Date: June 2012

Robotic Interaction Service (RolS) Framework

FTF - Beta 2

OMG Document Number: dtc/2012-06-27

Standard document URL: http://www.omg.org/spec/RolS/1.0/

Associated File(s)*: http://www.omg.org/spec/RolS/20110501
http:/AMww.omg.org/spec/RolS/20110502

* original file(s): robotics/2011-05-02, 2011-05-03

This OMG document replaces the submission document (robotics/2011-05-01, Alpha). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content of this
document are welcome, and should be directed to issues@omg.org by February 20, 2012.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on June 29, 2012. If you
are reading this after that date, please download the available specification from the OMG Specifications
Catalog.

http://www.omg.org/spec/TACSIT/20100801
http://www.omg.org/spec/TACSIT/20100802
mailto:issues@omg.org
http://www.omg.org/issues/

Copyright© 2012, Electronics and Telecommunications Research Institute
Copyright© 2012, Japan Robot Association

Copyright© 2012, Object Management Group (OMG)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,

including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, [IOP™ | MOF™ | OMG Interface Definition Language (IDL)™ , and OMG SysML™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software

developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.)

Table of Contents

=) Lol TP RPPPPR 9
OVEIVIBW .ttt ettt e e e e e e e et ettt e e e e e e e e et eebbb s e e s eeeeeeetansnnaaaesaeeaaanees 11
i Yol o o 1= I PP 14
P 00101 (o] ¢ s o -1 o [ol - PSPPSR PPP PRI 14
T = =T =T o Tl PP PPPPPRR 14
3.1 NOIMAtIVE REFEIENCES ...ttt ettt et e st e st e e st e e s bt e e sabeesbeeesabeesbeeesaneas 14
3.2 NON-NOIMAtiVE REFEIENCESeiiiiiieriieee ettt s et reenree e 15
4 Terms and DefinitioNScuiiii i e e e 15
ST}V 1111 o Yo KRR PPPPRRPOt 16
I Yol g ToX VY 1=To Fed=T o =T o PRt 16
7 Platform Independent MOdel........cooooiiiiiiiniie e 17
7.1 FOrmat @nd CONVENTIONSoiiiiiieiieiieite ettt ettt s e sttt st et e bt e b e st e sanesareebeenneenreens 17
7.1.1 Class @Nd INTEITACE «..ueiiiiiieiie ettt sttt ettt b e s b she e s et e st e e e e b e bt e heesaeeeaees 17
7. 1.2 ENUMEIATION ettt sttt s a e s e s s s 17
% 0 T |V [Y V= = SO P PP PPPPPPPPPPRR 18
7.1.4 HRIComponent and MEthodooiiiiiiiiiiie e e st e e e s aba e e e snnaneeas 18
7.2 Structure of the ROIS FrameEWOIKc.uiiiiiiiiiiiiie ettt et sttt ettt s esbe e e b e sbee e 18
7.3 3] {0 gl o e L= PSP PP PP URTSUPPPN 21
7.4 ROIS TN ACE. ..ttt ettt e b e bt e s bt e she e s it e et e e b e e beesbeesmeesmeeeabeeabeenbeenbeens 21
TAL INEEIACHION ceeeiii et e s s ra e s 21
3 A [01 4= o 1oL TP TP P USPPUPTRVRRORRON 30
7.4.3 MESSAGE Data.ccceiiiiiiiiiiiiieieeeeeeeeee et et e et et et e e e e et eaeaeaeaeaeaes 34
7.5 PIOTIIS e h e sttt e b e e bt e b e e s ae e s bt e bt e be e reenree s 39
7.5.1 OVEIVIEW ciiiiiiiiiiiiiiiii ittt bbb e s b s e s b s e s b st e s b st e s s b e s e s e b s s e s s aaa e s 39
7.5.2 Parameter Profile ..ottt ettt b e sae e 40
7.5.3 MESSAZE PrOfil@ cuueeeeieiceee e e e e e e e e — e e e e e e e e nrraaaeeaae e e nrrraees 41

7.5.4 HRI COMPONENT PrOfile....cii ittt e et e e e e ate e e e s abe e e e e ssaeeesnsaeeeenneneas 42

7.5.5 HRIENGING PrOfil@..uuiiiiiiiie ittt ettt e st e e s st e e s st e e e s ssraeesennsaeesennneeens 43
7.6 COMMION MBS SAEES . i i i iiiiiieeee ettt e aaeeaeaaaaaaaaaeaaaeaeaeaeaeaeeaeeaeaeeeaeaeeees 43
30 R V7 =10 o I [0 o o 0 F= Y o o [P PR 45
7.6.4 Person [dentifiCationcoeoieiiiieieceeee e e st 49
7.6.5 FACE DELECHION. ..ottt e 51
7.6.6 FACE LOCAlIZATION cueeieieiee ettt e st et e s e st e s ne e e ne e e s reeeaneeesreeeas 52
7.6.7 SOUNG DEEECTION ..cuuiiiiiiieiie ettt ettt ettt e st sa bt e st e e e sab e e sabeesbeeesabeesbeeesubeesabeeennseesaneenns 53
7.6.8 SOUNA LOCAIIZATION....ciiiiiiiiieetie ettt ettt e st e et e e st e s bt e e sabeesbeeesabeesabeeesnbeesareeens 54
e Y oY= Tol o T Y=Yl =4 oY o o PP 56
7.6.10 GESTUrE RECOZNITION oo 57
7.6.11 Y o L=TTel o I3 g =] £ SEER 58
7.6.12 2L ot o o [PPSO P PSR PPRT 60
7.6.13 NNV T =) o] o PP P PP TOUPTPPPP 61
7.6.14 FOIOW ..t sttt et e b e s b e she e s et st e e bt e bt e s bt e s ne e st e et ene e reenree 63
7.6.15 IOV i 64
7.7 Y oY oIy oT<Tey ol 1Y T o [AU 66
A R € o |V SRR 66
7.7.2 CORBA PSIM ..ttt ettt et et et et et et e e et e e e e e e e e e e e e et e e e eaeaeeeaeaeaeaaaeaaaeaeaaaeaeaeaeees 76
T. 7.3 XIMLPSIM ettt ettt ettt et e e et et et e e et et e e et e e e e e e et e e e e et eeaeaeaaeeaeaeeeeeataeaeaeaeaeeeerareees 86
Annex A Examples of Profile in XML (informative)ccooeeeeeiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeee, 89
Al ParamMELEr PrOfile.. . ittt ettt et s e e e at e e s b e s ba e e s abeesbaeeeareas 89
A2 Y TR Tl o o] PSR SPR 89
A2.1 Command MeSSABE Profileuuiiiiiiiieciiee et e e st e e e re e e et e e e e st e e e e e abae e e enees 89
Y A AV o Y [T Y=Y d N o o]] SRR 90
A.2.3 QUEINY MESSAZE ProOfileueeeiiieiee e et e et e e et te e e s bt e e e e e at e e e e e nraeeeenres 90
A3 HRI COmMPONENt Profilet e e e e e e e e e s e tee e e e e e e s e anataeeeeeeseennnsnrenes 91
A4 o LI oY= Tl o o PRSP 92
Annex B Examples of CommandUnitSequence in XML (informative).........cccccvvvveeenennn. 95
B.1 (o0 g oY F=Ta o [0 L oY aoY=To [V T=] o ol USRS 95

B.2 (0o T 000 =T Te 11V LT =Y - TR 96

Annex C Examples of User-Defined HRI Component (informative)........ccceeeeeeeeeeeeeennn. 98

C1 Speech Recognition (W3C-SRGS)uuiiiiiiiie et eeitee ettt e et e e e et e e e e ate e e e e aar e e e ssbaeeesnssaeeeennseeeesnsanens 98
c.2 Person Gender [dentification........coo o 99
C3 [T S oY A = { I (=Tl = o1 T o VPt 100
Annex D Examples of Data Type (informative)ccooeeeeeeeeieiieeiieeeeeeeeeee, 101
D.1 [RT=T Yot o Lo o N 18T« -t 101

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
LanguageTM); CORBA® (Common Object Request Broker Architecture); CWMTM (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

UML

MOF

XMI

CWM

Profile specifications

OMG Middleware Specifications

CORBA/IIOP

IDL/Language Mappings
Specialized CORBA specifications
CORBA Component Model (CCM)

http://www.omg.org/
http://www.omg.org/technology/documents/spec_catalog.htm

Platform Specific Model and Interface Specifications

CORBAservices
CORBAfacilities
OMG Domain specifications

OMG Embedded Intelligence specifications
OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as 1SO standards. Please consult_http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

10

mailto:pubs@omg.org
http://www.iso.org/

Overview

act Example of robot scenario for robotic reception service /

Check presence/absence
of person(s)

[There is someone

Get position of the person
& approach the person

Get the person ID

[ID is unknown]

[There is no one

Gtart person detectioD

[Detect a person]

Start person

\ identification

[Identify the person] >

Go to start position Check what to guide

[There is no message] lelse]

[There is message]

Tell the message

Figure 1: Example of robot scenario for robotic reception service. Events delivered from sensors, actuators or other
event sources, such as an internal timer, to a service application trigger each state transition and the application
controls the robot according to the scenario.

Say “good bye”

Many service-robot applications prepare robot scenarios like the one shown in Figure 1. Such a scenario describes an
application that controls robot behavior after the output from a variety of sensors embedded in the robot or the environment
triggers a transition in the state of the robot. Figure 1 shows an example of a robot scenario for a robotic reception service.
In this scenario, events like “detect a person” and “identify the person” or obtained information like “person ID”” and
“position of the person” act as state-transition triggers while commands like “approach the person” and “tell the message”
determine what the robot is to do next. Of importance here is that state-transition triggers and commands in the robot scenario
are not described on the physical level (hardware layer) as in sensors and movement mechanisms in the robot but rather on
the symbol level (symbolic layer) as in “person detection” and “person identification.”

At present, however, the service-robot developer and service application programmer is often one and the same (individual or
group) and applications like the one shown in Figure 2 are optimized by directly accessing the hardware layer. As a result,
any changes made to the hardware mechanism make it necessary to revise the application to accommodate those changes. It
is essential that this problem be solved for the sake of improving the reusability of applications and expanding the market for
service robots.

To make the above development of service-robot applications more efficient, this specification defines a new framework that
abstracts and unifies the various types of components that are possibly implemented by RTC [RTC] or ROS, and the
human-robot interaction service functions provided by the robot as shown in Figure 3.

Service App. 1 Service App. 1’

| N | | 1
find face move to find tag walk to
the position the position
guest name tag ID
face position tag position
v | |
face wheel RFID tag leg
recognition control Detection control

robot 1 robot 2

Figure 2: Conventional style of service application programming. Service application programmer must write
service application programs for each robot independently because functions provided by each robot are different.

[Service App. X] [Service App. X]
- I I

..... | I R IS SN E—
Who is approach Standard il Who'is approach | |
there? the person Interfaces there? the person
5 and ’
person ID Framework | person ID
position position
e V1 2N i, A—" . A
face wheel RFID tag leg
recognition control Detection control
HRI Engine 1 HRI Engine 2
robot 1 robot 2

Figure 3: RolS service application programming style. The same service application program works on different
robot platforms with little modification.

Proof of Concept

This specification is based on our extensive surveys on human-robot interaction function methodologies and
implementations, which are currently used in robotic products and research projects in Japan and Korea. Members from 12
organizations in Japan and 3 organizations in Korea joined in composing the document. All of them have rich research and/or
production experiences in the field of robotics, especially of service robots working in domestic environments or indoor
environments such as shopping malls, airports and hospitals.

Part |

1 Scope

This specification defines a framework that can handle messages and data exchanged between human-robot interaction
service components and service applications. It includes a platform-independent model (PIM) of the framework.

2 Conformance

Any implementation or product claiming conformance to this specification shall support the following conditions:

® Implementations shall provide interfaces described in “Section 7.4 RolS Interface”.

® Implementations shall support the return codes described in “Section 7.3 Return Codes.

® [mplementations shall support the common messages described in “Section 7.6 Common Messages”. This does not
mean that the module shall include every common messages described herein. However, every module should support
the common messages when the module use the basic components listed in “Section 7.6 Common Messages”

® Data structure of messages treated by implementations shall support the profile described in “Section 7.5 Profiles”

3 References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

[CORBA] Object Management Group, Common Object Request Broker Architecture (CORBA), Version 3.1, 2008
[DDS] Object Management Group, Data Distribution Services (DDS), Version 1.2, 2007
[1SO639] International Organization for Standardization, Codes for the representation of names of languages

[1SO19111] International Organization for Standardization, Geographic information - Spatial referencing by coordinates,
2007

[1ISO19115] International Organization for Standardization, Geographic information - Metadata, 2003
[1SO19143] International Organization for Standardization, Geographic information - Filter encoding, 2010
[1SO19784] International Organization for Standardization, Biometric application programming interface, 2006
[RLS] Object Management Group, Robotic Localization Service (RLS), Version 1.0, 2010

[RTC] Object Management Group, Robotic Technology Component (RTC), Version 1.0, 2008

14

[UML] Object Management Group, OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.3, 2010

[W3C-SRGS] W3C, Speech Recognition Grammar Specification Version 1.0, 2004

[W3C-SSML] W3C, Speech Synthesis Markup Language (SSML) Version 1.0, 2004

3.2 Non-Normative References

[W3C-DT] World Wide Web Consortium, Date and Time Formats, http://www.w3.0rg/TR/NOTE-datetime, 1998

4 Terms and Definitions

Basic HRI Component

An HRI Component which provides a basic HRI function of service robots, where “basic
HRI function” means “an HRI function implemented in many (but not all) service robots.”
15 Basic HRI Components and their interfaces are defined in this document.

Detection A function that finds target objects, such as persons and faces, and returns the number of
the objects found. When the function can detect only existence or non-existence of the
target, the number shall be provided in only two states, i.e. one and zero.

HRI Abbreviated form of “Human-Robot Interaction”

HRI Component

An object which uses sensors or actuators to provide a specific HRI function, such as
person detection, person identification or speech. An HRI Component may be
implemented as a software object or an aggregate of multiple objects, while such internal
structure is encapsulated.

HRI Engine

An object that manages HRI Components. It mediates Human-Robot Interaction
functions of the HRI Components to Service Application(s).

ldentification

A function that finds target objects and returns a list of identifiers of objects found.

Identifier (ID, in short)

A token, such as an integer or a text string, assigned to an object with which an HRI
system deals. Any ID cannot exist alone but it must be defined in some name space of a
Reference Coordinate System (RCS), so ID and its corresponding RCS shall be treated as
a unit. There exist two kinds of identifiers: permanent ID and temporary ID. Permanent
ID is an identifier assigned to an object permanently, such as the social security number or
an employee ID in a company. Temporary ID is used when sensors find objects which
should be distinguished later but whose permanent 1Ds are not handy.

Localization

A function that finds target objects and returns a list of locations of objects found. A list
of identifiers assigned to each object shall also be returned to distinguish objects each
other.

Service Application

A software which controls HRI Components (via HRI Engine) to implement a robot
scenario.

User-defined HRI Component

An HRI Component which provides an HRI function other than those any Basic HRI
Components provide.

http://www.w3.org/TR/NOTE-datetime

5 Symbols

No symbols are defined in this document.

6 Acknowledgements

Submitted by
Electronics and Telecommunications Research Institute
Japan Robot Association

Supported by
Advance Telecommunications Research Institute International
Future Robot Co., Ltd.
Hitachi, Ltd.
Korean Robot Association
National Institute of Advanced Industrial Science and Technology
New Energy and Industrial Technology Development Organization
Shibaura Institute of Technology
Technologic Arts Incorporated
University of Tokyo
University of Tsukuba

16

7 Platform Independent Model

7.1 Format and Conventions

7.1.1 Class and Interface

Classes and interfaces described in this PIM are documented using tables of the following format:
Table x.x : <Class / Interface Name>

Description : <description>

Derived From: <parent class>

Attributes
<attribute name> | <attribute type> <obligation> <occurrence> <description>
doerations
<operation name> | <description>
<direction> | <parameter name> <parameter type> <description>

Note that derived attributes or operations are not described explicitly. Also, as the type of return code for every operation in
this specification is Returncode_t, which is defined in Section 7.3, Return Codes, this is omitted in the description table.

The ‘obligation’ and ‘occurrence’ are defined as follows.
Obligation
M (mandatory): This attribute shall always be supplied.
O (optional): This attribute may be supplied.

C (conditional): This attribute shall be supplied under a condition. The condition is given as a part of the
attribute description.

Occurrence

The occurrence column indicates the maximum number of occurrences of the attribute values that are permissible. The
followings denote special meanings.
N: No upper limit in the number of occurrences.

ord: The appearance of the attribute values shall be ordered.

unq: The appeared attribute values shall be unique.

7.1.2 Enumeration

Enumerations are documented as follows:

Table x.x : <enumeration name>

<constant name> | <description>

7.1.3 Message

Messages that are exchanged via the interfaces described in this PIM are documented using tables of the following format:
Table x.x : <Message Name>

Description : <description>

Derived From: <parent class>

Attributes

<attribute name> | <attribute type> <obligation> <occurrence> <description>

7.1.4 HRI Component and method

Methods that are incorporated in an HRI Component in this PIM are documented using tables of the following format:
Table x.x : <HRI Component Name>

Description : <description>

Command Method

<method name> <description>

argument | <argument parameter name> | <data type> | <obligation> | <description>
Event Method

<method name>

<description>

result | <result parameter name> | <data type> | <obligation> | <description>
Query Method

<method name> <description>

result | <result parameter name> | <data type> | <obligation> | <description>

Note that derived methods are related to commands, events, and query messages, which are defined in Section 7.4.

The ‘argument’ and ‘result’ indicate that the columns of the line describe element of ‘ArgumentList’ and ‘ResultList’ for
each message type, which are defined in Table 7.17 and Table 7.16, respectively.

7.2 Structure of the RolS Framework

The Robotic Interaction Service (RolS) Framework abstracts the hardware in the service robot (sensors and actuators) and the
Human-Robot Interaction (HRI) functions provided by the robot, and provides a uniform interface between the service robot
18

and application.

