
Resource Access Decision Facility
Specification

April 2001
Version 1.0

ee, paid
e mod-

nged the
 herein

y
ch a
 of
e users

tails an
ocument

ted
ages,

 above
 the sole
arks or
 is pro-

used in
ation

orth in

G IDL,
Inc.
Copyright 1999, 2AB, INC.
Copyright 1999, Baptist Health Systems of South Florida
Copyright 1999, CareFlow/Net, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-fr
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of th
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infri
copyright in the included material of any such copyright holder by reason of having used the specification set forth
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for whi
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospectiv
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document de
Object Management Group specification in accordance with the license and notices set forth on this page. This d
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies lis
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover dam
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, tradem
other special designations to indicate compliance with these materials. This document contains information which
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or inform
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set f
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OM
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group,
X/Open is a trademark of X/Open Company Ltd.

readers
 at
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form
http://www.omg.org/library/issuerpt.htm.

Contents
iii

iii

iii

iv

v

1-1

1-1

1-3
-3

-5
-7

-8

-1

2-2

2-3

-3

2-4
-6

2-7
2-8

-12

-12
1. Preface .

1.1 About the Object Management Group

1.1.1 What is CORBA? .

1.2 Associated OMG Documents .

1.3 Acknowledgments .

2. Overview .

2.1 Introduction .

2.2 Reference Models. .
2.2.1 Access Decision Model 1

2.2.2 Administrative Model . 1
2.2.3 Information Model . 1

2.2.4 Computational Model 1

3. DfResourceAccessDecision Module 2

3.1 OMG IDL. .

3.2 Types .

3.2.1 Basic Types & Types used from the CORBA
Security Service . 2

3.2.2 Types that identify and manage information
 about secured resources

3.2.3 Types Associated with Evaluating Access Policy 2

3.2.4 Types Used to Request Access Decisions
3.2.5 Exceptions .

3.3 PolicyNameListIterator Interface . 2

3.4 AccessDecision Interface . 2
Resource Access Decision, v1.0 April 2001 i

Contents

-14

-15

-16

-18

-19

20

21

-25

-31

2-34

-1

1

3.5 DynamicAttributeService Interface 2

3.6 PolicyEvaluatorLocator Interface. 2

3.7 DecisionCombinator Interface . 2

3.8 PolicyEvaluator Interface . 2

3.9 AccessDecisionAdmin Interface . 2

3.10 PolicyEvaluatorLocatorBasicAdmin Interface 2-

3.11 PolicyEvaluatorLocatorNameAdmin Interface. 2-

3.12 PolicyEvaluatorLocatorPatternAdmin Interface. 2

3.13 PolicyEvaluatorAdmin Interface . 2

3.14 Conformance Classes .

 Appendix A - OMG IDL . A-1

 Appendix B - Use Case Example . B

 Appendix C - Resource Names for PIDS C-
ii Resource Access Decision, v1.0 April 2001

Preface
rted
 and
nted

ide a
,
ous
p a

ed.

ted,
ey
bject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
Resource Access Decision, v1.0 April 2001 iii

n

 are
ides
 are

aces

d

 so

d,
dards

 (The

mat.
ons,
Associated OMG Documents

In addition to the CORBA Transportation specifications, the CORBA documentatio
set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBAservices: Common Object Services Specification, a collection of OMG’s
Object Services specifications.

• CORBAfacilities: Common Facilities Specification, a collection of OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interf
between related services and functions.

• CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services an
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:
iv Resource Access Decision, v1.0 April 2001

ch
OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

2AB, INC.

Baptist Health Systems of South Florida

CareFlow/Net, Inc.

Concept Five

DASCOM, Inc.

IBM

Inprise

Los Alamos National Laboratory

National Institute of Standards (NIST)

National Security Agency (NSA)

Philips Medical Systems

The submitters would like to thank the following individuals for their active
participation during the development of the specificaiton and detailed review of ea
version of the specification.

John Barkley - NIST

Bob Blakley - IBM
Resource Access Decision, v1.0 Acknowledgments April 2001 v

vi Resource Access Decision, v1.0 April 2001

Overview 1
The

s. It
ed to

nts,

t is
l, an
at
Contents

This chapter contains the following topics.

1.1 Introduction

The Resource Access Decision (RAD) Facility is a mechanism for obtaining
authorization decisions and administrating access decision policies. It enables a
common way for an application to request and receive an authorization decision.
facility is intended to be used by security-aware applications.

This specification provides access decision functionality not supported by
CORBAsecurity, which is required in healthcare and other application environment
is intended to be implementable using CORBAsecurity as a base; it is also intend
be implementable in ORB environments that do not provide CORBAsecurity. For
detailed information about the healthcare environment’s access control requireme
refer to the RAD RFP (OMG document number corbamed/98-02-23).

In the design, authorization logic is encapsulated within an authorization facility tha
external to the application. In order to perform an application-level access contro
application requests an authorization decision from such a facility and enforces th
decision. A simplified schema of application flow is depicted in Figure 1-1.

Topic Page

“Introduction” 1-1

“Reference Models” 1-3
Resource Access Decision, v1.0 April 2001 1-1

1

et

(s)

ion is

Figure 1-1 Application flow schema

The sequence of the interaction, illustrated by Figure 1-1, is as follows:

1. An application client invokes an operation of the interface provided by the targ
object. The object request broker transfers this request to the target object and
causes invocation of the appropriate method in the target object.

2. While processing the request, the target object requests authorization decision
from the Access Decision object (ADO) by invoking the access_allowed()
method of the ADO.

3. The Access Decision object consults other objects that are internal to the RAD
(described in this specification) to make an access decision. The access decis
returned to the Target Object (ADO client) as a boolean.

4. The target object, after receiving an authorization decision, is responsible for
enforcing the decision. If access was granted by the ADO, the target object
performs the requested operation and returns the results. If access to secured
resources was denied, the target object may return partial results or raise an
exception to the Client.

 1. Appl icat ion Request .

Target
Object

(ADO cl ient)
AccessDecis ionClient

 2. Authorizat ion request .

 3. Reply to authorizait ion request . 4. Reply to application request .

Scope is Application Scope is HRAC

CORBA Object Request Broker
1-2 Resource Access Decision, v1.0 April 2001

1

tion

ss

a
D

in
odels
e

ents
is is
f the
the

rmed
in the

es
thin

A detailed description of the object model and design of the ADO (and its interac
with other RAD objects) can be found in Section 2.3, “PolicyNameListIterator
Interface,” on page 2-12.

1.2 Reference Models

Two views of the RAD are presented in the following models. The first is the acce
decision model. This represents the relationship of objects involved in making an
access decision. The second view is the Administrative view and represents how
RAD is configured. Administration of Access Policy is beyond the scope of the RA
and is clearly indicated as such on this model diagram.

The Resource Access Decision facility reference model defines a framework with
which a wide variety of access control polices may be supported. The reference m
below clearly indicate the scope of this specification by heavy dotted lines. In som
cases there are types that occur within the scope of this specification that repres
concepts and/or services that lie beyond the scope of the RAD. An example of th
the concept of a “secured resource,” which is only represented within the scope o
RAD by a ResourceName . Where this occurs these external concepts appear in
model, but outside the dotted line to aid the reader in an understanding of the
relationship between the RAD and the external concepts and/or services. The
appearance of objects outside the scope of the specification is conceptual and is
presented only to aid in understanding the types that occur within the RAD.

RAD types that represent or encapsulate external concepts and/or services:

• ResourceName : A “secured resource” is represented within the RAD by a
ResourceName that is a structure containing an AuthorityId for the namespace
and a sequence of name/value pairs.

• Operation : Secured resources have one or more operations that may be perfo
on them (such as create, get, set, use). These operations are represented with
RAD as strings.

• PolicyName : “Policy” (the rules used for controlling access to secured resourc
and their operations) is beyond the scope of the RAD, but when referenced wi
the RAD, is identified by a PolicyName that is a string.

• DynamicAttributeService : The DynamicAttributeService may consult an
external AttributeEvaluator .

1.2.1 Access Decision Model

An Access Decision is requested by a client by invoking the access_allowed()
method of the AccessDecision object (ADO) passing a ResourceName ,
Operation, and SecAttributes . The ADO consults a DynamicAttributeService to
obtain an updated list of SecAttributes that include any dynamic attributes currently
applicable for this access decision. The DynamicAttributeService may consult
externally provided dynamic attribute evaluators as part of its implementation. The
AccessDecision object also consults the PolicyEvaluatorLocator to obtain object
references for the PolicyEvaluator (s) and the DecisionCombinator that are
RAD, v1.0 Reference Models April 2001 1-3

1

le

t is
required for an access decision. The AccessDecision object consults the
DecisionCombinator that consults with any PolicyEvaluators responsible for
interpreting access policy that controls access to the ResourceName/operation .
The DecisionCombinator encapsulates policy combination logic and is responsib
for understanding the policy that controls how a series of results from
PolicyEvaluators are combined including any precedence rules that may apply. I
the response from the DecisionCombinator that is returned to the client. This
combinator is responsible for taking the results of the PolicyEvaluators evaluate()
method and making a final access decision.

Figure 1-2 Access Decision Model

AccessDecision

DynamicAttribute
Service

Decision
Combinator

PolicyEvaluator

PolicyEvaluator
Locator

1

1..*

1

1..*

1..*

1..*

1..*

Policy

SecuredResource

ResourceName

PolicyName

consults

consults

consults

represented by

represented by

0..1

defines
access policy

has
Operation

1..*

1

0..1

0..1

0..1

1

1

1

Scope of the HRAC
S

1

locates
evaluates

locates

1

1

consults

1

1

consults
1-4 Resource Access Decision, v1.0 April 2001

1

hin

vern
. This

c and
the

e

any

y to
. The
 of
is is
d, a
1.2.2 Administrative Model

The administrative model of RAD is designed to allow replaceable RAD objects wit
an implementation and to allow RAD clients to apply previously defined policy to
resources.

The administrative model is not intended to provide the Administrative interfaces
necessary to define access policy. The definition of access policy (the rules that go
access to secured resources/operations) is outside the scope of this specification
Administrative model clearly indicates this by placing Policy administration outside
the dotted line that delineates the scope of the RAD specification.

The PolicyEvaluatorLocatorAdmin interface is used to associate
PolicyEvaluators and DecisionCombinators with a ResourceName . Multiple
PolicyEvaluators may be associated with a single ResourceName . These
evaluators will all be consulted during access decisions. There is only one
DecisionCombinator provided for a ResourceName . PolicyEvaluators have an
endless series of options for implementation. For this reason, the interface is publi
evaluators may be “plugged-in” to a RAD framework by vendors and/or users. In
same sense, there are many possible policies for combining policy decisions. Som
secured resources should not be accessible unless all the PolicyEvaluators return
ACCESS_DECISION_ALLOWED. Other secured resources may be accessible if
one of the PolicyEvaluators allow access. Defining an interface for the
DecisionCombinators allows custom combinators to be configured for a secured
resource. It is possible to assign a default DecisionCombinator .

The PolicyEvaluatorAdmin interface is used to apply an existing named access
policy to a secured resource. An application that wished to dynamically apply polic
newly created resources would be required to specify the names of those policies
policy would be configured by an administrator using the administrative interfaces
the underlying access policy system and the required name associated with it (th
outside the scope of the RAD admin interfaces). Once this had been accomplishe
RAD client could apply this named policy using the PolicyName to a
ResourceName . The PolicyEvaluatorAdmin also allows default policy to be
assigned “by name” and a list of existing PolicyNames can be retrieved via the
interface.
RAD, v1.0 Reference Models April 2001 1-5

1

Figure 1-3 Administrative Model

PolicyEvaluator
Admin :

PolicyEvaluator

PolicyEvaluator
LocatorAdmin :
PolicyLocator

HRAC client

Policy

SecuredResource

ResourceName

PolicyName

0..*

represented by

assigns
access policy

has

Operation

1..*

1

0..1

1

1

1

Scope of the HRAC Service

Administrator

applies
policy

associates

Decision
Combinator

PolicyEvaluator

associates

associates

represented
by

administers

0..1

0..1

1

1 1

1..*

0..*

1

administers

applies

policy
1-6 Resource Access Decision, v1.0 April 2001

1

1.2.3 Information Model

Figure 1-4 Information Model

The information model of RAD is designed to be simple to implement and to use.

