
June 2009

Robotic Localization Service Specification

FTF Beta 3

__

OMG Document Number: dtc/2009-06-04
Standard document URL: http://www.omg.org/spec/RLS/1.0/PDF
Associated File(s)*: http://www.omg.org/spec/RLS/200 9 0 6 01

 http://www.omg.org/spec/RLS/200 9 0 6 02

__
• original files: dtf/2009-06-06 (C++ header file), dtc/2009-06-07 (xmi)

This OMG document replaces the submission document (robotics/2008-05-01, Alpha 1). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content of this
document are welcome, and should be directed to issues@omg.org by February 23, 2009.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on July 2 , 2009. If you are
reading this after that date, please download the available specification from the OMG Specifications
Catalog.

http://www.omg.org/spec/uml4dds/20080601
http://www.omg.org/issues/
http://www.omg.org/spec/uml4dds/20080603
http://www.omg.org/spec/uml4dds/20080603
http://www.omg.org/spec/uml4dds/20080603
http://www.omg.org/spec/uml4dds/20080603
http://www.omg.org/spec/uml4dds/20080603
http://www.omg.org/spec/uml4dds/20080602
http://www.omg.org/spec/uml4dds/20080602
http://www.omg.org/spec/uml4dds/20080601
http://www.omg.org/spec/uml4dds/20080601
http://www.omg.org/spec/uml4dds/20080601
http://www.omg.org/spec/uml4dds/20080601

Copyright @ 1997-2008 Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in
accordance with the terms, conditions and notices set forth below. This document does not
represent a commitment to implement any portion of this specification in any company's
products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document
and to modify this document and distribute copies of the modified version. Each of the
copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this
specification hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual,
worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear
on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media
and will not be otherwise resold or transferred for commercial purposes; and (3) no
modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will
destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of
OMG specifications may require use of an invention covered by patent rights. OMG shall not
be responsible for identifying patents for which a license may be required by any OMG
specification, or for conducting legal inquiries into the legal validity or scope of those patents
that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is
protected by copyright. All Rights Reserved. No part of this work covered by copyright herein
may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,

ii Robotic Localization Service, Beta 2

including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS
IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT
GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT
MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS
OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD
PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification
is borne by you. This disclaimer of warranty constitutes an essential part of the license granted
to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at
DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software
- Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the
Federal Acquisition Regulations and its successors, as applicable. The specification copyright
owners are as indicated above and may be contacted through the Object Management Group,
140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA®
and XMI® are registered trademarks of the Object Management Group, Inc., and Object
Management Group™, OMG™ , Unified Modeling Language™, Model Driven Architecture
Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, CWM™,
CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG
SysML™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting

Robotic Localization Service, Beta 2 iii

itself or through its designees) is and shall at all times be the sole entity that may authorize
developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with
this specification if and only if the software compliance is of a nature fully matching the
applicable compliance points as stated in the specification. Software developed only partially
matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc.,
software developed using this specification may claim compliance or conformance with the
specification only if the software satisfactorily completes the testing suites.

iv Robotic Localization Service, Beta 2

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page
http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.htm).

Robotic Localization Service, Beta 2 v

Table of Contents

 List of Figures...vii
 List of Tables... viii

1. Scope...3
2. Conformance..3

3. References..3

3.1 Normative References..3

3.2 Non-Normative References... 4

4. Terms and Definition...4
5. Symbol... 6

6. Additional Information...6

6.1 Submitters.. 6

6.2 Submitting Organizations.. 6

6.3 Supporting Organizations.. 6

6.4 Acknowledgements.. 7

6.5 Background.. 7

7. Platform Independent Model... 10

7.1 Format and Conventions.. 11

7.1.1 Class...11
7.1.2 Enumeration... 11

7.2 Return Codes..12

7.3 Architecture Package... 12

7.3.1 Relative Coordinate Reference Systems..12
7.3.2 Identity Information...17
7.3.3 Error Information.. 20
7.3.4 Robotic Localization Architecture... 25

7.4 DataFormat Package.. 35

7.4.1 Common data format..36

7.5 Filter Condition Package...40

7.6 Interface Package.. 42

8. Platform Specific Model... 57

8.1 C++ PSM... 57

vi Robotic Localization Service, Beta 2

List of Figures

Figure 1: Example of a typical robotic service situation requiring localization of an entity................................. 9

Figure 2: Relation of Robotic Localization Service specification with existing GIS specifications....................10

Figure 3: Relative and Mobile coordinate reference system.. 13

Figure 4: Mobile CRS operations..16

Figure 5: Identity Information...18

Figure 6: Hierarchy of RoLo Error Types...21

Figure 7 - RoLo Error Type...21

Figure 8: RoLo Error...22

Figure 9: Representation of error information related to multiple localization data.. 26

Figure 10: RoLo Architecture..27

Figure 11: Don't-care classes and objects.. 31

Figure 12: RoLo Data Operation...33

Figure 13: RoLo Data Format... 35

Figure 14: Definition of a position and reference coordinate systems used in the common data format: (a)
Cartesian coordinate system for Type I-1 and I-2, (b) spherical coordinate system for Type II-1 and II-2, (c)
geodetic coordinate system for Type III-1 and III-2... 38

Figure 15: Three sequential rotations for the xyz-Euler angle representation used in the common data format
type I-1, II-1, and III-1.. 39

Figure 16: Three sequential rotations for the XYZ-Euler angle representation used in the common data format
type I-2, II-2, and III-2.. 40

Figure 17: Basic robotic localization module... 43

Figure 18: Structures of robotic localization module with different functionalities.. 43

Figure 19: Example of a cascading module connection... 44

Figure 20 - RoLo Ability...45

Figure 21 - RoLo Service... 49

Figure 22 - Sequence Diagram of Typical RoLo Service Usage.. 53

Figure 23 - Sequence Diagram of Connection Establishment from OUT Service...53

Figure 24 - Sequence Diagram of Connection Establishment from IN Service...54

Figure 25 - Sequence Diagram of Data Passing..55

Figure 26 - Sequence Diagram of Disconnecting Connection..55

Robotic Localization Service, Beta 2 vii

List of Tables

Table 1 Returncode_t enumeration...12

Table 2 - RelativeCRS class.. 13

Table 3 - RelativeDatum class...14

Table 4 - StaticRelativeCRS class...14

Table 5 - StaticRelativeCartesianCRS class..14

Table 6 - StaticRelativePolarCRS class.. 14

Table 7 - StaticRelativeDatum class..14

Table 8 - DynamicRelativeCRS class.. 15

Table 9 - DynamicRelativeDatum class..15

Table 10 - MobileCRS class...15

Table 11 - MobileCartesianCRS class...15

Table 12 - MobilePolarCRS class.. 15

Table 13 - MobileDatum class...15

Table 14 - MobileOperation class... 16

Table 15 - Mobile2StaticOperation class.. 16

Table 16 - Static2MobileOperation class.. 16

Table 17 - Mobile2MobileOperation class..17

Table 18 - IdentityCS class..18

Table 19 - NumericIdentityCS class..18

Table 20 - SymbolicIdentityCS class.. 18

Table 21 - IdentityDatum class..18

Table 22 - IdentityCRS class...19

Table 23 - NumericIdentityCRS class...19

Table 24 - SymbolicIdentityCRS class..19

Table 25 - DirectSymbol class...19

Table 26 - SymbolRef class...19

Table 27 - SymbolicPosition class...19

Table 28 - ErrorType class...21

Table 29 - ErrorTypeOperation class...22

Table 30 - Error class...23

Table 31 - Reliability class.. 23

Table 32 - ErrorDistribution class... 23

Table 33 - Matrix class.. 23

viii Robotic Localization Service, Beta 2

Table 34 - CovarianceMatrix class..23

Table 35 - Gaussian class.. 23

Table 36 - UniformGaussian class...24

Table 37 - ParticleSet class..24

Table 38 - MixtureModel class..24

Table 39 - WeightedModel class... 24

Table 40 - LinearMixtureModel class... 24

Table 41 - MixtureOfGaussian class... 25

Table 42 - Position class..27

Table 43 - ElementSpecification class...27

Table 44 - PositionElementSpecification class.. 28

Table 45 - ErrorElementSpecification class.. 28

Table 46 - Element class..28

Table 47 - PositionElement class...28

Table 48 - ErrorElement class... 29

Table 49 - DataSpecification class...29

Table 50 - Data class..29

Table 51 - DontCare class...31

Table 52 - NULLCS class...31

Table 53 - NULLCRS class..31

Table 54 - NULLDatum class... 32

Table 55 - NULLErrorType class...32

Table 56 - NULLElementSpecification class..32

Table 57 - PositionElementOperation class.. 33

Table 58 - PositionElementConcatenatedOperation class.. 33

Table 59 - PositionElementSingleOperation class.. 34

Table 60 - DataOperation class.. 34

Table 61 - DataConcatenatedOperation class..34

Table 62 - DataSingleOperation class... 34

Table 63 - DataTransformation class...34

Table 64 - DataMappingOperation class...35

Table 65 - DataFormat class..35

Table 66 - EncodingRule class.. 36

Table 67 - SpecificDataFormat class...36

Table 68 - UserDefinedDataFormat class..36

Table 69 - CommonDataFormat class...36

Robotic Localization Service, Beta 2 ix

Table 70 - Common data format type I-1 (Cartesian Coordinate System, xyz-Euler Angle Representation).....37

Table 71 - Common data format type I-2 (Cartesian Coordinate System, XYZ-Euler Angle Representation)...37

Table 72 - Common data format type II-1 (Spherical Coordinate System, xyz-Euler Angle Representation)....37

Table 73 - Common data format type II-2 (Spherical Coordinate System, XYZ-Euler Angle Representation). 37

Table 74 - Common data format type III-1 (Geodetic Coordinate System, xyz-Euler Angle Representation).. .37

Table 75 - Common data format type III-2 (Geodetic Coordinate System, XYZ-Euler Angle Representation).38

Table 76 - Filter Condition parameter for RoLo streams..40

Table 77 - AttributeDefinition class...45

Table 78 - AttributeBase class...45

Table 79 - Attribute class...46

Table 80 - Parameter class...46

Table 81 - ParameterOverDomain class..46

Table 82 - Interval class...46

Table 83 - IntervalParameter class.. 46

Table 84 - SetParameter class..47

Table 85 - ParameterValueBase class..47

Table 86 - ParameterValue class..47

Table 87 - AttributeSet class..47

Table 88 - Ability class..47

Table 89 - InterfaceBase class...49

Table 90 - StreamType enumeration... 50

Table 91 - StreamAbility class.. 50

Table 92 - Stream class..50

Table 93 - OutStream class..50

Table 94 - InStream class.. 51

Table 95 - ServiceAbility class..51

Table 96 - Service class... 51

x Robotic Localization Service, Beta 2

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-
profit computer industry standards consortium that produces and maintains computer industry
specifications for interoperable, portable, and reusable enterprise applications in distributed,
heterogeneous environments. Membership includes Information Technology vendors, end
users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI
through a full-lifecycle approach to enterprise integration that covers multiple operating
systems, programming languages, middleware and networking infrastructures, and software
development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/ .

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks.
A Specifications Catalog is available from the OMG website at:
http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

UML

MOF

XMI

CWM

Profile specifications

OMG Middleware Specifications

CORBA/IIOP

IDL/Language Mappings

Specialized CORBA specifications

CORBA Component Model (CCM)

Robotic Localization Service, Beta 2 1

Platform Specific Model and Interface Specifications

CORBAservices

CORBAfacilities

OMG Domain specifications

OMG Embedded Intelligence specifications

OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website.
(Products implementing OMG specifications are available from individual suppliers.) Copies
of specifications, available in PostScript and PDF format, may be obtained from the
Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:
OMG Headquarters

140 Kendrick Street

Building A, Suite 300

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

 2 Robotic Localization Service, Beta 2

http://www.iso.org/

1. Scope

This specification defines a robotic localization (RoLo) service that can handle data and usages specific to use in
robotics. It includes a platform independent model (PIM) as well as a mapping of this PIM to a platform specific
model (PSM) defined by C++. In addition, two informative annex parts are provided for the filter condition
functionality. The first defines a PSM by XML and the another shows naming rules.

2. Conformance

Any implementation or product claiming conformance to this specification shall support the
following conditions:

 Implementations shall provide the interfaces described in section 7.5 Interface Package.

 Implementations shall provide their ability descriptors and the necessary attribute
definitions described in section 7.5 Interface Package.

 Data treated by implementations shall follow the data structure described in 7.3
Architecture Package and the data formats described in 7.4 Data Format Package. This
does not mean that modules shall be able to treat every structure or formats described
herein. However, every module shall support at least one of the common data formats and
the relevant data structure.

 Implementations shall support the return codes described in section 7.2.

3. References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this specification. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply.

[ISO19103] International Organization for Standardization, Geographic information –
Conceptual schema language, 2005

[ISO19107] International Organization for Standardization, Geographic information – Spatial
schema, 2003

[ISO19111] International Organization for Standardization, Geographic information – Spatial
referencing by coordinates, 2007

[ISO19115] International Organization for Standardization, Geographic information –
Metadata, 2003

[PER] International Telecommunication Union Telecommunication Standardization Sector,

Robotic Localization Service, Beta 2 3

Specification of Packed Encoding Rules (PER), ITU-T Rec. X.691 (2002) / ISO/IEC 8825-
2:2002

[UML] Object Management Group, OMG Unified Modeling Language (OMG UML),
Superstructure, Version 2.2, OMG document number formal/2009-02-02, 2009

3.2 Non-Normative References

[ISO/DIS19142] International Organization for Standardization, Geographic information –
Web Feature Service, DIS, 2009

[ISO/DIS19143] International Organization for Standardization, Geographic information –
Filter Encoding, DIS, 2009

[Wikipedia] Wikipedia, the free encyclopedia, http://www.wikipedia.org/

4. Terms and Definition

 Cartesian coordinate system: Coordinate system which gives the position of points relative
to n mutually perpendicular axes [ISO19111]. Note that in this specification, in contrast to
[ISO19111], there is no limitation to the number of dimensions.

 Coordinate reference system (CRS): Coordinate system which is related to the real world
by a datum [ISO19111].

 Coordinate system (CS): Set of mathematical rules for specifying how coordinates are to
be assigned to points [ISO19111].

 Coordinate value: N-tuple of scalars assigned with respect to a coordinate system. In this
specification, every coordinate value shall be associated with a single coordinate reference
system. Note that, there exists no uncertainty with a coordinate value; error through the
measurement process shall be represented by ‘error’ values elsewhere.

 Covariance: Covariance is a measure of how much two variables change together
(variance is a special case of the covariance when the two variables are identical).If two
variables tend to vary together (that is, when one of them is above its expected value, then
the other variable tends to be above its expected value too), then the covariance between
the two variables will be positive. On the other hand, if one of them tends to be above its
expected value when the other variable is below its expected value, then the covariance
between the two variables will be negative [Wikipedia].

 Datum: Parameter or set of parameters that define the position of the origin, the scale, and
the orientation of a coordinate reference system [ISO19111]. More specifically, a datum is
a mathematical system that defines the mapping from a space defined by coordinate system
to a certain phenomenon space of interest, mostly in the real world.

 Geodetic coordinate system: Coordinate system in which position is specified by geodetic latitude,
geodetic longitude and (in the three-dimensional case) ellipsoidal height, associated with one or more
geographic coordinate reference systems [ISO19111].

 Geographic(al) Information System (GIS): Information system for storing, analyzing,
managing or displaying various data in a way associated with location data. The location

 4 Robotic Localization Service, Beta 2

http://www.wikipedia.org/

data used in GIS is in most cases 2 or 3 dimensional position on the earth.

 Kalman filter: Kalman filter is an efficient recursive filter that estimates the state of a linear dynamic system
from a series of noisy measurements. It is used in a wide range of engineering applications from radar to
computer vision, and is an important topic in control theory and control systems engineering. Together with
the linear-quadratic regulator (LQR), the Kalman filter solves the linear-quadratic-Gaussian control problem
(LQG). The Kalman filter, the linear-quadratic regulator and the linear-quadratic-Gaussian controller are
solutions to what probably are the most fundamental problems in control theory [Wikipedia].No terms are
defined in this document.

 Localization: Action of locating some physical entities through analysis of sensing data.
The word “locate” here may include not only measuring the position in the spatio-temporal
space but also may include additional information such as identity, heading orientation or
pose information of the target entity, measurement error estimation or measurement time.

 Normal distribution: A continuous probability distribution described by the following
probability density function:

p x = 1
 2

exp− x −2

22
 ,

A normal distribution is also called a Gaussian distribution [Wikipedia].

 Particle, particle set: A particle is a word used to denote a single sample obtained through
random sampling algorithms such as Monte Carlo method. A particle set is a set of samples
obtained through some sampling or estimation algorithms. In robotics, particles and
particle sets are often used to represent distributions obtained from estimation algorithms
such as sequential Monte Carlo method or CONDENSATION (Conditional Density
Propagation) algorithm.

 Physical entity: The target to be localized such as robots, humans or other objects.

 Polar coordinate system: Two-dimensional coordinate system in which position is
specified by distance and direction from the origin [ISO19111]. In this specification, three-
dimensional coordinate system (spherical coordinate system) or n-dimensional coordinate
system may also be called as polar coordinate system.