Calling each of the HRI functions provided by a robotic system such as a service robot or intelligent sensing system a
“functional implementation,” a robotic system can be expressed as a set of one or more functional implementations. These
functional implementations (e.g. face recognition, wheel control) are usually provided in a form that is dependent on robot
hardware such as sensors and actuators.

Referring to Figure 4, this specification defines the RolS Framework as one that manages the interface not in units of
functional implementations incorporated in the robot but rather in abstract functional units applicable to a service application.
Such an abstract functional unit is called an “HRI Component.” Here, HRI Components (e.g. person detection, person
identification) are logical functional elements making up the description of a human-robot interaction scenario.

B ~ [HRI engine (main)]

g -Robotl

- -RoboticRoom1

g>{ — -Robot2

=

’ I I

. [HRI engine (sub)] [HRI engine (sub)] [HRI engine (sub)]
Robotl RoboticRoom1 Robot2
. £ - person detection -person detection - person detection
L 9 - person identification -person identification - person identification
3 J o= - face detection - navigation
Tun 2 - navigation - speech
&0 A - sound localization
8 : —
- | 1
[HRI Comp.] [HRI Comp.] [HRI Comp.] [HRI Comp.] [HRI Comp.] [HRI Comp.]

" person detection navigation person detection person identification person detection navigation

c

% . [HRI Comp.] [HRI Comp.] [HRI Comp.] [HRI Comp.]

S person identification sound localization person identification speech

w

[HRI Comp.]
face detection
(Sensor] [Sensor] [Sensor] [Sensor] [Actuator]
. camera LRF camera RFID Tag Reader loudspeaker
>
3 <
5 [Sensor] - A
£ microphone | [Actuator]
2 [Actuator] F Leg
= wheel
5
a
E Robot 1 Robotic Room 1 Robot 2 :
- face recognition - LRF object detection -RFID tag detection
- direction of arrival estimation - monitoring camera - voice synthesis
- - wheel control - leg control

Figure 4: Example of HRI Engine and HRI Components.

These HRI Components are realized through physical units such as sensors placed on the robot and/or in the environment. It
is assumed that one physical unit can have more than one function, which means that there is not necessarily a one-to-one
match between physical units and functional units. As a result, physical units must be defined separately from functional units.
With this in mind, a physical unit equipped with HRI Components is called an “HRI Engine.”

An entire system can consist of multiple physical units, and for such a system, the interface is managed by defining individual
physical units as sub HRI Engines and the total system as the (main) HRI Engine that includes these sub HRI Engines.

The HRI Component provides hardware-independent APIs. Only symbolic data is exchanged between HRI Components and
Service Applications through the HRI Engine. The symbolic data is used in the Service Applications without special handling
such as pattern recognition, signal processing and human judgment. For example, the symbolic data shall not include raw
data such as image data and sound data collected by the sensors.

Using the RolS Framework as a go-between, a Service Application selects and uses only necessary functions and leaves

hardware-related matters such as which sensor to use to the HRI Engine. In the case that more than one sub HRI Engine
includes the same HRI Component, the HRI Engine can be entrusted with selecting the appropriate sub HRI Engine. The use
of HRI Components need not be static. Switching between HRI Components belonging to different sub HRI Engines can also
be considered depending on robot position, sensor status, and other conditions. In this case, the Service Application simply
specifies necessary functions since the main HRI Engine will automatically perform HRI Component switching. For example,
in the case of the robotic service that covers broad areas, such automatic switching relieves the Service Application
programmers of the selection of the actual HRI Components.

In this way, selection and switching of appropriate sub HRI Engines and HRI Components are all performed on the
HRI-Engine side, so that in the RolS Framework, service-application requirements assume unified interaction with only one
HRI Engine, that is, the main HRI Engine regardless of the number and hierarchical configuration of sub HRI Engines and
HRI Components. In other words, there is no need for the Service Application to be aware of the existence of sub HRI
Engines or of how the main HRI Engine and sub HRI Engines interact with each other.

Service Application |%
[A A

RolS | | /:\
Framework | : : -
= eror B} e eror o
[[|
System Event Query Command MGSSQQGJ
Interface Interface Interface Interface Profile
|

|
g |
|
L

\

[HRI Engine]_

Figure 5 : Schematic diagram of RolS Framework and its message flows. In the framework, Service Application
communicates with HRI Engine by some messages through System, Event, Query and Command Interfaces.

The RolS Framework provides the following four interfaces consisting of a System Interface that enables the Service
Application to use the RolS Framework and three interfaces that enable the Service Application to exchange information with
the HRI Engine (Figure 5).

® System Interface: Manages the connection status between the Service Application and HRI Engine.

® Command Interface: Enables the Service Application to send commands to the HRI Engine.

® Query Interface: Enables the Service Application to query the HRI Engine on information it holds.

® FEvent Interface: Enables the Service Application to receive notifications on changes in HRI-Engine status.

Here, data exchanged between the Service Application and HRI Engine via any of these interfaces are called “messages.” The
following sections describe these interfaces and messages in more detail.

These messages shall include only the symbolic data. By doing so, the Service Application can obtain information only as the
symbolic data through these interfaces. Also, the Service Application can specify instruction using only the symbolic data.
For example, the symbolic data can be directly used for conditional programming sentences such as IF-type statement and
SWITCH-type statement and specifying the robot behavior for human-robot interaction.

To make use of an HRI Engine, the Service Application must learn beforehand the functions provided by the HRI Engine,
that is, the configuration of the HRI Engine and HRI Components and details on the messages that can be used. In this
specification, such information is defined in terms of profiles, whose structures are described in Section 7.5.

20

7.3 Return Codes

At the PIM level we have modeled errors as operation return codes typed ReturnCode_t. Each PSM may map these to either
return codes or exceptions. The complete list of return codes is indicated below.

Table 7.1: ReturnCode_t enumeration

OK | Successful return.

ERROR | Generic, unspecified error.
BAD_PARAMETER | Illegal parameter value.
UNSUPPORTED | Unsupported operation.

OUT_OF_RESOURCES | Service ran out of the resources needed to complete the operation.

TIMEOUT | The operation timed out.

7.4 RolS Interface

7.4.1 Interaction

7.4.1.1 System Interface

The System Interface manages the connection status between the Service Application and HRI Engine.

7.4.1.1.1 System Connection / Disconnection

The sequence diagram of the interface for performing connection and disconnection between the Service Application and
HRI Engine is shown in Figure 6.

sd Connect and Disconnect/

:ServiceApp <<HRLEngine>>
:Enginel

il connect() I

Retumncode t= connect()

< __________________

opt

|
I
[If uset needs] I

| get_profile(condition, profile) |

Returncode_t= get_profile(—, profile = result)

< — — —————— =
1 |
I I
ref
Each message pattern
1 1
! disconnect() I
Retumcode t= disconnect()
< —— —— = — - = —— =

Figure 6: Sequence Diagram of System Interface (Connect / Disconnect)

To begin with, the Service Application connects with the HRI Engine by connect(). On completing the connection, the
Service Application executes get_profile() as needed to obtain profiles related to the functions provided by the HRI Engine.
To terminate use of the HRI Engine, the Service Application disconnects from the HRI Engine by disconnect().

The Service Application can send or receive no messages of any kind via the RolS Framework until the connection operation
with the RolS Framework is completed. Additionally, the Service Application should not send or receive any messages under
any circumstances after requesting a disconnection from the RolS Framework. These operations are therefore executed in a
synchronous manner.

7.4.1.1.2 System Error Notification

The sequence diagram of the interface enabling the Service Application to receive error notifications from the HRI Engine is
shown in Figure 7.

22

sd System Error/

:ServiceApp <<HRLEngine>>
:‘Engine1

notify_error{error id = assigned_id, error type)

opt //

[if uskr$ need detail information]

S I o P

get_error_detail(error_id, condition, results = null)

Retumcode_t= get_error_detail(—, —, results = outcome)

Figure 7: Sequence Diagram of System Interface (System Error)

In the event that an error has occurred in the HRI Engine or an HRI Component, the Service Application receives an error
notification by notify_error() in an asynchronous manner. The notify_error() operation passes an “error_id” assigned to each
error and “error_type” indicating the type of error. To obtain more detailed error information, the Service Application can
execute get_error_detail() specifying that error_id.

The error notification of the HRI Engine is effective from the time connect() is called until disconnect() is called.

The error notification of the HRI Component is effective from the time bind() (or bind_any()) is called until release() is
called via the Command Interface. Similarly, in the case of Event Interface, Service Applications can receive the error
notification of the HRI Component from subscribe() until unsubscribe().

7.4.1.2 Command Interface

The Command Interface enables the Service Application to issue commands to an HRI Component. The sequence diagram of
the Command Interface is shown in Figure 8.

sd Command /

:ServiceApp <<HRLEngine>>
:Enginel

ref .
BindComponent

ref
Execute

ref
Release

Figure 8: Sequence Diagram of Command Interface

It is assumed that an HRI Component can be used by more than one Service Application. Therefore, the Service Application
needs to make a resource reservation for the necessary HRI Component so that it can avoid being operated by another Service
Application. For this reason, firstly the Service Application binds the necessary HRI Component. Then, the Service
Application requests the HRI Component to execute the operation. Finally, the Service Application releases the HRI
Component when the operation is finished. The Command Interface includes these three steps, i.e., “BindComponent”,
“Execute” and “Release”. The details of these steps are described as follows.

24

sd BindComponent /

:ServiceApp <<HRIL Engine>>
:Enginel

loop (

[For all HRICompopnents used]

[Us%r specifies a target HRIcomponent]

|

|

|

|

0

alt / I
|

search(condition, component_ref_list = null) »_!_

« _ _ _ Retumoode t= search(, component reflist) _ _ _ _ |
bind(component _ref) »I
R = bind(~
- ——_—____R etumcode t=bind() _ _ _ _ _ _ _ _ |
I T, -
[3'5!3] bind_any(condition, component_ref = null) »_!_
Retumcode_t= bind_any(-, component_ref)
< ——— Ve e = — = — —
T T
L t
opt |
[If uILers need to initialize] !
opt |
| " |
[Iflusers neecl-get_parameter(component_ref, parameters = null) »J_

— Retumcode_t= get_parameter(—, parameters = outcome)

set_parameter(component_ref, parameters, command_id = null) »_:_

< Retumcode_t= set_parameter(—, —, command_id = assigned_id)

completed(command_id = assigned_id, status)

Figure 9: Sequence Diagram of “BindComponent” in Command Interface

The Service Application specifies necessary conditions so that an HRI Component that can be used by the HRI Engine can be
selected and subjected to a bind operation. Specifically, in the case that the Service Application selects an HRI Component
from a list of candidates provided by the HRI Engine, the Service Application specifies conditions by search(), obtains a list
of HRI-Component reference IDs (called “component_ref”’s), and binds an HRI Component by specifying a component_ref
from this list by bind(). Alternatively, in the case that an HRI Component is automatically selected by the HRI Engine, the
Service Application specifies conditions by bind_any() and obtains a component_ref that has been bound.

Each operation within the Command Interface executes the selected HRI Component as a target of control by specifying the
bound component ref. This configuration enables the management of HRI-Component operation conditions to be
consolidated in the HRI Engine. The Service Application therefore has no need to understand the operation conditions of HRI

Components, and interference from other Service Applications during a series of Command Interface processes can be
prevented.

The Service Application may obtain and set HRI-Component parameters by get parameter() and set parameter(),
respectively.

sd Execute

:ServiceApp <<HRILEngine>>
:‘Enginel

loop (

|
|
|
As usdr needs
[As u e: : execute(command_unit_list) JI_

Retumcode t= execute(command_ unit_list = assigned)

:

loop

[All dssigned command messages in command_unit_list]
completed(command_id = assigned_id, status)

loop

opt /

isers need detail information]
get_command_result(command_id, condition, results = null)

=3

|
|
|
[As uder needs] |
]
I
I
I

Retumcode_t= get_command_result(—, —, results = outcome)

< _______________________

Figure 10: Sequence Diagram of “Execute” in Command Interface

The Service Application issues a command against an HRI Component by using execute() to send a command message that
specifies that command. The command message is described as a “command unit list” that can specify component both
sequential command operation and parallel command operation. The details of “command_unit_list” are described in Section
7.4.3.1.

On receiving the command message from the Service Application, the HRI Engine immediately returns a return value and an
ID for that command message (called a “command id”) and begins performing the specified operation. This operation is
executed in an asynchronous manner so that execution time does not affect the operation of the Service Application.

26

On completion of the specified operation, the Service Application asynchronously receives an operation-completed
notification by completed(), which indicates the corresponding command_id and the completion state of that operation in the
form of “status.”

The Service Application can obtain detailed execution results as needed by specifying the target command_id by
get_command_result().

sd Release /

:ServiceApp <<HRILEngine>>
:Enginel

I
loop /

LAl a{ssigned HRIcomponents]

. release(component ref)

Returncode t= release(-)

Figure 11: Sequence Diagram of “Release” in Command Interface

Once a series of Command Interface processes has been completed, the Service Application specifies the component_ref and
releases that HRI Component by release().

In the above way, the Service Application can follows the execution status of each command message that it issues.

The Event Message described below is defined separately to provide notifications on the intermediate state of specific
operations.

7.4.1.3 Query Interface

The Query Interface enables the Service Application to query the HRI Engine on information it holds. The sequence diagram
of the Query Interface is shown in Figure 12.

sd Query

ServiceApp <<HRLEngine>>
:Enginel

| "
) guery(query type, condition, results)

Returncode_t= query(-, -, results = outcome)

Figure 12: Sequence Diagram of Query Interface

The Service Application specifies a query message indicating the information to be obtained (called a “query_type”) and
conditions for obtaining that information using query() and obtains desired information. This operation is executed in a
synchronous manner since a state transition in a robot scenario is generally performed synchronously based on the
information obtained by a query message. A query message can be issued at any time.

7.4.1.4 Event Interface

The Event Interface enables the Service Application to receive notifications on changes in the state of the HRI Engine. This
interface performs “subscribe/unsubscribe” operations to register/cancel notifications and notification operations to pass
events to the Service Application. The sequence diagram of the entire Event Interface is shown in Figure 13.

28

sd Event /

:ServiceApp <<HRILEngine>>
:Engine1

| subscribe(event_type, condition, subscribe_id) |

Retumcode_t= subscribe(—, —, subscribe_id=assigned_id)

[Whenl target event occurred]
notify_event(event_id = assigned_id, event_type, subscribe_id=assigned_id, expires)

|
|
opt/

[f Users need detail information]
get_event_detail(event_id, condition, results = null) |

Retumncode_t= get_event_detail(—, —, results = outcome)

< _______________________________

[Stoq event detection]

L unsubscribe(subscribe_id = assigned_id)
u< __________ Retumcode t= unsubseribeD) _ _ _ _ _ _ _ _ _ _ q:]

Figure 13: Sequence Diagram of Event Interface.

7.4.1.4.1 Event Registration / Cancellation

The Service Application uses subscribe() to register with the HRI Engine the type of the event message to be obtained (called
an “event_type). On receiving the event-message registration request from the Service Application, the HRI Engine
immediately returns a return value and an ID for that registration (called a “subscribe_id”’). On completing reception of event
messages, the Service Application can cancel event-message notifications by using an unsubscribe() operation and specifying
the subscribe_id assigned at the time of registration. The HRI Engine makes no notification of event messages that the
Service Application is not subscribed to or of event messages that have been unsubscribed. In addition, the HRI Engine
simply ignores subscribe requests for event messages that are already subscribed to and unsubscribe requests for event
messages that have already been unsubscribed without issuing any errors.

7.4.1.4.2 Event Notification

The Service Application asynchronously receives an event message to which it has subscribed when the HRI Engine executes
notify_event(). The notify_event() operation passes an ID assigned for every notification of an event message (called an
“event_id”), event type indicating the type of event message, and the subscribe_id assigned at the time of registering that
notification. The Service Application can obtain detailed information on a notified event by performing a get_event_detail()
operation with the event_id for that event specified .

7.4.2 Interfaces

The overall configuration of the interfaces in the RolS Framework is shown in Figure 14.

class Interfaces /

<<enumeration>> <<enumeration>>
Completed_Status RolS Exception Type
OK ENGINE INTERNAL ERROR
iggg? COMPONENT_INTERNAL ERROR
COMPONENT_NOT_RESPONDING
OUT_OF_RESOURCES USER DEFINED_ERROR
TIMEOUT A
|
.\ .
L
<Kinterface>>
Service_Application_Base gl
+ completed(in command_id :String, in status :Completed Status) 4 ______ RS viceAop>>
+ notify_error(in error.id :String, in error type :RolS Exception Type) Servicel\pp
+ notify_event(in event_id :String, in event_type :String, in subscribe_id :String, in expire :DateTime) PP
<Kinterface>>
System
+ connect() : Retumcode_t < |- i
+ disconnect() : Retumcode_t _:
+ get_error_detail(in error_id :String, in condition ::1S019143:QueryExpression, out results :ResultList) : Retumcode_t
+ get _profile(in condition ::ISO19143::QueryExpression, out profile :HRI Engine_Profile) : Retumncode_t :
|
<interface>> |
Command |
+ bind(in component_ref :RolS Identifier) : Returncode_t |
+ bind_any(in condition ::1SO19143:QueryExpression, out component _ref :RolS Identifier) : Retumcode t !
+ execute(inout command_unit_list :CommandUnitSequence) : Returncode_t 4 -
+ get_command_result(in command_id :String, in condition ::1SO19143::QueryExpression, out results :ResultList) : Retumcode_t
+ get_parameter(in component _ref :RolS Identifier, out parameters :ParameterList) : Retumcode_t
+ release(in component_ref :RolS _Identifier) : Retumcode_t a
+ search(in condition ::ISO19143::QueryExpression, out component _ref list :List<RolS Identifier>) : Retumcode_t __ KHRI Engine>>
+ set_parameter(in component_ref :RolS Identifier, in parameters :ParameterList, out command_id :String) : Retumcode_t Enii?\iqe
<interface>>
Event
+ get_event detail(in event_id :String, in condition ::1SO19143::QueryExpression, out results :ResultList) : Retumcode t 4 - =
+ subscribe(in event type :String, in condition ::ISO19143::QueryExpression, out subscribe_id :String) : Returncode_t |
+ unsubscribe(in subscribe id :String) : Retumcode t | 1.%
|
interface>> | gl
int
Ruery R <<HRI Component>>
- Component1
+ query(in query_type :String, in condition ::1ISO19143::QueryExpression, out results :ResultList) : Retumcode_t

Figure 14 : RolS Interfaces.

