
RelationshipServiceSpecification

Version1.0
NewEdition:April 2000

paid up,
ified
opyright
ving

ire use
y be
at are
r

 an
ent does

r cover
s listed
s be the
marks or
otected
rm or
nd

 in

 IDL,
, Inc.
Copyright 1994 Groupe Bull
Copyright 1994 Hewlett-Packard Company
Copyright 1994 Ing. C. Olivetti & C.Sp
Copyright 1994 International Business Machines Corporation
Copyright 1994 Siemens Nixdorf Informationssysteme AG
Copyright 1994 SunSoft, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the c
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance o
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holder
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all time
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trade
other special designations to indicate compliance with these materials. This document contains information which is pr
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any fo
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage a
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group
X/Open is a trademark of X/Open Company Ltd.

ders to
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage rea
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii

 iii
 iii

 iv

iv

1-1

 1-1
-3
es

-5

1-6
-6
-9
-9
-10

-1

2-1
-2
-3

2-5
2-6
-7

2-7
Preface .

About the Object Management Group .
What is CORBA? .

Associated OMG Documents. .

Acknowledgments .

1. Service Description .

1.1 Overview .
1.1.1 Key Features of the Relationship Service . . . 1
1.1.2 TheRelationshipServicevs.CORBAObjectReferenc

1-4
1.1.3 Resolution of Technical Issues 1

1.2 Service Structure .
1.2.1 Levels of Service . 1
1.2.2 Hierarchy of Relationship Interface 1
1.2.3 Hierarchy of Role Interface 1
1.2.4 Interface Summary . 1

2. Relationship Service Modules . 2

2.1 The Base Relationship Model .
2.1.1 Relationship Attributes and Operations 2
2.1.2 Higher Degree Relationships 2
2.1.3 Operations .
2.1.4 Consistency Constraints
2.1.5 Implementation Strategies 2

2.2 The CosObjectIdentity Module .
Relationship Service V1.0 April 2000 i

Contents

-7

2-8
11
11

-17

2-19
20
-21
-22
23

-24
-27
-27
28
-29
-30

-31
-32
32

-34

-1
2.2.1 The IdentifiableObject Interface 2

2.3 The CosRelationships Module .
2.3.1 Example of Containment Relationships 2-
2.3.2 The RelationshipFactory Interface 2-
2.3.3 The RoleFactory Interface 2

2.4 Graphs of Related Objects .
2.4.1 Graph Architecture . 2-
2.4.2 Traversing Graphs of Related Objects 2
2.4.3 Compound Operations 2
2.4.4 An Example of Traversal Criteria 2-

2.5 The CosGraphs Module . 2
2.5.1 The TraversalFactory Interface 2
2.5.2 The Traversal Interface 2
2.5.3 The TraversalCriteria Interface 2-
2.5.4 The Node Interface . 2
2.5.5 The NodeFactory Interface 2

2.6 Specific Relationships . 2
2.6.1 Containment and Reference 2
2.6.2 The CosContainment Module 2-

2.7 The CosReference Module . 2

Appendix A - References . A
ii Relationship Service V1.0 April 2000

Preface
ent
nd
td
s.

s at
l
by
and

rted
and
nted

ide a
,
ous
p a

d.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification a
later as a full CAE Specification. The collaboration between OMG and X/Open Co L
ensures joint review and cohesive support for emerging object-based specification

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to ful
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base
Relationship Service V1.0 April 2000 iii

ted,
y
ject
nd

ing

st of

the

ed

lpful

sists

ive

o
n

,
tem
y.
What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Ne
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is he
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described inCORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicatio
domains.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sys
management or electronic mail facility could be classified as a common facilit
iv Relationship Service V1.0 April 2000

s, an
antic

en
es,
s
t

the

The
es a

are
des
are

ct-

y

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
subscribers. Meaningful, productive communication depends on additional interfac
protocols, and policies that are agreed upon outside the telephone system, such a
telephones, modems and directory services. This is equivalent to the role of Objec
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to theObject Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guidedefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also provi
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services,a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities,a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized obje
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industr
and represents vendors, healthcare providers, payers, and end users.
Relationship Service V1.0 Associated OMG Documents April 2000 v

n

t

d,
dards
(The

ns,

of

P-
.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important applicatio
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-complian
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10)
vi Relationship Service V1.0 April 2000

ey
y
rful

ay
eal

lient
ent
cally

that
rver
on

es
ple,

ces
rules

ts.

rent
s

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, b
virtue of their structuring as objects, be combined together in interesting and powe
ways.

For example, the event and life cycle services, plus a future relationship service, m
play together to support graphs of objects. Object graphs commonly occur in the r
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the c
object nor, in general, on the type of data passed in requests. For example, the ev
channel interfaces accept event data of any type. Clients of the service can dynami
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote se
styles of implementations. This allows considerable flexibility as regards the locati
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approach
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfa
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other componen

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service i
composed ofPushConsumer, PullSupplierandEventChannelinterfaces. This
simplifies the way in which a particular client uses a service.
Relationship Service V1.0 Service Design Principles April 2000 vii

gle

to
cts

ents

aces

g
th an

uest
e

ent

a

o a

n

ext.

within
A particular service implementation can support the constituent interfaces as a sin
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obje
conspireto provide the complete service.

As an example, in the Event Service an event channel can provide bothPushConsumer
andEventChannelinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either thePushConsumerandEventChannelinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interf
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usin
the event service again as an example, when an event consumer is connected wi
event channel, a new object is created that supports thePullSupplierinterface. An
object reference to this object is returned to the event consumer which can then req
events by invoking the appropriate operation on the new “supplier” object. Becaus
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. An ev
channel as a collection of objects conspiring to manage multiple simultaneous
consumer clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service tocall backto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously t
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some cont
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.
viii Relationship Service V1.0 April 2000

ices

s

to be

l

tion

eter

de

nts
Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These serv
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured a
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate itera
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a param
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted parts of theRelationship Servicespecification:

• Groupe Bull

• Hewlett-Packard Company

• Ing. C. Olivetti & C.Sp

• International Business Machines Corporation

• Siemens Nixdorf Informationssysteme AG

• SunSoft, Inc.
Relationship Service V1.0 Interface Style Consistency April 2000 ix

x Relationship Service V1.0 April 2000

ServiceDescription 1
,

Contents

This chapter contains the following topics.

1.1 Overview

Distributed objects are frequently used to model entities in the real world. As such
distributed objects do not exist in isolation. They are related to other objects.

Consider some examples of real world entities and relationships:

• A personownscars; a car isowned byone or more persons.

• A companyemploysone or more persons; a person isemployed byone or more
companies.

• A documentcontains figures; a figure iscontained ina document.

• A documentreferencesa book; a book isreferenced byone or more documents.

• A personchecks outbooks from libraries. A librarychecks outbooks to people.
A book is checked out by a person from a library.

These examples demonstrate several relationships:

• Ownership relationships between people and cars

• Employment relationships between companies and people

• Containment relationships between documents and figures

• Reference relationships between books and documents

• Check out relationships between people, books and libraries.

Topic Page

“Overview” 1-1

“Service Structure” 1-6
Relationship Service V1.0 April 2000 1-1

1

ent

on
n

der

ns

to-
ers.
n
on

e

Such relationships can be characterized along a number of dimensions:

Type
Related entities and the relationships themselves are typed. In the examples,
employmentis an relationship defined betweenpeopleandcompanies. The type of
the relationship constrains the types of entities in the relationship; a company
cannot employ a monkey since a monkey is not a person. Furthermore, employm
is distinct from other relationships between people and companies.

The roles of entities in relationships
A relationship is defined by a set of roles that entities have. In an employment
relationship, a company plays anemployerrole and a person plays anemployee
role.

A single entity can have different roles in distinct relationships. Notice that a pers
can play the owner role in an ownership relationship and the employee role in a
employment relationship.

Degree
Degree refers to the number of required roles in a relationship. The check out
relationship is a ternary relationship; it has three roles: the borrower role, the len
role and the material role. A person plays the borrower role, a library plays the
lender role and a book plays the material role. Ownership, employment,
containment and reference, on the other hand, are of degree 2, or binary
relationships.

Cardinality
For each role in a relationship type, the maximum cardinality specifies the
maximum number of relationships that may involve that role.

The containment relationship is a many-to-one relationship; a document contai
many figures; a figure is contained in exactly one document. A many-to-many
relationship is between two sets of entities. The ownership example is a many-
many relationship; a person can own multiple cars; a car can have multiple own
The check out relationship is a many-to-one-to-many relationship. A person ca
check out many books from many libraries. A book is checked out by one pers
from one library and a library can loan many books to many people.

Relationship Semantics
Relationships often have relationship-specific semantics; that is they define
operations and attributes. For example,job title is an attribute of the employment
relationship, while it is not an attribute of an ownership relationship. Similarly,due
date is an attribute of the check out relationship.

For more discussion on object-oriented modeling and design with relationships, se
[2.].
1-2 Relationship Service V1.0 April 2000

1

ted.

aised
not

or

nd
es

.

ends
ough
on

s a
,
y

e a

ere

the

out
1.1.1 Key Features of the Relationship Service

The Relationship Service allows entities and relationships to be explicitly represen
Entities are represented as CORBA objects. The service defines two new kinds of
objects:relationshipsandroles. A role representsa CORBA object in an relationship.
A relationship is created by passing a set of roles to a relationship factory.

