSeq, rtdSeq: Sequence(QVTMM::Element);
   rdtVarsSeqRest: Sequence(Set(QVTMM::Element));
   predicatesWithoutVarBindings:Set(QVTMM::Predicate);
   unboundDomainVars:Set(QVTMM::Variable);
   tcv, mv: QVTMM::Variable;

   domain relations rdtVarsSeq:Sequence(Set(Element)) {
      rdtSet:Set(Element) {
         r:Relation{},
         rd:RelationDomain{},
         te:ObjectTemplateExp {bindsTo = v:Variable {}}
         ++ _
      }
      ++ _
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   };
   enforce domain core db:BottomPattern {   -- domain bottom
      area = cd:CoreDomain {
         rule = m:Mapping {
            bottomPattern = mb:BottomPattern {
                area = m
             }
         }
      }
   };
   where {
      predicatesWithoutVarBindings = rdtVarsSeq->at(2);
      unboundDomainVars = rdtVarsSeq->at(3);

      remainingUnBoundDomainVars = unboundDomainVars - Set{v};
      predicatesWithVarBindings = filterOutPredicatesThatReferToVars(
                                    predicatesWithoutVarBindings, remainingUnBoundDomainVars);

      remainingPredicatesWithoutVarBindings =
            predicatesWithoutVarBindings - predicatesWithVarBindings;
      rtSeq = Sequence{r, te};
      rtdSeq = Sequence{r, te, rd};
      rdtVarsSeqRest = Sequence{rdtSet, remainingPredicatesWithoutVarBindings, 
remainingUnBoundDomainVars};

      RDomainToMDBottomForEnforcementOfIdentityProp(rtSeq, db);
      RDomainVarToMDBottomAssignmnetForEnforcement(rdtVarsSeq, mb);
      --RDomainToMDBottomForEnforcementOfIdentityPropObject(rdtSeq, mb);
      RDomainToMDBottomForEnforcementOfNonIdentityPropPrimitive(rtdSeq, m);
      RDomainToMDBottomForEnforcementOfNonIdentityPropObject(rdtVarsSeqRest, m);
      RDomainToMBottomPredicateForEnforcement(rdtVarsSeq, mb);
   }
}

relation RDomainVarToMDBottomAssignmnetForEnforcement
{
   rdSeq : Sequence(QVTMM::Element);
   tcv, mv: QVTMM::Variable;
 
   domain relations rdtVarsSeq:Sequence(Set(Element)) {
      rdtSet:Set(Element) {
         r:Relation{},
         rd:RelationDomain{},
         te:ObjectTemplateExp {bindsTo = v:Variable {}}
         ++ _
      }
      ++ _
   };
   enforce domain core mb:BottomPattern {   -- domain bottom
      assignment = a:Assignment {
         slotExpression = ve1:VariableExp{referredVariable = tcv},
         targetProperty = tp:Property{name = v.name, class = tcv.type.oclAsType(QVTMM::Class)},
         value = ve2:VariableExp{referredVariable = mv}
      }
   };
   where {
      rdSeq = Sequence{r, rd};
      RelationDomainToTraceClassVar(rdSeq, tcv);
      RVarToMVar(v, mv);
   }
}

relation RDomainToMBottomPredicateForEnforcement
{
   remainingUnBoundDomainVars: Set(QVTMM::Variable);
   predicatesWithVarBindings:Set(QVTMM::Predicate);
   rdSeq: Sequence(QVTMM::Element);
   predicatesWithoutVarBindings:Set(QVTMM::Predicate);
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   unboundDomainVars:Set(QVTMM::Variable);
   tcv, mv: QVTMM::Variable;
 
   domain relations rdtVarsSeq:Sequence(Set(Element)) {
      rdtSet:Set(Element) {
         r:Relation{},
         rd:RelationDomain{},
         te:ObjectTemplateExp {bindsTo = v:Variable {}}
         ++ _
      }
      ++ _
   };
   enforce domain core mb:BottomPattern {
      predicate = pd:Predicate {
         conditionExpression = ee:OperationCallExp {   -- tcv.(v.name) = mv
            source = pe:PropertyCallExp {
               --source = tcv,
               source = pve:VariableExp{referredVariable = tcv},
               referredProperty = pep:Property{
                  name = v.name,
                  class = tcv.type.oclAsType(QVTMM::Class)
               }
            },
            referredOperation = eo:Operation{name = '='},
            argument = ave:VariableExp{referredVariable = mv}
         }
      }
   };
   where {
      rdSeq = Sequence{}->append(r)->append(rd);
      RelationDomainToTraceClassVar(rdSeq, tcv);
      RVarToMVar(v, mv);

      predicatesWithoutVarBindings = rdtVarsSeq->at(2);
      unboundDomainVars = rdtVarsSeq->at(3);

      remainingUnBoundDomainVars = unboundDomainVars - Set{v};
      predicatesWithVarBindings = filterOutPredicatesThatReferToVars(
                                    predicatesWithoutVarBindings, remainingUnBoundDomainVars);

      RPredicateSetToMBPredicateSet(predicatesWithVarBindings->asSequence(), mb);
   }
}

relation RPredicateSetToMBPredicateSet
{
   rpRest: Sequence(QVTMM::Predicate);

   domain relations predSeq:Sequence(Predicate) {
      rp:Predicate {
         conditionExpression = re:OclExpression {}
      }
      ++ rpRest
   };
   enforce domain core mb:BottomPattern {
      predicate = mp:Predicate {
         conditionExpression = me:OclExpression {}
      }
   };
   where {
      RExpToMExp(re, me);
      RPredicateSetToMBPredicateSet(rpRest, mb);
   }
}

relation RDomainToMDBottomForEnforcementOfIdentityProp
{
   seqForAssignment: Sequence(QVTMM::Element);
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   domain relations rtSeq:Sequence(Element) {
      r:Relation{},
      te:ObjectTemplateExp {
         bindsTo = v:Variable {type=c:Class {}},
         part = pt:PropertyTemplateItem {
            referredProperty = pp:Property {},
            value = e:OclExpression {}
         }
      } {
         c._key.part->includes(pp)
      }
      ++ _
   };
   enforce domain core db:BottomPattern {
      area = cd:CoreDomain {
         rule = m:Mapping {
            bottomPattern = mb:BottomPattern{
               area = m
            }
         }
      }
   };   -- domain bottom
   where {
      seqForAssignment = Sequence{r, v, pp, e};
      RDomainPatternExprToMappingDomainAssignment(seqForAssignment, db);
      RDomainPatternExprToMappingDomainVarAssignment(seqForAssignment, db);
      RDomainPatternExprToMappingDomainTemplateVarAssignment(seqForAssignment, db);
      RDomainPatternExprToMappingBottomVarAssignment(seqForAssignment, mb);
   }
}

relation RDomainToMDBottomForEnforcementOfIdentityPropObject
{
   seqForAssignment: Sequence(QVTMM::Element);
   mtv, tcv : QVTMM::Variable;
   rdSeq : Sequence(QVTMM::Element);

   domain relations rtSeq:Sequence(Element) {
      r:Relation{},
      rd:RelationDomain{},
      te:ObjectTemplateExp {
         bindsTo = v:Variable {type=c:Class {}},
         part = pt:PropertyTemplateItem {
            referredProperty = pp:Property {},
            value = e:ObjectTemplateExp {bindsTo = tv:Variable{}}
         }
      } {
         c._key.part->includes(pp)
      }
      ++ _
   };
   enforce domain core mb:BottomPattern {
      assignment = a:Assignment {
         slotExpression = ve1:VariableExp{referredVariable = tcv},
         targetProperty = tp:Property{name = tv.name, class = 
tcv.type.oclAsType(QVTMM::Class)},
         value = ve2:VariableExp{referredVariable = mtv}
      }
   };   -- domain bottom
   where {
      rdSeq = Sequence{r, rd};
      RelationDomainToTraceClassVar(rdSeq, tcv);
      RVarToMVar(tv, mtv);
   }
}

