e - = -— - ‘;‘®
= |

= —=-E %t F ==
F =T B ' T T &= £
= ==l =
— 2 i .=~

|

OBJECT MANAGEMENT GROUP®

Version 1.2 with change bars

Date: July 2016

Requirements Interchange Format (ReqlF)

OMG Document Number:
Standard document URL:
Machine Consumable Files:
Normative: http://www.omg.org/spec/ReqlF/20101201/reqif.cmof
http://www.omg.org/spec/ReqlF/20110401/reqif.xsd
http://www.omg.org/spec/ReqlF/20110402/driver.xsd

formal/2016-07-02
http://www.omg.org/spec/ReqlF/1.2

Copyright © 2010, 88solutions Corporation
Copyright © 2010, Atego Systems GmbH
Copyright © 2010, Audi AG

Copyright © 2010, BMW AG

Copyright © 2010, Continental AG

Copyright © 2010, Daimler AG

Copyright © 2010, HOOD GmbH

Copyright © 2010, International Business Machines
Copyright © 2010, MKS GmbH

Copyright © 2010, Model Alchemy Consulting
Copyright © 2016, Object Management Group, Inc.
Copyright © 2010, PROSTEP AG

Copyright © 2010, ProSTEP iViP Association
Copyright © 2010, Robert Bosch GmbH

Copyright © 2010, Volkswagen AG

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to al of the terms and conditions below, the owners of the copyright in this specification hereby grant you afully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specificationsis for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adoptersisdirected to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OM G specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS"' AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk as to the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD FA.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.SA.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL IDEN-
TIFIER®, 110P®, IMM®, Mode Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are
registered trademarks of the Object Management Group, Inc.

For acompletelist of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names mentioned
are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials. Software devel oped
under the terms of this license may claim compliance or conformance with this specification if and only if the software
complianceis of anature fully matching the applicable compliance points as stated in the specification. Software developed
only partially matching the applicable compliance points may claim only that the software was based on this specification, but
may nhot claim compliance or conformance with this specification. In the event that testing suites are implemented or approved
by Object Management Group, Inc., software developed using this specification may claim compliance or conformance with
the specification only if the software satisfactorily completes the testing suites.

OMG'SISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://i ssues.omg.org/issues/create-new-issue).

Table of Contents

(=3 = (o P %
Y o 0] 01 1
1.1 Who should read this document?ccooooiiiiiii i 1
1.2 Objectives of the Requirements Interchange Formatccceeveeens 1
2 CONfOMMANCE ...t e e e e e e e 3
3 Normative REfEre&NCESuoiiiiiiiiiiie e e 3
3.1 Normative REfEIENCESiiiiiiii i 3
3.2 NON-NOrmMative refEre€NCEScevuiieiiiiie e e e eeeees 4
4 Terms and DefinitioNScoooeiiiiiiii e 4
5 SYMDBOIS oo 5
6 Additional INnformationccooiiiiiiii 6
6.1 How to read this Specificationcccooeevviiiiiii i 6
6.2 ACKNOWIEAGEMENTS ...ovviiiiiii i e e s 6
6.2.1 Submitting OrganiZatiONSuuuuruueruuirieeeiieeireereererrereereer— e 6
6.2.2 SUppPOrting OrganiZationNSuuuuurruueruiirieeerieerreereereerereeree—————————————————————.. 7
7 Concept Overview and UsSe CaSESccuciviiiiiiiiiiiiiiiineeeeeie e 9
7.1 Preface: How requirements authoring tools handle information 9

7.2 How the Requirements Interchange Format handles information from
requirement authoring tOOISccooviiiiiiiiii e 11

7.3 How the Requirements Interchange Format copes with different tool

(o= o =1 111115 P 12
7.4 EXCNRANQE SCENANOS ...coevviiiiiiiiiiiiiiiiiiiiiietiieii s e e e e e e 13
7.4.1 ROIE DESCIIPLIONS ..oeiiiiiiiiiiiie ettt a e e e e e st e e e e e e aaanes 14
7.4.2 First exchange scenario (“ONE-WaY”)uuuuruurrmmerrmmirieemnrsrrsrererrerrrereer———. 14
7.4.3 Second exchange scenario (“ROUNALIIP”)vuvvvviviiiriiniiiiiiieiireiereeeeereeeeeeeeeeeeeeeees 15
7.5 Detailed USE CaASEScooevuiiiiiiiii ettt e e e e e e e e e eens 17
7.5.1 USE CASE OVEIVIEW ..uuuuiiuiiiuueiuuiiunnantennenneeuaeeneaeanresaeesseesaesseessssessssssesesessssssnessnesnes 17
7.5.2 Use Case SPECIfICALIONSuuuuuuuuriiiiiiiiiiiiiiiiiieirarieerianrrarrerrrerr . 17

Requirements Interchange Format (ReqlF), v1.2 i

8 ADSIIaCt ArCHITECIUIE ...e e e 21

9 Exchange Document StrUCIUIecc.oieiiiiiiiiiieeeiie e 25
O R I <Y aT=] = PP 25
9.2 Class DESCIIPLONSiiiieiiieiiiiiie et e e e e e e e e 25

0 R = L= || =T U PR PSP PPPPR 25
8 B = U= o | | @ 0] g1 (=] | 26
9.2.3 REQIFHEAETot neee 26
9.2.4 REQIFTOOIEXIENSION ..oiiiiiiiiiiiii ettt e e e e r e e as 28

10 Exchange Document CONtentcoooeiiiiiiiiiiiieeeici e 29
O I B O LY =T V< PP 29
10.2 Identification Of EIEMENTSoeniieie e e e 29
10.3 Specifications, Requirements, and Attributesc.ocoeviiiieiiiinneens 30
10.4 Hierarchical Structuring of Requirements in a Specification and

Requirement RelationsSccooviiiiiiiiiiiiie e 32

10.5 Representing Attribute Data TYPEScovvvviviiiiiiiieeeeeeeee e 33
10.5.1 Representing Data TYPES ...coveeeiiiiiiiie s s e e e e e et s e e e e e e ee e e e e e e e eeanrnens 33
10.5.2 Relating Attributes t0 Data TYPESvevrrruuerruerunienieeiieeneeeeeeeneeneeneeeeseneeeeeeeeeneeeees 34
10.6 CoNcCrete DAt TYPES ...uiieiiiiiiiieiiie et 35
10.6.1 SIMPIE DAt@ TYPES .oiieeiieiieiieie e eee e e b e e e naeanrennnennrarnee 35
10.6.2 Enumeration Data TYPE ...cccciiiiiiiiiii i e et s e e e e e e e e e e e eeeanns 35
10.6.3 Data Type for XHTML CONLENTuuuuieiiiiiiiiiiiiiiiiieeiieiiieeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 36
10.7 ACCESS RESIICHONS ..oveeiiie ittt et r e e e e e et e e e eerenees 36
10.8 Class DESCHIPLONScccuuuiieiiiiieeeeeet e e e e e e e e e e e e s e e e e e e e e aaa e eeeees 37
10.8.1 AcCCESSCONIOHEAEICMENT . coeieiieee et e e 37
T10.8.2 AREINALIVEID .. ceieeeieeee e et e e e e e e e e e eas 38
10.8.3 AUFIDULEDEIINILION ..eevveiiieiiiee ettt ettt et et e e e e e e e e e ea e e e et reeareeenns 39
10.8.4 AttributeDefinitioNBOOIEANcocveiiiei ettt e e e e e e e 40
10.8.5 AttribULEDEfINIIONDALEuiiriiiiiei ettt e et et e e e e e e e e reaans 41
10.8.6 AttributeDefinitiONENUMETATIONiveeiieeeeee et e e e e e e e eenns 42
10.8.7 AttributeDefinitioNINIEGEN e ee e eeeeees 43
10.8.8 AttribULEDEfINIIONREAIieeeeeee e e 44
10.8.9 AttributeDefinitioNSIMPIEuiii 45
10.8.10 AttributeDefinitioNSIIINGuuueiiriiiiiiiiiiiiiiiii e 46
10.8.11 AttributeDefiNtIONXHTIML oovieiiei e e e e e eaans 47
OIS T 2 N 11 0] o 181 (=) V4= 1 (U LT 48
10.8.13 AttribUteValUEBOOICANceeieiieee e e aenns 48
10.8.14 ANDUIEVAIUECDALEoeeeeeeeee e et e s 49
10.8.15 AttributeValUEENUMEIATIONuiiveiiieeeeee ettt et e et e e e e e e e e e e e eerans 50

Requirements Interchange Format (ReqlF), v1.2

10.8.16 AttributeValUEINtEUESoovviviieeieeeiiee e 51

10.8.17 AttributeValueRealooooiiiiiiiiiiiii 52
10.8.18 AttributeValueSImPIEooi i 52
10.8.19 ArDULEVAIUESIING ..eeeeiiiiiiiiiiiiiie ettt e e e 53
10.8.20 AtrBULEVAIUEXHTML .ooiiiiiiiiiiiieeeeee et a e e 54
10.8.21 DatatypeDefiNitiONcooiiiiiiiiiiiiiiie e 57
10.8.22 DatatypeDefinitionBooIeanccovvvvveeiiiiiiiiiiiii 58
10.8.23 DatatypeDefinitioNDatecooviiiiiiiiiii e 59
10.8.24 DatatypeDefinitioNENUMEratioNcccooeeiiiiiiiiiiiie e e 59
10.8.25 DatatypeDefinitioNINIEGErcoovviiiiiiiiiiiee e 60
10.8.26 DatatypeDefinitioNREAIevviiiiiiiiiiiiiee e 61
10.8.27 DatatypeDefinitionSIMPIEc..eviiiiiiii e 62
10.8.28 DatatypeDefinitioNSIIiNGccovviiiiiiiiiiiiiiiee e 63
10.8.29 DatatypeDefinitionXHTIMLooooiiiiiii e e e e e e e 64
10.8.30 EMbeddedValue ... 64
10.8.31 ENUMVAIUEueiiiiiiiiiiiiiiiieeee ettt ettt et e e et e e e e et e e eeeeeeeeeeeeeaaeeeeeeaaeeees 65
OS2 [[T o1 (1= Lo = PP 66
O SR I =T P o] 0[] o 1H] o PP 67
10.8.34 RelatiONGIOUPTYPE .ovviiriiiiiiiiiiiriiieieeeeeeeee et eeeeeee e e et e e et et ee e e e et aaaaeaaaaaaaaaaaaaaaaaaaaas 68
10.8.35 REQIFCONIENTuiiiiiiei e e e e e et e e e et e e e e et e e eeenean 69
10.8.36 SpecElementWithAtHDULEScooviiiiiiiiii 70
10.8.37 SPECHIEIAICIYeeiiiiiiiiiiiiiiee e 71
10.8.38 SPECITICALION ..eoeeeiiiiiiiiiiiiie ettt e e e e e e e e e nreees 72
10.8.39 SPECIICAONTYPE .oeeveeeiiiiieiiiiiee ettt a e e e e e e e e aa e 73
10.8.40 SPECODJECE ..evvveiiiiiieiiiieeieeeeee ettt a e e e e aaaaaas 74
O T R ST o= Tol @] (=T od I8/ o1 75
ORI ST o 1= o] L= = 11 o] o PP 75
10.8.43 SPECREIAHONTYPE ..coeeiiiiiiiiiiiiieeiee ettt e e e e e e e e e e e e e e e 76
10.8.44 SPECTYPE oiieiiieiieieiieei ettt ettt ettt ettt ettt ettt ettt ettt et ettt et e e et e et e e e et e e e e e e e e aaaaaaaaaaaaans 77
10.8.45 XNIMICONTENT ..ot e e e e ebe s 78
11 Production Rules of ReqlF XML Schemacccvvviviiiiiiieeeiinnnnn, 81
11,1 PUIPOSE ittt e e e e 81
11.2 Notation for EBNFcooiiiii et 81
I3 T T - T SRR UPTT 81
104 EBNEF o e 83

Requirements Interchange Format (ReqlF), v1.2 i

Requirements Interchange Format (ReqlF), v1.2

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG'’s specifications include; UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL:

http: //vwww.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

« CORBA/IIOP
+ DataDistribution Services
* Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

« UML, MOF, CWM, XMl
¢ UML Profiles

Modernization Specifications

Requirements Interchange Format (ReqlF), V1.2 v

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface
Specifications

e CORBAServices

« CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications
CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as 1SO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification viathe report form at:

http://issues.omg.org/issues/create-new-issue

Vi Requirements Interchange Format (ReqlF), V1.2

http://issues.omg.org/issues/create-new-issue

1 Scope

IMPORTANT NOTE: The following clauses describe the scope of the ReqlF standard. The ReglF model itself, and the
machine-readable documents generated from it (reqif.xsd, driver.xsd, regif.cmof) are unchanged since ReqglF v1.0.1.

1.1 Who should read this document?

This document is created to inform:

« Personsinterested in exchanging requirements data between organizations that do not have a possibility to share the
same repository (See Clause 4 for a definition of “repository™).

* Requirements authoring tool vendors who want to support the Requirements Interchange Format (Regl F) with export
and import interfaces for their requirements authoring tools. See Clause 4 for adefinition of “requirements authoring
tool.”

< Tool vendors other than requirements authoring tool vendors who wish to interchange requirements for documentation
or other purposes.

« Anyoneinterested in defining, interchanging, storing, etc., requirementsin a standard interchange format.

1.2 Objectives of the Requirements Interchange Format

Requirements management has been an integral part of the development process in various industries (especialy in the
military, aeronautical, or the medical device industry) for years. Other industries have been adopting requirements
management recently.

The automotive industry for example introduced requirements management around 1999. As requirements management
spread in the automotive industry over the years, more and more car manufacturers and suppliers have been applying
requirements management and making use of dedicated requirements authoring tools. Large improvements have been
made in these organizations and requirements management has been established as a key discipline in this collaborative
engineering environment. Now with this established discipline in place, manufacturers and suppliers strive for
collaborative requirements management where requirements management does not stop at company borders.

For technical and organizational reasons, two companies in the manufacturing industry are rarely able to work on the
same requirements repository and sometimes do not work with the same requirements authoring tools. A generic, non-
proprietary format for requirements information is required to cross the chasm and to satisfy the urgent industry need for
exchanging requirement information between different companies without losing the advantage of requirements
management at the organizations' borders.

With the help of a dedicated interchange format for requirements specifications, it is possible to bridge the gap:

« The collaboration between partner companiesisimproved by the benefits of applying requirements management
methods across company borders.

* The partner companies do not have to use the same requirements authoring tool and suppliers do not need to have
multiple requirements authoring tools to fulfill the need of their customers with regards to compatibility.

» Within acompany, requirement information can be exchanged even if various tools are used to author regquirements.

Requirements Interchange Format (ReqlF), v1.2 1

The Requirements Interchange Format (ReqlF) described in this specification defines such an open, non-proprietary
exchange format. Requirement information is exchanged by transferring XML documents that comply to the ReqlF
format.

See the following figure for an example scenario between two partners who are exchanging a Customer Requirements
Specification and the corresponding System Requirements Specification.

Partner 1 Partner 2
Export of
SRS Snapshot
F

- v" -
RM-Tool A I'R—qur _I'-?‘eqTL RM-Tool E

| Importer Exporter |

=ystemn

Custome

i Event driven,
Requiremen

asynchronous

data exchange
via exting
mechanisms

Requirements Spec. (SRS)

—

ReqlF- o ReqlF-
Exporter Imporer

/ Specific /Specific SRS

Snapshot

Export

RS
Snapshot CRS Snapshot

/

Repository J

Figure 1.1 - Example ReqlF exchange scenario

Figure 1.1 represents a common scenario how requirements specifications are exchanged between partners. Both partners
in the scenario use different requirements management (RM) tools to create, manage, and evolve their requirements
specifications. The process is usually initiated by Partner 1. Customer requirements that are relevant for Partner 2 are
consolidated in a snapshot document. The Partner 2 specific CRS snapshot is exported out of the RM-Tool A by means of
the Regl F-Exporter and transferred asynchronously to Partner 2 via existing data transfer mechanisms. The result of the
export is a ReglF compliant XML document representing the specific CRS snapshot. The data transfer mechanism is out
of scope of ReqlF. Having received the exported CRS snapshot Partners 2 imports the information into RM-Tool B in
order to analyze the customer requirements imposed by Partner 1. For traceability reasons Partner 2 links the received
customer requirements with the corresponding system requirements. As an answer to the customer requirements Partner 2
creates a consolidated SRS snapshot that contains the system requirements realizing the imposed customer requirements
of Partner 1. The SRS snapshot is fed back to Partner 1 as an exported ReglF compliant XML document. Having
imported the SRS snapshot Partner 1 can analyze within RM-Tool A how the customer requirements are fulfilled by the
system requirements specified by Partner 2. As specifications evolve over time the exchange via ReglF is an event driven,
asynchronous data exchange.

2 Requirements Interchange Format (ReqlF), v1.2

2 Conformance

A technology targeting the seamless information exchange between a wide variety of tool implementations may tolerate
only avery limited variability in the definition of the information exchange format.

Therefore, a compliant implementation of the Requirements Interchange Format (ReqlF) must implement all elements
described in Clauses 9, 10, and 11. Further, a compliant implementation must also recognize and support the high-level
exchange protocol and associated exchange document states defined in Clause 8.

As a compliance variation point, compliant implementations may use an alternative element identification mechanism in
parallel to the primary identification mechanism. Further, implementations may be unable to interpret or handle certain
forms of formatted attributes. In this case, implementations are allowed to substitute the offending representation with a
simplified form, as long as the attribute is marked as simplified, a reference to an original form of the attribute is
preserved, and the simplified attribute is excluded from any further alterations.

