

Date: November 2005

Reusable Asset Specification
OMG Available Specification
Version 2.2

formal/05-11-02

Copyright © 2003, Adaptive

Copyright © 2003, Blueprint Technologies
Copyright © 2003, ComponentSource
Copyright © 2003, Flashline
Copyright © 2003, IBM
Copyright © 2003, LogicLibrary
Copyright © 2005, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

1 Scope ...1

2 Conformance ...1

3 Normative References ...1

4 Terms and Conventions ...1
4.1 Document Conventions ... 1

 4.1.1 XML Elements... 2
4.2 UML Modeling Conventions .. 2

 4.2.1 RAS UML Model Conventions for XML Schema (the incumbent) 2
 4.2.2 RAS UML Model Conventions for MOF 2.0 XMI ... 3

5 Additional Information ..3
5.1 Related and Dependent Standards ... 3

 5.1.1 XML ... 3
 5.1.2 XML Schema ... 4
 5.1.3 MOF/XMI XML Schema .. 4

5.2 References .. 4
5.3 Acknowledgements ... 4

 5.3.1 Submitters ... 5
 5.3.2 Supporters .. 5
 5.3.3 Reviewers ... 6

6 Reusable Assets ...7
6.1 Defined .. 7
6.2 Reusable Software Asset Types ... 7

 6.2.1 Granularity ... 8
 6.2.2 Variability ... 8
 6.2.3 Articulation .. 8

6.3 Asset Packaging ... 8
 6.3.1 Bundled As Single Archive File ... 9
 6.3.2 Unbundled With Artifacts In Original Location ... 9
 6.3.3 Unbundled With Artifacts Moved To New Location ... 10

6.4 Core RAS 2.1 .. 11
 6.4.1 Core RAS and Profiles .. 11
 6.4.2 Core RAS Model and XML Schema Overview .. 13
 6.4.3 RAS Compliance ... 16
 6.4.4 Required Classes .. 16
 6.4.5 Required Attributes ... 17
 6.4.6 Asset ... 18
 6.4.7 Description .. 20
 6.4.8 Profile .. 22
 6.4.9 MOF Classes .. 27
 6.4.10 Classification ... 27
Reusable Asset Specification, v2.2 i

 6.4.11 Solution ... 39
 6.4.12 Usage.. 52
 6.4.13 RelatedAsset... 62
 6.4.14 Asset Identity ... 64
 6.4.15 Core RAS Semantic Constraints ... 65

6.5 Default Profile 2.2 .. 66
 6.5.1 Default Profile History ... 67
 6.5.2 New Element Summary .. 67
 6.5.3 Required Elements .. 67
 6.5.4 Required Attributes .. 67
 6.5.5 Semantic Constraints .. 67
 6.5.6 RAS Compliance ... 67

6.6 Default Component Profile 2.2 .. 68
 6.6.1 Default Component Profile History .. 68
 6.6.2 Required Classes .. 68
 6.6.3 Required Attributes ... 68
 6.6.4 RAS Compliance.. 69
 6.6.5 Solution ... 70
 6.6.6 Default Component Profile Semantic Constraints ... 89

6.7 Default Web Service Profile 2.2 .. 90
 6.7.1 Default Web Service Profile History .. 90
 6.7.2 Required Classes .. 91
 6.7.3 Required Attributes ... 91
 6.7.4 RAS Compliance... 92
 6.7.5 Solution ... 92
 6.7.6 Default Web Service Profile Semantic Constraints .. 98

7 The .ras File Format ...101
7.1 Mapping RAS to .ras Files ... 101

 7.1.1 Organizing .ras Files ... 102
 7.1.2 Browsing .ras Files .. 102

8 MOF & XMI ..103

9 RAS Repository Service ...105
9.1 Http Request / Response Descriptions ... 105

10 Roadmap ..107

Glossary ...109

Index ...113
ii Reusable Asset Specification, v2.2

1 Scope
The scope of this Specification is a set of guidelines and recommendations about the structure, content, and descriptions
of reusable software assets. We recognize that there are different categories of reusable software assets. The specification
identifies some categories, or rather types or profiles and provides general guidelines on these profiles.

The Reusable Asset Specification (RAS) addresses the engineering elements of reuse. It attempts to reduce the friction
associated with reuse transactions through consistent, standard packaging. This is much like the steering wheel, turn
signals, pedals, and fuel gauge in a car: although they’re slightly different across car models and makes, there’s a
familiarity among them that significantly reduces the costs of reuse.

2 Conformance
Conformance to RAS is described in the constraints and compliance sections of this document.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification.

In addition to this document the respective XMI files are considered normative, ptc/2005-03-17.

4 Terms and Conventions
For the purposes of this specification, the following terms and conventions apply.

4.1 Document Conventions
The following conventions and terms are used in this document.

• <descriptor-group> element: a term with the < > delimiters represents an element in an XML schema.

• attribute: a bold-italic term is an attribute on an element.

• All node and attribute names are written in lower-case letters only.

• When multiple words are used for the name of a node or attribute, we use a hyphen between the words, as such ‘arti-
fact-type’; however, this will likely change as we bring RAS to be compliant with MOF 2 and XMI 2.

• Many of the images in this document show XML Schema and XML documents in the WebSphere Studio Application
Development XML editor.

• Each UML model element is described with two sections, the UML Model for XML Schema section, with its respec-
tive XML Schema, and the UML Model for MOF 2.0 XMI section, with its respective MOF/XMI XML Schema.
Reusable Asset Specification, v2.2 1

4.1.1 XML Elements

XML elements are written inside of angled brackets, for example <element>.

4.2 UML Modeling Conventions
There are two RAS UML models described in this document, these models were produced using Rational Rose. One RAS
UML model is used to translate into XML Schema and represents the RAS XML schemas and files that are used by
various tool vendors today. The other RAS UML model is used to translate into MOF/XMI XML Schema. This model
was organized to be translated by the Eclipse EMF converter.

The modeling conventions used in the models are described below starting with the RAS UML model for XML Schema.

4.2.1 RAS UML Model Conventions for XML Schema (the incumbent)

• Class names
The class names begin with lower case and multiple words are separated with a hyphen (‘-‘).

• Association, IDs, containership
All associations are declared as by-value associations. This is intended to express that the ‘contained’ class will be a
child element in the XML schema. As such, where persistent associations need to be preserved the owning class con-
tains an ID attribute.

• Association cardinality
The cardinality amongst classes is expressed using UML adornments with the style [lower range…upper range]. In the
case of an infinite upper range the ‘*’ adornment is used.

• Attribute names
Following the same convention as class names, the names begin with lower case and multiple words are separated with
a hyphen (‘-‘).

• Attribute types
The attribute type is declared using non-programming language specific adornments using lower case terms such as
[string, int].

• Attribute mandatory/optional
The attribute’s mandatory/optional information is captured in the attribute’s documentation window using values of
[required, optional].

• Attribute visibility
The attribute’s visibility is declared as private by default, although these semantics do not translate directly into the
XML schema.

UML Model for XML Schema XML Schema

UML Model for MOF 2.0 XMI XML Schema
2 Reusable Asset Specification, v2.2

4.2.2 RAS UML Model Conventions for MOF 2.0 XMI

• Class names
The class names begin with upper case and multiple words are identified with an upper case letter.

• Class documentation
Each class is defined in the class’ documentation field.

• Association, IDs, containership
All associations which are intended to be parent-child relationships are modeled as by-value associations. If a class
needs to maintain a reference to another class, this is handled with a uni-directional association, no by-value semantics
are specified. This allows us to remove the ID attributes from the model. However, there are some places where an ID
attribute exists. These are used for IDs that go beyond the boundary of the current asset manifest file.

• Association role names
All association role names are declared using singular terms.

• Association cardinality
The cardinality amongst classes is expressed using UML adornments with the style [lower range…upper range]. In the
case of an infinite upper range the ‘*’ adornment is used.

• Attribute names
The attribute names begin with lower case and multiple words are identified with an upper case letter.

• Attribute types
The attribute type is declared using non-programming language specific adornments using some terms that begin with
upper case such as [String, int] and other terms that begin with lower case.

• Attribute mandatory/optional
The attribute’s mandatory/optional information is captured in the attribute’s stereotype information. Thus <<1..1>> on
the attribute’s stereotype information indicates that the attribute is required and has an upper bound of 1. This modeling
convention was used to support the MOF/XMI translation tools.

• Attribute visibility
The attribute’s visibility is declared as public for all attributes.

• Attribute documentation
Each attribute is defined in the attribute’s documentation field.

5 Additional Information

5.1 Related and Dependent Standards
This specification depends on several other specifications which are listed below.

5.1.1 XML

The manifest document is an XML document. This specification was written with the Extensible Markup Language
(XML) 1.0 (Second Edition) W3C Recommendation 6 published in October 2000. XML is a simple, very flexible text
format derived from SGML (ISO 8879). This specification is managed by the W3C.
Reusable Asset Specification, v2.2 3

5.1.2 XML Schema

The authoritative description of the RAS manifest document structure is provided as an XML Schema. XML Schemas
express shared vocabularies and allow machines to carry out rules made by people. They provide a means for defining the
structure, content and semantics of XML documents. XML Schema was approved as a W3C Recommendation on 2 May
2001. This specification is managed by the W3C.

5.1.3 MOF/XMI XML Schema

The OMG describes a MOF / XMI mapping which describes how to handle complex associations and UML models for
interchange. Using this standard approach to creating the UML models describing the domain of reusable assets and
translating to the XMI-based XML schema simplifies the effort. MOF and XMI are described more at http://www.omg.org/
gettingstarted/overview.htm.

5.2 References
John Cheesman, UML Components, Addison-Wesley.

5.3 Acknowledgements

The following individuals are acknowledged for their contribution to RAS:
• Brent Carlson (LogicLibrary)

• Charles Stack (Flashline)

• Craeg Strong (Ariel Partners)

• Don Weinand (IBM)

• Ed Bacon (Vanguard)

• Grady Booch (IBM)

• Grant Larsen (IBM)

• Ivar Jacobsen (Jaczone)

• Jim Conallen (IBM)

• Jim Green (Microsoft)

• Jimmy Kerekes (Telstra)

• John Cheesman (Irene 7)

• John Steele (Charles Schwab)

• Jun Ginbayashi (Fujitsu)

• Lance Delano (Microsoft)

• Lior Amar (OSTnet)

• Martin LeClerc (IBM)

• Neil Boyette (IBM)

• Kumar Vagaparty (Merrill Lynch)

• Pete Rivett (Adaptive)
4 Reusable Asset Specification, v2.2

• Sam Patterson (ComponentSource)

• Sridhar Iyengar (IBM)

• Sumeet Malhotra (Unisys)

• Wayne Wulfert (Caterpillar)

• Wojtek Kozaczynski (Microsoft)

5.3.1 Submitters

• Adaptive (http://www.adaptive.com)

• Blueprint Technologies (http://www.blueprinttech.com)

• ComponentSource (http://www.componentsource.com)

• Flashline (http://www.flashline.com)

• IBM (http://www.ibm.com)

• LogicLibrary (http://www.logiclibrary.com)

• OSTnet (http://www.ostnet.com)

5.3.2 Supporters

• ABB

• Aetna

• Borland Software

• Cap Gemini Ernst & Young

• Caterpillar

• Component Consortium for EJB (TM)

• Component Square, Inc.

• Fujitsu Limited

• Hitachi Software Engineering Co., Ltd.

• IBM Japan, Ltd.

• Nomura Research Institute, Ltd.

• NTT Comware Corporation

• TIS Inc.

• IconMedialab

• Iocore-7n

• Jaczone

• Kantega

• Martin Griss Associates

• OSTnet

• Praxis Engineering Technologies
Reusable Asset Specification, v2.2 5

• RDA Corporation

• Telstra

• Unisys

• USPTO

• Volvo

• Xansa

5.3.3 Reviewers

• Alan Brown (IBM)

• Bran Selic (IBM)

• Davyd Norris (IBM)

• Daud Santosa (USPTO)

• Jim Rumbaugh (IBM)

• Kelli Houston (IBM)

• Magnus Christerson (IBM)

• Pete Eeles (IBM)

• Steve Brodsky (IBM)
6 Reusable Asset Specification, v2.2

6 Reusable Assets

6.1 Defined
Simply said, reusable assets provide a solution to a problem for a given context. The figure below illustrates a high-level
description of reusable assets. The asset may have a variability point, which is a location in the asset that may have a
value provided or customized by the asset consumer. The asset has rules for usage which are the instructions describing
how the asset should be used.

Figure 1 - General Asset Definition

Artifacts are any workproducts from the software development lifecycle, such as requirements documents, models, source
code files, deployment descriptors, test cases or scripts, and so on. In general the term “artifact” is associated with a file.
These terms are used interchangeably throughout this document.

6.2 Reusable Software Asset Types
The general asset definition given above is refined for various kinds of software assets. A specific kind of asset may
specify the artifacts that must be in the asset and may declare a specific context, such as a development context or a
runtime context for which the asset is relevant. There are three key dimensions that describe reusable assets: granularity,
variability, and articulation.

Figure 2 - Reusable Software Asset Types

Reusable Asset Specification, v2.2 7

6.2.1 Granularity

The granularity of an asset describes how many particular problems or solution alternatives a packaged asset addresses.
The simplest assets only offer a singular solution to a single well defined problem. As the granularity increases the asset
addresses multiple problems, and/or may offer alternative solutions to those problems.

In general with the increase of granularity comes an increase in size and complexity of an asset.

6.2.2 Variability

The variability and visibility of an asset is another key property of an asset. At the one extreme an asset can be invariable,
that is it cannot be altered in any significant way. This is often the case for assets that are component binaries. Assets at
this end of the spectrum are sometimes called black-box assets, since their internals cannot be seen and are not
modifiable.