relation RDomainPatternExprToMappingDomainAssignment
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{
   pn: String;
   mv: QVTMM::Variable;

   domain relations seqForAssignment: Sequence(Element) {
      _,
      v:Variable {},
      pp:Property {name = pn},
      e:OclExpression {} {
         not e.oclIsTypeOf(VariableExp) and not e.oclIsTypeOf(ObjectTemplateExp)
      } ++ _
   };
   enforce domain core db:BottomPattern {
      assignment = a:Assignment {
         slotExpression = ve:VariableExp{referredVariable = mv},
         targetProperty = tp:Property{name = pn, class = mv.type.oclAsType(QVTMM::Class)},
         value = me:OclExpression{}
      }
   };
   where {
      RVarToMVar(v, mv);
      RExpToMExp(e, me);
   }
}

relation RDomainPatternExprToMappingDomainVarAssignment
{
   sharedDomainVars: Set(QVTMM::Variable);
   rev, mev : QVTMM::Variable;
   pn: String;

   domain relations seqForAssignment: Sequence(Element) {
      r:Relation {},
      v:Variable {},
      pp:Property {name = pn},
      e:VariableExp {referredVariable = rev}
      ++ _
   } {
      not sharedDomainVars->includes(e.referredVariable)
   };
   enforce domain core db:BottomPattern {
      realizedVariable = mv:RealizedVariable {},
      assignment = a:Assignment {
         slotExpression = ve:VariableExp{referredVariable = mv},
         targetProperty = tp:Property{name = pn, class = mv.type.oclAsType(QVTMM::Class)},
         value = me:VariableExp{referredVariable = mev}
      }
   };
   when {
      sharedDomainVars = getSharedDomainVars(r);
   }
   where {
      RVarToMRealizedVar(v, mv);
      RVarToMVar(rev, mev);
   }
}

relation RDomainPatternExprToMappingDomainTemplateVarAssignment
{
   sharedDomainVars: Set(QVTMM::Variable);
   rev, mev: QVTMM::Variable;
   pn: String;

   domain relations seqForAssignment: Sequence(Element) {
      r:Relation {},
      v:Variable {},
      pp:Property {name = pn},
      e:ObjectTemplateExp {bindsTo = rev}
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      ++ _
   } {
      not sharedDomainVars->includes(rev)
   };
   enforce domain core db:BottomPattern {
      realizedVariable = mv:RealizedVariable {},
      assignment = a:Assignment {
         slotExpression = ve:VariableExp{referredVariable = mv},
         targetProperty = tp:Property{name = pn, class = mv.type.oclAsType(QVTMM::Class)},
         value = me:VariableExp{referredVariable = mev}
      }
   };
   when {
      sharedDomainVars = getSharedDomainVars(r);
   }
   where {
      RVarToMRealizedVar(v, mv);
      RVarToMVar(rev, mev);
   }
}

relation RDomainPatternExprToMappingBottomVarAssignment
{
   sharedDomainVars: Set(QVTMM::Variable);
   rev, mev : QVTMM::Variable;
   pn: String;

   domain relations seqForAssignment: Sequence(Element) {
      r:Relation {},
      v:Variable {},
      pp:Property {name = pn},
      e:VariableExp {referredVariable = rev}
      ++ _
   } {
      sharedDomainVars->includes(e.referredVariable)
   };
   enforce domain core mb:BottomPattern {
      realizedVariable = mv:RealizedVariable {},
      assignment = a:Assignment {
         slotExpression = ve:VariableExp{referredVariable = mv},
         targetProperty = tp:Property{name = pn, class = mv.type.oclAsType(QVTMM::Class)},
         value = me:VariableExp{referredVariable = mev}
      }
   };
   when {
      sharedDomainVars = getSharedDomainVars(r);
   }
   where {
      RVarToMRealizedVar(v, mv);
      RVarToMVar(rev, mev);
   }
}

relation RDomainToMDBottomForEnforcementOfNonIdentityPropPrimitive
{
   pn: String;
   mv: QVTMM::Variable;
   rtdeSeq: Sequence(QVTMM::Element);

   domain relations rtdSeq:Sequence(Element) {
      r:Relation{
         _transformation = rt:RelationTransformation{}
      },
      te:ObjectTemplateExp {
         bindsTo = v:Variable {type = c:Class {}},
         part = pt:PropertyTemplateItem {
            referredProperty = pp:Property {name = pn},
            value = e:OclExpression {}
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         }
      } {
         (not c._key.part->includes(pp)) and (not e.oclIsKindOf(TemplateExp))
      },
      rd:RelationDomain {
         pattern = rdp:DomainPattern {
            templateExpression = rdt:ObjectTemplateExp {}
         }
      }
      ++ _
   };
   enforce domain core m:Mapping {
      local = cm:Mapping {
         name = m.name+'_forNonIdentityProp',
         _transformation = mt:Transformation{},
         bottomPattern = bp:BottomPattern {
            assignment = a:Assignment {
               slotExpression = ve:VariableExp{referredVariable = mv},
               targetProperty = tp:Property{name = pn, class = 
mv.type.oclAsType(QVTMM::Class)},
               value = me:OclExpression{}
            }
         }
      }
   };
   when {
      RelationTransformationToMappingTransformation(rt, mt);
   }
   where {
      RVarToMVar(v, mv);
      RExpToMExp(e, me);

      rtdeSeq = Sequence{r, te, rd, e};

      RDomainToMComposedMappingGuard(rtdeSeq, cm); 
   }
}

relation RDomainToMComposedMappingGuard
{
   pn, dn, tmn: String;
   tcv, mv: QVTMM::Variable;
   rdSeq: Sequence(QVTMM::Element);
   mt: QVTMM::Transformation;

   domain relations rtdSeq:Sequence(Element) {
      r:Relation{
         _transformation = rt:RelationTransformation{}
      },
      te:ObjectTemplateExp {},
      rd:RelationDomain {
         name = dn,
         typedModel = dir:TypedModel {
             name = tmn, 
             usedPackage = up:Package{},
             _transformation = rt
         },
         pattern = rdp:DomainPattern {
            templateExpression = rdt:ObjectTemplateExp {}
         }
      },
      ve:VariableExp {referredVariable = v:Variable {}}
      ++ _
   } {
      isVarBoundToSomeOtherTemplate(rdt, te, v)
   };
   enforce domain core cm:Mapping {
      guardPattern = mg:GuardPattern {
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         predicate = pd:Predicate {
            conditionExpression = ee:OperationCallExp {   -- vd.vn = mdv
               source = pe:PropertyCallExp {
                  source = ve1:VariableExp{referredVariable = tcv},
                  referredProperty = tp:Property {
                     name = mv.name, 
                     class = mv.type.oclAsType(QVTMM::Class)
                  }
               },
               referredOperation = eo:Operation{name = '='},
               argument = ve2:VariableExp{referredVariable = mv}
            }
         }
      },
      _domain = cd:CoreDomain {
         name = dn,
         typedModel = mdir:TypedModel {
            name = tmn, 
            usedPackage = up,
            _transformation = mt
         },
         guardPattern = cmdg:GuardPattern {
            bindsTo = mv
         }
      }
   };
   when {
      RelationTransformationToMappingTransformation(rt, mt);
   }
   where {
      rdSeq = Sequence{r, rd};
      RelationDomainToTraceClassVar(rdSeq, tcv);
      RVarToMVar(v, mv);
   }
}

relation RDomainToMDBottomForEnforcementOfNonIdentityPropObject
{
   rdtSetNext: Set(QVTMM::Element);
   rdtVarsSeqRest: Sequence(Set(QVTMM::Element));
   predicatesWithoutVarBindings:Set(QVTMM::Predicate);
   unboundDomainVars:Set(QVTMM::Variable);
   dn, pn, tmn: String;
   mv: QVTMM::Variable;