Relationships of arbitrary degree can be defined.

Type and cardinality constraints can be expressed and checked. Exceptions are r
when cardinality and type constraints are violated. The Relationship Service does
define a new type system. Instead, the IDL type system is used to represent
relationship and role types. This allows the service to leverage CORBA solutions f
type federation.

The Relationshipinterface can be extended to add relationship specific attributes a
operations. Similarly, theRole interface can be extended to add role specific attribut
and operations.

The Relationship Service defines three levels of service: base, graph, and specific

The base level defines relationships and roles.

When objects are related, they form graphs of related objects. The graph level ext
the base level service with nodes and traversal objects. Traversal objects iterate thr
the edges of a graph. Traversals are useful in implementing compound operations
graphs, among other things.

Specific relationships are defined by the third level.

• A conforming Relationship Service implementation must implement level 1 or
levels 1 and 2 or levels 1, 2 and 3.

• The Relationship Service requires a notion of object identify. As such, it define
simple, efficient mechanism for supporting object identity in a heterogeneous
CORBA-based environment. We believe the mechanism to be of general utilit
for other services.

• Distributed implementations of the Relationship Service can have navigation
performance and availability similar to CORBA object references; role objects
can be collocated with their objects and need not depend on a centralized
repository of relationship information. As such, navigating a relationship can b
local operation.

• The Relationship Service allows so-called immutable objects to be related. Th
are no required interfaces that objects being related must support. As such,
objects whose state and implementation were defined prior to the definition of
Relationship Service can be related objects.

• The Relationship Service allows graphs of related objects to be traversed with
activating related objects.

• The Relationship Service is extensible. Programmers can define additional
relationships.
Relationship Service V1.0 Overview April 2000 1-3

1

stored
riate

the

e
p

n
e

rted
ple
not

ated
the

d

ell-
to
1.1.2 The Relationship Service vs. CORBA Object References

CORBA: Common Object Request Broker Architecture and Specificationdefines object
references that clients use to issue requests on objects. Object references can be
persistently. When is it appropriate to use object references and when is it approp
to use the Relationship Service?

The Relationship Service is appropriate to use when an application needs any of
following capabilities that are not available with CORBA object references.

1.1.2.1 Relationships that Are Multidirectional

When objects are related using the Relationship Service, the relationship can b
navigated from any role to any other role. The service maintains the relationshi
between related objects. CORBA object references, on the other hand, are
unidirectional. Objects that possess CORBA object references to each other ca
only do so in an ad hoc fashion; there is no way to maintain and manipulate th
relationship between the objects.

1.1.2.2 Relationships that Allow Third Party Manipulation

Since roles and relationships are themselves CORBA objects, they can be expo
to third parties. This allows third parties to manipulate the relationship. For exam
a third party could create, destroy or navigate the relationship. Third parties can
manipulate object references.

1.1.2.3 Traversals that Are Supported for Graphs of Related Objects

When objects are related using the Relationship Service, they form graphs of rel
objects. Interfaces are defined by the Relationship Service to support traversing
graph.

1.1.2.4 Relationships and Roles that Can Be Extended with Attributes an
Behavior

Relationships have relationship-specific semantics. For example, the employment
relationship has a job title attribute. Since relationships and roles are objects with w
defined OMG IDL interfaces, they can be extended through OMG IDL inheritance
add such relationship-specific attributes and operations.
1-4 Relationship Service V1.0 April 2000

1

s
ts

o
er
.

raise

e is

le

ion
1.1.3 Resolution of Technical Issues

1.1.3.1 Modeling and Relationship Semantics

An application designer models a problem as a set of objects and the relationship
between those objects. Using OMG IDL, the application designer directly represen
the objects of the model. Using the Relationship Service, the application designer
directly represents the roles and relationships of the model.

The RelationshipandRole interfaces can be extended using OMG IDL inheritance t
add relationship and role specific attributes and operations. For example, a design
might define the employment relationship to have an operation returning a job title

1.1.3.2 Managing Relationships

The RelationshipFactory interface defines an operation to create a relationship,
given a set of roles. TheRole andRelationship interfaces define operations to delete
and navigate relationships between objects.

1.1.3.3 Constraining Relationships

Type, cardinality and degree constraints on relationships are expressed in the
interfaces.

The RoleFactory::create_role operation can raise aRelatedObjectTypeError
exception. This allows implementations of theRole interface to place further
constraints on the type of the related objects. For example, anEmployedByRole can
ensure related objects are people. An attempt to have it represent a monkey would
a RelatedObjectTypeError exception.

Similarly, theRelationshipFactory::create operation can raise aRoleTypeError
exception. This allows implementations of theRelationshipinterface to put constraints
on the type of the roles. For example an Employment relationship can ensure ther
an EmployerRoleand anEmployeeRole.

The RelationshipFactory::create operation can also raise aDegreeError
exception. This ensures that there are the correct number of roles.

Maximum cardinality constraints are enforced by the role objects themselves. A ro
can raise aMaxCardinalityExceeded exception and refuse to participate in a
relationship if its maximum cardinality would be exceeded. Roles define an operat
to ask if their minimum cardinality constraint is being met.
Relationship Service V1.0 Overview April 2000 1-5

1

t

,
e

mely
nship,

sed

n

al
ons
jects.

vice

s of
ese
1.1.3.4 Referential Integrity

If the Relationship Service is used in an environment supporting transactions, stric
referential integrity is achieved. That is, if a related object refers to another (via a
relationship), then the other related object will also refer to it. Without transactions
strict referential integrity cannot be achieved since a failure during execution of th
relationship construction protocol could cause a dangling reference.

1.1.3.5 Relationships and Roles as First Class Objects

Our design defines both relationships and roles as first class objects. This is extre
important because it encapsulates and abstracts the state to represent the relatio
allows third party manipulation of the relationship and allows the roles and
relationships themselves to support operations and attributes.

1.1.3.6 Different Models for Navigating and Constructing Relationships

The Relationship Service defines interfaces for constructing and navigating
relationships component-by-component. These building block operations can be u
by a higher-level service, such as a query service.

1.1.3.7 Efficiency Considerations

Our design has several features that allow for highly optimized implementations.
Performance optimizations are achieved by clustering and/or caching of connectio
information.

Clients can cluster related objects and their roles by their selection of factories.

Our design defines the containment relationship logically. It does not imply physic
clustering of state or execution, However, it serves as a good hint to implementati
for clustering. An environment can choose to cluster containers and contained ob

The get_other_related_object operation can be implemented tocacheremote
related objects. The cached information is immutable; once a relationship is
established, the roles and related objects will not change.

1.2 Service Structure

This section provides information about the levels of service; the specification is
organized around these levels. It also describes the hierarchy of Relationship Ser
interfaces and explains the main purpose of each interface.

1.2.1 Levels of Service

The Relationship Service defines three levels of service: base relationships, graph
related objects, and specific relationships. The specification is organized around th
levels.
1-6 Relationship Service V1.0 April 2000

1

ent

ip.

e
one

to
1.2.1.1 Level One: Base Relationships

The Relationship andRole interfaces define the base Relationship Service.
Figure 1-1 illustrates two instances of the containment relationship. The docum
plays the container role; the figure and the logo play the containee role.

The diamond is an object supporting theRelationship interface. The small circles
are objects supporting theRole interface.

Figure 1-1 Base relationships.

Roles represent objects in relationships. Roles have a maximum cardinality. As
illustrated, the container role can be involved in many instances of a relationsh
The containee roles can only be involved in a single instance of a relationship.

Figure 1-2 illustrates the navigation functionality of relationships; for example th
arrow between a role and another role indicates it is possible to navigate from
role to another. The arrow does not, however, indicate that the object reference
the other role is necessarily stored by the role.

Figure 1-2 Navigation functionality of base relationships

Table 1-1 on page 1-10 lists the interfaces to support relationships and roles.

figure

logo

document

figuredocument
Relationship Service V1.0 Service Structure April 2000 1-7

1

ts
fines
a

and
e

vice
1.2.1.2 Level Two: Graphs of Related Objects

Distributed objects do not exist in isolation. They are connected together. Objec
connected together form graphs of related objects. The Relationship Service de
the Traversal interface. TheTraversal interface defines an operation to traverse
graph. The traversal object cooperates with extended roles supporting the
CosGraphs::Role interface and objects supporting theNode interface.

Figure 1-3 illustrates a graph of related objects. The folder, the figure, the logo
the book all support theNode interface. The small circles are roles supporting th
CosGraphs::Role interface.

Figure 1-3 An example graph of related objects.

Table 1-3 on page 1-11 lists the interfaces to support graphs of related objects.

1.2.1.3 Level Three: Specific Relationships

Containment and reference are two important relationships. The Relationship Ser
defines these two binary relationships. Table 1-4 on page 1-11 and Table 1-5 on
page 1-12 list the interfaces defining specific relationships.

figure

logo

folder

person

library

document

book

containment

reference

check_out
1-8 Relationship Service V1.0 April 2000

1

-5.

ve
1.2.2 Hierarchy of Relationship Interface

The relationship interfaces are arranged into the interface hierarchy illustrated in
Figure 1-4.

