

Date: June 2011

Robotic Localization Service (RLS)

Version 1.1 Beta2

OMG Document Number: dtc/2011-05-10

Robotic Localization Service, v1.1 beta i

1 Scope 1

2 Conformance 1

3 References 1
3.1 Normative References 1
3.2 Non-Normative References 1

4 Terms and Definitions 2

5 Symbols 4

6 Additional Information 5
6.1 Background 5
6.2 Acknowledgements 7

 6.2.1 Submitters 7
 6.2.2 Submitting Organizations 7
 6.2.3 Supporters 8
 6.2.4 Supporting Organizations 9

7 Platform Independent Model 11
7.1 Format and Conventions 11

 7.1.1 Class 11
 7.1.2 Enumeration 12

7.2 Return Codes 12
7.3 Architecture Package 12

 7.3.1 Pose Representation 13
 7.3.2 Relative Coordinate Reference Systems 16
 7.3.3 Identity Information 21
 7.3.4 Error Information 25
 7.3.5 Robotic Localization Architecture 30

7.4 DataFormat Package 41
 7.4.1 Common Data Format 42
 7.4.2 Type I-2 43
 7.4.3 43
 7.4.4 Type II-1 43
 7.4.5 43
 7.4.6 Type II-2 43
 7.4.7 43
 7.4.8 Type III-1 44
 7.4.9 44
 7.4.10 Type III-2 44
 7.4.11 44

7.5 Filter Condition Package 45
7.6 Interface Package 46

ii Robotic Localization Service, v1.1 beta

8 Platform Specific Model 61
8.1 C++ PSM 61

9
PSM for XML 79

9.1 Overview 79
9.2 Generic Model 79
9.3 Architecture-specific Model 91

10
Naming of RoLo Architecture Components for
Filter Condition 91

Robotic Localization Service, v1.1 beta 1

1 Scope
This specification defines a localization (RoLo) service that can handle data and usages specific to use in robotics. It includes
a platform independent model (PIM) as well as a mapping of this PIM to platform specific model (PSM) defined by C++. In
addition, two informative annexes are provided for the filter condition functionality. The first defines a PSM by XML and
the other shows naming rules.

2 Conformance
Any implementation or product claiming conformance to this specification shall support the following conditions:

• Implementations shall provide interfaces described in “Section 7.6, Interface Package.”

• Implementations shall provide ability descriptors the necessary attribute definitions described in “Section 7.6, Interface
Package.”

• Data treated by implementations shall follow the structure described in “Section 7.3, Architecture Package” and data
formats described in “Section 7.4, DataFormat Package.” This does not mean that modules shall be able to treat every
structure or formats described herein. However, every module shall support at least one of the common data formats
and the relevant data structure.

• Implementations shall support the return codes described in “Section 7.2, Return Codes.”

3 References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

[ISO19103] International Organization for Standardization, Geographic information – Conceptual schema language, 2005

[ISO19107] International Organization for Standardization, Geographic information – Spatial schema, 2003

[ISO19111] International Organization for Standardization, Geographic information – Spatial referencing by coordinates,
2007

[ISO19115] International Organization for Standardization, Geographic information – Metadata, 2003

[PER] International Telecommunication Union Telecommunication Standardization Sector, Specification of Packed
Encoding Rules (PER), ITU-T Rec. X.691 (2002) / ISO/IEC 8825-2:2002

[UML] Object Management Group, OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.2, OMG
document number formal/2009-02-02, 2009

3.2 Non-Normative References

[ISO/DIS19142] International Organization for Standardization, Geographic information – Web Feature Service, DIS,
2009

2 Robotic Localization Service, v1.1 beta

[ISO/DIS19143] International Organization for Standardization, Geographic information – Filter Encoding, DIS, 2009

[Noda2010] Itsuki Noda, Shuichi Nishio, Takashi Tsubouchi, Takeshi Sakamoto and Satoshi Tadokoro, "Mathematical
Framework for Localization Information Coordinate Reference System for Robotics", in Proc. of Int. Workshop on
Standards and Common Platform for Robotics 2010 (SCPR 2010), 2010.

[Wikipedia] Wikipedia, the free encyclopedia, http://www.wikipedia.org/

4 Terms and Definitions

Cartesian coordinate system Coordinate system that gives the position of points relative to n mutually
perpendicular axes [ISO19111]. Note that in this specification, in contrast to
[ISO19111], there is no limitation to the number of dimensions.

Coordinate reference system (CRS) Coordinate system that is related to the real world by a datum [ISO19111].

Coordinate system (CS) Set of mathematical rules for specifying how coordinates are to be assigned to
points [ISO19111].

Coordinate value N-tuple of scalars assigned with respect to a coordinate system. In this
specification, every coordinate value shall be associated with a single
coordinate reference system. Note that, there exists no uncertainty with a
coordinate value; error through the measurement process shall be represented
by ‘error’ values elsewhere.

Covariance Covariance is a measure of how much two variables change together
(variance is a special case of the covariance when the two variables are
identical). If two variables tend to vary together (that is, when one of them is
above its expected value, then the other variable tends to be above its
expected value too), then the covariance between the two variables will be
positive. On the other hand, if one of them tends to be above its expected
value when the other variable is below its expected value, then the covariance
between the two variables will be negative [Wikipedia].

Datum Parameter or set of parameters that define the position of the origin, the scale,
and the orientation of a coordinate reference system [ISO19111]. More
specifically, a datum is a mathematical system that defines the mapping from
a space defined by coordinate system to a certain phenomenon space of
interest, mostly in the real world.

Geodetic coordinate system Coordinate system in which position is specified by geodetic latitude,
geodetic longitude, and (in the three-dimensional case) ellipsoidal height
associated with one or more geographic coordinate reference systems
[ISO19111].

Geographic(al) Information
System (GIS)

Information system for storing, analyzing, managing, or displaying various
data in a way associated with location data. The location data used in GIS is
in most cases 2 or 3 dimensional position on the earth.

Robotic Localization Service, v1.1 beta 3

Kalman filter Kalman filter is an efficient recursive filter that estimates the state of a linear
dynamic system from a series of noisy measurements. It is used in a wide
range of engineering applications from radar to computer vision, and is an
important topic in control theory and control systems engineering. Together
with the linear-quadratic regulator (LQR), the Kalman filter solves the linear-
quadratic-Gaussian control problem (LQG). The Kalman filter, the linear-
quadratic regulator, and the linear-quadratic-Gaussian controller are solutions
to what probably are the most fundamental problems in control theory
[Wikipedia].

Localization Action of locating some physical entities through analysis of sensing data.
The word “locate” here may include not only measuring the position in the
spatio-temporal space but also may include additional information such as
identity, heading orientation or pose information of the target entity,
measurement error estimation, or measurement time.

Normal distribution A continuous probability distribution described by the following probability
density function:

A normal distribution is also called a Gaussian distribution [Wikipedia].

Particle, particle set A particle is a word used to denote a single sample obtained through random
sampling algorithms such as Monte Carlo method. A particle set is a set of
samples obtained through some sampling or estimation algorithms. robotics,
particles and particle sets are often used to represent distributions obtained
from estimation algorithms such as sequential Monte Carlo method or
CONDENSATION (Conditional Density Propagation) algorithm.

Physical entity The target to be localized such as robots, humans, or other objects.

Polar coordinate system Two-dimensional coordinate system in which position is specified by distance
and direction from the origin [ISO19111]. In this specification, three-
dimensional coordinate system (spherical coordinate system) or n-dimensional
coordinate system may also be called as polar coordinate system.

Data Instance A 'data instance' is a RoLo data or its subcomponent such as a RoLo element,
a RoLo position, a RoLo symbolic position, or a GM_Position object.

Implicit (Type) Specification When a structure embedding some data instance holds a type specification for
those data instances, those data instances are described to have an “implicit
type specification.” For example, a RoLo data is implicitly associated with a
RoLo data specification when the data is passed through a RoLo stream that
holds a RoLo data specification defined in its ability description.

p x
1
2

exp
x 2

2 2

4 Robotic Localization Service, v1.1 beta

5 Symbols
x, y, z Cartesian coordinate

r, θ, φ spherical coordinate

φ, λ, h geodetic coordinate (latitude, longitude, height)

α, β, γ orientation

x, y, z a fixed Cartesian coordinate system

Explicit (Type) Specification A data instance is said to have an “explicit type specification” if a reference to
corresponding specification is provided in its attribute. For example, when a
RoLo data has a reference to RoLo data specification as its ‘spec’ attribute,
the RoLo data is said to have an explicit type specification.

Type Specification A “type specification” of a data instance is either an implicit type
specification or an explicit type specification of an instance.

Incomplete (Type) Specification A type specification is called “incomplete” when it includes one or more
“don’t-care” elements.

Complete (Type) Specification A type specification is called “complete” when it does not include any “don’t-
care” element.

Consistent Type Specifications Two type specifications are called “consistent” when the two specifications own
the same structure and each corresponding parts of them is the same or have a
base-derivation (generalized-specialized) relation with each other, or when one
of the corresponding parts are specified as “don’t-care.”

Unified (Type) Specification A “unified type specification” of a data instance is the result of unification of all
the type specifications associated with the data instance. The type specifications
to be unified shall be consistent. The unification of two type specifications is
done by the following operation.

For each part of the type specifications, do:

• When both of the corresponding type specifications are “don’t-care,” use
“don’t-care.”

• When one of part of the two specifications is “don’t-care,” use the
corresponding part from another specification.

• When both of the corresponding type specifications are not “don’t-care,”
use the one that is much specialized.

Robotic Localization Service, v1.1 beta 5

6 Additional Information

6.1 Background

This specification defines a localization service that can handle data and usages specific to use in robotics. It includes a
platform-independent model (PIM) as well as a mapping of this PIM to platform-specific models (PSM) defined by C++.

Location information is a crucial factor in providing robotic services of every kind. Typically, a robotic system is defined
as an apparatus equipped with the function of interacting with physical entities in the environment. Navigation,
manipulation, and human-robot interaction are typical features that require physical interaction with the environment,
which distinguish a robotic system from information appliances. On performing such tasks, robots require geometric
association between physical entities of interest and the robot itself for implementing and/or performing the given service
scenario. Besides these examples, the number of location-based robotic tasks is continuously increasing as personal or
service robot fields gradually expand, from controlled, stable factory environments to indeterminate, uncertain daily
environments. However, currently there exists no standard means to represent the necessary location-related information
in robotics, nor any common interface for constructing localization related software modules.

Note – In the context of this specification, the word “localization” means “to locate some physical entities through analysis of
sensor data,” consistent with the common use of this term in robotics. Here the word "locate" may include not only measuring
the position in the spatio-temporal space, but also heading orientation or pose information of the entity, or additional informa-
tion such as error estimation or time of measurement. Also, the word “physical entity” (or “entity” in short) is used to describe
the target to be localized, including robots, humans, or other objects.

Geographic Information System (GIS) is one of the most popular and established systems that treats location information.
Many spatio-temporal location related specifications have been standardized in the International Organization for
Standardization (ISO/TC211). There already exist versatile production services based on these standards such as driving
navigation systems or resource databases. However, current GIS specifications are not powerful enough to represent or
treat information required in the field of robotics.

Although localization is still one of the main research topics in the field of robotics, the fundamental methodology and
necessary elements are becoming established. Standardizing localization result representation and related interfaces in a
generic form, independent to specific algorithms or equipment, are significant for decreasing costs and accelerating the
market growth of robotic services. Moreover, clarifying what types of information are required in the field of robotics
shall be useful for equipment vendors such as sensor manufacturers.

In this document, a new framework for robotic localization (RoLo) (i.e., representing and treating location information
specific to robotic usage) is presented. Notions and items necessary for treating location information in robotic usage are
reorganized and rearranged, in a generic form independent to specific algorithms or types of robotic services. This was
done through extensive surveys and case studies on current and ongoing robotic products and researches. Based on the
widespread GIS standard, a new specification for services is proposed.

6 Robotic Localization Service, v1.1 beta

Figure 6.1 - Example of a typical robotic service situation requiring localization of an entity

Figure 6.1 illustrates a typical robotic service situation where localization of various entities is required. Here, a robot in
service needs to obtain the location of a cellular phone, utilizing information from various robotic entities in the
environment. These robotic entities have the ability to estimate the location of the entities within their sensing range.
Thus, the problem here is to aggregate the location estimations from the robotic entities, and to localize the cellular phone
in target. However, this example also shows several factors that make the localization service in robotics a difficult,
challenging issue.

• Some sensors only provide partial location information. For example, the camera sensor can only provide 2D
information, and RF tag reader can only provide proximity information.

• Sensor outputs are not always correct. Sometimes, they might measure two or more entities as a single object, or
even miss it. This erroneous report occurs frequently when sensors are used in the uncontrolled daily environment. To
tackle this erroneous situation, sensor outputs are usually treated to be probabilistic, with error estimation information.

• Matching observations between different sensors require efforts. Imagine you are viewing two photographs of a
crowded street corner, taken from different angles but on the same instant. The issue here is to match every single
person in one photograph to another. This is much more difficult when matching the observed entities from the wall
camera and the output from the laser range scanner installed in the blue robot, as these two sensors measure different
aspects of objects. This issue, the identity association problem, happens every time multiple sensors are used. In other
words, you are not always sure about the identity of the entity sensed. Thus, identity information shall also be treated to
be probabilistic.

As can be seen from the examples in Figure 6.1, operations in robotics require a much more detailed representation of
location information. Still, interoperability with the current GIS systems shall be supported. In this specification, a new
framework for representing and treating location information suitable for robotic use is defined by extending existing GIS
specifications. Using the GIS specification as a basis of the specification will make it easy for robots to interconnect with
existing GIS-based systems and utilize existing geographic datasets. This will also ease the use of this specification in the
emerging fields of next-generation GIS systems, sensor network systems, or location based systems where advanced
positioning methods and complex data processing similar to robotics usage is required. Figure 6.2 illustrates the existing
GIS standards that are related with this specification.

Where is my
Phone?
Robot21, bring it to
me !

I am Cam2, I see 3 entities
table: ID=23, pos=(10,20)
table: ID=73, pos=(-23,72)
table: ID=12, pos=(-53,56)

I am Cam1, I see 3 entities
person: ID=14,pos=(34,21)
robot: ID=25,pos=(58,55)
sofa: ID=134,pos=(93,42)

I am Robot32, my Laser
detected 3 entities:
table: d=32, =40
table: d=67, =123
robot: d=99,=187

I am RFID reader1 on a
table, I feel the phone
ID=823 is within my range

I am RFID reader2 on a
table, I fee the phone
ID=123 is within my range

?!?!?!

Robotic Localization Service, v1.1 beta 7

Figure 6.2 - Relation of Robotic Localization Service specification with existing GIS specifications

To fulfill the requirements for robotic localization, the following items are defined in the PIM, some part as an extension
to existing GIS specifications.

• (Architecture package) Data architecture for representing structures and accompanying operations for representing
information necessary for robotics usage. These include coordinate system / coordinate reference system definitions for
treating essential information such as pose or identity information, or structures for representing error estimation.

• (DataFormat package) Data formats for formatting and exchanging resulting localization data.

• (Interface package) Service interface for treating resulting localization data. This includes advanced facilities that will
be a basis for dynamically exchanging or negotiating module functionality information.

6.2 Acknowledgements

6.2.1 Submitters

The initial submissions that this specification is based on were submitted by the following people:

• Kyuseo Han, Electronics and Telecommunications Research Institute (ETRI)

• Yeonho Kim, Samsung Electronics Co., Ltd.

• Shuichi Nishio, Japan Robot Association (JARA) / Advanced Research Institute International (ATR)

6.2.2 Submitting Organizations

The following organizations made the initial submission that this specification is based on:

• Electronics and Telecommunications Research Institute (ETRI)

Architecture

DataFormat

Interface

FilterCondition

::RoLo

::ISO 19103::ISO 19107

::ISO 19111

::ISO 19115

::ISO 19143::ISO 19142

8 Robotic Localization Service, v1.1 beta

• Japan Robot Association (JARA)

• Samsung Electronics Co., Ltd.

6.2.3 Supporters

The following people supported parts of this specification:

• Su-Young Chi, Electronics and Telecommunications Research Institute

• Yun Koo Chung, Electronics and Telecommunications Research Institute

• Miwako Doi, Toshiba Corporation

• Kenjirou Fujii, Hitachi Industrial Equipment Systems Co., Ltd.

• Yoshimasa Hata, Japan Robot Association

• Yasuo Hayashibara, Chiba Institute of Technology

• Ryota Hiura, Mitsubishi Heavy Industries, Ltd.

• Toshio Hori, National Institute of Advanced Industrial Science and Technology

• Masato Iehara, Mitsubishi Heavy Industries, Ltd.

• Wataru Inamura, IHI Corporation

• Jaeyeong Lee, Electronics and Telecommunications Research Institute

• Takahide Kanehara, Yaskawa Electric Corporation

• Tetsuo Kotoku, National Institute of Advanced Industrial Science and Technology

• Makoto Mizukawa, Shibaura Institute of Technology

• Kouji Murakami, Kyushu University

• Yoshisada Nagasaka, National Agriculture and Food Research Organization

• Itsuki Noda, National Institute of Advanced Industrial Science and Technology

• Kohtaro Ohba, National Institute of Advanced Industrial Science and Technology

• Fumio Ozaki, Toshiba Corporation

• Takeshi Sakamoto, Technologic Arts Incorporated

• Takashi Suehiro, National Institute of Advanced Industrial Science and Technology

• Tetsuo Tomizawa, National Institute of Advanced Industrial Science and Technology

• Takashi Tsubouchi, University of Tsukuba

• Tomoki Yamashita, Maekawa MFG Co. Ltd.