   domain relations rdtVarsSeq:Sequence(Set(Element)) {
      rdtSet:Set(Element) {
         r:Relation{
            _transformation = rt:RelationTransformation{}
         },
         rd:RelationDomain {
            name = dn,
            typedModel = dir:TypedModel {
                name = tmn, 
                usedPackage = up:Package{},
                _transformation = rt
            }
         },
         te:ObjectTemplateExp {
            bindsTo = v:Variable {type = c:Class {}},
            part = pt:PropertyTemplateItem {
               referredProperty = pp:Property {name = pn},
               value = pte:ObjectTemplateExp {bindsTo = pv:Variable {}}
            }
         } {
            not c._key.part->includes(pp)
         }
         ++ _
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      }
      ++ _
   };
   enforce domain core m:Mapping {
      local = cm:Mapping {
         name = m.name+'_for_'+pv.name,
         _transformation = mt:Transformation{},
         _domain = cd:CoreDomain {
            name = dn,
            isEnforceable = true,
            typedModel = mdir:TypedModel {
               name = tmn, 
               usedPackage = up,
               _transformation = mt
            },
            bottomPattern = cmdb:BottomPattern {
               realizedVariable = mpv:RealizedVariable {},
               assignment = a:Assignment {
                  slotExpression = ve1:VariableExp{referredVariable = mv},
                  targetProperty = tp:Property{name = pn, class = 
mv.type.oclAsType(QVTMM::Class)},
                  value = ve2:VariableExp{referredVariable = mpv}
               }
            }
         },
         bottomPattern = mb:BottomPattern {
            area = cm
         }
      }
   };
   when {
      RelationTransformationToMappingTransformation(rt, mt);
   }
   where {
      RVarToMVar(v, mv);
      RVarToMRealizedVar(pv, mpv);
 
      predicatesWithoutVarBindings = rdtVarsSeq->at(2);
      unboundDomainVars = rdtVarsSeq->at(3);

      rdtSetNext = Set{r, rd, pte};
      rdtVarsSeqRest = Sequence{rdtSetNext, predicatesWithoutVarBindings, unboundDomainVars};
      RDomainToMDBottomForEnforcement(rdtVarsSeqRest, cmdb);
   }
}

relation RDomainPatternToMDBottomPatternComposite
{
   nextSeqForDomainPtrn: Sequence(QVTMM::Element);
   sharedDomainVars:Set(QVTMM::Variable);
   pn: String;
   mvte, mvpte: QVTMM::Variable;

   domain relations seqForDomainPtrn:Sequence(Element) {
      r:Relation{},
      te:ObjectTemplateExp {
         bindsTo = vte:Variable {},
         part = pt:PropertyTemplateItem {
            referredProperty = pp:Property {name = pn},
            value = pte:ObjectTemplateExp {bindsTo = vpte:Variable {}}
         }
      }
      ++ _
   };
   enforce domain core db:BottomPattern {
      assignment = a:Assignment {
         slotExpression = ve1:VariableExp{referredVariable = mvte},
         targetProperty = tp:Property{name = pn, class = mvte.type.oclAsType(QVTMM::Class)},
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         value = ve2:VariableExp{referredVariable = mvpte}
      }
   };
   where {
      RVarToMVar(vte, mvte);
      RVarToMVar(vpte, mvpte);
      nextSeqForDomainPtrn = Sequence{r, pte};
      RDomainPatternToMDBottomPattern(nextSeqForDomainPtrn, db);
   }
}

relation RDomainPatternToMDBottomPatternSimpleUnSharedVarExpr
{
   sharedDomainVars: Set(QVTMM::Variable);
   pn: String;
   mvte, mvpte: QVTMM::Variable;

   domain relations seqForDomainPtrn:Sequence(Element) {
      r:Relation{},
      te:ObjectTemplateExp {
         bindsTo = vte:Variable {},
         part = pt:PropertyTemplateItem {
            referredProperty = pp:Property {name = pn},
            value = e:VariableExp {referredVariable = vpte:Variable {}}
         }
      }
      ++ _
   } {
      not sharedDomainVars->includes(vpte)
   };
   enforce domain core db:BottomPattern {
      assignment = a:Assignment {
         slotExpression = ve1:VariableExp{referredVariable = mvte},
         targetProperty = tp:Property{name = pn, class = mvte.type.oclAsType(QVTMM::Class)},
         value = ve2:VariableExp{referredVariable = mvpte}
      }
   };
   when {
      sharedDomainVars = getSharedDomainVars(r);
   }
   where {
      RVarToMVar(vte, mvte);
      RVarToMVar(vpte, mvpte);
   }
}

relation RDomainPatternToMDBottomPatternSimpleSharedVarExpr
{
   sharedDomainVars: Set(QVTMM::Variable);
   pn: String;
   mvte, mvpte: QVTMM::Variable;

   domain relations seqForDomainPtrn:Sequence(Element) {
      r:Relation{},
      te:ObjectTemplateExp {
         bindsTo = vte:Variable {},
         part = pt:PropertyTemplateItem {
            referredProperty = pp:Property {name = pn},
            value = e:VariableExp {referredVariable=vpte:Variable {}}
         }
      }
      ++ _
   } {
      sharedDomainVars->includes(vpte)
   };
   enforce domain core mb:BottomPattern {
      assignment = a:Assignment {
         slotExpression = ve1:VariableExp{referredVariable = mvte},
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         targetProperty = tp:Property{name = pn, class = mvte.type.oclAsType(QVTMM::Class)},
         value = ve2:VariableExp{referredVariable = mvpte}
      }
   };
   when {
      sharedDomainVars = getSharedDomainVars(r);
   }
   where {
      RVarToMVar(vte, mvte);
      RVarToMVar(vpte, mvpte);
   }
}

relation RDomainPatternToMDBottomPatternSimpleNonVarExpr
{
   pn: String;
   mvte: QVTMM::Variable;

   domain relations seqForDomainPtrn:Sequence(Element) {
      _,
      te:ObjectTemplateExp {
         bindsTo = vte:Variable {},
         part = pt:PropertyTemplateItem {
            referredProperty = pp:Property {name = pn},
            value = e:OclExpression {}
         }
      } ++ _
   } {
      not e.oclIsKindOf(TemplateExp) and not e.oclIsTypeOf(VariableExp)
   };
   enforce domain core db:BottomPattern {
      assignment = a:Assignment {
         slotExpression = ve:VariableExp{referredVariable = mvte},
         targetProperty = tp:Property{name = pn, class = mvte.type.oclAsType(QVTMM::Class)},
         value = me:OclExpression{}
      }
   };
   where {
      RVarToMVar(vte, mvte);
      RExpToMExp(e, me);
   }
}

relation RDomainVarsToTraceClassProps
{
   tcv, mdv: QVTMM::Variable;

   domain relations rd:RelationDomain {
      rule = r:Relation{},
      pattern = dp:DomainPattern {
         bindsTo = domainVars:Set(Variable) {dv:Variable {templateExp = te: TemplateExp{}}++_}
      }
   };
   enforce domain core mb:BottomPattern {
      assignment = a:Assignment {
         slotExpression = ve1:VariableExp{referredVariable = tcv},
         targetProperty = tp:Property{name = dv.name, class = 
tcv.type.oclAsType(QVTMM::Class)},
         value = ve2:VariableExp{referredVariable = mdv}
      }
   };
   where {
      RelationToTraceClassVar(r, tcv);
      RVarToMVar(dv, mdv);
   }
}

relation ROppositeDomainVarsToTraceClassProps
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{
   rdSeq: Sequence(QVTMM::Element);
   tcv, mdv: QVTMM::Variable;
 
   domain relations rdVarsSeq:Sequence(Set(Element)) {
      rdSet: Set(Element) {
         r:Relation {},
         rd:RelationDomain {} ++ _
      },
      domainVars:Set(Variable) {dv:Variable{templateExp = te:TemplateExp{}} ++ _}
      ++ _
   };
   enforce domain core mb:BottomPattern {
      assignment = a:Assignment {
         slotExpression = ve1:VariableExp{referredVariable = tcv},
         targetProperty = tp:Property{name = dv.name, class = 
tcv.type.oclAsType(QVTMM::Class)},
         value = ve2:VariableExp{referredVariable = mdv}
      }
   };
   where {
      rdSeq = Sequence{}->append(r)->append(rd);
      RelationDomainToTraceClassVar(rdSeq, tcv);
      RVarToMVar(dv, mdv);
   }
}