Figure 1-4 Relationship interface hierarchy

1.2.3 Hierarchy of Role Interface

The role interfaces are arranged into the interface hierarchy illustrated in Figure 1

Figure 1-5 Role interface hierarchy

The Role interface defines operations to efficiently navigate relationships between
related objects.

The CosGraphs::Role interface defines an operation to return the edges that invol
the role. This is used by the traversal service defined at the graph level.

Finally, ContainsRole , ContainedInRole , ReferencesRole and
ReferencedByRole are specific roles for two important relationships: containment
and reference.

Relationship

Containment Reference

CosRelationships module

specific relationships

(Base level)

CosRelationships::Role

CosGraphs::Role

ContainsRole

ContainedInRole

ReferencesRole

ReferencedByRole

CosRelationships module

CosGraphs module

specific relationships

(Base level)

(graph level)
Relationship Service V1.0 Service Structure April 2000 1-9

1

e

1.2.4 Interface Summary

Table 1-1 through Table 1-5 give high level descriptions of the Relationship Servic
interfaces.

Table 1-1 Interfaces defined in theCosObjectIdentitymodule

Interface Purpose IPrimary Clients

CosObjectIdentity::

IdentifiableObject To determine if two
objects are identical.

There are many clients.
The graph level of the
Relationship Service is
one.

Table 1-2 Interfaces defined in theCosRelationshipsmodule

Interface Purpose Primary Clients

CosRelationships::

Relationship Represents an instance of
a relationship type.

Clients that navigate
between related objects.

RelationshipFactory Supports the creation of
relationships.

Clients establishing
relationships.

Role Defines navigation
operations for
relationships. Implements
type and cardinality
constraints.

Clients that navigate
between related objects.
Relationship factories.

RoleFactory Supports the creation of
roles.

Objects participating in
relationships.

RelationshipIterator Iterates the relationships
in which a particular role
object participates.

Clients that navigate
relationships.
1-10 Relationship Service V1.0 April 2000

1

Table 1-3 Interfaces defined in theCosGraphsmodule

Interface Purpose Primary Client(s)

CosGraphs::

Traversal Defines an operation to
traverse a graph, given a
starting node and traversal
criteria.

Clients that want a
standard service to
traverse graphs.

TraversalFactory Supports the creation of a
traversal object.

Clients that want a
standard service to
traverse graphs.

TraversalCriteria Provides navigation
behavior between nodes.

Traversal
implementations.

Role Extends the
CosRelationships::Role
interface to return edges

Clients that traverse
graphs of related objects.

EdgeIterator Returns additional edges
from a role.

Clients that traverse
graphs of related objects.

Node Defines operations for a
related object to reveal its
roles.

Clients that traverse
graphs of related objects.

NodeFactory Supports the creation of
nodes.

Clients that create nodes
in graphs.

Table 1-4 Interfaces defined in theCosContainmentmodule

Interface Purpose Primary Client(s)

CosContainment::

Relationship one-to-many relationship Clients that depend on
Containment relationship
type.

ContainsRole Represents an object that
contains other objects.

Clients that navigate
containment relationships
between objects.

ContainedInRole Represents an object that
is contained in other
objects.

Clients that navigate
containment relationships
between objects.
Relationship Service V1.0 Service Structure April 2000 1-11

1

Table 1-5 Interfaces defined in theCosReferencemodule

Interface Purpose Primary Clients

CosReference::

Relationship many-to-many
relationship

Clients that depend on the
reference relationship
type.

ReferencesRole Represents an object that
references other objects.

Clients that navigate
reference relationships
between objects.

ReferencedByRole Represents an object that
is referenced by other
objects.

Clients that navigate
reference relationships
between objects.
1-12 Relationship Service V1.0 April 2000

RelationshipServiceModules 2
hips
e

are

sents

e

Contents

This chapter contains the following topics.

2.1 The Base Relationship Model

The base level of the Relationship Service defines interfaces that support relations
between two or more CORBA objects. Objects that participate in a relationship ar
called related objects. Relationships that share the same semantics formrelationship
types. A relationship is an instance of a relationship type and has an identity.

Each related object is connected with the relationship via a role. Roles are objects
which characterize a related object‘s participation in a relationship type. Role types
used for expressing the role´s characteristics by an IDL interface. Cardinality
represents the number of relationship instances connected to a role. Degree repre
the number of roles in a relationship. All characteristics are expressed by
corresponding IDL interfaces. Relationship and role types are built by subtyping th
Relationship and Role interfaces.

Topic Page

“The Base Relationship Model” 2-1

“The CosObjectIdentity Module” 2-7

“The CosRelationships Module” 2-8

“Graphs of Related Objects” 2-19

“The CosGraphs Module” 2-24

“Specific Relationships” 2-31

“The CosReference Module” 2-34
Relationship Service V1.0 April 2000 2-1

2

ates

s

ce“

e

Figure 2-1 gives a graphical representation of a simple relationship type and illustr
that documents reference books. Documents are in theReferencesRole and books
are in theReferencedByRole . Documents, reference, the roles and books are all
types; there are interfaces (written in OMG IDL) for all five.

Figure 2-1 Simple relationship type: documents reference books

Figure 2-2, on the other hand, gives a graphical representation of an instance of a
relationship type. It illustrates that “my document”, an instance of Document,
references “War and Peace,” an instance of Book. Most of the figures in this
specification represent instances of related objects, roles and relationships. Figure
describing object and relationship type are clearly marked.

Figure 2-2 Simple relationship instance: my document references the book “War and Pea

2.1.1 Relationship Attributes and Operations

Relationships may have attributes and operations. For example, the reference
relationship of Figure 2-1 has an attribute indicating the date the reference from th
document to the book was established.

Document
ReferencesRole

ReferencedByRole
Book

Reference Relationship
attribute date_of_reference

my doc
ReferencesRole

ReferencedByRole

War and Peace

Reference Relationship
May 30, 1994
2-2 Relationship Service V1.0 April 2000

2

be
s and
ries

not
any

an
can

ts

ook

ts. It
nts for
at
2.1.1.1 Rationale

If relationships are not allowed to define attributes and operations, they will have to
assigned to one of the related objects. This approach is prone to misunderstanding
inconsistencies. The approach to define an artificial related object, which then car
the attributes, is equally unsatisfactory.

The date attribute of the example of Figure 2-2 is clearly an attribute of the
relationship, not one of related objects. It cannot be an attribute of “my document”
since “my document” can reference many books on different dates. Similarly, it can
be an attribute of “War and Peace” since “War and Peace” can be referenced by m
books on different dates.

2.1.2 Higher Degree Relationships

The Reference relationship in Figure 2-1 is abinary relationship; that is, it is defined
by two roles. The Relationship Service can also support relationships with more th
two roles. The fact that three or more related objects may be part of a relationship
be expressed directly by means of the same concept as in the binary case. Thedegree
represents the number of roles in a relationship. The Relationship Service suppor
higher degree relationships, that is relationships with a degree greater than two.

Figure 2-3 shows a ternary “check out” relationship between books, libraries and
persons. The semantics of this relationship is that a person borrows a book from a
library. The relationship also defines an attribute that indicates the date when the b
is due to be returned by the person to the library.

Figure 2-3 A ternary check-out relationship type between books, libraries and persons.

2.1.2.1 Rationale

The Relationship Service represents higher degree relationships directly. It clearly
defines the number of expected related objects as well as other integrity constrain
is more readable, more understandable and easier to enforce consistency constrai
related objects with a direct representation than with alternative representations th
simulate higher degree relationships using a set of binary relationships. When

Book

Person

material role

borrower role

check_out relationship
attribute due_dateLibrary

lender role
Relationship Service V1.0 The Base Relationship Model April 2000 2-3

2

ure
that
d

ary

p of
is

eds

ture
simulating higher degree relationships, the relationship information is spread over
multiple object and relationship type definitions, as are the corresponding integrity
constraints.

Figure 2-4 shows an alternative representation of the ternary relationship from Fig
2-3 using binary relationships. Note that the first representation is not equivalent to
of Figure 2-3 since cardinalities and other integrity constraints cannot be expresse
correctly in this alternative representation.

Figure 2-4 An unsatisfactory representation of the ternary check-out relationship using bin
relationships.

Figure 2-5 illustrates a second alternative representation of the ternary relationshi
Figure 2-3. It uses an additional (artificial) related object type. This representation
equivalent to Figure 2-3 ifCheck-outis constrained to participate in exactly one
instance of each of the three binary relationship types. However, this alternative ne
three relationship types and one additional related object type(Check-out)instead of
only one relationship type, and therefore is much more complex and harder to cap
when compared to the representation using one relationship type with degree 3.

Figure 2-5 Another unsatisfactory representation

Book

Library Person

Book

Library Person

Check_out
2-4 Relationship Service V1.0 April 2000

2

r of

ting

the

are

r the
ated
pes
ed

es.
tion
Since the Relationship Service supports higher order relationships directly, the use
the service need not resort to the unsatisfactory representations using binary
relationships of Figure 2-4 and Figure 2-5.