NO_ACCESS_POLICYPolicyNamePolicyNameList
1..*0..1 1..*0..1

DecisionResult

ACCESS_DECISION_ALLOWED

ACCESS_DECISION_NOT_ALLOWED

ACCESS_DECISION_UNKNOWN

PolicyEvaluator

<<IDL Interface>>

NamedPolicyEv aluator

evaluator_name [0..1] : string

1..1

0..*

+policy _evaluator

1..1

0..*

PolicyEvaluatorList

0..*

0..1

0..*

0..1

PolicyDecisionEvaluators

1..1

0..1

+policy _ev aluator_list

1..1

0..1

DecisionCombinator

<<IDL Interface>>

0..*

1..1

0..*

+decision_combinator

1..1

ResourceNamePattern

BooleanList boolean

0..1 0..*0..1 0..*

AttributeList Security ::AttributeList

ResourceNameComponent

name_string : string

value_string[0..1] : string

ResourceNamingAuthority ResourceNameComponentList

0..1 1..*0..1 1..*

AccessDef initionList

ResourceName

0..1

1..1

0..1

+resource_name_authority

1..1

0..1

1..1

0..1

+resource_name_component_list

1..1

OperationList

AccessDef inition

0..* 0..10..* 0..1

0..1

1..1

0..1

+resource_name

1..1

Operation

0..10..* 0..10..*

0..1

1..1

0..1

+operation_name

1..1

<<instance>>

<<typedef >>

<<typedef >>
RAD, v1.0 Reference Models April 2001 1-7

1

nce
1.2.4 Computational Model

Figure 1-5 Computational Model

The computational model of RAD consists of two interface groups:

• Runtime interfaces: AccessDecision , DynamicAttributeService ,
PolicyEvaluator , PolicyEvaluatorLocator , and DecisionCombinator .

• Administrative interfaces: AccessDecisionAdmin , PolicyEvaluatorAdmin , and
PolicyEvaluatorLocatorBasicAdmin , PolicyEvaluatorLocatorNameAdmin ,
PolicyEvaluatorLocatorPatternAdmin .

Among runtime interfaces, AccessDecision , PolicyEvaluatorLocator , and
DynamicAttributeService are singletons (i.e., one instance of each interface is
available in every implementation of RAD). On the other hand more than one insta
of DecisionCombinator and PolicyEvaluator may be available.

Deci si on Co m bi n a to r

com b i ne _dec isi ons()

<< IDL In te rfa ce> >

P o l i cyE va l ua to rAd m i n

se t_ po l i ci es()

ad d_ po l i ci es()

l ist_ po l i ci es()

se t_ de fa u l t_po l icy ()

de l e te_ po l i ci es()

<< IDL In te rfa ce> >

P o l i cyEv a l ua to r

eva lua te ()

<< IDL In te r fa ce> >

1

1 ..*

+p e_ ad m i n

1

1 ..*

A cce ssDe ci si o n

access_ a l l owed ()

m u lt i p l e_ access_a l lo wed()

<< IDL In te rfa ce> >

D yn ami cA ttr ib u t e Se rv ic e

ge t_dy na m ic _a tt rib u t e s()

<< ID L Int e rfa ce> >

P o l i cyE va l ua to rLo ca to rNam eA dm i n

se t_ eva l ua to rs()

ad d_ eva l ua to rs()

de l e te_ eva l uato rs()

ge t_e va l u a to rs()

se t _ com b i na to r()

de l e te _ com b i na to r ()

ge t _co m b i n a to r()

<< IDL In te rfa ce> >

AccessDec isi on A dm i n

ge t_p ol ic y_e val u a to r_l o ca to r()

se t_ po l ic y_eval ua to r_l oca to r()

ge t _d yna m i c_a ttri bu te _se rv ice ()

se t _ dyn am i c_ a ttri b u te_serv ice ()

<< IDL In te rfa ce> >

1

1 ..*

1

1 ..*

1

1

1

+d yn am i c_ a ttri bu te _se rv ice

1

P o l i cyE va l ua to rLo ca to rB asi cA dm in

se t_ de fa u l t_eva l ua to rs()

ge t_de fau lt_com b in a to r()

se t_ de fa u l t_co m b i na to r()

ge t_de fau lt_e va lu a to rs()

<< In te rface >>

P o l i cyE va l ua to rLo ca to r

ge t_po l icy_d eci si on _e va l ua to rs()

<< In te rface >>

0 ..1

1

+ na me _ ad m in

0 ..1

1

1 11

+p o l i cy _ eva lu a t or_ lo c ato r

1

1

0 ..*

+b asi c_ adm in

1

0 ..*

P o l i cyE va l ua to rLo ca to rP a tte rnA d m in

se t_ eva lu a to rs_ by_ pa tte rn ()

ad d_ eva l ua to rs_ by _pa t te r n()

de l e te_ eva l ua to rs_ by_ pa t te rn ()

ge t_eva l ua to rs_by_p a tte rn ()

se t _ com b i nato r_ by _pa t te r n()

de l e te_ com bi na to r_by _p a tte r n ()

ge t _co m b i n ato r_b y _p a t te r n()

r eg is te r _ re so u rc e_ nam e_ pat te r n ()

un r egi ste r _ re so u rc e_n am e_p a t te r n()

<< IDL In te rfa ce> >

1

0 ..1

1

+p a tte rn_ ad m i n

0 ..1
1-8 Resource Access Decision, v1.0 April 2001

DfResourceAccessDecision Module 2
Contents

This chapter contains the following topics.

Topic Page

“OMG IDL” 2-2

“Types” 2-3

“PolicyNameListIterator Interface” 2-12

“AccessDecision Interface” 2-12

“DynamicAttributeService Interface” 2-14

“PolicyEvaluatorLocator Interface” 2-15

“DecisionCombinator Interface” 2-16

“PolicyEvaluator Interface” 2-18

“AccessDecisionAdmin Interface” 2-19

“PolicyEvaluatorLocatorBasicAdmin Interface” 2-20

“PolicyEvaluatorLocatorNameAdmin Interface” 2-21

“PolicyEvaluatorLocatorPatternAdmin Interface” 2-25

“PolicyEvaluatorAdmin Interface” 2-31

“Conformance Classes” 2-34
Resource Access Decision, v1.0 April 2001 2-1

2

2.1 OMG IDL

//File: DfResourceAccessDecision.idl
//

#ifndef _DF_RESOURCE_ACCESS_DECISION_IDL_
#define _DF_RESOURCE_ACCESS_DECISION_IDL_

#include "Security.idl"

#pragma prefix "omg.org"

module DfResourceAccessDecision {

interface PolicyNameListIterator {
...
};
interface AccessDecision {
...
};

interface DynamicAttributeService {
...
};

interface PolicyEvaluatorLocator {
...
};

interface DecisionCombinator {
...
};

interface PolicyEvaluator {
...
};

interface AccessDecisionAdmin {
...
};

interface PolicyEvaluatorLocatorBasicAdmin {
...
};

interface PolicyEvaluatorLocatorNameAdmin {
...
};

interface PolicyEvaluatorLocatorPatternAdmin {
2-2 Resource Access Decision, v1.0 April 2001

2

ing
use.

nd
NS

sted.
...
};

interface PolicyEvaluatorAdmin {
...
};

};

#endif // _DF_RESOURCE_ACCESS_DECISION _IDL_

The DfResourceAccessDecision contains four interfaces defined below and has
type dependencies on the CORBA Security Service.

#include <Security.idl>

The types declared within the Security service and used by the RAD are:

Security::AttributeList

These types are used for consistency with CORBASec and have the same mean
when used in RAD interfaces. They are typedef'd in this specification for ease of

#pragma prefix "omg.org"

In order to prevent name pollution and name clashing of IDL types this module (a
all modules defined in this specification) uses the pragma prefix that is the omg D
name.

2.2 Types

There are a number of structured types used widely throughout the
DfResourceAccessDecision Model. These types are described in this section:

2.2.1 Basic Types & Types used from the CORBA Security Service

//***
// Basic Types
//***

typedef sequence<boolean> BooleanList;

typedef Security::AttributeList AttributeList;

BooleanList

A sequence of boolean used as a return value when multiple decisions are reque
This type is used as a return value in the multiple_access_allowed() method of the
AccessDecision interface.
RAD, v1.0 Types April 2001 2-3

2

nt

rces
AttributeList

The Security::AttributeList is defined as follows in CORBA Security 1.2 (ptc/98-
01-02). The AttributeList is provided as an input parameter by the "application" clie
when a request for an access decision is made. The AttributeList used for access
decisions may be modified to include dynamic attributes by use of the
get_dynamic_attributes() method of the DynamicAttributeService interface. As
a convenience to the reader, the structure of a Security::AttributeList is replicated
below.

typedef sequence<octet> Opaque;

// security attributes
 typedef unsigned long SecurityAttributeType;

struct ExtensibleFamily {
 unsigned short family_definer;
 unsigned short family;
};
struct AttributeType {
 ExtensibleFamily attribute_family;
 SecurityAttributeType attribute_type;
};

struct SecAttribute {
 AttributeType attribute_type;
 Opaque defining_authority;
 Opaque value;
 // the value of this attribute can be
 // interpreted only with knowledge of type
};

typedef sequence <SecAttribute> AttributeList;

2.2.2 Types that identify and manage information about secured resou

//***
// Types that identify a secured resource
//***

struct ResourceNameComponent {
string name_string;
string value_string;

};
typedef sequence<ResourceNameComponent> ResourceNameComponentList;

typedef string ResourceNamingAuthority;
2-4 Resource Access Decision, v1.0 April 2001

2

.

s

ll
struct ResourceName {
 ResourceNamingAuthorityresource_naming_authority;
 ResourceNameComponentListresource_name_component_list;
};

typedef ResourceName ResourceNamePattern;

typedef sequence<string> OperationList;

ResourceNameComponent

A datum element of this type is invalid if the name_string member has empty value

ResourceNameComponentList

A datum element of type ResourceNameComponentList is invalid if it is empty or
any of its sub-elements is invalid.

ResourceNamingAuthority

A ResourceNamingAuthority is used to identify an authority whose defined the
semantics of the naming scheme used in the components of the corresponding
resource_name_component_list data member.

ResourceName

A ResourceName is used to identify a secured resource. A ResourceName
contains a unique identifier for the naming authority and a sequence of
ResourceNameComponents . Each ResourceNameComponent includes a name
and value string. This combination of naming authority and name/value pairs allow
for categorization and grouping of resources if desired.

A datum of type ResourceName is invalid if either resource_name_authority or
resource_name_component_list is invalid.

ResourceNamePattern

A ResourceNamePattern is used in Administrative interfaces to allow generalized
regular expressions to be provided in the value_string of a
ResourceNameComponent for the purpose of administering groups of secured
resources. The regular expression syntax is defined by 9945-2:1993 (ISO/IEC)
Information Technology-Portable Operating System Interface (POSIX)-Part2: She
and Utilities IEEE/ANSI Std 1003.2-1992 & IEEE/ANSI 1003.2a-1992 Section 2.8,
pages 77-91, “Regular Expression Notation.”

A datum of type ResourceNamePattern is invalid if either
resource_name_authority or resource_name_component_list is invalid.
RAD, v1.0 Types April 2001 2-5

2

 a

.

by

e
OperationList

An OperationList is used to identify a list of operations that may be performed on
secured resource.

2.2.3 Types Associated with Evaluating Access Policy

//**
// Types associated with evaluating Access Policy
//**

typedef string PolicyName;
typedef sequence<PolicyName> PolicyNameList;

const PolicyName NO_ACCESS_POLICY = "NO_ACCESS_POLICY";

struct NamedPolicyEvaluator {
string evaluator_name;
PolicyEvaluator policy_evaluator;

};
typedef sequence<NamedPolicyEvaluator> PolicyEvaluatorList;

struct PolicyDecisionEvaluators {
PolicyEvaluatorList policy_evaluator_list;
DecisionCombinator decision_combinator;

};

PolicyName

A PolicyName is a string used to identify an access policy for a secured resource
This type is only used in the PolicyEvaluatorAdmin interface. It is used as an input
parameter to the replace_policy() , add_policy() , and set_default_policy()
methods of the PolicyEvaluatorAdmin interface. PolicyName s are assigned by the
administrative interface of the policy engine and cannot be modified or controlled
the RAD. There is one standard PolicyName of “NO_ACCESS_POLICY.” See th
PolicyEvaluatorAdmin interface for usage.