At the other end of the spectrum are white-box assets. These assets are created with the expectation that asset consumers
will edit and alter its implementation. White-box assets also typically include development artifacts such as requirements,
models, build files, etc.

Two other variations in between are clear-box assets and gray-box assets. Clear-box assets expose implementation details
(via models, code fragments, or other documentation), however they cannot be modified. These details are exposed solely
to help the consumer better understand the inner workings of the asset, so that the consumer can use the asset more
efficiently. Gray-box assets expose and allow modification only to a subset of the asset’s artifacts, usually through the
parameters on the asset.

6.2.3 Articulation

The articulation dimension describes the degree of completeness of the artifacts in providing the solution. Assets whose
artifacts specify a solution but do not provide the solution have a low degree of articulation. Whereas assets whose
artifacts specify and implement a solution along with supporting documents such as requirements, use cases, testing
artifacts, and so on, have a greater degree of articulation.

6.3 Asset Packaging
Every reusable asset must contain at a minimum one manifest file, which are described below, and at least one artifact to
be considered a valid reusable asset. The manifest file is an XML document that validates against one of the known RAS
XML Schemas (see Manifest Schema), and passes an additional set of semantic constraints (see Semantic Constraints)
described in the profile document.

An asset package is the collection of artifact files plus a manifest. There are several asset packaging scenarios including:

• Packaged bundled as an archive file.

• Packaged unbundled

• Artifacts may remain in their place of origin.

• Artifacts may be moved to another location when “packaged.”
8 Reusable Asset Specification, v2.2

6.3.1 Bundled As Single Archive File

This approach to packaging may be used in a team development environment. But it also works well with less formal
asset-based development processes as well as single user environments.

For this packaging approach using the Zip compression algorithm all the files, including the manifest file can be
combined into a single archive file, making distribution of the asset easier. Rational XDE is an example of a tool that
produces and consumes zipped RAS archive files. This approach to asset packaging is illustrated in the figure below.

Figure 3 - Asset Packaging with Zip format

The directory in which a manifest file is located (on the filesystem or in an archive file) is considered the root context for
all the asset’s artifacts (files). All files referenced in the manifest file are referenced relative to the root context. When
assets are packaged using the Zip format, as described above, all files referenced in the manifest must exist in the root
context or in one of its sub directories. References to files from the manifest are relative to the root context.

For assets packaging their artifacts in a .ras file, use “manifest.rmd” for the manifest file name. This file should be in the
root of the .ras file. There may be multiple .rmd files in the .ras file. But, there must be one at the root of the .ras file
which serves as the entry point to the asset.

There are also no restrictions on the inclusion of additional files in an asset’s package. Additional files included in an
asset package may exist for practical or pragmatic reasons necessary for any tooling or processes used. These files
however should not be considered a part of the asset. All files that make up the asset and that are required to apply and
use an asset must be referenced by exactly one <artifact> element in the <solution> element of the asset manifest. Files
not referenced by an <artifact> element are considered to be not required by the asset, and it is perfectly legal for a tool
to repackage the asset without the extra files and deliver the revised asset package and have it considered equivalent to
the original asset package. There are two kinds of files that are exempt from this constraint. The first is the asset manifest
file (i.e., rasset.xml) and the second is the RAS XML Schema file(s).

For aggregated assets or packages with more than one asset defined in them, the entire set of all <artifact> references for
all manifest files is what determines which files are required to be kept in the package when transferring or replicating the
asset.

6.3.2 Unbundled With Artifacts In Original Location

Developing artifacts in a team environment generally includes the use of version control systems. One approach to
defining assets is to add the asset manifest file to the version control system and point to the artifacts in their original
location. The RAS structure supports this style of asset “packaging.”
Reusable Asset Specification, v2.2 9

http://www.info-zip.org/pub/infozip/Zip.html

Figure 4 - Asset Manifest File Points To Artifacts In Original Location

6.3.3 Unbundled With Artifacts Moved To New Location

In many cases when artifacts are to be packaged within an asset, the artifacts require some modification to make them
reusable. At this point the artifact may take on a new identity and be moved to a new location wherein it may be modified
as necessary. Again, the RAS structure supports this scenario for asset “packaging.”

Figure 5 - Asset Manifest File Points To Artifacts In New Location

10 Reusable Asset Specification, v2.2

6.4 Core RAS 2.1

6.4.1 Core RAS and Profiles

RAS is described in two major categories, Core RAS and Profiles. Core RAS represents the fundamental elements of
asset specification. Profiles describe extensions to those fundamental elements. A profile must not alter the definition or
semantics of the nodes and elements defined in Core RAS.

The Core RAS is not instantiated therefore an asset must be of a particular profile. A profile may extend Core RAS or
may extend another profile.

The image below illustrates the Core RAS and Profiles.

Figure 6 - Core RAS and Profiles

The image above shows the general relationship of the Core RAS and the profiles. However, the relationship is more
accurately displayed in the image below. The Default Profile is a realization of the Core RAS. The Default Component
Profile and the Default Web Service Profile derive from the Default Profile. The derivation information is captured in the
profile history in each schema which is described later in this document.

Figure 7 - RAS Profile Relationships
Reusable Asset Specification, v2.2 11

It is recognized that the Core RAS information specification may be improved for special circumstances. Using the same
term and general goal as the UML extension mechanism a RAS Profile is a formal extension of the meta information
structure. In general it is a way to add or augment information to the base (default) specification.

A RAS profile can be created to introduce tighter semantics and constraints. For example, a new profile may make current
optional nodes to be required. But the constraints in the parent profiles cannot be removed. For instance, existing nodes
cannot be made less constrained in the new profile than how they are defined in parent profiles.

Attributes on existing nodes can be added in new RAS profiles. However, the constraints on existing attributes cannot be
reduced. For example, a new profile may make current optional attributes to be required. But the constraints in the parent
profiles cannot be removed. Existing attributes cannot be made less constrained in the new profile than how they are
defined in parent profiles.

Every manifest document may reference the XML schema document associated with the profile that can be used to
validate the manifest document. The profile’s schema document can be referenced with the xsi:schemaLocation as an
attribute of the <asset> element. For example:

<asset xsi:schemaLocation="RAS_defaultprofile_ver2.1.xsd"

name="My Asset" id="369BEA01-B4C2-4d47-99C8-6E44079207F1">

The actual filename may vary for the profile file, the only thing required is the URI of the schema via xmlns. The schema
file is expected to accompany the manifest document, however this is not required. The profile schema file may be
referenced with a URL, and accessed through a network.

The image below identifies some major sections and elements of Core RAS. In the Asset section at the top of the image
are some of the asset-level attributes. Core RAS defines four major sections to an asset including the Classification
section, Solution section, Usage Section, and Related-Assets section.

Figure 8 - Major Sections of Core RAS

The image above illustrates the general structural elements of Core RAS. An asset is specified by these various sections
which are contained in the asset’s meta data, as shown in the image below.
12 Reusable Asset Specification, v2.2

Figure 9 - Core RAS Domain Model - Major Sections

The collection of discrete artifacts in an asset can be overwhelming even for moderately sized assets. The RAS helps by
specifying how the artifacts are organized and which pieces of meta-documentation of the asset (the information
describing the asset) are required. It structures the asset into sections, as shown in the figure below. These sections
(which, returning to our car analogy, are like the steering wheel, turn signals, and so on) include the:

• Classification section, listing a set of descriptors for classifying the asset as well as a description of the context(s) for
which the asset is relevant.

• Solution section, describing the artifacts of the asset.

• Usage section, containing the rules for installing, customizing, and using the asset.

• Related Assets section, describing this asset’s relationship to other assets.

While this is a general representation of assets, there is certainly more required to specify certain kinds of assets such as
web services, patterns, components, and frameworks. RAS can be extended through profiles. Several groups have started
working on such profiles such as a Component profile and a Web Service profile.

These profiles preserve and extend the core description of RAS given above.

6.4.2 Core RAS Model and XML Schema Overview

This section of the specification explains the structure of the manifest document. From the UML model is derived an
XML Schema document, which is the authoritative description for the manifest document. The XML Schema is not
sufficient to describe completely a valid RAS manifest document. Additional semantic constraints are summarized later in
this document (see Semantic Constraints). This section outlines both the XML document elements and structure as well
as key semantic constraints associated with each element.

This document presents each of the asset elements using the Rose model as the medium. For each class representing an
asset element, the XML Schema element is used. For instance, for the Asset model element, the <asset> XML schema
element is also used to describe the Asset.

Multiple tool vendors are currently using the RAS XML schema files included with this document. As such this document
describes both the incumbent XML schema files and the newly formed MOF/XMI schema expressions of RAS.
Reusable Asset Specification, v2.2 13

The UML model below articulates the key classes comprising the asset specification. This model is at the level from
which an XML schema could potentially be generated. The aggregation relationships between the classes declare the
element owners and containers. The association relationships describe asset element associations wherein an id is
generally needed to persist the relationship.

Figure 10 - Core RAS UML Model for XML Schema
14 Reusable Asset Specification, v2.2

Figure 11 - Core RAS UML Model for MOF 2.0 XMI

This Core RAS UML model is translated into an XML schema representation as illustrated in the image below. The major
sections from the RAS UML models are represented with a brief description of each element.
Reusable Asset Specification, v2.2 15

Figure 12 - RAS Default Profile XML Schema Overview

6.4.3 RAS Compliance

There are two forms of compliance described here, asset compliance and tool compliance. Asset compliance refers to the
nature of the manifest file and the rules, relationships, and constraints surrounding it. Tool compliance refers to the
behavior of tools as it interacts with the asset and the manifest file.

An asset is RAS compliant if all of the following conditions are true:

Tool Compliance

1. Tool vendors must provide processing for at least one primary artifact type. This means that tool vendors must
recognize the value in the type attribute and process it appropriately within the context of their own tooling. The other
primary types may be generically handled. Whereas tooling vendor support for all secondary artifact types are
considered optional.

Asset Compliance

2. The asset enforces all the semantic constraints (see “Semantic Constraints” on page 67) described for Core RAS in
this document. See Section 6.4.15, “Core RAS Semantic Constraints,” on page 65.

6.4.4 Required Classes

“Semantic Constraints” on page 67 describes what elements must have some values for RAS compliance to be achieved.
The purpose for this is to support a spectrum of reuse formalities. Some organizations are prepared for informal reuse and
lightweight packaging costs, whereas other organizations may be on the other end of the spectrum.

A RAS profile could be created to introduce tighter semantics and more required elements; but the existing required
elements cannot be made optional in a new RAS profile, see “Constraint 15” on page 66.
16 Reusable Asset Specification, v2.2

The required elements are listed below:

• Asset

• Profile

• Solution

Although the Solution class is required and the associated Artifact class is optional, “Constraint 2” on page 65 states that
there must be at least one Artifact with a name and a reference to be RAS compliant. The <artifact> element is optional
to ease future profiles that might add more specific nodes in the solution section (such as requirements, design,
implementation and so on) and may want to make them required. A key rule for creating new profiles is to not alter the
constraints of parent profiles.

6.4.5 Required Attributes

Very few of the attributes are required. “Semantic Constraints” on page 67 describes what additional attributes must have
some elements for RAS compliance to be achieved. The purpose for this is to support a spectrum of reuse formalities.
Some organizations are prepared for informal reuse and lightweight packaging costs, whereas other organizations may be
on the other end of the spectrum.

A RAS profile could be created to introduce tighter semantics and more required attributes; but the existing required
attributes cannot be made optional in a new RAS profile, see “Constraint 15” on page 66.

The required attributes are listed in the table below; many of these attributes reside on optional classes, meaning the
XML schema node for the class is not required for packaging an asset.

Table 1 - Core RAS::UML Model for XML Schema Required Attributes

Core RAS UML Model for XML Schema
Required Class Required Attribute Optional Class Required Attribute
asset name related-profile name
asset id related-profile id
profile name related-profile version-major
profile id-history related-profile version-minor
profile version-major context name
profile version-minor context id

descriptor name
artifact-context context-id
artifact-dependency artifact-id
variability-point name
variability-point id
artifact-type type
artifact-activity artifact-id
context-ref context-id
activity id
activity task
variability-point-
binding

variability-point-id

variability-point-
binding

binding-rule

related-asset name
related-asset relationship-type
Reusable Asset Specification, v2.2 17

There are fewer required attributes in the MOF/XMI XML Schema because of the id support in XMI and the fact that
relationships can be modeled and supported as part of the schema itself.

Table 2 - Core RAS::UML Model for MOF 2.0 XMI Required Attributes

** This attribute is not formally specified in the model because XMI provides id support by default; these ids in XMI are optional and
therefore this table specifies constraints on the id that it is required.

*** This id attribute DOES reside in the model and is the profile id for a profile which is an ancestor to the current profile
and which is not the <profile> id from the current asset’s manifest.

6.4.6 Asset

Every RAS manifest document begins with a single Asset instance. This Asset instance defines the identity of the
reusable software asset (see “Asset Identity” on page 64).

This Asset instance contains two required attributes; name and id. For the XMI XML schema the id does not appear in
the model as it relies on the XMI generator to produce it.

The name identifies the asset in a few words and is intended for human consumption, whereas the id attribute is expected
to contain a globally unique identifier and is used by tooling to distinguish assets.

 The purpose of this attribute is to provide a globally unique identifier for an XML element. The values of this attribute
should be globally unique strings optionally prefixed by the type of identifier. If you have access to the UUID assigned in
MOF, you may put the MOF UUID in the xmi.uuid XML attribute when encoding the MOF data in XMI. The values of
this attribute may be used in the href attribute in simple XLinks. XMI does not specify which UUID convention is chosen.

The form of the UUID (Universally Unique Identifier) is taken from a standard defined by the Open Group (formerly the
Open Software Foundation).

When a UUID is placed in an XMI file, the form is “id namespace:uuid.” The id namespace of UUIDs is not mandatory
and can be omitted. An example is “2fac1234-31f8-11b4-a222-08002b34c003.”