• Masayoshi Yokomachi, New Energy and Industrial Technology Development Organization

• Wonpil Yu, Electronics and Telecommunications Research Institute

Robotic Localization Service, v1.1 beta 9

6.2.4 Supporting Organizations

The following organizations supported parts of this specification:

• Hitachi, Ltd.

• National Institute of Advanced Industrial Science and Technology (AIST)

• New Energy and Industrial Technology Development Organization (NEDO)

• Shibaura Institute of Technology

• Technologic Arts Incorporated

• University of Tsukuba

10 Robotic Localization Service, v1.1 beta

Robotic Localization Service, v1.1 beta 11

7 Platform Independent Model
The PIM consists of three parts:

1. Architecture package - The architecture package defines a new framework for representing location information
required in the field of robotics. See “Section 7.3, Architecture Package.”

2. DataFormat package - The data format package defines how the defined data is represented for exchange amongst
RoLo modules. See “Section 7.4, DataFormat Package.”

3. Interface package - The interface package defines an API for data passing and configuration of RoLo modules. See
“Section 7.5, Filter Condition Package.”

7.1 Format and Conventions

7.1.1 Class

Classes described in this PIM are documented using tables of the following format.

Table xx: <class name>

Note that derived attributes or operations are not described explicitly. Also, as the type of return code for every operation
in this specification is Returncode_t, which is defined in Section 7.2, Return Codes, this is omitted in the description
table.

The ‘obligation’ and ‘occurrence’ are defined as follows.

Obligation

• M (mandatory): This attribute shall always be supplied.

• O (optional): This attribute may be supplied.

• C (conditional): This attribute shall be supplied under a condition. The condition is given as a part of the attribute
description.

Occurrence

The occurrence column indicates the maximum number of occurrences of the attribute values that are permissible. The
following denotes special meanings.

Description: <description>

Derived From: <parent class>

Attributes

<attribute name> <attribute type> <obligation> <occurrence> <description>

… … …

Operations

<operation name> <description>

<direction> <parameter name> <parameter type> <description>

… … … …

12 Robotic Localization Service, v1.1 beta

• N: No upper limit in the number of occurrences.

• ord: The appearance of the attribute values shall be ordered.

• unq: The appeared attribute values shall be unique.

7.1.2 Enumeration

Enumerations are documented as follows:

Table xx: <enumeration name>

7.2 Return Codes

At the PIM level, we have modeled errors as operation return codes typed Returncode_t. Each PSM may map these to
either return codes or exceptions. The complete list of return codes is indicated below.

Table 1 Returncode_t enumeration

7.3 Architecture Package

Modern robotic algorithms related to localization require not only simple spatial positioning information; generally,
various types of information related to spatial position are also required. To obtain precise results, measurement time, and
error estimation is crucial, especially when integrating measurements from multiple sensors. For robotics usage, complex
spatial positioning such as pose information is also important. When sensors in use can perform measurements of multiple
entities at once, identity information is also necessary to distinguish and associate measurements. As such, there is a
variety of other information to be expressed in combination with simple spatial positioning. To make various robotic
services treat and process this versatile information easily and effectively, we represent this heterogeneous information
under a common, unified framework.

In this section, we discuss a new framework for representing location information required in the field of robotics, by
extending existing GIS specifications. First, we define a new framework for representing position and pose information.
Next, three types of information required in robotics usage are defined, and lastly, a generic framework for representing
structured robotic localization results (RoLo architecture) is defined.

Note that, although the ISO 19111 specification assumes every CS to be 2 or 3 dimensional [ISO19111], in this
specification, we do not assume any limitation on the number of dimensions on any coordinate systems. This is to enable
representation of complex data such as feature points defined over multi-dimensional space. Also note that this does not

<constant name> <description>

… …

OK Successful return.

ERROR Generic, unspecified error.

BAD_PARAMETER Illegal parameter value.

UNSUPPORTED_PARAMETER Unsupported parameter.

UNSUPPORTED_OPERATION Unsupported operation.

TIMEOUT The operation timed out.

Robotic Localization Service, v1.1 beta 13

violate the ISO 19111 standard where no formal limitation is specified on the number of dimensions. One issue is how to
treat the attribute bounded to specific features in the real space such as axisDirection (type CS_AxisDirection) in
CS_CoordinateSystemAxis that is a mandatory attribute, and where the type is defined as a finite enumeration of direction
names such as ‘north’ or ‘south.’ It is clear that these values are not suitable for some robotics usage such as for relative
or mobile coordinate reference systems. We thus recommend that implementers and users of this specification simply
ignore this attribute and set this value as the first element in the enumeration, ‘north,’ if necessary. This is a safe solution
as we cannot expect GIS systems to treat data based on this specification correctly; we only expect data from GIS systems
to be treated on systems based on this robotic specification.

7.3.1 Pose Representation

In this section, we first extend the notion of coordinate reference system [ISO19111] for representing pose information.
The simplest way for representing pose information is to define a special CS and CRS that represents pose. However,
pose information, in general, can only be considered and interpreted in the context of position information. See
[Noda2010] for detailed discussion. Therefore, here we represent pose information in combination of position
information. In order to realize this representation in consistent with ISO 19111, we define a new subclass of CRS for
representing a set of position and pose information while preserving the relation to the original position-only CRS.

Figure 7.1 - Pose information

Table 7.1 - PositionType class

Description: Class for indicating how pose is represented

Derived From: (none)

Attributes

baseType PoseType O 1 Reference to a RoLo pose type that is the base type of this RoLo pose
type. This attribute is used to represent hierarchical relationships
among RoLo pose types.

ISO 19111::
SC_CRS

PositionPoseCRSPoseType

+ baseType: PoseType

ISO 19111::
SC_SingleCRS

+poseType

+positionCRS

14 Robotic Localization Service, v1.1 beta

Table 7.2 - PositionPoseCRS class

Pose Representation Type

We also define PoseType instances of common pose representations as in Figure 7.2.

Figure 7.2 - Pose representation types

Generally, a 3 by 3 matrix is commonly used in robotics to calculate consecutive rotations of a coordinate system or to
specify the orientation of a coordinate system respective to a reference coordinate system. We will call this pose
representation style as PT_3x3matrix.

Besides, there is a common representation called Euler angles that specify the orientation of a coordinate system by a
sequence of three rotations that take place about an axis of the coordinate system. Depending on the order of sequential
rotations of the two coordinate systems, the Euler angle representation can be defined in several ways. To specify the
rotation order of the coordinate system, a fixed right-hand Cartesian coordinate system is denoted in lower case (x, y, z).
Also we denote the right-hand Cartesian coordinate system after nth rotation as (Xn, Yn, Zn). We name the Euler angle
representations by the order of rotation axis.

Description: A CRS for denoting a combination of position and pose information. The attributes derived from
SC_SingleCRS shows the base CRS for representing the pose information. Note that the dimension of the coordinate
values based on this CRS is not equal to the dimension of this CRS and varies based on how the pose information is
represented. For example, when this CRS is 3 dimensional, the coordinate value's dimension may be 3 for Euler angle
representations and 4 for quarternion representations.

Derived From: SC_SingleCRS [ISO19111]

Attributes

poseType PoseType M 1 Reference to a RoLo pose type that shows how the pose information
is represented.

positionCRS SC_CRS [ISO19111] M 1 Reference to a CRS that indicates which CRS the position information
is based on.

PT_Euler_xyz

PT_Quarternion

PT_Euler_zY1X2

PT_Euler_3D

PT_3DPT_2D

+baseType

+baseType

+baseType

+baseType

Robotic Localization Service, v1.1 beta 15

For example, PT_Euler_xyz is defined as follows:

1. Rotate the coordinate system about the x-axis by α as shown in Figure 7.3 (a).

2. Rotate the coordinate system about the fixed y-axis by ß as shown in Figure 7.3 (b).

3. Rotate the coordinate system about the fixed z-axis by γ as shown in Figure 7.3 (c).

Figure 7.3 - Three sequential rotations for the PT_Euler_xyz pose representation

Another example, PT_Euler_zY1X2 is defined as follows:

1. Rotate the coordinate system about the z-axis by α as shown in Figure 7.4 (a). The resulting coordinate system is
denoted as (X1, Y1, Z1).

2. Rotate the coordinate system about the Y1-axis by ß as shown in Figure 7.4 (b). The resulting coordinate system is
denoted as (X2, Y2, Z2).

3. Rotate the coordinate system about the X2-axis by γ as shown in Figure 7.4 (c).

Figure 7.4 - Three sequential rotations for the PT_Euler_zY1X2 pose representation

16 Robotic Localization Service, v1.1 beta

7.3.2 Relative Coordinate Reference Systems

In this section, relative coordinate reference systems are defined that may lack fixed relation with the earth or users have
no interest in referencing them to other coordinate reference systems. We categorize relative coordinate reference systems
in two types, static and dynamic. A coordinate reference system on mobile platforms, mobile coordinate reference system,
is defined as a dynamic relative coordinate reference system. That is, the relation with other coordinate reference systems
may change by time.

The GIS standard on spatial reference system [ISO19111] allows the definition and use of such relative and mobile
coordinate reference systems. However, there is no specific model or description on these systems. As these systems are
quite commonly used in the field of robotics, here we explicitly define structures and operations specific to these
coordinate reference systems. Although we only define coordinate reference systems based on two coordinate systems of
frequent usage, CS_CartesianCS and CS_PolarCS, users may define derivatives of relative or mobile coordinate reference
systems based on the coordinate system of their interest.

Figure 7.5 - Relative and Mobile coordinate reference system

RelativeCRS

StaticRelativ eCartesianCRS

StaticRelativ ePolarCRS

ISO 19111::
CS_CartesianCS

ISO 19111::
CS_PolarCS

MobileCartesianCRS

MobilePolarCRS

MobileCRS

MobileDatum

+ getInStream(InStream*) : Returncode_t

StaticRelativ eDatum

ISO 19111::SC_EngineeringCRS

ISO 19111::
CD_EngineeringDatum

StaticRelativeCRS DynamicRelativeCRS

Interface::InStream

DynamicRelativ eDatum

RelativeDatum

Data

DataSpecification

{subset
usesDatum}

{subset
usesCS}

{subset
usesCS}

{subset
usesCS}

{subset
usesCS}

+spec 0..1

#inStream

{subset
usesDatum}

{subset
usesDatum}

+base

0..1

+dataSpec
0..1

{subset
usesDatum}

Robotic Localization Service, v1.1 beta 17

Table 7.3 - RelativeCRS class

Table 7.4 - RelativeDatum class

Table 7.5 - StaticRelativeCRS class

Table 7.6 - StaticRelativeCartesianCRS class

Table 7.7 - StaticRelativePolarCRS class

Table 7.8 - StaticRelativeDatum class

Description: Base abstract class for representing relative coordinate reference systems.

Derived From: SC_EngineeringCRS [ISO19111]

Note – Values for the attribute ‘usesDatum’ that are derived from parent class shall be limited to instances of
RelativeDatum or its inherited classes.

Description: Abstract class for representing datum for relative coordinate reference systems.

Derived From: CD_EngineeringDatum [ISO19111]

Description: Abstract class for representing relative coordinate reference systems that have static relation with other
CRS(s).

Derived From: RelativeCRS

Note – Values for the attribute ‘usesDatum’ that are derived from parent class shall be limited to instances of
StaticRelativeDatum or its inherited classes.

Description: Static relative coordinate reference systems based on Cartesian coordinate system.

Derived From: StaticRelativeCRS

Note – Values for the attribute ‘usesCS’ that are derived from parent class shall be limited to instances of CS_CartesianCS
[ISO19111] or its inherited classes.

Description: Static relative coordinate reference system based on polar coordinate system.

Derived From: StaticRelativeCRS

Note – Values for the attribute ‘usesCS’ that are derived from parent class shall be limited to instances of CS_PolarCS
[ISO19111] or its inherited classes.

Description: Datum for static relative coordinate reference system.

Derived From: RelativeDatum

Attributes

18 Robotic Localization Service, v1.1 beta

Table 7.9 - DynamicRelativeCRS class

Table 7.10 - DynamicRelativeDatum class

Table 7.11 - MobileCRS class

Table 7.12 - MobileCartesianCRS class

Table 7.13 - MobilePolarCRS class

dataSpec DataSpecification O 1 A RoLo data specification indicating allowed structure for the ‘base’
attribute. If the coordinate reference system in target holds no relation
with other coordinate reference systems, this may be omitted.

base Data O 1 A RoLo data for determining relation to other coordinate reference
system. Typically, this data includes spatial position for origin and
pose for axis direction. If no relation with other coordinate reference
systems is required, this may be omitted.

Description: Abstract base class for representing dynamic relative coordinate reference systems.

Derived From: RelativeCRS

Note – Values for the attribute ‘usesDatum’ that are derived from parent class shall be limited to instances of
DynamicRelativeDatum or its inherited classes.

Description: Datum for dynamic relative coordinate reference system.

Derived From: RelativeDatum

Description: Abstract base class for representing mobile coordinate reference systems.

Derived From: DynamicRelativeCRS

Note – Values for the attribute ‘usesDatum’ that are derived from parent class shall be limited to instances of MobileDatum
or its inherited classes.

Description: Mobile coordinate reference systems based on Cartesian coordinate system.

Derived From: MobileCRS

Note – Values for the attribute ‘usesCS’ that are derived from parent class shall be limited to instances of CS_CartesianCS
[ISO19111] or its inherited classes.

Description: Mobile coordinate reference system based on polar coordinate system.

Robotic Localization Service, v1.1 beta 19

Table 7.14 - MobileDatum class

Figure 7.6 - Mobile CRS Operations

Derived From: MobileCRS

Note – Values for the attribute ‘usesCS’ that are derived from parent class shall be limited to instances of CS_PolarCS
[ISO19111] or its inherited classes.

Description: Datum for mobile coordinate reference systems. This datum holds a RoLo input stream that is used to
obtain positional information for determining the relation between the mobile coordinate reference system in target and
another coordinate reference system. Users shall connect a RoLo output stream to this input stream, or shall supply
positional information directly by the ‘setData’ method of this input stream. For example, if the mobile coordinate
system is based on Cartesian coordinate system, spatial position information for mapping the origin and orientation
information for determining axis directions may be supplied. However, some transformation algorithms require more
complicated information such as measurement time or error information. The necessary information required can be
determined by the ability description of the input stream.

Derived From: DynamicRelativeDatum

Attributes

inStream
(protected)

InStream
(RoLo::Interface)

M 1 Input stream for obtaining base position.

Operations

getInStream Returns the input stream in use.

out inStream InStream
(RoLo::Interface)

InStream instance used in this datum.

ISO 19111::
SC_CRS

Mobile2StaticOperation

MobileCRS
Static2MobileOperation

MobileOperation

Mobile2MobileOperation

ISO 19111::
CC_Transformation

+target
+source

+target

+source

+source

+target

20 Robotic Localization Service, v1.1 beta

Table 7.15 - MobileOperation class

Table 7.16 - Mobile2StaticOperation class

Table 7.17 - Static2MobileOperation class

Table 7.18 - Mobile2MobileOperation class

Description: Abstract base class for operations between mobile coordinate reference system and other coordinate
reference systems.

Derived From: CC_Transformation [ISO19111]

Description: Transformation operation from mobile coordinate reference systems to other static, non-mobile
coordinate reference systems.

Derived From: MobileOperation

Attributes

source MobileCRS M 1 The source mobile coordinate reference system.

target SC_CRS [ISO19111] M 1 The target coordinate reference system.

Note – Values for the attribute ‘target’ shall not be an instance of DynamicRelativeCRS or its inherited classes.

Description: Transformation operation from other static, non-mobile coordinate reference systems to mobile
coordinate reference systems.

Derived From: MobileOperation

Attributes

source SC_CRS [ISO19111] M 1 The source coordinate reference system.

target MobileCRS M 1 The target mobile coordinate reference system.

Note – Values for the attribute ‘source’ shall not be an instance of DynamicRelativeCRS or its inherited classes.

Description: Transformation operation between mobile coordinate reference systems.

Derived From: MobileOperation

Attributes

source MobileCRS M 1 The source mobile coordinate reference system.

target MobileCRS M 1 The target mobile coordinate reference system.

Robotic Localization Service, v1.1 beta 21

7.3.3 Identity Information

Identity (ID), which is assigned for each localized targets, can also be treated as a value on some coordinate reference
system. For example, MAC addresses used in Ethernet communication protocols can be represented as a coordinate value
on a two-dimensional coordinate system, vendor code, and vendor-dependent code. Electric Product Code (EPC) or
ucode, used for identifying RF tags, is another example of identification systems defined by a multi-dimensional
coordinate system. There also exist some ID systems, such as family names, that are usually not explicitly defined over
some mathematical structure.

In general, each sensor holds its own ID system and each entity observed is assigned an ID from this local ID system.
This is because, at least on the initial stage, there are no means to assign the observed entity a global ID. Thus, when
multiple sensors are in use, there exist multiple local ID systems independent to each other, and it becomes necessary to
properly manage and integrate these ID systems. Resolving the bindings between each local ID systems is called the ID
association problem, and is one of the major research issues in the robotic localization field. Also, as we saw in the
overview section, ID assignments are probabilistic, just like other location information.

Under these considerations, here we define coordinate reference systems and related structures for representing identity
information. Here, two coordinate reference systems and accompanying coordinate systems are defined, for identity
systems that are represented in numerical values and symbolic values. The actual coordinate value holding structure in
GIS standard [ISO19107] only allows numeric values as coordinate value elements. Thus, similar structures in use with
symbolic values are also defined.

Note that, operations on identity information (such as conversion from numeric ID to symbolic ID or mapping between
different ID systems) can be constructed using CC_CoordinateOperation or relevant classes specified in GIS standard
[ISO19111]. This is because the identity information defined here is represented by using derived classes from GIS
coordinate systems and coordinate reference systems.