A datum element of this type is invalid if it is empty.

PolicyNameList

A PolicyNameList is a sequence of PolicyName s. It is returned from the
list_policy() method of the PolicyEvaluatorAdmin interface.

A datum element of this type is invalid if it is empty or any of its sub-elements is
invalid.
2-6 Resource Access Decision, v1.0 April 2001

2

r

ulted
NamedPolicyEvaluator

A NamedPolicyEvaluator is a structure that contains the name of the Policy
Evaluator and the object reference for the policy evaluator. The evaluator_name will
be null in implementations that choose not to name evaluators. Providing named
evaluators allows an implementation to apply precedence logic based on evaluato
names when making an access decision. A datum element of type
NamedPolicyEvaluator is invalid if its data member “policy_evaluator ” has value
nil.PolicyEvaluatorList .

PolicyEvaluatorList

A PolicyEvaluatorList is a sequence of NamedPolicyEvaluator . The
administrative interfaces of PolicyEvaluatorLocator interface allow the association
of a list of NamedPolicyEvaluator (s) with a ResourceName . This type is returned
from get_policy_decision_evaluators() and set_default_evaluators() and is
used as an input parameter in the set_evaluators , add_evaluators() ,
delete_evaluators() , set_evaluators_by_pattern() ,
add_evaluators_by_pattern() , delete_evaluators_by_pattern() , and
set_default_evaluators() operations. The PolicyEvaluatorList returned from the
PolicyEvaluatorLocator is passed to the DecisionCombinator returned from the
PolicyEvaluatorLocator . A datum element of type PolicyEvaluatorList is invalid
if it is empty or any of its elements is invalid.

PolicyDecisionEvaluators

The PolicyDecisionEvaluators struct contains a PolicyEvaluatorList and the
DecisionCombinator . This is the type returned from the
get_policy_decision_evaluators() method of the PolicyEvaluatorLocator
interface. This structure contains the references of all the objects that may be cons
during an access decision.

2.2.4 Types Used to Request Access Decisions

//**
// Types used to request an Access Decision
//**

struct AccessDefinition {
 ResourceName resource_name;
 string operation;
};
typedef sequence<AccessDefinition> AccessDefinitionList;

enum DecisionResult {ACCESS_DECISION_ALLOWED,
 ACCESS_DECISION_NOT_ALLOWED,
 ACCESS_DECISION_UNKNOWN

};
RAD, v1.0 Types April 2001 2-7

2

,

D.

,

his is
AccessDefinition

The AccessDefinition struct is provided to allow multiple access definitions to be
defined. It contains the ResourceName and the operation name for the secured
resource access being requested. AccessDefinition is used as an input parameter to
the access_allowed() method of the AccessDecision interface and the evaluate()
method of the PolicyEvaluator interface.

A datum element of this type is invalid if either of its members is invalid.

AccessDefinitionList

AccessDefinitionList is the type used to request multiple access decisions in a
single operation. It is used as an input parameter to the multiple_access_allowed()
method of the AccessDecision interface and the multiple_evaluate() method of
the PolicyEvaluator interface.

DecisionResult

DecisionResult is an enum with three possible values. The values are:

• ACCESS_DECISION_ALLOWED: the policy evaluated for this ResourceName
operation and Attribute list indicates that access is ALLOWED.

• ACCESS_DECISION_NOT_ALLOWED: the policy evaluated for this
ResourceName, operation and Attribute list indicates access is NOT_ALLOWE

• ACCESS_DECISION_UNKNOWN: the policy evaluated for this ResourceName
operation and Attribute list indicates an access decision cannot be made.

This type is used as a result in access decisions where access policy is applied. T
the type returned from the evaluate() method of the PolicyEvaluator .

2.2.5 Exceptions

The following exceptions are used in this module

//**
// Exception Data types
//**
struct ExceptionData {

short error_code;
string reason;

};
enum InternalErrorType {Fatal, NotFatal};

//***
// Exception thrown by the Access Decision Object
//***

exception RadInternalError{InternalErrorType ed;};
2-8 Resource Access Decision, v1.0 April 2001

2

f

d
y the
//***
// Exception thrown by Internal non-admin interfaces
//***

exception RadComponentError{
ExceptionData ed;
InternalErrorType it;

};

//***
// Exceptions thrown by Admin Interfaces
//***

exception PatternConflict {ExceptionData ed;};
exception PatternDuplicate {ExceptionData ed;};
exception PatternNotRegistered {ExceptionData ed;};
exception PatternInUse {ExceptionData ed;};
exception ResourceNameNotFound {ExceptionData ed;};
exception NoAssociation {ExceptionData ed;};
exception InvalidPolicy {ExceptionData ed;};
exception DuplicateEvaluatorName {ExceptionData ed;};
exception InvalidResourceName {ExceptionData ed;};
exception InvalidResourceNamePattern {ExceptionData ed;};
exception TooMany { };

exception InvalidPolicyEvaluatorList {
ExceptionData ed;
NamedPolicyEvaluator first_invalid_element;

};

exception InvalidPolicyNameList {
ExceptionData ed;
PolicyName first_invalid_element;

};

ExceptionData

The ExceptionData structure is included in most RAD exceptions. The contents o
the error_code and reason are implementation dependent.

RadInternalError

The RadInternalError exception is reserved for internal logic errors and is not use
as a reason code for rejecting a request. This is the only exception that is thrown b
AccessDecision object. Indicating Fatal means that the ADO client should
discontinue using the ADO.
RAD, v1.0 Types April 2001 2-9

2

s
. If

n

.

ern

n.
RadComponentError

The RadComponentError exception may be thrown by non-administrative interface
to alert the AccessDecision object when a component encounters an internal error
the RadComponentError is Fatal , the AccessDecision object must determine if it
can continue to process without the component. If it cannot, it must throw a
RadInternalError with Fatal . If the Access Decision Object can continue to functio
without this component or if the exception error type was Fatal , it is implementation
dependent what the ADO returns to the client.

PatternConflict

The PatternConflict exception is thrown by the PolicyEvaluatorLocatorAdmin
when a register_resource_name_pattern() detects a pattern that conflicts with an
existing registered pattern and the implementation does not support conflicting
patterns.

PatternDuplicate

The PatternDuplicate exception is thrown by the PolicyEvaluatorLocatorAdmin
when a register_resource_name_pattern() detects a duplicate pattern registration

PatternNotRegistered

The PatternNotRegistered exception is thrown by
PolicyEvaluatorLocatorAdmin operations when an attempt is made to use a patt
in an administrative interface without registering the pattern first.

PatternInUse

The PatternInUse exception is thrown by PolicyEvaluatorLocatorAdmin
unregister_resource_name_pattern when an attempt is made to unregister a
pattern that is currently in use by the RAD.

ResourceNameNotFound

The ResourceNameNotFound exception is thrown by PolicyEvaluatorAdmin
interface operations when a ResourceName has not been defined. Not all
implementations will require pre-definition of ResourceNames . For those
implementations that do not require pre-definition, this exception will not be throw

 NoAssociation

The NoAssociation exception is thrown by the PolicyEvaluatorAdmin interface
delete_policies() operation when an association between the ResourceName and
PolicyName does not exist.
2-10 Resource Access Decision, v1.0 April 2001

2

se

ration

to the

tern,
ation

o
e of
 list is

.
InvalidPolicy

The InvalidPolicy exception is thrown by the PolicyEvaluatorAdmin interface
operations when an attempt is made to associate an Invalid PolicyName with a
ResourceName or to set a default Policy that is invalid.

DuplicateEvaluatorName

The DuplicateEvaluatorName exception is thrown by the
PolicyEvaluatorLocatorAdmin interface operations when an attempt is made to u
those operations to add an evaluator that has the same value of its data member
evaluator_name but different value of its data member policy_evaluator as some
other named policy evaluator associated or to be associated (after the current ope
was supposed to complete) with a resource name pattern.

InvalidResourceName

This exception is raised when the provided resource name is invalid. Please refer
specification of type ResourceName for the description of valid and invalid datum
elements of type ResourceName .

InvalidResourceNamePattern

This exception is thrown by corresponding operations when a resource name pat
provided as an operation argument, has invalid syntax. Please refer to the specific
of ResourceNamePattern data type for description of invalid values for
ResourceNamePattern .

InvalidPolicyNameList

This exception is raised when the provided Policy NameList has invalid value. Please
refer to the specification of PolicyNameList data type for a description of valid
PolicyNameList datum elements.

first_invalid_element is first policy name in the invalid list which caused the list t
be invalid. If the value of this data member is nil, then the list is invalid not becaus
a particular element, but because of some other reason (for example, because the
empty).

TooMany

This exception is raised for list_policies() if the number of PolicyName s found
(based on the seq_max and iter_max argument) exceeds the implementations limit
The implementation may be optionally configurable by the implementation.

InvalidPolicyEvaluatorList

This exception is raised when a PolicyEvaluatorList contains invalid elements.
Please refer to the specification of PolicyEvaluatorList data type for a description of
invalid PolicyEvaluatorList datum elements of that type.
RAD, v1.0 Types April 2001 2-11

2

 list
(for

be

are

.

d

first_invalid_element is the first named policy evaluator in the PolicyNameList
which caused the list to be invalid. If the value of this data member is nil, then the
is invalid not because of a particular element, but because of some other reason
example, because the list is empty).

2.3 PolicyNameListIterator Interface

//**
// interface PolicyNameListIterator
//**

interface PolicyNameListIterator {
 unsigned long how_many();
 boolean next_one(

 out PolicyName name);
 boolean next_n(

 in unsigned long how_many,
 out PolicyNameList list);

 void destroy();
 };

The PolicyNameListIterator is used to manage the list of Policy names that may
returned from a list_policies() operation of the PolicyEvaluatorAdmin interface.

how_many()

returns the number of policy names held by the iterator at this time.

next_one()

returns true if a PolicyName is returned in the out parameter. Returns false if there
no more policy names.

next_n()

returns the next n policy names held by the iterator. Returns true if a PolicyNameList
is returned in the out parameter. Returns false if there are no more policy names

destroy()

destroys the iterator. The iterator will destroy itself if all policy names are retrieve
from the iterator; however, a client should destroy the iterator using this operation
when they are finished if they have not retrieved all the policy names.

2.4 AccessDecision Interface

//**
// interface AccessDecision
//**
2-12 Resource Access Decision, v1.0 April 2001

2

 on

ope

is is
in

t it
is is

 or a
eir

access
cing
ght
RAD

 code
with
interface AccessDecision {

boolean access_allowed(
in ResourceName resource_name,
in string operation,
in AttributeList attribute_list

)
raises (RadInternalError);

BooleanList multiple_access_allowed(
in AccessDefinitionListaccess_requests,
in AttributeList attribute_list

)
raises (RadInternalError);

};

The singleton AccessDecision object is used to request decisions on access based
a ResourceName , an operation, and a list of SecAttributes . This specification
provides a framework for the support of many policy evaluators. It is beyond the sc
of this specification to mandate how policy is defined or evaluated using the
information provided by the client at the time access decisions are requested. Th
the only interface that is necessary for a client to be familiar with in order to obta
access decisions from the RAD.

The AccessDecision object sometimes passes exceptions to callers indicating tha
has encountered an internal error and is not able to make an access decision. Th
different from the behavior of many operating systems, which have a default-deny
default-grant policy when an internal failure occurs, but don’t report the failure to th
callers. This difference arises because RAD is an access decision service, not an
control service. In all cases, the application that calls RAD is responsible for enfor
the policy decision that RAD makes. Therefore, the RAD client application is the ri
place to make the policy enforcement decision about what should be done when
is not able to make a policy decision.

access_allowed()

A single access decision is requested and a boolean is returned. The RadInternalError
exception is reserved for internal logic errors and should not be used as a reason
for rejecting a request. As a security consideration, ADO clients are not provided
the specific reason for not allowing access.