relation RRelImplToMBottomEnforcementOperation
{
   emptySet:Set(QVTMM::EnforcementOperation);

   domain relations repImplSeq:Sequence(Element) {
      r:Relation {
         operationalImpl = ri:RelationImplementation {
            inDirectionOf = tm:TypedModel{},
            impl = op:Operation{}
         }
      },
      rd:RelationDomain {typedModel = tm:TypedModel{}}
      ++ _
   };
   enforce domain core mb:BottomPattern {
      enforcementOperation = eoSet:Set(EnforcementOperation) {
         eoc:EnforcementOperation {
            enforcementMode = 'Creation',
            operationCallExp = oce:OperationCallExp {
               referredOperation = op
            }
           },
         eod:EnforcementOperation {
            enforcementMode = 'Deletion',
            operationCallExp = oce
         }
         ++ emptySet
      }
   }
   default_values
   {
      emptySet = Set{};
   };
   where {
      RRelDomainsToMOpCallArg(r, oce);
   }
}

relation RRelDomainsToMOpCallArg
{
   domain relations r:Relation {
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      _domain = rd:RelationDomain {
         pattern = p:DomainPattern{bindsTo = rv:Variable{}}
      }
   };
   enforce domain core oce:OperationCallExp {
      argument = ar:VariableExp {
         referredVariable = mv:Variable {}
      }
   };
   where {
      RVarToMVar(rv, mv);
   }
}

relation RelationToTraceClassVar
{
   rn: String;
   tc: QVTMM::Class;

   domain relations r:Relation {name = rn};
   enforce domain core tcv:RealizedVariable {
      name = rn+'_v',
      type = tc
   };
   when {
      RelationToTraceClass(r, tc);
   }
}

relation RelationDomainToTraceClassVar
{
   rn, dn: String;
   tc: QVTMM::Class;

   domain relations rdSeq:Sequence(Element) {
      r:Relation {name = rn},
      d:RelationDomain{name = dn}
      ++ _
   };
   enforce domain core tcv:RealizedVariable {
      name = rn+'_'+dn+'_v',
      type = tc
   };
   when {
      RelationToTraceClass(r, tc);
   }
}

-- copy an ocl expression
-- For space reasons this relation is not expanded out here
relation RExpToMExp
{
   domain relations re:OclExpression{};
   enforce domain core me:OclExpression{} implementedby CopyOclExpession(re, me);
}

}
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11 QVT For CMOF
For the sake of simplicity all previous clauses assume QVT used in the context of EMOF conformant metamodels. 
However this specification is also applicable to CMOF metamodels with a few restrictions.

11.1 The QVT Metamodel for CMOF
The QVT metamodel for CMOF is a CMOF metamodel that is obtained by executing the following steps:

• The EMOF package is replaced by the CMOF Package.

• All other packages - including the EssentialOCL - are cloned, with the exception that all references to the original 
EMOF metaclasses are replaced by references to the corresponding CMOF metaclass.

11.2 Semantics Specificities
The semantics of CMOF concerning the access and the modification of properties replaces the semantics of EMOF. For 
instance, in CMOF, setting a property that is specified as an association end implies that the corresponding association 
link instance is created and that any related sub-setted association is updated accordingly. 

There are some limitations when using QVT on CMOF metamodels which comes from the fact that we are cloning 
EssentialOCL - at the time being, the OCL specification does not define an “OCL for CMOF metamodels.”

It is not possible to refer directly to an association; instead an association has to be accessed as a property from one of the 
owning classes. However, this does not address the case where both the ends of an association are owned by the 
association itself.
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Annex A: Additional Examples

(normative)

A.1 Relations Examples

A.1.1 UML to RDBMS Mapping

A.1.1.1 Overview

This example maps persistent classes of a simple UML model to tables of a simple RDBMS model. A persistent class 
maps to a table, a primary key and an identifying column. Attributes of the persistent class map to columns of the table: 
an attribute of a primitive datatype maps to a single column; an attribute of a complex data type maps to a set of columns 
corresponding to its exploded set of primitive datatype attributes; attributes inherited from the class hierarchy are also 
mapped to the columns of the table. An association between two persistent classes maps to a foreign key relationship 
between the corresponding tables.

Figure A.1 - Simple UML Metamodel
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Figure A.2 - Simple RDBMS Metamodel

UML to RDBMS mapping in textual syntax
transformation umlToRdbms(uml:SimpleUML, rdbms:SimpleRDBMS)
{
key Table (name, schema);
key Column (name, owner);   // owner:Table opposite column:Column
key Key (name, owner); // key of class ëKeyí;
                       // owner:Table opposite key:Key

top relation PackageToSchema   // map each package to a schema
{
   pn: String;

   checkonly domain uml p:Package {name=pn};
   enforce domain rdbms s:Schema {name=pn};
}   

top relation ClassToTable   // map each persistent class to a table
{
   cn, prefix: String;

   checkonly domain uml c:Class {namespace=p:Package {},
  kind='Persistent', name=cn};
   enforce domain rdbms t:Table {schema=s:Schema {}, name=cn,
          column=cl:Column {name=cn+'_tid', type='NUMBER'},
          key=k:Key {name=cn+'_pk', column=cl}};
   when {
      PackageToSchema(p, s);
   }
   where {
      prefix = '';
      AttributeToColumn(c, t, prefix);
   }
}
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relation AttributeToColumn
{
   checkonly domain uml c:Class {};
   enforce domain rdbms t:Table {};
   primitive domain prefix:String;
   where {
      PrimitiveAttributeToColumn(c, t, prefix);
      ComplexAttributeToColumn(c, t, prefix);
      SuperAttributeToColumn(c, t, prefix);
   }
}

relation PrimitiveAttributeToColumn
{
   an, pn, cn, sqltype: String;

   checkonly domain uml c:Class {attribute=a:Attribute {name=an,
            type=p:PrimitiveDataType {name=pn}}};
   enforce domain rdbms t:Table {column=cl:Column {name=cn,
  type=sqltype}};
   primitive domain prefix:String;
   where {
      cn = if (prefix = '') then an else prefix+'_'+an endif;
      sqltype = PrimitiveTypeToSqlType(pn);
   }
}

relation ComplexAttributeToColumn
{
   an, newPrefix: String;

   checkonly domain uml c:Class {attribute=a:Attribute {name=an, 
  type=tc:Class {}}};
   enforce domain rdbms t:Table {};
   primitive domain prefix:String;
   where {
      newPrefix = prefix+'_'+an;
      AttributeToColumn(tc, t, newPrefix);
   }
}

relation SuperAttributeToColumn
{
   checkonly domain uml c:Class {general=sc:Class {}};
   enforce domain rdbms t:Table {};
   primitive domain prefix:String;
   where {
      AttributeToColumn(sc, t, prefix);
   }
}

// map each association between persistent classes to a foreign key
top relation AssocToFKey
{
   srcTbl, destTbl: Table;
   pKey: Key;
   an, scn, dcn, fkn, fcn: String;

   checkonly domain uml a:Association {namespace=p:Package {},
            name=an,
            source=sc:Class {kind='Persistent',name=scn},
            destination=dc:Class {kind='Persistent',name=dcn}
         };
   enforce domain rdbms fk:ForeignKey {schema=s:Schema {},
            name=fkn,
            owner=srcTbl,
            column=fc:Column {name=fcn,type='NUMBER',owner=srcTbl},
            refersTo=pKey
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         };
   when {   /* when refers to pre-condition */
      PackageToSchema(p, s);
      ClassToTable(sc, srcTbl);
      ClassToTable(dc, destTbl);
      pKey = destTbl.key;
   }
   where {
      fkn=scn+'_'+an+'_'+dcn;
      fcn=fkn+'_tid';
   }
}

function PrimitiveTypeToSqlType(primitiveTpe:String):String
{
   if (primitiveType='INTEGER')
   then 'NUMBER'
   else if (primitiveType='BOOLEAN')
      then 'BOOLEAN'
      else 'VARCHAR'
      endif
   endif;
}