22 Robotic Localization Service, v1.1 beta

Figure 7.7 - Identity Information

Table 7.19 - IdentityCS class

Table 7.20 - NumericIdentityCS class

Description: Base abstract class for representing coordinate systems for identity information.

Derived From: CS_CoordinateSystem [ISO19111]

Description: Coordinate system for identity information, where each axis is defined over numerical values.

Derived From: IdentityCS

IdentityCS IdentityCRS IdentityDatum

NumericIdentityCRSNumericIdentityCS

SymbolicIdentityCS SymbolicIdentityCRS

DirectSymbol

+ coords: CharacterString [1..*] {ordered}

SymbolicPosition

SymbolRef

ISO 19111::
CD_Datum

ISO 19111::
SC_SingleCRS

ISO 19111::
CS_CoordinateSystem

T

SetCoordinateSystemAxis

+ elements: Set<T>

ISO 19111::CS_CoordinateSystemAxis

StringSetCoordinateSystemAxis IntegerSetCoordinateAxis

+crs 0..1

{subset
usesDatum}

{subset
usesCS}

<T -> Integer >

<<bind>>

+point

+direct 0..1

+indirect 0..1

< T->String >
<<bind>>

{subset
usesCS}

Robotic Localization Service, v1.1 beta 23

Table 7.21 - SymbolicIdentityCS class

Table 7.22 - IdentityDatum class

Table 7.23 - IdentityCRS class

Table 7.24 - NumericIdentityCRS class

Table 7.25 - SymbolicIdentityCRS class

Table 7.26 - DirectSymbol class

Description: Coordinate system for identity information, where each axis is defined over a set of symbolic values.

Derived From: IdentityCS

Description: Datum for identity coordinate reference systems.

Derived From: CD_Datum [ISO19111]

Description: Base abstract class for representing coordinate reference systems for identity information.

Derived From: SC_SingleCRS [ISO19111]

Note – Values for the attribute ‘usesDatum’ that are derived from parent class shall be limited to instances of
IdentityDatum or its inherited classes.

Description: Coordinate reference system for identity information, where each axis is defined over numerical values.

Derived From: IdentityCRS

Note – Values for the attribute ‘usesCS’ that are derived from parent class shall be limited to instances of
NumericIdentityCS or its inherited classes.

Description: Coordinate reference system for identity information, where each axis is defined over a set of symbolic
values.

Derived From: IdentityCRS

Note – Values for the attribute ‘usesCS’ that are derived from parent class shall be limited to instances of
SymbolicIdentityCS or its inherited classes.

Description: Class for holding symbolic identity information.

Derived From: (none)

Attributes

24 Robotic Localization Service, v1.1 beta

Table 7.27 - SymbolRef class

Table 7.28 - SymbolicPosition class

Table 7.29 - SetCoordinateSystemAxis class

Table 7.30 - StringSetCoordinateSystemAxis class

Table 7.31 - IntegerSetCoordinateSystemAxis class

coords CharacterString M N ord Values for each of the coordinate system axis.

crs SymbolicIdentityCRS O 1 Reference to the coordinate reference system this data
belongs to.

Description: Data holder for a reference to DirectSymbol

Derived From: (none)

Attributes

point DirectSymbol M 1 Reference to the target DirectSymbol class instance.

Description: Union of DirectSymbol and SymbolRef. This class is used as a data holder for accessing symbolic
information transparently, whether it is directly held or indirectly referenced.

Derived From: (none)

Attributes

direct DirectSymbol C 1 Symbolic identity data.

indirect SymbolRef C 1 Reference to symbolic identity data.

Condition: Either one of the elements shall be contained.

Description: CoordinateSystemAxis where the domain of axis values are represented by a finite set.

Derived From: CS_CoordinateSystemAxis [ISO19111]

Attributes

elements Set<T> M 1 Elements of the domain.

Description: SetCoordinateSystemAxis with String values.

Derived From: SetCoordinateSystemAxis

Description: SetCoordinateSystemAxis with Integer values.

Derived From: SetCoordinateSystemAxis

Robotic Localization Service, v1.1 beta 25

7.3.4 Error Information

Every sensing system in the real world cannot avoid having measurement error. As such, it is essential to know the
reliability or deviation of measurements for performing localization and for utilizing the resulting estimation. Error
information plays an important role in robotic operations. In GIS specifications, the only error concerned is the expected
reliability of inter-coordinate transformation. However, complex and detailed error descriptions are required in modern
localization methods. Thus, here we define additional structures for representing and operating on error information.

RoLo Error Type

Similar to the relation of coordinate reference system and the position in the traditional GIS systems, we here define
RoLo error types for describing the nature of error information. Every RoLo error holds a reference to an error type
(either implicitly or explicitly; see Table 7.81), which indicates how this error is represented. This means that the same
error data can be represented in a different manner. Thus, operations for transforming between different error types are
defined.

RoLo error types may also be structured for a hierarchy. Just as the normal class inheritance relationships, often error
types may be related to each other. For example, a linear mixture model distribution is one limited form of general
mixture model where models mixture is performed through linear operations. Here the hierarchy of RoLo error types is
specified by inter-object relationships, and not by inter-class relationships. This is to be consistent with other specification
data types such as coordinate reference system, coordinate system, or RoLo data specification. Figure 7.8 shows some
RoLo error types and their relationships corresponding to the RoLo error classes defined afterwards.

Figure 7.8 - Hierarchy of RoLo Error Types

ET_Base : ErrorType

ET_Gaussian : ErrorType

ET_UniformGaussian : ErrorType

ET_Reliability : ErrorType

ET_MixtureModel : ErrorType

ET_LinearMixtureModel : ErrorType

ET_ParticleSet : ErrorTypeET_MixtureOfGaussian : ErrorType

baseType

ET_Distribution : ErrorType

baseType

baseType

baseType

baseType

26 Robotic Localization Service, v1.1 beta

Note that error information in the context of localization cannot exist solely by itself. Error information is an attribute to
the location value. Thus, there exist two types of operation on error information in general. 1) Change in error
representation type, and 2) change in the coordinate system the target location value is based on. The former operation is
described in this section, and the latter is described later with the description of RoLo data specification.

Figure 7.9 - RoLo Error Types

Table 7.32- ErrorType class

Table 7.33 - ErrorTypeOperation class

Description: Class for representing RoLo error types.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

baseType ErrorType O 1 Reference to a RoLo error type that is the base type of this
RoLo error type. This attribute is used to represent
hierarchical relationships among RoLo error types.

Description: Denotes transformation of RoLo error into a different RoLo error type.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

source ErrorType M 1 Source RoLo error type.

target ErrorType M 1 Target RoLo error type.

ErrorType ErrorTypeOperation

ISO 19111::
IO_IdentifiedObject

+target

+source+baseType 0..1

Robotic Localization Service, v1.1 beta 27

RoLo Error

RoLo errors are objects for holding error information in different representations. Here we define some frequently used
forms. Users may extend these classes to implement their own RoLo error containers, accompanied with appropriate
RoLo error type definitions.

Figure 7.10 - RoLo Error

Table 7.34 - Error class

Description: Base abstract class for holding error information.

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes

errType ErrorType O 1 Reference to the RoLo error type indicating how this error
information is represented.

<<DataType>>
Matrix

+ nCol: Integer
+ nRow: Integer

Error

WeightedModel

Cov arianceMatrix

Gaussian

ErrorDistribution

UniformGaussian

MixtureModel

ParticleSet

Reliability

LinearMixtureModel

MixtureOfGaussian

<<DataType>>
ISO 19103::
Probability

ISO 19111::IO_IdentifiedObjectBase

<<DataType>>
ISO 19103::

Number

ErrorType

The mean value is
the combined RoLo
position

PositionElement

Model

+errType

0..1

+cov

+models

0..*
{ordered}

+weight

+vals

1..*
{ordered} +baseType 0..1

28 Robotic Localization Service, v1.1 beta

Table 7.35 - Reliability class

Table 7.36 - ErrorDistribution class

Table 7.37 - Matrix class

Table 7.38 - CovarianceMatrix class

Table 7.39 - Gaussian class

Description: Reliability value. The derived attribute 'errType' shall be ET_Reliability.

Derived From: Error, Probability [ISO19103]

Description: Base abstract class for error information represented by a probability distribution.

Derived From: Error

Description: N-dimensional matrix.

Derived From: (none)

Attributes

nRow Integer M 1 Number of matrix rows. The value of attribute ‘nRow’ should
be a positive integer.

nCol Integer M 1 Number of matrix columns. The value of attribute ‘nCol’
should be a positive integer.

vals Number
[ISO19103]

M N ord Value elements of the matrix.

Description: An n-dimensional matrix describing covariance.

Derived From: Matrix

Note – This shall represent a square matrix where nRow = nCol.

Description: Error represented by an n-dimensional normal distribution. The mean value is denoted by the
accompanying RoLo position. The derived attribute 'errType' shall be ET_Gaussian.

Derived From: ErrorDistribution

Attributes

cov CovarianceMatrix M 1 Indicates the covariance for the normal distribution.

Robotic Localization Service, v1.1 beta 29

Table 7.40 - UniformGaussian class

Table 7.41 - ParticleSet class

Table 7.42 - MixtureModel class

Table 7.43 - Model class

Table 7.44 - WeightedModel class

Description: Error represented by a uniform normal distribution.

Derived From: Gaussian

Note: Dimensions of the cov attribute derived from class Gaussian shall all be equal to 1. That is, nRow = nCol = 1.

Description: Error represented by a set of particles. As for the ‘models’ attribute derived from LinearMixtureModel
class, the ‘posElem’ attribute shall either have no ‘err’ attribute or have a RoLo error like an impulse response (such as
a Gaussian distribution with zero standard deviation). Normally, this is used for representing distributions by Monte
Carlo approximation, where distributions are approximated by a finite number of random samplings. The derived
attribute ‘errType’ shall be ET_ParticleSet.

Derived From: LinearMixtureModel

Description: Abstract base class for representing an error distribution by means of mixture of probability
distributions.

Derived From: ErrorDistribution

Description: A distribution without a weight Recall that a PositionElement object can be interpreted to
represent a probability distribution. Its ‘pos’ attribute is treated as the expected coordinate value and its ‘err’
attribute as the shape of distribution.

Derived From: PositionElement

Description: A distribution with a weight.

Derived From: Model

Attributes

weight Probability
[ISO19103]

M 1 Weight of this distribution.

30 Robotic Localization Service, v1.1 beta

Table 7.45 - LinearMixtureModel class

Table 7.46 - MixtureOfGaussian class

7.3.5 Robotic Localization Architecture

The Robotic Localization (RoLo) Architecture defined here is a unified framework for organizing and representing
complex data set required in robotic localization. Similar to the relation between GIS location data and coordinate
reference system, two sets of structures are defined here.

1. Classes for holding the localization results (Data, Element, and Position)

2. Classes for describing the structure or the meaning of localization results (DataSpecification, ElementSpecification)

These two sets of classes are in relation similar to that between GIS position data and coordinate reference systems: the
latter describes the structure and meaning of the former. The RoLo element and RoLo element specification pair binds the
main localization data element to error information. The RoLo data and RoLo data specification pair defines the structure
and relation among a set of RoLo elements that forms a complete robotic localization result.

Normally, error information is combined with one main localization element. However, in certain cases, there is a need to
hold an integrated error among multiple location data. For example, in a typical Kalman filter usage, multiple main
location information such as spatial position and velocity are used to form a state vector. When the elements of the state
vector are not independent, which is the usual case, the corresponding error, the covariance matrix, is related to multiple
main elements. In such case, the ErrorElementSpecificaion (derived from ElementSpecification class) specifies which
main information slot the error is related to, and the actual error data is contained by the ErrorElement class (derived from
Element class) instances. Figure 7.11 shows a sample data structure and corresponding object diagram.

Description: Base abstract class for representing distributions represented by linear mixture of probability
distributions. The derived attribute ‘errType’ shall be ET_LinearMixtureModel.

Derived From: MixtureModel

Attributes

models Model M N ord List of models to be combined. When the models are non-
weighted, they shall be treated to have equal weights.

Description: A distribution represented by a linear mixture of Gaussian distributions. The derived attribute ‘errType’
shall be ET_MixtureOfGaussian. The models attribute derived from LinearMixtureModel shall have a ‘posElem’
attribute whose ‘err’ attribute is restricted to be an instance of Gaussian class.

Derived From: LinearMixtureModel

Robotic Localization Service, v1.1 beta 31

Figure 7.11 - Representation of error information related to multiple localization data

Data

position
data

v elocity
data

(no data)
error
data

PositionElement ErrorElement

DataSpecification

CRS CRS(not
defined)

error
ty pe

PositionElementSpecification ErrorElementSpecification

based on

(not
defined)

(no data)

dataSpec1 : ::RoLo::Architecture::DataSpecif ication

identif ier = urn:x-rls:def :DS:jp.atr:...:ds132
name = DataSpec f or KansaiPF output

posSpec1 : ::RoLo::Architecture::PositionElementSpecif ication

identif ier = urn:x-rls:def :PES:jp.atr:...:pos1312
name = Pos. Elem. Spec. f or Local 2D pos. at KansaiPF

elemSpecs

posSpec2 : ::RoLo::Architecture::PositionElementSpecif ication

identif ier = urn:x-rls:def :PESc:jp.atr:...:pose31
name = Pos. Elem. Spec. f or Local 2D pose at KansaiPF

elemSpecs

errSpec1 : ::RoLo::Architecture::ErrorElementSpecif ication

identif ier = urn:x-rls:def :EES:jp.atr:...:err1
name = Err. Elem. Spec. f or pos/pose state at KansaiPF

elemSpecs

eT_Gaus2D : ::RoLo::Architecture::ErrorTy pe

identif ier = urn:x-rls:def :ET:Gaussian:2D
localname = Error ty pe f or Gaussian error in 2D

errTy pe

data1 : ::RoLo::Architecture::Dataspec

pElem1 : ::RoLo::Architecture::PositionElement
elems

pos1 : ::RoLo::Architecture::Positionpos

nPos1 : ::ISO19107::GM_Positionnumeric

pElem2 : ::RoLo::Architecture::PositionElement
elems

pos2 : ::RoLo::Architecture::Positionpos

nPos2 : ::ISO19107::GM_Positionnumeric

eElem : ::RoLo::Architecture::ErrorElement
elems

err1 : ::RoLo::Architecture::Gaussian
err

errTy pe

cov 1 : ::RoLo::Architecture::Cov arianceMatrix

nRow = 2
nCol = 2
v als = (0.1, 0.2, 0.2, 0.4)

cov

dp1 : ::ISO19107::DirectPosition

coordinate = (142, 23)

position

dp2 : ::ISO19107::DirectPosition

coordinate = (3.12, -2.13)

position

posSpecRef s

posSpecRef s

SRC_CRS1 : ::RoLo::Architecture::StaticRelativ eCartesianCRS

identif ier = urn:x-rls:def :CRS:jp.atr:...:412131
name = CRS at KansaiPF generated at ... 15:23:22.12 JSTcrs

SRC_CRS2 : ::RoLo::Architecture::StaticRelativ eCartesianCRS

identif ier = urn:x-rls:def :CRS:jp.atr:...:412132
name = CRS at KansaiPF generated at: ... 15:23:22.12 JST

crs

32 Robotic Localization Service, v1.1 beta

Figure 7.12 - RoLo Architecture

Table 7.47- Position class

Description: Data container for localization results without error information. This is formed as a union of
SymbolicPosition class and GM_Position [ISO19107] class. The former is a container for symbolic symbols such as
identity information, and the latter contains numerical data such as spatial coordinate values.

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes:

symbolic SymbolicPosition C 1 Symbolic data container

numeric GM_Position
[ISO19107]

C 1 Numeric data container.

Condition: One and only one of the choices shall be chosen.

Position

PositionElementPositionElementSpecification

ErrorType

ErrorElementSpecification

ElementSpecification Element

DataSpecification Data

ISO 19111::IO_IdentifiedObjectBase

ISO 19111::
IO_IdentifiedObject

ErrorElement

<<Union>>
ISO 19107::GM_Position

SymbolicPosition

Error

ISO 19111::
SC_CRS

+elemSpecs

1..* {ordered}

+pos

+posSpecRefs
1..* {ordered}

{subset spec}

+errType

0..1

+errType

+baseType 0..1

{subset spec}

+spec

0..1

+crs

+elem 1..*
{ordered}

+spec

0..1

+numeric

0..1

+symbolic

0..1

+err 0..1

+err

Robotic Localization Service, v1.1 beta 33

Table 7.48 - ElementSpecification class

Table 7.49 - PositionElementSpecification class

Table 7.50 - ErrorElementSpecification class

Table 7.51 - Element class

Description: Base abstract class for holding structural definition for RoLo elements. Instances of this class contain
meta-level information on what kind of data each RoLo element holds.

Derived From: IO_IdentifiedObject [ISO19111]

Description: Specification holder for RoLo position elements.

Derived From: ElementSpecification

Attributes:

crs SC_CRS
[ISO19111]

M 1 Reference to a coordinate reference system that the ‘pos’
attribute in RoLo position element is based on.

errType ErrorType O 1 Reference to a RoLo error type. Specifies the type of ‘err’
attribute in RoLo position elements. If this attribute is
omitted, RoLo position elements related with this instance
shall not contain error information.

Description: Definition holder for RoLo error elements.

Derived From: ElementSpecification

Attributes:

posSpecRefs PositionElementSpecification M Nord An ordered list of references to RoLo position
element specifications showing which positional
data the RoLo error contained in the RoLo error
element is related to. The referred RoLo position
element specifications shall be contained in the
same RoLo data specification as this class instance.

errType ErrorType M 1 Reference to a RoLo error type. Specifies the type
of ‘err’ attribute in RoLo error elements.