7.4.2.1 Interfaces for HRI Engine

The interfaces for the HRI Engine are defined in Table 7.2 to Table 7.5.
Table 7.2: System Interface

Description: The interface required to enable the HRI Engine to receive requests related to system management from the
Service Application.

Derived From: None

Operations
connect Connects to the HRI Engine.
disconnect Disconnects from the HRI Engine.

30

get_profile

Obtains the profile.

in .
condition

QueryExpression
[1S019143]

Specifies conditions of the profile to be obtained.

out | profile

HRI_Engine_Profile

Holds the obtained HRI Engine profile.

get_error_detail

Obtains details on an error notification from the HRI Engine.

in

Specifies the ID identifying the error event assigned at

error_id String the time of error-event notification.
in condition QueryExpression Spec_ifies conditions for the error information to be
[1SO19143] obtained.
out | results ResultList Holds error information.

Table 7.3: Command Interface

Description: The interface required to enable the HRI Engine to receive command-related requests from the Service

Application.
Derived From: None
Operations
search
Searches for an HRI Component matching the conditions for executing a function.
in . . Specifies the conditions for the HRI
condition QueryExpression [1SO19143] Component to be searched for.
out Holds a list of IDs for components that

component_ref_list

List< RolS_ldentifier>

match specified conditions.

bind Binds the specified HRI Component.
in component._ref RolS_Identifier Specifies the 1D of the HRI Component to
be bound.
bind_any Has the HRI Engine automatically select and bind an HRI Component that matches the
conditions for executing a function.
in i, . Specifies the conditions of the HRI
condition QueryExpression [1S019143] Component to be selected.
out | component ref RolS_Identifier Holds the ID of the bound HRI Component.
release Releases the specified HRI Component.
in Specifies the ID of the HRI Component to

component_ref

RolS_ldentifier

be released.

get_parameter

Obtains p

arameters of the bound HRI Componen

t.

in component_ref RolS. Identifier Specifies the ID of the bound HRI
Component.
out | parameters ParameterL.ist Holds the obtained parameters.

set_parameter

Sets parameters of the bound HRI Component.

in component._ref RolS. Identifier Specifies the ID of the bound HRI
Component.

in | parameters ParameterL st Specifies the parameters to be set.

out . . Holds the command ID assigned for this
command_id String
command message.
execute
Sends a command message to the bound HRI Component.
in Specifies the command messages to be sent

command unit list

CommandUnitSequence

and hold the command IDs for the
messages.

get_command_result

Obtains detailed results on completing execution of the command.

in . . Specifies the command ID assigned for this
command_id String
command message.
in | ondition QueryExpression [1SO19143] Specifies the con(_jltlons for obtaining
command-execution results.
out | results ResultList Holds command-execution results.

Table 7.4: Query Interface

Description: The interface required to enable the HRI Engine to receive queries from the Service Application.

Derived From: None

Operations
query | Sends a query message to the HRI Engine and obtains information.
in query._type String ﬁpecmes the type of the query message to
e sent.
in . . Specifies the conditions of the information
condition QueryExpression [1SO19143] 1o be obtained.
out | results ResultList Holds the obtained information.

Table 7.5: Event Interface

Description: The interface required to enable the HRI Engine to receive event-related requests from the Service
Application.

Derived From: None

Operations
subscribe Registers an event message for which notifications are to be received.
in event_type String Spe_cmes the type of the event message to be
registered.
"N 1 condition QueryExpression [1S019143] Specifies the cond_ltlons of the event
message to be registered.
out subscribe_id String Holds the event-registration 1D assigned

when registering this event message.

unsubscribe

Cancels the registered event message.

in

subscribe_id

String

Specifies the event-registration ID assigned
when registering this event message.

get_event_detail

Obtains detailed information on this event notification.

in Specifies the 1D of the event notification
event_id String assigned at the time of this event-message
notification.
in . . Specifies the conditions of the information
condition QueryExpression [1S019143] o be obtained.
out . Holds detailed information on the event
results ResultList

notification.

32

7.4.2.2 Interfaces for Service Application

The interface provided on the service-application side is defined in Table 7.6.

Table 7.6: Service Application Base Interface

Description: The interface required to enable the Service Application to receive notifications from the HRI Engine.

Derived From: None

Operations
notify_event Receives event message for which notification has been registered.
in event_id String Holds the I_D of the event notification assigned
when sending the event message.
in | event type String Holds the ID of this event message.
in Lo . Holds the event-registration ID assigned when
subscribe_id String S .
registering this event message.
in expire DateTime[W3C-DT] Time limit for (_)btammg detailed results by
get_event_detail().
notify_error Receives an error notification from the HRI Engine or the HRI Component.
in . . Holds the ID of the error notification assigned
error_id String i i
when notifying of this error.
in | error_type ErrorType Holds the type of error.

completed Receives notification that command execution has completed.
in . . Holds the command ID assigned when the
command_id String
- command message was sent.
in | status Completed_Status Holds the state of command completion.

ErrorType and Completed_Status are defined in Table 7.7 and Table 7.8.

Table 7.7: ExceptionType enumeration

ENGINE_INTERNAL_ERROR

An error internal to the HRI Engine.

COMPONENT_INTERNAL_ERROR

An error internal to the HRI Component.

COMPONENT_NOT_RESPONDING

No response received from the HRI Component.

USER_DEFINED_ERROR

An error defined by the user.

Note: Corresponding situations of these error types shall be defined with respect to each HRI Engine.

Table 7.8: Completed_Status enumeration

OK

Successful return.

ERROR

Generic, unspecified error.

ABORT

The operation was aborted.

OUT_OF_RESOURCES

Service ran out of the resources needed to complete the operation.

TIMEOUT

The operation timed out.

Note: Corresponding situations of these statuses shall be defined with respect to each command message.

7.4.3 Message Data

The data exchanged by the RolS Interface are summarized in the previous section as the parameters for each operation.
Among these data, “message data” for each interface indicates the data that includes the information for the whole purpose of
the interface. Thus, “command message” indicates the data exchanged by execute(), “query message” indicates the data
exchanged by query(), and “event message” indicates the data exchanged by notify_event(). For the Command Interface
and the Event Interface, the result of the command operation and the detail of the event notification are also important.
Therefore, these data are defined as “command result message” and “event detail message” respectively. This section
describes the data structure of each message.

7.4.3.1 Command Message

The data structure of the command message exchanged by execute() is shown in Figure 15.

class Data Structure /
+command_unit_list g Petrac>>
CommandUnitSequence CommandBase
(—] 1% [~ delay time: Integer [0.1]
ConcurrentGommands
CommandMessage 1

arguments: ArgumentList [0.1]
command id: String Branch
command_type: String 0.

component ref: RolS Identifier

Event_Message

event_id: String

event type: String
expire: DateTime
subscribe_id: String [0..1]

ArgumentList

1SO 19115::
MD_Identifier

1

RolS_Identifier

Command_Result_Message

- command.id: String
- condition: QueryExpression [0.1]

1k
+Parameters | {ordered}

Parameter Query_Message

+P

4
ResultLife!"

~ data_type ref: RolS Identifier
- codebook reference: String [0.1] - name: String 1.
~ version: String [0.1] *PW’“""E'SI - value: Any fordered

- condition: QueryExpression [0.1]
~ query_type: String

Event_Detail_Message

- condition: QueryExpression [0.1]
- eventid: String

Figure 15: Data Structure of Command Message.

RolS_Identifier is defined for describing an ID with the reference codebook for the ID. The detail of this data type is depicted
inTable 7.9.
Table 7.9: RolS_ldentifier

Description: A data type for describing an ID that identifying an instance and the reference codebook for the ID.

Derived From : MD_Identifier [ISO19115]

Attributes
codebook reference String) 1 URI of the codebook used.
version String) 1 Version identifier for the codebook.

34

The data configurations are defined in Table 7.10 to Table 7.18.

Table 7.10: CommandUnitSequence class

Description: A data class for specifying a list of commands to the HRI Engine.

Derived From :

Attributes

CommandUnit object consisting of at least
one command message.

command unit list CommandUnit M Nord

Table 7.11: CommandUnit class

Description: An abstract data class for specifying a command or a concurrent combination of commands to the HRI Engine.

Derived From :

Attributes

delay time A delay time from receiving the command
Integer O |1 message till starting the operation.
The time shall be specified in millisecond.

Table 7.12: CommandMessage class

Description: A concrete data class for specifying a command to the HRI Engine.

Derived From : CommandUnit

Attributes
component_ref RolS_ldentifier M |1 Identifier of the HRI Component.
command_type Identifier of the command message type.
The operation “execute” in the command
String M |1 interfape s‘rjall operate sirni!arly to the
operation “set_parameter” in the command
interface when the command_type is
“set_parameter”.
command_id ID of the command transmission assigned
Sting M |1 when the HRI Engine receiving the command
message.
arguments ArgumentList O |1 Arguments for the command message

Table 7.13: ConcurrentCommands class

Description: A concrete data class for specifying a combination of commands to the HRI Engine that expresses a procedure
for operating several command messages in parallel.

Derived From : CommandUnit

Attributes

branch list

Branch

Each Branch object contains at least one
CommandMessage. HRI Engine processes
Branch objects in parallel.

Table 7.14: Branch class

Description: A concrete data class for specifying a combination of commands to the HRI Engine that expresses a procedure

for operating several command messagessequentially.

Derived From :

Attributes

command list CommandMessage M | Nord

one command message.

CommandMessage object consisting of at least

ResultList, ArgumentList and ParameterList are defined for treating data values in each message as depicted in the following

tables.
Table 7.15: Parameter class

Description: A data class for specifying a parameter.

Derived From: None

Attributes

name String M N Parameter name

data_type ref RolS_ldentifier M N Reference ID of data definition
value Any M N Parameter value

Table 7.16: ResultList class

Description: A data class for specifying a list of result parameters

Derived From: None

Attributes

Parameters | Parameter | M [Nord | Result parameters

Table 7.17: ArgumentList class

Description: A data class for specifying a list of argument parameters

Derived From: None

Attributes

Parameters | Parameter |M | Nord | Argument parameters

36

Table 7.18: ParameterL.ist class

Description: A data class for specifying a list of configuration parameters

Derived From: None

Attributes

Parameters | Parameter | M | Nord | Configuration parameters

7.4.3.2 Command Result Message

The data configuration of the command result message exchanged by get_command_result() is given below.
Table 7.19: Command Result Message class

Description: A data class for specifying a command result message

Derived From: None

Attributes
command_id . ID of the command transmission assigned
String M 1 .
when receiving the command message
condition QueryExpression [15019143] 0 1 Conditions of information to be obtained
results ResultList M 1 Results of command execution

7.4.3.3 Query Message

The data configuration of the query message exchanged by query() is given below.
Table 7.20: Query Message class

Description: A data class for specifying a query message

Derived From: None

Attributes

query type String M 1 type of the query message

condition QueryExpression [1S019143] 0 1 Conditions of information to be obtained
results ResultList M 1 Obtained information

7.4.3.4 Event Message

The data configuration of the event message exchanged by notify_event() is given below.
Table 7.21: Event Message class

Description: A data class for specifying an event message

Derived From: None

Attributes

event_id String M 1 ID of the event notification assigned when
sending the event message
event_type String M 1 type of the event message
subscribe_id . ID of event registration assigned when
String M 1 S
registering the event message
expire . i Time limit for obtaining detailed results by
DateTime[W3C-DT] @] 1 get_event detail()

7.4.3.5 Event Detail Message

The data configuration of event details exchanged by get_event_detail() is given below.
Table 7.22: Event Detail Message class

Description: A data class for specifying an event detail message

Derived From: None

Attributes

event_id String M 1 ID of the event notification assigned when
sending the event message

condition QueryExpression [1SO19143] O 1 Conditions of information to be obtained

results ResultList M 1 Detailed information on event

7.4.3.6 Error Message

The data configuration of event details exchanged by notify_error() is given below.
Table 7.23: Error Message class

Description: A data class for specifying an error message

Derived From: None

Attributes

error_id String M 1 ID of the error notification assigned when
sending the event message

error_type String M 1 type of the error message

subscribe_id . ID of event registration assigned when

String M 1 S

registering the event message

expire DateTime[W3C-DT] 0 1 Time limit for _obtamlng detailed results by
get_error_detail().

7.4.3.7 Error Detail Message

The data configuration of error details exchanged by get_error_detail() is given below.
Table 7.24: Error Detail Message class

Description: A data class for specifying an error detail message

Derived From: None

38

Attributes

error_id String M 1 ID of the error notification assigned when
sending the error message

condition QueryExpression [1S019143] 0 1 Conditions of information to be obtained

results ResultList M 1 Detailed information on error

7.5 Profiles

7.5.1 Overview

Profiles define the functions provided by the HRI Engine via the RolS Framework interfaces, that is, the configuration of the
HRI Engine and HRI Components, and the messages that can be used. They are used to obtain information so that the Service
Application can make use of HRI-Engine functions.

class Profile /

I1SO 19111::
10_IdentifiedObject

—— Event_Detail_Message_Profile

| +sub_component
+sub_profile 0. 0.1
> i + M Profil
i rcine Profle e iEScmoonent Profle e —— Query_Message_Profile

1.% 1% |+ name: String

— Error_Detail_Message_Profile

JAY

——1 Command_Resultl_Message_Profile

Command_Message_Profile

+parameter 0%
0. {ordered} +results | {ordered}

Parameter_Profile
data_type_ref: RolS Identifier | +argument
default_value: Any [0..1]

description: String [0..1]
name: String

+ timeout: Integer [0.1]

0.x
{ordered}

+ 4+ o+

Figure 16: RolS Profile. RolS profile mainly consists of 4 types of profiles, i.e. “HRI_Engine_Profile”,
“HRI_Component_Profile”, “Message_Profile”, and “Parameter_Profile”.

An HRI Engine Profile, HRI Component Profile, and Message Profile are defined for the HRI-Engine layer of physical units,
the HRI-Component layer of abstract functional units, and the message layer of data exchanged between the Service
Application and HRI Components, respectively, in the RolS Framework. These profiles enable the Service Application to
understand the configuration of the HRI Engine.

The main application of each profile is summarized below.

Parameter Profile: This profile defines the parameters of message arguments, results, the HRI Engine, and HRI Components.
It defines parameter identifier (parameter name), data type, and default value.

Message Profile: This profile defines messages to be sent and received between the Service Application and HRI Engine via
the RolS Framework. It defines message identifiers (message name) and required arguments and results. Arguments and
results are defined by including a Parameter Profile defined for each parameter. The profile for each type of message
corresponding to an interface (command message, query message, and event message) is defined as a subclass of this
class.

HRI Component Profile: This profile defines a list of messages and parameters possessed by an HRI-Component unit. It
defines HRI-Component identifiers (HRI-Component name, ID, etc.). Messages and parameters that can be used by this

HRI Component are defined by specifying Message Profiles and Parameter Profiles. An HRI Component that includes
multiple sub-HRI-Components can be defined by specifying other HRI-Component Profiles as sub-profiles.

HRI Engine Profile: This profile defines a list of HRI Components and parameters possessed by an HRI-Engine unit. It
defines HRI-Engine identifiers (HRI-Engine name, ID, etc.). HRI Components and parameters that can be used by this
HRI Engine are defined by specifying HRI-Component Profiles and Parameter Profiles. An HRI Engine that includes
multiple sub-HRI-Engines can be defined by specifying other HRI Engine Profiles as sub-profiles.

The Service Application obtains an HRI Engine profile (or its referent) by get_profile(). It can obtain the HRI Engine Profile
of a certain HRI Engine by specifying conditions such as the location of that HRI Engine or the HRI Components possessed
by the HRI Engine in ‘condition’.

The Service Application can then learn about the types of available functions through the identifiers of HRI-Component
Profiles included in the HRI Engine Profile. Additionally, it can obtain detailed information on messages exchanged by each
interface when using a certain HRI Component through Message Profiles included in that HRI-Component Profile.

Specifically, the Service Application begins by searching for desired functions from the identifiers of HRI-Component
Profiles included in the obtained HRI Engine Profile. If a command message is to be used, the Service Application searches
for an HRI-Component Profile having the same identifier as that obtained at the time of binding.

When exchanging a message, the Service Application specifies the identifier of that message. Detailed information on a
message to be exchanged can be obtained by referencing the profile having the same identifier as that message from the
Message Profiles corresponding to the interface to be used.

Definitions of identifiers and data types of arguments needed when exchanging a message can be obtained from Parameter
Profiles included in that Message Profile.

When exchanging a message, passing a list of values as arguments (or results) based on parameter identifiers and data types
defined in these Parameter Profiles guarantees that the data types exchanged between the Service Application and HRI
Engine match up.

The same holds for parameters. Passing a list of values as set_parameter() and get_parameter() arguments based on parameter
identifiers and data types defined in Parameter Profiles included in an HRI-Engine Profile or HRI-Component Profile
guarantees that the data types exchanged between the Service Application and HRI Engine match up. Information on standard
values can also be obtained from default values defined in Parameter Profiles.

Details of each profile are described in the following sections.

7.5.2 Parameter Profile

The Parameter Profile defines parameters for message arguments and HRI-Engine and HRI-Component parameters. Items to
be defined in this profile are listed in Table 7.25.
Table 7.25: Parameter_Profile

Description: Profile for defining each parameter for HRI Engines.