An asset’s name and short description are typically the first pieces of information that potential consumers see when
searching asset repositories. An asset’s name should reflect the general solution strategy of the asset and optionally the
problem that it addresses. The short description should be suitable for use in a line item where multiple asset names and
short descriptions are displayed to a potential consumer.

Core RAS UML Model for MOF 2.0 XMI
Required Class Required Attribute Optional Class Required Attribute
Asset name RelatedProfile name
Asset id** RelatedProfile id***
Profile name RelatedProfile versionMajor
Profile idHistory RelatedProfile versionMinor
Profile versionMajor Context name
Profile versionMinor Descriptor name

VariabilityPoint name
ArtifactType type
Activity task
VariabilityPoint-
Binding

bindingRule

relatedAsset name
relatedAsset relationshipType
18 Reusable Asset Specification, v2.2

The date attribute contains a valid date using the default XML format (YYYY-MM-DD). The date indicates the date that
the asset is ready to be used by asset consumers.

The state attribute indicates the state that the asset is currently in. This is intended primarily for asset certification
workflows as an asset is undergoing reviews in preparation to be published in a repository.

The asset’s version attribute can be any string and is used to compare two assets with the same id attribute.

The asset’s access rights attribute can be any string which describes the permissions of asset consumers for interacting
with the asset such as viewing or using.

The Asset class has two required associations: Profile and Solution and four optional associations: Description,
Classification, Usage, and RelatedAsset. These classes are discussed throughout this document.

Table 3 - Core RAS::Asset Class

Asset
UML Model for XML Schema XML Schema

- Required: true
- Document global: false
- Unbounded: false

Reusable Asset Specification, v2.2 19

6.4.7 Description

The Description class is a simple container for a human readable description of the asset. This description is expected to
be about one or two paragraphs in length, however there is no restriction on size specified by this document. It describes
in some detail the problem that the asset addresses and its main solution strategies.

It is possible for the content of the Description element to be formatted with HTML. The Description is global in the
XML Schema and is referenced in multiple places.

The “value” attribute for this class in the RAS model is expressed as a multi-line element in XML as shown below.

<description>The Description.value Here</description>

UML Model for MOF 2.0 XMI
20 Reusable Asset Specification, v2.2

.

Table 4 - Core RAS::Description Class

Description
UML Model for XML Schema XML Schema

- Required: false
- Document global: true
- Multi-line text
- Unbounded: false

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 21

6.4.8 Profile

An asset is defined by one Profile; a Profile describes the asset’s type. A profile can reference other model elements that
can be used to describe the profile, for example UML packages or classes. The Profile can have different versions and
should declare its lineage or ancestry from other profiles. The RelatedProfile captures information on the Profile’s
lineage.

The Profile class in the XML schema includes information about the format of the manifest itself. It identifies exactly
which version of this specification and which RAS profile should be used to validate the manifest document for
compliance. A Profile defines the structure and semantics of an asset’s manifest document. Every RAS manifest
document must identify the Profile that can be used to validate it. Every Profile is derived from another Profile with the
one exception being the original Core Profile, which was defined by the first version of the RAS and for which there is
no XML Schema produced. Profiles can extend directly from Core RAS or from any other profile such as the Default
Profile for version 2.2. These derived Profiles can only add elements and attributes to the manifest’s XML Schema, and/
or associate new semantics to existing elements. They cannot remove elements or attributes from the XML Schema. In
general derived Profiles are more restrictive. This attempts to make it easier for tools to gracefully handle assets created
with profiles defined after the tooling was created.

Each Profile specifies a human readable name that reflects the purpose or scope of the Profile. The authoritative identifier
of a profile is its id. A profile’s id can be any sequence of characters but must not contain a double colon (::). The
examples in this document use Microsoft style GUIDs1 , however the specification only requires the ids to be unique
within the expected scope of reuse, and not to include a double colon.

The id-history is a composite key that is made up of the Profile id followed by the Profile ids of all the Profiles from
which it is derived. A Profile is derived from exactly one parent Profile with the notable exception of the first and original
Core profile introduced with the RAS 1.0 specification.

As an example the following is the id-history for the RAS Default profile version 2.1:

F1C842AD-CE85-4261-ACA7-178C457018A1::31E5BFBF-B16E-4253-8037-98D70D07F35F

It indicates that the profile identified by: “F1C842AD-CE85-4261-ACA7-178C457018A1” is the Core profile. The profile
identified by “31E5BFBF-B16E-4253-8037-98D70D07F35F” is for the Default profile.

If a new Profile is defined, a new id is be generated and is appended to the id-history of the Profile that it derived from.
For example, using GUIDs as ids it might be:

F1C842AD-CE85-4261-ACA7-178C457018A1::31E5BFBF-B16E-4253-8037-98D70D07F35F::F8C49799-
25C9-4312-B798-D5D2E1FBC656

This new Profile defines a new set of elements, attributes and semantics that extend those already defined by all of the
other profiles in the id-history.

The version-major and version-minor attributes help identify the Profile version, and in particular helps distinguish it
from previous Profiles with the same name. These attributes are integers. Often these two values are combined together
with a period, and form what appears to be a floating-point number. For example a version major of 2, and version minor
of 1 might be written as version 2.1.

1. Specifically GUIDs encoded using style D. For more information on the Format Provider Specifier values (N, D, B, and P)
refer to the .NET Framework Class Library documentation for the Guid.ToString(String, IFormatProvider) function.
22 Reusable Asset Specification, v2.2

Changes in the version major and version minor values should be made when a profile is updated and when its name
remains the same. This would be the case when a profile is updated but its target purpose or scope, and hence name
remains the same.

The reference attribute is an optional attribute that references an external document that contains more information about
the profile. This document should explain the new elements, attributes, and semantics of the profile used. The reference
attribute can also contain a URL reference that points to a resource outside of the root context (i.e, http://www.myorg.org/
profiles/newProfile.html).

The Profile class has two associations, one with Description, which used to capture human readable comments that
describe the Profile, and one with RelatedProfile, which provides human readable information about each of the Profiles
in the id-history.

Other associations include:

References

element type = Element [0..1] - The optionally referenced model element used to describe the profile.

classificationSchema type = ClassificationSchema [0..*] - This refers to the classification schema for the profile.

dependencyKind type = DependencyKind [0..*] - The optionally referenced kinds of dependencies relevant for
this profile.

history type = Description [0..*] - Captures profile history.

description type = Description [0..1] - Captures the description of the profile.

requiredElement type = MOF::Class [0..*] - Identifies the required classes for the profile.

requiredAttribute type = MOF::Property [0..*] - Identifies the required properties for the profile.

semanticConstraint type = MOF::Constraint [0..*] - Identifies the constraints for the profile and allows textual
as well as OCL constraints.

dependencyKind type = DependencyKind [0..*] - The dependency kinds that this profile has introduced.

The Profile may reference an Artifact to provide further background and clarification on the Profile. The Profile may
reference DependencyKind to describe the kinds of dependencies relevant for the profile.

There are many mechanisms and approaches to extending a RAS profile, including:

• creating a new XML schema file directly,

• using EMF/Ecore files and extending from there,

• using modeling tools such as Rose to model the extension and generate from there,

• and so on

You should refer to a specific vendor for one of these or some other mechanism for extending RAS.
Reusable Asset Specification, v2.2 23

Table 5 - Core RAS::Profile Class

Profile
UML Model for XML Schema XML Schema

- Required: true
- Document global: false
- Unbounded: false
24 Reusable Asset Specification, v2.2

An example of a profile extension may be found in the document: Component Information Profile based on the
Component Specification and Quality Information Description Rules of the Component Consortium for EJB™ in Japan
(an example of extended RAS profile). The document number is ptc/2005-03-14.

6.4.8.1 RelatedProfile

This node captures the history of the profile by describing the profile’s genealogy. This element includes many of the
same attributes found in the <profile> element, however there is no id-history attribute.

This node has the attributes name, id, version-major, version-minor, reference, and parent-id. The name contains the
profile name. The id contains the profile’s id, which should appear in the id-history attribute of the <profile> element.

The version-major, and version-minor attributes contain the ancestor profile’s version information. The reference
contains a pointer to a document, which describe the profile in more detail. The parent-id describes the profile’s ancestor
from which it was derived.

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 25

The RelatedProfile may reference an Artifact to provide further background and clarification on the RelatedProfile..

Table 6 - Core RAS::RelatedProfile Class

Related Profile
UML Model for XML Schema XML Schema

- Required: true
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI

26 Reusable Asset Specification, v2.2

6.4.9 MOF Classes

MOF::Element {isAbstract = true}

MOF::Element is merged with MOF:Reflection allowing any element to be referenced from a profile.

MOF::Class {isAbstract = true}

MOF::Class represents the required elements for the profile

MOF::Property {isAbstract = true}

MOF::Property represents the required attributes for the profile

MOF::Constraint {isAbstract = true}

MOF::Constraint represents the textual and OCL constraints for the profile

6.4.10 Classification

An asset is classified from one or more perspectives. This generally causes challenges for those searching for assets if
they are looking for an asset from a perspective which is different than the one in which it was packaged.

Tool vendors should consider supporting multiple ontologies whereby an asset may be classified and discovered. The
classification section supports simple name / value pairs and supports pointing to external schemas for classifying assets.

The <classification> element is simply a container for all the elements of the manifest that classifies the asset. The
<classification> element does not define any attributes. There are two child elements; <context> and <descriptor-group>.
These elements are optional however; there should be at least one descriptor group element, which contains the main
descriptors for the asset.
Reusable Asset Specification, v2.2 27

Table 7 - Core RAS::Classification Class

Classification
UML Model for XML Schema XML Schema

- Required: true
- Document global: false
- Unbounded: false
28 Reusable Asset Specification, v2.2

6.4.10.1 Context

A context defines a conceptual frame, which helps explain the meaning of other elements in the asset. A <context>
element defines a name attribute, which is required, and an id attribute. The id is used as a reference by other elements in
the manifest. A <context> element’s optional description is captured by a <description> child element. A <context>
element also may include <descriptor-group> child elements that act to help define this context with descriptors (see
<descriptor>).

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 29

..

Table 8 - Core RAS::Context Class

Context
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
30 Reusable Asset Specification, v2.2

There can be many contexts defined in a manifest. An <artifact> may declare its relevance to more than one context.
Some sample categories of contexts are described in the table below. RAS does not declare what contexts to use;
therefore, the sample contexts below are merely illustrative.

Table 8 (continued)

XML Schema

Table 9 - Context Categories

Context Categories Context Description and Example

Core Artifacts associated with this context represent things that are essential to the asset. Without the
artifacts or activities associated with this context the asset cannot be successfully applied to a
target application.

Business Artifacts associated with this context are relevant to a specific business context.

Example: Insurance

Example: Financial Services

Development Artifacts associated with this context are required for the development of the asset. This context
is usually included in white box assets where it is intended for some of the artifacts of the asset
to be modified. Artifacts associated with this context might include build scripts and tools,
models, and specification documents.

Example: J2EE 1.3

Example: WebSphere Studio Application Developer 5.1

Documentation Artifacts associated with this context are intended to document and explain the asset. They are
not necessarily required to apply it.

Runtime Artifacts associated with this context are required for the runtime execution of the asset.
Example: WebSphere Application Server 5.1
Reusable Asset Specification, v2.2 31

6.4.10.2 DescriptorGroup {isAbstract = false}

A descriptor group is simply a container for a related group of descriptor values that can either be descriptor nodes or free
form values. These descriptor values can be from one or more classification schemas, and is used to collect together
relevant classification definitions and values for a specific asset.

RAS does not describe all possible classification schemas for all possible industries and asset types. Therefore, the
reference attribute may point to another classification schema or ontology.

A <description> child element can be used to provide a description of the group.

Attributes
name type = String [0..1] - An optional name for the descriptor group.

References
classificationSchema type = ClassificationSchema [0..*] - The classification schemas from those descriptors that

this descriptor group either references or has specific values for.

container type = DescriptorGroup [0..1] {isComposite = true} - The containing descriptor group.

contains type = DescriptorGroup [0..*] {isOrdered = true} - The contained descriptor groups.

nodeDescriptor type = NodeDescriptor [0..*] {isOrdered = true} - The node descriptors that this descriptor
group references for this asset.

freeFormValue type = FreeFormValue [0..*] {isOrdered = true, isComposite = true} - Contains the specific
values of free form descriptors for the asset that is being classified through this descriptor group. This can contain
mutliple values for a single free form descriptor.

freeFormDescriptor type = FreeFormDescriptor [0..*] {isOrdered = false, isComposite = true} - Contains the
free form descriptors for the asset that is being classified through this descriptor group.

The DescriptorGroup may reference an Artifact to provide further background and clarification on the DescriptorGroup.

Test Artifacts associated with this context make up the unit test infrastructure. They can be scripts,
sample data or test plans. These elements are not expected to be applied directly to the target
application.

Table 9 - Context Categories
32 Reusable Asset Specification, v2.2

Table 10 - Core RAS::DescriptorGroup Class

DescriptorGroup
UML Model for XML Schema XML Schema

- Required: true
- Document global: false
- Unbounded: true
Reusable Asset Specification, v2.2 33

6.4.10.3 Descriptor {isAbstract = true}

The definition of a classification descriptor that describes qualities and characteristics of the asset.

Attributes
name type = String [1..1] - A name for the descriptor. This is usually unique within a classification schema.

References
classificationSchema type = ClassificationSchema [0..1] - The classification schema that contains this descriptor.

description type = Description [0..1] - The description for the descriptor.

The Descriptor may contain a Description to provide additional commentary on the Descriptor.

UML Model for MOF 2.0 XMI
34 Reusable Asset Specification, v2.2

.

6.4.10.4 ClassificationSchema {isAbstract = false}

A classification schema contains a collection of related descriptors that form a specification for the descriptors that can be
applied to an asset. The ClassificationSchema does not appear on the asset level but rather on the type/profile level.