Preconditions

1. “resource_name” is valid.

2. “operation” is valid.

Postconditions

1. return == authorization decision for the requested operation on the specified
resource name by a principal with the specified security attributes.
RAD, v1.0 AccessDecision Interface April 2001 2-13

2

ence
rder to
e
e
nt

ding
d list

ulate
e

multiple_access_allowed()

Multiple access decisions are requested in a single method invocation and a sequ
of booleans are returned. The boolean sequence maps one to one in the same o
RADInternalError exception is reserved for internal logic errors and should not b
used as a reason code for rejecting a request. ADO clients are not exposed to th
security reason for not allowing access. Indicating Fatal means that the ADO clie
should discontinue using the ADO.

Preconditions

1. All elements of “access_request” are valid.

Postconditions

1. The length of the returned list is the same as of “access_requests” list.

2. Each element of the returned list is an authorization decision for the correspon
request in the “access_requests” list. For example, first element of the returne
is an authorization decision for the first element of access_request, and so on.

2.5 DynamicAttributeService Interface

//**
// interface DynamicAttributeService
//**

interface DynamicAttributeService {

AttributeList get_dynamic_attributes(
in AttributeList attribute_list,
in ResourceNameresource_name,
in string operation

)
raises (RadComponentError);

};

The DynamicAttributeService interface is used to obtain a new list of
SecAttributes that are applicable to an access decision. This service may encaps
calls to a relationship service and/or application specific logic to determine how th
original AttributeList provided by the client should be modified.

get_dynamic_attributes()

This method takes the parameters provided by the client of the AccessDecision
object; the AttributeList , the ResourceName , and the operation and determines
what (if any) dynamic attributes should be added to the AttributeList . In addition, the
returned AttributeList may be modified by this service. The service may add
SecAttributes to the list or may remove SecAttributes from this list. It is the
returned list of SecAttributes that is used as the basis of access decisions by the
RAD.
2-14 Resource Access Decision, v1.0 April 2001

2

is

d
nators
or
ll.
Preconditions

1. “resource_name” is valid.

2. “operation” is valid.

Postconditions

No postconditions.

2.6 PolicyEvaluatorLocator Interface

//**
// interface PolicyEvaluatorLocator
//**

interface PolicyEvaluatorLocator {

readonly attribute PolicyEvaluatorLocatorBasicAdmin basic_admin;
readonly attribute PolicyEvaluatorLocatorNameAdmin name_admin;
readonly attribute PolicyEvaluatorLocatorPatternAdmin pattern_admin;

PolicyDecisionEvaluators get_policy_decision_evaluators(
in ResourceName resource_name

)
raises (RadComponentError);

};

The PolicyEvaluatorLocator interface is used to locate the PolicyEvaluators and
the DecisionCombinator associated with a ResourceName . This specification
provides a framework for the support of one or more policy evaluators for a single
resource.

readonly attribute PolicyEvaluatorLocatorBasicAdmin basic_admin

The PolicyEvaluatorLocator 's basic administrative interface can be obtained via th
attribute.

readonly attribute PolicyEvaluatorLocatorNameAdmin name_admin

The interface for administrating associations between resource names and policy
evaluators as well as between resource names and decision combinators can be
obtained via this attribute.

readonly attribute PolicyEvaluatorLocatorPatternAdmin pattern_admin

The interface for administrating associations between resource name patterns an
policy evaluators as well as between resource name patterns and decision combi
can be obtained via this attribute. If an implementation of a policy evaluator locat
does not implement support for resource name patterns this attribute must be nu
RAD, v1.0 PolicyEvaluatorLocator Interface April 2001 2-15

2

of

r
 for

his
get_policy_decision_evaluators()

A PolicyDecisionEvaluators structure is returned to the client. A
PolicyDecisionEvaluators structure contains a PolicyEvaluatorList and the
DecisionCombinator .

Preconditions

1. “resource_name” is valid.

Postconditions

1. The returned references are not nil.

2. No elements of “policy_evaluator_list” in the returned datum have same value
“evaluator_name.”

2.7 DecisionCombinator Interface

//**
// interface DecisionCombinator
//**

interface DecisionCombinator{

boolean combine_decisions(
in ResourceName resource_name,
in string operation,
in AttributeList attribute_list,
in PolicyEvaluatorList policy_evaluator_list

)
raises (RadComponentError);

};

The DecisionCombinator interface is used to encapsulate a policy for combining
decisions of multiple consulted PolicyEvaluators that may disagree.
DecisionCombinators may be simple or arbitrarily complex. A default combinato
may be used for all access decisions, or combinators may be chosen specifically
access decisions on specific secured resources.

Functions consisting of a global combinator operator are easy to implement; an
example of such a policy is:

AND ((Evaluator_1 = ACCESS_DECISION_ALLOWED),

 (Evaluator_2 = ACCESS_DECISION_ALLOWED), ...)

This policy can be expressed as an application of a global combinator (“AND” in t
case) to the results returned by ALL the PolicyEvaluator objects passed to the
DecisionCombinator .
2-16 Resource Access Decision, v1.0 April 2001

2

ary

led

an’t

hen
port

e.

olean
The thing which makes this kind of policy easy to implement is that it’s not necess
to know anything about the result returned by any specific PolicyEvaluator object,
and hence the PolicyEvaluator objects can all be treated the same and can be cal
in any order.

The disadvantages of this kind of policy are:

• They aren’t very expressive (there are lots of kinds of real-world policies that c
be expressed using only a global combinator).

• They are inefficient. It’s always necessary to call all the PolicyEvaluator objects
passed to the DecisionCombinator object in order to make a decision. An
important goal of the DecisionCombinator design is to support complex policies
that can be efficiently evaluated. A policy like the following can’t be expressed
using only a global combinator, but should be implementable as a
DecisionCombinator object:

(Evaluator_1 result is ACCESS_DECISION_ALLOWED) OR

((Evaluator_2 result is ACCESS_DECISION_ALLOWED) AND

(Evaluator_3 result is (ACCESS_DECISION_ALLOWED OR

ACCESS_DECISION_UNKNOWN)))

Note that this policy can be short-circuit evaluated: if the DecisionCombinator calls
Evaluator_1 and it returns ACCESS_DECISION_ALLOWED as a decision result, t
it doesn’t need to call Evaluator_2 and Evaluator_3 at all. However, in order to sup
evaluation of this policy, the DecisionCombinator object needs to be able to match
the PolicyEvaluator objects passed to it as input to the formal parameters in this
expression. This is why the DecisionCombinator interface accepts as input a
structure containing both a reference to a PolicyEvaluator object and the name of
that PolicyEvaluator object; it uses the PolicyEvaluator name to figure out which
evaluators to call in which order; it uses the PolicyEvaluator object’s reference to call
the object and request a decision result, and then it uses the PolicyEvaluator object’s
name again to plug the decision result into the policy combinator expression abov

combine_decisions()

The DecisionCombinator is responsible for determining what PolicyEvaluators
(from the list passed to it) must be called and how the results are to provide a bo
result. This is the result that will be returned by the AccessDecision object to the
original client of the RAD facility.

Preconditions

1. “resource_name” is valid.

2. “operation” is valid.

3. “policy_evaluator_list” is valid.

Postconditions

No postconditions.
RAD, v1.0 DecisionCombinator Interface April 2001 2-17

2

ork

ed
is

ot
2.8 PolicyEvaluator Interface

//**
// interface PolicyEvaluator
//**

interface PolicyEvaluator {

readonly attribute PolicyEvaluatorAdmin pe_admin;

DecisionResult evaluate(
in ResourceName resource_name,
in string operation,
in AttributeList attribute_list

)
raises (RadComponentError);

};

The PolicyEvaluator interface is used to obtain an access decision based on an
encapsulated policy for the ResourceName/operation when provided a list of
effective Security Attributes for the requestor. This specification provides a framew
for the support of one or more policy evaluators for a single resource.

readonly attribute PolicyEvaluatorAdmin

If the PolicyEvaluator has an associated administrative interface, it can be obtain
via this attribute. If an administrative interface is not available for this evaluator, th
attribute will be nil.

evaluate()

A single access decision is requested based on access policy(s) this evaluator
determines is appropriate for the named resource. The decision is based on the
ResourceName , the operation, and the effective Security Attributes. The
SecAttributes passed to the AccessDecision object by the client in
access_allowed() may have been modified by the DynamicAttributeService
get_dynamic_attributes() method before the PolicyEvaluator is called. The
DecisionResult is a ternary result. The DecisionResult is as follows:

• ACCESS_DECISION_ALLOWED: the policy evaluated for this ResourceName ,
operation and Attribute list indicates that access is ALLOWED.

• ACCESS_DECISION_NOT_ALLOWED: the policy evaluated for this
ResourceName , operation and Attribute list indicates access is
NOT_ALLOWED.

• ACCESS_DECISION_UNKNOWN: the policy evaluated for this
ResourceName , operation and Attribute list indicates an access decision cann
be made.
2-18 Resource Access Decision, v1.0 April 2001

2

r

.

Preconditions

1. “resource_name” is valid.

2. “operation” is valid.

Postconditions

1. return == authorization decision for the requested operation on the specified
resource name by a principal with the specified security attributes.

2.9 AccessDecisionAdmin Interface

//**
// interface AccessDecisionAdmin
//**

interface AccessDecisionAdmin {

 PolicyEvaluatorLocator get_policy_evaluator_locator();

void set_policy_evaluator_locator (
in PolicyEvaluatorLocator policy_evaluator_locator

);

DynamicAttributeService get_dynamic_attribute_service();

void set_dynamic_attribute_service(
in DynamicAttributeService dynamic_attribute_service

);
};

The Access Decision Admin object is provided to allow a standard mechanism fo
replacement of the vendor provided PolicyEvaluatorLocator and the
DynamicAttributeService .

get_policy_evaluator_locator()

This operation returns the PolicyEvaluatorLocator used by the access decision
object.

set_policy_evaluator_locator()

This operation sets the PolicyEvaluatorLocator used by the access decision object

get_dynamic_attribute_service()

This operation returns the DynamicAttributeService used by the access decision
object.
RAD, v1.0 AccessDecisionAdmin Interface April 2001 2-19

2

t.

set_dynamic_attribute_service()

This operation sets the DynamicAttributeService used by the access decision objec

2.10 PolicyEvaluatorLocatorBasicAdmin Interface

//***
// interface PolicyEvaluatorLocatorBasicAdmin
//***

interface PolicyEvaluatorLocatorBasicAdmin {

PolicyEvaluatorList set_default_evaluators(
in PolicyEvaluatorList policy_evaluator_list

)
raises (DuplicateEvaluatorName, InvalidPolicyEvaluatorList);

PolicyEvaluatorList get_default_evaluators();

DecisionCombinator get_default_combinator ();

void set_default_combinator(
in DecisionCombinator decision_combinator

);
};

The PolicyEvaluatorLocatorBasicAdmin object is used to administrate default
associations between PolicyEvaluators and ResourceNames as well as default
associations between DecisionCombinators and ResourceNames .

set_default_evaluators()

The list of PolicyEvaluators provided is set as the default evaluators for any
ResourceName for which PolicyEvaluators have not been explicitly assigned. The
default evaluators will be returned by the PolicyEvaluatorLocator
get_policy_decision_evaluators() operation when no PolicyEvaluators have
been explicitly assigned for a ResourceName .

Preconditions

No preconditions.

Postconditions

1. default_evaluators == "policy_evaluator_list"

get_default_evaluators()

The default set of policy evaluators provided is returned.
2-20 Resource Access Decision, v1.0 April 2001

2

Preconditions

No preconditions.

Postconditions

1. return == default_evaluators.

 get_default_combinator()

The DecisionCombinator provided is returned.

Preconditions

No preconditions.

Postconditions

1. return == default_combinator.

 set_default_combinator()

The DecisionCombinator provided is set as a default. This combinator is now the
combinator used when a DecisionCombinator has not been explicitly specified for a
secured resource. This combinator will be returned by the PolicyEvaluatorLocator
get_policy_decision_evaluators() operation for these resources.

Preconditions

No preconditions.

Postconditions

1. default_combinator == "decision_combinator".