Description: Base abstract class for RoLo elements that holds the binding between the main positional data and the
RoLo error.

Derived From: IO_IdentifiedObjectBase [ISO19111]

34 Robotic Localization Service, v1.1 beta

Table 7.52 - PositionElement class

Table 7.53 - ErrorElement class

Table 7.54 - DataSpecification class

Attributes:

spec ElementSpecification O 1 Reference to RoLo element specification that this
element is based on.

Description: Data container of each localization result by combining the main positional data and the accompanying
RoLo error.

Derived From: Element

pos Position M 1 The main information.

err Error O 1 RoLo error information related to the ‘pos’ attribute of the
same instance. If the RoLo position element specification
referred related with this instance does not hold an ‘errType’
attribute, this attribute shall be omitted.

Note – Values for the attribute ‘spec’ that are derived from parent class shall be limited to instances of
PositionElementSpecification or its inherited classes.

Description: Data container of error information that is related to multiple positional data in the same RoLo data. RoLo
position elements related with this error information are specified in the referenced RoLo error element specification.

Derived From: Element

Attributes:

err Error M 1 RoLo error bound with the specified RoLo position elements.

Note – Values for the attribute ‘spec’ that are derived from parent class shall be limited to instances of
ErrorElementSpecification or its inherited classes.

Description: Specification holder for RoLo data.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes:

elemSpecs ElementSpecification M N ord Ordered list of RoLo element specifications that
defines the structure of localization result.

Robotic Localization Service, v1.1 beta 35

Table 7.55 - Data class

Don't-Care

To handle generic data specifications, specifications may include “don’t care” values in their definition. For example, you
may want to build a people tracking service that accepts outputs from another RoLo module bound with a camera sensor
and performs some calculation. In such case, the coordinate system of the camera sensor output may be fixed but the
coordinate reference system and the datum associated with each camera module may differ, depending on the location
where the camera is installed. Building such module is impossible in the normal RoLo framework, as each RoLo stream
needed to clearly specify a set of RoLo data specifications it can accept; you need to specify an infinite list of RoLo data
specifications on the input stream ability description.

That’s where don’t-cares are used. In such cases, you specify a RoLo data specification for the tracking module’s input
stream ability using a coordinate reference system that uses a don’t-care datum (NULLDatum class). This way you can
specify only the specification parts you (the module) is interested, and leave the other parts free. Such is quite a common
usage, and so the use of don’t-cares will increase the flexibility and usability of the RoLo service. However, this use of
don’t-care elements may require notice as it may result in high computation cost or ambiguous, useless specifications that
break the idea of having specifications for data. Thus, we need some rule to avoid misleading usages. The following
describes the rules that shall be followed on using don’t-cares:

• When multiple type specifications are associated with a data instance, the specifications shall be consistent with each
other.

• Every data instance shall have a complete unified type specification.

• A type specification may include don’t-cares for the following attributes:

• ‘elemSpec’ in RoLo data specification

• ‘crs’ in RoLo position element specification

• ‘errType’ in RoLo position element specification or RoLo error element specification

• ‘cs’ in SC_CRS [ISO19111]

 shows the classes and the objects used to indicate don’t-care.

• ‘datum’ in SC_CRS [ISO19111]

The last rule means that any RoLo stream that is associated with a complete RoLo data specification may skip checking
explicit specification of each RoLo data or its subcomponents passed through itself. Thus, modules equipped with low
computation power can avoid unnecessary processing by specifying explicit data specifications as their RoLo input stream
ability.

Description: Data container for the robotic localization result.

Derived From: IO_IdentifiedObjectBase [ISO19111]

Attributes:

spec DataSpecification O 1 Reference to the corresponding RoLo data
specification.

elems Element M N ord An ordered list of RoLo elements. Numbers, orders,
and types of the RoLo elements shall match that of the
corresponding RoLo data specification.

36 Robotic Localization Service, v1.1 beta

(a) Don’t care classes

(b) Don’t care objects

Figure 7.13 - Don’t-care classes and objects

Table 7.56 - DontCare class

Table 7.57 - NULLCS class

Description: Base abstract class for don’t-care classes.

Derived From: (none)

Description: Don’t-care indicator. Used for indicating that this coordinate system shall be ignored.

Derived From: DontCare, CS_CoordinateSystem [ISO19111]

NULLDatumNULLElementSpecification

ElementSpecification

::ISO 19111::CD_EngineeringDatum

::ISO 19111::CS_CoordinateSystem

DontCare

NULLCS NULLCRS

::ISO 19111::SC_CRS

ErrorType

NULLErrorType

ET_NULL : NULLErrorType

baseType

datum_NULL : NULLDatum crs_NULL : NULLCRS

ET_Base : ErrorTypeelemSpec_NULL : NULLElementSpecification cs_NULL : NULLCS

Robotic Localization Service, v1.1 beta 37

Table 7.58 - NULLCRS class

Table 7.59 - NULLDatum class

Table 7.60 - NULLErrorType class

Table 7.61 - NULLElementSpecification class

Description: Don’t-care indicator. Used for indicating that this coordinate reference system shall be ignored.

Derived From: DontCare, SC_CRS [ISO19111]

Description: Don’t-care indicator. Used for indicating that this datum shall be ignored.

Derived From: DontCare, CD_EngineeringDatum [ISO19111]

Description: Don’t-care indicator. Used for indicating that this RoLo error type shall be ignored.

Derived From: DontCare, ErrorType

Description: Don’t-care indicator. Used for indicating that this slot in RoLo element specification shall be ignored.

Derived From: DontCare, ElementSpecification

38 Robotic Localization Service, v1.1 beta

RoLo Data Operation

Figure 7.14 - RoLo Data Operation

Table 7.62 - PositionElementOperation class

Description: Base abstract class for representing operations for transforming data between different RoLo position
elements. RoLo position elements are basically composed by RoLo position and RoLo error. As the value of RoLo
error is also based on the coordinate reference system where the combined RoLo position is based on, both the main
information and the error information shall be transformed at once.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes:

source PositionElementSpecification M 1 Source RoLo position element specification.

target PositionElementSpecification M 1 Target RoLo position element specification.

DataOperation

PositionElementOperation

DataSpecification

DataConcatenatedOperation
DataSingleOperation

DataMappingOperation

PositionElementConcatenatedOperation

PositionElementSingleOperation
ISO 19111::CC_CoordinateOperation

DataTransformation

ElementSpecification

ErrorTypeOperation

ISO 19111::
IO_IdentifiedObject

PositionElementSpecification

+source +target

+childOperations
1..* {ordered}

+usesOperations

1..*
{ordered}

+source +target

+childOperations
1..* {ordered}+usesOperation

+sourceElemSpecs

1..*
{ordered}

+targetElemSpecs

1..*
{ordered}

+usesErrTypeOperation
0..1

Robotic Localization Service, v1.1 beta 39

Table 7.63 - PositionElementConcatenatedOperation class

Table 7.64 - PositionElementSingleOperation class

Table 7.65 - DataOperation class

Description: Concatenation of multiple PositionElementOperation instances.

Derived From: PositionElementOperation

Attributes:

childOperations PositionElementOperation M Nord Ordered list of PositionElementOperation to be
applied. Target RoLo position element
specification and source RoLo position element
specification for succeeding operations shall
match.

Description: Definition of an operation for transforming or converting data between different RoLo position element
specifications. The main information is processed by the CC_CoordinateOperation [ISO19111], and the error
information should also be transformed.

Derived From: PositionElementOperation

Attributes:

usesOperation CC_CoordinateOperation
[ISO19111]

M 1 Operation to be used for transforming the main
localization data. This operation may also be utilized
to transform the accompanying RoLo error.

usesErrTypeOperation ErrorTypeOperation O 1 Operation to be used for converting the type of the
RoLo error part. If no error type conversion is
necessary, this part may be omitted.

Description: Base abstract class for representing operations for transforming data between different RoLo data
specifications. The main purpose of this operation is to transform or to convert RoLo data that contains RoLo error
element. RoLo data that contains RoLo error element need to know about how other elements within the same RoLo
data specification are operated. Instances of this class perform necessary operations for RoLo error elements, alongside
the operations for RoLo position elements.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes:

source DataSpecification M 1 Reference to the originate RoLo data specification.

target DataSpecification M 1 Reference to the target RoLo data specification.

40 Robotic Localization Service, v1.1 beta

Table 7.66 - DataConcatenatedOperation class

Table 7.67 - DataSingleOperation class

Table 7.68 - DataTransformation class

Table 7.69 - DataMappingOperation class

Description: Concatenation of multiple RoLo data operations.

Derived From: DataOperation

Attributes:

childOperations DataOperation M Nord Ordered list of RoLo data operation to be applied. Target
RoLo data specification and source RoLo data
specification for succeeding operations shall match.

Description: Abstract class for representing an operation for transforming data between different RoLo data
specifications.

Derived From: DataOperation

Description: Definition of an operation for transforming data between different RoLo data specification.

Derived From: DataSingleOperation

Attributes:

usesOperations PositionElementOperation M Nord Operations used for each of the RoLo position
element specification in the RoLo data specification.
The number of RoLo position element specifications
in this RoLo data specification and that of
‘usesOperation’ attribute shall match. The operation
defined here is applied to each of the RoLo position
elements in the order the corresponding RoLo
position element specifications are defined.

Description: Definition of an operation for transforming data between different RoLo data specifications that simply
maps elements in the source RoLo data specification to elements in the target RoLo data specification. Only the
structures of the RoLo elements are altered, and the data content itself are not changed. With RoLo error elements, the
reference to the RoLo position elements shall be modified appropriately. The two attributes contained are lists of
references to RoLo element specifications in source and target RoLo data specifications that defines how the mapping is
to be performed.

Derived From: DataSingleOperation

Attributes:

Robotic Localization Service, v1.1 beta 41

7.4 DataFormat Package

When exchanging information among modules, knowledge on data structures is not enough. We need to specify the actual
data representation format exchanged among modules.

Figure 7.15 - RoLo Data Format

When exchanging information among modules, knowledge on data structures is not enough. We need to specify the actual
data representation format exchanged among modules.

Table 7.70 - DataFormat class

sourceElemSpecs ElementSpecification M Nord Ordered list of RoLo element specification references
within the source RoLo data specification that is to be
mapped to the RoLo element specification in the target
RoLo data specification represented by the
‘targetElemSpecs’ attribute value at the same position.
The numbers of ‘sourceElemSpecs’ attribute shall match
that of ‘targetElemSpec’ attribute.

targetElemSpecs ElementSpecification M Nord Ordered list of RoLo element specification references
within the target RoLo data specification.

Description: Base abstract class for data format definitions.

Derived From: IO_IdentifiedObject [ISO19111]

DataFormat

EncodingRule SpecificDataFormat

CommonDataFormat UserDefinedDataFormat

Architecture::
DataSpecification

ISO 19111::
IO_IdentifiedObject

+dataSpec

42 Robotic Localization Service, v1.1 beta

Table 7.71 - EncodingRule class

Table 7.72 - SpecificDataFormat class

Table 7.73 - UserDefinedDataFormat class

Table 7.74 - CommonDataFormat class

7.4.1 Common Data Format

This specification allows a wide range of data formats for keeping compatibility to widely used data formats. This
specification, however, defines three common data formats each with two different RoLo data specifications, representing
location information in order to provide interoperability between modules which have lack of computing resources. Every
module in RoLo service shall support at least one of these common data formats in order to transmit location information
to enhance inter-module connectability as much as possible.

In this specification, depending on the coordinate systems to refer the position and the methods to specify the orientation,
the common data format is represented by one of the six types, Type I-1, I-2, II-1, II-2, III-1, and III-2 as follows.

Description: Base abstract class for encoding rules. Encoding rule denotes some systematic mean that can determine
the data format from corresponding data structure (i.e., RoLo data specification). Packed Encoding Rule [PER] is an
example of encoding rule. This is a reserved class for future extension.

Derived From: DataFormat

Description: Abstract class for data formats where format description is tightly coupled with data structure. This is in
contrast with the EncodingRule class, where data formatting rules are independent to data structure definitions.

Derived From: DataFormat

Attributes:

dataSpec DataSpecification
(RoLo::Architecture)

M 1 Specifies a RoLo data specification that this data format
can handle.

Description: Abstract class for user-defined, non-common data formats.

Derived From: SpecificDataFormat

Description: Abstract class for denoting Common Data Formats.

Derived From: SpecificDataFormat

Robotic Localization Service, v1.1 beta 43

Type I-1

Table 7.75 - Common data format type I-1 (Cartesian Coordinate System, PT_Euler_xyz Pose Representation)

Type I-2

Table 7.76 - Common data format type I-2 (Cartesian Coordinate System, PT_Euler_zY1X2 Pose Representation)

Type II-1

Table 7.77 - Common data format type II-1 (Spherical Coordinate System, PT_Euler_xyz Pose Representation)

Type II-2

Table 7.78 - Common data format type II-2 (Spherical Coordinate System, PT_Euler_zY1X2 Pose Representation)

Parameter Format of value Value type Unit

Position [x, y, z] Real, Real, Real meter, meter, meter

Orientation [α, β, γ] Real, Real, Real radian, radian, radian

Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Parameter Format of value Value type Unit

Position [x, y, z] Real, Real, Real meter, meter, meter

Orientation [yaw α, pitch β, roll γ] Real, Real, Real radian, radian, radian

Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Parameter Format of value Value type Unit

Position [r, θ, φ] Real, Real, Real meter, radian, radian

Orientation [α, β, γ] Real, Real, Real radian, radian, radian

Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Parameter Format of value Value type Unit

Position [r, θ, φ] Real, Real, Real meter, radian, radian

Orientation [yaw α, pitch β, roll γ] Real, Real, Real radian, radian, radian

44 Robotic Localization Service, v1.1 beta

Type III-1

Table 7.79 - Common data format type III-1 (Geodetic Coordinate System, PT_Euler_xyz Pose Representation)

Type III-2

Table 7.80 - Common data format type III-2 (Geodetic Coordinate System, PT_Euler_zY1X2 Pose Representation)

Each type of the common data formats includes four parameters, as follows:

1. Position – specifies the coordinate value in a Cartesian coordinate system for Type I-1 and I-2, in a spherical
coordinate system for Type II-1 and II-2, and in a geodetic coordinate system for Type III-1 and III-2. (See Figure
7.16 and its explanation for details).

2. Orientation – specifies sequential three rotations by each axis in a right-handed 3-dimensional Cartesian
coordinate system defined by the PT_Euler_xyz pose representation for Type I-1, II-1, and III-1 and by the
PT_Euler_zY1X2 pose representation for I-2, II-2, and III-2.

3. Timestamp – specifies time at occurring measurement for current position and orientation. It is compatible to
POSIX time which is the time elapsed since midnight Coordinated Universal Time (UTC) of January 1, 1970. A
timestamp consists of two integers of elapsed seconds and nanoseconds which is compatible to standard UNIX C
time_t data structure.

4. ID – specifies the identifier of current location information for robots and related entities.

The coordinate values of position information in the common data format in Tables 69-74 are defined respectively by three
different coordinate systems: Cartesian coordinate, spherical coordinate and geodetic coordinate system as shown in Figure
7.16.

Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Parameter Format of value Value type Unit

Position [latitude φ, longitude λ, height h] Real, Real, Real degree, degree, meter

Orientation [α, β, γ] Real, Real, Real radian, radian, radian

Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Parameter Format of value Value type Unit

Position [latitude φ, longitude λ, height h] Real, Real, Real degree, degree, meter

Orientation [yaw α, pitch β, roll γ] Real, Real, Real radian, radian, radian

Timestamp POSIX time Integer, Integer second, nanosecond

ID -- Integer --

Robotic Localization Service, v1.1 beta 45

Figure 7.16 - Definition of a position and reference coordinate systems used in the common data format: (a) Cartesian
coordinate system for Type I-1 and I-2, (b) spherical coordinate system for Type II-1 and II-2, (c) geodetic coordinate
system for Type III-1 and III-2

7.5 Filter Condition Package

When a location service is operated on a large scale and handles a large number of location information, it is useful that
the service has a filtering functionality by which it limits outgoing RoLo data by a given condition. Without this
functionality, service providers and receivers are required to have large capacities of output/input to process the whole
data from large scaled systems. Suppose, as an example, that we implement a sensor system at a shopping center that
detects thousands of guests at once and provides localization service for robots. In such case, it is not reasonable for each
robot to receive localization data about the whole guests every time. Instead each robot is generally interested in specific
guests identified by certain features, area, and/or time period.

The “Filter Condition” specified below is aimed to provide the functionality for localization services to specify a
condition for filtering data sent to service receivers.

Filter Condition in RoLo stream

A RoLo output stream may have the functionality to filter localization results by a certain condition. We call this
condition as “filter condition.” When a filter condition is specified, each localization result is tested by the condition and
passed to the output stream only when it satisfies the condition.

If no condition is given, or if the stream has no such functionality, the “True” condition is used as the default condition,
in which all localization results are passed to the output stream.

To handle the filter condition functionality, ability descriptor for RoLo streams shall additionally have the following
parameter:

Table 7.81 - Filter Condition parameter for RoLo streams

Users can set and get the content of this parameter through the ‘setParameterValueSet’ and ‘getParameterValueSet’ methods

filterCondition Parameter<::ISO19143::NonIdOperator>
(RoLo::Interface)

O 1 Filter condition to be used for output data.
Default value is “True.”

46 Robotic Localization Service, v1.1 beta

toward the stream or the service. When filter condition is not supported by the stream, UNSUPPORTED_PARAMETER will
be returned.

Data Format of Filter Condition

To specify a filter condition, we follow the ISO 19143 specification [ISO/DIS19143] that is defined for ISO 19142 [ISO/
DIS19142]. ISO 19143 specifies XML encoding and UML class charts of filter conditions and their operators.