3 Normative References

3.1 Normative References

The following normative documents contain provisions that, through reference in this text, constitute provisions of this
specification:

URI

¢ Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF RFC 2396,
August 1998
http://www.ietf.org/rfc/rfc2396.txt

XHTML 1.1 Modularization

e XHTML™ Modularization 1.1, Daniel Austin et al., eds., W3C, 8 October 2008
http://www.w3.0rg/TR/xhtml-modul arization/

XML 1.0 (Second Edition)

» Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds., W3C, 6 October 2000
http://www.w3.0rg/TR/REC-xml

XML-Namespaces

* Namespacesin XML, Tim Bray et al., eds., W3C, 14 January 1999
http://www.w3.0rg/TR/REC-xml-names

XML-Schema

The authoritative description of the Requirements Interchange Format exchange document structure is provided as an
XML Schema. XML Schemas express shared vocabularies and allow machines to carry out rules made by people. They
provide a means for defining the structure, content and semantics of XML documents.

Requirements Interchange Format (ReqlF), v1.2 3

e XML SchemaPart 1. Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendel sohn, W3C, 2
May 2001
http:/imww.w3.org/ TR/xmlschema-1//

e XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001
http://www.w3.0org/TR/xmlschema-2/

3.2 Non-normative references

MIME Media Types

http://www.iana.org/assignments/media-types/

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Name Description

Editable The characteristic of an object that it is possible to define, alter, adapt, or
refine the object.

Exchange XML Document An XML document with specification content that is exchanged between
two partners.

Exporting Reql F tool A ReqlF Tool that is used to export requirements information from a

reguirements authoring tool into an exchange XML document.

<Name of ReqglF Information Type> instance | An instance of the ReqlF information type, or an instance of adirect or
indirect subclass of the ReglF information type.

Importing Regl F tool A ReglF Tool that is used to import an exchange XML document into a
requirements authoring tool.

Information Element An information element is an atomic unit of information, e.g., a
reguirements text, an attribute value in a requirements authoring tool, a
relation that links two requirements.

Information Type Aninformation typeis acategory of information elements with the same
properties in terms of e.g., element attributes or relationships to other
information elements.

Links References between requirements or between requirement and sol ution.

MIME type Multipurpose Internet Mail Extensions type. MIME-Types are a
common mechanism to specify kinds of textual or binary objects.

Repository Container for RE& M data that is managed by a requirements authoring
tool.

Requirement A requirement specifies acapability or condition that must (or should) be

satisfied. A requirement may specify a function that a system must
perform or a performance condition a system must achieve.

4 Requirements Interchange Format (ReqlF), v1.2

ReqlF

Requirements Interchange Format: The format specified in this standard.

ReqlF model

The ReglF-model islocated on the same abstraction level asinformation
types. It specifies and describes the different kind of information types as
well as their relationships to each other.

ReglF tool

A tool that exports Regl F compliant XML documents from a source
requirements authoring tool and/or imports them in atarget requirements
authoring tool.

Requirements authoring tool A tool used that is capable of creating and modifying requirements. In

the context of this specification, this need not be atool marketed as
“Requirements Management Tool.”

Source requirements authoring tool A requirements authoring tool from which contents are exported to a

ReqlF file.

Target requirements authoring tool A requirements authoring tool that is the target of an import of an

exchange XML document.

Supplier

A company that produces components for use in another company’s
products.

Tags

Tags specify special properties of an information type with regard to the
automatic XML -Schema generation process.

ZIPfile (format)

The ZIP file format is a data compression and archive format. A ZIPfile
contains one or more files that have been compressed to reduce file size,
or stored as-is.

5 Symbols

For the purposes of this specification, the following acronyms and abbreviations apply.

Name Description

CDATA Character Data

CSss Cascading Style Sheets

FTP File Transfer Protocol

HIS Hersteller Initiative Software (http://www.automotive-his.de/).
The Hersteller Initiative Software is a consortium of the vehicle manufacturers Audi, BMW, Daimler,
Porsche, and Volkswagen. The objective of this consortium isto bundle their activities for standard
software modules, process maturity levels, software test, software tools, and programming of control
units. The common goal isto achieve and use joint standards.

IT Information Type

MIME type Multipurpose Internet Mail Extensions type

oMG Object Management Group

Requirements Interchange Format (ReqlF), v1.2

RE Requirements Engineering

RE&M Requirements Engineering & Management

ReqlF Requirements Interchange Format.

RM Requirements Management

uc Use Case

UML Unified Modeling Language

URI Uniform Resource Identifier

UTF-16 Universal Multiple-Octet Coded Character Set (UCS) Transformation Format for 16 Planes of Group
00

UTF-8 8-bit Unicode Transformation Format

w3cC The World Wide Web Consortium (W3C) isan international consortium where Member organizations,
afull-time staff, and the public work together to develop Web standards.

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformation

6 Additional Information

6.1 How to read this specification

Clauses 1 to 6 contain background and basics for reading this specification. Clause 1 describes the objectives of this
specification and the intended readership. Clause 2 defines conformance. Clause 3 lists other specifications and
documents containing provisions which, through reference in this text, constitute provisions of this specification. Clause
4 and 5 contain definitions of terms and abbreviations used in this document. Clause 6 provides additional information to
this specification.

Clauses 7 to 11 include the technical part of this specification. Clause 7 gives an introduction to the Requirements
Interchange Format and describes relevant exchange scenarios. Clause 8 describes the abstract architecture of the ReglF
information model. Clause 9 defines the general structure of exchange XML documents. Clause 10 defines the details of
the exchange XML documents. Clause 11 contains the production rules for the ReglF XML Schema.

6.2 Acknowledgements
The following companies submitted and/or supported parts of this specification:

6.2.1 Submitting Organizations
The following companies are formal submitting members of OMG:

* Atego

6 Requirements Interchange Format (ReqlF), v1.2

* ProSTEPiViP Association

6.2.2 Supporting Organizations

The following organizations support this specification, but are not formal submitters.

Name of company URL

88solutions Corporation http://88sol utions.com/

Audi AG http://www.audi.de

BMW AG http://www.bmw.de
Continental AG http://www.conti-online.com
Daimler AG http://www.dai mler.com
HOOD GmbH http://www.hood-group.com
International Business Machines http://www.ibm.com/de
MKS GmbH http://www.mks.com
Model Alchemy Consulting http://www.modelal chemy.com
PROSTEP AG http://www.prostep.com
Raobert Bosch GmbH http://www.bosch.de
Volkswagen AG http://www.volkswagen.de

Theinitial work on ReglF was done by the members of the HIS group and additional partners that were associated for this
project. The HIS group is the panel of the vehicle manufacturers Audi AG, BMW Group, Daimler AG, Porsche AG, and
Volkswagen AG to bundle their activities for standard software modules, process maturity levels, software test, software
tools, and programming of control units. The common goal is to achieve and facilitate joint standards. The group that is
working on the initial release of ReglF consists of the ProSTEP iViP Association, Atego Systems GmbH, Audi AG, BMW
AG, Continental AG, Daimler AG, HOOD GmbH, International Business Machines, MKS GmbH, PROSTEP AG, Robert
Bosch GmbH, and Volkswagen AG.

Before the submission of the Requirements Interchange Format (ReglF) to the OMG, the Requirements Interchange
Format had been a specification proposed by the HIS and in its latest version, a recommendation of ProSTEP iViP. For
these versions, the abbreviation “RIF” has been applied. The HIS released the Requirements Interchange Format as RIF
1.0, RIF1.0a, RIF 1.1; RIF1.1a and the ProSTEP iViP released the recommendation RIF 1.2.

As the acronym RIF has an ambiguous meaning within the OMG, the acronym ReqlF has been introduced to separate it
from the W3C’s Rule Interchange Format. ReqlF 1.0 is the direct successor of the ProSTEP iViP recommendation RIF
1.2

Requirements Interchange Format (ReqlF), v1.2 7

Requirements Interchange Format (ReqlF), v1.2

7 Concept Overview and Use Cases

7.1 Preface: How requirements authoring tools handle information

Most modern requirement authoring tools emulate word processors, but offer additional features. This allows authors of
requirement specifications who have been using word processors to continue working in a similar manner, but enjoy the
benefits of atool specialized for authoring requirements.

Figure 7.1 shows an example for the transition from creating a textual document using a word processor to authoring a
specification in a modern requirements authoring tool.

JE5Hd 3AIVE a9
e

_L§-|-1-.-2-|-3-|

1. Customer Requirement Specification

NN N T

1.1 Functional Regquirements
Sample

Some formatted Text describing the requirements specification

and may include references to extermal filds | authored by
usmg word
processor

3

Timesheet . »ds

12 Non-functional requirements

.

D CustomerR equirementsSpecification 1 | Priority Status
' 1 Customer Requirement
Specification Sample

2 | 1.1 Functional Requirements specification
authored by

{ using
i requirements

3 Some formatted Text describing the requirements 2 accepted o
and may include references to external files: L authoring tool
4 1 rejected

Morksheet

5 1.2 Non-functional requirements
|
Figure 7.1 - Transition from word processors to requirement authoring tools

Requirements Interchange Format (ReqlF), v1.2

The word processing features of requirement authoring tools include the following.

Feature

How word processors handleit

How requirement authoring tools handle
it

1. Structure specifications
hierarchically

A user of aword processor structures
documents by creating a hierarchy of
clauses and sub clauses. The word-
processor supports thistask by automating
the numbering of headlines and the
creation of an outline.

Requirement authoring tools support the
creation of hierarchically structured
specifications. Users can create tree
structures of requirements.

2. Use formatted text in the
specifications

Word processors support, among other
things, the bold, underlined, italic, and
strikethrough text, bullet points and
numbering in the documents.

Requirement authoring tools support the use
of bold, underlined, italic, and strikethrough

text, bullet points, and numbering in attribute
values of requirements.

3. Reference binary files

Word processors support referencing
binary files, for example spreadsheets,
presentation dlides, etc. from within a
document.

Requirement authoring tools support the
referencing of binary files from within
attribute values of requirements.

The features that are specific to requirement authoring tools include the following.

Feature

How requirement authoringtoolshandle
it

Example

4. Uniquely
identify requirements

Requirement authoring tools alow to
distinguish individual requirements and to
automatically create a unique identifier for
each requirement.

5. Associate attributes with
the requirements

A user of arequirement authoring tool can
define arbitrary attributes and attach them
to requirements.

Typically, a set of requirements shares the
same attributes. However, these attributes
may have different values for each
requirement, and the values may have
different underlying data types.

A user of arequirement authoring tool
defines the attributes “id,” “description,”
“priority,” “status,” and “department” as
mandatory for a specification.

The“priority” attribute has an integer data
type, the “status’ and “department” attributes
have an enumeration data type, and the
“description” attribute has a string data type.

Each requirement may have a different value
for each of these attributes.

6. Establish relations
between requirements

A user of arequirement authoring tool can
define relations between requirements.

Example purposes of relations:

a) to establish traceability

b) to connect non-functional to functional
reguirements.

10

Requirements Interchange Format (ReqlF), v1.2

7. Group relations Some requirement authoring tools allow A requirement authoring tool may allow its
the user to define new types of relations users to define the new type “ contradicts’ for
and to group relations by their type. relations between two requirements that
contradict each other, and then alow the
users to create a group of “contradicts”
relations.

Such a group of relations — together with the
requirements that are related by it — may
support the users when reviewing and
consolidating specifications.

8. Restrict user access to Requirement authoring tools offer the During an exchange of specifications, the
certain information feature to restrict access to certain partner company that receives a Customer
information. Requirement Specification is not allowed to
edit the “priority” attribute of the
reguirements.

7.2 How the Requirements Interchange Format handles information from
requirement authoring tools

The Requirements Interchange Format has been set up with the goal to exchange specifications between modern
requirement authoring tools. Therefore, the requirements interchange format must be able to represent the information
described in the previous clause. The following table shows how the features described in the previous clause are
represented in the format. In the third column of the table, references to the abstract syntax of the format and the
descriptions of the elements can be found.

Feature How the Requirements I nterchange Referencesto abstract syntax of the
Format handlesit format and the description of the elements
1. Structure specifications | ReqglF provides the concept of a See sub clause 10.3 for the basics of
hierarchically specification that contains a hierarchical reguirement specifications. See sub clause
structure of requirements. 10.4 for the abstract syntax of hierarchies.

See sub clause 10.8.38 for the class
description of a specification (class). See sub
clause 10.8.40 for the class description of a
reguirement. See sub clause 10.8.37 for the
class description of a hierarchical structure.

2. Useformatted text inthe | Asrepresenting formatted text isa See sub clause 10.6.3 on the datatype for
specifications potentially complex topic, ReglF re-usesa | formatted content.
subset of W3C's XHTML modulesto ease | See sub clause 10.8.11, 10.8.29, and 10.8.20
implementation of the format. XHTML for the class descriptions.
content MAY be used in specific attribute
values.
3. Reference binary files To allow referencing binary filesfrom See sub clause 10.8.20 for the class
within an attribute value that contains description.

formatted text, XHTML isused as a
mechanism as well.

Requirements Interchange Format (ReqlF), v1.2 11

4. Uniquely identify
requirements

ReqlF provides an identification
mechanism for requirements.

See sub clause 10.2 for the abstract syntax.
See sub clause 10.8.32 for the class
descriptions.

5. Associate attributes with
the requirements

ReqglF alows to attach attributes to
requirements. The definition of the
attributes (the attribute name, the attribute
datatype etc.) is separated from the
attribute value.

See sub clause 10.3 on how to attach
attributes to requirements. See sub clause
10.5 to learn about data types of attributes.

6. Establish relations
between requirements

Reql F represents relations with a freely
definable semantic.

See sub clause 10.4 for the abstract syntax of
relations between requirements. See sub
clause 10.8.42 for the class description of a
relation between regquirements.

7. Group relations

ReqglF allows grouping of relationships.

See sub clause 10.8.43 and 10.8.33 for the
class descriptions.

8. Restrict user access to
certain information

ReqglF alows to specify that certain
information elements are not editable.

See sub clause 10.7.

7.3
capabilities

How the Requirements Interchange Format copes with different tool

Modern requirement authoring tools vary concerning the features they support. There is no “unified language” for
requirements that all requirement authoring tools support, and therefore, there is also no meta-model shared between

requirement authoring tools.

The Requirements Interchange Format deals with the tools that are on the market nowadays. Some typical situations and
resulting conseguences are outlined in the following table.

Situation

Example

Consequences

Reguirement authoring
tools use different
terminology for the same
concept.

What is called an “object” in one
authoring tool may be called a
“requirement” in another authoring tool

ReglF includes only alimited collection of
concepts, but provides an (informal) mapping
to various requirement authoring tools on the
market.

When users of two different
brands of requirement
authoring tools exchange
specifications, information
may get lost due to the
different capabilities of the
tools.

Company A exports a specification from
their requirement authoring tool, sends it
to Company B where the specification is
imported into a different requirement
authoring tool. During the import,
information islost.

Partners exchanging specifications should
agree on the requirement authoring tools and
the tool capabilities they use prior to the
exchange.

12

Requirements Interchange Format (ReqlF), v1.2

Reql F focuses on concepts that are widely
implemented in requirement authoring tools.
There are differences in how formatted
contents can be represented in the
requirement authoring tools and how special
characters are treated. For that, ReglF offers
the mechanism of an “isSimplified” flag for
formatted attribute values. See Clause 8 and
sub clause 10.8.20.

For concepts that are individual features of a
certain requirement authoring tool, ReglF
offers the concept of tool extensions.

See sub clause 9.2.4 for details.

7.4 Exchange Scenarios

The Requirements Interchange Format (ReglF) described in this specification defines a non-proprietary, open exchange
format. Instead of exchanging textual requirement specification documents, requirement specifications are exchanged by
transferring XML documents that comply to the ReglF format, making them processable by tools.

One of the basic ideas of ReqlF is to offer the opportunity to exchange information between different installations of the
same requirements authoring tool with a standardized format and that the same format can be used to exchange
information between different requirements authoring tools.

This clause explains two exchange scenarios:

* Inthefirst exchange scenario (“one-way”), requirement specifications of one exchange partner are provided to a
second exchange partner, for example to inform the second partner about the requested requirements.

« Inthe second exchange scenario (“roundtrip”), requirement specifications of one exchange partner are provided to a
second exchange partner as well. After that, however, the second exchange partner makes modifications to the
regquirements, for example to comment them concerning the feasibility. The second exchange partner transmits the
modified requirement specifications back to the first exchange partner.

The two exchange partners mentioned above may for example be two different companies or two departments within one
company. In any case, there needs to be at least one installation of a requirements authoring tool per exchange partner,
which is used to author the requirements. There also needs to be a user for each regquirements authoring tool who exports,
imports, or updates the requirement specifications in the requirements authoring tools.

Clause 7.4.1 describes the relevant roles in the scenarios. Sub clauses 7.4.2 and 7.4.3 outline the two exchange scenarios.
The steps of the exchange scenarios that need further detailing are described in sub clause 7.5. Note that ReqlF tools
MAY support additional scenarios. For example, exchanges with more than two partners MAY be supported, or there
MAY be other purposes for using ReglF than exchange, for example document generation.

Requirements Interchange Format (ReqlF), v1.2 13

7.4.1 Role descriptions

Role Name Role description Roletype

RequirementsAuthoringTool User Party that is responsible for starting the export of Person
requirements specifications from a requirements
authoring tool to ReqlF exchange XML documents

or

Party that is responsible for starting the import of

ReqlF exchange XML documents to a requirements
authoring tool. (An update of the specification in the
requirements authoring tool may become necessary.)