Derived From :

Attributes
name String M 1 Parameter name
data_type_ref RolS_Identifier M 1

Reference ID of data definition

default_value

Any o) 1 Necessary arguments when issuing this
message
description String 0 1 Description

40

7.5.3 Message Profile

The Message Profile defines messages exchanged between the Service Application and HRI Engine via the interfaces in the
RolS Framework. This profile is defined for every message. Items to be defined in this profile are listed in Table 7.26.

Table 7.26: Message_Profile

Description: Base profile for defining messages for each interface type.

Derived From : None

Attributes

name String M1 Message name

results . . .
Defines parameters obtained as execution
results in this message (parameters
included in get_command_result() in
command interface, query() in query

Parameter Profile o Nord | interface, and get_event_detail () in event

interface).

The definition method follows that of the
Parameter Profile.

Multiple items may be defined.

Messages used in the Command Interface are defined in the Command Message Profile. Items to be defined in the Command
Message Profile are listed in Table 7.27.

Table 7.27: Command_Message_Profile

Description: Profile for defining messages for command interface type.

Derived From : Message_Profile

Attributes

argument

Parameter_Profile

(0] N ord

Defines parameters given as arguments in
this message (parameters included in
arguments of execute() in the command
interface).

The definition method follows that of the
Parameter Profile.

Multiple items may be defined.

timeout

Integer

The time between receipt of the message
and judgment of failure to start the
operation.

The time shall be specified in millisecond.

Messages used in the Command Interface to send the results are defined in the Command Result Message Profile. Items to
be defined in the Command Result Message Profile are listed in Table 7.28.

Table 7.28: Command_Result_Message_Profile

Description: Profile for defining messages for command interface type.

Derived From : Message_Profile

Messages used in the Query Interface are defined in the Query Message Profile. Items to be defined in the Query Message

Profile are listed in Table 7.29.
Table 7.29: Query_Message_Profile

Description: Profile for defining messages for query interface type.

Derived From : Message_Profile

Messages used in the Event Interface are defined in the Event Detail Message Profile. Items to be defined in the Event Detail

Message Profile are listed in Table 7.30.
Table 7.30: Event_Detail_Message_Profile

Description: Profile for defining messages for command interface type.

Derived From : Message_Profile

Messages used in the System Interface are defined in the Error Detail Message Profile. Items to be defined in the Error Detail

Message Profile are listed in Table 7.31.
Table 7.31: Error_Detail_Message_Profile

Description: Profile for defining messages for system interface type.

Derived From : Message_Profile

7.5.4 HRI Component Profile

The HRI Component Profile defines the abstract functional units to be used by the Service Application corresponding to the
functions provided by the HRI Engine. That is, it defines the class of HRI Component and the messages that can be used by
that HRI Component. This profile is defined for every HRI Component. Items to be defined in this profile are listed in Table

7.32.
Table 7.32: HRI Component Profile

Description: Profile for defining lists of messages and parameters for each HRI Component

Derived From : 10_ldentifiedObject [1SO19111]

Attributes

42

message . .
Defines a message profile for a message of

the HRI Component.

Message_Profile M N The definition method follows that of the
Message Profile.

Multiple items may be defined.

sub_component . .
Specifies an HRI Component profile when

included in the definition of another HRI

HRI_Component_Profile 0] 1 Component profile,

Only one item may be defined.

arameter] _
P Defines the parameter profile for a

parameter of this HRI Component.

Parameter_Profile O Nord | The definition method follows that of the
Parameter Profile.

Multiple items may be defined.

7.5.5 HRI Engine Profile

The HRI Engine Profile defines the class of an HRI Engine or sub HRI Engine and the HRI Components that can be used by
that HRI Engine. This profile is defined for every HRI Engine. Items to be defined in this profile are listed in Table 7.33.
Table 7.33: HRI_Engine_Profile

Description: Profile for defining lists of logical units and parameters for each HRI Engine and sub HRI Engine.

Derived From : 10_ldentifiedObject [1SO19111]

Attributes
component . .
Specifies the HRI Component Profile of an
HRI Component of this HRI Engine.
HRI_Component_Profile M N
Multiple items may be defined.
sub_profile
P Specifies the sub HRI Engine Profile
HRI_Engine_Profile @) N included in this HRI Engine.
Multiple items may be defined.

7.6 Common Messages

In this specification, messages received via an interface of the HRI Engine are called HRI-Component methods and common
messages are defined as the methods.

In the RolS Framework, the HRI Components shown in Table 7.34 are defined as Basic HRI Components. The Basic HRI
Components are HRI Components that are commonly used to obtain information and to control robot behaviors for the
human-robot interaction. The Basic HRI Component shall be a functional unit that is developed with mature technologies
from the viewpoint of the usage. Methods for each Basic HRI Component shall be simple as possible. Mandatory parameters
for the operation shall be minimized. The Basic HRI Component shall be operated only with the mandatory parameter. If the
component can provide additional information or configuration parameter, those parameters may be provided as optional

parameter. The other HRI Components may be provided as “User-defined HRI Component”. Examples of “User-defined HRI

Component” are described in Annex C.

Note that it is not mandatory for an HRI Engine to implement all of these Basic HRI Components. It is sufficient that they
only have the HRI Component Profiles of the actually-implemented HRI Components.

Table 7.34: Basic HRI Components

HRI Component Name

Description

system information

position of the physical unit.

Provides the information of the system such as status of the system and

person detection

Detects number of people

person localization

Detect position of people

person identification

Identifies ID (name) of people

face detection

Detects number of human faces

face localization

Detects position of human faces

sound detection

Detects number of sound sources

sound localization

Detects position of sound sources

speech recognition

Recognizes person’s speech

gesture recognition

Recognizes person’s gesture

speech synthesis

Generates robot speech.

reaction Performs specified reaction.
navigation Moves to specified target location
follow Follows a specified target object
move Moves to specified distance or curve

Each HRI Component incorporates the following methods and parameters in common.

Table 7.35: RolS_Common

Description: common method for all HRI Components.

Command Method

start Start the functionality of the HRI Component.
stop Stop the functionality of the HRI Component.
suspend Pause the functionality of the HRI Component.
resume Resume the functionality of the HRI Component.
Query Method
component_status Obtain status information of the component.

result | status

| Component_Status

| M

| Status information of this component.

44

Component status is defined as follows.

Table 7.36: Component_status enumeration

UNINITIALIZED | The component is not initialized.
READY | The component is ready to use.
BUSY | The component is used by other application(s).
WARNING | Warning against the use of the component
ERROR | Generic, unspecified error.

Methods and parameters of each HRI Component described in this PIM are documented in the following sections.

7.6.1 System Information

class System Information/

Kinterface>>
System Information

+ engine_status(out engine_status :Component_Status, out operable time :DateTime) :Retumcode_t
+ robot_position(out timestamp :DateTime, out position_data :List<:RLS:Data>, out robotref :List<RolS Identifier>) :Retumcode_t

A

<<HRIL.Component>>
System_Information_Component

0.%

<<HRLEngine>>
Enginel

5]

Figure 17: System Information

Table 7.37: System information

Description: This is a component for providing system information. The system information includes the status and the
location of the system. This information belongs to the HRI Engine that is treated as a unified physical unit of several HRI
Components. Therefore this component is different from other HRI Components and does not include RolS_Common
methods.

Localization of a physical unit (i.e., robot, sensor, and actuator) is one of the essential functions for providing robotic
services in physical space. An HRI Engine that is defined as a physical unit shall include this HRI Component to inform
Service Applications about its location information. The location information depends on the physical elements of the HRI
Engine; for example, if the HRI Engine is defined as a movable robot, this component may provide at least the position of
the robot, and if the HRI Engine consists of sensors that are mounted in a wide room extensively, this component may
provide at least the reference position. When possible, the HRI Component may provide the location information of each
sensor or actuator as a list of location data.

Query Method

robot_position Returns location information.

result timestamp DateTime [W3C-DT] M Measurement time.
result robot_ref List<RolS_Identifier> M List of the robot IDs.
result List of location data. Each entry at

least contains ID of the location data.
This may also be accompanied with
position data List<Data> [RLS] M additional information such as position
or pose of the robot, sensor or actuator.
It may also contain certainty of the
localization act.

engine_status | petms status information of the HRI Engine.

result status Component_Status M Status information of this engine.

result . . Operable time of the HRI Engine that
operable time DateTime [W3C-DT] o] inchIudes this basic component.g

46

7.6.2 Person Detection

class Person_Detection /

Kinterface>>

RolS

Common

start() : Retumncode t
stop() : Retumcode_t
suspend() : Retumcode_t
resume() : Retumcode t

+ 4+ + + +

component_status(out status :Component_Status) : Retumcode_t

interface>>

person_detected(in timestamp :DateTime, in number :Integer) : void

Person Detection

A

I
]

Person_Detecti

<<HRI_Component>>

5]

on_Component 0.%

<<Lenumeration>>
Component_Status

- — = <<enum>> UNINITIALIZED
<Lenum>> READY
<<Lenum>> BUSY
<Lenum>> WARNING
<<Lenum>> ERROR

5]

<<KHRLEngine>>
Enginel

Figure 18 : person detection

Table 7.38: person detection

Description: This is a component for detecting number of persons. This component notifies a number of the detected
people when the number has changed.

This functionality is essential for typical robotic services; for example, if a Service Application is required to start its
service when a person enters the service area, this component is effective to detect the entry of people. Similarly, if the
Service Application needs to stop the service when the person moves out of the service area, this component can also
detect the exit of people.

Event Method

person_detected | Notifies number of people when the number has changed.

result

timestamp

DateTime [W3C-DT]

M

Measurement time.

result

number

Integer

M

Number of detected persons

7.6.3 Person Localization

class Person_Localization /

Kinterface>> <Lenumeration>>
RoIS_Common Component_Status
+ component_status(out status :Component_Status) : Returncode_t UNINITIALIZED
+ resume() : Retumcode t T T READY
+ start() : Retumcode t BUSY
+ stop() : Returncode t WARNING
+ suspend() : Retumcode t ERROR
Kinterface>>

Person _Localization

+ get_parameter(out minimum-interval :Integer, out detection—threshold :Integer) : Returncode_t
+ person_localized(in timestamp :DateTime, in person_ref :List{RolS Identifier>, in position_data :List<:RLS:Data>)
+ set_parameter(in minimum-interval :Integer, in detection—threshold :Integer) : Retumcode_t

A

2] 2]

<<HRLComponent>> —— @ <<HRILEngine>>

Person_Localization_Component |0.* Enginel

Figure 19 : person localization

Table 7.39: person localization

Description: This is a component for detecting position of persons. This component notifies position of the detected people
when the position has been localized.

This functionality is essential for typical robotic services; for example, when a robot finds a person close to it, the robot
may approach to the person and start asking if there is something the robot can do for the person. In some advanced
robotic services, an environmental sensing system may find out a person in lost and order robots to approach the person
for help.

Command Method

set_parameter | Specifies person localization parameters.

This component notifies an event if the
distance of movement since previous
event notification exceeds the
threshold value.

argument | detection threshold Integer 0

This component notifies an event if the

argument minimum interval Integer o] period since previous event notification
exceeds the value of minimal interval.

Query Method

get_parameter | Obtains person localization parameters.

48

This component notifies an event if the
distance of movement since previous

result detection threshold Integer o] event notification exceeds the
threshold value.
This component notifies an event if the
result detection threshold Integer o] distance of movement since previous

event notification exceeds the
threshold value.

Event Method

person_localized | Notifies position of people when the position has localized.

result

timestamp DateTime [W3C-DT] M

Measurement time.

result

person ref List<RolS_Identifier> M

List of detected person IDs. Reference
information related to the ID shall be
provided with each ID.

By referring to the reference for the
IDs, the Service Application can
understand the relationship between
the obtained IDs and the other IDs
that are obtained from another
component.

result

position data List<Data[RLS]> M

List of detected person data. Each data
entry at least contains position of the
detected person. This may also be
accompanied with additional
information such as pose of the
detected person. It may also contain
certainty of the detection act.

7.6.4 Person Identification

class Person_ldentification /

Kinterface>>
RolS Common

start() : Retumcode_t

stop() : Retumncode_t

suspend() : Retumcode_t

resume() : Retumcode_t

component_status(out status :Component_Status) : Retumcode_t

+ 4+ + + +

——— = <Lenum>> UNINITIALIZED

<Kinterface>>
Person Identification

4e

person_identified(in timestamp :DateTime, in person_ref :List<RolS_Identifier>) : void

A

|
|

<Lenumeration>>
Component_Status

<Lenum>> READY
<Lenum>> BUSY
<Lenum>> WARNING
<Lenum>> ERROR

2]
<<HRL Component>> ————@

Person_ldentification_Component

<<HRLEngine>>

3]

Enginel

Figure 20: person identification

Table 7.40: person identification

Description: This is a component for identifying person ID. This component notifies ID(s) of the detected people when the
ID(s) has been identified.

This functionality is essential for performing various robotic services, from simply calling by one’s name to performing
advanced services based on person profiles or service histories. Numbers of methods and means for identification have
been proposed and have been used so far, such as face, iris or gate recognition. This HRI Component provides an abstract
mean for utilizing person recognition results.

Event Method

person_identified | Notifies ID of people when the ID has identified.

result timestamp DateTime [W3C-DT] M Measurement time.

List of detected person IDs. Reference
information related to the 1D shall be
provided with each ID.

By referring to the reference for the
IDs, the Service Application can
understand the relationship between
the obtained IDs and the other IDs that
are obtained from another component.

result person ref List<RolS_Identifier> M

50

7.6.5

Face Detection

class

Face_Detection /

Kinterface>>
RolIS Common

+ 4+ + +

start() : Retumcode t
stop() : Retumcode_t
suspend() : Retumcode_t
resume() : Retumcode t

component_status(out status :Component_Status) : Retumcode_t

Kinterface>>
Face Detection

4L

face_detected(in timestamp :DateTime, in number :Integer) : void

A

1

3]

<<HRILComponent>> — @

Face_Detection_.Component | 0.%

——— = <<enum>> UNINITIALIZED

<<Lenumeration>>
Component_Status

<Lenum>> READY
<<Lenum>> BUSY
<<enum>> WARNING
<Lenum>> ERROR

3]

<KHRILEngine>>
Enginel

Figure 21 : face detection

Table 7.41: face detection

Description: This is a component for detecting number of human faces. This component notifies a number of the detected
faces when the number has changed.

This functionality is similar to “person_detection” component but it is treated as a separate component. This is because
often the detection of human face has an individual meaning in the Service Applications. For example, if a robot detect a
person but the person is not facing to the robot, the robot may not talk to the person. In such a case, the robot may move to
the other direction of the person or wait until the person turns to the robot. Therefore this functionality is also essential for
various robotic services.

Event Method

face_detected

Notifies number of human face when the number has changed.

result

timestamp

DateTime [W3C-DT]

M

Measurement time.

result

number

Integer

M

Number of human faces

7.6.6 Face Localization

class Face_Localization /

Kinterface>>
RolIS_Common

+ o+

component_status(out status :Component_Status) : Retumcode_t
resume() : Retumcode_t
start() : Retumcode_t
stop() : Returncode_t
suspend() : Retumcode_t

<<enumeration>>
Component_Status

| ___ UNINITIALIZED
-] READY

BUSY

WARNING

ERROR

Kinterface>>
Face Localization

+ face_localized(in timestamp :DateTime, in face_ref :List<RolS Identifier>, in position_data :List<:RLS:Data>)
+ get_parameter(in minimum—interval :Integer, in detection—-threshold :Integer) : Retumcode_t
+ set_parameter{out minimum-interval :Integer, out detection—threshold :Integer) : Retumcode_t

A

<<HRL.Component>>

3]

Face_Localization_Component

0..%

5]

<<HRI Engine>>
Enginel

Figure 22: face localization

Table 7.42: face localization

Description: This is a component for detecting position of human faces. This component notifies position of the detected
human face(s) when the position has been localized.

This functionality is similar to “person_localization” component but it is treated as a separate component. This is because
often the position of human face has an individual meaning in the Service Applications. For example, if a robot is smaller
than human, the robot may need to look up the person. In such case, the position of the face is needed separately from the
position of the person. Therefore this functionality is also essential for various robotic services.

Command Method

set_parameter | Specifies face localization parameters.

This component notifies an event if the
distance of movement since previous

argument detection threshold Integer event notification exceeds the threshold
value.
This component notifies an event if the
argument minimum interval Integer period since previous event notification

exceeds the value of minimal interval.

Query Method

get_parameter | Obtains face localization parameters.

result

detection threshold

Integer

This component notifies an event if the

52

distance of movement since previous
event notification exceeds the threshold
value.

result

minimum interval

Integer

This component notifies an event if the
period since previous event notification
exceeds the value of minimal interval.

Event Method

face_localized | Notifies position of human face when the position has localized.

result

timestamp

DateTime [W3C-DT]

M

Measurement time.

result

face ref

List<RolS_Identifier>

List of detected human face IDs.
Reference information related to the ID
shall be provided with the each ID.

By referring to the reference for the
IDs, the Service Application can
understand the relationship between the
obtained IDs and the other IDs that are
obtained from another component.

result

position data

List<Data[RLS]>

List of detected human face data. Each
data entry at least contains position of
the detected face. This may also be
accompanied with additional
information such as pose of the
detected face. It may also contain
certainty of the detection act.

7.6.7 Sound Detection

class Sound_Detection /

Kinterface>>

RoIS Common

+ 4+ o+ + o+

start() : Retumcode t
stop() : Retumncode_t

suspend() : Retumncode_t

resume() : Returmncode t

component_status(out status :Component_Status) : Returncode_t

T

L _ _> <<enum>> UNINITIALIZED

So

Kinterface>>
und Detection

RIS

sound_detected(in timestamp :DateTime, in number :Integer) : void

A

3]

<<HRIL.Component>>
Sound_Detection_Component

0..x

<Lenumeration>>
Component_Status

<Lenum>> READY
<Lenum>> BUSY
<Lenum>> WARNING
<Lenum>> ERROR

5]

<<KHRLEngine>>
Enginel

Figure 23: sound detection

Table 7.43: sound detection

Description: This is a component for detecting number of sound sources. This component notifies a number of detected
sound sources when the number has changed.