 Data Instance: Here, the word 'data instance' is used for a RoLo data or its subcomponent
such as a RoLo element, a RoLo position, a RoLo symbolic position or a GM_Position
object.

 Implicit (Type) Specification: When a structure embedding some data instance holds a type
specification for those data instances, those data instances are described to have an
"implicit type specification." For example, a RoLo data is implicitly associated with a
RoLo data specification when the data is passed through a RoLo stream that holds a RoLo
data specification defined in its ability description.

 Explicit (Type) Specification: A data instance is said to have an "explicit type specification"
if a reference to corresponding specification is provided in its attribute. For example, when
a RoLo data has a reference to RoLo data specification as its ‘spec’ attribute, the RoLo
data is said to have an explicit type specification.

 Type Specification: A “type specification” of a data instance is either an implicit type
specification or an explicit type specification of an instance.

 Incomplete (Type) Specification: A type specification is called "incomplete" when it

Robotic Localization Service, Beta 2 5

includes one or more "don't-care" elements.

 Complete (Type) Specification: A type specification is called "complete" when it does not
include any "don't-care" element.

 Consistent Type Specifications: Two type specifications are called "consistent" when the
two specifications own the same structure and each corresponding parts of them is the
same or have a base-derivation (generalized-specialized) relation with each other, or when
one of the corresponding parts are specified as "don't-care".

 Unified (Type) Specification: A "unified type specification" of a data instance is the result
of unification of all the type specifications associated with the data instance. The type
specifications to be unified shall be consistent. The unification of two type specifications is
done by the following operation:

For each part of the type specifications, do:

1. When both of the corresponding type specifications are "don't-care", use "don't-care".

2. When one of part of the two specifications is "don't-care", use the corresponding part
from another specification.

3. When both of the corresponding type specifications are not "don't-care", use the one
which is much specialized.

5. Symbol

x, y, z Cartesian coordinate

r, θ, φ spherical coordinate

φ, λ, h geodetic coordinate (latitude, longitude, height)

α, β, γ orientation

x, y, z a fixed Cartesian coordinate system

X, Y, Z a rotating Cartesian coordinate system

6. Additional Information

6.1 Submitters

The initial submissions that this specification is based on were submitted by the following
people:

Kyuseo Han, Electronics and Telecommunications Research Institute (ETRI)
Yeonho Kim, Samsung Electronics Co., Ltd.
Shuichi Nishio, Japan Robot Association (JARA) / Advanced Research Institute
International (ATR)

 6 Robotic Localization Service, Beta 2

6.2 Submitting Organizations

The following organizations made the initial submission that this specification is based on:

Electronics and Telecommunications Research Institute (ETRI)
Japan Robot Association (JARA)
Samsung Electronics Co., Ltd.

6.3 Supporting Organizations

The following organizations supported parts of this specification:

Hitachi, Ltd.
National Institute of Advanced Industrial Science and Technology (AIST)
New Energy and Industrial Technology Development Organization (NEDO)
Shibaura Institute of Technology
Technologic Arts Incorporated
University of Tsukuba

6.4 Acknowledgements

The following people supported parts of this specification:

Su-Young Chi, Electronics and Telecommunications Research Institute
Yun Koo Chung, Electronics and Telecommunications Research Institute
Miwako Doi, Toshiba Corporation
Kenjirou Fujii, Hitachi Industrial Equipment Systems Co., Ltd.
Yoshimasa Hata, Japan Robot Association
Yasuo Hayashibara, Chiba Institute of Technology
Ryota Hiura, Mitsubishi Heavy Industries, Ltd.
Toshio Hori, National Institute of Advanced Industrial Science and Technology
Masato Iehara, Mitsubishi Heavy Industries, Ltd.
Wataru Inamura, IHI Corporation
Jaeyeong Lee, Electronics and Telecommunications Research Institute
Takahide Kanehara, Yaskawa Electric Corporation
Tetsuo Kotoku, National Institute of Advanced Industrial Science and Technology
Makoto Mizukawa, Shibaura Institute of Technology
Kouji Murakami, Kyushu University
Yoshisada Nagasaka, National Agriculture and Food Research Organization
Itsuki Noda, National Institute of Advanced Industrial Science and Technology
Kohtaro Ohba, National Institute of Advanced Industrial Science and Technology
Fumio Ozaki, Toshiba Corporation
Takeshi Sakamoto, Technologic Arts Incorporated
Takashi Suehiro, National Institute of Advanced Industrial Science and Technology
Tetsuo Tomizawa, National Institute of Advanced Industrial Science and Technology
Takashi Tsubouchi, University of Tsukuba
Tomoki Yamashita, Maekawa MFG Co. Ltd.
Masayoshi Yokomachi, New Energy and Industrial Technology Development Organization
Wonpil Yu, Electronics and Telecommunications Research Institute

Robotic Localization Service, Beta 2 7

6.5 Background

This specification defines a localization service that can handle data and usages specific to use
in robotics. It includes a platform-independent model (PIM) as well as a mapping of this PIM
to platform-specific models (PSM) defined by C++.

Location information is a crucial factor in providing robotic services of every kind. Typically, a
robotic system is defined as an apparatus equipped with the function of interacting with
physical entities in the environment. Navigation, manipulation and human-robot interaction are
typical features that require physical interaction with the environment, which distinguish a
robotic system from information appliances. On performing such tasks, robots require
geometric association between physical entities of interest and the robot itself for
implementing and/or performing the given service scenario. Besides these examples, the
number of location-based robotic tasks is continuously increasing as personal or service robot
fields gradually expand, from controlled, stable factory environments to indeterminate,
uncertain daily environments. However, currently there exists no standard means to represent
the necessary location-related information in robotics, nor any common interface for
constructing localization related software modules.

Note: In the context of this proposal and the originating RFP, the word
“localization” means “to locate some physical entities through analysis of
sensor data”, consistent with the common use of this term in robotics. Here the
word "locate" may include not only measuring the position in the spatio-
temporal space, but also heading orientation or pose information of the entity,
or additional information such as error estimation or time of measurement.
Also, the word “physical entity” (or “entity” in short) is used to describe the
target to be localized, including robots, humans or other objects.

Geographic Information System (GIS) is one of the most popular and established systems that
treats location information. Many spatio-temporal location related specifications have been
standardized in the International Organization for Standardization (ISO/TC211), and there
already exist versatile production services based on these standards such as driving navigation
systems or resource databases. However, current GIS specifications are not powerful enough to
represent or treat information required in the field of robotics.

Although localization is still one of the main research topics in the field of robotics, the
fundamental methodology and elements necessary are becoming established. Standardizing
localization result representation and related interfaces in a generic form, independent to
specific algorithms or equipment, are significant for decreasing costs and accelerating the
market growth of robotic services. Moreover, clarifying what types of information are required
in the field of robotics shall be useful for equipment vendors such as sensor manufacturers.

In this proposal, a new framework for robotic localization (RoLo) service, i.e. representing and
treating location information specific to robotic usage, is presented. Notions and items
necessary for treating location information in robotic usage are reorganized and rearranged, in
a generic form independent to specific algorithms or types of robotic services. This was done
through extensive surveys and case studies on current and ongoing robotic products and
researches. Based on the widespread GIS standard, a new specification for RoLo services is
proposed.

Figure 1 illustrates a typical robotic service situation where localization of various entities is
required. Here, a robot in service needs to obtain the location of a cellular phone, utilizing
information from various robotic entities in the environment. These robotic entities have the

 8 Robotic Localization Service, Beta 2

ability to estimate the location of the entities within their sensing range. Thus, the problem here
is to aggregate the location estimations from the robotic entities, and to localize the cellular
phone in target. However, this example also shows several factors that makes the localization
service in robotics a difficult, challenging issue. A) Some sensors only provide partial
location information. For example, the camera sensor can only provide 2D information, and
RF tag reader can only provide proximity information. B) Sensor outputs are not always
correct. Sometimes, they might measure two or more entities as a single object, or even miss
it. This erroneous report occurs frequently when sensors are used in the uncontrolled daily
environment. In order to tackle this erroneous situation, sensor outputs are usually treated to be
probabilistic, with error estimation information. C) Matching observations between different
sensors require efforts. Imagine you are viewing two photographs of a crowded street corner,
taken from different angles but on the same instant. The issue here is to match every single
person in one photograph to another. This is much more difficult when matching the observed
entities from the wall camera and the output from the laser range scanner installed in the blue
robot, as these two sensors measure different aspects of objects. This issue, the identity
association problem, happens every time multiple sensors are used. In other word, you are
always not sure about the identity of the entity sensed. Thus, identity information shall also be
treated to be probabilistic.

As can be seen from these examples, operations in robotics require a much more detailed
representation of location information. Still, interoperability with the current GIS systems shall
be supported. In this proposal, we define a new framework for representing and treating
location information suitable for robotic use, by extending existing GIS specifications. Using
the GIS specification as a basis of the proposal will make it easy for robots to interconnect with
existing GIS-based systems and utilize existing geographic datasets. This will also ease the use
of this specification in the emerging fields of next-generation GIS systems, sensor network
systems, or location based systems where advanced positioning methods and complex data

Robotic Localization Service, Beta 2 9

Figure 1: Example of a typical robotic service situation requiring localization of an entity

Where is my
Phone?
Robot21, bring it to
me !

I am Cam2, I see 3 entities
table: ID=23, pos=(10,20)
table: ID=73, pos=(-23,72)
table: ID=12, pos=(-53,56)

I am Cam1, I see 3 entities
person: ID=14,pos=(34,21)
robot: ID=25,pos=(58,55)
sofa: ID=134,pos=(93,42)

I am Robot32, my Laser
detected 3 entities:
table: d=32, α=40
table: d=67, α=123
robot: d=99, α=187

I am RFID reader1 on a
table, I feel the phone
ID=823 is within my range

I am RFID reader2 on a
table, I fee the phone
ID=123 is within my range

?!?!?!

processing similar to robotics usage is required. Figure 2 illustrates the existing GIS standards
that are related with this specification.

In order to fulfill the requirements for robotic localization, the following items are defined in
the PIM, some part as an extension to existing GIS specification.

 (Architecture package) Data architecture for representing structures and accompanying operations for
representing information necessary for robotics usage. These include coordinate system / coordinate
reference system definitions for treating essential information such as pose or identity information, or
structures for representing error estimation.

 (DataFormat package) Data formats for formatting and exchanging resulting localization data.

 (Interface package) Service interface for treating resulting localization data. This includes advanced
facilities that will be a basis for dynamically exchanging or negotiating module functionality information.

7. Platform Independent Model

The PIM consists of three parts:

1. Architecture package

The architecture package defines a new framework for representing location
information required in the field of robotics. See section 7.3.

 10 Robotic Localization Service, Beta 2

Figure 2: Relation of Robotic Localization Service specification with existing GIS specifications

Architecture

DataFormat

Interface

FilterCondition

::RoLo

::ISO 19103::ISO 19107

::ISO 19111

::ISO 19115

::ISO 19143::ISO 19142

2. DataFormat package

The data format package defines how the defined data is represented for exchange
amongst RoLo modules. See section 7.4.

3. Interface package

The interface package defines an API for data passing and configuration of RoLo
modules. See section 7.5.

7.1 Format and Conventions

7.1.1 Class

Classes described in this PIM are documented using tables of the following format:

Table xx: <class name>
Description: <description>

Derived From: <parent class>

Attributes

<attribute name> <attribute type> <obligation> <occurrence> <description>

… … …

Operations

<operation name> <description>

<direction> <parameter name> <parameter type> <description>

… … … …

Note that derived attributes or operations are not described explicitly. Also, as the type of
return code for every operation in this specification is Returncode_t which is defined in section
7.2, this is omitted in the description table.

The 'obligation' and 'occurrence' are defined as following.

Obligation

 M (mandatory): This attribute shall always be supplied.

 O (optional): This attribute may be supplied.

 C (conditional): This attribute shall be supplied under a condition. The condition is given as a part of the
attribute description.

Occurrence

The occurrence column indicates the maximum number of occurrences of the attribute values
that are permissible. The following denotes special meanings.

 N: No upper limit in the number of occurrences.

 ord: The appearance of the attribute values shall be ordered.

 unq: The appeared attribute values shall be unique.

Robotic Localization Service, Beta 2 11

7.1.2 Enumeration

Enumerations are documented as follows:

Table xx: <enumeration name>
<constant name> <description>

… …

7.2 Return Codes

At the PIM level, we have modeled errors as operation return codes typed Returncode_t. Each
PSM may map these to either return codes or exceptions. The complete list of return codes is
indicated below.

Table 1 Returncode_t enumeration

OK Successful return.

ERROR Generic, unspecified error.

BAD_PARAMETER Illegal parameter value.

UNSUPPORTED_PARAMETER Unsupported parameter.

UNSUPPORTED_OPERATION Unsupported operation.

TIMEOUT The operation timed out.

7.3 Architecture Package

Modern robotic algorithms related to localization require not only simple spatial positioning
information. Generally, various types of information related to spatial position are also
required. In order to obtain precise results, measurement time and error estimation is crucial,
especially when integrating measurements from multiple sensors. For robotics usage, complex
spatial positioning such as pose information is also important. When sensors in use can
perform measurements of multiple entities at once, identity information is also necessary in
order to distinguish and associate measurements. As such, there is a variety of other
information to be expressed in combination with simple spatial positioning. In order to make
various robotic services treat and process this versatile information easily and effectively, our
idea is to represent this heterogeneous information under a common, unified framework.

In this section, we propose a new framework for representing location information required in
the field of robotics, by extending existing GIS specifications. Three types of information
required in robotics usage are defined, and lastly, a generic framework for representing
structured robotic localization results (RoLo architecture) is defined.

Note that, although the ISO 19111 specification assumes every CS to be 2 or 3 dimensional [ISO19111], in this
specification, we do not assume any limitation on the number of dimensions on any coordinate systems. This is to
enable representation of complex data such as feature points defined over multi-dimensional space. Also note that
this does not violate the ISO 19111 standard where no formal limitation is specified on the number of dimensions.
One issue is how to treat the attribute bounded to specific feature in the real space such as axisDirection (type
CS_AxisDirection) in CS_CoordinateSystemAxis which is a mandatory attribute and where the type is defined as
an finite enumeration of direction names such as ‘north’ or ‘south’. It is clear that these values are not suitable for
some robotics usage such as for relative or mobile coordinate reference systems. We thus recommend that
implementers and users of this specification to simply ignore this attribute and to set this value as the first
element in the enumeration, ‘north’, if necessary. This is a safe solution as we cannot expect GIS systems to treat

 12 Robotic Localization Service, Beta 2

data based on this specification correctly; we only expect data from GIS systems to be treated on systems based
on this robotic specification.

7.3.1 Relative Coordinate Reference Systems

In this section, relative coordinate reference systems are defined which may lack fixed relation
with the earth or users have no interest in referencing them to other coordinate reference
systems. We categorize relative coordinate reference systems in two types, static and dynamic.
A coordinate reference system on mobile platforms, mobile coordinate reference system, is
defined as a dynamic relative coordinate reference system. That is, the relation with other
coordinate reference systems may change by time.

The GIS standard on spatial reference system [ISO19111] allows the definition and use of such
relative and mobile coordinate reference systems. However, there is no specific model or
description on these systems. As these systems are quite commonly used in the field of
robotics, here we explicitly define structures and operations specific to these coordinate
reference systems. Although here we only define coordinate reference systems based on two
coordinate systems of frequent usage, SC_CartesianCS and SC_PolarCS, users may define
derivatives of relative or mobile coordinate reference system based on the coordinate system of
their interest.

Robotic Localization Service, Beta 2 13

Table 2 - RelativeCRS class

Description: Base abstract class for representing relative coordinate reference systems.

Derived From: SC_EngineeringCRS [ISO19111]

Note: Values for the attribute ‘usesDatum’ which is derived from parent class shall be limited to instances of RelativeDatum or its
inherited classes.

Table 3 - RelativeDatum class

Description: Datum for relative coordinate reference systems.

Derived From: CD_EngineeringDatum [ISO19111]

Table 4 - StaticRelativeCRS class

Description: Abstract class for representing relative coordinate reference systems that have static relation with other CRS(s).

 14 Robotic Localization Service, Beta 2

Figure 3: Relative and Mobile coordinate reference system

StaticRelativeCartesianCRS

MobileDatum

+ getInStream (out inStream : ::RoLo::Interface::InStream) : Returncode_t

StaticRelativePolarCRS

::ISO 19111::SC_CartesianCS

::ISO 19111::SC_PolarCS

MobileCRS

::ISO 19111::SC_EngineeringCRS

::ISO 19111::CD_EngineeringDatum

{subset usesDatum}

RelativeCRS

{subset usesCS}

{subset usesCS}

MobilePolarCRS

MobileCartesianCRS{subset usesCS}

{subset usesCS}

StaticRelativeDatum

StaticRelativeCRS DynamicRelativeCRS

{subset usesDatum}

::RoLo::Interface::InStream
#inStream

DataSpecification

Data

0..1

dataSpec

0..1

base

DynamicRelativeDatum

{subset usesDatum}

RelativeDatum

{subset usesDatum}

Derived From: RelativeCRS

Note: Values for the attribute ‘usesDatum’ which is derived from parent class shall be limited to instances of StaticRelativeDatum or its
inherited classes.