2.1.3 Operations

The base level of the Relationship Service provides operations to:

• Create role and relationship objects

• Navigate relationships

• Destroy roles and relationships

• Iterate over the relationships in which a role participates

2.1.3.1 Creation

Roles are constructed independently using a role factory. Roles represent an exis
related object that is passed as a parameter to theRoleFactory::create operation.
When creating a new role object, the type of the related object can be checked by
factory. The minimum and maximum cardinality, e.g. the minimal and the maximal
number of relationship instances to which the new role object may be connected,
indicated by attributes on the factory.

Figure 2-6 illustrates a newly created role.

Figure 2-6 Creating a role for an object

A new relationship is created by passing a sequence of named roles to a factory fo
relationship. The expected degree and role types for the new relationship are indic
by attributes on the factory. During the creation of the new relationship, the role ty
and the maximum cardinality can be checked. Duplicate role names are not allow
since the names are used to distinguish the roles in the scope of the relationship.

When creating a relationship, the factory creates “links” between the roles and the
relationship using thelink operation on the role.

Figure 2-7 illustrates a fully established binary relationship. Figure 2-7 represents
navigation functionality ; it does not necessarily represent stored object referenc
A variety of implementation strategies are described in Section 2.1.5, “Implementa
Strategies,” on page 2-7.

Object
Relationship Service V1.0 The Base Relationship Model April 2000 2-5

2

tes

role

es

ces

ote

ity
Figure 2-7 A fully established binary relationship

2.1.3.2 Navigation

Figure 2-7 illustrates the navigational functionality of a relationship. In particular,

• a relationship defines an attribute that indicates a read-only attribute that indica
the named roles of the relationship,

• a role defines a read-only attribute that indicates the related object that the role
represents,

• A role supports theget_other_role operation, that given a relationship object
and a role name, returns the other role object,

• A role supports theget_other_related_object operation, that given a
relationship object and a role name, returns the related object that the named
represents in the relationship and

• A role supports theget_relationships operation which returns the relationships
in which the role participates.

2.1.3.3 Destruction

For both roles and relationship objects, the Relationship Services introduces adestroy
operation. Thedestroy operation for relationship objects also destroys the links
between the relationship and all of the role objects.

2.1.4 Consistency Constraints

For each role two cardinalities are defined: minimum and maximum.

• The minimum cardinality indicates the minimum number of relationship instanc
in which a role must participate.

• The maximum cardinality indicates the maximum number of relationship instan
in which a role can participate.

Maximum cardinality constraint can be checked when relationships are created. N
that the relationship mechanism cannot, by itself, enforce the minimum cardinality
constraint. However, a role can be asked explicitly if it meets its minimum cardinal
constraint using thecheck_minimum_cardinality operation.

figuredocument
2-6 Relationship Service V1.0 April 2000

2

and
ked

or

ries.
he
d
at the

cts
s are

ject
Type integrity is preserved by CORBA mechanisms because related objects, roles
relationships are instances of CORBA object types. Type constraints can be chec
when roles and relationships are created.

2.1.5 Implementation Strategies

Figure 2-7 illustrates the navigational functionality of a fully established binary
relationship. There are a variety of implementation strategies possible. The
get_other_role and theget_other_related_object operations can be:

• Implemented by caching object references to other roles and related objects,

• Computed when needed using the relationship object.

The appropriate implementation strategy typically depends on distribution bounda
If the roles and relationship objects are clustered, then only storing the values at t
relationship object optimizes space. If, on the other hand, the roles and the relate
objects are clustered, caching object references to other roles and related objects
roles allows the relationship to be efficiently navigated without involving a remote
relationship object.

Role implementations that cache object references to other roles and related obje
need not worry about updating the cache. Once the related objects and relationship
established, they cannot be changed.

2.2 The CosObjectIdentity Module

CORBA: Common Object Request Broker Architecture and Specificationdoes not
define a notion of object identity for objects. The Relationship Service requires ob
identity for the objects it defines. As such, the Relationship Service assumes the
CosObjectIdentity module specified in Figure 2-8 . This is defined in a separate
module; other Object Services may find this module to be generally useful.

module CosObjectIdentity {

typedef unsigned long ObjectIdentifier;

interface IdentifiableObject {
readonly attribute ObjectIdentifier constant_random_id;
boolean is_identical (

in IdentifiableObject other_object);
};

};

2.2.1 The IdentifiableObject Interface

Objects that support theIdentifiableObject interface implement an attribute of type
ObjectIdentifier and theis_identical operation. This mechanism provides an
efficient and convenient method of supporting object identity in a heterogeneous
CORBA-based environment.
Relationship Service V1.0 The CosObjectIdentity Module April 2000 2-7

2

e

ble
nts

ip
2.2.1.1 constant_random_id

readonly attribute ObjectIdentifier constant_random_id;

Objects supporting theIdentifiableObject interface define an attribute of type
ObjectIdentifier . The value of the attribute must not change during the lifetime of th
object.

A typical client use of this attribute is as a key in a hash table. As such, the more
randomly distributed the values are, the better.

The value of this attribute is not guaranteed to be unique; that is, another identifia
object can return the same value. However, if objects return different identifiers, clie
can determine that two identifiable objects arenot identical.

To determine if two identifiable objectsare identical, theis_identical operation must
be used.

2.2.1.2 is_identical

boolean is_identical (
in IdentifiableObject other_object);

The is_identical operation returnstrue if the object and theother_object are
identical. Otherwise, the operation returnsfalse.

2.3 The CosRelationships Module

The CosRelationships module defines the interfaces of the base level Relationsh
Service. In particular, it defines

• Relationship andRole interfaces to represent relationships and roles,

• RelationshipFactory andRoleFactory interfaces to create relationships and
roles

• RelationshipIterator interface to enumerate the relationships in which a role
participates

#include <ObjectIdentity.idl>

module CosRelationships {

interface RoleFactory;
interface RelationshipFactory;
interface Relationship;
interface Role;
interface RelationshipIterator;

typedef Object RelatedObject;
typedef sequence<Role> Roles;
typedef string RoleName;
typedef sequence<RoleName> RoleNames;
2-8 Relationship Service V1.0 April 2000

2

struct NamedRole {RoleName name; Role aRole;};
typedef sequence<NamedRole> NamedRoles;

struct RelationshipHandle {
Relationship the_relationship;
CosObjectIdentity::ObjectIdentifier constant_random_id;

};
typedef sequence<RelationshipHandle> RelationshipHandles;

interface RelationshipFactory {
struct NamedRoleType {

RoleName name;
::CORBA::InterfaceDef named_role_type;

};
typedef sequence<NamedRoleType> NamedRoleTypes;
readonly attribute ::CORBA::InterfaceDef relationship_type;
readonly attribute unsigned short degree;
readonly attribute NamedRoleTypes named_role_types;
exception RoleTypeError {NamedRoles culprits;};
exception MaxCardinalityExceeded {

NamedRoles culprits;};
exception DegreeError {unsigned short required_degree;};
exception DuplicateRoleName {NamedRoles culprits;};
exception UnknownRoleName {NamedRoles culprits;};

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);

};

interface Relationship :
CosObjectIdentity::IdentifiableObject {

exception CannotUnlink {
Roles offending_roles;

};
readonly attribute NamedRoles named_roles;
void destroy () raises(CannotUnlink);

};

interface Role {
exception UnknownRoleName {};
exception UnknownRelationship {};
exception RelationshipTypeError {};
exception CannotDestroyRelationship {

RelationshipHandles offenders;
};
exception ParticipatingInRelationship {
Relationship Service V1.0 The CosRelationships Module April 2000 2-9

2

RelationshipHandles the_relationships;
};

readonly attribute RelatedObject related_object;
RelatedObject get_other_related_object (

in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName, UnknownRelationship);
void get_relationships (

in unsigned long how_many,
out RelationshipHandles rels,
out RelationshipIterator iterator);

void destroy_relationships()
raises(CannotDestroyRelationship);

void destroy() raises(ParticipatingInRelationship);
boolean check_minimum_cardinality ();
void link (in RelationshipHandle rel,

in NamedRoles named_roles)
raises(RelationshipFactory::MaxCardinalityExceeded,

RelationshipTypeError);
void unlink (in RelationshipHandle rel)
raises (UnknownRelationship);

};

interface RoleFactory {
exception NilRelatedObject {};
exception RelatedObjectTypeError {};
readonly attribute ::CORBA::InterfaceDef role_type;
readonly attribute unsigned long max_cardinality;
readonly attribute unsigned long min_cardinality;
readonly attribute sequence

<::CORBA::InterfaceDef> related_object_types;
Role create_role (in RelatedObject related_object)

raises (NilRelatedObject, RelatedObjectTypeError);
};

interface RelationshipIterator {
boolean next_one (out RelationshipHandle rel);
boolean next_n (in unsigned long how_many,

out RelationshipHandles rels);
void destroy ();

};
};
2-10 Relationship Service V1.0 April 2000

2

ibe
t

f a
that

ed a

the

in
, the
d

f

2.3.1 Example of Containment Relationships

The example of Figure 2-8 is referred to throughout the following sections to descr
roles and relationships. The figure represents two binary, one-to-many containmen
relationships between a document and a figure and a logo.

Figure 2-8 Two binary one-to-many containment relationships.

2.3.2 The RelationshipFactory Interface

TheRelationshipFactory interface defines an operation for creating an instance o
relationship among a set of related objects. The factory also defines two attributes
specify the degree and role types of the relationships it creates.