This functionality is essential for typical robotic services; for example, in the case of home security service, the robot may
watch for intruders coming or sound an alarm when it hears something.

Event Method

sound_detected

Notifies number of sound sources when the number has changed.

result timestamp DateTime [W3C-DT] M Measurement time.
Number of sound sources.
If the component can not detect sound
result number Integer M .
sources separately, this parameter shall
be 1 or 0.
7.6.8 Sound Localization
class Sound_LocaIization/
Kinterface>> <Lenumeration>>

RoIS_Common

+ 4+ ++ o+

component_status(out status :Component_Status) : Retumcode_t

resume() : Retumcode_t
start() : Retumcode_t
stop() : Retumcode_t
suspend() : Retumcode_t

i

Component_Status

- UNINITIALIZED
=] READY

BUSY

WARNING

ERROR

Kinterface>>
Sound Localization

4y
4y
44

get_parameter(in minimum—interval :Integer, in detection—threshold :Integer) : Returncode_t
set_parameter(out minimum—interval :Integer, out detection—threshold :Integer) : Retumcode_t
sound_localized(in timestamp :DateTime, in sound_ref :List<{RS_Identifier>, in position_data :List<:RLS:Data>)

£\

<<HRIL.Component>>

5]

Soubd_Localization_Component

—<@ <<HRIEngine>>

5]

Enginel

Figure 24: sound localization

Table 7.44: sound localization

54

Description: This is a component for detecting position of sound sources. This component notifies position of detected
sound source(s) when the position has been localized.

Often this functionality is used to detect the location of the speaker(s) by detecting the speaker’s voice since a person talks
to the robot when he/she wants to start interaction.

Command Method

set_parameter

Specifies sound localization parameters.

This component notifies an event if the
argument detection Integer 0 dist_apce_of movement since previous
threshold notification exceeds the threshold
value.
This component notifies an event if the
argument minimum interval Integer @) period since previous event notification
exceeds the threshold value.
Query Method
get_parameter Obtains sound localization parameters.
This component notifies an event if the
result detection Integer 0 dist.apce_of movement since previous
threshold notification exceeds the threshold
value.
This component notifies an event if the
result minimum interval Integer @) period since previous event notification
exceeds the value of minimal interval.

Event Method

sound_localized

Notifies position of sound sources when the position has localized.

result

timestamp

DateTime [W3C-DT]

M

Measurement time.

result

sound ref

List<RolS_Identifier>

List of detected sound source IDs.
Reference information related to the ID
shall be provided with the each ID.

By referring to the reference for the
IDs, the Service Application can
understand the relationship between the
obtained 1Ds and the other I1Ds that are
obtained from another component.

result

position data

List<Data[RLS]>

List of detected sound source data.
Each data entry at least contains
position of the detected sound source. It
may also contain certainty of the
detection act.

7.6.9 Speech Recognition

class Speech_Recognition/

<Kinterface>>

RolS Common

+ 4+ ++ o+

start() : Retumcode_t
stop() : Retumcode_t
suspend() : Retumcode_t
resume() : Retumcode_t

component_status(out status :Component_Status) : Returncode_t

<<enumeration>>
Component_Status

<<enum>> UNINITIALIZED
<<enum>> READY
<<enum>> BUSY
<<enum>> WARNING
<Lenum>> ERROR

Kinterface>>
Speech Recognition

+ 4+ + + 4+

set_parameter(in languages :Set<{String>) : Retuncode_t
get_parameter(out languages :Set<String>, out recognizable_languages :Set<{String>) : Retumcode_t
speech_recognized(in timestamp :DateTime, in recognized_test :List<{String>) : void

speech_input_started(in timestamp :DateTime) : void
speech_input_finished(in timestamp :DateTime) : void

A

<<HRL.Component>>
Speech_Recoginition_Component

5]

0.

<<HRI Engine>>

5]

Enginel

Figure 25: speech recognition

Table 7.45: speech recognition

Description: This is a component for recognizing human speech. This component notifies text data of the recognized
speech when the speech has been recognized.

This functionality is essential for human robot interactions, from simply ordering the robot to do something to giving
enough information to the Service Application for appropriate services.

Here, we assumes speech recognition algorithm which is not configurable by a descriptive grammar (e.g. W3C-SRGS).
See Annex C for speech recognition algorithm which can be configured by a descriptive grammar. Mandatory requirement
for the speech recognition component is to return result in string format.

Command Method

set_parameter

Specifies speech recognition paramters.

argument | languages Set<String> [ISO639-1] Specifies languages the speech
recognizer will recognize.
argument | grammer String Specifies grammar for the speech
recognizer.
argument | rule String Specifies active rule in the grammer.
Query Method

get_parameter

Obtains speech recognition paramters.

56

result recognizable Set<String> [ISO639-1] M Obtains languages the speech
languages recognizer can recognize.
result languages Set<String> [ISO639-1] M Obtains languages the speech
recognizer recognizes.
result grammer String o] Obtains grammar for the speech
recognizer.
result rule String o] Obtains active rule in the grammer.

Event Method

speech_recognized

Notifies recognized result when the speech has been recognized.

result

timestamp

DateTime [W3C-DT]

M

Time when the recognition has
completed.

result

recognized text

List<String>

List of speech recognition results. The
result is provided as string data.

For the speech recognition algorithm
which can only output one candidate,
returning a list filled with one result is
recommended. String of recognized
text can contain either a word or a
sentence.

speech_input_started

Notifies the recognizer has detected start of speech input.

result

timestamp

DateTime [W3C-DT]

M

Time when the speech input has
started.

speech_input_finished

Notifies the recognizer has detected end of speech input.

result | timestamp | DateTime [W3C-DT] | M [Time when the speech input has ended.
7.6.10 Gesture Recognition
class Gesture Recognition /
<anterfsce X SZenume pa tion
Rol5 _C ommon Component_Status
+ start(): Retumcode t
+ stopl: Retumcode t n——— gzzﬂgi EELI}TYI,N'IZED
+ zuspend(: Retumcode_t ctm e ELE
+ resumell: Retumcode t eoanTE WARMNG
+ component_statusfout status :Component Status): Returncode t Zfanums= ERROR
“Zinterface X
Gesture_Recognition
+ getparameteriout recognizable pesture Set<RalS Identifiers) : Retumoode t
+ pesture recognized(n timestamp DateTime, in gesture ref List<RS ldentifier>] : waoid
|
!
ZfHRIC omponent>> ——ij C<HRIEnEine x>
Gesture_Recoginition_Component |0.¥ Enginel

Figure 26: gesture recognition

Table 7.46: gesture recognition

Description: This is a component for recognizing human gesture. This component notifies ID of the recognized gesture
when the gesture has been recognized.

This functionality is essential for human robot interactions. In the case of noisy environment or far field interaction, the
user may interact with the robot by using gesture.

The meaning of gesture is different among such as countries and situations. Also the recognizable gestures may be
different by gesture recognition algorithms. The result shall be simply provided as gesture ID and the Service Application
shall understand the meaning of the ID by the reference for the ID.

Query Method

get_parameter

Obtains speech recognition paramters.

result

recognizable
gestures

Set<RolS_ldentifier>

Obtains gestures the gesture recognizer
can recognize. The gesture is expressed
as ID and the reference for the ID shall
be provided with each ID.

Event Method

gesture_recognized

Notifies recognized result when the gesture has been

recognized.

result

timestamp

DateTime [W3C-DT]

M

Measurement time.

result

gesture ref

List<RolS_Identifier>

List of gesture recognition results. The
result is provided as gesture types. The
type is specifyed by gesture IDs.
Reference information related to the ID
shall be provided with each ID.

For the gesture recognition algorithm
which can only output one candidate,
returning a list filled with one result is
recommended.

7.6.11 Speech Synthesis

class Speech_Synthesis /

<interface>>
RolS_Common

resume() : Retumcode t
start() : Retumcode_t
stop() : Retumcode t
suspend() : Retumcode_t

+H o+t

component _status(out status :Component_Status) : Retumcode_t

i

<<enumeration>>
Component_Status

UNINITIALIZED
READY

<Kinterface>>
Speech _Synthesis

+ get_parameter{out speech text :String, out SSML text :String, out volume :Integer, out character :RolS Identifier, out synthesizable_languages :Set<String>, out synthesizable_characters :Set<RolS Identifier>) : Retumcode_t
+ set_parameter(in SSML text :String, in speech_text(SSML format) :String, in volume :Integer, in character :RolS_Identifier) : Retumcode_t

A

<<HRI.Component>>

Speech_Synthesis_Gomponent |0.*

il

g]

<<HRI Engine>>
Enginel

Figure 27: speech synthesis

58

Table 7.47: speech synthesis

Description: This is a component for generating synthesized speech. This component acts to generate synthesized speech

by specifying the speech text.

This functionality is essential for human robot interactions. Naturally the robot talks to the user when it communicates

with the user.

Here, we assumes speech synthesis algorithm which can synthesize a voice in multiple characters (e.g. male, female,
robotic). W3C-SSML format is used to specify the language and the prosodic parameters. For speech synthesis algorithm
which cannot specify the prosodic parameters, XML tags in W3C-SSML format shall be skipped.

Command Method

set_parameter

Specifies speech synthesis paramters.

argument . Text to synthesize (in plain text
speech_text String Cc format).
argument String Text to synthesize (in W3C-SSML
SSML text [W3C-SSML] C | format).
argument | volume Integer 0 Volume.
argument | language String[1S0639-1] 0 Langage of the speech.
argument | character RolS_ldentifier 0 Character of the voice.
Query Method
get_parameter Obtains speech synthesis paramters.
result speech_text String c Infc_>rmat|on about specified text (in
plain text format).
result String Information about specified text (in
SSML text [W3C-SSML] C | wac-ssMmL format).
result volume Integer 0 Information about specified volume.
result language String[1S0639-1] 0 Information about specified language.
result character RolS._Identifier 0 Informatl_on about specified character
of the voice.
result synthesizable_langu Set<String> [1S0639-1] 0 Informatlo_n about languages that can
ages be synthesized.
result synthesizable_chara Set<RolS Identifiers 0 Informatlo_n about characters that can
cters - be synthesized.

Condition: These elements shall be selected according to the speech text format.

7.6.12 Reaction

class Reaction /

Kinterface>> <<enumeration>>
RolS Common Component_Status
+ start() : Returncode_t L — > <<enum>> UNINITIALIZED
+ stop() : Retumcode_t <<enum>> READY
+ suspend() : Retumcode_t <<Lenum>> BUSY
+ resume() : Retumcode t <<enum>> WARNING
+ component_status(out status :Component_Status) : Retumcode_t <<enum>> ERROR
Kinterface>>

Reaction

+ set_parameter(in reaction_ref :RolS Identifier) : Retumcode_t
+ get_parameter{out available_reaction :Set<RolS Identifier>, out reaction_ref :RolS Identifier) : Retumcode_t

A

z] 3]

<<HRL.Component>> @ <<HRI Engine>>

Reaction_Component 0.% Enginel

Figure 28: reaction

Table 7.48: reaction

Description: This is a component for executing specified reaction. This component acts to execute specified reaction by
specifying the reaction ID.

This functionality is useful for human robot interactions. Generally it is difficult for the Service Application programmers
to specify the robot reaction in detail since it depends on the hardware architecture. Therefore, this component provides a
simple way to specify the robot reaction. For example, if the Service Application needs to express “yes”/“no” to the user,
the Service Application programmer can execute the reaction only by specifying the reaction ID for “yes”/”no” reaction
without regard for the expression method, such as nodding yes/no or showing a message for yes/no on its display.

The meaning of reaction is different among such as countries. Also the executable reactions may vary from robot to robot.

The reaction shall be simply specified by reaction ID and the Service Application shall understand the meaning of the ID
by the reference for the ID.

Command Method

set_parameter Specifies reaction paramters.

argument Reaction type. The type is specifyed
by reaction ID.

reaction ref RolS_ldentifier M Reference information related to the
ID shall be specified with the each
ID.

Query Method

get_parameter Obtains reaction paramters.

60

result available_reactions Set<RolS_ldentifier> M Obtains reaction types the robot can
execute. The reaction type is
expressed as ID reference
information.
result . - Information about specified reaction
reaction ref RolS_ldentifier M P
- type.
7.6.13 Navigation
class Navigation /
Finterrace)) <<Lenumeration>>
RoIS Common Component_Status

+ start() : Retumcode t | _ _ _ <<enum>> UNINITIALIZED

+ stop() : Retumcode_t = <<enum>> READY

+ suspend() : Returncode_t <Lenum>> BUSY

+ resume() : Retumcode t <<enum>> WARNING

+ component_status(out status :Component_Status) : Retumcode_t <Lenum>> ERROR

interface>>
Navigation
+ set_parameter(in target_position :List<:RLS:Data>, in time_limit :Integer, in routing_policy :String) : Retumcode_t
+ get parameter(out target_position :List<:RLS::Data>, out time_limit :Integer, out routing_policy :String) : Retumcode _t

A

|
1

<<HRIL.Component>>
Navigation_Component |O0.*

5]

<@ <<HRIEngine>>

3]

Enginel

Figure 29: navigation

Table 7.49: navigation

Description: This is a component for commanding navigation toward specified destinations. This component acts to move
to the destination by specifying the position data of the destination. An HRI Engine (typically a robot) may include this
component when the HRI Engine has the ability to move in the physical world.

Navigation function is essential for typical robotic services to specify the robot movement toward the destination. This
component allows Service Applications to command robots to perform navigation without concerning the actual
navigational device. Target position shall be specified as a list of spatial positions. The actual paths to be navigated
between each position and strategies such as for path generation or for obstacle avoidance are left to the component
implementation.

This component shall finish its operation when the robot arrives at the final position.

Command Method

set_parameter

Specifies parameters for navigation.

argument

target_position

List<Data> [RLS]

List of target position data. Each data
entry may contains 1D of the target
position. The position data of the
target position may be included in this
entry, or may be obtained by refering
by the ID. This may also be
accompanied with additional
information such as speed.

argument

time_limit

Integer

Time limit for determining whether it
is impossible to continue the
navigation.

The time shall be specified in
millisecond.

argument

routing_policy

String

Policy for determining the navigation
route. For example, there may be the
routing policies such as “time priority
or “distance priority”

L3

Query Method

get_parameter

Obtains parameters for navigation.

result

target position

List<Data> [RLS]

List of specified target position data.

result

time_limit

Integer

Time limit for determining whether it
is impossible to continue the
navigation.

The time shall be specified in
millisecond.

result

routing_policy

String

Policy for determining the navigation
route. For example, there may be the
routing policies such as “time priority
or “distance priority”

L3

62

7.6.14 Follow

class Follow /

Kinterface>>
RoIS Common

stop()

+ 4+ + o+

start() : Retumcode_t

: Returncode_t

suspend() : Returmncode_t
resume() : Retumcode_t
component_status(out status :Component_Status) : Retumcode_t

- — — => <<enum>> UNINITIALIZED

i

<{<Lenumeration>>
Component_Status

<<enum>> READY
<<Lenum>> BUSY
<<enum>> WARNING
<<Lenum>> ERROR

Kinterface>>
Follow

+ set_parameter(in target_object_ref :RolS_Identifier, in distance :Integer, in time_limit :Integer) : Retumcode_t
+ get_parameter{out target_object_ref :RolS_Identifier, out distance :Integer, out time_limit :Integer) : Retumcode_t

A

|
\

2]

<<HRIL.Component>>
Follow_Component

0.*

5]

<<HRI Engine>>
Enginel

Figure 30: follow

Table 7.50: follow

Description: This is a component for following a specified object. This component acts to follow an object by specifying
the ID of the object. An HRI Engine (typically a robot) may include this component when the HRI Engine has the ability
to move in the physical world.

Follow function is essential for typical robotic services to specify the robot movement for following the target object.

This component shall keep following the target until the stop command is requested although the target is not moving.

Command Method

set_parameter

Specifies parameters for follow.

argument

target object ref

RolS_Identifier

Taget object. The object is specified
by object IDs.

The reference information related to
the ID shall be specified with each
ID.

argument

distance

Integer

Minimum distance between the
target and the robot.

When the robot comes closer than
the limit distance, the robot suspends
following.

The distance shall be specified in
millimeter.

argument

time_limit

Integer

Time limit for determining whether
it is impossible to continue
following.

If this parameter is not specified, the

default value may be used.
The time shall be specified in
milliseconds.
Query Method
get_parameter Obtains parameters for follow.
result target object ref RolS. Identifier Informatl_on about the specified
target object.
result Minimum distance between the
distance Inteder target and the robot.
g The distance shall be specified in
millimeters.
result Time limit for determining whether
it is impossible to continue
time_limit Integer following.
The time shall be specified in
milliseconds.
7.6.15Move
class Move /
] <<enumeration>
Rol& Comron Component_Status
+ start(: Returcode t I— <<enune> UNINITIALIZED
+ stop) : Retumncode t <<enum>> READY
+ susperd(: Returncode_t <<enun> BUSY
+ resumel) : Returncode t <<enun>> WARNING
+ comporert_status(out status Componert_Status) : Returncode <<enun>> ERROR

i

<<irterface>
Move

+ set_parameter(in line :List<Integer>, incurve List<Irt i
4+ get_parameter(odt line :List<Integer>, out curve :List<Integer>, out time :Integer) : Returrcogle t

er>, intime :Irtegen : Returncode t

A

\

<<HRI Comporert>
Move_Component

3]

0.*

3]

<<HRl Ergine>>
Enginel

Figure 31: move

Table 7.51 : move

the physical world.

Description: This is a component for moving based on a specified motion. The motion is simply specified by a line or a
curve. An HRI Engine (typically a robot) may include this component when the HRI Engine has the ability to move in

64

Move function is essential for typical robotic services to specify a little motion for moving over a little from the current

position.

This component shall finish its operation when the specified motion finishes.

Command Method

set_parameter Specifies parameters for move.

argument

line List<Integer> C

Distance and orientation for
specifying the line.

The distance shall be specified in
millimeter and the orientation shall
be specified in degree.

argument

curve List<Integer> C

Radius and direction for specify the
curve.