Table 5 - StaticRelativeCartesianCRS class

Description: Static relative coordinate reference systems based on Cartesian coordinate system.

Derived From: StaticRelativeCRS

Note: Values for the attribute ‘usesCS’ which is derived from parent class shall be limited to instances of SC_CartesianCS [ISO19111]
or its inherited classes.

Table 6 - StaticRelativePolarCRS class

Description: Static relative coordinate reference system based on polar coordinate system.

Derived From: StaticRelativeCRS

Note: Values for the attribute ‘usesCS’ which is derived from parent class shall be limited to instances of SC_PolarCS [ISO19111] or its
inherited classes.

Table 7 - StaticRelativeDatum class

Description: Datum for static relative coordinate reference system.

Derived From: RelativeDatum

Attributes

dataSpec DataSpecification O 1 A RoLo data specification indicating allowed structure for the ‘base’
attribute. If the coordinate reference system in target holds no
relation with other coordinate reference systems, this may be
omitted.

base Data O 1 A RoLo data for determining relation to other coordinate reference
system. Typically, this data includes spatial position for origin and
pose for axis direction. If no relation with other coordinate
reference systems is required, this may be omitted.

Table 8 - DynamicRelativeCRS class

Description: Abstract base class for representing dynamic relative coordinate reference systems.

Derived From: RelativeCRS

Note: Values for the attribute ‘usesDatum’ which is derived from parent class shall be limited to instances of DynamicRelativeDatum or
its inherited classes.

Table 9 - DynamicRelativeDatum class

Description: Datum for dynamic relative coordinate reference system.

Robotic Localization Service, Beta 2 15

Derived From: RelativeDatum

Table 10 - MobileCRS class

Description: Abstract base class for representing mobile coordinate reference systems.

Derived From: DynamicRelativeCRS

Note: Values for the attribute ‘usesDatum’ which is derived from parent class shall be limited to instances of MobileDatum or its
inherited classes.

Table 11 - MobileCartesianCRS class

Description: Mobile coordinate reference systems based on Cartesian coordinate system.

Derived From: MobileCRS

Note: Values for the attribute ‘usesCS’ which is derived from parent class shall be limited to instances of SC_CartesianCS [ISO19111] or
its inherited classes.

Table 12 - MobilePolarCRS class

Description: Mobile coordinate reference system based on polar coordinate system.

Derived From: MobileCRS

Note: Values for the attribute ‘usesCS’ which is derived from parent class shall be limited to instances of SC_PolarCS [ISO19111] or its
inherited classes.

Table 13 - MobileDatum class

Description: Datum for mobile coordinate reference systems. This datum holds a RoLo input stream that is used to obtain positional
information for determining the relation between the mobile coordinate reference system in target and another coordinate reference
system. Users shall connect a RoLo output stream to this input stream, or shall supply positional information directly by the 'setData'
method of this input stream. For example, if the mobile coordinate system is based on Cartesian coordinate system, spatial position
information for mapping the origin and orientation information for determining axis directions may be supplied. However, some
transformation algorithms require more complicated information such as measurement time or error information. The necessary
information required can be determined by the ability description of the input stream.

Derived From: DynamicRelativeDatum

Attributes

inStream (protected) InStream
(RoLo::Interface)

M 1 Input stream for obtaining base position.

Operations

getInStream Returns the input stream in use.

out inStream InStream
(RoLo::Interface)

InStream instance used in this datum.

 16 Robotic Localization Service, Beta 2

Table 14 - MobileOperation class

Description: Abstract base class for operations between mobile coordinate reference system and other coordinate reference systems.

Derived From: CC_Transformation [ISO19111]

Table 15 - Mobile2StaticOperation class

Description: Transformation operation from mobile coordinate reference systems to other static, non-mobile coordinate reference
systems.

Derived From: MobileOperation

Attributes

source MobileCRS M 1 The source mobile coordinate reference system.

target CS_CRS [ISO19111] M 1 The target coordinate reference system.

Note: Values for the attribute ‘target’ shall not be an instance of DynamicRelativeCRS or its inherited classes.

Table 16 - Static2MobileOperation class

Description: Transformation operation from other static, non-mobile coordinate reference systems to mobile coordinate reference
systems.

Derived From: MobileOperation

Attributes

source CS_CRS [ISO19111] M 1 The source coordinate reference system.

target MobileCRS M 1 The target mobile coordinate reference system.

Note: Values for the attribute ‘source’ shall not be an instance of DynamicRelativeCRS or its inherited classes.

Robotic Localization Service, Beta 2 17

Figure 4: Mobile CRS operations
::ISO 19111::CC_Transformation

Mobile2StaticOperation

source

MobileCRS

MobileOperation

Static2MobileOperation

target

Mobile2MobileOperation

sourcetarget

::ISO 19111::SC_CRS

target

source

Table 17 - Mobile2MobileOperation class

Description: Transformation operation between mobile coordinate reference systems.

Derived From: MobileOperation

Attributes

source MobileCRS M 1 The source mobile coordinate reference system.

target MobileCRS M 1 The target mobile coordinate reference system.

7.3.2 Identity Information

Identity (ID), which is assigned for each localized targets, can also be treated as a value on
some coordinate reference system. For example, MAC addresses used in Ethernet
communication protocols can be represented as a coordinate value on a two-dimensional
coordinate system, vendor code and vendor-dependent code. Electric Product Code (EPC) or
ucode, used for identifying RF tags, is another example of identification systems defined by a
multi-dimensional coordinate system. There also exist some ID systems, such as family names,
that are usually not explicitly defined over some mathematical structure.

In general, each sensor holds its own ID system and each entity observed is assigned an ID
from this local ID system. This is because, at least on the initial stage, there are no means to
assign the observed entity a global ID. Thus, when multiple sensors are in use, there exist
multiple local ID systems independent to each other, and it becomes necessary to properly
manage and integrate these ID systems. Resolving the bindings between each local ID systems
is called the ID association problem, and is one of the major research issues in the robotic
localization field. Also, as we saw in the overview section, ID assignments are probabilistic,
just like other location information.

Under these considerations, here we define coordinate reference systems and related structures
for representing identity information. Here, two coordinate reference systems and
accompanying coordinate systems are defined, for identity systems that are represented in
numerical values and symbolic values. The actual coordinate value holding structure in GIS
standard [ISO19107] only allows numeric values as coordinate value elements. Thus, similar
structures in use with symbolic values are also defined.

Note that, operations on identity information (such as conversion from numeric ID to symbolic
ID or mapping between different ID systems) can be constructed using
CC_CoordinateOperation or relevant classes specified in GIS standard [ISO19111]. This is
because the identity information define here is represented by using derived classes from GIS
coordinate systems and coordinate reference systems.

 18 Robotic Localization Service, Beta 2

Table 18 - IdentityCS class

Description: Coordinate systems for identity information.

Derived From: CS_CoordinateSystem [ISO19111]

Table 19 - NumericIdentityCS class

Description: Coordinate system for identity information, where each axis is defined over numerical values.

Derived From: IdentityCS

Table 20 - SymbolicIdentityCS class

Description: Coordinate system for identity information, where each axis is defined over a set of symbolic values.

Derived From: IdentityCS

Table 21 - IdentityDatum class

Description: Datum for identity coordinate reference systems.

Derived From: CD_Datum [ISO19111]

Robotic Localization Service, Beta 2 19

Figure 5: Identity Information

NumericIdentityCRSNumericIdentityCS {subset usesCS}

::ISO 19111::CS_CoordinateSystem ::ISO 19111::CD_Datum

IdentityDatum

DirectSymbol

+ coords : CharacterString [1..*] { ordered }

SymbolRef

SymbolicPositionSymbolicIdentityCS SymbolicIdentityCRS

{subset usesCS}

0..1crs

IdentityCRS

{subset usesDatum}

IdentityCS

point

::ISO 19111::IO_IdentifiedObjectBase

::ISO 19111::SC_SingleCRS

0..1direct 0..1indirect

Table 22 - IdentityCRS class

Description: Base abstract class for representing coordinate reference systems for identity information.

Derived From: SC_SingleCRS [ISO19111]

Note: Values for the attribute ‘usesDatum’ which is derived from parent class shall be limited to instances of IdentityDatum or its
inherited classes.

Table 23 - NumericIdentityCRS class

Description: Coordinate reference system for identity information, where each axis is defined over numerical values.

Derived From: IdentityCRS

Note: Values for the attribute ‘usesCS’ which is derived from parent class shall be limited to instances of NumericIdentityCS or its
inherited classes.

Table 24 - SymbolicIdentityCRS class

Description: Coordinate reference system for identity information, where each axis is defined over a set of symbolic values.

Derived From: IdentityCRS

Note: Values for the attribute ‘usesCS’ which is derived from parent class shall be limited to instances of SymbolicIdentityCS or its
inherited classes.

Table 25 - DirectSymbol class

Description: Class for holding symbolic identity information.

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes

coords CharacterString M N ord Values for each of the coordinate system axis.

crs SymbolicIdentityCRS O 1 Reference to the coordinate reference system this data belongs to.

Table 26 - SymbolRef class

Description: Data holder for a reference to DirectSymbol

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes

point DirectSymbol M 1 Reference to the target DirectSymbol class instance.

Table 27 - SymbolicPosition class

Description: Union of DirectSymbol and SymbolRef. This class is used as a data holder for accessing symbolic information
transparently, whether it is directly held or indirectly referenced.

Derived From: IO_IdentifiedObjectBase [ISO19111]

 20 Robotic Localization Service, Beta 2

Attributes

direct DirectSymbol C 1 Symbolic identity data.

indirect SymbolRef C 1 Reference to symbolic identity data.

Condition: Either one of the element shall be contained.

7.3.3 Error Information

Every sensing system in the real world cannot avoid having measurement error. As such, it is
essential to know the reliability or deviation of measurements for performing localization and
for utilizing the resulting estimation. Error information plays an important role in robotic
operations. In GIS specifications, the only error concerned is the expected reliability of inter-
coordinate transformation. However, complex and detailed error descriptions are required in
modern localization methods. Thus, here we define additional structures for representing and
operating on error information.

RoLo Error Type

Similar to the relation of coordinate reference system and the position in the traditional GIS
systems, we here define RoLo error types for describing the nature of error information. Every
RoLo error holds a reference to an error type (either implicitly or explicitly; see section 7.6),
which indicates how this error is represented. This means that, the same error data can be
represented in a different manner. Thus, operations for transforming between different error
types are defined.

RoLo error types may also be structured to for a hierarchy. Just as the normal class inheritance
relationships, often error types may be related to each other. For example, a linear mixture
model distribution is one limited form of general mixture model where models mixture is
performed through linear operations. Here the hierarchy of RoLo error types is specified by
inter-object relationships, and not by inter-class relationships. This is to be consistent with
other specification data types such as coordinate reference system, coordinate system or RoLo
data specification. Figure 6 shows some RoLo error types and their relationships corresponding
to the RoLo error classes defined afterwards.

Robotic Localization Service, Beta 2 21

Note that, error information in the context of localization cannot exist solely by itself. Error
information is an attribute to the location value. Thus, there exist two types of operation on
error information in general. 1) Change in error representation type, and 2) change in the
coordinate system the target location value is based on. The former operation is described in
this section, and the latter is described later with the description on RoLo data specification.

Table 28 - ErrorType class

Description: Class for representing RoLo error types.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

baseType ErrorType O 1 Reference to a RoLo error type which is the base type of this RoLo
error type. This attribute is used to represent hierarchical relationships
among RoLo error types.

 22 Robotic Localization Service, Beta 2

Figure 7 - RoLo Error Type

Figure 6: Hierarchy of RoLo Error Types

::ISO 19111::IO_IdentifiedObject

ErrorType

target

source ErrorTypeOperation

0..1
baseType

ET_Base : ErrorType

ET_Gaussian : ErrorType

ET_UniformGaussian : ErrorType

ET_Reliability : ErrorType

ET_MixtureModel : ErrorType

ET_LinearMixtureModel : ErrorType

ET_ParticleSet : ErrorTypeET_MixtureOfGaussian : ErrorType

baseType

ET_Distribution : ErrorType

baseType

baseType

baseType

baseType

Table 29 - ErrorTypeOperation class

Description: Denotes transformation of RoLo error into a different RoLo error type.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

source ErrorType M 1 Source RoLo error type.

target ErrorType M 1 Target RoLo error type.

RoLo Error

RoLo errors are objects for holding error information in different representations. Here we
define some frequently used forms. Users may extend these classes to implement their own
RoLo error containers, accompanied with appropriate RoLo error type definitions.

Robotic Localization Service, Beta 2 23

Figure 8: RoLo Error

Error

ErrorDistribution

Gaussian

ParticleSet

Reliability DataType

::ISO 19103::Probability

UniformGaussian

Matrix

+ nRow : Integer
+ nCol : Integer

::ISO 19111::IO_IdentifiedObjectBase

CovarianceMatrix

The mean value is
the combined RoLo position

MixtureOfGaussian

cov

MixtureModel

WeightedModelLinearMixtureModel

1..* {ordered}

models

PositionElement

weight

posElem

DataType

::ISO 19103::Number1..* {ordered}

vals

ErrorType

0..1

errType

Table 30 - Error class

Description: Base abstract class for holding error information.　

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes

errType ErrorType O 1 Reference to the RoLo error type indicating how this error information
is represented.

Table 31 - Reliability class

Description: Reliability value. The derived attribute 'errType' shall be ET_Reliability.

Derived From: Error, Probability [ISO19103]

Table 32 - ErrorDistribution class

Description: Base abstract class for error information represented by a probability distribution.

Derived From: Error

Table 33 - Matrix class

Description: N-dimensional matrix.

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes

nRow Integer M 1 Number of matrix rows. The value of attribute ‘nRow’ should be a
positive integer.

nCol Integer M 1 Number of matrix columns. The value of attribute ‘nCol’ should be a
positive integer.

vals Number [ISO19103] M N ord Value elements of the matrix.

Table 34 - CovarianceMatrix class

Description: An n-dimensional matrix describing covariance.

Derived From: Matrix

Note: This shall represent a square matrix where nRow = nCol.

Table 35 - Gaussian class

Description: Error represented by an n-dimensional normal distribution. The mean value is denoted by the accompanying RoLo
position. The derived attribute 'errType' shall be ET_Gaussian.

Derived From: ErrorDistribution

Attributes

 24 Robotic Localization Service, Beta 2

cov CovarianceMatrix M 1 Indicates the covariance for the normal distribution.

Table 36 - UniformGaussian class

Description: Error represented by a uniform normal distribution.

Derived From: Gaussian

Note: Dimensions of the cov attribute derived from class Gaussian shall all be equal to 1. That is, nRow = nCol = 1.

Table 37 - ParticleSet class

Description: Error represented by a set of particles. As for the 'models' attribute derived from LinearMixtureModel class, the 'posElem'
attribute shall either have no 'err' attribute or have an RoLo error like an impulse response (such as a Gaussian distribution with zero
standard deviation). Normally, this is used for representing distributions by Monte Carlo approximation, where distributions are
approximated by a finite number of random samplings. The derived attribute 'errType' shall be ET_ParticleSet.

Derived From: LinearMixtureModel

Table 38 - MixtureModel class

Description: Abstract base class for representing an error distribution by means of mixture of probability distributions.

Derived From: ErrorDistribution

Table 39 - WeightedModel class

Description: A distribution with a weight. Recall that a PositionElement object can be interpreted to represent a probability distribution.
Its 'pos' attribute is treated as the expected coordinate value and its 'err' attribute as the shape of distribution. Thus, in this class the
combination of 'weight' and 'posElem' attributes denotes a weighted distribution.

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes

weight Probability
[ISO19103]

M 1 Weight of this distribution.

posElem PositionElement M 1 Expected position for the distribution.

Table 40 - LinearMixtureModel class

Description: A distribution represented by a linear mixture of probability distributions. The derived attribute 'errType' shall be
ET_LinearMixtureModel.

Derived From: MixtureModel

Attributes

models WeightedModel M N ord List of weighted models to be combined.

Robotic Localization Service, Beta 2 25

Table 41 - MixtureOfGaussian class

Description: A distribution represented by a linear mixture of Gaussian distributions. The derived attribute 'errType' shall be
ET_MixtureOfGaussian. The models attribute derived from LinearMixtureModel shall have a 'posElem' attribute whose 'err' attribute is
restricted to be an instance of Gaussian class.

Derived From: LinearMixtureModel

7.3.4 Robotic Localization Architecture

The Robotic Localization (RoLo) Architecture defined here is a unified framework for
organizing and representing complex data set required in robotic localization. Similar to the
relation between GIS location data and coordinate reference system, two sets of structures are
defined here.

1) Classes for holding the localization results (Data, Element and Position)

2) Classes for describing the structure or the meaning of localization results (DataSpecification,
ElementSpecification)

These two sets of classes are in relation similar to that between GIS position data and
coordinate reference systems: the latter describes the structure and meaning of the former. The
RoLo element and RoLo element specification pair binds the main localization data element to
error information. The RoLo data and RoLo data specification pair defines the structure and
relation among a set of RoLo elements that forms a complete robotic localization results.