Creating a Relationship

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);

The create operation creates a new instance of a relationship. The factory is pass
sequence of named roles that represent the related objects in the newly created
relationship. The factory, in turn, informs the roles about the new relationship using
link operation described in “Linking a Role in a Newly Created Relationship” on
page 2-16.

Roles implement maximum cardinality constraints. A role may refuse to participate
a new relationship because it would violate a cardinality constraint. In such a case
MaxCardinalityExceeded exception is raised and the offending roles are returne
in the exception.

The number of roles passed to thecreate operation must be the same as the value o
the degree attribute. If not, theDegreeError exception is raised.

figure

logo

document

relationship B

relationship D

ContainedInRole A

ContainsRole C

ContainedInRole E
Relationship Service V1.0 The CosRelationships Module April 2000 2-11

2

oles

d in

e

ed

the

or
Role names are used to associate each actual role object with one of the formal r
expected by the relationship to be created.

The set of role names passed to thecreate operation must be the same as the set of
role names in the factory’snamed_role_types attribute. If not, the
UnknowRoleName exception is raised, and the unrecognized names are returne
the exception. The sequence order of thenamed_roles parameter and the sequence
order of thenamed_role_types need not correspond.

The type of each role passed to thecreate operation must be of the same type as th
type indicated for the corresponding role name in thenamed_role_types attribute. If
not, theRoleTypeError is raised and the offending roles are returned in the
exception.

The names of the roles passed to thecreate operation must be unique within the scope
of this relationship type. If not, theDuplicateRoleName exception is raised.

Example of Figure 2-8

The document and the figure were related, that is relationship B was created, by
passing roles A and C to thecreate operation of the relationship factory. Similarly, the
document and the logo were related by passing roles C and E to the relationship
factory for relationship D.

Determining the Created Relationship’s Type

readonly attribute ::CORBA::InterfaceDef relationship_type;

The relationship created by a factory may be a subtype of theRelationship interface.
The relationship_type attribute indicates the actual types of the relationships creat
by the factory.

Determining the Degree of the Relationship Type

readonly attribute unsigned short degree;

Thedegree attribute indicates the number of roles for the relationships created by
factory.

Example of Figure 2-8

The relationship factory for containment has a degree attribute whose value is 2
because containment is a binary relationship.

Determining Names and Types of the Roles of a Relationship Type

readonly attribute NamedRoleTypes named_role_types;

The named_role_types attribute indicates the required names and types of roles f
the relationships created by the factory.NamedRoleTypes are defined as structures
where the role type is given by theCORBA::InterfaceDef for the role objects.
2-12 Relationship Service V1.0 April 2000

2

e of

the

s
”,

e
be
Example of Figure 2-8

The relationship factory for containment has an attribute whose value is a sequenc
two CORBA::InterfaceDefs : one forContainsRole and one for
ContainedInRole .

2.3.2.1 The Relationship Interface

TheRelationship interface defines an attribute whose value is the named roles of
relationship and an operation to destroy the relationship.

Determining the Roles of a Relationship and Their Names

readonly attribute NamedRoles named_roles;

The named_roles attribute returns the roles of the relationship. The roles have the
names that were indicated in thecreate operation defined by the
RelationshipFactory interface.

Example of Figure 2-8

Relationship B has an attribute whose value is a sequence <“A”,InterfaceDef for
ContainedInRole; “C”, InterfaceDef for ContainsRole>. Similarly, relationship D ha
an attribute whose value is a sequence <“E”, InterfaceDef for ContainedInRole; “C
InterfaceDef for ContainsRole>.

2.3.2.2 Destroying a Relationship

void destroy () raises(CannotUnlink);

The destroy operation destroys the relationship between the objects. The roles ar
unlinked by the relationship implementation before it is destroyed. If roles cannot
unlinked, theCannotUnlink exception is raised and the roles that could not be
unlinked are returned in the exception.

Example of Figure 2-8

If destroy is requested of relationship B, theunlink operation is requested of both
roles A and C and the relationship B is destroyed.

2.3.2.3 The Role Interface

The Role interface defines operations to:

• navigate the relationship from one role to another,

• enumerate the relationships in which the role participates,

• destroy all relationships in which the role participates,

• link a role to a newly created relationship and

• unlink a role in the destruction process of a relationship and
Relationship Service V1.0 The CosRelationships Module April 2000 2-13

2

he
• destroy the role itself,

Determining the Related Object That a Role Represents

readonly attribute RelatedObject related_object;

The related_object attribute indicates the related object that the role represents. T
related object that the role represents is specified as a parameter to thecreate
operation defined by theRoleFactory interface.

Getting Another Related Object

RelatedObject get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

Theget_other_related_object operation navigates the relationshiprel to the related
object represented by the role namedtarget_name .

If the role does not know about a role namedtarget_name , the
UnknownRoleName exception is raised. If the role does not know about the
relationshiprel , the UnknownRelationship exception is raised.

Example of Figure 2-8

Assuming role A is named “A”, requestingget_other_related_object(B,”A”) of
role C returns the figure. On the other hand, requesting
get_other_related_object(D,”E”) of role C returns the logo.

Getting Another Role

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName, UnknownRelationship);

The get_other_role operation navigates the relationshiprel to the role named
target_name . The role is returned.

If the role does not know about a role namedtarget_name for the relationshiprel ,
the UnknownRoleName exception is raised. If the role does not know about the
relationshiprel , the UnknownRelationship exception is raised.

Example of Figure 2-8

Assuming role A is named “A”, requestingget_other_role(B,”A”) of role C returns
role A. On the other hand, requestingget_other_role(D,”E”) of role C returns role E.

Getting All Relationships in Which a Role Participates
void get_relationships (
2-14 Relationship Service V1.0 April 2000

2

on

oy
 be

n
ld

.

in unsigned long how_many,
out RelationshipHandles rels,
out RelationshipIterator iterator);

The get_relationships operation returns the relationships in which the role
participates.

The size of the list is determined by thehow_many argument. If there are more
relationships than specified by thehow_many argument, an iterator is created and
returned with the additional relationships. If there are no more relationships, a nil
object reference is returned for the iterator. (TheRelationshipIterator interface is a
standard iterator described in Section 2.3.3.1, “The RelationshipIterator Interface,”
page 2-18).

Example of Figure 2-8

Requesting get_relationships on role C would return the relationships B and D.

Destroying All Relationships in Which a Role Participates

void destroy_relationships()
raises(CannotDestroyRelationship);

Thedestroy_relationships operation destroys all relationships in which the role
participates.

Thedestroy_relationships operation is semantically equivalent to requesting destr
of each relationship in which the role participates. The operation is not required to
implemented in that fashion.

If the destroy_relationships operation cannot destroy one of the relationships, the
theCannotDestroyRelationship exception is raised and the relationships that cou
not be destroyed are returned in the exception.

Example of Figure 2-8

Requestingdestroy_relationships of role A causes relationship B to be destroyed
On the other hand, requestingdestroy_relationships of role C causes relationships
B and D to be destroyed.

Destroying a Role

void destroy() raises(ParticipatingInRelationship);

The destroy operation destroys the role. The role must not be participating in any
relationships. If it is, theParticipatingInRelationship exception is raised and the
relationships in which the role participates are returned in the exception.

Example of Figure 2-8

Requestingdestroy_role of role A destroys relationship B and role A.
Relationship Service V1.0 The CosRelationships Module April 2000 2-15

2

e is
e

ps
d,

on

,

Checking Minimum Cardinality of a Role

boolean check_minimum_cardinality ();

The check_minimum_cardinality operation returns TRUE if a role satisfies its
minimum cardinality constraints. Otherwise, the operation returns FALSE.

Example of Figure 2-8

Requestingcheck_minimum_cardinality of role A would return true since it is
participating in relationship B.

void link (in RelationshipHandle rel,
in NamedRoles named_roles)

raises(RelationshipFactory::MaxCardinalityExceeded,
RelationshipTypeError);

Linking a Role in a Newly Created Relationship

Note – The link operation is not intended for general purpose clients that create,
navigate and destroy relationships. Instead, it is an operation intended for
implementations of the relationship factorycreate operation.

The link operation informs the role that a new relationship is being created. The rol
passed a relationship and a set of named roles that represent related objects in th
relationship.

A role can have a maximum cardinality, that is it may limit the number of relationshi
in which it participates. If thelink request would cause the maximum to be exceede
the MaxCardinalityExceeded exception is raised. If the type of the relationship
does not agree with the relationship type that the role expects, the
RelationshipTypeError exception is raised.

Example of Figure 2-8

When creating relationship B, the factory for B requested the link (B, A,C) operati
on roles A and C. This allows roles A and C to support the navigation and
administration operations for relationship B.

Removing a Role from a Relationship

void unlink (in RelationshipHandle rel)
raises (UnknownRelationship);

Note – The unlink operation is not intended for general purpose clients that create
navigate and destroy relationships. Instead, it is an operation intended for
implementations of the relationshipdestroy operation.
2-16 Relationship Service V1.0 April 2000

2

p B.

d a

eter.

tory

the
The unlink operation causes the role to delete its record of the relationship.

If the relationship passed as an argument is unknown to the role, the
UnknownRelationship exception is raised.