While the UML charts provides general concepts of data format of the filter condition, it is generally useful and flexible
enough to use the XML encoding for the localization service. (see Examples.)

7.6 Interface Package

Several types of modules are commonly used in robotic localization services in general. The simplest form of module is that
which receives data from sensors, calculates location, and outputs the results. However, this type of interface strongly
depends on sensor interfaces or sensor output formats. Strong dependency on specific products or vendors is not suitable for
standardization. Moreover, when a location is calculated, many kinds of resources such as map data, specific to each sensing
system, are required. It is impractical to include each of these resources into the standard specification. Thus, we decided to
embed and hide the individual device or localization algorithm details inside the module structure (Figure 7.17).

Figure 7.17 - Basic robotic localization module

On the other hand, if we focus on functionality required to localization modules, we can classify them into roughly three
classes (Figure 7.18):

A) Calculate localization results based on sensor outputs (measurement)

B) Aggregate or integrate multiple localization results (aggregation)

C) Transform localization results into different coordinate reference systems (transformation)

Robotic Localization Service, v1.1 beta 47

Figure 7.18 - Structures of robotic localization module with different functionalities

These functionalities differ in their internal algorithms or the number of input / output streams. However, in all of these, the
main data to be exchanged is localization results. As we are focusing on the interface of RLS modules, and not on their
functionalities, we decided to abstract these different types of modules into a single form of module. This abstract module
holds n (>=0) input streams and a uniform output stream. By abstracting various types of modules and assuming a uniform
interface, complex module compositions such as hierarchical or recursive module connections can be easily realized (Figure
7.19).

Figure 7.19 - Example of a cascading module connection

48 Robotic Localization Service, v1.1 beta

A RoLo service (implemented as a Service class) may have one or more RoLo output streams (OutStream class) and zero
or more RoLo input streams (InStream class). Typically, the number of RoLo inputs a service owns is predetermined and
the number of RoLo outputs a service owns changes dynamically based on requests from service users. This is similar to
typical server systems such as database or Web servers where the number of established output connection increases as
requests arrive until it reaches a predefined maximum number.

If each module can represent what or how it can perform, or provide information on available configurable parameters, a
large amount of development efforts can be reduced. Thus, each service or stream is modeled to own an ability
description (Ability class) that contains a set of attributes (Attribute class) and parameters (Parameter class). Attributes
show some static nature of a module and parameters indicate its configurable parameters. For example, an ability
description for a service (ServiceAblity class) includes an attribute describing expected value of latency. And an ability
description for a stream (StreamAbility class) includes parameters denoted by lists of DataSpecification and DataFormat
objects that shows what type of data structure or data format a stream can handle, respectively. Attributes or parameters
specific to each implementation, such as vendor-specific parameters, can be described by extending the respective classes.
As such, attributes may be used to describe fixed nature (catalogue specs) of modules, while parameters define
configurable settings for modules. Note that some parameters may not be configurable on some implementations. For
example, if a module implementation can output data only by a single data format, the aforementioned parameter for
DataFormat may show only a single candidate, and be marked as non-configurable (Parameter.isConfigurable = false).

Often, parameters are defined over some limited value domains. As in the example given above, data specifications or
data formats that a stream is able to pass data are likely to be limited to sets with a small number of choices. Or some
parameters, such as output frequency, may be restricted under a limited range of values. The attribute ‘domain’ in
ParameterOverDomain class is aimed to denote these limitations. As the value domain required may take variations of
forms such as finite set or interval (or range), The ParameterOverDomain class is defined as a template class that allows
a type argument for indicating what sort of value domain shall be specified.

By defining the “meaning” of attributes and parameters, the ambiguity in functional definition or parameters can be
eliminated which can be expected to increase developing efficiency. For example, what does the value 0.23 given as an
‘expectedError’ attribute for a RoLo Service mean? These ambiguities can often be seen in sensor products such as GPS
receivers, making it difficult to design a reusable system applicable to devices or modules from different vendors. The
AttributeDefinition class is aimed to clarify the meaning of attributes and parameters. Although this is out of scope for
this specification, by providing a repository of AttributeDefinition objects that can be referred on demand, RoLo service
users and developers can always make sure what each ability description means or on which unit they are defined.

Moreover, advanced features can be implemented such as verification of inter-module connection, automatic search of
specific modules or semi-automatic parameter negotiation between modules. In cases where sensors or robots distributed
in the environment cooperate with each other, namely the Network Robot environment, it becomes essential to register
each module’s capabilities in repositories and make them searchable.

Robotic Localization Service, v1.1 beta 49

Figure 7.20 - RoLo Ability

Table 7.82 - AttributeDefinition class

Description: Definition of a single attribute.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

type RS_Identifier
[ISO19115]

M 1 Type descriptor for this attribute.

unit UnitOfMeasure
[ISO19103]

O 1 Unit of the target attribute. If no unit is required, this may be omitted.

AttributeBase

T

Attribute

+ val: T
Ability

T

Parameter

+ isConfigurable: boolean = true

AttributeSet

ParameterValueBase

AttributeDefinition

+ type: RS_Identifier
+ unit: UnitOfMeasure [0..1]

T
TD

ParameterOv erDomain

+ domain: TD

T

SetParameter

T

ParameterValue

+ val: T

ISO 19111::IO_IdentifiedObject

T

Interv alParameter

T

Interv al

+ max: T
+ maxInc: boolean [0..1] = True
+ min: T
+ minInc: boolean [0..1] = True

< TD->interval<T> >
<<bind>>

< TD->Set<T> >
<<bind>>

+def

+param

+attrs

0..*

50 Robotic Localization Service, v1.1 beta

Table 7.83 - AttributeBase class

Table 7.84 - Attribute class

Table 7.85 - Parameter class

Table 7.86 - ParameterOverDomain class

Table 7.87 - Interval class

Description: Base abstract class for different types of Attribute classes.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

def AttributeDefinition M 1 Reference to an AttributeDefinition object indicating definition
for this attribute.

Description: Represents a single attribute. This is a template class with type argument T that denotes the type of
attribute value. The type argument T shall be consistent with the value of ‘type’ attribute in AttributeDefinition object
referred by the ‘def’ attribute derived from AttributeBase class.

Derived From: AttributeBase

Attributes

val T M 1 Value of this attribute.

Description: Represents a single parameter. A parameter is an attribute that may be configurable. This is a template
class with type arguments T that denotes the type of parameter value.

Derived From: Attribute <T>

Attributes

isConfigurable Boolean O 1 Flag to show whether this parameter is configurable or not. If
omitted, assumed to True. When this value is set to False, this
parameter is not configurable.

Description: Represents a parameter whose value domain is defined. This is a template class with type arguments T
and TD, where T denotes the type of parameter value and TD denotes the type to show domain of the parameter value.

Derived From: Parameter <T>

Attributes

domain TD M 1 Domain of parameter value.

Description: Class for indicating an interval. Note that an interval is sometimes referred as a ‘range.’

Derived From: (none)

Robotic Localization Service, v1.1 beta 51

Table 7.88 - IntervalParameter class

Table 7.89 - SetParameter class

Table 7.90 - ParameterValueBase class

Table 7.91 - ParameterValue class

Attributes

min T M 1 Minimum value of interval.

max T M 1 Maximum value of interval.

minInc Boolean O 1 Flag to show whether the minimum value is included in the range.
Default is True.

maxInc Boolean O 1 Flag to show whether the maximum value is included in the range.
Default is True.

Description: A parameter whose value domain is defined as an interval. This is a template class with type argument T.
The type argument TD from ParameterOverDomain is deduced to be class Interval <T>.

Derived From: ParameterOverDomain<T, Interval>

Description: A parameter whose value domain is defined as a set of values. This is a template class with type argument
T. The type argument TD from class ParameterOverDomain is deduced to be a set.

Derived From: ParameterOverDomain<T, Set<T>>

Description: Base abstract class for different types of ParameterValue class.

Derived From: (none)

Description: A Class that represents values for parameters. This is a template class with type argument T that denotes
the type of the parameter value. This class is typically used to set/get parameter values in the Interface::Stream
instances through setParameterValues() and getParameterValues() methods in Interface::InterfaceBase class. The
actual values are stored in the ‘val’ attribute of Interface::Attribute class.

Derived From: AttributeBase

Attributes

val T M 1 Value of the parameter.

param Parameter M 1 Reference to a Parameter object this parameter value is for. The
template argument T for this class shall match the template argument
of the referred Parameter object.

52 Robotic Localization Service, v1.1 beta

Table 7.92 - AttributeSet class

Table 7.93 - Ability class

Figure 7.21 - RoLo Service

Description: Represents a set of attributes or parameters.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

attrs Attribute O N Set of attributes that is contained in this attribute set.

Description: Describes module ability.

Derived From: AttributeSet

Stream

+ disconnect() : Returncode_t
+ getConnectedStream(stream :Stream*) : Returncode_t
+ getService(service :Service*) : Returncode_t
+ isConnected(status :Boolean*) : Returncode_t

StreamAbility

+ dataFormat: SetParameter<::RoLo::DataFormat::DataFormat>
+ dataSpec: SetParameter<::RoLo::Architecture::DataSpecification>
+ frequency: Parameter<Real> [0..1]
+ streamType: SetParameter<StreamType>

<<enumeratio...
StreamType

 PUSH
 PULL

InStream

+ setData(data :Data) : Returncode_t

OutStream

+ activate() : Returncode_t
+ deactivate() : Returncode_t
+ getData(data :Data*) : Returncode_t
+ isActivated(status :Boolean*) : Returncode_t

Service

+ adjust(data :Data) : Returncode_t
+ connect(target :InStream, source :OutStream, inStream :InStream*) : Returncode_t
+ connect(target :InStream, inStream :InStream*) : Returncode_t
+ connect(source :InStream, outStream :OutStream*) : Returncode_t
+ connect(outStream :OutStream*) : Returncode_t
+ getChild(inStream :InStream, service :Service*) : Returncode_t

Serv iceAbility

+ expectedLatency: Attribute<Real>
+ inStreamAbilities: StreamAbility [0..*]
+ outStreamAbility: StreamAbility

ISO 19111::IO_IdentifiedObject

InterfaceBase

+ getAbil ity(abil ity :Abil ity*) : Returncode_t
+ getParameterValues(paramVals :Set<ParameterValueBase>*) : Returncode_t
+ setParameterValues(paramVals :Set<ParameterValueBase>) : Returncode_t

Ability#abil ity

{subset abil ity}

#outStreams
0..* {ordered}

#inStreams

0..* {ordered}

{subset
abil ity}

Robotic Localization Service, v1.1 beta 53

Table 7.94 - InterfaceBase class

Table 7.95 - StreamType enumeration

Table 7.96 - StreamAbility class

Description: Abstract class for interfacing objects.

Derived From: IO_IdentifiedObject [ISO19111]

Attributes

ability
(protected)

Ability M 1 Reference to an ability description for this object. The
referred RoLo ability’s attribute ‘target’ shall refer to this
object.

Operations

getAbility Operation for obtaining the ability description for this stream

out ability Ability Ability description of this stream.

setParameterValues Operation for setting values to the configurable parameters.

in paramVals Set<ParameterValueBase> Set of parameter values to be set. If some nonexistent or
inconfigurable parameters were specified,
UNSUPPORTED_PARAMETER or BAD_PARAMETER
will be returned respectively.

getParameterValues Operation for obtaining status of configurable parameters.

out paramVals Set<ParameterValueBase> Current status of parameter values.

PUSH Indicates that data passing is performed in PUSH mode (i.e., SENDER side triggers data passing).

PULL Indicates that data passing is performed in PULL mode (i.e., RECEIVER side triggers data passing).

Description: Ability description for RoLo streams. If each RoLo stream has special functionalities, this class may be
extended to be added necessary descriptions.

Derived From: Ability

Attributes

dataSpec SetParameter<RoLo::Architecture::
DataSpecification>

M 1 Set of RoLo data specifications that are supported by this
stream.

dataFormat SetParameter<RoLo::DataFormat::
DataFormat>

M 1 Set of RoLo data formats supported by this stream.
When an instance of DataFormat::SpecificDataFormat is
set by the user, the data specification specified in the
data format (through SpecificDataFormat.dataSpec
attribute) shall be consistent with the dataSpec attribute
in this class.

54 Robotic Localization Service, v1.1 beta

Table 7.97 - Stream class

Table 7.98 - OutStream class

streamType SetParameter<StreamType> M 1 Parameter for supported stream types.

frequency SetParameter<Real> O 1 Parameter for data passing frequency in PUSH mode.
The unit for this attribute is Hz. If unnecessary (for
example, a RoLo out stream that only supports PULL
type data passing), this parameter may be omitted.

Description: Abstract class for representing RoLo streams.

Derived From: InterfaceBase

Operations

getService Returns the service owning this stream.

out service Service Reference to the service owning this stream.

getConnectedStream Obtain currently connected stream, if any.

out streams Stream Reference to the stream that is currently connected to this stream. If no
stream is connected, ERROR is returned. Otherwise, OK is returned. When
the connection is performed without 'source' argument, this may not work
(See description on Service class for details).

isConnected Check whether this stream is connected to other stream.

out status Boolean If connected true, otherwise false.

disconnect Disconnects this stream from the currently connected stream.

Note – Values for the attribute ‘ability’ which is derived from parent class shall be limited to instances of StreamAbility or
its inherited classes.

Description: Represents output streams.

Derived From: Stream

Operations

getData Obtain localization result.

out data Data
(RoLo::Architecture)

Resulting localization data.

activate Activate stream output. Only meaningful on PUSH mode.

deactivate Deactivate stream output. Only meaningful on PUSH mode.

isActivated Query whether this stream is activated or not.

out status Boolean If activated true, otherwise false.

Robotic Localization Service, v1.1 beta 55

Table 7.99 - InStream class

Table 7.100 - ServiceAbility class

Table 7.101 - Service class

Description: Represents input streams.

Derived From: Stream

Operations

setData Set data to this stream.

in data Data
(RoLo::Architecture)

Localization data to be set to this stream.

Description: Ability description for RoLo Service. If each specific service implementation has special functionalities,
this class may be extended to be added the necessary descriptions.

Derived From: Ability

Attributes

expectedLatency Attribute<Real> M 1 Expected latency. This ability descriptor is especially useful
for Robotic Localization Service users. The unit for this
attribute is milliseconds.

inStreamAbilities StreamAbility O N Ability descriptions for the input streams in this service.

outStreamAbililty StreamAbility M 1 Ability descriptions for the output stream in this service.

Description: Interface for the robotic localization service.

Derived From: InterfaceBase

Attributes

inStreams
(protected)

InStream O N
ord

An ordered list of RoLo input streams owned by this service.

outStreams
(protected)

OutStream O N
ord

An ordered list of RoLo output streams owned by this service.

56 Robotic Localization Service, v1.1 beta

Using RoLo Service

Here we show several non-mandatory steps and sequence diagrams as examples. Typical steps of using RoLo Services
can be listed as following:

1. (optional) Obtain ability description by calling ‘getAbility’ method toward RoLo service. An ability description
obtained from RoLo service also includes descriptions on its streams. This step can be omitted if users already have
sufficient information such by reading reference manuals.

Operations

connect Establish connection from output stream to input stream. (SENDER service initiates the connection)

in target InStream Reference to a RoLo input stream to be connected. This target reference
shall be obtained through getAbility method.

in source [0..1] OutStream Reference to the RoLo output stream that is connecting. This argument is
optional. When this argument is omitted, ‘getChildren’ method may not
work

out inStream InStream Reference to a RoLo input stream to be used for further manipulation of
the established connection. Note that, this reference may be pointing to a
different object as the one given as input argument. Users shall use the
returned reference, not the one obtained through getAbility method.

connect Establish connection from input stream to output stream. (RECEIVER service initiates the connection)

in source
[0..1]

InStream Reference to the RoLo input stream that is connecting. This argument is
optional. However, when data passing is to be done in PUSH mode, this
argument cannot be omitted. Also, when this argument is omitted,
‘getChildren’ method may not work.

out outStream OutStream Reference to a RoLo output stream object to be used for further
manipulation of the established connection.

adjust Method for adjusting localization results. For elements not required for adjustment, don’t-care element
should be specified.

in data Data(RoLo::
Architecture)

Data to be used for initialization or adjustment. Adjusts every element at
once.

getChild Obtain services connected to input streams of this service.

in inStream InStream Instream to retrieve the connected service.

out services List<Service> Ordered list of services connected to the input streams of this service.

Note: When ‘getAbility’ method is called, RoLo stream shall return an ability description that contains ability
descriptors for the service and also the descriptors for the RoLo streams that this service holds. This shall include the
descriptors for each of the input streams. For the out stream, only a single descriptor is sufficient.
Values for the attribute ‘ability’ that is derived from parent class shall be limited to instances of ServiceAbility or its
inherited classes.

Robotic Localization Service, v1.1 beta 57

2. (optional) Set up service and/or stream parameters through calling ‘setParameterValues’ method. If the default
settings are sufficient or if there exists no parameter to be configured, this step can be omitted. In complicated cases,
users may need to repeatedly call ‘setParameterValues’ and ‘getParameterValues’ to set and to confirm parameter
changes.

3. Establish connection.

4. (optional) Set up initial position data by calling ‘adjust’ method with necessary data.

5. Perform data passing.

6. (optional) Occasionally, perform adjustment if necessary. Adjustment is an act to provide auxiliary information to the
target module for improving the localization process.

7. Disconnect the connection.

Figure 7.22 to Figure 7.26 show sequences of typical steps on using RoLo service. Note that in step 3, connection
establishment can be initiated from two sides; either from the service that outputs data (SENDER service) or from the
service that accepts data inputs (RECEIVER service). Figure 7.23 and Figure 7.24 show typical connection sequences in
both cases. Note that, disconnection of the established connection (step 7) can be performed from both sides regardless of
which side initiated the connection (Figure 7.26).