Table 11 - Core RAS::Descriptor Class

Descriptor
UML Model for XML Schema XML Schema

- Required: true
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 35

Attributes
name type = String [1..1] - A name for the classification schema.

References
descriptor type = Descriptor [0..*] {isOrdered = true, isComposite = true} - Contains the descriptors that this
classification schema groups.

description type = Description [0..1] - The description for the classification schema.

profile type = Profile [0..1] - This is NOT an Asset level association but rather a type level.

Table 12 - Core RAS::ClassificationSchema Class

6.4.10.5 NodeDescriptor {isAbstract = false}

The definition of a classification quality or characteristic that requires no additional value.

Inherits
Descriptor

Attributes
exclusive type = Boolean [1..1], initialValue = false - When set to ‘true’ determine that only a single node descriptor
from its children through the specific reference can be referenced from a DescriptorGroup. When set to ‘false’ the
descriptor group can reference none or any number of node specific NodeDescriptors.

UML Model for MOF 2.0 XMI
36 Reusable Asset Specification, v2.2

References
general type = NodeDescriptor [0..1] {isComposite = true} - The descriptor node that contains this node and generalizes
this classification definition.

specific type = NodeDescriptor [0..*] - The descriptor node that refines this node into more specific classification
definitions.

Table 13 -Core RAS::NodeDescriptor Class

6.4.10.6 FreeFormDescriptor {isAbstract = false}

The descriptor definition where it is expected that the asset classification (through a descriptor group) will require a value
to be supplied. It is usual for the same free form descriptor to be reused across many asset classifications where the
specific values change.

Inherits
Descriptor

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 37

Table 14 -Core RAS::FreeFormDescriptor Class

6.4.10.7 FreeFormValue {isAbstract = false}

The specific value of a free form descriptor when classified against an asset through a descriptor group.

Attributes
value type = String [0..1] - The specific value of the free form descriptor when applied to the asset.

References
freeFormDescriptor type = FreeFormDescriptor [1..1] - The definition to which the value is applicable.

The “value” attribute for this class in the RAS model is expressed as a multi-line element in XML as shown below.

<freeFormValue>The FreeFormValue.value Here</freeFormValue>

UML Model for MOF 2.0 XMI
38 Reusable Asset Specification, v2.2

Table 15 -Core RAS::FreeFormValue Class

6.4.11 Solution

An asset provides a solution, which is found in a collection of artifacts. An artifact may contain another artifact or may
have a relationship to another artifact. An artifact may be relevant to a particular context such as a development or a
runtime context. An artifact may have a point of customization known as a variability point.

Figure 13 - Solution Section Domain Model

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 39

The <solution> element in a manifest is a simple container for all the artifact references of the asset. It is a required
element and specifies no attributes. The <solution> element specifies only <artifact> child elements.

Table 16 - Core RAS::Solution Class

Solution
UML Model for XML Schema XML Schema

- Required: true
- Document global: false
- Unbounded: false
40 Reusable Asset Specification, v2.2

6.4.11.1 Artifact

An artifact is a work product that can be created, stored and manipulated by asset producers/consumers and by tools. An
artifact is either an actual file located in the asset’s package, or represents a logical entity that contains at least one child
artifact that is an actual file. An <artifact> element must specify minimally a name or a reference attribute. The name is
required for artifacts that represent logical entities. The reference is required for artifacts that specify actual file or work
products that are part of the asset's packaging.

The name, type, and reference attributes are optional. This was done to allow large numbers of artifacts to be added by
tooling but for which each specific name may not be known. In this scenario the name may have become the filename,
but that would be redundant with the reference attribute. The reference attribute remains optional to allow <artifact>
elements to contain other <artifact> elements and to reference anything on the filesystem or elsewhere.

An <artifact> element can specify an id that can be referenced by other elements in the manifest. This id must be unique
within the scope of all the artifacts in the manifest document. An optional version attribute is used to identify an artifact's
version.

With ever-increasing needs for security an artifact may be encrypted with a specific algorithm. The digest-name and
digest-value attributes contain the name and value from such encryption activities.

A specific artifact may have its own permission and usage rights associated with it. The access-rights attribute captures
artifact-level permission information. RAS does not specify the format of this permission information.

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 41

The <artifact> element may contain a number of child elements; <artifact-type>, <artifact-context>, <artifact-
dependency>, <variability-point> as well as specify child artifacts.

Artifacts that represent actual files can be of any type. That is they can be any type of file (binary, plain text, etc.). An
artifact referenced in a manifest can optionally declare a primary type, which is captured in the type attribute. The primary
type can affect how tools process the artifact. In addition to a primary type an artifact can specify any number of
secondary types. Each secondary type is specified with a <artifact-type> child element (see <artifact-type>).

In practice the primary types tend to map to file extensions. For instance if we had a file with the name web.xml its
primary type is XML and its secondary type may be J2EE Web Configuration.

The primary type list maps file extensions to type names. There may be many file extensions to the same type name. It is
also possible to have many type names to the same file extension. In this case the tooling should provide a way for the
user to reconcile. For instance, you may have a file named usecases.doc. The .doc extension may map to a “Microsoft
Word” type and it may map to a “WordPerfect” type.

Primary Types
A sample list of these primary types, taken from the file RASPrimaryArtifactTypes.xml is below.

<artifact id="dothtml" type="Microsoft Word HTML Template"/>
<artifact id="dox" type="Visual Basic User Document Binary File"/>
<artifact id="dqy" type="Microsoft Excel ODBC Query files"/>
<artifact id="drv" type="Device driver"/>
<artifact id="dsm" type="DSM File"/>
<artifact id="dsn" type="Microsoft OLE DB Enumerator for ODBC Drivers"/>
<artifact id="dsp" type="Project File"/>
<artifact id="dsr" type="Visual Basic Designer Module"/>
<artifact id="dsw" type="Project Workspace"/>
<artifact id="dsx" type="Visual Basic Designer Binary File"/>
<artifact id="dtd" type="Document Type Definition"/>
<artifact id="dun" type="Dialup Networking File"/
<artifact id="dv" type="DV"/>
<artifact id="DVD" type="DVD"/>
<artifact id="ecs" type="Exchange Server Content Source"/>
<artifact id="elm" type="Microsoft Office Themes File"/>
<artifact id="eml" type="Internet E-Mail Message"/>
<artifact id="ent" type="External Entity"/>
<artifact id="enx" type="Rational XDE Unit"/>
<artifact id="exc" type="Text"/>
<artifact id="mdx" type="XDE Model"/>
<artifact id="ifx" type="Rational XDE Unit"/>
<artifact id="inx" type="Rational XDE Unit"/>

This list is dynamic and should be used by tool builders to provide the proper processing of artifacts.

The <artifact-context> element allows multiple contexts to be associated with the artifact. Each of these elements defines
a single context.
42 Reusable Asset Specification, v2.2

The <artifact-dependency> element identifies a dependency on another artifact in the asset. Each element specifies an
artifact-id attribute, which must contain a value that matches the id value of another artifact in the manifest. This value
must not reference itself. An optional attribute, dependency-type, is used to describe the type of dependency. There are
several kinds of artifact dependencies such as a compile-time dependency or a runtime dependency, and so on.

A <variability-point> is a conceptual spot in an artifact that is expected to be altered by the asset consumer. It describes
where and what in the artifact can be modified. Each <variability point> specifies a name, which describes it and an
identifier, which is used to reference it from other elements in the manifest. A variability point may be associated with a
context and its optional context association must therefore specify a valid id of a <context> element in the document. A
further explanation of the <variability-point> can be captured in an external document pointed to by the reference
attribute.

An artifact may specify child artifacts. A child artifact uses the same <artifact> element. If the artifact is a logical artifact
then it must specify a name and have at least one descendent artifact that is an actual file reference.

Other references include:

References
reference type = Reference [0..1] - A reference to some other artifact or other item.

Table 17 - Core RAS::Artifact Class

Artifact
UML Model for XML Schema XML Schema

- Required: schema states false, constraints require at least one
- Document global: true
- Unbounded: true
Reusable Asset Specification, v2.2 43

UML Model for MOF 2.0 XMI
44 Reusable Asset Specification, v2.2

6.4.11.2 ArtifactContext

An <artifact-context> element associates a context to an artifact. See <artifact> element description..

Table 18 - Core RAS::ArtifactContext Class

ArtifactContext
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 45

6.4.11.3 ArtifactDependency

An ArtifactDependency identifies a dependent Artifact. The dependent Artifact must be another Artifact defined in the
manifest. See the Artifact description. This is a child element to the Artifact element. The dependencyType attribute
describes artifact dependencies such as design time dependency or a compile time or runtime

Other references include:

dependencyKind type = DependencyKind [1..1] - The kind of this artifact dependency..

Table 19 - Core RAS::ArtifactDependency Class

ArtifactDependency
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
46 Reusable Asset Specification, v2.2

6.4.11.4 DependencyKind {isAbstract = false}

A reusable dependency kind that is used to classify artifact dependencies in a consistent manner, and specify for what
profiles which dependency kinds are applicable.

Attributes
name type = String [1..1] - The name of the dependency kind.

References
profile type = Profile [0..*] - The profiles for which this dependency kind is applicable.

Table 20 -Core RAS::DependencyKind Class

6.4.11.5 VariabilityPoint

Each <variability-point> identifies a location in the artifact that is expected to be modified when applied. The element
requires a name and id attribute. The name should be descriptive of the nature of the customization that will be applied to
the artifact. The id is referenced by other elements in the manifest (see <variability-point-binding> element description).
A <variability-point> can be optionally associated with a context through the context-id attribute. The <variability-point>
element's free-form text is used to capture a fuller description of the activity, which should be represented in plain text.
The optional reference attribute points to an external document that could further explain the variability point.

The VariabilityPoint may reference an Artifact to provide further background and clarification on the VariabilityPoint.

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 47

The VariabilityPoint may contain a Description to provide additional commentary on the VariabilityPoint.

6.4.11.6 ArtifactType

Multiple types may describe an <artifact>. There are two artifact types we describe here, the primary type and the
secondary type. Based on the values of the primary type the tooling should perform the main actions that will occur to the
artifact when the asset is reused/imported/browsed. Whereas the secondary type is mainly for description purposes and/or
secondary actions that could happen when the asset is being reused/imported/browsed.

Table 21 - Core RAS::VariabilityPoint Class

VariabilityPoint
UML Model for XML Schema XML Schema

- Required: false
- Document global: true
- Multi-line text
- Unbounded: true

UML Model for MOF 2.0 XMI
48 Reusable Asset Specification, v2.2

The <artifact> element type attribute is used to represent the primary type. There can be only one primary type per
<artifact>. Whereas there can be many secondary types per <artifact>. The <artifact-type> element with the type attribute
is used to describe the secondary type.

Secondary Types
If the wrong primary type is applied then the tooling may not perform any special processing for that type when the asset
is imported. Tool vendors are required to do processing on the primary type list (see Constraint 12) but there is no special
processing required on the secondary type list.

The secondary type list includes the primary list and adds types that are mainly for description purposes. A sample list of
these secondary types, taken from the file RASSecondaryArtifactTypes.xml is below.

<artifact id="usecase" type="Use Case"/>
<artifact id="testcase" type="Test Case"/>
<artifact id="reqmodel" type="Analysis Model"/>
<artifact id="designmodel" type="Design Model"/>
<artifact id="implmodel" type="Implementation Model"/>
<artifact id="testmodel" type="Test Model"/>
<artifact id="busncncptmodel" type="Business Concept Model"/>
<artifact id="usecasemodel" type="Use Case Model"/>
<artifact id="busntypemodel" type="Business Type Model"/>
<artifact id="intfacespecmodel" type="Interface Spec Model"/>
<artifact id="websvcintermodel" type="Web Service Interactions Model"/>
<artifact id="analysisset " type="Analysis Artifact Set"/>
<artifact id="designset " type="Design Artifact Set"/>
<artifact id="implset " type="Implementation Artifact Set"/>
<artifact id="testset " type="Test Artifact Set"/>
<artifact id="implset " type="Implementation Artifact Set"/>
<artifact id="testset " type="Test Artifact Set"/>
<artifact id="intfacespecdiag" type="Interface Spec Diagram"/>
<artifact id="usecasediag" type="Use Case Diagram"/>
<artifact id="compinterdiag" type="Component Interaction Diagram"/>
Reusable Asset Specification, v2.2 49

This list is dynamic and should be used by tool builders to provide the proper processing of artifacts.

6.4.11.7 Reference {isAbstract = false}

A reference to an external element. This kind either can be loosely coupled through the value attribute, such as a URI or
reference an existing model element, that further describes the artifact.

Attributes
value type = String [1...1] - The value which can be used to resolve an external reference, typically a URI that is resolved
depending upon the reference kind.

Table 22 - Core RAS::ArtifactType Class

ArtifactType
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
50 Reusable Asset Specification, v2.2

References
• description type = Description [0..1] - An optional description for the reference.

• referenceKind type = ReferenceKind [1..1] - A mandatory kind for the reference that can be used to interpret the value
or the element reference.

• element type = Element [0..1] - The optionally referenced model element used to further describe the artifact.

The “value” attribute for this class in the RAS model is expressed as a multi-line element in XML as shown below.

<reference>The Reference.value Here</reference>

The Reference may contain a Description to provide additional commentary on the Reference.

Table 23 - Core RAS::Reference Class

6.4.11.8 ReferenceKind {isAbstract = false}

The reference kind associated with references that are used to determine how the implementation should interpret the
reference. Some suggested examples include ‘Internal Reference’ for associated elements and ‘External Reference’ for
URIs held against the value attribute of the reference.

Attributes
name type = String [1..1] - The name of the reference kind.

References
description type = Description [0..1] - The optional description of the reference kind.

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 51

The ReferenceKind may contain a Description to provide additional commentary on the ReferenceKind.