RequirementsAuthoringTool See clause “ Terms and Definitions” for a definition. System

7.4.2 First exchange scenario (“One-Way”)

Figure 7.2 shows a one-way exchange of requirement specifications between two requirements authoring tools.

Tool1 h Tool2
:RequiremenisAuthoring Tool :RequirementsAuthoringT ool

Usert User2
‘RequirementsAuthoringTool User ‘RequirementsAuthoringT ool User
| |

I
|
1 |
: 1.0 Export Requirement Specifications() :

|

|

I

L I

1.1 Export Requirement Specifications() : |
Exchange XML Documents :
|

I

1

|
2.0 Transmit(Exchange XML Doguments)
|

3.0 Import Requirement
SpedificationsExchange XML
Documents)

o
|

e A e e
A

NN~ W

Figure 7.2 - One-Way exchange of requirements between two requirements authoring tools using ReqlF

14 Requirements Interchange Format (ReqlF), v1.2

Scenario steps

Sep ID

Step description

1.0: Export Requirement
Specifications()

A user of arequirements authoring tool (Userl) starts the export of requirement
specifications from a requirements authoring tool (Tool1).
See Use Case “UC1: Export Reguirement Specifications” for details on this step.

1.1: Export Requirement
Specifications() : Exchange XML
Documents

The requirement specifications chosen by Userl are exported into one or more ReqlF
compliant XML documents. See Use Case “UC1: Export Reguirement Specifications
" for details on this step.

2.0: Transmit(Exchange XML
Documents)

NOTE: Thisstep is not in the scope of ReglF.
The exchange XML documents are transmitted by the sender (Userl) to the receiver
(User2) using traditional file transfer tools (e.g., email or ftp).

3.0: Import Requirement
Specifications(Exchange XML
Documents)

User2 imports the exchange XML documents into his requirements authoring tool
(Tool2). For the case that, during this step, requirement specifications are newly
created in Tool2, see “UC2: Import New Reguirement Specifications” for details.
For the case that, during this step, existing requirement specifications are updated in
Tool2, see “UC3: Update Requirement Specifications” for details.

7.4.3 Second exchange scenario (“Roundtrip”)

Figure 7.3 shows a roundtrip exchange of requirement specifications between two reguirements authoring tools.

%

Userl
‘RequirementsAuthoringToolUser
|

|
: 1.0 ExportRequirementSpecifications()

Tooll Tool2
:RequirementsAuthoringT ool ‘RequirementsAuthoringT oo
User2
.RequirementsAuthoringToolUser

I

|

|

|

|
1.1 ExportRequirement Specifications():
Exchange XML Documents

2.0 TransmitExchange XML Documenls*

3.0 ImportRequirement

6.0 TransmitExchange XML Do!cuments) |

Specifications(Exchange
XML Documents)

g

4.0 Modify Requirement Specifications()

5.0 ExportRequirement Specifications()

5.1 ExportRequirementSpecifications():
Exchange XML Documents

SNSRIV, S

-

7.0 ImportRequirement
Specifications(Exchange
XML Documents)

;
:
:
|
I
|
:
;
1
|
I
i

T

?

Figure 7.3 - Roundtrip exchange of requirements between two requirements authoring tools using ReqlF

Requirements Interchange Format (ReqlF), v1.2 15

Scenario steps

Sep ID

Sep description

1.0:

Export Requirement Specifications()

A user of arequirements authoring tool (Userl) starts the export of
requirement specifications from a requirements authoring tool (Tool1).
See Use Case “UC1: Export Requirement Specifications” for details on
this step.

1.1:

Export Requirement Specifications() :
Exchange XML Documents

The requirement specifications chosen by Userl are exported into one or
more ReglF compliant XML documents. See Use Case “UC1.: Export
Requirement Specifications” for details on this step.

2.0:

Transmit(Exchange XML Documents)

NOTE: This step isnot in the scope of ReqlF.
The exchange XML documents are transmitted by the sender (Userl) to
thereceiver (User2) using traditional filetransfer tools (e.g., email or ftp).

3.0:

Import Requirement
Specifications (Exchange XML
Documents)

User2 imports the exchange XML documentsinto his requirements
authoring tool (Tool2).

For the case that, during this step, requirement specifications are newly
created in Tool2, see“UC2: Import New Requirement Specifications” for
details.

For the case that, during this step, existing requirement specifications are
updated in Tool 2, see “UC3: Update Requirement Specifications” for
details.

4.0:

Modify Requirement Specifications

User2 modifies the requirement specificationsin Tool2. He MAY add or
delete individual requirements or requirement specifications and change
the contents of requirements or the structure of requirement
specifications.

5.0:

Export Requirement Specifications

User2 starts the export of the requirement specifications.

5.1

Export Requirement Specifications() :
Exchange XML Documents

The requirement specifications chosen by User2 are exported into one or
more ReglF compliant XML documents.

6.0:

Transmit(Exchange XML Documents)

NOTE: This step isnot in the scope of ReglF.
The exchange XML documents are transmitted by the sender (User2) to
the receiver (Userl) using traditional filetransfer tools (e.g., email or ftp).

7.0:

Import Requirement
Specifications (Exchange
XML Documents)

Userl imports the exchange XML documentsinto Tool 1.

For the case that, during this step, requirement specifications are newly
created in Tool1, see“UC2: Import New Requirement Specifications” for
details.

For the case that, during this step, existing requirement specifications are
updated in Tool 1, see “UC3: Update Requirement Specifications” for
details.

16

Requirements Interchange Format (ReqlF), v1.2

7.5 Detailed Use Cases

7.5.1 Use Case Overview

xport Requirement

Specifications

Import New
Requirement
Specifications

Requirements AuthoringToolUser

pdate Requirement

Specifications

Figure 7.4 - Use Cases for the Requirements Interchange Format

7.5.2 Use Case Specifications

The template used for specifying the succeeding uses cases document is loosely based on a Use Case template by Alistair

Cockburn.

Requirements Interchange Format (ReqlF), v1.2

17

UC1: Export Requirement Specifications

ID uc-1

Title Export Reguirement Specifications

CHARACTERISTIC INFORMATION

Goal in Context A user of arequirements authoring tool wants to export requirement specifications and
relations between them from the reguirements authoring tool to an exchange XML
document.

Preconditions The user has arequirements authoring tool installed. The user has a Regl F tool installed that

is capable of exporting requirement specifications from this requirements authoring tool.
The requirement specifications the user wants to export are available in the requirements
authoring tool and their contents are accessible by the user.

Success End Condition The requirement specifications the user wanted to be exported have successfully been
exported from the requirements authoring tool to an exchange XML document.

Failed End Condition The requirement specifications the user wanted to be exported have not successfully been
exported from the requirements authoring tool to an exchange XML document.

Primary Actor The user of arequirements authoring tool.

MAIN SUCCESS SCENARIO

Step 1 The user uses the Regll F tool to specify the requirements specifications he wants to export
and to request the export of the requirements specifications.

Step 2 The Regl F tool exports each specification to one or several exchange XML documents.

The exported exchange XML documents include information about requirements, types,
attributes, and (optionally) access policies relations between requirements; the relations
may be grouped.

ALTERNATIVE SCENARIOS

Alternative B: Export Parts | Instead of exporting complete requirement specifications, a ReglF tool MAY additionally
of a Specification (Step 1 + | have the feature to export only parts of a specification.

Step 2)

18 Requirements Interchange Format (ReqlF), v1.2

UC2: Import New Requirement Specifications

1D

uc-2

Title

Import New Requirement Specifications

CHARACTERISTIC INFORMATION

Goal in Context

A user of arequirements authoring tool wants to import requirement specifications and
relations between them contained in exchange XML documents into a requirements
authoring tool.

Preconditions

The user has arequirements authoring tool installed. The user has a Regl F tool installed that
is capable of importing requirement specifications from an exchange XML document into
this requirements authoring tool. The exchange XML documentsto be imported are
available to the user. The user has the appropriate access rightsin the requirements
authoring tool to create new specifications, their contents and relations between
requirements. The exchange XML documents have not been imported to the above
requirements authoring tool so far.

Success End Condition

The requirement specifications the user wanted to be imported have successfully been
imported from the exchange XML documents to the requirements authoring tool.

Failed End Condition

The reguirement specifications the user wanted to be imported have not successfully been
imported from the exchange XML documents to the requirements authoring tool.

Primary Actor

The user of arequirements authoring tool

MAIN SUCCESS SCENAR

10

Step 1

The user specifies the following information using the Regl F tool:

the exchange XML documents he wants to import

the target location of elementsto be created in the requirements authoring tool

After that, the user requests the import of the exchange XML documents using the Regl F
tool.

Step 2

The Regl F tool imports the exchange XML document into the requirements authoring tool.

ALTERNATIVE SCENARIOS

Requirements Interchange Format (ReqlF), v1.2

19

UC3: Update Requirement Specifications

ID uc-3

Title Update Requirement Specifications

CHARACTERISTIC INFORMATION

Goal in Context A user of arequirements authoring tool wants to import requirement specifications and

relations between them contained in exchange XML documents into a requirements
authoring tool.

Preconditions The user has arequirements authoring tool installed. The user has a Reql F tool installed that
is capable of importing regquirement specifications from an exchange XML document into
this requirements authoring tool. The exchange XML documents are available to the user.
The user has the appropriate access rights in the requirements authoring tool to update
specifications, their contents and relations between requirements. The exchange XML
documents have previously been imported to the above requirements authoring tool.

Success End Condition The requirement specifications in the requirements authoring tool that correspond to the
specifications contained in the exchange XML document have successfully been updated.

Failed End Condition The requirement specifications in the requirements authoring tool that correspond to the
specifications contained in the exchange XML document have successfully been updated.

Primary Actor The user of arequirements authoring tool

MAIN SUCCESS SCENARIO

Step 1 The user specifies the following information using the Regl F tool:

the exchange XML documents he wants to use as a source for the update
the specificationsin the requirements authoring tool he wants to update
After that, the user requests the update.

Step 2 The ReglF tool merges the existing requirement specificationsin the requirements
authoring tool with the information from the exchange XML documents.

ALTERNATIVE SCENARIOS

20 Requirements Interchange Format (ReqlF), v1.2

8 Abstract Architecture

Figure 8.1 shows the requirements exchange process, with a particular emphasis on attribute handling.

=t Dosument Exchanas - Non-Azcovering Camelisnee o

Impart Requiremerds from
Oe=umere |rko Tosl

Create Dogcument

loop -

[res]
Export Requirzments Has isSimpliried =
trom Toal to Docu msnd e

Sat is Simplified= tal=e for all
sorintss

Foimattad
Atbribuie?

['ex]

Tran=fer Documert

Ramamoar Original
Aftribue Walus

i

Kot Uzarar Taal
|L:>

[res
> Impt Simplifie d
AHribute Walues 7

al

[H=]
Underston d Form atle,

Walue Repres=rt=tion

~ Ereate Sinpl ilied Atribubs

Restors Origiral ﬂurlbl.ﬂej

el

Adribte Walue?

;

l‘gl|=r||l=m|:l=r Altrilbut= valus
|\ a= Mot Sinmplifizd

R=rme rnber Adtribute el

Az Hmplifed

)

Fememer Adribote Yaloe
a= ot S mplified

M

The actual tran=fer
machanism iz cut of
=cope ot the ReqlF

(P\'m.lldn Aftribute to Importing Tr.\d)

Gpecification. Ibis

shown hers Be pravide
tha complata procass
madel Standan
bign=pot mechnizm,

[res]

Chained Exchange ™ I-N ol

kg FTF, e-Mail, ato,
Ara aszurmad to o
th=transpor role

Tran=fer Document

=P ook con d i one |
[AIl ralus= iemember=d ==
Simplified must have Flag

Is=imp lifled=tue L Sl values
remambenad & Mot Simplified
must have Flag i=Simplified=1al==}

Expart Regquira manis
Trom Tool 1o 0o connent

Figure 8.1 - The requirements exchange process

The four activities in the upper left corner, following the start symbol, representing the creation and initial population of

the exchange document through export from a requirements authoring tool capable enough to hold the complete

requirements specification and all its attributes in original form.

Requirements Interchange Format (ReqlF), v1.2

21

Element Name

Activity Description

Create Document

The exchange XML document is created.

Export Requirements from Tool to
Document

The complete requirements specification is exported from the requirements
authoring tool. This includes the requirements specification structure, all
attributes, and all requirement relationships.

Set isSimplified = false for all Attributes

Thisflag signals that atool was not able to interpret a formatted attribute
value asis (see below). This flag must be cleared for all attribute values
during the initial export.

Transfer Document

The exchange XML document is transferred to the next partner in the
exchange chain. NOTE: The actual transfer mechanism is out-of-scope of the
Reql F specification.

After the initial population of the exchange document, the exchange process becomes a chain of requirements exchanges.
This could be a linear chain of partner organizations, or a “roundtrip” exchange terminating at the originating
organization, the process is always the same.

Element Name

Activity Description

Import Requirements from Document
into Tool

The exchange XML document is parsed and the complete requirements
specification isimported into the target tool. All attribute values are inspected
during this process; this is detailed in the following Loop Fragment.

The following table describes the activities inside the attribute import loop. One loop iteration is performed for each
attribute value encountered in the import stream.

Element Name

Activity Description

HasisSimplified = true

If isSimplified istrue for aformatted attribute value, it signals that the
previoustool in the exchange chain was unable to handle the attribute value in
itsoriginal (formatted) form and created a simplified representation instead.

Formatted Attribute?

Interpretation deficiencies are only expected and tolerated for formatted
attribute values (AttributeValueXHTML elements), therefore formatted
attributes are singled out. Other attributes bypass all the following steps.

Understood Formatted Attribute Value

An attempt is made to interpret the current formatted attribute value. If the

tool is unable to handle the formatted attribute value in its original form for
any reason, special processing, as described in the following three rows, is

required. If the formatted attribute value is understood, the following three

rows are skipped.

22

Requirements Interchange Format (ReqlF), v1.2

Remember Origina Attribute Value

Theformatted attribute val ue contained in the exchange document needsto be
preserved, asinformation may get lost during the import of the attribute value.
Thisis done by copying theValue to the Original Value.

Create Simplified Attribute
Representation

Dependent on the formatted attribute value and on the experienced capability
mismatch, the importing tool must create a suitable simplified attribute
representation that can be presented to the tool user.

Remember Attribute Value as Simplified

If simplified representations of attribute values areimported or newly created,
they need to be marked so that they get exported with isSimplified set to true.

This signals to the following importer in the exchange chain that the tool was
unable to interpret the formatted attribute value in its original form.

Notify User or Tool [send event]

If the previous tool in the exchange chain was unable to handl e the attribute
valueinitsoriginal (formatted) form, this event aerts the user or tool about
the potential information loss that previously occurred.

Import Simplified Attribute Value ?

A decision is made whether attribute values are imported in their smplified
form.

INFORMATIVE NOTE: This decision may for example be based on a
configuration setting. Importing the simplified attribute representationsis
especialy interesting for point-to-point exchanges between two human users
of requirement authoring tools, where the sender needs to know what has
actually been received. For automatic exchanges between tools, keeping the
original attribute value may be the better option.

Restore Original Attribute Value

This restores the origina attribute value from step Remember Original
Attribute Value. Thisis done by copying theOriginalValue to theVal ue.

Remember Attribute Value as Not
Simplified

Thisisthe alternate path for al attributes other than formatted attributes, and
for formatted attributes understood in their original form.

Provide Attribute to Importing Tool

Thisisthefinal step in the attribute interpretation loop.

After the importing requirements authoring tool finished its processing on the imported requirements specification, the
exchange chain may end by simple termination without further action on the exchange document, or the requirements
specification in its processed form may be re-exported. The following table describes this export process.

Element Name

Action Description

Export Requirements from Tool to
Document

The complete requirements specification, including all attributes, structure,
and relationships is serialized into the exchange XML document. All
formatted attribute values remembered as simplified during import must be
exported with isSimplified set to true, al other attribute values must be
exported with isSimplified set to false.

Transfer Document

Thistransfers the exchange document to the follow-on importer, closing the
process loop.

Requirements Interchange Format (ReqlF), v1.2

23

24

Requirements Interchange Format (ReqlF), v1.2

9 Exchange Document Structure

9.1 General

This clause defines the top-level structure of a ReqlF Exchange Document, consisting of a header, the core content, and
optionally of one or more tool-specific content extensions. These document elements are enclosed by the ReglF root
element. See 9.2 for detailed definition of the content elements.

ReqlF

+ lang: xml:lang [0..1]

+documentRoot 1 +documentRoot 1 +documentRoot 1

+theHeader| 1

ReqlFHeader +coreContent | 1 +tool Extensions (0.."

B 0] ReqlFContent ReglFToolExtension
creationTime: dateTime
identifier: D
repositoryld: string [0..1]
reqlFToolld: string
reqlFWerson: sring = 1.0
source Toolld: sring
title: sring

+ o o+ o+ o+ o+

Figure 9.1 - ReqlF Document Structure
9.2 Class Descriptions

9.2.1 ReqlF

Package: ReqlF
isAbstract: No
Generalization: none

Description

This class constitutes the root element of the Exchange Document.