Figure 7.22 - Sequence diagram of typical RoLo service usage

alt
[connection initiator = SENDER service]

[connection initiator = RECEIVER service]

RECEIVER service RECEIVER stream SENDER stream SENDER service

Connect from SENDER service
ref

Connect from RECEIVER service
ref

Data passing
ref

Disconnect
ref

alt
[connection initiator = SENDER service]

[connection initiator = RECEIVER service]

Connect from SENDER service
ref

Connect from RECEIVER service
ref

Data passing
ref

Disconnect
ref

58 Robotic Localization Service, v1.1 beta

Figure 7.23 - Sequence Diagram of Connection Establishment from SENDER Service

Figure 7.24 - Sequence Diagram of Connection Establishment from RECEIVER Service

opt

[If users need to set parameters for the obtained stream]

opt

[If users need to obtain ability description and set parameters]

connect(in target: InStream, in source: OutStream, out inStream: InStream)

setParameterVals(in paramVals: Set<ParameterValueBase>)

getAbility(out ability: Ability)

setParameterVals(in paramVals: Set<ParameterValueBase>)

RECEIVER service RECEIVER stream SENDER stream SENDER service

opt

[If users need to set parameters for the obtained stream]

opt

[If users need to obtain ability description and set parameters]

Connect from SENDER servicesd

opt

[If users need to obtain ability description and set parameters]

opt

[If users need to set parameters for the obtained stream]

connect(in source: InStream, out outStream: OutStream)

setParameterVals(paramVals)

setParameterValues(in paramVals: Set<ParameterValueBase>)

getAbility(out: ability: Ability)

RECEIVER service RECEIVER stream SENDER stream SENDER service

opt

[If users need to obtain ability description and set parameters]

opt

[If users need to set parameters for the obtained stream]

Connect from RECEIVER servicesd

Robotic Localization Service, v1.1 beta 59

Figure 7.25 - Sequence Diagram of Data Passing

Figure 7.26 - Sequence Diagram of Disconnecting Connection

loop

loop

[Stop obtaining data]

alt
[PUSH mode]

[PULL mode]

break

opt

[If initial position setting is required]

setData(in data: Data)

getData(out data: Data)

activate()

deactivate()

adjust(in data: Data)

RECEIVER service RECEIVER stream SENDER stream SENDER service

[Output data finished / No more callback necessary]

loop

loop

[Stop obtaining data]

alt
[PUSH mode]

[PULL mode]

break

opt

[If initial position setting is required]

Data passingsd

alt
[Disconnect from SENDER service]

[Disconnect from RECEIVER service]

disconnect()

disconnect()

RECEIVER service RECEIVER stream SENDER stream SENDER service

alt
[Disconnect from SENDER service]

[Disconnect from RECEIVER service]

Disconnectsd

60 Robotic Localization Service, v1.1 beta

Another factor that needs consideration is the type of data passing. In this specification, two data passing types are
provided as elements of StreamType enumeration: PUSH mode (SENDER side triggers data passing) and PULL mode
(RECEIVER side triggers data passing). For example, most GPS receivers output data in PUSH mode, that is,
measurement results are outputted continuously in some frequency. These two types of data passing can be performed
regardless of which side initiates connection, as far as both modules have the ability to perform data passing in the
specified type. Figure 7.25 shows typical steps for performing data passing for the two directions. As can be seen from
the sequence, in PULL mode, the RECEIVER service triggers data passing by calling ‘getData’ method. And in PUSH
mode, the SENDER service triggers data passing by ‘setData’ method.

PUSH type data passing can also be understood as a callback from SENDER side to RECEIVER side. Thus, when using
PUSH mode and when connection is established from IN side, the ‘source’ argument cannot be omitted. Without this, the
RoLo output stream on SENDER side cannot know where to make callbacks for data passing. However, when connection
is established from SENDER side, this ‘source’ argument is not required for the sake of making callbacks, as the RoLo
input stream is given back as an ‘inStream’ argument.

Robotic Localization Service, v1.1 beta 61

8 Platform Specific Model

8.1 C++ PSM

This chapter shows a PSM in C++ language based on the PIM described in Chapter 7. This PIM-PSM mapping is based
on the following rules:

• The return values of methods are assumed to be mapped as exceptions. Thus, in this PSM, no explicit description is
given.

• When methods had only a single ‘out’ argument, it was mapped as return value of the corresponding function.

• The ‘in’ arguments to methods were mapped as method arguments with the ‘const’ modifier.

• Arguments that were based on non-primitive types are passed by reference.

• An attribute or an argument that is marked to occur more than once and is marked as unordered is mapped to
‘::std::set.’ If marked as ordered, it is mapped to ‘::std::vector.’

• When an attribute is shown as an aggregation or as a derived attribute, or when an argument indicates a reference to
other object, it is mapped as a pointer.

• CharacterString is mapped as ‘::std::string.’

The following shows the resulting C++ header files.

// $Id: Returncode_t.hpp,v 1.3 2009/06/20 06:18:43 nishio Exp $

#pragma once

namespace RoLo

{

 enum Returncode_t {

 OK,

 ERROR,

 BAD_PARAMETER,

 UNSUPPORTED_PARAMETER,

 UNSUPPORTED_OPERATION,

 TIMEOUT

 };

}

// $Id: Architecture.hpp,v 1.3 2009/06/20 06:18:42 nishio Exp $

#pragma once

#include <RLS/RelativeCRS.hpp>

#include <RLS/MobileCRS.hpp>

62 Robotic Localization Service, v1.1 beta

#include <RLS/MobileOperation.hpp>

#include <RLS/Identity.hpp>

#include <RLS/ErrorType.hpp>

#include <RLS/Error.hpp>

#include <RLS/RoLoArchitecture.hpp>

#include <RLS/RoLoDataOperation.hpp>

// $Id: Pose.hpp,v 1.0 2011/05/01 00:00:00 nishio Exp $

#pragma once

#include <ISO19111/CS_CoordinateSystem.hpp>

#include <ISO19111/SC_CoordinateReferenceSystem.hpp>

namespace RoLo

{

 namespace Architecture

 {

 class PoseType

 {

 public:

 PoseType* baseType;

 };

 class PositionPoseCRS

 : public ::ISO19111::SC_SingleCRS

 {

 public:

 PoseType* poseType;

 ::ISO19111::SC_CRS positionBaseCRS;

 };

 }

}

// $Id: RelativeCRS.hpp,v 1.8 2009/06/20 17:51:30 nishio Exp $

#pragma once

#include <ISO19111/SC_CoordinateReferenceSystem.hpp>

#include <ISO19111/CD_Datum.hpp>

#include <RLS/RoLoArchitecture.hpp>

namespace RoLo

{

 namespace Architecture

Robotic Localization Service, v1.1 beta 63

 {

 class RelativeCRS

 : public ::ISO19111::SC_EngineeringCRS

 {

 };

 class RelativeDatum

 : public ::ISO19111::CD_EngineeringDatum

 {

 };

 class StaticRelativeCRS

 : public RelativeCRS

 {

 };

 class StaticRelativeCartesianCRS

 : public StaticRelativeCRS

 {

 };

 class StaticRelativePolarCRS

 : public StaticRelativeCRS

 {

 };

 class StaticRelativeDatum

 : public RelativeDatum

 {

 public:

 DataSpecification* dataSpec;

 Data base;

 };

 class DynamicRelativeCRS

 : public RelativeCRS

 {

 };

 class DynamicRelativeDatum

 : public RelativeDatum

 {

64 Robotic Localization Service, v1.1 beta

 };

 }

}

// $Id: MobileCRS.hpp,v 1.5 2009/06/20 06:52:40 nishio Exp $

#pragma once

#include <ISO19111/CS_CoordinateSystem.hpp>

#include <ISO19111/CD_Datum.hpp>

#include <RLS/RelativeCRS.hpp>

#include <RLS/Service.hpp>

namespace RoLo

{

 namespace Architecture

 {

 class MobileCRS

 : public DynamicRelativeCRS

 {

 };

 class MobileCartesianCRS

 : public MobileCRS

 {

 };

 class MobilePolarCRS

 : public MobileCRS

 {

 };

 class MobileDatum

 : public DynamicRelativeDatum

 {

 public:

 const ::RoLo::Interface::InStream& getInStream();

 protected:

 ::RoLo::Interface::InStream inStream;

 };

 }

}

Robotic Localization Service, v1.1 beta 65

// $Id: MobileOperation.hpp,v 1.5 2009/06/20 06:18:43 nishio Exp $

#pragma once

#include <ISO19111/CC_Operation.hpp>

#include <ISO19111/SC_CoordinateReferenceSystem.hpp>

#include <ISO19111/CD_Datum.hpp>

namespace RoLo

{

 namespace Architecture

 {

 class MobileOperation

 : public ::ISO19111::CC_Transformation

 {

 };

 class Mobile2StaticOperation

 : public MobileOperation

 {

 public:

 MobileCRS *source;

 ISO19111::SC_CRS *target;

 };

 class Staic2MobileOperation

 : public MobileOperation

 {

 public:

 ISO19111::SC_CRS *source;

 MobileCRS *target;

 };

 class Mobile2MobileOperation

 : public MobileOperation

 {

 public:

 MobileCRS *source, *target;

 };

 }

}

// $Id: Identity.hpp,v 1.9 2011/05/01 00:00:00 nishio Exp $

66 Robotic Localization Service, v1.1 beta

#pragma once

#include <string>

#include <vector>

#include <set>

#include <ISO19111/IO_IdentifiedObject.hpp>

#include <ISO19111/CS_CoordinateSystem.hpp>

#include <ISO19111/SC_CoordinateReferenceSystem.hpp>

#include <ISO19111/CD_Datum.hpp>

namespace RoLo

{

 namespace Architecture

 {

 class IdentityCS

 : public ::ISO19111::CS_CoordinateSystem

 {

 };

 class NumericIdentityCS

 : public IdentityCS

 {

 };

 class SymbolicIdentityCS

 : public IdentityCS

 {

 };

 class IdentityDatum

 : public ::ISO19111::CD_Datum

 {

 };

 class IdentityCRS

 : public ::ISO19111::SC_SingleCRS

 {

 };

 class NumericIdentityCRS

 : public IdentityCRS

 {

Robotic Localization Service, v1.1 beta 67

 };

 class SymbolicIdentityCRS

 : public IdentityCRS

 {

 };

 class DirectSymbol

 {

 public:

 ::std::vector<std::string> coords;

 SymbolicIdentityCRS *crs;

 };

 class SymbolRef

 {

 public:

 DirectSymbol *point;

 };

 class SymbolicPosition

 {

 public:

 DirectSymbol *direct;

 SymbolRef *indirect;

 };

 template <typename T>

 class SetCoordinateSystemAxis

 : public ::ISO19111::CS_CoordinateSystemAxis

 {

 public:

 ::std:set<T> elements;

 };

 class StringSetCoordinateSystemAxis

 : public SetCoordinateSystemAxis<std::string>

 {

 };

 class StringSetCoordinateSystemAxis

 : public SetCoordinateSystemAxis<int>

68 Robotic Localization Service, v1.1 beta

 {

 };

 }

}

// $Id: ErrorType.hpp,v 1.4 2009/06/20 06:18:43 nishio Exp $

#pragma once

#pragma once

#include <ISO19111/IO_IdentifiedObject.hpp>

namespace RoLo

{

 namespace Architecture

 {

 class ErrorType

 : public ::ISO19111::IO_IdentifiedObject

 {

 public:

 ErrorType *baseType;

 };

 class ErrorTypeOperation

 : public ::ISO19111::IO_IdentifiedObject

 {

 public:

 ErrorType *source, *target;

 };

 }

}

// $Id: ErrorBase.hpp,v 1.1 2009/06/20 06:18:42 nishio Exp $

#pragma once

#include <RLS/ErrorType.hpp>

namespace RoLo

{

 namespace Architecture

 {

 class ErrorType;

Robotic Localization Service, v1.1 beta 69

 class Error

 : public ::ISO19111::IO_IdentifiedObjectBase

 {

 public:

 ErrorType *errType;

 };

 }

}

// $Id: Error.hpp,v 1.8 2011/05/01 00:00:00 nishio Exp $

#pragma once

#include <vector>

#include <ISO19103/Primitive.hpp>

#include <ISO19111/IO_IdentifiedObject.hpp>

#include <RLS/ErrorType.hpp>

#include <RLS/ErrorBase.hpp>

#include <RLS/RoLoArchitecture.hpp>

namespace RoLo

{

 namespace Architecture

 {

 class Reliability

 : public Error, public ::ISO19103::Probability

 {

 };

 class ErrorDistribution

 : public Error

 {

 };

 class Matrix

 {

 public:

 int nRow, nCol;

 ::std::vector< ::ISO19103::Number > vals;

 };

 class CovarianceMatrix

 : public Matrix

70 Robotic Localization Service, v1.1 beta

 {

 };

 class Gaussian

 : public ErrorDistribution

 {

 public:

 CovarianceMatrix cov;

 };

 class UniformGaussian

 : public Gaussian

 {

 };

 class MixtureModel

 : public ErrorDistribution

 {

 };

 class Model

 : public PositionElement

 {

 };

 class WeightedModel

 : public Model

 {

 public:

 ::ISO19103::Probability weight;

 };

 class LinearMixtureModel

 : public MixtureModel

 {

 public:

 ::std::vector<Model> models;

 };

 class MixtureOfGaussian

 : public LinearMixtureModel

 {

Robotic Localization Service, v1.1 beta 71

 };

 class ParticleSet

 : public LinearMixtureModel

 {

 };

 }

}

// $Id: RoLoArchitecture.hpp,v 1.8 2009/06/20 06:18:43 nishio Exp $

#pragma once

#include <vector>

#include <ISO19107/CoordinateGeometry.hpp>

#include <ISO19111/IO_IdentifiedObject.hpp>

#include <ISO19111/CS_CoordinateSystem.hpp>

#include <ISO19111/SC_CoordinateReferenceSystem.hpp>

#include <RLS/ErrorType.hpp>

#include <RLS/ErrorBase.hpp>

#include <RLS/Identity.hpp>

namespace RoLo

{

 namespace Architecture

 {

 class Position

 : public ISO19111::IO_IdentifiedObjectBase

 {

 public:

 SymbolicPosition* symbolic;

 ISO19107::GM_Position* numeric;

 };

 class ElementSpecification

 : public ::ISO19111::IO_IdentifiedObject

 {

 };

 class PositionElementSpecification

 : public ElementSpecification

 {

 public:

72 Robotic Localization Service, v1.1 beta

 ::ISO19111::SC_CRS *crs;

 ErrorType *errType;

 };

 class ErrorElementSpecification

 : public ElementSpecification

 {

 public:

 ::std::vector<PositionElementSpecification*> posSpecRefs;

 ErrorType *errType;

 };

 class Element

 : public ::ISO19111::IO_IdentifiedObjectBase

 {

 public:

 ElementSpecification *spec;

 };

 class PositionElement

 : public Element

 {

 public:

 Position pos;

 Error err;

 };

 class ErrorElement

 : public Element

 {

 public:

 Error err;

 };

 class DataSpecification

 : public ::ISO19111::IO_IdentifiedObject

 {

 public:

 ::std::vector<ElementSpecification> elemSpecs;

 };

 class Data

Robotic Localization Service, v1.1 beta 73

 : public ::ISO19111::IO_IdentifiedObjectBase

 {

 public:

 DataSpecification *spec;

 ::std::vector<Element> elems;

 };

 class DontCare

 {

 };

 class NULLCS

 : public DontCare, public ::ISO19111::CS_CoordinateSystem

 {

 };

 class NULLCRS

 : public DontCare, public ::ISO19111::SC_CRS

 {

 };

 class NULLDatum

 : public DontCare, public ::ISO19111::CD_Datum

 {

 };

 class NULLErrorType

 : public DontCare, public ErrorType

 {

 };

 class NULLElementSpecification

 : public DontCare, ElementSpecification

 {

 };

 }

}

// $Id: RoLoDataOperation.hpp,v 1.8 2009/06/20 17:46:15 nishio Exp $

#pragma once

#include <vector>

74 Robotic Localization Service, v1.1 beta

#include <ISO19111/IO_IdentifiedObject.hpp>

#include <ISO19111/CC_Operation.hpp>

#include <RLS/RoLoArchitecture.hpp>

namespace RoLo

{

 namespace Architecture

 {

 class PositionElementOperation

 : public ::ISO19111::IO_IdentifiedObject

 {

 public:

 PositionElementSpecification *source, *target;

 };

 class PositionElementConcatenatedOperation
 : public PositionElementOperation
 {
 public:
 ::std::vector<PositionElementOperation*> childOperations;
 };

 class PositionElementSingleOperation
 : public PositionElementOperation
 {
 public:
 ::ISO19111::CC_CoordinateOperation *usesOperation;
 ErrorTypeOperation *usesErrTypeOperation;
 };

 class DataOperation
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 DataSpecification *source, *target;
 };

 class DataConcatenatedOperation
 : public DataOperation
 {
 public:
 ::std::vector<DataOperation*> childOperations;
 };

 class DataSingleOperation

Robotic Localization Service, v1.1 beta 75

 : public DataOperation
 {
 };

 class DataTransformation
 : public DataSingleOperation
 {
 public:
 ::std::vector<PositionElementOperation*> usesOperations;
 };

 class DataMappingOperation
 : public DataSingleOperation
 {
 public:
 ::std::vector<ElementSpecification*> sourceElemSpecs, targetElemSpecs;
 };