Table 24 -Core RAS::ReferenceKind Class

6.4.12 Usage

The usage section describes the activities to be performed for applying or using the asset. This section is described with a
lightweight activity or workflow model. There are several forms for conducting activities on an asset. Some activities are
for the asset in general whereas other activities are for a specific artifact within the asset, and still other activities may be
relevant to a particular context. The model below goes further to describe that an artifact in a particular context may have
a variability point that is relevant.

UML Model for MOF 2.0 XMI
52 Reusable Asset Specification, v2.2

Figure 14 - Usage Section Domain Model

The UML schema model below shows the realization of these asset usage domain concepts outlined above.

The <usage> element is a container element to specify process or usage guidance. The usage element defines only one
attribute, reference. The reference element points to an external document that may clarify the usage section as a whole,
or summarize all of the usage activities of the asset.

There are three types of child elements, each of which contains a set of activities that are to be followed when applying
this asset to a target application. There may be multiple instances of each of these container child elements, meaning that
there may be multiple <artifact-activity>, <context-ref>, and <asset-activity> child elements.

The Usage may reference an Artifact to provide further background and clarification on the Usage.
Reusable Asset Specification, v2.2 53

Table 25 - Core RAS::Usage Class

Usage
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: false
54 Reusable Asset Specification, v2.2

6.4.12.1 ArtifactActivity

The <artifact-activity> element is a container for activities associated with a specific artifact. This element specifies two
attributes: artifact-id and context-id. The artifact-id attribute is required and must specify an id associated with an artifact
specified in the manifest document. There may be many activities specified for any given artifact. The activities may also
be optionally associated with a context. If specified, the context-id attribute must match an id in a <context> element in
the manifest document.

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 55

An <artifact-activity> should contain at least one <activity> element, which specifies a concrete activity that the user or
tooling should execute when applying the asset to a target application. See <artifact> element description..

Table 26 - Core RAS::ArtifactActivity Class

ArtifactActivity
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
56 Reusable Asset Specification, v2.2

6.4.12.2 ContextRef

The <context-ref> element is a container of activities associated with a specific context. The required context-id attribute
specifies a context defined elsewhere in the manifest document.

A <context-ref> should contain at least one <activity> element, which specifies a concrete activity that the user or tooling
should execute when applying the asset. See <artifact> element description..

6.4.12.3 AssetActivity

An <asset-activity> element is a container of activities that are associated with the asset as a whole. All of the activities
specified in an asset activity are expected to be executed as a group, although not necessarily all at the same time. This
element does not define any attributes.

Table 27 - Core RAS::ContextRef Class

ContextRef
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 57

6.4.12.4 Activity

An activity is something that either the consumer or the tooling processing the asset does when applying the asset. An
<activity> element specifies two required attributes: id and task. The id attribute should contain a unique identifier across
all activities in the manifest file. Although the id attribute is not referenced by other elements in the manifest document,
it is included to support tool processing. The task attribute is a short description or keyword that represents the activity’s

Table 28 - Core RAS::AssetActivity Class

AssetActivity
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
58 Reusable Asset Specification, v2.2

purpose or goal. A fuller description of the activity can be found in the <description> child element, or in the external
document pointed to by the optional reference attribute. The reference attribute may also point to a file that contains
executable code or scripts that can be used by the tooling.

Some activities may be relevant to certain asset consumer roles, therefore the role attribute declares for which, if any,
asset consumer role the activity is relevant. The task-type attribute is used to categorize the type of activity. This attribute
may be used by the tooling and explain how to execute this activity. Some task types may suggest that the tool load and
execute a script or run an executable, while others might just indicate that activity should be referenced in the consumer’s
To Do list.

In addition to the <description> element, an <activity> element may specify child <activity> elements and <variability-
point-binding> elements. A <variability-point-binding> is a reference to a defined variability point of an artifact, and
specifies a binding rule. The binding rule is a short description describing the relationship between the variability point
and the activity.

The Activity may reference an Artifact to provide further background and clarification on the Activity..

Table 29 - Core RAS::Activity Class

Activity
UML Model for XML Schema XML Schema

- Required: false
- Document global: true
- Unbounded: true
Reusable Asset Specification, v2.2 59

6.4.12.5 VariabilityPointBinding

The binding-rule attribute is a short description of the nature of the variability point. This attribute provides additional
rules and direction that the asset consumer should follow when conducting the <activity> on the <variability-point>.

Consider the following partial-grammar example.

<solution>

<artifact> name: Design Model, id: 100, reference: model/designmodel.mdx

<variability-point> name: Design Model::User Account Management::Use Case_Create New User
 Account , id: 1

<usage>

<artifact-activity> artifact-id: 100

<activity> id: 5, task: Specify the alternate flows

<variability-point-binding> variability-point-id: 1, binding-rule: Provide a description of
 invalid database connection flow.

UML Model for MOF 2.0 XMI
60 Reusable Asset Specification, v2.2

<variability-point-binding> variability-point-id: 1, binding-rule: Do not create new
 relationships to existing packages.

In this example the <variability-point> identifies the location within the <artifact> where the customization occurs. The
<activity> identifies what the asset consumer is expected to do and the <variability-point-binding> describes any rules,
constraints, and additional guidance for the asset consumer to perform the customization.

Table 30 - Core RAS::VariabilityPointBinding Class

VariablePointBinding
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 61

6.4.12.6 Activity Parameter

This class provides a mechanism for capturing values associated with a particular Activity. The defaultValue attribute
contains the anticipated value for the parameter. The name attribute contains the name of the ActivityParameter. The
value attribute contains the selected value of the ActivityParameter.

The “value” attribute for this class in the RAS model is expressed as a multi-line element in XML as shown below.

<activityParameter>The ActivityParameter.value Here</activityParameter>

Table 31 - Core RAS::ActivityParameter Class

6.4.13 RelatedAsset

Assets rarely exist in isolation; generally there is a relationship to another asset. However, this relationship may not be
exposed in the asset’s packaging. To the contrary we recommend that this information is included when packaging an
asset as the context it describes can help to reduce the reuse costs.

These general related-asset principles are refined in the UML schema model below.

An asset may specify an arbitrary number of related assets. Each related asset is specified with a <related-asset> element,
which is a child element of the <asset> element. A related asset may be asset outside the scope of the current asset.

The <related-asset> element is necessary to scale asset reuse to larger-grained or coarse-grained assets wherein a family
of assets or asset assemblies can be defined and reused at that level.

The name attribute contains the name of the related asset, such as Credit Card web service.

The relationship-type attribute may contain any value. However, for certain types of relationships there are reserved
values that should be used. These relationships and their reserved values are described below:

• aggregation: this indicates that the current asset ‘contains’ the related asset, this containment may be by value or
by reference.

• similar: this indicates that the other asset has characteristics that are similar to the current asset.

• dependency: this indicates that the current asset references or relies on the services or artifacts of the related asset.

UML Model for MOF 2.0 XMI
62 Reusable Asset Specification, v2.2

• parent: this indicates that the current asset is contained or owned by the related asset.

Asset packages that contain multiple assets can use aggregation and parent relationship types to help structure the
contained assets.

The asset-id attribute contains the asset id from the related asset’s manifest document.

The reference attribute contains a location of the related asset, such as: http://companyintranet/RASRepositoryService/
RASRepositoryService.asmx, repository logical path: webservices/creditcardservice.ras, and so on. This attribute may
also contain reference to a document, which describes the related asset.

The assetVersion attribute contains the version of the related asset.

The RelatedAsset may reference an Artifact to provide further background and clarification on the RelatedAsset.

The RelatedAsset may contain a Description to provide additional commentary on the RelatedAsset.

Table 32 - Core RAS::RelatedAsset Class

RelatedAsset
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Multi-line text
- Unbounded: true
Reusable Asset Specification, v2.2 63

http://companyintranet/RASRepositoryService/RASRepositoryService.asmx
http://companyintranet/RASRepositoryService/RASRepositoryService.asmx

6.4.14 Asset Identity

A reusable asset’s identity is tied directly to its manifest. A completed manifest defines an asset by associating a name as
well as other meta information to a collection of files that provide a solution to a recurring software development
problem.

An asset’s version is captured as a string, and therefore can be anything. However it is recommended that a consistent
numbering system be used to express the version. Any system can be used (incremental, date, etc.). Regardless of the
mechanism used, it should be easy for the consumer to compare two different version strings for the same asset name/id
and easily determine which is the more recent, and which is the oldest. Using internal project names like “Chicago” or
“Phoenix” are not good version identifiers since it is not clear which is the most recent version.

An asset’s id remains constant with each new asset version. The id is a unique identifier, such as a globally unique
identifier (GUID). This specification declares that an asset id is constructed using the xmi.uuid structure as described in
Section 6.4.6, “Asset,” on page 18.

Subsequent versions of an asset may change its name, short description, or any other piece of meta information except for
the asset id. When the asset id is changed it is considered a completely new asset. It is suggested that when an asset
evolves to the point where it is assigned a new identity (i.e., new id value), that the originating asset be referenced in the
<related-asset> section of the manifest.

UML Model for MOF 2.0 XMI
64 Reusable Asset Specification, v2.2

6.4.15 Core RAS Semantic Constraints

There are several constraints that must be enforced as one element of achieving RAS compliance.

Semantic constraints are rules for the manifest’s content that are not expressible with standard XML Schemas. The
following constraints combined with the XML Schema fully define a valid RAS manifest file and are intended for the
XML Schema and may not apply to the MOF/XMI XML Schema. Additional semantic constraints may be defined by
profiles.

Constraint 1 The manifest file must validate against the XML Schema associated with the profile.

Constraint 2 An asset must have within the solution element at least one artifact element with a reference
attribute that is non-empty and a non-empty name attribute.

Constraint 3 A file in an asset must be associated with at most one <artifact> element.

Constraint 4 The context-id attribute in the <artifact-context>, <descriptor>, <artifact-dependency>, <vari-
ability-point>, <context-ref> and <artifact-activity> element must specify an id from a context
element found in the same manifest document.

Constraint 5 The artifact-id attribute in the <artifact-activity>, and <artifact-dependency> elements must
specify an id from an <artifact> element found in the same manifest document.

Constraint 6 The variability-point-id attribute of the <variability-point-binding> element must specify an
id from a <variability-point> element found in the same manifest document.

Constraint 7 If the asset-id attribute of the <related-asset> element is used it must specify the id attribute of
the <asset> element in a separate manifest document.

Constraint 8 The <related-asset> element relationship-type attribute may contain any values. However, for
certain types of relationships there are reserved values that should be used. These relationships
are described below:

• aggregation: this indicates that the current asset 'contains' the related asset.

• similar: this indicates that the other asset has characteristics which are similar to the
current asset.

• dependency: this indicates that the current asset references or relies on the services or
artifacts of the related asset.

• parent: this indicates that the current asset is contained or owned by the related asset.
Reusable Asset Specification, v2.2 65

6.5 Default Profile 2.2
This version of the Default profile is a realization of the Core RAS. We maintain the Core RAS and the Default profile,
as separate entities due partly because the Core RAS may migrate over time and its realization in the Default profile may
not be synchronized from a timing perspective. Also, these are separate entities because the realization of the Core RAS
may require some implementation details that the Core RAS does not specify. Customized profiles should extend from the
Default profile or perhaps one of the other profiles in this document such as the Default Web Service profile or the
Default Component profile.

Constraint 9 The id-history attribute in the <profile> element must contain a concatenated value of profile
ids illustrating the ancestry of the profile. The ids must be delimited with two successive co-
lons.

In this example the concatenated ids are Microsoft GUIDs, using style D1 . This profile does
not constrain the actual value types that may be used for ids. Rather, the ids must be unique
within the intended reuse scope of the asset profile.

If we are looking at a profile with the following id-history value “a::b::c,” then the id for
the grandparent profile is “a”, and the parent profile is “b,” and the current profile is “c.”
Said another way, the least-derived profile is the id to the furthest left in the id-history and
the most-derived profile is the id to the furthest right in the id-history.

1. For more information on the Format Provider Specifier values (N, D, B, and P) refer to the .NET Framework Class Library
documentation for the Guid.ToString(String, IFormatProvider) function.

Constraint 10 A manifest file cannot reference itself in an <artifact> element. This would cause confusion
between meta information and information in an asset.

Constraint 11 The artifact-id attribute on an <artifact-dependency> element and <artifact-activity> element
must use an id from an <artifact> element in the same document.

Constraint 12 The type attribute value on an <artifact> element must use a primary type value. Secondary
type values must be handled through <artifact-type> element. The primary and secondary type
lists are dynamic. Tool vendors should provide a mechanism to manage these lists.

Constraint 13 Each <artifact> element is part of a <context> element known as the asset's root context. How-
ever, this context is implied and does not need to be captured for each <artifact>.

Constraint 14 A RAS profile can be created to introduce tighter semantics and constraints. For example, a
new profile may make current optional elements to be required. But the constraints in the par-
ent profiles cannot be removed. For instance, existing elements cannot be made less con-
strained in the new profile than how they are defined in parent profiles.

Constraint 15 Attributes on existing nodes can be added in new RAS profiles. However, the constraints on
existing attributes cannot be reduced. For example, a new profile may make current optional
attributes to be required. But the constraints in the parent profiles cannot be removed. Existing
attributes cannot be made less constrained in the new profile than how they are defined in par-
ent profiles.
66 Reusable Asset Specification, v2.2

6.5.1 Default Profile History

The XML Schema for the Default profile has an <xsd:annotation> element. This annotation contains the profile history of
this schema. This uses <xsd:appinfo> to describe the profile history which means the it can be machine readable. Note:
this information does not appear in a manifest document (e.g., rasset.xml) but rather resides in the schema file.

The Default profile history is shown below, as taken from the XML schema file; again, this information only resides in
the XML schema file. Therefore tool vendors need to open the XML schema file, retrieve this information, and populate
the <profile> element and children elements in the manifest document (e.g., rasset.xml) as necessary.