2.11 PolicyEvaluatorLocatorNameAdmin Interface

//***
// interface PolicyEvaluatorLocatorNameAdmin
//***

interface PolicyEvaluatorLocatorNameAdmin {

PolicyEvaluatorList get_evaluators(
in ResourceName resource_name

)
raises (InvalidResourceName);

void set_evaluators (
in PolicyEvaluatorList policy_evaluator_list,
in ResourceName resource_name

)
RAD, v1.0 PolicyEvaluatorLocatorNameAdmin Interface April 2001 2-21

2

raises (InvalidPolicyEvaluatorList,
 InvalidResourceName,
 DuplicateEvaluatorName);

void add_evaluators (
in PolicyEvaluatorList policy_evaluator_list,
in ResourceName resource_name

)
raises (InvalidResourceName,

InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

void delete_evaluators (
in PolicyEvaluatorList policy_evaluator_list,
in ResourceName resource_name

)
raises (InvalidResourceName,

InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

DecisionCombinator get_combinator (
in ResourceName resource_name

)
raises (InvalidResourceName);

void set_combinator (
in DecisionCombinatordecision_combinator,
in ResourceName resource_name

)
raises (InvalidResourceName);

void delete_combinator (
in ResourceName resource_name

)
raises (InvalidResourceName);

};

The PolicyEvaluatorLocatorNameAdmin object is used to associate
PolicyEvaluators with a ResourceName . The object is also used to associate the
appropriate DecisionCombinator with a ResourceName . This specification
provides a framework for the support of one or more policy evaluators for a single
resource.

get_evaluators()

The list of PolicyEvaluators associated with the ResourceName is returned.

Preconditions

No preconditions.
2-22 Resource Access Decision, v1.0 April 2001

2

d
ed
rce

ger

e.

n
tor is
Postconditions

1. return == “resource_name”.registered_ evaluator_list

 set_evaluators()

A list of PolicyEvaluators is assigned for the named resource. If the resource ha
existing PolicyEvaluators assigned, they are removed and the entire list is replac
with the ones provided in this method. The replacement of evaluators for a resou
which previously had none results in the added list of evaluators being the only
evaluators consulted on an access decision (system default evaluators are no lon
consulted unless a system default evaluator is a member of the replacement list).

These evaluators will be the PolicyEvaluators returned by the
PolicyEvaluatorLocator get_policy_decision_evaluators() method.

Preconditions

No preconditions.

Postconditions

1. “resource_name”.registered_evaluator_list == policy_evaluator_list

 add_evaluators()

A list of PolicyEvaluators is added to the list of evaluators for the named resourc
These evaluators will be in the list of PolicyEvaluators returned by the
PolicyEvaluatorLocator get_policy_decision_evaluators() method. The
addition of evaluators to a ResourceName which previously had none results in the
added list of evaluators being the only evaluators consulted on an access decisio
(system default evaluators are no longer consulted unless a system default evalua
a member of the added list).

Preconditions

No preconditions.

Postconditions

1. “resource_name”.registered_evaluator_list == union (policy_evaluator_list,
“resource_name”.registered_evaluator_list)

delete_evaluators()

The list of PolicyEvaluators is removed from the list of evaluators for the named
resource. These evaluators will not be in the list of PolicyEvaluators returned by the
PolicyEvaluatorLocator get_policy_decision_evaluators() method.

Preconditions

No preconditions.
RAD, v1.0 PolicyEvaluatorLocatorNameAdmin Interface April 2001 2-23

2

e

fault
Postconditions

1. for the “resource_name” : “resource_name”.registered_evaluator_list =
“resource_name”.registered_evaluators - “policy_evaluator_list”

get_combinator()

The DecisionCombinator specified for the named resource is returned. If a
combinator has not been specified for the ResourceName provided, the return will
be nil (it will not return the default combinator).

Preconditions

No preconditions.

Postconditions

1. return == “resource_name”.registered_ decision_combinator

set_combinator()

A DecisionCombinator is specified for the named resource. This combinator will b
returned by the PolicyEvaluatorLocator get_policy_decision_evaluators()
method. The DecisionCombinator provided replaces any previous combinator
specified for the secured resource.

Preconditions

No preconditions.

Postconditions

1. “resource_name”.registered_ decision_combinator == “decision_combinator”

delete_combinator()

The DecisionCombinator for the ResourceName is removed. The default
combinator will now be returned by the PolicyEvaluatorLocator
get_policy_decision_evaluators() method.

Preconditions

No preconditions.

Postconditions

1. Resource names matching only “resource_name” will be associated with the de
combinator.
2-24 Resource Access Decision, v1.0 April 2001

2

2.12 PolicyEvaluatorLocatorPatternAdmin Interface

//***
// interface PolicyEvaluatorLocatorPatternAdmin
//***

interface PolicyEvaluatorLocatorPatternAdmin {

void register_resource_name_pattern(
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternDuplicate,
PatternConflict);

void unregister_resource_name_pattern(
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered,
PatternInUse);

PolicyEvaluatorList get_evaluators_by_pattern (
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered);

void set_evaluators_by_pattern (
in PolicyEvaluatorList policy_evaluator_list,
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered,
 InvalidPolicyEvaluatorList,

DuplicateEvaluatorName);

void add_evaluators_by_pattern (
in PolicyEvaluatorList policy_evaluator_list,
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

void delete_evaluators_by_pattern (
in PolicyEvaluatorList policy_evaluator_list,
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,
RAD, v1.0 PolicyEvaluatorLocatorPatternAdmin Interface April 2001 2-25

2

es

 “is
PatternNotRegistered,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

DecisionCombinator get_combinator_by_pattern (
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered);

void set_combinator_by_pattern (
in DecisionCombinatordecision_combinator,
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered);

void delete_combinator_by_pattern (
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered);

 DecisionCombinator get_default_combinator();
};

The PolicyEvaluatorLocatorPatternAdmin object is used to associate
PolicyEvaluators with a ResourceNamePattern . The object is also used to
associate the appropriate DecisionCombinator with the ResourceNamePattern .
This specification provides a framework for the support of one or more policy
evaluators for a single resource pattern.

Patterns are used to group resource names without requiring the
PolicyEvaluatorLocator administrator to enumerate all the resources names
individually; this is accomplished by associating lists of PolicyEvaluator objects with
ResourceNamePatterns , and checking whether a supplied resource name match
any of the Patterns with which it has associated PolicyEvaluators . This section
describes how RAD objects decide whether a Pattern matches a resource name.
Throughout the section, we use the shorthand phrase “exactly matches” to mean
exactly the same string as.”

Patterns have a specific format:

• A Pattern must include a ResourceNamingAuthority .

• A Pattern must include a list of ResourceNameComponent strings.

• Each ResourceNameComponent consists of a name_string and a
value_string .

• Two kinds of ResourceNameComponents can occur in a pattern.
2-26 Resource Access Decision, v1.0 April 2001

2

RAD, v1.0 PolicyEvaluatorLocatorPatternAdmin Interface April 2001 2-27

2

e on

n

rce

st

 a

tch

nt
The first kind is a component value pattern. It has the form:

• name_string is a string

• value_string is a regular expression

A resource name component matches a component value pattern only if its
name_string exactly matches the pattern’s name_string and its value_string
matches the component value pattern’s value_string regular expression.

The second kind of ResourceNameComponent that can occur in a pattern is a
component wildcard pattern:

• name_string exactly matches “*” and

• value_string exactly matches “*”

Every component of a resource name matches a component wildcard pattern.

A resource name matches a pattern if and only if the algorithm shown in the figur
page 2-27 returns MATCH.

The algorithm has two inputs: resource name (“name”) and resource name patter
(“pattern”). It also assumes availability of two functions:

• SIZE - returns number of elements in a sequence,

• MATCHES_AS_GRE - returns “yes” if the resource “name” matches the resou
name “pattern,” where the “pattern” is interpreted according to the regular
expression syntax specified in the definition of ResourceNamePattern in
Section 2.2.2, “Types that identify and manage information about secured
resources,” on page 2-4.

register_resource_name_pattern()

Before a ResourceNamePattern can be used in the administrative interfaces, it mu
be registered. This allows the administration of name patterns separately from the
administration of the association of patterns to evaluators and combinators. Since
ResourceName is a ResourceNamePattern , ResourceName s must also be
registered if these administrative interfaces are used to administer evaluators and
combinators.

Implementations may or may not support overlapping patterns; that is, an
implementation may choose to allow registration of two patterns both of which ma
at least one name, or they may choose not to allow such registrations. An
implementation that does not support overlapping patterns shall raise the
PatternConflict exception when this method is used to register a pattern, which
overlaps with another previously registered pattern. Implementors should docume
whether their implementations support overlapping patterns or not.

Preconditions

No preconditions.
2-28 Resource Access Decision, v1.0 April 2001

2

thod.
n the
n
tor is
Postconditions

1. “resource_name_pattern ” is registered.

unregister_resource_name_pattern()

ResourceNamePatterns may be unregistered. A ResourceNamePattern must not
have any evaluators or combinators associated with it when it is unregistered.

Preconditions

No preconditions.

Postconditions

1. “resource_name_pattern” is unregistered.

 get_evaluators_by_pattern ()

The list of PolicyEvaluators associated with the ResourceNamePattern is
returned.

Preconditions

No preconditions.

Postconditions

1. return == “resource_name_pattern”.registered_ evaluator_list

 set_evaluators_by_pattern ()

A list of PolicyEvaluators is assigned for the resources that will match
ResourceNamePattern . If the resource had existing PolicyEvaluators assigned,
they are removed and the entire list is replaced with the ones provided in this me
The replacement of evaluators for a resource which previously had none results i
added list of evaluators being the only evaluators consulted on an access decisio
(system default evaluators are no longer consulted unless a system default evalua
a member of the replacement list).

These evaluators will be the PolicyEvaluators returned by the
PolicyEvaluatorLocator get_policy_decision_evaluators() method.

Preconditions

No preconditions.

Postconditions

1. “resource_name_pattern”.registered_evaluator_list == policy_evaluator_list
RAD, v1.0 PolicyEvaluatorLocatorPatternAdmin Interface April 2001 2-29

2

ill

fault
 of the

s

ators
add_evaluators_by_pattern ()

A list of PolicyEvaluators is added to the list of evaluators for the resources that w
match ResourceNamePattern . These evaluators will be in the list of
PolicyEvaluators returned by the PolicyEvaluatorLocator
get_policy_decision_evaluators() method. The addition of evaluators to a
ResourceNamePattern which previously had none results in the added list of
evaluators being the only evaluators consulted on an access decision (system de
evaluators are no longer consulted unless a system default evaluator is a member
added list).

Preconditions

No preconditions.

Postconditions

1. “resource_name_pattern”.registered_evaluator_list == union
(policy_evaluator_list, “resource_name_pattern”.registered_evaluator_list)

delete_evaluators_by_pattern ()

The list of PolicyEvaluators is removed from the list of evaluators for the resource
that will match ResourceNamePattern . These evaluators will not be in the list of
PolicyEvaluators returned by the PolicyEvaluatorLocator
get_policy_decision_evaluators() method.

Preconditions

No preconditions.

Postconditions

1. for the “resource_name_pattern” : “resource_name_
pattern”.registered_evaluator_list = “resource_name_ pattern”.registered_evalu
- “policy_evaluator_list”

get_combinator_by_pattern ()

The DecisionCombinator specified for by the ResourceNamePattern is returned.
If a combinator has not been specified for the ResourceNamePattern provided, the
return will be nil (it will not return the default combinator).

Preconditions

No preconditions.

Postconditions

1. return == “resource_name_pattern”.registered_ decision_combinator
2-30 Resource Access Decision, v1.0 April 2001

2

ith
set_combinator_by_pattern ()

A DecisionCombinator is specified for the resources that will match
ResourceNamePattern . This combinator will be returned by the
PolicyEvaluatorLocator get_policy_decision_evaluators() method. The
DecisionCombinator provided replaces any previous combinator specified for the
secured resource.

Preconditions

No preconditions.

Postconditions

1. “resource_name_pattern”.registered_ decision_combinator ==
“decision_combinator”

delete_combinator_by_pattern ()

The DecisionCombinator for the ResourceNamePattern is removed. The default
combinator will now be returned by the PolicyEvaluatorLocator
get_policy_decision_evaluators() method for those resource that used to match
the specified ResourceNamePattern and do not match any other
ResourceNamePattern set by set_combinator_by_pattern() operation.