The radius shall be specified in
millimeter and the direction shall be
specified in degree.

argument
time Integer O

Operating time for the motion.
The time shall be specified in
milliseconds.

Query Method

get_parameter Obtains parameters for move.

result

line List<Integer> C

Specified distance and orientation
for specifying the line.

The distance shall be specified in
millimeter and the orientation shall
be specified in degree.

result

curve List<Integer> C

Specified radius and direction for
specify the curve.

The radius shall be specified in
millimeter and the direction shall be
specified in degree.

result
time Integer O

Specified operating time.
The time shall be specified in
milliseconds.

Condition: These elements shall be selected according to the motion.

7.7 Platform Specific Model

7.7.1 C++ PSM

/ /
/* RolS_HRI.h (for HRI Engine) */
/ /
#include <vector>

#include <string>

namespace RolS_HRI

{

enum ReturnCode_t

{
OK,
ERROR,
BAD_PARAMETER,
UNSUPPORTED,
OUT_OF_RESOURCES,
TIMEOUT

h

typedef std::string RolS_Identifier;
typedef std::vector<RolS_Identifier;> RolS_IdentifierList;
typedef std::string Condition_t;
typedef std::string HRI_Engine_Profile;
typedef std::string CommandUnitSequence;
struct Result {
std::string name;
RolS_ldentifier data_type_ref;
std::string value;
h
struct Parameter {
std::string name;
RolS_ldentifier data_type_ref;
std::string value;
h
struct Argument {
std::string name;
RolS_ldentifier data_type_ref;
std::string value;
h
typedef std::vector<Result> ResultList;
typedef std::vector <Parameter> ParameterList;
typedef std::vector <Argument> ArgumentList;

/* For System Interface */
class SystemlF{
public:
ReturnCode_t connect();
ReturnCode_t disconnect();
ReturnCode_t get_profile(
Condition_t condition,
HRI_Engine_Profile& profile

66

ReturnCode_t get_error_detail(
std::string error_id,
Condition_t condition,
ResultList& results

b

/* For Command Interface */
class CommandIF{

public:

ReturnCode_t search(

Condition_t condition,
RolS_IdentifierList& component_ref_list

);

ReturnCode_t bind(

RolS_Identifier component_ref

);

ReturnCode_t bind_any(

Condition_t condition,
RolS_ldentifier& component_ref

);

ReturnCode_t release(

RolS_ldentifier component_ref

);

ReturnCode_t get_parameter(
RolS_ldentifier component_ref,
ParameterList& parameters

);

ReturnCode_t set_parameter(
RolS_ldentifier component_ref,
ParameterList parameters,
std::string& command_id

);

ReturnCode_t execute(
CommandUnitSequence command_unit_list

);

ReturnCode_t get_command_result(
std::string command_id,
Condition_t condition,
ResultList& results

);

h

/* For Query Interface */
class QuerylF{

public:
ReturnCode_t query(
std::string query_type,
Condition_t condition,
ResultList& results
);
h

/* For Event Interface */
class EventlF{
public:
ReturnCode_t subscribe(

std::string event_type,
Condition_t condition,
std::string& subscribe_id

);

ReturnCode_t unsubscribe(
std::string subscribe_id

);

ReturnCode_t get_event_detail(
std::string event_id,
Condition_t condition,
ResultList& results

/ /
/* RolS_Service.h (for Service Application) */
/ /
#include <vector>

#include <string>

namespace RolS_Service

{

enum Completed_Status

{
OK,
ERROR,
ABORT,
OUT_OF_RESOURCES,
TIMEOUT

h

enum ErrorType

{
ENGINE_INTERNAL_ERROR,
COMPONENT_INTERNAL_ERROR,
COMPONENT_NOT_RESPONDING,
USER_DEFINED_ERROR

h

/* For Service Application Interface */
class ServiceApplicationBase{
public:
void notify_error(
std::string error_id,
ErrorType error_type
);
void completed(
std::string command_id,
Completed_Status status
);
void notify_event(
std::string event_id,
std::string event_type,
std::string subscribe_id,
DateTime expire

/* RolS_Common.h */

/ /
#include <RolS_HRI.h>

using namespace RolS_HRI ;
#include <RolS_Service.h>
using namespace RolS_Service ;

namespace RolS_Common{
enum Component_Status

{
UNINITIALIZED,
READY,
BUSY,
WARNING,
ERROR
h
class Command{
public:
virtual ReturnCode_t start();
virtual ReturnCode_t stop();
virtual ReturnCode_t suspend();
virtual ReturnCode_t resume();
h
class Query{
public:
virtual ReturnCode_t component_status(
Component_Status& status,
);
h
class Event{
h
h

/ /

/* RolS_System_Information.h */

/ /

#include <RolS_Common.h>#include <RLS/Architecture.hpp>
/* http://www.omg.org/spec/RLS/20090601/Architecture.hpp */
namespace System_Information{

class Query {

public:

ReturnCode_t robot_position{
DateTime& timestamp,
RolS_ldentifierList& robot_ref,
std::vector<RoLo::Architecture::Data>& position_data

h

ReturnCode_t engine_status{
Component_Status& status,
DateTime& operatable_time

h

h

/ /
/* RolS_Person_Detection.h */
/ /
#include <RolS_Common.h>
namespace Person_Detection

{
class Command : public RolS_Common::Command{
h
class Query : public RolS_Common::Query{
h
class Event : public RolS_Common::Event{
public:
void person_detected(
DateTime timestamp,
Integer number
);
h
h

/ /

/* RolS_Person_Localization.h */

/ /

#include <RolS_Common.h>

#include <RLS/Architecture.hpp>

/* http://www.omg.org/spec/RLS/20090601/Architecture.hpp */

namespace Person_Localization

{

class Command : public RolS_Common::Command{

ReturnCode_t set_parameter(

Integer detection-threshold,
Integer minimume-interval

h
class Query : public RolS_Common::Query{
ReturnCode_t get_parameter(
Integer& detection-threshold,
Integer& minimume-interval

h
class Event : public RolS_Common::Event{
public:
void person_localized(
DateTime timestamp,
RolS_ldentifierList person_ref,
std::vector<RoLo::Architecture::Data> position_data
);
h
h

/ /
/* RolS_Person_ldentification.h */
/ /
#include <RolS_Common.h>
namespace Person_ldentification

{

70

class Command : public RolS_Common::Command{

h
class Query : public RolS_Common::Query{
h
class Event : public RolS_Common::Event{
public:
void person_identified(
DateTime timestamp,
RolS_ldentifierList person_ref,
);
h
h

/ /
/* RolS_Person_ldentification.h */
/ /
#include <RolS_Common.h>
namespace Person_ldentification

{
class Command : public RolS_Common::Command{
h
class Query : public RolS_Common::Query{
h
class Event : public RolS_Common::Event{
public:
void person_identified(
DateTime timestamp,
RolS_ldentifierList person_ref,
);
h
h

/ /
/* RolS_Face_Detection.h */
/ /
#include <RolS_Common.h>
namespace Face_Detection

{
class Command : public RolS_Common::Command{
h
class Query : public RolS_Common::Query{
h
class Event : public RolS_Common::Event{
public:
void face_detected(
DateTime timestamp,
Integer number
);
h
h

/ /

/* RolS_Face_Localization.h */

/ /

#include <RolS_Common.h>

#include <RLS/Architecture.hpp>

/* http://www.omg.org/spec/RLS/20090601/Architecture.hpp */

namespace Face_Localization
{
class Command : public RolS_Common::Command{
ReturnCode_t set_parameter(
Integer detection-threshold,
integer minimum-interval

h
class Query : public RolS_Common::Query{
ReturnCode_t get_parameter(
Integer& detection-threshold,
Integer& minimume-interval

h
class Event : public RolS_Common::Event{
public:
void face_localized(
DateTime timestamp,
RolS_IdentifierList face_ref,
std::vector<RoLo::Architecture::Data> position_data
);
h
h

/ /
/* RolS_Sound_Detection.h */
/ /
#include <RolS_Common.h>
namespace Sound_Detection

{
class Command : public RolS_Common::Command{
h
class Query : public RolS_Common::Query{
h
class Event : public RolS_Common::Event{
public:
void sound_detected(
DateTime timestamp,
Integer number
);
h
h

/ /

/* RolS_Sound_Localization.h */

/ /

#include <RolS_Common.h>

#include <RLS/Architecture.hpp>

/* http://www.omg.org/spec/RLS/20090601/Architecture.hpp */

namespace Sound_Localization

{

class Command : public RolS_Common::Command{

ReturnCode_t set_parameter(

Integer detection-threshold,
Integer minimume-interval

72

h
class Query : public RolS_Common::Query{
ReturnCode_t get_parameter(
Integer& detection-threshold,
Integer& minimume-interval

h
class Event : public RolS_Common::Event{
public:
void sound_localized(
DateTime timestamp,
RolS_ldentifierList sound_ref,
std::vector<RoLo::Architecture::Data> position_data
);
h
h

/ /

/* RolS_Speech_Recognition.h */

/ /

#include <RolS_Common.h>

namespace Speech_Recognition

{

class Command : public RolS_Common::Command{

ReturnCode_t set_parameter(

std::vector<std::string> languages,
std::string grammer,
std::string rule

);
h
class Query : public RolS_Common::Query{
public:

ReturnCode_t get_parameter(
std::vector<std::string>& recognizable_languages,
std::vector<std::string>& languages,
std::string& grammer,
std::string& rule

);

h
class Event : public RolS_Common::Event{
public:

void speech_recognized(

DateTime timestamp,
vector<std::string> recognized_text

);

void speech_input_started(

DateTime timestamp

);

void speech_input_finished(
DateTime timestamp

);

h
h

/ /
/* RolS_Gesture_Recognition.h */

/ /

#include <RolS_Common.h>

namespace Gesture_Recognition

{

class Command : public RolS_Common::Command{
h

class Query : public RolS_Common::Query{

public:
ReturnCode_t get_parameter(
RolS_IdentifierList& recognizable_gestures
);
h
class Event : public RolS_Common::Event{
public:
void gesture_recognized(
DateTime timestamp,
RolS_IdentifierList gesture_ref
);
h
h

/ /

/* RolS_Speech_Synthesis.h */

/ /

#include <RolS_Common.h>

namespace Speech_Synthesis

{

class Command : public RolS_Common::Command{
public:

ReturnCode_t set_parameter(
std::string SSML_text,
std::string speech_text,
Integer volume,
std::string language,
RolS_ldentifier character

);
h
class Query : public RolS_Common::Query{
public:
ReturnCode_t get_parameter(
std::string& speech_text,
std::string& SSML_text,
Integer& volume,
RolS_ldentifier& character,
vector<std::string>& synthesizable_languages,
RolS_IdentifierList& synthesizable_characters
);
h
class Event : public RolS_Common::Event{
h
h

/ /
/* RolS_Reaction.h */
/ /

74

#include <RolS_Common.h>
namespace Reaction

{
class Command : public RolS_Common::Command{
public:
ReturnCode_t set_parameter(
RolS_ldentifierList reaction_ref
);
h
class Query : public RolS_Common::Query{
public:
ReturnCode_t get_parameter(
RolS_ldentifierList& available_reactions,
RolS_ldentifier& reaction_ref
);
h
class Event : public RolS_Common::Event{
h
h

/ /

/* RolS_Navigation.h */

/ /

#include <RolS_Common.h>

#include <RLS/Architecture.hpp>

/* http://www.omg.org/spec/RLS/20090601/Architecture.hpp */
namespace Navigation

{
class Command : public RolS_Common::Command{
public:
ReturnCode_t set_parameter(
vector<RoLo::Architecture::Data> target_position,
Integer time_limit,
std::string routing_policy
);
h
class Query : public RolS_Common::Query{
public:
ReturnCode_t get_parameter(
vector<RoLo::Architecture::Data>& target_position,
Integeré& time_limit,
std::string& routing_policy
);
h
class Event : public RolS_Common::Event{
h
h

/**********************/

/* RolS_Follow.h */
/**********************/
#include <RolS_Common.h>
namespace Follow
{
class Command : public RolS_Common::Command{
public:
ReturnCode_t set_parameter(

RolS_Identifier target_object_ref,
Integer distance,
Integer time_limit

);
h
class Query : public RolS_Common::Query{
public:
ReturnCode_t get_parameter(
RolS_Identifier& target_object_ref,
Integer& distance,
Integer& time_limit
);
h
class Event : public RolS_Common::Event{
h
h

/*********************/

/* RolS_Move.h */

/*********************/

#include <RolS_Common.h>

namespace Move

{

class Command : public RolS_Common::Command{

public:

ReturnCode_t set_parameter(

List<Integer> line,
List<Integer> curve,

Integer time
);
h
class Query : public RolS_Common::Query{
public:
ReturnCode_t get_parameter(
List<Integer>& line,
List<Integer>& curve,
Integer& time
);
h
class Event : public RolS_Common::Event{
h
h

7.7.2 CORBA PSM

CORBA IDL for this framework is given as follows:

/ /
/* RolS_HRL.idl (for HRI Engine) */
/ /

module RolS_HRI
{

enum ReturnCode_t
{
OK,
ERROR,
BAD_PARAMETER,
UNSUPPORTED,
OUT_OF_RESOURCES,
TIMEOUT
h
typedef String RolS_Identifier;
typedef sequence<RolS_Identifier;> RolS_IdentifierList;
typedef String Condition_t;
typedef String HRI_Engine_Profile;
typedef String CommandUnitSequence;
struct Result {

String name;
RolS_ldentifier data_type_ref;
any value;

h

struct Parameter {
String name;
RolS_Identifier data_type_ref;
any value;

h

struct Argument {
String name;
RolS_Identifier data_type_ref;
any value;

h

typedef sequence<Result> ResultList;
typedef sequence<Parameter> ParameterList;
typedef sequence<Argument> ArgumentList;

/* For System Interface */
interface SystemlF{
ReturnCode_t connect();
ReturnCode_t disconnect();
ReturnCode_t get_profile(
in Condition_t condition,
out HRI_Engine_Profile profile
);
ReturnCode_t get_error_detail(
in String error_id,
in Condition_t condition,
out ResultList results

h

/* For Command Interface */
interface CommandIF{
ReturnCode_t search(
in Condition_t condition,
out RolS_IdentifierList component_ref_list
);
ReturnCode_t bind(
in RolS_ldentifier component_ref

)

ReturnCode_t bind_any(
in Condition_t condition,
out RolS_Identifier component_ref
);
ReturnCode_t release(
in RolS_ldentifier component_ref
);
ReturnCode_t get_parameter(
in RolS_Identifier component_ref,
out ParameterList parameters
);
ReturnCode_t set_parameter(
in RolS_Identifier component_ref,
in ParameterList parameters,
out String command_id
);
ReturnCode_t execute(
in CommandUnitSequence command_unit_list
);
ReturnCode_t get_command_result(
in String command_id,
in Condition_t condition,
out ResultList results

%

/* For Query Interface */
interface QuerylF{
ReturnCode_t query(
in String query_type,
in Condition_t condition,
out ResultList results

b

/* For Event Interface */
interface EventlF{
ReturnCode_t subscribe(
in String event_type,
in Condition_t condition,
out String subscribe_id
);
ReturnCode_t unsubscribe(
in String subscribe_id
);
ReturnCode_t get_event_detail(
in String event_id,
in Condition_t condition,
out ResultList results

/ /
/* RolS_Service.idl (for Service Application) */

78

/ /
module RolS_Service

{

enum Completed_Status

{
OK,
ERROR,
ABORT,
OUT_OF_RESOURCES,
TIMEOUT

h

enum ErrorType

{
ENGINE_INTERNAL_ERROR,
COMPONENT_INTERNAL_ERROR,
COMPONENT_NOT_RESPONDING,
USER_DEFINED_ERROR

h

* For Service Application Interface */
interface ServiceApplicationBase{
void notify_error(
in String error_id,
in ErrorType error_type
);
void completed(
in String command_id,
in Completed_Status status
);
void notify_event(
in String event_id,
in String event_type,
in String subscribe_id,
in DateTime_t expire

/ /

/* RolS_Common.idl */

/ /
module RolS_Common{
enum Component_Status

{
UNINITIALIZED,
READY,
BUSY,
WARNING,
ERROR

}

interface Command{
ReturnCode_t start();
ReturnCode_t stop();
ReturnCode_t suspend();
ReturnCode_t resume();
h

interface Query{

ReturnCode_t component_status(
out Component_Status status

);
h
interface Event{
h
h

/ /
/* RolS_System_Information.idl */
/ /
module System_Information{
interface Query {
ReturnCode_t robot_position{

out DateTime timestamp,

out sequence<RolS_Identifier> robot_ref,

out sequence<RoLo::Architecture::Data> position_data

h

ReturnCode_t engine_status{
out Component_Status status,
out DateTime operatable_time

/ /
/* RolS_Person_Detection.idl */
/ /
module Person_Detection
{
interface Command : RolS_Common::Command{
h
interface Query : RolS_Common::Query{
h
interface Event : RolS_Common::Event{
void person_detected(
in DateTime timestamp,

in Integer number

/ /

/* RolS_Person_Localization.idl */

/ /

module Person_Localization

{

interface Command : RolS_Common::Command{

ReturnCode_t set_parameter(

in Integer detection_threshold,
in Integer minimum_interval

);

h

interface Query : RolS_Common::Query{
ReturnCode_t get_parameter(

80

out Integer detection_threshold,
out Integer minimum_interval
);
h
interface Event : RolS_Common::Event{
void person_localized(
in DateTime timestamp,
in RolS_ldentifierList person_ref,
in sequence<RoLo::Architecture::Data> position_data

/ /
/* RolS_Person_ldentification.idl */
/ /
module Person_ldentification
{
interface Command : RolS_Common::Command{
h
interface Query : RolS_Common::Query{
h
interface Event : public RolS_Common::Event{
void person_identified(
in DateTime timestamp,
in RolS_ldentifierList person_ref,