 }
}
// $Id: DataFormat.hpp,v 1.5 2009/06/20 06:18:42 nishio Exp $

#pragma once
#include <ISO19111/IO_IdentifiedObject.hpp>
#include <RLS/RoLoArchitecture.hpp>

namespace RoLo
{
 namespace DataFormat
 {
 class DataFormat
 : public ISO19111::IO_IdentifiedObject
 {
 };

 class EncodingRule
 : public DataFormat
 {
 };

 class SpecificDataFormat
 : public DataFormat
 {
 public:
 ::RoLo::Architecture::DataSpecification *dataSpec;
 };

 class UserDefinedDataFormat
 : public SpecificDataFormat

76 Robotic Localization Service, v1.1 beta

 {
 };

 class CommonDataFormat
 : public SpecificDataFormat
 {
 };

 }
}
// $Id: Interface.hpp,v 1.2 2009/06/20 06:18:43 nishio Exp $
#pragma once

#include <RLS/Ability.hpp>
#include <RLS/Service.hpp>

// $Id: Ability.hpp,v 2.0 2011/05/01 00:00:00 nishio Exp $

#pragma once
#include <set>
#include <ISO19103/Primitive.hpp>
#include <ISO19111/IO_IdentifiedObject.hpp>
#include <ISO19115.hpp>
#include <RLS/RoLoArchitecture.hpp>
#include <RLS/Error.hpp>

namespace RoLo
{
 namespace Interface
 {
 class AttributeDefinition
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 ::ISO19115::RS_Identifier type;
 ::ISO19103::UnitOfMeasure unit;
 };

 class AttributeBase
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 const AttributeDefinition def;
 };

 template <typename T>
 class Attribute
 : public AttributeBase

Robotic Localization Service, v1.1 beta 77

 {
 public:
 T val;
 };

 template <typename T>
 class Parameter
 : public Attribute<T>
 {
 public:
 bool isConfigurable;
 };

 template <typename T, typename TD>
 class ParameterOverDomain
 : public Attribute<T>
 {
 public:
 TD domain;
 };

 template <typename T>
 class Interval
 {
 public:
 T min, max;
 bool minInc, maxInc;
 };

 template <typename T>
 class IntervalParameter
 : public ParameterOverDomain< T, Interval<T> >
 {};

 template <typename T>
 class SetParameter
 : public ParameterOverDomain< T, ::std::set<T> >
 {};

 class AttributeSet
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:
 ::std::set<AttributeBase> attrs;
 };

 class Ability
 : public AttributeSet
 {

78 Robotic Localization Service, v1.1 beta

 };

 class ParameterValueBase
 {
 };

 template <typename T>
 class ParameterValue
 : public ParameterValueBase
 {
 public:
 T val;
 };
 }
}
// $Id: Service.hpp,v 1.11 2011/05/01 00:00:00 nishio Exp $

#pragma once
#include <vector>
#include <set>
#include <ISO19111/IO_IdentifiedObject.hpp>
#include <ISO19115.hpp>
#include <RLS/Ability.hpp>
#include <RLS/DataFormat.hpp>
#include <RLS/RoLoArchitecture.hpp>

namespace RoLo
{
 namespace Interface
 {
 enum StreamType {
 PUSH,
 PULL
 };

 class StreamAbility
 : public Ability
 {
 public:
 SetParameter< ::RoLo::DataFormat::DataFormat> dataFormat;
 SetParameter< ::RoLo::Architecture::DataSpecification > dataSpec;
 SetParameter<StreamType> streamType;
 SetParameter<double> frequency;
 };

 class InterfaceBase
 : public ::ISO19111::IO_IdentifiedObject
 {
 public:

Robotic Localization Service, v1.1 beta 79

 const Ability& getAbility();
 void setParameterValues(const ::std::set<ParameterValueBase>& paramVals);
 const ::std::set<ParameterValueBase>& getParameterValues();
 protected:
 Ability* ability;
 };

 class Stream
 : public InterfaceBase
 {
 public:
 void disconnect();
 bool isConnected();
 const Stream& getConnectedStream();
 const class Service& getService();
 };

 class OutStream
 : public Stream
 {
 public:
 const ::RoLo::Architecture::Data& getData();
 void activate();
 void deactivate();
 bool isActivated();
 };

 class InStream
 : public Stream
 {
 public:
 void setData(const ::RoLo::Architecture::Data& data);
 };

 class ServiceAbility
 : public Ability
 {
 public:
 Attribute<int> maxOutStreamNum;
 Attribute<double> expectedLatency;
 ::std::set<StreamAbility> inStreamAbilities;
 StreamAbility outStreamAbility;
 };

 class Service
 : public InterfaseBase
 {
 public:
 InStream& connect(const InStream& target, const OutStream* source = NULL);

80 Robotic Localization Service, v1.1 beta

 OutStream& connect(const InStream* source = NULL);
 void adjust(const ::RoLo::Architecture::Data& data);
 const ::std::vector<const Service*> getChildren();

 protected:
 ::std::vector<InStream> inStreams;
 ::std::vector<OutStream> outStreams;
 };

 }

}

Robotic Localization Service, v1.1 beta 79

Annex A
PSM for XML

(informative)

A.1 Overview

This annex provides a platform specific model for XML. This PSM has two variations, generic model and architecture-
specific model. The generic model is derived by mapping naively from UML model of RoLo data to XML, and is able to
represent any RLS elements. But, it is impossible to restrict structures syntactically for a specification of certain
architecture even if the architecture of the data is known.

On the other hand, the architecture-specific model is generated for each RoLo specification in a pragmatic way, and is
able to restrict its syntax strictly according to the specification. But, the XML schema for the representation should be
given for each RoLo data specification.

Hereafter, the target namespace of the given XML schemas is assumed to be “http://www.omg.org/rls/1.1.” Also, the
prefix “rls” indicates the same namespace.

A.2 Generic Model

The generic model is described below by XML schema definition.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:rls="http://www.omg.org/rls/1.1"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 targetNamespace="http://www.omg.org/rls/1.1"
 elementFormDefault="qualified" attributeFormDefault="qualified">

 <xsd:import namespace="http://www.opengis.net/gml/3.2" schemaLocation="ISO_19136/
GML.xsd"/>

 <!-- Fig.7 RoLo Error Type -->
 <xsd:element name="ErrorType" type="rls:ErrorTypeType"/>
 <xsd:complexType name="ErrorTypeType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:sequence>
 <xsd:element name="baseType" type="xsd:ID" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

80 Robotic Localization Service, v1.1 beta

 <xsd:element name="ErrorTypeOperation" type="rls:ErrorTypeOperationType"/>
 <xsd:complexType name="ErrorTypeOperationType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:sequence>
 <xsd:element name="source" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="target" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Fig.8 RoLo Error -->
 <xsd:element name="AbstractError" type="rls:AbstractErrorType" abstract="true"/>
 <xsd:complexType name="AbstractErrorType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:sequence>
 <xsd:element name="errorType" type="xsd:ID" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Reliability -->
 <xsd:element name="Reliability" type="rls:ReliabilityType"
substitutionGroup="rls:AbstractError" />
 <xsd:complexType name="ReliabilityType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractErrorType">
 <xsd:annotation>
 <xsd:documentation>
 xsd:restriction base="xsd:float"
 </xsd:documentation>
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ErrorDistribution -->
 <xsd:element name="AbstractErrorDistribution" type="rls:AbstractErrorDistributionType"
substitutionGroup="rls:AbstractError" abstract="true" />
 <xsd:complexType name="AbstractErrorDistributionType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractErrorType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Gaussian -->
 <xsd:element name="Gaussian" type="rls:GaussianType"
substitutionGroup="rls:AbstractErrorDistribution" />
 <xsd:complexType name="GaussianType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractErrorDistributionType">
 <xsd:sequence>

Robotic Localization Service, v1.1 beta 81

 <xsd:element name="cov" type="rls:CovarianceMatrixType" minOccurs="1"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="MatrixType">
 <xsd:simpleContent>
 <xsd:extension base="gml:doubleList">
 <xsd:attribute name="nRow" type="xsd:positiveInteger" use="required"/>
 <xsd:attribute name="nCol" type="xsd:positiveInteger" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="CovarianceMatrixType">
 <xsd:complexContent>
 <xsd:restriction base="rls:MatrixType">
 <xsd:annotation>
 <xsd:documentation>
 Attributes "nRow" should be equal to "nCol"
 </xsd:documentation>
 </xsd:annotation>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Uniform Gaussian -->
 <xsd:element name="UniformGaussian" type="rls:UniformGaussianType"
substitutionGroup="rls:Gaussian" />
 <xsd:complexType name="UniformGaussianType">
 <xsd:complexContent>
 <xsd:extension base="rls:GaussianType">
 <xsd:annotation>
 <xsd:documentation>
 Attributes "nRow" and "nCol" should be "1".
 </xsd:documentation>
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Mixture Model -->
 <xsd:element name="AbstractMixtureModel" type="rls:AbstractMixtureModelType"
substitutionGroup="rls:AbstractErrorDistribution" abstract="true" />
 <xsd:complexType name="AbstractMixtureModelType" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractErrorDistributionType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Linear Mixture Model -->
 <xsd:element name="AbstractLinearMixtureModel" type="rls:AbstractLinearMixtureModelType"
substitutionGroup="rls:AbstractMixtureModel" abstract="true" />

82 Robotic Localization Service, v1.1 beta

 <xsd:complexType name="AbstractLinearMixtureModelType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractMixtureModelType">
 <xsd:sequence>
 <xsd:element name="models" type="rls:ModelType" minOccurs="0"
maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="ModelType">
 <xsd:extension base="rls:PositionElementType"/>
 </xsd:complexType>

 <xsd:complexType name="WeightedModelType">
 <xsd:extension base="rls:ModelType">
 <xsd:sequence>
 <xsd:element name="weight" type="xsd:float" minOccurs="1" maxOccurs="1" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexType>

 <!-- Particle Set -->
 <xsd:element name="ParticleSet" type="rls:ParticleSetType"
substitutionGroup="rls:AbstractLinearMixtureModel" />
 <xsd:complexType name="ParticleSetType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractLinearMixtureModelType">
 <xsd:annotation>
 <xsd:documentation>
 Each "model" element shall contain without "err" element.
 This is interpreted that the error is a Gaussian distribution with an all-
zero covariance matrix.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- MixtureOfGaussian -->
 <xsd:element name="MixtureOfGaussian" type="rls:MixtureOfGaussianType"
substitutionGroup="rls:AbstractLinearMixtureModel" />
 <xsd:complexType name="MixtureOfGaussianType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractLinearMixtureModelType">
 <xsd:annotation>
 <xsd:documentation>
 Each "model" element shall contain an error information of Gaussian
distribution.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Robotic Localization Service, v1.1 beta 83

 <!-- Fig.10 RoLo Architecture -->
 <!-- DataSpecification -->
 <xsd:element name="DataSpecification" type="rls:DataSpecificationType"/>
 <xsd:complexType name="DataSpecificationType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:sequence>
 <xsd:choice minOccurs="1" maxOccurs="unbounded">
 <xsd:element ref="rls:PositionElementSpecification" />
 <xsd:element ref="rls:ErrorElementSpecification" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Data -->
 <xsd:element name="Data" type="rls:DataType"/>
 <xsd:complexType name="DataType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:sequence>
 <xsd:element name="spec" type="xsd:ID" minOccurs="0" maxOccurs="1"/>
 <xsd:choice minOccurs="1" maxOccurs="unbounded">
 <xsd:element ref="rls:PositionElement" />
 <xsd:element ref="rls:ErrorElement" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- PositionElementSpecification -->
 <xsd:element name="PositionElementSpecification"
type="rls:PositionElementSpecificationType"/>
 <xsd:complexType name="PositionElementSpecificationType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:sequence>
 <xsd:element name="crs" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="errType" type="xsd:ID" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ErrorElementSpecification -->
 <xsd:element name="ErrorElementSpecification" type="rls:ErrorElementSpecificationType"/>
 <xsd:complexType name="ErrorElementSpecificationType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:sequence>
 <xsd:element name="posSpecRefs" type="rls:PositionElementSpecificationType"
minOccurs="1" maxOccurs="unbounded"/>

84 Robotic Localization Service, v1.1 beta

 <xsd:element name="errType" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ErrorElement -->
 <xsd:element name="ErrorElement" type="rls:ErrorElementType"/>
 <xsd:complexType name="ErrorElementType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:sequence>
 <xsd:element name="spec" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="err" type="rls:AbstractErrorType" minOccurs="1" maxOccurs="1"/
>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- PositionElement -->
 <xsd:element name="PositionElement" type="rls:PositionElementType"/>
 <xsd:complexType name="PositionElementType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:sequence>
 <xsd:element name="spec" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="err" type="rls:AbstractErrorType" minOccurs="0" maxOccurs="1"/
>
 <xsd:element name="pos" type="rls:PositionType" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Position -->
 <xsd:complexType name="PositionType">
 <xsd:choice>
 <xsd:element ref="rls:SymbolicPosition"/>
 <xsd:element ref="rls:NumericPosition"/>
 </xsd:choice>
 </xsd:complexType>

 <!-- Numeric Position -->
 <xsd:element name="NumericPosition" type="rls:NumericPositionType"/>
 <xsd:complexType name="NumericPositionType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:group ref="gml:geometricPositionGroup"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Figure 5: Identity Information -->
 <!-- SetCoordinateSystemAxis -->

Robotic Localization Service, v1.1 beta 85

 <xsd:element name="SetCoordinateSystemAxis" type="rls:SetCoordinateSystemAxisType"
substitutionGroup="gml:CoordinateSystemAxis"/>
 <xsd:complexType name="SetCoordinateSystemAxisType">
 <xsd:complexContent>
 <xsd:extension base="gml:CoordinateSystemAxisType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- StringSetCoordinateSystemAxis -->
 <xsd:element name="StringSetCoordinateSystemAxis"
type="rls:StringSetCoordinateSystemAxisType"
substitutionGroup="rls:SetCoordinateSystemAxis"/>
 <xsd:complexType name="StringSetCoordinateSystemAxisType">
 <xsd:complexContent>
 <xsd:extension base="rls:SetCoordinateSystemAxisType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- IntegerSetCoordinateSystemAxis -->
 <xsd:element name="IntegerSetCoordinateSystemAxis"
type="rls:IntegerSetCoordinateSystemAxisType"
substitutionGroup="rls:SetCoordinateSystemAxis"/>
 <xsd:complexType name="IntegerSetCoordinateSystemAxisType">
 <xsd:complexContent>
 <xsd:extension base="rls:SetCoordinateSystemAxisType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- SymbolicPosition -->
 <xsd:element name="SymbolicPosition" type="rls:SymbolicPositionType"/>
 <xsd:complexType name="SymbolicPositionType">
 <xsd:complexContent>
 <xsd:sequence>
 <xsd:element name="coords" type="rls:SymbolicCoordinateType" minOccurs="1"
maxOccurs="unbounded"/>
 <xsd:element ref="rls:SymbolicIdentityCRS" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="SymbolicCoordinateType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="axisName" type="xsd:string" use="required" />
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <!-- IdentityDatum -->
 <xsd:element name="IdentityDatum" type="rls:IdentityDatumType"
substitutionGroup="gml:AbstractDatum"/>
 <xsd:complexType name="IdentityDatumType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractDatumType"/>
 </xsd:complexContent>

86 Robotic Localization Service, v1.1 beta

 </xsd:complexType>

 <!-- IdentityCRS -->
 <xsd:element name="AbstractIdentityCRS" type="rls:AbstractIdentityCRSType"
abstract="true" substitutionGroup="gml:AbstractSingleCRS"/>
 <xsd:complexType name="AbstractIdentityCRSType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractCRSType">
 <xsd:sequence>
 <xsd:element name="usesDatum" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- IdentityCS -->
 <xsd:element name="AbstractIdentityCS" type="rls:AbstractIdentityCSType" abstract="true"
substitutionGroup="gml:AbstractCoordinateSystem"/>
 <xsd:complexType name="AbstractIdentityCSType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractCoordinateSystemType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- NumericIdentityCRS -->
 <xsd:element name="NumericIdentityCRS" type="rls:NumericIdentityCRSType"
substitutionGroup="rls:AbstractIdentityCRS"/>
 <xsd:complexType name="NumericIdentityCRSType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractIdentityCRSType">
 <xsd:sequence>
 <xsd:element name="usesCS" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- NumericIdentityCS -->
 <xsd:element name="NumericIdentityCS" type="rls:NumericIdentityCSType"
substitutionGroup="rls:AbstractIdentityCS"/>
 <xsd:complexType name="NumericIdentityCSType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractIdentityCSType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- SymbolicIdentityCRS -->
 <xsd:element name="SymbolicIdentityCRS" type="rls:SymbolicIdentityCRSType"
substitutionGroup="rls:AbstractIdentityCRS"/>
 <xsd:complexType name="SymbolicIdentityCRSType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractIdentityCRSType">
 <xsd:sequence>
 <xsd:element name="usesCS" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>

Robotic Localization Service, v1.1 beta 87

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- SymbolicIdentityCS -->
 <xsd:element name="SymbolicIdentityCS" type="rls:SymbolicIdentityCSType"
substitutionGroup="rls:AbstractIdentityCS"/>
 <xsd:complexType name="SymbolicIdentityCSType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractIdentityCSType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Pose -->
 <!-- PoseType -->
 <xsd:element name="PoseType" type="rls:PoseTypeType"/>
 <xsd:complexType name="PoseTypeType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType">
 <xsd:sequence>
 <xsd:element name="baseType" type="xsd:ID" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- PositionPoseCRS -->
 <xsd:element name="AbstractPositionPoseCRS" type="rls:AbstractPositionPoseCRSType"
substitutionGroup="gml:AbstractReferenceSystemType"/>
 <xsd:complexType name="AbstractPositionPoseCRSType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractReferenceSystemType">
 <xsd:sequence>
 <xsd:element name="poseType" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="positionCRS" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Figure 3: Relative and Mobile coordinate reference system -->
 <!-- RelativeDatum -->
 <xsd:element name="AbstractRelativeDatum" type="rls:AbstractRelativeDatumType"
substitutionGroup="gml:EngineeringDatum"/>
 <xsd:complexType name="AbstractRelativeDatumType">
 <xsd:complexContent>
 <xsd:extension base="gml:EngineeringDatumType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- StaticRelativeDatum -->
 <xsd:element name="StaticRelativeDatum" type="rls:StaticRelativeDatumType"
substitutionGroup="rls:AbstractRelativeDatum"/>
 <xsd:complexType name="StaticRelativeDatumType">
 <xsd:complexContent>