Attributes

e lang: xml::lang[0..1]
Default language encoding of the Exchange XML Document content. The format is defined by the standard for
specifying languages in XML documents proposed by the W3C. See http://www.w3.0rg/TR/xml 11/#sec-lang-tag

Associations

e coreContent : ReglFContent [1] { composite}

Requirements Interchange Format (ReqlF), v1.2 25

This composition links the mandatory Exchange Document content.

e theHeader : ReglFHeader [1] { composite}
This composition links the mandatory Exchange Document header, which contains metadata relevant for this
exchange.

« toolExtensions: ReqlFToolExtension [0..*] { composite}
This composition links optional Exchange Document content based on tool extensions, if such extensions and
content are present.

Operations

No operations

Constraints

[1] Element ReglF must be the Exchange Document root element.

[2] Any ReglF Exchange Document must at most contain one ReqlF root element.

Tags

org.omg.reqif.global _element True
org.omg.reqif.ordered True
Semantics

Element ReglF is the document root element, which encapsulates the whole Exchange Document.

Additional Information

No additional information

9.2.2 ReqlFContent

Description

This class represents the mandatory content of the Exchange Document. Please refer to sub clause 10.8.35 for the
complete class description.

9.2.3 ReqlFHeader

Package: ReqlF
isAbstract: No
Generalization: none

Description
This class holds metadata relevant to the Exchange Document content.
Attributes

e comment: string [0..1]
Optional comment associated with the Exchange Document as awhole.

26 Requirements Interchange Format (ReqlF), v1.2

e creationTime: xsd::dateTime
Time of creation of the exchange XML document in the format of the XML Schema data type “dateTime” which
specifies the time format as CCYY-MM-DDThh: mm:; ss with optional time zone indicator as a suffix £hh; mm.
Example: 2005-03-04T10:24:18+01:00 (MET time zone).

e identifier : xsd::ID
Unique identifier for whole exchange XML document. The value of the identifier is of the XML Schema datatype
“xsd::1D”

e repositoryld: string [0..1]
Optional uniqueidentifier of the repository containing the requirements that have been exported.
Examples for repositorylD: databaseld, URL.

e reglFToolld: string
Identifier of the exporting ReqlF tool.

e reqlFVersion: string
ReqlF interchange format and protocol version.

e sourceToolld : string
Identifier of the exporting requirements management tool.

e title: string
Title of the Exchange Document.

Associations

¢ documentRoot : ReqlF [1]
Linking back to the Exchange Document root element.

Operations
No operations
Constraints

[1] The value of attribute reqlFVersion must be “1.0.”

Tags

org.omg.reqif.order 1

org.omg.reqif.xsd_element “comment,” “creationTime,” “repositoryld,” “reqlFToolld,” “reql FVersion,”
“sourceToolld,” “title”

org.omg.reqif.fixed “reql FVersion”

Semantics

Metainformation held in the ReglFHeader element is applicable to the Exchange Document as a whole.

Additional Information

No additional information

Requirements Interchange Format (ReqlF), v1.2 27

9.2.4 ReqlFToolExtension

Package: ReqlF

isAbstract: No
Generalization: none

Description

This class allows the optional inclusion of tool-specific information into the Exchange Document.
Attributes
No attributes

Associations

e documentRoot : ReqglF [1]
Linking back to the Exchange Document root element.

Operations
No operations
Constraints

No constraints

Tags

org.omg.reqif.order 3
org.omg.reqif.processContents lax
Semantics

Reql FTool Extension elements may be used to exchange requirements authoring tool specific concepts for which no ReglF
information types are applicable.

As an example, a Regl FTool Extention element can be used to represent instances of the View type found in requirements
authoring tools, as there is no ReglF information type defined for the concept of a View.

Additional Information

As format, type, and content of information transferred in ReqlFTool Extension is not specified, preservation and/or
correct interpretation of this information cannot be guaranteed if:

 different ReqlF tools are used for export and import, or

« different requirements authoring tools are used as source and target for the exchange.

28 Requirements Interchange Format (ReqlF), v1.2

10 Exchange Document Content

10.1 Overview

Figure 10.1 provides an overview of the information types aggregated by a ReglFContent element.

ReqlFContent

+coreContent 1 +coreContent 1

+datatypes|0..*

+specTypes|0..*

+coreContent 1

+specObjects|0..*

+coreContent 1

+specRelations 0.*

+coreContent 1

+specifications] 0..*

+coreContent 1

+specRelationGroupl, «

Dataty peDefinition

SpecType

SpecObject

SpecRelation

Specification

RelationGroup

Figure 10.1 - Exchange Document core content

10.2 Identification of Elements

Information elements in an Exchange Document are distinguished through global unique identifiers (Identifiable

elements), which are assigned during the creation of the information element. After assignment, these identifiers must not

be altered during the lifetime of the information element, nor reused for any different information element. These

identifiers allow the unique identification of information elements, even across several exchange documents.

Using these identifiers, elements of the specification that have been modified in a requirements authoring tool of an
exchange partner can be updated in the requirements authoring tool where they had originally been created. In cases

where a tool is unable to handle the original element identifiers, the original identifier may be complemented with a tool-

specific alternative identifier (AlternativelD element).

Identifiable

desc: string [0..1]
identifier 1D

o+ 4+

lagtChange: dateTime
longMame: string [0..1]

+ident

+altemativelD

AlternativelD

Figure 10.2 — Primary and alternative identifier

Requirements Interchange Format (ReqlF), v1.2

0.

1

+ identifier string

29

10.3 Specifications, Requirements, and Attributes

A key concept of ReglF is the specification (Specification element), which acts as a container for the individual
requirements (SpecObject elements). SpecObject elements constitute individually identifiable requirements. Apart from
the information inherited from Identifiable, an instance of SpecObject is “empty” by itself and therefore contains no data.

Requirements can have attributes to represent requirement related information kept in the requirement authoring tool.
Typically, a set of requirements shares the same attributes. For example: all requirements in a certain set have a
“priority”-attribute and a “ status” -attribute. What is actually shared among the requirements is the requirement attribute
definitions (the number of attributes, the names of the attributes, the default values for the attributes, and the datatypes of
the attributes.) In contrast to that, the value of a certain attribute may vary among the requirements in the set.

Therefore, ReqglF differs between the attribute definitions (AttributeDefinition elements) and the attribute values
(AttributeValue elements) of a requirement. Several attribute definitions can be attached to a requirement by using a type
(SpecType element).

In ReglF, the concept of having attributes also expands to relations between requirements (SpecRelation elements), to
requirement specifications (Specification elements), and to groups of relations (RelationGroup elements).

Identifiable
+ desc: string [0..1]
l> + identifier: ID
+ lastChange: dateTime
+ longName: string [0..1]
+SpeCEIAL AttributeValue
AttributeDefinition SpecElementWithAttributes 1 +values =
+specAttributes Zﬁ Zﬁ %
Specification SpecObject SpecRelation
+specType RelationGroupj
1
SpecType +specRelations
0..* 0..* 0..*
0..*
+type 1
JAVAYAY RN/
SpecificationTypq
SpecObjectType) ttype 1
SpecRelationTypd
+type 1

RelationGroupType

Figure 10.3 - Specification (Specificification), requirement (SpecObject), requirement relation (SpecRelation), relation
group (RelationGroup) and associated attributes (AttributeDefinition, AttributeValue)

The information type AttributeDefinition is an abstract super-class for attribute definitions.

30 Requirements Interchange Format (ReqlF), v1.2

AttributeDefinition

AttributeDefinitionSimple AttributeDefinitionEnumeration Attribute DefinitionXHTML

+ multiValued: boolean

AttributeDefinitionBoolean AttributeDefinitionDate AttributeDefinitionIinteger AttributeDefinitionReal AttributeDefinitionString

Figure 10.4 - AttributeDefinition class hierarchy

The information type AttributeValue is an abstract superclass for attribute values. There is one concrete AttributeValue
information type for each concrete (direct or indirect) subclass of AttributeDefinition.

AttributeValue

AttributeValueSimple AttributeValueEnumeration AttributeValueXHTML

+ isSimplified: boolean [0..1]

AttributeValueBoolean| AttributeValueDate AttributeValuelnteger AttributeValueReal AttributeValueString
+ theValue: boolean + theValue: dateTime + theValue: integer + theValue: float + theValue: string

Figure 10.5 - AttributeValue class hierarchy

Requirements Interchange Format (ReqlF), v1.2 31

10.4 Hierarchical Structuring of Requirements in a Specification and
Requirement Relations

Two requirements may have arelation to each other, for example to establish traceability between a Customer
Requirements Specification and a System Requirements Specification. Having a relation is represented by an association
of one SpecRelation element to two SpecObject elements, one being the source, one the target of the relation.

The two specifications that are related to each other (in the above example: a Customer Requirements Specification and a
System Requirements Specification) are referred to by the sourceSpecification and targetSpecification association of a
RelationGroup instance.

The hierarchical structure of a requirement specification is represented by SpecHierarchy elements.

SpecElementWithAttributes

SpecObject

+parent
0.1
+object SpecHierarchy B icaion
1 0.*|+ isTableintemal: boolean [0..1] [*children * {ordere fi}
+children *root
*{fordered} 0.1
+source '
SpecRelation
1 «global» 0.*
+target
1 «global» 0.*

Figure 10.6 - Requirements, requirement relations and how requirements are structured hierarchically in a

specification

32

Requirements Interchange Format (ReqlF), v1.2

SpecRelation

+specRelations

RelationGroup

+sourceSpecification
Specification

*

1
+targetSpecification

+type 1

RelationGroupType

1

Figure 10.7 - Grouping relations by the source and target specification they relate

10.5 Representing Attribute Data Types

10.5.1 Representing Data Types

In ReqlF, there are three kinds of data types:

1. Simple data types (i.e., Integer, Date, Real, Boolean, String)

2. A data type for enumeration values.

3. A data type for formatted content. This data type can also be used to reference external objects (for example,

pictures from within formatted content).

The abstract super-class for the three kinds of data types is DatatypeDefinition. The classes of data types are displayed in
Figure 10.8. Concrete information types for simple data type definitions inherit from the information type

DatatypeDefinitionSimple.

Dataty peDefinition

i

f

f

Dataty peDefinitionSimple

DatatypeDefinitionEnumeration

DatatypeDefinition XHTML

Figure 10.8 - DatatypeDefinition class hierarchy

Requirements Interchange Format (ReqlF), v1.2

33

10.5.2 Relating Attributes to Data Types

Each concrete attribute value that is created in a requirements authoring tool needs to be valid against its related data
type. For example: the value of a “priority” -attribute may need to be an integer number, while the value for a “status’-
attribute may need to be picked from alist of choices.

In ReglF, each attribute value (AttributeValue element) is related to its data type (DatatypeDefinition element) via an
attribute definition (AttributeDefinition element).

A concrete AttributeDefinition element MAY contain a default value that represents the value that is used if no attribute
value is supplied by the user of the requirements authoring tool. For example, a user of a requirements authoring tool may
specify that the value “TBD” is used for the “ status’-attribute of all requirements that have not been assigned a “ status’
so far.

+definition
DatatypeDefinitionBoolean Attribute DefinitionBoolean AttributeVValueBoolean
1 0.*
type + theValue: boolean
S +defaultValue
>
1 0.1
+owningDefinition
L ; .. +definition 0.*]
DatatypeDefinitioninteger AttributeDefinitioninteger AttributeValuelnteger
1 "
+ max: integer tlype +defaultvaluel+ thevalue: integer
+ min: integer 1 7 0.1

+owningDefinition

+definition 0.*)
DatatypeDefinitionReal Attribute DefinitionReal AttributeValueReal
1
+ accuracy: inleger +type +defaultValue | + theValue: float
+ max: float 1
1 0.1

+ min: float

+owningDefinition

DatatypeDefinitionDate Attribute DefinitionDate +definition 0.* AttributeValueDate
+type 1 . .
+defaultValud + theValue: dateTime
1
0..
+owningDefinition
+definition 0.* " A
DatatypeDefinitionString Attribute DefinitionString AttributeValueString
+type 1 T
+ maxLength: integer P +defaultvaludt theVvalue: sting
! 1 0.1
+owningDefinition
- 3 . .] +definition 0..* i]
DatatypeDefinittonEnumeration ! Attribute DefinitionEnumeration AttributeValueEnumeration
+tlype 1
3 o0 + multiValued: boolean +defaultValue
1 0.1
+owningDefinition
- 0.*
DatatypeDefinitionXHTML) Attribute Definition X HTML +definition AttributeValueXHTML
+tlype
1 P
A 0 +defaultvalue | * isSimplified: boolean [0..1]
1 0.1

+owningDefinition

Figure 10.9 - The ReqlF data types and their relations

34 Requirements Interchange Format (ReqlF), v1.2

10.6 Concrete Data Types

10.6.1 Simple Data Types

The following diagram shows the primitive data types that are supported by ReglF.

Dataty peDefinitionSimple

DatatypeDefinitioninteger

+ max: integer
+ min: integer

DatatypeDefinitionBoolean

DatatypeDefinitionDate

DatatypeDefinitionReal

+ max: float
+ min: float

+ accuracy: integer

DatatypeDefinitionString

+ maxLength: integer

Figure 10.10 - Simple data types

10.6.2 Enumeration Data Type

The following diagram shows the enumeration data type that is supported by ReglF.

DatatypeDefinitionEnumeration

+type

AttributeDefiniionEnumeration

+definition 0.*

@

multiValued: boolean

AttributeValueEnumeration

1
+defaultValug

1
+owningDefinition

EnumValue

+values

+specifiedValues]

*{ordered}

*

+enumValue 1

+properties|1

EmbeddedValue

+
+

key: integer
otherContent: string

Figure 10.11 - Enumeration data types

Requirements Interchange Format (ReqlF), v1.2

35

10.6.3 Data Type for XHTML Content
There are two main functionalities of ReqglF that are realized through XHTML.:

1. Storing of formatted text.
Requirement authoring tools support (among other things) the use of bold, italic, underlined, and strikethrough
text, bullet points, and numbering in attribute values of requirements. Re-using XHTML is a pragmatic approach
to represent this formatted text in exchange documents.

2. Inclusion of objects that are external to the exchange XML document in the requirements authoring tool. The
objects may have binary content.

Furthermore, as requirements authoring tools and Reql F tools have different capabilities, information may be lost during
the exchange process (3.)

Please note that instances of AttributeValueXHTML are in principle wrappers for an XHTML document that is embedded
into the exchange XML document.

The embedded XHTML document is modeled as a ReglF information element XhtmlContent, as shown in Figure 10.12.
XhtmlContent switches the XML namespace to the standard XHTML namespace http://www.w3.0rg/1999/xhtml.

Separating the XML namespaces allows validating against different XML-Schemas (i.e., against the Regl F-Schema and
against an XHTML-Schema) resulting in more independency between the different XML-Schemas.

DatatypeDefinitionXHTML Attribute DefinitionX HTML

+type
1 0.*
+owningDefinition 1 1
+definition
+defaultValue [p. 1 0..*
AttributeValue X HTML +attributeValue +theValue
> XhtmlContent
+ isSimplified: boolean [0..1] 1 1
+attibuteValue +theOriginalValue
>
1 0.1

Figure 10.12 - Data types for XHTML content

10.7 Access Restrictions

For certain information elements, ReglF allows to specify whether they are editable or read-only by the user of the
requirements authoring tool. Having such access restrictions in place supports exchange processes where partners have
different rights to modify information.

There are three cases for which access may be restricted:

1. Making subtrees of a specification hierarchy editable or read-only.
A subtree of a specification hierarchy that is editable allows the user to add or remove requirements from/to the
subtree. Subtrees of the subtree may override the access settings.

36 Requirements Interchange Format (ReqlF), v1.2

2. Making requirement attributes editable or read-only in subtrees of a specification hierarchy.
A set of attributes is editable in a subtree means: the values of the attributes in the set can be edited in that subtree.
As a consequence, all attributes that are not in the set are not editable in that subtree. Subtrees of the subtree may
override the access settings.

3. Making the attribute definition of an attribute editable or read-only.

For example: it shall be possible to make the “status’ -attribute definition read-only, meaning that no additional

enumeration literal can be added to the “status’ attribute’s set of enumeration literals (like “accepted,” “rejected,”

etc.)

See for the classes affected by the access restriction concept, see the class descriptions for details.

Identifiable

desc: string [0..1]
identifier: ID
lastChange: dateTime
longName: string [0..1]

+ 4+ + o+

AccessControlledElement

+ isEditable: boolean [0..1]

I

Attribute Definition

+editableAtts

+parent0..1

SpecHierarchy

*

Figure 10.13 - Access Restrictions

10.8 Class Descriptions

10.8.1 AccessControlledElement

Package: ReqlF
isAbstract: Yes

Generalization: Identifiable

Description

+

isTableIinternal: boolean [0..1]

|

Base class for classes that may restrict user access to their information.

Requirements Interchange Format (ReqlF), v1.2

+children *{ordered}

37

Attributes

» isEditable: Boolean[O..1]
True means that the element’s contents may be modified by the user of atool containing the element.
False or leaving isEditable out means that the element is read-only to the user of atool containing the element.

Associations
Operations
No operations
Constraints
No constraints
Tags

No tags
Semantics

For certain information elements, ReglF allows to specify whether they are editable or read-only by the user of the tool
containing them. Having such access restrictions in place supports exchange processes where partners have different
rights to modify information.

Sub classes of AccessControlledElement may detail the semantics of “being editable” in their context.

Additional Information

No additional information

10.8.2 AlternativelD

Package: ReqlF
isAbstract: No
Generalization: none

Description
Used to provide an alternative, tool-specific identification.
Attributes

e identifier: string[1]
An optiona aternative identifier, which may be a requirements management tool identifier or ReglF tool identifier.