Preconditions

No preconditions.

Postconditions

1. Resource names matching only “resource_name_pattern” will be associated w
the default combinator.

get_default_combinator ()

The default DecisionCombinator is returned.

2.13 PolicyEvaluatorAdmin Interface

//***
// interface PolicyEvaluatorAdmin
//***

interface PolicyEvaluatorAdmin {

void set_policies(
in PolicyNameList policy_names,
in ResourceName resource_name

)
raises (InvalidResourceName,
RAD, v1.0 PolicyEvaluatorAdmin Interface April 2001 2-31

2

ith
anage

allow

”

y to
es,
er to
ResourceNameNotFound,
InvalidPolicyNameList);

void add_policies(
in PolicyNameList policy_names,
in ResourceName resource_name

)
raises (InvalidResourceName,

ResourceNameNotFound,
InvalidPolicyNameList);

void delete_policies(
in PolicyNameList policy_names,
in ResourceName resource_name

)
raises (InvalidResourceName,

ResourceNameNotFound,
InvalidPolicyNameList,
NoAssociation);

PolicyNameList list_policies(
 in unsigned long seq_max,
 in unsigned long iter_max,
 out PolicyNameListIterator iter
) raises (TooMany);

PolicyName set_default_policy(
in PolicyName policy_name

)
raises (InvalidPolicy);

};

The PolicyEvaluatorAdmin interface is used to associate named access policies w
secured resources. It is assumed that the administrative tool used to create and m
access policies (outside the scope of this specification) provides a mechanism to
policies to be associated with “names” that are represented as PolicyName (a string).
This PolicyEvaluatorAdmin interface allows those policies to be applied “by name
to a secured resource represented by a ResourceName .

This interface is primarily provided for the application that wishes to assign a polic
a newly created resource programmatically at the time of resource creation. It do
however, require that the application have knowledge of the named policies in ord
choose an appropriate policy for access decisions.
2-32 Resource Access Decision, v1.0 April 2001

2

 a

e.

ill

e
set_policies()

The policies identified by PolicyNameList is associated with the secured resource
identified by the ResourceName . If a single PolicyName of
NO_ACCESS_POLICY is specified, then all policy is removed for the resource. If
PolicyNameList is applied to a ResourceName that has existing policy, then the
policy will be replaced by the policy identified by this PolicyNameList .

Preconditions

No preconditions.

Postconditions

1. “resource_name”.applied_policie_names == “policy_names”.

2. if PolicyName == NO_ACCESS_POLICY, then no policy exists for the resourc

add_policies()

The policy identified by PolicyNameList is added to the list of policies used when
making access decisions for the secured resource identified by the ResourceName . If
a PolicyNameList is added to a resource that has existing policy, then the policy w
be added to the list of policies that control access decisions for the resource. An
implementation is not required to support multiple policies for a resource. If the
implementation does not support the application of multiple policies, then a
InvalidPolicy exception shall be thrown for this method.

Preconditions

No preconditions.

Postconditions

1. “resource_name”.applied_policy_names == union
(“resource_name”.applied_policy_names, “policy_names”)

 list_policies()

A list of names of all policies supported by this instance of PolicyEvaluator is
returned to the client. The number of policy names to be returned in the sequenc
should not exceed iter_max ; the number of policy names to be held in the
PolicyNameListIterator should not exceed iter_max . The TooMany exception is
thrown if the number of policy names that exist (and are requested) exceeds the
implementation max.

Preconditions

No preconditions.

Postconditions

1. return == all_existing_policy_names.
RAD, v1.0 PolicyEvaluatorAdmin Interface April 2001 2-33

2

ns.”

e
set_default_policy()

The policy identified by PolicyName is associated (as default) with any secured
resource that has not yet been assigned an access policy.

Preconditions

No preconditions.

Postconditions

The order is significant.

1. return == default_policy_name

2. default_policy_name == “policy_name”

2.14 Conformance Classes

There are two conformance classes: “RAD without Patterns” and “RAD with Patter

An implementation of Resource Access Decision (RAD) facility compliant to
conformance class “RAD without Patterns” must implement all of the interfaces
defined in this specification except interface
PolicyEvaluatorLocatorPatternAdmin . In this case pattern_admin attribute of
PolicyEvaluatorLocator interface implementation must be /return value null.

An implementation of Resource Access Decision facility compliant to conformanc
class “RAD with Patterns” must implement all of the interfaces defined in this
specification. In this case pattern_admin attribute of PolicyEvaluatorLocator
interface implementation must return an object reference for a
PolicyEvaluatorLocatorPatternAdmin .
2-34 Resource Access Decision, v1.0 April 2001

 OMG IDL A
//File: DfResourceAccessDecision.idl
//

#ifndef _DF_RESOURCE_ACCESS_DECISION_IDL_
#define _DF_RESOURCE_ACCESS_DECISION_IDL_

#include "Security.idl"

#pragma prefix "omg.org"

module DfResourceAccessDecision {

typedef sequence<boolean> BooleanList;
typedef Security::AttributeList AttributeList;

interface DynamicAttributeService;
interface DecisionCombinator;
interface PolicyEvaluator;
interface PolicyEvaluatorAdmin;
interface PolicyEvaluatorLocatorBasicAdmin;
interface PolicyEvaluatorLocatorNameAdmin;
interface PolicyEvaluatorLocatorPatternAdmin;

//**
// Types that identify a secured resource
//**
struct ResourceNameComponent {

stringname_string;
stringvalue_string;

};
typedef sequence<ResourceNameComponent> ResourceNameComponentList;

typedef string ResourceNamingAuthority;
Resource Access Decision, v1.0 April 2001 A-1

A

struct ResourceName {
ResourceNamingAuthorityresource_naming_authority;
ResourceNameComponentListresource_name_component_list;

};
typedef ResourceName ResourceNamePattern;

typedef sequence<string> OperationList;

//**
// Types associated with evaluating Access Policy
//**
typedef string PolicyName;
typedef sequence<PolicyName> PolicyNameList;

const PolicyName NO_ACCESS_POLICY = "NO_ACCESS_POLICY";

struct NamedPolicyEvaluator {
string evaluator_name;
PolicyEvaluatorpolicy_evaluator;

};
typedef sequence<NamedPolicyEvaluator> PolicyEvaluatorList;

struct PolicyDecisionEvaluators {
PolicyEvaluatorListpolicy_evaluator_list;
DecisionCombinatordecision_combinator;

};

//**
// Types used to request an Access Decision
//**
struct AccessDefinition {

ResourceNameresource_name;
string operation;

};
typedef sequence<AccessDefinition> AccessDefinitionList;

enum DecisionResult{
ACCESS_DECISION_ALLOWED,
ACCESS_DECISION_NOT_ALLOWED,
ACCESS_DECISION_UNKNOWN

};

//**
// Exception Data Types
//**
struct ExceptionData {

short error_code;
stringreason;

};
enum InternalErrorType { Fatal, NotFatal };
A-2 Resource Access Decision, v1.0 April 2001

A

//**
// Exception thrown by the Access Decision Object
//**
exception RadInternalError {InternalErrorType ed;};

//**
// Exception thrown by Internal non-admin interfaces
//**
exception RadComponentError {

ExceptionData ed;
InternalErrorType it;

};

//**
// Exceptions thrown by Admin Interfaces
//**
exception PatternConflict { ExceptionData ed; };
exception PatternDuplicate { ExceptionData ed; };
exception PatternNotRegistered { ExceptionData ed; };
exception PatternInUse { ExceptionData ed; };
exception ResourceNameNotFound { ExceptionData ed; };
exception NoAssociation { ExceptionData ed; };
exception InvalidPolicy { ExceptionData ed; };
exception DuplicateEvaluatorName { ExceptionData ed; };
exception InvalidResourceName { ExceptionData ed; };
exception InvalidResourceNamePattern { ExceptionData ed; };
exception TooMany {};
exception InvalidPolicyEvaluatorList {

ExceptionData ed;
NamedPolicyEvaluatorfirst_invalid_element;

};
exception InvalidPolicyNameList {

ExceptionData ed;
PolicyNamefirst_invalid_element;

};

//**
// interface PolicyNameListIterator
//**

interface PolicyNameListIterator {
 unsigned long how_many();

 boolean next_one(
out PolicyName name);

 boolean next_n(
in unsigned long how_many,
out PolicyNameList list);

Resource Access Decision, v1.0 April 2001 A-3

A

 void destroy();
};

//**
// interface AccessDecision
//**
interface AccessDecision {

boolean access_allowed(
in ResourceNameresource_name,
in stringoperation,
in AttributeListattribute_list

)
raises (RadInternalError);

BooleanList multiple_access_allowed(
in AccessDefinitionListaccess_requests,
in AttributeListattribute_list

)
raises (RadInternalError);

};

//**
// interface DynamicAttributeService
//**
interface DynamicAttributeService {

AttributeList get_dynamic_attributes(
in AttributeListattribute_list,
in ResourceNameresource_name,
in stringoperation

)
raises (RadComponentError);

};

//**
// interface PolicyEvaluatorLocator
//**
interface PolicyEvaluatorLocator {

readonly attribute PolicyEvaluatorLocatorBasicAdminbasic_admin;
readonly attribute PolicyEvaluatorLocatorNameAdmin name_admin;
readonly attribute PolicyEvaluatorLocatorPatternAdmin pattern_admin;

PolicyDecisionEvaluators get_policy_decision_evaluators(
in ResourceName resource_name

)
raises (RadComponentError);

};
A-4 Resource Access Decision, v1.0 April 2001

A

//**
// interface DecisionCombinator
//**
interface DecisionCombinator {

boolean combine_decisions(
in ResourceNameresource_name,
in string operation,
in AttributeListattribute_list,
in PolicyEvaluatorListpolicy_evaluator_list

)
raises (RadComponentError);

};

//**
// interface PolicyEvaluator
//**
interface PolicyEvaluator {

readonly attribute PolicyEvaluatorAdmin pe_admin;

DecisionResult evaluate(
in ResourceNameresource_name,
in stringoperation,
in AttributeListattribute_list

)
raises (RadComponentError);

};

//**
// Management Interfaces
//**

//**
// interface AccessDecisionAdmin
//**
interface AccessDecisionAdmin {

PolicyEvaluatorLocator get_policy_evaluator_locator();

void set_policy_evaluator_locator(
in PolicyEvaluatorLocator policy_evaluator_locator

);

DynamicAttributeService get_dynamic_attribute_service();

void set_dynamic_attribute_service(
in DynamicAttributeService dynamic_attribute_service

);
Resource Access Decision, v1.0 April 2001 A-5

A

};

//**
// interface PolicyEvaluatorLocatorBasicAdmin
//**
interface PolicyEvaluatorLocatorBasicAdmin {

PolicyEvaluatorList set_default_evaluators(
in PolicyEvaluatorList policy_evaluator_list

)
raises (DuplicateEvaluatorName, InvalidPolicyEvaluatorList);

PolicyEvaluatorList get_default_evaluators();

DecisionCombinator get_default_combinator();

void set_default_combinator(
in DecisionCombinator decision_combinator

);

};

//**
// interface PolicyEvaluatorLocatorNameAdmin
//**
interface PolicyEvaluatorLocatorNameAdmin {

PolicyEvaluatorList get_evaluators(
in ResourceName resource_name

)
raises (InvalidResourceName);

void set_evaluators(
in PolicyEvaluatorList policy_evaluator_list,
in ResourceName resource_name

)
raises (InvalidPolicyEvaluatorList,

InvalidResourceName,
DuplicateEvaluatorName);

void add_evaluators(
in PolicyEvaluatorList policy_evaluator_list,
in ResourceName resource_name

)
raises (InvalidPolicyEvaluatorList,

InvalidResourceName,
DuplicateEvaluatorName);

void delete_evaluators(
in PolicyEvaluatorList policy_evaluator_list,
A-6 Resource Access Decision, v1.0 April 2001

A

in ResourceName resource_name
)
raises (InvalidPolicyEvaluatorList,

InvalidResourceName,
DuplicateEvaluatorName);