Example of Figure 2-8

The implementation of thedestroy operation on relationship B requestsunlink(B) of
roles A and C. This causes roles A and C to forget their participation in relationshi

2.3.3 The RoleFactory Interface

The RoleFactory interface defines attributes describing the roles that it creates an
single operation to create a role.

Creating a Role

Role create_role (in RelatedObject related_object)
raises (NilRelatedObject, RelatedObjectTypeError);

The create_role operation creates a role for the related object passed as a param

A role must represent a related object. If a nil object reference is passed to the fac
for the related object, theNilRelatedObject exception is raised.

Role factories can restrict the type of objects the roles they create will represent. If
interface of the related object does not conform, theRelatedObjectTypeError
exception is raised.

Example of Figure 2-8

Clients that created roles A, C and E used thecreate operation of factories that
support theRoleFactory interface.

Determining the Created Role’s Type

readonly attribute ::CORBA::InterfaceDef role_type;

The role created by a factory may be a subtype of theRole interface. Therole_type
attribute indicates the actual types of the roles created by the factory.

Determining the Maximum Cardinality of a Role

readonly attribute unsigned long max_cardinality;

The max_cardinality attribute indicates the maximum number of relationships in
which a role (created by the factory) participates.
Relationship Service V1.0 The CosRelationships Module April 2000 2-17

2

ce
rt

d

, it
Example of Figure 2-8

The factory for role A returns 1, since aContainedIn role can be in no more than one
relationship. Attempts to add role A to more than one relationship result in
MaxCardinalityExceeded exceptions. (See thecreate operation of the
RelationshipFactory interface and thelink operation of theRole interface.)

Determining the Minimum Cardinality of a Role

readonly attribute unsigned long min_cardinality;

The min_cardinality attribute indicates the minimum number of relationships in
which a role (created by the factory) participates.

Note, that unlike maximum cardinality, minimum cardinality cannot be enforced sin
roles will be below their minimum during relationship construction. Roles do suppo
the check_minimum_cardinality operation to report if they are below their
minimum.

Example of Figure 2-8

The factory for role A returns 1, since aContainedIn role should be in one
relationship.

Determining the Related Object Types for a Role

readonly attribute sequence
<::CORBA::InterfaceDef> related_object_types;

The factory creates roles that represent related objects in relationships. The relate
objects must support at least one of the interfaces indicated by the
related_object_type attribute.

Example of Figure 2-8

The factory for role C returns theCORBA::InterfaceDef for a document.

2.3.3.1 The RelationshipIterator Interface

The RelationshipIterator interface is returned by theget_relationships operation
defined by theRole interface. It allows clients to iterate through any additional
relationships in which the role participates.

next_one

boolean next_one (out RelationshipHandle rel);

Thenext_one operation returns the next relationship; if no more relationships exist
returns FALSE.
2-18 Relationship Service V1.0 April 2000

2

and

of

re
d

ed

n
user

o to
e

next_n

boolean next_n (in unsigned long how_many,
out RelationshipHandles rels);

The next_n operation returns at most the requested number of relationships; if no
more relationships exist, it returns FALSE.

destroy

void destroy ();

The destroy operation destroys the iterator.

2.4 Graphs of Related Objects

When objects are related using the Relationship Service,graphs of related objectsare
formed. This section focuses on how the Relationship Service supports graphs of
related objects. We first describe the graph architecture supported by the service,
describe support for traversing the graph and implementing compound operations
then specify theCosGraphs module in detail.

Graphs are important for distributed, object-oriented applications. A few examples
graphs are:

Distributed Desktops

Folders and objects are connected together. Folders contain some objects and
reference others. Folders may contain or reference other folders. The objects a
distributed; they span multiple machines. The distributed desktop is a distribute
graph.

Composed Applications

Applications are built out of existing objects that are connected together. An
example of such a composed application is a shared white board. The compos
application is a graph.

User Interface Hierarchies

Presentation objects visualize semantic objects for users. Presentations contai
other presentation objects. For example, a window might contain a button. The
interface hierarchy is a graph.

Compound Documents

A compound document architecture allows graphics, animation, sound, and vide
be connected together to give the user the impression of a single document. Th
compound document is a graph.
Relationship Service V1.0 Graphs of Related Objects April 2000 2-19

2

lated
ips

h.

ure

han
2.4.1 Graph Architecture

A graph is a set of nodes and a set of edges, involving those nodes. Nodes are re
objects that support theNode interface and edges are represented by the relationsh
that relate nodes. Figure 2-9 illustrates an example of a graph.

Figure 2-9 An example graph of related objects.

The folder, book, document, figure, library, person and logo are nodes in the grap
The edges of the graph are represented by the relationships:

• containment: the folder and document,

• containment: the document and the figure

• containment: the document and the logo

• reference: the figure and the logo

• reference: the document and the book,

• check_out: the book, the library and the person

The graph architecture supports multiple kinds of relationships. For example, in Fig
2-9, there arecontainment , reference andcheck_out relationships. The small
circles depict roles for a reference relationship, the solid circles depict roles for a
containment relationship and the shaded circles represent the roles of thecheck_out
relationship.

A node can participate in more than one kind of relationship and thus have more t
one role. In the example the document has three kinds of roles:

• The ContainsRole
• The ContainedInRole

figure

logo

folder

person

library

document

book

containment

reference

check_out
2-20 Relationship Service V1.0 April 2000

2

raphs

the

the

t

uces

s,

ng

ough
ct.
• The ReferencesRole

2.4.1.1 Nodes

Nodes are identifiable objects that support theNodeinterface. Nodes collect roles of a
related object and the related object itself. A node enables standard traversals of g
of related objects because it supports the following:

• A readonly attribute defining all of its roles

• An operation allowing roles of a particular type to be returned

• Operations to add and remove roles

The Node interface can be inherited by related objects or an object implementing
Node interface can be instantiated and interposed in front of related objects.
Interposition is particularly useful in these cases:

• When connecting immutable objects, which are objects that are not aware of
Relationship Service.

• In order to traverse graphs of related objects without activating the related
objects.

As such, theNode interface defines an attribute whose value is the related object i
represents.

2.4.2 Traversing Graphs of Related Objects

The Relationship Service defines a traversal object that, given a starting node, prod
a sequence of directed edges of the graph. A directed edge corresponds to a
relationship. In particular, it consists of:

• An instance of a relationship.

• A starting node and a starting named role of the edge to indicate direction.

• A sequence containing the remaining nodes and named roles. For binary
relationships, there is a single remaining node and role. For n-ary relationship
there are n-1 remaining nodes and roles.

The traversal object works like an iterator, where directed edges are the items bei
returned.

The traversal object, the nodes and the roles cooperate in traversing the graph. Thr
the operations of theNode interface, the node reveals its roles to the traversal obje
Through the operations of theCosGraphs::Role interface, a role reveals its directed
edges to other nodes. (TheCosGraphs::Role interface defines an operation allowing
a role to reveal directed edges.)

In traversing a graph, the traversal object must detect and represent cycles, and
determine the relevant nodes and edges.
Relationship Service V1.0 Graphs of Related Objects April 2000 2-21

2

e

are

for

the

on a

de in
al

, the
ere

the

ist of
the

ing
pth
s

n
ly to
tions

t
tion
ip
2.4.2.1 Detecting and Representing Cycles

In order to terminate, a traversal must be able to detect a cycle in the graph. In th
example of Figure 2-9, the document, the figure, and the logo form a cycle.

To detect cycles in the graph, the traversal object depends on the fact that nodes
identifiable objects, that is they support theIdentifiableObject interface defined in
Section 2.2, “The CosObjectIdentity Module,” on page 2-7.

To represent cycles in the graph, the traversal object defines a scope of identifiers
the nodes and relationships in the graph. That is, a given traversalassignsidentifiers to
the nodes and relationships that are guaranteed to be unique within the scope of
traversal.

2.4.2.2 Determining the Relevant Nodes and Edges

A traversal begins at the starting node, emits directed edges andmaycontinue to other
related nodes. The traversal object is programmable in the criteria it uses for
determining the edges to emit and the nodes to visit. The traversal object depends
“call-back” object supporting theTraversalCriteria interface.

Given a node, the traversal criteria computes a sequence of directed edges to inclu
the traversal. For each edge, the traversal criteria can indicate whether the travers
should continue to an adjacent node. Based on the results of the traversal criteria
traversal object emits edges and visits other nodes. The process continues until th
are no more edges to emit and no more nodes to visit.

Three standard traversal modes are defined to allow clients flexibility in controlling
search order:depth first , breadth first , andbest first . In order to understand the
differences between the modes, consider that the traversal maintains an ordered l
the edges which have been produced by visiting nodes. This list initially contains
edges which result from visiting the root node. In each iteration the first edge is
removed from the list to be returned and its destination nodes are visited. Depend
upon the traversal mode, these edges are: inserted in the beginning of the list (de
first), appended to the end of the list (breadth first), or inserted into the list which i
sorted by the edge’s weight (best first).

2.4.3 Compound Operations

Traversal objects are especially important in implementing compound operations o
graphs of related objects. By compound operations, we mean operations that app
some subset of the nodes and edges in the graph. Examples of compound opera
include operations, such as copy, move, remove, externalize, print, and so forth.