Associations

e ident: Identifiable
Back linkage to the owning Identifiable.

Operations

No operations

38 Requirements Interchange Format (ReqlF), v1.2

Constraints

[1] The value of Alternativel D::identifier shall be globally unique.
Tags

No tags

Semantics

In cases where Identifiable::identifier cannot be handled by a requirements authoring tool or ReglF tool for any reason, an
AlternativelD may be associated to provide a tool-consumable alternative identification.

Additional Information

No additional information

10.8.3 AttributeDefinition

Package: ReqlF
isAbstract: Yes
Generalization: AccessControlledElement

Description

Base class for attribute definitions.
Attributes

No attributes

Associations

e gpecType: SpecType[1]
Back linkage to the owning SpecType.

Operations

No operations

Constraints

[1] The attribute longName inherited from Identifiable is mandatory for all sub classes of AttributeDefinition.
Tags

No tags

Semantics

Base class for Exchange Document content attributes, must be specialized for concrete attributes.

Requirements Interchange Format (ReqlF), v1.2 39

Additional Information

No additional information

10.8.4 AttributeDefinitionBoolean

Package: ReqlF
isAbstract: No
Generalization: AttributeDefinitionSimple

Description

Definition of a boolean attribute.

Attributes

No attributes

Associations

« defaultValue : AttributeVaueBoolean [0..1] { composite}
Linkage of the owned default value that is used if no attribute value is supplied by the user of the requirements
authoring tool.

* type: DatatypeDefinitionBoolean[1]
Reference to the data type

Operations

No new operations

Constraints

[1] If the inherited isEditable attribute is set to false or left out, no modification of the default value by tool usersis
allowed.

Tags
No tags
Semantics

Each concrete attribute value that is created in a requirements authoring tool needs to be valid against its related data
type. In ReqlF, each attribute value (AttributeValue element) is related to its data type (DatatypeDefinition element) via
an attribute definition (AttributeDefinition element).

An AttributeDefinitionBoolean element therefore relates an AttributeValueBoolean element to a
DatatypeDefinitionBoolean element viaits type attribute.

An AttributeDefinitionBoolean element MAY contain a default value that represents the value that is used as an attribute
value if no attribute value is supplied by the user of the requirements authoring tool.

40 Requirements Interchange Format (ReqlF), v1.2

10.8.5 AttributeDefinitionDate

Package: ReqlF
isAbstract: No
Generalization: AttributeDefinitionSimple

Description

Definition of a date and time attribute.

Attributes

No attributes

Associations

e defaultValue : AttributeVaueDate [0..1] { composite}
Linkage of the owned default value that is used if no attribute value is supplied by the user of the requirements
authoring tool.

e type: DatatypeDefinitionDate] 1]
Reference to the data type

Operations

No new operations

Constraints

[1] If the inherited isEditable attribute is set to false or left out, no modification of the default value by tool users
is alowed.

Tags
No tags
Semantics

Each concrete attribute value that is created in a requirements authoring tool needs to be valid against its related data
type. In ReqlF, each attribute value (AttributeValue element) is related to its data type (DatatypeDefinition element) via
an attribute definition (AttributeDefinition element).

An AttributeDefinitionDate element therefore relates an AttributeValueDate element to a DatatypeDefinitionDate
element via its type attribute.

An AttributeDefinitionDate element MAY contain a default value that represents the value that is used as an attribute
value if no attribute value is supplied by the user of the requirements authoring tool.

Requirements Interchange Format (ReqlF), v1.2 41

10.8.6 AttributeDefinitionEnumeration

Package: ReqlF
isAbstract: No
Generalization: AttributeDefinition

Description

Definition of an enumeration attribute.

Attributes
multiValued : Boolean

« |f setto true, thismeansthat the user of arequirements authoring tool can pick one or more than one of the valuesin
the set of specified values as an enumeration attribute value.

« If setto false, thismeansthat the user of arequirements authoring tool can pick exactly one of the valuesin the set
of specified values as an enumeration attribute value.

Associations

« defaultValue : AttributeValueEnumeration [0..1] { composite}
Linkage of the owned default value that is used if no attribute value is supplied by the user of the requirements
authoring tool.

e type: DatatypeDefinitionEnumeration [1]
Reference to the data type for enumerations.

Operations

No operations

Constraints

[1] If the inherited isEditable attribute is set to false or left out, al of the following constraints apply:
« no modification of the default value by tool usersis allowed.
« no adding, deleting, or modification of enumeration literals by tool usersis allowed.

Tags

No tags

Semantics

Each concrete attribute value that is created in a requirements authoring tool needs to be valid against its related data
type. In ReglF, each attribute value (AttributeValue element) is related to its data type (DatatypeDefinition element) via
an attribute definition (AttributeDefinition element).

An AttributeDefinitionEnumeration element therefore relates an AttributeValueEnumeration element to a
DatatypeDefinitionEnumeration element via its type attribute.

An AttributeDefinitionEnumeration element MAY contain a default value that represents the value that is used as an
attribute value if no attribute value is supplied by the user of the requirements authoring tool.

42 Requirements Interchange Format (ReqlF), v1.2

There are basically two kinds of enumerations: “single-choice” and “multiple-choice” enumerations. “ Single-choice’
enumerations allow the user of a requirements authoring tool to pick exactly one value out of a set of specified values.
“Multiple-choice” enumerations allow the user of a requirements authoring tool to pick several values out of a set of
specified values. For “multiple-choice” enumerations, the multiValued attribute needs to be set to true, for “single-choice”
enumerations it needs to be set to false.

The set of specified values is defined by the DatatypeDefinitionEnumeration element that is linked via the type
association.

Additional Information

No additional information

10.8.7 AttributeDefinitionIinteger

Package: ReqlF
isAbstract: No
Generalization: AttributeDefinitionSimple

Description

Definition of an integer attribute.
Attributes

No attributes

Associations

e defaultValue : AttributeValuelnteger [0..1] { composite}
Linkage of the owned default value that is used if no attribute value is supplied by the user of the requirements
authoring tool.

e type: DatatypeDefinitionlnteger[1]
Reference to the data type

Operations
No new operations
Constraints

[1] If the inherited isEditable attribute is set to false or left out, no modification of the default value by tool usersis
allowed.

Tags
No tags

Requirements Interchange Format (ReqlF), v1.2 43

Semantics

Each concrete attribute value that is created in a requirements authoring tool needs to be valid against its related data
type. In ReglF, each attribute value (AttributeValue element) is related to its data type (DatatypeDefinition element) via
an attribute definition (AttributeDefinition element).

An AttributeDefinitioninteger element therefore relates an AttributeVvaluelnteger element to a
DatatypeDefinitionIinteger element via its type attribute.

An AttributeDefinitionIinteger element MAY contain a default value that represents the value that is used as an attribute
value if no attribute value is supplied by the user of the requirements authoring tool.

10.8.8 AttributeDefinitionReal

Package: ReqlF
isAbstract: No
Generalization: AttributeDefinitionSimple

Description

Definition of an attribute with Real data type.

Attributes

No attributes

Associations

« defaultValue: AttributeVaueReal [0..1] { composite}
Linkage of the owned default value that is used if no attribute value is supplied by the user of the requirements
authoring tool.

e type: DatatypeDefinitionReal[1]
Reference to the data type

Operations

No new operations

Constraints

[1] If the inherited isEditable attribute is set to false or left out, no modification of the default value by tool users
is allowed.

Tags
No tags
Semantics

Each concrete attribute value that is created in a requirements authoring tool needs to be valid against its related data
type. In ReqlF, each attribute value (AttributeValue element) is related to its data type (DatatypeDefinition element) via
an attribute definition (AttributeDefinition element).

44 Requirements Interchange Format (ReqlF), v1.2

An AttributeDefinitionReal element therefore relates an AttributeValueReal element to a DatatypeDefinitionReal
element via its type attribute.

An AttributeDefinitionReal element MAY contain a default value that represents the value that is used as an attribute
value if no attribute value is supplied by the user of the requirements authoring tool.

10.8.9 AttributeDefinitionSimple

Package: ReqlF
isAbstract: Yes
Generalization: AttributeDefinition

Description

Abstract base class of simple type attributes.
Attributes

No attributes

Associations

No associations

Operations

No new operations

Constraints

No constraints

Tags

No tags

Semantics

Abstract base class of simple type attributes.
Additional Information

No additional information

Requirements Interchange Format (ReqlF), v1.2

10.8.10 AttributeDefinitionString

Package: ReqlF
isAbstract: No
Generalization: AttributeDefinitionSimple

Description

Definition of an attribute with string data type.

Attributes

No attributes

Associations

e defaultVaue: AttributeVaueString [0..1] { composite}
Linkage of the owned default value that is used if no attribute value is supplied by the user of the requirements
authoring tool.

* type: DatatypeDefinitionString[1]
Reference to the data type

Operations

No new operations

Constraints

[1] If the inherited isEditable attribute is set to false or left out, no modification of the default value by tool users
is alowed.

Tags
No tags
Semantics

Each concrete attribute value that is created in a requirements authoring tool needs to be valid against its related data
type. In ReqlF, each attribute value (AttributeValue element) is related to its data type (DatatypeDefinition element) via
an attribute definition (AttributeDefinition element).

An AttributeDefinitionString element therefore relates an AttributeValueString element to a DatatypeDefinitionString
element via its type attribute.

An AttributeDefinitionString element MAY contain a default value that represents the value that is used as an attribute
value if no attribute value is supplied by the user of the requirements authoring tool.

46 Requirements Interchange Format (ReqlF), v1.2

10.8.11 AttributeDefinitionXHTML

Package: ReqlF
isAbstract: No
Generalization: AttributeDefinition

Description

Definition of an XHTML attribute.

Attributes

No attributes

Associations

e defaultValue: AttributeValueXHTML [0..1] { composite}
Linkage of the owned default value that is used if no attribute value is supplied by the user of the requirements
authoring tool.

e type: DatatypeDefinitionXHTML [1]
Reference to the data type

Operations

No operations

Constraints

[1] If the inherited isEditable attribute is set to false or left out, no modification of the default value by tool users
is alowed.

Tags
No tags
Semantics

Each concrete attribute value that is created in a requirements authoring tool needs to be valid against its related data
type. In ReqlF, each attribute value (AttributeValue element) is related to its data type (DatatypeDefinition element) via
an attribute definition (AttributeDefinition element).

An AttributeDefinitionXHTML element therefore relates an AttributeValueXHTML element to a
DatatypeDefinitionXHTML element via its type attribute.

An AttributeDefinitionXHTML element MAY contain a default value that represents the value that is used as an attribute
value if no attribute value is supplied by the user of the requirements authoring tool.

Additional Information

No additional information.

Requirements Interchange Format (ReqlF), v1.2 47

10.8.12 AttributeValue

Package: ReqlF
isAbstract: Yes
Generalization: None

Description

Base class for concrete attribute values.
Attributes

No attributes

Associations

e specElAt : SpecElementWithAttributes[1]
The linkage between AttributeValue and the owning class SpecElementWithAttributes

Operations

No operations

Constraints

No constraints

Tags

No tags

Semantics

This is the base class for all concrete classes that represent attribute values of requirements authoring tools.
Additional Information

No additional information

10.8.13 AttributeValueBoolean

Package: ReqlF
isAbstract: No
Generalization: AttributeValueSimple

Description
A boolean attribute value.
Attributes

* theValue: Boolean
The attribute value.

48 Requirements Interchange Format (ReqlF), v1.2

Associations

« definition : AttributeDefinitionBoolean [1]
Reference to the value definition.

e owningDefinition : AttributeDefinitionBoolean [1]
Back linkage of the owning attribute definition

Operations

No new operations
Constraints

No constraints
Tags

No tags
Semantics

Contains a boolean attribute value.

Additional Information

No additional information

10.8.14 AttributeValueDate

Package: ReqlF
isAbstract: No
Generalization: AttributeValueSimple

Description

A date/time attribute value.

Attributes

¢ theVaue: xsd::dateTime
The attribute value

Associations

e definition : AttributeDefinitionDate [1]
Reference to the value definition

e owningDefinition : AttributeDefinitionDate [1]
Back linkage of the owning attribute definition

Operations

No new operations

Requirements Interchange Format (ReqlF), v1.2

49

Constraints
No constraints
Tags

No tags
Semantics

Contains a date/time attribute value.

Additional Information

No additional information

10.8.15 AttributeValueEnumeration

Package: ReqlF
isAbstract: No
Generalization: AttributeValue

Description
Definition of an enumeration attribute value.
Attributes

Associations

e definition : AttributeDefinitionEnumeration [1]
Reference to the attribute definition that relates the value to its data type.

e owningDefinition : AttributeDefinitionEnumeration [1]
Back linkage of the owning attribute definition

e vaues: EnumValue [*]
Reference to the enumeration values that are chosen from a set of specified values.

Operations
No operations
Constraints

[1] If the multiValued attribute of the AttributeValueEnumeration element referenced by the definition association is
set to false, the values set must contain at most one value.

[2] Each value referenced by the values association must be contained in the specifiedValues set of the related
DatatypeDefinitionEnumeration element.

NOTE: The definition association references an AttributeDefinitionEnumeration element that in turn references the
DatatypeDefinitionEnumeration element mentioned above.

50 Requirements Interchange Format (ReqlF), v1.2

Tags
No tags

Semantics

Provides a link to the concrete literals of an enumeration.

Additional Information

No additional information

10.8.16 AttributeValuelnteger

Package: ReqlF
isAbstract: No
Generalization: AttributeValueSimple

Description

An integer attribute value.

Attributes

e theVaue: integer
The attribute value

Associations

e definition : AttributeDefinitionlnteger [1]
Reference to the value definition

* owningDefinition : AttributeDefinitionInteger [1]
Back linkage of the owning attribute definition

Operations

No new operations

Constraints

No constraints
Tags

No tags
Semantics

Contains an integer attribute value.

Additional Information

No additional information

Requirements Interchange Format (ReqlF), v1.2

51

10.8.17 AttributeValueReal

Package: ReqlF
isAbstract: No
Generalization: AttributeValueSimple

Description

A Real attribute value.

Attributes

* theVaue: float
The attribute value

Associations

e definition : AttributeDefinitionReal [1]
Reference to the value definition

» owningDefinition : AttributeDefinitionReal [1]
Back linkage of the owning attribute definition

Operations

No new operations

Constraints

No constraints

Tags

No tags

Semantics

Contains a Real attribute value.
Additional Information

No additional information

10.8.18 AttributeValueSimple

Package: ReqlF
isAbstract: Yes
Generalization: AttributeValue

Description

Abstract base class for simple attribute values.

52

Requirements Interchange Format (ReqlF), v1.2

Attributes

No attributes
Associations

No associations
Operations

No new operations
Constraints

No constraints

Tags

No tags

Semantics

Abstract base class for simple attribute values.
Additional Information

No additional information

10.8.19 AttributeValueString

Package: ReqlF
isAbstract: No
Generalization: AttributeValueSimple

Description

A string attribute value.

Attributes

o theValue: string
The attribute value

Associations

o definition : AttributeDefinitionString [1]
Reference to the value definition

e owningDefinition ; AttributeDefinitionString [1]
Back linkage of the owning attribute definition

Operations

No new operations

Requirements Interchange Format (ReqlF), v1.2

53

Constraints
No constraints
Tags

No tags
Semantics

Contains an string attribute value.

Additional Information

No additional information

10.8.20 AttributeValueXHTML

Package: ReqlF
isAbstract: No
Generalization: AttributeValue

Description

An attribute value with XHTML contents.

Attributes

e isSimplified : Boolean[O..1]
Set to true if the attribute value is a simplified representation of the original value.

Associations

e definition : AttributeDefinitionXHTML [1]
Reference to the value definition

* owningDefinition : AttributeDefinitionXHTML [1]
Back linkage of the owning attribute definition

e theVaue: XhtmlContent [1] { composite}
Linkage to the owned XhtmlContent

e theCriginaValue : XhtmlContent [0..1] { composite}
Linkage to the original attribute value that has been saved if isSimplified is true.

Operations

No operations

Constraints

[1] The value of isSimplified is considered false if it is left out.

54 Requirements Interchange Format (ReqlF), v1.2

Tags

No tags

Semantics

There are two main functionalities of ReglF that are realized through XHTML.:

1. Storing of formatted text.
Requirement authoring tools support — among other things — the use of bold, italic, underlined, and strikethrough
text, bullet points, and numbering in attribute values of requirements. Re-using XHTML is a pragmatic approach
to represent this formatted text in exchange documents.

2. Inclusion of objects that are external to the exchange XML document in the requirements authoring tool. The
objects may have binary content.

3. Furthermore, as requirements authoring tools and Reql F tools have different capabilities, information may be lost
during the exchange process (3.)

1. Storing of formatted text

ReglF re-uses XML elements for formatting that are defined by XHTML 1.0. These XML elements - which are in the
XHTML namespace - are embedded into the exchange XML document by using an XHTML schema driver, as defined by
the XHTML Modularization 1.1.

NOTE: Formatted content from a requirements authoring tool’s attribute values MUST aways be stored as XHTML
attribute values in the exchange XML documents. It is, for example, not allowed to store formatted content as RTF (Rich
Text Format) or another format for formatted text, as this would decrease the interoperability between different Reql F
tools.

The XML elements of the following XHTML modules SHOULD be expected as contents of AttributeValueXHTML
instances during an import of an exchange XML document:

1. Text Module

2. List Module

. Hypertext Module

. Edit Module

. Presentation Module
. Basic Tables Module

. Object Module

o N oo o b~ W

. Qyle Attribute Module
The contents of these modules are defined in the XHTML Modularization

(http://www.w3.0rg/TR/xhtml-modul arization/).