Normally, error information is combined with one main localization element. However, in
certain cases, there is a need to hold an integrated error among multiple location data. For
example, in a typical Kalman filter usage, multiple main location information such as spatial
position and velocity are used to form a state vector. When the elements of the state vector are
not independent, which is the usual case, the corresponding error, the covariance matrix, is
related to multiple main elements. In such case, the ErrorElementSpecificaion (derived from
ElementSpecification class) specifies which main information slot the error is related to, and
the actual error data is contained by the ErrorElement class (derived from Element class)
instances. Figure 9 shows a sample data structure and corresponding object diagram.

 26 Robotic Localization Service, Beta 2

Robotic Localization Service, Beta 2 27

Figure 9: Representation of error information related to multiple localization data

Data

position
data

velocity
data

(no data)
error
data

PositionElement ErrorElement

DataSpecification

CRS CR S(not
defined)

error
type

PositionElementSpecification ErrorElementSpecification

based on

(not
defined)

(no data)

dataSpec1 : ::RoLo::Architecture::DataSpecification

identifier = urn:x-rls:def:DS:jp.atr:...:ds132
name = DataSpec for KansaiPF output

posSpec1 : ::RoLo::Architecture::PositionElementSpecification

identifier = urn:x-rls:def:PES:jp.atr:...:pos1312
name = Pos. Elem. Spec. for Local 2D pos. at KansaiPF

elemSpecs

posSpec2 : ::RoLo::Architecture::PositionElementSpecification

identifier = urn:x-rls:def:PESc:jp.atr:...:pose31
name = Pos. Elem. Spec. for Local 2D pose at KansaiPF

elemSpecs

errSpec1 : ::RoLo::Architecture::ErrorElementSpecification

identifier = urn:x-rls:def:EES:jp.atr:...:err1
name = Err. Elem. Spec. for pos/pose state at KansaiPF

elemSpecs

eT_Gaus2D : ::RoLo::Architecture::ErrorType

identifier = urn:x-rls:def:ET:Gaussian:2D
localname = Error type for Gaussian error in 2D

errType

data1 : ::RoLo::Architecture::Dataspec

pElem1 : ::RoLo::Architecture::PositionElement
elems

pos1 : ::RoLo::Architecture::Positionpos

nPos1 : ::ISO19107::GM_Positionnumeric

pElem2 : ::RoLo::Architecture::PositionElement
elems

pos2 : ::RoLo::Architecture::Positionpos

nPos2 : ::ISO19107::GM_Positionnumeric

eElem : ::RoLo::Architecture::ErrorElement
elems

err1 : ::RoLo::Architecture::Gaussian
err

errType

cov1 : ::RoLo::Architecture::CovarianceMatrix

nRow = 2
nCol = 2
vals = (0.1, 0.2, 0.2, 0.4)

cov

dp1 : ::ISO19107::DirectPosition

coordinate = (142, 23)

position

dp2 : ::ISO19107::DirectPosition

coordinate = (3.12, -2.13)

position

posSpecRefs

posSpecRefs

SRC_CRS1 : ::RoLo::Architecture::StaticRelativeCartesianCRS

identifier = urn:x-rls:def:CRS:jp.atr:...:412131
name = CRS at KansaiPF generated at ... 15:23:22.12 JSTcrs

SRC_CRS2 : ::RoLo::Architecture::StaticRelativeCartesianCRS

identifier = urn:x-rls:def:CRS:jp.atr:...:412132
name = CRS at KansaiPF generated at: ... 15:23:22.12 JST

crs

Table 42 - Position class

Description: Data container for localization results without error information. This is formed as a union of SymbolicPosition class and
GM_Position [ISO19107] class. The former is a container for symbolic symbols such as identity information, and the latter contains
numerical data such as spatial coordinate values.

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes:

symbolic SymbolicPosition C 1 Symbolic data container

numeric GM_Position
[ISO19107]

C 1 Numeric data container.

Condition: One and only one of the choices shall be chosen.

Table 43 - ElementSpecification class

Description: Base abstract class for holding structural definition for RoLo elements. Instances of this class contain meta-level
information on what kind of data each RoLo element holds.

Derived From: IO_IdentifiedObject [ISO19111]

 28 Robotic Localization Service, Beta 2

Figure 10: RoLo Architecture

Position

PositionElementSpecification

DataSpecification

PositionElement

::ISO 19111::IO_IdentifiedObject

Data

0..1

spec

::ISO 19111::IO_IdentifiedObjectBase

ErrorElement

ElementSpecification

ErrorElementSpecification

{subset spec}

{subset spec}

1..* {ordered}
elemSpecs

Element

1..* {ordered}
elems

pos

0..1

spec

1..* {ordered}

posSpecRefs

ErrorType
0..1

errType

errType

0..1

err

err

Error

0..1

symbolic
SymbolicPosition

0..1
numeric

::ISO 19107::GM_Position

crs

::ISO 19111::SC_CRS

Table 44 - PositionElementSpecification class

Description: Specification holder for RoLo position elements.

Derived From: ElementSpecification

Attributes:

crs SC_CRS
[ISO19111]

M 1 Reference to a coordinate reference system that the ‘pos’ attribute in
RoLo position element is based on.

errType ErrorType O 1 Reference to a RoLo error type. Specifies the type of ‘err’ attribute in
RoLo position elements. If this attribute is omitted, RoLo position
elements related with this instance shall not contain error information.

Table 45 - ErrorElementSpecification class

Description: Definition holder for RoLo error elements.

Derived From: ElementSpecification

Attributes:

posSpecRefs PositionElementSpecification M N
ord

An ordered list of references to RoLo position element specifications
showing which positional data the RoLo error contained in the RoLo
error element is related to. The referred RoLo position element
specifications shall be contained in the same RoLo data specification
as this class instance.

errType ErrorType M 1 Reference to a RoLo error type. Specifies the type of ‘err’ attribute in
RoLo error elements.

Table 46 - Element class

Description: Base abstract class for RoLo elements which holds the binding between the main positional data and the RoLo error.

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes:

spec ElementSpecification O 1 Reference to RoLo element specification that this element is based on.

Table 47 - PositionElement class

Description: Data container of each localization result by combining the main positional data and the accompanying RoLo error.

Derived From: Element

pos Position M 1 The main information.

err Error O 1 RoLo error information related to the ‘pos’ attribute of the same
instance. If the RoLo position element specification referred related
with this instance does not hold an ‘errType’ attribute, this attribute
shall be omitted.

Note: Values for the attribute ‘spec’ which is derived from parent class shall be limited to instances of PositionElementSpecification or
its inherited classes.

Robotic Localization Service, Beta 2 29

Table 48 - ErrorElement class

Description: Data container of error information that is related to multiple positional data in the same RoLo data. RoLo position
elements related with this error information are specified in the referenced RoLo error element specification.

Derived From: Element

Attributes:

err Error M 1 RoLo error bound with the specified RoLo position elements.

Note: Values for the attribute ‘spec’ which is derived from parent class shall be limited to instances of ErrorElementSpecification or its
inherited classes.

Table 49 - DataSpecification class

Description: Specification holder for RoLo data.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes:

elemSpecs ElementSpecification M N
ord

Ordered list of RoLo element specifications that defines the structure
of localization result.

Table 50 - Data class

Description: Data container for the robotic localization result.

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes:

spec DataSpecification O 1 Reference to the corresponding RoLo data specification.

elems Element M N
ord

An ordered list of RoLo elements. Numbers, orders and types of the
RoLo elements shall match that of the corresponding RoLo data
specification.

Don't-Care

In order to handle generic data specifications, specifications may include “don't care” values in
their definition. For example, you may want to build a people tracking service which accepts
outputs from another RoLo module bound with a camera sensor and performs some
calculation. In such case, the coordinate system of the camera sensor output may be fixed but
the coordinate reference system and the datum associated with each camera module may differ,
depending on the location where the camera is installed. Building such module is impossible in
the normal RoLo framework, as each RoLo stream need to clearly specify a set of RoLo data
specifications it can accept; you need to specify an infinite list of RoLo data specifications on
the input stream ability description.

That's where don't-cares are used. In such cases, you specify a RoLo data specification for the
tracking module's input stream ability using a coordinate reference system which uses a don't-
care datum (NULLDatum class). This way you can specify only the specification parts you (the
module) is interested, and leave the other parts free. Such is quite a common usage, and so the
use of don't-cares will increase the flexibility and usability of the RoLo service. However, this

 30 Robotic Localization Service, Beta 2

use of don't-care elements may require notice as it may result in high computation cost or
ambiguous, useless specifications that break the idea of having specifications for data. Thus,
we need some rule to avoid misleading usages. The following describes the rules that shall be
followed on using don't-cares:

• When multiple type specifications are associated with a data instance, the specifications
shall be consistent with each other.

• Every data instance shall have a complete unified type specification.

• A type specification may include don't-cares for the following attributes:

○ 'elemSpec' in RoLo data specification

○ 'crs' in RoLo position element specification

○ 'errType' in RoLo position element specification or RoLo error element specification

○ 'cs' in SC_CRS [ISO19111]

○ 'datum' in SC_CRS [ISO19111]

Figure 11 shows the classes and the objects used to indicate don't-care.

• A RoLo stream that is associated with an incomplete data specification should check
consistency of each Data passed through the stream.

The last rule means that any RoLo stream that is associated with a complete RoLo data
specification may skip checking explicit specification of each RoLo data or its subcomponents
passed through itself. Thus, modules equipped with low computation power can avoid
unnecessary processing by specifying explicit data specifications as their RoLo input stream
ability.

Robotic Localization Service, Beta 2 31

Table 51 - DontCare class

Description: Base abstract class for don’t-care classes.

Derived From: (none)

Table 52 - NULLCS class

Description: Don’t-care indicator. Used for indicating that this coordinate system shall be ignored.

Derived From: DontCare, CS_CoordinateSystem [ISO19111]

Table 53 - NULLCRS class

Description: Don’t-care indicator. Used for indicating that this coordinate reference system shall be ignored.

Derived From: DontCare, SC_CRS [ISO19111]

 32 Robotic Localization Service, Beta 2

(a) Don't-care classes

(b) Don't-care objects

Figure 11: Don't-care classes and objects

NULLDatumNULLElementSpecification

ElementSpecification

::ISO 19111::CD_EngineeringDatum

::ISO 19111::CS_CoordinateSystem

DontCare

NULLCS NULLCRS

::ISO 19111::SC_CRS

ErrorType

NULLErrorType

ET_NULL : NULLErrorType

baseType

datum_NULL : NULLDatum crs_NULL : NULLCRS

ET_Base : ErrorTypeelemSpec_NULL : NULLElementSpecification cs_NULL : NULLCS

Table 54 - NULLDatum class

Description: Don’t-care indicator. Used for indicating that this datum shall be ignored.

Derived From: DontCare, CD_EngineeringDatum [ISO19111]

Table 55 - NULLErrorType class

Description: Don’t-care indicator. Used for indicating that this RoLo error type shall be ignored.

Derived From: DontCare, ErrorType

Table 56 - NULLElementSpecification class

Description: Don’t-care indicator. Used for indicating that this slot in RoLo element specification shall be ignored.

Derived From: DontCare, ElementSpecification

RoLo Data Operation

Table 57 - PositionElementOperation class

Description: Base abstract class for representing operations for transforming data between different RoLo position elements. RoLo

Robotic Localization Service, Beta 2 33

Figure 12: RoLo Data Operation

PositionElementSingleOperation

PositionElementConcatenatedOperation

PositionElementOperation

::ISO 19111::IO_IdentifiedObject

1..* {ordered}

childOperations

DataOperation

DataSingleOperation DataConcatenatedOperation

1..* {ordered}

childOperations

DataMappingOperation

DataSpecification

source target

DataTransformation

1..* {ordered}

usesOperations

PositionElementSpecification

source target

::ISO 19111::CC_CoordinateOperation

usesOperation

ErrorTypeOperation
0..1

usesErrTypeOperation

ElementSpecification

1..* {orderd}
sourceElemSpecs

1..* {ordered}
targetElemSpecs

position elements are basically composed by RoLo position and RoLo error. As the value of RoLo error is also based on the coordinate
reference system where the combined RoLo position is based on, both the main information and the error information shall be
transformed at once.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes:

source PositionElementSpecification M 1 Source RoLo position element specification.

target PositionElementSpecification M 1 Target RoLo position element specification.

Table 58 - PositionElementConcatenatedOperation class

Description: Concatenation of multiple PositionElementOperation instances.

Derived From: PositionElementOperation

Attributes:

childOperations PositionElementOperation M N
ord

Ordered list of PositionElementOperation to be applied. Target RoLo
position element specification and source RoLo position element
specification for succeeding operations shall match.

Table 59 - PositionElementSingleOperation class

Description: Definition of an operation for transforming or converting data between different RoLo position element specifications. The
main information is processed by the CC_CoordinateOperation [ISO19111], and the error information should also be transformed.

Derived From: PositionElementOperation

Attributes:

usesOperation CC_CoordinateOperation
[ISO19111]

M 1 Operation to be used for transforming the main localization data.
This operation may also be utilized to transform the accompanying
RoLo error.

usesErrTypeOperation ErrorTypeOperation O 1 Operation to be used for converting the type of the RoLo error part.
If no error type conversion is necessary, this part may be omitted.

Table 60 - DataOperation class

Description: Base abstract class for representing operations for transforming data between different RoLo data specifications. The main
purpose of this operation is to transform or to convert RoLo data that contains RoLo error element. RoLo data which contains RoLo error
element need to know about how other elements within the same RoLo data specification are operated. Instances of this class perform
necessary operations for RoLo error elements, alongside the operations for RoLo position elements.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes:

source DataSpecification M 1 Reference to the originate RoLo data specification.

target DataSpecification M 1 Reference to the target RoLo data specification.

Table 61 - DataConcatenatedOperation class

Description: Concatenation of multiple RoLo data operations.

 34 Robotic Localization Service, Beta 2

Derived From: DataOperation

Attributes:

childOperations DataOperation M N
ord

Ordered list of RoLo data operation to be applied. Target RoLo data
specification and source RoLo data specification for succeeding
operations shall match.

Table 62 - DataSingleOperation class

Description: Abstract class for representing an operation for transforming data between different RoLo data specifications.

Derived From: DataOperation

Table 63 - DataTransformation class

Description: Definition of an operation for transforming data between different RoLo data specification.

Derived From: DataSingleOperation

Attributes:

usesOperations PositionElementOperation M N
ord

Operations used for each of the RoLo position element specification in
the RoLo data specification. The number of RoLo position element
specifications in this RoLo data specification and that of
‘usesOperation’ attribute shall match. The operation defined here is
applied to each of the RoLo position elements in the order the
corresponding RoLo position element specifications are defined.

Table 64 - DataMappingOperation class

Description: Definition of an operation for transforming data between different RoLo data specifications that simply maps elements in
the source RoLo data specification to elements in the target RoLo data specification. Only the structures of the RoLo elements are altered,
and the data content itself are not changed. With RoLo error elements, the reference to the RoLo position elements shall be modified
appropriately. The two attributes contained are lists of references to RoLo element specifications in source and target RoLo data
specifications that defines how the mapping is to be performed.

Derived From: DataSingleOperation

Attributes:

sourceElemSpecs ElementSpecification M N
ord

Ordered list of RoLo element specification references within the
source RoLo data specification which is to be mapped to the RoLo
element specification in the target RoLo data specification represented
by the ‘targetElemSpecs’ attribute value at the same position. The
numbers of 'sourceElemSpecs’ attribute shall match that of
‘targetElemSpec’ attribute.

targetElemSpecs ElementSpecification M N
ord

Ordered list of RoLo element specification references within the target
RoLo data specification.

7.4 DataFormat Package

When exchanging information amongst modules, knowledge on data structures is not enough.
We need to specify the actual data representation format exchanged amongst modules.

Robotic Localization Service, Beta 2 35

Table 65 - DataFormat class

Description: Base abstract class for data format definitions.

Derived From: IO_IdentifiedObject [ISO19111]

Table 66 - EncodingRule class

Description: Base abstract class for encoding rules. Encoding rule denotes some systematic mean that can determine the data format
from corresponding data structure (i.e. RoLo data specification). Packed Encoding Rule [PER] is an example of encoding rule. This is a
reserved class for future extension.

Derived From: DataFormat

Table 67 - SpecificDataFormat class

Description: Abstract class for data formats where format description is tightly coupled with data structure. This is in contrast with the
EncodingRule class, where data formatting rules are independent to data structure definitions.

Derived From: DataFormat

Attributes:

dataSpec DataSpecification
(RoLo::Architecture)

M 1 Specifies a RoLo data specification that this data format can handle.

Table 68 - UserDefinedDataFormat class

Description: Abstract class for user-defined, non-common data formats.

Derived From: SpecificDataFormat

 36 Robotic Localization Service, Beta 2

Figure 13: RoLo Data Format

CommonDataFormat

::ISO 19111::IO_IdentifiedObject

::RoLo::Architecture::DataSpecification

DataFormat

SpecificDataFormatEncodingRule

UserDefinedDataFormat

dataSpec

Table 69 - CommonDataFormat class

Description: Abstract class for denoting Common Data Formats.

Derived From: SpecificDataFormat

7.4.1 Common data format

This specification allows a wide range of data formats for keeping compatibility to widely used
data formats. This specification, however, defines three common data formats each with two
different RoLo data specifications, representing location information in order to provide
interoperability between modules which have lack of computing resources. Every module in
RoLo service shall support at least one of these common data formats in order to transmit
location information to enhance inter-module connectability as much as possible.