}

UML to RDBMS mapping in graphical syntax

Figure A.3 - PackageToSchema relation
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Figure A.4 - ClassToTable relation

Figure A.5 - PrimitiveAttributeToColumn relation
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Figure A.6 - ComplexAttributeToColumn relation

Figure A.7 - SuperAttributeToColumn relation
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Figure A.8 - AssocToFKey relation

A.2 Operational Mapping Examples

A.2.1 Book To Publication example

metamodel BOOK {
  class Book {title: String; composes chapters: Chapter [*];}
  class Chapter {title : String; nbPages : Integer;}
}

metamodel PUB {
  class Publication {title : String; nbPages : Integer;}
}

transformation Book2Publication(in bookModel:BOOK,out pubModel:PUB);

main() {
  bookModel->objectsOfType(Book)->map book_to_publication();
}

mapping Class::book_to_publication () : Publication {
  title := self.title;
  nbPages := self.chapters->nbPages->sum(); 
}

A.2.2 Encapsulation example 

-- This QVT definition performs an in place transformation on 
-- a UML class-diagram model by privatizing the attributes and 
-- creating accessor methods 

modeltype UML uses "omg.org.uml14";

transformation Encapsulation(inout classModel:UML);
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// Indicating that UML1.4 Name type is to be treated as a String 
tag "TypeEquivalence" UML::Name = "String";

-- entry point: selects the packages and applies the transformation 
-- on each package 

main() { 
  classModel.objectsOfType(Package)
     ->map encapsulateAttributesInPackageClasses();
}
-- Applies the transformation to each class of the package 

mapping inout Package::encapsulateAttributesInPackageClasses () {
  init {self.ownedElement->map encapsulateAttributesInClass();}
}

-- Performs the encapsulation for each attribute of the class 
-- The initialization section is used to retrieve the list of attributes 
-- The population section is used to add the two accessor operations 
-- The end section is used to privatize each attribute 

mapping inout Class::encapsulateAttributesInClass () 
{
  init { var attrs := self.feature[Attribute];}
  operation := { -- assignment with additive semantics 
      attrs->object(a) Operation {
           name := "get_" + self.name.firstToUpper();
           visibility := "public";
           type := a.type;
         };
      attrs->object(a) Operation {
            name := "set_" + self.name.firstToUpper();
            visibility := "public";
            parameter := object Parameter {
               name := 'a_'+ self.name.firstToUpper();
               kind := "in";
               type := a.type;};
            };
         };
  end { attrs->map privatizeAttribute();}
}

-- in place privatization of the attribute 

mapping inout Attribute::privatizeAttribute () {
   visibility := "private";
}

A.2.3 Uml to Rdbms

The metamodels used here are the same metamodels used for the relational version given in Appendix A.1.1. We provide 
below their definition using the concrete syntax for metamodels. Note we are assuming that all multi-valued associations 
are ordered.
metamodel SimpleUml {

 abstract class UMLModelElement {
   kind : String;
   name : String;
 }
 
 class Package extends UMLModelElement {
   composes elements : PackageElement [*] ordered opposites namespace [1];
 } 

 abstract class PackageElement extends UMLModelElement {
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 }

 class Classifier extends PackageElement {
 }

 class Attribute extends UMLModelElement {
    references type : Classifier [1];
 }

 class Class extends Classifier {
    composes attribute : Attribute [*] ordered opposites owner [1];
    references general : Classifier [*] ordered;
  }

 class Association extends PackageElement {
    source : Class [1] opposites reverse [*];
    destination : Class [1] opposites forward [*];
 }

 class PrimitiveDataType extends Classifier {
 }

}

metamodel SimpleRdbms {

 abstract class RModelElement {
   kind : String;
   name : String;
 }
 
 class Schema extends RModelElement {
   composes tables : Table [*] ordered opposites schema [1]; 
 }

 class Table extends RModelElement {
    composes column : Column [*] ordered opposites owner[1];
    composes _key : Key [*] ordered  opposites owner[1]; 
        // '_key' is an automatic alias for 'key'
    composes foreignKey : ForeignKey [*] ordered opposites owner[1];
 }

 class Column extends RModelElement {
   type : String;
 }
 
 class Key extends RModelElement {
    references column : Column [*] ordered opposites _key [*];
 }
 
 class ForeignKey extends RModelElement {
    references refersTo : Key [1];
    references column : Column [*] ordered opposites foreignKey [*];
 }

}
Below the transformation definition
transformation Uml2Rdb(in srcModel:UML,out dest:RDBMS);

-- Aliases to avoid name conflicts with keywords
tag "alias" RDBMS::Table::key_ = "key";
-- defining intermediate data to reference leaf attributes that may
-- appear when struct data types are used
intermediate class LeafAttribute {
  name:String;
  kind:String;
  attr:UML::Attribute;
};
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intermediate property UML::Class::leafAttributes : Sequence(LeafAttribute);

-- defining specific helpers

query UML::Association::isPersistent() : Boolean {
    result = (self.source.kind='persistent' and self.destination.kind='persistent');    
}

-- defining the default entry point for the module
-- first the tables are created from classes, then the tables are
-- updated with the foreign keys implied by the associations

main() {
  srcModel.objects()[Class]->map class2table(); -- first pass
  srcModel.objects()[Association]->map asso2table(); -- second pass
}

-- maps a class to a table, with a column per flattened leaf attribute

mapping Class::class2table () : Table 
  when {self.kind='persistent';}
{
  init { -- performs any needed intialization
    self.leafAttributes := self.attribute
      ->map attr2LeafAttrs("",""); // ->flatten();
  }
  -- population section for the table
  name := 't_' + self.name;
  column := self.leafAttributes->map leafAttr2OrdinaryColumn("");
  key_ := object Key {  -- nested population section for a 'Key'
           name := 'k_'+ self.name; column := result.column[kind='primary']; 
         };
} 

-- Mapping that creates the intermediate leaf attributes data.

mapping Attribute::attr2LeafAttrs (in prefix:String,in pkind:String)
: Sequence(LeafAttribute) {
  init { 
    var k := if pkind="" then self.kind else pkind endif;
    result := 
       if self.type.isKindOf(PrimitiveDataType) 
       then -- creates a sequence with a LeafAttribute instance
         Sequence {
           object LeafAttribute {attr:=self;name:=prefix+self.name;kind:=k;}
         }
       else self.type.asType(Class).attribute
         ->map attr2LeafAttrs(self.name+"_",k)->asSequence()
       endif; 
  }
}

-- Mapping that creates an ordinary column from a leaf attribute

mapping LeafAttribute::leafAttr2OrdinaryColumn (in prefix:String): Column { 
  name := prefix+self.name; 
  kind := self.kind;
  type := if self.attr.type.name='int' then 'NUMBER' else 'VARCHAR' endif;
}

-- mapping to update a Table with new columns of foreign keys

mapping Association::asso2table() : Table  
  when {self.isPersistent();}
{
  init {result := self.destination.resolveone(Table);}
  foreignKey := self.map asso2ForeignKey();
  column += result.foreignKey->column ;
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}

-- mapping to build the foreign keys

mapping Association::asso2ForeignKey() : ForeignKey {
   name := 'f_' + self.name;
   refersTo := self.source.resolveone(Table).key_;
   column := self.source.leafAttributes[kind='primary']
              ->map leafAttr2ForeignColumn(self.source.name+'_');
}

-- Mapping to create a Foreign key from a leaf attributes
-- Inheriting of leafAttr2OrdinaryColumn has the effect to call the
-- inherited rule before entering the property population section

mapping LeafAttribute::leafAttr2ForeignColumn (in prefix:String) : Column 
  inherits leafAttr2OrdinaryColumn {
     kind := "foreign";
}