Concerning the XML attributes of the above XHTML elements, there are the following constraints:

¢ Theclass attribute of the XHTML Core Attribute Collection MUST NOT be used.

Requirements Interchange Format (ReqlF), v1.2 55

Only the following values for the style attribute from the Syle Attribute Module need to be considered during
import:

style="text-decoration:underline",
style="text-decoration:line-through,
style="color:<color>"

XHTML object MUST be treated according to line “3. Handling information loss”

Apart from these constraints, all XML attributes of the XHTML XML elements SHOULD be processed during import. If
any of XHTML’s XML elements or XML attributes can’t be processed, information may be lost. See line “3. Handling
information loss” on how to handle information loss.

2. Inclusion of objects that are external to the exchange XML document in the requirements authoring tool

External aobjects are referenced binary objects that are usually not edited with the requirements authoring tool itself, but
by accessing an external application (e.g., a Visio drawing or an Excel sheet). External objects can be referenced from
within a formatted text (as described in line “1. Storing of formatted text”).

External objects are referenced using the XHTML object element from the XHTML Object Module. The specification for
the XTHML object element defines several XML attributes. For ReqlF, only a subset of these attributes is relevant and
used. These attributes are shown together with their purposes in the following table.

XHTML XML-Element XML Attributes Attributetypes
Object data URI
type MIME-Type
width Length
height Length

To maximize interoperability between ReglF tools, the following rules MUST be obeyed:

56

If there is a specific MIME-type for the application that handles the external object, it MUST be stored in the type
attribute and no attribute in addition to the four attributes for the object element (data, type, width, height) MUST be
used in that case.

For XHTML object elements that refer to an external object that is not an image with the MIME-Type image/png, an
aternative image AND an aternative text MUST be provided anal ogous to the following example.

<object data="http://www.example.com/bar.mp3" type="audio/mpeg">

<!-- Else, try the image -->
<object data="baz.png" type="image/png">

<!-- Else process the alternate text -->

The Earth as seen from space.
</object>

</object>

An exporting ReglF tool MUST only export alternative images with MIME-Type image/png.

Requirements Interchange Format (ReqlF), v1.2

¢ Thelocation of an external object MUST be specified viathe data attribute.
The data attribute MUST either contain:

a) aURL relative to the location of the exchange XML document, or
b) an absolute URL.
Case a) MUST be supported, case b) SHOULD be supported.

3. Handling information loss

The purpose of the isSimplified attribute is to mark an AttributeValueXHTML element if an importing tool has been
unable to interpret the formatted attribute value and thus create the possibility to inform users about it.

If AttributeValueXHTML elements are marked that way, importing ReglF tools SHOULD still display a simplified
version of the attribute value using an external HTML processor, alowing the user to at least read the information. Tool
vendors are strongly encouraged to implement this feature.

The following rules MUST be obeyed during the import of each AttributeValueXHTML element:
If either

« the requirements authoring tool is not capable of displaying its XHTML contents adequately, or
* itscontents can’t be trandated to the requirements authoring tool adequately,
« theisSimplified flag must be set to true.

NOTE: The guideline for what is adequate is the default style sheet proposed by the W3C which maps HTML elements
to CSS (http://www.w3.0rg/TR/CSS2/sample.html) and the CSS2.1 specification.

For the details on setting the isSimplifed flag during the exchange process, see Clause 8.

Additional Information

10.8.21 DatatypeDefinition

Package: ReqlF
isAbstract: Yes
Generalization: Identifiable

Description

Abstract base class for all data types.
Attributes

No attributes

Associations

e coreContent : Regl FContent [1]
The back linkage to the owning Regl FContent element.

Requirements Interchange Format (ReqlF), v1.2 57

Operations

No operations

Constraints

No constraints

Tags

No tags

Semantics

This is the abstract base class for all data types available to the Exchange Document.

Additional Information

No additional information

10.8.22 DatatypeDefinitionBoolean

Package: ReqlF
isAbstract: No
Generalization: DatatypeDefinitionSimple

Description
This class defines the primitive Boolean data type.
Attributes

No attributes
Associations
No associations
Operations
No operations
Constraints
No constraints
Tags

No tags
Semantics

This element defines a data type for the representation of Boolean data values in the Exchange Document. The
representation of data values shall comply with the definitions in http://www.w3.0rg/TR/xmlschema-2/#bool ean.

58 Requirements Interchange Format (ReqlF), v1.2

Additional Information

No additional information

10.8.23 DatatypeDefinitionDate

Package: ReqlF
isAbstract: No
Generalization: DatatypeDefinitionSimple

Description
This class defines the Date and Time data type.
Attributes

No attributes
Associations
No associations
Operations
No operations
Constraints
No constraints
Tags

No tags
Semantics

This element defines a data type for the representation of Date and Time data values in the Exchange Document. The
representation of data values shall comply with the definitions in http://www.w3.org/TR/xmlschema-2/#isof ormats.

Additional Information

No additional information

10.8.24 DatatypeDefinitionEnumeration

Package: ReqlF
isAbstract: No
Generalization: DatatypeDefinition

Description

Data type definition for enumeration types.

Requirements Interchange Format (ReqlF), v1.2

Attributes

No attributes

Associations

* gpecifiedValues : EnumValue [*] { composite, ordered}
The linkage to the owned enumeration literals.

Operations
No operations
Constraints
No constraints
Tags

No tags
Semantics

Data type definition for enumeration types. The set of enumeration values referenced by specifiedValues constrains the
possible choices for enumeration attribute values, as described in sub clause 10.8.15.

Additional Information

No additional information

10.8.25 DatatypeDefinitioninteger

Package: ReqlF
isAbstract: No
Generalization: DatatypeDefinitionSimple

Description
This class defines the primitive Integer data type.
Attributes

e max:integer
Denotes the largest positive data val ue representable by this data type.

e min:integer
Denotes the largest negative data value representabl e by this data type.

Associations

No associations

60 Requirements Interchange Format (ReqlF), v1.2

Operations

No operations

Constraints

[1] The value of the integer value held in any data element defined by DatatypeDefinitionlnteger must be less than or

equal to the value of DatatypeDefinitionlnteger::max, and greater than or equal to the value of
DatatypeDefinitionlnteger::min.

Tags
No tags
Semantics

This element defines a data type for the representation of Integer data values in the Exchange Document. The
representation of data values shall comply with the definitions in http://www.w3.org/TR/xmlschema-2/#integer.

Additional Information

No additional information

10.8.26 DatatypeDefinitionReal

Package: ReqlF
isAbstract: No
Generalization: DatatypeDefinitionSimple

Description

This class defines the primitive Real data type.

Attributes

e accuracy : integer
Denotes the supported maximum precision of real numbers represented by this data type.

e max: float
Denotes the largest positive data val ue representable by this data type.

e« min: float
Denotes the largest negative data value representable by this data type.

Associations

No associations

Operations

No operations

Requirements Interchange Format (ReqlF), v1.2

61

Constraints

[1] The value of the real value held in any data element defined by DatatypeDefinitionReal must be less than or equal to
the value of DatatypeDefinitionReal::max, and greater than or equal to the value of DatatypeDefinitionReal::min.

Tags
No tags
Semantics

This element defines a data type for the representation of Real data values in the Exchange Document. The representation
of data values shall comply with the definitions in http://www.w3.org/TR/xmlschema-2/#double. The precision of
represented values is limited to the precision denoted by DatatypeDefinitionReal::accuracy.

Additional Information

No additional information

10.8.27 DatatypeDefinitionSimple

Package: ReqlF
isAbstract: Yes
Generalization: DatatypeDefinition

Description
Abstract base class for all primitive data types.
Attributes

No attributes
Associations
No associations
Operations
No operations
Constraints
No constraints
Tags

No tags
Semantics

DatatypeDefinitionSimple is the abstract base class from which all primitive data types, except enumeration, are derived.

62 Requirements Interchange Format (ReqlF), v1.2

Additional Information

No additional information

10.8.28 DatatypeDefinitionString

Package: ReqlF
isAbstract: No
Generalization: DatatypeDefinitionSimple

Description
This class defines the primitive String data type.
Attributes

¢ maxLength : integer
The maximum permissible string length.

Associations
No associations
Operations
No operations
Constraints

[1] Thelength of the string value held in any data element defined by DatatypeDefinitionString must not exceed the
value of DatatypeDefinitionString::maxL ength.

Tags
No tags
Semantics

This element defines a data type for the representation of String data values in the Exchange Document. The
representation of data values shall comply with the definitions in http://www.w3.org/TR/xmlschema-2/#string.

Additional Information

No additional information

Requirements Interchange Format (ReqlF), v1.2

10.8.29 DatatypeDefinitionXHTML

Package: ReqlF
isAbstract: No
Generalization: DatatypeDefinition

Description

Data type definition for XHTML formatted data.
Attributes

No attributes

Associations

No associations

Operations

No new operations

Constraints

No new constraints

Tags

No tags

Semantics

Data type definition for XHTML formatted data.
Additional Information

No additional information

10.8.30 EmbeddedValue

Package: ReqlF
isAbstract: No
Generalization:

Description
Class representing additional information related to enumeration literals.
Attributes

e Kkey:integer
The numerical value corresponding to the enumeration literal.

64 Requirements Interchange Format (ReqlF), v1.2

e otherContent : string
Arbitrary additional information related to the enumeration literal (for example, acolor.)

Associations

e enumVaue: EnumValue[1]
Back linkage to the owning EnumValue class.

Operations
No operations
Constraints
No constraints
Tags

No tags
Semantics

This class represents additional information related to enumeration literals.

Additional Information

No additional information

10.8.31 EnumValue

Package: ReqlF
isAbstract: No
Generalization: Identifiable

Description
Class representing enumeration literals.
Attributes

No attributes

Associations

e dataTpeDefEnum : DataTypeDefinitionEnumeration [1]
Back linkage to the owning DatatypeDefinitionEnumeration class.

e Properties : EmbeddedVaue [1] { composite}
Link to owned EmbeddedValue.

Operations

No operations

Requirements Interchange Format (ReqlF), v1.2

Constraints

[1] The attribute longName inherited from Identifiable is mandatory for EnumValue.
Tags

No tags

Semantics

This class represents the enumeration literals.

Additional Information

No additional information

10.8.32 Identifiable

Package: ReqlF
isAbstract: Yes
Generalization: none

Description

Abstract base class providing an identification concept for ReglF elements.

Attributes

e desc: string [0..1]
Optional additional description for the information element.

e identifier: string
The lifetime immutable identifier for an instance of a ReglF information type. The value of the identifier must be a
well-formed xsd:ID.

e lastChange: xsd::dateTime
The date and time of the last change of the information element. Thisincludes the creation of the information
element. lastChange is of the XML Schema data type “dateTime’ that specifies the time format as
CCYY-MM-DDThh: mm:ss with optiona time zone indicator as a suffix +hh:mm.
Example: 2005-03-04T10:24:18+01:00 (MET time zone).

¢ longName: string [0..1]
The human-readable name for the information element.

Associations

e dternativelD : Class[0..1] { composite}
The linkage to the optional aternative identification element.

Operations

No operations

66 Requirements Interchange Format (ReqlF), v1.2

Constraints

[1] The value of Identifiable::identifier must be globally unique.
Tags

No tags

Semantics

The Identifiable element provides globally unique and lifetime immutable identity to ReqlF elements. In addition,
Identifiable provides change tracking for the derived ReglF element, and provides for an optional human-readable name
and an optional textual description for the derived ReglF element.

Additional Information

While the longName attribute is optional from the viewpoint of Identifiable, some ReqlF elements make this long name
mandatory. This fact will be stated in the class description of the affected elements.

10.8.33 RelationGroup

Package: ReqlF
isAbstract: No
Generalization: SpecElementWithAttributes

Description

Represents a group of relations.

Attributes

No attributes

Associations

e coreContent : ReglFContent [1]
The back linkage to the owning Regl FContent element.

¢ gpecRelations : SpecRelation [*]
Points to the grouped SpecRelations.

e type: RelationGroup Type[1]
Linkage to the concrete SpecType instance.

e sourceSpecification: Specification [1]
Reference to the specification that contains SpecObject instances that are source objects of the relations
(referred to by the specRelations association).

e targetSpecification: Specification [1]
Reference to the specification that contains SpecObject instances that are target objects of the relations
(referred to by the specRelations association).

Requirements Interchange Format (ReqlF), v1.2 67

Operations

No new operations

Constraints
[1] The attribute longName inherited from Identifiable is mandatory for RelationGroup.

[2] For each SpecObject instance that is referred to by any SpecRelation instance in the set of specRelations
(viathe relation's source or target association) : the SpecObject instance must either be contained in the
sourceSpecification or in the targetSpecification.

Tags
org.omg.reqif.order 6
Semantics

Represents a group of relations between a source specification and a target specification. For example, a RelationGroup
instance may represent a set of relations between a customer requirements specification and a system requirements
specification.

Additional Information

No additional information

10.8.34 RelationGroupType

Package: ReqlF
isAbstract: No
Generalization: SpecType

Description

Contains a set of attribute definitions for a RelationGroup element.
Attributes

No attributes

Associations

No associations

Operations

No operations

Constraints

No constraints

68 Requirements Interchange Format (ReqlF), v1.2

Tags
No tags

Semantics

Inherits a set of attribute definitions from SpecType. By using RelationGroupType elements, RelationGroup elements can

be associated with attribute names, default values, data types, etc.

Additional Information

No additional information

10.8.35 ReqlFContent

Package: ReqlF
isAbstract: No
Generalization: none

Description

Core content root

Attributes

No attributes

Associations

e datatypes: DataTypeDefinition [0..*] { composite}
Linkage to the DataTypeDefinition content elements.

¢ documentRoot : ReqlF [1]

Linking back to the Exchange Document root element.

e gpecifications: Specification [0..*] { composite}
Linkage to the Specification content elements.

e gpecObjects: SpecObject [0..*] { composite}
Linkage to the SpecObject content elements.

¢ gpecRelationGroups. RelationGroup [0..*] { composite}
Linkage to the RelationGroup content elements.

e gpecRelations : SpecRelation [0..*] { composite}
Linkage to the SpecRelation content elements.

e gpecTypes: SpecType[0..*] { composite}
Linkage to the SpecType content elements.

Operations

No operations

Requirements Interchange Format (ReqlF), v1.2

69

Constraints
No constraints
Tags

org.omg.reqif.order 2
org.omg.reqif.ordered true

Semantics
This element represents the root of the Exchange Document core content.

Additional Information

No additional information

10.8.36 SpecElementWithAttributes

Package: ReqlF
isAbstract: Yes
Generalization: Identifiable

Description

An abstract super class for elements that can own attributes.
Attributes

No attributes

Associations
e values: AttributeValue [0..*] { composite}

The values of the attributes owned by the element.
Operations

No operations

Constraints

No constraints

Tags

None

Semantics

Any element that can own attributes, like a requirement, a specification, or a relation between requirements needs to be
an instance of a concrete subclass of this abstract class.

70 Requirements Interchange Format (ReqlF), v1.2

While this class aggregates the values of the attributes, the association to the attributes' types that define the acceptable
values for the attributes is realized by concrete sub classes of this class.
Additional Information

No additional information

10.8.37 SpecHierarchy

Package: ReqlF
isAbstract: No
Generalization: AccessControlledElement

Description

Represents anode in a hierarchically structured requirements specification.

Attributes

e isTablelnternal : Boolean[O0..1]
Some requirements authoring tools enable the user to use tables as part of a requirement’s content, where parts of
the table represent requirements as well. If that is the case, this attribute needs to be set to true for the root node of
the table hierarchy and all descendant SpecHierarchy nodes.

NOTE: The root node of the table hierarchy is related to the SpecObject element that is the root of the table by the object
association.

Associations

e children: SpecHierarchy [*] { composite, ordered}
Down linksto next level of owned SpecHierarchy.

« editableAtts: AttributeDefinition [*]
The attributes whose values are editable for the SpecHierarchy by atool user.

e parent: SpecHierarchy [0..1]
Up link to previous level of SpecHierarchy (which ownsthislevel).

e root : Specification [0..1]
Up link to specification hierarchy root (which may own this level).

e object : SpecObject [1]
Pointer to the associated SpecObject.

Operations

No operations

Constraints

[1] The value of isTablelnternal is considered false if it is left out.

Requirements Interchange Format (ReqlF), v1.2 71

[2] If the inherited isEditable attribute is left out, the following constraint applies:
« |f thereisaparent SpecHierarchy element, the value of isEditable is copied from the parent SpecHierarchy element.
» If thereis no parent SpecHierarchy element, the value of isEditableis false.

[3] If isEditable is false, the user of the requirements authoring must not replace the associated object with another
object.

[4] If isEditable is false, the user of the requirements authoring must not add or delete any direct children to/from the
SpecHierarchy element.

[5] If the set of editableAtts is empty for a SpecHierarchy element, the following constraint applies:

« |f thereisaparent SpecHierarchy element, the set of editable attributes is copied from the parent SpecHierarchy
element.

« If thereis no parent SpecHierarchy element, all attribute values for the SpecHierarchy are considered read-only.
Tags
No tags
Semantics

Represents a node in a hierarchically structured requirements specification.

Additional Information

In most cases, the isTablelnternal attribute may be set to false or left out. However, if at least one isTablelnternal flag
is set to true in an exchange document, a representation of each whole table must be exported as AttributeValueXHTML
element to allow tools that can’t process table internal structures to represent them as formatted content.