Note – The Relationship Service defines a framework for compound operations bu
does not define specific compound operations. The Life Cycle and the Externaliza
Service specifications define compound operations that depend on the Relationsh
Service.
2-22 Relationship Service V1.0 April 2000

2

und
ation

d by
t
s.

n
ther
The

und

tion

e

r
to
A compound operation may be implemented either in one or two passes. A compo
operation implemented in one pass traverses the graph itself and applies the oper
as it proceeds.

A compound operation implemented in two passes uses the traversal object define
the Relationship Service to determine the relevant nodes and detect and represen
cycles. The second pass simply applies the operation to the results of the first pas

A compound operation implemented in two passes provides aTraversalCriteriaobject
for the traversal service.

2.4.4 An Example of Traversal Criteria

Consider a traversal of a graph with a traversal criteria object that uses propagatio
values defined by the relationships to determine whether to emit an edge and whe
to proceed to another node. The traversal criteria is given a node by the traversal.
traversal criteria then requests propagation values from each of the node’s roles.

Figure 2-10 illustrates a traversal of a graph using a traversal criteria for a compo
copy operation. Using thepropagation_for operation defined by
CompoundLifeCycle::Role interface, the traversal criteria obtains the propagation
value for the copy operation from each of the node’s roles.

Figure 2-10 A traversal of a graph for compound copy operation.

2.4.4.1 Propagation

Compound operations may propagate from one node to another depending on the
semantics of the relationship between the nodes. The propagation semantics of a
relationship depend on the direction the relationship is being traversed. A propaga
value is eitherdeep, shallow, inhibit or none.

Deepmeans that the operation is applied to the node, to the relationship and to th
related objects. In the example of Figure 2-10, the propagation value for the copy
operation is deep from the document to the logo; the copy propagates from the
document to the logo across the containment relationship. The traversal criteria fo
copy that encounters a deep propagation value would instruct the traversal object
emit the edge and visit the logo.

document logo
Node

Role

TraversalCriteria

copy=deep

Node

Role

copy=shallow
Relationship Service V1.0 Graphs of Related Objects April 2000 2-23

2

d
on

the

he
not

des,

de’s
d

s

l

Shallowmeans that the operation is applied to the relationship but not to the relate
objects. In the example of Figure 2-10, the propagation value for the copy operati
from the logo to the document is shallow. The traversal criteria for copy that
encounters a shallow propagation value would instruct the traversal object to emit
edge but the document is not visited.

Nonemeans that the operation has no effect on the relationship and no effect on t
related objects. A traversal criteria that encounters a none propagation value would
return any edges and related nodes are not visited.

Figure 2-11 summarizes how deep, shallow and node propagation values affect no
roles and relationships.

Figure 2-11 How deep, shallow and none propagation values affect nodes, roles and
relationships.

Inhibit means that the operation should not propagate to the node via any of the no
roles. Inhibit is particularly meaningful for the remove operation to provide so-calle
“existence-ensuring relationships”.

For more discussion of propagation values, see [1.].

2.5 The CosGraphs Module

The CosGraphs module defines the support for graphs of related objects. It define
the following interfaces:

• TraversalFactory interface for creating traversal objects

• Traversal interface for enumerating directed edges of a graph,

• TraversalCriteria “call-back” interface to allow programmability of the traversa
object

• Node interface for collecting the roles of a related object

• NodeFactory interface for creating nodes

• Role interface to support traversals

The CosGraphs module is shown below.

#include <Relationships.idl>
#include <ObjectIdentity.idl>

shallow

deep

none
2-24 Relationship Service V1.0 April 2000

2

module CosGraphs {

interface TraversalFactory;
interface Traversal;
interface TraversalCriteria;
interface Node;
interface NodeFactory;
interface Role;
interface EdgeIterator;

struct NodeHandle {
Node the_node;
::CosObjectIdentity::ObjectIdentifier constant_random_id;

};
typedef sequence<NodeHandle> NodeHandles;

struct NamedRole {
Role the_role;
::CosRelationships::RoleName the_name;

};
typedef sequence<NamedRole> NamedRoles;

struct EndPoint {
NodeHandle the_node;
NamedRole the_role;

};
typedef sequence<EndPoint> EndPoints;

struct Edge {
EndPoint from;
::CosRelationships::RelationshipHandle the_relationship;
EndPoints relatives;

};
typedef sequence<Edge> Edges;

enum PropagationValue {deep, shallow, none, inhibit};
enum Mode {depthFirst, breadthFirst, bestFirst};

interface TraversalFactory {
Traversal create_traversal_on (

in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

};

interface Traversal {
typedef unsigned long TraversalScopedId;
struct ScopedEndPoint {

EndPoint point;
TraversalScopedId id;

};
Relationship Service V1.0 The CosGraphs Module April 2000 2-25

2

typedef sequence<ScopedEndPoint> ScopedEndPoints;
struct ScopedRelationship {

::CosRelationships::RelationshipHandle
scoped_relationship;

TraversalScopedId id;
};
struct ScopedEdge {

ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;

};
typedef sequence<ScopedEdge> ScopedEdges;
boolean next_one (out ScopedEdge the_edge);
boolean next_n (in short how_many,

out ScopedEdges the_edges);
void destroy ();
};

interface TraversalCriteria {
struct WeightedEdge {
Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;

};
typedef sequence<WeightedEdge> WeightedEdges;
void visit_node(in NodeHandle a_node,

in Mode search_mode);
boolean next_one (out WeightedEdge the_edge);
boolean next_n (in short how_many,

out WeightedEdges the_edges);
void destroy();

};

interface Node: ::CosObjectIdentity::IdentifiableObject {
typedef sequence<Role> Roles;
exception NoSuchRole {};
exception DuplicateRoleType {};

readonly attribute ::CosRelationships::RelatedObject
 related_object;

readonly attribute Roles roles_of_node;
Roles roles_of_type (

in ::CORBA::InterfaceDef role_type);
void add_role (in Role a_role)

raises (DuplicateRoleType);
void remove_role (in ::CORBA::InterfaceDef of_type)

raises (NoSuchRole);
};

interface NodeFactory {
Node create_node (in Object related_object);
2-26 Relationship Service V1.0 April 2000

2

st

s
ope
};

interface Role : ::CosRelationships::Role {
void get_edges (in long how_many,

out Edges the_edges,
out EdgeIterator the_rest);

};

interface EdgeIterator {
boolean next_one (out Edge the_edge);
boolean next_n (in unsigned long how_many,

out Edges the_edges);
void destroy ();

};

};

2.5.1 The TraversalFactory Interface

The TraversalFactory interface creates traversal objects. TheTraversal interface is
used by clients that want to traverse graphs of related objects according to some
traversal criteria.

create_traversal_on

Traversal create_traversal_on (
in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

The create_traversal_on operation creates a traversal object starting at the
root_node . The created traversal object uses theTraversalCriteria object to
determine which directed edges to emit and which nodes to visit. Themode parameter
indicates whether the traversal will proceed in a depth first, breadth first or best fir
fashion.

2.5.2 The Traversal Interface

Traversal objects iterate throughScopedEdges of the graph according to the
traversal criteria and the mode established when the traversal was created. The
traversal also defines a scope for the nodes and edges it returns; that is, it assign
identifiers to the nodes and edges it returns. The identifiers are unique within the sc
of a given traversal.ScopedEdges are given by the following structure:

struct ScopedEdge {
ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;

};
Relationship Service V1.0 The CosGraphs Module April 2000 2-27

2

ip
es the
tifier

xist,

ing

g if
est

es
typedef sequence<ScopedEdge> ScopedEdges;

A ScopedEdge consists of a distinguished scoped end point, a scoped relationsh
and a sequence of scoped end points. The distinguished scoped end point indicat
direction of the edge. The scoped end point consists of a node, a role, and an iden
for the node that is unique within the scope of the traversal.

next_one

boolean next_one (out ScopedEdge the_edge);

The next_one operation returns the next scoped edge; if no more scoped edges e
it returns FALSE.

next_n

boolean next_n (in short how_many,
 out ScopedEdges the_edges);

The next_n operation returns at most the requested number of scoped edges.

destroy

void destroy ();

The destroy operation destroys the traversal.

2.5.3 The TraversalCriteria Interface

The TraversalCriteria interface is used by the traversal object to determine which
edges to emit and which nodes to visit from a given node. The traversal criteria
behaves like an iterator of weighted edges. Weighted edges are given by the follow
structure:

struct WeightedEdge {
Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;

};
typedef sequence<WeightedEdge> WeightedEdges;

A WeightedEdge consists of an edge, a weight and a sequence of nodes indicatin
the traversal should continue to the nodes. The weight is only meaningful for the b
first traversal.

next_one
boolean next_one (out WeightedEdge the_edge);

The next_one operation returns the next weighted edge; if no more weighted edg
exist, it returns FALSE.
2-28 Relationship Service V1.0 April 2000

2

e

.

ed

roles
next_n
boolean next_n (in short how_many,

out WeightedEdges the_edges);

The next_n operation returns at most the requested number of weighted directed
edges.

destroy

void destroy();

The destroy operation destroys the traversal criteria.

visit_node

void visit_node(in NodeHandle a_node,
in Mode search_mode);

The visit_node operation establishes the node for which the traversal criteria will
iterate and indicates the current search mode. As the traversal object traverses th
graph, it visits nodes by requesting thevisit_node operation of the traversal criteria,
followed by next_one/next_n requests to obtain the outgoing edges from the node

For depthFirst andbreadthFirst modes, the weight field in the weighted edges is
ignored. In thebestFirst mode, the weight value is utilized to order the traversal’s
edges list which is sorted by this value in ascending order.