In this specification, depending on the coordinate systems to refer the position and the methods
to specify the orientation, the common data format is represented by one of the six types, Type
I-1, I-2, II-1, II-2, III-1, and III-2 as bellows:

Type I-1

Table 70 - Common data format type I-1 (Cartesian Coordinate System, xyz-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [x, y, z] Real, Real, Real meter, meter, meter

Orientation [α, β, γ] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Type I-2

Table 71 - Common data format type I-2 (Cartesian Coordinate System, XYZ-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [x, y, z] Real, Real, Real meter, meter, meter

Orientation [yaw α, pitch β, roll γ] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Type II-1

Table 72 - Common data format type II-1 (Spherical Coordinate System, xyz-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [r, θ, φ] Real, Real, Real meter, radian, radian

Orientation [α, β, γ] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Robotic Localization Service, Beta 2 37

Type II-2

Table 73 - Common data format type II-2 (Spherical Coordinate System, XYZ-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [r, θ, φ] Real, Real, Real meter, radian, radian

Orientation [yaw α, pitch β, roll γ] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Type III-1

Table 74 - Common data format type III-1 (Geodetic Coordinate System, xyz-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [latitude φ, longitude λ, height h] Real, Real, Real degree, degree, meter

Orientation [α, β, γ] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Type III-2

Table 75 - Common data format type III-2 (Geodetic Coordinate System, XYZ-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [latitude φ, longitude λ, height h] Real, Real, Real degree, degree, meter

Orientation [yaw α, pitch β, roll γ] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Each type of the common data formats includes four parameters as follows:

 Position – specifies the coordinate value in a Cartesian coordinate system for Type I-1 and I-2, in a
spherical coordinate system for Type II-1 and II-2, and in a geodetic coordinate system for Type III-1
and III-2. (See Figure 14 and its explanation for details).

 Orientation – specifies sequential three rotations by each axis in a right-handed 3-dimensional
Cartesian coordinate system defined by a so-called xyz-Euler Angle representation for Type I-1, II-1,
and III-1 (See Figure 15 and its explanation for details), and a so-called XYZ-Euler Angle representation
(commonly called yaw-pitch-roll rotation) for I-2, II-2, and III-2. (See Figure 16 and its explanation for
details).

 Timestamp – specifies time at occurring measurement for current position and orientation. It is
compatible to POSIX time which is the time elapsed since midnight Coordinated Universal Time
(UTC) of January 1, 1970. A timestamp consists of two integers of elapsed seconds and nanoseconds
which is compatible to standard UNIX C time_t data structure.

 ID – specifies the identifier of current location information for robots and related entities.

The coordinate values of position information in the common data format in Table 70-75 are defined respectively
by three different coordinate systems: Cartesian coordinate, spherical coordinate and geodetic coordinate system
as shown in Figure 14.

 38 Robotic Localization Service, Beta 2

Generally, a 3 by 3 matrix is commonly used in robotics to calculate consecutive rotations of a
coordinate system or to specify the orientation of a coordinate system respective to a reference
coordinate system. However, it is not easy for a human to interpret an orientation by the matrix
that contains 9 numbers. Due to the reason, common data formats in this specification use so-
called Euler angles that specify the orientation of a coordinate system by a sequence of three
rotations that take place about an axis of the coordinate system.

To specify the rotation of the coordinate system, a fixed right-hand Cartesian coordinate system
is denoted in lower case (x, y, z) and a rotating right-hand Cartesian coordinate system is
denoted in upper case letters (X, Y, Z). Depending on the order of sequential rotations of two
coordinate systems, the Euler angle representation can be defined in several ways. In this
specification, two most popular Euler angle representations are used: in this specification, the
first representation is called xyz-Euler angle representation and used for Common Data Format
I-1, II-1, III-1 and the second representation is called XYZ-Euler angle representation and used
for Common Data Format I-2, II-2, III-2.

The xyz-Euler angle representation is defined as follows:

1) Start with the rotating XYZ coordinate system coinciding with the fixed xyz
coordinate system.

2) Rotate the XYZ coordinate system about the x-axis by � as shown in Figure
15(a).

3) Rotate the XYZ coordinate system about the fixed y-axis by � as shown in
Figure 15(b).

4) Rotate the XYZ coordinate system about the fixed z-axis by � as shown in
Figure 15(c).

Robotic Localization Service, Beta 2 39

Figure 14: Definition of a position and reference coordinate systems used in the common data format: (a)
Cartesian coordinate system for Type I-1 and I-2, (b) spherical coordinate system for Type II-1 and II-2, (c)
geodetic coordinate system for Type III-1 and III-2.

The XYZ-Euler Angle representation is commonly called as yaw-pitch-roll rotation and defined as follows:

1) Start with the rotating XYZ coordinate system coinciding with the fixed xyz
coordinate system. Most familiar case appears in the x-axis directed to north,
the y-axis directed to east and the z-axis directed to the center of the globe.
Practically, the X-axis is set to the forward motion direction of a vehicle and
the origin is fixed at the rotation reference point of the vehicle.

2) Rotate the XYZ coordinate system about the Z-axis by � (yaw angle) as
shown in Figure 16(a).

3) Rotate the XYZ coordinate system about the newly rotated Y-axis by � (pitch
angle) as shown in Figure 16(b).

4) Rotate the XYZ coordinate system about the newly rotated X-axis by � (roll
angle) as shown in Figure 16(c).

 40 Robotic Localization Service, Beta 2

Figure 15: Three sequential rotations for the xyz-Euler angle representation used in the common data format
type I-1, II-1, and III-1

y x

z

Y

x

’

Z

α

X y x

z

Y

x

’

Z γ

β
X

y x

z

Y

x

’

Z γ

X

(a) (b) (c)

7.5 Filter Condition Package

When a location service is operated in a large scale and handles a large number of location
information, it is useful that the service has a filtering functionality by which it limits outgoing
RoLo data by a given condition. Without this functionality, service providers and receivers are
required to have large capacities of output/input to process the whole data from large scaled
systems. Suppose, as an example, that we implement a sensor system at a shopping center
which detects thousands of guests at once and provides localization service for robots. In such
case, it is not reasonable for each robot to receive localization data about the whole guests
every time. Instead each robot is generally interested in specific guests identified by certain
features, area, and/or time period.

The "Filter Condition" specified below is aimed to provide the functionality for localization
services to specify a condition for filtering data sent to service receivers.

Filter Condition in RoLo stream

A RoLo output stream may have the functionality to filter localization results by a certain
condition. We call this condition as "filter condition." When a filter condition is specified, each
localization result is tested by the condition and passed to the output stream only when it
satisfies the condition.

If no condition is given, or if the stream has no such functionality, the "True" condition is used
as the default condition, in which all localization results are passed to the output stream.

To handle the filter condition functionality, ability descriptor for RoLo streams shall
additionally have the following parameter:

Table 76 - Filter Condition parameter for RoLo streams

filterCondition Parameter<::ISO19143::NonIdOperator>
(RoLo::Interface)

O 1 Filter condition to be used for output data. Default value is
'True'.

Robotic Localization Service, Beta 2 41

Figure 16: Three sequential rotations for the XYZ-Euler angle representation used in the common data format
type I-2, II-2, and III-2

y x x

’
X

y x x

’

Y

y x

z

x

’

γ

Z

(a) (b) (c)

z

Y

x

’

Z

α

z

X
x

’

Z

β

X
x

’

Y

(a) (b) (c)

Users can set and get the content of this parameter through the 'setParameterValueSet' and 'getParameterValueSet'
methods toward the stream or the service. When filter condition is not supported by the stream,
UNSUPPORTED_PARAMETER will be returned.

Data Format of Filter Condition

In order to specify a filter condition, we follow the ISO 19143 specification [ISO/DIS19143]
which is defined for ISO 19142 [ISO/DIS19142]. ISO 19143 specifies XML encoding and
UML class charts of filter conditions and their operators.

While the UML charts provides general concepts of data format of the filter condition, it is
generally useful and flexible enough to use the XML encoding for the localization service. (see
Examples.)

7.6 Interface Package

Several types of modules are commonly used in robotic localization services in general. The
simplest form of module is that which receives data from sensors, calculates location and
outputs the results. However, this type of interface strongly depends on sensor interfaces or
sensor output formats. Strong dependency on specific products or vendors is not suitable for
standardization. Moreover, when a location is calculated, many kinds of resources such as map
data, specific to each sensing system, are required. It is impractical to include each of these
resources into the standard specification. Thus, we decided to embed and hide the individual
device or localization algorithm details inside the module structure (Figure 17).

On the other hand, if we focus on functionality required to localization modules, we can
classify them into roughly three classes (Figure 18):

A) Calculate localization results based on sensor outputs (measurement)

B) Aggregate or integrate multiple localization results (aggregation)

C) Transform localization results into different coordinate reference systems
(transformation)

 42 Robotic Localization Service, Beta 2

Figure 17: Basic robotic localization module

These functionalities differ in their internal algorithms or the number of input / output streams.
However, in all of these, the main data to be exchanged is localization results. As we are
focusing on the interface of RLS modules, and not on their functionalities, we decided to
abstract these different types of modules into a single form of module. This abstract module
holds n (>=0) input streams and a uniform output stream. By abstracting various types of
modules and assuming a uniform interface, complex module compositions such as hierarchical
or recursive module connections can be easily realized (Figure 19).

A RoLo service (implemented as a Service class) may have one or more RoLo output streams
(OutStream class) and zero or more RoLo input streams (InStream class). Typically, the
number of RoLo inputs a service owns is predetermined and the number of RoLo outputs a
service owns changes dynamically based on requests from service users. This is similar to
typical server systems such as database or Web servers where the number of established output
connection increases as requests arrive until it reaches a predefined maximum number.

If each module can represent what or how it can perform, or provide information on available
configurable parameters, a large amount of development efforts can be reduced. Thus, each
service or stream is modeled to own an ability description (Ability class) which contains a set
of attributes (Attribute class) and parameters (Parameter class). Attributes show some static
nature of a module and parameters indicate its configurable parameters. For example, an ability

Robotic Localization Service, Beta 2 43

Figure 19: Example of a cascading module connection

Figure 18: Structures of robotic localization module with different functionalities

description for a service (ServiceAblity class) includes an attribute describing expected value
of latency. And an ability description for a stream (StreamAbility class) includes parameters
denoted by lists of DataSpecification and DataFormat objects which shows what type of data
structure or data format a stream can handle, respectively. Attributes or parameters specific to
each implementation, such as vendor-specific parameters, can be described by extending the
respective classes. As such, attributes may be used to describe fixed nature (catalogue specs) of
modules, while parameters define configurable settings for modules. Note that, some
parameters may not be configurable on some implementations. For example, if an module
implementation can output data only by a single data format, the aforementioned parameter for
DataFormat may show only a single candidate, and be marked as non-configurable
(Parameter.isConfigurable = false).

Often, parameters are defined over some limited value domains. As in the example given
above, data specifications or data formats that a stream is able to pass data are likely to be
limited to sets with a small number of choices. Or some parameters, such as output frequency,
may be restricted under a limited range of values. The attribute 'domain' in
ParameterOverDomain class is aimed to denote these limitations. As the value domain required
may take variations of forms such as finite set or interval (or range), The
ParameterOverDomain class is defined as an template class which allows a type argument for
indicating what sort of value domain shall be specified.

By defining the “meaning” of attributes and parameters, the ambiguity in functional definition
or parameters can be eliminated which can be expected to increase developing efficiency. For
example, what does the value 0.23 given as an 'expectedError' attribute for a RoLo Service
mean? These ambiguities can often been seen in sensor products such as GPS receivers,
making it difficult to design a reusable system applicable to devices or modules from different
vendors. The AttributeDefinition class is aimed to clarify the meaning of attributes and
parameters. Although this is out of scope for this specification, by providing a repository of
AttributeDefinition objects that can be referred on demand, RoLo service users and developers
can always make sure what each ability description means or on which unit they are defined
on.

Moreover, advanced features can be implemented such as verification of inter-module
connection, automatic search of specific modules or semi-automatic parameter negotiation
between modules. In cases where sensors or robots distributed in the environment cooperate
with each other, namely the Network Robot environment, it becomes essential to register each
module‘s capabilities in repositories and make them searchable.

 44 Robotic Localization Service, Beta 2

Table 77 - AttributeDefinition class

Description: Definition of a single attribute.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

type RS_Identifier [ISO19115] M 1 Type descriptor for this attribute.

unit UnitOfMeasure [ISO19103] O 1 Unit of the target attribute. If no unit is required, this may be omitted.

Table 78 - AttributeDefinitionSet class

Description: Class that represents a set of attribute definitions.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

attrs AttributeDefinition M N References to AttributeDefinition objects .

Robotic Localization Service, Beta 2 45

Figure 20 - RoLo Ability

AttributeSet

Ability

::ISO 19111::IO_IdentifiedObject

SetParameterIntervalParameter

ParameterOverDomain

+ domain : TD

bind
<TD -> Set<T> >

bind
<TD -> Interval<T> >

ParameterValue

+ val : T

AttributeBase

1..*

attrs
AttributeDefinition

+ type : ::ISO19115::RS_Identifier
+ unit : ::ISO19103::UnitOfMeasure [0..1]

def

Interval

+ min : T
+ max : T
+ minInc : Boolean [0..1] = True
+ maxInc : Boolean [0..1] = True ParameterValueBase

Attribute

+ val : T

Parameter

+ isConfigurable : Boolean = true [0..1] param

AttributeDefinitionSet

0..*attrs

*

def

T

T, TD

T

T

T

T
T

Table 79 - AttributeBase class

Description: Base abstract class for different types of Attribute classes.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

def AttributeDefinition M 1 Reference to an AttributeDefinition object indicating definition for this
attribute.

Table 80 - Attribute class

Description: Represents a single attribute. This is a template class with type argument T which denotes the type of attribute value. The
type argument T shall be consistent with the value of 'type' attribute in AttributeDefinition object referred by the 'def' attribute derived
from AttributeBase class.

Derived From: AttributeBase

Attributes

val T M 1 Value of this attribute.

Table 81 - Parameter class

Description: Represents a single parameter. A parameter is an attribute that may be configurable. This is a template class with type
arguments T which denotes the type of parameter value.

Derived From: Attribute <T>

Attributes

isConfigurable Bool O 1 Flag to show whether this parameter is configurable or not. If omitted,
assumed to True. When this value is set to False, this parameter is not
configurable.

Table 82 - ParameterOverDomain class

Description: Represents a parameter whose value domain is defined. This is a template class with type arguments T and TD, where T
denotes the type of parameter value and TD denotes the type to show domain of the parameter value.

Derived From: Parameter <T>

Attributes

domain TD M 1 Domain of parameter value.

Table 83 - Interval class

Description: Class for indicating an interval. Note that an interval is sometimes referred as a 'range'.

Derived From: (none)

Attributes

 46 Robotic Localization Service, Beta 2

min T M 1 Minimum value of interval.

max T M 1 Maximum value of interval.

minInc Boolean O 1 Flag to show whether the minimum value is included in the range. Default is
True.

maxInc Boolean O 1 Flag to show whether the maximum value is included in the range. Default is
True.

Table 84 - IntervalParameter class

Description: A parameter whose value domain is defined as an interval. This is a template class with type argument T. The type argument
TD from ParameterOverDomain is deduced to be class Interval <T>.

Derived From: ParameterOverDomain<T, Interval>

Table 85 - SetParameter class

Description: A parameter whose value domain is defined as a set of values. This is a template class with type argument T. The type
argument TD from class ParameterOverDomain is deduced to be a set.

Derived From: ParameterOverDomain<T, Set<T>>

Table 86 - ParameterValueBase class

Description: Base abstract class for different types of ParameterValue class.

Derived From: (none)

Table 87 - ParameterValue class

Description: A Class that represents values for parameters. This is a template class with type argument T which denotes the type of the
parameter value.

Derived From: AttributeBase

Attributes

val T M 1 Value of the parameter.

param Parameter M 1 Reference to a Parameter object this parameter value is for. The template
argument T for this class shall match the template argument of the referred
Parameter object.

Table 88 - AttributeSet class

Description: Represents a set of attributes or parameters.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

def AttributeDefinitionSet M 1 Definition of this attribute set.

attrs Attribute O N Set of attributes that is contained in this attribute set.

Robotic Localization Service, Beta 2 47

Table 89 - Ability class

Description: Describes module ability.

Derived From: AttributeSet

 48 Robotic Localization Service, Beta 2

Table 90 - InterfaceBase class

Description: Abstract class for interfacing objects.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

ability
(protected)

Ability M 1 Reference to an ability description for this object. The referred RoLo
ability's attribute 'target' shall refer to this object.

Operations

getAbility Operation for obtaining the ability description for this stream

out ability Ability Ability description of this stream.

setParameterValues Operation for setting values to the configurable parameters.

in paramVals Set<ParameterValueBase> Set of parameter values to be set. If some nonexistent or inconfigurable
parameters were specified, UNSUPPORTED_PARAMETER or
BAD_PARAMETER will be returned respectively.

getParameterValues Operation for obtaining status of configurable parameters.

out paramVals Set<ParameterValueBase> Current status of parameter values.