DecisionCombinator get_combinator(
in ResourceName resource_name

)
raises (InvalidResourceName);

void set_combinator(
in DecisionCombinator decision_combinator,
in ResourceName resource_name

)
raises (InvalidResourceName);

void delete_combinator(
in ResourceName resource_name

)
raises (InvalidResourceName);

};

//**
// interface PolicyEvaluatorLocatorPatternAdmin
//**
interface PolicyEvaluatorLocatorPatternAdmin {

void register_resource_name_pattern(
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternDuplicate,
PatternConflict);

void unregister_resource_name_pattern(
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered,
PatternInUse);

PolicyEvaluatorList get_evaluators_by_pattern(
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered);

void set_evaluators_by_pattern(
in PolicyEvaluatorList policy_evaluator_list,
Resource Access Decision, v1.0 April 2001 A-7

A

in ResourceNamePattern pattern
)
raises (InvalidResourceNamePattern,

PatternNotRegistered,
 InvalidPolicyEvaluatorList,

DuplicateEvaluatorName);

void add_evaluators_by_pattern(
in PolicyEvaluatorList policy_evaluator_list,
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

void delete_evaluators_by_pattern(
in PolicyEvaluatorList policy_evaluator_list,
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

DecisionCombinator get_combinator_by_pattern(
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered);

void set_combinator_by_pattern(
in DecisionCombinator decision_combinator,
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered);

void delete_combinator_by_pattern(
in ResourceNamePattern pattern

)
raises (InvalidResourceNamePattern,

PatternNotRegistered);

DecisionCombinator get_default_combinator();

};

//**
// interface PolicyEvaluatorAdmin
//**
A-8 Resource Access Decision, v1.0 April 2001

A

interface PolicyEvaluatorAdmin {

void set_policies(
in PolicyNameList policy_names,
in ResourceName resource_name

)
raises (InvalidResourceName,

ResourceNameNotFound,
InvalidPolicyNameList);

void add_policies(
in PolicyNameList policy_names,
in ResourceName resource_name

)
raises (InvalidResourceName,

ResourceNameNotFound,
InvalidPolicyNameList);

void delete_policies(
in PolicyNameList policy_names,
in ResourceName resource_name

)
raises (InvalidResourceName,

ResourceNameNotFound,
InvalidPolicyNameList,
NoAssociation);

PolicyNameList list_policies(
in unsigned long seq_max,

 in unsigned long iter_max,
 out PolicyNameListIterator iter

)
raises (TooMany);

PolicyName set_default_policy(
in PolicyName policy_name

)
raises (InvalidPolicy);

};

}; // end of DfResourceAccessDecision module
#endif
Resource Access Decision, v1.0 April 2001 A-9

A

A-10 Resource Access Decision, v1.0 April 2001

 Use Case Example B
 of

ess
This appendix presents an example illustrating a healthcare scenario and the use
RAD to provide access control for the instances of healthcare information access
implied by this scenario. The example consists of:

1. A description of the healthcare scenario that involves one or more accesses to
healthcare information.

2. For each healthcare information access required by the scenario:

• A description of the actions of the healthcare application, the client of the Acc
Decision Object (ADO).

• A description of ADO actions with an Object Interaction Diagram (OID).

Before presenting the Use Case, a generic OID describing the ADO is provided.

B.1 Generic RAD Sequence Diagram

This section shows the generic sequence diagram for the RAD.
Resource Access Decision V1.0 month 2000 B-1

B

ult of
 In
sic

trol

ing
f the

tic

.,

mic
Figure B-1 Generic RAD Sequence Diagram

B.2 Healthcare Scenario: Out-patient Visit to Attending Physician

This scenario (see table 1) illustrates the interaction with a patient record as a res
a patient's visit with an attending physician at the hospital on an outpatient basis.
this example, the access control policy pertinent to this scenario is called the “Ba
Hospital Patient Record Access Policy.”

As described in more detail in the normative part of this document, an access con
policy within RAD is realized by an evaluator applied to static attributes, dynamic
attributes, and other factors, such as, time of day and location of the principal. An
evaluator can be implemented as an interpreter of rules expressed in some script
language (e.g., SQL) as a process for which the rules are encapsulated as part o
process (e.g., Java Classes) or as some combination of these methods.

Static attributes are used for describing relatively fixed properties of users and
resources, such as, basic user role and resource creation date. The values of sta
attributes are typically set by a security administrator and are obtained by the
application in an implementation specific manner (e.g., from the principal’s
credentials). While the use of a static attribute in policy is specified by a security
administrator, the values of dynamic attributes are typically set as part of normal
information processing. Unlike static attributes, which are usually properties of (i.e
metadata about information content), values of dynamic attributes are information
content that are necessary to make an access decision. Some examples of dyna
attributes, which may be contained in a patient record or elsewhere, are:

an Access D ec is ion
Objec t : AccessD ecision

an Application
Sy s tem

access_allowed(R esourceN am e, Operation, AttributeLis t)

a L ocator : Polic y
Ev aluatorLocator

an Ev aluator : Polic y
Ev aluator

a C om binator :
D ec is ionC om binator

an At tribute Serv ice :
D y nam icAttribute

get_polic y _dec is ion_ev aluators (R esourceN am e)

get_dy nam ic_attributes (Att ributeList , R esourceN am e, Operation)

co mbi ne_d ec is ion s(R e sou rceN am e, O per ation , A ttribu teL ist , Polic yE valu ator List)

* ev aluate(R esourceN ame, Operation, AttributeLis t)
B-2 Resource Access Decision V1.0 month 2000

B

ted

ce,
uator

cribes
t
may
e
led.

d

he
olicy
fy
te”

ents
bute

nd
ials.

o is
”
ic

f the
• A list of physicians (i.e., attending physicians) currently treating the patient.

• An authorization permitting the release of mental health information to designa
parties.

Depending on the implementation, a dynamic attribute may be the value of the
dynamic attribute or a reference to the value of the dynamic attribute. If a referen
then the dynamic attribute value is obtained by the evaluator if and when the eval
determines that the value is needed to make the access decision.

RAD is able to support more than one access policy. This healthcare scenario des
RAD functionality using the Basic Hospital Patient Record Access Policy. Differen
developers may implement different access policy evaluators. Dynamic attributes
be associated with only one or several evaluators. New dynamic attributes may b
added to the Dynamic Attribute Service of a RAD when new evaluators are instal
Once dynamic attributes are added to the Dynamic Attribute Service, they may be
available for use by all evaluators. In addition to the Basic Hospital Patient Recor
Access Policy, other policies may specify access control requirements for HIV or
mental health information resources that are part of the patient record.

The Basic Hospital Patient Record Access Policy used in this example specifies t
conditions under which an attending physician can access a patient record. The p
specifies that attending physicians may read/update a patient record and/or modi
certain authorization settings in a patient record. Within this policy, the term “upda
when applied to clinical information refers to an append operation. Clinical
information in the patient record once entered may not be modified.

Several static and dynamic attributes are used by the RAD evaluator that implem
the Basic Hospital Patient Record Access Policy. Among these are the static attri
“role” and the dynamic attribute “principal/patient_relationship.” The value of the
static attribute role specifies the basic role of a user (such as, physician, nurse, a
registrar). In this example, the value of role is obtained from the principal’s credent
The value of the dynamic attribute principal/patient_relationship specifies the
relationship between the principal accessing the patient record and the patient wh
the subject of the patient record being accessed (e.g., “primary_care,” “attending,
“consulting”). In this example, the value of the principal/patient_relationship dynam
attribute is obtained by the Dynamic Attribute Service by accessing the content o
patient record that contains a list of attending physicians.

Table B-1 Healthcare Scenario: Out-patient Visit to Attending Physician

Use Case Name Out-patient Hospital Visit to Attending Physician

Goal in Contact Physician provides care to a visiting patient

Scope & Level Summary

Preconditions Patient records already exist in the system, there
is already some kind of relationship between the
patient and the physician (attending, consulting,
admitting, etc.)
RAD Healthcare Scenario: Out-patient Visit to Attending Physician April 2001 B-3

B

Success End Condition Patient records are updated according to the visit
results.

Failed End Condition Patient records are not updated according to the
visit results.

Primary Actors Care providing physician

Secondary Actors

Trigger Patient visits corresponding physician.

Applicable Access Policy Basic Hospital Patient Record Access

Diagram Description

Step Action

1 Physician (or physician representative) logs into
the information system unless it was done
previously.

2 Physician retrieves patient records and browses
them.

3 Physician examines the patient.

4 Physician updates patient records.

Extensions-step 4a Branching Action

Physician changes authorization settings for the
patient records (or their sub-set) according to the
patient request and/or sensitivity of the
information with which records are updated.

Variations-step 5 Branching Action

No variations

Related Information

Priority High

Performance 1 hour

Frequency Many times per hour through the hospital

Channels to actors Vision, speech, various instruments and devices
in order to examine the patient; computer GUI to
log into the system, brows and update patient
records.

Table B-1 Healthcare Scenario: Out-patient Visit to Attending Physician
B-4 Resource Access Decision V1.0 month 2000

B

ed in

t) in

As shown in Table B-1, there are three types of access to the patient record involv
this scenario: read, update, and change authorization.

The next section describes the actions of the application program (the ADO clien
reading the patient record including how the ADO is used to determine access
according to the Basic Hospital Patient Record Access Policy.

B.2.1 ADO Client Actions: Read Patient Record

Open Issues What authorization settings of the patient records
can a related physician change?

What if another related physician has limited
access to records that are interesting in the
context of the visit and the patient agrees those
records can be disclosed?

Superordinate use cases No superordinates

Subordinate use cases Log into the system, Read Patient Records,
Examine Patient, Update Patient Records, Change
Authorization Settings for the Patient Record(s).

Table B-2 ADO Client Actions: Read Patient Record

Use Case Name ADO Client Actions: Read Patient Record

Goal in Context Application program (ADO client) browses patient
record.

Scope & Level Subfunction

Preconditions Patient records already exist in the system; physician
has logged into application program; application
program initiated successfully.

Success End Condition The intended part of patient records are "read"
accessed by the caregiver.

Failed End Condition The intended part of patient records are not "read"
accessed by the caregiver.

Primary Actors 1. Client program acting on behalf of the caregiver
(Client)

2. CORBA-compliant application service (Service),
which provides “read” access to the required
information.

Table B-1 Healthcare Scenario: Out-patient Visit to Attending Physician
RAD Healthcare Scenario: Out-patient Visit to Attending Physician April 2001 B-5

B

Figure B-2 ADO Client Actions Diagram

Secondary Actors 1. Access Decision Object (ADO), which provides
interface
DfResourceAccessDecision::AccessDecision

Trigger A caregiver is attempting to “browse” parts of the
patient medical record.

Applicable Access Policy Basic Hospital Patient Record Access: An attending
physician may read any part of the patient record.

Table B-2 ADO Client Actions: Read Patient Record

ADO
Client

Obtain
Resource

Name

Obtain
Principal
Security

Attributes

Obtain
Authorization

Decision

Enforce
Authorization

Decision
B-6 Resource Access Decision V1.0 month 2000

B

ing
 The
ad. It

ead
 to the

ource.

Table B-3 describes the actions of the application program (ADO client) in provid
the physician the capability of browsing resources contained in the patient record.
application program obtains from the physician the name of the resource to be re
then obtains the static attributes from the physician’s credentials. The application
invokes the ADO, which returns an indication of whether the physician is able to r
the requested resource within the patient record. If the physician has read access
resource, the application displays the resource for the physician.

The next section describes the actions of the ADO when it is invoked by the
application to determine if the physician has read access to the patient record res

Table B-3 ADO Client Actions: Read Patient Record

Description

Step Action

1 Application program (ADO client), acting on behalf of
the physician, obtains the resource_name for the part
of the patient record to be read and the static
attribute_list.

2 ADO client invokes access_allowed (resource_name,
“read,” attribute_list).

3 If access_allowed() returns “true,” then ADO client
reads and displays requested part of the patient record
to physician; otherwise, ADO Client displays error.