A.2.4 SPEM UML Profile to SPEM metamodel

modeltype UML uses "omg.org.spem_umlprofile";
modeltype SPEM uses "omg.org.spem_metamodel";
transformation SpemProfile2Metamodel(in umlmodel:UML,out spemmodel:SPEM);

query UML::isStereotypedBy(stereotypeName:String) : Boolean;
query UML::Classifier::getOppositeAends() : Set(UML::AssociationEnd);

main () { 
  -- first pass: create all the SPEM elements from UML elements
  umlmodel.rootobjects()[UML::Model]->map createDefaultPackage();
  -- second pass: add the dependencies beyween SPEM elements
  umlmodel.objects[UML::UseCase]->map addDependenciesInWorkDefinition();
}

mapping UML::Package::createDefaultPackage () : SPEM::Package {
  name := self.name;
  ownedElement := self.ownedElement->map createModelElement();
}

mapping UML::Package::createProcessComponent () : SPEM::ProcessComponent
  inherits createDefaultPackage 
  when {self.isStereotypedBy("ProcessComponent");}
  {}

mapping UML::Package::createDiscipline () : SPEM::Discipline
  inherits createDefaultPackage
  when {self.isStereotypedBy("Discipline");} 
  {}

mapping UML::ModelElement::createModelElement () : SPEM::ModelElement
  disjuncts 
    createProcessRole, createWorkDefinition,
    createProcessComponent, createDiscipline
  {}

mapping UML::UseCase::createWorkDefinition () : SPEM::WorkDefinition
  disjuncts 
    createLifeCycle, createPhase, createIteration,
    createActivity, createCompositeWorkDefinition
  {}

mapping UML::Actor::createProcessRole () : SPEM::ProcessRole
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  when {self.isStereotypedBy("ProcessRole");}
  {}

-- rule to create the default process performer singleton
mapping createOrRetrieveDefaultPerformer () : SPEM::ProcessPerformer {
  init {
    result := resolveoneByRule(createOrRetrieveDefaultPerformer);
    if result then return endif;
  }
  name := "ProcessPerformer";
}

mapping abstract UML::UseCase::createCommonWorkDefinition () 
 : SPEM::WorkDefinition
{
   name := self.name;
   constraint := {
      self.constraint[isStereotypedBy("precondition")]
         ->map createPrecondition();
      self.constraint[isStereotypedBy("goal")]->map createGoal();
   };
}

mapping UML::UseCase::createActivity () : SPEM::WorkDefinition
  inherits createCommonWorkDefinition
  when {self.isStereotypedBy("Activity");}
  {}

mapping UML::UseCase::createPhase () : SPEM::Phase
  inherits createCommonWorkDefinition
  when {self.isStereotypedBy("Phase");}
  {}

mapping UML::UseCase::createIteration () : SPEM::Iteration
  inherits createCommonWorkDefinition
  when {self.isStereotypedBy("Iteration");}
  {}

mapping UML::UseCase::createLifeCycle () : SPEM::LifeCycle
  inherits createCommonWorkDefinition 
  when {self.isStereotypedBy("LifeCycle");}
  {}

mapping UML::UseCase::createCompositeWorkDefinition () : SPEM::WorkDefinition
  inherits createCommonWorkDefinition 
  when {self.isStereotypedBy("WorkDefinition");}
  {}

mapping UML::Constraint::createPrecondition () : SPEM::Precondition {
  body := self.body;
}

mapping UML::Constraint::createGoal () : SPEM::Goal {
  body := self.body;
}

mapping UML::UseCase::addDependenciesInWorkDefinition () 
 : SPEM::WorkDefinition 
 merging addDependenciesInActivity
{
  init { 
    result := self.resolveone(WorkDefinition);
    var performers 
      := self.getOppositeAends()[i|i.association
           [isStereotypedBy("perform")]->notEmpty()];
    assert (not performers->size()>1) 
       with log("A unique performer is allowed",self);
  }
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  subWork := self.clientDependency[*includes].supplier
     ->resolveone(WorkDefinition);
  performer := if performers then performers->first()
               else createOrRetrieveDefaultPerformer() endif;
}

mapping UseCase::addDependenciesInActivity () : WorkDefinition
  when {self.stereotypedBy("Activity");}
  {
    assistant := self.getOppositeAends()[i|i.association
       [a|a.isStereotypedBy("assist")]->notEmpty()]->resolve();
  }

A.3 Core Examples

A.3.1 UML to RDBMS Mapping 

This example expresses the same transformation semantics, and uses the same metamodels shown in the Relations 
Examples in Annex A.1.1.
-- A Transformation definition from SimpleUML to SimpleRDBMS
module UmlRdbmsTransformation imports SimpleUML, SimpleRDBMS {

    transformation umlRdbms {
        uml imports SimpleUML;
        rdbms imports SimpleRDBMS;
    }

    -- Package and Schema mapping
    class PackageToSchema {
        composite classesToTables : Set(ClassToTable) opposites owner;
        composite primitivesToNames : Set(PrimitiveToName) opposites owner;
        name : String;
        -- uml
        umlPackage : Package;
        -- rdbms
        schema : Schema;
    }

    map packageToSchema in umlRdbms {
        uml () {
            p:Package
        }
        rdbms () {
            s:Schema
        }
        where () {
            p2s:PackageToSchema|
            p2s.umlPackage = p;
            p2s.schema = s;
        }
        map {
            where () {
                p2s.name := p.name;
                p2s.name := s.name;
                p.name := p2s.name;
                s.name := p2s.name;
            }
        }
    }

    -- Primitive data type marshaling
    class PrimitiveToName {
        owner : PackageToSchema opposites primitivesToNames;
        name : String;
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        -- uml
        primitive : PrimitiveDataType;
        -- rdbms
        typeName : String;
    }

    map primitiveToName in umlRdbms {
        uml (p:Package) {
            prim:PrimitiveDataType|
            prim.owner = p;
        }
        check enforce rdbms () {
            sqlType:String
        }
        where (p2s:PackageToSchema| p2s.umlPackage=p) {
            realize p2n:PrimitiveToName|
            p2n.owner := p2s;
            p2n.primitive := prim;
            p2n.typeName := sqlType;
        }
        map {
            where () {
                p2n.name := prim.name + '2' + sqlType;
            }
        }
    }

    map integerToNumber in umlRdbms refines primitiveToName {
        uml () {
            prim.name = 'Integer';
        }
        check enforce rdbms () {
            sqlType := 'NUMBER';
        }
    }

    map booleanToBoolean in umlRdbms refines primitiveToName {
        uml () {
            prim.name = 'Boolean';
        }
        check enforce rdbms () {
            sqlType := 'BOOLEAN';
        }
    }

    map stringToVarchar in umlRdbms refines primitiveToName {
        uml () {
            prim.name = 'String';
        }
        check enforce rdbms () {
            sqlType := 'VARCHAR';
        }
    }

    -- utility functions for flattening
    map flattening in umlRdbms {
        getAllSupers(cls : Class) : Set(Class) {
            cls.general->collect(gen|self.getAllSupers(gen))->
                including(cls)->asSet()
        }
        getAllAttributes(cls : Class) : Set(Attribute) {
            getAllSupers(cls).attribute
        }
        getAllForwards(cls : Class) : Set(Association) {
            getAllSupers(cls).forward
        }
    }
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    -- Class and Table mapping
    class ClassToTable extends FromAttributeOwner, ToColumn {
        owner : PackageToSchema opposites classesToTables;
        composite associationToForeignKeys :
            OrderedSet(AssociationToForeignKey) opposites owner;
        name : String;
        -- uml
        umlClass : Class;
        -- rdbms
        table : Table;
        primaryKey : Key;
    }

    map classToTable in umlRdbms {
        check enforce uml (p:Package) {
            realize c:Class|
            c.kind := 'persistent';
            c.namespace := p;
        }
        check enforce rdms (s:Schema) {
            realize t:Table|
            t.kind <> 'meta';
            default t.kind := 'base';
            t.schema := s;
        }
        where (p2s:Package2Schema| p2s.umlPackage=p; p2s.schema=s;) {
            realize c2t:ClassToTable|
            c2t.owner := p2s;
            c2t.umlClass := c;
            c2t.table := t;
        
        map {
            where () {
                c2t.name := c.name;
                c2t.name := t.name;
                c.name := c2t.name;
                t.name := c2t.name;
            }
        }
        map {
            check enforce rdbms () {
                realize pk:Key,
                realize pc:Column|
                pk.owner := t;
                pk.kind := 'primary';
                pc.owner := t;
                pc.key->includes(pk);
                default pc.key := Set(Key){pk};
                default pc.type := 'NUMBER';
            }
            where () {
                c2t.primaryKey := pk;
                c2t.column := pc;
            }
            map {
                check enforce rdbms () {
                    pc.name := t.name+'_tid';
                    pk.name := t.name+'_pk';
                }
            }
        }
    }