Robotic Localization Service, Beta 2 49

Figure 21 - RoLo Service

Service

+ connect (in target : InStream, in source : OutStream [0..1], out inStream : InStream) : Returncode_t
+ connect (in source : InStream [0..1], out outStream : OutStream) : Returncode_t
+ adjust (in data : ::RoLo::Architecture::Data) : Returncode_t
+ getChild (in inStream : InStream, out service : Service) : Returncode_t

ServiceAbility

+ expectedLatency : Attribute<Real>
+ inStreamAbilities : StreamAbility [0..*]
+ outStreamAbility : StreamAbility

StreamAbility

+ dataFormat : SetParameter<::RoLo::DataFormat::DataFormat>
+ dataSpec : SetParameter<::RoLo::Architecture::DataSpecification>
+ streamType : SetParameter<StreamType>
+ frequency : Parameter<Real> [0..1]

InStream

+ setData (in data : ::RoLo::Architecture::Data) : Returncode_t

OutStream

+ getData (out data : ::RoLo::Architecture::Data) : Returncode_t
+ activate () : Returncode_t
+ deactivate () : Returncode_t
+ isActivated (out status : Boolean) : Returncode_t

Stream

+ disconnect () : Returncode_t
+ isConnected (out status : Boolean) : Returncode_t
+ getConnectedStream (out stream : Stream) : Returncode_t
+ getService (out service : Service) : Returncode_t

::ISO 19111::IO_IdentifiedObject

Enumeration

StreamType

+ PUSH
+ PULL

Ability

{subset ability}

{subset ability}

0..*
#inStreams

0..*
#outStreams

InterfaceBase

+ getAbility (out ability : Ability) : Returncode_t
+ setParameterValues (in paramVals : Set<ParameterValueBase>) : Returncode_t
+ getParameterValues (out paramVals : Set<ParameterValueBase>) : Returncode_t

#ability

Table 91 - StreamType enumeration

PUSH Indicates that data passing is performed in PUSH mode, i.e. OUT side triggers data passing.

PULL Indicates that data passing is performed in PULL mode, i.e. IN side triggers data passing.

Table 92 - StreamAbility class

Description: Ability description for RoLo streams. If each RoLo stream has special functionalities, this class may be extended to be
added necessary descriptions.

Derived From: Ability

Attributes

dataSpec SetParameter<RoLo::Architect
ure::DataSpecification>

M 1 Parameter for DataSpecification supported by this stream

dataFormat SetParameter<RoLo::DataForm
at::DataFormat>

M 1 Parameter for data formats supported by this stream.

streamType SetParameter<StreamType> M 1 Parameter for supported stream types.

frequency SetParameter<Real> O 1 Parameter for data passing frequency in PUSH mode. The unit for this
attribute is Hz. If unnecessary (for example, a RoLo out stream which only
supports PULL type data passing), this parameter may be omitted.

Table 93 - Stream class

Description: Abstract class for representing RoLo streams.

Derived From: InterfaceBase

Operations

getService Returns the service owning this stream.

out service Service Reference to the service owning this stream.

getConnectedStream Obtain currently connected stream, if any.

out streams Stream Reference to the stream that is currently connected to this stream. If no stream is
connected, ERROR is returned. Otherwise, OK is returned. When the connection is
performed without 'source' argument, this may not work (See description on Service class
for details).

isConnected Check whether this stream is connected to other stream.

out status Boolean If connected true, otherwise false.

disconnect Disconnects this stream from the currently connected stream.

Note: Values for the attribute ‘ability’ which is derived from parent class shall be limited to instances of StreamAbility or its inherited
classes.

Table 94 - OutStream class

Description: Represents output streams.

Derived From: Stream

 50 Robotic Localization Service, Beta 2

Operations

getData Obtain localization result.

out data Data
(RoLo::Architecture)

Resulting localization data.

activate Activate stream output. Only meaningful on PUSH mode.

deactivate Deactivate stream output. Only meaningful on PUSH mode.

isActivated Query whether this stream is activated or not.

out status Boolean If activated true, otherwise false.

Table 95 - InStream class

Description: Represents input streams.

Derived From: Stream

Operations

setData Set data to this stream.

in data Data
(RoLo::Architecture)

Localization data to be set to this stream.

Table 96 - ServiceAbility class

Description: Ability description for RoLo Service. If each specific service implementation has special functionalities, this class may be
extended to be added the necessary descriptions.

Derived From: Ability

Attributes

expectedLatency Attribute<Real> M 1 Expected latency. This ability descriptor is especially useful for Robotic
Localization Service users. The unit for this attribute is milliseconds.

inStreamAbilities StreamAbility O N Ability descriptions for the input streams in this service.

outStreamAbililty StreamAbility M 1 Ability descriptions for the output stream in this service.

Table 97 - Service class

Description: Interface for the robotic localization service.

Derived From: InterfaceBase

Attributes

inStreams
(protected)

InStream O N An ordered list of RoLo input streams owned by this service.

outStreams
(protected)

OutStream O N An ordered list of RoLo output streams owned by this service.

Operations

connect Establish connection from output stream to input stream. (OUT service initiates the connection)

in target InStream Reference to a RoLo input stream to be connected. This target reference shall be
obtained through getAbility method.

Robotic Localization Service, Beta 2 51

in source
[0..1]

OutStream Reference to the RoLo output stream that is connecting. This argument is optional.
When this argument is omitted, 'getChildren' method may not work

out inStream InStream Reference to a RoLo input stream to be used for further manipulation of the established
connection. Note that, this reference may be pointing to a different object as the one
given as input argument. Users shall use the returned reference, not the one obtained
through getAbility method.

connect Establish connection from input stream to output stream. (IN service initiates the connection)

in source
[0..1]

InStream Reference to the RoLo input stream that is connecting. This argument is optional.
However, when data passing is to be done in PUSH mode, this argument cannot be
omitted. Also, when this argument is omitted, 'getChildren' method may not work.

out outStream OutStream Reference to a RoLo output stream object to be used for further manipulation of the
established connection.

adjust Method for adjusting localization results. For elements not required for adjustment, don't-care element should be
specified.

in data Data
(RoLo::Architecture)

Data to be used for initialization or adjustment. Adjusts every element at once.

getChild Obtain services connected to input streams of this service.

in inStream InStream Instream to retrieve the connected service.

out services List<Service> Ordered list of services connected to the input streams of this service.

Note: When 'getAbility' method is called, RoLo stream shall return an ability description that contains ability descriptors for the service
and also the descriptors for the RoLo streams that this service holds. This shall include the descriptors for each of the input streams. For
the out stream, only a single descriptor is sufficient.
Values for the attribute ‘ability’ which is derived from parent class shall be limited to instances of ServiceAbility or its inherited classes.

Using RoLo Service

Here we show several non-mandatory steps and sequence diagrams as examples. Typical steps
of using RoLo Services can be listed as following:

1. (optional) Obtain ability description by calling 'getAbility' method toward RoLo
service. An ability description obtained from RoLo service also includes descriptions on
its streams. This step can be omitted if users already have sufficient information such
by reading reference manuals.

2. (optional) Set up service and/or stream parameters through calling 'setParameterValues'
method. If the default settings are sufficient or if there exists no parameter to be
configured, this step can be omitted. In complicated cases, users may need to repeatedly
call 'setParameterValues' and 'getParameterValues' to set and to confirm parameter
changes.

3. Establish connection.

4. (optional) Set up initial position data by calling 'adjust' method with necessary data.

5. Perform data passing.

6. (optional) Occasionally, perform adjustment if necessary. Adjustment is an act to
provide auxiliary information to the target module for improving the localization
process..

7. Disconnect the connection.

Figure 22 to 26 show sequences of typical steps on using RoLo service. Note that in step 3,

 52 Robotic Localization Service, Beta 2

connection establishment can be initiated from two side; either from the service that outputs
data (OUT service) or from the service that accepts data inputs (IN service). Figure 23 and
Figure 24 show typical connection sequences in both cases. Note that, disconnection of the
established connection (step 7) can be performed from both sides regardless of which side
initiated the connection (Figure 26).

Robotic Localization Service, Beta 2 53

Figure 22 - Sequence Diagram of Typical RoLo Service Usage

Figure 23 - Sequence Diagram of Connection Establishment from OUT Service

 54 Robotic Localization Service, Beta 2

Figure 24 - Sequence Diagram of Connection Establishment from IN Service

Figure 25 - Sequence Diagram of Data Passing

As can be seen from Figure 23, Figure 24 and Table 97, 'connect' method of RoLo service has
two forms. The first is for establishing connection from OUT service to IN service (OUT
service initiates connection), and another is for the opposite where IN service initiates
connection. As RoLo services may have multiple input streams of different natures, when
connecting from OUT service to IN service the stream to be connected shall be specified. Thus,
the first form of 'connect' method has an additional 'target' argument.

Another factor that needs consideration is the type of data passing. In this specification, two
data passing types are provided as elements of StreamType enumeration: PUSH mode (OUT
side triggers data passing) and PULL mode (IN side triggers data passing). For example, most
GPS receivers output data in PUSH mode, that is, measurement results are outputted
continuously in some frequency. These two types of data passing can be performed regardless
of which side initiates connection, as far as both modules have the ability to perform data
passing in the specified type. Figure 25 shows typical steps for performing data passing for the
two directions. As can be seen from the sequence, in PULL mode, the IN service triggers data
passing by calling 'getData' method. And in PUSH mode, the OUT service triggers data passing
by 'setData' method.

PUSH type data passing can also be understood as a callback from OUT side to IN side. Thus,
when using PUSH mode and when connection is established from IN side, the 'source'
argument cannot be omitted. Without this, the RoLo output stream on OUT side cannot know
where to make callbacks for data passing. However, when connection is established from OUT
side, this 'source' argument is not required for the sake of making callbacks, as the RoLo input
stream is given back as an 'inStream' argument.

Robotic Localization Service, Beta 2 55

Figure 26 - Sequence Diagram of Disconnecting Connection

8. Platform Specific Model

8.1 C++ PSM

In this section, we show a PSM in C++ language based on the PIM described in section 7. This
PIM-PSM mapping is based on the following rules:

• The return values of methods are assumed to be mapped as exceptions. Thus, in this
PSM, no explicit description is given.

• When methods had only a single 'out' argument, it was mapped as return value of the
corresponding function.

• The 'in' arguments to methods were mapped as method arguments with the 'const'
modifier.

• Arguments which were based on non-primitive types are passed by reference.

• An attribute or an argument that is marked to occur more than once and is marked as
unordered is mapped to '::std::list'. If marked as ordered, it is mapped to '::std::vector'.

• When an attribute is shown as an aggregation or as a derived attribute, or when an
argument indicates a reference to other object, it is mapped as a pointer.

• CharacterString is mapped as '::std::string'.

The following shows the resulting C++ header files.

// $Id: Returncode_t.hpp,v 1.3 2009/06/20 06:18:43 nishio Exp $

#pragma once

namespace RoLo
{
 enum Returncode_t {
 OK,
 ERROR,
 BAD_PARAMETER,
 UNSUPPORTED_PARAMETER,
 UNSUPPORTED_OPERATION,
 TIMEOUT
 };

}
// $Id: Architecture.hpp,v 1.3 2009/06/20 06:18:42 nishio Exp $
#pragma once

#include <RLS/RelativeCRS.hpp>
#include <RLS/MobileCRS.hpp>
#include <RLS/MobileOperation.hpp>
#include <RLS/Identity.hpp>

 56 Robotic Localization Service, Beta 2

#include <RLS/ErrorType.hpp>
#include <RLS/Error.hpp>
#include <RLS/RoLoArchitecture.hpp>
#include <RLS/RoLoDataOperation.hpp>
// $Id: RelativeCRS.hpp,v 1.8 2009/06/20 17:51:30 nishio Exp $

#pragma once
#include <ISO19111/SC_CoordinateReferenceSystem.hpp>
#include <ISO19111/CD_Datum.hpp>
#include <RLS/RoLoArchitecture.hpp>

namespace RoLo
{
 namespace Architecture
 {
 class RelativeCRS
 : public ::ISO19111::SC_EngineeringCRS
 {
 };

 class RelativeDatum
 : public ::ISO19111::CD_EngineeringDatum
 {
 };

 class StaticRelativeCRS
 : public RelativeCRS
 {
 };

 class StaticRelativeCartesianCRS
 : public StaticRelativeCRS
 {
 };

 class StaticRelativePolarCRS
 : public StaticRelativeCRS
 {
 };

 class StaticRelativeDatum
 : public RelativeDatum
 {
 public:
 DataSpecification* dataSpec;
 Data base;
 };

 class DynamicRelativeCRS
 : public RelativeCRS
 {
 };

 class DynamicRelativeDatum

Robotic Localization Service, Beta 2 57

 : public RelativeDatum
 {
 };

 }
}
// $Id: MobileCRS.hpp,v 1.5 2009/06/20 06:52:40 nishio Exp $

#pragma once
#include <ISO19111/CS_CoordinateSystem.hpp>
#include <ISO19111/CD_Datum.hpp>
#include <RLS/RelativeCRS.hpp>
#include <RLS/Service.hpp>

namespace RoLo
{
 namespace Architecture
 {
 class MobileCRS
 : public DynamicRelativeCRS
 {
 };

 class MobileCartesianCRS
 : public MobileCRS
 {
 };

 class MobilePolarCRS
 : public MobileCRS
 {
 };

 class MobileDatum
 : public DynamicRelativeDatum
 {
 public:
 const ::RoLo::Interface::InStream& getInStream();
 protected:
 ::RoLo::Interface::InStream inStream;
 };

 }
}
// $Id: MobileOperation.hpp,v 1.5 2009/06/20 06:18:43 nishio Exp $

#pragma once
#include <ISO19111/CC_Operation.hpp>
#include <ISO19111/SC_CoordinateReferenceSystem.hpp>
#include <ISO19111/CD_Datum.hpp>

namespace RoLo
{

 58 Robotic Localization Service, Beta 2

 namespace Architecture
 {
 class MobileOperation
 : public ::ISO19111::CC_Transformation
 {
 };

 class Mobile2StaticOperation
 : public MobileOperation
 {
 public:
 MobileCRS *source;
 ISO19111::SC_CRS *target;
 };

 class Staic2MobileOperation
 : public MobileOperation
 {
 public:
 ISO19111::SC_CRS *source;
 MobileCRS *target;
 };

 class Mobile2MobileOperation
 : public MobileOperation
 {
 public:
 MobileCRS *source, *target;
 };

 }
}
// $Id: Identity.hpp,v 1.8 2009/06/20 06:18:43 nishio Exp $

#pragma once
#include <string>
#include <vector>
#include <ISO19111/IO_IdentifiedObject.hpp>
#include <ISO19111/CS_CoordinateSystem.hpp>
#include <ISO19111/SC_CoordinateReferenceSystem.hpp>
#include <ISO19111/CD_Datum.hpp>

namespace RoLo
{
 namespace Architecture
 {
 class IdentityCS
 : public ::ISO19111::CS_CoordinateSystem
 {
 };

 class NumericIdentityCS
 : public IdentityCS
 {

Robotic Localization Service, Beta 2 59

 };

 class SymbolicIdentityCS
 : public IdentityCS
 {
 };

 class IdentityDatum
 : public ::ISO19111::CD_Datum
 {
 };

 class IdentityCRS
 : public ::ISO19111::SC_SingleCRS
 {
 };

 class NumericIdentityCRS
 : public IdentityCRS
 {
 };

 class SymbolicIdentityCRS
 : public IdentityCRS
 {
 };

 class DirectSymbol
 : public ::ISO19111::IO_IdentifiedObjectBase
 {
 public:
 ::std::vector<std::string> coords;
 SymbolicIdentityCRS *crs;
 };

 class SymbolRef
 : public ::ISO19111::IO_IdentifiedObjectBase
 {
 public:
 DirectSymbol *point;
 };

 class SymbolicPosition
 : public ::ISO19111::IO_IdentifiedObjectBase
 {
 public:
 DirectSymbol *direct;
 SymbolRef *indirect;
 };

 }
}
// $Id: ErrorType.hpp,v 1.4 2009/06/20 06:18:43 nishio Exp $

 60 Robotic Localization Service, Beta 2

#pragma once

#pragma once
#include <ISO19111/IO_IdentifiedObject.hpp>

namespace RoLo
{
 namespace Architecture
 {
 class ErrorType
 : public ::ISO19111::IO_IdentifiedObject
 {
 ErrorType *baseType;
 };

 class ErrorTypeOperation
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 ErrorType *source, *target;
 };

 }
}
// $Id: ErrorBase.hpp,v 1.1 2009/06/20 06:18:42 nishio Exp $

#pragma once
#include <RLS/ErrorType.hpp>

namespace RoLo
{
 namespace Architecture
 {
 class ErrorType;

 class Error
 : public ::ISO19111::IO_IdentifiedObjectBase
 {
 public:
 ErrorType *errType;
 };