<xsd:appinfo xmlns:rasprofile="http://www.rational.com/ras/rasdefaultprofile2_0" source="profile-history">

<rasprofile:profile name="Default" id="F1C842AD-CE85-4261-ACA7-178C457018A1::31E5BFBF-B16E-4253-
8037-98D70D07F35F" version-major="2" version-minor="2" parent="F1C842AD-CE85-4261-ACA7-178C457018A1">

<rasprofile:description>This is the second major version of the default profile. This profile can be
accepted by XDE release 2 and later.</rasprofile:description>

<rasprofile:related-profile name="Core" id="F1C842AD-CE85-4261-ACA7-178C457018A1" version-
major="1" version-minor="0" parent="">The original base of Core RAS.</rasprofile:related-profile>

</rasprofile:profile>

</xsd:appinfo>

6.5.2 New Element Summary

Other than the updated profile history, as described above, the Default profile reflects the Core RAS as described in the
sections above. The Default profile is expressed in an XML Schema file that accompanies this document.

6.5.3 Required Elements

This profile uses all required elements as specified by the Core RAS and adds no new elements.

6.5.4 Required Attributes

This profile uses all required attributes as specified by the Core RAS and adds no new attributes.

6.5.5 Semantic Constraints

There are no additional semantic constraints on this profile. The semantic constraints of Core RAS apply to this profile.

6.5.6 RAS Compliance

An asset based on this profile is RAS compliant if all of the following conditions are true:

The RAS Compliance of the Core RAS is preserved. See Section 6.4.3, “RAS Compliance,” on page 16.
Reusable Asset Specification, v2.2 67

6.6 Default Component Profile 2.2
This profile leverages many principles and concepts described in John Cheesman’s book UML Components. Specifically
this profile can support a collection of models and diagrams to describe the component as outlined on page 41 in
Cheesman’s book.

6.6.1 Default Component Profile History

This profile derives from the RAS Default Profile, version 2.2.

The XML Schema for the Default Component profile has an <xsd:annotation> element. This annotation contains the
profile history of this schema. This uses <xsd:appinfo> to describe the profile history which means the it can be machine
readable. Note: this information does not appear in a manifest document (e.g., rasset.xml) but rather resides in the schema
file.

The Default Component profile history is shown below, as taken from the XML schema file; again, this information only
resides in the XML schema file. Therefore tool vendors need to open the XML schema file, retrieve this information, and
populate the <profile> element and children elements in the manifest document (e.g., rasset.xml) as necessary.

<xsd:appinfo xmlns:rasprofile="http://www.rational.com/ras/rascomponentprofile1_11" source="profile-history">

<rasprofile:profile name="Default Component" id="F1C842AD-CE85-4261-ACA7-178C457018A1::31E5BFBF-
B16E-4253-8037-98D70D07F35F::1025A790-78D4-4f57-94CE-E65B23275FCD" version-major="2" version-
minor="2" parent="31E5BFBF-B16E-4253-8037-98D70D07F35F">

<rasprofile:description>This is the first major version of the default component profile. This profile can
be accepted by XDE release 2 and later.</rasprofile:description>

<rasprofile:related-profile name="Default" id="31E5BFBF-B16E-4253-8037-98D70D07F35F" version-
major="2" version-minor="2" parent="F1C842AD-CE85-4261-ACA7-178C457018A1">This is the
second major version of the default profile. This profile can be accepted by XDE release 2 and later.</
rasprofile:related-profile>

<rasprofile:related-profile name="Core" id="F1C842AD-CE85-4261-ACA7-178C457018A1" version-
major="1" version-minor="0" parent="">The original base of Core RAS.</rasprofile:related-profile>

</rasprofile:profile>

</xsd:appinfo>

6.6.2 Required Classes

“Semantic Constraints” on page 67 describes the rules for certain elements and should be reviewed. In addition to the
required elements in the Default profile, the Default Component profile adds the following required class:

• Operation

6.6.3 Required Attributes

In addition to the required attributes in the Default profile, the Default Component profile adds the following required
attributes:
68 Reusable Asset Specification, v2.2

** This attribute is not formally specified in the model because XMI provides id support by default; these ids in XMI are
optional and therefore this table specifies constraints on the id that it is required.

*** This id attribute DOES reside in the model and is the profile id for a profile which is an ancestor to the current profile
and which is not the <profile> id from the current asset’s manifest.

6.6.4 RAS Compliance

An asset based on this profile is RAS compliant if all of the following conditions are true:

1. The RAS Compliance of the Default profile, version 2.2 is preserved. See Section 6.5.6, “RAS Compliance,” on
page 67.

2. The constraints of the Default Component profile, version 2.2 is preserved. See Section 6.6.6, “Default Component
Profile Semantic Constraints,” on page 89.

Table 33 - Default Component Profile::UML Model for XML SchemaRequired Attributes

Default Component Profile UML Model for XML Schema
Required Class Required Attribute Optional Class Required Attribute
operation name association-role name
operation initiates-transaction association-role type

attribute name
attribute type
condition description
condition type
diagram-dependency diagram-id
interface-spec name
model-dependency model-id
parameter direction
parameter name
parameter type

Table 34 - Default Component Profile::UML Model for MOF 2.0 XMI Required Attributes

Default Component Profile UML Model for MOF 2.0 XMI
Required Class Required Attribute Optional Class Required Attribute
Operation name AssociationRole name
Operation initiatesTransaction AssociationRole type

Attribute name
Attribute type
Condition description
Condition type
InterfaceSpec name
Parameter direction
Parameter name
Parameter type
Reusable Asset Specification, v2.2 69

6.6.5 Solution

Only the new classes for this profile are outlined here. For information on other elements refer to this profile’s ancestry,
namely the Default profile. The Solution section has four new elements now including Requirements, Design,
Implementation, and Test. These sections organize special kinds of Artifacts that improve browsing and navigation of the
asset and also specify some required WSDL elements.

The models in this section only show those elements that are new or unique to this profile. The Solution section is the
class that is extended for this profile and therefore the UML models illustrate elements from that section.

Figure 15 - Default Component Profile UML Model - for XML Schema
70 Reusable Asset Specification, v2.2

Figure 16 - Default Component Profile UML Model - for MOF/XMI XML Schema
Reusable Asset Specification, v2.2 71

6.6.5.1 Requirements

This is a new class, having no attributes, but which has association with several classes including Model, Diagram,
UseCase, and Artifact. The models, diagrams, artifacts, and so on within this element are intended to describe the
requirements that the component proposes to fulfill. The model, diagram, and artifact nodes are global in the XML
schema..

Table 35 - Default Component Profile::Requirements Class

Requirements
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: false
72 Reusable Asset Specification, v2.2

6.6.5.2 Model

This class represents the model for specifying the requirements the component proposes to fulfill. There may be multiple
models such as the Business Concept Model and the Use Case Model, see UML Components, page 41.

The attributes are the same as the Artifact attributes; but are constrained to reference models for describing the
requirements for the component.

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 73

Table 36 - Default Component Profile::Model Class

Model
UML Model for XML Schema XML Schema

- Required: false
- Document global: true
- Unbounded: true
74 Reusable Asset Specification, v2.2

6.6.5.3 DiagramDependency

This class creates a relationship between models and diagrams. This is to help the asset consumer understand all the
diagrams for a particular model during asset browsing and evaluation.

The diagram-id attribute should reference a Diagram in the manifest document.

UML Model for MOF 2.0 XMI

XML Schema
Reusable Asset Specification, v2.2 75

Note that this class is not needed in the MOF / XMI XML schema due to XMI relationships, rather it is handled through
the Diagram and Model classes.

6.6.5.4 ModelDependency

This element establishes relationships amongst Models. The asset consumer can be guided through a series of models to
understand the component.

The model-id attribute on this element contains the id value from a Model in the same manifest file.

Note that this class is not needed in the MOF / XMI XML schema due to XMI relationships, rather it is handled through
the Model class.

Table 37 - Default Component Profile::DiagramDependency Class

DiagramDependency
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI XML Schema
76 Reusable Asset Specification, v2.2

.

6.6.5.5 Diagram

A model may have multiple diagrams. For each of the Requirements, Design, and Test classes, the Diagram class
identifies the relevant diagrams such as the Business Concept Model diagram and the Use Case diagram, see UML
Components, page 41.

The attributes are the same as the Artifact class; but are constrained to reference diagrams for describing the requirements
for the component.

Table 38 - Default Component Profile::ModelDependency Class

ModelDependency
UML Model for XML Schema XML Schema

- Required: false
- Document global: true
- Unbounded: true

UML Model for MOF 2.0 XMI XML Schema
Reusable Asset Specification, v2.2 77

.

Table 39 - Default Component Profile::Diagram Class

Diagram
UML Model for XML Schema XML Schema

- Required: false
- Document global: true
- Unbounded: true

UML Model for MOF 2.0 XMI
78 Reusable Asset Specification, v2.2

6.6.5.6 UseCase

The component may fulfill one or more use case. This element points to a use case description.

The attributes are the same as the Artifact attributes; but are constrained to reference use case documents for the
component.

Table 40 - Default Component Profile::UseCase Class

UseCase
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 79

6.6.5.7 Design

The Design class has no attributes, but has several associations including Model, Diagram, InterfaceSpec, and Artifact.
The models, diagrams, artifacts, and so on within this element are intended to describe the design elements that are
necessary for the asset consumer to use the component.

6.6.5.8 InterfaceSpec

The InterfaceSpec class describes an interface of the component. There may be multiple interfaces defined on the
component, so multiple instances of this class may be necessary. The name attribute is the user-consumable name of the
interface. The description is a human consumable short description of the interface. This class has associations with
Operation and InformationModel. If you create an InterfaceSpec instance you must create one or more Operations.

The InterfaceSpec may contain a Description to provide additional commentary on the InterfaceSpec.

Table 41 - Default Component Profile::Design Class

Design
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: false
80 Reusable Asset Specification, v2.2

.

6.6.5.9 Operation

The Operation class describes one interface operation and has association with two classes, Condition and Parameter.
These classes provide sufficient information in the asset packaging to let asset consumers and tools reason on the nature
of the interface.

Table 42 - Default Component Profile::InterfaceSpec Class

InterfaceSpec
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 81

The Operation class has three attributes, name, initiates-transaction, and description. The name is the operation name.
The initiates-transaction declares (i.e., boolean) if the Operation starts a transaction. The description provides for a brief
abstract on the Operation.

The Operation may contain a Description to provide additional commentary on the Operation..

Table 43 - Default Component Profile::Operation Class

Operation
UML Model for XML Schema XML Schema

- Required: true
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
82 Reusable Asset Specification, v2.2

6.6.5.10 Condition

The Condition class captures the pre-, post-, and other conditions of the Operation. It has two attributes; type and
description that declare the kind of the condition and explains the condition, respectively.

The Condition may contain a Description to provide additional commentary on the Condition..

6.6.5.11 Parameter

The Parameter class describes the parameters on the Operation using the attributes, name, type, and direction. The name
attribute is the name of the parameter. The type attribute describes the parameter’s type. The direction attribute describes
whether the parameter is input to the operation, or output, or both, and so on.

Table 44 - Default Component Profile::Condition Class

Condition
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 83

6.6.5.12 InformationModel

The InformationModel class describes the information or state that is retained between invocations of the operations on
the interface. This class has two associations, Attribute and AssociationRole.

Table 45 - Default Component Profile::Parameter Class

Parameter
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI
84 Reusable Asset Specification, v2.2

6.6.5.13 Attribute

The Attribute class captures the name, type, and default-value attributes of the state that is retained between invocations
of operations on the interface. The name attribute is the name of the Parameter. The type attribute is the Parameter
attribute’s type. And the default-value attribute is the Parameter attribute’s default value.

Table 46 - Default Component Profile::InformationModel Class

InformationModel
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: false

UML Model for MOF 2.0 XMI
Reusable Asset Specification, v2.2 85

6.6.5.14 AssociationRole

The AssociationRole class captures the name and type attributes of the state that is retained between invocations of
operations on the interface. This element represents the roles that are on interface relationships. Creating instances of this
element indicates that the InterfaceSpec owns the state related to the relationship.

Table 47 - Default Component Profile::Attribute Class

Attribute
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI XML Schema
86 Reusable Asset Specification, v2.2

6.6.5.15 Implementation

The Implementation class has a collection of Artifacts. These Artifacts identify the binary and other files that provide the
component implementation. The Implementation class has no attributes.

Table 48 - Default Component Profile::AssociationRole Class

AssociationRole
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI XML Schema
Reusable Asset Specification, v2.2 87

Table 49 - Default Component Profile::Implementation Class

Implementation
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: false

UML Model for MOF 2.0 XMI
88 Reusable Asset Specification, v2.2

6.6.5.16 Test

The Test class has no attributes, and has associations with Model, Diagram, and Artifact. The models, diagrams, artifacts,
and so on within this element are intended to describe the testing of the component for the asset consumer. The model,
diagram, and artifact elements are global to the XML schema. Refer to earlier descriptions of these child elements.

6.6.6 Default Component Profile Semantic Constraints

These constraints apply to the XML schema and may not apply to the MOF/XMI XML schema.

Constraint 1: For the <requirements> element; the child elements should contain only those artifacts that are relevant to
requirements. See Section 6.6.5.1, “Requirements,” on page 72.

For the <design> element; the child elements should contain only those artifacts which are relevant to design. See
Section 6.6.5.7, “Design,” on page 80.

Table 50 - Default Component Profile::Test Class

Test
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: false
Reusable Asset Specification, v2.2 89

For the <implementation> element; the child elements should contain only those artifacts which are relevant to
implementation. See Section 6.6.5.15, “Implementation,” on page 87.

For the <test> element; the child elements should contain only those artifacts which are relevant to test. See
Section 6.6.5.16, “Test,” on page 89.