/ /

/* RolS_Face_Detection.idl */

/ /

module Face_Detection

{

interface Command : RolS_Common::Command{

h

interface Query : RolS_Common::Query{

h

interface Event : RolS_Common::Event{

void face_detected(

in DateTime timestamp,
in Integer number

/ /

/* RolS_Face_Localization.idl */

/ /

module Face_Localization

{

interface Command : RolS_Common::Command{

ReturnCode_t set_parameter(

in Integer detection_threshold,
in Integer minimum_interval

h
interface Query : RolS_Common::Query{
ReturnCode_t get_parameter(
out Integer detection_threshold,
out Integer minimum_interval
);
h
interface Event : RolS_Common::Event{
void face_localized(
in DateTime timestamp,
in RolS_ldentifierList face_ref,
in sequence<RoLo::Architecture::Data> position_data

/ /

/* RolS_Sound_Detection.idl */

/ /

module Sound_Detection

{

interface Command : RolS_Common::Command{

h

interface Query : RolS_Common::Query{

h

interface Event : RolS_Common::Event{

void sound_detected(

in DateTime timestamp,
in Integer number

/ /

/* RolS_Sound_Localization.idl */

/ /

module Sound_Localization

{

interface Command : RolS_Common::Command{

ReturnCode_t set_parameter(

in Integer detection_threshold,
in Integer minimum_interval

);
h
interface Query : RolS_Common::Query{
ReturnCode_t get_parameter(
out Integer detection_threshold,
out Integer minimum_interval
);
h
interface Event : RolS_Common::Event{
void sound_localized(
in DateTime timestamp,
in RolS_ldentifierList sound_ref,
in sequencer<RolLo::Architecture;:Data> position_data

/ /

/* RolS_Speech_Recognition.idl */

/ /

module Speech_Recognition

{

interface Command : RolS_Common::Command{

ReturnCode_t set_parameter(

in sequence<String> languages,
in String grammer,
in String rule

);
h
interface Query : RolS_Common::Query{
ReturnCode_t get_parameter(
out sequence<String> recognizable_languages,
out sequence<String> languages,
out String grammer,
out String rule
);
h
interface Event : RolS_Common::Event{
void speech_recognized(
in DateTime timestamp,
in sequence<String> recognized_text
);
void speech_input_started(
in DateTime timestamp
);
void speech_input_finished(
in DateTime timestamp

/ /
/* RolS_Gesture_Recognition.idl */
/ /
module Gesture_Recognition
{
interface Command : RolS_Common::Command{
h
interface Query : RolS_Common::Query{

ReturnCode_t get_parameter(

out RolS_IdentifierList recognizable_gestures

);
h
interface Event : RolS_Common::Event{
void gesture_recognized(
in DateTime timestamp,
in RolS_IdentifierList gesture_ref

/ /
/* RolS_Speech_Synthesis.idl */
/ /
module Speech_Synthesis
{
interface Command : RolS_Common::Command{
ReturnCode_t set_parameter(
in String speech_text,
in String SSML_text,
in Integer volume,
in String language,
in RolS_ldentifier character

);
h
interface Query : RolS_Common::Query{
ReturnCode_t get_parameter(
out String speech_text,
out String SSML_text,
out Integer volume,
out String language,
out RolS_Identifier character,
out sequence<String> synthesizable_languages,
out sequence<RolS_Identifier> synthesizable_characters

);
h
interface Event : RolS_Common::Event{
h
h

/ /
/* RolS_Reaction.idl */
/ /
module Reaction
{
interface Command : RolS_Common::Command{
ReturnCode_t set_parameter(
in RolS_ldentifierList reaction_ref

);
h
interface Query : RolS_Common::Query{
ReturnCode_t get_parameter(
out RolS_IdentifierList available_reactions,
out RolS_Identifier reaction_ref

);
h
interface Event : RolS_Common::Event{
h
h

/ /
/* RolS_Navigation.idl */
/ /
module Navigation

{

84

interface Command : RolS_Common::Command{
ReturnCode_t set_parameter(
in sequence target_position,
in Integer time_limit,
in String routing_policy
);
h
interface Query : RolS_Common::Query{
ReturnCode_t get_parameter(
out sequence<RoLo::Architecture::Data> target_position,
out Integer time_limit,
out String routing_policy

);
h
interface Event : RolS_Common::Event{
h
h
/ /
/* RolS_Follow.idl */
/ /
module Follow
{

interface Command : RolS_Common::Command{
ReturnCode_t set_parameter(
in RolS_ldentifier target_object_ref,
in Integer distance,
lin nteger time_limit
);
h
interface Query : RolS_Common::Query{
ReturnCode_t get_parameter(
out RolS_Identifier target_object_ref,
out Integer distance,
out Integer time_limit

h

/**********************/

/* RolS_Move.idl */
/**********************/
module Move
{
interface Command : RolS_Common::Command{
ReturnCode_t set_parameter(
in sequence<Integer> line,
in sequence<Integer> curve,
in Integer time
);
h
interface Query : RolS_Common::Query{
ReturnCode_t get_parameter(
out sequence<Integer> line,
out sequence<integer> curve,
out Integer time

interface Event : RolS_Common::Event{
k
k

7.7.3 XML PSM

XML schema for this framework is given as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:rois="http://www.omg.org/rois/201206"
xmins:gml="http://www.opengis.net/gml/3.2"
targetNamespace="http://www.omg.org/rois/201206"
elementFormDefault="qualified" attributeFormDefault="qualified">

<xsd:import namespace="http://www.opengis.net/gml/3.2" schemalocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd "/>

<l-- Profile -->

<xsd:complexType name="RolSIdentifierType">
<xsd:attribute name="authority" type="xsd:string" use="optional"/>
<xsd:attribute name="code" type="xsd:string" use="required"/>
<xsd:attribute name="codebook_ref" type="xsd:string" use="optional"/>
<xsd:attribute name="version" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:element name="HRIEngineProfile" type="rois:HRIEngineProfileType"/>
<xsd:complexType name="HRIEngineProfileType">
<xsd:complexContent>
<xsd:extension base="gml:ldentifiedObjectType">
<xsd:sequence>
<xsd:element name="SubProfile" type="rois:HRIEngineProfileType" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="HRIComponent" type="xsd:ID" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element ref="rois:ParameterProfile" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="HRIComponentProfile" type="rois:HRIComponentProfileType"/>
<xsd:complexType name="HRIComponentProfileType">
<xsd:complexContent>
<xsd:extension base="gml:ldentifiedObjectType">
<xsd:sequence>
<xsd:element name="SubComponentProfile" type="xsd:ID" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="MessageProfile" type="rois:MessageProfileType" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element ref="rois:ParameterProfile" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="ParameterProfile" type="rois:ParameterProfileType"/>
<xsd:complexType nhame="ParameterProfileType">

86

<xsd:sequence>
<xsd:element name="data_type_ref" type="rois:RolSldentifierType" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="default_value" type="xsd:string" use="optional"/>
<xsd:attribute name="description" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="MessageProfile" type="rois:MessageProfileType"/>
<xsd:complexType name="MessageProfileType">
<xsd:sequence>
<xsd:element name="Results" type="rois:ParameterProfileType" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:element name="EventMessageProfile" type="rois:EventMessageProfileType" substitutionGroup="rois:MessageProfile"/>
<xsd:complexType name="EventMessageProfileType">
<xsd:complexContent>
<xsd:extension base="rois:MessageProfileType"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="QueryMessageProfile" type="rois:QueryMessageProfileType" substitutionGroup="rois:MessageProfile"/>
<xsd:complexType name="QueryMessageProfileType">
<xsd:complexContent>
<xsd:extension base="rois:MessageProfileType"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="CommandMessageProfile" type="rois:CommandMessageProfileType" substitutionGroup="rois:MessageProfile"/>
<xsd:complexType name="CommandMessageProfileType">
<xsd:complexContent>
<xsd:extension base="rois:MessageProfileType">
<xsd:sequence>
<xsd:element name="Arguments" type="rois:ParameterProfileType" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="timeout" type="xsd:integer" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<!-- Data Structure -->
<xsd:element name="Parameter" type="rois:ParameterType"/>
<xsd:complexType name="ParameterType">
<xsd:sequence>
<xsd:element name="data_type_ref" type="rois:RolSldentifierType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="value" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:element name="ArgumentList" type="rois:ArgumentListType"/>
<xsd:complexType name="ArgumentListType">
<xsd:sequence>
<xsd:element name="parameter" type="rois:ParameterType" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:element name="CommandUnitSequence" type="rois:CommandUnitSequenceType"/>
<xsd:complexType name="CommandUnitSequenceType">

<xsd:sequence>

<xsd:element name="command_unit_list" type="rois:CommandBaseType" minOccurs="1" maxOccurs="unbounded"/></xsd:sequence>
</xsd:complexType>

<xsd:element name="CommandBase" type="rois:CommandBaseType" abstract="true"/>
<xsd:complexType name="CommandBaseType">

<xsd:attribute name="delay_time" type="xsd:integer" use="optional"/>
</xsd:complexType>

<xsd:element name="CommandMessage" type="rois:CommandMessageType" substitutionGroup="rois:CommandBase" />
<xsd:complexType name="CommandMessageType">
<xsd:complexContent>
<xsd:extension base="rois:CommandBaseType">
<xsd:sequence>
<xsd:element name="component_ref" type="rois:RolSIdentifierType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="arguments" type="rois:ArgumentListType" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="command_id" type="xsd:string" use="required"/>
<xsd:attribute name="command_type" type="xsd:string" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="ConcurrentCommands" type="rois:ConcurrentCommandsType" substitutionGroup="rois:CommandBase" />
<xsd:complexType name="ConcurrentCommandsType">
<xsd:complexContent>
<xsd:extension base="rois:CommandBaseType">
<xsd:sequence>
<xsd:element name="command_list” type="rois:CommandMessageType” maxOccurs="unbounded” />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Branch" type="rois:BranchType" />
<xsd:complexType name="BranchType">
<xsd:sequence>
<xsd:element name="command_list” type="rois:CommandMessageType” maxOccurs="unbounded” />
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

88

Part 11

Annex A Examples of Profile in XML
(informative)

The following shows examples of describing each type of profile in XML.

A.1 Parameter Profile

This is an example of a Parameter Profile for a parameter described in XML.

<rois:ParameterProfile rois:description="Maximum detectable number of person” rois:default_value="10"
rois:name="max_number" >

<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::Integer"/>

</rois:ParameterProfile>

This Parameter Profile defines the maximum detectable number of persons as a parameter in the person detection function.
This parameter is defined as a parameter exchanged by RolS interface method, such as the argument parameter for
‘set_parameter()’ and the result parameter for ‘get parameter()’.

The parameter name is defined as ‘max_number’ in the attribute ‘rois:name’ of the <rois:ParamerProfile> tag, and a
description of this parameter is given in the attribute ‘rois:description’. In addition, when a default value for the parameter is
specified, the value can be specified using the attribute ‘rois:default_value’ in the <rois:ParameterProfile> tag. Data type of
the parameter is specified using the <rois:data_type_ref> tag within the <rois:ParameterProfile> tag. Here, the data type of
‘max_number’ is defined as ‘urn:x-rois:def:DataType: ATR::Integer’in the attribute ‘rois:code’ of the <rois:data_type ref>
tag.

Note that ‘data_type ref” is an ID used for referencing a separately defined data type. Here, for example,
‘urn:x-rois:def:DataType:ATR::Integer’ in the data type list is defined as integer type.

A.2 Message Profile

A.2.1 Command Message Profile

This is an example of a Message Profile for a message used in the Command Interface described in XML.

<rois:MessageProfile xsi:type="rois:CommandMessageProfileType” rois:name="change_speech_speed">
<rois: Arguments rois:description="utterance speed" rois:name="speed">
<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::Integer"/>
</rois: Arguments>

</rois:MessageProfile>

This Message Profile defines a command message for change rate of speech in the speech synthesis component.

Message Profile is defined using <rois:MessageProfile> . When the message is used in the Command Interface, the type of
the message is specified as ‘rois:CommandMessageProfileType’ in the attribute ‘xsi:type’ of the <rois:MessageProfile> tag.

The message name is defined as ‘change speech speed’ in the ‘rois:name’ attribute of the <rois:MessageProfile> tag. In a
Command Message Profile, an argument parameter for a command message is defined using a <rois:Arguments> tag within
the <rois:CommandMessageProfile> tag. The description form of <rois:Arguments> follows the Parameter Profile.

Here, an integer parameter is defined as the argument parameter when issuing the command message. The parameter name is
defined as “speed” in the attribute ‘rois:name’ of the <rois:Arguments> tag, and a description of this parameter is given in the
attribute ‘rois:description’. In addition, the <rois:data_type ref>tag within the <rois: Arguments> tag defines the data type as
‘urn:x-rois:def:DataType:ATR::Integer’.

A.2.2 Event Message Profile

This is an example of a Message Profile for a message used in the Event Interface described in XML.

<rois:MessageProfile xsi:type="rois:EventMessageProfileType” rois:name="person_detected" >
<rois: Results rois:name="timestamp">
<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::DateTime"/>
</rois: Results>
<rois: Results rois:name="number">
<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::Integer"/>
</rois: Results>

</rois:MessageProfile>

This Message Profile defines an event message notifying that a person has been detected in the person detection component.

Message Profile is defined using <rois:MessageProfile> . When the message is used in the Event Interface, the type of the
message is specified as ‘rois:EventMessageProfileType’ in the attribute ‘xsi:type’ of the <rois:MessageProfile> tag.

The message name is defined as ‘person_detected’ in the attribute ‘rois:name’ of the <rois:MessageProfile> tag. In an event
message, a result parameter used in ‘get_event detail()’ performed in conjunction with event notification is defined using a
<Results> tag within the < rois:MessageProfile > tag. The description form of <rois:Results> follows the Parameter Profile.

Two parameters are defined here for the result parameters. Each definition uses the attribute ‘rois:name’ of the <rois:Results>
tag and the <rois:data_type_ref> tag within the <rois:Results> tag for defining the result parameter name and the data type,
respectively. Specifically, the data type indicating detection time is defined as ‘urn:x-rois:def:DataType:ATR::DateTime’ for
the result parameter ‘timestamp’ and that indicating the number of the detected person is defined as
‘urn:x-rois:def:DataType:ATR::Integer’ for the result parameter ‘number’.

Note that data_type_ref is an ID used for referencing a separately defined data type. Here, for example,
‘urn:x-rois:def:DataType:ATR::DateTime’ in the data type list is defined as DateTime type.

A.2.3 Query Message Profile

This is an example of a Message Profile for a message used in the Query Interface described in XML.

<rois:MessageProfile xsi:type="rois:QueryMessageProfileType” rois:name="engine_status">
<rois: Results rois:name="status">
<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::Component_Status"/>
</rois: Results>

<rois: Results rois:name="operable_time">

90

<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::DateTime"/>
</rois: Results>

</rois:MessageProfile>

This Message Profile defines a basic message for performing a query on HRI Engine status.

Message Profile is defined using <rois:MessageProfile> . When the message is used in the Query Interface, the type of the
message is specified as ‘rois:QueryMessageProfileType’ in the attribute ‘xsi:type’ of the <rois:MessageProfile> tag.

The message name is defined as ‘engine_status’ in the attribute ‘rois:name’ of the <rois:MessageProfile> tag. In a Query
Message Profile, a result parameter used in ‘query()’ is defined using the <rois:Results> tag within the <rois:MessageProfile>
tag. The description form of <rois:Results> follows the Parameter Profile.

Two result parameters are defined in this profile, i.e., the status and the operable time of the HRI Engine. The names of these
result parameters are defined using the attribute ‘rois:name’ of <rois:Results> tag and <rois:data_type ref> tag within the
<rois:Results> tag, respectively. The data type for these result parameters are defined as
‘urn:x-rois:def:DataType:ATR::Component Status’ and ‘urn:x-rois:def:DataType:ATR::DateTime’ by using
<rois:data_type ref> tag.

Note that data_type_ref is an ID used for referencing a separately defined data type. In this case,
‘urn:x-rois:def:DataType:ATR::Component Status’ in the data type list is defined as Component_Status type.

A.3 HRI Component Profile

This is an example of an HRI Component Profile described in XML.

<rois:HRIComponentProfile >
<gml:identifier>urn:x-rois:def:HRIComponent:ATR::PersonDetection</gml:identifier>

<gml:name>person_detection</gml:name>

<rois:MessageProfile xsi:type="rois:CommandMessageProfileType" rois:name="start"/>
<rois:MessageProfile xsi:type="rois:CommandMessageProfileType" rois:name="stop"/>
<rois:MessageProfile xsi:type="rois:CommandMessageProfileType" rois:name="suspend"/>

<rois:MessageProfile xsi:type="rois:CommandMessageProfileType" rois:name="resume"/>

<rois:MessageProfile xsi:type="rois:QueryMessageProfileType" rois:name="component_status">
<rois: Results rois:name="status">
<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::Component_Status"/>
</rois: Results>

</rois:MessageProfile>

<rois:MessageProfile xsi:type="rois:EventMessageProfileType" rois:name="person_detected">
<rois: Results rois:name="timestamp">
<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::DateTime"/>

</rois: Results >

<rois: Results rois:name="number">
<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::Integer"/>
</rois: Results>

</rois:MessageProfile>

<rois:ParameterProfile rois:description="Maximum detectable number of person" rois:default_value="10"
rois:name="max_number">

<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::Integer"/>
</rois:ParameterProfile>

</rois:HRIComponentProfile>

This profile defines, in particular, a list of messages belonging to the person detection function as an example of an HRI
Component. The HRI Component name is defined as ‘person_detection’ and the HRI Component ID

as "urn:x-rois:def:HRIComponent:ATR::PersonDetection’ in the <gml:name> tag and the <gml:identifier> tag, respectively,
within the <rois:HRIComponentProfile> tag. The messages and parameters that can be used by the HRI Component are
defined using the <rois:MessageProfile> tag and <rois:ParameterProfile> tag, respectively, within the
<rois:HRIComponentProfile> tag. Definition of a message by the <rois:MessageProfile> tag and definition of a parameter by
the <rois:ParameterProfile> tag follow the definition of the Message Profile and the Parameter Profile, respectively. Here, the
person_detection HRI Component is defined as having four command messages (start, stop, pause, and resume), one query
messages (component_status), and one event message (person_detected) for a total of six messages. It is also defined as
having one parameter (max_number) which is exchanged by ‘set parameter()’ and ‘get parameter()’ method.