 }
}
// $Id: Error.hpp,v 1.7 2009/06/20 06:18:42 nishio Exp $

#pragma once
#include <ISO19103/Primitive.hpp>
#include <ISO19111/IO_IdentifiedObject.hpp>
#include <RLS/ErrorType.hpp>
#include <RLS/ErrorBase.hpp>

namespace RoLo
{

Robotic Localization Service, Beta 2 61

 namespace Architecture
 {
 class Reliability
 : public Error, public ::ISO19103::Probability
 {
 };

 class ErrorDistribution
 : public Error
 {
 };

 class Matrix
 {
 public:
 int nRow, nCol;
 ::std::vector< ::ISO19103::Number > vals;
 };

 class CovarianceMatrix
 : public Matrix
 {
 };

 class Gaussian
 : public ErrorDistribution
 {
 public:
 CovarianceMatrix cov;
 };

 class UniformGaussian
 : public Gaussian
 {
 };

 class MixtureModel
 : public ErrorDistribution
 {
 };

 class WeightedModel
 : public ::ISO19111::IO_IdentifiedObjectBase
 {
 public:
 PositionElement posElem;
 ::ISO19103::Probability weight;
 };

 class LinearMixtureModel
 : public MixtureModel
 {
 public:

 62 Robotic Localization Service, Beta 2

 ::std::vector<WeightedModel> models;
 };

 class MixtureOfGaussian
 : public LinearMixtureModel
 {
 };

 class ParticleSet
 : public LinearMixtureModel
 {
 };

 }
}
// $Id: RoLoArchitecture.hpp,v 1.8 2009/06/20 06:18:43 nishio Exp $

#pragma once
#include <vector>
#include <ISO19107/CoordinateGeometry.hpp>
#include <ISO19111/IO_IdentifiedObject.hpp>
#include <ISO19111/CS_CoordinateSystem.hpp>
#include <ISO19111/SC_CoordinateReferenceSystem.hpp>
#include <RLS/ErrorType.hpp>
#include <RLS/ErrorBase.hpp>
#include <RLS/Identity.hpp>

namespace RoLo
{
 namespace Architecture
 {
 class Position
 : public ISO19111::IO_IdentifiedObjectBase
 {
 public:
 SymbolicPosition* symbolic;
 ISO19107::GM_Position* numeric;
 };

 class ElementSpecification
 : public ::ISO19111::IO_IdentifiedObject
 {
 };

 class PositionElementSpecification
 : public ElementSpecification
 {
 public:
 ::ISO19111::SC_CRS *crs;
 ErrorType *errType;
 };

 class ErrorElementSpecification
 : public ElementSpecification

Robotic Localization Service, Beta 2 63

 {
 public:
 ::std::vector<PositionElementSpecification*> posSpecRefs;
 ErrorType *errType;
 };

 class Element
 : public ::ISO19111::IO_IdentifiedObjectBase
 {
 public:
 ElementSpecification *spec;
 };

 class PositionElement
 : public Element
 {
 public:
 Position pos;
 Error err;
 };

 class ErrorElement
 : public Element
 {
 public:
 Error err;
 };

 class DataSpecification
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 ::std::vector<ElementSpecification> elemSpecs;
 };

 class Data
 : public ::ISO19111::IO_IdentifiedObjectBase
 {
 public:
 DataSpecification *spec;
 ::std::vector<Element> elems;
 };

 class DontCare
 {
 };

 class NULLCS
 : public DontCare, public ::ISO19111::CS_CoordinateSystem
 {
 };

 class NULLCRS

 64 Robotic Localization Service, Beta 2

 : public DontCare, public ::ISO19111::SC_CRS
 {
 };

 class NULLDatum
 : public DontCare, public ::ISO19111::CD_Datum
 {
 };

 class NULLErrorType
 : public DontCare, public ErrorType
 {
 };

 class NULLElementSpecification
 : public DontCare, ElementSpecification
 {
 };

 }
}
// $Id: RoLoDataOperation.hpp,v 1.8 2009/06/20 17:46:15 nishio Exp $
#pragma once

#include <vector>
#include <ISO19111/IO_IdentifiedObject.hpp>
#include <ISO19111/CC_Operation.hpp>
#include <RLS/RoLoArchitecture.hpp>

namespace RoLo
{
 namespace Architecture
 {
 class PositionElementOperation
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 PositionElementSpecification *source, *target;
 };

 class PositionElementConcatenatedOperation
 : public PositionElementOperation
 {
 public:
 ::std::vector<PositionElementOperation*> childOperations;
 };

 class PositionElementSingleOperation
 : public PositionElementOperation
 {
 public:
 ::ISO19111::CC_CoordinateOperation *usesOperation;
 ErrorTypeOperation *usesErrTypeOperation;
 };

Robotic Localization Service, Beta 2 65

 class DataOperation
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 DataSpecification *source, *target;
 };

 class DataConcatenatedOperation
 : public DataOperation
 {
 public:
 ::std::vector<DataOperation*> childOperations;
 };

 class DataSingleOperation
 : public DataOperation
 {
 };

 class DataTransformation
 : public DataSingleOperation
 {
 public:
 ::std::vector<PositionElementOperation*> usesOperations;
 };

 class DataMappingOperation
 : public DataSingleOperation
 {
 public:
 ::std::vector<ElementSpecification*> sourceElemSpecs, targetElemSpecs;
 };

 }
}
// $Id: DataFormat.hpp,v 1.5 2009/06/20 06:18:42 nishio Exp $

#pragma once
#include <ISO19111/IO_IdentifiedObject.hpp>
#include <RLS/RoLoArchitecture.hpp>

namespace RoLo
{
 namespace DataFormat
 {
 class DataFormat
 : public ISO19111::IO_IdentifiedObject
 {
 };

 class EncodingRule
 : public DataFormat

 66 Robotic Localization Service, Beta 2

 {
 };

 class SpecificDataFormat
 : public DataFormat
 {
 public:
 ::RoLo::Architecture::DataSpecification *dataSpec;
 };

 class UserDefinedDataFormat
 : public SpecificDataFormat
 {
 };

 class CommonDataFormat
 : public SpecificDataFormat
 {
 };

 }
}
// $Id: Interface.hpp,v 1.2 2009/06/20 06:18:43 nishio Exp $
#pragma once

#include <RLS/Ability.hpp>
#include <RLS/Service.hpp>
// $Id: Ability.hpp,v 1.9 2009/06/21 16:51:56 nishio Exp $

#pragma once
#include <list>
#include <ISO19103/Primitive.hpp>
#include <ISO19111/IO_IdentifiedObject.hpp>
#include <ISO19115.hpp>
#include <RLS/RoLoArchitecture.hpp>
#include <RLS/Error.hpp>

namespace RoLo
{
 namespace Interface
 {
 class AttributeDefinition
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 ::ISO19115::RS_Identifier type;
 ::ISO19103::UnitOfMeasure unit;
 };

 class AttributeDefinitionSet
 : public ::ISO19111::IO_IdentifiedObject
 {
 ::std::list<AttributeDefinition*> attrs;
 };

Robotic Localization Service, Beta 2 67

 class AttributeBase
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 const AttributeDefinition def;
 };

 template <typename T>
 class Attribute
 : public AttributeBase
 {
 public:
 T val;
 };

 template <typename T>
 class Parameter
 : public Attribute<T>
 {
 public:
 bool isConfigurable;
 };

 template <typename T, typename TD>
 class ParameterOverDomain
 : public Attribute<T>
 {
 public:
 TD domain;
 };

 template <typename T>
 class Interval
 {
 public:
 T min, max;
 bool minInc, maxInc;
 };

 template <typename T>
 class IntervalParameter
 : public ParameterOverDomain< T, Interval<T> >
 {};

 template <typename T>
 class SetParameter
 : public ParameterOverDomain< T, ::std::list<T> >
 {};

 class AttributeSet
 : public ::ISO19111::IO_IdentifiedObject
 {

 68 Robotic Localization Service, Beta 2

 public:
 AttributeDefinitionSet def;
 ::std::list<AttributeBase> attrs;
 };

 class Ability
 : public AttributeSet
 {
 };

 class ParameterValueBase
 {
 };

 template <typename T>
 class ParameterValue
 : public ParameterValueBase
 {
 public:
 T val;
 };

 }
}
// $Id: Service.hpp,v 1.10 2009/06/20 06:48:15 nishio Exp $

#pragma once
#include <vector>
#include <list>
#include <ISO19111/IO_IdentifiedObject.hpp>
#include <ISO19115.hpp>
#include <RLS/Ability.hpp>
#include <RLS/DataFormat.hpp>
#include <RLS/RoLoArchitecture.hpp>

namespace RoLo
{
 namespace Interface
 {
 enum StreamType {
 PUSH,
 PULL
 };

 class StreamAbility
 : public Ability
 {
 public:
 SetParameter< ::RoLo::DataFormat::DataFormat> dataFormat;
 SetParameter< ::RoLo::Architecture::DataSpecification > dataSpec;
 SetParameter<StreamType> streamType;
 SetParameter<double> frequency;
 };

Robotic Localization Service, Beta 2 69

 class InterfaceBase
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 const Ability& getAbility();
 void setParameterValues(const ::std::list<ParameterValueBase>&
paramVals);
 const ::std::list<ParameterValueBase>& getParameterValues();
 protected:
 Ability* ability;
 };

 class Stream
 : public InterfaceBase
 {
 public:
 void disconnect();
 bool isConnected();
 const Stream& getConnectedStream();
 const class Service& getService();
 };

 class OutStream
 : public Stream
 {
 public:
 const ::RoLo::Architecture::Data& getData();
 void activate();
 void deactivate();
 bool isActivated();
 };

 class InStream
 : public Stream
 {
 public:
 void setData(const ::RoLo::Architecture::Data& data);
 };

 class ServiceAbility
 : public Ability
 {
 public:
 Attribute<int> maxOutStreamNum;
 Attribute<double> expectedLatency;
 ::std::list<StreamAbility> inStreamAbilities;
 StreamAbility outStreamAbility;
 };

 class Service
 : public OutStream
 {
 public:

 70 Robotic Localization Service, Beta 2

 InStream& connect(const InStream& target, const OutStream* source =
NULL);
 OutStream& connect(const InStream* source = NULL);
 void adjust(const ::RoLo::Architecture::Data& data);
 const ::std::list<const Service*> getChildren();

 protected:
 ::std::list<InStream> inStreams;
 ::std::list<OutStream> outStreams;
 };

 }
}

Robotic Localization Service, Beta 2 71

Annex A
PSM for XML

(informative)

1. Overview

This annex provides a platform specific model of RoLo Data for XML.

PSM of RoLo data for XML has two variations, generic model and architecture-specific model. The generic
model is derived by mapping naively from UML model of RoLo data to XML, and is able to represent any RoLo
data for any RoLo architecture. But, it is impossible to restrict structures syntactically for a specification of
certain architecture even if the architecture of the data is known.

On the other hand, the architecture-specific model is generated for each RoLo specification in a pragmatic way,
and is able to restrict its syntax strictly according to the specification. But, the XML schema for the representation
should be given for each RoLo data specification.

Hereafter, the target namespace of the given XML schemas is assumed to be “http://www.omg.org/rls/1.0”. Also,
the prefix “rls” indicates the same namespace.

2. Generic Model

Specified Structure Type

Specified Structure Type is an abstract type to represent structured data used in RoLo architectures, each of which
has correspondence to a specification of its structure.

An instance of this type shall have a spec attribute that indicates an identifier of its specification.

The schema of the Specified Structure Type is given as follows:
<xsd:complexType name="SpecifiedStructureType" abstract="true">
 <xsd:attribute name="spec" type="ID" use="required"/>
</xsd:complexType>

Data

XML schema for Data is given as follows:
<xsd:element name="Data" type="rls:DataType"/>
<xsd:complexType name="DataType">
 <xsd:complexContent>
 <xsd:extension base="rls:SpecifiedStructureType">
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element ref="rls:PositionElement" />
 <xsd:element ref="rls:ErrorElement" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Example
<rls:Data spec="#myDataSpec0001">
 <rls:PositionElement spec="#myPosSpec0002">
 <rls:pos>
 <rls:SymbolicIdentity srsName="#myCRS0003">
 <rls:coordinate axisName="type">human</rls:coordinate>
 <rls:coordinate axisName="color">red</rls:coordinate>
 <rls:coordinate axisName="seqNum">0253</rls:coordinate>
 </rls:SymbolicIdentity>
 </rls:pos>

 <rls:err>
 <rls:Reliability>0.6</rls:Reliability>
 </rls:err>
 </rls:PositionElement>
 <rls:PositionElement spec="#myPosSpec0004">
 <rls:pos>
 <gml:Point srsName="#myCRS0005">
 <gml:pos>3.25 2.21</gml:pos>
 </gml:Point>
 </rls:pos>
 <rls:err>
 <rls:UniformGaussian>
 <rls:cov nRow="1" nCol="1">
 2.13
 </rls:cov>
 </rls:UniformGaussian>
 </rls:err>
 </rls:PositionElement>
 <rls:PositionElement spec="#myPosSpec0006">
 <rls:pos>
 <gml:TimeInstant frame="#myCRS0007">
 <gml:TimePosition>2009-01-01T00:40:00+09:00</gml:TimePosition>
 </gml:TimeInstant>
 </rls:pos>
 </rls:PositionElement>
</rls:Data>

Element
<xsd:complexType name="ElementType" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="rls:SpecifiedStructureType">
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

PositionElement
<xsd:element name="PositionElement" type="rls:PositionElementType"/>
<xsd:complexType name="PositionElementType">
 <xsd:complexContent>
 <xsd:extension base="rls:ElementType">
 <xsd:sequence>
 <xsd:element name="pos"
 type="rls:PositionType"/>
 <xsd:element name="err" minOccurs="0" maxOccurs="1"
 type="rls:ErrorType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Example 1
<rls:PositionElement spec="#myPosSpec0002">
 <rls:pos>
 <rls:SymbolPoint srsName="#myCRS0003">
 <rls:coordinate axisName="type">human</rls:coordinate>
 <rls:coordinate axisName="color">red</rls:coordinate>
 <rls:coordinate axisName="seqNum">0253</rls:coordinate>
 </rls:SymbolPoint>
 </rls:pos>
 <rls:err>
 <rls:Reliability>0.6</rls:Reliability>

Robotic Localization Service, Beta 2
lxxiii

 </rls:err>
</rls:PositionElement>

Example 2
<rls:PositionElement spec="#myPosSpec0004">
 <rls:pos>
 <gml:Point srsName="#myCRS0005">
 <gml:pos>3.25 2.21</gml:pos>
 </gml:Point>
 </rls:pos>
 <rls:err>
 <rls:UniformGaussian>
 <rls:cov nRow="1" nCol="1">
 2.13
 </rls:cov>
 </rls:UniformGaussian>
 </rls:err>
</rls:PositionElement>

Example 3
<rls:PositionElement spec="#myPosSpec0006">
 <rls:pos>
 <gml:TimeInstant frame="#myCRS0007">
 <gml:TimePosition>2009-01-01T00:40:00+09:00</gml:TimePosition>
 </gml:TimeInstant>
 </rls:pos>
</rls:PositionElement>

ErrorElement

XML schema for ErrorElement is given as follows:
<xsd:element name="ErrorElement" type="rls:ErrorElementType"/>
<xsd:complexType name="ErrorElementType">
 <xsd:complexContent>
 <xsd:extension base="rls:ElementType">
 <xsd:sequence>
 <xsd:element name="err"
 type="rls:ErrorComponentType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Example
<rls:ErrorElement spec="#myErrorSpec1234">
 <rls:err>
 <rls:Gaussian>
 <rls:cov nRow="3" nCol="1">
 2.31 -0.32 1.23
 -0.32 1.50 0.01
 1.23 0.01 10.31
 </rls:cov>
 </rls:Gaussian>
 </rls:err>
</rls:ErrorElement>

Position

Position is a union of classes SymbolicPosition in the Architecture package, GM_Position in ISO 19107 and
TM_Position in ISO 19108. So, its XML expression is a choice of their corresponding XMLs as follows:

<xsd:complexType name="PositionType">
 <xsd:choice>
 <xsd:element ref="rls:SymbolicPosition"/>

lxxiv Robotic Localization Service, Beta 2

 <xsd:element ref="gml:Point"/>
 <xsd:element ref="gml:TimeInstant"/>
 </xsd:choice>
</xsd:complexType>

SymbolicPosition
<xsd:element name="SymbolicPosition"
 type="rls:SymbolicPositionType" />
<xsd:complexType name="SymbolicPositionType">
 <xsd:sequence>
 <xsd:element ref="rls:coords" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="coords"
 type="rls:SymbolicCoordinateType" />
<xsd:complexType name="SymbolicCoordinateType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="axisName" type="xsd:string" use="required" />
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

Example
<rls:SymbolicIdentity srsName="#myCRS0003">
 <rls:coordinate axisName="type">human</rls:coordinate>
 <rls:coordinate axisName="color">red</rls:coordinate>
 <rls:coordinate axisName="seqNum">0253</rls:coordinate>
</rls:SymbolicIdentity>

Error (Base)

XML schema for Error is given as follows:
<xsd:complexType name="ErrorComponentType">
 <xsd:sequence>
 <xsd:element ref="rls:AbstractError"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="AbstractError"
 type="AbstractErrorType"
 abstract="true"/>
<xsd:complexType name="AbstractErrorType">
 <xsd:attribute name="errorType" type="ID" use="optional"/>
</xsd:complexType>

Error (Variations)

Reliability
<!-- Reliability -->
<xsd:element name="Reliability"
 type="rls:ProbabilityType"
 substitutionGroup="rls:AbstractError" />
<xsd:simpleType name="ProbabilityType">
 <xsd:restriction base="float"/>
</xsd:simpleType>