10.8.38 Specification

Package: ReqlF
isAbstract: No
Generalization: SpecElementWithAttributes

Description

Represents a hierarchically structured requirements specification.

Attributes

No attributes

Associations

e children : SpecHierarchy [*] { composite, ordered}
Linksto next level of owned SpecHierarchy.

« coreContent : ReglFContent [1]
The back linkage to the owning Regl FContent element.

72 Requirements Interchange Format (ReqlF), v1.2

e type: Specification Type[1]
Linkage to the concrete SpecType instance.

Operations

No operations

Constraints

No constraints

Tags

org.omg.reqif.order 5

Semantics

Represents a hierarchically structured requirements specification.

It is the root node of the tree that hierarchically structures SpecObject instances.
Additional Information

No additional information

10.8.39 SpecificationType

Package: ReqlF
isAbstract: No
Generalization: SpecType

Description
Contains a set of attribute definitions for a Specification element.
Attributes

No attributes
Associations
No associations
Operations
No operations
Constraints
No constraints
Tags

No tags

Requirements Interchange Format (ReqlF), v1.2

Semantics

Inherits a set of attribute definitions from SpecType. By using SpecificationType elements, multiple specifications can be
associated with the same set of attribute definitions (attribute names, default values, data types, etc.).

Additional Information

No additional information

10.8.40 SpecObject

Package: ReqlF
isAbstract: No
Generalization: SpecElementWithAttributes

Description
Constitutes an identifiable requirements object.
Attributes

No attributes

Associations

« coreContent : ReglFContent [1]
The back linkage to the owning Regl FContent element.

e type: SpecObject Type[1]
Linkage to the concrete SpecType instance.

Operations

No operations

Constraints

No constraints

Tags

org.omg.reqif.order 3
Semantics

Constitutes an identifiable requirements object that can be associated with various attributes. This is the smallest
granularity by which requirements are referenced.

The SpecObject instance itself does not carry the requirements text or any other user defined content. This datais stored
in AttributeValue instances that are associated to the SpecObject instance.

Additional Information

No additional information

74 Requirements Interchange Format (ReqlF), v1.2

10.8.41 SpecObjectType

Package: ReqlF
isAbstract: No
Generalization: SpecType

Description

Contains a set of attribute definitions for a SpecObject element.

Attributes

No attributes

Associations

No associations

Operations

No operations

Constraints

No constraints
Tags
No tags

Semantics

Inherits a set of attribute definitions from SpecType. By using SpecObjectType elements, multiple requirements can be

associated with the same set of attribute definitions (attribute names, default values, data types, etc.).

Additional Information

No additional information

10.8.42 SpecRelation

Package: ReqlF
isAbstract: No
Generalization: SpecElementWithAttributes

Description

Defines relations (links) between two SpecObject instances.

Attributes

No attributes

Requirements Interchange Format (ReqlF), v1.2

75

Associations

« coreContent : Regl FContent [1]
The back linkage to the owning Regl FContent element.

e source: SpecObject [1]
Source object of the relationship.

e target: SpecObject [1]
Target object of the relationship.

e type: SpecRelation Type[1]
Linkage to the concrete SpecType instance.

Operations

No operations

Constraints

No constraints

Tags

org.omg.reqif.order 4
org.omg.reqif.reference.global “source,” “target”
Semantics

Defines relations (links) between two SpecObject instances.

Additional Information

No additional information

10.8.43 SpecRelationType

Package: ReqlF
isAbstract: No
Generalization: SpecType

Description

Contains a set of attribute definitions for a SpecRelation element.
Attributes

No attributes

Associations

No associations

76 Requirements Interchange Format (ReqlF), v1.2

Operations

No operations

Constraints

No constraints
Tags
No tags

Semantics

Inherits a set of attribute definitions from SpecType. By using SpecRelationType elements, multiple relations can be
associated with the same set of attribute definitions (attribute names, default values, data types, etc.).

As an example, a requirement authoring tool may allow its users to define the new type “contradicts’ for relations

between two requirements that contradict each other, and associate a comment attribute with each relation that explains

the contradiction.

Additional Information

No additional information

10.8.44 SpecType

Package: ReqlF
isAbstract: Yes
Generalization: Identifiable

Description

Contains a set of attribute definitions.
Attributes

No attributes

Associations

e coreContent : Regl FContent [1]

The back linkage to the owning Regl FContent element.

e specAttributes: AttributeDefinition [0..*] { composite}
The set of attribute definitions.

Operations

No operations

Constraints

No constraints

Requirements Interchange Format (ReqlF), v1.2

77

Tags
org.omg.reqif.order 2

Semantics

Contains a set of attribute definitions. By using an instance of a subclass of SpecType, multiple elements can be
associated with the same set of attribute definitions (attribute names, default values, data types, etc.).

Additional Information

No additional information

10.8.45 XhtmIContent

Package: ReqlF
isAbstract: No
Generalization:

Description

Class representing XHTML content.
Attributes

No attributes

Associations

o attributeVaue : AttributeValueXHTML [1]

Back linkage to the owning AttributeValueXHTML class.

Operations
No operations
Constraints

No constraints

Tags
org.omg.reqif.datatype True
org.omg.reqif.max 1
org.omg.reqgif.min 1
org.omg.reqif.nsURI http://www.w3.0rg/1999/xhtml
org.omg.reqif.processContents Strict
78 Requirements Interchange Format (ReqlF), v1.2

Semantics

This class represents XHTML formatted content.

Additional Information

No additional information

Requirements Interchange Format (ReqlF), v1.2

79

80

Requirements Interchange Format (ReqlF), v1.2

11 Production Rules of ReqlF XML Schema

11.1 Purpose

This clause describes the rules for creating a schema from the regqif metamodel.

11.2 Notation for EBNF

The rule sets are stated in EBNF notation. Each rule is numbered for reference. Rules are written as rule number, rule
name, for example 1la. SchemaStart. Text within quotation marks are literal values, for example “<xsd:element>.”

Text enclosed in double slashes represents a placeholder to be filled in with the appropriate external value, for example
/IName of Attribute//. Literals should be enclosed in single or double quotation marks when used as the values for XML
attributes in XML documents. The suffix “*” is used to indicate repetition of an item O or more times. The suffix “?" is
used to indicate repetition of an item 0 or 1 times. The suffix “+” is used to indicate repetition of an item 1 or more times.

The vertical bar “|” indicates a choice between two items. Parentheses “()" are used for grouping items together. EBNF

ignores white space; hence these rules do not specify white space treatment. However, since white space in XML is
significant, the actual schema generation process must insert white space at the appropriate points.

11.3 Tags
Some defined tags control the production rules.
Tag id: org.omg.reqif.global element
Values: true | false
Meaning: Marks the class as root element.
Restrictions: There should be exactly one class with value true.
Tag id: org.omg.regif.xsd element
Values: Collection of attribute names.
Meaning: Defines how the attribute from the metamodel is represented in the
schema.
Restrictions: -
Tag id: org.omg.reqgif.xsd attribute reference
Values: Collection of attribute names.
Meaning: Defines that the attributes in the collection are represented as

xsd:attribute with ref attribute.

Restrictions: -

Requirements Interchange Format (ReqlF), v1.2

81

Tag id:

org.omg.reqif.ordered

Values:

true | false

Meaning:

The composite properties of the class have a defined order.

Restrictions:

Tag id: org.omg.reqgif.order

Values: one Integer

Meaning: The position the class in its parent class.
Restrictions: -

Tag id: org.omg.reqgif.reference.global
Values: Collection of target property names.
Meaning: Indicates if a reference can point to an element in an external

document .

Restrictions:

only if property is composite

Tag id: org.omg.reqgif.fixed
Values: Collection of attribute names.
Meaning: Add a fixed attribute to the XML attribute element.

Restrictions:

Tag id: org.omg.reqgif.datatype
Values: true | false
Meaning: Marks the class as datatype if value is set to true.

Restrictions:

Tag id: org.omg.reqif.nsURI
Values: one String
Meaning: Specifies a namespace.
Restrictions: [1] Value must be a URI.
[2] Ignored if org.omg.reqgif.datatype not equals true.
82 Requirements Interchange Format (ReqlF), v1.2

Tag id:

org.omg.reqgif.processContents

Values:

llskipn | "lax" | "strict"

Meaning:

Add a processContents attribute to the XML element.

Restrictions:

Ignored if org.omg.reqgif.datatype not equals true.

Tag id: org.omg.regif.min

Values: one Integer

Meaning: Specifies a minimal value.

Restrictions: Ignored if org.omg.reqgif.datatype not equals true.
Tag id: org.omg.reqif.max

Values: one Integer

Meaning: Specifies a maximal value.

Restrictions: Ignored if org.omg.reqgif.datatype not equals true.
Tag id: org.omg.reqgif.xhtml type

Values: true | false

Meaning: Marks the class as xhtml type.

Restrictions: Ignored if org.omg.reqif.datatype not equals true.
11.4 EBNF

The EBNF for Regl F schemasislisted below with rule description between sections.

1. Schema

la:SchemaStart
1d:XHTMLImports
2 :PackageSchema
le:SchemaEnd

la. SchemaStart::= "<xsd:schema

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"'
xmlns:xml="http://www.w3.0rg/XML/1998/namespace'
xmlns:xhtml="http://www.w3.0rg/1999/xhtml’

xmlns:" (lb:Namespace) "='" (lc:NamespaceURI) "!
targetNamespace='" (1lc:NamespaceURI) "!'

Requirements Interchange Format (ReqlF), v1.2

83

1lb. Namespace ::=
lc. NamespaceURI: :=
1d. XHTMLImports::

le. SchemaEnd::=

"elementFormDefault="qualified'

attributeFormDefault="unqualified's>

<xsd:import
namespace="'http://www.w3.0org/XML/1998/namespace'
schemaLocation="http://www.w3.0rg/2001/xml.xsd'/>"

"REQIF"

"http://www.omg.org/201003/reqif"

"<xsd:import namespace='http://www.w3.0rg/1999/xhtml’

schemal.ocation='driver.xsd'/>"

"< /xsd:schema>"

1 A schema consists of aschema XML element that contains import statements and declarations for the contents
of the packages in the metamodel.

la. The schema XML element consists of the schema namespace attribute, namespace attributes for the other
namespaces used in the schema.

1b. The name of the Regif namespace.

lc. The URI of the Regif namespace.

1d. Fixed driver import declaration for xhtml module schemas.
le. The end of the schema XML element.

2. PackageSchema ::=

:GlobalElement
:FixedRefTypes
5:ClassTypeDef) *
6 :EnumSchema) *

8 :TypeSchema) *

_~ o~~~ W

2. The schema contribution from a package consists of the declarations am global element, fixed reference types,
classes, enumerations, and type definitions.

3. GlobalElement: :=

3a. GlobalElementName
3b. GlobalElementType

"<xsd:element

name='" 3a:GlobalElementName "'

type='" lb:Namespace " : " 3b:GlobalElementType"' >
</xsd:element>"

::= // Name of Global Element //
::= // Name of Global Element Type //

84

Requirements Interchange Format (ReqlF), v1.2

If the tag org.omg.reqif.global _element is true, the rule describes the declaration of a global element in the
metamodel as an element. In the package there should be exactly one element with tag

org.omg.reqif.global_element set to true.
3a The name of the global element.
3b. The type of the global element.

"<xsd:simpleType name='LOCAL-REF'>

4. FixedRefTypes =
<xsd:restriction base='xsd:IDREF'/>
</xsd:simpleType>
<xsd:simpleType name='GLOBAL-REF'>
<xsd:restriction base='xsd:string'/>
</xsd:simpleType>"
4. Thisrule declares two simple types to be used as type in non-containment associations. LOCAL-REF wraps

an arbitrary document.

xsd:IDREF type to point to an identifier inside the same document. GLOBAL-REF can point to an identifier in

5. ClassTypeDef ti=

Sa. ClassElementAttribute

5b. ClassReferences ::=

"<xsd:complexType name='" //Name of Class// "'>"
("<xsd:sequence>" | "<xsd:all>")
(5a:ClassElementAttribute)*
(5b:ClassReferences)*
(5c:ClassCompositions)
("</xsd:sequence>" | "</xsd:all>")
(5d:ClassAttribute)*
(5e:ClassAttributeRef) *
"</xsd:complexTypes>"
1= "«xsd:element
name='" //Name of Attribute// "'
minOccurs='" // Minimum // "'
maxOccurs='" // Maximum // "'"
5g:FixedAttribute
"type='" //Name of Attribute Type// "' />"
"<xsd:element name='" // Name of Target Property // "'

*

minOccurs:" (mrogrm | mrqon) n
maxOccurs="1">
<xsd:complexType>

<xsd:choice
minOccurs='" // Minimum of Target Property // "'

maxOccurs='" // Maximum of Target Property //"'>"

("<xsd:element
name='" // Name of Target Class // "-REF'

85

Requirements Interchange Format (ReqlF), v1.2

type='" 1lb:Namespace ":" ("GOBAL" | "LOCAL") "-REF'
/>")+ "</xsd:choicex>
</xsd:complexType>
</xsd:element>"
5c. ClassCompositions::= "<xsd:element name='" // Name of Target Property // "'
minOccurs="("'Q'" | "'1'")
maxOccurs="1"'>
<xsd:complexType>
<xsd:choice
minOccurs='" // Minimum of Target Property // "'
maxOccurs='" // Maximum of Target Property // "'>"
("<xsd:element
name='" // Name of Target (Sub) Class // "'
type='" 1lb:Namespace ":" // Name of Target Class //
/s)+
"</xsd:choice>
</xsd:complexType>
</xsd:element>"
5d. ClassAttribute ii= "<xsd:attribute
name='" // Name of Attribute // "'
type='" // Type of Attribute // "'"
5f:UseAttribute

n / SN
5e. ClassAttributeRef ti= "<xsd:attribute
ref='" // Name of Attribute Type // "'"
5f :UseAttribute
n / SN
5f. UseAttribute = "use=" ("'prohibited'" | "'optional'" | "'required'")
5g. FixedAttribute pi= ("fixed='" // fixed value // "'")?
5. These rules describe the declaration of a classin the metamodel asan XML complex type with XML attributes

and content elements. If the tag org.omg.reqif.ordered is true, the contents of the class are put in a sequence,
otherwise they are put in an XML all element. Content classes that put in the sequence should be tagged by
org.omg.reqif.order tag, which defines the position by an integer value. Classes in the metamodel with atag
org.omg.reqif.xsd_*use the rules 5a, 5d, or 5e.

5a XML elements for the attributes of the class if the name is contained in the values of the tag
org.omg.reqif.xsd_element or the target classis the data type XhtmlContent. Inherited attributes are al'so
included.

5b. The XML element for each reference of the class that is no composite reference. The name is the name of target

property. The attribute minOccursis set to 0 if the multiplicity lower equal 0 elseto 1, maxOccursis always set to
1. The element is defined by a complex type. The included choice element represents the multiplicities of the
reference. The minOccurs attribute shows the lower value of the reference target property, maxOccurs the upper
value. The choice element contains one of more elements. The name of the element is the name of the association
target classor if this classis abstract, the name of the non-abstract sub class, decorated with -REF. The type of the
element is one of the reference types defined in 4. If the association target role name is contained in the value of
the tag org.omg.reqif.reference.global, GLOBAL-REF will be appended, else LOCAL-REF.

Global means that the reference can point to an Element outside this document. Inherited references are also
included.

86 Requirements Interchange Format (ReqlF), v1.2

5c¢. Thisrule appliesto references that are composite. It differs from rule 5b only in the definition of the element type
of the association target class.

5d. Attributes of the class in the metamodel which names are not values of the tag org.omg.reqif.xsd_element are
declared as XML attributes with name, type, and use attributes.

5e. Attributes of the class in the metamodel which names are values of the tag org.omg.reqif.xsd_attribute reference
are declared as XML attributes with aref attribute which refers to the referenced element and a use attribute.

5f. The attribute use controls the use of the containing element. The valueis derived from the multiplicity of the

attribute from the metamodel. If the upper value is O, then prohibited is used, elseif the lower valueis 0, then use
is set to optional, elseif the lower valueis greater than O, required is used.

5g. If the name of the attribute is contained in the values of the tag.org.omg.reqif.fixed, thisruleis applied.

6. EnumSchema : := "«xsd:simpleType name='" // Name of Enumeration Class // "'>
<xsd:restriction base='xsd:string's>"
(fa:EnumLiteral)*
"«/xsd:restriction>
</xsd:simpleType>"

6a. EnumLiteral::="<xsd:enumeration
value='" // Name of Literal from Enumeration Class // "' />"
6. The enumeration schema contribution consists of a simple type derived from string whose legal values are the
enumeration literals.
6a. Each enumeration literal is put in the value XML attribute of an enumeration XML element.
7. TypeSchema ti= (7a:DatatypeSchema | 7b:XhtmlType)
7a. DatatypeSchema: := "<xsd:complexType
name='" // Name of Datatype // "' >
<xsd:sequences>
<xsd:any
namespace='" // Namespace URI of Datatype // "'
processContents=" ("'skip'"|"'lax'"|"'strict'")"
minOccurs='" // Minimum // "'
maxOccurs='" // Maximum // "' />

</xsd:any>
</xsd:sequence>
</xsd:complexType>"
7b. XhtmlType ti= "<xsd:complexType
name='" // Name of Datatype // "' >
<xsd:group ref='xhtml.BlkStruct.class' />
</xsd:complexTypes>"

Requirements Interchange Format (ReqlF), v1.2 87

7. These rules describe the declaration of types for classes of the metamodel where the value of the tag
org.omg.reqif.datatype equals true. The type schema contains ageneral datatype schema and the declaration of an
xhtml type.