Extensions

Step Branching Action

No variations

Variations

Step Branching Action

No variations

Related Information

Priority High

Performance

Frequency Many times per hour through the hospital

Channels to actors

Open Issues

Superordinate use cases Out-patent Visit to Attending Physician

Subordinate use cases ADO Actions: Read Patient Record
RAD Healthcare Scenario: Out-patient Visit to Attending Physician April 2001 B-7

B

n

B.2.2 ADO Actions: Read Patient Record

Table B-4 Read Patient Record

Use Case Name ADO Actions: Read Patient Records

Goal in Context ADO renders access decision for a resource which is
part of the patient record.

Scope & Level Subfunction

Preconditions Patient records already exist in the system; Applicatio
program has invoked ADO.

Success End Condition An access decision is returned by the ADO to the
application program.

Failed End Condition An exception occurred and an access decision is not
returned by the ADO to the application program.

Primary Actors 1. Access Decision Object (ADO), which provides
interface
DfResourceAccessDecision::AccessDecision

Secondary Actors 1. Policy Locator Object(PL), which provides the
interface
DfResourceAccessDecision::PolicyEvaluatorLocator

2. Dynamic Attribute Service Object(DAS), which
provides interface
DfResourceAccessDecision::DynamicAttributeService

3. Policy Evaluator Object (PE), which provides the
interface DfResourceAccessDecision::PolicyEvaluator

4. Decision Combinator Object(DCO), which provides
the interface
DfResourceAccessDecision::DecisionCombinator

Trigger Application program (ADO client) invokes ADO.

Applicable Access Policy Basic Hospital Patient Record Access: An attending
physician may read any part of the patient record.
B-8 Resource Access Decision V1.0 month 2000

B

t

f
r
Figure B-3 Read Patient Record Diagram

Description

Step Action

1 ADO invokes
get_policy_decision_evaluators(resource_name) which
returns:
1. policy_evaluator_list that contains only one item: the
NamedPolicyEvaluator consisting of the evaluator_name
"Basic Hospital Patient Record Access Policy" and its objec
reference policy_evaluator.
2. A decision_combinator.

2 Using the static attribute_list provided by the ADO client,
ADO invokes get_dynamic_attributes(attribute_list,
resource_name, "read") which returns attribute_list', a list o
all static and dynamic attributes required for policy_evaluato
to make the access decision.

an Access Decision
Object : Access

an Application
Sy stem

ac cess _allowe d(Re sou rceN am e, O pera tion , At tribu teLis t)

a Locator : Policy
Ev aluatorLocator

an Ev aluator : Policy
Ev alua tor

a C om bina tor :
Decision

an Attribute Serv ice
: Dy namicAttribute

get_policy _decision_ev aluators(ResourceName)

get_dy namic_attributes(AttributeList, R esourceN ame, Operation)

combine_decisions(ResourceN ame, Operation, AttributeList, Policy Ev aluatorList)

* ev aluate(ResourceName, Operation, AttributeList)
RAD Healthcare Scenario: Out-patient Visit to Attending Physician April 2001 B-9

B

n

ame,
of

”
The above table describes the actions of the ADO in providing an access decisio
when invoked by the application in order to determine if the physician has the
capability of browsing resources contained in the patient record. Given resource_n
a resource within the patient record, the operation “read,” and attribute_list, a list
static attributes that contains the static role attribute “physician,” the ADO invokes
get_policy_decision_evaluators() with the resource_name which returns:

1. policy_evaluator_list that contains only one item: the NamedPolicyEvaluator
consisting of the evaluator_name “Basic Hospital Patient Record Access Policy
and its object reference policy_evaluator .

2. A decision_combinator .

Step Action

3 ADO invokes combine_decisions(resource_name, "read",
attribute_list', policy_evaluator_list). Within
combine_decisions(), the policy_evaluator with
evaluator_name "Basic Hospital Patient Record Access
Policy" is invoked returning
"ACCESS_DECISION_ALLOWED".
combine_decisions()returns "TRUE" to the ADO.

4 ADO returns the boolean result "TRUE".

Extensions

Step Branching Action

No variations

Variations

Step Branching Action

No variations

Related Information

Priority High

Performance

Frequency Many times per hour through the hospital

Channels to actors

Open Issues

Superordinate use
cases

ADO Client Actions: Read Patient Record

Description
B-10 Resource Access Decision V1.0 month 2000

B

 the
is

g
The ADO obtains dynamic attributes by invoking get_dynamic_attributes() with the
static attribute_list provided by the ADO client, resource_name , and the operation
“read.” Upon return, a combined list of static and dynamic attributes, consisting of
static role attribute “physician” and the dynamic relationship attribute “attending,”
now contained in attribute_list .

The ADO then invokes combine_decisions() with resource_name , the operation
“read,” the combined list of static and dynamic attributes attribute_list , and
policy_evaluator_list . Within combine_decisions() , the policy_evaluator with
evaluator_name “Basic Hospital Patient Record Access Policy” is invoked returnin
“ACCESS_DECISION_ALLOWED” since the principal has both the static role
attribute “physician” and the dynamic relationship attribute “attending.” Having
invoked all evaluators in policy_evaluator_list , combine_decisions() returns
“TRUE” to the ADO.

Finally, the ADO returns “TRUE” to the ADO client.
RAD Healthcare Scenario: Out-patient Visit to Attending Physician April 2001B-11

B

B-12 Resource Access Decision V1.0 month 2000

 Resource Names for PIDS C
use

he
llet

is
s

cess

ll:
This section describes corresponding changes to Person Identification Service
Specification (PIDS) (corbamed/98-02-29) in order for PIDS-compliant services to
RAD in a standard way.

C.1 Changes to Conformance Classes

The specification requires to add a new conformance class ‘PIDS using RAD’ in t
list of conformance classes by appending the following bullet item after the last bu
item on page 63:

• “‘PIDS using RAD’ - An implementation of PIDS is conformant to this class if it
conformant to any of the above conformance classes and, in addition, it obtain
from Resource Access Decision facility and enforces authorization decisions
according to the description provided in section 11.8 of this specification.”

C.1.1 Changes to Security Guidelines

The specification requires to add a new section (11.8) titled “Use of Resource Ac
Decision Facility” with the following text:

“Resource names used for obtaining access decisions from RAD facility by PIDS-
compliant services, should be created in a predefined manner:

PIDS_RAD_Resource_Name ::= ‘IDL:omg.org/PersonIdService’ +

{“QualifiedPersonId.domain”, <QualifiedPersonId.domain>} +
{“QualifiedPersonId.id”, <QualifiedPersonId.id>}+

(, {“TraitName”, TraitName})+

Text below explains the expression above in English.

If a PIDS-compliant service uses Resource Access Decision facility (RAD), it sha
Resource Access Decision, v1.0 April 2001 C-1

C

pe

he

he

n in

er,”

pt to

-

• create RAD resource names according to the following rules:

1. “resource_naming_authority ” data member of ResourceName shall adhere to
the syntax of NamingAuthority::AuthorityIdStr type. For the corresponding
datum element of type AuthorityId , the value of authority shall be ‘IDL.’ The value
of naming_entity shall be ‘omg.org/PersonIdService ’.

2. First element of ResourceName data member
resource_name_component_list is mandatory. It shall have value of
name_string ‘QualifiedPersonId.domain ’, and the value of value_string shall
be the value of domain data member of the corresponding datum element of ty
QualifiedPersonId for the person whose traits are to be accessed.

3. Second element of ResourceName data member
resource_name_component_list is mandatory. It shall have value of
name_string ‘QualifiedPersonId.id ’, and the value of value_string shall be
the value of id data member of the corresponding datum element of type
QualifiedPersonId for the person whose traits are to be accessed.

4. Third element of ResourceName data member
resource_name_component_list is mandatory. It shall have value of
name_string ‘TraitName ’. The value of the corresponding name_string data
members shall be the name of the trait to be accessed and it shall adhere to t
syntax of PersonIdService::TraitName data type.

5. All other elements of ResourceName data member
resource_name_component_list are optional. They shall have value of
name_string ‘TraitName ’. The value of the corresponding name_string data
members shall be the name of the trait to be accessed and it shall adhere to t
syntax of PersonIdService::TraitName data type.

• Create RAD operation name according to the following rules:

1. When serving invocations of operations that semantically mean “get,” operatio
DfResourceAccessDecision::access_allowed() shall have value ‘read.’

2. When serving invocations of operations that semantically mean “set” or “regist
operation in DfResourceAccessDecision::access_allowed() shall have value
‘write’.

• Obtain security attributes of the invoking principal.

• Obtain resource access decision(s) by invoking either access_allowed() or
multiple_access_allowed() on
DfResourceAccessDecision::AccessDecision interface.

• Enforce the decision according to the semantics of the operation the PIDS-
compliant service is serving.

• It is not mandated by this specification how exceptions caught during an attem
invoke either access_allowed() or multiple_access_allowed() on
DfResourceAccessDecision::AccessDecision interface are handled by PIDS
compliant service."
C-2 Resource Access Decision, v1.0 April 2001

Index
A
Access Decision Model 1-3, 1-4
access decision model 1-3
AccessDecision Interface 2-12
AccessDecisionAdmin Interface 2-19
administrative model 1-5, 1-6
Administrative view 1-3
ADO Actions

Read Patient Record B-8
ADO Client Actions

Read Patient Record B-5
Application flow schema 1-2

B
Basic Types 2-3

C
Computational Model 1-8
Conformance Classes 2-34, C-1
CORBA

documentation set iv

D
DecisionCombinator Interface 2-16
DuplicateEvaluatorName 2-11
DynamicAttributeService Interface 2-14

E
ExceptionData 2-9
Exceptions 2-8

G
Generic RAD Sequence Diagram B-1

H
Healthcare Scenario B-2

I
Information Model 1-7
InvalidPolicy 2-11
InvalidPolicyEvaluatorList 2-11
InvalidPolicyNameList 2-11

InvalidResourceName 2-11
InvalidResourceNamePattern 2-11

N
NoAssociation 2-10

O
Object Management Group iii

address of iv

P
PatternConflict 2-10
PatternDuplicate 2-10
PatternInUse 2-10
PatternNotRegistered 2-10
PolicyEvaluator Interface 2-18
PolicyEvaluatorAdmin Interface 2-31
PolicyEvaluatorLocator Interface 2-15
PolicyEvaluatorLocatorBasicAdmin Interface 2-20
PolicyEvaluatorLocatorNameAdmin Interface 2-21
PolicyEvaluatorLocatorPatternAdmin Interface 2-25
PolicyNameListIterator Interface 2-12

R
RadComponentError 2-10
RadInternalError 2-9
ResourceName 1-3
ResourceNameNotFound 2-10

S
Security Guidelines C-1

T
TooMany 2-11
Types 2-3
Types Associated with Evaluating Access Policy 2-6
Types that identify and manage information about secured

resources 2-4
Types used from the CORBA Security Service 2-3
Types Used to Request Access Decisions 2-7
 Resource Access Decision, v1.0 April 2001 Index-1

Index
Index-2 Resource Access Decision, v1.0 April 2001

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Overview
	1.1 Introduction
	1.2 Reference Models
	1.2.1 Access Decision Model
	1.2.2 Administrative Model
	1.2.3 Information Model
	1.2.4 Computational Model

	2. DfResourceAccessDecision Module
	2.1 OMG IDL
	2.2 Types
	2.2.1 Basic Types & Types used from the CORBA Security Service
	2.2.2 Types that identify and manage information about secured resources
	2.2.3 Types Associated with Evaluating Access Policy
	2.2.4 Types Used to Request Access Decisions
	2.2.5 Exceptions

	2.3 PolicyNameListIterator Interface
	2.4 AccessDecision Interface
	2.5 DynamicAttributeService Interface
	2.6 PolicyEvaluatorLocator Interface
	2.7 DecisionCombinator Interface
	2.8 PolicyEvaluator Interface
	2.9 AccessDecisionAdmin Interface
	2.10 PolicyEvaluatorLocatorBasicAdmin Interface
	2.11 PolicyEvaluatorLocatorNameAdmin Interface
	2.12 PolicyEvaluatorLocatorPatternAdmin Interface
	2.13 PolicyEvaluatorAdmin Interface
	2.14 Conformance Classes

	Appendix A - OMG IDL
	Appendix B - Use Case Example
	Appendix C - Resource Names for PIDS