    -- Association and ForeignKey mapping
    class AssociationToForeignKey extends ToColumn {
        referenced : ClassToTable;
        owner : ClassToTable opposites associationToForeignKeys;
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        name : String;
        -- uml
        association : Association;
        -- rdbms
        foreignKey : ForeignKey;
    }

    map associationToForeignKey in umlRdbms refines flattening {
        check enforce uml (p:Package, sc:Class, dc:Class| sc.namespace = p;) {
            realize a:Association|
            getAllForwards(sc)->includes(a);
            default a.source := sc;
            getAllSupers(dc)->includes(a.destination);
            default a.destination := dc;
            default a.namespace := p;
        }
        check enforce rdbms (s:Schema, st:Table, dt:Table, rk:Key|
            st.schema = s;
            rk.owner = dt;
            rk.kind = 'primary';
        ) {
            realize fk:ForeignKey,
            realize fc:Column|
            fk.owner := st;
            fc.owner := st;
            fk.refersTo := rk;
            fc.foreignKey->includes(fk);
            default fc.foreignKey := Set(ForeignKey){fk};
        }
        where (p2s:PackageToSchema, sc2t:ClassToTable, dc2t:ClassToTable|
            sc2t.owner = p2s;
            p2s.umlPackage = p;
            p2s.schema = s;
            sc2t.table = st;
            dc2t.table = dt;
            sc2t.umlClass = sc;
            dc2t.umlClass = dc;
        ) {
            realize a2f:AssociationToForeignKey|
            a2f.owner := sc2t;
            a2f.referenced := dc2t;
            a2f.association := a;
            a2f.foreignKey := fk;
            a2f.column := fc;
        }
        map {
            where () {
                a2f.name := if a.destination=dc and a.source=sc
                            then a.name
                            else if a.destination<>dc and a.source=sc
                            then dc.name+'_'+a.name
                            else if a.destination=dc and a.source<>sc
                            then a.name+'_'+sc.name
                            else dc.name+'_'+a.name+'_'+sc.name
                            endif endif endif;
                a.name := if a.destination=dc and a.source=sc
                          then a2f.name
                          else a.name
                          endif;
                fk.name := name;
                name := fk.name;
                fc.name := name+'_tid';
            }
        }
        map {
            where () {
                fc.type := rk.column->first().type;
            }
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        }
    }

    -- attribute mapping
    abstract class FromAttributeOwner {
        composite fromAttributes : Set(FromAttribute) opposites owner;
    }

    abstract class FromAttribute {
        name : String;
        kind : String;
        owner : FromAttributeOwner opposites fromAttributes;
        leafs : Set(AttributeToColumn);
        -- uml
        attribute : Attribute to uml;
    }

    abstract class ToColumn {
        -- rdbms
        column : Column;
    }

    class NonLeafAttribute extends FromAttributeOwner, FromAttribute {
        leafs := fromAttributes.leafs;
    }

    class AttributeToColumn extends FromAttribute, ToColumn {
        type : PrimitiveToName;
    }

    map attributes in umlRdbms refines flattening {
        check enforce uml (c:Class) {
            realize a:Attribute|
            default a.owner := c;
            getAllAttributes(c)->includes(a);
        }
        where (fao:FromAttributeOwner) {
            fa : FromAttribute|
            fa.attribute := a;
            fa.owner := fao;
        }
        map {
            where {
                fa.kind := a.kind;
                a.kind := fa.kind;
            }
        }
    }

    map classAttributes in umlRdbms refines attributes {
        where (fao:ClassToTable| fao.umlClass=c) {}
        map {
            where {
                fa.name := a.name;
                a.name := fa.name;
            }
        }
    }

    map primitiveAttribute in umlRdbms refines attributes {
        check enforce uml (t:PrimitiveDataType) {
            a.type := t;
        
        where (p2n:PrimitiveToName|p2n.primitive=t) {
            realize fa:AttributeToColumn|
            fa.type := p2n;
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        map {
            where {
                fa.leafs := Set(AttributeToColumn) {fa};
            }
        }
    }

    map complexAttributeAttributes in umlRdbms refines attributes {
        check uml (ca:Attribute|ca.type=c) {}
        where (fao:NonLeafAttribute | fao.attribute=ca) {}
        map {
            where {
                fa.name := fao.name+'_'+a.name;
            }
        }
    }

    map complexAttribute in umlRdbms refines attributes {
        check uml (t:Class) {
            a.type = t;
        }
        where () {
            realize fa:NonLeafAttribute
        }
        map {
            where {
                fa.leafs := fromAttributes.leafs;
            
        }
    }

    map classPrimitiveAttributes in umlRdbms refines classAttributes, primitiveAttribute {}

    map classComplexAttributes in umlRdbms refines classAttributes, complexAttribute {}

    map complexAttributePrimitiveAttributes in umlRdbms refines complexAttributeAttributes, 
primitiveAttribute {}

    map complexAttributeComplexAttributes in umlRdbms refines complexAttributeAttributes, 
complexAttribute {}

    -- column mapping
    map attributeColumns in umlRdbms {
        check enforce rdbms (t:Table) {
            realize c:Column|
            c.owner := t;
            c.key->size()=0;
            c.foreignKey->size()=0;
        }
        where (c2t:ClassToTable| c2t.table=t;) {
            realize a2c:AttributeToColumn|
            a2c.column := c;
            c2t.fromAttribute.leafs->include(a2c);
            default a2c.owner := c2t;
        }
        map {
            check enforce rdbms (ct:String) {
                c.type := ct;
            }
            where (p2n:PrimitiveToName) {
                a2c.type := p2n;
                p2n.typeName := ct;
            }
        }
        map {
            where () {
                c.name := a2c.name;
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                a2c.name := c.name;
            }
        }
        map {
            where () {
                c.kind := a2c.kind;
                a2c.kind := c.kind;
            }
        }
    }

} -- end of module UmlRdbmsTransformation
MOF2 Query/View/Transformation (QVT), v1.2 233



234                 MOF2 Query/View/Transformation (QVT), v1.2



Annex B:  Semantics of Relations

(normative)
To simplify the description of semantics, we can view a relation as having the following abstract structure.

Relation R 
{ 
   Var <R_variable_set>  // declaration of variables used in the relation

   [checkonly | enforce] Domain:<typed_model_1>  
<domain_1_variable_set> // subset of <R_variable_set> 

   { 
      <domain_1_pattern> [<domain_1_condition>] 
   } 
   ... 
   [checkonly | enforce] Domain:< typed_model_n>  

<domain_n_variable_set> // subset of <R_variable_set> 
   { 
      <domain_n_pattern> [<domain_n_condition>] 
   }  // n >= 2

   [when <when_variable_set> <when_condition>] 
   [where <where_condition>] 
}

With the following properties:

• < R_variable_set > is the set of variables occurring in the relation.

• <domain_k_variable_set> is the set of variables occurring in domain k. It is a subset of <R_variable_set>, for all k = 
1..n.

• <when_variable_set> is the set of variables occurring in the when clause. It is a subset of <R_variable_set>.

• The intersection of domain variable sets need not be null, i.e., a variable may occur in multiple domains.

• The intersection of a domain variable set and when variable set need not be null.