Ta. The datatype schema contains the name of the type and a sequence with an any element. This element contains
the attributes namespace, processContents minOccurs and maxOccurs. The value of the attribute namespace is
the value of the tag org.omg.regif.nsURI. The value of the attribute processContents is the value of the tag
org.omg.reqif.processContents and the values from minOccurs and maxOccurs are the values of the tags
org.omg.reqif.min and org.omg.reqif.max.

7b. This rule declares a complex type which has an xhtml content. The content is defined by the reference
‘xhtml.BlkStruct.class.” Theruleisused if the value of the tag org.omg.reqif.xhtml_typeistrue.

NOTE: The names of the XML elements are constructed by converting the information type's name into uppercase letters
with additional hyphens (“-") indicating word separations that have originally been indicated by uppercase |etters of by a
numeric character inside the name. Thus, by definition, a “word” is one of the following:

* First letter is upper-case followed by lower-case letters.
« All letters are upper-case.
 Contiguous numeric characters.

For example, the name Test ECUClass12ADC is converted into an XML element with name
TEST-ECU-CLASS-12-ADC.

The corresponding driver.xsd:

<?xml version="1l .0" encoding="UTF-8"?>

<xsd: schema
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.w3 .org/1999/xhtml"
xmlns:xhlld="http://www.w3.0rg/1999/xhtml /datatypes/"
xmlns="http://www.w3.0rg/1999/xhtml"
elementFormDefault="qualified" >

<xsd:import namespace=http://www.w3 .org/XML/1998/namespace
schemaLocation="http://www.w3.0rg/2001/xml.xsd" />

<xsd:import namespace="http://www.w3.0org/1999/xhtml/datatypes/"
schemaLocation="http://www.w3.org/TR/xhtml-modularization/SCHEMA/xhtml
datatypes-1.xsd" />

<xsd:include schemalocation="http://www.w3.org/TR/xhtml-
modularization/SCHEMA/xhtml-framework-1.xsd" />

88 Requirements Interchange Format (ReqlF), v1.2

http://www.w3.org/2001/XMLSchema
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml/datatypes/
http://www.w3.org/1999/xhtml
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/xml.xsd
http://www.w3.org/2001/xml.xsd
http://www.w3.org/1999/xhtml/datatypes/
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-

<xsd:include schemalocation="http://www.w3.org/TR/xhtml-
modularization/SCHEMA/xhtml-text-1.xsd" />
<xs8d:include schemalocation="http://www.w3.org/TR/xhtml-
modularization/SCHEMA/xhtml-hypertext-1.xsd" />
<xsd:include schemalocation="http://www.w3.org/TR/xhtml-
modularization/SCHEMA/xhtml-list-1.xsd" />
<xsd:include schemalocation="http://www.w3.org/TR/xhtml
modularization/SCHEMA/xhtml-edit-1.xsd" />
<xsd:include schemaLocation="http://www.w3.org/TR/xhtml
modularization/SCHEMA/xhtml-pres-1.xsd" />
<xsd:include schemalocation="http://www.w3.org/TR/xhtml-
modularization/SCHEMA/xhtml-inlstyle-1.xsd" />
<xsd:include schemalocation="http://www.w3.org/TR/xhtml-
modularization/SCHEMA/xhtml-object-1.xsd" />
<xsd:include schemaLocation="http://www.w3.org/TR/xhtml-
modularization/SCHEMA/xhtml-table-1.xsd" />

<xsd:attributeGroup name="xhtml.Il8n.extra.attrib"/>

<xsd:attributeGroup name="xhtml.Common.extra">
<xsd:attributeGroup ref="xhtml.style.attrib"/>
</xsd: attributeGroup>

<xsd:attributeGroup name="xhtml.Core.extra.attrib"/>
<xsd:attributeGroup name="xhtml.Global.core.extra.attrib"/>
<xsd:attributeGroup name="xhtml.Global.Il8n.extra.attrib"/>
<xsd:attributeGroup name="xhtml.Global.Common.extra"/>

<xsd:group name="xhtml.HeadOpts.mix">
<xsd: choice>
<xsd:element name="object" type="xhtml.object.type" />
</xsd: choices>
</xsd: group>

<xsd:group name="xhtml.Edit.class">
<xsd: choice>
<xsd:element name="ins" type="xhtml.edit.type" />
<xsd:element name="del" type="xhtml.edit.type" />
</xsd: choice>
</xsd: group>

<xsd:group name="xhtml.Misc.extra"s>
<xsd:sequence />
</xsd: group>

<xsd:group name="xhtml.Misc.class">
<xsd: choice>
<xsd:group ref="xhtml.Edit.class" />
<xsd:group ref="xhtml.Misc.extra" />
</xsd: choices
</xsd: group>

Requirements Interchange Format (ReqlF), v1.2

http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-modularization/SCHEMA/xhtml-edit-1
http://www.w3.org/TR/xhtml-modularization/SCHEMA/xhtml-edit-1
http://www.w3.org/TR/xhtml-modularization/SCHEMA/xhtml-edit-1
http://www.w3.org/TR/xhtml-modularization/SCHEMA/xhtml-pres-1
http://www.w3.org/TR/xhtml-modularization/SCHEMA/xhtml-pres-1
http://www.w3.org/TR/xhtml-modularization/SCHEMA/xhtml-pres-1
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-
http://www.w3.org/TR/xhtml-

<xsd: group name="xhtml.InlStruct.Class">
<xsd: choice>
<xsd:element name="br" type="xhtml.br.type" />
<xsd:element name="span" type="xhtml.span.type" />
</xsd: choices>
</xsd: group>

<xsd: group name="xhtml.InlPhras.Class">
<xsd: choice>
<xsd:element name="em" type="xhtml.em.type" />
<xsd:element name="strong" type="xhtml.strong.type" />
<xsd:element name="dfn" type="xhtml.dfn.type" />
<xsd:element name="code" type="xhtml.code.type" />
<xsd:element name="samp" type="xhtml.samp.type" />
<xsd:element name="kbd" type="xhtml.kbd.type" />
<xsd:element name="var" type="xhtml.var.type" />
<xgd:element name="cite" type="xhtml.cite.type" />
<xsd:element name="abbr" type="xhtml.abbr.type" />
<xsd:element name="acronym" type="xhtml.acronym.type" />
<xsd:element name="qg" type="xhtml.q.type" />
</xsd: choice>
</xsd: group>

<xsd: group name="xhtml.InlPres.Class">
<xsd: choice>
<xsd: element name="tt" type="xhtml.InlPres.type" />
<xsd:element name="i" type="xhtml.InlPres.type" />
<xsd:element name="b" type="xhtml.InlPres.type" />
<xsd: element name="big" type="xhtml.InlPres.type" />
<xsd:element name="small" type="xhtml.InlPres.type" />
<xsd: element name="sub" type="xhtml.InlPres.type" />
<xsd: element name="sup" type="xhtml.InlPres.type" />
</xsd: choice>
</xsd: group>

<xsd:group name="xhtml.Anchor.class">
<xsd: sequence>
<xsd:element name="a" type="xhtml.a.type" />
</xsd: sequence>
</xsd: group>

<xsd: group name="xhtml.InlSpecial.Class">
<xsd: choice>
<xsd:element name="object" type="xhtml.object.type" />
</xsd: choice>
</xsd: group>

<xsd: group name="xhtml.Inline.extra"s>
<xsd:sequence />
</xsd: group>

<xsd: group name="xhtml.Inline.Class">
<xsd: choice>
<xsd: group ref="xhtml.InlStruct.class" />
<xsd: group ref="xhtml.InlPhras.class" />

Requirements Interchange Format (ReqlF), v1.2

http://xhtml.br/

<xsd: group ref="xhtml.InlPres.class" />
<xsd: group ref="xhtml.Anchor.class" />
<xsd: group ref="xhtml.InlSpecial.class" />
<xs8d: group ref="xhtml.Inline.Extra" />

</xsd: choices

</xsd: group>

<xsd:group name="xhtml.InlNoRuby.class">

<xgd: choice>

<xs8d: group ref="xhtml.InlStruct.class" />
<xs8d: group ref="xhtml.InlPhras.class" />
<xsd: group ref="xhtml.InlPres.class" />
<xsd:group ref="xhtml.Anchor.class" />
<xsd: group ref="xhtml.InlSpecial.class" />
<xsd: group ref="xhtml.Inline.Extra" />

</xsd: choices

</xsd: group>

<xsd:

group name="xhtml.InlinePre.mix">
<xsd: choicex>

<xsd: group ref="xhtml.InlStruct.class" />

<xs8d: group ref="xhtml.InlPhras.class" />

<xsd: element name="tt" type="xhtml.InlPres.type" />
<xsd:element name="1i" type="xhtml.InlPres.type" />
<xs8d: element name="b" type="xhtml.InlPres.type" />
<xsd:group ref="xhtml.Anchor.class" />

<xsd:group ref="xhtml.Misc.class"

/>

<xs8d: group ref="xhtml.Inline.Extra" />

</xsd: choices>

</xsd: group>

<xsd:group name="xhtml.InlNoAnchor.class">

<xgd: choice>

<xs8d: group ref="xhtml.InlStruct.class" />
<xsd: group ref="xhtml.InlPhras.class" />
<xsd: group ref="xhtml.InlPres.class" />
<xsd: group ref="xhtml.InlSpecial.class" />
<xsd: group ref="xhtml.Inline.Extra" />

</xsd: choice>

</xsd: group>

<xsd:

group name="xhtml.InlNoAnchor.mix">
<xsd: choice>

<xsd: group ref="xhtml.InlNoAnchor.class" />

<xsd:group ref="xhtml.Misc.class"
</xsd: choices

</xsd: group>

<xsd:

group name="xhtml.Inline.mix">
<xsd: choice>
<xsd: group ref="xhtml.Inline.class" />
<xsd:group ref="xhtml.Misc.class"
</xsd: choices

</xsd: group>

Requirements Interchange Format (ReqlF), v1.2

/>

/>

91

92

<xsd:group name="xhtml.Heading.class">
<xsd: choice>
<xsd:element name="hl" type="xhtml.hl.type" />
<xsd:element name="h2" type="xhtml.h2.type" />
<xsd:element name="h3" type="xhtml.h3.type" />
<xsd:element name="h4" type="xhtml.h4.type" />
<xsd:element name="h5" type="xhtml.h5.type" />
<xsd:element name="hé" type="xhtml.hé6.type" />
</xsd: choice>
</xsd: group>

<xsd:group name="xhtml.List.class">
<xsd: choice>
<xsd:element name="ul" type="xhtml.ul.type" />
<xsd:element name="ol" type="xhtml.ol.type" />
<xsd:element name="dl" type="xhtml.dl.type" />
</xsd: choices>
</xsd: group>

<xsd:group name="xhtml.Table.class">
<xsd: choice>
<xsd:element name="table" type="xhtml.table.type" />
</xsd: choices>
</xsd: group>

<xsd:group name="xhtml.BlkStruct.class">
<xsd: choice>
<xsd:element name="p" type="xhtml.p.type" />
<xsd:element name="div" type="xhtml.div.type" />
</xsd: choices>
</xsd: group>

<xsd:group name="xhtml.BlkPhras.class">
<xsd: choice>
<xsd:element name="pre" type="xhtml.pre.type" />

<xsd:element name="blockquote" type="xhtml.blockquote.type" />

<xsd:element name="address" type="xhtml.address.type" />
</xsd: choice>
</xsd: group>

<xsd:group name="xhtml.BlkPres.class">
<xsd: sequence>
<xsd:element name="hr" type="xhtml.hr.type" />
</xsd: sequence>
</xsd: group>

<xsd:group name="xhtml.BlkSpecial.class">
<xsd: choice>
<xsd:group ref="xhtml.Table.class" />
</xsd: choice>
</xsd: group>

<xsd:group name="xhtml.Block.extra">
<xsd:sequence />
</xsd: group>

Requirements Interchange Format (ReqlF), v1.2

http://xhtml.hr/

</xsd:

<xsd:group name="xhtml.Block.class">

<xsd: choice>
<xsd:group ref="xhtml
<xsd:group ref="xhtml
<xsd:group ref="xhtml
<xsd:group ref="xhtml
<xsd:group ref="xhtml

</xsd: choice>

</xsd: group>

<xsd:group name="xhtml.Block.mix">
<xsd: choice>
<xsd:group ref="xhtml

<xsd:group ref="xhtml
<xsd:group ref="xhtml
</xsd: choice>
</xsd: group>

<xsd:group name="xhtml.Flow.mix">
<xsd: choice>
<xsd:group ref="xhtml

.BlkStruct.class" />
.BlkPhras.class" />
.BlkPres.class" />
.BlkSpecial.class" />
.Block.extra" />

.Heading.class" />
<xsd:group ref="xhtml.
.Block.class" />
.Misc.class" />

List.class" />

.Heading.class" />
<xsd:group ref="xhtml.
<xsd:group ref="xhtml.

List.class" />
Block.class" />

<xsd: group ref="xhtml.Inline.class" />

<xsd:group ref="xhtml.

</xsd: choices
</xsd: group>

Misc.class" />

<xsd:group name="xhtml.BlkNoForm.mix">

<xsd: choice>
<xsd:group ref="xhtml

<xsd:group ref="xhtml
<xsd:group ref="xhtml
<xsd:group ref="xhtml

<xsd:group ref="xhtml.
.Block.extra" />
.Misc.class" />

<xsd:group ref="xhtml
<xsd:group ref="xhtml
</xsd: choice>
</xsd: group>
schemas>

Requirements Interchange Format (ReqlF), v1.2

.Heading.class" />
<xsd:group ref="xhtml.
.BlkStruct.class" />
.BlkPhras.class" />
.BlkPres.class" />

List.class" />

Table.class" />

93

94

Requirements Interchange Format (ReqlF), v1.2

	Preface
	1 Scope
	1.1 Who should read this document?
	1.2 Objectives of the Requirements Interchange Format

	2 Conformance
	3 Normative References
	3.1 Normative References
	3.2 Non-normative references

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 How to read this specification
	6.2 Acknowledgements
	6.2.1 Submitting Organizations
	6.2.2 Supporting Organizations

	7 Concept Overview and Use Cases
	7.1 Preface: How requirements authoring tools handle information
	7.2 How the Requirements Interchange Format handles information from requirement authoring tools
	7.3 How the Requirements Interchange Format copes with different tool capabilities
	7.4 Exchange Scenarios
	7.4.1 Role descriptions
	7.4.2 First exchange scenario (“One-Way”)
	7.4.3 Second exchange scenario (“Roundtrip”)

	7.5 Detailed Use Cases
	7.5.1 Use Case Overview
	7.5.2 Use Case Specifications

	8 Abstract Architecture
	9 Exchange Document Structure
	9.1 General
	9.2 Class Descriptions
	9.2.1 ReqIF
	9.2.2 ReqIFContent
	9.2.3 ReqIFHeader
	9.2.4 ReqIFToolExtension

	10 Exchange Document Content
	10.1 Overview
	10.2 Identification of Elements
	10.3 Specifications, Requirements, and Attributes
	10.4 Hierarchical Structuring of Requirements in a Specification and Requirement Relations
	10.5 Representing Attribute Data Types
	10.5.1 Representing Data Types
	10.5.2 Relating Attributes to Data Types

	10.6 Concrete Data Types
	10.6.1 Simple Data Types
	10.6.2 Enumeration Data Type
	10.6.3 Data Type for XHTML Content

	10.7 Access Restrictions
	10.8 Class Descriptions
	10.8.1 AccessControlledElement
	10.8.2 AlternativeID
	10.8.3 AttributeDefinition
	10.8.4 AttributeDefinitionBoolean
	10.8.5 AttributeDefinitionDate
	10.8.6 AttributeDefinitionEnumeration
	10.8.7 AttributeDefinitionInteger
	10.8.8 AttributeDefinitionReal
	10.8.9 AttributeDefinitionSimple
	10.8.10 AttributeDefinitionString
	10.8.11 AttributeDefinitionXHTML
	10.8.12 AttributeValue
	10.8.13 AttributeValueBoolean
	10.8.14 AttributeValueDate
	10.8.15 AttributeValueEnumeration
	10.8.16 AttributeValueInteger
	10.8.17 AttributeValueReal
	10.8.18 AttributeValueSimple
	10.8.19 AttributeValueString
	10.8.20 AttributeValueXHTML
	10.8.21 DatatypeDefinition
	10.8.22 DatatypeDefinitionBoolean
	10.8.23 DatatypeDefinitionDate
	10.8.24 DatatypeDefinitionEnumeration
	10.8.25 DatatypeDefinitionInteger
	10.8.26 DatatypeDefinitionReal
	10.8.27 DatatypeDefinitionSimple
	10.8.28 DatatypeDefinitionString
	10.8.29 DatatypeDefinitionXHTML
	10.8.30 EmbeddedValue
	10.8.31 EnumValue
	10.8.32 Identifiable
	10.8.33 RelationGroup
	10.8.34 RelationGroupType
	10.8.35 ReqIFContent
	10.8.36 SpecElementWithAttributes
	10.8.37 SpecHierarchy
	10.8.38 Specification
	10.8.39 SpecificationType
	10.8.40 SpecObject
	10.8.41 SpecObjectType
	10.8.42 SpecRelation
	10.8.43 SpecRelationType
	10.8.44 SpecType
	10.8.45 XhtmlContent

	11 Production Rules of ReqIF XML Schema
	11.1 Purpose
	11.2 Notation for EBNF
	11.3 Tags
	11.4 EBNF