Furthermore, when defining an HRI Component that adds original messages and parameters to those belonging to this
person_detection HRI Component, the HRI Component Profile can be defined as shown by the following example.

<rois:HRIComponentProfile>
<gml:identifier>urn:x-rois:def:HRIComponent:ATR::PersonMonitor</gml:identifier>

<gml:name>person_monitor</gml:name>

<rois:MessageProfile xsi:type="rois:EventMessageProfileType" rois:name="person_disappeared"/>

</rois:HRIComponentProfile>

This HRI Component Profile defines an HRI Component called ‘person_monitor.” This HRI Component adds to the
messages of the person_detection HRI Component by also having an event message called “person_disappeared” that sends a
notification advising that a person can no longer be detected. In this case, the person_detection HRI Component can be
included as a sub HRI Component Profile so that the same message definitions can be omitted. A sub HRI Component Profile
is included by specifying the ID of that HRI Component Profile using the <rois:SubComponentProfile > tag within the
<rois:HRIComponentProfile> tag.

A.4 HRI Engine Profile

This is an example of an HRI Engine Profile described in XML.
92

<rois:HRIEngineProfile>
<gml:identifier>urn:x-rois:def:HRIEngine:ATR::MainHRI</gml:identifier>
<gml:name>MainHRI</gml:name>
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<rois:HRIComponent>urn:x-rois:def:HRIComponent:ATR::PersonDetection</rois:HRIComponent>
<rois:HRIComponent>urn:x-rois:def:HRIComponent:ATR::Personldentification</rois:HRIComponent>

</rois:HRIEngineProfile>

<rois:HRIComponentProfile>
<gml:identifier>urn:x-rois:def:HRIComponent:ATR::PersonDetection</gml:identifier>
<gml:name>person_detection</gml:name>
<rois:MessageProfile xsi:type="rois:CommandMessageProfileType" rois:name="start"/>

</rois:HRIComponentProfile>

<rois:HRIComponentProfile>
<gml:identifier>urn:x-rois:def:HRIComponent:ATR::Personldentification</gml:identifier>
<gml:name>person_ identification </gml:name>
<rois:MessageProfile xsi:type="rois:CommandMessageProfileType" rois:name="start"/>

</rois:HRIComponentProfile>

This HRI Engine Profile defines an HRI Engine called ‘MainHRI” having two HRI Components: ‘person_detection” and
‘person_identification’. The profile name is defined as ‘MainHRI’ and the HRI Engine Profile ID as
“urn:x-rois:def:HRIEngine:ATR::MainHRI” in the <gml:name> tag and the <gml:identifier> tag, respectively, within the
<rois:HRIEngineProfile> tag. The HRI Component Profiles in this HRI Engine are defined by specifying the 1D of that HRI
Component Profile by the <rois:HRIComponent> within the <rois:HRIEngineProfile> tag.

A system consisting of more than one HRI Engine can be defined in the following way.

<rois:HRIEngineProfile >

<gml:identifier>urn:x-rois:def:HRIEngine:ATR::MainHRI</gml:identifier>

<gml:name>MainHRI</gml:name>

<rois:SubProfile>
<gml:identifier>urn:x-rois:def:HRIEngine:ATR::SubHRI01</gml:identifier>
<gml:name>SubHRI01</gml:name>
<rois:HRIComponent>urn:x-rois:def:HRIComponent:ATR::PersonDetection</rois:HRIComponent>
<rois:HRIComponent>urn:x-rois:def:HRIComponent:ATR::Personldentification</rois:HRIComponent>

</rois:SubProfile>

<rois:SubProfile>
<gml:identifier>urn:x-rois:def:HRIEngine:ATR::SubHRI02</gml:identifier>
<gml:name>SubHRI02</gml:name>
<rois:HRIComponent>urn:x-rois:def:HRIComponent:ATR::PersonDetection</rois:HRIComponent>
<rois:HRIComponent>urn:x-rois:def:HRIComponent:ATR::Personldentification</rois:HRIComponent>
<rois:HRIComponent>urn:x-rois:def:HRIComponent:ATR::FaceDetection</rois:HRIComponent>
</rois:SubProfile>

</rois:HRIEngineProfile>

The above example defines a system called “mainHRI” that includes two HRI Engines ‘SubHRIO1’ having two HRI
Components (person detection and person identification) and ‘SubHRI02’ having three HRI Components (person detection,
person identification, and face detection). The HRI Engine Profile of ‘MainHRI’ includes the HRI Engine Profile of ‘HRIO1’
and that of ‘HRIO2’ as sub profiles by specifying the IDs of the corresponding HRI Component Profiles using the
<rois:SubProfile> tag within the <rois:HRIEngineProfile> tag.

94

Annex B Examples of CommandUnitSequence in XML
(informative)

B.1 CommandUnitSequence

This is an example of a CommandUnitSequence description for execute() in the command interface.

<rois:CommandUnitSequence>
<rois:command_unit_list xsi:type="rois:CommandMessageType" rois:command_type="A"/>
<rois:command_unit_list xsi:type="rois:CommandMessageType" rois:command_type="B"/>
<rois:command_unit_list xsi:type="rois:ConcurrentCommandsType">
<rois:branch_list xsi:type="rois:BranchType"> [* Parallel Command Branch 1 */
<rois:command_list xsi:type="rois:CommandMessageType" rois:command_type="C"/>
<rois:command_list xsi:type="rois:CommandMessageType" rois:command_type="D"/>
</rois:branch_list>
<rois:branch_list xsi:type="rois:BranchType"> [* Parallel Command Branch 2 */
<rois:command_list xsi:type="rois:CommandMessageType" rois:command_type="E"/>
</rois:branch_list>
</rois:command_unit_list>
<rois:command_unit_list xsi:type="rois:CommandMessageType" rois:command_type="F"/>

</rois:CommandUnitSequence>

CommandUnitSequence specifies a procedure for operating several command messages using a
<rois:CommandUnitSequence>tag. A CommandUnitSequence is composed of a series of command unit lists and each
command unit list is specified as either ‘rois:CommandMessageType’ or ‘rois:ConcurrentCommandType.’

When the command unit list specifies a single command message, ‘xsi:type’ in the <rois:command unit_list> is specified as
‘rois:CommandMessageType,” while the command unit list specifies a parallel operation of several command lists, the

Command A
Command B
i |
Command C v
\], Command E
Command D
|

v

Command F

Figure B.1: Structure of CommandUnitSequence example.

attribute ‘xsi:type’ is specified as ‘rois:ConcurrentCommandsType.’

ConcurrentCommands is composed of multiple Branches, whose attribute ‘xsi:type’ is specified as ‘rois:BranchType,’ and all
the Branches are executed in parallel. In each Branch, several elements of ‘rois:CommandMessageType’ are listed using
<rois:command_list> tag to be executed sequentially. A command unit list following the ConcurrentCommands should wait
until all commands in all Branches in the ConcurrentCommands are completed.

This example specifies a procedure for operating six command messages, i.e., ‘A’ to ‘F,’ illustrated in Figure . In this
procedure, the attribute ‘xsi:type’ of the first two <rois:command_unit_list> tags are specified as
‘rois:CommandMessageType’, that is, two commands ‘A’ and ‘B’ are sequentially operated..

The next <rois:command_unit list> is specified as ‘rois:ConcurrentCommandsType’ with the attribute ‘xsi:type,’ that is, it
contains parallel operation branches in it. Two <rois:branch_list> tags, i.e., ‘Parallel Command Branch 1’ and ‘Parallel
Command Branch 2’, are operated in parallel. In the former element of <rois:branch_list>, two command messages, i.e.,
command message ‘C’ and ‘D’, are specified using <rois:command _list xsi:type="rois:CommandMessageType”> tags so that
the command message C and D are operated sequentially. The latter element of <rois:branch_list> contains command
message ‘E,’ that is executed independent from the former branch.

The last occurrence of <rois:command unit list>, that is specified as ‘rois:CommandMessageType’ with ‘xsi:type’ attribute,
is executed after execution of both branches.

B.2 CommandMessage

This is an example of a CommandMessage description for the CommandUnitList.

<rois:command_list xsi:type="rois:CommandMessageType” rois:command_type="set_parameter" rois:command_id="" >
<rois:component_ref rois:version="0.1" rois:codebook_ref="urn:x-rois:def:DataType:ATR::ComponentType"
rois:code="speech_synthesis"/>
<rois:arguments>
<rois:parameter rois:name="speech_text">
<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::String"/>
<rois:value>hello</rois:value>
</rois:parameter>
<rois:parameter rois:name="volume">
<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::Integer"/>
<rois:value>10</rois:value>
</rois:parameter>
<rois:parameter rois:name="language">
<rois:data_type_ref rois:code="urn:x-rois:def:DataType:ATR::Integer"/>
<rois:value>en</rois:value>
</rois:parameter>
</rois:arguments>

</rois:command_list>

A command message is defined wusing a <rois:command list> tag with the attribute ‘xsi:type’ of
‘rois:CommandMessageType’. This example defines a “set_parameter” message for the speech synthesis component. The
96

command method of the HRI Component is specified as “set parameter” in the <rois:command type> tag. The
<rois:component_ref> within <rois:command_list> tag defines the reference ID of the HRI Component as
“speech_synthesis”. Note that the reference ID is obtained when the Service Application bind the HRI Component. The
reference ID is expressed using RolS_Identifier, If there is a reference codebook for the reference IDs, the codebook and its
version are specified in the attribute ‘rois:codebook and ‘rois:version’ in the <rois:component ref> tag. Here, the codebook
and the version are specified as ‘urn:x-rois:def:DataType:ATR::ComponentType’ and ‘0.1°, respectively.

The HRI Engine set a command ID of this message in the attribute ‘rois:command_id’ of the <rois:command_list> tag when
the HRI Engine receives this message. Therefore the Service Application does not need to define any value in this tag.

Three argument parameters are specified for this command message. These arguments are defined using the <rois:parameter>
tags within the <rois:arguments> tag. The name of each parameter is specified in the attribute ‘rois:name’ of the
<rois:parameter> tag and the value is specified using <rois:value> tag within the <rois:parameter> tag. Here, the parameters
‘speech text,” ‘volume’ and ‘language’ are specified as ‘hello,” ‘10’ and ‘en’, respectively. Note that, data type is expressed in
1ISO639-1 and ‘en’ means English.

Annex C Examples of User-Defined HRI Component

(informative)

C.1 Speech Recognition (W3C-SRGS)

TableC.1: speech_recognition(W3C-SRGS)

Description: Recognize speech input. Here, we assumes speech recognition algorithm which is configurable by a
descriptive grammar (W3C-SRGS). Mandatory requirement for the speech recognition component is to return N-best
result. For the speech recognition algorithm which can only output one candidate, returning a list filled with 1-best result is

recommended. String of recognized text can contain either a word or a sentence.

Command Method

set_parameter

Specifies speech recognition paramters.

argument | languages

Set<String> [1S0639-1]

Specifies languages the
speech recognizer will
recognize.

argument | position_of sound

Data [RLS]

Specifies direction of
sound source the speech
recognizer listen to.

argument grammar

String [W3C-anyURI]

Specifies URI of grammar
file in W3C-SRGS format.

argument | active_rule

RuleReference [W3C-SRGS]

Specifies active rule in the
grammar.

Query Method

get_parameter

Obtains speech recognition paramters.

result

languages

Set<String> [1SO639-1]

Information about
languages the recognizer is
recognizing.

result

position_of sound

Data [RLS]

Information about direction
of sound source the
recognizer is listening to.

result

grammar

String [W3C-anyURI]

Information about speech
recognition grammar.

result

active_rule

RuleReference [W3C-SRGS]

Information about active
rule in the grammar.

result

recognizable_languages Set<String> [1SO639-1]

Information about
languages the recognizer
can recognize.

Event Method

speech_recognized

Notifies speech recognition has completed.

result timestamp DateTime [W3C-DT] I;?sovr\:]hpelgtg:je recognition
result timestamp_speech_start DateTime [W3C-DT] ;I;]';Tﬁ hwai;e;;:ltijpeech

98

result

timestamp_speech_end DateTime [W3C-DT] 0]

Time when the speech
input has ended.

result nbest

Speech recognition result

NbestType M in N-best format.

result lattice

Speech recognition result

LatticeType 0 in lattice format.

result

position_of sound Data [RLS] o]

Direction and error
distribution of sound
source of the recognized
speech.

speech_input_started

Notifies the recognizer has detected start of speech input.

speech_input_finished

Notifies the recognizer has detected end of speech input.

speech_recognition_started

Notifies the recognizer has started the recognition process.

speech_recognition_finished

Notifies the recognizer has finished the recognition process.

Table C.2: NBestType

Description: Data type for speech recognition result in N-best format.

Derived From: None

Attributes

nbest

List<String, String [1SO639-1], Error [RLS]> M N ord

Tuple of recognized string,
language, certainty.

Table C.3: LatticeType

Description: Data type for speech recognition result in lattice format.

Derived From: None

Attributes

lattice List<String, String [1SO639-1], RS_ldentifier Tuple of recognized string,
[1ISO19115], RS_Identifier [ISO19115], M N ord language, id, previous id,
RS _Identifier [ISO19115], Error [RLS]> next id, certainty.

C.2 Person Gender Identification

Table C.4: person gender identification

Description: This is a component for identifying person gender. This component notifies person gender code of the detected
people when the code has been identified.

This functionality may be effective for performing various robotic services since often the service needs to switch its content

on the basis of person gender.

Event Method

person_gender_identified

Notifies gender code of people when the gender has been identified.

result

timestamp

DateTime [W3C-DT]

Measurement time.

result

person ref

List<RolS_Identifier>

List of detected person IDs.
Reference information related to the
ID may be provided with the each
ID.

By refering the reference for the IDs,
the Service Application can
understand the relationship between
the obtained IDs and the other IDs
that are obtained from another
component.

result

person gender code List<Integer[1S05218]>

List of detected person gender code.

C.3 Person Age Recognition

Table C.5: person age recognition

Description: This is a component for recognizing person age. This component notifies person age of the detected people
when the age has been recognized. There may be a range of the recognized age. Therefore the recognized age shall be
described by lower age limit and upper age limit.

This functionality may be effective for performing various robotic services since the service often needs to switch its content
on the basis of person age.

Event Method

person_age_recognized

Notifies age of people when the age has been recognized.

result

timestamp

DateTime [W3C-DT]

M

Measurement time.

result

person ref

List<RolS_Identifier>

List of detected person IDs.
Reference information related to the
ID may be provided with the each
ID.

By refering the reference for the IDs,
the Service Application can
understand the relationship between
the obtained IDs and the other IDs
that are obtained from another
component.

result

lower age limit

List<Integer>

<

List of upper limit of recognized age.

result

upper age limit

List<Integer>

List of lower limit of recognized age.

100

Annex D Examples of Data Type
(informative)

D.1 Reaction Type

Table D.1: Example of Reaction_Type

Gesture ID Name Description

1 nod the head Move the head downward and return to the original position

2 angle the head Move the head to the side and return to the original position

3 shake the head Move the head right and left

4 look right Turn the head to the right hand side

5 look left Turn the head to the left hand side

6 look up Turn the head upward

7 look down Turn the head downward

8 drop the head Turn the head obliquely downward

9 bow the head Turn the head slightly downward

10 shake hands Shake hands by the right hand and look at the person’s face

11 spread hands slightly Spread both hands slightly

12 raise hands and spread Spread both forearms horizontally

13 spread hands Spread both hands horizontally at shoulders’ height

14 clap hands Clap hands several times

15 clap hands rhythmically Clap hands rhythmically

16 point by the right hand Point to a direction by the right hand, with turning the palm up and stretching the
arm

17 point by the left hand (Same as above, but using the left hand)

18 indicate a monitor display | Turn the head to a monitor display and point to the display by the right hand

19 raise both hands Move both arms in front of the body and raise them from bottom to top

20 raise both hands from side | Raise both arms from the standing at attention pose to top

21 raise both hands at the Raise both hands from the frontal side to the shoulder height

shoulder height

22 raise a hand straight up (1) | Raise a hand straight up. Wave the hand to catch attention (depends on the
implementation)

23 raise a hand straight up (2) | Raise a hand straight up

24 raise the right hand Raise the right hand

25 raise the left hand Raise the left hand

26 turn the right palm down Turn the right palm down slightly with opening the right hand

27 turn the left palm up (Same as above, but using the left hand)

28 wave the hand Wave the hand

29 move the fingertip up Move the thumb-side of the hand in front of the body with the fingertip up and

move the hand downward slightly

30 Cross arms Cross arms, making an “X” sign

31 make a circle with arms Make a circle with arms above the head

32 put both hands on the head | Put both hands on the head

33 put a hand on forehead Put a hand on forehead

34 salute Move the right hand to the temple with the arm bent and turning the palm down

35 put a hand to ear Put a hand to the ear

36 put a hand to mouth Put a hand to mouth, like shouting. It may use both hands (implementation

dependent)

37 make a V sign Make a “V” sign with a hand

38 strike the chest lightly Strike the chest lightly with a hand (or a fist)

39 rub the stomach Move the right hand right and left in front of the stomach

40 put a hand on the waist Put a hand on the waist with bending the arm

41 put both hands on the Put both hands on the waist with bending arms
waist (1)

42 put both hands on the Put both hands on the waist with bending arms and turning the head slightly up
waist (2)

43 Cross arms Cross both arms in front of the chest

44 swing arms back and forth | Swing both arms back and forth like walking

45 knock Move a fist back and forth like knocking

46 push by both hands Raise both hands in front of the chest and move them ahead like pushing

47 indicate a height by a hand | Put a hand at a certain height with turning the palm down

48 bend an arm Move a hand to the shoulder with bending the arm slowly

49 put an arm on a shoulder Put an arm on someone’s shoulder

50 glance at a wristwatch Glance at the left wrist

102