88 Robotic Localization Service, v1.1 beta

 <xsd:extension base="rls:AbstractRelativeDatumType">
 <xsd:sequence>
 <xsd:element name="dataSpec" type="xsd:ID" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="base" type="rls:DataType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- DynamicRelativeDatum -->
 <xsd:element name="DynamicRelativeDatum" type="rls:DynamicRelativeDatumType"
substitutionGroup="rls:AbstractRelativeDatum"/>
 <xsd:complexType name="DynamicRelativeDatumType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractRelativeDatumType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- MobileDatum -->
 <xsd:element name="MobileDatum" type="rls:MobileDatumType"
substitutionGroup="rls:DynamicRelativeDatum"/>
 <xsd:complexType name="MobileDatumType">
 <xsd:complexContent>
 <xsd:extension base="rls:DynamicRelativeDatumType">
 <xsd:sequence>
 <xsd:element name="inStream" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- RelativeCRS -->
 <xsd:element name="AbstractRelativeCRS" type="rls:AbstractRelativeCRSType"
substitutionGroup="gml:EngineeringCRS"/>
 <xsd:complexType name="AbstractRelativeCRSType">
 <xsd:complexContent>
 <xsd:extension base="gml:EngineeringCRSType">
 <xsd:sequence>
 <xsd:element name="usesDatum" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- StaticRelativeCRS -->
 <xsd:element name="AbstractStaticRelativeCRS" type="rls:AbstractStaticRelativeCRSType"
substitutionGroup="rls:AbstractRelativeCRS"/>
 <xsd:complexType name="AbstractStaticRelativeCRSType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractRelativeCRSType">
 <xsd:sequence>
 <xsd:element name="usesDatum" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

Robotic Localization Service, v1.1 beta 89

 </xsd:complexType>

 <!-- StaticRelativeCartesianCRS -->
 <xsd:element name="StaticRelativeCartesianCRS" type="rls:StaticRelativeCartesianCRSType"
substitutionGroup="rls:AbstractStaticRelativeCRS"/>
 <xsd:complexType name="StaticRelativeCartesianCRSType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractStaticRelativeCRSType">
 <xsd:sequence>
 <xsd:element name="usesCS" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- StaticRelativePolarCRS -->
 <xsd:element name="StaticRelativePolarCRS" type="rls:StaticRelativePolarCRSType"
substitutionGroup="rls:AbstractStaticRelativeCRS"/>
 <xsd:complexType name="StaticRelativePolarCRSType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractStaticRelativeCRSType">
 <xsd:sequence>
 <xsd:element name="usesCS" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- DynamicRelativeCRS -->
 <xsd:element name="AbstractDynamicRelativeCRS" type="rls:AbstractDynamicRelativeCRSType"
substitutionGroup="rls:AbstractRelativeCRS"/>
 <xsd:complexType name="AbstractDynamicRelativeCRSType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractRelativeCRSType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- MobileCRS -->
 <xsd:element name="AbstractMobileCRS" type="rls:AbstractMobileCRSType"
substitutionGroup="rls:AbstractDynamicRelativeCRS"/>
 <xsd:complexType name="AbstractMobileCRSType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractDynamicRelativeCRSType">
 <xsd:sequence>
 <xsd:element name="usesDatum" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- MobileCartesianCRS -->
 <xsd:element name="MobileCartesianCRS" type="rls:MobileCartesianCRSType"
substitutionGroup="rls:AbstractMobileCRS"/>
 <xsd:complexType name="MobileCartesianCRSType">
 <xsd:complexContent>

90 Robotic Localization Service, v1.1 beta

 <xsd:extension base="rls:AbstractMobileCRSType">
 <xsd:sequence>
 <xsd:element name="usesCS" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- MobilePolarCRS -->
 <xsd:element name="MobilePolarCRS" type="rls:MobilePolarCRSType"
substitutionGroup="rls:AbstractMobileCRS"/>
 <xsd:complexType name="MobilePolarCRSType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbstractMobileCRSType">
 <xsd:sequence>
 <xsd:element name="usesCS" type="xsd:ID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Figure 13: RoLo Data Format -->
 <!-- DataFormat -->
 <xsd:element name="AbstractDataFormat" type="rls:AbstractDataFormatType"/>
 <xsd:complexType name="AbstractDataFormatType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Figure 20 - RoLo Ability -->
 <!-- AttributeSet -->
 <xsd:element name="AttributeSet" type="rls:AttributeSetType"/>
 <xsd:complexType name="AttributeSetType">
 <xsd:complexContent>
 <xsd:extension base="gml:IdentifiedObjectType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Ability -->
 <xsd:element name="Ability" type="rls:AbilityType" substitutionGroup="rls:AttributeSet"/>
 <xsd:complexType name="AbilityType">
 <xsd:complexContent>
 <xsd:extension base="rls:AttributeSetType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Figure 21 - RoLo Service -->
 <!-- StreamType -->
 <xsd:simpleType name="StreamTypeType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="PUSH"/>
 <xsd:enumeration value="PULL"/>
 </xsd:restriction>
 </xsd:simpleType>

Robotic Localization Service, v1.1 beta 91

 <!-- StreamAbility -->
 <xsd:element name="StreamAbility" type="rls:StreamAbilityType"
substitutionGroup="rls:Ability"/>
 <xsd:complexType name="StreamAbilityType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbilityType">
 <xsd:sequence>
 <xsd:element name="dataFormat" type="rls:AbstractDataFormatType" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="dataSpec" type="rls:DataSpecificationType" minOccurs="1"
maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="streamType" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="PUSH"/>
 <xsd:enumeration value="PULL"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="frequency" type="xsd:double" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ServiceAbility -->
 <xsd:element name="ServiceAbility" type="rls:ServiceAbilityType"
substitutionGroup="rls:Ability"/>
 <xsd:complexType name="ServiceAbilityType">
 <xsd:complexContent>
 <xsd:extension base="rls:AbilityType">
 <xsd:sequence>
 <xsd:element name="inStreamAbilities" type="rls:StreamAbilityType" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="outStreamAbility" type="rls:StreamAbilityType" minOccurs="1"
maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="expectedLatency" type="xsd:double" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

A.3 Architecture-specific Model

While the generic model shown above can represent any RoLo data, it is redundant and over generalized so that it is
difficult to check validity of the data syntactically according to the corresponding specifications. The architecture-specific
model will provides another mapping of a RoLo data to XML that is tightly restricted for the corresponding RoLo
architecture specifications.

Identifier and Tag Naming

In order to provide unique name of each component of RoLo data in a systematic way, we suppose that the following
restrictions are applied to each related instance of RoLo architectures:

92 Robotic Localization Service, v1.1 beta

• Each instance of DataSpecification, ElementSpecification, ErrorType, SymbolicIdentityCS, and
::ISO19111:CS_CoordianteSystemAxis shall have an identifier attribute that follow the following syntax: (In the
following BNF, we use “<<” and “>>” instead of “<” and “>” to avoid confusion of XML’s tags and nonterminal
symbols.)
 <<identifier>> ::= <<namespace>> <<separator>> <<localname>>
 <<namespace>> ::= <<xsd:anyURI>>
 <<separator>> ::= “/” | “:” | “#”
 <<localname>> ::= <<xsd::NCName>>
Here, <<xsd:anyURI>> and <<xsd:NCName>> are the restricted character strings that are defined in “W3C XML
Schema Definition Language.” From a given identifier that follows above syntax, we extract a namespace and a
localname for a corresponding instance of Data, Element, Error, and SymbolicPosition and its axis name of coordinates
using <<namespace>> and <<localname>>, respectively, part in <<identifier>>.

• ::ISO19111:CS_CoordianteSystemAxis's axisAbbrev attribute shall identical to the <<localname>> part of its
identifier attribute.

RoLo Data

Suppose that a DataSpecification has an identifier attribute, whose <<namespace>> and <<localname>> part are
“#myNamespace000'” and “myRoLoData,” respectively. We also suppose that the specification consists of a list of RoLo
element specifications whose qualified names are “myElement0,” “myElement1,” “myElement2,” and so on. Then, the
XML schema of corresponding Data instance shall be as following. Here we assume that the target namespace of the
following schema is “#myNamespace000” that corresponds to “app” prefix.

<xsd:element name=”myRoLoData” type=”myRoLoDataType”/>
<xsd:complexType name=”myRoLoDataType>
 <xsd:sequence>
 <xsd:element ref=”app:myElement0”/>
 <xsd:element ref=”app:myElement1”/>
 <xsd:element ref=”app:myElement2”/>
 ...
 </xsd:sequence>
</xsd:complexType>

Syntax of the contents of each Element is declared according to specifications of each ElementSpecification as describe below.

Example

<app:SensedObjectInfo xmlns:app="#myApplication000">
 <app:id>
 <app:pos>
 <app:SensedObjectId srsName="#myCRS0003">
 <app:type>human</app:type>
 <app:color>red</app:color>
 <app:seqNum>0253</app:seqNum>
 </app:SensedObjectId>
 </app:pos>
 <app:err>
 <rls:Reliability>0.6</rls:Reliability>
 </app:err>
 </app:id>
 <app:location>
 <app:pos>
 <gml:Point srsName="#myCRS0005">
 <gml:pos>3.25 2.21</gml:pos>
 </gml:Point>
 </app:pos>
 <app:err>
 <rls:UniformGaussian>

Robotic Localization Service, v1.1 beta 93

 <rls:cov nRow="1" nCol="1">
 2.13
 </rls:cov>
 </rls:UniformGaussian>
 </app:err>
 </app:location>
 <app:time>
 <app:pos>
 <gml:TimeInstant frame="#myCRS0007">
 <gml:TimePosition>2009-01-01T00:40:00+09:00</gml:TimePosition>
 </gml:TimeInstant>
 </app:pos>
 </app:time>
</app:SensedObjectInfo>

PositionElement

Suppose that a PositionElementSpecification has an identifier attribute, whose namespace and localname part are
“#myNamespace000” and “myPosElement,” respectively. Then, the XML schema of a corresponding PositionElement
shall be:

<xsd:element name=”myPosElement” type=”myPosElementType”/>
<xsd:complexType name=”myPosElementType>
 <xsd:sequence>
 <xsd:element name=”pos” type=”<<myPosType>>”/>
 {<xsd:element name=”err” type=”rls:ErrorComponentType”/>}?
 </xsd:sequence>
</xsd:complexType>

, where <<myPosType>> is:
l an application specific SymbolicPosition type describe below if the
CS_CoordinateSystem of PositionElementSpecification refers an identityCS,
l gml:TimeInstantPropertyType, if the cs is a temporal coordiante system,
l or, gml:PointPropertyType otherwise.

The “err” element part can be omitted according to the specification.

Example 1

<app:id xmlns:app="#myApplication000">
 <app:pos>
 <app:SensedObjectID srsName="#myCRS0003">
 <app:type>human</app:type>
 <app:color>red</app:color>
 <app:seqNum>0253</app:seqNum>
 </app:SensedObjectID>
 </app:pos>
 <app:err>
 <rls:Reliability>0.6</rls:Reliability>
 </app:err>
</app:id>

Example 2

<app:location xmlns:app="#myApplication000">
 <app:pos>
 <gml:Point srsName="#myCRS0005">
 <gml:pos>3.25 2.21</gml:pos>
 </gml:Point>
 </app:pos>

94 Robotic Localization Service, v1.1 beta

 <app:err>
 <rls:UniformGaussian>
 <rls:cov nRow="1" nCol="1">
 2.13
 </rls:cov>
 </rls:UniformGaussian>
 </app:err>
</app:location>

Example 3

<app:time xmlns:app="#myApplication000">
 <app:pos>
 <gml:TimeInstant frame="#myCRS0007">
 <gml:TimePosition>2009-01-01T00:40:00+09:00</gml:TimePosition>
 </gml:TimeInstant>
 </app:pos>
</app:time>

ErrorElement

Suppose that a RoLo error element specification has an identifier attribute, whose namespace and localname parts are
“#myNamespace000” and “myErrElement,” respectively. Then, the XML expression of a corresponding Error Element
shall be:

<xsd:element name=”myErrElement” type=”myErrElementType”/>
<xsd:complexType name=”myErrElementType>
 <xsd:sequence>
 <xsd:element name=”err” type=”rls:ErrorComponentType”/>
 </xsd:sequence>
</xsd:complexType>

Example

<app:myError xmlns:app="#myApplication000">
 <app:err>
 <rls:Gaussian>
 <rls:cov nRow="3" nCol="1">
 2.31 -0.32 1.23
 -0.32 1.50 0.01
 1.23 0.01 10.31
 </rls:cov>
 </rls:Gaussian>
 </app:err>
</app:myError>

Symbolic Position

Suppose that an IdentityCS has an identifier attribute, whose namespace and localname parts are “#myNamespace000” and
“myIdCS,” respectively. We also suppose that the usesAxis attribute of the IdentityCS consists of a list of
CoordinateSystemAxis [ISO19111] whose axisAbbrev (that is identical to the localname part in the identifier attribute of
the axis) are “myAxis0,” “myAxis1,” “myAxis2,” and so on. Then, the XML schema of a corresponding SymbolicPosition
shall be as follows:

<xsd:element name=”myIdCS” type=”myIdCSType”/>
<xsd:complexType name=”myIdCSType>
 <xsd:sequence>
 <xsd:element name=”myAxis0” type=”xsd:string”/>
 <xsd:element name=”myAxis1” type=”xsd:string”/>
 <xsd:element name=”myAxis2” type=”xsd:string”/>

Robotic Localization Service, v1.1 beta 95

 ...
 </xsd:sequence>
</xsd:complexType>

Example

<app:id xmlns:app="#myApplication000" srsName="#myCRS0003">
 <app:type>human</app:type>
 <app:color>red</app:color>
 <app:seqNum>0253</app:seqNum>

</app:id>

96 Robotic Localization Service, v1.1 beta

Robotic Localization Service, v1.1 beta 91

Annex B
Naming of RoLo Architecture Components for

Filter Condition

(informative)

This annex provides a naming rule of RoLo architecture components for use with filter condition. In order to utilize the
filter condition, we need a way to specify components in a RoLo data to test each condition. For this purpose, we suppose
that each RoLo data can be expressed by XML-PSM (see Annex A) and use XPath to indicate each part of RoLo data as
same as the original filter encoding in ISO 19143.

Example 1

This example is an XML encoding of a filter condition that requires only localization data in a certain area.
<fes:Filter
 xmlns:fes="http://www.opengis.net/fes/2.0"

 xmlns:gml="http://www.opengis.net/gml/3.1"
 xmlns:myapp="http://my.localhost.localnet/myapp"
 xmlns:rls="http://www.omg.org/rls/1.0">
 <fes:Intersects>
 <fes:PropertyName>myapp:location/rls:pos</fes:PropertyName>
 <gml:Envelope
 srsName="http://my.localhost.localnet/myapp/crs000">

 <gml:lowerCorner>10.25 15.33</gml:lowerCorner>
 <gml:upperCorner>17.73 25.03</gml:upperCorner>

 </gml:Envelope>
 </fes:Intersects>
</fes:Filter>

Example 2

This example is an XML encoding of a filter condition that requires only localization data of a certain ID.
<fes:Filter
 xmlns:fes="http://www.opengis.net/fes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.1"
 xmlns:myapp="http://my.localhost.localnet/myapp"
 xmlns:rls="http://www.omg.org/rls/1.0">
 <fes:PropertyIsEqualTo>
 <fes:PropertyName>myapp:id/rls:pos</fes:PropertyName>
 <fes:Literal>myID:3429:abcd</fes:Literal>
 </fes:PropertyIsEqualTo>
</fes:Filter>

Example 3

This example is an XML encoding of a filter condition that requires only localization data in a certain area and a certain
time period.

92 Robotic Localization Service, v1.1 beta

 <fes:Filter
 xmlns:fes="http://www.opengis.net/fes/2.0"

 xmlns:gml="http://www.opengis.net/gml/3.1"
 xmlns:myapp="http://my.localhost.localnet/myapp"
 xmlns:rls="http://www.omg.org/rls/1.0">
 <fes:And>
 <fes:Intersects>
 <fes:PropertyName>myapp:location/rls:pos</fes:PropertyName>
 <gml:Polygon
 srsName="http://my.localhost.localnet/myapp/crs000">
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList dimension="2">
 23.02 34.21
 11.56 23.14
 90.43 23.19
 33.23 29.00
 23.02 34.21
 </gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </fes:Intersects>
 <fes:PropertyIsBetween>
 <fes:PropertyName>myapp:time/rls:pos</fes:PropertyName>
 <fes:LowerBoundary>
 <fes:Literal>2008-12-08T09:00:00.000-08:00</fes:Literal>
 </fes:LowerBoundary>
 <fes:UpperBoundary>
 <fes:Literal>2008-12-10T17:30:00.000-08:00</fes:Literal>
 </fes:UpperBoundary>
 </fes:PropertyIsBetween>
 </fes:And>

 </fes:Filter>