Example
<rls:Reliability>0.7</rls:Reliability>

ErrorDisribution
<!-- ErrorDistribution -->
<xsd:element name="ErrorDistribution"

Robotic Localization Service, Beta 2
lxxv

 type="rls:ErrorDistributionType"
 substitutionGroup="rls:AbstractError"
 abstract="true" />
<xsd:complexType name="ErrorDistributionType">
 <xsd:complexContent>
 <xsd:extension base="rls:ErrorType"/>
 </xsd:complexContent>
</xsd:complexType>

Gaussian
<!-- Gaussian -->
<xsd:element name="Gaussian"
 type="rls:GaussianType"
 substitutionGroup="rls:ErrorDistrubition" />

<xsd:complexType name="GaussianType">
 <xsd:complexContent>
 <xsd:extension base="rls:ErrorDistributionType">
 <xsd:sequence>
 <xsd:element name="cov"
 type="rls:CovarianceMatrixType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="MatrixType">
 <xsd:simpleContent>
 <xsd:extension base="gml:doubleList">
 <xsd:attribute name="nRow" type="integer"/>
 <xsd:attribute name="nCol" type="integer"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="CovarianceMatrixType">
 <xsd:restriction base="rls:MatrixType">
 <xsd:annotation>
 Attributes "nRow" should be equal to "nCol"
 </xsd:annotation>
 </xsd:restriction>
</xsd:complexType>

Example
<rls:Gaussian>
 <rls:cov nRow="3" nCol="3">
 3.20 0.53 0.02
 0.53 9.21 -3.05
 0.02 -3.05 12.00
 </rls:cov>
</rls:Gaussian>

UniformGaussian
<!-- Uniform Gaussian -->
<xsd:element name="UniformGaussian"
 type="rls:UniformGaussianType"
 substitutionGroup="rls:Gaussian" />

<xsd:complexType name="UniformGaussianType">
 <xsd:complexContent>
 <xsd:extension base="rls:GaussianType">
 <xsd:annotation>

lxxvi Robotic Localization Service, Beta 2

 Attributes "nRow" and "nCol" should be "1".
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Example
<rls:UniformGaussian>
 <rls:cov nRow="1" nCol="1">
 2.43
 </rls:cov>
</rls:UniformGaussian>

MixtureModel
<!-- Mixture Model -->
<xsd:element name="AbstractMixtureModel"
 type="rls:AbstractMixtureModelType"
 substitutionGroup="rls:ErrorDistribution"
 abstract="true" />

<xsd:complexType name="AbstractMixtureModelType"
 abstract="true">
 <xsd:complexContent>
 <xsd:extension base="rls:ErrorDistributionType"/>
 </xsd:complexContent>
</xsd:complexType>

LinearMixtureModel
<!-- Linear Mixture Model -->
<xsd:element name="LinearMixtureModel"
 type="rls:LinearMixtureModelType"
 substitutionGroup="rls:AbstractMixtureModel"
 abstract="true" />

<xsd:complexType name="LinearMixtureModelType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractMixtureModelType">
 <xsd:sequence>
 <xsd:element name="model" type="rls:WeightedModelType"
 minOccurs=”1” maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="WeightedModelType">
 <xsd:sequence>
 <xsd:element name="posElem" type="rls:PitionElementType"/>
 <xsd:element name="weight" type="rls:ProbabilityType"/>
 </xsd:sequence>
</xsd:complexType>

ParticleSet
<!-- Particle Set -->
<xsd:element name="ParticleSet"
 type="rls:ParticleSetType"
 substitutionGroup="rls:LinearMixtureModel" />

<xsd:complexType name="ParticleSetType">
 <xsd:complexContent>
 <xsd:extension base="rls:LinearMixtureModelType">

Robotic Localization Service, Beta 2
lxxvii

 <xsd:annotation>
 Each "model" element shall contain
 without "err" element.
 This is interpreted that the error is
 a Gaussian distribution with
 an all-zero covariance matrix.
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Example
<rls:ParticleSet>
 <rls:model>
 <rls:posElem>
 <rls:pos>
 <gml:Point srsName="#myCRS0001">
 <gml:pos>20.34 -2.59</gml:pos>
 </gml:Point>
 </rls:pos>
 </rls:posElem>
 <rls:weight>0.8</rls:weight>
 </rls:model>
 <rls:model>
 <rls:posElem>
 <rls:pos>
 <gml:Point srsName="#myCRS0001">
 <gml:pos>17.25 -3.01</gml:pos>
 </gml:Point>
 </rls:pos>
 </rls:posElem>
 <rls:weight>0.3</rls:weight>
 </rls:model>
 <rls:model>
 <rls:posElem>
 <rls:pos>
 <gml:Point srsName="#myCRS0001">
 <gml:pos>21.99 -1.51</gml:pos>
 </gml:Point>
 </rls:pos>
 </rls:posElem>
 <rls:weight>0.2</rls:weight>
 </rls:model>
</rls:ParticleSet>

MixtureOfGaussian
<!-- MixtureOfGaussian -->
<xsd:element name="MixtureOfGaussian"
 type="rls:MixtureOfGaussianType"
 substitutionGroup="rls:LinearMixtureModel" />

<xsd:complexType name="MixtureOfGaussianType">
 <xsd:complexContent>
 <xsd:extension base="rls:LinearMixtureModelType">
 <xsd:annotation>
 Each "model" element shall contain
 an error information of Gaussian distribution.
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

lxxviii Robotic Localization Service, Beta 2

Example
<rls:MixtureOfGaussian>
 <rls:model>
 <rls:posElem>
 <rls:pos>
 <gml:Point srsName="#myCRS0001">
 <gml:pos>20.34 -2.59</gml:pos>
 </gml:Point>
 </rls:pos>
 <rls:err>
 <rls:Gaussian>
 <rls:cov nRow="2" nCol="2">
 0.92 -0.07
 -0.07 0.30
 </rls:cov>
 </rls:Gaussian>
 </rls:err>
 </rls:posElem>
 <rls:weight>0.6</rls:weight>
 </rls:model>
 <rls:model>
 <rls:posElem>
 <rls:pos>
 <gml:Point srsName="#myCRS0001">
 <gml:pos>19.55 -1.30</gml:pos>
 </gml:Point>
 </rls:pos>
 <rls:err>
 <rls:UniformGaussian>
 <rls:cov nRow="1" nCol="1">
 0.7
 </rls:cov>
 </rls:UniformGaussian>
 </rls:err>
 </rls:posElem>
 <rls:weight>0.6</rls:weight>
 </rls:model>
</rls:MixtureOfGaussian>

3. Architecture-specific Model

While the generic model shown above can represent any RoLo data, it is redundant and over generalized so that it
is difficult to check validity of the data syntactically according to the corresponding specifications. The
architecture-specific model will provides another mapping of a RoLo data to XML that is tightly restricted for the
corresponding RoLo architecture specifications.

Identifier and Tag Naming

In order to provide unique name of each component of RoLo data in a systematic way, we suppose that the
following restrictions are applied to each related instance of RoLo architectures:

● Each instance of DataSpecification, ElementSpecification, ErrorType, SymbolicIdentityCS, and
::ISO19111:CS_CoordianteSystemAxis shall have an identifier attribute that follow the following syntax:
(In the following BNF, we use “<<” and “>>” instead of “<” and “>” to avoid confusion of XML's tags
and nonterminal symbols.)
 <<identifier>> ::= <<namespace>> <<separator>> <<localname>>
 <<namespace>> ::= <<xsd:anyURI>>
 <<separator>> ::= “/” | “:” | “#”
 <<localname>> ::= <<xsd::NCName>>
Here, <<xsd:anyURI>> and <<xsd:NCName>> are the restricted character strings that are defined
in “W3C XML Schema Definition Language”. From a given identifier that follows above syntax, we

Robotic Localization Service, Beta 2
lxxix

extract a namespace and a localname for a corresponding instance of Data, Element, Error, and
SymbolicPosition and its axis name of coordinates using <<namespace>> and <<localname>>,
respectively, part in <<identifier>>.

● ::ISO19111:CS_CoordianteSystemAxis's axisAbbrev attribute shall identical to the <<localname>>
part of its identifier attribute.

RoLo Data

Suppose that a DataSpecification has an identifier attribute, whose <<namespace>> and <<localname>>
part are ``#myNamespace000'' and ``myRoLoData'', respectively. We also suppose that the specification consists
of a list of RoLo element specifications whose qualified names are ``myElement0'', ``myElement1'',
``myElement2'', and so on. Then, the XML schema of corresponding Data instance shall be as following. Here we
assume that the target namespace of the following schema is “#myNamespace000” that corresponds to “app”
prefix.

<xsd:element name=”myRoLoData” type=”myRoLoDataType”/>
<xsd:complexType name=”myRoLoDataType>
 <xsd:sequence>
 <xsd:element ref=”app:myElement0”/>
 <xsd:element ref=”app:myElement1”/>
 <xsd:element ref=”app:myElement2”/>
 ...
 </xsd:sequence>
</xsd:complexType>

Syntax of the contents of each Element is declared according to specifications of each ElementSpecification as
describe below.

Example
<app:SensedObjectInfo xmlns:app="#myApplication000">
 <app:id>
 <app:pos>
 <app:SensedObjectId srsName="#myCRS0003">
 <app:type>human</app:type>
 <app:color>red</app:color>
 <app:seqNum>0253</app:seqNum>
 </app:SensedObjectId>
 </app:pos>
 <app:err>
 <rls:Reliability>0.6</rls:Reliability>
 </app:err>
 </app:id>
 <app:location>
 <app:pos>
 <gml:Point srsName="#myCRS0005">
 <gml:pos>3.25 2.21</gml:pos>
 </gml:Point>
 </app:pos>
 <app:err>
 <rls:UniformGaussian>
 <rls:cov nRow="1" nCol="1">
 2.13
 </rls:cov>
 </rls:UniformGaussian>
 </app:err>
 </app:location>
 <app:time>
 <app:pos>
 <gml:TimeInstant frame="#myCRS0007">
 <gml:TimePosition>2009-01-01T00:40:00+09:00</gml:TimePosition>
 </gml:TimeInstant>
 </app:pos>
 </app:time>

lxxx Robotic Localization Service, Beta 2

</app:SensedObjectInfo>

PositionElement

Suppose that a PositionElementSpecification has an identifier attribute, whose namespace and localname part are
``#myNamespace000'' and ``myPosElement'', respectively. Then, the XML schema of a corresponding
PositionElement shall be:

<xsd:element name=”myPosElement” type=”myPosElementType”/>
<xsd:complexType name=”myPosElementType>
 <xsd:sequence>
 <xsd:element name=”pos” type=”<<myPosType>>”/>
 {<xsd:element name=”err” type=”rls:ErrorComponentType”/>}?
 </xsd:sequence>
</xsd:complexType>

, where <<myPosType>> is:
● an application specific SymbolicPosition type describe below if the

CS_CoordinateSystem of PositionElementSpecification refers an
identityCS,

● gml:TimeInstantPropertyType, if the cs is a temporal coordiante
system,

● or, gml:PointPropertyType otherwise.
The “err” element part can be omitted according to the specification.

Example 1
<app:id xmlns:app="#myApplication000">
 <app:pos>
 <app:SensedObjectID srsName="#myCRS0003">
 <app:type>human</app:type>
 <app:color>red</app:color>
 <app:seqNum>0253</app:seqNum>
 </app:SensedObjectID>
 </app:pos>
 <app:err>
 <rls:Reliability>0.6</rls:Reliability>
 </app:err>
</app:id>

Example 2
<app:location xmlns:app="#myApplication000">
 <app:pos>
 <gml:Point srsName="#myCRS0005">
 <gml:pos>3.25 2.21</gml:pos>
 </gml:Point>
 </app:pos>
 <app:err>
 <rls:UniformGaussian>
 <rls:cov nRow="1" nCol="1">
 2.13
 </rls:cov>
 </rls:UniformGaussian>
 </app:err>
</app:location>

Example 3
<app:time xmlns:app="#myApplication000">
 <app:pos>
 <gml:TimeInstant frame="#myCRS0007">
 <gml:TimePosition>2009-01-01T00:40:00+09:00</gml:TimePosition>
 </gml:TimeInstant>
 </app:pos>

Robotic Localization Service, Beta 2
lxxxi

</app:time>

ErrorElement

Suppose that a RoLo error element specification has an identifier attribute, whose namespace and localname parts
are ``#myNamespace000'' and ``myErrElement'', respectively. Then, the XML expression of a corresponding
Error Element shall be:

<xsd:element name=”myErrElement” type=”myErrElementType”/>
<xsd:complexType name=”myErrElementType>
 <xsd:sequence>
 <xsd:element name=”err” type=”rls:ErrorComponentType”/>
 </xsd:sequence>
</xsd:complexType>

Example
<app:myError xmlns:app="#myApplication000">
 <app:err>
 <rls:Gaussian>
 <rls:cov nRow="3" nCol="1">
 2.31 -0.32 1.23
 -0.32 1.50 0.01
 1.23 0.01 10.31
 </rls:cov>
 </rls:Gaussian>
 </app:err>
</app:myError>

Symbolic Position

Suppose that an IdentityCS has an identifier attribute, whose namespace and localname parts are
``#myNamespace000'' and ``myIdCS'', respectively. We also suppose that the usesAxis attribute of the IdentityCS
consists of a list of CoordinateSystemAxis [ISO19111] whose axisAbbrev (that is identical to the localname part
in the identifier attribute of the axis) are ``myAxis0'', ``myAxis1'', ``myAxis2'', and so on. Then, the XML schema
of a corresponding SymbolicPosition shall be as follows:

<xsd:element name=”myIdCS” type=”myIdCSType”/>
<xsd:complexType name=”myIdCSType>
 <xsd:sequence>
 <xsd:element name=”myAxis0” type=”xsd:string”/>
 <xsd:element name=”myAxis1” type=”xsd:string”/>
 <xsd:element name=”myAxis2” type=”xsd:string”/>
 ...
 </xsd:sequence>
</xsd:complexType>

Example
<app:id xmlns:app="#myApplication000" srsName="#myCRS0003">
 <app:type>human</app:type>
 <app:color>red</app:color>
 <app:seqNum>0253</app:seqNum>
</app:id>

lxxxii Robotic Localization Service, Beta 2

Annex B
Naming of RoLo Architecture Components for Filter Condition

(informative)

This annex provides a naming rule of RoLo architecture components for use with filter
condition. In order to utilize the filter condition, we need a way to specify components in a
RoLo data to test each condition. For this purpose, we suppose that each RoLo data can be
expressed by XML-PSM (see annex A) and use XPath to indicate each part of RoLo data as
same as the original filter encoding in ISO 19143.

Example 1

This example is an XML encoding of a filter condition that requires only localization data in a
certain area.

<fes:Filter
 xmlns:fes="http://www.opengis.net/fes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.1"
 xmlns:myapp="http://my.localhost.localnet/myapp"
 xmlns:rls="http://www.omg.org/rls/1.0">
 <fes:Intersects>
 <fes:PropertyName>myapp:location/rls:pos</fes:PropertyName>
 <gml:Envelope
 srsName="http://my.localhost.localnet/myapp/crs000">
 <gml:lowerCorner>10.25 15.33</gml:lowerCorner>
 <gml:upperCorner>17.73 25.03</gml:upperCorner>
 </gml:Envelope>
 </fes:Intersects>
</fes:Filter>

Example 2

This example is an XML encoding of a filter condition that requires only localization data of a
certain ID.

<fes:Filter
 xmlns:fes="http://www.opengis.net/fes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.1"
 xmlns:myapp="http://my.localhost.localnet/myapp"
 xmlns:rls="http://www.omg.org/rls/1.0">
 <fes:PropertyIsEqualTo>
 <fes:PropertyName>myapp:id/rls:pos</fes:PropertyName>
 <fes:Literal>myID:3429:abcd</fes:Literal>
 </fes:PropertyIsEqualTo>
</fes:Filter>

Example 3

This example is an XML encoding of a filter condition that requires only localization data in a
certain area and a certain time period.

 <fes:Filter
 xmlns:fes="http://www.opengis.net/fes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.1"
 xmlns:myapp="http://my.localhost.localnet/myapp"
 xmlns:rls="http://www.omg.org/rls/1.0">
 <fes:And>
 <fes:Intersects>
 <fes:PropertyName>myapp:location/rls:pos</fes:PropertyName>
 <gml:Polygon
 srsName="http://my.localhost.localnet/myapp/crs000">
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList dimension="2">
 23.02 34.21
 11.56 23.14
 90.43 23.19
 33.23 29.00
 23.02 34.21
 </gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </fes:Intersects>
 <fes:PropertyIsBetween>
 <fes:PropertyName>myapp:time/rls:pos</fes:PropertyName>
 <fes:LowerBoundary>
 <fes:Literal>2008-12-08T09:00:00.000-08:00</fes:Literal>
 </fes:LowerBoundary>
 <fes:UpperBoundary>
 <fes:Literal>2008-12-10T17:30:00.000-08:00</fes:Literal>
 </fes:UpperBoundary>
 </fes:PropertyIsBetween>
 </fes:And>
 </fes:Filter>

lxxxiv Robotic Localization Service, Beta 2