All other artifacts should be handled in the <solution> element child <artifact>. See Section 6.6.5, “Solution,” on page 70.

Constraint 2: The diagram-id attribute on the <diagram-dependency> element should reference a <diagram> element id
in the manifest document. See Section 6.6.5.3, “DiagramDependency,” on page 75 and Section 6.6.5.5, “Diagram,” on
page 77.

Constraint 3: The model-id attribute on the <model-dependency> element contains the id value from a <model>
element in the same manifest document. See Section 6.6.5.2, “Model,” on page 73 and Section 6.6.5.4,
“ModelDependency,” on page 76.

Constraint 4: If you create an <interface-spec> element you must create one or more <operation> elements. See
Section 6.6.5.8, “InterfaceSpec,” on page 80 and Section 6.6.5.9, “Operation,” on page 81.

Constraint 5: The <condition> element type attribute should contain values such as “pre,” “post.” See Section 6.6.5.10,
“Condition,” on page 83.

Constraint 6: The <parameter> element direction attribute should contain values such as “in,” “out,” “inout.” See
Section 6.6.5.11, “Parameter,” on page 83.

6.7 Default Web Service Profile 2.2
Web services provide interfaces with operations, parameters, and an information-model of the guaranteed state. These
characteristics are similar in nature to components; whereas the deployment and instantiation model is clearly different
between these.

This profile describes the client portion of a web service. As such there are some similarities in the programming model
between a component and the client side of the web service.

6.7.1 Default Web Service Profile History

The Default Web Service profile derives from the RAS Default Profile, version 2.1. In the XML schema for the Default
Web Service the ancestry is traced to the Default Component profile because tooling support was very similar for these
two schemas. However, in the UML model this profile derives from the Default Profile. The MOF/XMI XML schema
ancestry is updated to derive from the Default profile.

The XML Schema for the Default Web Service profile has an <xsd:annotation> element. This annotation contains the
profile history of this schema. This uses <xsd:appinfo> to describe the profile history which means the it can be machine
readable. Note: this information does not appear in a manifest document (e.g., rasset.xml) but rather resides in the schema
file.

The Default Web Service profile history is shown below, as taken from the XML schema file; again, this information only
resides in the XML schema file. Therefore tool vendors need to open the XML schema file, retrieve this information, and
populate the <profile> element and children elements in the manifest document (e.g., rasset.xml) as necessary.
90 Reusable Asset Specification, v2.2

<xsd:appinfo xmlns:rasprofile=”http://www.rational.com/ras/raswebsvcprofile1_11” source=”profile-history”>

<rasprofile:profile name=”Default Web Service” idhistory=”F1C842AD-CE85-4261-ACA7-
178C457018A1::31E5BFBF-B16E-4253-8037-98D70D07F35F::710CA9C5-CA9C-4be2-BB1A-D23677C62A4C”
version-major=”2” version-minor=”2”>

<rasprofile:description>This is the first major version of the default webservice profile. This profile can
be accepted by XDE release 2 and later.</rasprofile:description>

<rasprofile:related-profile name=”Default” id=”31E5BFBF-B16E-4253-8037-98D70D07F35F” version-
major=”2” version-minor=”2” parent=”F1C842AD-CE85-4261-ACA7-178C457018A1”>This is the second major version
of the default profile. This profile can be accepted by XDE release 2 and later.</rasprofile:related-profile>

<rasprofile:related-profile name=”Core” id=”F1C842AD-CE85-4261-ACA7-178C457018A1” version-
major=”1” version-minor=”0” parent=””>The original base of Core RAS.</rasprofile:related-profile>

</rasprofile:profile>

</xsd:appinfo>

6.7.2 Required Classes

The “Semantic Constraints” on page 67 section describes the rules for certain elements and should be reviewed. In
addition to the required elements in the Default profile, the Default Web Service profile adds the following required
classes:

• Implementation

• Wsdl

6.7.3 Required Attributes

In addition to the required attributes in the Default profile, the Default Web Service profile adds the following required
attributes:

Table 51 - Default Web Service Profile::UML Model for XML Schema Required Attributes

Default Web Service Profile UML Model for XML Schema
Required Class Required Attribute Optional Class Required Attribute
implementation - interface-spec wsdl-name
wsdl reference

Table 52 - Default Web Service Profile::UML Model for MOF 2.0 XMI Required Attributes

Default Web Service Profile UML Model for MOF 2.0 XMI
Required Class Required Attribute Optional Class Required Attribute
Implementation - InterfaceSpec wsdlName
Wsdl reference
Reusable Asset Specification, v2.2 91

6.7.4 RAS Compliance

An asset based on this profile is RAS compliant if all of the following conditions are true:

1. The RAS Compliance of the Default profile, version 2.2 is preserved. See Section 6.5.6, “RAS Compliance,” on
page 67.

2. The constraints of the Default Web Service profile, version 2.2 are preserved. See Section 6.7.6, “Default Web
Service Profile Semantic Constraints,” on page 98.

6.7.5 Solution

Only the new elements for this profile are outlined here. For information on other elements refer to this profile's ancestry,
namely the Default Component profile and the Default profile.

The models in this section only show those elements that are new or unique to this profile. The Solution section is the
class that is extended for this profile and therefore the UML models illustrate elements from that section.

The Solution section has four new elements now including Requirements, Design, Implementation, and Test. These
sections organize special kinds of Artifacts that improve browsing and navigation of the asset and also specify some
required WSDL elements.
92 Reusable Asset Specification, v2.2

Figure 17 - Default Web Service Profile UML Model - for XML Schema
Reusable Asset Specification, v2.2 93

Figure 18 - Default Web Service Profile UML Model - for MOF/XMI XML Schema

The diagram above illustrates the new elements in the model. The Default Profile classes are grayed to illustrate the
extensions to the Default Profile.

6.7.5.1 InterfaceSpec

Within a wsdl file is a section that describes the design of the interface. The InterfaceSpec class points to that section
within a wsdl file. There may be multiple interfaces defined on the web service, so multiple instances of this element may
be required. The name attribute is the user-consumable name of the interface and the wsdl-name is the name found in the
wsdl.
94 Reusable Asset Specification, v2.2

The Wsdl class provides a reference to a formal description of the operations on the interface.

6.7.5.2 Implementation

In this profile the Implementation class is required. The Implementation class has a collection of Artifacts. These
Artifacts identify the binary and other files that provide the web service implementation. The Implementation class has no
attributes. The Implementation class has an association with the Wsdl class.

Table 53 - Default Web Service Profile::InterfaceSpec Class

InterfaceSpec
UML Model for XML Schema XML Schema

- Required: false
- Document global: false
- Unbounded: true

UML Model for MOF 2.0 XMI XML Schema
Reusable Asset Specification, v2.2 95

Table 54 - Default Web Service Profile::Implementation Class

Implementation
UML Model for XML Schema XML Schema

- Required: true
- Document global: false
- Unbounded: false
96 Reusable Asset Specification, v2.2

6.7.5.3 Wsdl

The Wsdl class references the file containing the web service description..

UML Model for MOF 2.0 XMI

Table 55 - Default Web Service Profile::Wsdl Class

Wsdl
UML Model for XML Schema XML Schema

- Required: true
- Document global: false
- Unbounded: false
Reusable Asset Specification, v2.2 97

6.7.6 Default Web Service Profile Semantic Constraints

These constraints apply to the XML schema and may not apply to the MOF/XMI XML schema.

Constraint 1: For the <requirements> element; the child elements should contain only those artifacts that are relevant to
requirements. See Section 6.7.5, “Solution,” on page 92.

For the <design> element; the child elements should contain only those artifacts that are relevant to design. See
“Solution” on page 92.

For the <implementation> element; the child elements should contain only those artifacts which are relevant to
implementation. See Section 6.7.5.2, “Implementation,” on page 95.

For the <test> element; the child elements should contain only those artifacts which are relevant to test. See “Solution” on
page 92.

All other artifacts should be handled in the <solution> element child <artifact>. See “Solution” on page 92.

Constraint 2: The diagram-id attribute on the <diagram-dependency> element should reference a <diagram> element id
in the manifest document. See “Solution” on page 92.

Constraint 3: The model-id attribute on the <model-dependency> element contains the id value from a <model> element
in the same manifest document. See “Solution” on page 92.

Constraint 4: If you create an <interface-spec> element you must create one or more <operation> elements. See
Section 6.7.5.1, “InterfaceSpec,” on page 94.

Constraint 5: The <condition> element type attribute should contain values such as “pre,” “post.” See “Solution” on
page 92.

UML Model for MOF 2.0 XMI
98 Reusable Asset Specification, v2.2

Constraint 6: The <parameter> element direction attribute should contain values such as “in,” “out,” “inout.” See
“Solution” on page 92.
Reusable Asset Specification, v2.2 99

100 Reusable Asset Specification, v2.2

7 The .ras File Format

7.1 Mapping RAS to .ras Files
While RAS is a written specification, we needed to express these principles more formally to support tools. To do so we
used XML Schema (i.e., .xsd files) to describe this. XML Schema possesses the rigor to describe containment, type,
multiplicity, and so on. To create this we used the RAS UML models as a baseline for creating the initial .xsd file(s). The
first version of this was the RAS Default Profile, which describes any kind of asset.

From the RAS Default Profile XML Schema we can create XML documents which contain the elements necessary to
describe the contents of an asset. We refer to this XML document as the manifest file and we give it a formal name:
rasset.xml. The rasset.xml document serves as the entry point to the asset.

The rasset.xml file resides in the “root” directory of the asset. This file is accompanied by the .xsd (XML Schema) file
and any other artifacts, files, subdirectories, and so on. These files are zipped into a single file with a .ras extension. The
image below illustrates the relationship of the RAS with the .ras file.

Figure 19 - Mapping RAS to .ras Files

Each .ras file includes the following types of files:

• zero or more XML Schema files (e.g., RASProfile.xsd)

• one manifest file in the root (e.g., manifest.rmd), there may be other manifest files

• one or more artifact files (e.g., source code, models, test scripts, and so on)

The image below shows a sample .ras file for a web service client. In the image below the file is opened with WinZip to
show the basic structure. There are two files in asset root directory, namely the rasset.xml file and the
RASDefaultWebServiceProfile.xsd file. The remaining artifacts are located in several sub-directories that are relative to
the asset’s root directory. When the asset is imported into a tool the directory structure is preserved.

Each artifact in the .ras file (other than the rasset.xml file and the XML Schema file) must be referenced in the rasset.xml
<solution> element. Each artifact (i.e., file) should appear one time int the .ras file.
Reusable Asset Specification, v2.2 101

Figure 20 - Sample .ras File Contents

7.1.1 Organizing .ras Files

The .ras files can be organized on a filesystem or may be in a version control system and may be organized by asset type
or by version or state, and so on.

7.1.2 Browsing .ras Files

Tool vendors can examine the rasset.xml file in a .ras file to extract the asset’s name and short-description when
presenting lists of assets. The rasset.xml file structure easily supports conversion to HTML for simplified browsing.
102 Reusable Asset Specification, v2.2

8 MOF & XMI
There are several MOF models that will be produced for describing RAS. These models include one describing the RAS
Default profile, one describing the RAS Default Component profile, and one describing the RAS Default Web Service
profile.

MOF has a mapping to XMI. The XMI content structure supports information interchange between various tools, as
illustrated in the image below.

Figure 21 - Open Interchange with XMI (from XMI Opens Application Interchange document)

Using this approach increases sharing content with multiple intended target environments as well as unintended target
environments. RAS describes an asset as being relevant to one or more contexts. Creating a RAS asset with XMI format
does not guarantee that all artifacts will be consumable by any development tool. However, XMI does enable sharing
assets across XMI-enabled development tools that support similar contexts, as described by RAS.
Reusable Asset Specification, v2.2 103

104 Reusable Asset Specification, v2.2

9 RAS Repository Service
With the predictable organization of the .ras files and the structure of the rasset.xml file, assets can be searched, browsed,
retrieved, and so on. This section introduces a set of services for searching, browsing, and retrieving assets. This version
of the RAS Repository Service does not describe asset publishing and other asset management services including metrics.
While asset publishing and other services are clearly needed, we have started with the RAS Repository Service in the
anticipation of helping the asset consumer to get initial value from a RAS-based repository.

These services may be implemented as web services or may be part of a larger product. For each of the services the nature
of the request and the response is declared. However, this does not describe how the services should be implemented.

The services below are described with a Service Name, a Request, and a Response. The Request is formatted, as it would
be for an HTTP request. The Response is a Repository Data Descriptor, of which there are two kinds, a Repository Asset
Descriptor, and a Repository Folder Descriptor. The format of these descriptors in the result set is described below.

Figure 22 - RAS Repository Service Overview

The services described in this section are for small to medium size repositories. The services need to be refined for
repositories with large numbers of assets.

9.1 Http Request / Response Descriptions
Search by Keyword

Request: /SearchByKeyword?keyword=<the keyword>

Where <the keyword> is a "form encoded" string of the keywords to search for.

This request should search at least the asset's metadata. In particular the name, id, version, short
description, description, and classification section

Response: Collection of Repository Asset Descriptors

A Repository Asset Descriptor contains the following:

String: Name (maps to the name attribute in the asset)

String: Description (This should be at most a 2 sentence description -- maps to the
short description attribute in the asset)

String: URL to Asset Location (Downloading the file at this URL should provide the
 . ras file)

String: Logical Path (Root is indicated by /)
Reusable Asset Specification, v2.2 105

String: Version (maps to the version attribute in the asset)

int: Ranking (between 0 and 100, 100 being best match)

Search by (Logical) Path

Request: /SearchByLogicalPath?path=<the logical path>

Where <the logical path> is a "form encoded" string of the logical path to an asset or folder.
The root folder of the repository is indicated by /.

This request can be used for instance when browsing a repository. One can use this to build a
 tree view of the logical structure of the repository.