If weighted edges from a previous node remain whenvisit_node is requested, the
traversal criteria discards the previous edges.

2.5.4 The Node Interface

The Node interface defines operations that are useful in navigating graphs of relat
objects. In particular, it defines:

• A readonly attribute giving all of the node’s roles

• An operation allowing roles conforming to a particular type to be returned

• Operations to add and remove roles

Roles are distinguished in nodes in the OMG IDL of their interfaces.

A node cannot posses two roles where one role is a subtype of the other. This is
precluded by theadd_role operation.

A node can posses two or more roles that have a common supertype. The set of
can be obtained by passing the common supertype to theroles_of_type operation.

related_object

readonly attribute ::CosRelationships::RelatedObject
 related_object;
Relationship Service V1.0 The CosGraphs Module April 2000 2-29

2

s is

ame
The related_object attribute gives the related object that the node represents. Thi
useful when relating immutable objects.

roles_of_node

readonly attribute Roles roles_of_node;

The roles_of_node attribute gives all of the node’s roles.

roles_of_type

Roles roles_of_type (
in ::CORBA::InterfaceDef role_type);

The roles_of_type operation returns the node’s roles that conform to therole_type
parameter. A role conforms torole_type if it’s interface is the same or is a subtype of
role_type .

add_role

void add_role (in Role a_role)
raises (DuplicateRoleType);

The add_role operation adds a role to the node. If the node posses a role of the s
type, a supertype or a subtype ofa_role , theDuplicateRoleType exception is
raised.

remove_role

void remove_role (in ::CORBA::InterfaceDef of_type)
raises (NoSuchRole);

The remove_role operation removes all the roles that conform to theof_type
parameter. If no roles conform to theof_type parameter, theNoSuchRole exception
is raised.

2.5.5 The NodeFactory Interface

The NodeFactory interface defines a single operation for creating nodes.

create_node

Node create_node (in Object related_object);

The create_node operation creates a node whoserelated_object attribute is
initialized to therelated_object parameter.
2-30 Relationship Service V1.0 April 2000

2

a

ints.

re
2.5.5.1 The Role Interface

The CosGraphs::Role interface extends theCosRelationships::Role interface
with a single operation to return a role’s view of it’s relationships. The role’s view of
relationship is given by the followingEdge structure:

struct Edge {
EndPoint from;
::CosRelationships::RelationshipHandle the_relationship;
EndPoints relatives;

};
typedef sequence<Edge> Edges;

The edge structure is defined by an end point, a relationship and the other end po
The from end point is the role and its related object.

get_edges

void get_edges (in long how_many,
out Edges the_edges,
out EdgeIterator the_rest);

The get_edges operation returns the edges in which the role participates.

The size of the list is determined by thehow_many argument. If there are more edges
than specified by thehow_many argument, an iterator is created and returned. If the
are no more edges, a nil object reference is returned for the iterator.

2.5.5.2 The EdgeIterator Interface

The EdgeIterator interface is returned by theget_edges operation defined by the
CosGraphs::Role interface. It allows clients to iterate through any additional
relationships in which the role participates.

next_one

boolean next_one (out Edge the_edge);

The next_one operation returns the next edge; if no more edges exist, it returns
FALSE.

next_n

boolean next_n (in unsigned long how_many,
out Edges the_edges);

The next_n operation returns at most the requested number of edges.
Relationship Service V1.0 The CosGraphs Module April 2000 2-31

2

n

ees;
ny-to-
nced

ment
m as
destroy

void destroy ();

The destroy operation destroys the iterator.

2.6 Specific Relationships

The Relationship Service defines two important relationships,containmentand
referenceas part of its specification. The example used throughout this specificatio
has been in terms of these two relationships.

2.6.1 Containment and Reference

Containment is a one-to-many relationship. A container can contain many contain
a containee is contained by one container. Reference, on the other hand, is a ma
many relationship. An object can reference many objects; an object can be refere
by many objects.

Containment and reference are examples of relationships. However, since contain
and reference are very common relationships, the Relationship Service defines the
standard.

Containment is defined by interfaces for a relationship and two roles: the
CosContainment::Relationship interface, theCosContainment::ContainsRole
interface, and theCosContainment::ContainedInRole interface.Relationship is
a subtype ofCosRelationships::Relationship andContainedInRole and
ContainsRole are subtypes ofCosGraphs::Role .

Similarly, reference is defined by interfaces for a relationship and two roles: the
CosReference::Relationship interface, theCosReference::ReferencesRole
interface, and theCosReference::ReferencedByRole interface.Relationship is a
subtype ofCosRelationships::Relationship andReferencesRole and
ReferencedByRole are subtypes ofCosGraphs::Role .

2.6.2 The CosContainment Module

The CosContainment module is shown below.

#include <Graphs.idl>

module CosContainment {

 interface Relationship :
::CosRelationships::Relationship {};

interface ContainsRole : ::CosGraphs::Role {};

interface ContainedInRole : ::CosGraphs::Role {};
2-32 Relationship Service V1.0 April 2000

2

L
fines
};

TheCosContainment module does not define new operations. It introduces new ID
types to represent containment. Although it does not add any new operations, it re
the semantics of these attributes and operations:

The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are notCosContainment::ContainsRole and
CosContainment::ContainedInRole . It will raise MaxCardinalityExceeded if
the CosContainment::ContainedInRole is already participating in a relationship.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support theCosGraphs::Node interface. The
CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosContainment::Relationship interface.

RelationshipFactory
attribute value

relationship_type CosContainment::Relationship

degree 2

named_role_types “ContainsRole”,CosContainment::ContainsRole
;
“ContainedInRole”,CosContainment::ContainedInRole

RoleFactory attribute for
ContainsRole value

role_type CosContainment::ContainsRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

RoleFactory attribute for
ContainedInRole value

role_type CosContainment::ContainedInRole

maximum_cardinality 1

minimum_cardinality 1

related_object_types CosGraphs::Node
Relationship Service V1.0 Specific Relationships April 2000 2-33

2

s the
The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support theCosGraphs::Node interface. The
CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosContainment::Relationship interface. The
CosRelationships::RoleFactory::link operation will raise
MaxCardinalityExceeded if it is already participating in a containment
relationship.

2.7 The CosReference Module

The CosReference module is given below.

#include <Graphs.idl>

module CosReference {

interface Relationship :
::CosRelationships::Relationship {};

interface ReferencesRole : CosGraphs::Role {};

interface ReferencedByRole : ::CosGraphs::Role {};

};

The CosReference module does not define new operations. It introduces new IDL
types to represent reference. Although it does not add any new operations, it refine
semantics of these attributes and operations:

The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are notCosReference::ReferencesRole and
CosReference::ReferencedByRole .

RelationshipFactory
attribute value

relationship_type CosReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosReference::ReferencesRole;
“ReferencedByRole”,CoReference::ReferencedByRole
2-34 Relationship Service V1.0 April 2000

2

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support theCosGraphs::Node interface. The
CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosReference::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support theCosGraphs::Node interface. The
CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosRelationship::Relationship interface.

RoleFactory attribute for
ReferencesRole value

role_type CosReference::ReferencesRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

RoleFactory attribute for
ReferencedByRole value

role_type CosReference::ReferencedByRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node
Relationship Service V1.0 The CosReference Module April 2000 2-35

2

2-36 Relationship Service V1.0 April 2000

References A
am
1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.”OOPSLA 1988 Proceedings, pg. 285-296.

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and Willi
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.
Relationship Service V1.0 April 2000 A-1

A

A-2 Relationship Service V1.0 April 2000

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Overview
	1.1.1 Key Features of the Relationship Service
	1.1.2 The Relationship Service vs. CORBA Object References
	1.1.3 Resolution of Technical Issues

	1.2 Service Structure
	1.2.1 Levels of Service
	1.2.2 Hierarchy of Relationship Interface
	1.2.3 Hierarchy of Role Interface
	1.2.4 Interface Summary

	2. Relationship Service Modules
	2.1 The Base Relationship Model
	2.1.1 Relationship Attributes and Operations
	2.1.2 Higher Degree Relationships
	2.1.3 Operations
	2.1.4 Consistency Constraints
	2.1.5 Implementation Strategies

	2.2 The CosObjectIdentity Module
	2.2.1 The IdentifiableObject Interface

	2.3 The CosRelationships Module
	2.3.1 Example of Containment Relationships
	2.3.2 The RelationshipFactory Interface
	2.3.3 The RoleFactory Interface

	2.4 Graphs of Related Objects
	2.4.1 Graph Architecture
	2.4.2 Traversing Graphs of Related Objects
	2.4.3 Compound Operations
	2.4.4 An Example of Traversal Criteria

	2.5 The CosGraphs Module
	2.5.1 The TraversalFactory Interface
	2.5.2 The Traversal Interface
	2.5.3 The TraversalCriteria Interface
	2.5.4 The Node Interface
	2.5.5 The NodeFactory Interface

	2.6 Specific Relationships
	2.6.1 Containment and Reference
	2.6.2 The CosContainment Module

	2.7 The CosReference Module

	Appendix A - References