• The term <domain_k_pattern> refers to the set of constraints implied by the pattern of domain k. Please recall that a 
pattern can be viewed as a set of variables, and a set of constraints that model elements bound to those variables must 
satisfy in order to qualify as a valid binding of the pattern. Please refer to Clause 7.10.3 for a detailed discussion on 
pattern matching semantics. Given below is an example pattern and the constraint implied by it.

Pattern:

c:Class {kind=’Persistent’, name=cn, attribute=a:Attribute {}}

Implied constraint:

c.kind = ‘Persistent’ and c.name = cn and c.attribute->includes(a)

B.1 Checking Semantics
Checking of relation R in the direction of <typed_model_k> evaluates to TRUE if the following predicate calculus 
formula evaluates to TRUE.

We use the following syntactic convention in the formulae:

|<variable_set>| - a binding of variables of the set <variable_set>
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ForAll |<variable_set>| - for all bindings of variables of the set 

Exists |<variable_set>| - there exists a binding of variables of the set

<exclusive_domain_k_variable_set>  - variables occurring exclusively in domain k, i.e., those variables of 
domain k that do not occur in any other domain or the when clause. It is a subset of <domain_k_variable_set>. 

Check(R, <typed_model_k>) 
= 
ForAll |<when_variable_set>| 
( 
   <when_condition> 
   implies 
   ( 
      ForAll |(<R_variable_set> minus (<when_variable_set> union  
        <exclusive_domain_k_variable_set>))| 
      ( 
         ( 
            (<domain_1_pattern> and <domain_1_condition>) 
            and 
            .... 
            (<domain_k-1_pattern> and <domain_k-1_condition>) 
            and 
            (<domain_k+1_pattern> and <domain_k+1_condition>) 
            and 
            .... 
            (<domain_n_pattern> and <domain_n_condition>) 
         ) 
         implies 
         ( 
            Exists |<exclusive_domain_k_variable_set>| 
            ( 
               (<domain_k_pattern> and <domain_k_condition>) 
               and 
               <where_condition> 
            )  // Exists 
         )  // implies 
      )  // ForAll 
   ) // implies 
) // ForAll

B.2 Enforcement Semantics
Enforcement of a relation with model k as the target model has the following semantics.

• For each valid binding of variables of the guard (when) clause and variables of domains other than the target domain k, 
that satisfy the guard condition and source domain patterns and conditions, if there does not exist a valid binding of the 
remaining unbound variables of domain k that satisfies domain k’s pattern and where condition, then create objects (or 
select and modify if they already exist) and assign properties as specified in domain k pattern. A more formal definition 
is given below.

• Also, for each valid binding of variables of domain k pattern that satisfies domain k condition, if there does not exist a 
valid binding of variables of the guard clause and source domains that satisfies the guard condition, source domain 
patterns and where condition, and at least one of the source domains is marked ‘checkonly’ (or ‘enforce,’ which entails 
check), then delete the objects bound to the variables of domain k when the following condition is satisfied: delete an 
object only if it is not required to exist by any other valid binding of the source domains as per the enforcement 
semantics (i.e., avoid delete followed by an immediate create). A more formal definition is given below.
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Enforce(R, <typed_model_k>) 
= 
Create(R, < typed_model_k >) 
and      // and is deliberate! 
Delete(R, < typed_model_k >)

Create(R, < typed_model_k >) 
= 
ForAll |<when_variable_set>| 
( 
   <when_condition> 
   implies 
   ( 

 ForAll |(<R_variable_set> minus (<when_variable_set> union  
                                                                             
<exclusive_domain_k_variable_set>))| 
    ( 
       ( 
          (<domain_1_pattern> and <domain_1_condition>) 
          and 
          .... 
          (<domain_k-1_pattern> and <domain_k-1_condition>) 
          and 
          (<domain_k+1_pattern> and <domain_k+1_condition>) 
          and 
          .... 
          (<domain_n_pattern> and <domain_n_condition>) 
       ) 
       implies 
       ( 

       not Exists |<exclusive_domain_k_variable_set>| 
          ( 
             (<domain_k_pattern> and <domain_k_condition>) 
             and 
             <where_condition> 
          ) // Exists 
          implies 
          ( 
             // assert that there are no remaining free vars other than the object  
             // node vars of the domain pattern. pl see the clause 'Restrictions on  
             // expressions used in the relational language' for a more detailed  
             // discussion. 
             assert( 
               (<exclusive_domain_k_variable_set> minus  
                  getObjectVars(domain_k_pattern)) 
                = 
                NULL 
             ) 
             and 
             ForAll objVar in (getObjectVars(domain_k_pattern)) 
             ( 
                createOrUpdate(objVar.boundTemplate, objVar,  
                        |(<R_variable_set> minus  
                          <exclusive_domain_k_variable_set>)|) 
             ) 

   and 
          <where_condition> // must hold after updating the target model 

           ) // implies 
         ) // implies 
      ) // ForAll 
   ) // implies 
) // ForAll

CREATEORUPDATE is a predicate that takes as parameters an object template expression, an object variable to be 
bound, and a variable context as inputs. It evaluates to TRUE when it can bind an object to the object variable that 
conforms to the object template. The object to be bound may either be selected from the model or created afresh, and 
assigned properties as specified in the object template. Whether an object is selected from the model or created afresh 
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depends on whether the model already contains an object that matches the key property values, if any, specified in the 
object template. It evaluates to FALSE when the template expression results in an assignment of a value to a property that 
clashes with another value set for the same property by another rule in the transformation execution, indicating an 
inconsistent specification. For primitive types, the values clash when they are different. An object assignment to a link of 
multiplicity “one” clashes if the object being assigned is different from the one that already exists.

createOrUpdate(objectTemplate, unboundObjectVar, boundVarableContext): Boolean

{

1. If the object template contains identifying properties corresponding to at least one of the keys of the class of the 
object, then try to locate such an object in the model; if there is no such object, then create a new object.

2. Bind unboundObjectVar to the object found or created in step 1.

3. Assign properties of the object as specified by the property template items of the object template.

4. If a property had a different value set by another rule in the same transformation execution, then return FALSE.

5. Return TRUE.

}

Delete(R, <direction_k>) 
= 
( 
not exists od in R.domain ((od.direction != <direction_k>) and 
od.isChecked = TRUE) 
) 
or 
ForAll |<domain_k_variable_set>| 
( 
   (<domain_k_pattern> and <domain_k_condition>) 
   implies 
   ( 
      not Exists |(<R_variable_set> minus <domain_k_variable_set>)| 
      ( 
         <when_condition> 
         and 
         (<domain_1_pattern> and <domain_1_condition>) 
         and 
         .... 
         (<domain_k-1_pattern> and <domain_k-1_condition>) 
         and 
         (<domain_k+1_pattern> and <domain_k+1_condition>) 
         and 
         .... 
         (<domain_n_pattern> and <domain_n_condition>) 
         and 
         <where_condition> 
      ) // not Exists 
      implies 
      ( 
         ForAll objVar in makeSet(<domain_k_variable_set>) 
         ( 
            // delete the object only if it is not required to exist as per enforcement  
            // semantics for any of the valid bindings of the opposite domains 
            not Exists |<domain_k_variable_set>|   // new scope 
            ( 
               (<domain_k_pattern> and <domain_k_condition>) 
               and 
               Exists |(<R_variable_set> minus <domain_k_variable_set>)| 
               ( 
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                  <when_condition> 
                  and 
                  (<domain_1_pattern> and <domain_1_condition>) 
                  and 
                  .... 
                  (<domain_k-1_pattern> and <domain_k-1_condition>) 
                  and 
                  (<domain_k+1_pattern> and <domain_k+1_condition>) 
                  and 
                  .... 
                  (<domain_n_pattern> and <domain_n_condition>) 
                  and 
                  <where_condition> 
               ) // Exists 
               and 
               belongsTo(objVar, makeSet(<domain_k_variable_set>)) 
            ) // not Exists 
            implies 
               delete(objVar) 
         ) // ForAll 
      ) // implies 
   ) // implies 
) // ForAll 
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