Response: Collection of Repository Data Descriptors

A Repository Data Descriptor is either a Repository Asset Descriptor or a Repository Folder
 Descriptor

A Repository Asset Descriptor contains the following:

String: Name (maps to the name attribute in the asset)

String: Description (This should be at most a 2 sentence description -- maps to the short
description attribute in the asset)

String: URL to Asset Location (Downloading the file at this URL should provide the .ras file)

String: Logical Path (Root is indicated by /)

String: Version (maps to the version attribute in the asset)

A Repository Folder Descriptor contains the following:

String: Name

String: Logical Path (Root is indicated by /)
106 Reusable Asset Specification, v2.2

10 Roadmap
There are several areas to continue with defining RAS. Some of these are listed below, although these are not listed in any
particular order. Ultimately this roadmap needs to include timing.

1. The <descriptor> node and HTML encoding

Add attributes to this node to describe the type of encoding rather than relying on that it might be plain text or
HTML. Additional attributes to consider include:

• formatting={HTML|PostScript|RTF|SGML|TeX|LaTeX etc.}

• language={English|Spanlish|| etc.}

2. The Default Web Service <interface-spec> element

The web service <interface-spec> element is missing the operation and other elements from the Default Component
profile. This needs to be restored; although the WSDL will define these operations for us.

3. Deprecate the old UML models for XML schema, and the XML schemas themselves, at some point.

4. Create a UML profile for RAS.

5. Integration and reuse of UML 2.0 and related OMG meta-models (such as Software Portfolio Management).

6. There are several items to update in the schema including:

• Remove the use of concatenated GUIDs to represent profile ancestry

• Need to add a reference attribute on the Description node so the description can be a separate document.

• Need to specify that the Description node should contain only plain text and not HTML; we have the Artifact node
with the Artifact Type that allows us to declare different types of documents.

• Replace the “01” from the asset minor attribute with “1”.
Reusable Asset Specification, v2.2 107

108 Reusable Asset Specification, v2.2

Glossary
Entries in this glossary are defined within the Asset-Based Development (ABD) context. Their meanings are therefore
written with a bias towards ABD.

Apply Asset An ABD activity where a consumer uses a reusable asset to solve a problem. Applying
an asset usually involves following the usage guidance specified by the asset.

Archive A bundled collection of files that can be handled as a single unit. Each file’s name and
relative location in the directory structure is preserved. The collection’s contents may
compressed. In this sense a .ras file is an archive.

Artifact A logical or physical element of an asset. A logical asset is a container of at least one
physical artifact. Physical artifacts correspond to a file on a filesystem and represent a
workspace product.

Asset An asset is a solution to a software development problem. The problem may be related
the evolution of the system’s artifacts or be directly related to the domain problem that
the system is being developed for. (see Reusable Asset)

Asset Based Development
(ABD)

A sub-methodology in the software development process. Although not a complete
software development process, asset-based development is a set of processes, activities
and standards that facility the reuse of assets. Asset-based development is architecture
centric.

Black Box Asset A type of reusable asset in which the artifacts of the asset are not viewable by its
consumers. Examples of black box assets are components and framework libraries.

Clear Box Asset A type of reusable asset in which the artifacts of the asset are visible by its consumers,
however they cannot be altered or modified in any way. These types of asset expose their
internals to help consumers understand how to better use and debug the asset.

Component A type of asset that adheres to a documented interface. Components typically have their
implementations hidden (i.e., binary components).

Consumer A role in the Asset-based development process. A consumer is a software developer that
applies a reusable asset.

Context A frame reference or conceptual boundary that establishes meaning for things associated
with the context.

Core RAS The baseline description of the reusable asset specification.

Dependency A relationship between two objects (things), where one object is “dependent” on the
other. When the dependent object changes it effects the depending object. A dependent
object may not be aware of the depending object.

Descriptor A key / value pair of information used to describe an asset. A descriptor name is the key
and is typically a human readable word or two. The value is also human readable and
may be a sentence or as long as a paragraph or two.
Reusable Asset Specification, v2.2 109

Descriptor Group A group of related descriptors.

Document Type Definition
(DTD)

A formal specification that defines the structure of XML document instances. This
specification is managed by the W3C.

Framework A type of asset that solves many problems. A framework is often a collection of
individual assets, or a set of middleware that applications are built on top of.

Gray Box Asset A type of asset in which some of the internals remain hidden to the consumer, but others
are visible and modifiable. Gray box assets maintain variability somewhat between black
and white box assets.

Harvest An ABD activity for creating assets from existing, functioning systems. Harvesting is
performed by the asset producer. The producer looks in existing system’s for things that
could be reworked as reusable assets. Harvesting attempts to find elements in existing
systems that with minor effort could be turned into reusable assets.

Idiom A type of asset that is small and at the code or algorithm level.

Librarian A role in the ABD. The librarian is responsible for the maintenance of the asset
repository. The librarian may perform additional classification of asset and is responsible
for managing any feedback from consumers.

Manifest A meta information document that describes a reusable asset. A manifest is an XML
document that validates against a Profile.

Metadata Information about data. A manifest document is meta data about an asset. It describes the
structure and elements of the asset.

Package A collection of artifacts (files) that make up an asset. A package could be realized as a
directory on a filesystem or as an archive.

Pattern A type of asset that is an abstraction of the structure and behavior of a system or part of
a system. A pattern can be applied to a system, in which the application causes elements
of the system to be structured in a certain way.

Problem An impediment in the software development life cycle. Problems encountered in the
development life cycle must be solved (or avoided) in order to meet the target
application’s requirements. A reusable asset solves wholly or in part a software
development life cycle problem.

Producer A role in the ABD that is responsible for the creation of reusable assets. A producer can
harvest assets from existing systems or create reusable assets from scratch that solve a
reoccurring problem.

Profile A collection semantic constraints and an XML Schema that together are used to validate
a manifest document. A profile defines what information is required and optional in the
manifest to describe an asset of a particular type.

Repository A centralized access and storage point for reusable assets. A repository facilitates
consumer activities such as searching and analysis.
110 Reusable Asset Specification, v2.2

Reusable Asset A reusable asset is a solution to a recurring problem. A reusable asset is an asset has been
developed with reuse in mind.

Reusable Asset Library The Reusable Asset Library is a conceptual composite artifact that encompasses all
possible Reusable Assets of which an Asset Consumer has access.

Reuse Coordinator A senior management role. Responsible for the overall reuse program in an organization.
The coordinator ensures that developers are leveraging reusable assets when appropriate.

Reuse scope The conceptual bounds of the reuse program in an organization (or beyond). The reuse
scope attempts to identify the limits of the terminology and unique identifies the
elements in a reuse program are compared against.

Root context The top-level directory of an asset package. The root context defines the boundary of an
asset’s artifacts. This will not be true of course if we allow URL artifacts.

Solution strategy The general strategy taken by a reusable asset to solve the problem. The solution strategy
is an abstracted or simplified version of the solution design.

Target application An application or system with problem(s) that reusable assets can solve. A reusable asset
is applied to a target application by the consumer.

Tooling A generic term use to describe software programs written to handle and manage RAS
manifest documents and RAS asset packages. Rational XDE is an example of a
commercial tool that can create and consume RAS assets.

Unified Modeling Language
(UML)

The defacto standard visual modeling language for software intensive systems.

Variability Point A point in an artifact that is expected to be modified when the asset is applied to a target
application.

White Box Asset A type of asset that where all of the internals are exposed for review or modification.

Workspace Product An artifact of the software development process. A workspace product is a tangible
artifact that can be manipulated by a worker.

XML Schema A formal specification that defines the structure of XML document instances. This
specification is managed by the W3C.
Reusable Asset Specification, v2.2 111

112 Reusable Asset Specification, v2.2

 INDEX
A
Acknowledgements 4
activity 58
Activity parameter 62
Additional Information 3
Apply Asset 109
Archive 109
articulation dimension 8
Artifact 7, 41, 109
ArtifactActivity 55
ArtifactContext 45
ArtifactDependency 46
ArtifactType 48
Asset 7, 8, 17, 18, 109
Asset-Based Development (ABD) 109
Asset class 19
Asset Compliance 16
Asset identity 64
asset package 8
AssetActivity 57
AssociationRole class 86
Attribute class 85
attributes 17, 67, 68

B
binding-rule 60
Black Box Asset 109
Browsing .ras Files 102

C
classes 16, 68
Classification 27
classification schema 35
Classification section 13
Clear Box Asset 109
clear-box assets 8
compliance 67
Component 109
Component Profile 2.2 67
Condition class 83
Conformance 1
constraints 67, 89
Consumer 109
Context 29, 109
Context categories 31
ContextRef 57
conventions 1, 2
Core RAS 11, 109

D
Default Component Profile 67
Default Profile 11, 66
Default Web Service Profile 90
Default Web Service Profile Semantic Constraints 98
Definitions 1
Dependency 109
DependencyKind 47
Description class 20
Descriptor 34, 109

Descriptor Group 32, 110
Design class 80
DiagramDependency class 75
diagrams 77
Document Type Definition (DTD) 110

E
elements 67

F
Framework 110
FreeFormDescriptor 37
FreeFormValue 38

G
granularity of an asset 8
Gray Box Asset 110
gray-box assets 8

H
Harvest 110
Http Request / Response Descriptions 105

I
Idiom 110
Implementation class 87, 95
InformationModel 84
InterfaceSpec 94
InterfaceSpec class 80

L
Librarian 110

M
Manifest 110
manifest document (structure) 13
Mapping RAS to .ras Files 101
Metadata 110
Model 73
ModelDependency 76
MOF classes 27
MOF/XMI mapping 103
MOF/XMI XML Schema 4

N
new element 67
NodeDescriptor 36
normative documents 1
Normative References 1

O
Operation 81
Organizing .ras Files 102

P
Package 110
Parameter class 83
Pattern 110
primary types 42
Problem 110
Producer 110
Profile 22, 110
Profile 2.2 66
Reusable Asset Specification, v2.2 113

Profiles 11, 17

R
RAS Compliance 16, 67, 69, 92
RAS Repository Service 105
RAS UML Model Conventions for MOF 2.0 XMI 3
RAS UML Model Conventions for XML Schema (the

incumbent) 2
reference 50
ReferenceKind 51
Related Assets section 13
RelatedAsset 62
RelatedProfile 22, 26
Repository 110
required attributes 17, 67, 68, 91
required classes 16, 68, 91
required elements 67
Requirements class 72
Reusable Asset 111
Reusable Asset Library 111
reusable assets 7
Reuse Coordinator 111
Reuse scope 111
Root context 111

S
Scope 1
Semantic Constraints 65, 67
single archive file 9
Solution section 13
Solution strategy 111
Solution 17, 39

T
Target application 111
Terms and definitions 1
Test class 89
Tool Compliance 16
Tooling 111

U
UML Modeling conventions 2
Unified Modeling Language (UML) 111
Usage section 13
UseCase 79

V
variability of an asset 8
Variability Point 111
VariabilityPoint 47
VariabilityPointBinding 60
version control systems 9

W
Web Service Profile 2.2 90
White Box Asset 111
white-box assets 8
Workspace Product 111
Wsdl class 97

X
XMI files 1

XML document 3
XML elements 2
XML Schema 4, 111

Z
Zip format 9
114 Reusable Asset Specification, v2.2

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Conventions
	4.1 Document Conventions
	4.1.1 XML Elements

	4.2 UML Modeling Conventions
	4.2.1 RAS UML Model Conventions for XML Schema (the incumbent)
	4.2.2 RAS UML Model Conventions for MOF 2.0 XMI

	5 Additional Information
	5.1 Related and Dependent Standards
	5.1.1 XML
	5.1.2 XML Schema
	5.1.3 MOF/XMI XML Schema

	5.2 References
	5.3 Acknowledgements
	5.3.1 Submitters
	5.3.2 Supporters
	5.3.3 Reviewers

	6 Reusable Assets
	6.1 Defined
	6.2 Reusable Software Asset Types
	6.2.1 Granularity
	6.2.2 Variability
	6.2.3 Articulation

	6.3 Asset Packaging
	6.3.1 Bundled As Single Archive File
	6.3.2 Unbundled With Artifacts In Original Location
	6.3.3 Unbundled With Artifacts Moved To New Location

	6.4 Core RAS 2.1
	6.4.1 Core RAS and Profiles
	6.4.2 Core RAS Model and XML Schema Overview
	6.4.3 RAS Compliance
	6.4.4 Required Classes
	6.4.5 Required Attributes
	6.4.6 Asset
	6.4.7 Description
	6.4.8 Profile
	6.4.9 MOF Classes
	6.4.10 Classification
	6.4.11 Solution
	6.4.12 Usage
	6.4.13 RelatedAsset
	6.4.14 Asset Identity
	6.4.15 Core RAS Semantic Constraints

	6.5 Default Profile 2.2
	6.5.1 Default Profile History
	6.5.2 New Element Summary
	6.5.3 Required Elements
	6.5.4 Required Attributes
	6.5.5 Semantic Constraints
	6.5.6 RAS Compliance

	6.6 Default Component Profile 2.2
	6.6.1 Default Component Profile History
	6.6.2 Required Classes
	6.6.3 Required Attributes
	6.6.4 RAS Compliance
	6.6.5 Solution
	6.6.6 Default Component Profile Semantic Constraints

	6.7 Default Web Service Profile 2.2
	6.7.1 Default Web Service Profile History
	6.7.2 Required Classes
	6.7.3 Required Attributes
	6.7.4 RAS Compliance
	6.7.5 Solution
	6.7.6 Default Web Service Profile Semantic Constraints

	7 The .ras File Format
	7.1 Mapping RAS to .ras Files
	7.1.1 Organizing .ras Files
	7.1.2 Browsing .ras Files

	8 MOF & XMI
	9 RAS Repository Service
	9.1 Http Request / Response Descriptions

	10 Roadmap
	Glossary

